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Abstract
is thesis constitutes n exposition of the work crried out y the uthor whilst exmining severl

physicl prolems under the rod theme of the dynmic response of metmteril structures. An out-
line of the thesis is provided in chpter 1. Chpter 2 introduces some nottion nd preliminry results on
generl lttice equtions. Chpter 3 exmines the dispersive ehviour of non-clssicl discrete elstic
lttice systems. In prticulr, the effect of distriuting the inertil properties of the lttice over the elstic
rods, in ddition to t the junctions, is considered. It is demonstrted tht the effective mteril prop-
erties in the long wvelength limit re not wht one would expect from the sttic response of the lttice.
e effect of vrious interctions on the dispersive properties of the tringulr cell lttice is considered,
including so-clled truss, frme, ndmicro-polr interctions. Compct nlyticl estimtes for the nd
widths re presented, llowing the design of metmteril structures possessing pss nd/or stop nds
t speciic frequencies nd in speciied directions.

e inite frequency response of severl lttice structures is considered in chpter 4. In prticulr, the
dynmic nisotropy of oth sclr nd elstic lttices is exmined. e resulting strongly nisotropic
mteril response is linked, explicitly, to the dispersive properties of the lttice. A novel ppliction of
dynmic nisotropy to the focusing, shielding, nd negtive refrction of elstic wves using  lt discrete
“metamaterial lens” is presented.

Chpter 5 is devoted to the nlysis, using the dynmic Green’s function, of  inite rectiliner inclu-
sion in n ininite squre lttice. Severl representtions of the Green’s function re presented, including
expression in terms of hypergeometric functions, which re employed in deriving nd edge expnsions.
It is shown tht loclised defect modes, chrcterised y displcements which decy rpidly wy from
the defect, cn e initited y reducing the mss of one or more lttice nodes, whilst ensuring tht the
mss of the nodes remins positive. For one- nd three-dimensionl multi-tomic lttices, there exists 
ound on the contrst in mss etween the defect nd mient lttice such tht loclised defect modes
exist. However, it is shown tht for the two-dimensionl lttice, no such ound exists, provided tht the
msses remin positive. e nlysis of  inite-sized defect region is ccompnied y the wveguide
modes tht my exist in  lttice contining n ininite chin of point defects. A numericl simultion
illustrtes tht the solution of the prolem for n ininite chin cn e used to predict the rnge of eigen-
frequencies of loclised modes for  inite ut, sufficiently long, rry of msses representing  rectiliner
defect in  squre lttice.

Continuingwith the theme of defects, chpter 6 exmines response of  tringulr thermoelstic lttice,
with n edge crck under mode I loding. e response of the tringulr lttice is compred with tht of
the corresponding continuum. emodel is relted to the phenomenon of therml striping, which occurs
when  structure is exposed to periodic vritions in temperture. In the therml striping regime, crck
propgtion is  ftiguing processes with the rte of crck growth eing proportionl to some power of
the pek-to-pek mplitude of the stress intensity fctor. An “effective stress intensity factor” for the lttice
is introduced nd it is demonstrted tht, in the homogenised limit, the “effective stress intensity factor” is
lower thn the stress intensity fctor of the continuum for sufficiently long crcks nd low frequencies.

Finlly, chpter 7 presents  detiled nlysis of  non-singulr squre clok for coustic, out-of-plne
sher elstic, nd electromgnetic wves. e propgtion of wves through the clok is exmined nlyt-
iclly nd is complemented with  rnge of numericl illustrtions. e efficcy of the regulrised clok is
demonstrted nd n ojective numericl mesure of the qulity of the cloking effect is introduced. e
results presented show tht the cloking effect persists over  sufficiently wide rnge of frequencies. To
illustrte further the effectiveness of the regulrised clok,  Young’s doule slit experiment is presented.
e stility of the interference pttern is exmined when  cloked nd uncloked ostcle re succes-
sively plced in front of one of the pertures. A signiicnt dvntge of this prticulr regulrised squre
clok is the strightforwrd connection with  discrete lttice. It is shown tht n pproximte clok cn
e constructed using  discrete lttice structure. e efficiency of such  lttice clok is nlysed nd
severl illustrtive simultions re presented. It is demonstrted tht effective cloking cn e chieved
y using  reltively simple lttice, prticulrly in the low frequency regime. is discrete lttice structure
provides  possile venue towrd the physicl relistion of invisiility cloks.
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Chapter One

Introduction

M
is thesis is devoted to the nlysis of wide rnge of physicl prolemswhich re encompssed
y the uniied theme of the dynmic response of metmteril structures. In prticulr, the
present text dels with wve propgtion, shielding, focusing, frcture nd defects, nd cloking
in structured mterils. e present chpter provides n overview of the thesis together with 
rief review of the most relevnt scholrly literture.
e study of wve propgtion in structured medi cn e trced s fr ck s the 17 cen-

tury with the puliction of Newton’s Principi 112. For instnce, Newton 112 studied 
one-dimensionl mss-spring lttice system nd derived n expression of the speed of sound
propgtion. Despite eing studied for severl centuries, wve propgtion in structured medi
nd the contemporry ields of photonics, phononics nd pltonics remins n ctive re of
reserch. An extensive iliogrphy of reserch in photonics, phononics, nd metmerils cn
e found in 42. As noted in 42, the numer of pulictions in these res is growing yer on
yer. e clssic monogrph y Brillouin 14 remins n excellent introductory text for wve
propgtion in structured medi. In his monogrph, Brillouin trets  wide rnge of physicl
prolems eginning from  simple one-dimensionlmss spring chin, to crystl dynmics, nd
liner prticle ccelertors. e unifying theme of the ook 14 is the periodic rrngement of
elementry units to crete  lrge, oen ininite, structure. e ook y Born nd Hung 9 is
considered the clssicl tretise on lttice dynmics from the viewpoint of quntum mechnics.
e overrching im of the ook 9 is the linkge of mcroscopic properties of crystls to their
microstructure in the long wvelength limit; it dels with the opticl, therml, piezoelectric, nd
elstic properties of lttices. For exmple, Born ndHung use potentil theorymotivted y the
underlying quntum mechnicl principles to deduce the mcroscopic elstic response of the
crystl; these types of interction re referred to s central interactions in the present thesis. In
order to deduce the therml properties of the crystl, Born nd Hung resort to the frmework
of inite deformtions. In terms of defects in lttices, the excellent monogrph y Mrdudin
et l. 98 focuses on defects in crystllogrphy in three dimensionl lttices. Mny of the p-
proches nd results presented in 9, 14, 98 re nowdys considered s stndrd nd re oen
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presented in upper-grdute level texts such s Kittel 85. e ook y Jonnopoulos et l. 70
provides  comprehensive overview of the propgtion of light through photonic crystls. is
very ccessile text 70 egins with elementry exmples of one-dimensionl prolems leding
to  discussion on the design of photonic crystls for speciic pplictions. Musgrve’s Crys-
tal Acoustics 110, lso provides n excellent introduction to wve propgtion in crystls nd
lttices. e ook 110 dels not only with lttice dynmics ut lso with the mechnics of con-
tinuous nisotropic medi. In prticulr, 110 provides  good introduction to the concepts of
group nd phse velocity, nd slowness nd wve surfces in the setting of nisotropic medi.
Such concepts re usully introduced for isotropic medi nd their generlistion to nisotropic
medi re non-trivil.
Some preliminry results for lttices, together with some necessry nottion, re introduced

in chpter 2. Chpter 3 is devoted to the study of the dispersive properties of elstic lttice struc-
tures nd, in prticulr, their homogenised properties in the low frequency rnge. Usully, these
effective properties re determined from the sttic response of the mteril 27,50,100,123 nd
re regrded s eing vlid for smll, ut not necessrily zero, frequencies. However, it is shown
in chpter 3 tht for lttices with inertil links, their dynmic response is not necessrily ccu-
rtely descried y their sttic response, even t smll frequencies. e study of two-dimensionl
elstic discrete systems, ccompnied y the nlysis of dispersion properties of wves, ws in-
cluded in the pper y Mrtinsson nd Movchn 101. It hs een demonstrted tht it is pos-
sile to control the position of stop nds y re-distriuting the mss cross the junctions of the
lttice structure. In 101, the techniques required to nlyse the dynmic properties of discrete
structures were summrised. e method used to nlyse the dispersive properties of discrete
structures in the present thesis is similr to those descried in 14,98,101, ndmny other texts
which tret periodic structures. e spectrl properties of two-dimensionl tringulr, hexgo-
nl, squre, nd Kgomé lttices hve lso een exmined y Phni et l. 127. In prticulr, for
so-clled “cellular solids” formed from  uniform continuous rry of slender ligments without
dditionl mss t the junctions, Phni et l. 127 demonstrted tht the effectivemteril prop-
erties determined from long-wve symptotes to the dispersion curves gree with the effective
mteril properties determined from the sttic response (see, for exmple, the ook y Gison
nd Ashy 50, the pper y Christensen 27, nd the review y Ostoj-Strzewski 123). e
method of using long-wve symptotics to pproximte the dispersion curves nd, hence, deter-
mine the effective elstic moduli hs lso een pplied to structured continu (see, for exmple,
the pper y Crt nd Brun 22). Long wvelength homogenistion using inite difference for-
mlism to derive governing equtions for the corresponding effective continuum hs lso een
considered y mny uthors (see 51 nd reference therein).
In the erly 1980’s Kunin 88, Morozov 107, nd Nzrov nd Pukshto 111 studied

sttic lttices with torsionl interctions. Lter, Mz’y long with Morozov nd Nzrov 102
lso considered two-dimensionl sttic lttices, within the context of homogenistion, nd in-
troduced  potentil of torsionl interction etween elstic ligments t the junction points.
e prolem ws reduced to  inite difference system of equtions nd, for tringulr nd
hexgonl lttices with centrl nd torsionl interctions,  connection ws mde with the ho-
mogenised isotropic continuum. e homogenised Lmé coefficients were evluted nd  ro-
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ttionl micro-polr interction ws identiied. e effects of micro-polr interctions in the
continuum hve een discussed y Eringen 43, 44, nd Kfdr nd Eringen 83. e lt-
tice model involving elstic rods with oth longitudinl nd lexurl stiffness together with the
derivtion of the long-wve pproximtion for homogenised equtions of motion for the micro-
polrmediumhve een discussed yAskr ndCkmk 4. More recently, Spdoni et l. 140
exmined the phononic properties of chirl hexgonl cellulr solids. In this cse, Spdoni et
l. 140 introduced the chirl lttice s n rry of circulr elements of inite rdius, connected
vi thin ligments tngent to the circulr elements. Spdoni et l. 140 presented dispersion
digrms nd exmined the inluence of the cell geometry on the dispersive properties of the
lttice.
e pper y Jones nd Movchn 80 includes  model of dynmic defects within n elstic

system induced y therml pre-stress. In this cse, temperture ws used s  control prmeter
nd the pre-stressed elstic system responded y chnging its iltering properties with respect to
elstic wves propgting through the system. e elstic systemws composed of  periodic r-
ry of multi-scle resontors. Anlysis of dispersion properties of wves in periodic solids with
pre-stress ws lso presented in the pper y Gei et l. 49 nd the pper y Jones et l. 81.
In the former pper, the uthors considered the dispersive properties of n rry of piecewise
homogeneous ems on n elstic foundtion. e uthors demonstrted tht the effect of pre-
stress cn signiicntly ffect the position nd size of nd gps in the dispersion digrms. In
the ltter pper, the uthors returned to the elstic system used in 80. e uthors considered
the effect of defects, crcks in the ligments connecting the resontors to the surrounding m-
trix in this cse, on the dispersive properties nd the low frequency eigenmodes. Further, the
uthors presented n interesting ppliction of these multi-scle resontors: using  inite width
sl of resontors, the uthors were le to simulte  lt elstic lens, which ws used to ilter or
focus wves of certin frequencies. is ide is one which shll e returned to lter in the thesis.
Chpter 3 is sed on the work y the uthor nd his collegues reported in 29.
e ehviour of sclr nd vector lttices in the frequency rnge where the response of the

mteril is strongly nisotropic is discussed in chpter 4. It is demonstrted tht this dynamic
anisotropy is linked to, nd cn e predicted from, the dispersive properties of the microstruc-
ture. e displcement ield resulting from  point lod oscillting t  resonnt frequency,
corresponding to  sddle point on the dispersion surfce, is quite striking. In the literture,
such displcement ields re oen referred to s primitive waveforms (see, for exmple, 5,121).
ese primitive waveforms for sclr lttices hve een exmined in 5, 90, 91, 121. As shown
y the present uthor nd his collegues in 31, primitive waveforms lso exist in vector lttices.
Moreover it ws shown in 31 tht, in contrst to the sclr cse, for vector prolems these
primitive waveforms re not necessrily linked to resonnt frequencies. Chpter 4 lso contins
severl numericl illustrtions, which demonstrte some novel pplictions including iltering
nd focusing of in-plne elstic wves y  fully discrete “metamaterial lat lens”.
For sclr lttice prolems t inite frequencies, Crster nd his co-workers 34, 37, 38, 96

hve developed  two-scle symptotic procedure to determine the mteril properties of n ef-
fective continuum. e pproch used in the forementioned ppers is essentilly tht of the
method of multiple scles (see, for exmple, 7,84). e “High Frequency Homogenisation” em-
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ployed y Crster et l. involves the introduction of two scles nd expresses the solution s 
product of the envelope function, tht is  function of the slow vrile, nd some periodic (or
qusi-periodic) function, which is  function of the fst vrile. e smll prmeter is the
size of the elementry cell (or some other length scle relted to the micostructure) scled y 
length relted to the mcro-structure. Following the introduction of n pproprite nstz, the
prolem then decomposes into  series of prolems sed on powers of the smll prmeter
0 < џ ≪ 1. Physiclly, this pproch corresponds to perturtions wy from stnding wve
solutions in periodic systems nd the solution is decomposed into the product of  function of
the fst vrile nd  function of the slow vrile. e function of the fst vrile descries
the stnding wve solution in the vicinity of the resonnt frequency nd the function of the slow
vrile is monotonic, usully decying, nd descries the mcroscopic ehviour. e fore-
mentioned series of ppers y Crster nd his co-workers origintes with the pper y Adms
et l. 1, which trets the prolem of thin coustic strips using high frequency homogenistion.
e pper y Crster et l. 37 introduces the generl method for sclr ields in the continuum.
Immeditely following 37,  further pper y Crster et l. 38 pplies the method of high fre-
quency homogenistion to one-dimensionl nd two-dimensionl periodic sclr lttices. is
pproch hs een pplied to vrious conigurtions including so-clled checkerboard structures
in the continuum leding to interesting phenomen including slow wves nd negtive refrc-
tion 35, 36. High frequency homogenistion hs lso een pplied to periodic metmteril
composites with resontors 3 s well s pltonic crystls formed y rrys of pins in thin elstic
(Kirchhoff) pltes 2. Following the work with checkerboardmterils, Crster et l. pulished
 pir of ppers which, in prt, exmined str shped wveforms in sclr lttices 34, 96. In
terms of primitive waveforms, the result of high frequency homogenistion is  pir of hyperolic
prtil differentil equtions, who’s sum descries the primitive waveforms t resonnt frequen-
cies, nd who’s coefficients yield the effective mteril properties. To the est of this uthor’s
knowledge, the pproch of Crster et l. is restricted to sclr ields t the present time.
Focusing nd diffrction in opticl systems hve een discussed extensively in the literture.

e stndrd pproch to refrction, focusing, nd diffrction theory cn e found inmny text-
ooks including, for exmple, the clssic ook y Born nd Wolf 10. More recently, the ook
y Nye 118 trets diffrction ptterns ssocited with custics from the point of view of cts-
trophe theory. Cllwy 20 considered the scttering of wves in solids with periodic rrys
of defects. In elsticity, Poulton et l. 130 extended the Ryleigh method 133 to exmine
the scttering of elstic wves for  douly periodic structure. In terms of lttice dynmics, one
cn identify so-clled line localised primitive waveforms (LPW) 5, 121, which consist of  line
of oscillting prticles with the remining prticles eing sttionry. As oserved in 5, 121,
these LPWs re ssocited with sttionry points on the dispersion surfces. Using the methods
of sttionry phse, Lngley hs exmined the response of  squre sclr lttice sujected to
hrmonic 90 nd trnsient 91 point loding. Prticulr ttention ws given to the nture of
the custics, which requires creful considertion when pplying the method of steepest decent.
In chpter 4 of the present thesis, the required integrls re computed directly, using numericl
techniques. Whilst more computtionlly intensive, this direct pproch is oth more conve-
nient nd cn e pplied in the neighourhood of the source.
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In 2002, Bigoni nd Movchn 8 introduced the concept of structurl interfces with inite
thickness, which join two continuous regions. In the pper 8, the uthors noted tht the inertil
properties of the interfce signiicntly ffect the dynmic response nd led to unusul iltering
properties for elstic wves. Lter Brun et l. 16 employed  structured interfce etween two
continuous domins to demonstrte the focusing of elstic wves vi negtive refrction. e
uthors refered to the structurl interfce s  “lat lens for elastic waves”. Similr effects hve
lso een demonstrted in coustics (see, for instnce, Guenneu et l. 62). In chpter 4 of the
present thesis, the effects of focusing nd iltering of elstic wves is extended to entirely discrete
structures. In prticulr,  ditomic interfce lttice emedded in  montomic mient lttice
of the sme geometry is considered. It is shown tht, for certin frequencies, the interfce lttice
cts s  lt elstic lens.
In chpter 4 of this thesis, n elstic tringulr lttice tht is isotropic in the long wvelength

limit 29 is considered in the setting of plne strin; it is demonstrted tht strong nisotropy
exists t higher frequencies. In prticulr, the presence of loclised wveforms previously illus-
trted for sclr lttices 5, 90, 91, 121 is demonstrted. e resulting nisotropy, diffrction
ptterns, nd errtions re explined clssiclly using the dispersion surfces nd slowness
contours. e vector nture of the prolem yields severl novel nd interesting fetures, includ-
ing the presence of strongly preferentil directions nd the ility to “switch” these preferentil
directions y vrying the frequency nd/or type of pplied lod. Chpter 4 is sed on the work
previously reported in 29, 31.
Continuing with the theme of loclised wves, the prolem of loclised defect modes ssoci-

ted with eigenmodes generted y inite nd ininite defects in ininite two-dimensionl squre
lttices is considered in chpter 5. e ehviour of  lttice with  single point defect, or point
source, cn e descried y the lttice Green’s function, s studied y Mrtin 99 for  two-
dimensionl squre lttice. e resulting solution ws nlysed 99 for frequencies within
the pss nd nd the corresponding symptotics t ininity were lso otined. A yer lter,
Movchn nd Slepyn 109 exmined severl clsses of continuous nd discrete models with
vrious forcing or defect conigurtions. Loclised modes were identiied for the cse when the
forcing frequency (or nturl frequency of the defect) ws locted in the stop nd. For  prtic-
ulr choice of the mss vrition, these defect modes were then linked to the stop-nd Green’s
function which were used in the construction of the defect modes.
In the pper 49, Gei et l. considered the effect of uniform pre-stress on the propgtion of

lexurl wves through n elstic em on Winkler foundtion using methods similr to those
of 109. Prticulr ttention ws devoted to nd-gp loclised modes nd control of the posi-
tion of stop-nds vi pre-stress. It ws found tht  tensile pre-stress cn increse the frequency
t which  prticulr nd gp occurs. It ws lso shown tht nd gps cn e annihilated with
the ppliction of n pproprite pre-stress.
Lttice Green’s functions re oen studied in isoltion nd hve proved  rich re of reserch

(see, for exmple, 11,40,82,150, nd references therein). For d-dimensionl lttices, theGreen’s
function is typiclly expressed s  d-dimensionl Fourier integrl. It is oen possile to evlute
one or more of the integrls, s in the pper y Movchn nd Slepyn 109, ut for d > 1 the
Green’s function cnnot e expressed in terms of elementry functions. In chpter 5, severl
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different representtions of the Green’s function for  squre lttice re presented, which prove
useful for nd-edge expnsions. In prticulr, it is useful to express the lttice Green’s function
in terms of  generlised hypergeometric function. is hypergeometric series is well ehved
in the stop nd of the mient lttice, ut diverges in the pss nd. However, vi nlytic
continution, compct symptotic expressions for loclised modes ner the edge of the pss
nd cn e derived. ese nd-edge modes re loclised, ut since they exist t frequencies
close to the edge of the pss nd, they cn e considered s “almost propagating”. Such modes
re lso oen referred to s shallow defect states in the literture nd re of considerle interest
in, for exmple, photonics 41, 95.
Clssicl pplictions in the theory of defects in crystls nd disloctions follow from the fun-

dmentl work of Mrdudin 97, where explicit closed form solutions were derived for  het-
erogeneous lttice system when two distnt prticles of different msses re interchnged. More
recently, the envelope function sed perturtion pproch ws developed y Mhmoodin et
l. 95 nd Dossou et l. 41 for nlysis of wveguides in photonic crystl structures. In the
ltter cse, n rry of cylinders (inclusions) represents  wveguide within  two-dimensionl
structure, nd the frequencies of the guidedmodes re close to the nd edge of the unpertured
douly periodic system.
Loclistion of wves due to n ininite line defect emedded in n ininite squre lttice, hs

een considered y Oshrovich nd Ayzenerg-Stepnenko 122. For the cse of n ininite
line defect, dispersion reltions cn e computed in explicit form llowing sptilly loclised
wveguide modes to e nlysed.

e ook 139 y Slepyn presents  detiled discussion of pplictions for dynmic lttice
prolems involving crcksmodelled s semi-ininite fults, for oth squre nd tringulr elstic
lttices. Loclised modes for  structured interfce nd  crck propgting with constnt speed
within  squre lttice were nlysed y Mishuris et l. 106. In prticulr, it ws shown tht
the crck propgtion cn e supported y  sinusoidl wve loclised long the crck, which
the uthors refer to s  knife wave. Using the lttice model, Mishuris et l. 106 derived the dis-
persion reltions for the crck within the squre lttice. Further, using numericl experiments,
Mishuris et l. 106 demonstrted tht these reltions llow for the prediction of the verge
crck speed within the lttice when  frcture criterion for the crck pth onds is introduced.
More recently, Nieves et l. 115 studied the propgtion of  semi-ininite dynmic crck in
 non-uniform elstic lttice. Extending the work of Mishuris et l. 106, Nieves et l. 115
nlysed the crck stility nd it ws shown tht informtion regrding unstle crck growth
could e otined from the study of the stedy stte regime.
In chpter 5 of the present thesis, the prolem of the ininite defect considered in 122 is

discussed nd linked to the prolem for  inite ut very long inclusion. In prticulr,  rel-
tively simple homogenised differentil eqution is derived for the cse of long defects, which
chrcterises the low frequency response of the inclusion, s well s the envelope of the highest
frequency oscilltions. Chpter 5 is sed, in prt, on the work pulished in 32.
Reminingwith the topic of defects in discrete systems, the prolem of  thermlly striped dis-

crete elstic lttice is considered in chpter 6. e thermlly striped discrete system is nlysed
nd compred with the corresponding prolem for the continuum. erml striping is  phe-
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nomenon tht occurs when  thermoelstic solid is exposed to temperture luctutions on the
exterior oundry. ese temperture vritions my occur s  result of incomplete mixing of
luids t different tempertures. Such phenomen hve een oserved in the ove-core region
of fst reeder rectors, which re oen cooled y liquid sodium; lrge temperture grdients
my exist etween the sodium emerging from the core nd su-reeder ssemlies. A thermoe-
lstic structure exposed to such temperture distriutions cn undergo therml ftigue dmge,
s demonstrted y Jones 73. Much of the nlyticl nd modelling work on therml striping
in the literture hs een crried out y Jones nd his co-workers 23,71–79,108,114,149, who
considered vrious physicl conigurtions nd methods. In the therml striping regime, crck
growth is  ftiguing process where the rte of crck growth depends on the pek-to-pek m-
plitude of the stress intensity fctor nd the mteril properties. For exmple, Pris’ lw 124
( populr ftigue crck growth model) sttes tht

da
dN
= c1(ΔK)c2 , (1.1)

where a is the crck length, N is the numer of loding cycles, c1 nd c2 re mteril constnts,
K is the stress intensity fctor, nd ΔK = maxK −minK is the pek-to-pek mplitude of the
stress intensity fctor. In 2006Movchn nd Jones 108, studied themodel of therml shock for
 semi-ininite ody contining  single smll edge crck. Asymptotic formule for the displce-
ment ield produced y the temperture lod nd n nlyticl expression for the stress intensity
fctor of n edge crck were otined using the weight function method (see 18 mong mny
others). An investigtion into the ehviour of the pek-to-pek mplitude of the stress inten-
sity fctor for  thermlly striped plte withmultiple edge crcks ws crried out y Jones 76. It
ws shown tht the stress intensity fctor is not only  function of crck depth, ut lso depends
on the seprtion etween the edge crcks. Moreover, the stress intensity fctor is lso strongly
inluenced y the frequency of the striping lod. Using pproximte weight functions (see, for
exmple, 47), Jones nd Lewis 78 presented results showing the sensitivity of the stress in-
tensity fctor for n edge crck in  inite lock to the striping frequency nd the spect rtio
of the lock. Following the work y Movchn nd Jones 76, 108, the effect of smll voids nd
micro-crcks locted within  semi-ininite ody in the vicinity of  edge crck ws nlysed y
Nieves et l. 113, 114. For circulr voids, Nieves et l. 114 provided numericl simultions
showing the perturtion rought to the mplitude of the stress intensity fctor for the edge
crck. It ws demonstrted tht, in the presence of voids, the vlue of the mplitude of the stress
intensity fctor for the crck could e reduced reltive to the stress intensity fctor for  medium
without voids.

Chpter 6 of the present thesis is devoted to the nlysis of the effects of  fully discrete ther-
moelstic solid on the mplitude of the stress intensity fctor. In this cse, the discrete structure
is  tringulr lttice with concentrted mss t the junctions connected y mssless conducting
rods. It is demonstrted tht lthough ll stresses in the lttice re inite, the ehviour of the
displcement ield close to, ut outside  smll neighourhood of the crck tip, follows the sme
chrcteristic squre-root ehviour s tht in the continuum. e ove property is used to
determine n “effective stress intensity factor” for the lttice. e corresponding prolem for the
cse of  thermoelstic continuum is lso considered. For this cse, the stress intensity fctor
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is computed using the J-integrl, originlly introduced in 26, 134 nd modiied for thermoe-
lstic prolems in 147, nd compred with the “effective stress intensity factor” for the discrete
structure. It is demonstrted tht the “effective stress intensity factor” for the lttice exhiits the
sme qulittive ehviour s the one for the continuum. However, for the lttice, the pek-to-
pek mplitude of the “effective stress intensity factor” is lower thn tht of the continuum for
sufficiently long crcks nd low frequencies. Chpter 6 is sed on the work 33 y the present
uthor nd his co-workers.
e inl chpter of the min ody of the present thesis is devoted to the development of

invisiility cloks for electromgnetic, out-of-plne sher elstic, nd coustic wves. Using the
frmework of trnsformtion elstodynmics 104, 116, 117, the design of  squre invisiility
clok for wves governed y the Helmholtz eqution is presented. Since the puliction of two
seminl ppers in the sme issue of Science y Leonhrdt 92 nd Pendry et l. 126, there
hs een sustntil interest in the ide of cloking vi trnsformtion optics (see the review
rticle 61 nd references therein). e experimentl vlidtion of cloking for microwves
demonstrted y Schurig et l. 137 in the sme yer further incresed scholrly (nd populr)
interest. e concept of cloking vi trnsformtion optics is due to n erlier fundmentl
result y Greenlef et l. 57, 58 on singulr trnsformtions nd pplictions to cloking for
conductivity. e key to chieving cloking is to ensure tht the governing equtions (Mxwell’s
system in electromgnetism, for exmple) remin invrint under thempping used to generte
the clok. In this sense, the physicl phenomen ssocited with the untrnsformed system re
the sme s those governed y the trnsformed system. e trnsformed system will, in generl,
hve different mteril properties ut the overll form of the system should remin unchnged
under thempping. emetric invrince ofMxwell’s equtions hs een understood formny
yers 129, 144. However for other systems, such s elsticity, the equtions re not in generl
invrint under trnsformtion 104,117, t lest in the sense tht the trnsformed system does
not correspond to  clssicl elstic mteril. e invrince of the Helmholtz eqution hs
een demonstrted y Norris 116, who lso provided  convenient theoreticl frmework for
cloking in coustics.
e clssicl pproch to cloking vi trnsformtion optics involves deforming  region such

tht  point is mpped to  inite region corresponding to the inner oundry of the clok. Usu-
lly, such trnsformtions involve trnsforming  point into  inite regionwith  smooth ound-
ry, such s n ellipse (see 60, 116, 126, mong others). e mpping is non-singulr every-
where, except t the initil point which is deformed into the inner oundry of the clok. In
the originting pper y Pendry et l. 126, the clok is creted y mpping  disc to n nnu-
lus. Mxwell’s equtions re invrint under the corresponding trnsformtion, s required in
order to chieve cloking. e mteril properties of the clok re then determined from the
metric of the deformed spce 138. e mpping used in 126 is clerly singulr:  point is
mpped to the inner rdius of the nnulus, nd this results in discontinuous (singulr) mteril
properties. Greenlef et l. ddressed this issue in two ppers 55,56 nd derived the condition
for inite energy wek solutions of the Helmholtz eqution nd Mxwell’s equtions. In 55, it
ws demonstrted tht inite energy solutions to the cloking prolem for the Helmholtz equ-
tion exist for n oject with  single lyer clok. However, for the cse of Mxwell’s equtions
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with internl currents, the cloking of n ininite cylinder cnnot e chieved with  single lyer
or without imposing  physicl surfce t the inner oundry of the clok. In the sme pper,
Greenlef et l. derived n identity linking the trnsformed sclr wve eqution to the metric
of the deformed spce, which my then y linked to the mteril properties of the clok 56. In
2008 Norris 116 studied coustic cloking nd re-derived n equivlent identity to tht in 55
using the frmework of inite elsticity, leding to  clok with  density descried y  rnk
two tensor. Moreover, it ws demonstrted tht the totl mss of the clok is ininite for the
cse of perfect cloking. Norris further demonstrted tht the prolem of ininite mss could e
overcome if oth the density nd elstic properties of the clok were nisotropic. An lterntive
pproch to negte the prolem of singulr mteril properties is to construct  so-clled near
cloak y regulrising the trnsformtion 86. Rther thn mpping  single point to the inner
oundry of the clok Kohn et l. 86 proposed mpping  ll of smll, ut inite, rdius to the
inner oundry. A smll regulristion prmeter which chrcterises the initil rdius of the
ll is introduced, which results in  non-singulr mpping on the clok nd its oundry. e
regulristion procedure ws used to crete illustrtive near cloaks in 116.
In 2006,Milton et l. 104 exminedhow the equtions ofmotion for  generl elsticmedium

trnsform under n ritrry curviliner trnsformtion. It ws shown tht  priori requiring 
symmetric stress tensor enforces  prticulr choice of the guge (i.e. the mnner in which the
displcement vector trnsforms). It ws found tht, in generl, the equtions of motion re not
invrint under trnsformtion ut re mpped to  more generl system with non-sclr den-
sity. Milton et l. demonstrted tht  specil cse of the so-clledWillis equtions 105 remin
invrint under generl curviliner trnsformtions. In 104 identities linking the mteril
properties of the clok to the mp, for oth clssicl elsticity nd the more generl Willis mte-
rils re derived. In 2011, Norris nd Shuvlov 117 further generlised the work of Milton et
l., deriving more generl system of trnsformed equtions without imposing the constrint of
symmetric stress. emteril properties of the trnsformed systemwere derived explicitly nd
shown to depend on oth the trnsformtion nd the choice of guge. Together 104 nd 117
provide  comprehensive frmework in which to investigte cloking in elstodynmics.
A design for  clok to control lexurl wves in thin pltes ws proposed y Frht et l. 45.

e clok ws constructed of severl concentric lyers of piecewise constnt isotropic elstic
mteril. Frht et l. lso presented  simpliied model suitle for prcticl implementtion
with ten lyers using six different mterils. Following 45, n experimentl group led y We-
gener fricted  clok sed on the work of Frht et l. using twenty concentric rings nd
sixteen different elstic metmterils 141. Physicl mesurements were compred with nu-
mericl simultions nd found to e in good greement. Control of in-plne wves governed y
the Nvier equtions ws exmined y Brun et l. 17. In 17, the uthors modelled  circulr
clok using the clssicl rdil trnsformtion y deforming  disc to n nnulus. e efficiency
of the clok ws illustrted using inite element simultions, nd the numericl solution of the
cloking prolem ws compred with the Green’s function for  homogeneous elstic spce.
An inluentil pper y Rhm et l. 132 presents  trnsformtion optics lgorithm for

 prolem of electromgnetism involving  clok of  squre shpe. e trnsformtion is
performed in Crtesin coordintes nd results in  piecewise smooth clok on the interior
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points, with mtching regions in the neighourhood of corners nd  singulrity t the ori-
gin mpped into the inner oundry of the clok. e model of such  continuum clok re-
ceived sustntil ttention nd susequent use y the modelling community (see, for exm-
ple, 46,48,69,93,125,136). In the mjority of these ppers, the emphsis is on the geometricl
spect of the possile shpes of the clok, with exmples rnging from polygonl nd ellipticl
cloks to hert-shped cloks. Although it is indeed interesting to see  wide rnge of trnsfor-
mtions nd geometries, it lso remins importnt to understnd the trnsformed prolem in
the context of the physicl model, ddress the nlysis of the trnsformed oundry or trnsmis-
sion conditions nd furthermore derive the properties of the solutions. e pper 132, which
stimulted  good level of discussion on the topic, lso dmits  deiciency regrding the nlysis
of the solution ner the oundry of the clok. Apprently, no indiction ws given out the
sensitivity of the result to the type of oundry conditions (Dirichlet or Neumnn) on the inner
oundry of the clok. e uthors’ evlution of the effectiveness of the cloking ws sed on
 visul oservtion linked to  numericl simultion t  single frequency. In 132, the uthors
dmit tht the effective mteril properties of the clok re inccurte in the vicinity of the inner
oundry of the clok, owing to the singulr nture of the mpping. Indeed, if the uthors hd
ttempted to chnge the frequency rnge they would hve seen signiicnt differences. e clok
dvocted in 132 is n pproximte clok, where the oundry effects ecome importnt nd
visile s the frequency of the incident wves increses.

e ides of metric invrince in Mxwell’s equtions nd cloking hve found extensive use
s  technicl tool nd on mny occsions, the reserchers omit to look t the physicl model
corresponding to the trnsformed equtions. For exmple, on pge 99 of 93 the text reds “e
squre clok hs the sme geometry s the cylindricl cse, except tht we replce the cylindri-
cl shell y  rectngulr shell with the sme size”. is comprison of unlike geometries omits
importnt effects, such s ield concentrtions ner shrp corners, which mke cloking more
difficult. Motivted y 132, Frht et l. 46 ttempted to construct n pproximte squre
clok for out-of-plne sher wves. Using the method of multiple scles, Frht et l. 46 intro-
duced  microstructure composed of  regulr rry of perfortions nd derived  homogenised
continuum which would pproximte n idel clok. However, Frht et l. dmit in 46 tht
their structured clok is not s efficient s the uthors expected.
Polygonl cloks hve lso een the suject of experimentl investigtion. For exmple, in 24

Chen et l. report the results for n experimentl rodnd hexgonl clok sed on  piece-
wise liner homogeneous trnsformtion. Although the clok does not render the cloked o-
ject invisile, it does reduce its pprent size. e clok is demonstrted to work for visile
light. However, Chen et l. 24 emphsise tht the clok functions only for light incident from
six directions deined y the fces of the hexgon. More recently, Lndy et l. 89 produced
n experimentl uni-directionl metmteril clok for microwves. e reported clok 89
is sed on  iliner trnsformtion which mps  line segment to  two-dimensionl region
of spce. Cloks sed on such trnsformtions re referred to s carpet cloaks in the literture
(see 94 mong others). e dvntge of such cloks is tht the requisite mteril properties
re homogeneous nd inite. However, Lndy et l. dmit tht such cloks re only effective
over  nrrow rnge of oservtion ngles. e clok is nonetheless impressive given tht the
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prcticl implementtion does not rely on the eikonl pproximtions s is the cse with other
implementtions 25, 128, 148.
It ppers tht the work reported in 132 hs generted  scope for further discussion nd in-

deed further improvement of the model involving “glued trnsforms” tht led to pproximte
rectngulr cloks. Such cloks re y no mens exct nd re frequency sensitive. A regulr-
istion procedure, s illustrted y Kohn et l. 86 for the sphericl clok, cn e pplied to
mke the trnsformtion, nd hence the mteril properties, non-singulr on the inner ound-
ry of the clok. e regulristion procedure not only simpliies the nlysis, ut lso mkes it
physicllymeningful. Furthermore,  lttice pproximtion is strightforwrd for  regulrised
squre-shped clok. is ppers to e efficient nd serves  reltively wide frequency rnge.
In the spirit of Kohn et l. 86,  so-clled near cloak is presented in chpter 7. In prticulr,

four trpezoids surrounding  squre of semi-width џ re mpped to four nrrower trpezoids
such tht the semi-width of the squre is enlrged to a≫ џ > 0. empping is continuous nd
piecewise smooth everywhere on the closure of the trpezoids which form the clok surround-
ing the squre inclusion. Since the mp used in the present thesis is non-singulr on oth the
interior nd oundry of the clok, ll mteril prmeters re continuous nd, indeed, piece-
wise smooth.

Chpter 7 lso contins detiled nlysis of wve propgtion through the clok using oth
numericl simultions nd nlyticl methods sed on the ry equtions otined through 
WKB-type pproximtion. In ddition,  novel illustrtion of the efficcy of the clok is pre-
sented, which provides n interesting link with QuntumMechnics. A recent pper y Green-
lef et l. 54 lso rises interesting questions regrding the link etween QuntumMechnics
nd cloking. e pper 54 presents  clss of invisile reservoirs nd mpliiers for ields gov-
erned y Schrödinger’s eqution. In the inl prt of chpter 7,  possile venue towrd the
physicl relistion of the clok is presented. In prticulr,  reltively simple discrete metm-
teril clok formed from point msses connected vi mssless springs is discussed. It is shown
tht this lttice clok is effective in reducing the scttered ield, prticulrly for low frequencies.
e work reported in chpter 7 hs recently een pulished y Colquitt et l. 28.
To summrise, the structure of the present thesis is s follows. Chpter 3 is devoted to the

study of the dispersive properties of elstic lttice structures nd, in prticulr, their homogenised
properties in the low frequency rnge. e ehviour of sclr nd vector lttices in the fre-
quency rnge where the response of themteril is strongly nisotropic is discussed in chpter 4.
It is demonstrted tht this dynamic anisotropy is linked to, nd cn e predicted from, the dis-
persive properties of the microstructure. e prolem of loclised defect modes ssocited with
eigenmodes generted y inite nd ininite defects in ininite two-dimensionl squre lttices is
considered in chpter 5. e prolem of  thermlly striped discrete elstic lttice is considered
in chpter 6. e thermlly striped discrete system is nlysed nd compred with the corre-
sponding prolem for the continuum. e inl chpter of the min ody of the present thesis is
devoted to the development of invisiility cloks for electromgnetic, out-of-plne sher elstic,
nd coustic wves. Chpter 8 riely summrises the prolems studied in the present thesis
nd lso includes  discussion of the common themes linking the physicl prolems presented
herein. Before considering the prolems summrised ove, some preliminry results which
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ese exposition in the min ody of the thesis re presented in chpter 2.

12



Chapter Two

Lattice preliminaries

M
is chpter introduces some prerequisite results, theory nd techniques, nd estlishes some
common nottion tht will e used throughout this thesis. e emphsis of this chpter will e
on revity rther thn detiled commentry.

2.1 Lattice equations

e following frmework nd nlysis pplies to one-, two-, nd three-dimensionl prolems.
Consider  regulr rry of prticles in d-dimensionl Eucliden spce, Rd, where d = 1, 2, 3.
Ech prticlewithin the ltticemy then e lelled y multi-indexm = (m1,m2, . . . ,md) ∈ Zd

nd  sclr n ∈ N0, where Z nd N0 re the sets of ll integers nd ll non-negtive integers
respectively. e multi-index m refers to the unit cell in which the prticle is locted, wheres
the sclr n distinguishes etween different prticles in the sme elementry cell. e position
of ech prticle within the lttice is then denoted y xm,n = T m+x0,n, where x0,n is the position
of the nth prticle in the unit cell nd T is the d × dmtrix T = [t1, t2, . . . , td]. It is emphsised
tht su-script comms do not indicte differentition, ut simply seprte the indices for clrity.
e column vectors ti re the direct lttice vectors, which descrie the principl directions of the
lttice. For exmple, the direct lttice vectors for  plnr ditomic tringulr lttice re shown
in igure 3.1 on pge 25. e prllelogrm deined y the direct lttice vectors (nd shded in
grey in igure 3.1) is the elementry cell of the lttice. For the specil cse of  uniform lttice,
tht is, lttices where ll prticles re the sme, x0,n = 0 nd the position of ech prticle is
simply xm = T m. It should e emphsised tht oth xm,n = T m + x0,n nd xm = T m will e
used throughout this work nd it is importnt to distinguish etween the two. e former refers
to the position of prticle (m,n) within the lttice, wheres the ltter denotes the position of
the mth elementry cell of the lttice. roughout this thesis, the nottion Am,n will e used to
denote some property A, of node n in themth unit cell.
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..t2 .

t1
(a)

..

a2

.

a1

(b)

Figure 2.1: e direct () nd reciprocl () lttice vectors for the ditomic tringulr lttice shown
in igure 3.1 on pge 25. e corresponding elementry cells re shded in grey.

For the physicl prolems presented in this thesis, the interctions etween lttice points will
e liner in the sense tht the dynmic equtions governing the potentil of node (m,n) hs the
form

∑
(p,q)∈Nn

Cp,qUp,q(t) − In ds
dts

Um,n(t) = Fm,n(t). (2.1)

In eqution (2.1), Um,n(t) nd Fm,n(t) re the potentil of, nd the lod on, the prticle (m,n)
respectively; nd oth re continuous functions of time t. e prmeter s ∈ N is determined y
the type of interction considered. In prticulr, for the mechnicl lttices considered in chp-
ters 3-7, s = 2 nd eqution (2.1) is simply Newton’s Second Lw; nd for the het conduction
prolem on  lttice s considered in chpter 6, s = 1. e squre digonl “inertia matrix”Ƭ is
denoted y In nd descries the inertil properties of the lttice point. e (squre) interaction
matrix Cp,q chrcterises the interction etween node (m,n) nd node (m+p,n+q). In other
words,Cp,q descries the lod on node (m,n) s  result of  chnge in potentil of (m+p,n+q).
Finlly, the setNn enumertes the nodes (m+ p,n+ q) intercting with node (m,n). Typiclly,
Nn will e the set of nerest neighours such thtNn = {(p, q) ∶ ∣xp,q∣ ≤ L}, where L > 0 is some
distnce chosen ppropritely such thtNn contins only the nerest neighours of node (m,n).
e reder’s ttention is drwn to the fct tht (m,n) ∈Nn, tht is,  lttice node elongs to the
set of its nerest neighours.
is thesis is concerned with the propgtion of time-hrmonic disturnces through lttices.

erefore, solutions of the form Um,n(t) = um,neiѱt re sought nd Fm,n(t) is restricted to the

Ƭ It is emphsised tht the term “inertia matrix” is used purely for convenience nd I need not correspond to
physicl inerti. For mechnicl lttices (chpters 3-7), I is the mtrix of nodl msses. For the het conduction
prolem (chpter 6), the mtrix I descries the het cpcity of the nodes.

14
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clss of functions such tht Fm,n(t) = fm,neiѱt, where ѱ is the rdin frequency. e functions
um,n ∶ Z

2 × N0 ↦ Cd nd fm,n ∶ Z
2 × N0 ↦ Cd re the potentil nd lod complex mplitudes

respectively. It is understood tht the physicl ields re given y the rel prts of Um,n(t) nd
Fm,n(t). For time-hrmonic potentils, (2.1) reduces to

∑
(p,q)∈Nn

Cp,qup,q − (iѱ)sInum,n = fm,n. (2.2)

Upon ppliction of the discrete Fourier trnsform, which my e deined s

F [um,n] = uFFn (ξ) = ∑
m∈Zd

um,n exp (−iξ ⋅ xm) , (2.3)

eqution (2.2) tkes the form

∑
(p,q)∈Nn

[Cp,qe−ixp⋅ξ − (iѱ)sInўn,q]uFFq (ξ) = f FFn (ξ) , (2.4)

where ўnq is the Kronecker delt. Here, the Fourier vriles re restricted to the unit cell in the
reciprocl spce, ξ ∈ Ξ. In prticulr, the unit cell in the reciprocl spce is the d-prllelotope
spnned y the reciprocl lttice vectors, ai, where [a1,a2, . . . ,ad] = 2πT −T, where (⋅)−T de-
notes the inverse nd trnspose of the prenthesised quntity. For the plnr ditomic tringu-
lr lttice shown in igure 3.1 on pge 25, the direct nd reciprocl lttice vectors nd ssocited
elementry cells re shown in igure 2.1. Introducing the lock mtrices

σnq(ѱ, ξ) = ∑
p∈Nn

[Cp,qe−ixp⋅ξ − (iѱ)sInўnq] , (2.5)

together with the vectors

UFF(ξ) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uFF1 (ξ)
uFF2 (ξ)

...

uFFQ (ξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
nd FFF(ξ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FFF1 (ξ)
FFF2 (ξ)

...

FFFQ (ξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.5)

whereQ is the numer of nodes in the elementry cell, eqution (2.4) my e written compctly
s

σ(ѱ, ξ)UFF(ξ) = FFF(ξ). (2.6)

For the unforced prolem inmechnicl lttices (s = 2) onemy setFFF(ξ) = 0 nd immeditely
otin the dispersion eqution for Bloch-Floquet wves: det σ(ѱ, ξ) = 0. e potentil ield
then hs the well known form um,n = u0,neixm⋅ξ . For non-trivil FFF, the potentil ield cn e
otined y mens of the inverse Fourier trnsform

Um =
1∥R∥ ∫
R

FFF(ξ)σ−1(ѱ, ξ)eiξ⋅xmdξ, (2.7)

whereR = {ξ ∶ −π < Ѩi x0,n ⋅ ei ≤ π} nd ei is the unit vector long the ith xis; the symol ∥ ⋅ ∥
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denotes the Leesgue mesure.

2.2 Lattice interactions

With the exception tht Cp,q should e squre, no restrictions hve een plced on the form
of the interction mtrices. e precise form of the interction mtrices depend on the type
of lttice link considered. It is remrked tht the interction mtrices my not only depend on
the prmeters p nd q, ut will lso depend on the physicl nd geometricl properties of the
lttice. e physicl lttices consider lter in this thesis will e restricted to two-dimensionl
plnr lttices. For such lttices, it is convenient to construct fundamental interaction matrices
A nd B which descrie the ehviour of  single lttice link oriented long e1 s shown in
igure 2.2. It is emphsised tht the shpe of the links in igure 2.2 is purely illustrtive. Indeed,
the speciic shpe of the lttice links will depend on the type of physicl interction considered.
Using themtricesA ndB, together with pproprite rottionmtrices onemy then construct
the interction mtrix Cn,p for ny two lttice points. For exmple, consider  single mechnicl
lttice link oriented long the e1 xis s illustrted in igure 2.2. Ifu0 nduℓ re the displcements
t the ends of the link, then the force t x = 0 cn e written in the form

f0 = Au0 + Buℓ. (2.8)

If f0, u0, uℓ ∈ Cn, then A nd B re n × n mtrices. e force t x = [ℓ, 0]T cn e determined
y pplying  sequence of rottions to the system. In prticulr, the force t x = [ℓ, 0]T cn e
expressed s

fℓ = RAR
Tuℓ + RBRTu0, (2.9)

where R ∈ SO(n,R) is  rottion mtrix such tht Re1 = −e1. e reder is referred to sec-
tion 2.2.7 for  more detiled discussion of the rottion mtrices. Hence, the interction mtri-
ces hve the form C0,1 = A = RART, Ce1,1 = B, C−e,1 = RBRT.
In this section, the fundmentl interction mtrices required in lter chpters will e intro-

duced with the emphsis on revity rther thn exposition. Discussion of the signiicnce nd
physicl interprettion of these interctions is deferred to lter chpters. e full interction
mtrices will depend on the geometry nd physicl prolem considered, nd therefore, will e
constructed s needed in lter chpters. e following is not intended to represent  complete
list of ll possile interctions, nor is ny prticulr signiicnce ttched to these prticulr
models eyond tht they will e required lter in the thesis. For ll except heat conduction, in
which s = 1, one should set s = 2 in equtions (2.1)-(2.4) in the previous section.

2.2.1 Out-of-plane shear

Out-of-plne sher is, perhps, the simplest mechnicl interction possile. In this cse the
lue lttice link illustrted in igure 2.2 corresponds to  mssless ond of stiffness k, for which
the lod is f = u′(x) nd the displcement ield stisies (see, for exmple, 53)

d2u
dx2
= 0, u(0) = u0, u(ℓ, 0) = uℓ. (2.10)
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Figure 2.2: Two lttice nodes sep-
rted y  distnce ℓ. A
rnge of “interctions”
re illustrted in lue;
it is emphsised tht
the shpe of the lt-
tice link will depend
on the type of interc-
tion considered.

Here, u0 nd uℓ denotes the out-of-plne (into nd out of the pge in igure 2.2) displcements
of ends of the spring (x = 0 nd x = [ℓ, 0]T respectively). e force t x = 0 is then

f0 = k
uℓ − u0

ℓ
e3. (2.11)

In this cse, the fundmentl interction mtrices re, in fct, sclrs

AS
= −

k
ℓ

nd BS = k
ℓ
. (2.12)

e superscript S is used to emphsise tht these fundmentl interction mtrices refer to the
out-of-plne sher interction.

2.2.2 Heat conduction

In this cse the lttice nodes re connected y thin mssless rod of therml conductivity k nd
uniform cross-sectionl re S. If the lterl surfce of the rod is thermlly isolted from the
surroundings, the temperture distriution long the rod is then

θ(x) = Θ0 +
Θℓ −Θ0

ℓ
x, (2.13)

where x is distnce long the rod, nd Θℓ nd Θ0 re the tempertures t x = [ℓ, 0]T nd x = 0
respectively. According to Fourier’s lw, the locl rte of het low through the cross section of
the rod is

∂Q
∂t
=
kS
ℓ
(Θℓ −Θ0). (2.14)

Hence, for this simple model of het conduction the fundmentl interctionmtrices re gin
sclrs nd of  similr form s the out-of-plne sher interction

AH
= −

kS
ℓ

nd BH = kS
ℓ
. (2.15)

2.2.3 Elastic in-plane motion: Central interactions

Returning to mechnicl interctions, let un nd up denote the displcement mplitudes of the
end-points of  thin elstic rod of length ℓ, Young’s modulus E, uniform density ρ, nd constnt
cross-sectionl re S. For centrl interctions, tht is interctions tht only depend on the
distnce etween two points nd not the reltive orienttion, only the longitudinl virtions of
the rod need to e considered. e time hrmonic longitudinl displcement mplitude u(x)
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then stisies (see, for instnce, 53)

( d2

dx2
+
ѱ2

c2
)u(x) = 0, u(0) = u0 ⋅ e1, u(ℓ) = uℓ ⋅ e1, (2.16)

where c2 = E/ρ nd ѱ2 is the ngulr frequency of the virtions. e force t x = 0 is then

fn = ES
du
dx
∣
x=0

e1 = ESѥ(u1 ⋅ e1 − u0 ⋅ e1 cos(ѱℓ/c)
sin(ѱℓ/c) ) e1, (2.17)

whence the fundmentl interction mtrices hve the form

AC
= −

ѱES
c
⎛⎝cot(ѱℓ/c) 0

0 0
⎞⎠ nd BC

=
ѱES
c
⎛⎝csc(ѱℓ/c) 0

0 0
⎞⎠ . (2.18)

e fundmentl interction mtrices for  non-inertil lttice link cn e otined from (2.18)
y tking the limit s c→∞ (ρ → 0). In this cse the fundmentl interction mtrices tke the
prticulrly simple form

AC
= −

ES
ℓ

⎛⎝1 0
0 0
⎞⎠ nd BC

=
ES
ℓ

⎛⎝1 0
0 0
⎞⎠ . (2.19)

2.2.4 Elastic in-plane motion: Central and torsional interactions

Consider the thin elstic rod discussed in section 2.2.3 connecting the two end points. In ddi-
tion, locted t ech end point is  torsionl spring of stiffness τ. If the elstic rod is rigid in the
trnsverse direction (e2) nd connected to the nodes t x = 0 nd x = [ℓ, 0]T y pin joints, then
for smll trnsverse displcements u0 ⋅ e2, the torsionl spring exerts  torque T = −τu0 ⋅ e2/ℓ on
the rod. us,the fundmentl interction mtrices re then

ATS
= −
⎛⎝ѱES cot(ѱℓ/c)/c 0

0 −τ/ℓ
⎞⎠ nd BTS

=
⎛⎝ѱES csc(ѱℓ/c)/c 0

0 τ/ℓ
⎞⎠ . (2.20)

is type of interction hs een exmined in previous works in the frmeworks of homogeni-
stion theory, see 102, 107, 111 mong others, nd is studied here in contrst to the Euler-
Bernoulli interction which follows this section.

2.2.5 Elastic in-plane motion: Euler-Bernoulli interactions

Consider the longitudinl nd lexurl virtions of the thin rod discussed in the previous sec-
tion. e longitudinl displcement mplitude u(x) is still governed y the time-hrmonic wve
eqution (2.16). e trnsverse mplitude w(x) is governed y the Euler-Bernoulli em equ-
tion (see 53, mong mny others)

( d4

dx4
−
ѱ2

ћ2
)w(x) = 0 (2.21)

w(0) = u0 ⋅ e2, w(ℓ) = uℓ ⋅ e2, w′′(0) = u0 ⋅ e3, w′′(ℓ) = uℓ ⋅ e3, (2.21)
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Figure 2.3: A segment of n Euler-
Bernoulli em, sujected
to sher forces nd end-
ing moments. Notice the
reltionship etween the
directions of the forces
nd moments.

where, in this cse, ћ2 = EI/(ρS). e displcement mplitudes t the end points re denoted
y un, up ∈ C3 respectively. In prticulr, ua = [u(a),w(a),w′′(a)]T. e second derivtive
of the trnsverse displcement represents the curvture of the em out e3. Hence, the irst
two components of the vector re the rectiliner displcement long e1 nd e2, whilst the third
component is the rottion out e3. e ending moment (out e3) t x = 0 is then

EIw′′(0) = EIѥ2 cos ѥℓ − cosh ѥℓ
cos ѥℓ cosh ѥℓ − 1

up ⋅ e2 + EIѥ2
sinh ѥℓ − sin ѥℓ
cos ѥℓ cosh ѥℓ − 1

up ⋅ e3

+ EIѥ2 sin ѥℓ sinh ѥℓ
cos ѥℓ cosh ѥℓ − 1

un ⋅ e2 + EIѥ
cosh ѥℓ sin ѥℓ − sinh ѥℓ cos ѥℓ

cos ѥℓ cosh ѥℓ − 1
un ⋅ e3,

(2.22)

with ѥ =
√
ѱ/ћ. Similrly, the sher force (long e2) t x = 0 is

EIw′′′(0) = −EIѥ3 sin ѥℓ + sinh ѥℓ
cos ѥℓ cosh ѥℓ − 1

up ⋅ e2 + EIѥ2
cosh ѥℓ − cos ѥℓ
cos ѥℓ cosh ѥℓ − 1

up ⋅ e3

+ EIѥ3 cosh ѥℓ sin ѥℓ + cos ѥℓ sinh ѥℓ
cos ѥℓ cosh ѥℓ − 1

un ⋅ e2 + EIѥ2
sinh ѥℓ sin ѥℓ

cos ѥℓ cosh ѥℓ − 1
un ⋅ e3.

(2.22)

For lttices with Euler-Bernoulli links where the sher forces nd ending moments couple, it
is importnt to understnd the orienttion of the lods. In prticulr, the ppliction of  pos-
itive (negtive) ending moment to n element of the rod genertes  negtive (positive) sher
lod, s illustrted in igure 2.3. Amore detiled discussion of the reltionship etween ending
moments nd sher forces in Euler-Bernoulli ems cn e found in 53 nd other clssicl text-
ooks. Formlly, the endingmoment nd sher forces t x = ℓ cn e computed nd compred
with those t x = 0 (see equtions (2.22)) to conirm the direction of the forces. In prticulr,

EIw′′(ℓ) = EIѥ2 cosh ѥℓ − cos ѥℓ
cos ѥℓ cosh ѥℓ − 1

un ⋅ e2 + EIѥ2
sinh ѥℓ − sin ѥℓ
cos ѥℓ cosh ѥℓ − 1

un ⋅ e3

+ EIѥ2 sin ѥℓ sinh ѥℓ
cos ѥℓ cosh ѥℓ − 1

up ⋅ e2 + EIѥ
cosh ѥℓ sin ѥℓ − sinh ѥℓ cos ѥℓ

cos ѥℓ cosh ѥℓ − 1
up ⋅ e3,

(2.23)

nd

EIw′′′(ℓ) = −EIѥ3 sin ѥℓ + sinh ѥℓ
cos ѥℓ cosh ѥℓ − 1

un ⋅ e2 + EIѥ2
cos ѥℓ − cosh ѥℓ
cos ѥℓ cosh ѥℓ − 1

un ⋅ e3

+ EIѥ2 sinh ѥℓ sin ѥℓ
cos ѥℓ cosh ѥℓ − 1

up ⋅ e2 + EIѥ3
cosh ѥℓ sin ѥℓ + cos ѥℓ sinh ѥℓ

cos ѥℓ cosh ѥℓ − 1
up ⋅ e3.

(2.24)
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e fundmentl interctionmtrices re shown in eqution (2.26) on pge 21. It is remrked
tht, s in section 2.2.3, one my otin the clssicl interction mtrix for mssless links y
tking the limit of (2.26) s ρ → 0. For the cse of non-inertil links, the fundmentl interction
mtrices re

AEB
= −

⎛⎜⎜⎜⎝
SE/ℓ 0 0
0 12EI/l3 6EI/l2
0 6EI/l2 4EI/l

⎞⎟⎟⎟⎠
nd BEB

=

⎛⎜⎜⎜⎝
sE/ℓ 0 0
0 12EI/l3 −6EI/l2
0 6EI/l2 −EI/l

⎞⎟⎟⎟⎠
. (2.25)

20



Chapter Two Lattice preliminaries
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2.2.6 ermoelastic lattices

Consider the centrl interction for elstic in-plne motion discussed in section 2.2.3 in com-
intion with the het conduction interction introduced in section 2.2.2. Let the two ends of
 thin elstic mssless conducting rod of length ℓ e exposed to two tempertures Θ0 nd Θℓ.
e therml strin in the rod s  result of temperture distriution θ(x) is џT = ћθ(x), where
ћ is the liner coefficient of therml expnsion. e suscript T denotes therml, s opposed to
elstic, strin. In sence of constrint forces, the xil elongtion of the rod will e

u = ћ
ℓ

∫
0

θ(x) dx, (2.27)

or more explicitly
u = ћℓΘ0 +Θℓ

2
. (2.28)

us the compressive force required to mintin equilirium is

f = ћESℓΘ0 +Θℓ

2
, (2.29)

Comining this therml interction with the elstic response of  thin rod (2.19), the fundmen-
tl interction mtrices re

ATE
= −

ES[1 − ћℓ2(Θn +Θp)]
2ℓ

⎛⎝1 0
0 0
⎞⎠ nd BTE

=
ES[1 − ћℓ2(Θn +Θp)]

2ℓ
⎛⎝1 0
0 0
⎞⎠ . (2.30)

2.2.7 e rotation matrices

Consider  regulr distriution of lttice points in R2 t positions xm,n, connected y lttice
links. e lod-potentil reltionship etween  lttice point t xm,n nd its nerest neighours
is governed y eqution (2.2). e potentil mplitudes in eqution (2.2) re stted in some
glol sis, wheres the fundmentl interctionmtrices re written in locl coordintes, with
the irst component of the potentil vectors eing ligned long the link xis. Let R(p, q) ∈
SO(n,R) e  rottion mtrix, where n is the dimension of the potentil vector up,q, such tht

xp,q∣xp,q∣ = R(p, q)e1. (2.31)

In other words, R(p, q) sends the Crtesin unit vector e1 to the unit vector which is directed
long the lttice link from xm,n to xm+p,n+q. If up,q is the potentil in glol coordintes, then

RT(p, q)up,q (2.32)

is potentil in locl coordintes. Furthermore, the lod on node (m,n) s  result of potentil
up,q in locl coordintes is

[Aўp,0ўnq + B(1 − ўp,0ўnq)]RT(p, q)up,q, (2.33)
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where ўp,m is the two-dimensionl Kronecker delt for indices p, m ∈ Z2 such tht ўp,m =
ўp1m1ўp2m2 . Finlly, in glol coordintes the lod ecomes

R(p, q)[Aўp,0ўnq + B(1 − ўp,0ўnq)]RT(p, q)up,q, (2.34)

whence eqution (2.2) my e written s

∑
(p,q)∈Nn

R(p, q)[Aўp,0ўnq + B(1 − ўp,0ўnq)]RT(p, q)up,q − (iѱ)sInum,n = fm,n. (2.35)

e coefficient of up,q in eqution (2.34) represents the interction mtrix Cp,q deined in (2.2).
It is remrked tht if the fundmentl interction mtrix is  sclr multiple of the identity

mtrix, then since RT(p, q)R(p, q) = I y deinition, nd hence the full interction mtrix will
lso e  sclr multiple of the identity mtrix. Such cses occur for uniform sclr lttices,
where ll lttice points re the sme nd the potentils re sclr.

With the necessry nottion nd preliminry results estlished, the following chpter will
e concerned with the dispersive properties of n elstic tringulr lttice nd in prticulr, ex-
mintion of the effect of distriuted inerti on the effective group velocities of elstic wves.
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Chapter ree

Elastic lattices with distributed inertia

M
Clssiclly, mechnicl lttices cn e thought of s  regulr rry of point msses connected y
mssless springs, thin rods, or ems so tht ll of the mss of the lttice is concentrted t the
nodl points. In this sense, tht the lttices re sid to hve non-inertil links. e primry focus
of the present chpter is to exmine the ehviour of lttices where the inerti is distriuted
over the lttice links in ddition to t the nodl points. e ddition of inertil links rings
mny interesting fetures not present in the lttices with non-inertil links. In prticulr, for
lttices with inertil links the deformtion of the links re no longer simply functions of the
displcements t the lttice points, ut lso depend on the frequency of excittion. Moreover, in
contrst to mssless links, inertil links hve their own spectrum of fundmentl modes, which
contriute to the overll dispersive properties of the lttice.
In the present chpter, the effect of dynmic micro-polr interctions on the response of dis-

crete inertil systems outside the stndrd homogenistion regime is e exmined. Severl types
of interction re considered nd  comprison with the erlier work of Mz’y et al. 102 nd
Morozov 107 ismde. Explicit nlyticl formule re derived for the effective group velocities
in the long wvelength limit. e chpter egins with n introduction of the lttice geometry
nd governing equtions. Although only one prticulr lttice geometry is considered, the ides
ndmethods presented herein re entirely generl nd cn eqully e pplied to other regulr lt-
tice geometries nd higher dimensionl lttices. e dispersion eqution is then exmined with
prticulr emphsis plced on the low-frequency, qusi-sttic limit. Effective group velocities
re derived nd homogenised Lmé coefficients re deduced for different types of interctions.
Severl types of lttice interctions re considered where the lttice links correspond to: thin
rods (§ 2.2.3), thin rods with rottionl springs (§ 2.2.4) nd Euler-Bernoulli ems (§ 2.2.5).

3.1 e geometry and governing equations

editomic tringulr lttice inR2 consider in this chpter is shown in igure 3.1. e ditomic
elements consist of the red nd lue msses (see igure 3.1) hving contrsting inertil proper-
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Figure 3.1: editomic tringulr lttice nd its elementry cell shded in grey. e lttice vectors
t1 nd t2 re lso indicted. e vectors e1 = [1, 0]T nd e2 = [0, 1]T re counting
indices.

ties. is prticulr lttice, whilst reltively simple, cn e used to illustrte  rnge of interesting
phenomen. For exmple, the sttic response of such  lttice is isotropic; however, s will e
shown lter in the thesis, t higher frequencies this lttice exhiits strong dynmic nisotropy.
Moreover, the ditomic nture of the lttice llows the dynmic effects of multi-tomic lttices
to e investigted, whilst not gretly overcomplicting the exposition. More importntly, the tri-
ngulr geometry permits investigtion of not only lttices with Euler-Bernoulli links (§ 2.2.5),
ut lso the cse of purely centrl interctions (§ 2.2.3). e tringulr geometry lso llows
convenient investigtion of montomic lttices. For other lttice geometries in R2, the system
is either degenerte if ending moments re neglected (e.g. squre lttices), or cnnot ccom-
modte montomic structures (e.g. hexgonl lttices).
is chpter will del exclusively with in-plne elstic motion, with forces s pplied lods

nd elstic displcements s potentils. In this cse, the interction mtrices re correspond to
stiffnesses. Formechnicl lttices, s = 2 nd (2.1) is simplyNewton’s second lw. It is convenient
to work with non-dimensionl units. erefore, the length of the lttice links s well s the mss
of the lue nodes nd the longitudinl stiffness of the lttice links (ES/ℓ) re tken s nturl
units. Other nturl units will e introduced when convenient. With this in mind, the direct
lttice vectors re t1 = [2, 0]T nd t2 = [1/2,√3/2]T. e position of prticle (m,n) is

xm,n =
⎛⎝2m1 +m2/2 + ў2,n

m2
√
3/2

⎞⎠ , (3.1)

nd the sets of nerest neighours re

N1 = {(0, 0), (0, 1), (e2, 0), (−e1 + e2, 1), (−e1 + e2, 1), (−e1, 1), (−e2, 0)}, (3.2)

nd

N2 = {(0, 0), (e1,−1), (e2, 0), (e2,−1), (0,−1), (−e2, 0), (e1 − e2,−1)}. (3.2)
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For the unforced prolem, fn = 0, whence the Fourier trnsformed equtions of motion nd the
dispersion eqution re

σ(ѱ, ξ)UFF(ξ) = 0, (3.3)

nd
det σ(ѱ, ξ) = 0, (3.3)

where the mtrix σ(ѱ, ξ) hs nq-lock entries
σnq(ѱ, ξ) = ∑

p∈Nn

{ѱ2Inўnq + R(p, q)[Aўp,0ўnq + B(1 − ўp,0ўnq)]R(p, q)Te−ixp⋅ξ} . (3.4)

3.1.1 e dispersion equation and the quasi-static group velocity

Plotting the (ѱ, ξ) solutions of (3.3) results in  two-dimensionl dispersion surfce. e gr-
dientƬ of the dispersion surfce yields the group velocity of Bloch wves trvelling through the
lttice, v(ѱ, ξ) = ∇ξ detσ(ѱ, ξ). Lter in this chpter the qusi-sttic group velocity, tht is
v(ѱ, ξ) for smll ѱ nd ∣ξ∣, will e evluted. In prticulr, for smll ѱ nd ∣ξ∣ the dispersion
eqution my e formlly expnded in  Tylor series

0 = ∑
∣ћ∣≥0
[∂ћ detσ(ѱ, ξ)]∣(0,0) (ѱ, ξ)ћћ!

, where ∂ћ
=

∂ћ1

∂ѱћ1
∂ћ2

∂Ѩћ21
∂ћ3

∂Ѩћ33
, (3.5)

nd the multi-index ћ = (ћ1,ћ2,ћ3) hs een introduced. It is cler from (3.4) nd the fun-
dmentl interction mtrices (2.18), (2.20), nd (2.26) tht for ѱ = 0 the only solution to the
dispersion eqution (3.3) is ξ = 0. us, there is no constnt term in (3.5). Moreover, (3.4),
(2.18), (2.20), nd (2.26) re symmetric out the origin with respect to ѱ. Hence, the coeffi-
cients of ѱ2n−1 (where n ∈ N) in the expnsion (3.5) must vnish. With the view of otining
two qusi-sttic dispersion surfces, tht is the two conicl coustic dispersion surfces ner the
origin, terms of order up to nd including ∣ћ∣ = 4 re kept in (3.5) yielding

0 ∼ a0(ξ) + a2(ξ)ѱ2 + a4(ξ)ѱ4, (3.6)

where an(ξ) re polynomils in ξ of, t most, degree 4 − n. Eqution (3.6) is the qusi-sttic
dispersion eqution, whose positive solutions ѱ(i) yield the frequency s  function of wve
vector. e qusi-sttic group velocities my then e found y tking the grdient of ѱ(i) with
respect to the wve vector ξ.
In the following sections, three types of interction re considered. edispersion surfces re

presented nd the dispersive properties of the lttice exmined. Expressions for the qusi-sttic
group velocities re derived, from which Lmé prmeters corresponding to  homogenised
plne strin system cn e deduced.

Ƭ It should e understood tht ll opertors herein re expressed in terms of nturl units. t is, the grdient is
non-dimensionlised y multipliction y the length of the lttice links ℓ.
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3.1.2 A note on numerical solutions of the dispersion equation

Although this thesis is not focussed on numericl nlysis, it is pproprite to riely discuss the
nture of eqution (3.3) nd the difficulties ssocited with inding solutions of the dispersion
eqution numericlly.
In generl, for ixed ξ, eqution (3.3) is  trnscendentl eqution in ѱ, the rel solutions of

which yield the frequencies of propgting wves for  given Bloch vector ξ. ese roots my
hve  non-unitry multiplicity nd my coincide with removle singulrities, oth of which
present signiicnt chllenges when serching for roots numericlly. e former property pre-
vents clssicl root rcketing, nd hence those root inding lgorithms which require rcket-
ing. e ltter property presents the ovious difficulty of deling with removle singulrities
numericlly.
For the interctions considered here, the dispersion eqution is sufficiently smooth to e

menle to pproximtion y polynomil expnsion. In prticulr, using the MATLAB li-
rry CHEBFUN 142 eqution (3.3) my e pproximted y n expnsion in Cheyshev
polynomils over  speciied intervl, llowing the roots to e found efficiently. For the Euler-
Bernoulli interction, the commercil inite element sowre ComsolMultiphysics® is lso used
to solve the dispersion eqution using inite elements. is llows independent veriiction of
the CHEBFUN pproximtion for the Euler-Bernoulli interction.
For the cse of non-inertil links, the dispersion eqution (3.3) detσ(ѱ, ξ) = 0 need not e

solved directly. From  numericl point of view, it is fr more efficient nd convenient to solve
the eigenvlue prolem y, for exmple, Schur decomposition. However, for the cse of inertil
links it is necessry to solve the dispersion eqution directly.
Consider the lock entries of σ(ѱ, ξ) s introduced in (3.4) for non-inertil mtrices nd

ixed ξ. Introducing the squre uxiliry mtrices G = diag[I1,I2, . . . ,IQ]ƭ nd H(ѱ, ξ), with
nq-lock entries

Hnq(ѱ, ξ) = − ∑
p∈Nn

{R(p, q)[Aўp,0ўnq + B(1 − ўp,0ўnq)]RT(p, q)e−ixp⋅ξ} , (3.7)

the equtions of motion (3.3) my e written s

ѱ2GUFF(ξ) = H(ѱ, ξ)UFF(ξ). (3.8)

e hermitin trnspose of Hn,q(ѱ, ξ) is
H†

nq(ѱ, ξ) = − ∑
p∈Nn

{[RT(p, q)]† [A†ўp,0ўnq + B†(1 − ўp,0ўnq)]R†(p, q)eixp⋅ξ} . (3.9)

e rottion mtrices re rel hence,

Hnq(ѱ, ξ) = − ∑
p∈Nn

{R(p, q)[A†ўp,0ўnq + B†(1 − ўp,0ўnq)]RT(p, q)eixp⋅ξ} , (3.10)

If p ∈ Nn then it follows immeditely tht −p ∈ Nq nd further it is cler tht x−p = −xp. Physi-

ƭ In this cse, Q = 2.
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clly, this mens tht node (m,n) is connected to node (m + p,n + q) y  lttice link long xp
nd, eqully, node (m+p,n+ q) is connected to node (m,n) y  lttice link long −xp. Hence,

H†
nq(ѱ, ξ) = − ∑

p∈Nq

{R(−p, q)[A†ўp,0ўnq + B†(1 − ўp,0ўnq)]RT(−p, q)e−ixp⋅ξ} , (3.11)

where it is emphsised tht the summtion is now overNq, tht is the set of nodes connected to
node (m + p,n + q) in the elementry cell, rther thnNn (the set of nodes connected to node(m,n)). For plnr rottions (rottions out the x3 xis), R(−p, q) = R(p, q)R̃, where R̃x = −x,
i.e.  rottion y π out the x3 xis. For the fundmentl interction mtrices considered in
the previous section, R̃A†R̃T

= A† = A nd R̃B†R̃T
= B, whence

H†
nq(ѱ, ξ) = − ∑

p∈Nq

{R(p, q)[Aўp,0ўnq + B(1 − ўp,0ўnq)]RT(p, q)e−ixp⋅ξ} = Hqn(ѱ, ξ). (3.12)

us, for ixed ξ, the squre mtrix H = H(ξ) is norml nd hs N rel eigenvlues (eigenfre-
quencies) nd N linerly independent eigenvectors (eigenmodes), where N is the dimension of
H.

3.2 Central interactions

For centrl lttice interctions, s in section 2.2.3, the in-plne elstic displcement mplitude of
prticle (m,n) is denoted y um,n ∈ C

2. e rottion mtrix is the 2×2 skew-symmetric mtrix

R(p, q) = ⎛⎝cos θp,q − sin θp,qsin θp,q cos θp,q
⎞⎠ , (3.13)

where θp,q is the ngle etween xp,q nd e1. At this point, it is convenient to introduce the non-
dimensionl prmeter η = ѱ√ρ, which chrcterises the nturl frequency of longitudinl
virtions in the lttice linksƮ. Indeed, η is the eigenvlue of the wve eqution (2.16) which
governs the longitudinl virtion of  thin prismtic rod. e elements of the digonl locks
σ11 nd σ22 of mtrix σ(ѱ, ξ) re s follows:

[σjj]11 = mjѱ2 − 3η cotη + η
2
cosѮ cscη

[σjj]12 = [σjj]21 = η
√
3
2

cosѮ cscη

[σjj]22 = mjѱ2 − 3η cotη + η3
2
cosѮ cscη

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3.14)

where Ѯ = k ⋅ T e2 = (Ѩ1 +√3Ѩ2)/2, T = [t1, t2] is the trnsltion mtrix, nd mj = ў1j +mў2j.
Similrly, the off-digonl locks σ12 = σ†21, where (⋅)† indictes the Hermitin trnspose, hve

Ʈ In the current system of nturl units, the frequency ѱ nd density of the lttice links ρ re themselves
non-dimensionl. For deiniteness, the corresponding quntities expressed in dimensionl form re ѱ̄ =
ѱ
√
ES/(m1ℓ) nd ρ̄ = ρm1/(Sℓ), wherem1 is the mss of the lue lttice points in igure 3.1.
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the entries
[σ12]11 = [(e−2iѨ1l + e−iѮ + e−iѰ

4
) + 1]η cscη

[σ12]12 = [σ12]21 = −√3e−iѮ + e−iѰ4
η cscη,

[σ12]22 = e−iѰ + e−iѮ

4
3η cscη

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3.14)

where Ѱ = ξ ⋅ T (e1 − e2) = (3Ѩ1 −√3Ѩ2)/2. e corresponding entries for the cse of mssless
links cn e recovered y tking the limit of (3.14) s η → 0. Doing so yields

[σ11]11 = −3 + cosѮ
2

[σ11]12 = [σ11]21 =
√
3 cosѮ
2

[σ11]22 = −3 + 3 cosѮ
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3.15)

nd
[σ12]11 = [(e−2iѨ1l + e−iѮ + e−iѰ

4
) + 1]

[σ12]12 = [σ12]21 = −√3e−iѮ + e−iѰ4
,

[σ12]22 = 3e−iѰ + e−iѮ4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.15)

From (3.6), the following eqution is otined for the qusi-sttic (i.e. smll ѱ nd ∣ξ∣) dis-
persion surfces

3(1 +m + 3ρ)2ѱ4 − 9∣ξ∣2(1 +m + 3ρ)ѱ2 +
81
16
∣ξ∣4 = 0, (3.16)

whence the positive solutions re

ѱ(1)C =
3
2

∣ξ∣√
1 +m + 3ρ

, (3.17)

ѱ(2)C =

√
3
2

∣ξ∣√
1 +m + 3ρ

, (3.17)

where m is the mss of the red nodes (see igure 3.1). e corresponding qusi-sttic effective
group velocities re then

v(1)C =
3
2

ξ̂√
1 +m + 3ρ

, (3.18)

v(2)C =

√
3
2

ξ̂√
1 +m + 3ρ

, (3.18)

where ξ̂ = ξ/∣ξ∣. e irst oservtion tht my e drwn from (3.18) is tht the qusi-sttic
group velocities re isotropic. In other words, in the low frequency limit, the wve speeds of
elstic wves trvelling through the tringulr lttice with centrl interctions do not depend
on the direction of propgtion. Secondly, in this low frequency regime, the group velocities
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coincide with the phse velocities (ѱ(i)C ξ̂/∣ξ∣).
e neighourhood of the qusi-sttic limit (ѱ, ξ)→ 0, lso referred to s the long wavelength

limit, is the region in which clssicl homogenistion is pplied. In this regime, the dynmic
response of  micro-structured solid my e treted s  continuum with ppropritely chosen
elstic moduli nd densities. Typiclly, these effective moduli re determined from the sttic
response of the lttice (see 27, 50, 100, 123mong others).
Consider the well known wve speeds for elstic wves in  liner homogeneous isotropic

elstic medium

vp =
√

ѥ + 2Ѧ
ϱ

, (3.19)

vs =
√

Ѧ
ϱ
, (3.19)

where ѥ, Ѧ nd ϱ re the Lmé constnts nd density respectively. e suscript p nd s in (3.19)
denote the pressure nd sher wve speeds respectively. It is oserved tht v(1)C > v(2)C , hence,
compring (3.18) nd (3.19) it cn e inferred tht v(1)C corresponds to pressure wves nd v(2)C
corresponds to sher wves in the qusi-sttic limit. Moreover, equting v(1)C = vp nd v(2)C = vs
implies ѥ = Ѧ nd hence ѧ = 1/4. Further, treting ϱ s the quasi-static effective density of the
lttice, tht is tking ϱ = (1 +m + 3ρ)/√3, equtions (3.18) nd (3.19) imply

ѥ = Ѧ =
√
3
4

. (3.20)

In the long wvelength limit, the mcroscopic density ϱ (sometimes known s the reltive
density) is usully determined y computing the microscopic density of the elementry cell, s
done in 50,127. e totl density of the elementry cell is (1+m+6ρ)/√3 (refer to igure 3.1),
tht is themss of the two prticles nd six lttice links, with the re of the elementry cell eing√
3 = ∣t1 × t2∣. However, considering equtions (3.19) nd (3.18) one is led to the conclusion

tht ϱ = (1 +m + 3ρ)/√3. us, the mcroscopic density otined from tking the sttic limit
of the dynmic system is different to the mcroscopic density otin y purely considering the
distriution of mss in the lttice. In this sense, there is sid to e morphological change to the
sttic group velocity of elstic wves in the lttice.
e morphologicl chnge to the group velocity is  result of the distriution of mss long

the lttice links. For the cse of non-inertil links (ρ = 0), the mcroscopic density otined
from the limit cse of the dynmic system is identicl to the so-clled reltive density otined
from the sttic nlysis. However, for  lttice with inertil links (ρ > 0), the effective mcro-
scopic density otined from the qusi-sttic limit cse of the dynmic system is not equivlent
to the density otined from the sttic nlysis. In prticulr, consider two ditomic tringulr
lttices, identicl in every wy, except tht one lttice hs mssless links connecting lternting
nodes of unit mss ndm = 9 s illustrted in igure 3.1, nd the second lttice hs links of unit
density connecting lterntingmsses of unitmss ndm = 3. In oth cses the totl mss in the
elementry cell is identicl. According to the sttic nlysis, oth lttices hve the sme elstic
moduli nd reltive densities nd therefore hve the sme group velocities. However, ccording
to (3.19) nd the previous discussion, the qusi-sttic limit of the dynmic system predicts dif-
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Figure 3.2: e four dispersion sur-
fces for the ditomic tri-
ngulr lttice with non-
inertil links (ρ = 0) nd
m = 10.

ferent effective group velocities. From the dynmic system, the effective group velocities even in
the quasi-static limit depend on the distriution of inerti in the elementry cell, not simply the
totl mss. Qulittively, the effect of distriuting the mss of the lttice over the lttice links is
to increse the qusi-sttic group velocities, i.e. the higher the proportion of mss in the lttice
links, the higher the group velocity.
For the cse of mssless links (ϱ = 0), the effective mteril properties in the qusi-sttic limit

gree with those lredy in the literture for sttic systems (see, for exmple, 123).

3.2.1 A remark on central interactions and square lattices

At the outset of this chpter it ws remrked tht for some other plnr lttice geometries, con-
sidering only centrl interctions leds to  degenerte system for in-plne mechnicl motion.
For the squre lttice, θp,q in the rottion mtrix (3.13) re integer multiples of π/2 which, for 
montomic squre lttice with mssless links, leds to n interction mtrix of the form

σ(ѱ, ξ) = ⎛⎜⎜⎝
ѱ2 − 4 sin2 (Ѩ1

2
) 0

0 ѱ2 − 4 sin2 (Ѩ2
2
)
⎞⎟⎟⎠ . (3.21)

us, the system decouples nd degenertes into  model of the one-dimensionl wve propg-
tion in two non-intercting chins. In prticulr, the lttice permits Bloch wves of mplitude
u(i)m = [ўi,1, ўi,2]TeiѨimi with ngulr frequencies ѱ(i) = 2 sin Ѩi/2 nd Ѩi ∈ [0,π). Anlysis of
 squre lttice with inertil links yields  less concise, ut still digonl, interction mtrix.
Hence, the squre lttice with inertil links is lso degenerte when only centrl interctions re
considered.

3.2.2 Dispersion properties and standing waves

Figures 3.2–3.4 show dispersion digrms for the ditomic tringulr lttice with centrl inter-
ctions for  rnge of prmeter vlues. e dispersion surfces re the zero (ѱ, ξ) isosurfces
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Figure 3.3: e irst four dispersion
surfces for the ditomic
tringulr lttice with iner-
til links, for ρ = 1 nd
m = 10.

Figure 3.4: e irst four dispersion
surfces for the ditomic
tringulr lttice with iner-
til links, for ρ = 1 nd
m = 4.
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of the dispersion eqution (3.3), tht is the set {(ѱ, ξ) ∶ detσ(ѱ, ξ) = 0}. Formlly, the ele-
mentry cell in the reciprocl lttice is the prllelogrm spnned y the principle lttice vectors
b1 = π[1,−1/√3]T nd b2 = 4π[0, 1/√3]T. However, it is convenient to plot the dispersion
surfces of the rectngulr region ξ = [−π,π] × [−5π/(2√3), 5π/(2√3)], which contins n
elementry cell of the reciprocl lttice.
Figure 3.2 shows the dispersion surfces for lttice with non-inertil links. For this prticu-

lr conigurtion (ditomic tringulr lttice with non-inertil links nd centrl interctions),
the dispersion eqution is  qudrtic polynomil in ѱ2 nd s such hs closed form solutions
ѱ = ѱ(ξ). However, these solutions re cumersome when expressed in the form ѱ = ѱ(ξ).
Furthermore, for the conigurtions exmined lter it is not possile to otin closed form solu-
tions. Nevertheless, relevnt informtion my e extrcted from the dispersion eqution itself.
Since the dispersion eqution is qudrtic in ѱ2 nd symmetric out ѱ = 0, there exists t most
four distinct positive solutions nd hence not more thn four dispersion surfces. Figure 3.2
shows the two cousticl dispersion surfces nd the two opticl dispersion surfces seprted
y  nd gp of inite width. e chrcteristic semi-ininite nd gp for discrete structures
exists ove the highest dispersion surfce.

Some features of the disper-

sion surfaces may by difficult

to discern in the static 2D rep-

resentations presented here.

erefore, 3D MATLAB igure

iles corresponding to these dis-

persion surfaces are provided at

http://dx.doi.org/10.

6084/m9.figshare.746915.

In the vicinity of the origin, the two coustic dispersion sur-
fces re conicl with circulr cross-sections. Hence, in the qusi-
sttic limit the response of the lttice is isotropic, s expected
from the nlysis in section 3.2. e inite-width nd gp is
ounded from elow y n coustic dispersion surfce nd from
ove y n opticl surfce. On the oundry of the nd gp,
the dispersion surfces hve locl mxim nd minim chrc-
terising stnding wves (wves with zero group velocity). e
presence of these sttionry points llow the width of the stop
nd to e estimted.
e mxim of the upper coustic surfce ounding the nd

gp from elow lies t the edge of the elementry cell of the recip-
rocl lttice long b2 − b1, where b1 nd b2 re the sis vectors of the reciprocl lttice. At this
point, ξ = (b2 − b1)/2, the off-digonl lock mtrices σ12 nd σ21 vnish (see equtions (3.15))
nd the dispersion eqution reduces to

[(7 − 2ѱ2
O)(9 − 2ѱ2

O) − 3][(7 − 2mѱ2
A)(9 − 2mѱ2

A) − 3] = 0, (3.22)

with solutions ѱ2
A corresponding to coustic modes nd ѱ2

O corresponding to opticl modes,
where ѱ2

A ≤ ѱ2
O. It hs een ssumed, without loss of generlity, thtm ≥ 1. e lower ound of

the nd gp is then given ymax{ѱA}: ѱl =
√
5/mwhereѱA ≤ ѱl. Similrly, theminim of the

opticl surfces ounding the stop nd from ove occurs t the oundry of the elementry
cell in the reciprocl lttice long the vector b1. Agin, the off-digonl lock entries σ12 nd
σ21 vnish t ξ = b1/2, whence the dispersion eqution ecomes

[(5 − 2ѱ2
O)(3 − 2ѱ2

O) − 3][(5 − 2mѱ2
A)(3 − 2mѱ2

A) − 3] = 0. (3.23)
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In this cse, the upper ound of the nd gp is thenmin{ѱO}: ѱu = 1. us, the inite width
nd gp is deined y the intervlmax{ѱA} < ѱ <min{ѱO}, or more explicitly

√
5
m
< ѱ < 1. (3.24)

For the numericl vlues used to produce igure 3.2, in prticulrm = 10, the intervl is 1/√2 <
ѱ < 1, which grees with the position of the nd gp in igure 3.2. us, the width of the
inite nd gp my e controlled y djusting the prmeterm. e position of the nd gp is
determined y the sum of the nodl msses. It is oserved tht the nd gp intervl ecomes
the empty set ifm ≤ 5. us,  minimum contrst in mss is required to mintin  inite-width
nd gp.
e lower ound of the semi-ininite nd gp my e otined y tking max{ѱO} from

eqution (3.22) to otin ѱ∗l =
√
5, which gin grees with the position of the nd edge on

the dispersion surfce.
Figures 3.3 nd 3.4 show the irst four dispersion surfces for the ditomic lttice with inertil

links. It is emphsised tht, in contrst with the non-inertil lttices, there is n ininite numer
of dispersion surfces nd only the irst four re shown here. e prmeter vlues re ρ = 1
nd m = 10, nd ρ = 1, m = 4 for igures 3.3 nd 3.4 respectively. e lttice corresponding to
igure 3.3 hs the sme distriution ofmss t the junctions s the non-inertil lttice considered
previously. However, the mcroscopic density of the lttice is incresed s  result of the lttice
links hving unitry density. Figure 3.4 corresponds to  lttice with the sme mcroscopic
density s the non-inertil lttice, ut with  different contrst in mss t the nodes to ccount
for the dditionl mss contriution from the links with unitry density. In oth igures 3.3
nd 3.4, it is oserved tht the inite nd gp of igure 3.2 is no longer present.

3.3 Central and torsional interactions

is clss of interction is similr to the centrl interctions presented in the previous section,
nd ws considered in 102, 107, 111. As in 3.2, the potentil um,n corresponds to the in-plne
elstic displcement mplitudes nd the ssocited rottion mtrix is s deined in (3.13). e
distinction etween this nd the previous interction is chrcterised y n dditionl torsionl
interction etween the links. In prticulr, ech link resists trnsverse motion t the nodes.
Physiclly the interction my e understood in terms of mssless Hooken torsionl springs
which retrd chnges in ngle etween the lttice links (cf. § 2.2.4). In the works of Mz’y et
al. 102, Morozov 107, ndNzrov nd Pukschto 111, this resistnce to trnsverse motion
is referred to s “transverse rigidity” where the force per unit mss etween points x nd y is

F (x, y) = K ⟨u (y) − u (x) , y − x⟩ y − x∥y − x∥2 + L ⟨u (y) − u (x) , (y − x)⊥⟩ (y − x)
⊥

∥y − x∥2 , (3.25)

where (y − x)⊥ denotes the vector perpendiculr (in the right-hnded sense) to y − x. e irst
term corresponds to the centrl interction, whilst the second is the trnsverse interction. It
should e emphsised tht this “transverse rigidity” is not equivlent to the lexurl rigidity (i.e.
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Euler-Bernoulli lexurl stiffness) s it is understood in the engineering literture. Rther, “trans-
verse rigidity” refers to the torsionl spring type interction discussed in section 2.2.4.

Returning to the present work, the elements of the digonl locks σ11 nd σ22 of mtrix
σ(ѱ, ξ) re

[σjj]11 = mjѱ2 − 3(τ + η cotη) + 3τ + η cosѮ cscη
2

[σjj]12 = [σjj]21 =
√
3 cosѮ(η cscη − τ)

2
[σjj]22 = mjѱ2 − 3(τ + η cotη) + τ + 3η cosѮ cscη

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.26)

e off-digonl locks σ12 = σ∗21 hve the entries

[σ12]11 = [(e−2iѨ1l + e−iѮ + e−iѰ

4
) + 1 + 3τ sinη

η
]η cscη

[σ12]12 = [σ12]21 = −√3e−iѮ + e−iѰ4
(η cscη − τ),

[σ12]22 = e−iѰ + e−iѮ

4
(3η cscη + τ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3.26)

where Ѯ, mj, nd Ѱ hve the sme deinitions s in (3.14). It is remrked tht the elements of
σ(ѱ, ξ) re written in (3.26) re equivlent to those for the centrl interction (3.14) if τ = 0,
tht is if the stiffness of the torsionl springs is neglected. e qusi-sttic dispersion eqution
is

(1 +m + 3ρ)2(3 + 10τ + τ2)ѱ4 − 3∣ξ∣2(1 +m + 3ρ)(3 + 13τ + 13τ2 + 3τ3)ѱ2

+
9
16
∣ξ∣4(3 + 10τ + 3τ2)2 = 0, (3.27)

which hs the positive solutions

ѱ(1)
TS
=

√
3
2

√
3 + τ

1 +m + 3ρ
∣ξ∣, (3.28)

nd

ѱ(2)
TS
=

√
3
2

√
1 + 3τ

1 +m + 3ρ
∣ξ∣. (3.28)

e corresponding qusi-sttic group velocities re then

v(1)
TS
=

√
3
2

√
3 + τ

1 +m + 3ρ
ξ̂, (3.29)

nd

v(2)
TS
=

√
3
2

√
1 + 3τ

1 +m + 3ρ
ξ̂, (3.29)

where ξ̂ = ξ/∣ξ∣. Compring equtions (3.18) nd (3.29), it is evident tht in the qusi-sttic
limit the qulittive effect of the torsionl springs is  stiffer structure thn tht with only cen-
trl interctions. Assuming, without loss of generlity, tht 0 ≤ τ < 1 gives 1 + 3τ < 3 + τ
nd equtions (3.29) nd (3.29) my e ssocited with qusi-sttic pressure nd sher wves
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respectively. e Lmé prmeters my then e determined s

ѥ =
√
3
4
(1 − 5τ) nd Ѧ =

√
3
4
(1 + 3τ), (3.30)

with the mcroscopic density deined s ϱ = 1 +m + 3ρ s efore. For the specil cse of  ine
isotropic tringulr lttice, Mz’y et l. 102, ch. 20 determined the effective Lmé prmeters
for the sttic cse (s opposed to the qusi-sttic cse considered here) s ѥ = 3(K − 5L)/8 nd
Ѧ = 3(K + 3L)/8, where K nd L re the longitudinl nd trnsverse rigidities per unit re
respectively. e Lmé coefficients derived in 102, ch. 20 re consistent with those derived
here once the difference in normlistion hs een ccounted for.
Agin, s ws the cse for the centrl interctions, it is evident from equtions (3.29) tht

redistriuting the inerti over the lttice links results in  morphological change in the effective
group velocities in the qusi-sttic limit. e dispersive properties re similr to those of the
centrl interction. erefore, the dispersion digrms nd nlysis of the dispersive properties
for this interction re omitted.

3.4 Euler-Bernoulli interactions

For the Euler-Bernoulli interction introduced in section 2.2.5, the three-dimensionl vector
um,n ∈ C

3 now denotes the displcement mplitude with the irst two components correspond-
ing to the in-plne elstic displcement mplitudes, whilst the third component corresponds to
in-plne rottions out the xis perpendiculr to the plne of motion. In this cse, the rottion
mtrix is n ugmented mtrix representing rottion out  single xis in three dimensions

R(p, q) =
⎛⎜⎜⎜⎝
cos θp,q − sin θp,q 0
sin θp,q cos θp,q 0

0 0 1

⎞⎟⎟⎟⎠
. (3.31)

e elements of the lock mtrices σnq re not stted here explicitly. Insted, the reder is re-
ferred to equtions (2.26) nd (3.4) for the form of the lock entries for σ(ѱ, ξ).
With reference to eqution (3.6), the qusi-sttic dispersion eqution is

ќ2(1 + 2ќ)(1 + 18ќ) [9(1 + 2ќ)∣ξ∣2 − 4ѱ2(1 +m + 6ρ)]
× [3(1 + 6ќ)∣ξ∣2 − 4ѱ2(1 +m + 6ρ)] = 0, (3.32)

whence the positive solutions re immeditely pprent

ѱ(1)
EB
=
3
2

√
1 + 2ќ

1 +m + 6ρ
∣ξ∣, (3.33)

ѱ(2)
EB
=

√
3
2

√
1 + 6ќ

1 +m + 6ρ
∣ξ∣, (3.33)

where the non-dimensionl prmeter ќ = 2I/(sℓ2) hs een introduced. e qusi-sttic effec-
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tive group velocities re then

v(1)
EB
=
3
2

√
1 + 2ќ

1 +m + 6ρ
ξ̂, (3.34)

v(2)
EB
=

√
3
2

√
1 + 6ќ

1 +m + 6ρ
ξ̂. (3.34)

In contrst to the qusi-sttic group velocities for the centrl interction (3.18), nd the centrl
nd torsionl interction (3.29), the effective density of lttice is equl to themcroscopic density
1 +m + 6ρ. In other words, redistriuting the inerti over the lttice links does not result in 
morphological change in the qusi-sttic group velocities for lttices with the Euler-Bernoulli
interction.
It is lso oserved tht setting ќ = 0 does not recover the cse of centrl interctions. However,

if one considers the governing eqution (2.21), it is immeditely pprent tht the differentil
eqution is singulrly pertured for smll ќ (lrge ѥ). us, one would not necessrily expect
the Euler-Bernoulli interction to correspond to the centrl interction for the cse of ќ = 0.
Moreover, with reference to (2.22) it cn e deduced tht the elements of σ do not converge s
ќ → 0+ (or, equivlently, ѥ → ∞). However for mssless links (ѥ → 0), the governing equ-
tion (2.21) is regulrly pertured (w(iv) = 0) nd the Euler-Bernoulli does indeed correspond
to the centrl interction if oth ѥ nd ќ vnish. Hence, the equivlence of the effective group
velocities for the centrl interction (3.18) nd the Euler-Bernoulli interction (3.34) when oth
ќ nd ρ vnish.

3.4.1 Dispersion properties and standing waves

As in section 3.2.2, igures 3.5 nd 3.7 show exmples dispersion digrms for the ditomic
tringulr lttice with the Euler-Bernoulli interction. Figure 3.5 shows the dispersion digrm
for the cse of  ditomic tringulr lttice with non-inertil links. e dispersion digrms for
the cse of  tringulr lttice with inertil links is shown in igure 3.7. Agin, the dispersion
surfces re plotted over the rectngulr region ξ = [−π,π] × [−5π/(2√3), 5π/(2√3)], which
contins the elementry cell in the reciprocl spce.
Compring igures 3.2 nd 3.5, the most striking difference etween the two is the presence

of two reltively lt low frequency dispersion surfces in 3.5. ese surfces correspond to
modes dominted y rottionlmotion. An exmple of one of thesemicopolarmode is shown in
igure 3.6; this mode corresponds to  periodic solution (ξ = 0) for the cse of non-inertil links.
It is pprent from igure 3.6 tht the trnsltionl displcements of the nodes re much smller
thn the rottionl components. Hence, for  simple estimte, the trnsltionl displcement of
the nodes my e neglected. For periodic, purely rottionl motion, the equtions of motion for
the nodes in the elementry cell of the lttice reduce to

Ji∂ttθ(i) = τ(i) − (14ќθ(i) + 4ќθ(3−i)) , i = 1, 2. (3.35)

Here, the superscript indices lel prticles within the elementry cell nd it is emphsised tht
repeted indices re not summed over. e symols θ(i)nd τ(i) represent the non-dimensionl
ngulr displcement nd torque respectively. For time-hrmonic wves ∂ttθ(i) = −ѱ2θ(i) nd
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Figure 3.5: e six dispersion surfces for the ditomic tringulr lttice with non-inertil Euler-
Bernoull links (ρ = 0) ndm = 10.

Figure 3.6: An exmple of  micopo-
lr mode, superimposed
on the undeformed struc-
ture.

Figure 3.7: A rnge of dispersion surfces for the ditomic tringulr lttice with Euler-Bernoull
inertil links for ρ = 1 ndm = 10.

38



Chapter ree Elastic lattices with distributed inertia

Figure 3.8: An exmple of n eigen-
mode where the ems vi-
rte t their fundmentl
frequency nd the nodl
displcements re smll.

in the sence of externl lods τ(i) = 0; the system (3.35) hs non-trivil solutions if nd only
if

det
⎛⎝14ќ − ѱ

2J1 4ќ
4ќ 14ќ − ѱ2J2

⎞⎠ = 0. (3.36)

e positive solutions forѱ then yield the estimtes for the frequencies of the stnding rottionl
modes:

ѱ±R = ( ќ
J1J2
(7J1 + 7J2 ±√49 (J21 + J22) − 82J1J2))1/2 . (3.37)

Tking the prmetric vlues used to produced igure 3.5: J1 = 2, J2 = 6, ќ = 0.001 yields
numericl estimtes of ѱ+R = 0.0853 nd ѱ−R = 0.0454, which re in good greement with the
numericl solutions to the full spectrl prolem. In the cse of lttices with inertil links, for low
frequencies nd sufficiently smll vlues of 2ϱ/ќ, the equtions of motion for pure rottions tke
the form (3.35) to leding order. For the vlues of the prmeters used in igure 3.5 the results
of the inite element computtions re in good greement with the estimtes, ѱFE+

R = 0.0845
nd ѱFE−

R = 0.0452. Usully, tringulr lttices re treted s so-clled truss structures where
the lexurl rigidity of the links is considered negligile nd only centrl interctions re tken
into ccount. However, if the lexurl rigidity of the lttice links is neglected, then these low-
frequency micro-polr modes re lso neglected. us, it is importnt to tke into ccount the
lexurl rigidity of the lttice links of tringulr lttices, even in the low-frequency regime.
With reference to the dispersion digrm of igure 3.5, there exists  inite-width stop nd

for the ditomic lttice with non-inertil links. Using the sme pproch s employed in sec-
tion 3.2.2, the width of the stop nd my e determined. Similrly to the cse of centrl inter-
ctions, the mxim of the upper coustic surfce ounds the stop nd from elow nd lies t
the edge of the elementry cell of the reciprocl lttice long the vector b2 − b1. At this point,
ξ = (b2 − b1)/2, the off-digonl lock mtrices re sprse

σ12 =
⎛⎜⎜⎜⎝

0 0 −3
√
3ќ

0 0 3ќ
3
√
3ќ −3ќ 0

⎞⎟⎟⎟⎠
= σ†21, (3.38)

nd the digonl locks re

σjj =
⎛⎜⎜⎜⎝
mjѱ2 − 7/2 − 27ќ √

3(1 − 6ќ)/2 0√
3(1 − 6ќ)/2 mjѱ2 − 9/2 − 21ќ 0

0 0 Jjѱ2 − 10ќ

⎞⎟⎟⎟⎠
, for j = 1, 2, (3.39)
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where mj = ў1j + mў2j nd Jj = ў1j + Jў2j. Assuming tht σ11 nd σ22 re not simultneously
singulrƯ, the eigenvlue prolem my e recst thusư:

(σii − σ12σ−1jj σ†12)uFFi = 0, for i = 1, 2 nd i ≠ j, (3.40)

ndwhere j is chosen such thtdet σjj ≠ 0. It is emphsised tht repeted indices re not summed
over. e mtrix product σ12σ−1jj σ

†
12 hs the sme distriution of zeros s (3.39). Hence, the

trnsltionl nd micropolr modes decouple nd the frequencies of the two micropolr modes
cn immeditely e otined from the eqution [σii − σ12σ−1jj σ†12]3 = 0. Explicitly, the eqution
for the frequency of these micropolr modes is

Jjѱ2 − 2ќ(5 + 18ќ
miѱ2 − 3 − 30ќ

) = 0, for i = 1, 2 nd i ≠ j. (3.41)

For thin ems, the typicl ending stiffness is much smller thn the longitudinl stiffness of
the links; in the nottion used herein this corresponds to 0 < ќ≪ 1. For exmple, for  em of
unit length nd circulr cross-sectionwith slenderness rtioƱ r/l = 0.1, the prmeter ќ = 0.0025.
Hence, for smll ќ eqution (3.41) hs the solution ѱ ≈

√
10ќ/Jj. us, these stnding wves

correspond to the low frequency micropolr modes mentioned erlier.
Hving estlished tht the rottionl nd trnsltionl modes decouple, tht is [uFFi ]j is in-

dependent of [uFFi ]3 for i, j = 1, 2, it is sufficient to consider the prolem for the reduced lock
mtrices σ̃ij, which hve elements [σ̃ij]kl, for k, l = 1, 2. In this cse, the reduced off-digonl
mtrices vnish nd the dispersion eqution reduces to det σ11 det σ22 = 0, or more explicitly

(5 + ќ − ѱ2)(3 + 30ќ − ѱ2)(5 + ќ −mѱ2)(3 + 30ќ −mѱ2) = 0. (3.42)

Assuming, without loss of generlity, thtm > 1 the prenthesised terms involvingm correspond
to the coustic modes; whence the lower ound of the nd gp is

ѱl =max{√(5 + 18ќ)/m,
√(3 + 30ќ)/m}. (3.43)

e minim of the opticl dispersion surfce ounding the inite nd gp from ove occurs
t the edge of the Brillouin zone long b1. At ξ = b1/2, the lock mtrix entries of σ hve the
sme structure s ove, lthough the vlues re indeed different. Hence, following the sme
procedure the upper ound of the inite nd gp is

ѱu =min{√1 + 18ќ,
√
3 + 6ќ} . (3.44)

For smll ќ, speciiclly for 0 < ќ < 1/6, the width of the inite nd gp is deined y the intervl
√

5 + 18ќ
m

< ѱ <
√
1 + 18ќ. (3.45)

ƯEquivlentlym ≠ 1 nd/or J1 ≠ J2.
ưSince σ11 nd σ22, nd hence their inverses, re hermitin, the product σ12σ−1jj σ†12 is lso hermitin.
Ʊe rtio of em rdius to length.
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Compring inequlities (3.24) nd (3.45), it is oserved tht (for smll ќ) the nd gps re
of pproximtely the sme width nd occur t the sme frequencies s for the cse of centrl
interctions.
Figure 3.7 shows the dispersion digrm for the tringulr ditomic lttice with inertil links.

e dispersion digrm shres mny fetures with the digrm for the lttice with non-inertil
links (igure 3.5). However, igure 3.7 is distinguished from igure 3.5 y the presence of severl
densely pcked, reltively lt surfces in wht ws the nd gp in igure 3.5. ese surfces
correspond to modes where the nodl displcements re smll, or indeed zero; n exmple of
such  mode is shown in igure 3.8. ese lt dispersion surfces re ssocited with the fund-
mentl modes of the lttice links; n estimte of their loction cn e otined y considering n
isolted Euler-Bernoulli em with clmped ends. Such systems hve een treted extensively
in the literture (see the ook y Grff 53, mong others);  rief discussion is included here
for completeness.
Consider the oundry vlue prolem for the non-dimensionl time-hrmonic delection of

n Euler-Bernoulli em of unit length, clmped t oth ends

( d4

dx4
− ѥ4) y(x) = 0, x ∈ [0, 1], (3.46)

nd
y(0) = y(1) = y′(0) = y′(1) = 0, (3.46)

where ѥ4 = 2ѱ2ρ/ќ. e well known fmily of solutions is yn = A1[cos(ѥnx) − cosh(ѥnx)] +
A2[sin(ѥnx)−sinh(ѥnx)], where ѥn stisfy the trnscendentl eqution cos ѥn cosh ѥn = 1, with
ѥn ≠ 0. e irst eigenfrequency is then

ѱ(1)em ≈ 4.730
2
√

ќ
2ρ

, (3.47)

which for the prmeter vlues used to produce igure 3.7 yields ѱ(1)em ≈ 0.5. In igure 3.7 there
re severl pproximtely lt surfces which lie etween ѱ = 0.4932 nd ѱ = 0.5044.
Consider the Dirichlet oundry vlue prolem for the non-dimensionl time-hrmonic lon-

gitudinl displcement mplitude of  thin rod of unit length

( d2

dx2
−
ѱ2

ρ
) y(x) = 0, x ∈ [0, 1], (3.48)

nd
y(0) = y(1) = 0. (3.48)

In this cse, the spectrum is ѱn = nπ/√ρ for n ∈ N. us, for the prmeter vlues used here
(ρ = 1 nd 0 < ќ ≪ 1), the lowest frequency resonnt longitudinl mode is much higher thn
the irst lexurl mode. Indeed, the resonnt frequency for the irst longitudinl mode of  thin
rode lies eyond the frequency rnge shown in igures 3.2-3.5, nd 3.7.
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3.5 Remarks

Conventionlly, tringulr lttices re treted s so-clled truss structures where lexurl defor-
mtions re neglected nd only centrl interctions re considered. However, the nlysis pre-
sented in this chpter indictes tht cre is required if importnt fetures re not to e neglected.
If the lexurl rigidity of the links is smll compred with their longitudinl stiffness, then c-
counting for lexurl deformtions offers  smll correction to the width of the inite nd gp
(see inequlities (3.24) nd (3.45)). However, if the lttice links re inertil then the nd gp
ecomes populted with lexurl stnding modes. Moreover, for inertil links in the low fre-
quencies regime, neglecting lexurl deformtions results in erroneous estimtes for the long
wvelength group velocities. Finlly, the two low frequency micropolr modes (evidenced y
the lt low frequency surfces in igures 3.5 nd 3.7) will e sent if lexurl deformtions re
neglected.
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Chapter Four

Dynamic anisotropy and focusing in
discrete media

M
e previous chpter ws concerned with the low frequency response of two dimensionl lt-
tices. In the current chpter, the inite frequency response is considered. In prticulr, where in
the previous chpter it ws demonstrted tht the qusi-sttic response of the tringulr lttice
ws isotropic, it is demonstrted tht for higher frequencies the response is strongly nisotropic.
It is in this sense tht lttices re sid to posses dynamic anisotropy. e present chpter exm-
ines the diffrction of time hrmonic ields y n ininite lttice inR2 nd is developed s follows.
First, the dynmic response of oth squre nd tringulr sclr lttices will e nlysed, with
emphsis on Green’s functions nd the diffrction ptterns generted y  point lod. e cur-
rent chpter is lso concerned with the dynmic nisotropy of discrete elstic structures in the
full vector setting of plnr elsticity. e nlysis is focused on the directionlly loclised wve-
forms, which correspond to sddle points on the dispersion surfces. Here, the term “loclised”
is used in  similr sense to tht used in severl ppers (see, for exmple 5,121) to descrie n
effect where the ield is predominntly conined to one or more inite width “ems” with dif-
fering orienttions. Finlly,  design for  structured elstic sl of inite width, which possesses
focusing properties for wves within  certin frequency rnge, is developed.

4.1 Primitive waveforms in scalar lattices

Consider the out-of-plne displcement of  regulr rry of uniform point msses in R2 con-
nected y mssless Hooken springs nd loded t  single lttice point. e governing equ-
tions ofmotion re those descried in section 2.1 with the fundmentl interctionmtrix given
in section 2.2.1. In this section, two different montomic lttice geometries will e considered:
squre nd tringulr.
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4.1.1 e square monatomic lattice
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Figure 4.1: e montomic squre lttice nd its elementry cell (shded in grey). e lttice vec-
tors t1 (in red) nd t2 (in lue) re lso indicted. e vectors ei re deined s follows:
e1 = [1, 0]T nd e2 = [0, 1]T.

Consider irst, the uniform squre lttice s illustrted in igure 4.1. e lttice consists of 
regulr rry of unitry point msses connected y liner springs of unit stiffness. e ssump-
tion of uniformity is purely for convenience ndmy ewekenedwithout signiicnt dditionl
work. e lttice is uniform nd the prticles re indistinguishle; the lttice nodes re lelled
y the doule index m ∈ Z2 (see § 2.1). Let the lttice e forced hrmoniclly t  single point.
Given the uniformity of the lttice, the forcing point is chosen s the origin m = 0 for conve-
nience ndwithout loss of generlity. e displcement ield is then given y the Fourier Integrl
(see eqution (2.7) in § 2.1)

um =
1∥R∥∬

R

exp(im ⋅ ξ)
σ(ѱ, ξ) dξ, (4.1)

where σ(ѱ, ξ) = ѱ2 − 4+ 2(cos Ѩ1 + cos Ѩ2). e sclr σ is even with respect to ξ nd the region
R is symmetric out Ѩi = 0 (i = 1, 2), hence the odd terms in exp(im ⋅ ξ) do not contriute to
the integrl nd the Lttice Green’s Function my e expressed s

um =
1
π2 ∬
[0,π]2

cos(m1Ѩ1) cos(m2Ѩ2)
σ(ѱ, ξ) dξ. (4.2)

Alterntive representtions of the Lttice Green’s function nd detiled nlysis in vrious fre-
quency regimes my e found in mny texts, including 32, 97, 99, 109, in ddition to lter in
the present text. For certin restrictions of ѱ one, ut not oth, of the integrls in (4.2) my e
evluted in closed form; lterntively, the integrl my e converted to  semi-ininite integrl
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over the positive semi-xis. However, for the purposes of this chpter it suffices to consider the
Lttice Green’s function in the form (4.2).
e dispersion surfce (the zero isosurfce {(ѱ, ξ) ∶ σ(ѱ, ξ) = 0}) is shown in igure 4.2

nd hs  numer of interesting fetures. In prticulr, it is oserved tht within the Brillouin
zone the surfce hs onemximum, with the four points t the corners of the Brillouin zone ech
contriuting one qurter of  mximum, nd two sddle points, with the four points lelled ±A
nd ±B ech contriuting one hlf of  sddle point. e sddle points ll lie t the frequency
ѱ = 2, for which the slowness contour is shown in igure 4.2 in ddition to its representtion
on the dispersion digrm 4.2. e sddle points lie t the vertices of the rhomic slowness
contour. Figure 4.2 is fully consistent with those igures presented in 5, 121.
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Figure 4.2: ()e dispersion surfce for the squre cell lttice together with the projections of the
level curves onto the ѱ = 0 plne. () e slowness contour t the frequency coincid-
ing with the sddle points, ѱ = 2. e sddle points lie t the vertices of the rhomic
slowness contour.

e opticl nlogue of (4.2) is the so-clled diffrction integrl 10, 52, 118. In optics, the
term aberration is used to descrie perturtion of the wve front wy from its idel shpe s
 result of  lens or diffrction grting 10, 52. e aberration function is used to quntittively
chrcterize the phse perturtion t the exit pupil plne. edistinction is oenmde etween
two types of errtion: chromatic ndmonochromatic. e ltter is ttriuted to the geometry
of the lens or grting whilst the former results from the dispersive properties of the lens. In
the cse of  uniform mechnicl (or conductive) lttice, there is no such distinction since the
dispersive properties rise s  result of the geometry of the medium. Hereiner, the term
aberration is used to descrie the fetures of the ield resulting from the dispersive properties of
the lttice.
edisplcement ield for the squre cell lttice when the forcing frequency coincideswith the

frequency of the sddle points ѱ = 2 is shown in igure 4.3. e ield is determined y computing
(4.2) numericlly using the Guss-Kronrod qudrture lgorithm in MATLAB® for ech m in
 given rnge. e displcement ield is consistent with the star shaped contours oserved in
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Figure 4.3: e displcement ield of the squre cell lttice for  forcing frequency of ѱ = 2.
e colour represents the nti-plne displcements of the msses, from lue (miniml)
through green (zero) to red (mximl)

references 5, 90, 91, 121. However,  novel feture is oserved: the rhomic errtion in the
vicinity of the point source. is feture ws not pprent in the previous pulictions s only
equi-displcement contours were plotted in the cse of references 5, 90, 91 or ll points over
 given threshold were plotted with equl weight 121. e effect is sensitive to perturtions
in the frequency round the sddle points ±A nd ±B in igure 4.2. For exmple, chnging the
frequency y s little s 0.01 signiicntly lters the diffrction pttern shown in igure 4.3. is
sensitivity cn e understood in terms of the group velocity which vries rpidly in the vicinity
of the sddle points. Moreover, the phenomen of star shaped contours nd aberrations is closely
linked with the nture of the slowness contours. In prticulr, consider the slowness contour in
igure 4.2. It is oserved tht the direction (ut not the mgnitude) is piecewise constnt over
the Brillouin zone. ese constnt directions, corresponding to the normls of the sides of the
rhomus, re precisely those of the four rys shown in igure 4.3. e group speed is mximl
t the centre of ech side of the rhomus nd is zero t the vertices.

A stationary point of a different kind

Consider the dispersion eqution σ(ѱ, ξ) = ѱ2−4+2(cos Ѩ1+cos Ѩ2) = 0. Since ∣ cos Ѩ1+cos Ѩ2∣ ≤
2 ∀ ξ, there exist no solutions for ѱ2 > 8; hence the squre lttice possesses  semi-ininite stop
nd for frequencies ѱ2 > 8 where no propgting solutions exist. For the cse of free oscill-
tions, Mrtin 99 found tht there exist solutions of the form um = (−1)m1+m2 . ese so-clled
lattice waves exist t the resonant frequency ѱ = 2

√
2 which demrctes the pss nd nd the

stop nd, i.e. these re the mxim in igure 4.2. A similr phenomenon is oserved in the
cse of forced excittion. In prticulr, igure 4.4 shows  plot of the ield for such  resonnt fre-
quency. e white (lck) nodes indicte mximl positive (negtive) displcement. In direct
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Figure 4.4: Lattice waveswhere the origin of the lttice is forced t the resonnt frequency ѱ = 2
√
2.

White nodes indicte mximl positive displcement, while lck nodes correspond to
mximl negtive displcement.

nlogy to the lttice wves descried in 99, the displcement of the nodes cn e pproxi-
mtely descried y u(m) ≈ (−1)m1+m2u(0). Here, no preferentil direction of propgtion is
oserved.

4.1.2 e triangular cell lattice

.. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

.t2 .
t1
.
(m)
.

(m + e1)
.

(m − e1)
.

(m + e2)

.

(m − e2)

.

(m − e1 + e2)

.

(m + e1 − e2)

Figure 4.5: e montomic tringulr lttice nd its elementry cell (shded in grey). e lttice
vectors t1 (in red) nd t2 (in lue) re lso indicted. e vectors ei re deined thus:
e1 = [1, 0]T nd e2 = [0, 1]T.

As  further exmple, the tringulr ltticewith sis vectors t1 = [1, 0]T nd t2 = [1/2,√3/2]T
s illustrted in igure 4.5 is considered. In this cse, the physicl ield hs the representtion

um =
√
3

4π2∬
R

cos[(m1 +m2/2)Ѩ1] cos[n√3Ѩ2/2]σ−1(ξ;ѱ)dξ , (4.3)

where σ(ξ;ѱ) = ѱ2−6+2 cos Ѩ1+4 cos(Ѩ1/2) cos(√3Ѩ2/2) ndR = [0, 2π]× [0, 2π/√3]. e
dispersion surfce, together with the slowness contour for the frequency ѱ = 2

√
2 correspond-
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Figure 4.6: () e dispersion surfce for the tringulr cell lttice nd () the slowness contour t
the frequency coinciding with the sddle points, ѱ = 2

√
2. e sddle points lie t the

vertices of the hexgon.

ing to the position of the sddle points (±A, ±B nd ±C), is shown in igure 4.6. As in the cse of
the squre lttice, the direction of the group velocity is piecewise constnt long the sides of the
hexgon, with the sddle points locted t the vertices. Here, six preferentil directions of prop-
gtion (directions of mximl group velocity) corresponding to the perpendiculr isectors of
the six sides re clerly identiile. e displcement ield for the tringulr lttice when the
forcing frequency is ѱ = 2

√
2 is shown in igure 4.7. As expected, the str shped wveforms

with the six rys corresponding to the six discrete directions of group velocity, s indicted y
the slowness contour in igure 4.6, re evident. Figure 4.7 is consistent with the str shped
contours shown in 5, 121.
e determintion of the position of the semi-ininite stop nd requires  little more tten-

tion thn in the cse of  squre lttice. With reference to the dispersion eqution ѱ2 − 6 +
2 cos Ѩ1 + 4 cos(Ѩ1/2) cos(√3Ѩ2/2) = 0, the nd edge corresponds to the glol minimum of
the function f(ξ) = 2 cos Ѩ1 + 4 cos(Ѩ1/2) cos(√3Ѩ2/2). Since the dispersion eqution is pe-
riodic with respect to the elementry cell of the reciprocl lttice, ξ my e restricted to the
prllelogrm spnned y the two primitive vectors b1 = π[2,−2/√3]T nd b2 = [0, 4π/√3]T
in the reciprocl lttice. e irst prtil derivtives, Hessin determinnt, nd second prtil
derivtive with respect to Ѩ1 re then

∇f(ξ) = −2⎛⎝sin Ѩ1 + cos(
√
3Ѩ2/2) sin(Ѩ1/2)√

3 cos(Ѩ1/2) sin(√3Ѩ2/2)
⎞⎠ , (4.4)

H(ξ) = 3
2
{cos Ѩ1 + cos(√3Ѩ2) + 2 [cos(Ѩ12 ) + cos(3Ѩ22 )]} , (4.4)

nd
∂2f
∂Ѩ21
= −2 cos Ѩ1 − cos(Ѩ12 ) cos(

√
3Ѩ2
2
) . (4.4c)

Within the irreducile Brillouin zone, the function f(ξ) hs sttionry points t the following
positions

Ξ = {[0, 0]T, [π,π/√3]T, [4π/3, 0]T}. (4.5)

Anlysis of the signs of the Hessin determinnt nd second derivtives t the sttionry points
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Figure 4.7: e mgnitude of the out-
of-plne displcement
ield of the tringulr
cell lttice for  forcing
frequency of ѱ = 2

√
2.

e colour scle runs
from lue (zero) to red
(mximl).

revel tht the irst is  locl mximum of f(ξ), the second is  sddle point, whilst the third is
 locl minimum. Indeed, since these re the only sttionry points in the irreducile Brillouin
zone of the reciprocl lttice, the locl extrem re glol extrem. us, the mximum vlue
of ѱ which corresponds to the minim of f(ξ) is ѱ = 3. Hence, there exists  semi-ininite stop
nd for frequenciesѱ > 3, whilst propgting solutions re supported for 0 < ѱ ≤ 3. e sddle
point frequency, corresponding to the sddle points of f(ξ), is ѱ = 2√2 s stted erlier. Finlly,
s expected, the minimum vlue of ѱ, corresponding to the mxim of f(ξ) is ѱ = 0.
4.2 Diffraction in elastic lattices

e section is devoted to the nlysis of the vector elsticity nlogue of the prolems presented
in the previous section. e in-plne elsticity prolem is distinct from the sclr system nd
presents  numer of novel fetures nd chllenges. In prticulr, it is demonstrted tht the
orienttion of the pplied force cn e used to select one or more of the preferentil directions
deined y the dispersive properties of the lttice. In the sclr cse, the ppers 5, 121 hve
focused on the preferentil directions, primitive waveforms, nd str shped contours t resonnt
(sddle point) frequencies. As mentioned in the previous section, these primitive wveforms
nd ssocited effects re sensitive to perturtion in the frequency round the sddle points.
In contrst to the sclr prolem, when working in the frmework of vector elsticity it will e
shown tht similr str shped wveforms exist t frequencies other thn resonnt frequencies.
In other words, the presence of str shped wveforms is not necessrily linked to the existence
nd position of sttionry points on the dispersion surfces.
e concept of preferentil directions of propgtion in discrete elstic structures hs een

demonstrted in 29, which uilt on the erlier work for the structured continuum 81 nd for
the discrete interfce emedded within the continuum 16. e three ppers 16, 29, 81 lso
illustrte the effects of iltering nd focusing of plne elstic wves nd the formtion of imge
points.
Consider  regulr tringulr rry of uniform point msses rrnged in R2 s depicted in

igure 4.5. e point msses re connected y Euler-Bernoulli ems of constnt density (see
§ 2.2.5 nd 3.4). In this cse, the 3 × 3 Hermitin mtrix σ(ѱ, ξ) is s introduced in section 3.4
using equtions (2.26) nd (3.4). e displcement mplitude um ∈ C3 is  three-dimensionl
vector with the irst two components corresponding to trnsltionl motion nd the third de-
scriing micropolr rottions. e ield hs the sme representtion s (4.3) nd the dispersion
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Property Vlue

Young’s Modulus (E) 200 GP
Second Moment of Inerti (I) 349 × 10−8 m4

Cross Sectionl Are (S) 2.12 × 10−3 m2

Bem Density (ϱ̄) 7850 kg m−2

Bem Length (ℓ) 1 m
Nodl Mss (m) 91.531 kg
Polr Mss Moment of Inerti (̄J) 66.568 kg m2

Table 4.1: e mteril nd geometricl
prmeters used to produce
the dispersion surfces nd i-
nite element computtions.

eqution is det σ(ѱ, ξ) = 0.
4.2.1 Dispersive properties
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Figure 4.8: eirst three dispersion surfces for the tringulr lttice ofmsses connected y Euler-
Bernoulli ems in R2.

e dispersion surfces for the ininite lttice system re shown in igure 4.8. In this cse,
it is convenient to work with dimensionl units. e mteril prmeters used to produce the
dispersion surfces re detiled in tle 4.1. e irst surfce, which is reltively lt, is ssocited
withmicropolr modes (see § 3.4.1 nd in prticulr p. 37). Here the focus will e on the second
nd third surfces, which contin sddle points. Figure 4.9e shows the slowness contour for
the resonnt frequency f = 615Hz. e contour exhiits the sme chrcteristic hexgonl
shpe s the slowness contour of the sclr tringulr lttice (see igure 4.6) suggesting tht
the chrcteristic shpe of the slowness contours re  feture of the geometry of the lttice. It
is emphsised tht the governing equtions for vector elsticity re signiicntly different from
those of sclr prolems. As in the sclr cse, the six preferentil directions cn e identiied s
the normls to the edges of the hexgon, lthough here, the slowness contour is rotted y π/2
compred with the sclr cse. Now consider igure 4.9, which shows the slowness contours
for the frequency f = 323Hz. Here  similr hexgonl slowness contour is oserved, with the
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(c) 428.67 Hz (sddle point)
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Figure 4.9: e slowness contours for  rnge of frequencies strting t 150 Hz () nd ending t
the sddle point frequency ner the nd edge (e). e solid lines correspond to the
lower conicl surfce, whilst the dotted lines correspond to the upper conicl surfce.
e elementry cell in the reciprocl spce is shded in grey.

sme orienttion s for the sclr cse. However, f = 323Hz does not correspond to  resonnt
frequency, tht is there re no sddle points on the dispersion surfces which coincide with f =
323Hz. Nevertheless, the six preferentil directions of propgtion re clerly visile. is is in
contrst to the sclr prolems considered erlier in this chpter (§ 4.1) nd in the ppers 5,121,
where these polygonl-like slowness contours were ssocited exclusively with sddle points.

e forced problem in elastic structured media.

Following the structure of the previous section on sclr lttices, the forced in-plne prolem is
now considered. In prticulr, the montomic uniform tringulr lttice descried ove is su-
jected to  concentrted lod (either liner or torsionl) t  single lttice point. e tringulr
lttice is chosen ecuse it is isotropic in the long wvelength limit 29. Here, the emphsis is
on the dynmic nisotropy t higher frequencies nd in prticulr on the existence of loclised
primitive wveforms, in direct nlogy to the sclr cse previously considered. e inite ele-
ment sowre COMSOL Multiphysics® is used to determine the displcement ield. e lttice
nodes on the oundry re ixed nd PML-like soring oundry conditions re pplied to
the lttice links in the vicinity of the oundry nodes in order to reduce relection. e hr-
monic disturnce is generted in  similr fshion s in the sclr cse: y prescriing  time-
hrmonic displcement of mgnitude 10−6m in  given direction or  time-hrmonic rottion
t node (0, 0). e mteril prmeters re s detiled in tle 4.1. A selection of the displce-
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ment mplitude ields for vrious forcing orienttions nd frequencies re shown in igure 4.10.
Figures 4.10, 4.10c nd 4.10e correspond to n excittion frequency of 323Hz for which the
slowness contours re shown in igure 4.9. Similrly, igures 4.10, 4.10d nd 4.10f correspond
to  excittion frequency of 615.8Hz for which the slowness contours re shown in igure 4.9e.
It is oserved tht the slowness contours of igure 4.9e correspond to the sddle point on the
upper dispersion surfce of igure 4.8. e other frequency of 323Hz (see igure 4.9) is not 
sddle point frequency. However, the slowness contour corresponding to the lower dispersion
surfce hs six segments with lmost zero curvture, nd the norml vector to this slowness
contour shows the preferentil directions t this prticulr frequency. e slowness contours
for the sddle point t 428.67Hz on the lower dispersion surfce re shown in igure 4.9c; the
contour corresponding to the lower dispersion surfce contins corner points ut the curvture
of the smooth prts of the oundry is lrge.

(a) Horizontl excittion (323Hz) (b) Horizontl excittion (615.8Hz)

(c) Verticl excittion (323Hz) (d) Verticl excittion (615.8Hz)

(e) Torsionl excittion (323Hz) (f) Torsionl excittion (615.8Hz)

Figure 4.10: Finite element computtions showing the mgnitude of the rel displcement mpli-
tude ields for different types of pplied lod. For igures (),(c) & (e), the excittion
frequency is 323Hz nd 615.8Hz in (),(d) & (f). e colours indicte the mgnitude
of the displcement ield from lue (zero) to red (mximl). e white regions re
those regions where the displcement ield is outside the rnge.

edisplcement ields hve  numer of interesting fetures. Firstly, onemy oserve the so-
clled primitive waveforms lredy demonstrted in the sclr cse 5, 90, 91, 121. However, in
contrst to the sclr cse, the presence of these str shped contours (or loclised wveforms) is
not ssocited with the resonnt frequencies s identiied in 5,121. In the present prolem, the
loclised wveforms re ssocited with frequencies where the slowness contours exhiit strong
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(a) Horizontl excittion (b) Verticl excittion (c) Torsionl excittion

Figure 4.11: Finite element computtions showing the mgnitude of the displcement mplitude
ields for different types of the pplied force. e excittion frequency is 428.67 Hz,
which coincides with the sddle point frequency for which the slowness contours re
shown in igure 4.9c. e colours indicte the mgnitude of the displcement ield
from lue (zero) to red (mximl). e white regions re those regions where the dis-
plcement ield is ove the rnge.

preferentil directions (see igure 4.9). For the two frequencies considered, the six preferentil
directions of propgtion corresponding to the outwrd unit normls my e identiied. It is
emphsised tht only igures 4.9c nd 4.9e correspond to  resonnt frequency nd yet the lo-
clised wveforms persist t the non-resonnt frequency of 323 Hz due to the shpe of slowness
contour in igure 4.9. In contrst to the sclr lttice, where the pplied loding ws nti-plnr
nd hence isotropic, the in-plne elsticity prolem llows the freedom to choose ny in-plne
direction (nd type) of the pplied loding. As cn e oserved from the computtions shown
in igure 4.10, the orienttion of the pplied force hs  signiicnt effect on the resultnt ield.
e effect is strongest in directions tht hve  component of the group velocity perpendiculr
to the pplied force. e hexgonl errtions nd wve envelopes, re evident t the resonnt
frequency (see igures 4.10, 4.10d nd 4.10f).
For comprison, igure 4.11 lso shows the displcement mplitude t the sddle point fre-

quency of 428.67 Hz, with the slowness contours shown in igure 4.9c. ree types of loding,
similr to those of igure 4.10, re shown. Although the directionl preference is clerly visile,
the errtion is more pronounced for this cse compred to igure 4.10.
e different orienttions of the hexgonl slowness contours nd hence, the different prefer-

entil directions of propgtion for different frequencies re  novel feture of the elstic lttice,
which re sent in the sclr cses. One my envisge pplictions in shielding nd focusing
of elstic wves where this “switch” in preferentil direction coupled with the ility to “select”
 given direction vi the pplied force could e useful. e frequency t which this switching
of preferentil direction occurs is exctly the sddle point frequency of 428.67 Hz. is sddle
point lso mrks the frequency t which  similr rottion in the hexgonl-like contours oc-
curs. As cn e seen from igure 4.9c, this is lso the frequency t which the slowness contours
intersect t two corners nd the centre of ech side of the elementry cell in the reciprocl lttice.

4.3 A discrete structural interface: shielding, negative refraction,
and focusing

In this section, pplictions of the dispersive properties of Bloch-Floquet wves in discrete sys-
tems re considered. In prticulr, pplictions relting to the effects of iltrtion nd focusing
of elstic wves y  “metamaterial lat lens” for certin frequencies re presented. e effects of
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Figure 4.12: A schemtic digrm of the lttice system with the heterogeneous ditomic interfce
(highlighted). e regions to the le nd to the right of the interfce consist of homo-
geneous montomic lttices.

Property Vlue

Young’s Modulus 200 GP
Second Moment of Inerti 349 × 10−8 m4

Cross Sectionl Are 2.12 × 10−3 m2

Bem Density 7850 kg m−2

Bem Length 1 m
Nodl Mss (Amient) 91.531 kg
Nodl Mss (Interfcem1) 16.642 kg
Nodl Mss (Interfcem2) 166.42 kg
Polr Mss Moment of Inerti (Amient) 66.568 kg m2

Polr Mss Moment of Inerti (Interfce J1) 633.284 kg m2

Polr Mss Moment of Inerti (Interfce J2) 99.852 kg m2

Table 4.2: e mteril nd
geometricl prm-
eters for the m-
ient nd interfce
lttices. e prm-
eters of the mient
nd interfce nodes
re links re differ-
entited where re-
quired nd re uni-
form otherwise.

focussing nd iltering for solutions of the Helmholtz eqution hve lredy een demonstrted
in the literture, see for exmple 103. More recently, Jones et l. 81 nlysed similr effects
for the cse of vector elsticity in  structured continuum. Here, the effects of focussing nd
iltrtion of elstic wves in discrete structures re discussed.
Consider  inite tringulr lttice, of the sme geometry s in section 4.2. Let the mient lt-

tice e montomic nd homogeneous. Within the mient lttice  inite sl of heterogeneous
ditomic lttice of the sme geometry is emedded. Both the mient lttice nd interfce lt-
tice (inite sl) re lttices with inertil links, formed fromEuler-Bernoulli ems. emteril
nd geometricl prmeters of the lttices re detiled in tle 4.2. A schemtic digrm of the
mient nd interfce lttices is shown in igure 4.12.
Consider the time-hrmonic propgtion of elstic in-plnewves through the mient lttice

nd structurl interfce s shown in igure 4.13. e wve is generted y  single point source:
 time-hrmonic displcement of mplitude 10−6m in the horizontl direction is prescried t
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Figure 4.13: Prt () shows  hrmonic wve propgting through the mient lttice. Prt ()
shows  hrmonic wve intercting with the structured interfce. is igure is for
the sme conigurtion s prt (), except tht the structured interfce hs een em-
edded in the mient lttice. e mgnitude of the displcement ield is plotted. It
is oserved tht the displcement ield is essentilly unffected y the presence of the
interfce. In oth cses, the forcing frequency is 100 Hz.
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...

☀

Figure 4.14: e dispersion surfces corresponding to heterogeneous ditomic interfce lttice. Of
prticulr interest, in ddition to the nd gp t 700 Hz, is the surfce lelled☀,
which possesses sddle points.

Figure 4.15: e sixth dispersion sur-
fce, lelled ☀ in ig-
ure 4.14, possessing the
sddle point of interest.
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Figure 4.16: e sme conigurtion s in igure 4.13, ut with  forcing frequency of 700 Hz,
which lies in the nd gp of the dispersion digrm for the interfce lttice. e wve
is relected from the interfce s would e expected for frequencies within the stop
nd for the interfce.

one of the lttice nodes. Dmping is pplied to the lttice links in the neighourhood of the ixed
oundry nodes in order to reduce relection from the oundry of the computtionl domin.
Consider now the dispersion surfces for the elementry cell of the structured interfce, shown

in igure 4.14. e trnsmission prolem is formlly distinct from the Bloch-Floquet spectrl
prolem. Nevertheless, the dispersion digrm my e used in order to predict the relection
nd trnsmission ptterns. Figure 4.13 shows the mgnitude of the displcement mplitudeƬ
when the forcing frequency is 100 Hz. A similr wve pttern cn clerly e oserved on oth
sides of the interfce lyer, indicting tht the low frequency response of the structured inter-
fce is very close to tht of the mient medium. A resemling wve pttern cn lso e seen in
igure 4.13 where the structured interfce hs een removed entirely. In contrst, igure 4.16
shows the mgnitude of the displcement ield when the forcing frequency is 700 Hz, which
lies in the stop nd of igure 4.14. In this cse, the incoming wve is relected, with very little
trnsmission.
It hs een suggested tht the phenomenon of focusing y  lt interfce is linked to the

presence of sddle points nd regions of negtive group velocities (see, for exmple, 81, 103).
Referring to the dispersion surfces for the heterogeneous interfce lttice (igure 4.14), it is
oserved tht the surfce lelled☀ nd shown in igure 4.15 possesses  sddle point nd
regions where the group velocity is negtive. In prticulr, for smll perturtions round the
sddle point it is oserved tht the components of the group velocity (∂ѱ/∂ξ) will hve opposing
signs. Figure 4.17 shows  plot of the mgnitude of the displcement ield when the forcing
frequency is 642.5 Hz. e frequency ws chosen in the vicinity of the sddle point on the
corresponding dispersion surfce. e effect descried here is typicl for neighourhoods of
sddle points. A cler directionl preference cn e oserved within the interfce. In ddition,
the secondary source on the right hnd side of the interfce cn lso e oserved. Figure 4.17

Ƭt is, ∥u(x)∥.
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Figure 4.17: e sme conigurtion s in igure 4.13, ut with  forcing frequency of 642.5 Hz.
e imge point is visile on the right hnd side of the interfce. e imge point is
shied long the direction of preferentil propgtion of the interfce lttice.

shows the preferentil direction of propgtion nd the effect of focusing. is feture of the
wves persists in  smll intervl contining the sddle point.

Finlly, in igure 4.18  simultion where the source hs een shied wy from the interfce
region is presented. In this cse, the forcing frequency is 654.4 Hz, which gin is in the vicinity
of the sddle point nd within the region where there is  preferentil direction of propgtion.
Moreover, where the ems intersect on the right hnd side, we cn see the formtion of the
image point. is effect is strongly frequency dependent nd, s ws the cse with the primitive
wveforms discussed erlier, is sensitive to perturtion in the frequency.

4.4 Remarks

In contrst to the previous chpter, which primrily delt with the low frequency response of
discrete metmteril structures, the discussion in the present chpter hs een focused on the
inite frequency response. It hs een demonstrted tht, even uniform, structured medi my
exhiit vstly different ehviour t higher frequencies compred with the low frequency re-
sponse. In prticulr, strongly nisotropic wve propgtion ssocited with polygonl slowness
contours is exhiited t higher frequencies.
e dynmic nisotropy of oth sclr nd elstic discrete systems hs een exmined. In pr-

ticulr, extending the previous work with sclr lttices, the presence of directionlly loclised
wveforms in elstic lttices which re isotropic in the long wvelength limit hve een demon-
strted. ese wveforms re identiied with regions on the dispersion surfces nd slowness
contours with severl preferentil directions of propgtion. e presence of errtions in the
displcement ields, corresponding to the shpe of the slowness contours hve een oserved
nd connection hs een mde with the notion of errtion in optics.
In ddition, it hs een demonstrted tht the dispersive properties of Bloch-Floquet wves

in n ininite lttice structure cn e used in prolems of optiml design for inite size micro-
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Figure 4.18: In this cse the source hs een shied further wy from the interfce. Correspond-
ingly, this leds to  shi in the imge point due to the preferentil direction within
the lyer. Here, the forcing frequency is 654.5 Hz.

structures. In prticulr, the interction of wves with  heterogeneous ditomic lttice of inite
width ws considered. Specil ttention is drwn to the rnge of frequencies in the neighour-
hood of sddle points on the dispersion digrm. e corresponding regime shows directionl
preferences for wves intercting with the structured medium. e pprent focussing nd cre-
tion of n image point, y  lt elstic lens’ is one of the interesting outcomes of this work.
Hving consider the low frequency response of discrete metmteril structures in chpter 3,

nd the ehviour round resonnt frequencies in the present chpter, the next chpter exmines
the ehviour of such structured medi t even higher frequencies in the stop nd.

59



Chapter Five

Localised modes for rectilinear defects
in a square lattice

M
A well-known nd interesting feture of discrete medi is the existence of pss nd stop nds,
s demonstrted in chpters 3 nd 4. In the present chpter, loclised defect modes ssocited
with the eigenmodes of  inite line of defects in n ininite squre lttice re exmined.

e present chpter is developed s follows. In section 5.1, the prolem of  inite line of
defects (creted y  perturtion of point msses) emedded in n ininite squre lttice is con-
sidered. Severl representtions for the Green’s mtrix re presented, including integrl forms
nd representtion in terms of generlised hypergeometric functions. Loclised defect modes
for the inite line re nlysed in section 5.1.1. erein, the necessry nd sufficient condition
for the existence of loclised modes is formulted, nd symptotic expnsions in the fr ield
re lso presented. Bnd edge expnsions re constructed using n nlytic continution of the
Green’s function. Illustrtive exmples for  inite numer of defects re given in section 5.2,
where eigenfrequencies nd eigenmodes re presented nd compred with the symptotic re-
sults from the previous section. Here, the defects  chrcterised y one or more lttice nodes
hving  mss smller thn the nodes in the mient lttice. For one- nd three-dimensionl
multi-tomic lttices, there exists some lower ound on the difference in mss etween the de-
fect nd mient nodes such tht  loclisedmodemy e initited 98. However, in the present
chpter, it is demonstrted tht this is not the cse for two-dimensionl lttices: there is no lower
ound on the mss tht should e removed from  defect node in order to initite  loclised
mode. e nlysis of  inite-sized defect region is ccompnied y the wveguide modes tht
my exist in  lttice contining n ininite chin of point msses. A rief discussion of the in-
inite wveguide prolem is presented, for completeness, in section 5.3. Finlly, in section 5.4,
 numericl simultion illustrtes tht the solution for the prolem of the ininite chin cn e
used to predict the rnge of eigenfrequencies of loclised modes for  inite ut sufficiently long
rry of msses representing  rectiliner defect in  squre lttice.
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5.1 A inite inclusion in an ininite square lattice

Consider  squre meshing of R2 such tht ech node is lelled y the doule index n ∈ Z2,
where n = (n1,n2). Let there eN > 0 defects (withN ∈ N) distriuted long n2 = 0 s shown in
igure 5.1. e defects re chrcterised y  non-dimensionl mss 0 < r < 1, where the mss
of the mient nodes is tken s  nturl unit. e stiffness nd lengths of the lttice onds re
uniform nd tken s further nturl units. All physicl quntities, such s the frequency nd
displcement, hve een normlized ccording to these nturl units nd re therefore dimen-
sionless. Let un denote the complex mplitude of the time-hrmonic out-of-plne displcement
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Figure 5.1: A inite line of defects in
n ininite squre lttice.
e length of the links,
the stiffness of the onds
nd themss of the lck
nodes re tken s ntu-
rl units.

of node n. en, the eqution of motion is (see § 2.1 nd 2.2.1)

un+e1 + un−e1 + un+e2 + un−e2 + (ѱ2 − 4)un = (1 − r)ѱ2ў0,n2
N−1
∑
p=0

unўp,n1 , (5.1)

where ѱ is the rdin frequency, ei = [ў1,i, ў2,i]T, nd ўi,j is the Kronecker Delt. By mens of
the discrete Fourier Trnsform the governing eqution (5.1) my e written

(ѱ2 − 4 + 2 cos Ѩ1 + 2 cos Ѩ2)uFF(ξ) = (1 − r)ѱ2
N−1
∑
p=0

up,0 exp(−ipѨ1). (5.2)

In the nottion of section 2.1 the prenthesised term on the le hnd side is σ(ѱ, ξ) nd the right
hnd side of eqution (5.2) is the Fourier Trnsform of the lod fN−1(Ѩ1). e positive root of
the prenthesised term represents the dispersion eqution for the mient lttice. Asmentioned
erlier in section 4.1.1, it is oserved tht for ѱ2 > 8 there exist no rel solutions to the dispersion
eqution. Hence, the mient lttice possesses  semi-ininite stop nd: ѱ2 ∈ (8,∞). Inverting
the trnsform yields the discrete ield

un(ѱ) = (1 − r)ѱ2
N−1
∑
p=0

up,0 g(n, p;ѱ), (5.3)
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where g(n, p;ѱ) is the shied Green’s mtrix deined s:

g(n, p;ѱ) = 1
π2

π

∫
0

π

∫
0

cos ([n1 − p]Ѩ1) cos(n2Ѩ2)
ѱ2 − 4 + 2 cos Ѩ1 + 2 cos Ѩ2

dѨ1dѨ2. (5.4)

For the purposes of numericl evlution nd symptotic nlysis in the stop ndof the mient
lttice (ѱ2 > 8), it is convenient to rewrite the Green’s mtrix s  single integrl

g(n, p;ѱ) = 1
2π

π

∫
0

(√a2 − 1 − a)∣n1−p∣√
a2 − 1

cos (n2Ѩ2)dѨ2, (5.5)

where a(Ѩ2;ѱ) = ѱ2/2−2+cos Ѩ2. Reversing the order of integrtion yields the sme result, ut
with n1 −p nd n2 interchnged, nd Ѩ1 interchnged with Ѩ2. An lterntive representtion cn
e found in the ook y vn der Pol 143 s

g(n, p;ѱ) = (−1)n1−p+n2
2

∞

∫
0

In1−p(x)In2(x)e−ћxdx, (5.6)

where Im(x) is the modiied Bessel function of the irst kind, ћ = ѱ2/2 − 2 > 2. e integrl
is symmetric out n1 − p = 0 nd n2 = 0 nd therefore it my e ssumed, without loss of
generlity, tht n1 ≥ p nd n2 ≥ 0. e integrl (5.6) my then e represented in terms of
regulrised generlised hypergeometric functions (see 131, section 3.15.6, eqution 8)

g(n, p;ѱ) = (−1)m+n2(2ћ)1+m+n2 ((m + n2)!)2 4F3[ a1, a1, a2, a2
b1, b2, b1 + b2 − 1

;
4
ћ2
], (5.7)

where m = n1 − p, a1 = (1 + m + n2)/2, a2 = (2 + m + n2)/2, b1 = 1 + m, nd b2 = 1 + n2.
e series (5.7) is convergent for ћ2 > 4 (see 120), tht is, everywhere in the stop nd of the
mient lttice. It is oserved tht long the ry m = n2, the Green’s mtrix my e written in
terms of Guss’ hypergeometric function. In prticulr, eqution (5.7) reduces to

g(n,n, 0;ѱ) = ((2n)!)2(2ћ)1+2n 2F1[1/2 + n, 1/2 + n1 + 2n
;
4
ћ2
]. (5.8)

e function (5.8) is strictly positive in the region n ≥ 0 nd ћ > 2. Hence, for  single defect,
the lttice nodes long the digonl rys do not oscillte reltive to ech other.
Furthermore, for the cse ofm = n2 = 0, the integrl representtion (5.4) reduces to the 2-fold

Wtson integrl (see, for exmple, 82 nd 150). Using  simple chnge of vriles (5.4) cn
e written in terms of n elliptic integrl, or lterntively, one cn use (5.8) nd oserve tht

g(0, 0;ѱ) = 1
2ћ 2F1[1/2, 1/21

;
4
ћ2
] = 1

ћπ
K( 4

ћ2
) , (5.9)

where K(x) is the complete ellipticl integrl of the irst kind. Together with eqution (5.9), the
representtion (5.6) is prticulrly useful since, y repeted integrtion y prts nd use of the
identity In(x) = 2I′n−1(x) − In−2(x), one cn iterte from g(0, 0;ѱ) to  generl g(n, p;ѱ).
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Chapter Five Localised modes for rectilinear defects in a square lattice

5.1.1 Localised modes

Of primry interest re loclised modes, tht is, modes of virtion t frequencies tht re not
supported y the mient lttice nd therefore decy rpidly wy from the defect. Introduc-
ing the vector U = [u0,0,u2,0, . . . ,uN−1,0]T nd choosing n2 = 0 in eqution (5.3) yields the
eigenvlue prolem

U = (1 − r)ѱ2G(ѱ)U , (5.10)

where the mtrix entries [G(ѱ)]ij = g(i − 1, 0, j − 1;ѱ). Clerly, G is symmetric nd Toeplitz
(nd hence isymmetric nd centrosymmetric)

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11 G12 G13 ⋯ G1(N−1) G1N

G11 G12 ⋯ G1(N−2) G1(N−1)

G11 ⋯ G1(N−3) G1(N−2)
. . .

...
...

G11 G12

G11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.11)

which gretly reduces the numer of required computtions. Indeed, for N defects the mtrix
G hs N independent elements. e solvility condition of the spectrl prolem (5.10) yields 
trnscendentl eqution in ѱ,

det [IN − (1 − r)ѱ2G] = 0, (5.12)

where IN is the N ×N identity mtrix. Eqution (5.12) is the necessry nd sufficient condition
for the existence of loclised modes. Symmetry implies tht there exists n orthonorml set of
N eigenvectors of G nd hence, N eigenvlues (frequencies). e centrosymmetry of G llows
the numer of symmetric nd skew-symmetric modes to e determined (see, for exmple, 21).
Introducing the N ×N exchnge mtrix

JN =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
0 0 1 0

0 . .
.

0 0
1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
, (5.13)

n eigenmode is sid to e symmetric if U = JNU nd skew-symmetric if U = −JNU . For
 system of N defects there exist ⌈N/2⌉ symmetric modes nd ⌊N/2⌋ skew-symmetric modes,
where ⌈⋅⌉ nd ⌊⋅⌋ re the ceiling nd loor opertors respectively. Of course here, symmetry
refers to the symmetry of the eigenmodes in the n1 direction out the centre of the defect line.
Due to the symmetry of the system, ll modes re symmetric out the line n2 = 0.

Consider the totl force on n inclusion contining N defects

F =
N−1
∑
p=0
(up−1,0 + up+1,0 + 2up,1 − 4up,0) . (5.14)
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Chapter Five Localised modes for rectilinear defects in a square lattice

By deinition, for  skew-symmetric mode up,0 = −uN−1−p,0 nd further up,q = −uN−1−p,q. Hence,
for ll skew-symmetric modes the inclusion is self-lnced (i.e. F = 0) nd therefore, ll skew-
symmetric loclised modes cn e considered s multipole modes.
For the illustrtive exmples presented lter, the eigenvlue prolem (5.10) will e solved for

the unit eigenvectors (∥U∥ = 1).
5.1.2 Asymptotic expansions in the far ield

Here, symptotic expnsions in the fr ield re considered for some prticulr cses. Asymp-
totic expnsions for n isolted Green’s mtrix in vrious conigurtions hve een considered
in 109 nd the pproch detiled therein is used here.

Far ield, along the line of defects. e cse of n1 → ∞, n2 = 0 nd inite N is considered.
Introducing the smll prmeter ε = p/n1, the kernel of (5.5) my e expnded for smll ∣ε∣≪ 1.
In prticulr,

(√a2 − 1 − a)∣n1−p∣ ∼ (√a2 − 1 − a)∣n1∣ [1 − ε log (√a2 − 1 − a)]∣n1∣ . (5.15)

It is oserved tht t lrge n1 nd sufficiently smll N, the dominnt contriution to the inte-
grl (5.5) comes from  smll region in the vicinity of Ѩ2 = π. erefore,

(√a2 − 1 − a)∣n1−p∣ ∼ (√c2 − 1 − c)∣n1∣ [1 − (π − Ѩ2)2
2
√
c2 − 1

]∣n1∣

× [1 − ε log (√c2 − 1 − c) + ε(π − Ѩ2)2
2
√
c2 − 1

]∣n1∣ , (5.16)

where c = ѱ2/2 − 3. us,

(√a2 − 1 − a)∣n1−p∣ ∼ (√c2 − 1 − c)∣n1−p∣ exp [−∣n1 − p∣ (π − Ѩ2)2
2
√
c2 − 1

] . (5.17)

In ddition, 1/√a2 − 1 ∼ 1/√c2 − 1. Hence, for 0 < ε≪ 1 nd mking use of (5.5)

g(n1, 0, p;ѱ) ∼ (
√
c2 − 1 − c)∣n1−p∣
2π
√
c2 − 1

π

∫
π−ε

exp [−∣n1 − p∣ (π − Ѩ2)2
2
√
c2 − 1

]dѨ2. (5.18)

Mking the sustitution x = (π − Ѩ2)√∣n1 − p∣/(2√c2 − 1), nd performing the resulting inte-
grtion yields

g(n1, 0, p;ѱ) ∼ (
√
c2 − 1 − c)∣n1−p∣√
8π
√
c2 − 1

1√∣n1 − p∣ s n1 →∞. (5.19)
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us from (5.3), the physicl ield hs the following pproximte representtion for n1 →∞

un1,0(ѱ) ∼ (1 − r)ѱ2
N−1
∑
p=0

(√c2 − 1 − c)∣n1−p∣√
8π
√
c2 − 1

up,0(ѱ)√∣n1 − p∣ , (5.20)

where up,0(ѱ) should e determined from (5.10). It is oserved tht whenN = 1 eqution (5.20)
is consistent with eqution (4.17) of 109 up to  chnge in sign.

Far ield, perpendicular to the line of defects. Here, the cse considered is n1 = p′, n2 →∞
withN nd p′ inite. emethod used here follows the sme generl procedure s in the previous
cse. However in this cse, the kernel is oscilltory nd is therefore pproximted s  product of
decying nd oscilltory functions. For sufficiently smll ∣p′−p∣ nd lrge n2, the non-oscilltory
prt of the integrnd in (5.5) is pproximted s efore, leding to

g(p′,n2, p;ѱ) ∼ (
√
c2 − 1 − c)∣n2∣
2π
√
c2 − 1

π

∫
π−ε

exp [−∣n2∣ (π − Ѩ1)2
2
√
c2 − 1

] cos ([p′ − p]Ѩ1)dѨ1. (5.21)

Mking  similr chnge of vrile, x = (π − Ѩ1)√∣n2∣/(2√c2 − 1), nd integrting, it is found
tht

g(p′,n2, p;ѱ) ∼ (−1)(p′−p) (
√
c2 − 1 − c)∣n2∣√
8π
√
c2 − 1

1√∣n2∣ exp [−(p′ − p)2
√
c2 − 1
2∣n2∣ ] . (5.22)

Hence, for n2 →∞ the physicl ield in (5.3) my e pproximted y

up′,n2(ѱ) ∼ (1−r)ѱ2
(√c2 − 1 − c)∣n2∣√

8π
√
c2 − 1

N−1
∑
p=0
(−1)(p′−p) exp [−(p′ − p)2

√
c2 − 1
2∣n2∣ ]

up,0(ѱ)√∣n2∣ . (5.23)
It is oserved tht for N = 1 nd p′ = p, the ove eqution (5.23) is consistent with eqution
(4.17) of 109 up to  chnge in sign. Moreover, for the cse of p′ = p, (5.23) reduces to (5.20).

5.1.3 Band edge expansions

e representtions of Green’s mtrix (5.5)-(5.7) re vlid in the stop nd. However, given tht
the hypergeometric function in the representtion (5.7) is zero lnced, tht is, the sum of the
ottom prmeters minus the sum of the top prmeters vnishes: 2(b1+b2)−1−2(a1+a2) = 0,
the stop nd Green’s mtrix cn e extended to the oundry of the pss nd y nlytic
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continutionƬ. In prticulr, the nlyticl continution of the function (5.7) hs the form

g(n, p;ѱ) = (−4)m+n2
π(2ћ)1+m+n2

∞

∑
j=0
(([1 +m + n2]/2)j

j!
)2 (1 − 4

ћ2
)j

×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j
∑
k=0

(−j)k
{([1 +m + n2]/2)j}2 H(m,n2, k) [ Ѱ(1 + j − k)
+Ѱ(1 + j) − Ѱ (1 +m + n2

2
+ j) − log (1 − 4

ћ2
)]

+(−1)j(j)! ∞∑
k=j+1

(k − j − 1)!{([1 +m + n2]/2)k}2 H(m,n2, k)⎫⎪⎪⎬⎪⎪⎭ (5.24)

where the reder is reminded tht m = n1 − p, (⋅)j is the Pochhmmer symol, Ѱ(x) is the
Digmm function, nd

H(m,n, k) = (m)k(n)k
k! 3F2[(m + n2)/2, (m + n2)/2, −km, n

; 1]. (5.25)

e symol pFq… denotes the generlised hypergeometric function, which is relted to the
regulrised generlised hypergeometric function thus:

pFq[a1, . . . , ap; b1, . . . bq; α] = {Γ(b1) . . . Γ(bq)} pFq[a1, . . . , ap; b1, . . . bq; α].
In this cse, the continution (5.24) holds for ћ2 ≥ 4, which in terms of frequency corresponds
to ѱ2 ≥ 8. It is emphsised tht in this section, the term “vicinity of the band edge” refers to 
smll intervl 8 ≤ ѱ2 < 8 + ε, where 0 < ε≪ 1.

Hence, choosing j = 0 yields the leding order ehviour of (5.7) s ћ2 → 4+ (ѱ2
→ 8+), tht

is, s ѱ pproches the oundry of the pss nd from the stop nd:

g(n, p;ѱ) ∼ (−4)m+n2
π(2ћ)1+m+n2 {[−2ѝ − Ѱ (1 +m + n22

) − log (1 − 4
ћ2
)]

+
∞

∑
k=1

(k − 1)!{([1 +m + n2]/2)k}2 H(m,n2, k)} , (5.26)

where ѝ is the Euler-Mscheroni constnt. Alterntive representtions of the leding order con-
tinutions for generl zero-lnced q+1Fq were derived y Sigo nd Srivstv 135. Since
k > 0, the series representtion of the hypergeometric function in (5.25) hs  inite numer of
terms nd therefore my e computed exctly. e convergence condition for the ininite sums
in (5.24) nd (5.26) is 2 + m + n2 + j > 0, nd is utomticlly stisied since it ws ssumed
(without loss of generlity) t the outset thtm ≥ 0 nd n2 ≥ 0.

e symptotic expression (5.26) is prticulrly interesting s it elucidtes the nture of the
singulrity of the lttice Green’s mtrix t the nd edge. In prticulr, the symptotic repre-
senttion (5.26) cptures the logrithmic singulrity s ѱ2

→ 8+. is logrithmiclly singulr

Ƭ Indeed, for ny integer lnced hypergeometric function q+1Fq there exists n nlytic continution to the ound-
ry of the unit disk (see 19, mong others, for detils).
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Figure 5.2: e solid curve shows the symptotic ex-

pression for the displcement ield long
the digonl (n1 = n2 with p = 0)
in the vicinity of the nd edge (see
eqution (5.27)). e dshed curve
shows the corresponding symptotic ex-
pression for the ield long the ond line
(see eqution (5.27)). e frequency
chosen is ѱ = 2.829.

ehviour ner the nd edge is not ovious from the originl representtions presented erlier
(see equtions (5.5)-(5.7)).

For some prticulr cses, eqution (5.26) reduces to the following simpliied forms. Along
the rysƭm = 0 (i.e. n1 = p):

g(p,n2, p;ѱ) ∼ (−4)1+n2π(2ћ)1+n2 [2ѝ + Ѱ (1 + n22
) + log (1 − 4

ћ2
)] ≜ g̃(ond)(n2;ѱ), (5.27)

nd long the digonl rysm = n2:

g(n1,m, p;ѱ) ∼ − 16m

π(2ћ)1+2m [2ѝ + Ѱ (12 +m) + log (1 − 4
ћ2
)] ≜ g̃(dig)(m;ѱ), (5.27)

eDigmm function grows logrithmiclly sm→∞ nd the term 2ѝ+Ѱ(1/2+m) is strictly
positive for m > 0. erefore, for sufficiently smll m the rcketed term in equtions (5.27)
is negtive in the neighourhood of ћ = 2. Hence, in the vicinity of the nd edge, the stop
nd Green’s mtrix exhiits fundmentlly different ehviour long the ond lines compred
with the digonl rys. In prticulr, long the ond lines the msses will oscillte out of phse,
wheres for the digonl ry lines the msses will oscillte in phse, s illustrted in igure 5.2.
In the fr ield, equtions (5.27) further reduce to

g(p,n2, p;ѱ) ∼ (−4)1+n2π(2ћ)1+n2 [2ѝ + log (n22 ) + log (1 − 4
ћ2
)] , s n2 →∞, (5.28)

g(m,m, p;ѱ) ∼ − 16m

π(2ћ)1+2m [2ѝ + logm + log (1 − 4
ћ2
)] , sm→∞. (5.28)

Using equtions (5.3) nd (5.27) the out-of-plne displcement for  lttice with N defects hs
the following symptotic representtion in the vicinity of the nd edge

un1,0(ѱ) ∼ (1 − r)ѱ2
N−1
∑
p=0

up,0 g̃(ond)(n1 − p;ѱ), s ѱ2
→ 8+, (5.29)

un1,n2−p(ѱ) ∼ (1 − r)ѱ2
N−1
∑
p=0

up,0 g̃(dig)(n1 − p;ѱ), s ѱ2
→ 8+, (5.29)

long the rys n2 = 0 nd n2 = n1 − p respectively.

ƭEquivlently, one my sustitute n2 y n1 − p in (5.27) to otin expnsions of g long n2 = 0
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5.2 Illustrative examples

Severl prticulr cses re considered here corresponding to reltively short defects with N ∈[1, 3]. e solid curves in igure 5.3 show the ith solution, rN,i(ѱ), of the solvility condi-
tion (5.12) for  line of N defects. e shded region indictes the stop nd (ѱ2 > 8) of the
mient lttice. For frequencies in this region, wves in the mient lttice will decy exponen-
tilly wy from the defect or source.
It is interesting to note tht, for one- nd three-dimensionl multi-tomic lttices, there exists

some lower ound on the mount of mss tht should e removed from the defect nodes such
tht  loclised mode my e initited (see, for instnce, 98). However, here the imge of
rN,N(ѱ), indicted y the solid curves in igure 5.3, is (0, 1). In other words, there is no lower
ound on the mss tht should e removed from  defect node in order to initite  loclised
mode. As r → 1, tht is, s the lttice pproches  homogeneous lttice, the frequency of
the loclised mode pproches the nd edge (ѱ2

→ 8+). It is lso oserved tht for N > 1,
the solid curves intersect the nd edge t severl distinct vlues of r. is suggests tht for 
given numer of defects, there exists  mximum vlue of r elow which ll possile loclised
eigenmodes my e initited. Aove this vlue of r it is only possile to initite  suset of
the possile eigenmodes with the lower frequency eigenmodes eing iltered out. In ll cses,
the highest frequency eigenmode persists for ll possile vlues of r on (0, 1). For ixed ѱ, the
solvility condition (5.12) for  system of N defects is  polynomil in r of t most degree N.
erefore, there exist no more thn N solutions for  given frequency ѱ.
e dshed curves correspond to the prolem of n isolted chin of N prticles of non-

dimensionl mss r∗, connected y springs to two nerest neighours nd surrounded y rigid
foundtions. For such  prolem, the out-of-plne displcement of mss n ∈ Z stisies

L[v0, v1,⋯, vN−1]T = 0, (5.30)

where the mtrix L hs elements

[L]ij = (r∗ѱ2 − 4)ўij + ўi−1,j + ўi,j−1. (5.31)

e dshed curves in igure 5.3 represent the solutions r∗N,i(ѱ) of the solvility condition:
detL = 0. It is oserved tht s ѱ → ∞, the dshed curves pproch the solid curves from
elow.

5.2.1 A single defect

For the cse of  single defect locted t the origin, the quntity G in (5.10) is  sclr:

G(ѱ) = 1
ћπ

K( 4
ћ2
) , (5.32)

where K(x) is the complete ellipticl integrl of the irst kind. e solvility condition my e
written s

r1,1 = 1 + π ( 2
ѱ2 −

1
2
)[K( 16(ѱ2 − 4)2)]

−1

, (5.33)
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(c) A triplet of defects (N = 2)

Figure 5.3: e solid curves show the ith solution, rN,i(ѱ), of the solvility condition (5.12) for 
system ofN defects emedded in the squre lttice. e shded region (ѱ2 > 8) indictes
the stop nd of the mient lttice. e dshed curves show the corresponding ith
solution, r∗N,i(ѱ), of the solvility condition for n isolted system of N defects (see
eqution (5.30)).

which hs the leding order symptotic representtion

r1,1 ∼
4
ѱ2 , s ѱ →∞. (5.34)

It is oserved tht the solvility condition for eqution (5.30) with N = 1 grees precisely with
the leding order high frequency symptotic expnsion, hence, the oserved colescence of the
solid nd dshed curves in igure 5.3.
e loclised defect mode is shown in igure 5.4, together with ield long the line n2 = 0 nd

the ssocited symptotic ield s n1 → ∞ in igure 5.4. Figures 5.4c nd 5.4d show the ield
(solid line) nd the nd edge symptotics (dshed line) for  vlue of ћ = 2.006. e symptotic
expnsions show good greement with the computed ield, even for the fr ield symptotics in
the neighourhood of the defect.

5.2.2 A pair of defects

In the cse of  pir of defects, G(ѱ) is  2×2 mtrix with the digonl elements given y (5.32).
e off-digonl elements hve the form

[G(w)]12 = 1
4
−

1
2π

K( 4
ћ2
) . (5.35)

e solutions of the solvility condition re

r2,1 = 1 −
4π(ѱ2 − 4)

πѱ2(ѱ2 − 4) − 2ѱ2(ѱ2 − 8)K( 16(ѱ2 − 4)2)
, (5.36)

r2,2 = 1 +
4π(ѱ2 − 4)

πѱ2(ѱ2 − 4) − 2ѱ4K( 16(ѱ2 − 4)2)
, (5.37)
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Figure 5.4: () e loclised defect mode for  single defect with r = 0.8 nd ѱ = 2.83. () e
solid curve is the out-of-plne displcement long the line n2 = 0 nd the dshed curve
is the symptotic expnsion for n1 → ∞ (see eqution (5.20)). (c) e out-of-plne
displcement long the line n1 = n2 (solid curve) with the corresponding symptotic
expnsion (5.27) for the nd edge (dshed curve). (d) As for (), ut the dshed
curve represents the nd edge expnsion long n2 = 0 (see eqution (5.29)).

whence the leding order high frequency symptotic expnsions re

r2,1 ∼
3
ѱ2 nd r2,2 ∼

5
ѱ2 s ѱ →∞, (5.38)

which gree with the solvility condition of the isolted system (5.30) for N = 2, hence, the
oserved colescence of the solid nd dshed curves in igure 5.3.
Figure 5.5 shows the two defect modes together with the ield long the lines n1 = 0, nd

n2 = 0 nd the ssocited symptotic ield t ininity. In ddition, the dsh-dot line in igure 5.5c
shows the nd edge expnsion in the vicinity of ћ = 2. In this cse, igure 5.5c corresponds
to vlue of ћ ≈ 2.025. Once gin, the symptotics re in good greement with the computed
ield. Due to the symmetry, the ield long the line n1 = 1 is identicl to tht in igure 5.5e for
the symmetric cse nd identicl up to  relection in the line u0,n2 = 0 in igure 5.5f for the
skew-symmetric cse.
e lower solid curve in igure 5.3 corresponds to r2,1 s deined in (5.36). e mximum

vlue of the lower solid curve is given y

r(mx)
2,1 = lim

ѱ2
→8+

r2,1 =
1
2
. (5.39)

Hence for  pir of defects,  symmetric loclised mode cnnot e initited for r ≥ 1/2.
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(c) e ield long the line n2 = 0 for the
symmetric mode
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(d) e ield long the line n2 = 0 for the
skew-symmetric mode
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(e) e ield long the line n1 = 0 for the
symmetric mode
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(f) e ield long the line n1 = 0 for the
skew-symmetric mode

Figure 5.5: e loclised defect mode for  pir of defects with r = 0.49. e solid curves show
the out-of-plne displcement long the indicted line, nd the dshed curves re the
ssocited symptotic expnsions in the fr ield (see equtions (5.20) nd (5.23) s p-
proprite). e dsh-dot curve in igure 5.5c shows the nd edge expnsion (see equ-
tion (5.29)).

5.2.3 A triplet of defects

For the cse of three defects, the 3× 3 mtrix G(ѱ) hs the [G]11 nd [G]12 elements s deined
in equtions (5.32) nd (5.35). e remining independent component is

[G(w)]13 = [G(ѱ)]11 − ћ
2
+
ћ
π
E( 4

ћ2
) , (5.40)

where E(x) is the complete Elliptic Integrl of the second kind. e solutions of the solvility
condition re of similr form to the previous two cses nd re omitted for revity. e high
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frequency symptotics for r(ѱ) re
r3,1 ∼

4 −
√
2

ѱ2 , r3,2 ∼
4
ѱ2 , nd r3,3 ∼

4 +
√
2

ѱ2 s ѱ →∞, (5.41)

which gin coincide with the solvility condition for (5.30) for the cse of  prticle triplet
(N = 3). e mximum vlues of r3,i(ѱ) re r(mx)

3,1 = 1 − 3π/16, r(mx)
3,2 = 7/8 − (8 − 4π)−1, nd

r(mx)
3,3 = 1.
e three loclised eigenmodes, long with plots of the ssocited symptotic expressions re

shown in igures 5.6–5.8 for  contrst rtio of r = 0.4. Plots of the displcement ield long
the lines n2 = 0, n1 = 1 nd n1 = 0 re lso provided together with their ssocited symptotic
ields. In ech cse, the solid curves show the displcement ield, whilst the dshed curves show
the ssocited symptotics in the fr ield. e dsh-dot line in igure 5.6 shows the nd edge
expnsion in the vicinity of ћ = 2. In this cse, igure 5.6 corresponds to vlue of ћ ≈ 2.017.
ere re two symmetric modes (the lowest nd highest frequency modes) nd  single skew-
symmetric mode, s expected from the properties of G discussed in the previous susection.
However, for defects of mss r ≥ r(mx)

3,1 , it is not possile to initite the lower frequency sym-
metric eigenmode nd only  further symmetric mode nd  skew-symmetric mode persist. For
vlues of r ≥ r(mx)

3,2 , it is only possile to initite the highest frequency symmetric mode.
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(c) e ield long the line n1 = 0 for the
symmetric mode
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Figure 5.6: e irst loclised defect mode for  triplet of defects with r = 0.4. e solid curves
show the out-of-plne displcement long the indicted line, nd the dshed curves re
the ssocited symptotic expnsions in the fr ield (see equtions (5.20) nd (5.23)
s pproprite). e dsh-dot line in () corresponds to the nd edge expnsion (see
eqution (5.29)).
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(b) e ield long the line n2 = 0 for the
skew-symmetric mode
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(c) e ield long the line n1 = 0 for the
skew-symmetric mode
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(d) e ield long the line n1 = 1 for the
skew-symmetric mode

Figure 5.7: e second loclised mode for  triplet of defects. e solid curves show the out-of-
plne displcement long the indicted line, nd the dshed curves re the ssocited
symptotic expnsions in the fr ield (see equtions (5.20) nd (5.23) s pproprite).

5.3 An ininite inclusion in an ininite square lattice

e section will e devoted to the discussion of n ininite line of defects emedded in n in-
inite squre lttice, s shown in igure 5.9. As in the previous section, the defects re chrc-
terised y  non-dimensionl mss 0 < r < 1. A recent pper y Oshrovich nd Ayzenerg-
Stepnenko 122 studied the wveguide prolem for n ininite liner defect emedded in
 squre lttice. More recently, Colquitt et al. 32 studied in detil this precise prolem. It
should e emphsised tht the work reported in section 4 of 32 ws primrily crried out y
Dr Michel Nieves nd not the present uthor. erefore, the work detiled in 32, §4 is e
riely recounted here in section 5.3 purely in order to provide context for the following section.

5.3.1 e equations of motion

Given the symmetry of the system out the line n2 = 0 (see igure 5.9), it is convenient to reduce
the prolem to  hlf-plne system, which my e formulted s follows. e displcement
mplitude ield for time-hrmonic disturnces in the upper-hlf plne, n ∈ Z ×Z+ is

un+e1 + un−e1 + un+e2 + un−e2 + (ѱ2 − 4)un = 0, (5.42)
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(c) e ield long the line n1 = 0 for the
second symmetric mode
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Figure 5.8: e third loclised defect mode for  triplet of defects. e solid curves re the out-of-
plne displcement long the indicted line, nd the dshed curves re the ssocited
symptotic expnsions in the fr ield (see equtions (5.20) nd (5.23) s pproprite).

nd for n1 ∈ Z, n2 = 0 is

un1+1,0 + un1−1,0 + un1,1 + un1,−1 + (rѱ2 − 4)un1,0 = 0. (5.42)

Tking the discrete Fourier Trnsform in the n1 direction yields

uFn2+1 + u
F

n2−1 − 2Ω1(Ѩ,ѱ)uFn2 = 0, (5.43)

nd
uF1 + uF−1 − 2Ωr(Ѩ,ѱ)uF0 = 0, (5.43)

where
Ωќ(Ѩ,ѱ) = 1 + 2 sin2 ( Ѩ2) − ќѱ2

2
(5.44)

nd Ѩ is the Fourier prmeter. For n2 > 1  solution of the form

uFn2 = ѥ
n2uF1 , with ∣ѥ∣ ≤ 1, (5.45)

is sought. e cse of ∣ѥ∣ = 1 corresponds to  displcement ield which propgtes sinusoidlly,
with constnt mplitude, wy from the defect longn2 = 0. e condition ∣ѥ∣ < 1 corresponds to
 loclised mode, the mplitude of which, decys exponentilly wy from the wveguide long
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Figure 5.9: A squre cell lttice
contining n ininite
chin of defects with
non-dimensionl mss
r long n2 = 0, nd n
mient lttice com-
posed of prticles with
unit mss. As efore,
the stiffness nd length
of the links re tken s
nturl units.

n2 = 0. e primry focus of this chpter is loclised modes, therefore the following discussion
will e devoted to the ltter cse of ∣ѥ∣ < 1. For  detiled nlysis of the system, the reder is
referred to 32, §4. Together, equtions (5.43) nd (5.45) yield n expression for the fctor ѥ
corresponding to loclised modes

ѥ = 1 + 2 sin2 ( Ѩ
2
) − rѱ2

2
. (5.46)

Skew-symmetric solutions. Consider solutions tht re skew-symmetric out the line n2 = 0.
ese modes stisfy the symmetry condition un1,n2 = −un1,−n2 , whence un1,0 = 0 nd hence
un = 0. In other words, the only skew-symmetric solution is the trivil one.

Symmetric solutions. For the cse when symmetry conditions re imposed out n2 = 0, tht
is un1,n2 = un1,−n2 , the dispersion eqution for loclised defect modes supported y the ininite
line defect is given y

ѱ(−)(Ѩ) = { 2
r(2 − r) [1 + 2 sin2(Ѩ/2) +

√
1 + 4(1 − r)2 sin2(Ѩ/2)(1 + sin2(Ѩ/2))]}1/2 .

(5.47)
is dispersion reltion is determined in two prts. First, the symmetry conditions re imposed
out the line n2 = 0 nd  liner system is derived which links the displcements long the
rows n2 = 0 nd n2 = 1. en, the solvility of this system is considered for vrious cses of ѥ,
nd (5.47) is deduced. e reder is referred to 32, §4 for  detiled discussion nd derivtion
of (5.47). In igure 5.10, the dispersion reltion (5.47) is plotted for severl vlues of r. e in-
phse stnding wve solution, of the form (5.45), is lwys given when Ѩ = 0 nd corresponds
to the minim of the dispersion curves. e frequency of the in-phse stnding wve is

ѱ =
√

4
r(2 − r) , (5.48)
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Figure 5.10: e quntity ѱ(−), given
in eqution (5.47),
plotted s  function of
the normlised Bloch
prmeter Ѩ/π for
r = 0.05, 0.25, 0.5 nd
0.75.

wheres for the out-of-phse solution, t Ѥ = π corresponding to the mxim of the dispersion
curves, is

ѱ =
√

2
r(2 − r) [3 +

√
1 + 8(1 − r)2] . (5.49)

5.4 From an ininite inclusion to a large inite defect: e case of
large N

In this section, it will e demonstrted tht the rnge of eigenfrequencies for which loclised
eigenmodes exist for the model of inite inclusions descried in section 5.1, cn e predicted
using the model of n ininite chin of defects considered in section 5.3. emotivtion for this
is s follows. In order to determine the frequencies of loclised modes, ccording to the nlysis
presented in section 5.1, it is required to solve  trnscendentl eqution (e.g. eqution (5.33))
for ѱ. Hence, one must resort to numericl methods. Moreover, the eqution in question (the
solvility condition (5.12)) is otined y setting the determinnt of  mtrix system to zero.
For  system of N defects the mtrix system is N × N; hence, for  lrge system of defects, this
ecomes computtionlly intensive. However, s will e shown in the current section, if one
is merely interested in the rnge of permitted loclised frequencies, this informtion my e
otined from the dispersion eqution of the ininite system.
As n illustrtive exmple,  defect with N = 20 prticles of non-dimensionl mss r = 0.25

is emedded within n ininite squre lttice. e eigenfrequencies of the inite defect re com-
puted using themethod descried in section 5.1 nd re shown s dsh-dot, nd dshed, lines in
igure 5.11. In this igure, the eigenfrequency ѱmin = 3.0374 corresponds to n in-phse stnd-
ing wve solution, wheres the frequency ѱmx = 4.9344 represents the out-of-phse solution.
e mximum nd minimum eigenfrequencies re indicted y the dshed lines in igure 5.11.
Since N is lrge, it is useful to consider the model of n ininite chin emedded in  squre

lttice. Expressions (5.48) nd (5.49) predict the vlues of the frequency ѱ for which there exist
such solutions. For the numericl vlues ove, the in-phse solution occurs when Ѩ = 0 nd
ѱ = 3.0237 nd the out-of-phse solution occurs when Ѩ = π nd ѱ = 4.9432. ese vlues
of the frequency re close to those encountered in the prolem of the inite defect for N = 20.
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Figure 5.11: e dispersion eqution (5.47), for
the ininite chin, plotted s  func-
tion of the normlised Bloch p-
rmeter, for r = 0.25, represented
y the solid curve. Also shown re
the lue dsh-dot lines correspond-
ing to the eigenfrequencies com-
puted for  inite defect contining
N = 20 msses. e red dshed
lines correspond to ѱmin nd ѱmx.

Moreover, ll the eigenfrequencies computed for the inite defect lie within the pssnd for the
ininite defect, s shown in igure 5.11.
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(b) Out-of-phse mode t ѱ = 4.934

Figure 5.12: elue solid lines re the eigenmodes for themximum ndminimum eigenfrequen-
cies for  inite line contining 20 defects. e envelope functions deined in (5.56) re
shown y the red dshed lines.

Figure 5.12 shows the plot of the eigenmodes for the mximum nd minimum eigenfrequen-
cies computed for the line defect contining 20 msses. e mximum eigenfrequency ѱmx

corresponds to the out-of-phse mode, wheres the minimum eigenfrequency ѱmin gives the
in-phse mode.
It is remrked tht oth the ield in igure 5.12, nd the envelope of the ield in igure 5.12

resemle the irst eigenmode of n homogenised rectiliner inclusion. Using this motivtion,
the difference opertor

Dp (⋅)p = (⋅)p+e1 + (⋅)p−e1 + (⋅)p+e2 + (⋅)p−e2 − 4 (⋅)p , (5.50)

is introduced. Mking use of (5.3), it is found tht

(Dn1,0

ѱ2 + 1)un1,0 = (1 − r)N−1∑
p=0

up,0 (Dn1,0 + ѱ2) g(n1, 0, p;ѱ), (5.51)

where n = (n1,n2) hs een restricted to {n ∶ 0 ≤ n1 ≤ N − 1, n2 = 0}. Since the lttice Green’s
mtrix is  difference kernel (i.e. depends on the difference ∣n1 − p∣),

(Dn1,0

ѱ2 + 1)un1,0 = (1 − r)N−1∑
p=0

up,0 (Dp,0 + ѱ2) g(n1, 0, p;ѱ), (5.52)
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whence, nd reclling from (5.1) tht (Dn + ѱ2)g(n, p,ѱ) = ўn1,pўn2,0, it is found tht

(Dn + rѱ2)un = 0, for n ∈ {n ∶ 0 ≤ n1 ≤ N − 1, n2 = 0}. (5.53)

It is oserved tht for  sufficiently lrge inclusion, the ield ove nd elow the inclusion e-
hves s un1,1 = un1,−1 ≈ ѥun1,0, with ∣ѥ∣ < 1, in  similr mnner to the ininite inclusion. Hence,
using (5.53) together with the forementioned pproximtion yields

un1+1,0 + un1−1,0 − 2un,0 + [rѱ2 − 2 (1 − ѥ)]un1,0 = 0, (5.54)

for 0 ≤ n1 ≤ N − 1. e irst three terms on the le hnd side of (5.54) correspond to the
second order centrl difference opertor. Hence, introducing the continuous vrile η = n1
(where the reder is reminded tht the length of the lttice links hs een normlised to unity)
eqution (5.54) is written s

[ d2
dη2
+ rѱ2 − 2 (1 − ѥ)]u(η) = 0. (5.55)

e form of eqution (5.55) suggests tht the homogenised system is nlogous to  string on n
elstic foundtion, with the constnt 2 (1 − ѥ) chrcterising the effective stiffness of the foun-
dtion. It is emphsised tht ∣ѥ∣ < 1 nd s such, the stiffness of the elstic foundtion is positive.
Consider the prolem of n ininite inclusion. According to eqution (5.46), the vlue of ѥ

corresponding to the lowest eigenmode is ѥ = 1 − rѱ2/2. For this vlue of ѥ, the second order
derivtive vnishes ccording to eqution (5.55). Moreover, for the displcement t ininity to
e inite, u(η) must e constnt for ll η. In this cse, the solution of the ininite wveguide
prolem (5.42) (i.e. un1,0 = const.) is otined.
For the inite inclusion, it is oserved tht the displcements t the endpoints re smll (see

igure 5.12). Hence, for  simple estimte it suffices to impose u(0) = u(N− 1) = 0 whence the
solution to (5.55) is

u(η) = u0 sin (η√rѱ2 − 2(1 − ѥ)) , with ѥ = 1 + 1
2
[( qπ

N − 1
)2 − rѱ2] , (5.56)

where q is n odd numer nd u0 n ritrry scling constnt. e irst eigenmode corresponds
to ѥ = −0.1396, which is close to the men vlue of ѥ otined from the full numericl compu-
ttion (ѥ = −0.1426). e pproximtion (5.56) for ѥ = −0.1396 is shown in igure 5.12 y
the red dshed line. e sme pproximtion is used to produce the envelope function shown
y the dshed lines in igure 5.12. One cn oserve tht this, reltively simple, homogenised
model predicts the envelope of the ield very well.

5.5 Remarks

In this chpter the prolem of loclised virtions round  inite rectiliner defect emedded
in n ininite squre lttice hs een discussed in detil. e wveguide prolem for n ininite
defect hs lso een riely descried nd  comprtive nlysis of the two clsses of prolems
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hs een presented.
Although the physicl conigurtions nd the methods of nlysis of these prolems re dif-

ferent, one cn oserve remrkle properties of solutions, which cn e used to mke  strong
connection. As illustrted in igure 5.11, the pss nd for frequencies of wveguide modes, lo-
clised round n ininite chin of msses in  squre lttice, contins ll eigenmodes descriing
virtions loclised round  rectiliner defect uilt of  inite numer of msses emedded into
the lttice.
In prticulr, the reder’s ttention is drwn to the nd edges of the dispersion digrm for

the ininite defect: igure 5.11 shows tht the frequencies of the eigenmodes for  inite line defect
re distriuted non-uniformly nd they cluster round the edges of the pss nd identiied
for the ininite wveguide. Furthermore the limit, s one pproches the nd edge frequency,
corresponds to  homogenistion pproximtion of the liner defect s n inclusion emedded
into  homogenised mient system. e illustrtive numericl simultion is produced for n
rry of 20 msses. It is emphsised tht the effect shown is generic nd, with n incresed
numer of msses, the density of frequencies of loclised modes ner the nd edges increses.
Symmetric nd skew-symmetric modes hve een constructed nd nlysed for  rectilin-

er “inclusion” uilt of  inite numer of msses emedded into the lttice. It hs lso een
shown tht the totl force exerted on the mient y the virting discrete inclusion is zero
for ll skew-symmetric modes. Consequently, the displcement ields, ssocited with skew-
symmetric modes, decy t ininity like dipoles, vnishing fster thn the displcements cor-
responding to symmetric modes. is follows from the nlyticl representtions for the so-
lutions nd illustrted in igures 5.5 nd 5.6 where the skew-symmetric modes pper to e
loclised to  much higher degree thn symmetric modes. In the forementioned numericl
simultions, the skew-symmetric nd symmetric modes pper in pirs, nd the frequency of
the skew-symmetric mode is higher thn the frequency of the corresponding symmetric mode.
With reference to igure 5.3 it is lso oserved tht, in contrst to the one- nd three-dimensionl
multi-tomic cses, there is no lower ound on the perturtion of mss required to initite 
loclised mode.
Finlly, the reder’s ttention is drwn to the symmetric nd skew-symmetric eigenmodes for

 chin of 20 msses shown in igure 5.12. e corresponding frequencies re the mximum
nd minimum vlues in the rry of frequencies ssocited with horizontl lines of igure 5.11.
e envelope curves for oth digrms in igure 5.12 represent the irst eigenmode of  ho-
mogenised rectiliner inclusion. e simple homogenised model presented in section 5.4 pro-
vides the envelope curves for the inite inclusion. e form of the homogenised system suggests
tht, mcroscopiclly, the inclusion ehves s  string on n elstic foundtion. As expected,
the skew-symmetric mode of igure 5.12 hs the higher frequency thn the symmetric mode
of igure 5.12.
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Chapter Six

ermal striping of a micro-structured
edge-cracked solid

M
Hving studied sttic inclusions in sclr lttices, the current chpter will e devoted to the nl-
ysis of the response of  tringulr lttice nd  continuum contining  conducting inite edge
crck under sinusoidl therml loding. e mteril prmeters of the continuum re chosen
such tht they correspond to the homogenised lttice. e response of the lttice to the uncou-
pled thermoelstic prolem is exmined nd the notion of n “effective stress intensity factor” is
introduced using the crck opening displcements ehind the crck tip. e “effective stress in-
tensity factor” is then compred with the stress intensity fctor for n edge-crcked continuum
otined y use of  J-integrl derived for formultions of uncoupled thermoelsticity.

6.1 Crack-tip ields and the J-integral

For the purpose of the present chpter, it will e necessry to evlute the stress intensity fctor
for n edge crck in  two-dimensionl elstic ody under the ssumptions of plne strin. e
stress intensity fctor provides  convenient mesure of the stress stte in the vicinity of the
crck tip. Indeed, stress intensity fctors re oen incorported into frcture criteri. One such
frcture criteri is Pris’ lw 124, which hs found extensive use in prolems relted crck
growth under ftigue. e scholrly literture on frcture mechnics, nd prticulrly frcture
in liner elsticity, is very well developed. For  more detiled discussion of frcture mechnics,
the reder is referred to 6, 15, 59, 64, 146 nd references therein.
Consider  semi-ininite crck ѝ = {x ∶ −∞ < x1 < 0, x2 = 0} in R2 s shown in igure 6.1.

e stresses in the vicinity of the crck-tip (x = 0) re singulr. In prticulr, to leding order
the stresses in the vicinity of the crck tip re of the form (see, for exmple, 15, 124)

σij ∼
fij(θ)√

r
, (6.1)
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Figure 6.1: A semi-ininite crck (solid red line) deined y the set ѝ = {x ∶ −∞ < x1 < 0, x2 = 0}
emedded in n elstic ody. e dshed lue lines indicte the contours of integrtion.

where r nd θ re the polr distnce nd ngle respectively. In the present chpter, it will e
sufficient to consider mode I loding. Under mode I loding, the crck opening displcements
re odd with respect to x2 65 such tht u2(x1, x2) = −u2(x1,−x2); the displcements prllel
to the crck re even: u1(x1, x2) = u1(x1,−x2). According to the deinition given y Irwin 64,
the mode I stress intensity fctor is

KI = limr→0

√
2πrσθθ(r, 0). (6.2)

To leding order, the norml stress hed of the crck tip cn then e written s

σθθ∣θ=0 ∼ KI√
2πr

. (6.3)

In generl the leding order stresses cn e expressed s

σrr ∼
KI√
2πr

cos
θ
2
(1 + sin2 θ

2
) , σθθ ∼

KI√
2πr

cos3
θ
2
, σrθ ∼

KI√
2πr

sin
θ
2
cos2

θ
2
, (6.4)

with σαα = ѧ(σrr + σθθ).
6.1.1 e J-integral

eJ-integrl provides  convenientmethod throughwhich the stress intensity fctor for  notch
or crck my e evluted. e J-integrl is  pth independent energetic contour integrl nd
ws developed independently y Cherepnov 26 nd Rice 134 in the lte 1960’s. A detiled
development of the J-integrl my e found, for exmple, in the inititing two ppers 26, 134
or clssicl reference texts such s 15 mong mny others.
Consider  crck, deined y the set ѝ = {x ∶ −∞ < x1 < 0, x2 = 0}, emedded in  linerly

elstic medium nd oriented s illustrted in igure 6.1. e J-intgerl introduced y Rice cn
e written in the form

Ji = ∫
Γ

(Wni − σjknjuk,i)ds, (6.5)

where W is the strin energy density functionl, ni is the ith component of the outwrd unit
norml to some ritrry closed contour Γ, index summtion nottion is used nd suscript
comms followed y indices indicte differentition. Here, Ji represents the ith component of
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the J-integrl, corresponding to crck opening displcements in the xi direction. Appliction of
Green’s theorem yields integrtion over the region enclosed y Γ

Ji = ∫
Ω

∂

∂xj
(Wўij − σjkuk,i)dA. (6.6)

In the sence of ody forces the equilirium eqution is σji,j = 0, whence (σjkuk,i),j = σjkuk,ij.
Moreover, for sufficiently smooth u, σklџkl,i = 1

2(σkluk,li + σlkuk,li) = σklul,ik since σ is symmetric.
us,

Ji = ∫
Ω

(W,jўij − σklџkl,i)dA. (6.7)

For elstic mteril the stress is relted to the energy strin functionl y σkl = ∂W
∂џkl

, hence ∂W
∂xi =

∂W
∂џkl џkl,i nd inlly

Ji = ∫
Ω

(σklџkl,i − σklџkl,i)dA = 0. (6.8)

us, the J-integrl vnishes round ny closed contour which encloses  simply connected re-
gion without ny stress singulritiesƬ. Moreover, it my e shown tht if the crck fces re
trction free, then the J-integrl is pth-independent.
e fct tht the J-integrl vnishes over n pproprite contour llows convenient determi-

ntion of the stress intensity fctor. Consider now the contour Γ = Γ0 ∪ Γ+ ∪ Γ− ∪ Γџ s shown
in igure 6.1. In prticulr, let Γџ = {x ∶ ∣x∣ < џ}, where џ → 0 ut Γ0 e ritrry. Since the
J-integrl vnishes over Γ

∫
Γ0

(Wni − σjknjuk,i)ds +∫
Γ+

(Wni − σjknjuk,i)ds
+∫
Γ−

(Wni − σjknjuk,i)ds +∫
Γџ

(Wni − σjknjuk,i)ds = 0. (6.9)

Evluting the integrl over Γџ it is found tht, in the cse of plne strin nd mode I loding
(setting i = 1),

K2
I =

E
1 − ѧ2 ∫

Γ0

(Wn1 − σjknjuk,1)ds − E
1 − ѧ2 ∫

Γ+∪Γ−

σjknjuk,1ds, (6.10)

where the fct tht the contriution of n1 vnishes over Γ+ ∪ Γ− hs lredy een used. Hence,
the stress intensity fctor for mode I loding cn e determined y evluting the integrl over
the remote contour Γ0 nd n integrl involving the trctions nd derivtive of displcements
over the crck fces. Moreover, if the crck fces re trction free such tht σjinj = 0, then the
inl integrl vnishes nd the J integrl ecomes pth-independent.

ƬHereiner appropriate contour.
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Modifying the J-integral

In the present chpter, the J-integrl method is used to compute the stress intensity fctor for
 qusi-stticƭ thermoelstic prolem. However, cre is required when treting thermoelstic
prolems using the J-integrl. In prticulr, it ws demonstrted yWilson ndYu 147 tht the
J-integrl s deined y Rice 134 does not vnish round n pproprite contour for thermoe-
lstic prolems. e non-trivil nture of the J-integrl my e esily demonstrted y noting
tht, for  two-dimensionl linerly elstic isotropic ody under  qusi-sttic therml lod, the
stress-strin reltionship in plne strin is

σij = ѥџiiўij + 2Ѧџij −
Eћ

1 − 2ѧ
Tўij, (6.11)

where T(x; t) is the temperture ield nd ћ is the coefficient of liner therml expnsion. e
irst nd second Lmé prmeters re denoted y ѥ nd Ѧ respectively nd re relted to Young’s
modulus nd Poisson’s rtio y ѥ = Eѧ

(1+ѧ)(1+2ѧ) nd Ѧ = E
2(1+ѧ) . e irst two terms in the ex-

pression re the stndrd expressions for plne strin liner isotropic homogeneous elsticity
nd the nlysis presented in the previous section leding to eqution (6.8) follows through ex-
ctly. However, the inl term on the right hnd side of (6.11) yields n re integrl leding to
 non-vnishing J-integrl

Ji =
Eћ

1 − 2ѧ ∫
Ω

[T,iџjj −
1
2
(Tџjj),i]dA. (6.12)

us, in contrst to the stndrd elstic cse, the stress intensity fctor cnnot e determined y
 line integrl over n pproprite remote contour. Insted, n dditionl re integrl must e
evluted. In this cse, eqution (6.10) tkes the form

K2
I =

E
1 − ѧ2 ∫

Γ0

(Wn1 − σjknjuk,1)ds + E2ћ(1 − ѧ2)(1 − 2ѧ) ∫
Ω

[T,iџjj −
1
2
(Tџjj),i]dA, (6.13)

where the crck fces re ssumed to e trction free for convenience. By mens of Green’s
theorem eqution (6.13) my e written

K2
I =

E
1 − ѧ2 ∫

Γ0

(Wn1 −
Eћ

2(1 − 2ѧ)Tџjj − σjknjuk,1)ds + E2ћ(1 − ѧ2)(1 − 2ѧ) ∫
Ω

џjj
∂T
∂x1

dA. (6.14)

e irst integrl on the right hnd side of eqution (6.14) is the so-clled J*-integral introduced
y Wilson nd Yu 147.
It should e emphsised tht here, σij is the thermoelstic stress tensor (6.11) nd W is the

corresponding energy density functionl; Ω is the re enclosed y Γ0. e integrl in (6.13)
s well s the lterntive integrls presented y Wilson nd Yu 147 require evlution of the
derivtives of strin, which my e numericlly chllenging, prticulrly in the vicinity of the
crck tip. However, the representtion (6.14) requires only derivtives of the temperture ield,

ƭQusi-sttic in the sense tht no inerti term ppers in the equtions of motion, ut the temperture ield my
depend, prmetriclly, on time
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Figure 6.2: A inite edge-crck (solid red line) deined y the set Ma = {x ∶ 0 ≤ x1 ≤ a, x2 = 0}
emedded in n elstic ody Ω = {x ∶ 0 < x1 < d, ∣x2∣ < h/2}.

which for the present ppliction, re known nlyticlly nd re smooth.

6.2 e uncoupled thermoelastic problem

In the continuum, the therml striping prolem for the rectngle Ω = {x ∶ 0 < x1 < d, ∣x2∣ <
h/2}, contining  inite edge crckMa = {x ∶ 0 ≤ x1 ≤ a, x2 = 0}, with the crck fcesM±a (see
igure 6.2), stisies the following prolem for the elstic displcement ield U(x; t):

LU(x; t) = ћ(3ѥ + 2Ѧ)∇T(x; t), x ∈ Ω ∖Ma, (6.15)

σ(n)[U](x; t) = ћ(3ѥ + 2Ѧ)nT(x; t), x ∈ B0 ∪ Bd ∪M+a ∪M−a , (6.15)

U(x; t) = 0, x ∈ {x ∶ 0 < x1 < d, ∣x2∣ = h/2}, (6.15c)

whereLU = ѦΔU+(ѥ+Ѧ)∇∇⋅U, Br = {x ∶ x1 = r, ∣x2∣ < h/2}, ѥ nd Ѧ re the Lmé coefficients
nd ћ is the coefficient of liner therml expnsion. e differentil opertor of trctions is
denoted y σ(n)[U] = {ѥ(∇ ⋅U)I + Ѧ{∇U + (∇U)T]}n, with n eing the outwrd unit norml
nd I eing the 2 × 2 identity mtrix. Physiclly, system (6.15) corresponds to the uncoupled
thermoelstic prolem on  inite plte of width d nd height h. e plte is clmped on the
horizontl oundries (∣x2∣ = h/2) nd mechniclly free on the lterl oundries (x1 = 0, d).
e solution U(x; t) is then the elstic displcement for  given temperture ield T(x; t). e
prolem is uncoupled in the sense tht, in the elstic prolem, the time t is treted s  prmeter
nd T(x; t) is the solution of n pproprite het conduction prolem (see (6.19)).
Consider  uniform tringulr meshing of R2 with nodes t discrete positions xm = ℓT m,
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wherem ∈ Z2 lels the nodes seprted y distnce ℓ nd

T =
⎛⎝1 1/2
0
√
3/2
⎞⎠ . (6.16)

e reder is referred to section 2.1 for further detils nd clriiction of nottion. It is conve-
nient to introduce the following sets of nodes

Interior nodes: Γ = {m ∶ 0 < x1(m) < d, ∣x2(m)∣ < h
2
} ,

Lterl oundries: ѝ0 = {m ∶ 0 ≤ x1(m) ≤ ℓ

2
, ∣x2(m)∣ ≤ h

2
} ,

ѝd = {m ∶ d − ℓ

2
≤ x1(m) ≤ d, ∣x2(m)∣ ≤ h

2
} ,

Horizontl oundries: ѝh = {m ∶ ℓ/2 < x1(m) < d − ℓ

2
, ∣x2(m)∣ = h

2
} .

In ddition, the set contining the lttice nodes on the crck fces is denoted s ML
a = {m ∶

0 ≤ x1(m) ≤ a, −
√
3ℓ/2 ≤ x2(m) ≤ 0}, nd the set of nodes connected to node m is written

Nm = {q ∶ ∣x(m + q) − x(m)∣ = ℓ} ∖ML
a . e prolem for the in-plne elstic displcement um

of  thermlly striped lttice with  inite edge crck is then (see § 2.2.6)

∑
q∈Nm

B(q) {um+q(t) − um(t)} = ћℓ
2 ∑

q∈N (m)
b(q) {Θm+q(t) +Θm(t)} ,p ∈ Γ, (6.17)

um(t) = 0,m ∈ ѝh, (6.17)

whereΘm(t) is the temperture t nodem t time t. emtricesB(q) nd vectors b(q)descrie
the direction of interction etween lttice nodesm + q ndm. In prticulr

B(q) = ⎛⎝ cos2 Ѯ cosѮ sinѮ
cosѮ sinѮ sin2 Ѯ

⎞⎠ , b(q) = ⎛⎝cosѮsinѮ
⎞⎠ , (6.18)

where Ѯ is the ngle etween the point T q nd the positive x1-xis. Physiclly, prolem (6.17)
corresponds to  tringulr rry of thin conducting rods connected vi pin-joints. In the ln-
guge of erlier sections, the lttice nodes interct vi the centrl interction (see § 2.2.3). e
vrition of temperture from some “stress free” reference conigurtion cretes elstic strins
within the rods.

It is remrked tht in prolem (6.17), the eqution of motion is independent of the stiffness
of the lttice links. is my, initilly, pper to e counter-intuitive. However, it is emphsised
tht this is  qusi-sttic prolem, tht is, there is no inerti term. e vrition in temperture
etween two lttice nodes genertes  strin in the lttice link connecting the two nodes. e
stress generted y the therml strin nd the stress generted y the nodl displcements re
oth proportionl to the stiffness of the link, hence, the sence of ny elstic prmeters in the
equilirium eqution (6.17).
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6.3 e heat conduction problem

Time-hrmonic luctutions in temperture re studied in the present section. erefore, it
is convenient to formulte the het conduction prolem in terms of the complex mplitudes:
θ(x) for the continuum nd ϑm for the lttice. e continuum mplitude stisies the following
prolem on the rectngle Ω = {x ∶ 0 < x1 < d, ∣x2∣ < h/2}

ѤΔθ(x) = iѱθ(x), x ∈ Ω, (6.19)

θ(x) = T0, x ∈ {x ∶ x1 = 0, ∣x2∣ ≤ h/2}, (6.19)

θ(x) = 0, x ∈ {x ∶ x1 = d ∣x2∣ ≤ h/2}, (6.19c)

∇[θ(x)] ⋅ n = 0, x ∈ {x ∶ 0 < x1 < d, ∣x2∣ = h/2}, (6.19d)

where ѱ is the rdin frequency of the therml lod nd Ѥ is the therml diffusivity of Ω. Physi-
clly (6.19) corresponds to the time-hrmonic therml striping of  inite conducting rectngle
y  sinusoidl lod pplied to the le fce x1 = 0. e right fce x1 = d is isotherml, whilst the
upper nd lower fces x2 = ±h/2 re ditic. e crck is perfectly conducting. e oundry
vlue prolem (6.19) hs the following unique solution

θ(x1) = T0
sinh[(1 + i)ќ(d − x1)]

sinh[(1 + i)ќd] , (6.20)

where ќ2 = ѱ/2Ѥ.
Similrly, the time-hrmonic het conduction prolem on  inite lttice cn e written in

terms of the discrete complex mplitude ϑm (see §2.2.2)

ϑm =
1

iѱΞ + ∣N (m)∣ ∑q∈N (m)
ϑm+q, m ∈ Γ, (6.21)

ϑm = T0, m ∈ ѝ0, (6.21)

ϑm = 0, m ∈ ѝd, (6.21c)

ϑm =
1∣N (m)∣ ∑q∈N (m)

ϑm+q, m ∈ ѝh, (6.21d)

here Ξ = Cℓ/(Sѥ) nd N (p) = {q ∶ ∣x(p + q) − x(p)∣ = ℓ} denotes the set of nodes connected
to node p, with q ∈ Z2. Physiclly, prolem (6.21) descries het conduction through n rry
of msses of het cpcity C connected y mssless conducting links of therml conductivity ѥ,
cross-sectionl re S nd length ℓ. Neglecting the mss of the conducting links (equivlently
the het cpcity of the links) results in  constnt temperture grdient long the rods. e
reder is referred to section 2.2.2 for discussion of the fundmentl interction mtrices for
het conduction. For  direct comprison with the continuum solution (6.20) the rtio Ξ should
e chosen such tht the homogenised prolem corresponds to the continuum het conduction
prolem (6.19). In prticulr, choosing Ξ = ℓ2

√
3/Ѥ mens tht the homogenised limit of the

lttice prolem (6.21), corresponds to the continuum prolem (6.19).
e lttice conduction prolem (6.21) is formlly equivlent to  inite difference prolem on

 tringulr mesh nd is therefore menle to the ssocited numericl techniques. e Guss-
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Seidel itertive method is used to solve (6.21). e numericl solution revels tht the het low
is pproximtely one-dimensionl. Indeed, for the frequency rnge in question, the vrition
in the solution with x2 is elow 1% of the striping mplitude. Figure 6.3 shows  comprison
of the temperture solution s  function of distnce from the striped fce for three chrcter-
istic striping frequencies. e three striping frequencies chosen chrcterise the typicl rnge
found in  model test rig of  prototype fst rector 77. e comprison indictes tht the tem-
perture distriution on lttice pproximtes the continuum temperture distriution very well.
erefore, for the current regime, it is pproprite to impose the continuum temperture distri-
ution (6.20) for the uncoupled thermoelstic prolem in oth the continuum nd  sufficiently
reined lttice.
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Figure 6.3: e solutions to the het conduction prolem in the continuum (6.19) (solid red curve)
nd the het conduction prolem in the lttice (6.21) (dshed lue curve) s  function
of x1 (depth through the plte). e lttice links re of length ℓ = 1 × 10−4m.

Prmeter
Symol Description Numericl Vlue

S/ℓ Rtio of the length of the lttice links to cross-sectionl re (m) 10−4
T0 Amplitude of therml striping lod (○C) 10
Ѥ erml diffusivity (m2/s) 2.29 × 10−5
h Block height (m) 1.16

√
3 × 10−2

d Block width (m) 10−2
E Young’s Modulus (GP) 163.5
ѧ Poisson’s rtio 1/4
ћ Liner therml expnsion coefficient (1/○C) 2 × 10−5

Table 6.1: e prmetric vlues used for the purposes of numericl computtions.
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6.4 Numerical simulations: the displacement ields and the stress
intensity factor

Both the continuum (6.15) nd the lttice (6.17) prolems re solved using the inite element
method for  plte of height 1.16

√
3 × 10−2m nd width 1 × 10−2m. e commercil pckge

Comsol Multiphysics® is used to simulte the therml striping prolem for three chrcteristic
striping frequencies nd different crck lengths. e prolem is solved using  trnsient solver
with the continuum temperture ield eing imposed s n externl time-hrmonic lod with
complex mplitude s given in (6.20). For the continuum, one hlf of the plte is modelled with
the mode I symmetry condition pplied to the uncrcked oundry hed of the crck nd the
zero displcement condition pplied to the horizontl oundry x2 = h/2. e tringulr lttice
possesses no verticl symmetry nd therefore the entire plte must e modelled. Two lttices of
vrying reinements re considered: ()  sparse lttice with links of length ℓ = 2 × 10−4m nd
cross-sectionl re of S = 2 × 10−8m2; nd ()  ine lttice with links of length ℓ = 1 × 10−4m
nd cross-sectionl re of S = 1 × 10−8m2. e mteril nd geometric prmeters re chosen
such tht the homogenised limit of oth lttices correspond to the continuum prmeters, s
discussed in section 3.2. e numericl vlues re summrised in tle 6.1 nd re chosen to
correspond to typicl vlues for steel.

(a)e sprse lttice (b)e ine lttice

Figure 6.4: e xil stresses in the sprse nd ine lttices.

Figure 6.4 shows the solute vlues of the xil stresses in the two lttices. In contrst to the
continuum, ll the stresses in the lttice re inite. However, igure 6.4 does show  concentrtion
of stress in the vicinity of the crck tip. In order to deine n “effective stress intensity factor” for
the lttice, it is ssumed tht for  sufficiently reined lttice the verticl displcements ehind
the crck tip exhiit similr symptotic ehviour to the continuum. Indeed, for mode I loding
of  semi-ininite crck in  tringulr lttice excited y  remote lod, it hs een shown (see, for
exmple, 115 nd 139) tht in the long wvelength limit, the u2 displcement ehves in the
sme wy s the continuum, tht is, u2(x1) ∼ a0∣a − x1∣1/2. For the present work, it is ssumed
tht for  sufficiently reined lttice

u2(m) ∼ KI(1 − k2)Ѧ
√

a − x1(m)
2π

+b1 [a − x1(m)]+b2 [a − x1(m)]3/2+b3 [a − x1(m)]2 , (6.22)
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form ∈ {p ∶ x1(p) < a, x2(p) = 0}; here k = 3−4ѧ nd Ѧ is the sher modulus corresponding to
the homogenised continuum. It should e understood tht the coefficients KI nd bi depend on
t. In direct nlogy to the displcement extrpoltion method for the continuum (see 63, 124
mong others), the stress intensity fctor t  prticulr time cn e determined y itting the
expnsion (6.22) to the displcements ehind the crck tip. Figure 6.5 shows tht the expn-
sion (6.22) is sufficient to ccurtely cpture the ehviour of the u2 displcements ehind the
crck tip nd tht the displcements exhiit the sme qulittive ehviour s in the continuum.
Of primry interest is the pek-to-pek mplitude of the stress intensity fctor

ΔKI = max
t0≤t<t0+2π/ѱ

KI(t) − min
t0≤t<t0+2π/ѱ

KI(t). (6.23)

Dt is tken from the region x ∈ {x ∶ a − 1 × 10−3 ≤ x1 ≤ a − ℓ, x2 = 0}, tht is, long the upper
fce of the crck from the node djcent to the crck tip node for  distnce of 1×10−3m, ehind
the crck tip (see igure 6.2). Here, a ≥ 0.01 is the crck length nd 0 < ℓ < a is the length of 
lttice link.
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Figure 6.5: e u2 displcements for the two lttices nd the continuum ginst distnce from the
crck tip, together with the itted expnsion curves (see eqution (6.22)) for  represen-
ttive crck depth nd time.

For the continuum, it is convenient to use  J-integrl type pproch to compute the stress
intensity fctor for the edge-crcked plte. In prticulr, eqution (6.14) is used to determine
the stress intensity fctor. e line nd re integrls in (6.14) re computed from the inite
element results using fourth order qudrture over three contours in the vicinity of the crck tip.
e positions of the contours re vried to ensure pth independence.
Figure 6.6 shows the mximum ΔKI vlues for the thermlly striped continuum nd the two

lttices t three striping frequencies: 0.0625Hz, 1Hz nd 6.25Hz. e continuum curves show
similr ehviour to tht oserved in 72, 77, with the locl mxim of ΔKI incresing nd
shiing further to the right for lower frequencies. For sufficiently long crcks, the lttice curves
exhiit the sme qulittive ehviour s the continuum. Compred with the continuum, the
lttices hve  reduced stress intensity fctor, except for shorter crcks t higher frequencies. It
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Figure 6.6: emximum ΔKI for the continuum nd the two lttices ginst crck depth for three
chrcteristic frequencies.

is lso pprent tht the more “reined” the lttice, the closer the stress intensity fctor is to the
continuum vlue. For shorter edge crcks (smller thn 2× 10−3m) the nodl displcements no
longer exhiit the squre root symptotic ehviour (see eqution (6.22)).

6.5 Remarks

is chpter hs exmined the effect of  discrete microstructure on qusi-sttic crck growth
in  thermlly striped plte for in-plne elsticity. e het conduction prolem on  tringulr
lttice ws formulted nd solved numericlly. It ws demonstrted tht the therml ield in
the lttice cn e pproximted y the nlyticl solution to the het conduction prolem on
the corresponding continuous plte. e therml striping prolem, for oth the continuum
nd tringulr lttice, ws solved using the inite element method. It ws shown tht, lthough
there is no singulrity in the lttice, there is  stress concentrtion in the neighourhood of the
crck tip. Moreover, the crck fce displcements were shown to exhiit the sme chrcteristic
squre root ehviour, consistent with erlier works (see 115, 139 mong others). e notion
of n “effective stress intensity factor” ws introduced vi the crck fce displcements in direct
nlogy to the continuum displcement extrpoltion method 63,124 nd compred with the
stress intensity fctor for  corresponding continuum otined vi  modiied J-integrl. e
“effective stress intensity factor”, nd the stress intensity fctor itself, were shown to exhiit the
sme qulittive properties. In prticulr, the locl mxim of ΔKI increses nd shis further
to the right for lower frequencies. In physicl terms, this mens tht in the qusi-sttic regime
crcks will tend to grow further for lower striping frequencies. For  sufficiently long crck nd
low frequency, the “effective stress intensity factor”for the lttice is lower thn the corresponding
continuum. Moreover, the more reined lttice, the closer the “effective stress intensity factor” is
to the stress intensity fctor for the corresponding continuum.
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Chapter Seven

Amicrostructured invisibility cloak

M
e present chpter is devoted to the development of  squre invisiility clok for ields gov-
erned y the Helmholtz eqution. e Helmholtz eqution rises in  wide vriety of ields
including electromgnetism, elsticity, nd coustics. erefore, solutions to the cloking pro-
lem for the Helmholtz eqution hve  wide rnge of potentil pplictions. However, for dei-
niteness nd ese of exposition the lnguge of elsticity will e used throughout this chpter.
e current chpter is structured s follows. A description of the regulrised clok in the con-

tinuum model of out-of-plne sher elstic wves follows the introduction. is lso includes
the discussion of the essentil nd nturl interfce conditions on the oundries of the clok.
An explicit nlyticl ry lgorithm is developed, nd the phenomenon of negtive refrction
on the interfce oundries is explined. Numericl scttering mesures re included, with de-
tiled simultions. e nlysis lso incorportes Neumnn nd Dirichlet oundry conditions
on the inner contour of the clok. As  demonstrtion of the effectiveness of the regulrised
clok,  Young’s doule slit experiment is presented. A recent pper y Greenlef et l. 54 con-
siders n ppliction of cloking vi trnsformtion optics in quntummechnics. In prticulr,
Greenlef et l. present  clss of invisile reservoirs nd mpliiers for wves nd prticles. e
issues discussed in the present chpter, which re rised y this linkge etween cloking nd
quntum mechnics, re in some wys similr to those discussed y Greenelf et l. It is lso
shown tht one of the undenile dvntges of such n pproximte clok is the strightfor-
wrd connection with the discrete lttice structures. ese connections re nlysed in detil,
nd ccompnied y  rnge of physicl simultions.

7.1 e regularised continuum cloak

e clssicl pproch to cloking vi trnsformtion geometry involves deforming  region
such tht  point is mpped to  inite region corresponding to the inner oundry of the clok.
Indeed, the squre push out trnsformtion proposed y Rhm et l. 132 mps  point to 
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squre. e mpping is non-singulr everywhere except t the inner oundry of the clok. In
the present pper,  regulrised version of the squre push out trnsformtion is used. In prtic-
ulr, the trpezoids ѯ(i) re mpped to the trpezoids Ω(i)

−
s illustrted in igure 7.1 with conti-

nuity, ut not smoothness, imposed on the interfces etween the four trpezoids. empping
is non-singulr on the closure of the clok, nd hence, ll corresponding mteril properties re
inite. It will e shown tht this regulrised trnsformtion yields n effective rodnd clok,
with inite mteril properties which my esily e pproximted y  regulr lttice.

7.1.1 e transformation

..

ѯ0

.

ѯ(1)

.

ѯ(2)

.

ѯ(3)

.

ѯ(4)

.
Ω+

.

Γ(1)

.Γ(2) .
Γ(3)

.

Γ(4)

.

Ω0

.

Ω(1)
−

.

Ω(2)
−

.

Ω(3)
−

.

Ω(4)
−

.
Γ(1)

.

Γ(2)

.

Γ(3)

.
Γ(4)

.

ѝ(1)

.

ѝ(2)

.

ѝ(3)

.
ѝ(4)

.

Ω+

.

F

Figure 7.1: e trnsformtionF mps the undeformed region ѯ = ѯ(1) ∪ ѯ(2) ∪ ѯ(3) ∪ ѯ(4) to the
deformed conigurtion Ω− = Ω(1)

−
∪ Ω(2)

−
∪ Ω(3)

−
∪ Ω(4)

−
. e oundry etween Ω+

nd Ω(i)
−

is denoted Γ(i), while the interfce etween Ω0 nd Ω(i)
−

is denoted ѝ(i). e
corresponding oundries in the undeformed conigurtion re denoted y Γ(i) nd σ(i)
respectively.

Consider  smll squre ѯ0 = {X ∶ ∣X1∣ < џ, ∣X2∣ < џ} ⊂ R2, which vi the trnsformtion F
is mpped to the squre Ω0 = {x ∶ ∣x1∣ < a, ∣x2∣ < a} ⊂ R2. e exterior of the clok remins
unchnged y the mp, tht is, X = F(X) for X ∈ Ω̄+, where the r denotes the closure of the
domin. Physiclly w is the thickness of the clok, a is the semi-width of the inclusion Ω0, nd
џ is the initil semi-width of the squre ѯ0 where 0 < џ/a ≪ 1. In this cse, it is convenient
to decompose the clok into four su-domins ѯ = ѯ(1) ∪ ѯ(2) ∪ ѯ(3) ∪ ѯ(4), s illustrted in
igure 7.1. Formlly, F deines  pointwise mp from X ∈ ѯ = ѯ(1) ∪ ѯ(2) ∪ ѯ(3) ∪ ѯ(4) to
x = F(X) ∈ Ω− = Ω(1)− ∪ Ω(2)− ∪ Ω(3)− ∪ Ω(4)− . e mpping is continuous nd non-liner on ѯ,
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nd deined in  piecewise fshion such thtF =F(i)(X) for X ∈ ѯ(i), where
F
(1)(X) = ⎡⎢⎢⎢⎢⎣

ћ1X1 + ћ2
ћ1X2 + ћ2X2/X1

⎤⎥⎥⎥⎥⎦ , F
(2)(X) = ⎡⎢⎢⎢⎢⎣

ћ1X1 + ћ2X1/X2

ћ1X2 + ћ2

⎤⎥⎥⎥⎥⎦
F
(3)(X) = ⎡⎢⎢⎢⎢⎣

ћ1X1 − ћ2
ћ1X2 − ћ2X2/X1

⎤⎥⎥⎥⎥⎦ , F
(4)(X) = ⎡⎢⎢⎢⎢⎣

ћ1X1 − ћ2X1/X2

ћ1X2 − ћ2

⎤⎥⎥⎥⎥⎦ ,
with ћ1 = w/(a + w − џ) nd ћ2 = (a + w)(a − џ)/(a + w − џ). e Jcoin mtrices nd
determinnts re then

J(1) =

⎛⎜⎜⎜⎜⎝
ћ1 0

x2ћ1ћ2
x1(ћ2 − x1)

x1ћ1
x1 − ћ2

⎞⎟⎟⎟⎟⎠
, J(2) =

⎛⎜⎜⎜⎜⎝

x2ћ1
x2 − ћ2

x1ћ1ћ2
x2(ћ2 − x2)

0 ћ1

⎞⎟⎟⎟⎟⎠
,

J(3) =

⎛⎜⎜⎜⎜⎝
ћ1 0

x2ћ1ћ2
x1(ћ2 + x1)

x1ћ1
x1 + ћ2

⎞⎟⎟⎟⎟⎠
, J(4) =

⎛⎜⎜⎜⎜⎝

x2ћ1
x2 + ћ2

x1ћ1ћ2
x2(ћ2 + x2)

0 ћ1

⎞⎟⎟⎟⎟⎠
,

J(1) = x1ћ21
x1 − ћ2

, J(2) = x2ћ21
x2 − ћ2

, J(3) = x1ћ21
x1 + ћ2

, J(4) = x2ћ21
x2 + ћ2

.

It is emphsised tht J(i)(xi) = det J(i) = tr J(i) is strictly positive for x ∈ Ω̄(i)
−

nd џ ≠ 0, tht
is, the mp is continuous on oth the interior nd oundry of the clok. e metric of the
deformed spce Ω(i)

−
is g(i) = (J(i)J(i)T)−1.

e present section will e devoted to the propgtion of time hrmonic out-of-plne sher
wves of rdin frequency ѱ nd displcement mplitude u(x). Lemm 2.1 in 116 llows the
Helmholtz eqution for n isotropic homogeneous medium Ѧ∇X ⋅ (∇X)u(X)+ϱѱ2u(X) = 0 for
X ∈ ѯ to e written in deformed co-ordintes s

[∇ ⋅ (C(i)(x)∇) + ρ(i)(x)ѱ2]u(x) = 0, x ∈ Ω(i)
−
, (7.1)

where Ѧ is the constnt mient stiffness, ϱ is the constnt mient density, the trnsformed
stiffness tensor my e expressed s

C(i)(x) = Ѧ
J(i)(x) J(i)(x)[J(i)(x)]T, (7.2)

nd ρ(i)(x) = ϱ/J(i)(x) is the sclr trnsformed density. e differentil opertor∇X is written
in the undeformed spce nd should e distinguished from∇ which is written in the deformed
coordintes.
Since the mpping is continuous on Ω̄−, the mteril properties of the clok re non-singulr.

It is ovious from the representtion (7.2) tht the trnsformed stiffness tensor is symmetric nd
positive deinite. Physiclly, the trnsformedmteril properties correspond to  heterogeneous
nisotropic memrne.
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7.1.2 Interface conditions

Without loss of generlity, it is convenient to restrict the following nlysis to  single side of
the clok. With reference to igure 7.1, consider  su-domin Ω(i)

−
⊂ R2 in the sence of the

inclusion nd remining three sides of the clok. In the sence of sources, the mplitude of
the out-of-plne sher deformtion of n outgoing time-hrmonic wve of ngulr frequency ѱ
stisies the following eqution

[∇ ⋅ (A(x)∇) + ρ(x)ѱ2]u(x) = 0, (7.3)

together with the Sommerfeld rdition condition t ininity. Here, A(x) nd ρ(x) re deined
s

A(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(i)(x) for x ∈ Ω(i)

−

ѦI for x ∈ Ω+
, ρ(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ(i)(x) for x ∈ Ω(i)
−

ϱ for x ∈ Ω+
. (7.4)

Let v(x) e  continuous piecewise smooth solution of the Helmholtz eqution in R2 stisfy-
ing the Sommerfeld rdition condition t ininity. Integrting the differenceu(x)[∇⋅(A(x)∇)+
ρ(x)ѱ2]v(x)−v(x)[∇⋅(A(x)∇)+ρ(x)ѱ2]u(x) over  discDr of rdius r contining Ω(i)− yields

0 = ∫
Dr

(u∇ ⋅A∇v − v∇ ⋅A∇u)dx,
= ∫
∂Ω(1)
−

(u−n ⋅A∇v− − v−n ⋅A∇u−)dx − ∫
∂Ω(1)
−

(u+n ⋅A∇v+ − v+n ⋅A∇u+)dx
+ Ѧ∫

∂Dr

(un ⋅ ∇v + vn ⋅ ∇u) dx,
where the fct tht ∇u ⋅ A∇v = ∇v ⋅ A∇u (since A is symmetric) hs lredy een used. Since
u(x) nd v(x) represent outgoing solutions, the integrl over ∂Dr vnishes s r→∞. us, the
essentil interfce condition is the continuity of the ield

[u] = 0 on ∂Ω(i)
−
, (7.5)

nd the nturl interfce condition is continuity of trctions, tht is,

[n ⋅A(x)∇u] = 0 on ∂Ω(i)
−
. (7.6)

7.1.3 e cloaking problem

Consider the propgtion of  time hrmonic out-of-plne deformtion, generted y  point
source, in  homogeneous ininite elstic solid contining n inclusion surrounded y  clok.
e displcement mplitude then stisies

[∇ ⋅ (A(x)∇) + ρ(x)ѱ2]u(x) = −ў(x − x0), x ∈ R2 ∖ Ω̄0, x0 ∈ Ω+ (7.7)

[Ѧ0∇ ⋅ (∇) + ϱ0ѱ2]u(x) = 0, x ∈ Ω0, (7.8)
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with the continuity condition (7.5) for u(x) nd the condition (7.6) for trction on ll inter-
fce oundries. Additionlly, the Sommerfeld rdition condition is imposed t ininity. e
stiffness tensor A(x) nd density ρ(x) re

A(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(i)(x) for x ∈ Ω(i)

−

ѦI for x ∈ Ω+
, ρ(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ(i)(x) for x ∈ Ω(i)
−

ϱ for x ∈ Ω+
, (7.9)

nd Ѧ0 nd ϱ0 re the stiffness nd density of the inclusion respectively.

7.1.4 e ray equations

Whilst, in principle, it is possile to ind the displcement ield y solving the cloking pro-
lem it is useful to consider the leding order ehviour of rys through the clok. Consider 
WKB-type expnsion (seeWKB Expansions in the ppendices on pge 126) of the displcement
mplitude in terms of ngulr frequency ѱ, nd the mplitude nd phse functions Un(x) nd
ϕ(x) respectively

u(x) ∼ eiѱϕ(x) ∞∑
n=0

inUn(x)
ѱn , s ѱ→∞. (7.10)

e leding order eqution for the phse on the interior of the clok hs the form

H(x, s) = 0, (7.11)

where H(x, s) = Ѧϱ−1s ⋅ g−1s − 1, s = ∇ϕ is the slowness vector, Ѧ nd ϱ re the stiffness nd
the density of the mient medium respectively, nd g is the metric of the trnsformtion. In
terms of wve propgtion, the conserved quntity H(x, s) represents the irst order slowness
contours(see, for instnce, 110). e chrcteristics of the quntity H(x, s) then stisfy the
following system

dH
dt
= 0, dx

dt
=
∂H
∂s

,
ds
dt
= −

∂H
∂x

, (7.12)

where t is the ry (time-like) prmeter. At this point, it is convenient to introduce index summ-
tion nottion where summtion from 1 to 2 over repeted indices is ssumed. e system (7.12)
my then e expressed s follows

dsi
dt
= −2ϱ−1Ѧ sm sn Jnl

∂Jml
∂xi

,
dxi
dt
= 2ϱ−1Ѧ Jil Jjl sj, (7.13)

where Jij = (J)ij re the components of the Jcoin mtrix nd should e distinguished from
the J, the Jcoin determinnt. e superscript lels hve een omitted for revity, ut Jij nd
J should e understood s J(k)ij nd J(k) for k = 1, . . . 4, corresponding to the four sides of the
clok. Written in terms of wve normls n nd the phse velocity v, eqution (7.11) tkes the
form

Ѧϱ−1n ⋅ g−1n − v2 = 0. (7.14)
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e representtion (7.14) is otined y ssuming  plne wve solution to the Helmholtz equ-
tion (see, for exmple 110)Ƭ.
From (7.11) nd (7.14) the slowness vector cn e expressed in terms of the originl mteril

properties (through ϱ nd Ѧ) nd the mp (through J) s

s = n
v
=

n∣JTn∣
√

ϱ

Ѧ
, (7.15)

Further, in the undeformed conigurtion, the equivlent conserved quntities re Ѧϱ−1S ⋅S−1 =
0 nd Ѧϱ−1 = V2. Together with (7.11) nd (7.14), these two equtions imply tht

s = J−TS = J−TN
V
= J−TN

√
ϱ

Ѧ
, (7.16)

where J−T = (JT)−1 denotes the inverse nd trnspose of J.
Now, consider  ry (i.e.  line) in the mient medium, in direction N pssing through X0

nd prmeterised y t. e corresponding curve in the clok is x(t) = F(X0 + tN), whence
dxi
dt
= JijNj,

which using (7.16) cn e rewritten in the form

dxi
dt
= Jil Jjl sj

√
Ѧ
ϱ
. (7.17)

Tking the derivtive of (7.16) for constnt N yields

dsi
dt
= sk sn Jkj Jlm Jnm

∂J−1ji
∂xl

√
Ѧ
ϱ
.

Here is it emphsised tht J−1ji = (J−1)ij s opposed to 1/Jij. Using the comptiility condition,
tht is, the deformtion grdient should e irrottionl under inite deformtion џjkℓ∂J−1ik/∂xj =
0ℓi, the prtil derivtive ove cn e written s ∂J−1jl/∂xi, whence

dsi
dt
= −sm sn Jnℓ

∂Jml
∂xi

√
Ѧ
ϱ
, (7.18)

where џjkℓ is the permuttion tensor nd the equlity Jlm∂J−1jl /∂xi = −J−1jl ∂Jlm/∂xi hs een used.
Consider the chrcteristic equtions for the wves in the clok (7.13), together with the equ-

tions of the trnsformed rys (7.17) nd (7.18). e system (7.17) nd (7.18) re the equtions
of chrcteristics in the clok, up to n ritrry scling constnt 2

√
Ѧ/ϱ. us, to leding order,

rys (or stright lines) in the mient medium mp directly to rys in the clok.

Ƭ Alterntively, seeking  solution of the full wve eqution in the form of the leding term in  WKB expnsion

u(x, t) ∼ eiѱϕ(x,t)
∞

∑
n=0

inUn(x, t)
ѱn , s ѱ →∞,

yields the sme result with ∂ϕ/∂t = v.
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(a) (b)

Figure 7.2: Plots of the ry pths through the clok for  cylindricl source. e grey lines indicte
the deformtion of the spce inside the clok. (Animted versions of these igures my
e found in the supplementry mteril 30.)

Figure 7.2 shows rys emnting from  point source, pssing through the clok nd emerg-
ing from the clok long their originl trjectory. In this sense, the oject is “invisile” to n
oserver outside the cloking region. Figure 7.2 clerly illustrtes how wve propgtion in the
clok is relted to the mp. Animted versions of igure 7.2 cn e found in the supplementry
mteril 30.
An interesting lterntive perspective is pprent if igure 7.2 is viewed, not s rys diverging

from  source, ut s rys converging to  focl point. It is oserved tht the rys converge to
the focl point round the inclusion. One cn envisge severl pplictions where such n effect
cn e useful. For exmple, imge distortion from the mirror mounts in telescopes could e
reduced y cloking themounts. In ddition, pprtus ndmounting structures onmicrowve
receivers could e cloked to improve the qulity of the signl. One could lso conceive of
cloking mounting points nd the surrounding structures in lser cutting mchines to protect
them from ccidentl dmge.

Negative refraction

It is evident from igure 7.2 tht, whilst the rys re continuous, they re not necessrily smooth.
In prticulr, t the interfces of the clok, refrction occurs chrcterised y the discontinuity
of the irst order sptil derivtives of the rys. Of prticulr interest re the regions on the outer
oundry of the clok where negtive refrction occurs.
Consider igure 7.2. Negtive refrction occurs on the right hnd interfce etween the clok

nd the mient medium. A ry exiting the right hnd side of the clok with grdientM t point
X(0) = x(0) cn e descried y the equtionX(s)2 −X

(0)
2 =M(X(s)1 −X(0)1 ) in the mientmedium,

whereX(s) is the position of the source. e ehviour of the ry t the interfce is chrcterised
y the position of the source reltive to the interfce, its initil grdient nd the properties of the
clok. erefore, without loss of generlity, the following nlysis is restricted to the right hnd
side of the clok. On the interior of the right hnd side of the clok, the ry exiting the clok t
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x(0) is chrcterised y

x2 = x1
⎛⎝M + ћ1(x(0)2 −Mx(0)1 )

x1 − ћ2
⎞⎠ .

e grdient of the ry s it pproches the exterior oundry from the interior of the clok is
then

m∗ = lim
x1→(a+w)−

dx2
dx1
=
M(a +w − џ)(a +w) − x(0)2 (a + џ)

w(a +w) .

us, the grdient is discontinuous t the exterior interfce. For negtive refrction it is required
thtm∗M < 0. is inequlity is stisied when either

0 <M < x(0)2
a + џ(a +w)(a +w − џ) , or x(0)2

a + џ(a +w)(a +w − џ) <M < 0. (7.19)

For  source locted on the line X2 = 0 s in igure 7.2, the ove inequlities reduce to the
single inequlity

X(s)1 < −
(a +w)(w − 2џ)

a + џ
,

which is stisied for ll sources outside the clok X(s)1 < −(a + w), provided w < a + 3џ. us,
for  sufficiently thin clok nd  cylindricl source plced long X2 = 0 t ny distnce from the
clok, negtive refrction is expected on the opposite side of clok.
For  source locted long the line X1 = 0, the inequlities (7.19) ecome

0 < X(s)2 <
(a +w)(w − 2џ)(a +w − џ) , or −

(a +w)(w − 2џ)(a +w − џ) < X(s)2 < 0, (7.20)

where the fct tht ∣x(0)2 ∣ < (a + w) hs een used. Since a,w > 0, nd 0 < џ/a ≪ 1, the
ove inequlities re never stisied, hence, the lck of negtive refrction on the horizontl
interfces in igure 7.2. Similr rguments my e used in other regions to decide whether
negtive refrction occurs or not. It is oserved tht negtive refrction lwys occurs t the
interfces etween the different regions of the clok, where themteril properties (equivlently
the trnsformtion) re not smooth.

7.1.5 Scattering measure

It is desirle to hve some quntiilemesure of the qulity of the clok with respect to shield-
ing, rther thn relying on visul oservtions. However, it is not ovious wht “qulity” mens
with respect to  clok, given tht there re essentilly three ields involved, i.e. the idel ield
in the sence of oth clok nd inclusion, the uncloked ield with n inclusion present ut
without  clok, nd the cloked ield with oth the inclusion nd clok. Previous experimentl
works 141 hve used n L2 norm computed directly from themesured ields to plce  numer-
icl vlue on the qulity of the clok. It is in this spirit tht the following “scattering measure” is
formlly introduced s  tool to quntify the cloking effect

E(u1,u2,R) = ⎛⎜⎝∫
R

∣u1(x) − u2(x)∣2 dx⎞⎟⎠
⎛⎜⎝∫
R

∣u2(x)∣2 dx⎞⎟⎠
−1

, (7.21)
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whereR ⊂ R2 is some region outside the clok, nd u1(x) nd u2(x) re ny two ields. In the
present chpter, the quntities E(uu,u0,R) nd E(uc,u0,R) re given for  series of illustrtive
simultions. e ield u0(x) = iH(1)0 (ѱ√ϱ/Ѧ∣x − x0∣)/4 is the Green’s function for the unper-
tured prolem nd represents the “idel” ield, uu(x) nd uc(x) re the uncloked nd cloked
ields respectively. us, perfect cloking corresponds to  vnishing E . Along with the rw
scttering mesures n dditionl quntity, Q = ∣E(uu,u0,R) − E(uc,u0,R)∣/E(uu,u0,R), is
lso presented. e prmeter Q chrcterises the reltive reduction of the scttering mesure
y the introduction of  clok. It should e emphsised tht this is only one of  numer of
possile mesures of qulity.

.. R1.
x0

(a) Strict scttering region

.. R2.
x0

(b) Forwrd Scttering

..

R3

.
x0

(c) Corner Scttering

Figure 7.3: e three regions used for computtion of the scttering mesure.

Choice ofR. For the purpose of illustrtion three different regions of integrtion re consid-
ered, s shown in igure 7.3. e three regions used were chosen s follows: ()R1 is the most
strict region used tking into ccount signiicnt ner ield effects nd  wide rnge of scttering
ngles. However, it is unlikely tht this region would e mesurle in prctice. ()e forwrd
scttering region (R2) is relevnt if the scttered ield ismesurle over  wide rnge of forwrd
scttering ngles. (c) e corner scttering region (R3) is employed for sources locted long
the digonl of the squre inclusion. It is emphsised tht ∥R1∥ ≠ ∥R2∥ = ∥R3∥, nd the leding
edges of the regionsR2 ndR3 re locted t the sme distnce from the source.

In the following section the scttering mesures will e presented for  series of illustrtive
simultions.

7.1.6 Illustrative simulations

A series of illustrtive simultions were creted using the inite element sowre COMSOLMul-
tiphysics®. Perfectly mtched lyers were used in the vicinity of the oundry of the comput-
tionl domin in order to simulte n ininite domin. For the purposes of these computtions,
the following non-dimensionl prmeter vluesƭ were chosen: a = 0.5, w = 0.5, Ѧ = ϱ = 1,
Ѧ0 = 0.1, ϱ0 = 0, џ = 1 × 10

−6. Figures 7.4 nd 7.5 show the displcement mplitude ield u(x)
for  cylindricl source oscillting t ѱ = 5 nd ѱ = 10 respectively. e igures clerly illustrte

ƭroughout this chpter, ll numericl prmeters re normlised such Ѧ = ϱ = 1 unless otherwise stted.
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Source Scttering Mesure E
Position Frequency Uncloked Cloked Q

Scttering regionR1[−3, 0]T 5 0.1529 4.351 × 10−4 0.9972[−3, 0]T 10 0.1455 4.514 × 10−4 0.9969[−3, 3]T/√2 5 0.2002 3.941 × 10−4 0.9980[−3, 3]T/√2 10 0.3286 4.068 × 10−4 0.9988

Scttering regionR2[−3, 0]T 5 0.3224 3.664 × 10−4 0.9989[−3, 0]T 10 0.3093 1.167 × 10−3 0.9962

Scttering regionR3[−3, 3]T/√2 5 0.2988 3.654 × 10−4 0.9988[−3, 3]T/√2 10 0.2988 7.803 × 10−4 0.9974

Table 7.1: e scttering mesures corresponding to the simultions shown in igures 7.4 nd 7.5.

(a) Uncloked, x0 = [−3, 0]T (b) Cloked, x0 = [−3, 0]T

(c) Uncloked, x0 = [−3, 3]T/√2 (d) Cloked, x0 = [−3, 3]T/√2

Figure 7.4: Plots of the ield u for the uncloked nd cloked squre inclusion, where the ngulr
frequency of excittion is ѱ = 5. e position x0 of the source is indicted under the
relevnt plot.
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(a) Uncloked, x0 = [−3, 0]T (b) Cloked, x0 = [−3, 0]T

(c) Uncloked, x0 = [−3, 3]T/√2 (d) Cloked, x0 = [−3, 3]T/√2
Figure 7.5: Plots of the ield u for the uncloked nd cloked squre inclusion where the ngulr

frequency of excittion is ѱ = 10. e position x0 of the source is indicted under the
relevnt plot nd the inclusion is locted t the centre of the imge in ll cses. e
colour scle is s indicted in igure 7.4.

(a) (b)

Figure 7.6: () e scttering mesure plotted ginst ngulr frequency. () e log of the sct-
tering mesure plotted ginst ngulr frequency. e solid line corresponds to the
continuum in the sence of oth n inclusion nd clok. e dshed line represents
the cloked inclusion nd the dsh-dot line corresponds to the uncloked inclusion. e
regionR1 (see igure 7.3 nd the ssocited text) ws used to compute the errormesure.
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Source Scttering Mesure E
Boundry Condition Frequency Uncloked Cloked Q

Scttering regionR1
Neumnn 5 0.1624 4.351 × 10−4 0.9973
Neumnn 10 0.1558 4.540 × 10−4 0.9971
Dirichlet 5 0.2931 1.038 × 10−2 0.9646
Dirichlet 10 0.2553 7.875 × 10−3 0.9692

Scttering regionR2
Neumnn 5 0.3436 3.664 × 10−4 0.9989
Neumnn 10 0.3258 1.163 × 10−3 0.9964
Dirichlet 5 0.4864 1.566 × 10−2 0.9678
Dirichlet 10 0.5030 1.673 × 10−2 0.9667

Table 7.2: e scttering mesures for  void with Neumnn nd Dirichlet oundry conditions.
Here the source is locted t [−3, 0]T.

the efficcy of the squre clok, even t reltively high frequencies. Tle 7.1 shows the corre-
sponding scttering mesures s introduced in section 7.1.5. It is cler tht this squre “push
out” clok is highly effective. Indeed, for the illustrtive simultions presented here, the clok
reduces the scttering mesure y not less thn 99.62% compred with the uncloked inclusion.
Figure 7.6 shows the scttering mesure plotted ginst non-dimensionl ngulr frequency

ѱ (with Ѧ = ϱ = 1). e solid curve in igure 7.6 corresponds to the continuum, in the sence of
oth clok nd inclusion. is curve gives n indiction of the numericl error in the simultion
induced y, for exmple, the use of perfectly mtched lyers nd the numericl discretistion.
e dshed curve corresponds to the cloked inclusion, whilst the dsh-dot curve corresponds
to the uncloked inclusion. It is oserved tht the numericl mesure of the cloked inclusion
remins close to tht of the intct continuum for  lrge rnge of frequencies. Moving to di-
mensionl quntities, suppose the simultion corresponded to  prticulr polriztion of n
electric wve trvelling through glss t  speed of pproximtely 2 × 108 m/s. e line ѱ = 10
on igure 7.6 then corresponds to  frequency of pproximtely 340 MHz.

Boundary considerations

Whilst cloking vi trnsformtion geometry hs een extensively treted in the literture, the
sensitivity of the cloking effect to the oundry conditions is rrely discussed. e clok is
formedydeforming  smll region ( point in the cse of the clssicl rdil trnsformtion 126),
into  lrger inite region. If the region is n inclusion, then the nturl interfce conditions my
e determined following the method outlined in section 7.1.2. If the cloked region is  void or
rigid inclusion, however, there is some freedom in choosing the oundry condition, suject to
the constrints of the physicl prolem. Figure 7.7 shows the ield u(x) for  cloked void, with
Neumnn (prts () nd ()) nd Dirichlet (prts (c) (d)) conditions pplied to the interior of
the cloked region. e corresponding scttering mesures re shown in tle 7.2.
Although the squre clok is effective in oth cses, it is cler from oth the igures nd the

tle of scttering mesures tht the type of oundry condition imposed on the cloked oject
ffects the qulity of the cloking. Indeed, for  void (Neumnn) the cloking reduces the sct-
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(a) Uncloked, Neumnn (b) Cloked, Neumnn

(c) Uncloked, Dirichlet (d) Cloked, Dirichlet

Figure 7.7: Plots of the ield u for the uncloked nd cloked squre inclusion with Neumnn
oundry conditions on the oundry of the inclusion in prts () nd (), nd Dirich-
let oundry conditions on the oundry of the inclusion in prts (c) nd (d). Here the
source is locted t x = [−3, 0]T nd oscilltes t ѱ = 10. e colour scle is s indicted
in igure 7.4.
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tering mesure y etween 99.7% nd 99.9% for oth ѱ = 5 nd ѱ = 10. In contrst, cloking
reduces the scttering mesure of  rigid inclusion (Dirichlet) y etween 96.5% nd 96.8% for
ѱ = 5 nd etween 96.7% nd 96.9% for ѱ = 10. e effect of the oundry condition my
e interpreted in the following wy. As  result of the trnsformtion, the cloked oject nd
clok together ehve s if the void is smll. In this sense, the cloked inclusion represents 
singulr perturtion of the fundmentl solution of the Helmholtz eqution. In the cse of 
free void with Neumnn conditions, the leding order term in the symptotic expnsion is the
dipole term, which is of order џ2 nd decys like the irst derivtive of the fundmentl solu-
tion. On the other hnd, for  ixed void with Dirichlet conditions, the leding order term in the
expnsion is the monopole term which is of order џ nd decys like the fundmentl solution.
us, the perturtion from the free void is smller thn the perturtion from the ixed void,
leding to improved cloking

7.2 Cloaking path information

In recent yers there hs een much interest in experiments to elucidte the fundmentl prin-
ciples of quntummechnics, nd in prticulr the reltionship etween mesurement nd sys-
tem ehviour. One sic experiment which with its vrints fetures in mny such experimen-
tl studies is the clssicl Young’s doule slit experiment (see, for exmple, 66, 67). is sug-
gested tht it my e of interest to consider the interction of the excellent mechnicl cloking
demonstrted erlier with the foundtionl quntummechnics experiment. A recent pper y
Greenlef et l. 54 considers n ppliction of cloking vi trnsformtion optics in quntum
mechnics. In prticulr, Greenlef et l. present  clss of invisile reservoirs nd mpliiers
for wves nd prticles. e issues discussed elow, which re rised y this linkge etween
cloking nd quntum mechnics, re in some wys similr to those discussed y Greenelf et
l.
us,  Young’s doule slit experiment is considered where  monochromtic plne wve is

incident on  screen with two pertures. Due to the superposition of the wves pssing through
the two pertures, the distinctive doule slit interference pttern is produced on n oservtion
screen plced on the opposite side of the pertures to the source. e result of  simultion of
the stndrd experiment is shown in igure 7.8, with the diffrction pttern produced on the
oservtion screen (in this cse,  verticl line ner the right hnd edge of igures 7.8-7.8c)
shown s curve () in igure 7.8d. Plcing n oject (inclusion) over one slit, s in igure 7.8,
prtilly destroys the diffrction pttern. e corresponding pttern on the oservtion screen
is shown s line () in igure 7.8d. However, coting the oject with the squre push out clok
presented erlier, s shown in igure 7.8c, restores the originl diffrction pttern lmost entirely.
e interference pttern corresponding to the cloked oject is shown s curve (c) in igure 7.8d.
e simultion, shown in the supplementry mteril 30, conirms tht the excellent clok-

ing for the inclusion position of igure 7.8c, exempliied in igure 7.8d, holds irrespective of the
inclusion position. It hs thus een conclusively demonstrted tht the cloking is of sufficient
qulity to render the interference pttern lmost immune to movement in the position of the
cloked ostcle. In prticulr movement of the cloked ostcle, it would seem, does not yield

104



Chapter Seven A microstructured invisibility cloak

(a) (b)

(c)

(a)

(b)

(c)

(d)

Figure 7.8: ()-(c) e ield u(x) for the Young’s doule slit experiment with no inclusion, n un-
cloked inclusion, nd  cloked inclusion respectively. (d) A plot of ∣u(x)∣ over the
oservtion screen illustrting the interference fringes for cses ()-(c). (An nimted
version of this igure my e found in the supplementry mteril 30.)
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Figure 7.9: e lttice formed from the principl directions of the stiffness mtrix for the contin-
uum clok.

ny informtion out the pssge of wves through one slit or the other. is considertion
would e importnt if one were le to crry out n experiment in which single quntised ele-
ments of virtion were in the system t ny given instnce in time. e quntum mechnicl
view would e tht, if no pth informtion were ville from mesurements, the interference
fringes ehind the doule slit should persist.
is proposed quntum experiment rises interesting questions if n pproprite virtion

trnsducer were emedded within the clok, so tht informtion out virtions moulded y
the clok were ville to experimentlists. One would ssume, in line with the results of sy
opticl experiments of the type referred to in 66, tht ny pth informtion gined in this wy
would e evident in  chnge in the fringe pttern. is suggests the interest of  comprehensive
quntummechnicl tretment of the interction etweenmechnicl cloks ndmesurement
systems.

7.3 Cloaking with a lattice

Cloks designed using trnsformtion optics my hve such extreme physicl ttriutes tht the
requisite mterils cnnot e physiclly relised without recourse to metmterils. It is with
this motivtion in mind tht the following pproximte clok in the low frequency regime is
developed. e clok is constructed s n pproximtion to the continuum squre clok consid-
ered erlier, ut is relised using  discrete lttice structure, formed from rods nd point msses.
e dvntge of  discrete structure over  continuous mteril is tht much higher contrsts
in mteril properties re esily relisle using lttices. e development of n pproximte
cloking mteril using  lttice my llow the prcticl construction of cloks. In the following
discussion, it is emphsised tht repeted indices re not summed over.
With reference to the formule for the Jcoin of the trnsformtion in section 7.1.1, the

symmetric stiffness tensors C(i) = [Ѧ/J(i)]J(i)J(i)T re positive deinite. erefore, the stiffness
mtrix dmits the following digonlistion

C(i) = P(i)
T

Λ(i)P(i), (7.22)

where P(i) = [e(i)1 , e(i)2 ] re the mtrices with columns consisting of the principl directions
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(eigenvectors) of C(i), nd Λ(i) = diag(ѥ(i)1 , ѥ(i)2 ) is the digonl mtrix of the corresponding
ordered positive eigenvlues such tht ѥ(i)1 > ѥ

(i)
2 . e eigenvectors yield the principl lttice

vectors of the loclly orthogonl lttice with homogenised stiffnesses ѥ(i)j in direction e(i)j . In
prticulr, the lttice nodes lie t the intersection points of the solutions of the following non-
liner system of irst order differentil equtions

d

dτ
x(i)j = e

(i)
j (x(i)j ), for i = 1, . . . 4, nd j = 1, 2, (7.23)

for some rry of initil positions, where x(i)j is the position vector long the chrcteristic de-
ined y e(i)j inside the ith side of the clok nd τ prmetrises the curve. Nturlly, this would
led to  lttice with curved links. However, for  sufficiently reined lttice the curvedmemers
my e replced with liner links. e lttice links re then the lineristion of the chrcteristic
etween two neighouring nodes on the chrcteristic. Figure 7.9 shows the geometry of the
lttice formed from the principl vectors of the stiffness mtrix. Requiring locl conservtion
of lux llows the stiffness of the lttice link prllel to e(i)j to e determined s ℓijѥ(i)j , where
ℓij is the length of the link long e(i)j . e distriution of nodl mss my e determined y
evluting the integrl

m(xp) = ∫
A(xp)

ρ(x)dx,
over the unit cellA(xp) contining the lttice node t xp.

In principle, the lttice clok my e constructed exctly s descried ove nd illustrted in
igure 7.9. However, for nrrow cloks where w/a ≪ 1, the loclly orthogonl lttice depicted
in igure 7.9 my e pproximted y  glolly orthogonl regulr squre lttice. A regulr
squre lttice is more convenient to implement compred with the non glolly orthogonl lt-
tice generted from the eigendecomposition of the stiffness mtrix. Although the geometry of
the pproximte lttice is regulr, it should e emphsised tht the stiffness of the links ndmss
of the nodes vry with position ccording to the projection ofA(x) nd ρ(x) s descried ove.
7.3.1 Geometry and governing equations for an inclusion cloaked by a lattice

Consider  squre inclusion Ω0 = {x ∶ ∣x1∣ < a, ∣x2∣ < a}, a > 0, emedded in R2, surrounded
y  clok Ω− = {x ∶ a < ∣x1∣ < a + w, a < ∣x2∣ < a + w} ∖ Ω0, where w > 0 is the thickness of
the clok. e clok consists of  discrete lttice structure with lttice points t x = ℓp, where
p ∈ Z2 ∩ {n ∶ ℓn ∈ Ω−}. e lttice is stticlly nisotropic with links prllel nd perpendiculr
to the oundries hving contrsting mteril properties, s shown in igure 7.10.
As for the continuum clok, solutions of the Helmholtz eqution re of primry interest. In

prticulr, the following prolem for the ield u(x) is studied
[Ѧ∇ ⋅ (∇) + ϱѱ2]u(x) = −ў(x − x0), x, x0 ∈ Ω+, (7.24)

[Ѧ0∇ ⋅ (∇) + ϱ0ѱ2]u(x) = 0, x ∈ Ω0, (7.25)

m(p)ѱ2u(p) + ∑
q∈N (p)

ℓη(q,p) [u(p + q) − u(p)] = 0, in Ω−, (7.26)
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Figure 7.10: e lttice clok Ω−, surrounding the squre inclusion Ω0, emedded in the mient
medium Ω+. e thick lck lines in the lttice clok indicte links of high stiffness or
conductivity, while the thick grey lines indicte links of low or stiffness conductivity.

where ei = [ўi1, ўi2]T, p ∈ Z2, ndN = {±e1,±e2} is the set of nerest neighours. e stiffness
nd density of the mient continuum re denoted y Ѧ nd ϱ respectively, whilst the corre-
sponding quntities of the inclusion re denoted y Ѧ0 nd ϱ0. e stiffness of the lttice links
re the restriction of the eigenvlues of the stiffness mtrix to the links. In prticulr, for the
link connecting nodes p nd p+q, η(q,p) tkes the vlue ѥ(i)1 ∣[ℓp,ℓ(p+q)] if the vector q is prllel
to the exterior oundry of the clok, Γ(i), nd ѥ(i)2 ∣[ℓp,ℓ(p+q)] otherwise. e corner regions re
mtched s illustrted in igure 7.10. Here, ѥ(i)j ∣[ℓp,ℓ(p+q)] indictes the restriction of ѥ(i)j to the
line [ℓp, ℓ(p+ q)]. e ssocited interfce conditions corresponding to continuity of trctions
re

n ⋅ ∇u(x) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for x ∈ ∂Ω− nd x ± ℓq ∉ Ω−
ℓη(∓q,p)u(x ± ℓq)/Ѧ for x ∈ ⋃i Γ(i) nd x ± q ∈ Ω−
ℓη(∓q,p)u(x ± ℓq)/Ѧ0 for x ∈ ⋃i ѝ(i) nd x ± q ∈ Ω−

, i = 1, . . . , 4, (7.27)

nd the Sommerfeld rdition condition t ininity. e quntity η(q,p) is the projection of the
digonlised stiffness mtrix onto the lttice link connecting lttice points p nd p + q.
Physiclly, (7.24)–(7.27) corresponds to the prolem of the propgtion of time-hrmonic

wves of ngulr frequency ѱ generted y  point lod t x0. e ield u(x) then corresponds
to the out-of-plne displcement mplitude ield. e region Ω− consists of n rry of nodes
of mssm, connected y mssless rods of length ℓ nd stiffness ccording to their orienttion.
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Source Scttering Mesure E
Position Frequency Uncloked Cloked Q

Scttering regionR1[−3, 0]T 3 0.1430 0.1662 0.1617[−3, 3]T/√2 3 0.1113 0.1816 0.6327[−3, 0]T 5 0.1529 0.2495 0.6318[−3, 3]T/√2 5 0.2002 0.3538 0.7676

Scttering regionR2[−3, 0]T 3 0.2341 0.3362 0.4363[−3, 0]T 5 0.3224 0.4671 0.4489

Scttering regionR3[−3, 3]T/√2 3 0.1578 0.3455 1.189[−3, 3]T/√2 5 0.2988 0.6011 1.012

Table 7.3: e scttering mesures corresponding to the simultions for the basic lattice model
shown in igures 7.11 nd 7.12.

7.3.2 Illustrative lattice simulations

e pproximte lttice cloks were exmined using the inite element sowre Comsol Multi-
physics®. Perfectlymtched lyerswere used in the vicinity of the oundry of the computtionl
domin in order to simulte n ininite domin. For the purpose of illustrtion,  squre of semi-
width a = 0.5, surrounded y  lttice clok with w = 0.1 nd links of length 5 × 10−3 ws used.
e inclusion is locted t the origin of the computtionl window.

A basic lattice cloak

Before proceeding to the illustrtive simultions for the regulr lttice with heterogeneous distri-
utions of stiffness nd mss, it is instructive to consider  simple pproximtion. Mny cloks
creted vi trnsformtion optics hve the generl chrcteristic of hving  high phse speed
prllel to the oundry of the clok, nd  lowphse speed in the direction norml to the ound-
ry (see 39 mong others). erefore, s n initil pproximtion, the cse of  regulr squre
lttice with  homogeneous, ut orthotropic distriution of stiffness nd  homogeneous distri-
ution ofmss is considered. Consider the right-hnd side of the clok Ω(1)

−
. For  nrrow clok

withw/a≪ 1, x1 ∼ a+w nd hence the densitymy e pproximted y ρ ∼ 1+a/w. e gretest
contrst in stiffness occurs t x2 = 0, thus the verticl links re ssigned stiffness ℓѥ(1)1 (a+w, 0)
nd the horizontl links stiffness ℓѥ(1)2 (a + w, 0). e mss of the nodes is ℓ2(1 + a/w). e
mteril properties of the remining three sides of the clok re djusted ccordingly.
Figures 7.11 nd 7.12 show the ield u(x) for the uncloked inclusion () nd (d), nd the

inclusion cloked with this basic clok () nd (e). For ѱ = 3 igure 7.11 indictes tht the ba-
sic clok prtilly mitigtes the shdow cst y the inclusion nd cts to reform the cylindricl
wve fronts ehind the inclusion. As illustrted y igure 7.12, this prtil cloking effect de-
teriortes with incresing frequency. Indeed, in some cses, the presence of the lttice clok
seems to increse the shdow region. Tle 7.3 detils the vlues of the scttering mesures for
the ields illustrted in igure 7.11 nd 7.12. e scttering mesures shown in tle 7.3 suggest
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(a) Uncloked (b) Bsic clok (c) Reined clok

(d) Uncloked (e) Bsic clok (f) Reined clok

Figure 7.11: Plots of the ield u(x) for  cylindricl wve incident on  squre inclusion in the
sence of  clok (prts () nd (d)),  squre inclusion coted with the basic lttice
(prts () nd (e)), nd n inclusion coting with the reined lttice (prts (c) nd (f)).
Here the ngulr frequency of excittion is ѱ = 3 nd the source is locted t x0 =[−3, 0]T in ()–(c), nd t x0 = [−3, 3]T/√2 in (e)–(f). e colour scle is s indicted
in igure 7.4.

tht, lthough visully the sic lttice clok ppers to work resonly well, this my not e
the cse. e fct tht the sic lttice clok increses the scttering mesure compred with
the uncloked inclusion further emphsises the need for n ojective mesure of the qulity of
cloks, rther thn simply relying on visul oservtions.
is increse in the scttering mesure y the sic lttice clok motivtes the introduction

of the following reined model.

A reined lattice cloak

Consider now the lttice descried in section 7.3.1, i.e. the regulr squre lttice with inhomo-
geneous distriution of stiffness nd mss. Figures 7.11 nd 7.12 show the ield u(x) for the
uncloked inclusion nd the inclusion with  lttice cloking. With reference to the simultions
for the basic clok () nd (e) the reined lttice clok (c) nd (f), it is oserved tht the efficiency
of the reined lttice clok, whilst not s high s tht of the continuum clok, ismuch greter thn
tht of the basic clok. e tle of scttering mesures for the pproximte clok is shown in
tle 7.4 nd further evidences the effectiveness of the reined lttice clok. Indeed, for severl
simultions (in prticulr those where the scttering mesure is tken over the forwrd or cor-
ner scttering regionsR1 ndR2 respectively) the efficiency of the reined clok in reducing the
scttering mesure pproches tht of the continuum clok.
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(a) Uncloked (b) Bsic clok (c) Reined clok

(d) Uncloked (e) Bsic clok (f) Reined clok

Figure 7.12: Plots of the ield u(x) for  cylindricl wve incident on  squre inclusion in the
sence of  clok (prts () nd (d)),  squre inclusion coted with the basic lattice
model (prts () nd (e)), nd n inclusion coting with the reined lttice (prts (c)
nd (f)). Here the ngulr frequency of excittion is ѱ = 5 nd the source is locted
t x0 = [−3, 0]T in ()–(c), nd t x0 = [−3, 3]T/√2 in (e)–(f). e colour scle is s
indicted in igure 7.4.

Source Scttering Mesure E
Position Frequency Uncloked Cloked Q

Scttering regionR1[−3, 0]T 3 0.1430 0.01191 0.8929[−3, 3]T/√2 3 0.1113 3.385 × 10−3 0.9763[−3, 0]T 5 0.1529 0.04324 0.7173[−3, 3]T/√2 5 0.2002 0.03125 0.8438

Scttering regionR2[−3, 0]T 3 0.2341 0.01150 0.9508[−3, 0]T 5 0.3224 0.0172 0.9508

Scttering regionR3[−3, 3]T/√2 3 0.1578 5.047 × 10−3 0.9680[−3, 3]T/√2 5 0.2988 0.02114 0.9292

Table 7.4: e scttering mesures corresponding to the simultions shown for the reined lattice
model in igures 7.11 nd 7.12.
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As expected the effectiveness of the lttice cloks reduce with incresing frequency. However,
for sufficiently low frequencies the reined lttice clok in prticulr, works well.

7.4 Remarks

e work reported in this, the inl chpter of the present thesis, represents  comprehensive
tretment of  non-singulr clok for  squre inclusion. e signiicnt dvntge of this contin-
uous clok is the strightforwrd correspondence with  discrete metmteril lttice structure.
Such  connectionmy present method throughwhich  physicl clokmy e fricted. e
mteril nd geometric properties of the discrete clok re directly linked to the properties of the
continuum clok, nd hence, to the properties of the forml mp. e effectiveness of such dis-
crete cloks, prticulrly t low frequencies, ws demonstrted through numericl simultions
nd the use of ojective scttering mesures.
Prticulr ttentionws pid to the ojectivemesurement of the qulity of the cloking effect.

e qulity of the cloks ws primrily ssessed using  scttering mesure introduced s n
L2 norm of the difference etween the cloked ield nd the idel unpertured ield. A further
demonstrtion of the efficcy of the squre push out clok ws presented vi the clssicl Young’s
doule slit experiment. It ws shown tht the interference pttern on the oservtion screen
ws signiicntly modiied when n ostcle ws plce in front of one of the pertures. However,
if the ostcle ws cloked then the interference pttern remined lmost entirely unpertured.
is numericl experiment presents  further, perhpsmore interesting, method through which
the qulity of prticulr cloks my e exmined. Moreover, the experiment rises interesting
questions regrding the interction etween cloking nd quntum mechnics.
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Chapter Eight

Concluding remarks

M
epresent text represents  comprehensive study of  rnge of physicl prolems whichmy e
descried y the uniied theme of the dynamic response of metamaterial structures. Discrete lt-
ticemodels were irst employed yNewton 112, who used simplemss-spring systems to study
the propgtion of sound. As exempliied y the present thesis nd references herein, such lt-
tice models remin oth useful nd interesting systems to study, providing  rnge of prolems
nd mny fscinting phenomen. e dynmic response of structured medi depends on sev-
erl fctors including the geometricl ndmteril properties of themicro-structure in ddition
to the externl lod (e.g. pplied force or incident wve). For low-frequencies, the structured
medium is oen homogenised with the effective mteril properties eing determined from the
sttic response. However, s demonstrted in chpter 3, the effective mteril properties de-
rived s  limiting cse of the dynmic response (for smll frequency nd wve numer) my
not necessrily correspond to those derived from the purely sttic response. Moreover, in the
inite frequency regime the response of discrete lttice systems is strongly nisotropic yielding
striking primitive waveforms s shown in chpter 4. Such effects cn e employed to crete in-
teresting systems such s lt “metamaterial lenses”, which exhiit the novel effects of iltering,
focusing, nd negtive refrction for elstic medi. It is lso possile to control the width nd
position of stop nds s well s the resonnt frequencies for discrete lttice structures. With
this in mind, compct estimtes for the widths of stop nds, nd the position of sddle points,
mxim nd minim of the dispersion surfces were derived in chpter 3.
edynmic response of ltticeswith defects, considered in chpters 5 nd 6, lso ringsmny

interesting fetures. In prticulr, for rectiliner defects in squre lttices it ws demonstrted
tht  connection cn emde with the prolem of  ininite line defect nd  homogenised con-
tinuous inclusion. In chpter 5, the defect ws creted y removing somemss from  line of lt-
tice nodes, such tht theirmss ws smller thn those of the mient lttice. For one- nd three-
dimensionl multi-tomic lttices, there exists some lower ound on the mount of mss tht
should e removed from the defect nodes such tht  loclised mode my e initited 98, 109.
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However, s shown in chpter 5, this is not the cse for uniform two-dimensionl lttices: there
is no lower ound on the mss tht should e removed from  defect node to initite  loclised
mode. e primry tool used to study these loclised modes for inite rectiliner defects re the
lttice Green’s functions, which hve direct connections to so-clledWatson Integrals (see 150
nd references therein). In generl, the lttice Green’s functions cnnot e expressed in terms
of elementry functions. Nevertheless, their representtion in terms of hypergeometric func-
tions llows compct symptotic expnsions to e derived for nd-edge modes using nlytic
continution. Discrete metmteril structures lso hve wide pplicility in coupled systems,
such s the thermoelstic prolemdiscussed in chpter 6. It ws demonstrted tht  connection
cn e mde etween the discrete prolem for  thermlly striped lttice nd the corresponding
prolem for the continuum. In prticulr, it ws shown tht it is possile to deine n “effec-
tive stress intensity factor” for the discrete thermoelstic lttice. Moreover, for sufficiently long
crcks nd low frequencies, the pek-to-pek mplitude of this “effective stress intensity factor”
ws shown to e lower thn tht of the continuum. In this sense, the discrete lttice micro-
structure is sid to reduce the stress intensity fctor of n edge-crcked plte similr to the cse
of micro-structured continu 114.
One novel re of reserch in which metmterils hve found extensive use is tht of invisi-

ility cloks (see, for exmple, 89, 137, 141). In chpter 7,  design for  squre metmteril
clok for ields governed y the Helmholtz eqution ws discussed. e mteril properties of
the clok re continuous nd piecewise smooth on the closure of the clok. Nevertheless, the
contrst in principle stiffnesses required to chieve the cloking effect is fr eyond wht cn e
relised with “natural” mterils. However, the metmteril lttice model presented in chp-
ter 7 is fr less restrictive. With the pproximte discrete mss-spring clok design presented in
this thesis it ws possile to otin the requisite contrst in principle stiffnesses to physiclly re-
lise the cloking effect. emteril nd geometric properties of the lttice clok were derived,
nlyticlly, for  continuum clok. As demonstrted y the numericl simultions presented in
chpter 7, such n pproximte lttice clok provides effective cloking prticulrly in the low
frequency regime.
In summry, the present thesis provides  detiled study of wve propgtion nd the dy-

nmic response of metmteril structures in the physicl settings of out-of-plne nd in-plne
elsticity, electromgnetism, coustics, het conduction, nd thermoelsticty. A wide rnge
of nlyticl nd numericl techniques hve een employed to study the prolems presented
herein, leding to connections with other ields. To conclude, wve propgtion in metmte-
ril structures remins n ctive re of reserch with mny interesting phenomen yet to e
investigted. e reder is referred to the concluding remrks t the end of ech chpter for 
more detiled summry of the work contined within the present thesis.
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WKB expansions

M
eWKB (lsoWKBJ nd occsionlly LG) expnsion is  semiclssiclmethod for pproximt-
ing solutions to singulrly pertured prolems. In prticulr, WKB expnsions re employed to
ind pproximte solutions to differentil equtions where the highest order derivtive is multi-
plied y some smll positive prmeter, џ. e method ws developed in the 1920’s y Wentzel,
Krmers, Brillouin, nd Jeffreys 12, 13, 68, 87, 145, lthough the foundtions of the method
cn e considered to hve een developed lmost  century erlier y Crlini, Liouville, nd
Green. e method is now stndrd nd is included in mny grdute level texts, see 7, 119
for exmple.
Consider the second order ordinry differentil eqution (Helmholtz eqution in 1D)

(џ2 d2

dx2
+Q(x))u(x) = 0, Q(x) > 0, 0 < џ≪ 1. (1)

It would e nturl to seek  solution of the form u(x) ∼ A(x)eiS(x)/ў, ў → 0+, where A(x)
nd S(x) re commonly referred to s the mplitude nd phse functions respectively. However,
it should e noted tht in this form, the mplitude nd phse functions depend on the smll
prmeter ў. e implicit dependencies my e mde explicit y expnding A(x) nd S(x) s
power series in ў, whence

u(x) ∼ exp{∞∑
n=0

ўn−1inSn(x)} , s ў→ 0. (2)

e form (2) is the clssicl WKB expnsion (see 7). Alterntively, (2) my e recst s

u(x) ∼ eiѮ(x)/ў ∞∑
n=0

inAn(x)ўn, s ў→ 0. (3)

e ove form will e most convenient for the purposes of this thesis. Direct sustitution of
(3) into (1) yields

∞

∑
n=0
{inўn[џ2A′′n(x) +Q(x)An]

+in+1ўn−1џ2[Ѯ′′(x)An(x) + 2Ѯ′(x)A′n(x)] − inўn−2џ2[Ѯ′(x)]2} = 0 (4)

In order to lnce the term involvingQ(x), the rtio џ2/ў2 must e of order unity. Hence, ў∝ џ
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WKB expansions

nd for convenience one my chose џ = ў. Compring power of џ,  hierrchy of equtions is
otined, the irst of which is the eikonal eqution for the phse

Ѯ′(x) = ±√Q(x), (5)

followed y the transport eqution

2Ѯ′(x)A′0(x) +A0Ѯ′′(x) = 0, (5)

with the higher order terms stisfying

Ѯ′′(x)An + 2Ѯ′(x)A′n +A′′n−1 = 0, for n ≥ 1. (5c)

e solution to leding order is then

u(x) ∼ Q−1/4(x)⎧⎪⎪⎪⎨⎪⎪⎪⎩c1 exp
⎡⎢⎢⎢⎢⎣iџ
−1

x

∫
x0

√
Q(t) dt⎤⎥⎥⎥⎥⎦ + c2 exp

⎡⎢⎢⎢⎢⎣−iџ
−1

x

∫
x0

√
Q(t) dt⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (6)

where c1, c2, nd x0 re ritrry constnts. Here Q−1/4(x) is the solution of the transport equ-
tion (up to  multiplictive constnt, nd the exponentil functions stisfy the eikonal eqution.
It is remrked tht the leding order solution (6) for the Helmholtz eqution is equivlent to
tht derived in 7 for the Schrödinger eqution, if Q(x) is tken to e strictly negtive in 7; it
is emphsised tht Bender nd Orsz 7 took the WKB expnsion in the form (2), s opposed
to the form (3) s is done here.
Of course, one my otin more ccurte representtions of u(x) y continuing to construct

the hierrchy of equtions (5). However, this isn’t lwys necessry nd much informtion my
e extrcted from the eikonal nd transport equtions without recourse to the leding, or higher
order, solutions. Indeed, for the purposes of this thesis, it will e sufficient to simply consider
the eikonal eqution.
In chpter 7, the WKB expnsion is pplied to equtions of the form

[џ2∇ ⋅ P(x)∇+Q(x)]u(x) = 0, for x ∈ Ω ⊂ R2 (7)

Nevertheless, the WKB pproch outlined here remins pplicle with the extension to two
dimensions dding only to the tediousness of the lger, rther thn ny dditionl technicl
difficulty.
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