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Mathematical modelling of the dynamic response of metamaterial structures
Daniel John Colquitt

Abstract
is thesis constitutes n exposition of the work crried out y the uthor whilst exmining severl

physicl prolems under the rod theme of the dynmic response of metmteril structures. An out-
line of the thesis is provided in chpter 1. Chpter 2 introduces some nottion nd preliminry results on
generl lttice equtions. Chpter 3 exmines the dispersive ehviour of non-clssicl discrete elstic
lttice systems. In prticulr, the effect of distriuting the inertil properties of the lttice over the elstic
rods, in ddition to t the junctions, is considered. It is demonstrted tht the effective mteril prop-
erties in the long wvelength limit re not wht one would expect from the sttic response of the lttice.
e effect of vrious interctions on the dispersive properties of the tringulr cell lttice is considered,
including so-clled truss, frme, ndmicro-polr interctions. Compct nlyticl estimtes for the nd
widths re presented, llowing the design of metmteril structures possessing pss nd/or stop nds
t speciic frequencies nd in speciied directions.

e inite frequency response of severl lttice structures is considered in chpter 4. In prticulr, the
dynmic nisotropy of oth sclr nd elstic lttices is exmined. e resulting strongly nisotropic
mteril response is linked, explicitly, to the dispersive properties of the lttice. A novel ppliction of
dynmic nisotropy to the focusing, shielding, nd negtive refrction of elstic wves using  lt discrete
“metamaterial lens” is presented.

Chpter 5 is devoted to the nlysis, using the dynmic Green’s function, of  inite rectiliner inclu-
sion in n ininite squre lttice. Severl representtions of the Green’s function re presented, including
expression in terms of hypergeometric functions, which re employed in deriving nd edge expnsions.
It is shown tht loclised defect modes, chrcterised y displcements which decy rpidly wy from
the defect, cn e initited y reducing the mss of one or more lttice nodes, whilst ensuring tht the
mss of the nodes remins positive. For one- nd three-dimensionl multi-tomic lttices, there exists 
ound on the contrst in mss etween the defect nd mient lttice such tht loclised defect modes
exist. However, it is shown tht for the two-dimensionl lttice, no such ound exists, provided tht the
msses remin positive. e nlysis of  inite-sized defect region is ccompnied y the wveguide
modes tht my exist in  lttice contining n ininite chin of point defects. A numericl simultion
illustrtes tht the solution of the prolem for n ininite chin cn e used to predict the rnge of eigen-
frequencies of loclised modes for  inite ut, sufficiently long, rry of msses representing  rectiliner
defect in  squre lttice.

Continuingwith the theme of defects, chpter 6 exmines response of  tringulr thermoelstic lttice,
with n edge crck under mode I loding. e response of the tringulr lttice is compred with tht of
the corresponding continuum. emodel is relted to the phenomenon of therml striping, which occurs
when  structure is exposed to periodic vritions in temperture. In the therml striping regime, crck
propgtion is  ftiguing processes with the rte of crck growth eing proportionl to some power of
the pek-to-pek mplitude of the stress intensity fctor. An “effective stress intensity factor” for the lttice
is introduced nd it is demonstrted tht, in the homogenised limit, the “effective stress intensity factor” is
lower thn the stress intensity fctor of the continuum for sufficiently long crcks nd low frequencies.

Finlly, chpter 7 presents  detiled nlysis of  non-singulr squre clok for coustic, out-of-plne
sher elstic, nd electromgnetic wves. e propgtion of wves through the clok is exmined nlyt-
iclly nd is complemented with  rnge of numericl illustrtions. e efficcy of the regulrised clok is
demonstrted nd n ojective numericl mesure of the qulity of the cloking effect is introduced. e
results presented show tht the cloking effect persists over  sufficiently wide rnge of frequencies. To
illustrte further the effectiveness of the regulrised clok,  Young’s doule slit experiment is presented.
e stility of the interference pttern is exmined when  cloked nd uncloked ostcle re succes-
sively plced in front of one of the pertures. A signiicnt dvntge of this prticulr regulrised squre
clok is the strightforwrd connection with  discrete lttice. It is shown tht n pproximte clok cn
e constructed using  discrete lttice structure. e efficiency of such  lttice clok is nlysed nd
severl illustrtive simultions re presented. It is demonstrted tht effective cloking cn e chieved
y using  reltively simple lttice, prticulrly in the low frequency regime. is discrete lttice structure
provides  possile venue towrd the physicl relistion of invisiility cloks.
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Chapter One

Introduction

M
is thesis is devoted to the nlysis of wide rnge of physicl prolemswhich re encompssed
y the uniied theme of the dynmic response of metmteril structures. In prticulr, the
present text dels with wve propgtion, shielding, focusing, frcture nd defects, nd cloking
in structured mterils. e present chpter provides n overview of the thesis together with 
rief review of the most relevnt scholrly literture.
e study of wve propgtion in structured medi cn e trced s fr ck s the 17 cen-

tury with the puliction of Newton’s Principi 112. For instnce, Newton 112 studied 
one-dimensionl mss-spring lttice system nd derived n expression of the speed of sound
propgtion. Despite eing studied for severl centuries, wve propgtion in structured medi
nd the contemporry ields of photonics, phononics nd pltonics remins n ctive re of
reserch. An extensive iliogrphy of reserch in photonics, phononics, nd metmerils cn
e found in 42. As noted in 42, the numer of pulictions in these res is growing yer on
yer. e clssic monogrph y Brillouin 14 remins n excellent introductory text for wve
propgtion in structured medi. In his monogrph, Brillouin trets  wide rnge of physicl
prolems eginning from  simple one-dimensionlmss spring chin, to crystl dynmics, nd
liner prticle ccelertors. e unifying theme of the ook 14 is the periodic rrngement of
elementry units to crete  lrge, oen ininite, structure. e ook y Born nd Hung 9 is
considered the clssicl tretise on lttice dynmics from the viewpoint of quntum mechnics.
e overrching im of the ook 9 is the linkge of mcroscopic properties of crystls to their
microstructure in the long wvelength limit; it dels with the opticl, therml, piezoelectric, nd
elstic properties of lttices. For exmple, Born ndHung use potentil theorymotivted y the
underlying quntum mechnicl principles to deduce the mcroscopic elstic response of the
crystl; these types of interction re referred to s central interactions in the present thesis. In
order to deduce the therml properties of the crystl, Born nd Hung resort to the frmework
of inite deformtions. In terms of defects in lttices, the excellent monogrph y Mrdudin
et l. 98 focuses on defects in crystllogrphy in three dimensionl lttices. Mny of the p-
proches nd results presented in 9, 14, 98 re nowdys considered s stndrd nd re oen
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Chapter One Introduction

presented in upper-grdute level texts such s Kittel 85. e ook y Jonnopoulos et l. 70
provides  comprehensive overview of the propgtion of light through photonic crystls. is
very ccessile text 70 egins with elementry exmples of one-dimensionl prolems leding
to  discussion on the design of photonic crystls for speciic pplictions. Musgrve’s Crys-
tal Acoustics 110, lso provides n excellent introduction to wve propgtion in crystls nd
lttices. e ook 110 dels not only with lttice dynmics ut lso with the mechnics of con-
tinuous nisotropic medi. In prticulr, 110 provides  good introduction to the concepts of
group nd phse velocity, nd slowness nd wve surfces in the setting of nisotropic medi.
Such concepts re usully introduced for isotropic medi nd their generlistion to nisotropic
medi re non-trivil.
Some preliminry results for lttices, together with some necessry nottion, re introduced

in chpter 2. Chpter 3 is devoted to the study of the dispersive properties of elstic lttice struc-
tures nd, in prticulr, their homogenised properties in the low frequency rnge. Usully, these
effective properties re determined from the sttic response of the mteril 27,50,100,123 nd
re regrded s eing vlid for smll, ut not necessrily zero, frequencies. However, it is shown
in chpter 3 tht for lttices with inertil links, their dynmic response is not necessrily ccu-
rtely descried y their sttic response, even t smll frequencies. e study of two-dimensionl
elstic discrete systems, ccompnied y the nlysis of dispersion properties of wves, ws in-
cluded in the pper y Mrtinsson nd Movchn 101. It hs een demonstrted tht it is pos-
sile to control the position of stop nds y re-distriuting the mss cross the junctions of the
lttice structure. In 101, the techniques required to nlyse the dynmic properties of discrete
structures were summrised. e method used to nlyse the dispersive properties of discrete
structures in the present thesis is similr to those descried in 14,98,101, ndmny other texts
which tret periodic structures. e spectrl properties of two-dimensionl tringulr, hexgo-
nl, squre, nd Kgomé lttices hve lso een exmined y Phni et l. 127. In prticulr, for
so-clled “cellular solids” formed from  uniform continuous rry of slender ligments without
dditionl mss t the junctions, Phni et l. 127 demonstrted tht the effectivemteril prop-
erties determined from long-wve symptotes to the dispersion curves gree with the effective
mteril properties determined from the sttic response (see, for exmple, the ook y Gison
nd Ashy 50, the pper y Christensen 27, nd the review y Ostoj-Strzewski 123). e
method of using long-wve symptotics to pproximte the dispersion curves nd, hence, deter-
mine the effective elstic moduli hs lso een pplied to structured continu (see, for exmple,
the pper y Crt nd Brun 22). Long wvelength homogenistion using inite difference for-
mlism to derive governing equtions for the corresponding effective continuum hs lso een
considered y mny uthors (see 51 nd reference therein).
In the erly 1980’s Kunin 88, Morozov 107, nd Nzrov nd Pukshto 111 studied

sttic lttices with torsionl interctions. Lter, Mz’y long with Morozov nd Nzrov 102
lso considered two-dimensionl sttic lttices, within the context of homogenistion, nd in-
troduced  potentil of torsionl interction etween elstic ligments t the junction points.
e prolem ws reduced to  inite difference system of equtions nd, for tringulr nd
hexgonl lttices with centrl nd torsionl interctions,  connection ws mde with the ho-
mogenised isotropic continuum. e homogenised Lmé coefficients were evluted nd  ro-
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ttionl micro-polr interction ws identiied. e effects of micro-polr interctions in the
continuum hve een discussed y Eringen 43, 44, nd Kfdr nd Eringen 83. e lt-
tice model involving elstic rods with oth longitudinl nd lexurl stiffness together with the
derivtion of the long-wve pproximtion for homogenised equtions of motion for the micro-
polrmediumhve een discussed yAskr ndCkmk 4. More recently, Spdoni et l. 140
exmined the phononic properties of chirl hexgonl cellulr solids. In this cse, Spdoni et
l. 140 introduced the chirl lttice s n rry of circulr elements of inite rdius, connected
vi thin ligments tngent to the circulr elements. Spdoni et l. 140 presented dispersion
digrms nd exmined the inluence of the cell geometry on the dispersive properties of the
lttice.
e pper y Jones nd Movchn 80 includes  model of dynmic defects within n elstic

system induced y therml pre-stress. In this cse, temperture ws used s  control prmeter
nd the pre-stressed elstic system responded y chnging its iltering properties with respect to
elstic wves propgting through the system. e elstic systemws composed of  periodic r-
ry of multi-scle resontors. Anlysis of dispersion properties of wves in periodic solids with
pre-stress ws lso presented in the pper y Gei et l. 49 nd the pper y Jones et l. 81.
In the former pper, the uthors considered the dispersive properties of n rry of piecewise
homogeneous ems on n elstic foundtion. e uthors demonstrted tht the effect of pre-
stress cn signiicntly ffect the position nd size of nd gps in the dispersion digrms. In
the ltter pper, the uthors returned to the elstic system used in 80. e uthors considered
the effect of defects, crcks in the ligments connecting the resontors to the surrounding m-
trix in this cse, on the dispersive properties nd the low frequency eigenmodes. Further, the
uthors presented n interesting ppliction of these multi-scle resontors: using  inite width
sl of resontors, the uthors were le to simulte  lt elstic lens, which ws used to ilter or
focus wves of certin frequencies. is ide is one which shll e returned to lter in the thesis.
Chpter 3 is sed on the work y the uthor nd his collegues reported in 29.
e ehviour of sclr nd vector lttices in the frequency rnge where the response of the

mteril is strongly nisotropic is discussed in chpter 4. It is demonstrted tht this dynamic
anisotropy is linked to, nd cn e predicted from, the dispersive properties of the microstruc-
ture. e displcement ield resulting from  point lod oscillting t  resonnt frequency,
corresponding to  sddle point on the dispersion surfce, is quite striking. In the literture,
such displcement ields re oen referred to s primitive waveforms (see, for exmple, 5,121).
ese primitive waveforms for sclr lttices hve een exmined in 5, 90, 91, 121. As shown
y the present uthor nd his collegues in 31, primitive waveforms lso exist in vector lttices.
Moreover it ws shown in 31 tht, in contrst to the sclr cse, for vector prolems these
primitive waveforms re not necessrily linked to resonnt frequencies. Chpter 4 lso contins
severl numericl illustrtions, which demonstrte some novel pplictions including iltering
nd focusing of in-plne elstic wves y  fully discrete “metamaterial lat lens”.
For sclr lttice prolems t inite frequencies, Crster nd his co-workers 34, 37, 38, 96

hve developed  two-scle symptotic procedure to determine the mteril properties of n ef-
fective continuum. e pproch used in the forementioned ppers is essentilly tht of the
method of multiple scles (see, for exmple, 7,84). e “High Frequency Homogenisation” em-
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ployed y Crster et l. involves the introduction of two scles nd expresses the solution s 
product of the envelope function, tht is  function of the slow vrile, nd some periodic (or
qusi-periodic) function, which is  function of the fst vrile. e smll prmeter is the
size of the elementry cell (or some other length scle relted to the micostructure) scled y 
length relted to the mcro-structure. Following the introduction of n pproprite nstz, the
prolem then decomposes into  series of prolems sed on powers of the smll prmeter
0 < ≪ 1. Physiclly, this pproch corresponds to perturtions wy from stnding wve
solutions in periodic systems nd the solution is decomposed into the product of  function of
the fst vrile nd  function of the slow vrile. e function of the fst vrile descries
the stnding wve solution in the vicinity of the resonnt frequency nd the function of the slow
vrile is monotonic, usully decying, nd descries the mcroscopic ehviour. e fore-
mentioned series of ppers y Crster nd his co-workers origintes with the pper y Adms
et l. 1, which trets the prolem of thin coustic strips using high frequency homogenistion.
e pper y Crster et l. 37 introduces the generl method for sclr ields in the continuum.
Immeditely following 37,  further pper y Crster et l. 38 pplies the method of high fre-
quency homogenistion to one-dimensionl nd two-dimensionl periodic sclr lttices. is
pproch hs een pplied to vrious conigurtions including so-clled checkerboard structures
in the continuum leding to interesting phenomen including slow wves nd negtive refrc-
tion 35, 36. High frequency homogenistion hs lso een pplied to periodic metmteril
composites with resontors 3 s well s pltonic crystls formed y rrys of pins in thin elstic
(Kirchhoff) pltes 2. Following the work with checkerboardmterils, Crster et l. pulished
 pir of ppers which, in prt, exmined str shped wveforms in sclr lttices 34, 96. In
terms of primitive waveforms, the result of high frequency homogenistion is  pir of hyperolic
prtil differentil equtions, who’s sum descries the primitive waveforms t resonnt frequen-
cies, nd who’s coefficients yield the effective mteril properties. To the est of this uthor’s
knowledge, the pproch of Crster et l. is restricted to sclr ields t the present time.
Focusing nd diffrction in opticl systems hve een discussed extensively in the literture.

e stndrd pproch to refrction, focusing, nd diffrction theory cn e found inmny text-
ooks including, for exmple, the clssic ook y Born nd Wolf 10. More recently, the ook
y Nye 118 trets diffrction ptterns ssocited with custics from the point of view of cts-
trophe theory. Cllwy 20 considered the scttering of wves in solids with periodic rrys
of defects. In elsticity, Poulton et l. 130 extended the Ryleigh method 133 to exmine
the scttering of elstic wves for  douly periodic structure. In terms of lttice dynmics, one
cn identify so-clled line localised primitive waveforms (LPW) 5, 121, which consist of  line
of oscillting prticles with the remining prticles eing sttionry. As oserved in 5, 121,
these LPWs re ssocited with sttionry points on the dispersion surfces. Using the methods
of sttionry phse, Lngley hs exmined the response of  squre sclr lttice sujected to
hrmonic 90 nd trnsient 91 point loding. Prticulr ttention ws given to the nture of
the custics, which requires creful considertion when pplying the method of steepest decent.
In chpter 4 of the present thesis, the required integrls re computed directly, using numericl
techniques. Whilst more computtionlly intensive, this direct pproch is oth more conve-
nient nd cn e pplied in the neighourhood of the source.
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In 2002, Bigoni nd Movchn 8 introduced the concept of structurl interfces with inite
thickness, which join two continuous regions. In the pper 8, the uthors noted tht the inertil
properties of the interfce signiicntly ffect the dynmic response nd led to unusul iltering
properties for elstic wves. Lter Brun et l. 16 employed  structured interfce etween two
continuous domins to demonstrte the focusing of elstic wves vi negtive refrction. e
uthors refered to the structurl interfce s  “lat lens for elastic waves”. Similr effects hve
lso een demonstrted in coustics (see, for instnce, Guenneu et l. 62). In chpter 4 of the
present thesis, the effects of focusing nd iltering of elstic wves is extended to entirely discrete
structures. In prticulr,  ditomic interfce lttice emedded in  montomic mient lttice
of the sme geometry is considered. It is shown tht, for certin frequencies, the interfce lttice
cts s  lt elstic lens.
In chpter 4 of this thesis, n elstic tringulr lttice tht is isotropic in the long wvelength

limit 29 is considered in the setting of plne strin; it is demonstrted tht strong nisotropy
exists t higher frequencies. In prticulr, the presence of loclised wveforms previously illus-
trted for sclr lttices 5, 90, 91, 121 is demonstrted. e resulting nisotropy, diffrction
ptterns, nd errtions re explined clssiclly using the dispersion surfces nd slowness
contours. e vector nture of the prolem yields severl novel nd interesting fetures, includ-
ing the presence of strongly preferentil directions nd the ility to “switch” these preferentil
directions y vrying the frequency nd/or type of pplied lod. Chpter 4 is sed on the work
previously reported in 29, 31.
Continuing with the theme of loclised wves, the prolem of loclised defect modes ssoci-

ted with eigenmodes generted y inite nd ininite defects in ininite two-dimensionl squre
lttices is considered in chpter 5. e ehviour of  lttice with  single point defect, or point
source, cn e descried y the lttice Green’s function, s studied y Mrtin 99 for  two-
dimensionl squre lttice. e resulting solution ws nlysed 99 for frequencies within
the pss nd nd the corresponding symptotics t ininity were lso otined. A yer lter,
Movchn nd Slepyn 109 exmined severl clsses of continuous nd discrete models with
vrious forcing or defect conigurtions. Loclised modes were identiied for the cse when the
forcing frequency (or nturl frequency of the defect) ws locted in the stop nd. For  prtic-
ulr choice of the mss vrition, these defect modes were then linked to the stop-nd Green’s
function which were used in the construction of the defect modes.
In the pper 49, Gei et l. considered the effect of uniform pre-stress on the propgtion of

lexurl wves through n elstic em on Winkler foundtion using methods similr to those
of 109. Prticulr ttention ws devoted to nd-gp loclised modes nd control of the posi-
tion of stop-nds vi pre-stress. It ws found tht  tensile pre-stress cn increse the frequency
t which  prticulr nd gp occurs. It ws lso shown tht nd gps cn e annihilated with
the ppliction of n pproprite pre-stress.
Lttice Green’s functions re oen studied in isoltion nd hve proved  rich re of reserch

(see, for exmple, 11,40,82,150, nd references therein). For d-dimensionl lttices, theGreen’s
function is typiclly expressed s  d-dimensionl Fourier integrl. It is oen possile to evlute
one or more of the integrls, s in the pper y Movchn nd Slepyn 109, ut for d > 1 the
Green’s function cnnot e expressed in terms of elementry functions. In chpter 5, severl
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different representtions of the Green’s function for  squre lttice re presented, which prove
useful for nd-edge expnsions. In prticulr, it is useful to express the lttice Green’s function
in terms of  generlised hypergeometric function. is hypergeometric series is well ehved
in the stop nd of the mient lttice, ut diverges in the pss nd. However, vi nlytic
continution, compct symptotic expressions for loclised modes ner the edge of the pss
nd cn e derived. ese nd-edge modes re loclised, ut since they exist t frequencies
close to the edge of the pss nd, they cn e considered s “almost propagating”. Such modes
re lso oen referred to s shallow defect states in the literture nd re of considerle interest
in, for exmple, photonics 41, 95.
Clssicl pplictions in the theory of defects in crystls nd disloctions follow from the fun-

dmentl work of Mrdudin 97, where explicit closed form solutions were derived for  het-
erogeneous lttice system when two distnt prticles of different msses re interchnged. More
recently, the envelope function sed perturtion pproch ws developed y Mhmoodin et
l. 95 nd Dossou et l. 41 for nlysis of wveguides in photonic crystl structures. In the
ltter cse, n rry of cylinders (inclusions) represents  wveguide within  two-dimensionl
structure, nd the frequencies of the guidedmodes re close to the nd edge of the unpertured
douly periodic system.
Loclistion of wves due to n ininite line defect emedded in n ininite squre lttice, hs

een considered y Oshrovich nd Ayzenerg-Stepnenko 122. For the cse of n ininite
line defect, dispersion reltions cn e computed in explicit form llowing sptilly loclised
wveguide modes to e nlysed.

e ook 139 y Slepyn presents  detiled discussion of pplictions for dynmic lttice
prolems involving crcksmodelled s semi-ininite fults, for oth squre nd tringulr elstic
lttices. Loclised modes for  structured interfce nd  crck propgting with constnt speed
within  squre lttice were nlysed y Mishuris et l. 106. In prticulr, it ws shown tht
the crck propgtion cn e supported y  sinusoidl wve loclised long the crck, which
the uthors refer to s  knife wave. Using the lttice model, Mishuris et l. 106 derived the dis-
persion reltions for the crck within the squre lttice. Further, using numericl experiments,
Mishuris et l. 106 demonstrted tht these reltions llow for the prediction of the verge
crck speed within the lttice when  frcture criterion for the crck pth onds is introduced.
More recently, Nieves et l. 115 studied the propgtion of  semi-ininite dynmic crck in
 non-uniform elstic lttice. Extending the work of Mishuris et l. 106, Nieves et l. 115
nlysed the crck stility nd it ws shown tht informtion regrding unstle crck growth
could e otined from the study of the stedy stte regime.
In chpter 5 of the present thesis, the prolem of the ininite defect considered in 122 is

discussed nd linked to the prolem for  inite ut very long inclusion. In prticulr,  rel-
tively simple homogenised differentil eqution is derived for the cse of long defects, which
chrcterises the low frequency response of the inclusion, s well s the envelope of the highest
frequency oscilltions. Chpter 5 is sed, in prt, on the work pulished in 32.
Reminingwith the topic of defects in discrete systems, the prolem of  thermlly striped dis-

crete elstic lttice is considered in chpter 6. e thermlly striped discrete system is nlysed
nd compred with the corresponding prolem for the continuum. erml striping is  phe-
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nomenon tht occurs when  thermoelstic solid is exposed to temperture luctutions on the
exterior oundry. ese temperture vritions my occur s  result of incomplete mixing of
luids t different tempertures. Such phenomen hve een oserved in the ove-core region
of fst reeder rectors, which re oen cooled y liquid sodium; lrge temperture grdients
my exist etween the sodium emerging from the core nd su-reeder ssemlies. A thermoe-
lstic structure exposed to such temperture distriutions cn undergo therml ftigue dmge,
s demonstrted y Jones 73. Much of the nlyticl nd modelling work on therml striping
in the literture hs een crried out y Jones nd his co-workers 23,71–79,108,114,149, who
considered vrious physicl conigurtions nd methods. In the therml striping regime, crck
growth is  ftiguing process where the rte of crck growth depends on the pek-to-pek m-
plitude of the stress intensity fctor nd the mteril properties. For exmple, Pris’ lw 124
( populr ftigue crck growth model) sttes tht

da
dN
= c1(ΔK)c2 , (1.1)

where a is the crck length, N is the numer of loding cycles, c1 nd c2 re mteril constnts,
K is the stress intensity fctor, nd ΔK = maxK −minK is the pek-to-pek mplitude of the
stress intensity fctor. In 2006Movchn nd Jones 108, studied themodel of therml shock for
 semi-ininite ody contining  single smll edge crck. Asymptotic formule for the displce-
ment ield produced y the temperture lod nd n nlyticl expression for the stress intensity
fctor of n edge crck were otined using the weight function method (see 18 mong mny
others). An investigtion into the ehviour of the pek-to-pek mplitude of the stress inten-
sity fctor for  thermlly striped plte withmultiple edge crcks ws crried out y Jones 76. It
ws shown tht the stress intensity fctor is not only  function of crck depth, ut lso depends
on the seprtion etween the edge crcks. Moreover, the stress intensity fctor is lso strongly
inluenced y the frequency of the striping lod. Using pproximte weight functions (see, for
exmple, 47), Jones nd Lewis 78 presented results showing the sensitivity of the stress in-
tensity fctor for n edge crck in  inite lock to the striping frequency nd the spect rtio
of the lock. Following the work y Movchn nd Jones 76, 108, the effect of smll voids nd
micro-crcks locted within  semi-ininite ody in the vicinity of  edge crck ws nlysed y
Nieves et l. 113, 114. For circulr voids, Nieves et l. 114 provided numericl simultions
showing the perturtion rought to the mplitude of the stress intensity fctor for the edge
crck. It ws demonstrted tht, in the presence of voids, the vlue of the mplitude of the stress
intensity fctor for the crck could e reduced reltive to the stress intensity fctor for  medium
without voids.

Chpter 6 of the present thesis is devoted to the nlysis of the effects of  fully discrete ther-
moelstic solid on the mplitude of the stress intensity fctor. In this cse, the discrete structure
is  tringulr lttice with concentrted mss t the junctions connected y mssless conducting
rods. It is demonstrted tht lthough ll stresses in the lttice re inite, the ehviour of the
displcement ield close to, ut outside  smll neighourhood of the crck tip, follows the sme
chrcteristic squre-root ehviour s tht in the continuum. e ove property is used to
determine n “effective stress intensity factor” for the lttice. e corresponding prolem for the
cse of  thermoelstic continuum is lso considered. For this cse, the stress intensity fctor
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is computed using the J-integrl, originlly introduced in 26, 134 nd modiied for thermoe-
lstic prolems in 147, nd compred with the “effective stress intensity factor” for the discrete
structure. It is demonstrted tht the “effective stress intensity factor” for the lttice exhiits the
sme qulittive ehviour s the one for the continuum. However, for the lttice, the pek-to-
pek mplitude of the “effective stress intensity factor” is lower thn tht of the continuum for
sufficiently long crcks nd low frequencies. Chpter 6 is sed on the work 33 y the present
uthor nd his co-workers.
e inl chpter of the min ody of the present thesis is devoted to the development of

invisiility cloks for electromgnetic, out-of-plne sher elstic, nd coustic wves. Using the
frmework of trnsformtion elstodynmics 104, 116, 117, the design of  squre invisiility
clok for wves governed y the Helmholtz eqution is presented. Since the puliction of two
seminl ppers in the sme issue of Science y Leonhrdt 92 nd Pendry et l. 126, there
hs een sustntil interest in the ide of cloking vi trnsformtion optics (see the review
rticle 61 nd references therein). e experimentl vlidtion of cloking for microwves
demonstrted y Schurig et l. 137 in the sme yer further incresed scholrly (nd populr)
interest. e concept of cloking vi trnsformtion optics is due to n erlier fundmentl
result y Greenlef et l. 57, 58 on singulr trnsformtions nd pplictions to cloking for
conductivity. e key to chieving cloking is to ensure tht the governing equtions (Mxwell’s
system in electromgnetism, for exmple) remin invrint under thempping used to generte
the clok. In this sense, the physicl phenomen ssocited with the untrnsformed system re
the sme s those governed y the trnsformed system. e trnsformed system will, in generl,
hve different mteril properties ut the overll form of the system should remin unchnged
under thempping. emetric invrince ofMxwell’s equtions hs een understood formny
yers 129, 144. However for other systems, such s elsticity, the equtions re not in generl
invrint under trnsformtion 104,117, t lest in the sense tht the trnsformed system does
not correspond to  clssicl elstic mteril. e invrince of the Helmholtz eqution hs
een demonstrted y Norris 116, who lso provided  convenient theoreticl frmework for
cloking in coustics.
e clssicl pproch to cloking vi trnsformtion optics involves deforming  region such

tht  point is mpped to  inite region corresponding to the inner oundry of the clok. Usu-
lly, such trnsformtions involve trnsforming  point into  inite regionwith  smooth ound-
ry, such s n ellipse (see 60, 116, 126, mong others). e mpping is non-singulr every-
where, except t the initil point which is deformed into the inner oundry of the clok. In
the originting pper y Pendry et l. 126, the clok is creted y mpping  disc to n nnu-
lus. Mxwell’s equtions re invrint under the corresponding trnsformtion, s required in
order to chieve cloking. e mteril properties of the clok re then determined from the
metric of the deformed spce 138. e mpping used in 126 is clerly singulr:  point is
mpped to the inner rdius of the nnulus, nd this results in discontinuous (singulr) mteril
properties. Greenlef et l. ddressed this issue in two ppers 55,56 nd derived the condition
for inite energy wek solutions of the Helmholtz eqution nd Mxwell’s equtions. In 55, it
ws demonstrted tht inite energy solutions to the cloking prolem for the Helmholtz equ-
tion exist for n oject with  single lyer clok. However, for the cse of Mxwell’s equtions
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with internl currents, the cloking of n ininite cylinder cnnot e chieved with  single lyer
or without imposing  physicl surfce t the inner oundry of the clok. In the sme pper,
Greenlef et l. derived n identity linking the trnsformed sclr wve eqution to the metric
of the deformed spce, which my then y linked to the mteril properties of the clok 56. In
2008 Norris 116 studied coustic cloking nd re-derived n equivlent identity to tht in 55
using the frmework of inite elsticity, leding to  clok with  density descried y  rnk
two tensor. Moreover, it ws demonstrted tht the totl mss of the clok is ininite for the
cse of perfect cloking. Norris further demonstrted tht the prolem of ininite mss could e
overcome if oth the density nd elstic properties of the clok were nisotropic. An lterntive
pproch to negte the prolem of singulr mteril properties is to construct  so-clled near
cloak y regulrising the trnsformtion 86. Rther thn mpping  single point to the inner
oundry of the clok Kohn et l. 86 proposed mpping  ll of smll, ut inite, rdius to the
inner oundry. A smll regulristion prmeter which chrcterises the initil rdius of the
ll is introduced, which results in  non-singulr mpping on the clok nd its oundry. e
regulristion procedure ws used to crete illustrtive near cloaks in 116.
In 2006,Milton et l. 104 exminedhow the equtions ofmotion for  generl elsticmedium

trnsform under n ritrry curviliner trnsformtion. It ws shown tht  priori requiring 
symmetric stress tensor enforces  prticulr choice of the guge (i.e. the mnner in which the
displcement vector trnsforms). It ws found tht, in generl, the equtions of motion re not
invrint under trnsformtion ut re mpped to  more generl system with non-sclr den-
sity. Milton et l. demonstrted tht  specil cse of the so-clledWillis equtions 105 remin
invrint under generl curviliner trnsformtions. In 104 identities linking the mteril
properties of the clok to the mp, for oth clssicl elsticity nd the more generl Willis mte-
rils re derived. In 2011, Norris nd Shuvlov 117 further generlised the work of Milton et
l., deriving more generl system of trnsformed equtions without imposing the constrint of
symmetric stress. emteril properties of the trnsformed systemwere derived explicitly nd
shown to depend on oth the trnsformtion nd the choice of guge. Together 104 nd 117
provide  comprehensive frmework in which to investigte cloking in elstodynmics.
A design for  clok to control lexurl wves in thin pltes ws proposed y Frht et l. 45.

e clok ws constructed of severl concentric lyers of piecewise constnt isotropic elstic
mteril. Frht et l. lso presented  simpliied model suitle for prcticl implementtion
with ten lyers using six different mterils. Following 45, n experimentl group led y We-
gener fricted  clok sed on the work of Frht et l. using twenty concentric rings nd
sixteen different elstic metmterils 141. Physicl mesurements were compred with nu-
mericl simultions nd found to e in good greement. Control of in-plne wves governed y
the Nvier equtions ws exmined y Brun et l. 17. In 17, the uthors modelled  circulr
clok using the clssicl rdil trnsformtion y deforming  disc to n nnulus. e efficiency
of the clok ws illustrted using inite element simultions, nd the numericl solution of the
cloking prolem ws compred with the Green’s function for  homogeneous elstic spce.
An inluentil pper y Rhm et l. 132 presents  trnsformtion optics lgorithm for

 prolem of electromgnetism involving  clok of  squre shpe. e trnsformtion is
performed in Crtesin coordintes nd results in  piecewise smooth clok on the interior
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points, with mtching regions in the neighourhood of corners nd  singulrity t the ori-
gin mpped into the inner oundry of the clok. e model of such  continuum clok re-
ceived sustntil ttention nd susequent use y the modelling community (see, for exm-
ple, 46,48,69,93,125,136). In the mjority of these ppers, the emphsis is on the geometricl
spect of the possile shpes of the clok, with exmples rnging from polygonl nd ellipticl
cloks to hert-shped cloks. Although it is indeed interesting to see  wide rnge of trnsfor-
mtions nd geometries, it lso remins importnt to understnd the trnsformed prolem in
the context of the physicl model, ddress the nlysis of the trnsformed oundry or trnsmis-
sion conditions nd furthermore derive the properties of the solutions. e pper 132, which
stimulted  good level of discussion on the topic, lso dmits  deiciency regrding the nlysis
of the solution ner the oundry of the clok. Apprently, no indiction ws given out the
sensitivity of the result to the type of oundry conditions (Dirichlet or Neumnn) on the inner
oundry of the clok. e uthors’ evlution of the effectiveness of the cloking ws sed on
 visul oservtion linked to  numericl simultion t  single frequency. In 132, the uthors
dmit tht the effective mteril properties of the clok re inccurte in the vicinity of the inner
oundry of the clok, owing to the singulr nture of the mpping. Indeed, if the uthors hd
ttempted to chnge the frequency rnge they would hve seen signiicnt differences. e clok
dvocted in 132 is n pproximte clok, where the oundry effects ecome importnt nd
visile s the frequency of the incident wves increses.

e ides of metric invrince in Mxwell’s equtions nd cloking hve found extensive use
s  technicl tool nd on mny occsions, the reserchers omit to look t the physicl model
corresponding to the trnsformed equtions. For exmple, on pge 99 of 93 the text reds “e
squre clok hs the sme geometry s the cylindricl cse, except tht we replce the cylindri-
cl shell y  rectngulr shell with the sme size”. is comprison of unlike geometries omits
importnt effects, such s ield concentrtions ner shrp corners, which mke cloking more
difficult. Motivted y 132, Frht et l. 46 ttempted to construct n pproximte squre
clok for out-of-plne sher wves. Using the method of multiple scles, Frht et l. 46 intro-
duced  microstructure composed of  regulr rry of perfortions nd derived  homogenised
continuum which would pproximte n idel clok. However, Frht et l. dmit in 46 tht
their structured clok is not s efficient s the uthors expected.
Polygonl cloks hve lso een the suject of experimentl investigtion. For exmple, in 24

Chen et l. report the results for n experimentl rodnd hexgonl clok sed on  piece-
wise liner homogeneous trnsformtion. Although the clok does not render the cloked o-
ject invisile, it does reduce its pprent size. e clok is demonstrted to work for visile
light. However, Chen et l. 24 emphsise tht the clok functions only for light incident from
six directions deined y the fces of the hexgon. More recently, Lndy et l. 89 produced
n experimentl uni-directionl metmteril clok for microwves. e reported clok 89
is sed on  iliner trnsformtion which mps  line segment to  two-dimensionl region
of spce. Cloks sed on such trnsformtions re referred to s carpet cloaks in the literture
(see 94 mong others). e dvntge of such cloks is tht the requisite mteril properties
re homogeneous nd inite. However, Lndy et l. dmit tht such cloks re only effective
over  nrrow rnge of oservtion ngles. e clok is nonetheless impressive given tht the
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prcticl implementtion does not rely on the eikonl pproximtions s is the cse with other
implementtions 25, 128, 148.
It ppers tht the work reported in 132 hs generted  scope for further discussion nd in-

deed further improvement of the model involving “glued trnsforms” tht led to pproximte
rectngulr cloks. Such cloks re y no mens exct nd re frequency sensitive. A regulr-
istion procedure, s illustrted y Kohn et l. 86 for the sphericl clok, cn e pplied to
mke the trnsformtion, nd hence the mteril properties, non-singulr on the inner ound-
ry of the clok. e regulristion procedure not only simpliies the nlysis, ut lso mkes it
physicllymeningful. Furthermore,  lttice pproximtion is strightforwrd for  regulrised
squre-shped clok. is ppers to e efficient nd serves  reltively wide frequency rnge.
In the spirit of Kohn et l. 86,  so-clled near cloak is presented in chpter 7. In prticulr,

four trpezoids surrounding  squre of semi-width re mpped to four nrrower trpezoids
such tht the semi-width of the squre is enlrged to a≫ > 0. empping is continuous nd
piecewise smooth everywhere on the closure of the trpezoids which form the clok surround-
ing the squre inclusion. Since the mp used in the present thesis is non-singulr on oth the
interior nd oundry of the clok, ll mteril prmeters re continuous nd, indeed, piece-
wise smooth.

Chpter 7 lso contins detiled nlysis of wve propgtion through the clok using oth
numericl simultions nd nlyticl methods sed on the ry equtions otined through 
WKB-type pproximtion. In ddition,  novel illustrtion of the efficcy of the clok is pre-
sented, which provides n interesting link with QuntumMechnics. A recent pper y Green-
lef et l. 54 lso rises interesting questions regrding the link etween QuntumMechnics
nd cloking. e pper 54 presents  clss of invisile reservoirs nd mpliiers for ields gov-
erned y Schrödinger’s eqution. In the inl prt of chpter 7,  possile venue towrd the
physicl relistion of the clok is presented. In prticulr,  reltively simple discrete metm-
teril clok formed from point msses connected vi mssless springs is discussed. It is shown
tht this lttice clok is effective in reducing the scttered ield, prticulrly for low frequencies.
e work reported in chpter 7 hs recently een pulished y Colquitt et l. 28.
To summrise, the structure of the present thesis is s follows. Chpter 3 is devoted to the

study of the dispersive properties of elstic lttice structures nd, in prticulr, their homogenised
properties in the low frequency rnge. e ehviour of sclr nd vector lttices in the fre-
quency rnge where the response of themteril is strongly nisotropic is discussed in chpter 4.
It is demonstrted tht this dynamic anisotropy is linked to, nd cn e predicted from, the dis-
persive properties of the microstructure. e prolem of loclised defect modes ssocited with
eigenmodes generted y inite nd ininite defects in ininite two-dimensionl squre lttices is
considered in chpter 5. e prolem of  thermlly striped discrete elstic lttice is considered
in chpter 6. e thermlly striped discrete system is nlysed nd compred with the corre-
sponding prolem for the continuum. e inl chpter of the min ody of the present thesis is
devoted to the development of invisiility cloks for electromgnetic, out-of-plne sher elstic,
nd coustic wves. Chpter 8 riely summrises the prolems studied in the present thesis
nd lso includes  discussion of the common themes linking the physicl prolems presented
herein. Before considering the prolems summrised ove, some preliminry results which
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ese exposition in the min ody of the thesis re presented in chpter 2.
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Lattice preliminaries

M
is chpter introduces some prerequisite results, theory nd techniques, nd estlishes some
common nottion tht will e used throughout this thesis. e emphsis of this chpter will e
on revity rther thn detiled commentry.

2.1 Lattice equations

e following frmework nd nlysis pplies to one-, two-, nd three-dimensionl prolems.
Consider  regulr rry of prticles in d-dimensionl Eucliden spce, Rd, where d = 1, 2, 3.
Ech prticlewithin the ltticemy then e lelled y multi-indexm = (m1,m2, . . . ,md) ∈ Zd

nd  sclr n ∈ N0, where Z nd N0 re the sets of ll integers nd ll non-negtive integers
respectively. e multi-index m refers to the unit cell in which the prticle is locted, wheres
the sclr n distinguishes etween different prticles in the sme elementry cell. e position
of ech prticle within the lttice is then denoted y xm,n = T m+x0,n, where x0,n is the position
of the nth prticle in the unit cell nd T is the d × dmtrix T = [t1, t2, . . . , td]. It is emphsised
tht su-script comms do not indicte differentition, ut simply seprte the indices for clrity.
e column vectors ti re the direct lttice vectors, which descrie the principl directions of the
lttice. For exmple, the direct lttice vectors for  plnr ditomic tringulr lttice re shown
in igure 3.1 on pge 25. e prllelogrm deined y the direct lttice vectors (nd shded in
grey in igure 3.1) is the elementry cell of the lttice. For the specil cse of  uniform lttice,
tht is, lttices where ll prticles re the sme, x0,n = 0 nd the position of ech prticle is
simply xm = T m. It should e emphsised tht oth xm,n = T m + x0,n nd xm = T m will e
used throughout this work nd it is importnt to distinguish etween the two. e former refers
to the position of prticle (m,n) within the lttice, wheres the ltter denotes the position of
the mth elementry cell of the lttice. roughout this thesis, the nottion Am,n will e used to
denote some property A, of node n in themth unit cell.
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Figure 2.1: e direct () nd reciprocl () lttice vectors for the ditomic tringulr lttice shown
in igure 3.1 on pge 25. e corresponding elementry cells re shded in grey.

For the physicl prolems presented in this thesis, the interctions etween lttice points will
e liner in the sense tht the dynmic equtions governing the potentil of node (m,n) hs the
form

∑
(p,q)∈Nn

Cp,qUp,q(t) − In ds
dts

Um,n(t) = Fm,n(t). (2.1)

In eqution (2.1), Um,n(t) nd Fm,n(t) re the potentil of, nd the lod on, the prticle (m,n)
respectively; nd oth re continuous functions of time t. e prmeter s ∈ N is determined y
the type of interction considered. In prticulr, for the mechnicl lttices considered in chp-
ters 3-7, s = 2 nd eqution (2.1) is simply Newton’s Second Lw; nd for the het conduction
prolem on  lttice s considered in chpter 6, s = 1. e squre digonl “inertia matrix” is
denoted y In nd descries the inertil properties of the lttice point. e (squre) interaction
matrix Cp,q chrcterises the interction etween node (m,n) nd node (m+p,n+q). In other
words,Cp,q descries the lod on node (m,n) s  result of  chnge in potentil of (m+p,n+q).
Finlly, the setNn enumertes the nodes (m+ p,n+ q) intercting with node (m,n). Typiclly,
Nn will e the set of nerest neighours such thtNn = {(p, q) ∶ ∣xp,q∣ ≤ L}, where L > 0 is some
distnce chosen ppropritely such thtNn contins only the nerest neighours of node (m,n).
e reder’s ttention is drwn to the fct tht (m,n) ∈Nn, tht is,  lttice node elongs to the
set of its nerest neighours.
is thesis is concerned with the propgtion of time-hrmonic disturnces through lttices.

erefore, solutions of the form Um,n(t) = um,nei t re sought nd Fm,n(t) is restricted to the

It is emphsised tht the term “inertia matrix” is used purely for convenience nd I need not correspond to
physicl inerti. For mechnicl lttices (chpters 3-7), I is the mtrix of nodl msses. For the het conduction
prolem (chpter 6), the mtrix I descries the het cpcity of the nodes.
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Chapter Two Lattice preliminaries

clss of functions such tht Fm,n(t) = fm,nei t, where is the rdin frequency. e functions
um,n ∶ Z

2 × N0 ↦ Cd nd fm,n ∶ Z
2 × N0 ↦ Cd re the potentil nd lod complex mplitudes

respectively. It is understood tht the physicl ields re given y the rel prts of Um,n(t) nd
Fm,n(t). For time-hrmonic potentils, (2.1) reduces to

∑
(p,q)∈Nn

Cp,qup,q − (i )sInum,n = fm,n. (2.2)

Upon ppliction of the discrete Fourier trnsform, which my e deined s

F [um,n] = uFFn (ξ) = ∑
m∈Zd

um,n exp (−iξ ⋅ xm) , (2.3)

eqution (2.2) tkes the form

∑
(p,q)∈Nn

[Cp,qe−ixp⋅ξ − (i )sIn n,q]uFFq (ξ) = f FFn (ξ) , (2.4)

where nq is the Kronecker delt. Here, the Fourier vriles re restricted to the unit cell in the
reciprocl spce, ξ ∈ Ξ. In prticulr, the unit cell in the reciprocl spce is the d-prllelotope
spnned y the reciprocl lttice vectors, ai, where [a1,a2, . . . ,ad] = 2πT −T, where (⋅)−T de-
notes the inverse nd trnspose of the prenthesised quntity. For the plnr ditomic tringu-
lr lttice shown in igure 3.1 on pge 25, the direct nd reciprocl lttice vectors nd ssocited
elementry cells re shown in igure 2.1. Introducing the lock mtrices

σnq( , ξ) = ∑
p∈Nn

[Cp,qe−ixp⋅ξ − (i )sIn nq] , (2.5)

together with the vectors

UFF(ξ) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uFF1 (ξ)
uFF2 (ξ)

...

uFFQ (ξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
nd FFF(ξ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FFF1 (ξ)
FFF2 (ξ)

...

FFFQ (ξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.5)

whereQ is the numer of nodes in the elementry cell, eqution (2.4) my e written compctly
s

σ( , ξ)UFF(ξ) = FFF(ξ). (2.6)

For the unforced prolem inmechnicl lttices (s = 2) onemy setFFF(ξ) = 0 nd immeditely
otin the dispersion eqution for Bloch-Floquet wves: det σ( , ξ) = 0. e potentil ield
then hs the well known form um,n = u0,neixm⋅ξ . For non-trivil FFF, the potentil ield cn e
otined y mens of the inverse Fourier trnsform

Um =
1∥R∥ ∫
R

FFF(ξ)σ−1( , ξ)eiξ⋅xmdξ, (2.7)

whereR = {ξ ∶ −π < i x0,n ⋅ ei ≤ π} nd ei is the unit vector long the ith xis; the symol ∥ ⋅ ∥
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Chapter Two Lattice preliminaries

denotes the Leesgue mesure.

2.2 Lattice interactions

With the exception tht Cp,q should e squre, no restrictions hve een plced on the form
of the interction mtrices. e precise form of the interction mtrices depend on the type
of lttice link considered. It is remrked tht the interction mtrices my not only depend on
the prmeters p nd q, ut will lso depend on the physicl nd geometricl properties of the
lttice. e physicl lttices consider lter in this thesis will e restricted to two-dimensionl
plnr lttices. For such lttices, it is convenient to construct fundamental interaction matrices
A nd B which descrie the ehviour of  single lttice link oriented long e1 s shown in
igure 2.2. It is emphsised tht the shpe of the links in igure 2.2 is purely illustrtive. Indeed,
the speciic shpe of the lttice links will depend on the type of physicl interction considered.
Using themtricesA ndB, together with pproprite rottionmtrices onemy then construct
the interction mtrix Cn,p for ny two lttice points. For exmple, consider  single mechnicl
lttice link oriented long the e1 xis s illustrted in igure 2.2. Ifu0 nduℓ re the displcements
t the ends of the link, then the force t x = 0 cn e written in the form

f0 = Au0 + Buℓ. (2.8)

If f0, u0, uℓ ∈ Cn, then A nd B re n × n mtrices. e force t x = [ℓ, 0]T cn e determined
y pplying  sequence of rottions to the system. In prticulr, the force t x = [ℓ, 0]T cn e
expressed s

fℓ = RAR
Tuℓ + RBRTu0, (2.9)

where R ∈ SO(n,R) is  rottion mtrix such tht Re1 = −e1. e reder is referred to sec-
tion 2.2.7 for  more detiled discussion of the rottion mtrices. Hence, the interction mtri-
ces hve the form C0,1 = A = RART, Ce1,1 = B, C−e,1 = RBRT.
In this section, the fundmentl interction mtrices required in lter chpters will e intro-

duced with the emphsis on revity rther thn exposition. Discussion of the signiicnce nd
physicl interprettion of these interctions is deferred to lter chpters. e full interction
mtrices will depend on the geometry nd physicl prolem considered, nd therefore, will e
constructed s needed in lter chpters. e following is not intended to represent  complete
list of ll possile interctions, nor is ny prticulr signiicnce ttched to these prticulr
models eyond tht they will e required lter in the thesis. For ll except heat conduction, in
which s = 1, one should set s = 2 in equtions (2.1)-(2.4) in the previous section.

2.2.1 Out-of-plane shear

Out-of-plne sher is, perhps, the simplest mechnicl interction possile. In this cse the
lue lttice link illustrted in igure 2.2 corresponds to  mssless ond of stiffness k, for which
the lod is f = u′(x) nd the displcement ield stisies (see, for exmple, 53)

d2u
dx2
= 0, u(0) = u0, u(ℓ, 0) = uℓ. (2.10)
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..

x = 0

.

x =
⎡⎢⎢⎢⎢⎣
ℓ

0

⎤⎥⎥⎥⎥⎦

.
u0

.
uℓ

. ..

e1

.

e2

Figure 2.2: Two lttice nodes sep-
rted y  distnce ℓ. A
rnge of “interctions”
re illustrted in lue;
it is emphsised tht
the shpe of the lt-
tice link will depend
on the type of interc-
tion considered.

Here, u0 nd uℓ denotes the out-of-plne (into nd out of the pge in igure 2.2) displcements
of ends of the spring (x = 0 nd x = [ℓ, 0]T respectively). e force t x = 0 is then

f0 = k
uℓ − u0

ℓ
e3. (2.11)

In this cse, the fundmentl interction mtrices re, in fct, sclrs

AS
= −

k
ℓ

nd BS = k
ℓ
. (2.12)

e superscript S is used to emphsise tht these fundmentl interction mtrices refer to the
out-of-plne sher interction.

2.2.2 Heat conduction

In this cse the lttice nodes re connected y thin mssless rod of therml conductivity k nd
uniform cross-sectionl re S. If the lterl surfce of the rod is thermlly isolted from the
surroundings, the temperture distriution long the rod is then

θ(x) = Θ0 +
Θℓ −Θ0

ℓ
x, (2.13)

where x is distnce long the rod, nd Θℓ nd Θ0 re the tempertures t x = [ℓ, 0]T nd x = 0
respectively. According to Fourier’s lw, the locl rte of het low through the cross section of
the rod is

∂Q
∂t
=
kS
ℓ
(Θℓ −Θ0). (2.14)

Hence, for this simple model of het conduction the fundmentl interctionmtrices re gin
sclrs nd of  similr form s the out-of-plne sher interction

AH
= −

kS
ℓ

nd BH = kS
ℓ
. (2.15)

2.2.3 Elastic in-plane motion: Central interactions

Returning to mechnicl interctions, let un nd up denote the displcement mplitudes of the
end-points of  thin elstic rod of length ℓ, Young’s modulus E, uniform density ρ, nd constnt
cross-sectionl re S. For centrl interctions, tht is interctions tht only depend on the
distnce etween two points nd not the reltive orienttion, only the longitudinl virtions of
the rod need to e considered. e time hrmonic longitudinl displcement mplitude u(x)
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then stisies (see, for instnce, 53)

( d2

dx2
+

2

c2
)u(x) = 0, u(0) = u0 ⋅ e1, u(ℓ) = uℓ ⋅ e1, (2.16)

where c2 = E/ρ nd 2 is the ngulr frequency of the virtions. e force t x = 0 is then

fn = ES
du
dx
∣
x=0

e1 = ES (u1 ⋅ e1 − u0 ⋅ e1 cos( ℓ/c)
sin( ℓ/c) ) e1, (2.17)

whence the fundmentl interction mtrices hve the form

AC
= −

ES
c
⎛⎝cot( ℓ/c) 0

0 0
⎞⎠ nd BC

=
ES
c
⎛⎝csc( ℓ/c) 0

0 0
⎞⎠ . (2.18)

e fundmentl interction mtrices for  non-inertil lttice link cn e otined from (2.18)
y tking the limit s c→∞ (ρ → 0). In this cse the fundmentl interction mtrices tke the
prticulrly simple form

AC
= −

ES
ℓ

⎛⎝1 0
0 0
⎞⎠ nd BC

=
ES
ℓ

⎛⎝1 0
0 0
⎞⎠ . (2.19)

2.2.4 Elastic in-plane motion: Central and torsional interactions

Consider the thin elstic rod discussed in section 2.2.3 connecting the two end points. In ddi-
tion, locted t ech end point is  torsionl spring of stiffness τ. If the elstic rod is rigid in the
trnsverse direction (e2) nd connected to the nodes t x = 0 nd x = [ℓ, 0]T y pin joints, then
for smll trnsverse displcements u0 ⋅ e2, the torsionl spring exerts  torque T = −τu0 ⋅ e2/ℓ on
the rod. us,the fundmentl interction mtrices re then

ATS
= −
⎛⎝ ES cot( ℓ/c)/c 0

0 −τ/ℓ
⎞⎠ nd BTS

=
⎛⎝ ES csc( ℓ/c)/c 0

0 τ/ℓ
⎞⎠ . (2.20)

is type of interction hs een exmined in previous works in the frmeworks of homogeni-
stion theory, see 102, 107, 111 mong others, nd is studied here in contrst to the Euler-
Bernoulli interction which follows this section.

2.2.5 Elastic in-plane motion: Euler-Bernoulli interactions

Consider the longitudinl nd lexurl virtions of the thin rod discussed in the previous sec-
tion. e longitudinl displcement mplitude u(x) is still governed y the time-hrmonic wve
eqution (2.16). e trnsverse mplitude w(x) is governed y the Euler-Bernoulli em equ-
tion (see 53, mong mny others)

( d4

dx4
−

2

2 )w(x) = 0 (2.21)

w(0) = u0 ⋅ e2, w(ℓ) = uℓ ⋅ e2, w′′(0) = u0 ⋅ e3, w′′(ℓ) = uℓ ⋅ e3, (2.21)
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e2

Figure 2.3: A segment of n Euler-
Bernoulli em, sujected
to sher forces nd end-
ing moments. Notice the
reltionship etween the
directions of the forces
nd moments.

where, in this cse, 2 = EI/(ρS). e displcement mplitudes t the end points re denoted
y un, up ∈ C3 respectively. In prticulr, ua = [u(a),w(a),w′′(a)]T. e second derivtive
of the trnsverse displcement represents the curvture of the em out e3. Hence, the irst
two components of the vector re the rectiliner displcement long e1 nd e2, whilst the third
component is the rottion out e3. e ending moment (out e3) t x = 0 is then

EIw′′(0) = EI 2 cos ℓ − cosh ℓ

cos ℓ cosh ℓ − 1
up ⋅ e2 + EI 2 sinh ℓ − sin ℓ

cos ℓ cosh ℓ − 1
up ⋅ e3

+ EI 2 sin ℓ sinh ℓ

cos ℓ cosh ℓ − 1
un ⋅ e2 + EI

cosh ℓ sin ℓ − sinh ℓ cos ℓ

cos ℓ cosh ℓ − 1
un ⋅ e3,

(2.22)

with =
√ / . Similrly, the sher force (long e2) t x = 0 is

EIw′′′(0) = −EI 3 sin ℓ + sinh ℓ

cos ℓ cosh ℓ − 1
up ⋅ e2 + EI 2 cosh ℓ − cos ℓ

cos ℓ cosh ℓ − 1
up ⋅ e3

+ EI 3 cosh ℓ sin ℓ + cos ℓ sinh ℓ

cos ℓ cosh ℓ − 1
un ⋅ e2 + EI 2 sinh ℓ sin ℓ

cos ℓ cosh ℓ − 1
un ⋅ e3.

(2.22)

For lttices with Euler-Bernoulli links where the sher forces nd ending moments couple, it
is importnt to understnd the orienttion of the lods. In prticulr, the ppliction of  pos-
itive (negtive) ending moment to n element of the rod genertes  negtive (positive) sher
lod, s illustrted in igure 2.3. Amore detiled discussion of the reltionship etween ending
moments nd sher forces in Euler-Bernoulli ems cn e found in 53 nd other clssicl text-
ooks. Formlly, the endingmoment nd sher forces t x = ℓ cn e computed nd compred
with those t x = 0 (see equtions (2.22)) to conirm the direction of the forces. In prticulr,

EIw′′(ℓ) = EI 2 cosh ℓ − cos ℓ

cos ℓ cosh ℓ − 1
un ⋅ e2 + EI 2 sinh ℓ − sin ℓ

cos ℓ cosh ℓ − 1
un ⋅ e3

+ EI 2 sin ℓ sinh ℓ

cos ℓ cosh ℓ − 1
up ⋅ e2 + EI

cosh ℓ sin ℓ − sinh ℓ cos ℓ

cos ℓ cosh ℓ − 1
up ⋅ e3,

(2.23)

nd

EIw′′′(ℓ) = −EI 3 sin ℓ + sinh ℓ

cos ℓ cosh ℓ − 1
un ⋅ e2 + EI 2 cos ℓ − cosh ℓ

cos ℓ cosh ℓ − 1
un ⋅ e3

+ EI 2 sinh ℓ sin ℓ

cos ℓ cosh ℓ − 1
up ⋅ e2 + EI 3 cosh ℓ sin ℓ + cos ℓ sinh ℓ

cos ℓ cosh ℓ − 1
up ⋅ e3.

(2.24)
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e fundmentl interctionmtrices re shown in eqution (2.26) on pge 21. It is remrked
tht, s in section 2.2.3, one my otin the clssicl interction mtrix for mssless links y
tking the limit of (2.26) s ρ → 0. For the cse of non-inertil links, the fundmentl interction
mtrices re

AEB
= −

⎛⎜⎜⎜⎝
SE/ℓ 0 0
0 12EI/l3 6EI/l2
0 6EI/l2 4EI/l

⎞⎟⎟⎟⎠
nd BEB

=

⎛⎜⎜⎜⎝
sE/ℓ 0 0
0 12EI/l3 −6EI/l2
0 6EI/l2 −EI/l

⎞⎟⎟⎟⎠
. (2.25)
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2.2.6 ermoelastic lattices

Consider the centrl interction for elstic in-plne motion discussed in section 2.2.3 in com-
intion with the het conduction interction introduced in section 2.2.2. Let the two ends of
 thin elstic mssless conducting rod of length ℓ e exposed to two tempertures Θ0 nd Θℓ.
e therml strin in the rod s  result of temperture distriution θ(x) is T = θ(x), where
is the liner coefficient of therml expnsion. e suscript T denotes therml, s opposed to

elstic, strin. In sence of constrint forces, the xil elongtion of the rod will e

u =
ℓ

∫
0

θ(x) dx, (2.27)

or more explicitly
u = ℓ

Θ0 +Θℓ

2
. (2.28)

us the compressive force required to mintin equilirium is

f = ESℓΘ0 +Θℓ

2
, (2.29)

Comining this therml interction with the elstic response of  thin rod (2.19), the fundmen-
tl interction mtrices re

ATE
= −

ES[1 − ℓ2(Θn +Θp)]
2ℓ

⎛⎝1 0
0 0
⎞⎠ nd BTE

=
ES[1 − ℓ2(Θn +Θp)]

2ℓ
⎛⎝1 0
0 0
⎞⎠ . (2.30)

2.2.7 e rotation matrices

Consider  regulr distriution of lttice points in R2 t positions xm,n, connected y lttice
links. e lod-potentil reltionship etween  lttice point t xm,n nd its nerest neighours
is governed y eqution (2.2). e potentil mplitudes in eqution (2.2) re stted in some
glol sis, wheres the fundmentl interctionmtrices re written in locl coordintes, with
the irst component of the potentil vectors eing ligned long the link xis. Let R(p, q) ∈
SO(n,R) e  rottion mtrix, where n is the dimension of the potentil vector up,q, such tht

xp,q∣xp,q∣ = R(p, q)e1. (2.31)

In other words, R(p, q) sends the Crtesin unit vector e1 to the unit vector which is directed
long the lttice link from xm,n to xm+p,n+q. If up,q is the potentil in glol coordintes, then

RT(p, q)up,q (2.32)

is potentil in locl coordintes. Furthermore, the lod on node (m,n) s  result of potentil
up,q in locl coordintes is

[A p,0 nq + B(1 − p,0 nq)]RT(p, q)up,q, (2.33)
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where p,m is the two-dimensionl Kronecker delt for indices p, m ∈ Z2 such tht p,m =

p1m1 p2m2 . Finlly, in glol coordintes the lod ecomes

R(p, q)[A p,0 nq + B(1 − p,0 nq)]RT(p, q)up,q, (2.34)

whence eqution (2.2) my e written s

∑
(p,q)∈Nn

R(p, q)[A p,0 nq + B(1 − p,0 nq)]RT(p, q)up,q − (i )sInum,n = fm,n. (2.35)

e coefficient of up,q in eqution (2.34) represents the interction mtrix Cp,q deined in (2.2).
It is remrked tht if the fundmentl interction mtrix is  sclr multiple of the identity

mtrix, then since RT(p, q)R(p, q) = I y deinition, nd hence the full interction mtrix will
lso e  sclr multiple of the identity mtrix. Such cses occur for uniform sclr lttices,
where ll lttice points re the sme nd the potentils re sclr.

With the necessry nottion nd preliminry results estlished, the following chpter will
e concerned with the dispersive properties of n elstic tringulr lttice nd in prticulr, ex-
mintion of the effect of distriuted inerti on the effective group velocities of elstic wves.
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Elastic lattices with distributed inertia

M
Clssiclly, mechnicl lttices cn e thought of s  regulr rry of point msses connected y
mssless springs, thin rods, or ems so tht ll of the mss of the lttice is concentrted t the
nodl points. In this sense, tht the lttices re sid to hve non-inertil links. e primry focus
of the present chpter is to exmine the ehviour of lttices where the inerti is distriuted
over the lttice links in ddition to t the nodl points. e ddition of inertil links rings
mny interesting fetures not present in the lttices with non-inertil links. In prticulr, for
lttices with inertil links the deformtion of the links re no longer simply functions of the
displcements t the lttice points, ut lso depend on the frequency of excittion. Moreover, in
contrst to mssless links, inertil links hve their own spectrum of fundmentl modes, which
contriute to the overll dispersive properties of the lttice.
In the present chpter, the effect of dynmic micro-polr interctions on the response of dis-

crete inertil systems outside the stndrd homogenistion regime is e exmined. Severl types
of interction re considered nd  comprison with the erlier work of Mz’y et al. 102 nd
Morozov 107 ismde. Explicit nlyticl formule re derived for the effective group velocities
in the long wvelength limit. e chpter egins with n introduction of the lttice geometry
nd governing equtions. Although only one prticulr lttice geometry is considered, the ides
ndmethods presented herein re entirely generl nd cn eqully e pplied to other regulr lt-
tice geometries nd higher dimensionl lttices. e dispersion eqution is then exmined with
prticulr emphsis plced on the low-frequency, qusi-sttic limit. Effective group velocities
re derived nd homogenised Lmé coefficients re deduced for different types of interctions.
Severl types of lttice interctions re considered where the lttice links correspond to: thin
rods (§ 2.2.3), thin rods with rottionl springs (§ 2.2.4) nd Euler-Bernoulli ems (§ 2.2.5).

3.1 e geometry and governing equations

editomic tringulr lttice inR2 consider in this chpter is shown in igure 3.1. e ditomic
elements consist of the red nd lue msses (see igure 3.1) hving contrsting inertil proper-
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Figure 3.1: editomic tringulr lttice nd its elementry cell shded in grey. e lttice vectors
t1 nd t2 re lso indicted. e vectors e1 = [1, 0]T nd e2 = [0, 1]T re counting
indices.

ties. is prticulr lttice, whilst reltively simple, cn e used to illustrte  rnge of interesting
phenomen. For exmple, the sttic response of such  lttice is isotropic; however, s will e
shown lter in the thesis, t higher frequencies this lttice exhiits strong dynmic nisotropy.
Moreover, the ditomic nture of the lttice llows the dynmic effects of multi-tomic lttices
to e investigted, whilst not gretly overcomplicting the exposition. More importntly, the tri-
ngulr geometry permits investigtion of not only lttices with Euler-Bernoulli links (§ 2.2.5),
ut lso the cse of purely centrl interctions (§ 2.2.3). e tringulr geometry lso llows
convenient investigtion of montomic lttices. For other lttice geometries in R2, the system
is either degenerte if ending moments re neglected (e.g. squre lttices), or cnnot ccom-
modte montomic structures (e.g. hexgonl lttices).
is chpter will del exclusively with in-plne elstic motion, with forces s pplied lods

nd elstic displcements s potentils. In this cse, the interction mtrices re correspond to
stiffnesses. Formechnicl lttices, s = 2 nd (2.1) is simplyNewton’s second lw. It is convenient
to work with non-dimensionl units. erefore, the length of the lttice links s well s the mss
of the lue nodes nd the longitudinl stiffness of the lttice links (ES/ℓ) re tken s nturl
units. Other nturl units will e introduced when convenient. With this in mind, the direct
lttice vectors re t1 = [2, 0]T nd t2 = [1/2,√3/2]T. e position of prticle (m,n) is

xm,n =
⎛⎝2m1 +m2/2 + 2,n

m2
√
3/2

⎞⎠ , (3.1)

nd the sets of nerest neighours re

N1 = {(0, 0), (0, 1), (e2, 0), (−e1 + e2, 1), (−e1 + e2, 1), (−e1, 1), (−e2, 0)}, (3.2)

nd

N2 = {(0, 0), (e1,−1), (e2, 0), (e2,−1), (0,−1), (−e2, 0), (e1 − e2,−1)}. (3.2)
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For the unforced prolem, fn = 0, whence the Fourier trnsformed equtions of motion nd the
dispersion eqution re

σ( , ξ)UFF(ξ) = 0, (3.3)

nd
det σ( , ξ) = 0, (3.3)

where the mtrix σ( , ξ) hs nq-lock entries
σnq( , ξ) = ∑

p∈Nn

{ 2In nq + R(p, q)[A p,0 nq + B(1 − p,0 nq)]R(p, q)Te−ixp⋅ξ} . (3.4)

3.1.1 e dispersion equation and the quasi-static group velocity

Plotting the ( , ξ) solutions of (3.3) results in  two-dimensionl dispersion surfce. e gr-
dient of the dispersion surfce yields the group velocity of Bloch wves trvelling through the
lttice, v( , ξ) = ∇ξ detσ( , ξ). Lter in this chpter the qusi-sttic group velocity, tht is
v( , ξ) for smll nd ∣ξ∣, will e evluted. In prticulr, for smll nd ∣ξ∣ the dispersion
eqution my e formlly expnded in  Tylor series

0 = ∑
∣ ∣≥0
[∂ detσ( , ξ)]∣(0,0) ( , ξ)

!
, where ∂ =

∂ 1

∂ 1

∂ 2

∂ 2
1

∂ 3

∂ 3
3
, (3.5)

nd the multi-index = ( 1, 2, 3) hs een introduced. It is cler from (3.4) nd the fun-
dmentl interction mtrices (2.18), (2.20), nd (2.26) tht for = 0 the only solution to the
dispersion eqution (3.3) is ξ = 0. us, there is no constnt term in (3.5). Moreover, (3.4),
(2.18), (2.20), nd (2.26) re symmetric out the origin with respect to . Hence, the coeffi-
cients of 2n−1 (where n ∈ N) in the expnsion (3.5) must vnish. With the view of otining
two qusi-sttic dispersion surfces, tht is the two conicl coustic dispersion surfces ner the
origin, terms of order up to nd including ∣ ∣ = 4 re kept in (3.5) yielding

0 ∼ a0(ξ) + a2(ξ) 2 + a4(ξ) 4, (3.6)

where an(ξ) re polynomils in ξ of, t most, degree 4 − n. Eqution (3.6) is the qusi-sttic
dispersion eqution, whose positive solutions (i) yield the frequency s  function of wve
vector. e qusi-sttic group velocities my then e found y tking the grdient of (i) with
respect to the wve vector ξ.
In the following sections, three types of interction re considered. edispersion surfces re

presented nd the dispersive properties of the lttice exmined. Expressions for the qusi-sttic
group velocities re derived, from which Lmé prmeters corresponding to  homogenised
plne strin system cn e deduced.

It should e understood tht ll opertors herein re expressed in terms of nturl units. t is, the grdient is
non-dimensionlised y multipliction y the length of the lttice links ℓ.
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3.1.2 A note on numerical solutions of the dispersion equation

Although this thesis is not focussed on numericl nlysis, it is pproprite to riely discuss the
nture of eqution (3.3) nd the difficulties ssocited with inding solutions of the dispersion
eqution numericlly.
In generl, for ixed ξ, eqution (3.3) is  trnscendentl eqution in , the rel solutions of

which yield the frequencies of propgting wves for  given Bloch vector ξ. ese roots my
hve  non-unitry multiplicity nd my coincide with removle singulrities, oth of which
present signiicnt chllenges when serching for roots numericlly. e former property pre-
vents clssicl root rcketing, nd hence those root inding lgorithms which require rcket-
ing. e ltter property presents the ovious difficulty of deling with removle singulrities
numericlly.
For the interctions considered here, the dispersion eqution is sufficiently smooth to e

menle to pproximtion y polynomil expnsion. In prticulr, using the MATLAB li-
rry CHEBFUN 142 eqution (3.3) my e pproximted y n expnsion in Cheyshev
polynomils over  speciied intervl, llowing the roots to e found efficiently. For the Euler-
Bernoulli interction, the commercil inite element sowre ComsolMultiphysics® is lso used
to solve the dispersion eqution using inite elements. is llows independent veriiction of
the CHEBFUN pproximtion for the Euler-Bernoulli interction.
For the cse of non-inertil links, the dispersion eqution (3.3) detσ( , ξ) = 0 need not e

solved directly. From  numericl point of view, it is fr more efficient nd convenient to solve
the eigenvlue prolem y, for exmple, Schur decomposition. However, for the cse of inertil
links it is necessry to solve the dispersion eqution directly.
Consider the lock entries of σ( , ξ) s introduced in (3.4) for non-inertil mtrices nd

ixed ξ. Introducing the squre uxiliry mtrices G = diag[I1,I2, . . . ,IQ] nd H( , ξ), with
nq-lock entries

Hnq( , ξ) = − ∑
p∈Nn

{R(p, q)[A p,0 nq + B(1 − p,0 nq)]RT(p, q)e−ixp⋅ξ} , (3.7)

the equtions of motion (3.3) my e written s

2GUFF(ξ) = H( , ξ)UFF(ξ). (3.8)

e hermitin trnspose of Hn,q( , ξ) is
H†

nq( , ξ) = − ∑
p∈Nn

{[RT(p, q)]† [A†
p,0 nq + B†(1 − p,0 nq)]R†(p, q)eixp⋅ξ} . (3.9)

e rottion mtrices re rel hence,

Hnq( , ξ) = − ∑
p∈Nn

{R(p, q)[A†
p,0 nq + B†(1 − p,0 nq)]RT(p, q)eixp⋅ξ} , (3.10)

If p ∈ Nn then it follows immeditely tht −p ∈ Nq nd further it is cler tht x−p = −xp. Physi-

In this cse, Q = 2.
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clly, this mens tht node (m,n) is connected to node (m + p,n + q) y  lttice link long xp
nd, eqully, node (m+p,n+ q) is connected to node (m,n) y  lttice link long −xp. Hence,

H†
nq( , ξ) = − ∑

p∈Nq

{R(−p, q)[A†
p,0 nq + B†(1 − p,0 nq)]RT(−p, q)e−ixp⋅ξ} , (3.11)

where it is emphsised tht the summtion is now overNq, tht is the set of nodes connected to
node (m + p,n + q) in the elementry cell, rther thnNn (the set of nodes connected to node(m,n)). For plnr rottions (rottions out the x3 xis), R(−p, q) = R(p, q)R̃, where R̃x = −x,
i.e.  rottion y π out the x3 xis. For the fundmentl interction mtrices considered in
the previous section, R̃A†R̃T

= A† = A nd R̃B†R̃T
= B, whence

H†
nq( , ξ) = − ∑

p∈Nq

{R(p, q)[A p,0 nq + B(1 − p,0 nq)]RT(p, q)e−ixp⋅ξ} = Hqn( , ξ). (3.12)

us, for ixed ξ, the squre mtrix H = H(ξ) is norml nd hs N rel eigenvlues (eigenfre-
quencies) nd N linerly independent eigenvectors (eigenmodes), where N is the dimension of
H.

3.2 Central interactions

For centrl lttice interctions, s in section 2.2.3, the in-plne elstic displcement mplitude of
prticle (m,n) is denoted y um,n ∈ C

2. e rottion mtrix is the 2×2 skew-symmetric mtrix

R(p, q) = ⎛⎝cos θp,q − sin θp,qsin θp,q cos θp,q
⎞⎠ , (3.13)

where θp,q is the ngle etween xp,q nd e1. At this point, it is convenient to introduce the non-
dimensionl prmeter η = √ρ, which chrcterises the nturl frequency of longitudinl
virtions in the lttice links . Indeed, η is the eigenvlue of the wve eqution (2.16) which
governs the longitudinl virtion of  thin prismtic rod. e elements of the digonl locks
σ11 nd σ22 of mtrix σ( , ξ) re s follows:

[σjj]11 = mj
2 − 3η cotη + η

2
cos cscη

[σjj]12 = [σjj]21 = η
√
3
2

cos cscη

[σjj]22 = mj
2 − 3η cotη + η3

2
cos cscη

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3.14)

where = k ⋅ T e2 = ( 1 +
√
3 2)/2, T = [t1, t2] is the trnsltion mtrix, nd mj = 1j +m 2j.

Similrly, the off-digonl locks σ12 = σ†21, where (⋅)† indictes the Hermitin trnspose, hve

In the current system of nturl units, the frequency nd density of the lttice links ρ re themselves
non-dimensionl. For deiniteness, the corresponding quntities expressed in dimensionl form re ¯ =√

ES/(m1ℓ) nd ρ̄ = ρm1/(Sℓ), wherem1 is the mss of the lue lttice points in igure 3.1.
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the entries
[σ12]11 = [(e−2i 1l +

e−i + e−i

4
) + 1]η cscη

[σ12]12 = [σ12]21 = −√3e−i + e−i4
η cscη,

[σ12]22 = e−i + e−i

4
3η cscη

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3.14)

where = ξ ⋅ T (e1 − e2) = (3 1 −
√
3 2)/2. e corresponding entries for the cse of mssless

links cn e recovered y tking the limit of (3.14) s η → 0. Doing so yields

[σ11]11 = −3 + cos

2

[σ11]12 = [σ11]21 =
√
3 cos
2

[σ11]22 = −3 + 3 cos
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3.15)

nd
[σ12]11 = [(e−2i 1l +

e−i + e−i

4
) + 1]

[σ12]12 = [σ12]21 = −√3e−i + e−i4
,

[σ12]22 = 3e−i + e−i4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.15)

From (3.6), the following eqution is otined for the qusi-sttic (i.e. smll nd ∣ξ∣) dis-
persion surfces

3(1 +m + 3ρ)2 4 − 9∣ξ∣2(1 +m + 3ρ) 2 +
81
16
∣ξ∣4 = 0, (3.16)

whence the positive solutions re

(1)
C =

3
2

∣ξ∣√
1 +m + 3ρ

, (3.17)

(2)
C =

√
3
2

∣ξ∣√
1 +m + 3ρ

, (3.17)

where m is the mss of the red nodes (see igure 3.1). e corresponding qusi-sttic effective
group velocities re then

v(1)C =
3
2

ξ̂√
1 +m + 3ρ

, (3.18)

v(2)C =

√
3
2

ξ̂√
1 +m + 3ρ

, (3.18)

where ξ̂ = ξ/∣ξ∣. e irst oservtion tht my e drwn from (3.18) is tht the qusi-sttic
group velocities re isotropic. In other words, in the low frequency limit, the wve speeds of
elstic wves trvelling through the tringulr lttice with centrl interctions do not depend
on the direction of propgtion. Secondly, in this low frequency regime, the group velocities
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coincide with the phse velocities ( (i)C ξ̂/∣ξ∣).
e neighourhood of the qusi-sttic limit ( , ξ)→ 0, lso referred to s the long wavelength

limit, is the region in which clssicl homogenistion is pplied. In this regime, the dynmic
response of  micro-structured solid my e treted s  continuum with ppropritely chosen
elstic moduli nd densities. Typiclly, these effective moduli re determined from the sttic
response of the lttice (see 27, 50, 100, 123mong others).
Consider the well known wve speeds for elstic wves in  liner homogeneous isotropic

elstic medium

vp =
√

+ 2
ϱ

, (3.19)

vs =
√

ϱ
, (3.19)

where , nd ϱ re the Lmé constnts nd density respectively. e suscript p nd s in (3.19)
denote the pressure nd sher wve speeds respectively. It is oserved tht v(1)C > v(2)C , hence,
compring (3.18) nd (3.19) it cn e inferred tht v(1)C corresponds to pressure wves nd v(2)C
corresponds to sher wves in the qusi-sttic limit. Moreover, equting v(1)C = vp nd v(2)C = vs
implies = nd hence = 1/4. Further, treting ϱ s the quasi-static effective density of the
lttice, tht is tking ϱ = (1 +m + 3ρ)/√3, equtions (3.18) nd (3.19) imply

= =

√
3
4

. (3.20)

In the long wvelength limit, the mcroscopic density ϱ (sometimes known s the reltive
density) is usully determined y computing the microscopic density of the elementry cell, s
done in 50,127. e totl density of the elementry cell is (1+m+6ρ)/√3 (refer to igure 3.1),
tht is themss of the two prticles nd six lttice links, with the re of the elementry cell eing√
3 = ∣t1 × t2∣. However, considering equtions (3.19) nd (3.18) one is led to the conclusion

tht ϱ = (1 +m + 3ρ)/√3. us, the mcroscopic density otined from tking the sttic limit
of the dynmic system is different to the mcroscopic density otin y purely considering the
distriution of mss in the lttice. In this sense, there is sid to e morphological change to the
sttic group velocity of elstic wves in the lttice.
e morphologicl chnge to the group velocity is  result of the distriution of mss long

the lttice links. For the cse of non-inertil links (ρ = 0), the mcroscopic density otined
from the limit cse of the dynmic system is identicl to the so-clled reltive density otined
from the sttic nlysis. However, for  lttice with inertil links (ρ > 0), the effective mcro-
scopic density otined from the qusi-sttic limit cse of the dynmic system is not equivlent
to the density otined from the sttic nlysis. In prticulr, consider two ditomic tringulr
lttices, identicl in every wy, except tht one lttice hs mssless links connecting lternting
nodes of unit mss ndm = 9 s illustrted in igure 3.1, nd the second lttice hs links of unit
density connecting lterntingmsses of unitmss ndm = 3. In oth cses the totl mss in the
elementry cell is identicl. According to the sttic nlysis, oth lttices hve the sme elstic
moduli nd reltive densities nd therefore hve the sme group velocities. However, ccording
to (3.19) nd the previous discussion, the qusi-sttic limit of the dynmic system predicts dif-
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Figure 3.2: e four dispersion sur-
fces for the ditomic tri-
ngulr lttice with non-
inertil links (ρ = 0) nd
m = 10.

ferent effective group velocities. From the dynmic system, the effective group velocities even in
the quasi-static limit depend on the distriution of inerti in the elementry cell, not simply the
totl mss. Qulittively, the effect of distriuting the mss of the lttice over the lttice links is
to increse the qusi-sttic group velocities, i.e. the higher the proportion of mss in the lttice
links, the higher the group velocity.
For the cse of mssless links (ϱ = 0), the effective mteril properties in the qusi-sttic limit

gree with those lredy in the literture for sttic systems (see, for exmple, 123).

3.2.1 A remark on central interactions and square lattices

At the outset of this chpter it ws remrked tht for some other plnr lttice geometries, con-
sidering only centrl interctions leds to  degenerte system for in-plne mechnicl motion.
For the squre lttice, θp,q in the rottion mtrix (3.13) re integer multiples of π/2 which, for 
montomic squre lttice with mssless links, leds to n interction mtrix of the form

σ( , ξ) = ⎛⎜⎜⎝
2 − 4 sin2 ( 1

2
) 0

0 2 − 4 sin2 ( 2
2
)
⎞⎟⎟⎠ . (3.21)

us, the system decouples nd degenertes into  model of the one-dimensionl wve propg-
tion in two non-intercting chins. In prticulr, the lttice permits Bloch wves of mplitude
u(i)m = [ i,1, i,2]Tei imi with ngulr frequencies (i) = 2 sin i/2 nd i ∈ [0,π). Anlysis of
 squre lttice with inertil links yields  less concise, ut still digonl, interction mtrix.
Hence, the squre lttice with inertil links is lso degenerte when only centrl interctions re
considered.

3.2.2 Dispersion properties and standing waves

Figures 3.2–3.4 show dispersion digrms for the ditomic tringulr lttice with centrl inter-
ctions for  rnge of prmeter vlues. e dispersion surfces re the zero ( , ξ) isosurfces
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Figure 3.3: e irst four dispersion
surfces for the ditomic
tringulr lttice with iner-
til links, for ρ = 1 nd
m = 10.

Figure 3.4: e irst four dispersion
surfces for the ditomic
tringulr lttice with iner-
til links, for ρ = 1 nd
m = 4.
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of the dispersion eqution (3.3), tht is the set {( , ξ) ∶ detσ( , ξ) = 0}. Formlly, the ele-
mentry cell in the reciprocl lttice is the prllelogrm spnned y the principle lttice vectors
b1 = π[1,−1/√3]T nd b2 = 4π[0, 1/√3]T. However, it is convenient to plot the dispersion
surfces of the rectngulr region ξ = [−π,π] × [−5π/(2√3), 5π/(2√3)], which contins n
elementry cell of the reciprocl lttice.
Figure 3.2 shows the dispersion surfces for lttice with non-inertil links. For this prticu-

lr conigurtion (ditomic tringulr lttice with non-inertil links nd centrl interctions),
the dispersion eqution is  qudrtic polynomil in 2 nd s such hs closed form solutions
= (ξ). However, these solutions re cumersome when expressed in the form = (ξ).

Furthermore, for the conigurtions exmined lter it is not possile to otin closed form solu-
tions. Nevertheless, relevnt informtion my e extrcted from the dispersion eqution itself.
Since the dispersion eqution is qudrtic in 2 nd symmetric out = 0, there exists t most
four distinct positive solutions nd hence not more thn four dispersion surfces. Figure 3.2
shows the two cousticl dispersion surfces nd the two opticl dispersion surfces seprted
y  nd gp of inite width. e chrcteristic semi-ininite nd gp for discrete structures
exists ove the highest dispersion surfce.

Some features of the disper-

sion surfaces may by difficult

to discern in the static 2D rep-

resentations presented here.

erefore, 3D MATLAB igure

iles corresponding to these dis-

persion surfaces are provided at

http://dx.doi.org/10.

6084/m9.figshare.746915.

In the vicinity of the origin, the two coustic dispersion sur-
fces re conicl with circulr cross-sections. Hence, in the qusi-
sttic limit the response of the lttice is isotropic, s expected
from the nlysis in section 3.2. e inite-width nd gp is
ounded from elow y n coustic dispersion surfce nd from
ove y n opticl surfce. On the oundry of the nd gp,
the dispersion surfces hve locl mxim nd minim chrc-
terising stnding wves (wves with zero group velocity). e
presence of these sttionry points llow the width of the stop
nd to e estimted.
e mxim of the upper coustic surfce ounding the nd

gp from elow lies t the edge of the elementry cell of the recip-
rocl lttice long b2 − b1, where b1 nd b2 re the sis vectors of the reciprocl lttice. At this
point, ξ = (b2 − b1)/2, the off-digonl lock mtrices σ12 nd σ21 vnish (see equtions (3.15))
nd the dispersion eqution reduces to

[(7 − 2 2
O)(9 − 2 2

O) − 3][(7 − 2m 2
A)(9 − 2m 2

A) − 3] = 0, (3.22)

with solutions 2
A corresponding to coustic modes nd 2

O corresponding to opticl modes,
where 2

A ≤
2
O. It hs een ssumed, without loss of generlity, thtm ≥ 1. e lower ound of

the nd gp is then given ymax{ A}: l =
√
5/mwhere A ≤ l. Similrly, theminim of the

opticl surfces ounding the stop nd from ove occurs t the oundry of the elementry
cell in the reciprocl lttice long the vector b1. Agin, the off-digonl lock entries σ12 nd
σ21 vnish t ξ = b1/2, whence the dispersion eqution ecomes

[(5 − 2 2
O)(3 − 2 2

O) − 3][(5 − 2m 2
A)(3 − 2m 2

A) − 3] = 0. (3.23)
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In this cse, the upper ound of the nd gp is thenmin{ O}: u = 1. us, the inite width
nd gp is deined y the intervlmax{ A} < <min{ O}, or more explicitly

√
5
m
< < 1. (3.24)

For the numericl vlues used to produce igure 3.2, in prticulrm = 10, the intervl is 1/√2 <
< 1, which grees with the position of the nd gp in igure 3.2. us, the width of the

inite nd gp my e controlled y djusting the prmeterm. e position of the nd gp is
determined y the sum of the nodl msses. It is oserved tht the nd gp intervl ecomes
the empty set ifm ≤ 5. us,  minimum contrst in mss is required to mintin  inite-width
nd gp.
e lower ound of the semi-ininite nd gp my e otined y tking max{ O} from

eqution (3.22) to otin ∗

l =
√
5, which gin grees with the position of the nd edge on

the dispersion surfce.
Figures 3.3 nd 3.4 show the irst four dispersion surfces for the ditomic lttice with inertil

links. It is emphsised tht, in contrst with the non-inertil lttices, there is n ininite numer
of dispersion surfces nd only the irst four re shown here. e prmeter vlues re ρ = 1
nd m = 10, nd ρ = 1, m = 4 for igures 3.3 nd 3.4 respectively. e lttice corresponding to
igure 3.3 hs the sme distriution ofmss t the junctions s the non-inertil lttice considered
previously. However, the mcroscopic density of the lttice is incresed s  result of the lttice
links hving unitry density. Figure 3.4 corresponds to  lttice with the sme mcroscopic
density s the non-inertil lttice, ut with  different contrst in mss t the nodes to ccount
for the dditionl mss contriution from the links with unitry density. In oth igures 3.3
nd 3.4, it is oserved tht the inite nd gp of igure 3.2 is no longer present.

3.3 Central and torsional interactions

is clss of interction is similr to the centrl interctions presented in the previous section,
nd ws considered in 102, 107, 111. As in 3.2, the potentil um,n corresponds to the in-plne
elstic displcement mplitudes nd the ssocited rottion mtrix is s deined in (3.13). e
distinction etween this nd the previous interction is chrcterised y n dditionl torsionl
interction etween the links. In prticulr, ech link resists trnsverse motion t the nodes.
Physiclly the interction my e understood in terms of mssless Hooken torsionl springs
which retrd chnges in ngle etween the lttice links (cf. § 2.2.4). In the works of Mz’y et
al. 102, Morozov 107, ndNzrov nd Pukschto 111, this resistnce to trnsverse motion
is referred to s “transverse rigidity” where the force per unit mss etween points x nd y is

F (x, y) = K ⟨u (y) − u (x) , y − x⟩ y − x∥y − x∥2 + L ⟨u (y) − u (x) , (y − x)⊥⟩ (y − x)
⊥

∥y − x∥2 , (3.25)

where (y − x)⊥ denotes the vector perpendiculr (in the right-hnded sense) to y − x. e irst
term corresponds to the centrl interction, whilst the second is the trnsverse interction. It
should e emphsised tht this “transverse rigidity” is not equivlent to the lexurl rigidity (i.e.
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Euler-Bernoulli lexurl stiffness) s it is understood in the engineering literture. Rther, “trans-
verse rigidity” refers to the torsionl spring type interction discussed in section 2.2.4.

Returning to the present work, the elements of the digonl locks σ11 nd σ22 of mtrix
σ( , ξ) re

[σjj]11 = mj
2 − 3(τ + η cotη) + 3τ + η cos cscη

2

[σjj]12 = [σjj]21 =
√
3 cos (η cscη − τ)

2
[σjj]22 = mj

2 − 3(τ + η cotη) + τ + 3η cos cscη
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.26)

e off-digonl locks σ12 = σ∗21 hve the entries

[σ12]11 = [(e−2i 1l +
e−i + e−i

4
) + 1 + 3τ sinη

η
]η cscη

[σ12]12 = [σ12]21 = −√3e−i + e−i4
(η cscη − τ),

[σ12]22 = e−i + e−i

4
(3η cscη + τ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3.26)

where , mj, nd hve the sme deinitions s in (3.14). It is remrked tht the elements of
σ( , ξ) re written in (3.26) re equivlent to those for the centrl interction (3.14) if τ = 0,
tht is if the stiffness of the torsionl springs is neglected. e qusi-sttic dispersion eqution
is

(1 +m + 3ρ)2(3 + 10τ + τ2) 4 − 3∣ξ∣2(1 +m + 3ρ)(3 + 13τ + 13τ2 + 3τ3) 2

+
9
16
∣ξ∣4(3 + 10τ + 3τ2)2 = 0, (3.27)

which hs the positive solutions

(1)
TS
=

√
3
2

√
3 + τ

1 +m + 3ρ
∣ξ∣, (3.28)

nd
(2)
TS
=

√
3
2

√
1 + 3τ

1 +m + 3ρ
∣ξ∣. (3.28)

e corresponding qusi-sttic group velocities re then

v(1)
TS
=

√
3
2

√
3 + τ

1 +m + 3ρ
ξ̂, (3.29)

nd

v(2)
TS
=

√
3
2

√
1 + 3τ

1 +m + 3ρ
ξ̂, (3.29)

where ξ̂ = ξ/∣ξ∣. Compring equtions (3.18) nd (3.29), it is evident tht in the qusi-sttic
limit the qulittive effect of the torsionl springs is  stiffer structure thn tht with only cen-
trl interctions. Assuming, without loss of generlity, tht 0 ≤ τ < 1 gives 1 + 3τ < 3 + τ
nd equtions (3.29) nd (3.29) my e ssocited with qusi-sttic pressure nd sher wves
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respectively. e Lmé prmeters my then e determined s

=

√
3
4
(1 − 5τ) nd =

√
3
4
(1 + 3τ), (3.30)

with the mcroscopic density deined s ϱ = 1 +m + 3ρ s efore. For the specil cse of  ine
isotropic tringulr lttice, Mz’y et l. 102, ch. 20 determined the effective Lmé prmeters
for the sttic cse (s opposed to the qusi-sttic cse considered here) s = 3(K − 5L)/8 nd
= 3(K + 3L)/8, where K nd L re the longitudinl nd trnsverse rigidities per unit re

respectively. e Lmé coefficients derived in 102, ch. 20 re consistent with those derived
here once the difference in normlistion hs een ccounted for.
Agin, s ws the cse for the centrl interctions, it is evident from equtions (3.29) tht

redistriuting the inerti over the lttice links results in  morphological change in the effective
group velocities in the qusi-sttic limit. e dispersive properties re similr to those of the
centrl interction. erefore, the dispersion digrms nd nlysis of the dispersive properties
for this interction re omitted.

3.4 Euler-Bernoulli interactions

For the Euler-Bernoulli interction introduced in section 2.2.5, the three-dimensionl vector
um,n ∈ C

3 now denotes the displcement mplitude with the irst two components correspond-
ing to the in-plne elstic displcement mplitudes, whilst the third component corresponds to
in-plne rottions out the xis perpendiculr to the plne of motion. In this cse, the rottion
mtrix is n ugmented mtrix representing rottion out  single xis in three dimensions

R(p, q) =
⎛⎜⎜⎜⎝
cos θp,q − sin θp,q 0
sin θp,q cos θp,q 0

0 0 1

⎞⎟⎟⎟⎠
. (3.31)

e elements of the lock mtrices σnq re not stted here explicitly. Insted, the reder is re-
ferred to equtions (2.26) nd (3.4) for the form of the lock entries for σ( , ξ).
With reference to eqution (3.6), the qusi-sttic dispersion eqution is

2(1 + 2 )(1 + 18 ) [9(1 + 2 )∣ξ∣2 − 4 2(1 +m + 6ρ)]
× [3(1 + 6 )∣ξ∣2 − 4 2(1 +m + 6ρ)] = 0, (3.32)

whence the positive solutions re immeditely pprent

(1)
EB
=
3
2

√
1 + 2

1 +m + 6ρ
∣ξ∣, (3.33)

(2)
EB
=

√
3
2

√
1 + 6

1 +m + 6ρ
∣ξ∣, (3.33)

where the non-dimensionl prmeter = 2I/(sℓ2) hs een introduced. e qusi-sttic effec-
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tive group velocities re then

v(1)
EB
=
3
2

√
1 + 2

1 +m + 6ρ
ξ̂, (3.34)

v(2)
EB
=

√
3
2

√
1 + 6

1 +m + 6ρ
ξ̂. (3.34)

In contrst to the qusi-sttic group velocities for the centrl interction (3.18), nd the centrl
nd torsionl interction (3.29), the effective density of lttice is equl to themcroscopic density
1 +m + 6ρ. In other words, redistriuting the inerti over the lttice links does not result in 
morphological change in the qusi-sttic group velocities for lttices with the Euler-Bernoulli
interction.
It is lso oserved tht setting = 0 does not recover the cse of centrl interctions. However,

if one considers the governing eqution (2.21), it is immeditely pprent tht the differentil
eqution is singulrly pertured for smll (lrge ). us, one would not necessrily expect
the Euler-Bernoulli interction to correspond to the centrl interction for the cse of = 0.
Moreover, with reference to (2.22) it cn e deduced tht the elements of σ do not converge s
→ 0+ (or, equivlently, → ∞). However for mssless links ( → 0), the governing equ-

tion (2.21) is regulrly pertured (w(iv) = 0) nd the Euler-Bernoulli does indeed correspond
to the centrl interction if oth nd vnish. Hence, the equivlence of the effective group
velocities for the centrl interction (3.18) nd the Euler-Bernoulli interction (3.34) when oth
nd ρ vnish.

3.4.1 Dispersion properties and standing waves

As in section 3.2.2, igures 3.5 nd 3.7 show exmples dispersion digrms for the ditomic
tringulr lttice with the Euler-Bernoulli interction. Figure 3.5 shows the dispersion digrm
for the cse of  ditomic tringulr lttice with non-inertil links. e dispersion digrms for
the cse of  tringulr lttice with inertil links is shown in igure 3.7. Agin, the dispersion
surfces re plotted over the rectngulr region ξ = [−π,π] × [−5π/(2√3), 5π/(2√3)], which
contins the elementry cell in the reciprocl spce.
Compring igures 3.2 nd 3.5, the most striking difference etween the two is the presence

of two reltively lt low frequency dispersion surfces in 3.5. ese surfces correspond to
modes dominted y rottionlmotion. An exmple of one of thesemicopolarmode is shown in
igure 3.6; this mode corresponds to  periodic solution (ξ = 0) for the cse of non-inertil links.
It is pprent from igure 3.6 tht the trnsltionl displcements of the nodes re much smller
thn the rottionl components. Hence, for  simple estimte, the trnsltionl displcement of
the nodes my e neglected. For periodic, purely rottionl motion, the equtions of motion for
the nodes in the elementry cell of the lttice reduce to

Ji∂ttθ(i) = τ(i) − (14 θ(i) + 4 θ(3−i)) , i = 1, 2. (3.35)

Here, the superscript indices lel prticles within the elementry cell nd it is emphsised tht
repeted indices re not summed over. e symols θ(i)nd τ(i) represent the non-dimensionl
ngulr displcement nd torque respectively. For time-hrmonic wves ∂ttθ(i) = − 2θ(i) nd
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Figure 3.5: e six dispersion surfces for the ditomic tringulr lttice with non-inertil Euler-
Bernoull links (ρ = 0) ndm = 10.

Figure 3.6: An exmple of  micopo-
lr mode, superimposed
on the undeformed struc-
ture.

Figure 3.7: A rnge of dispersion surfces for the ditomic tringulr lttice with Euler-Bernoull
inertil links for ρ = 1 ndm = 10.
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Figure 3.8: An exmple of n eigen-
mode where the ems vi-
rte t their fundmentl
frequency nd the nodl
displcements re smll.

in the sence of externl lods τ(i) = 0; the system (3.35) hs non-trivil solutions if nd only
if

det
⎛⎝14 −

2J1 4
4 14 − 2J2

⎞⎠ = 0. (3.36)

e positive solutions for then yield the estimtes for the frequencies of the stnding rottionl
modes:

±

R = ( J1J2 (7J1 + 7J2 ±
√

49 (J21 + J22) − 82J1J2))1/2 . (3.37)

Tking the prmetric vlues used to produced igure 3.5: J1 = 2, J2 = 6, = 0.001 yields
numericl estimtes of +

R = 0.0853 nd −

R = 0.0454, which re in good greement with the
numericl solutions to the full spectrl prolem. In the cse of lttices with inertil links, for low
frequencies nd sufficiently smll vlues of 2ϱ/ , the equtions of motion for pure rottions tke
the form (3.35) to leding order. For the vlues of the prmeters used in igure 3.5 the results
of the inite element computtions re in good greement with the estimtes, FE+

R = 0.0845
nd FE−

R = 0.0452. Usully, tringulr lttices re treted s so-clled truss structures where
the lexurl rigidity of the links is considered negligile nd only centrl interctions re tken
into ccount. However, if the lexurl rigidity of the lttice links is neglected, then these low-
frequency micro-polr modes re lso neglected. us, it is importnt to tke into ccount the
lexurl rigidity of the lttice links of tringulr lttices, even in the low-frequency regime.
With reference to the dispersion digrm of igure 3.5, there exists  inite-width stop nd

for the ditomic lttice with non-inertil links. Using the sme pproch s employed in sec-
tion 3.2.2, the width of the stop nd my e determined. Similrly to the cse of centrl inter-
ctions, the mxim of the upper coustic surfce ounds the stop nd from elow nd lies t
the edge of the elementry cell of the reciprocl lttice long the vector b2 − b1. At this point,
ξ = (b2 − b1)/2, the off-digonl lock mtrices re sprse

σ12 =
⎛⎜⎜⎜⎝

0 0 −3
√
3

0 0 3
3
√
3 −3 0

⎞⎟⎟⎟⎠
= σ†21, (3.38)

nd the digonl locks re

σjj =
⎛⎜⎜⎜⎝
mj

2 − 7/2 − 27 √
3(1 − 6 )/2 0√

3(1 − 6 )/2 mj
2 − 9/2 − 21 0

0 0 Jj 2 − 10

⎞⎟⎟⎟⎠
, for j = 1, 2, (3.39)
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where mj = 1j + m 2j nd Jj = 1j + J 2j. Assuming tht σ11 nd σ22 re not simultneously
singulr , the eigenvlue prolem my e recst thus :

(σii − σ12σ−1jj σ†12)uFFi = 0, for i = 1, 2 nd i ≠ j, (3.40)

ndwhere j is chosen such thtdet σjj ≠ 0. It is emphsised tht repeted indices re not summed
over. e mtrix product σ12σ−1jj σ

†
12 hs the sme distriution of zeros s (3.39). Hence, the

trnsltionl nd micropolr modes decouple nd the frequencies of the two micropolr modes
cn immeditely e otined from the eqution [σii − σ12σ−1jj σ†12]3 = 0. Explicitly, the eqution
for the frequency of these micropolr modes is

Jj 2 − 2 (5 + 18
mi 2 − 3 − 30

) = 0, for i = 1, 2 nd i ≠ j. (3.41)

For thin ems, the typicl ending stiffness is much smller thn the longitudinl stiffness of
the links; in the nottion used herein this corresponds to 0 < ≪ 1. For exmple, for  em of
unit length nd circulr cross-sectionwith slenderness rtio r/l = 0.1, the prmeter = 0.0025.
Hence, for smll eqution (3.41) hs the solution ≈

√
10 /Jj. us, these stnding wves

correspond to the low frequency micropolr modes mentioned erlier.
Hving estlished tht the rottionl nd trnsltionl modes decouple, tht is [uFFi ]j is in-

dependent of [uFFi ]3 for i, j = 1, 2, it is sufficient to consider the prolem for the reduced lock
mtrices σ̃ij, which hve elements [σ̃ij]kl, for k, l = 1, 2. In this cse, the reduced off-digonl
mtrices vnish nd the dispersion eqution reduces to det σ11 det σ22 = 0, or more explicitly

(5 + − 2)(3 + 30 − 2)(5 + −m 2)(3 + 30 −m 2) = 0. (3.42)

Assuming, without loss of generlity, thtm > 1 the prenthesised terms involvingm correspond
to the coustic modes; whence the lower ound of the nd gp is

l =max{√(5 + 18 )/m,
√(3 + 30 )/m}. (3.43)

e minim of the opticl dispersion surfce ounding the inite nd gp from ove occurs
t the edge of the Brillouin zone long b1. At ξ = b1/2, the lock mtrix entries of σ hve the
sme structure s ove, lthough the vlues re indeed different. Hence, following the sme
procedure the upper ound of the inite nd gp is

u =min{√1 + 18 ,
√
3 + 6 } . (3.44)

For smll , speciiclly for 0 < < 1/6, the width of the inite nd gp is deined y the intervl
√

5 + 18
m

< <
√
1 + 18 . (3.45)

Equivlentlym ≠ 1 nd/or J1 ≠ J2.
Since σ11 nd σ22, nd hence their inverses, re hermitin, the product σ12σ−1jj σ†12 is lso hermitin.
e rtio of em rdius to length.
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Compring inequlities (3.24) nd (3.45), it is oserved tht (for smll ) the nd gps re
of pproximtely the sme width nd occur t the sme frequencies s for the cse of centrl
interctions.
Figure 3.7 shows the dispersion digrm for the tringulr ditomic lttice with inertil links.

e dispersion digrm shres mny fetures with the digrm for the lttice with non-inertil
links (igure 3.5). However, igure 3.7 is distinguished from igure 3.5 y the presence of severl
densely pcked, reltively lt surfces in wht ws the nd gp in igure 3.5. ese surfces
correspond to modes where the nodl displcements re smll, or indeed zero; n exmple of
such  mode is shown in igure 3.8. ese lt dispersion surfces re ssocited with the fund-
mentl modes of the lttice links; n estimte of their loction cn e otined y considering n
isolted Euler-Bernoulli em with clmped ends. Such systems hve een treted extensively
in the literture (see the ook y Grff 53, mong others);  rief discussion is included here
for completeness.
Consider the oundry vlue prolem for the non-dimensionl time-hrmonic delection of

n Euler-Bernoulli em of unit length, clmped t oth ends

( d4

dx4
− 4) y(x) = 0, x ∈ [0, 1], (3.46)

nd
y(0) = y(1) = y′(0) = y′(1) = 0, (3.46)

where 4
= 2 2ρ/ . e well known fmily of solutions is yn = A1[cos( nx) − cosh( nx)] +

A2[sin( nx)−sinh( nx)], where n stisfy the trnscendentl eqution cos n cosh n = 1, with
n ≠ 0. e irst eigenfrequency is then

(1)
em ≈ 4.730

2
√

2ρ
, (3.47)

which for the prmeter vlues used to produce igure 3.7 yields (1)
em ≈ 0.5. In igure 3.7 there

re severl pproximtely lt surfces which lie etween = 0.4932 nd = 0.5044.
Consider the Dirichlet oundry vlue prolem for the non-dimensionl time-hrmonic lon-

gitudinl displcement mplitude of  thin rod of unit length

( d2

dx2
−

2

ρ
) y(x) = 0, x ∈ [0, 1], (3.48)

nd
y(0) = y(1) = 0. (3.48)

In this cse, the spectrum is n = nπ/√ρ for n ∈ N. us, for the prmeter vlues used here
(ρ = 1 nd 0 < ≪ 1), the lowest frequency resonnt longitudinl mode is much higher thn
the irst lexurl mode. Indeed, the resonnt frequency for the irst longitudinl mode of  thin
rode lies eyond the frequency rnge shown in igures 3.2-3.5, nd 3.7.
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3.5 Remarks

Conventionlly, tringulr lttices re treted s so-clled truss structures where lexurl defor-
mtions re neglected nd only centrl interctions re considered. However, the nlysis pre-
sented in this chpter indictes tht cre is required if importnt fetures re not to e neglected.
If the lexurl rigidity of the links is smll compred with their longitudinl stiffness, then c-
counting for lexurl deformtions offers  smll correction to the width of the inite nd gp
(see inequlities (3.24) nd (3.45)). However, if the lttice links re inertil then the nd gp
ecomes populted with lexurl stnding modes. Moreover, for inertil links in the low fre-
quencies regime, neglecting lexurl deformtions results in erroneous estimtes for the long
wvelength group velocities. Finlly, the two low frequency micropolr modes (evidenced y
the lt low frequency surfces in igures 3.5 nd 3.7) will e sent if lexurl deformtions re
neglected.
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Chapter Four

Dynamic anisotropy and focusing in
discrete media

M
e previous chpter ws concerned with the low frequency response of two dimensionl lt-
tices. In the current chpter, the inite frequency response is considered. In prticulr, where in
the previous chpter it ws demonstrted tht the qusi-sttic response of the tringulr lttice
ws isotropic, it is demonstrted tht for higher frequencies the response is strongly nisotropic.
It is in this sense tht lttices re sid to posses dynamic anisotropy. e present chpter exm-
ines the diffrction of time hrmonic ields y n ininite lttice inR2 nd is developed s follows.
First, the dynmic response of oth squre nd tringulr sclr lttices will e nlysed, with
emphsis on Green’s functions nd the diffrction ptterns generted y  point lod. e cur-
rent chpter is lso concerned with the dynmic nisotropy of discrete elstic structures in the
full vector setting of plnr elsticity. e nlysis is focused on the directionlly loclised wve-
forms, which correspond to sddle points on the dispersion surfces. Here, the term “loclised”
is used in  similr sense to tht used in severl ppers (see, for exmple 5,121) to descrie n
effect where the ield is predominntly conined to one or more inite width “ems” with dif-
fering orienttions. Finlly,  design for  structured elstic sl of inite width, which possesses
focusing properties for wves within  certin frequency rnge, is developed.

4.1 Primitive waveforms in scalar lattices

Consider the out-of-plne displcement of  regulr rry of uniform point msses in R2 con-
nected y mssless Hooken springs nd loded t  single lttice point. e governing equ-
tions ofmotion re those descried in section 2.1 with the fundmentl interctionmtrix given
in section 2.2.1. In this section, two different montomic lttice geometries will e considered:
squre nd tringulr.
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4.1.1 e square monatomic lattice

.

. . . . .

. . . . .

. . . . .
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(m − e2)
.
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(m − e1 + e2)
.

(m + e1 − e2)

.

(m − e1 − e2)

Figure 4.1: e montomic squre lttice nd its elementry cell (shded in grey). e lttice vec-
tors t1 (in red) nd t2 (in lue) re lso indicted. e vectors ei re deined s follows:
e1 = [1, 0]T nd e2 = [0, 1]T.

Consider irst, the uniform squre lttice s illustrted in igure 4.1. e lttice consists of 
regulr rry of unitry point msses connected y liner springs of unit stiffness. e ssump-
tion of uniformity is purely for convenience ndmy ewekenedwithout signiicnt dditionl
work. e lttice is uniform nd the prticles re indistinguishle; the lttice nodes re lelled
y the doule index m ∈ Z2 (see § 2.1). Let the lttice e forced hrmoniclly t  single point.
Given the uniformity of the lttice, the forcing point is chosen s the origin m = 0 for conve-
nience ndwithout loss of generlity. e displcement ield is then given y the Fourier Integrl
(see eqution (2.7) in § 2.1)

um =
1∥R∥∬

R

exp(im ⋅ ξ)
σ( , ξ) dξ, (4.1)

where σ( , ξ) = 2 − 4+ 2(cos 1 + cos 2). e sclr σ is even with respect to ξ nd the region
R is symmetric out i = 0 (i = 1, 2), hence the odd terms in exp(im ⋅ ξ) do not contriute to
the integrl nd the Lttice Green’s Function my e expressed s

um =
1
π2 ∬
[0,π]2

cos(m1 1) cos(m2 2)
σ( , ξ) dξ. (4.2)

Alterntive representtions of the Lttice Green’s function nd detiled nlysis in vrious fre-
quency regimes my e found in mny texts, including 32, 97, 99, 109, in ddition to lter in
the present text. For certin restrictions of one, ut not oth, of the integrls in (4.2) my e
evluted in closed form; lterntively, the integrl my e converted to  semi-ininite integrl
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Chapter Four Dynamic anisotropy and focusing in discrete media

over the positive semi-xis. However, for the purposes of this chpter it suffices to consider the
Lttice Green’s function in the form (4.2).
e dispersion surfce (the zero isosurfce {( , ξ) ∶ σ( , ξ) = 0}) is shown in igure 4.2

nd hs  numer of interesting fetures. In prticulr, it is oserved tht within the Brillouin
zone the surfce hs onemximum, with the four points t the corners of the Brillouin zone ech
contriuting one qurter of  mximum, nd two sddle points, with the four points lelled ±A
nd ±B ech contriuting one hlf of  sddle point. e sddle points ll lie t the frequency
= 2, for which the slowness contour is shown in igure 4.2 in ddition to its representtion

on the dispersion digrm 4.2. e sddle points lie t the vertices of the rhomic slowness
contour. Figure 4.2 is fully consistent with those igures presented in 5, 121.

−2

0

2

−2

0

2

0

0.5

1

1.5

2

2.5

3

ξ
1

ξ
2

ω

−A
−B

B
A

(a)

ξ
1

ξ 2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(b)

Figure 4.2: ()e dispersion surfce for the squre cell lttice together with the projections of the
level curves onto the = 0 plne. () e slowness contour t the frequency coincid-
ing with the sddle points, = 2. e sddle points lie t the vertices of the rhomic
slowness contour.

e opticl nlogue of (4.2) is the so-clled diffrction integrl 10, 52, 118. In optics, the
term aberration is used to descrie perturtion of the wve front wy from its idel shpe s
 result of  lens or diffrction grting 10, 52. e aberration function is used to quntittively
chrcterize the phse perturtion t the exit pupil plne. edistinction is oenmde etween
two types of errtion: chromatic ndmonochromatic. e ltter is ttriuted to the geometry
of the lens or grting whilst the former results from the dispersive properties of the lens. In
the cse of  uniform mechnicl (or conductive) lttice, there is no such distinction since the
dispersive properties rise s  result of the geometry of the medium. Hereiner, the term
aberration is used to descrie the fetures of the ield resulting from the dispersive properties of
the lttice.
edisplcement ield for the squre cell lttice when the forcing frequency coincideswith the

frequency of the sddle points = 2 is shown in igure 4.3. e ield is determined y computing
(4.2) numericlly using the Guss-Kronrod qudrture lgorithm in MATLAB® for ech m in
 given rnge. e displcement ield is consistent with the star shaped contours oserved in
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Figure 4.3: e displcement ield of the squre cell lttice for  forcing frequency of = 2.
e colour represents the nti-plne displcements of the msses, from lue (miniml)
through green (zero) to red (mximl)

references 5, 90, 91, 121. However,  novel feture is oserved: the rhomic errtion in the
vicinity of the point source. is feture ws not pprent in the previous pulictions s only
equi-displcement contours were plotted in the cse of references 5, 90, 91 or ll points over
 given threshold were plotted with equl weight 121. e effect is sensitive to perturtions
in the frequency round the sddle points ±A nd ±B in igure 4.2. For exmple, chnging the
frequency y s little s 0.01 signiicntly lters the diffrction pttern shown in igure 4.3. is
sensitivity cn e understood in terms of the group velocity which vries rpidly in the vicinity
of the sddle points. Moreover, the phenomen of star shaped contours nd aberrations is closely
linked with the nture of the slowness contours. In prticulr, consider the slowness contour in
igure 4.2. It is oserved tht the direction (ut not the mgnitude) is piecewise constnt over
the Brillouin zone. ese constnt directions, corresponding to the normls of the sides of the
rhomus, re precisely those of the four rys shown in igure 4.3. e group speed is mximl
t the centre of ech side of the rhomus nd is zero t the vertices.

A stationary point of a different kind

Consider the dispersion eqution σ( , ξ) = 2−4+2(cos 1+cos 2) = 0. Since ∣ cos 1+cos 2∣ ≤
2 ∀ ξ, there exist no solutions for 2 > 8; hence the squre lttice possesses  semi-ininite stop
nd for frequencies 2 > 8 where no propgting solutions exist. For the cse of free oscill-
tions, Mrtin 99 found tht there exist solutions of the form um = (−1)m1+m2 . ese so-clled
lattice waves exist t the resonant frequency = 2

√
2 which demrctes the pss nd nd the

stop nd, i.e. these re the mxim in igure 4.2. A similr phenomenon is oserved in the
cse of forced excittion. In prticulr, igure 4.4 shows  plot of the ield for such  resonnt fre-
quency. e white (lck) nodes indicte mximl positive (negtive) displcement. In direct
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Figure 4.4: Lattice waveswhere the origin of the lttice is forced t the resonnt frequency = 2
√
2.

White nodes indicte mximl positive displcement, while lck nodes correspond to
mximl negtive displcement.

nlogy to the lttice wves descried in 99, the displcement of the nodes cn e pproxi-
mtely descried y u(m) ≈ (−1)m1+m2u(0). Here, no preferentil direction of propgtion is
oserved.

4.1.2 e triangular cell lattice
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.
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(m + e1 − e2)

Figure 4.5: e montomic tringulr lttice nd its elementry cell (shded in grey). e lttice
vectors t1 (in red) nd t2 (in lue) re lso indicted. e vectors ei re deined thus:
e1 = [1, 0]T nd e2 = [0, 1]T.

As  further exmple, the tringulr ltticewith sis vectors t1 = [1, 0]T nd t2 = [1/2,√3/2]T
s illustrted in igure 4.5 is considered. In this cse, the physicl ield hs the representtion

um =
√
3

4π2∬
R

cos[(m1 +m2/2) 1] cos[n√3 2/2]σ−1(ξ; )dξ , (4.3)

where σ(ξ; ) = 2−6+2 cos 1+4 cos( 1/2) cos(√3 2/2) ndR = [0, 2π]× [0, 2π/√3]. e
dispersion surfce, together with the slowness contour for the frequency = 2

√
2 correspond-
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Figure 4.6: () e dispersion surfce for the tringulr cell lttice nd () the slowness contour t
the frequency coinciding with the sddle points, = 2

√
2. e sddle points lie t the

vertices of the hexgon.

ing to the position of the sddle points (±A, ±B nd ±C), is shown in igure 4.6. As in the cse of
the squre lttice, the direction of the group velocity is piecewise constnt long the sides of the
hexgon, with the sddle points locted t the vertices. Here, six preferentil directions of prop-
gtion (directions of mximl group velocity) corresponding to the perpendiculr isectors of
the six sides re clerly identiile. e displcement ield for the tringulr lttice when the
forcing frequency is = 2

√
2 is shown in igure 4.7. As expected, the str shped wveforms

with the six rys corresponding to the six discrete directions of group velocity, s indicted y
the slowness contour in igure 4.6, re evident. Figure 4.7 is consistent with the str shped
contours shown in 5, 121.
e determintion of the position of the semi-ininite stop nd requires  little more tten-

tion thn in the cse of  squre lttice. With reference to the dispersion eqution 2 − 6 +
2 cos 1 + 4 cos( 1/2) cos(√3 2/2) = 0, the nd edge corresponds to the glol minimum of
the function f(ξ) = 2 cos 1 + 4 cos( 1/2) cos(√3 2/2). Since the dispersion eqution is pe-
riodic with respect to the elementry cell of the reciprocl lttice, ξ my e restricted to the
prllelogrm spnned y the two primitive vectors b1 = π[2,−2/√3]T nd b2 = [0, 4π/√3]T
in the reciprocl lttice. e irst prtil derivtives, Hessin determinnt, nd second prtil
derivtive with respect to 1 re then

∇f(ξ) = −2⎛⎝sin 1 + cos(√3 2/2) sin( 1/2)√
3 cos( 1/2) sin(√3 2/2)

⎞⎠ , (4.4)

H(ξ) = 3
2
{cos 1 + cos(√3 2) + 2 [cos( 1

2
) + cos(3 2

2
)]} , (4.4)

nd
∂2f
∂

2
1
= −2 cos 1 − cos( 1

2
) cos(√3 2

2
) . (4.4c)

Within the irreducile Brillouin zone, the function f(ξ) hs sttionry points t the following
positions

Ξ = {[0, 0]T, [π,π/√3]T, [4π/3, 0]T}. (4.5)

Anlysis of the signs of the Hessin determinnt nd second derivtives t the sttionry points
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Figure 4.7: e mgnitude of the out-
of-plne displcement
ield of the tringulr
cell lttice for  forcing
frequency of = 2

√
2.

e colour scle runs
from lue (zero) to red
(mximl).

revel tht the irst is  locl mximum of f(ξ), the second is  sddle point, whilst the third is
 locl minimum. Indeed, since these re the only sttionry points in the irreducile Brillouin
zone of the reciprocl lttice, the locl extrem re glol extrem. us, the mximum vlue
of which corresponds to the minim of f(ξ) is = 3. Hence, there exists  semi-ininite stop
nd for frequencies > 3, whilst propgting solutions re supported for 0 < ≤ 3. e sddle
point frequency, corresponding to the sddle points of f(ξ), is = 2

√
2 s stted erlier. Finlly,

s expected, the minimum vlue of , corresponding to the mxim of f(ξ) is = 0.

4.2 Diffraction in elastic lattices

e section is devoted to the nlysis of the vector elsticity nlogue of the prolems presented
in the previous section. e in-plne elsticity prolem is distinct from the sclr system nd
presents  numer of novel fetures nd chllenges. In prticulr, it is demonstrted tht the
orienttion of the pplied force cn e used to select one or more of the preferentil directions
deined y the dispersive properties of the lttice. In the sclr cse, the ppers 5, 121 hve
focused on the preferentil directions, primitive waveforms, nd str shped contours t resonnt
(sddle point) frequencies. As mentioned in the previous section, these primitive wveforms
nd ssocited effects re sensitive to perturtion in the frequency round the sddle points.
In contrst to the sclr prolem, when working in the frmework of vector elsticity it will e
shown tht similr str shped wveforms exist t frequencies other thn resonnt frequencies.
In other words, the presence of str shped wveforms is not necessrily linked to the existence
nd position of sttionry points on the dispersion surfces.
e concept of preferentil directions of propgtion in discrete elstic structures hs een

demonstrted in 29, which uilt on the erlier work for the structured continuum 81 nd for
the discrete interfce emedded within the continuum 16. e three ppers 16, 29, 81 lso
illustrte the effects of iltering nd focusing of plne elstic wves nd the formtion of imge
points.
Consider  regulr tringulr rry of uniform point msses rrnged in R2 s depicted in

igure 4.5. e point msses re connected y Euler-Bernoulli ems of constnt density (see
§ 2.2.5 nd 3.4). In this cse, the 3 × 3 Hermitin mtrix σ( , ξ) is s introduced in section 3.4
using equtions (2.26) nd (3.4). e displcement mplitude um ∈ C3 is  three-dimensionl
vector with the irst two components corresponding to trnsltionl motion nd the third de-
scriing micropolr rottions. e ield hs the sme representtion s (4.3) nd the dispersion
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Property Vlue

Young’s Modulus (E) 200 GP
Second Moment of Inerti (I) 349 × 10−8 m4

Cross Sectionl Are (S) 2.12 × 10−3 m2

Bem Density (ϱ̄) 7850 kg m−2

Bem Length (ℓ) 1 m
Nodl Mss (m) 91.531 kg
Polr Mss Moment of Inerti (̄J) 66.568 kg m2

Table 4.1: e mteril nd geometricl
prmeters used to produce
the dispersion surfces nd i-
nite element computtions.

eqution is det σ( , ξ) = 0.
4.2.1 Dispersive properties
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Figure 4.8: eirst three dispersion surfces for the tringulr lttice ofmsses connected y Euler-
Bernoulli ems in R2.

e dispersion surfces for the ininite lttice system re shown in igure 4.8. In this cse,
it is convenient to work with dimensionl units. e mteril prmeters used to produce the
dispersion surfces re detiled in tle 4.1. e irst surfce, which is reltively lt, is ssocited
withmicropolr modes (see § 3.4.1 nd in prticulr p. 37). Here the focus will e on the second
nd third surfces, which contin sddle points. Figure 4.9e shows the slowness contour for
the resonnt frequency f = 615Hz. e contour exhiits the sme chrcteristic hexgonl
shpe s the slowness contour of the sclr tringulr lttice (see igure 4.6) suggesting tht
the chrcteristic shpe of the slowness contours re  feture of the geometry of the lttice. It
is emphsised tht the governing equtions for vector elsticity re signiicntly different from
those of sclr prolems. As in the sclr cse, the six preferentil directions cn e identiied s
the normls to the edges of the hexgon, lthough here, the slowness contour is rotted y π/2
compred with the sclr cse. Now consider igure 4.9, which shows the slowness contours
for the frequency f = 323Hz. Here  similr hexgonl slowness contour is oserved, with the
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−2 0 2

−5

−4

−3

−2

−1

0

1

2

3

4

5

ξ
1

ξ 2

(d) 500 Hz

−2 0 2

−5

−4

−3

−2

−1

0

1

2

3

4

5

ξ
1

ξ 2

(e) 615.8 Hz (sddle point)

Figure 4.9: e slowness contours for  rnge of frequencies strting t 150 Hz () nd ending t
the sddle point frequency ner the nd edge (e). e solid lines correspond to the
lower conicl surfce, whilst the dotted lines correspond to the upper conicl surfce.
e elementry cell in the reciprocl spce is shded in grey.

sme orienttion s for the sclr cse. However, f = 323Hz does not correspond to  resonnt
frequency, tht is there re no sddle points on the dispersion surfces which coincide with f =
323Hz. Nevertheless, the six preferentil directions of propgtion re clerly visile. is is in
contrst to the sclr prolems considered erlier in this chpter (§ 4.1) nd in the ppers 5,121,
where these polygonl-like slowness contours were ssocited exclusively with sddle points.

e forced problem in elastic structured media.

Following the structure of the previous section on sclr lttices, the forced in-plne prolem is
now considered. In prticulr, the montomic uniform tringulr lttice descried ove is su-
jected to  concentrted lod (either liner or torsionl) t  single lttice point. e tringulr
lttice is chosen ecuse it is isotropic in the long wvelength limit 29. Here, the emphsis is
on the dynmic nisotropy t higher frequencies nd in prticulr on the existence of loclised
primitive wveforms, in direct nlogy to the sclr cse previously considered. e inite ele-
ment sowre COMSOL Multiphysics® is used to determine the displcement ield. e lttice
nodes on the oundry re ixed nd PML-like soring oundry conditions re pplied to
the lttice links in the vicinity of the oundry nodes in order to reduce relection. e hr-
monic disturnce is generted in  similr fshion s in the sclr cse: y prescriing  time-
hrmonic displcement of mgnitude 10−6m in  given direction or  time-hrmonic rottion
t node (0, 0). e mteril prmeters re s detiled in tle 4.1. A selection of the displce-
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ment mplitude ields for vrious forcing orienttions nd frequencies re shown in igure 4.10.
Figures 4.10, 4.10c nd 4.10e correspond to n excittion frequency of 323Hz for which the
slowness contours re shown in igure 4.9. Similrly, igures 4.10, 4.10d nd 4.10f correspond
to  excittion frequency of 615.8Hz for which the slowness contours re shown in igure 4.9e.
It is oserved tht the slowness contours of igure 4.9e correspond to the sddle point on the
upper dispersion surfce of igure 4.8. e other frequency of 323Hz (see igure 4.9) is not 
sddle point frequency. However, the slowness contour corresponding to the lower dispersion
surfce hs six segments with lmost zero curvture, nd the norml vector to this slowness
contour shows the preferentil directions t this prticulr frequency. e slowness contours
for the sddle point t 428.67Hz on the lower dispersion surfce re shown in igure 4.9c; the
contour corresponding to the lower dispersion surfce contins corner points ut the curvture
of the smooth prts of the oundry is lrge.

(a) Horizontl excittion (323Hz) (b) Horizontl excittion (615.8Hz)

(c) Verticl excittion (323Hz) (d) Verticl excittion (615.8Hz)

(e) Torsionl excittion (323Hz) (f) Torsionl excittion (615.8Hz)

Figure 4.10: Finite element computtions showing the mgnitude of the rel displcement mpli-
tude ields for different types of pplied lod. For igures (),(c) & (e), the excittion
frequency is 323Hz nd 615.8Hz in (),(d) & (f). e colours indicte the mgnitude
of the displcement ield from lue (zero) to red (mximl). e white regions re
those regions where the displcement ield is outside the rnge.

edisplcement ields hve  numer of interesting fetures. Firstly, onemy oserve the so-
clled primitive waveforms lredy demonstrted in the sclr cse 5, 90, 91, 121. However, in
contrst to the sclr cse, the presence of these str shped contours (or loclised wveforms) is
not ssocited with the resonnt frequencies s identiied in 5,121. In the present prolem, the
loclised wveforms re ssocited with frequencies where the slowness contours exhiit strong
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(a) Horizontl excittion (b) Verticl excittion (c) Torsionl excittion

Figure 4.11: Finite element computtions showing the mgnitude of the displcement mplitude
ields for different types of the pplied force. e excittion frequency is 428.67 Hz,
which coincides with the sddle point frequency for which the slowness contours re
shown in igure 4.9c. e colours indicte the mgnitude of the displcement ield
from lue (zero) to red (mximl). e white regions re those regions where the dis-
plcement ield is ove the rnge.

preferentil directions (see igure 4.9). For the two frequencies considered, the six preferentil
directions of propgtion corresponding to the outwrd unit normls my e identiied. It is
emphsised tht only igures 4.9c nd 4.9e correspond to  resonnt frequency nd yet the lo-
clised wveforms persist t the non-resonnt frequency of 323 Hz due to the shpe of slowness
contour in igure 4.9. In contrst to the sclr lttice, where the pplied loding ws nti-plnr
nd hence isotropic, the in-plne elsticity prolem llows the freedom to choose ny in-plne
direction (nd type) of the pplied loding. As cn e oserved from the computtions shown
in igure 4.10, the orienttion of the pplied force hs  signiicnt effect on the resultnt ield.
e effect is strongest in directions tht hve  component of the group velocity perpendiculr
to the pplied force. e hexgonl errtions nd wve envelopes, re evident t the resonnt
frequency (see igures 4.10, 4.10d nd 4.10f).
For comprison, igure 4.11 lso shows the displcement mplitude t the sddle point fre-

quency of 428.67 Hz, with the slowness contours shown in igure 4.9c. ree types of loding,
similr to those of igure 4.10, re shown. Although the directionl preference is clerly visile,
the errtion is more pronounced for this cse compred to igure 4.10.
e different orienttions of the hexgonl slowness contours nd hence, the different prefer-

entil directions of propgtion for different frequencies re  novel feture of the elstic lttice,
which re sent in the sclr cses. One my envisge pplictions in shielding nd focusing
of elstic wves where this “switch” in preferentil direction coupled with the ility to “select”
 given direction vi the pplied force could e useful. e frequency t which this switching
of preferentil direction occurs is exctly the sddle point frequency of 428.67 Hz. is sddle
point lso mrks the frequency t which  similr rottion in the hexgonl-like contours oc-
curs. As cn e seen from igure 4.9c, this is lso the frequency t which the slowness contours
intersect t two corners nd the centre of ech side of the elementry cell in the reciprocl lttice.

4.3 A discrete structural interface: shielding, negative refraction,
and focusing

In this section, pplictions of the dispersive properties of Bloch-Floquet wves in discrete sys-
tems re considered. In prticulr, pplictions relting to the effects of iltrtion nd focusing
of elstic wves y  “metamaterial lat lens” for certin frequencies re presented. e effects of
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Figure 4.12: A schemtic digrm of the lttice system with the heterogeneous ditomic interfce
(highlighted). e regions to the le nd to the right of the interfce consist of homo-
geneous montomic lttices.

Property Vlue

Young’s Modulus 200 GP
Second Moment of Inerti 349 × 10−8 m4

Cross Sectionl Are 2.12 × 10−3 m2

Bem Density 7850 kg m−2

Bem Length 1 m
Nodl Mss (Amient) 91.531 kg
Nodl Mss (Interfcem1) 16.642 kg
Nodl Mss (Interfcem2) 166.42 kg
Polr Mss Moment of Inerti (Amient) 66.568 kg m2

Polr Mss Moment of Inerti (Interfce J1) 633.284 kg m2

Polr Mss Moment of Inerti (Interfce J2) 99.852 kg m2

Table 4.2: e mteril nd
geometricl prm-
eters for the m-
ient nd interfce
lttices. e prm-
eters of the mient
nd interfce nodes
re links re differ-
entited where re-
quired nd re uni-
form otherwise.

focussing nd iltering for solutions of the Helmholtz eqution hve lredy een demonstrted
in the literture, see for exmple 103. More recently, Jones et l. 81 nlysed similr effects
for the cse of vector elsticity in  structured continuum. Here, the effects of focussing nd
iltrtion of elstic wves in discrete structures re discussed.
Consider  inite tringulr lttice, of the sme geometry s in section 4.2. Let the mient lt-

tice e montomic nd homogeneous. Within the mient lttice  inite sl of heterogeneous
ditomic lttice of the sme geometry is emedded. Both the mient lttice nd interfce lt-
tice (inite sl) re lttices with inertil links, formed fromEuler-Bernoulli ems. emteril
nd geometricl prmeters of the lttices re detiled in tle 4.2. A schemtic digrm of the
mient nd interfce lttices is shown in igure 4.12.
Consider the time-hrmonic propgtion of elstic in-plnewves through the mient lttice

nd structurl interfce s shown in igure 4.13. e wve is generted y  single point source:
 time-hrmonic displcement of mplitude 10−6m in the horizontl direction is prescried t
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...

Source

(a)

...

Source

.

Interfce

(b)

Figure 4.13: Prt () shows  hrmonic wve propgting through the mient lttice. Prt ()
shows  hrmonic wve intercting with the structured interfce. is igure is for
the sme conigurtion s prt (), except tht the structured interfce hs een em-
edded in the mient lttice. e mgnitude of the displcement ield is plotted. It
is oserved tht the displcement ield is essentilly unffected y the presence of the
interfce. In oth cses, the forcing frequency is 100 Hz.
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...

☀

Figure 4.14: e dispersion surfces corresponding to heterogeneous ditomic interfce lttice. Of
prticulr interest, in ddition to the nd gp t 700 Hz, is the surfce lelled☀,
which possesses sddle points.

Figure 4.15: e sixth dispersion sur-
fce, lelled ☀ in ig-
ure 4.14, possessing the
sddle point of interest.
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...

Source

.

Interfce

Figure 4.16: e sme conigurtion s in igure 4.13, ut with  forcing frequency of 700 Hz,
which lies in the nd gp of the dispersion digrm for the interfce lttice. e wve
is relected from the interfce s would e expected for frequencies within the stop
nd for the interfce.

one of the lttice nodes. Dmping is pplied to the lttice links in the neighourhood of the ixed
oundry nodes in order to reduce relection from the oundry of the computtionl domin.
Consider now the dispersion surfces for the elementry cell of the structured interfce, shown

in igure 4.14. e trnsmission prolem is formlly distinct from the Bloch-Floquet spectrl
prolem. Nevertheless, the dispersion digrm my e used in order to predict the relection
nd trnsmission ptterns. Figure 4.13 shows the mgnitude of the displcement mplitude
when the forcing frequency is 100 Hz. A similr wve pttern cn clerly e oserved on oth
sides of the interfce lyer, indicting tht the low frequency response of the structured inter-
fce is very close to tht of the mient medium. A resemling wve pttern cn lso e seen in
igure 4.13 where the structured interfce hs een removed entirely. In contrst, igure 4.16
shows the mgnitude of the displcement ield when the forcing frequency is 700 Hz, which
lies in the stop nd of igure 4.14. In this cse, the incoming wve is relected, with very little
trnsmission.
It hs een suggested tht the phenomenon of focusing y  lt interfce is linked to the

presence of sddle points nd regions of negtive group velocities (see, for exmple, 81, 103).
Referring to the dispersion surfces for the heterogeneous interfce lttice (igure 4.14), it is
oserved tht the surfce lelled☀ nd shown in igure 4.15 possesses  sddle point nd
regions where the group velocity is negtive. In prticulr, for smll perturtions round the
sddle point it is oserved tht the components of the group velocity (∂ /∂ξ) will hve opposing
signs. Figure 4.17 shows  plot of the mgnitude of the displcement ield when the forcing
frequency is 642.5 Hz. e frequency ws chosen in the vicinity of the sddle point on the
corresponding dispersion surfce. e effect descried here is typicl for neighourhoods of
sddle points. A cler directionl preference cn e oserved within the interfce. In ddition,
the secondary source on the right hnd side of the interfce cn lso e oserved. Figure 4.17

t is, ∥u(x)∥.
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...

Imge Point

.

Source

.

Interfce

Figure 4.17: e sme conigurtion s in igure 4.13, ut with  forcing frequency of 642.5 Hz.
e imge point is visile on the right hnd side of the interfce. e imge point is
shied long the direction of preferentil propgtion of the interfce lttice.

shows the preferentil direction of propgtion nd the effect of focusing. is feture of the
wves persists in  smll intervl contining the sddle point.

Finlly, in igure 4.18  simultion where the source hs een shied wy from the interfce
region is presented. In this cse, the forcing frequency is 654.4 Hz, which gin is in the vicinity
of the sddle point nd within the region where there is  preferentil direction of propgtion.
Moreover, where the ems intersect on the right hnd side, we cn see the formtion of the
image point. is effect is strongly frequency dependent nd, s ws the cse with the primitive
wveforms discussed erlier, is sensitive to perturtion in the frequency.

4.4 Remarks

In contrst to the previous chpter, which primrily delt with the low frequency response of
discrete metmteril structures, the discussion in the present chpter hs een focused on the
inite frequency response. It hs een demonstrted tht, even uniform, structured medi my
exhiit vstly different ehviour t higher frequencies compred with the low frequency re-
sponse. In prticulr, strongly nisotropic wve propgtion ssocited with polygonl slowness
contours is exhiited t higher frequencies.
e dynmic nisotropy of oth sclr nd elstic discrete systems hs een exmined. In pr-

ticulr, extending the previous work with sclr lttices, the presence of directionlly loclised
wveforms in elstic lttices which re isotropic in the long wvelength limit hve een demon-
strted. ese wveforms re identiied with regions on the dispersion surfces nd slowness
contours with severl preferentil directions of propgtion. e presence of errtions in the
displcement ields, corresponding to the shpe of the slowness contours hve een oserved
nd connection hs een mde with the notion of errtion in optics.
In ddition, it hs een demonstrted tht the dispersive properties of Bloch-Floquet wves

in n ininite lttice structure cn e used in prolems of optiml design for inite size micro-
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...

Imge Point

.

Source

.

Interfce

Figure 4.18: In this cse the source hs een shied further wy from the interfce. Correspond-
ingly, this leds to  shi in the imge point due to the preferentil direction within
the lyer. Here, the forcing frequency is 654.5 Hz.

structures. In prticulr, the interction of wves with  heterogeneous ditomic lttice of inite
width ws considered. Specil ttention is drwn to the rnge of frequencies in the neighour-
hood of sddle points on the dispersion digrm. e corresponding regime shows directionl
preferences for wves intercting with the structured medium. e pprent focussing nd cre-
tion of n image point, y  lt elstic lens’ is one of the interesting outcomes of this work.
Hving consider the low frequency response of discrete metmteril structures in chpter 3,

nd the ehviour round resonnt frequencies in the present chpter, the next chpter exmines
the ehviour of such structured medi t even higher frequencies in the stop nd.
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Chapter Five

Localised modes for rectilinear defects
in a square lattice

M
A well-known nd interesting feture of discrete medi is the existence of pss nd stop nds,
s demonstrted in chpters 3 nd 4. In the present chpter, loclised defect modes ssocited
with the eigenmodes of  inite line of defects in n ininite squre lttice re exmined.

e present chpter is developed s follows. In section 5.1, the prolem of  inite line of
defects (creted y  perturtion of point msses) emedded in n ininite squre lttice is con-
sidered. Severl representtions for the Green’s mtrix re presented, including integrl forms
nd representtion in terms of generlised hypergeometric functions. Loclised defect modes
for the inite line re nlysed in section 5.1.1. erein, the necessry nd sufficient condition
for the existence of loclised modes is formulted, nd symptotic expnsions in the fr ield
re lso presented. Bnd edge expnsions re constructed using n nlytic continution of the
Green’s function. Illustrtive exmples for  inite numer of defects re given in section 5.2,
where eigenfrequencies nd eigenmodes re presented nd compred with the symptotic re-
sults from the previous section. Here, the defects  chrcterised y one or more lttice nodes
hving  mss smller thn the nodes in the mient lttice. For one- nd three-dimensionl
multi-tomic lttices, there exists some lower ound on the difference in mss etween the de-
fect nd mient nodes such tht  loclisedmodemy e initited 98. However, in the present
chpter, it is demonstrted tht this is not the cse for two-dimensionl lttices: there is no lower
ound on the mss tht should e removed from  defect node in order to initite  loclised
mode. e nlysis of  inite-sized defect region is ccompnied y the wveguide modes tht
my exist in  lttice contining n ininite chin of point msses. A rief discussion of the in-
inite wveguide prolem is presented, for completeness, in section 5.3. Finlly, in section 5.4,
 numericl simultion illustrtes tht the solution for the prolem of the ininite chin cn e
used to predict the rnge of eigenfrequencies of loclised modes for  inite ut sufficiently long
rry of msses representing  rectiliner defect in  squre lttice.
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Chapter Five Localised modes for rectilinear defects in a square lattice

5.1 A inite inclusion in an ininite square lattice

Consider  squre meshing of R2 such tht ech node is lelled y the doule index n ∈ Z2,
where n = (n1,n2). Let there eN > 0 defects (withN ∈ N) distriuted long n2 = 0 s shown in
igure 5.1. e defects re chrcterised y  non-dimensionl mss 0 < r < 1, where the mss
of the mient nodes is tken s  nturl unit. e stiffness nd lengths of the lttice onds re
uniform nd tken s further nturl units. All physicl quntities, such s the frequency nd
displcement, hve een normlized ccording to these nturl units nd re therefore dimen-
sionless. Let un denote the complex mplitude of the time-hrmonic out-of-plne displcement
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. . . . . . .
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n1 = 5

Figure 5.1: A inite line of defects in
n ininite squre lttice.
e length of the links,
the stiffness of the onds
nd themss of the lck
nodes re tken s ntu-
rl units.

of node n. en, the eqution of motion is (see § 2.1 nd 2.2.1)

un+e1 + un−e1 + un+e2 + un−e2 + ( 2 − 4)un = (1 − r) 2
0,n2

N−1
∑
p=0

un p,n1 , (5.1)

where is the rdin frequency, ei = [ 1,i, 2,i]T, nd i,j is the Kronecker Delt. By mens of
the discrete Fourier Trnsform the governing eqution (5.1) my e written

( 2 − 4 + 2 cos 1 + 2 cos 2)uFF(ξ) = (1 − r) 2
N−1
∑
p=0

up,0 exp(−ip 1). (5.2)

In the nottion of section 2.1 the prenthesised term on the le hnd side is σ( , ξ) nd the right
hnd side of eqution (5.2) is the Fourier Trnsform of the lod fN−1( 1). e positive root of
the prenthesised term represents the dispersion eqution for the mient lttice. Asmentioned
erlier in section 4.1.1, it is oserved tht for 2 > 8 there exist no rel solutions to the dispersion
eqution. Hence, the mient lttice possesses  semi-ininite stop nd: 2 ∈ (8,∞). Inverting
the trnsform yields the discrete ield

un( ) = (1 − r) 2
N−1
∑
p=0

up,0 g(n, p; ), (5.3)
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where g(n, p; ) is the shied Green’s mtrix deined s:

g(n, p; ) = 1
π2

π

∫
0

π

∫
0

cos ([n1 − p] 1) cos(n2 2)
2 − 4 + 2 cos 1 + 2 cos 2

d 1d 2. (5.4)

For the purposes of numericl evlution nd symptotic nlysis in the stop ndof the mient
lttice ( 2 > 8), it is convenient to rewrite the Green’s mtrix s  single integrl

g(n, p; ) = 1
2π

π

∫
0

(√a2 − 1 − a)∣n1−p∣√
a2 − 1

cos (n2 2)d 2, (5.5)

where a( 2; ) = 2/2−2+cos 2. Reversing the order of integrtion yields the sme result, ut
with n1 −p nd n2 interchnged, nd 1 interchnged with 2. An lterntive representtion cn
e found in the ook y vn der Pol 143 s

g(n, p; ) = (−1)n1−p+n2
2

∞

∫
0

In1−p(x)In2(x)e− xdx, (5.6)

where Im(x) is the modiied Bessel function of the irst kind, = 2/2 − 2 > 2. e integrl
is symmetric out n1 − p = 0 nd n2 = 0 nd therefore it my e ssumed, without loss of
generlity, tht n1 ≥ p nd n2 ≥ 0. e integrl (5.6) my then e represented in terms of
regulrised generlised hypergeometric functions (see 131, section 3.15.6, eqution 8)

g(n, p; ) = (−1)m+n2(2 )1+m+n2 ((m + n2)!)2 4F3[ a1, a1, a2, a2
b1, b2, b1 + b2 − 1

;
4
2 ], (5.7)

where m = n1 − p, a1 = (1 + m + n2)/2, a2 = (2 + m + n2)/2, b1 = 1 + m, nd b2 = 1 + n2.
e series (5.7) is convergent for 2 > 4 (see 120), tht is, everywhere in the stop nd of the
mient lttice. It is oserved tht long the ry m = n2, the Green’s mtrix my e written in
terms of Guss’ hypergeometric function. In prticulr, eqution (5.7) reduces to

g(n,n, 0; ) = ((2n)!)2(2 )1+2n 2F1[1/2 + n, 1/2 + n1 + 2n
;
4
2 ]. (5.8)

e function (5.8) is strictly positive in the region n ≥ 0 nd > 2. Hence, for  single defect,
the lttice nodes long the digonl rys do not oscillte reltive to ech other.
Furthermore, for the cse ofm = n2 = 0, the integrl representtion (5.4) reduces to the 2-fold

Wtson integrl (see, for exmple, 82 nd 150). Using  simple chnge of vriles (5.4) cn
e written in terms of n elliptic integrl, or lterntively, one cn use (5.8) nd oserve tht

g(0, 0; ) = 1
2 2F1[1/2, 1/21

;
4
2 ] = 1

π
K( 42) , (5.9)

where K(x) is the complete ellipticl integrl of the irst kind. Together with eqution (5.9), the
representtion (5.6) is prticulrly useful since, y repeted integrtion y prts nd use of the
identity In(x) = 2I′n−1(x) − In−2(x), one cn iterte from g(0, 0; ) to  generl g(n, p; ).
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5.1.1 Localised modes

Of primry interest re loclised modes, tht is, modes of virtion t frequencies tht re not
supported y the mient lttice nd therefore decy rpidly wy from the defect. Introduc-
ing the vector U = [u0,0,u2,0, . . . ,uN−1,0]T nd choosing n2 = 0 in eqution (5.3) yields the
eigenvlue prolem

U = (1 − r) 2G( )U , (5.10)

where the mtrix entries [G( )]ij = g(i − 1, 0, j − 1; ). Clerly, G is symmetric nd Toeplitz
(nd hence isymmetric nd centrosymmetric)

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11 G12 G13 ⋯ G1(N−1) G1N

G11 G12 ⋯ G1(N−2) G1(N−1)

G11 ⋯ G1(N−3) G1(N−2)
. . .

...
...

G11 G12

G11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.11)

which gretly reduces the numer of required computtions. Indeed, for N defects the mtrix
G hs N independent elements. e solvility condition of the spectrl prolem (5.10) yields 
trnscendentl eqution in ,

det [IN − (1 − r) 2G] = 0, (5.12)

where IN is the N ×N identity mtrix. Eqution (5.12) is the necessry nd sufficient condition
for the existence of loclised modes. Symmetry implies tht there exists n orthonorml set of
N eigenvectors of G nd hence, N eigenvlues (frequencies). e centrosymmetry of G llows
the numer of symmetric nd skew-symmetric modes to e determined (see, for exmple, 21).
Introducing the N ×N exchnge mtrix

JN =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
0 0 1 0

0 . .
.

0 0
1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
, (5.13)

n eigenmode is sid to e symmetric if U = JNU nd skew-symmetric if U = −JNU . For
 system of N defects there exist ⌈N/2⌉ symmetric modes nd ⌊N/2⌋ skew-symmetric modes,
where ⌈⋅⌉ nd ⌊⋅⌋ re the ceiling nd loor opertors respectively. Of course here, symmetry
refers to the symmetry of the eigenmodes in the n1 direction out the centre of the defect line.
Due to the symmetry of the system, ll modes re symmetric out the line n2 = 0.

Consider the totl force on n inclusion contining N defects

F =
N−1
∑
p=0
(up−1,0 + up+1,0 + 2up,1 − 4up,0) . (5.14)
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By deinition, for  skew-symmetric mode up,0 = −uN−1−p,0 nd further up,q = −uN−1−p,q. Hence,
for ll skew-symmetric modes the inclusion is self-lnced (i.e. F = 0) nd therefore, ll skew-
symmetric loclised modes cn e considered s multipole modes.
For the illustrtive exmples presented lter, the eigenvlue prolem (5.10) will e solved for

the unit eigenvectors (∥U∥ = 1).
5.1.2 Asymptotic expansions in the far ield

Here, symptotic expnsions in the fr ield re considered for some prticulr cses. Asymp-
totic expnsions for n isolted Green’s mtrix in vrious conigurtions hve een considered
in 109 nd the pproch detiled therein is used here.

Far ield, along the line of defects. e cse of n1 → ∞, n2 = 0 nd inite N is considered.
Introducing the smll prmeter ε = p/n1, the kernel of (5.5) my e expnded for smll ∣ε∣≪ 1.
In prticulr,

(√a2 − 1 − a)∣n1−p∣ ∼ (√a2 − 1 − a)∣n1∣ [1 − ε log (√a2 − 1 − a)]∣n1∣ . (5.15)

It is oserved tht t lrge n1 nd sufficiently smll N, the dominnt contriution to the inte-
grl (5.5) comes from  smll region in the vicinity of 2 = π. erefore,

(√a2 − 1 − a)∣n1−p∣ ∼ (√c2 − 1 − c)∣n1∣ [1 − (π − 2)2
2
√
c2 − 1

]∣n1∣

× [1 − ε log (√c2 − 1 − c) + ε(π − 2)2
2
√
c2 − 1

]∣n1∣ , (5.16)

where c = 2/2 − 3. us,

(√a2 − 1 − a)∣n1−p∣ ∼ (√c2 − 1 − c)∣n1−p∣ exp [−∣n1 − p∣ (π − 2)2
2
√
c2 − 1

] . (5.17)

In ddition, 1/√a2 − 1 ∼ 1/√c2 − 1. Hence, for 0 < ε≪ 1 nd mking use of (5.5)

g(n1, 0, p; ) ∼ (
√
c2 − 1 − c)∣n1−p∣
2π
√
c2 − 1

π

∫
π−ε

exp [−∣n1 − p∣ (π − 2)2
2
√
c2 − 1

]d 2. (5.18)

Mking the sustitution x = (π − 2)√∣n1 − p∣/(2√c2 − 1), nd performing the resulting inte-
grtion yields

g(n1, 0, p; ) ∼ (
√
c2 − 1 − c)∣n1−p∣√
8π
√
c2 − 1

1√∣n1 − p∣ s n1 →∞. (5.19)
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us from (5.3), the physicl ield hs the following pproximte representtion for n1 →∞

un1,0( ) ∼ (1 − r) 2
N−1
∑
p=0

(√c2 − 1 − c)∣n1−p∣√
8π
√
c2 − 1

up,0( )√∣n1 − p∣ , (5.20)

where up,0( ) should e determined from (5.10). It is oserved tht whenN = 1 eqution (5.20)
is consistent with eqution (4.17) of 109 up to  chnge in sign.

Far ield, perpendicular to the line of defects. Here, the cse considered is n1 = p′, n2 →∞
withN nd p′ inite. emethod used here follows the sme generl procedure s in the previous
cse. However in this cse, the kernel is oscilltory nd is therefore pproximted s  product of
decying nd oscilltory functions. For sufficiently smll ∣p′−p∣ nd lrge n2, the non-oscilltory
prt of the integrnd in (5.5) is pproximted s efore, leding to

g(p′,n2, p; ) ∼ (
√
c2 − 1 − c)∣n2∣
2π
√
c2 − 1

π

∫
π−ε

exp [−∣n2∣ (π − 1)2
2
√
c2 − 1

] cos ([p′ − p] 1)d 1. (5.21)

Mking  similr chnge of vrile, x = (π − 1)√∣n2∣/(2√c2 − 1), nd integrting, it is found
tht

g(p′,n2, p; ) ∼ (−1)(p′−p) (
√
c2 − 1 − c)∣n2∣√
8π
√
c2 − 1

1√∣n2∣ exp [−(p′ − p)2
√
c2 − 1
2∣n2∣ ] . (5.22)

Hence, for n2 →∞ the physicl ield in (5.3) my e pproximted y

up′,n2( ) ∼ (1−r) 2
(√c2 − 1 − c)∣n2∣√

8π
√
c2 − 1

N−1
∑
p=0
(−1)(p′−p) exp [−(p′ − p)2

√
c2 − 1
2∣n2∣ ]

up,0( )√∣n2∣ . (5.23)
It is oserved tht for N = 1 nd p′ = p, the ove eqution (5.23) is consistent with eqution
(4.17) of 109 up to  chnge in sign. Moreover, for the cse of p′ = p, (5.23) reduces to (5.20).

5.1.3 Band edge expansions

e representtions of Green’s mtrix (5.5)-(5.7) re vlid in the stop nd. However, given tht
the hypergeometric function in the representtion (5.7) is zero lnced, tht is, the sum of the
ottom prmeters minus the sum of the top prmeters vnishes: 2(b1+b2)−1−2(a1+a2) = 0,
the stop nd Green’s mtrix cn e extended to the oundry of the pss nd y nlytic
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continution . In prticulr, the nlyticl continution of the function (5.7) hs the form

g(n, p; ) = (−4)m+n2
π(2 )1+m+n2

∞

∑
j=0
(([1 +m + n2]/2)j

j!
)2 (1 − 4

2)j

×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j
∑
k=0

(−j)k
{([1 +m + n2]/2)j}2 H(m,n2, k) [ (1 + j − k)
+ (1 + j) − (1 +m + n2

2
+ j) − log (1 − 4

2)]
+(−1)j(j)! ∞∑

k=j+1

(k − j − 1)!{([1 +m + n2]/2)k}2 H(m,n2, k)⎫⎪⎪⎬⎪⎪⎭ (5.24)

where the reder is reminded tht m = n1 − p, (⋅)j is the Pochhmmer symol, (x) is the
Digmm function, nd

H(m,n, k) = (m)k(n)k
k! 3F2[(m + n2)/2, (m + n2)/2, −km, n

; 1]. (5.25)

e symol pFq… denotes the generlised hypergeometric function, which is relted to the
regulrised generlised hypergeometric function thus:

pFq[a1, . . . , ap; b1, . . . bq; α] = {Γ(b1) . . . Γ(bq)} pFq[a1, . . . , ap; b1, . . . bq; α].
In this cse, the continution (5.24) holds for 2 ≥ 4, which in terms of frequency corresponds
to 2 ≥ 8. It is emphsised tht in this section, the term “vicinity of the band edge” refers to 
smll intervl 8 ≤ 2 < 8 + ε, where 0 < ε≪ 1.

Hence, choosing j = 0 yields the leding order ehviour of (5.7) s 2
→ 4+ ( 2

→ 8+), tht
is, s pproches the oundry of the pss nd from the stop nd:

g(n, p; ) ∼ (−4)m+n2
π(2 )1+m+n2 {[−2 − (1 +m + n2

2
) − log (1 − 4

2)]
+
∞

∑
k=1

(k − 1)!{([1 +m + n2]/2)k}2 H(m,n2, k)} , (5.26)

where is the Euler-Mscheroni constnt. Alterntive representtions of the leding order con-
tinutions for generl zero-lnced q+1Fq were derived y Sigo nd Srivstv 135. Since
k > 0, the series representtion of the hypergeometric function in (5.25) hs  inite numer of
terms nd therefore my e computed exctly. e convergence condition for the ininite sums
in (5.24) nd (5.26) is 2 + m + n2 + j > 0, nd is utomticlly stisied since it ws ssumed
(without loss of generlity) t the outset thtm ≥ 0 nd n2 ≥ 0.

e symptotic expression (5.26) is prticulrly interesting s it elucidtes the nture of the
singulrity of the lttice Green’s mtrix t the nd edge. In prticulr, the symptotic repre-
senttion (5.26) cptures the logrithmic singulrity s 2

→ 8+. is logrithmiclly singulr

Indeed, for ny integer lnced hypergeometric function q+1Fq there exists n nlytic continution to the ound-
ry of the unit disk (see 19, mong others, for detils).
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Figure 5.2: e solid curve shows the symptotic ex-

pression for the displcement ield long
the digonl (n1 = n2 with p = 0)
in the vicinity of the nd edge (see
eqution (5.27)). e dshed curve
shows the corresponding symptotic ex-
pression for the ield long the ond line
(see eqution (5.27)). e frequency
chosen is = 2.829.

ehviour ner the nd edge is not ovious from the originl representtions presented erlier
(see equtions (5.5)-(5.7)).

For some prticulr cses, eqution (5.26) reduces to the following simpliied forms. Along
the rys m = 0 (i.e. n1 = p):

g(p,n2, p; ) ∼ (−4)1+n2π(2 )1+n2 [2 + (1 + n2
2
) + log (1 − 4

2)] ≜ g̃(ond)(n2; ), (5.27)

nd long the digonl rysm = n2:

g(n1,m, p; ) ∼ − 16m

π(2 )1+2m [2 + (1
2
+m) + log (1 − 4

2)] ≜ g̃(dig)(m; ), (5.27)

eDigmm function grows logrithmiclly sm→∞ nd the term 2 + (1/2+m) is strictly
positive for m > 0. erefore, for sufficiently smll m the rcketed term in equtions (5.27)
is negtive in the neighourhood of = 2. Hence, in the vicinity of the nd edge, the stop
nd Green’s mtrix exhiits fundmentlly different ehviour long the ond lines compred
with the digonl rys. In prticulr, long the ond lines the msses will oscillte out of phse,
wheres for the digonl ry lines the msses will oscillte in phse, s illustrted in igure 5.2.
In the fr ield, equtions (5.27) further reduce to

g(p,n2, p; ) ∼ (−4)1+n2π(2 )1+n2 [2 + log (n22 ) + log (1 − 4
2)] , s n2 →∞, (5.28)

g(m,m, p; ) ∼ − 16m

π(2 )1+2m [2 + logm + log (1 − 4
2)] , sm→∞. (5.28)

Using equtions (5.3) nd (5.27) the out-of-plne displcement for  lttice with N defects hs
the following symptotic representtion in the vicinity of the nd edge

un1,0( ) ∼ (1 − r) 2
N−1
∑
p=0

up,0 g̃(ond)(n1 − p; ), s 2
→ 8+, (5.29)

un1,n2−p( ) ∼ (1 − r) 2
N−1
∑
p=0

up,0 g̃(dig)(n1 − p; ), s 2
→ 8+, (5.29)

long the rys n2 = 0 nd n2 = n1 − p respectively.

Equivlently, one my sustitute n2 y n1 − p in (5.27) to otin expnsions of g long n2 = 0
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5.2 Illustrative examples

Severl prticulr cses re considered here corresponding to reltively short defects with N ∈[1, 3]. e solid curves in igure 5.3 show the ith solution, rN,i( ), of the solvility condi-
tion (5.12) for  line of N defects. e shded region indictes the stop nd ( 2 > 8) of the
mient lttice. For frequencies in this region, wves in the mient lttice will decy exponen-
tilly wy from the defect or source.
It is interesting to note tht, for one- nd three-dimensionl multi-tomic lttices, there exists

some lower ound on the mount of mss tht should e removed from the defect nodes such
tht  loclised mode my e initited (see, for instnce, 98). However, here the imge of
rN,N( ), indicted y the solid curves in igure 5.3, is (0, 1). In other words, there is no lower
ound on the mss tht should e removed from  defect node in order to initite  loclised
mode. As r → 1, tht is, s the lttice pproches  homogeneous lttice, the frequency of
the loclised mode pproches the nd edge ( 2

→ 8+). It is lso oserved tht for N > 1,
the solid curves intersect the nd edge t severl distinct vlues of r. is suggests tht for 
given numer of defects, there exists  mximum vlue of r elow which ll possile loclised
eigenmodes my e initited. Aove this vlue of r it is only possile to initite  suset of
the possile eigenmodes with the lower frequency eigenmodes eing iltered out. In ll cses,
the highest frequency eigenmode persists for ll possile vlues of r on (0, 1). For ixed , the
solvility condition (5.12) for  system of N defects is  polynomil in r of t most degree N.
erefore, there exist no more thn N solutions for  given frequency .
e dshed curves correspond to the prolem of n isolted chin of N prticles of non-

dimensionl mss r∗, connected y springs to two nerest neighours nd surrounded y rigid
foundtions. For such  prolem, the out-of-plne displcement of mss n ∈ Z stisies

L[v0, v1,⋯, vN−1]T = 0, (5.30)

where the mtrix L hs elements

[L]ij = (r∗ 2 − 4) ij + i−1,j + i,j−1. (5.31)

e dshed curves in igure 5.3 represent the solutions r∗N,i( ) of the solvility condition:
detL = 0. It is oserved tht s → ∞, the dshed curves pproch the solid curves from
elow.

5.2.1 A single defect

For the cse of  single defect locted t the origin, the quntity G in (5.10) is  sclr:

G( ) = 1
π
K( 42) , (5.32)

where K(x) is the complete ellipticl integrl of the irst kind. e solvility condition my e
written s

r1,1 = 1 + π ( 2
2 −

1
2
)[K( 16( 2 − 4)2)]

−1

, (5.33)
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(c) A triplet of defects (N = 2)

Figure 5.3: e solid curves show the ith solution, rN,i( ), of the solvility condition (5.12) for 
system ofN defects emedded in the squre lttice. e shded region ( 2 > 8) indictes
the stop nd of the mient lttice. e dshed curves show the corresponding ith
solution, r∗N,i( ), of the solvility condition for n isolted system of N defects (see
eqution (5.30)).

which hs the leding order symptotic representtion

r1,1 ∼
4
2 , s →∞. (5.34)

It is oserved tht the solvility condition for eqution (5.30) with N = 1 grees precisely with
the leding order high frequency symptotic expnsion, hence, the oserved colescence of the
solid nd dshed curves in igure 5.3.
e loclised defect mode is shown in igure 5.4, together with ield long the line n2 = 0 nd

the ssocited symptotic ield s n1 → ∞ in igure 5.4. Figures 5.4c nd 5.4d show the ield
(solid line) nd the nd edge symptotics (dshed line) for  vlue of = 2.006. e symptotic
expnsions show good greement with the computed ield, even for the fr ield symptotics in
the neighourhood of the defect.

5.2.2 A pair of defects

In the cse of  pir of defects, G( ) is  2×2 mtrix with the digonl elements given y (5.32).
e off-digonl elements hve the form

[G(w)]12 = 1
4
−

1
2π

K( 42) . (5.35)

e solutions of the solvility condition re

r2,1 = 1 −
4π( 2 − 4)

π 2( 2 − 4) − 2 2( 2 − 8)K( 16( 2 − 4)2)
, (5.36)

r2,2 = 1 +
4π( 2 − 4)

π 2( 2 − 4) − 2 4K( 16( 2 − 4)2)
, (5.37)
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Figure 5.4: () e loclised defect mode for  single defect with r = 0.8 nd = 2.83. () e
solid curve is the out-of-plne displcement long the line n2 = 0 nd the dshed curve
is the symptotic expnsion for n1 → ∞ (see eqution (5.20)). (c) e out-of-plne
displcement long the line n1 = n2 (solid curve) with the corresponding symptotic
expnsion (5.27) for the nd edge (dshed curve). (d) As for (), ut the dshed
curve represents the nd edge expnsion long n2 = 0 (see eqution (5.29)).

whence the leding order high frequency symptotic expnsions re

r2,1 ∼
3
2 nd r2,2 ∼

5
2 s →∞, (5.38)

which gree with the solvility condition of the isolted system (5.30) for N = 2, hence, the
oserved colescence of the solid nd dshed curves in igure 5.3.
Figure 5.5 shows the two defect modes together with the ield long the lines n1 = 0, nd

n2 = 0 nd the ssocited symptotic ield t ininity. In ddition, the dsh-dot line in igure 5.5c
shows the nd edge expnsion in the vicinity of = 2. In this cse, igure 5.5c corresponds
to vlue of ≈ 2.025. Once gin, the symptotics re in good greement with the computed
ield. Due to the symmetry, the ield long the line n1 = 1 is identicl to tht in igure 5.5e for
the symmetric cse nd identicl up to  relection in the line u0,n2 = 0 in igure 5.5f for the
skew-symmetric cse.
e lower solid curve in igure 5.3 corresponds to r2,1 s deined in (5.36). e mximum

vlue of the lower solid curve is given y

r(mx)
2,1 = lim

2
→8+

r2,1 =
1
2
. (5.39)

Hence for  pir of defects,  symmetric loclised mode cnnot e initited for r ≥ 1/2.
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(d) e ield long the line n2 = 0 for the
skew-symmetric mode
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(e) e ield long the line n1 = 0 for the
symmetric mode
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(f) e ield long the line n1 = 0 for the
skew-symmetric mode

Figure 5.5: e loclised defect mode for  pir of defects with r = 0.49. e solid curves show
the out-of-plne displcement long the indicted line, nd the dshed curves re the
ssocited symptotic expnsions in the fr ield (see equtions (5.20) nd (5.23) s p-
proprite). e dsh-dot curve in igure 5.5c shows the nd edge expnsion (see equ-
tion (5.29)).

5.2.3 A triplet of defects

For the cse of three defects, the 3× 3 mtrix G( ) hs the [G]11 nd [G]12 elements s deined
in equtions (5.32) nd (5.35). e remining independent component is

[G(w)]13 = [G( )]11 − 2
+
π
E( 42) , (5.40)

where E(x) is the complete Elliptic Integrl of the second kind. e solutions of the solvility
condition re of similr form to the previous two cses nd re omitted for revity. e high
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frequency symptotics for r( ) re
r3,1 ∼

4 −
√
2

2 , r3,2 ∼
4
2 , nd r3,3 ∼

4 +
√
2

2 s →∞, (5.41)

which gin coincide with the solvility condition for (5.30) for the cse of  prticle triplet
(N = 3). e mximum vlues of r3,i( ) re r(mx)

3,1 = 1 − 3π/16, r(mx)
3,2 = 7/8 − (8 − 4π)−1, nd

r(mx)
3,3 = 1.
e three loclised eigenmodes, long with plots of the ssocited symptotic expressions re

shown in igures 5.6–5.8 for  contrst rtio of r = 0.4. Plots of the displcement ield long
the lines n2 = 0, n1 = 1 nd n1 = 0 re lso provided together with their ssocited symptotic
ields. In ech cse, the solid curves show the displcement ield, whilst the dshed curves show
the ssocited symptotics in the fr ield. e dsh-dot line in igure 5.6 shows the nd edge
expnsion in the vicinity of = 2. In this cse, igure 5.6 corresponds to vlue of ≈ 2.017.
ere re two symmetric modes (the lowest nd highest frequency modes) nd  single skew-
symmetric mode, s expected from the properties of G discussed in the previous susection.
However, for defects of mss r ≥ r(mx)

3,1 , it is not possile to initite the lower frequency sym-
metric eigenmode nd only  further symmetric mode nd  skew-symmetric mode persist. For
vlues of r ≥ r(mx)

3,2 , it is only possile to initite the highest frequency symmetric mode.
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Figure 5.6: e irst loclised defect mode for  triplet of defects with r = 0.4. e solid curves
show the out-of-plne displcement long the indicted line, nd the dshed curves re
the ssocited symptotic expnsions in the fr ield (see equtions (5.20) nd (5.23)
s pproprite). e dsh-dot line in () corresponds to the nd edge expnsion (see
eqution (5.29)).
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skew-symmetric mode
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Figure 5.7: e second loclised mode for  triplet of defects. e solid curves show the out-of-
plne displcement long the indicted line, nd the dshed curves re the ssocited
symptotic expnsions in the fr ield (see equtions (5.20) nd (5.23) s pproprite).

5.3 An ininite inclusion in an ininite square lattice

e section will e devoted to the discussion of n ininite line of defects emedded in n in-
inite squre lttice, s shown in igure 5.9. As in the previous section, the defects re chrc-
terised y  non-dimensionl mss 0 < r < 1. A recent pper y Oshrovich nd Ayzenerg-
Stepnenko 122 studied the wveguide prolem for n ininite liner defect emedded in
 squre lttice. More recently, Colquitt et al. 32 studied in detil this precise prolem. It
should e emphsised tht the work reported in section 4 of 32 ws primrily crried out y
Dr Michel Nieves nd not the present uthor. erefore, the work detiled in 32, §4 is e
riely recounted here in section 5.3 purely in order to provide context for the following section.

5.3.1 e equations of motion

Given the symmetry of the system out the line n2 = 0 (see igure 5.9), it is convenient to reduce
the prolem to  hlf-plne system, which my e formulted s follows. e displcement
mplitude ield for time-hrmonic disturnces in the upper-hlf plne, n ∈ Z ×Z+ is

un+e1 + un−e1 + un+e2 + un−e2 + ( 2 − 4)un = 0, (5.42)
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(c) e ield long the line n1 = 0 for the
second symmetric mode
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Figure 5.8: e third loclised defect mode for  triplet of defects. e solid curves re the out-of-
plne displcement long the indicted line, nd the dshed curves re the ssocited
symptotic expnsions in the fr ield (see equtions (5.20) nd (5.23) s pproprite).

nd for n1 ∈ Z, n2 = 0 is

un1+1,0 + un1−1,0 + un1,1 + un1,−1 + (r 2 − 4)un1,0 = 0. (5.42)

Tking the discrete Fourier Trnsform in the n1 direction yields

uFn2+1 + u
F

n2−1 − 2Ω1( , )uFn2 = 0, (5.43)

nd
uF1 + uF−1 − 2Ωr( , )uF0 = 0, (5.43)

where
Ω ( , ) = 1 + 2 sin2 (

2
) − 2

2
(5.44)

nd is the Fourier prmeter. For n2 > 1  solution of the form

uFn2 =
n2uF1 , with ∣ ∣ ≤ 1, (5.45)

is sought. e cse of ∣ ∣ = 1 corresponds to  displcement ield which propgtes sinusoidlly,
with constnt mplitude, wy from the defect longn2 = 0. e condition ∣ ∣ < 1 corresponds to
 loclised mode, the mplitude of which, decys exponentilly wy from the wveguide long
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Figure 5.9: A squre cell lttice
contining n ininite
chin of defects with
non-dimensionl mss
r long n2 = 0, nd n
mient lttice com-
posed of prticles with
unit mss. As efore,
the stiffness nd length
of the links re tken s
nturl units.

n2 = 0. e primry focus of this chpter is loclised modes, therefore the following discussion
will e devoted to the ltter cse of ∣ ∣ < 1. For  detiled nlysis of the system, the reder is
referred to 32, §4. Together, equtions (5.43) nd (5.45) yield n expression for the fctor
corresponding to loclised modes

= 1 + 2 sin2 (
2
) − r 2

2
. (5.46)

Skew-symmetric solutions. Consider solutions tht re skew-symmetric out the line n2 = 0.
ese modes stisfy the symmetry condition un1,n2 = −un1,−n2 , whence un1,0 = 0 nd hence
un = 0. In other words, the only skew-symmetric solution is the trivil one.

Symmetric solutions. For the cse when symmetry conditions re imposed out n2 = 0, tht
is un1,n2 = un1,−n2 , the dispersion eqution for loclised defect modes supported y the ininite
line defect is given y

(−)( ) = { 2
r(2 − r) [1 + 2 sin2( /2) +

√
1 + 4(1 − r)2 sin2( /2)(1 + sin2( /2))]}1/2 .

(5.47)
is dispersion reltion is determined in two prts. First, the symmetry conditions re imposed
out the line n2 = 0 nd  liner system is derived which links the displcements long the
rows n2 = 0 nd n2 = 1. en, the solvility of this system is considered for vrious cses of ,
nd (5.47) is deduced. e reder is referred to 32, §4 for  detiled discussion nd derivtion
of (5.47). In igure 5.10, the dispersion reltion (5.47) is plotted for severl vlues of r. e in-
phse stnding wve solution, of the form (5.45), is lwys given when = 0 nd corresponds
to the minim of the dispersion curves. e frequency of the in-phse stnding wve is

=

√
4

r(2 − r) , (5.48)
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Figure 5.10: e quntity (−), given
in eqution (5.47),
plotted s  function of
the normlised Bloch
prmeter /π for
r = 0.05, 0.25, 0.5 nd
0.75.

wheres for the out-of-phse solution, t = π corresponding to the mxim of the dispersion
curves, is

=

√
2

r(2 − r) [3 +
√
1 + 8(1 − r)2] . (5.49)

5.4 From an ininite inclusion to a large inite defect: e case of
large N

In this section, it will e demonstrted tht the rnge of eigenfrequencies for which loclised
eigenmodes exist for the model of inite inclusions descried in section 5.1, cn e predicted
using the model of n ininite chin of defects considered in section 5.3. emotivtion for this
is s follows. In order to determine the frequencies of loclised modes, ccording to the nlysis
presented in section 5.1, it is required to solve  trnscendentl eqution (e.g. eqution (5.33))
for . Hence, one must resort to numericl methods. Moreover, the eqution in question (the
solvility condition (5.12)) is otined y setting the determinnt of  mtrix system to zero.
For  system of N defects the mtrix system is N × N; hence, for  lrge system of defects, this
ecomes computtionlly intensive. However, s will e shown in the current section, if one
is merely interested in the rnge of permitted loclised frequencies, this informtion my e
otined from the dispersion eqution of the ininite system.
As n illustrtive exmple,  defect with N = 20 prticles of non-dimensionl mss r = 0.25

is emedded within n ininite squre lttice. e eigenfrequencies of the inite defect re com-
puted using themethod descried in section 5.1 nd re shown s dsh-dot, nd dshed, lines in
igure 5.11. In this igure, the eigenfrequency min = 3.0374 corresponds to n in-phse stnd-
ing wve solution, wheres the frequency mx = 4.9344 represents the out-of-phse solution.
e mximum nd minimum eigenfrequencies re indicted y the dshed lines in igure 5.11.
Since N is lrge, it is useful to consider the model of n ininite chin emedded in  squre

lttice. Expressions (5.48) nd (5.49) predict the vlues of the frequency for which there exist
such solutions. For the numericl vlues ove, the in-phse solution occurs when = 0 nd
= 3.0237 nd the out-of-phse solution occurs when = π nd = 4.9432. ese vlues

of the frequency re close to those encountered in the prolem of the inite defect for N = 20.
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Figure 5.11: e dispersion eqution (5.47), for
the ininite chin, plotted s  func-
tion of the normlised Bloch p-
rmeter, for r = 0.25, represented
y the solid curve. Also shown re
the lue dsh-dot lines correspond-
ing to the eigenfrequencies com-
puted for  inite defect contining
N = 20 msses. e red dshed
lines correspond to min nd mx.

Moreover, ll the eigenfrequencies computed for the inite defect lie within the pssnd for the
ininite defect, s shown in igure 5.11.
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Figure 5.12: elue solid lines re the eigenmodes for themximum ndminimum eigenfrequen-
cies for  inite line contining 20 defects. e envelope functions deined in (5.56) re
shown y the red dshed lines.

Figure 5.12 shows the plot of the eigenmodes for the mximum nd minimum eigenfrequen-
cies computed for the line defect contining 20 msses. e mximum eigenfrequency mx

corresponds to the out-of-phse mode, wheres the minimum eigenfrequency min gives the
in-phse mode.
It is remrked tht oth the ield in igure 5.12, nd the envelope of the ield in igure 5.12

resemle the irst eigenmode of n homogenised rectiliner inclusion. Using this motivtion,
the difference opertor

Dp (⋅)p = (⋅)p+e1 + (⋅)p−e1 + (⋅)p+e2 + (⋅)p−e2 − 4 (⋅)p , (5.50)

is introduced. Mking use of (5.3), it is found tht

(Dn1,0
2 + 1)un1,0 = (1 − r)N−1∑

p=0
up,0 (Dn1,0 +

2) g(n1, 0, p; ), (5.51)

where n = (n1,n2) hs een restricted to {n ∶ 0 ≤ n1 ≤ N − 1, n2 = 0}. Since the lttice Green’s
mtrix is  difference kernel (i.e. depends on the difference ∣n1 − p∣),

(Dn1,0
2 + 1)un1,0 = (1 − r)N−1∑

p=0
up,0 (Dp,0 +

2) g(n1, 0, p; ), (5.52)
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whence, nd reclling from (5.1) tht (Dn +
2)g(n, p, ) = n1,p n2,0, it is found tht

(Dn + r 2)un = 0, for n ∈ {n ∶ 0 ≤ n1 ≤ N − 1, n2 = 0}. (5.53)

It is oserved tht for  sufficiently lrge inclusion, the ield ove nd elow the inclusion e-
hves s un1,1 = un1,−1 ≈ un1,0, with ∣ ∣ < 1, in  similr mnner to the ininite inclusion. Hence,
using (5.53) together with the forementioned pproximtion yields

un1+1,0 + un1−1,0 − 2un,0 + [r 2 − 2 (1 − )]un1,0 = 0, (5.54)

for 0 ≤ n1 ≤ N − 1. e irst three terms on the le hnd side of (5.54) correspond to the
second order centrl difference opertor. Hence, introducing the continuous vrile η = n1
(where the reder is reminded tht the length of the lttice links hs een normlised to unity)
eqution (5.54) is written s

[ d2
dη2
+ r 2 − 2 (1 − )]u(η) = 0. (5.55)

e form of eqution (5.55) suggests tht the homogenised system is nlogous to  string on n
elstic foundtion, with the constnt 2 (1 − ) chrcterising the effective stiffness of the foun-
dtion. It is emphsised tht ∣ ∣ < 1 nd s such, the stiffness of the elstic foundtion is positive.
Consider the prolem of n ininite inclusion. According to eqution (5.46), the vlue of

corresponding to the lowest eigenmode is = 1 − r 2/2. For this vlue of , the second order
derivtive vnishes ccording to eqution (5.55). Moreover, for the displcement t ininity to
e inite, u(η) must e constnt for ll η. In this cse, the solution of the ininite wveguide
prolem (5.42) (i.e. un1,0 = const.) is otined.
For the inite inclusion, it is oserved tht the displcements t the endpoints re smll (see

igure 5.12). Hence, for  simple estimte it suffices to impose u(0) = u(N− 1) = 0 whence the
solution to (5.55) is

u(η) = u0 sin (η√r 2 − 2(1 − )) , with = 1 + 1
2
[( qπ

N − 1
)2 − r 2] , (5.56)

where q is n odd numer nd u0 n ritrry scling constnt. e irst eigenmode corresponds
to = −0.1396, which is close to the men vlue of otined from the full numericl compu-
ttion ( = −0.1426). e pproximtion (5.56) for = −0.1396 is shown in igure 5.12 y
the red dshed line. e sme pproximtion is used to produce the envelope function shown
y the dshed lines in igure 5.12. One cn oserve tht this, reltively simple, homogenised
model predicts the envelope of the ield very well.

5.5 Remarks

In this chpter the prolem of loclised virtions round  inite rectiliner defect emedded
in n ininite squre lttice hs een discussed in detil. e wveguide prolem for n ininite
defect hs lso een riely descried nd  comprtive nlysis of the two clsses of prolems
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hs een presented.
Although the physicl conigurtions nd the methods of nlysis of these prolems re dif-

ferent, one cn oserve remrkle properties of solutions, which cn e used to mke  strong
connection. As illustrted in igure 5.11, the pss nd for frequencies of wveguide modes, lo-
clised round n ininite chin of msses in  squre lttice, contins ll eigenmodes descriing
virtions loclised round  rectiliner defect uilt of  inite numer of msses emedded into
the lttice.
In prticulr, the reder’s ttention is drwn to the nd edges of the dispersion digrm for

the ininite defect: igure 5.11 shows tht the frequencies of the eigenmodes for  inite line defect
re distriuted non-uniformly nd they cluster round the edges of the pss nd identiied
for the ininite wveguide. Furthermore the limit, s one pproches the nd edge frequency,
corresponds to  homogenistion pproximtion of the liner defect s n inclusion emedded
into  homogenised mient system. e illustrtive numericl simultion is produced for n
rry of 20 msses. It is emphsised tht the effect shown is generic nd, with n incresed
numer of msses, the density of frequencies of loclised modes ner the nd edges increses.
Symmetric nd skew-symmetric modes hve een constructed nd nlysed for  rectilin-

er “inclusion” uilt of  inite numer of msses emedded into the lttice. It hs lso een
shown tht the totl force exerted on the mient y the virting discrete inclusion is zero
for ll skew-symmetric modes. Consequently, the displcement ields, ssocited with skew-
symmetric modes, decy t ininity like dipoles, vnishing fster thn the displcements cor-
responding to symmetric modes. is follows from the nlyticl representtions for the so-
lutions nd illustrted in igures 5.5 nd 5.6 where the skew-symmetric modes pper to e
loclised to  much higher degree thn symmetric modes. In the forementioned numericl
simultions, the skew-symmetric nd symmetric modes pper in pirs, nd the frequency of
the skew-symmetric mode is higher thn the frequency of the corresponding symmetric mode.
With reference to igure 5.3 it is lso oserved tht, in contrst to the one- nd three-dimensionl
multi-tomic cses, there is no lower ound on the perturtion of mss required to initite 
loclised mode.
Finlly, the reder’s ttention is drwn to the symmetric nd skew-symmetric eigenmodes for

 chin of 20 msses shown in igure 5.12. e corresponding frequencies re the mximum
nd minimum vlues in the rry of frequencies ssocited with horizontl lines of igure 5.11.
e envelope curves for oth digrms in igure 5.12 represent the irst eigenmode of  ho-
mogenised rectiliner inclusion. e simple homogenised model presented in section 5.4 pro-
vides the envelope curves for the inite inclusion. e form of the homogenised system suggests
tht, mcroscopiclly, the inclusion ehves s  string on n elstic foundtion. As expected,
the skew-symmetric mode of igure 5.12 hs the higher frequency thn the symmetric mode
of igure 5.12.
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Chapter Six

ermal striping of a micro-structured
edge-cracked solid

M
Hving studied sttic inclusions in sclr lttices, the current chpter will e devoted to the nl-
ysis of the response of  tringulr lttice nd  continuum contining  conducting inite edge
crck under sinusoidl therml loding. e mteril prmeters of the continuum re chosen
such tht they correspond to the homogenised lttice. e response of the lttice to the uncou-
pled thermoelstic prolem is exmined nd the notion of n “effective stress intensity factor” is
introduced using the crck opening displcements ehind the crck tip. e “effective stress in-
tensity factor” is then compred with the stress intensity fctor for n edge-crcked continuum
otined y use of  J-integrl derived for formultions of uncoupled thermoelsticity.

6.1 Crack-tip ields and the J-integral

For the purpose of the present chpter, it will e necessry to evlute the stress intensity fctor
for n edge crck in  two-dimensionl elstic ody under the ssumptions of plne strin. e
stress intensity fctor provides  convenient mesure of the stress stte in the vicinity of the
crck tip. Indeed, stress intensity fctors re oen incorported into frcture criteri. One such
frcture criteri is Pris’ lw 124, which hs found extensive use in prolems relted crck
growth under ftigue. e scholrly literture on frcture mechnics, nd prticulrly frcture
in liner elsticity, is very well developed. For  more detiled discussion of frcture mechnics,
the reder is referred to 6, 15, 59, 64, 146 nd references therein.
Consider  semi-ininite crck = {x ∶ −∞ < x1 < 0, x2 = 0} in R2 s shown in igure 6.1.

e stresses in the vicinity of the crck-tip (x = 0) re singulr. In prticulr, to leding order
the stresses in the vicinity of the crck tip re of the form (see, for exmple, 15, 124)

σij ∼
fij(θ)√

r
, (6.1)
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Figure 6.1: A semi-ininite crck (solid red line) deined y the set = {x ∶ −∞ < x1 < 0, x2 = 0}
emedded in n elstic ody. e dshed lue lines indicte the contours of integrtion.

where r nd θ re the polr distnce nd ngle respectively. In the present chpter, it will e
sufficient to consider mode I loding. Under mode I loding, the crck opening displcements
re odd with respect to x2 65 such tht u2(x1, x2) = −u2(x1,−x2); the displcements prllel
to the crck re even: u1(x1, x2) = u1(x1,−x2). According to the deinition given y Irwin 64,
the mode I stress intensity fctor is

KI = limr→0

√
2πrσθθ(r, 0). (6.2)

To leding order, the norml stress hed of the crck tip cn then e written s

σθθ∣θ=0 ∼ KI√
2πr

. (6.3)

In generl the leding order stresses cn e expressed s

σrr ∼
KI√
2πr

cos
θ
2
(1 + sin2 θ

2
) , σθθ ∼

KI√
2πr

cos3
θ
2
, σrθ ∼

KI√
2πr

sin
θ
2
cos2

θ
2
, (6.4)

with σαα = (σrr + σθθ).
6.1.1 e J-integral

eJ-integrl provides  convenientmethod throughwhich the stress intensity fctor for  notch
or crck my e evluted. e J-integrl is  pth independent energetic contour integrl nd
ws developed independently y Cherepnov 26 nd Rice 134 in the lte 1960’s. A detiled
development of the J-integrl my e found, for exmple, in the inititing two ppers 26, 134
or clssicl reference texts such s 15 mong mny others.
Consider  crck, deined y the set = {x ∶ −∞ < x1 < 0, x2 = 0}, emedded in  linerly

elstic medium nd oriented s illustrted in igure 6.1. e J-intgerl introduced y Rice cn
e written in the form

Ji = ∫
Γ

(Wni − σjknjuk,i)ds, (6.5)

where W is the strin energy density functionl, ni is the ith component of the outwrd unit
norml to some ritrry closed contour Γ, index summtion nottion is used nd suscript
comms followed y indices indicte differentition. Here, Ji represents the ith component of
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the J-integrl, corresponding to crck opening displcements in the xi direction. Appliction of
Green’s theorem yields integrtion over the region enclosed y Γ

Ji = ∫
Ω

∂

∂xj
(W ij − σjkuk,i)dA. (6.6)

In the sence of ody forces the equilirium eqution is σji,j = 0, whence (σjkuk,i),j = σjkuk,ij.
Moreover, for sufficiently smooth u, σkl kl,i =

1
2(σkluk,li + σlkuk,li) = σklul,ik since σ is symmetric.

us,
Ji = ∫

Ω

(W,j ij − σkl kl,i)dA. (6.7)

For elstic mteril the stress is relted to the energy strin functionl y σkl = ∂W
∂ kl

, hence ∂W
∂xi =

∂W
∂ kl kl,i nd inlly

Ji = ∫
Ω

(σkl kl,i − σkl kl,i)dA = 0. (6.8)

us, the J-integrl vnishes round ny closed contour which encloses  simply connected re-
gion without ny stress singulrities . Moreover, it my e shown tht if the crck fces re
trction free, then the J-integrl is pth-independent.
e fct tht the J-integrl vnishes over n pproprite contour llows convenient determi-

ntion of the stress intensity fctor. Consider now the contour Γ = Γ0 ∪ Γ+ ∪ Γ− ∪ Γ s shown
in igure 6.1. In prticulr, let Γ = {x ∶ ∣x∣ < }, where → 0 ut Γ0 e ritrry. Since the
J-integrl vnishes over Γ

∫
Γ0

(Wni − σjknjuk,i)ds +∫
Γ+

(Wni − σjknjuk,i)ds
+∫
Γ−

(Wni − σjknjuk,i)ds +∫
Γ

(Wni − σjknjuk,i)ds = 0. (6.9)

Evluting the integrl over Γ it is found tht, in the cse of plne strin nd mode I loding
(setting i = 1),

K2
I =

E
1 − 2 ∫

Γ0

(Wn1 − σjknjuk,1)ds − E
1 − 2 ∫

Γ+∪Γ−

σjknjuk,1ds, (6.10)

where the fct tht the contriution of n1 vnishes over Γ+ ∪ Γ− hs lredy een used. Hence,
the stress intensity fctor for mode I loding cn e determined y evluting the integrl over
the remote contour Γ0 nd n integrl involving the trctions nd derivtive of displcements
over the crck fces. Moreover, if the crck fces re trction free such tht σjinj = 0, then the
inl integrl vnishes nd the J integrl ecomes pth-independent.

Hereiner appropriate contour.
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Modifying the J-integral

In the present chpter, the J-integrl method is used to compute the stress intensity fctor for
 qusi-sttic thermoelstic prolem. However, cre is required when treting thermoelstic
prolems using the J-integrl. In prticulr, it ws demonstrted yWilson ndYu 147 tht the
J-integrl s deined y Rice 134 does not vnish round n pproprite contour for thermoe-
lstic prolems. e non-trivil nture of the J-integrl my e esily demonstrted y noting
tht, for  two-dimensionl linerly elstic isotropic ody under  qusi-sttic therml lod, the
stress-strin reltionship in plne strin is

σij = ii ij + 2 ij −
E

1 − 2
T ij, (6.11)

where T(x; t) is the temperture ield nd is the coefficient of liner therml expnsion. e
irst nd second Lmé prmeters re denoted y nd respectively nd re relted to Young’s
modulus nd Poisson’s rtio y =

E
(1+ )(1+2 ) nd =

E
2(1+ ) . e irst two terms in the ex-

pression re the stndrd expressions for plne strin liner isotropic homogeneous elsticity
nd the nlysis presented in the previous section leding to eqution (6.8) follows through ex-
ctly. However, the inl term on the right hnd side of (6.11) yields n re integrl leding to
 non-vnishing J-integrl

Ji =
E

1 − 2 ∫
Ω

[T,i jj −
1
2
(T jj),i]dA. (6.12)

us, in contrst to the stndrd elstic cse, the stress intensity fctor cnnot e determined y
 line integrl over n pproprite remote contour. Insted, n dditionl re integrl must e
evluted. In this cse, eqution (6.10) tkes the form

K2
I =

E
1 − 2 ∫

Γ0

(Wn1 − σjknjuk,1)ds + E2(1 − 2)(1 − 2 ) ∫
Ω

[T,i jj −
1
2
(T jj),i]dA, (6.13)

where the crck fces re ssumed to e trction free for convenience. By mens of Green’s
theorem eqution (6.13) my e written

K2
I =

E
1 − 2 ∫

Γ0

(Wn1 −
E

2(1 − 2 )T jj − σjknjuk,1)ds + E2(1 − 2)(1 − 2 ) ∫
Ω

jj
∂T
∂x1

dA. (6.14)

e irst integrl on the right hnd side of eqution (6.14) is the so-clled J*-integral introduced
y Wilson nd Yu 147.
It should e emphsised tht here, σij is the thermoelstic stress tensor (6.11) nd W is the

corresponding energy density functionl; Ω is the re enclosed y Γ0. e integrl in (6.13)
s well s the lterntive integrls presented y Wilson nd Yu 147 require evlution of the
derivtives of strin, which my e numericlly chllenging, prticulrly in the vicinity of the
crck tip. However, the representtion (6.14) requires only derivtives of the temperture ield,

Qusi-sttic in the sense tht no inerti term ppers in the equtions of motion, ut the temperture ield my
depend, prmetriclly, on time
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Figure 6.2: A inite edge-crck (solid red line) deined y the set Ma = {x ∶ 0 ≤ x1 ≤ a, x2 = 0}
emedded in n elstic ody Ω = {x ∶ 0 < x1 < d, ∣x2∣ < h/2}.

which for the present ppliction, re known nlyticlly nd re smooth.

6.2 e uncoupled thermoelastic problem

In the continuum, the therml striping prolem for the rectngle Ω = {x ∶ 0 < x1 < d, ∣x2∣ <
h/2}, contining  inite edge crckMa = {x ∶ 0 ≤ x1 ≤ a, x2 = 0}, with the crck fcesM±a (see
igure 6.2), stisies the following prolem for the elstic displcement ield U(x; t):

LU(x; t) = (3 + 2 )∇T(x; t), x ∈ Ω ∖Ma, (6.15)

σ(n)[U](x; t) = (3 + 2 )nT(x; t), x ∈ B0 ∪ Bd ∪M+a ∪M−a , (6.15)

U(x; t) = 0, x ∈ {x ∶ 0 < x1 < d, ∣x2∣ = h/2}, (6.15c)

whereLU = ΔU+( + )∇∇⋅U, Br = {x ∶ x1 = r, ∣x2∣ < h/2}, nd re the Lmé coefficients
nd is the coefficient of liner therml expnsion. e differentil opertor of trctions is
denoted y σ(n)[U] = { (∇ ⋅U)I + {∇U + (∇U)T]}n, with n eing the outwrd unit norml
nd I eing the 2 × 2 identity mtrix. Physiclly, system (6.15) corresponds to the uncoupled
thermoelstic prolem on  inite plte of width d nd height h. e plte is clmped on the
horizontl oundries (∣x2∣ = h/2) nd mechniclly free on the lterl oundries (x1 = 0, d).
e solution U(x; t) is then the elstic displcement for  given temperture ield T(x; t). e
prolem is uncoupled in the sense tht, in the elstic prolem, the time t is treted s  prmeter
nd T(x; t) is the solution of n pproprite het conduction prolem (see (6.19)).
Consider  uniform tringulr meshing of R2 with nodes t discrete positions xm = ℓT m,
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wherem ∈ Z2 lels the nodes seprted y distnce ℓ nd

T =
⎛⎝1 1/2
0
√
3/2
⎞⎠ . (6.16)

e reder is referred to section 2.1 for further detils nd clriiction of nottion. It is conve-
nient to introduce the following sets of nodes

Interior nodes: Γ = {m ∶ 0 < x1(m) < d, ∣x2(m)∣ < h
2
} ,

Lterl oundries: 0 = {m ∶ 0 ≤ x1(m) ≤ ℓ

2
, ∣x2(m)∣ ≤ h

2
} ,

d = {m ∶ d − ℓ

2
≤ x1(m) ≤ d, ∣x2(m)∣ ≤ h

2
} ,

Horizontl oundries: h = {m ∶ ℓ/2 < x1(m) < d − ℓ

2
, ∣x2(m)∣ = h

2
} .

In ddition, the set contining the lttice nodes on the crck fces is denoted s ML
a = {m ∶

0 ≤ x1(m) ≤ a, −
√
3ℓ/2 ≤ x2(m) ≤ 0}, nd the set of nodes connected to node m is written

Nm = {q ∶ ∣x(m + q) − x(m)∣ = ℓ} ∖ML
a . e prolem for the in-plne elstic displcement um

of  thermlly striped lttice with  inite edge crck is then (see § 2.2.6)

∑
q∈Nm

B(q) {um+q(t) − um(t)} = ℓ

2 ∑
q∈N (m)

b(q) {Θm+q(t) +Θm(t)} ,p ∈ Γ, (6.17)

um(t) = 0,m ∈ h, (6.17)

whereΘm(t) is the temperture t nodem t time t. emtricesB(q) nd vectors b(q)descrie
the direction of interction etween lttice nodesm + q ndm. In prticulr

B(q) = ⎛⎝ cos2 cos sin

cos sin sin2
⎞⎠ , b(q) = ⎛⎝cossin

⎞⎠ , (6.18)

where is the ngle etween the point T q nd the positive x1-xis. Physiclly, prolem (6.17)
corresponds to  tringulr rry of thin conducting rods connected vi pin-joints. In the ln-
guge of erlier sections, the lttice nodes interct vi the centrl interction (see § 2.2.3). e
vrition of temperture from some “stress free” reference conigurtion cretes elstic strins
within the rods.

It is remrked tht in prolem (6.17), the eqution of motion is independent of the stiffness
of the lttice links. is my, initilly, pper to e counter-intuitive. However, it is emphsised
tht this is  qusi-sttic prolem, tht is, there is no inerti term. e vrition in temperture
etween two lttice nodes genertes  strin in the lttice link connecting the two nodes. e
stress generted y the therml strin nd the stress generted y the nodl displcements re
oth proportionl to the stiffness of the link, hence, the sence of ny elstic prmeters in the
equilirium eqution (6.17).
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6.3 e heat conduction problem

Time-hrmonic luctutions in temperture re studied in the present section. erefore, it
is convenient to formulte the het conduction prolem in terms of the complex mplitudes:
θ(x) for the continuum nd ϑm for the lttice. e continuum mplitude stisies the following
prolem on the rectngle Ω = {x ∶ 0 < x1 < d, ∣x2∣ < h/2}

Δθ(x) = i θ(x), x ∈ Ω, (6.19)

θ(x) = T0, x ∈ {x ∶ x1 = 0, ∣x2∣ ≤ h/2}, (6.19)

θ(x) = 0, x ∈ {x ∶ x1 = d ∣x2∣ ≤ h/2}, (6.19c)

∇[θ(x)] ⋅ n = 0, x ∈ {x ∶ 0 < x1 < d, ∣x2∣ = h/2}, (6.19d)

where is the rdin frequency of the therml lod nd is the therml diffusivity of Ω. Physi-
clly (6.19) corresponds to the time-hrmonic therml striping of  inite conducting rectngle
y  sinusoidl lod pplied to the le fce x1 = 0. e right fce x1 = d is isotherml, whilst the
upper nd lower fces x2 = ±h/2 re ditic. e crck is perfectly conducting. e oundry
vlue prolem (6.19) hs the following unique solution

θ(x1) = T0
sinh[(1 + i) (d − x1)]

sinh[(1 + i) d] , (6.20)

where 2
= /2 .

Similrly, the time-hrmonic het conduction prolem on  inite lttice cn e written in
terms of the discrete complex mplitude ϑm (see §2.2.2)

ϑm =
1

i Ξ + ∣N (m)∣ ∑q∈N (m)
ϑm+q, m ∈ Γ, (6.21)

ϑm = T0, m ∈ 0, (6.21)

ϑm = 0, m ∈ d, (6.21c)

ϑm =
1∣N (m)∣ ∑q∈N (m)

ϑm+q, m ∈ h, (6.21d)

here Ξ = Cℓ/(S ) nd N (p) = {q ∶ ∣x(p + q) − x(p)∣ = ℓ} denotes the set of nodes connected
to node p, with q ∈ Z2. Physiclly, prolem (6.21) descries het conduction through n rry
of msses of het cpcity C connected y mssless conducting links of therml conductivity ,
cross-sectionl re S nd length ℓ. Neglecting the mss of the conducting links (equivlently
the het cpcity of the links) results in  constnt temperture grdient long the rods. e
reder is referred to section 2.2.2 for discussion of the fundmentl interction mtrices for
het conduction. For  direct comprison with the continuum solution (6.20) the rtio Ξ should
e chosen such tht the homogenised prolem corresponds to the continuum het conduction
prolem (6.19). In prticulr, choosing Ξ = ℓ2

√
3/ mens tht the homogenised limit of the

lttice prolem (6.21), corresponds to the continuum prolem (6.19).
e lttice conduction prolem (6.21) is formlly equivlent to  inite difference prolem on

 tringulr mesh nd is therefore menle to the ssocited numericl techniques. e Guss-
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Seidel itertive method is used to solve (6.21). e numericl solution revels tht the het low
is pproximtely one-dimensionl. Indeed, for the frequency rnge in question, the vrition
in the solution with x2 is elow 1% of the striping mplitude. Figure 6.3 shows  comprison
of the temperture solution s  function of distnce from the striped fce for three chrcter-
istic striping frequencies. e three striping frequencies chosen chrcterise the typicl rnge
found in  model test rig of  prototype fst rector 77. e comprison indictes tht the tem-
perture distriution on lttice pproximtes the continuum temperture distriution very well.
erefore, for the current regime, it is pproprite to impose the continuum temperture distri-
ution (6.20) for the uncoupled thermoelstic prolem in oth the continuum nd  sufficiently
reined lttice.
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Figure 6.3: e solutions to the het conduction prolem in the continuum (6.19) (solid red curve)
nd the het conduction prolem in the lttice (6.21) (dshed lue curve) s  function
of x1 (depth through the plte). e lttice links re of length ℓ = 1 × 10−4m.

Prmeter
Symol Description Numericl Vlue

S/ℓ Rtio of the length of the lttice links to cross-sectionl re (m) 10−4
T0 Amplitude of therml striping lod (○C) 10

erml diffusivity (m2/s) 2.29 × 10−5
h Block height (m) 1.16

√
3 × 10−2

d Block width (m) 10−2
E Young’s Modulus (GP) 163.5

Poisson’s rtio 1/4
Liner therml expnsion coefficient (1/○C) 2 × 10−5

Table 6.1: e prmetric vlues used for the purposes of numericl computtions.
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6.4 Numerical simulations: the displacement ields and the stress
intensity factor

Both the continuum (6.15) nd the lttice (6.17) prolems re solved using the inite element
method for  plte of height 1.16

√
3 × 10−2m nd width 1 × 10−2m. e commercil pckge

Comsol Multiphysics® is used to simulte the therml striping prolem for three chrcteristic
striping frequencies nd different crck lengths. e prolem is solved using  trnsient solver
with the continuum temperture ield eing imposed s n externl time-hrmonic lod with
complex mplitude s given in (6.20). For the continuum, one hlf of the plte is modelled with
the mode I symmetry condition pplied to the uncrcked oundry hed of the crck nd the
zero displcement condition pplied to the horizontl oundry x2 = h/2. e tringulr lttice
possesses no verticl symmetry nd therefore the entire plte must e modelled. Two lttices of
vrying reinements re considered: ()  sparse lttice with links of length ℓ = 2 × 10−4m nd
cross-sectionl re of S = 2 × 10−8m2; nd ()  ine lttice with links of length ℓ = 1 × 10−4m
nd cross-sectionl re of S = 1 × 10−8m2. e mteril nd geometric prmeters re chosen
such tht the homogenised limit of oth lttices correspond to the continuum prmeters, s
discussed in section 3.2. e numericl vlues re summrised in tle 6.1 nd re chosen to
correspond to typicl vlues for steel.

(a)e sprse lttice (b)e ine lttice

Figure 6.4: e xil stresses in the sprse nd ine lttices.

Figure 6.4 shows the solute vlues of the xil stresses in the two lttices. In contrst to the
continuum, ll the stresses in the lttice re inite. However, igure 6.4 does show  concentrtion
of stress in the vicinity of the crck tip. In order to deine n “effective stress intensity factor” for
the lttice, it is ssumed tht for  sufficiently reined lttice the verticl displcements ehind
the crck tip exhiit similr symptotic ehviour to the continuum. Indeed, for mode I loding
of  semi-ininite crck in  tringulr lttice excited y  remote lod, it hs een shown (see, for
exmple, 115 nd 139) tht in the long wvelength limit, the u2 displcement ehves in the
sme wy s the continuum, tht is, u2(x1) ∼ a0∣a − x1∣1/2. For the present work, it is ssumed
tht for  sufficiently reined lttice

u2(m) ∼ KI(1 − k2)
√

a − x1(m)
2π

+b1 [a − x1(m)]+b2 [a − x1(m)]3/2+b3 [a − x1(m)]2 , (6.22)
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form ∈ {p ∶ x1(p) < a, x2(p) = 0}; here k = 3−4 nd is the sher modulus corresponding to
the homogenised continuum. It should e understood tht the coefficients KI nd bi depend on
t. In direct nlogy to the displcement extrpoltion method for the continuum (see 63, 124
mong others), the stress intensity fctor t  prticulr time cn e determined y itting the
expnsion (6.22) to the displcements ehind the crck tip. Figure 6.5 shows tht the expn-
sion (6.22) is sufficient to ccurtely cpture the ehviour of the u2 displcements ehind the
crck tip nd tht the displcements exhiit the sme qulittive ehviour s in the continuum.
Of primry interest is the pek-to-pek mplitude of the stress intensity fctor

ΔKI = max
t0≤t<t0+2π/

KI(t) − min
t0≤t<t0+2π/

KI(t). (6.23)

Dt is tken from the region x ∈ {x ∶ a − 1 × 10−3 ≤ x1 ≤ a − ℓ, x2 = 0}, tht is, long the upper
fce of the crck from the node djcent to the crck tip node for  distnce of 1×10−3m, ehind
the crck tip (see igure 6.2). Here, a ≥ 0.01 is the crck length nd 0 < ℓ < a is the length of 
lttice link.
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Figure 6.5: e u2 displcements for the two lttices nd the continuum ginst distnce from the
crck tip, together with the itted expnsion curves (see eqution (6.22)) for  represen-
ttive crck depth nd time.

For the continuum, it is convenient to use  J-integrl type pproch to compute the stress
intensity fctor for the edge-crcked plte. In prticulr, eqution (6.14) is used to determine
the stress intensity fctor. e line nd re integrls in (6.14) re computed from the inite
element results using fourth order qudrture over three contours in the vicinity of the crck tip.
e positions of the contours re vried to ensure pth independence.
Figure 6.6 shows the mximum ΔKI vlues for the thermlly striped continuum nd the two

lttices t three striping frequencies: 0.0625Hz, 1Hz nd 6.25Hz. e continuum curves show
similr ehviour to tht oserved in 72, 77, with the locl mxim of ΔKI incresing nd
shiing further to the right for lower frequencies. For sufficiently long crcks, the lttice curves
exhiit the sme qulittive ehviour s the continuum. Compred with the continuum, the
lttices hve  reduced stress intensity fctor, except for shorter crcks t higher frequencies. It
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Figure 6.6: emximum ΔKI for the continuum nd the two lttices ginst crck depth for three
chrcteristic frequencies.

is lso pprent tht the more “reined” the lttice, the closer the stress intensity fctor is to the
continuum vlue. For shorter edge crcks (smller thn 2× 10−3m) the nodl displcements no
longer exhiit the squre root symptotic ehviour (see eqution (6.22)).

6.5 Remarks

is chpter hs exmined the effect of  discrete microstructure on qusi-sttic crck growth
in  thermlly striped plte for in-plne elsticity. e het conduction prolem on  tringulr
lttice ws formulted nd solved numericlly. It ws demonstrted tht the therml ield in
the lttice cn e pproximted y the nlyticl solution to the het conduction prolem on
the corresponding continuous plte. e therml striping prolem, for oth the continuum
nd tringulr lttice, ws solved using the inite element method. It ws shown tht, lthough
there is no singulrity in the lttice, there is  stress concentrtion in the neighourhood of the
crck tip. Moreover, the crck fce displcements were shown to exhiit the sme chrcteristic
squre root ehviour, consistent with erlier works (see 115, 139 mong others). e notion
of n “effective stress intensity factor” ws introduced vi the crck fce displcements in direct
nlogy to the continuum displcement extrpoltion method 63,124 nd compred with the
stress intensity fctor for  corresponding continuum otined vi  modiied J-integrl. e
“effective stress intensity factor”, nd the stress intensity fctor itself, were shown to exhiit the
sme qulittive properties. In prticulr, the locl mxim of ΔKI increses nd shis further
to the right for lower frequencies. In physicl terms, this mens tht in the qusi-sttic regime
crcks will tend to grow further for lower striping frequencies. For  sufficiently long crck nd
low frequency, the “effective stress intensity factor”for the lttice is lower thn the corresponding
continuum. Moreover, the more reined lttice, the closer the “effective stress intensity factor” is
to the stress intensity fctor for the corresponding continuum.
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Chapter Seven

Amicrostructured invisibility cloak

M
e present chpter is devoted to the development of  squre invisiility clok for ields gov-
erned y the Helmholtz eqution. e Helmholtz eqution rises in  wide vriety of ields
including electromgnetism, elsticity, nd coustics. erefore, solutions to the cloking pro-
lem for the Helmholtz eqution hve  wide rnge of potentil pplictions. However, for dei-
niteness nd ese of exposition the lnguge of elsticity will e used throughout this chpter.
e current chpter is structured s follows. A description of the regulrised clok in the con-

tinuum model of out-of-plne sher elstic wves follows the introduction. is lso includes
the discussion of the essentil nd nturl interfce conditions on the oundries of the clok.
An explicit nlyticl ry lgorithm is developed, nd the phenomenon of negtive refrction
on the interfce oundries is explined. Numericl scttering mesures re included, with de-
tiled simultions. e nlysis lso incorportes Neumnn nd Dirichlet oundry conditions
on the inner contour of the clok. As  demonstrtion of the effectiveness of the regulrised
clok,  Young’s doule slit experiment is presented. A recent pper y Greenlef et l. 54 con-
siders n ppliction of cloking vi trnsformtion optics in quntummechnics. In prticulr,
Greenlef et l. present  clss of invisile reservoirs nd mpliiers for wves nd prticles. e
issues discussed in the present chpter, which re rised y this linkge etween cloking nd
quntum mechnics, re in some wys similr to those discussed y Greenelf et l. It is lso
shown tht one of the undenile dvntges of such n pproximte clok is the strightfor-
wrd connection with the discrete lttice structures. ese connections re nlysed in detil,
nd ccompnied y  rnge of physicl simultions.

7.1 e regularised continuum cloak

e clssicl pproch to cloking vi trnsformtion geometry involves deforming  region
such tht  point is mpped to  inite region corresponding to the inner oundry of the clok.
Indeed, the squre push out trnsformtion proposed y Rhm et l. 132 mps  point to 
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squre. e mpping is non-singulr everywhere except t the inner oundry of the clok. In
the present pper,  regulrised version of the squre push out trnsformtion is used. In prtic-
ulr, the trpezoids (i) re mpped to the trpezoids Ω(i)

−
s illustrted in igure 7.1 with conti-

nuity, ut not smoothness, imposed on the interfces etween the four trpezoids. empping
is non-singulr on the closure of the clok, nd hence, ll corresponding mteril properties re
inite. It will e shown tht this regulrised trnsformtion yields n effective rodnd clok,
with inite mteril properties which my esily e pproximted y  regulr lttice.

7.1.1 e transformation
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Figure 7.1: e trnsformtionF mps the undeformed region = (1) ∪ (2) ∪ (3) ∪ (4) to the
deformed conigurtion Ω− = Ω(1)

−
∪ Ω(2)

−
∪ Ω(3)

−
∪ Ω(4)

−
. e oundry etween Ω+

nd Ω(i)
−

is denoted Γ(i), while the interfce etween Ω0 nd Ω(i)
−

is denoted (i). e
corresponding oundries in the undeformed conigurtion re denoted y Γ(i) nd σ(i)
respectively.

Consider  smll squre 0 = {X ∶ ∣X1∣ < , ∣X2∣ < } ⊂ R2, which vi the trnsformtion F
is mpped to the squre Ω0 = {x ∶ ∣x1∣ < a, ∣x2∣ < a} ⊂ R2. e exterior of the clok remins
unchnged y the mp, tht is, X = F(X) for X ∈ Ω̄+, where the r denotes the closure of the
domin. Physiclly w is the thickness of the clok, a is the semi-width of the inclusion Ω0, nd
is the initil semi-width of the squre 0 where 0 < /a ≪ 1. In this cse, it is convenient

to decompose the clok into four su-domins = (1) ∪ (2) ∪ (3) ∪ (4), s illustrted in
igure 7.1. Formlly, F deines  pointwise mp from X ∈ = (1) ∪ (2) ∪ (3) ∪ (4) to
x = F(X) ∈ Ω− = Ω(1)− ∪ Ω(2)− ∪ Ω(3)− ∪ Ω(4)− . e mpping is continuous nd non-liner on ,
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nd deined in  piecewise fshion such thtF =F(i)(X) for X ∈ (i), where
F
(1)(X) = ⎡⎢⎢⎢⎢⎣

1X1 + 2

1X2 + 2X2/X1

⎤⎥⎥⎥⎥⎦ , F
(2)(X) = ⎡⎢⎢⎢⎢⎣

1X1 + 2X1/X2

1X2 + 2

⎤⎥⎥⎥⎥⎦
F
(3)(X) = ⎡⎢⎢⎢⎢⎣

1X1 − 2

1X2 − 2X2/X1

⎤⎥⎥⎥⎥⎦ , F
(4)(X) = ⎡⎢⎢⎢⎢⎣

1X1 − 2X1/X2

1X2 − 2

⎤⎥⎥⎥⎥⎦ ,
with 1 = w/(a + w − ) nd 2 = (a + w)(a − )/(a + w − ). e Jcoin mtrices nd
determinnts re then

J(1) =

⎛⎜⎜⎜⎜⎝
1 0

x2 1 2

x1( 2 − x1)
x1 1

x1 − 2

⎞⎟⎟⎟⎟⎠
, J(2) =

⎛⎜⎜⎜⎜⎝

x2 1

x2 − 2

x1 1 2

x2( 2 − x2)
0 1

⎞⎟⎟⎟⎟⎠
,

J(3) =

⎛⎜⎜⎜⎜⎝
1 0

x2 1 2

x1( 2 + x1)
x1 1

x1 + 2

⎞⎟⎟⎟⎟⎠
, J(4) =

⎛⎜⎜⎜⎜⎝

x2 1

x2 + 2

x1 1 2

x2( 2 + x2)
0 1

⎞⎟⎟⎟⎟⎠
,

J(1) = x1 2
1

x1 − 2
, J(2) = x2 2

1
x2 − 2

, J(3) = x1 2
1

x1 + 2
, J(4) = x2 2

1
x2 + 2

.

It is emphsised tht J(i)(xi) = det J(i) = tr J(i) is strictly positive for x ∈ Ω̄(i)
−

nd ≠ 0, tht
is, the mp is continuous on oth the interior nd oundry of the clok. e metric of the
deformed spce Ω(i)

−
is g(i) = (J(i)J(i)T)−1.

e present section will e devoted to the propgtion of time hrmonic out-of-plne sher
wves of rdin frequency nd displcement mplitude u(x). Lemm 2.1 in 116 llows the
Helmholtz eqution for n isotropic homogeneous medium ∇X ⋅ (∇X)u(X)+ϱ 2u(X) = 0 for
X ∈ to e written in deformed co-ordintes s

[∇ ⋅ (C(i)(x)∇) + ρ(i)(x) 2]u(x) = 0, x ∈ Ω(i)
−
, (7.1)

where is the constnt mient stiffness, ϱ is the constnt mient density, the trnsformed
stiffness tensor my e expressed s

C(i)(x) =
J(i)(x) J(i)(x)[J(i)(x)]T, (7.2)

nd ρ(i)(x) = ϱ/J(i)(x) is the sclr trnsformed density. e differentil opertor∇X is written
in the undeformed spce nd should e distinguished from∇ which is written in the deformed
coordintes.
Since the mpping is continuous on Ω̄−, the mteril properties of the clok re non-singulr.

It is ovious from the representtion (7.2) tht the trnsformed stiffness tensor is symmetric nd
positive deinite. Physiclly, the trnsformedmteril properties correspond to  heterogeneous
nisotropic memrne.
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7.1.2 Interface conditions

Without loss of generlity, it is convenient to restrict the following nlysis to  single side of
the clok. With reference to igure 7.1, consider  su-domin Ω(i)

−
⊂ R2 in the sence of the

inclusion nd remining three sides of the clok. In the sence of sources, the mplitude of
the out-of-plne sher deformtion of n outgoing time-hrmonic wve of ngulr frequency
stisies the following eqution

[∇ ⋅ (A(x)∇) + ρ(x) 2]u(x) = 0, (7.3)

together with the Sommerfeld rdition condition t ininity. Here, A(x) nd ρ(x) re deined
s

A(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(i)(x) for x ∈ Ω(i)

−

I for x ∈ Ω+
, ρ(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ(i)(x) for x ∈ Ω(i)
−

ϱ for x ∈ Ω+
. (7.4)

Let v(x) e  continuous piecewise smooth solution of the Helmholtz eqution in R2 stisfy-
ing the Sommerfeld rdition condition t ininity. Integrting the differenceu(x)[∇⋅(A(x)∇)+
ρ(x) 2]v(x)−v(x)[∇⋅(A(x)∇)+ρ(x) 2]u(x) over  discDr of rdius r contining Ω(i)− yields

0 = ∫
Dr

(u∇ ⋅A∇v − v∇ ⋅A∇u)dx,
= ∫
∂Ω(1)
−

(u−n ⋅A∇v− − v−n ⋅A∇u−)dx − ∫
∂Ω(1)
−

(u+n ⋅A∇v+ − v+n ⋅A∇u+)dx
+ ∫

∂Dr

(un ⋅ ∇v + vn ⋅ ∇u) dx,
where the fct tht ∇u ⋅ A∇v = ∇v ⋅ A∇u (since A is symmetric) hs lredy een used. Since
u(x) nd v(x) represent outgoing solutions, the integrl over ∂Dr vnishes s r→∞. us, the
essentil interfce condition is the continuity of the ield

[u] = 0 on ∂Ω(i)
−
, (7.5)

nd the nturl interfce condition is continuity of trctions, tht is,

[n ⋅A(x)∇u] = 0 on ∂Ω(i)
−
. (7.6)

7.1.3 e cloaking problem

Consider the propgtion of  time hrmonic out-of-plne deformtion, generted y  point
source, in  homogeneous ininite elstic solid contining n inclusion surrounded y  clok.
e displcement mplitude then stisies

[∇ ⋅ (A(x)∇) + ρ(x) 2]u(x) = − (x − x0), x ∈ R2 ∖ Ω̄0, x0 ∈ Ω+ (7.7)

[ 0∇ ⋅ (∇) + ϱ0 2]u(x) = 0, x ∈ Ω0, (7.8)
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with the continuity condition (7.5) for u(x) nd the condition (7.6) for trction on ll inter-
fce oundries. Additionlly, the Sommerfeld rdition condition is imposed t ininity. e
stiffness tensor A(x) nd density ρ(x) re

A(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(i)(x) for x ∈ Ω(i)

−

I for x ∈ Ω+
, ρ(x) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ(i)(x) for x ∈ Ω(i)
−

ϱ for x ∈ Ω+
, (7.9)

nd 0 nd ϱ0 re the stiffness nd density of the inclusion respectively.

7.1.4 e ray equations

Whilst, in principle, it is possile to ind the displcement ield y solving the cloking pro-
lem it is useful to consider the leding order ehviour of rys through the clok. Consider 
WKB-type expnsion (seeWKB Expansions in the ppendices on pge 126) of the displcement
mplitude in terms of ngulr frequency , nd the mplitude nd phse functions Un(x) nd
ϕ(x) respectively

u(x) ∼ ei ϕ(x)
∞

∑
n=0

inUn(x)
n , s →∞. (7.10)

e leding order eqution for the phse on the interior of the clok hs the form

H(x, s) = 0, (7.11)

where H(x, s) = ϱ−1s ⋅ g−1s − 1, s = ∇ϕ is the slowness vector, nd ϱ re the stiffness nd
the density of the mient medium respectively, nd g is the metric of the trnsformtion. In
terms of wve propgtion, the conserved quntity H(x, s) represents the irst order slowness
contours(see, for instnce, 110). e chrcteristics of the quntity H(x, s) then stisfy the
following system

dH
dt
= 0, dx

dt
=
∂H
∂s

,
ds
dt
= −

∂H
∂x

, (7.12)

where t is the ry (time-like) prmeter. At this point, it is convenient to introduce index summ-
tion nottion where summtion from 1 to 2 over repeted indices is ssumed. e system (7.12)
my then e expressed s follows

dsi
dt
= −2ϱ−1 sm sn Jnl

∂Jml
∂xi

,
dxi
dt
= 2ϱ−1 Jil Jjl sj, (7.13)

where Jij = (J)ij re the components of the Jcoin mtrix nd should e distinguished from
the J, the Jcoin determinnt. e superscript lels hve een omitted for revity, ut Jij nd
J should e understood s J(k)ij nd J(k) for k = 1, . . . 4, corresponding to the four sides of the
clok. Written in terms of wve normls n nd the phse velocity v, eqution (7.11) tkes the
form

ϱ−1n ⋅ g−1n − v2 = 0. (7.14)

95



Chapter Seven A microstructured invisibility cloak

e representtion (7.14) is otined y ssuming  plne wve solution to the Helmholtz equ-
tion (see, for exmple 110) .
From (7.11) nd (7.14) the slowness vector cn e expressed in terms of the originl mteril

properties (through ϱ nd ) nd the mp (through J) s

s = n
v
=

n∣JTn∣
√

ϱ
, (7.15)

Further, in the undeformed conigurtion, the equivlent conserved quntities re ϱ−1S ⋅S−1 =
0 nd ϱ−1 = V2. Together with (7.11) nd (7.14), these two equtions imply tht

s = J−TS = J−TN
V
= J−TN

√
ϱ
, (7.16)

where J−T = (JT)−1 denotes the inverse nd trnspose of J.
Now, consider  ry (i.e.  line) in the mient medium, in direction N pssing through X0

nd prmeterised y t. e corresponding curve in the clok is x(t) = F(X0 + tN), whence
dxi
dt
= JijNj,

which using (7.16) cn e rewritten in the form

dxi
dt
= Jil Jjl sj

√
ϱ
. (7.17)

Tking the derivtive of (7.16) for constnt N yields

dsi
dt
= sk sn Jkj Jlm Jnm

∂J−1ji
∂xl

√
ϱ
.

Here is it emphsised tht J−1ji = (J−1)ij s opposed to 1/Jij. Using the comptiility condition,
tht is, the deformtion grdient should e irrottionl under inite deformtion jkℓ∂J−1ik/∂xj =
0ℓi, the prtil derivtive ove cn e written s ∂J−1jl/∂xi, whence

dsi
dt
= −sm sn Jnℓ

∂Jml
∂xi

√
ϱ
, (7.18)

where jkℓ is the permuttion tensor nd the equlity Jlm∂J−1jl /∂xi = −J−1jl ∂Jlm/∂xi hs een used.
Consider the chrcteristic equtions for the wves in the clok (7.13), together with the equ-

tions of the trnsformed rys (7.17) nd (7.18). e system (7.17) nd (7.18) re the equtions
of chrcteristics in the clok, up to n ritrry scling constnt 2

√ /ϱ. us, to leding order,
rys (or stright lines) in the mient medium mp directly to rys in the clok.

Alterntively, seeking  solution of the full wve eqution in the form of the leding term in  WKB expnsion

u(x, t) ∼ ei ϕ(x,t)
∞

∑
n=0

inUn(x, t)
n , s →∞,

yields the sme result with ∂ϕ/∂t = v.
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(a) (b)

Figure 7.2: Plots of the ry pths through the clok for  cylindricl source. e grey lines indicte
the deformtion of the spce inside the clok. (Animted versions of these igures my
e found in the supplementry mteril 30.)

Figure 7.2 shows rys emnting from  point source, pssing through the clok nd emerg-
ing from the clok long their originl trjectory. In this sense, the oject is “invisile” to n
oserver outside the cloking region. Figure 7.2 clerly illustrtes how wve propgtion in the
clok is relted to the mp. Animted versions of igure 7.2 cn e found in the supplementry
mteril 30.
An interesting lterntive perspective is pprent if igure 7.2 is viewed, not s rys diverging

from  source, ut s rys converging to  focl point. It is oserved tht the rys converge to
the focl point round the inclusion. One cn envisge severl pplictions where such n effect
cn e useful. For exmple, imge distortion from the mirror mounts in telescopes could e
reduced y cloking themounts. In ddition, pprtus ndmounting structures onmicrowve
receivers could e cloked to improve the qulity of the signl. One could lso conceive of
cloking mounting points nd the surrounding structures in lser cutting mchines to protect
them from ccidentl dmge.

Negative refraction

It is evident from igure 7.2 tht, whilst the rys re continuous, they re not necessrily smooth.
In prticulr, t the interfces of the clok, refrction occurs chrcterised y the discontinuity
of the irst order sptil derivtives of the rys. Of prticulr interest re the regions on the outer
oundry of the clok where negtive refrction occurs.
Consider igure 7.2. Negtive refrction occurs on the right hnd interfce etween the clok

nd the mient medium. A ry exiting the right hnd side of the clok with grdientM t point
X(0) = x(0) cn e descried y the equtionX(s)2 −X

(0)
2 =M(X(s)1 −X(0)1 ) in the mientmedium,

whereX(s) is the position of the source. e ehviour of the ry t the interfce is chrcterised
y the position of the source reltive to the interfce, its initil grdient nd the properties of the
clok. erefore, without loss of generlity, the following nlysis is restricted to the right hnd
side of the clok. On the interior of the right hnd side of the clok, the ry exiting the clok t
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x(0) is chrcterised y

x2 = x1
⎛⎝M + 1(x(0)2 −Mx(0)1 )

x1 − 2

⎞⎠ .
e grdient of the ry s it pproches the exterior oundry from the interior of the clok is
then

m∗ = lim
x1→(a+w)−

dx2
dx1
=
M(a +w − )(a +w) − x(0)2 (a + )

w(a +w) .

us, the grdient is discontinuous t the exterior interfce. For negtive refrction it is required
thtm∗M < 0. is inequlity is stisied when either

0 <M < x(0)2
a +(a +w)(a +w − ) , or x(0)2

a +(a +w)(a +w − ) <M < 0. (7.19)

For  source locted on the line X2 = 0 s in igure 7.2, the ove inequlities reduce to the
single inequlity

X(s)1 < −
(a +w)(w − 2 )

a +
,

which is stisied for ll sources outside the clok X(s)1 < −(a + w), provided w < a + 3 . us,
for  sufficiently thin clok nd  cylindricl source plced long X2 = 0 t ny distnce from the
clok, negtive refrction is expected on the opposite side of clok.
For  source locted long the line X1 = 0, the inequlities (7.19) ecome

0 < X(s)2 <
(a +w)(w − 2 )(a +w − ) , or −

(a +w)(w − 2 )(a +w − ) < X(s)2 < 0, (7.20)

where the fct tht ∣x(0)2 ∣ < (a + w) hs een used. Since a,w > 0, nd 0 < /a ≪ 1, the
ove inequlities re never stisied, hence, the lck of negtive refrction on the horizontl
interfces in igure 7.2. Similr rguments my e used in other regions to decide whether
negtive refrction occurs or not. It is oserved tht negtive refrction lwys occurs t the
interfces etween the different regions of the clok, where themteril properties (equivlently
the trnsformtion) re not smooth.

7.1.5 Scattering measure

It is desirle to hve some quntiilemesure of the qulity of the clok with respect to shield-
ing, rther thn relying on visul oservtions. However, it is not ovious wht “qulity” mens
with respect to  clok, given tht there re essentilly three ields involved, i.e. the idel ield
in the sence of oth clok nd inclusion, the uncloked ield with n inclusion present ut
without  clok, nd the cloked ield with oth the inclusion nd clok. Previous experimentl
works 141 hve used n L2 norm computed directly from themesured ields to plce  numer-
icl vlue on the qulity of the clok. It is in this spirit tht the following “scattering measure” is
formlly introduced s  tool to quntify the cloking effect

E(u1,u2,R) = ⎛⎜⎝∫
R

∣u1(x) − u2(x)∣2 dx⎞⎟⎠
⎛⎜⎝∫
R

∣u2(x)∣2 dx⎞⎟⎠
−1

, (7.21)

98



Chapter Seven A microstructured invisibility cloak

whereR ⊂ R2 is some region outside the clok, nd u1(x) nd u2(x) re ny two ields. In the
present chpter, the quntities E(uu,u0,R) nd E(uc,u0,R) re given for  series of illustrtive
simultions. e ield u0(x) = iH(1)0 ( √ϱ/ ∣x − x0∣)/4 is the Green’s function for the unper-
tured prolem nd represents the “idel” ield, uu(x) nd uc(x) re the uncloked nd cloked
ields respectively. us, perfect cloking corresponds to  vnishing E . Along with the rw
scttering mesures n dditionl quntity, Q = ∣E(uu,u0,R) − E(uc,u0,R)∣/E(uu,u0,R), is
lso presented. e prmeter Q chrcterises the reltive reduction of the scttering mesure
y the introduction of  clok. It should e emphsised tht this is only one of  numer of
possile mesures of qulity.

.. R1.
x0

(a) Strict scttering region

.. R2.
x0

(b) Forwrd Scttering

..

R3

.
x0

(c) Corner Scttering

Figure 7.3: e three regions used for computtion of the scttering mesure.

Choice ofR. For the purpose of illustrtion three different regions of integrtion re consid-
ered, s shown in igure 7.3. e three regions used were chosen s follows: ()R1 is the most
strict region used tking into ccount signiicnt ner ield effects nd  wide rnge of scttering
ngles. However, it is unlikely tht this region would e mesurle in prctice. ()e forwrd
scttering region (R2) is relevnt if the scttered ield ismesurle over  wide rnge of forwrd
scttering ngles. (c) e corner scttering region (R3) is employed for sources locted long
the digonl of the squre inclusion. It is emphsised tht ∥R1∥ ≠ ∥R2∥ = ∥R3∥, nd the leding
edges of the regionsR2 ndR3 re locted t the sme distnce from the source.

In the following section the scttering mesures will e presented for  series of illustrtive
simultions.

7.1.6 Illustrative simulations

A series of illustrtive simultions were creted using the inite element sowre COMSOLMul-
tiphysics®. Perfectly mtched lyers were used in the vicinity of the oundry of the comput-
tionl domin in order to simulte n ininite domin. For the purposes of these computtions,
the following non-dimensionl prmeter vlues were chosen: a = 0.5, w = 0.5, = ϱ = 1,

0 = 0.1, ϱ0 = 0, = 1 × 10
−6. Figures 7.4 nd 7.5 show the displcement mplitude ield u(x)

for  cylindricl source oscillting t = 5 nd = 10 respectively. e igures clerly illustrte

roughout this chpter, ll numericl prmeters re normlised such = ϱ = 1 unless otherwise stted.
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Source Scttering Mesure E
Position Frequency Uncloked Cloked Q

Scttering regionR1[−3, 0]T 5 0.1529 4.351 × 10−4 0.9972[−3, 0]T 10 0.1455 4.514 × 10−4 0.9969[−3, 3]T/√2 5 0.2002 3.941 × 10−4 0.9980[−3, 3]T/√2 10 0.3286 4.068 × 10−4 0.9988

Scttering regionR2[−3, 0]T 5 0.3224 3.664 × 10−4 0.9989[−3, 0]T 10 0.3093 1.167 × 10−3 0.9962

Scttering regionR3[−3, 3]T/√2 5 0.2988 3.654 × 10−4 0.9988[−3, 3]T/√2 10 0.2988 7.803 × 10−4 0.9974

Table 7.1: e scttering mesures corresponding to the simultions shown in igures 7.4 nd 7.5.

(a) Uncloked, x0 = [−3, 0]T (b) Cloked, x0 = [−3, 0]T

(c) Uncloked, x0 = [−3, 3]T/√2 (d) Cloked, x0 = [−3, 3]T/√2

Figure 7.4: Plots of the ield u for the uncloked nd cloked squre inclusion, where the ngulr
frequency of excittion is = 5. e position x0 of the source is indicted under the
relevnt plot.
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(a) Uncloked, x0 = [−3, 0]T (b) Cloked, x0 = [−3, 0]T

(c) Uncloked, x0 = [−3, 3]T/√2 (d) Cloked, x0 = [−3, 3]T/√2
Figure 7.5: Plots of the ield u for the uncloked nd cloked squre inclusion where the ngulr

frequency of excittion is = 10. e position x0 of the source is indicted under the
relevnt plot nd the inclusion is locted t the centre of the imge in ll cses. e
colour scle is s indicted in igure 7.4.

(a) (b)

Figure 7.6: () e scttering mesure plotted ginst ngulr frequency. () e log of the sct-
tering mesure plotted ginst ngulr frequency. e solid line corresponds to the
continuum in the sence of oth n inclusion nd clok. e dshed line represents
the cloked inclusion nd the dsh-dot line corresponds to the uncloked inclusion. e
regionR1 (see igure 7.3 nd the ssocited text) ws used to compute the errormesure.
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Source Scttering Mesure E
Boundry Condition Frequency Uncloked Cloked Q

Scttering regionR1
Neumnn 5 0.1624 4.351 × 10−4 0.9973
Neumnn 10 0.1558 4.540 × 10−4 0.9971
Dirichlet 5 0.2931 1.038 × 10−2 0.9646
Dirichlet 10 0.2553 7.875 × 10−3 0.9692

Scttering regionR2
Neumnn 5 0.3436 3.664 × 10−4 0.9989
Neumnn 10 0.3258 1.163 × 10−3 0.9964
Dirichlet 5 0.4864 1.566 × 10−2 0.9678
Dirichlet 10 0.5030 1.673 × 10−2 0.9667

Table 7.2: e scttering mesures for  void with Neumnn nd Dirichlet oundry conditions.
Here the source is locted t [−3, 0]T.

the efficcy of the squre clok, even t reltively high frequencies. Tle 7.1 shows the corre-
sponding scttering mesures s introduced in section 7.1.5. It is cler tht this squre “push
out” clok is highly effective. Indeed, for the illustrtive simultions presented here, the clok
reduces the scttering mesure y not less thn 99.62% compred with the uncloked inclusion.
Figure 7.6 shows the scttering mesure plotted ginst non-dimensionl ngulr frequency
(with = ϱ = 1). e solid curve in igure 7.6 corresponds to the continuum, in the sence of

oth clok nd inclusion. is curve gives n indiction of the numericl error in the simultion
induced y, for exmple, the use of perfectly mtched lyers nd the numericl discretistion.
e dshed curve corresponds to the cloked inclusion, whilst the dsh-dot curve corresponds
to the uncloked inclusion. It is oserved tht the numericl mesure of the cloked inclusion
remins close to tht of the intct continuum for  lrge rnge of frequencies. Moving to di-
mensionl quntities, suppose the simultion corresponded to  prticulr polriztion of n
electric wve trvelling through glss t  speed of pproximtely 2 × 108 m/s. e line = 10
on igure 7.6 then corresponds to  frequency of pproximtely 340 MHz.

Boundary considerations

Whilst cloking vi trnsformtion geometry hs een extensively treted in the literture, the
sensitivity of the cloking effect to the oundry conditions is rrely discussed. e clok is
formedydeforming  smll region ( point in the cse of the clssicl rdil trnsformtion 126),
into  lrger inite region. If the region is n inclusion, then the nturl interfce conditions my
e determined following the method outlined in section 7.1.2. If the cloked region is  void or
rigid inclusion, however, there is some freedom in choosing the oundry condition, suject to
the constrints of the physicl prolem. Figure 7.7 shows the ield u(x) for  cloked void, with
Neumnn (prts () nd ()) nd Dirichlet (prts (c) (d)) conditions pplied to the interior of
the cloked region. e corresponding scttering mesures re shown in tle 7.2.
Although the squre clok is effective in oth cses, it is cler from oth the igures nd the

tle of scttering mesures tht the type of oundry condition imposed on the cloked oject
ffects the qulity of the cloking. Indeed, for  void (Neumnn) the cloking reduces the sct-
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(a) Uncloked, Neumnn (b) Cloked, Neumnn

(c) Uncloked, Dirichlet (d) Cloked, Dirichlet

Figure 7.7: Plots of the ield u for the uncloked nd cloked squre inclusion with Neumnn
oundry conditions on the oundry of the inclusion in prts () nd (), nd Dirich-
let oundry conditions on the oundry of the inclusion in prts (c) nd (d). Here the
source is locted t x = [−3, 0]T nd oscilltes t = 10. e colour scle is s indicted
in igure 7.4.
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tering mesure y etween 99.7% nd 99.9% for oth = 5 nd = 10. In contrst, cloking
reduces the scttering mesure of  rigid inclusion (Dirichlet) y etween 96.5% nd 96.8% for
= 5 nd etween 96.7% nd 96.9% for = 10. e effect of the oundry condition my

e interpreted in the following wy. As  result of the trnsformtion, the cloked oject nd
clok together ehve s if the void is smll. In this sense, the cloked inclusion represents 
singulr perturtion of the fundmentl solution of the Helmholtz eqution. In the cse of 
free void with Neumnn conditions, the leding order term in the symptotic expnsion is the
dipole term, which is of order 2 nd decys like the irst derivtive of the fundmentl solu-
tion. On the other hnd, for  ixed void with Dirichlet conditions, the leding order term in the
expnsion is the monopole term which is of order nd decys like the fundmentl solution.
us, the perturtion from the free void is smller thn the perturtion from the ixed void,
leding to improved cloking

7.2 Cloaking path information

In recent yers there hs een much interest in experiments to elucidte the fundmentl prin-
ciples of quntummechnics, nd in prticulr the reltionship etween mesurement nd sys-
tem ehviour. One sic experiment which with its vrints fetures in mny such experimen-
tl studies is the clssicl Young’s doule slit experiment (see, for exmple, 66, 67). is sug-
gested tht it my e of interest to consider the interction of the excellent mechnicl cloking
demonstrted erlier with the foundtionl quntummechnics experiment. A recent pper y
Greenlef et l. 54 considers n ppliction of cloking vi trnsformtion optics in quntum
mechnics. In prticulr, Greenlef et l. present  clss of invisile reservoirs nd mpliiers
for wves nd prticles. e issues discussed elow, which re rised y this linkge etween
cloking nd quntum mechnics, re in some wys similr to those discussed y Greenelf et
l.
us,  Young’s doule slit experiment is considered where  monochromtic plne wve is

incident on  screen with two pertures. Due to the superposition of the wves pssing through
the two pertures, the distinctive doule slit interference pttern is produced on n oservtion
screen plced on the opposite side of the pertures to the source. e result of  simultion of
the stndrd experiment is shown in igure 7.8, with the diffrction pttern produced on the
oservtion screen (in this cse,  verticl line ner the right hnd edge of igures 7.8-7.8c)
shown s curve () in igure 7.8d. Plcing n oject (inclusion) over one slit, s in igure 7.8,
prtilly destroys the diffrction pttern. e corresponding pttern on the oservtion screen
is shown s line () in igure 7.8d. However, coting the oject with the squre push out clok
presented erlier, s shown in igure 7.8c, restores the originl diffrction pttern lmost entirely.
e interference pttern corresponding to the cloked oject is shown s curve (c) in igure 7.8d.
e simultion, shown in the supplementry mteril 30, conirms tht the excellent clok-

ing for the inclusion position of igure 7.8c, exempliied in igure 7.8d, holds irrespective of the
inclusion position. It hs thus een conclusively demonstrted tht the cloking is of sufficient
qulity to render the interference pttern lmost immune to movement in the position of the
cloked ostcle. In prticulr movement of the cloked ostcle, it would seem, does not yield
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(a) (b)

(c)

(a)

(b)

(c)

(d)

Figure 7.8: ()-(c) e ield u(x) for the Young’s doule slit experiment with no inclusion, n un-
cloked inclusion, nd  cloked inclusion respectively. (d) A plot of ∣u(x)∣ over the
oservtion screen illustrting the interference fringes for cses ()-(c). (An nimted
version of this igure my e found in the supplementry mteril 30.)
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Figure 7.9: e lttice formed from the principl directions of the stiffness mtrix for the contin-
uum clok.

ny informtion out the pssge of wves through one slit or the other. is considertion
would e importnt if one were le to crry out n experiment in which single quntised ele-
ments of virtion were in the system t ny given instnce in time. e quntum mechnicl
view would e tht, if no pth informtion were ville from mesurements, the interference
fringes ehind the doule slit should persist.
is proposed quntum experiment rises interesting questions if n pproprite virtion

trnsducer were emedded within the clok, so tht informtion out virtions moulded y
the clok were ville to experimentlists. One would ssume, in line with the results of sy
opticl experiments of the type referred to in 66, tht ny pth informtion gined in this wy
would e evident in  chnge in the fringe pttern. is suggests the interest of  comprehensive
quntummechnicl tretment of the interction etweenmechnicl cloks ndmesurement
systems.

7.3 Cloaking with a lattice

Cloks designed using trnsformtion optics my hve such extreme physicl ttriutes tht the
requisite mterils cnnot e physiclly relised without recourse to metmterils. It is with
this motivtion in mind tht the following pproximte clok in the low frequency regime is
developed. e clok is constructed s n pproximtion to the continuum squre clok consid-
ered erlier, ut is relised using  discrete lttice structure, formed from rods nd point msses.
e dvntge of  discrete structure over  continuous mteril is tht much higher contrsts
in mteril properties re esily relisle using lttices. e development of n pproximte
cloking mteril using  lttice my llow the prcticl construction of cloks. In the following
discussion, it is emphsised tht repeted indices re not summed over.
With reference to the formule for the Jcoin of the trnsformtion in section 7.1.1, the

symmetric stiffness tensors C(i) = [ /J(i)]J(i)J(i)T re positive deinite. erefore, the stiffness
mtrix dmits the following digonlistion

C(i) = P(i)
T

Λ(i)P(i), (7.22)

where P(i) = [e(i)1 , e(i)2 ] re the mtrices with columns consisting of the principl directions
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(eigenvectors) of C(i), nd Λ(i) = diag( (i)1 ,
(i)
2 ) is the digonl mtrix of the corresponding

ordered positive eigenvlues such tht (i)
1 >

(i)
2 . e eigenvectors yield the principl lttice

vectors of the loclly orthogonl lttice with homogenised stiffnesses (i)
j in direction e(i)j . In

prticulr, the lttice nodes lie t the intersection points of the solutions of the following non-
liner system of irst order differentil equtions

d

dτ
x(i)j = e

(i)
j (x(i)j ), for i = 1, . . . 4, nd j = 1, 2, (7.23)

for some rry of initil positions, where x(i)j is the position vector long the chrcteristic de-
ined y e(i)j inside the ith side of the clok nd τ prmetrises the curve. Nturlly, this would
led to  lttice with curved links. However, for  sufficiently reined lttice the curvedmemers
my e replced with liner links. e lttice links re then the lineristion of the chrcteristic
etween two neighouring nodes on the chrcteristic. Figure 7.9 shows the geometry of the
lttice formed from the principl vectors of the stiffness mtrix. Requiring locl conservtion
of lux llows the stiffness of the lttice link prllel to e(i)j to e determined s ℓij (i)j , where
ℓij is the length of the link long e(i)j . e distriution of nodl mss my e determined y
evluting the integrl

m(xp) = ∫
A(xp)

ρ(x)dx,
over the unit cellA(xp) contining the lttice node t xp.

In principle, the lttice clok my e constructed exctly s descried ove nd illustrted in
igure 7.9. However, for nrrow cloks where w/a ≪ 1, the loclly orthogonl lttice depicted
in igure 7.9 my e pproximted y  glolly orthogonl regulr squre lttice. A regulr
squre lttice is more convenient to implement compred with the non glolly orthogonl lt-
tice generted from the eigendecomposition of the stiffness mtrix. Although the geometry of
the pproximte lttice is regulr, it should e emphsised tht the stiffness of the links ndmss
of the nodes vry with position ccording to the projection ofA(x) nd ρ(x) s descried ove.
7.3.1 Geometry and governing equations for an inclusion cloaked by a lattice

Consider  squre inclusion Ω0 = {x ∶ ∣x1∣ < a, ∣x2∣ < a}, a > 0, emedded in R2, surrounded
y  clok Ω− = {x ∶ a < ∣x1∣ < a + w, a < ∣x2∣ < a + w} ∖ Ω0, where w > 0 is the thickness of
the clok. e clok consists of  discrete lttice structure with lttice points t x = ℓp, where
p ∈ Z2 ∩ {n ∶ ℓn ∈ Ω−}. e lttice is stticlly nisotropic with links prllel nd perpendiculr
to the oundries hving contrsting mteril properties, s shown in igure 7.10.
As for the continuum clok, solutions of the Helmholtz eqution re of primry interest. In

prticulr, the following prolem for the ield u(x) is studied
[ ∇ ⋅ (∇) + ϱ 2]u(x) = − (x − x0), x, x0 ∈ Ω+, (7.24)

[ 0∇ ⋅ (∇) + ϱ0 2]u(x) = 0, x ∈ Ω0, (7.25)

m(p) 2u(p) + ∑
q∈N (p)

ℓη(q,p) [u(p + q) − u(p)] = 0, in Ω−, (7.26)
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Figure 7.10: e lttice clok Ω−, surrounding the squre inclusion Ω0, emedded in the mient
medium Ω+. e thick lck lines in the lttice clok indicte links of high stiffness or
conductivity, while the thick grey lines indicte links of low or stiffness conductivity.

where ei = [ i1, i2]T, p ∈ Z2, ndN = {±e1,±e2} is the set of nerest neighours. e stiffness
nd density of the mient continuum re denoted y nd ϱ respectively, whilst the corre-
sponding quntities of the inclusion re denoted y 0 nd ϱ0. e stiffness of the lttice links
re the restriction of the eigenvlues of the stiffness mtrix to the links. In prticulr, for the
link connecting nodes p nd p+q, η(q,p) tkes the vlue (i)

1 ∣[ℓp,ℓ(p+q)] if the vector q is prllel
to the exterior oundry of the clok, Γ(i), nd (i)

2 ∣[ℓp,ℓ(p+q)] otherwise. e corner regions re
mtched s illustrted in igure 7.10. Here, (i)j ∣[ℓp,ℓ(p+q)] indictes the restriction of (i)

j to the
line [ℓp, ℓ(p+ q)]. e ssocited interfce conditions corresponding to continuity of trctions
re

n ⋅ ∇u(x) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for x ∈ ∂Ω− nd x ± ℓq ∉ Ω−
ℓη(∓q,p)u(x ± ℓq)/ for x ∈ ⋃i Γ(i) nd x ± q ∈ Ω−
ℓη(∓q,p)u(x ± ℓq)/ 0 for x ∈ ⋃i

(i) nd x ± q ∈ Ω−

, i = 1, . . . , 4, (7.27)

nd the Sommerfeld rdition condition t ininity. e quntity η(q,p) is the projection of the
digonlised stiffness mtrix onto the lttice link connecting lttice points p nd p + q.
Physiclly, (7.24)–(7.27) corresponds to the prolem of the propgtion of time-hrmonic

wves of ngulr frequency generted y  point lod t x0. e ield u(x) then corresponds
to the out-of-plne displcement mplitude ield. e region Ω− consists of n rry of nodes
of mssm, connected y mssless rods of length ℓ nd stiffness ccording to their orienttion.
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Source Scttering Mesure E
Position Frequency Uncloked Cloked Q

Scttering regionR1[−3, 0]T 3 0.1430 0.1662 0.1617[−3, 3]T/√2 3 0.1113 0.1816 0.6327[−3, 0]T 5 0.1529 0.2495 0.6318[−3, 3]T/√2 5 0.2002 0.3538 0.7676

Scttering regionR2[−3, 0]T 3 0.2341 0.3362 0.4363[−3, 0]T 5 0.3224 0.4671 0.4489

Scttering regionR3[−3, 3]T/√2 3 0.1578 0.3455 1.189[−3, 3]T/√2 5 0.2988 0.6011 1.012

Table 7.3: e scttering mesures corresponding to the simultions for the basic lattice model
shown in igures 7.11 nd 7.12.

7.3.2 Illustrative lattice simulations

e pproximte lttice cloks were exmined using the inite element sowre Comsol Multi-
physics®. Perfectlymtched lyerswere used in the vicinity of the oundry of the computtionl
domin in order to simulte n ininite domin. For the purpose of illustrtion,  squre of semi-
width a = 0.5, surrounded y  lttice clok with w = 0.1 nd links of length 5 × 10−3 ws used.
e inclusion is locted t the origin of the computtionl window.

A basic lattice cloak

Before proceeding to the illustrtive simultions for the regulr lttice with heterogeneous distri-
utions of stiffness nd mss, it is instructive to consider  simple pproximtion. Mny cloks
creted vi trnsformtion optics hve the generl chrcteristic of hving  high phse speed
prllel to the oundry of the clok, nd  lowphse speed in the direction norml to the ound-
ry (see 39 mong others). erefore, s n initil pproximtion, the cse of  regulr squre
lttice with  homogeneous, ut orthotropic distriution of stiffness nd  homogeneous distri-
ution ofmss is considered. Consider the right-hnd side of the clok Ω(1)

−
. For  nrrow clok

withw/a≪ 1, x1 ∼ a+w nd hence the densitymy e pproximted y ρ ∼ 1+a/w. e gretest
contrst in stiffness occurs t x2 = 0, thus the verticl links re ssigned stiffness ℓ (1)1 (a+w, 0)
nd the horizontl links stiffness ℓ (1)2 (a + w, 0). e mss of the nodes is ℓ2(1 + a/w). e
mteril properties of the remining three sides of the clok re djusted ccordingly.
Figures 7.11 nd 7.12 show the ield u(x) for the uncloked inclusion () nd (d), nd the

inclusion cloked with this basic clok () nd (e). For = 3 igure 7.11 indictes tht the ba-
sic clok prtilly mitigtes the shdow cst y the inclusion nd cts to reform the cylindricl
wve fronts ehind the inclusion. As illustrted y igure 7.12, this prtil cloking effect de-
teriortes with incresing frequency. Indeed, in some cses, the presence of the lttice clok
seems to increse the shdow region. Tle 7.3 detils the vlues of the scttering mesures for
the ields illustrted in igure 7.11 nd 7.12. e scttering mesures shown in tle 7.3 suggest
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(a) Uncloked (b) Bsic clok (c) Reined clok

(d) Uncloked (e) Bsic clok (f) Reined clok

Figure 7.11: Plots of the ield u(x) for  cylindricl wve incident on  squre inclusion in the
sence of  clok (prts () nd (d)),  squre inclusion coted with the basic lttice
(prts () nd (e)), nd n inclusion coting with the reined lttice (prts (c) nd (f)).
Here the ngulr frequency of excittion is = 3 nd the source is locted t x0 =[−3, 0]T in ()–(c), nd t x0 = [−3, 3]T/√2 in (e)–(f). e colour scle is s indicted
in igure 7.4.

tht, lthough visully the sic lttice clok ppers to work resonly well, this my not e
the cse. e fct tht the sic lttice clok increses the scttering mesure compred with
the uncloked inclusion further emphsises the need for n ojective mesure of the qulity of
cloks, rther thn simply relying on visul oservtions.
is increse in the scttering mesure y the sic lttice clok motivtes the introduction

of the following reined model.

A reined lattice cloak

Consider now the lttice descried in section 7.3.1, i.e. the regulr squre lttice with inhomo-
geneous distriution of stiffness nd mss. Figures 7.11 nd 7.12 show the ield u(x) for the
uncloked inclusion nd the inclusion with  lttice cloking. With reference to the simultions
for the basic clok () nd (e) the reined lttice clok (c) nd (f), it is oserved tht the efficiency
of the reined lttice clok, whilst not s high s tht of the continuum clok, ismuch greter thn
tht of the basic clok. e tle of scttering mesures for the pproximte clok is shown in
tle 7.4 nd further evidences the effectiveness of the reined lttice clok. Indeed, for severl
simultions (in prticulr those where the scttering mesure is tken over the forwrd or cor-
ner scttering regionsR1 ndR2 respectively) the efficiency of the reined clok in reducing the
scttering mesure pproches tht of the continuum clok.
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(a) Uncloked (b) Bsic clok (c) Reined clok

(d) Uncloked (e) Bsic clok (f) Reined clok

Figure 7.12: Plots of the ield u(x) for  cylindricl wve incident on  squre inclusion in the
sence of  clok (prts () nd (d)),  squre inclusion coted with the basic lattice
model (prts () nd (e)), nd n inclusion coting with the reined lttice (prts (c)
nd (f)). Here the ngulr frequency of excittion is = 5 nd the source is locted
t x0 = [−3, 0]T in ()–(c), nd t x0 = [−3, 3]T/√2 in (e)–(f). e colour scle is s
indicted in igure 7.4.

Source Scttering Mesure E
Position Frequency Uncloked Cloked Q

Scttering regionR1[−3, 0]T 3 0.1430 0.01191 0.8929[−3, 3]T/√2 3 0.1113 3.385 × 10−3 0.9763[−3, 0]T 5 0.1529 0.04324 0.7173[−3, 3]T/√2 5 0.2002 0.03125 0.8438

Scttering regionR2[−3, 0]T 3 0.2341 0.01150 0.9508[−3, 0]T 5 0.3224 0.0172 0.9508

Scttering regionR3[−3, 3]T/√2 3 0.1578 5.047 × 10−3 0.9680[−3, 3]T/√2 5 0.2988 0.02114 0.9292

Table 7.4: e scttering mesures corresponding to the simultions shown for the reined lattice
model in igures 7.11 nd 7.12.
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As expected the effectiveness of the lttice cloks reduce with incresing frequency. However,
for sufficiently low frequencies the reined lttice clok in prticulr, works well.

7.4 Remarks

e work reported in this, the inl chpter of the present thesis, represents  comprehensive
tretment of  non-singulr clok for  squre inclusion. e signiicnt dvntge of this contin-
uous clok is the strightforwrd correspondence with  discrete metmteril lttice structure.
Such  connectionmy present method throughwhich  physicl clokmy e fricted. e
mteril nd geometric properties of the discrete clok re directly linked to the properties of the
continuum clok, nd hence, to the properties of the forml mp. e effectiveness of such dis-
crete cloks, prticulrly t low frequencies, ws demonstrted through numericl simultions
nd the use of ojective scttering mesures.
Prticulr ttentionws pid to the ojectivemesurement of the qulity of the cloking effect.

e qulity of the cloks ws primrily ssessed using  scttering mesure introduced s n
L2 norm of the difference etween the cloked ield nd the idel unpertured ield. A further
demonstrtion of the efficcy of the squre push out clok ws presented vi the clssicl Young’s
doule slit experiment. It ws shown tht the interference pttern on the oservtion screen
ws signiicntly modiied when n ostcle ws plce in front of one of the pertures. However,
if the ostcle ws cloked then the interference pttern remined lmost entirely unpertured.
is numericl experiment presents  further, perhpsmore interesting, method through which
the qulity of prticulr cloks my e exmined. Moreover, the experiment rises interesting
questions regrding the interction etween cloking nd quntum mechnics.
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Chapter Eight

Concluding remarks

M
epresent text represents  comprehensive study of  rnge of physicl prolems whichmy e
descried y the uniied theme of the dynamic response of metamaterial structures. Discrete lt-
ticemodels were irst employed yNewton 112, who used simplemss-spring systems to study
the propgtion of sound. As exempliied y the present thesis nd references herein, such lt-
tice models remin oth useful nd interesting systems to study, providing  rnge of prolems
nd mny fscinting phenomen. e dynmic response of structured medi depends on sev-
erl fctors including the geometricl ndmteril properties of themicro-structure in ddition
to the externl lod (e.g. pplied force or incident wve). For low-frequencies, the structured
medium is oen homogenised with the effective mteril properties eing determined from the
sttic response. However, s demonstrted in chpter 3, the effective mteril properties de-
rived s  limiting cse of the dynmic response (for smll frequency nd wve numer) my
not necessrily correspond to those derived from the purely sttic response. Moreover, in the
inite frequency regime the response of discrete lttice systems is strongly nisotropic yielding
striking primitive waveforms s shown in chpter 4. Such effects cn e employed to crete in-
teresting systems such s lt “metamaterial lenses”, which exhiit the novel effects of iltering,
focusing, nd negtive refrction for elstic medi. It is lso possile to control the width nd
position of stop nds s well s the resonnt frequencies for discrete lttice structures. With
this in mind, compct estimtes for the widths of stop nds, nd the position of sddle points,
mxim nd minim of the dispersion surfces were derived in chpter 3.
edynmic response of ltticeswith defects, considered in chpters 5 nd 6, lso ringsmny

interesting fetures. In prticulr, for rectiliner defects in squre lttices it ws demonstrted
tht  connection cn emde with the prolem of  ininite line defect nd  homogenised con-
tinuous inclusion. In chpter 5, the defect ws creted y removing somemss from  line of lt-
tice nodes, such tht theirmss ws smller thn those of the mient lttice. For one- nd three-
dimensionl multi-tomic lttices, there exists some lower ound on the mount of mss tht
should e removed from the defect nodes such tht  loclised mode my e initited 98, 109.
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However, s shown in chpter 5, this is not the cse for uniform two-dimensionl lttices: there
is no lower ound on the mss tht should e removed from  defect node to initite  loclised
mode. e primry tool used to study these loclised modes for inite rectiliner defects re the
lttice Green’s functions, which hve direct connections to so-clledWatson Integrals (see 150
nd references therein). In generl, the lttice Green’s functions cnnot e expressed in terms
of elementry functions. Nevertheless, their representtion in terms of hypergeometric func-
tions llows compct symptotic expnsions to e derived for nd-edge modes using nlytic
continution. Discrete metmteril structures lso hve wide pplicility in coupled systems,
such s the thermoelstic prolemdiscussed in chpter 6. It ws demonstrted tht  connection
cn e mde etween the discrete prolem for  thermlly striped lttice nd the corresponding
prolem for the continuum. In prticulr, it ws shown tht it is possile to deine n “effec-
tive stress intensity factor” for the discrete thermoelstic lttice. Moreover, for sufficiently long
crcks nd low frequencies, the pek-to-pek mplitude of this “effective stress intensity factor”
ws shown to e lower thn tht of the continuum. In this sense, the discrete lttice micro-
structure is sid to reduce the stress intensity fctor of n edge-crcked plte similr to the cse
of micro-structured continu 114.
One novel re of reserch in which metmterils hve found extensive use is tht of invisi-

ility cloks (see, for exmple, 89, 137, 141). In chpter 7,  design for  squre metmteril
clok for ields governed y the Helmholtz eqution ws discussed. e mteril properties of
the clok re continuous nd piecewise smooth on the closure of the clok. Nevertheless, the
contrst in principle stiffnesses required to chieve the cloking effect is fr eyond wht cn e
relised with “natural” mterils. However, the metmteril lttice model presented in chp-
ter 7 is fr less restrictive. With the pproximte discrete mss-spring clok design presented in
this thesis it ws possile to otin the requisite contrst in principle stiffnesses to physiclly re-
lise the cloking effect. emteril nd geometric properties of the lttice clok were derived,
nlyticlly, for  continuum clok. As demonstrted y the numericl simultions presented in
chpter 7, such n pproximte lttice clok provides effective cloking prticulrly in the low
frequency regime.
In summry, the present thesis provides  detiled study of wve propgtion nd the dy-

nmic response of metmteril structures in the physicl settings of out-of-plne nd in-plne
elsticity, electromgnetism, coustics, het conduction, nd thermoelsticty. A wide rnge
of nlyticl nd numericl techniques hve een employed to study the prolems presented
herein, leding to connections with other ields. To conclude, wve propgtion in metmte-
ril structures remins n ctive re of reserch with mny interesting phenomen yet to e
investigted. e reder is referred to the concluding remrks t the end of ech chpter for 
more detiled summry of the work contined within the present thesis.
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WKB expansions

M
eWKB (lsoWKBJ nd occsionlly LG) expnsion is  semiclssiclmethod for pproximt-
ing solutions to singulrly pertured prolems. In prticulr, WKB expnsions re employed to
ind pproximte solutions to differentil equtions where the highest order derivtive is multi-
plied y some smll positive prmeter, . e method ws developed in the 1920’s y Wentzel,
Krmers, Brillouin, nd Jeffreys 12, 13, 68, 87, 145, lthough the foundtions of the method
cn e considered to hve een developed lmost  century erlier y Crlini, Liouville, nd
Green. e method is now stndrd nd is included in mny grdute level texts, see 7, 119
for exmple.
Consider the second order ordinry differentil eqution (Helmholtz eqution in 1D)

( 2 d2

dx2
+Q(x))u(x) = 0, Q(x) > 0, 0 < ≪ 1. (1)

It would e nturl to seek  solution of the form u(x) ∼ A(x)eiS(x)/ , → 0+, where A(x)
nd S(x) re commonly referred to s the mplitude nd phse functions respectively. However,
it should e noted tht in this form, the mplitude nd phse functions depend on the smll
prmeter . e implicit dependencies my e mde explicit y expnding A(x) nd S(x) s
power series in , whence

u(x) ∼ exp{∞∑
n=0

n−1inSn(x)} , s → 0. (2)

e form (2) is the clssicl WKB expnsion (see 7). Alterntively, (2) my e recst s

u(x) ∼ ei (x)/ ∞∑
n=0

inAn(x) n, s → 0. (3)

e ove form will e most convenient for the purposes of this thesis. Direct sustitution of
(3) into (1) yields

∞

∑
n=0
{in n[ 2A′′n(x) +Q(x)An]

+in+1 n−1 2[ ′′(x)An(x) + 2 ′(x)A′n(x)] − in n−2 2[ ′(x)]2} = 0 (4)

In order to lnce the term involvingQ(x), the rtio 2/ 2 must e of order unity. Hence, ∝
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WKB expansions

nd for convenience one my chose = . Compring power of ,  hierrchy of equtions is
otined, the irst of which is the eikonal eqution for the phse

′(x) = ±√Q(x), (5)

followed y the transport eqution

2 ′(x)A′0(x) +A0
′′(x) = 0, (5)

with the higher order terms stisfying

′′(x)An + 2 ′(x)A′n +A′′n−1 = 0, for n ≥ 1. (5c)

e solution to leding order is then

u(x) ∼ Q−1/4(x)⎧⎪⎪⎪⎨⎪⎪⎪⎩c1 exp
⎡⎢⎢⎢⎢⎣i
−1

x

∫
x0

√
Q(t) dt⎤⎥⎥⎥⎥⎦ + c2 exp

⎡⎢⎢⎢⎢⎣−i
−1

x

∫
x0

√
Q(t) dt⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (6)

where c1, c2, nd x0 re ritrry constnts. Here Q−1/4(x) is the solution of the transport equ-
tion (up to  multiplictive constnt, nd the exponentil functions stisfy the eikonal eqution.
It is remrked tht the leding order solution (6) for the Helmholtz eqution is equivlent to
tht derived in 7 for the Schrödinger eqution, if Q(x) is tken to e strictly negtive in 7; it
is emphsised tht Bender nd Orsz 7 took the WKB expnsion in the form (2), s opposed
to the form (3) s is done here.
Of course, one my otin more ccurte representtions of u(x) y continuing to construct

the hierrchy of equtions (5). However, this isn’t lwys necessry nd much informtion my
e extrcted from the eikonal nd transport equtions without recourse to the leding, or higher
order, solutions. Indeed, for the purposes of this thesis, it will e sufficient to simply consider
the eikonal eqution.
In chpter 7, the WKB expnsion is pplied to equtions of the form

[ 2∇ ⋅ P(x)∇+Q(x)]u(x) = 0, for x ∈ Ω ⊂ R2 (7)

Nevertheless, the WKB pproch outlined here remins pplicle with the extension to two
dimensions dding only to the tediousness of the lger, rther thn ny dditionl technicl
difficulty.
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