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Abstract

This thesis constitutes an exposition of the work carried out by the author whilst examining several
physical problems under the broad theme of the dynamic response of metamaterial structures. An out-
line of the thesis is provided in chapter [[. Chapter ] introduces some notation and preliminary results on
general lattice equations. Chapter [ examines the dispersive behaviour of non-classical discrete elastic
lattice systems. In particular, the effect of distributing the inertial properties of the lattice over the elastic
rods, in addition to at the junctions, is considered. It is demonstrated that the effective material prop-
erties in the long wavelength limit are not what one would expect from the static response of the lattice.
The effect of various interactions on the dispersive properties of the triangular cell lattice is considered,
including so-called truss, frame, and micro-polar interactions. Compact analytical estimates for the band
widths are presented, allowing the design of metamaterial structures possessing pass and/or stop bands
at specific frequencies and in specified directions.

The finite frequency response of several lattice structures is considered in chapter f. In particular, the
dynamic anisotropy of both scalar and elastic lattices is examined. The resulting strongly anisotropic
material response is linked, explicitly, to the dispersive properties of the lattice. A novel application of
dynamic anisotropy to the focusing, shielding, and negative refraction of elastic waves using a flat discrete
“metamaterial lens” is presented.

Chapter f is devoted to the analysis, using the dynamic Green’s function, of a finite rectilinear inclu-
sion in an infinite square lattice. Several representations of the Green’s function are presented, including
expression in terms of hypergeometric functions, which are employed in deriving band edge expansions.
It is shown that localised defect modes, characterised by displacements which decay rapidly away from
the defect, can be initiated by reducing the mass of one or more lattice nodes, whilst ensuring that the
mass of the nodes remains positive. For one- and three-dimensional multi-atomic lattices, there exists a
bound on the contrast in mass between the defect and ambient lattice such that localised defect modes
exist. However, it is shown that for the two-dimensional lattice, no such bound exists, provided that the
masses remain positive. The analysis of a finite-sized defect region is accompanied by the waveguide
modes that may exist in a lattice containing an infinite chain of point defects. A numerical simulation
illustrates that the solution of the problem for an infinite chain can be used to predict the range of eigen-
frequencies of localised modes for a finite but, sufficiently long, array of masses representing a rectilinear
defect in a square lattice.

Continuing with the theme of defects, chapter f examines response of a triangular thermoelastic lattice,
with an edge crack under mode I loading. The response of the triangular lattice is compared with that of
the corresponding continuum. The model is related to the phenomenon of thermal striping, which occurs
when a structure is exposed to periodic variations in temperature. In the thermal striping regime, crack
propagation is a fatiguing processes with the rate of crack growth being proportional to some power of
the peak-to-peak amplitude of the stress intensity factor. An ‘effective stress intensity factor” for the lattice
is introduced and it is demonstrated that, in the homogenised limit, the ‘effective stress intensity factor” is
lower than the stress intensity factor of the continuum for sufficiently long cracks and low frequencies.

Finally, chapter [] presents a detailed analysis of a non-singular square cloak for acoustic, out-of-plane
shear elastic, and electromagnetic waves. The propagation of waves through the cloak is examined analyt-
ically and is complemented with a range of numerical illustrations. The efficacy of the regularised cloak is
demonstrated and an objective numerical measure of the quality of the cloaking effect is introduced. The
results presented show that the cloaking effect persists over a sufficiently wide range of frequencies. To
illustrate further the effectiveness of the regularised cloak, a Young’s double slit experiment is presented.
The stability of the interference pattern is examined when a cloaked and uncloaked obstacle are succes-
sively placed in front of one of the apertures. A significant advantage of this particular regularised square
cloak is the straightforward connection with a discrete lattice. It is shown that an approximate cloak can
be constructed using a discrete lattice structure. The efficiency of such a lattice cloak is analysed and
several illustrative simulations are presented. It is demonstrated that effective cloaking can be achieved
by using a relatively simple lattice, particularly in the low frequency regime. This discrete lattice structure

provides a possible avenue toward the physical realisation of invisibility cloaks.
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Chapter One

Introduction

This thesis is devoted to the analysis of a wide range of physical problems which are encompassed
by the unified theme of the dynamic response of metamaterial structures. In particular, the
present text deals with wave propagation, shielding, focusing, fracture and defects, and cloaking
in structured materials. The present chapter provides an overview of the thesis together with a
brief review of the most relevant scholarly literature.

The study of wave propagation in structured media can be traced as far back as the 17t cen-
tury with the publication of Newton’s Principia [112]. For instance, Newton [I12] studied a
one-dimensional mass-spring lattice system and derived an expression of the speed of sound
propagation. Despite being studied for several centuries, wave propagation in structured media
and the contemporary fields of photonics, phononics and platonics remains an active area of
research. An extensive bibliography of research in photonics, phononics, and metamerials can
be found in [42]. As noted in [42], the number of publications in these areas is growing year on
year. The classic monograph by Brillouin [14] remains an excellent introductory text for wave
propagation in structured media. In his monograph, Brillouin treats a wide range of physical
problems beginning from a simple one-dimensional mass spring chain, to crystal dynamics, and
linear particle accelerators. The unifying theme of the book [[4] is the periodic arrangement of
elementary units to create a large, often infinite, structure. The book by Born and Huang [9] is
considered the classical treatise on lattice dynamics from the viewpoint of quantum mechanics.
The overarching aim of the book [9] is the linkage of macroscopic properties of crystals to their
microstructure in the long wavelength limit; it deals with the optical, thermal, piezoelectric, and
elastic properties of lattices. For example, Born and Huang use potential theory motivated by the
underlying quantum mechanical principles to deduce the macroscopic elastic response of the
crystal; these types of interaction are referred to as central interactions in the present thesis. In
order to deduce the thermal properties of the crystal, Born and Huang resort to the framework
of finite deformations. In terms of defects in lattices, the excellent monograph by Maradudin
et al. [98] focuses on defects in crystallography in three dimensional lattices. Many of the ap-

proaches and results presented in [9,[14,98] are nowadays considered as standard and are often
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presented in upper-graduate level texts such as Kittel [85]. The book by Joannopoulos et al. [70]
provides a comprehensive overview of the propagation of light through photonic crystals. This
very accessible text [70] begins with elementary examples of one-dimensional problems leading
to a discussion on the design of photonic crystals for specific applications. Musgraves Crys-
tal Acoustics [110], also provides an excellent introduction to wave propagation in crystals and
lattices. The book [I10] deals not only with lattice dynamics but also with the mechanics of con-
tinuous anisotropic media. In particular, [110] provides a good introduction to the concepts of
group and phase velocity, and slowness and wave surfaces in the setting of anisotropic media.
Such concepts are usually introduced for isotropic media and their generalisation to anisotropic
media are non-trivial.

Some preliminary results for lattices, together with some necessary notation, are introduced
in chapter . Chapter [ is devoted to the study of the dispersive properties of elastic lattice struc-
tures and, in particular, their homogenised properties in the low frequency range. Usually, these
effective properties are determined from the static response of the material [27,50,[100,123] and
are regarded as being valid for small, but not necessarily zero, frequencies. However, it is shown
in chapter P that for lattices with inertial links, their dynamic response is not necessarily accu-
rately described by their static response, even at small frequencies. The study of two-dimensional
elastic discrete systems, accompanied by the analysis of dispersion properties of waves, was in-
cluded in the paper by Martinsson and Movchan [101]. It has been demonstrated that it is pos-
sible to control the position of stop bands by re-distributing the mass across the junctions of the
lattice structure. In [101], the techniques required to analyse the dynamic properties of discrete
structures were summarised. The method used to analyse the dispersive properties of discrete
structures in the present thesis is similar to those described in [14,98,101], and many other texts
which treat periodic structures. The spectral properties of two-dimensional triangular, hexago-
nal, square, and Kagomé lattices have also been examined by Phani et al. [127]. In particular, for
so-called “cellular solids” formed from a uniform continuous array of slender ligaments without
additional mass at the junctions, Phani et al. [127] demonstrated that the effective material prop-
erties determined from long-wave asymptotes to the dispersion curves agree with the effective
material properties determined from the static response (see, for example, the book by Gibson
and Ashby [50], the paper by Christensen [27], and the review by Ostoja-Starzewski [123]). The
method of using long-wave asymptotics to approximate the dispersion curves and, hence, deter-
mine the effective elastic moduli has also been applied to structured continua (see, for example,
the paper by Carta and Brun [22]). Long wavelength homogenisation using finite difference for-
malism to derive governing equations for the corresponding effective continuum has also been
considered by many authors (see [51] and reference therein).

In the early 1980’s Kunin [88], Morozov [[107], and Nazarov and Paukshto [[I11] studied
static lattices with torsional interactions. Later, Maz'ya along with Morozov and Nazarov [[102]
also considered two-dimensional static lattices, within the context of homogenisation, and in-
troduced a potential of torsional interaction between elastic ligaments at the junction points.
The problem was reduced to a finite difference system of equations and, for triangular and
hexagonal lattices with central and torsional interactions, a connection was made with the ho-

mogenised isotropic continuum. The homogenised Lamé coefficients were evaluated and a ro-
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tational micro-polar interaction was identified. The effects of micro-polar interactions in the
continuum have been discussed by Eringen [43, #4], and Kafadar and Eringen [83]. The lat-
tice model involving elastic rods with both longitudinal and flexural stiffness together with the
derivation of the long-wave approximation for homogenised equations of motion for the micro-
polar medium have been discussed by Askar and Cakmak [4]. More recently, Spadoni et al. [140]
examined the phononic properties of chiral hexagonal cellular solids. In this case, Spadoni et
al. [140] introduced the chiral lattice as an array of circular elements of finite radius, connected
via thin ligaments tangent to the circular elements. Spadoni et al. [140] presented dispersion
diagrams and examined the influence of the cell geometry on the dispersive properties of the
lattice.

The paper by Jones and Movchan [8(] includes a model of dynamic defects within an elastic
system induced by thermal pre-stress. In this case, temperature was used as a control parameter
and the pre-stressed elastic system responded by changing its filtering properties with respect to
elastic waves propagating through the system. The elastic system was composed of a periodic ar-
ray of multi-scale resonators. Analysis of dispersion properties of waves in periodic solids with
pre-stress was also presented in the paper by Gei et al. [#9] and the paper by Jones et al. [81].
In the former paper, the authors considered the dispersive properties of an array of piecewise
homogeneous beams on an elastic foundation. The authors demonstrated that the effect of pre-
stress can significantly affect the position and size of band gaps in the dispersion diagrams. In
the latter paper, the authors returned to the elastic system used in [80]. The authors considered
the effect of defects, cracks in the ligaments connecting the resonators to the surrounding ma-
trix in this case, on the dispersive properties and the low frequency eigenmodes. Further, the
authors presented an interesting application of these multi-scale resonators: using a finite width
slab of resonators, the authors were able to simulate a flat elastic lens, which was used to filter or
focus waves of certain frequencies. This idea is one which shall be returned to later in the thesis.
Chapter [ is based on the work by the author and his colleagues reported in [29].

The behaviour of scalar and vector lattices in the frequency range where the response of the
material is strongly anisotropic is discussed in chapter f. It is demonstrated that this dynamic
anisotropy is linked to, and can be predicted from, the dispersive properties of the microstruc-
ture. The displacement field resulting from a point load oscillating at a resonant frequency,
corresponding to a saddle point on the dispersion surface, is quite striking. In the literature,
such displacement fields are often referred to as primitive waveforms (see, for example, [5,121]).
These primitive waveforms for scalar lattices have been examined in [5,90,91,121]. As shown
by the present author and his colleagues in [B1], primitive waveforms also exist in vector lattices.
Moreover it was shown in [31] that, in contrast to the scalar case, for vector problems these
primitive waveforms are not necessarily linked to resonant frequencies. Chapter [ also contains
several numerical illustrations, which demonstrate some novel applications including filtering
and focusing of in-plane elastic waves by a fully discrete “metamaterial flat lens”.

For scalar lattice problems at finite frequencies, Craster and his co-workers [34, B7, B8, 96]
have developed a two-scale asymptotic procedure to determine the material properties of an ef-
fective continuum. The approach used in the aforementioned papers is essentially that of the

method of multiple scales (see, for example, [7,84]). The “High Frequency Homogenisation” em-
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ployed by Craster et al. involves the introduction of two scales and expresses the solution as a
product of the envelope function, that is a function of the slow variable, and some periodic (or
quasi-periodic) function, which is a function of the fast variable. The small parameter is the
size of the elementary cell (or some other length scale related to the micostructure) scaled by a
length related to the macro-structure. Following the introduction of an appropriate ansatz, the
problem then decomposes into a series of problems based on powers of the small parameter
0 < & «< 1. Physically, this approach corresponds to perturbations away from standing wave
solutions in periodic systems and the solution is decomposed into the product of a function of
the fast variable and a function of the slow variable. The function of the fast variable describes
the standing wave solution in the vicinity of the resonant frequency and the function of the slow
variable is monotonic, usually decaying, and describes the macroscopic behaviour. The afore-
mentioned series of papers by Craster and his co-workers originates with the paper by Adams
etal. [[I], which treats the problem of thin acoustic strips using high frequency homogenisation.
The paper by Craster et al. [37] introduces the general method for scalar fields in the continuum.
Immediately following [37], a further paper by Craster et al. [38] applies the method of high fre-
quency homogenisation to one-dimensional and two-dimensional periodic scalar lattices. This
approach has been applied to various configurations including so-called checkerboard structures
in the continuum leading to interesting phenomena including slow waves and negative refrac-
tion [B5,36]. High frequency homogenisation has also been applied to periodic metamaterial
composites with resonators [B] as well as platonic crystals formed by arrays of pins in thin elastic
(Kirchhoff) plates [2]. Following the work with checkerboard materials, Craster et al. published
a pair of papers which, in part, examined star shaped waveforms in scalar lattices [34,96]. In
terms of primitive waveforms, the result of high frequency homogenisation is a pair of hyperbolic
partial differential equations, who's sum describes the primitive waveforms at resonant frequen-
cies, and who's coeflicients yield the effective material properties. To the best of this author’s
knowledge, the approach of Craster et al. is restricted to scalar fields at the present time.
Focusing and diffraction in optical systems have been discussed extensively in the literature.
The standard approach to refraction, focusing, and diffraction theory can be found in many text-
books including, for example, the classic book by Born and Wolf [[I(]. More recently, the book
by Nye [L18] treats diffraction patterns associated with caustics from the point of view of catas-
trophe theory. Callaway [20] considered the scattering of waves in solids with periodic arrays
of defects. In elasticity, Poulton et al. [I30] extended the Rayleigh method [133] to examine
the scattering of elastic waves for a doubly periodic structure. In terms of lattice dynamics, one
can identify so-called line localised primitive waveforms (LPW) [5,[121], which consist of a line
of oscillating particles with the remaining particles being stationary. As observed in [5, 121],
these LPW's are associated with stationary points on the dispersion surfaces. Using the methods
of stationary phase, Langley has examined the response of a square scalar lattice subjected to
harmonic [90] and transient [91] point loading. Particular attention was given to the nature of
the caustics, which requires careful consideration when applying the method of steepest decent.
In chapter f of the present thesis, the required integrals are computed directly, using numerical
techniques. Whilst more computationally intensive, this direct approach is both more conve-

nient and can be applied in the neighbourhood of the source.
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In 2002, Bigoni and Movchan [§] introduced the concept of structural interfaces with finite
thickness, which join two continuous regions. In the paper [8], the authors noted that the inertial
properties of the interface significantly affect the dynamic response and lead to unusual filtering
properties for elastic waves. Later Brun et al. [16] employed a structured interface between two
continuous domains to demonstrate the focusing of elastic waves via negative refraction. The
authors refered to the structural interface as a “flat lens for elastic waves”. Similar effects have
also been demonstrated in acoustics (see, for instance, Guenneau et al. [62]). In chapter [ of the
present thesis, the effects of focusing and filtering of elastic waves is extended to entirely discrete
structures. In particular, a diatomic interface lattice embedded in a monatomic ambient lattice
of the same geometry is considered. It is shown that, for certain frequencies, the interface lattice
acts as a flat elastic lens.

In chapter § of this thesis, an elastic triangular lattice that is isotropic in the long wavelength
limit [29] is considered in the setting of plane strain; it is demonstrated that strong anisotropy
exists at higher frequencies. In particular, the presence of localised waveforms previously illus-
trated for scalar lattices [B, 90,91, 121] is demonstrated. The resulting anisotropy, diffraction
patterns, and aberrations are explained classically using the dispersion surfaces and slowness
contours. The vector nature of the problem yields several novel and interesting features, includ-
ing the presence of strongly preferential directions and the ability to “switch” these preferential
directions by varying the frequency and/or type of applied load. Chapter [ is based on the work
previously reported in [29,31].

Continuing with the theme of localised waves, the problem of localised defect modes associ-
ated with eigenmodes generated by finite and infinite defects in infinite two-dimensional square
lattices is considered in chapter . The behaviour of a lattice with a single point defect, or point
source, can be described by the lattice Green’s function, as studied by Martin [99] for a two-
dimensional square lattice. The resulting solution was analysed [99] for frequencies within
the pass band and the corresponding asymptotics at infinity were also obtained. A year later,
Movchan and Slepyan [109] examined several classes of continuous and discrete models with
various forcing or defect configurations. Localised modes were identified for the case when the
forcing frequency (or natural frequency of the defect) was located in the stop band. For a partic-
ular choice of the mass variation, these defect modes were then linked to the stop-band Green’s
function which were used in the construction of the defect modes.

In the paper [49], Gei et al. considered the effect of uniform pre-stress on the propagation of
flexural waves through an elastic beam on a Winkler foundation using methods similar to those
of [L09]. Particular attention was devoted to band-gap localised modes and control of the posi-
tion of stop-bands via pre-stress. It was found that a tensile pre-stress can increase the frequency
at which a particular band gap occurs. It was also shown that band gaps can be annihilated with
the application of an appropriate pre-stress.

Lattice Green’s functions are often studied in isolation and have proved a rich area of research
(see, for example, [[11,40,82,150], and references therein). For d-dimensional lattices, the Green’s
function is typically expressed as a d-dimensional Fourier integral. It is often possible to evaluate
one or more of the integrals, as in the paper by Movchan and Slepyan [[09], but for d > 1 the

Green’s function cannot be expressed in terms of elementary functions. In chapter f, several
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different representations of the Green’s function for a square lattice are presented, which prove
useful for band-edge expansions. In particular, it is useful to express the lattice Green’s function
in terms of a generalised hypergeometric function. This hypergeometric series is well behaved
in the stop band of the ambient lattice, but diverges in the pass band. However, via analytic
continuation, compact asymptotic expressions for localised modes near the edge of the pass
band can be derived. These band-edge modes are localised, but since they exist at frequencies
close to the edge of the pass band, they can be considered as “almost propagating”. Such modes
are also often referred to as shallow defect states in the literature and are of considerable interest
in, for example, photonics [41,95].

Classical applications in the theory of defects in crystals and dislocations follow from the fun-
damental work of Maradudin [97], where explicit closed form solutions were derived for a het-
erogeneous lattice system when two distant particles of different masses are interchanged. More
recently, the envelope function based perturbation approach was developed by Mahmoodian et
al. [95] and Dossou et al. [#1] for analysis of waveguides in photonic crystal structures. In the
latter case, an array of cylinders (inclusions) represents a waveguide within a two-dimensional
structure, and the frequencies of the guided modes are close to the band edge of the unperturbed
doubly periodic system.

Localisation of waves due to an infinite line defect embedded in an infinite square lattice, has
been considered by Osharovich and Ayzenberg-Stepanenko [[122]. For the case of an infinite
line defect, dispersion relations can be computed in explicit form allowing spatially localised
waveguide modes to be analysed.

The book [139] by Slepyan presents a detailed discussion of applications for dynamic lattice
problems involving cracks modelled as semi-infinite faults, for both square and triangular elastic
lattices. Localised modes for a structured interface and a crack propagating with constant speed
within a square lattice were analysed by Mishuris et al. [106]. In particular, it was shown that
the crack propagation can be supported by a sinusoidal wave localised along the crack, which
the authors refer to as a knife wave. Using the lattice model, Mishuris et al. [106] derived the dis-
persion relations for the crack within the square lattice. Further, using numerical experiments,
Mishuris et al. [106] demonstrated that these relations allow for the prediction of the average
crack speed within the lattice when a fracture criterion for the crack path bonds is introduced.
More recently, Nieves et al. [115] studied the propagation of a semi-infinite dynamic crack in
a non-uniform elastic lattice. Extending the work of Mishuris et al. [L06], Nieves et al. [I15]
analysed the crack stability and it was shown that information regarding unstable crack growth
could be obtained from the study of the steady state regime.

In chapter f of the present thesis, the problem of the infinite defect considered in [122] is
discussed and linked to the problem for a finite but very long inclusion. In particular, a rela-
tively simple homogenised differential equation is derived for the case of long defects, which
characterises the low frequency response of the inclusion, as well as the envelope of the highest
frequency oscillations. Chapter fj is based, in part, on the work published in [32].

Remaining with the topic of defects in discrete systems, the problem of a thermally striped dis-
crete elastic lattice is considered in chapter f§. The thermally striped discrete system is analysed

and compared with the corresponding problem for the continuum. Thermal striping is a phe-
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nomenon that occurs when a thermoelastic solid is exposed to temperature fluctuations on the
exterior boundary. These temperature variations may occur as a result of incomplete mixing of
fluids at different temperatures. Such phenomena have been observed in the above-core region
of fast breeder reactors, which are often cooled by liquid sodium; large temperature gradients
may exist between the sodium emerging from the core and sub-breeder assemblies. A thermoe-
lastic structure exposed to such temperature distributions can undergo thermal fatigue damage,
as demonstrated by Jones [73]. Much of the analytical and modelling work on thermal striping
in the literature has been carried out by Jones and his co-workers [23,71-79,108,114,149], who
considered various physical configurations and methods. In the thermal striping regime, crack
growth is a fatiguing process where the rate of crack growth depends on the peak-to-peak am-
plitude of the stress intensity factor and the material properties. For example, Paris’ law [[124]
(a popular fatigue crack growth model) states that
da

E\IZCI(AK)Q’ (11)

where a is the crack length, N is the number of loading cycles, ¢; and ¢, are material constants,
K is the stress intensity factor, and AK = max K — min K is the peak-to-peak amplitude of the
stress intensity factor. In 2006 Movchan and Jones [108], studied the model of thermal shock for
a semi-infinite body containing a single small edge crack. Asymptotic formulae for the displace-
ment field produced by the temperature load and an analytical expression for the stress intensity
factor of an edge crack were obtained using the weight function method (see [1§] among many
others). An investigation into the behaviour of the peak-to-peak amplitude of the stress inten-
sity factor for a thermally striped plate with multiple edge cracks was carried out by Jones [76]. It
was shown that the stress intensity factor is not only a function of crack depth, but also depends
on the separation between the edge cracks. Moreover, the stress intensity factor is also strongly
influenced by the frequency of the striping load. Using approximate weight functions (see, for
example, [47]), Jones and Lewis [[/§] presented results showing the sensitivity of the stress in-
tensity factor for an edge crack in a finite block to the striping frequency and the aspect ratio
of the block. Following the work by Movchan and Jones [[76,[108], the effect of small voids and
micro-cracks located within a semi-infinite body in the vicinity of a edge crack was analysed by
Nieves et al. [113,114]. For circular voids, Nieves et al. [I14] provided numerical simulations
showing the perturbation brought to the amplitude of the stress intensity factor for the edge
crack. It was demonstrated that, in the presence of voids, the value of the amplitude of the stress
intensity factor for the crack could be reduced relative to the stress intensity factor for a medium
without voids.

Chapter f of the present thesis is devoted to the analysis of the effects of a fully discrete ther-
moelastic solid on the amplitude of the stress intensity factor. In this case, the discrete structure
is a triangular lattice with concentrated mass at the junctions connected by massless conducting
rods. It is demonstrated that although all stresses in the lattice are finite, the behaviour of the
displacement field close to, but outside a small neighbourhood of the crack tip, follows the same
characteristic square-root behaviour as that in the continuum. The above property is used to
determine an ‘effective stress intensity factor” for the lattice. The corresponding problem for the

case of a thermoelastic continuum is also considered. For this case, the stress intensity factor
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is computed using the J-integral, originally introduced in [26,134] and modified for thermoe-
lastic problems in [[147], and compared with the “effective stress intensity factor” for the discrete
structure. It is demonstrated that the “effective stress intensity factor” for the lattice exhibits the
same qualitative behaviour as the one for the continuum. However, for the lattice, the peak-to-
peak amplitude of the ‘effective stress intensity factor” is lower than that of the continuum for
sufficiently long cracks and low frequencies. Chapter [f is based on the work [33] by the present
author and his co-workers.

The final chapter of the main body of the present thesis is devoted to the development of
invisibility cloaks for electromagnetic, out-of-plane shear elastic, and acoustic waves. Using the
framework of transformation elastodynamics [104,116,117], the design of a square invisibility
cloak for waves governed by the Helmholtz equation is presented. Since the publication of two
seminal papers in the same issue of Science by Leonhardt [92] and Pendry et al. [126], there
has been substantial interest in the idea of cloaking via transformation optics (see the review
article [61] and references therein). The experimental validation of cloaking for microwaves
demonstrated by Schurig et al. [137] in the same year further increased scholarly (and popular)
interest. The concept of cloaking via transformation optics is due to an earlier fundamental
result by Greenleaf et al. [57, 58] on singular transformations and applications to cloaking for
conductivity. The key to achieving cloaking is to ensure that the governing equations (Maxwell’s
system in electromagnetism, for example) remain invariant under the mapping used to generate
the cloak. In this sense, the physical phenomena associated with the untransformed system are
the same as those governed by the transformed system. The transformed system will, in general,
have different material properties but the overall form of the system should remain unchanged
under the mapping. The metric invariance of Maxwell’s equations has been understood for many
years [129,144]. However for other systems, such as elasticity, the equations are not in general
invariant under transformation [[104,117], at least in the sense that the transformed system does
not correspond to a classical elastic material. The invariance of the Helmholtz equation has
been demonstrated by Norris [116], who also provided a convenient theoretical framework for
cloaking in acoustics.

The classical approach to cloaking via transformation optics involves deforming a region such
that a point is mapped to a finite region corresponding to the inner boundary of the cloak. Usu-
ally, such transformations involve transforming a point into a finite region with a smooth bound-
ary, such as an ellipse (see [60, 116, 126], among others). The mapping is non-singular every-
where, except at the initial point which is deformed into the inner boundary of the cloak. In
the originating paper by Pendry et al. [126], the cloak is created by mapping a disc to an annu-
lus. Maxwell’s equations are invariant under the corresponding transformation, as required in
order to achieve cloaking. The material properties of the cloak are then determined from the
metric of the deformed space [138]. The mapping used in [126] is clearly singular: a point is
mapped to the inner radius of the annulus, and this results in discontinuous (singular) material
properties. Greenleaf et al. addressed this issue in two papers [55,56] and derived the condition
for finite energy weak solutions of the Helmholtz equation and Maxwell’s equations. In [55], it
was demonstrated that finite energy solutions to the cloaking problem for the Helmholtz equa-

tion exist for an object with a single layer cloak. However, for the case of Maxwell’s equations
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with internal currents, the cloaking of an infinite cylinder cannot be achieved with a single layer
or without imposing a physical surface at the inner boundary of the cloak. In the same paper,
Greenleaf et al. derived an identity linking the transformed scalar wave equation to the metric
of the deformed space, which may then by linked to the material properties of the cloak [56]. In
2008 Norris [116] studied acoustic cloaking and re-derived an equivalent identity to that in [55]
using the framework of finite elasticity, leading to a cloak with a density described by a rank
two tensor. Moreover, it was demonstrated that the total mass of the cloak is infinite for the
case of perfect cloaking. Norris further demonstrated that the problem of infinite mass could be
overcome if both the density and elastic properties of the cloak were anisotropic. An alternative
approach to negate the problem of singular material properties is to construct a so-called near
cloak by regularising the transformation [86]. Rather than mapping a single point to the inner
boundary of the cloak Kohn et al. [86] proposed mapping a ball of small, but finite, radius to the
inner boundary. A small regularisation parameter which characterises the initial radius of the
ball is introduced, which results in a non-singular mapping on the cloak and its boundary. The
regularisation procedure was used to create illustrative near cloaks in [116].

In 2006, Milton et al. [104] examined how the equations of motion for a general elastic medium
transform under an arbitrary curvilinear transformation. It was shown that a priori requiring a
symmetric stress tensor enforces a particular choice of the gauge (i.e. the manner in which the
displacement vector transforms). It was found that, in general, the equations of motion are not
invariant under transformation but are mapped to a more general system with non-scalar den-
sity. Milton et al. demonstrated that a special case of the so-called Willis equations [105] remain
invariant under general curvilinear transformations. In [104] identities linking the material
properties of the cloak to the map, for both classical elasticity and the more general Willis mate-
rials are derived. In 2011, Norris and Shuvalov [117] further generalised the work of Milton et
al., deriving a more general system of transformed equations without imposing the constraint of
symmetric stress. The material properties of the transformed system were derived explicitly and
shown to depend on both the transformation and the choice of gauge. Together [104] and [[117]
provide a comprehensive framework in which to investigate cloaking in elastodynamics.

A design for a cloak to control flexural waves in thin plates was proposed by Farhat et al. [45].
The cloak was constructed of several concentric layers of piecewise constant isotropic elastic
material. Farhat et al. also presented a simplified model suitable for practical implementation
with ten layers using six different materials. Following [#5], an experimental group led by We-
gener fabricated a cloak based on the work of Farhat et al. using twenty concentric rings and
sixteen different elastic metamaterials [141]. Physical measurements were compared with nu-
merical simulations and found to be in good agreement. Control of in-plane waves governed by
the Navier equations was examined by Brun et al. [17]. In [[I7], the authors modelled a circular
cloak using the classical radial transformation by deforming a disc to an annulus. The efficiency
of the cloak was illustrated using finite element simulations, and the numerical solution of the
cloaking problem was compared with the Green’s function for a homogeneous elastic space.

An influential paper by Rahm et al. [132] presents a transformation optics algorithm for
a problem of electromagnetism involving a cloak of a square shape. The transformation is

performed in Cartesian coordinates and results in a piecewise smooth cloak on the interior
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points, with matching regions in the neighbourhood of corners and a singularity at the ori-
gin mapped into the inner boundary of the cloak. The model of such a continuum cloak re-
ceived substantial attention and subsequent use by the modelling community (see, for exam-
ple, [46,48,69,93,125,136]). In the majority of these papers, the emphasis is on the geometrical
aspect of the possible shapes of the cloak, with examples ranging from polygonal and elliptical
cloaks to heart-shaped cloaks. Although it is indeed interesting to see a wide range of transfor-
mations and geometries, it also remains important to understand the transformed problem in
the context of the physical model, address the analysis of the transformed boundary or transmis-
sion conditions and furthermore derive the properties of the solutions. The paper [132], which
stimulated a good level of discussion on the topic, also admits a deficiency regarding the analysis
of the solution near the boundary of the cloak. Apparently, no indication was given about the
sensitivity of the result to the type of boundary conditions (Dirichlet or Neumann) on the inner
boundary of the cloak. The authors” evaluation of the effectiveness of the cloaking was based on
a visual observation linked to a numerical simulation at a single frequency. In [132], the authors
admit that the effective material properties of the cloak are inaccurate in the vicinity of the inner
boundary of the cloak, owing to the singular nature of the mapping. Indeed, if the authors had
attempted to change the frequency range they would have seen significant differences. The cloak
advocated in [[32] is an approximate cloak, where the boundary effects become important and
visible as the frequency of the incident waves increases.

The ideas of metric invariance in Maxwell’s equations and cloaking have found extensive use
as a technical tool and on many occasions, the researchers omit to look at the physical model
corresponding to the transformed equations. For example, on page 99 of [93] the text reads “The
square cloak has the same geometry as the cylindrical case, except that we replace the cylindri-
cal shell by a rectangular shell with the same size”. This comparison of unlike geometries omits
important effects, such as field concentrations near sharp corners, which make cloaking more
difficult. Motivated by [[32], Farhat et al. [46] attempted to construct an approximate square
cloak for out-of-plane shear waves. Using the method of multiple scales, Farhat et al. [46] intro-
duced a microstructure composed of a regular array of perforations and derived a homogenised
continuum which would approximate an ideal cloak. However, Farhat et al. admit in [#€] that
their structured cloak is not as efficient as the authors expected.

Polygonal cloaks have also been the subject of experimental investigation. For example, in [24]
Chen et al. report the results for an experimental broadband hexagonal cloak based on a piece-
wise linear homogeneous transformation. Although the cloak does not render the cloaked ob-
ject invisible, it does reduce its apparent size. The cloak is demonstrated to work for visible
light. However, Chen et al. [24] emphasise that the cloak functions only for light incident from
six directions defined by the faces of the hexagon. More recently, Landy et al. [89] produced
an experimental uni-directional metamaterial cloak for microwaves. The reported cloak [89]
is based on a bilinear transformation which maps a line segment to a two-dimensional region
of space. Cloaks based on such transformations are referred to as carpet cloaks in the literature
(see [94] among others). The advantage of such cloaks is that the requisite material properties
are homogeneous and finite. However, Landy et al. admit that such cloaks are only effective

over a narrow range of observation angles. The cloak is nonetheless impressive given that the
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practical implementation does not rely on the eikonal approximations as is the case with other
implementations [25,[128,[148].

It appears that the work reported in [132] has generated a scope for further discussion and in-
deed further improvement of the model involving “glued transforms” that lead to approximate
rectangular cloaks. Such cloaks are by no means exact and are frequency sensitive. A regular-
isation procedure, as illustrated by Kohn et al. [86] for the spherical cloak, can be applied to
make the transformation, and hence the material properties, non-singular on the inner bound-
ary of the cloak. The regularisation procedure not only simplifies the analysis, but also makes it
physically meaningful. Furthermore, a lattice approximation is straightforward for a regularised
square-shaped cloak. This appears to be efficient and serves a relatively wide frequency range.

In the spirit of Kohn et al. [86], a so-called near cloak is presented in chapter []. In particular,
four trapezoids surrounding a square of semi-width € are mapped to four narrower trapezoids
such that the semi-width of the square is enlarged to a > ¢ > 0. The mapping is continuous and
piecewise smooth everywhere on the closure of the trapezoids which form the cloak surround-
ing the square inclusion. Since the map used in the present thesis is non-singular on both the
interior and boundary of the cloak, all material parameters are continuous and, indeed, piece-
wise smooth.

Chapter [] also contains detailed analysis of wave propagation through the cloak using both
numerical simulations and analytical methods based on the ray equations obtained through a
WKB-type approximation. In addition, a novel illustration of the efficacy of the cloak is pre-
sented, which provides an interesting link with Quantum Mechanics. A recent paper by Green-
leaf et al. [54] also raises interesting questions regarding the link between Quantum Mechanics
and cloaking. The paper [54] presents a class of invisible reservoirs and amplifiers for fields gov-
erned by Schrodinger’s equation. In the final part of chapter [}, a possible avenue toward the
physical realisation of the cloak is presented. In particular, a relatively simple discrete metama-
terial cloak formed from point masses connected via massless springs is discussed. It is shown
that this lattice cloak is effective in reducing the scattered field, particularly for low frequencies.
The work reported in chapter [] has recently been published by Colquitt et al. [2§].

To summarise, the structure of the present thesis is as follows. Chapter f is devoted to the
study of the dispersive properties of elastic lattice structures and, in particular, their homogenised
properties in the low frequency range. The behaviour of scalar and vector lattices in the fre-
quency range where the response of the material is strongly anisotropic is discussed in chapter .
It is demonstrated that this dynamic anisotropy is linked to, and can be predicted from, the dis-
persive properties of the microstructure. The problem of localised defect modes associated with
eigenmodes generated by finite and infinite defects in infinite two-dimensional square lattices is
considered in chapter . The problem of a thermally striped discrete elastic lattice is considered
in chapter f. The thermally striped discrete system is analysed and compared with the corre-
sponding problem for the continuum. The final chapter of the main body of the present thesis is
devoted to the development of invisibility cloaks for electromagnetic, out-of-plane shear elastic,
and acoustic waves. Chapter § briefly summarises the problems studied in the present thesis
and also includes a discussion of the common themes linking the physical problems presented

herein. Before considering the problems summarised above, some preliminary results which
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ease exposition in the main body of the thesis are presented in chapter P.
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Chapter Two

Lattice preliminaries

This chapter introduces some prerequisite results, theory and techniques, and establishes some
common notation that will be used throughout this thesis. The emphasis of this chapter will be

on brevity rather than detailed commentary.

2.1 Lattice equations

The following framework and analysis applies to one-, two-, and three-dimensional problems.
Consider a regular array of particles in d-dimensional Euclidean space, R?, where d = 1,2, 3.
Each particle within the lattice may then be labelled by a multi-index m = (my, my, ..., my) € Z°
and a scalar n € Ny, where Z and Ny are the sets of all integers and all non-negative integers
respectively. The multi-index m refers to the unit cell in which the particle is located, whereas
the scalar n distinguishes between different particles in the same elementary cell. The position
of each particle within the lattice is then denoted by x,,, , = 7m + x¢ ,,, where x , is the position
of the n'" particle in the unit cell and 7 is the d x d matrix 7 = [t;,t,, ..., t;]. It is emphasised
that sub-script commas do not indicate differentiation, but simply separate the indices for clarity.
The column vectors t; are the direct lattice vectors, which describe the principal directions of the
lattice. For example, the direct lattice vectors for a planar diatomic triangular lattice are shown
in figure B.1 on page 3. The parallelogram defined by the direct lattice vectors (and shaded in
grey in figure B.1)) is the elementary cell of the lattice. For the special case of a uniform lattice,
that is, lattices where all particles are the same, xo, = 0 and the position of each particle is
simply x,, = Tm. It should be emphasised that both x,, , = Tm + x¢ , and x,, = Tm will be
used throughout this work and it is important to distinguish between the two. The former refers
to the position of particle (m, n) within the lattice, whereas the latter denotes the position of
the m'" elementary cell of the lattice. Throughout this thesis, the notation A, , will be used to

denote some property A, of node 7 in the m™ unit cell.

13
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a

Y
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(a)

a

(b)

Figure 2.1: The direct (a) and reciprocal (b) lattice vectors for the diatomic triangular lattice shown
in figure B.] on page B3. The corresponding elementary cells are shaded in grey.

For the physical problems presented in this thesis, the interactions between lattice points will
be linear in the sense that the dynamic equations governing the potential of node (m, n) has the

form &
> CpaUpg(t) = Zu - Unn(8) = Fmn (1), (2.1)
(P:9)eNs
In equation (2-)), Uy »(t) and F,, ,(t) are the potential of, and the load on, the particle (m, n)
respectively; and both are continuous functions of time ¢. The parameter s € N is determined by
the type of interaction considered. In particular, for the mechanical lattices considered in chap-
ters B-1, s = 2 and equation (P.1)) is simply Newton’s Second Law; and for the heat conduction
problem on a lattice as considered in chapter f, s = 1. The square diagonal “inertia matrix’]] is
denoted by Z,, and describes the inertial properties of the lattice point. The (square) interaction
matrix Cp 4 characterises the interaction between node (m, n) and node (m +p, n+q). In other
words, Cp 4 describes the load on node (m, n) as a result of a change in potential of (m+p, n+q).
Finally, the set NV, enumerates the nodes (m + p, n + q) interacting with node (m, n). Typically,
N, will be the set of nearest neighbours such that NV, = {(p,q) : [xp 4| < L}, where L > 0 is some
distance chosen appropriately such that NV, contains only the nearest neighbours of node (m, n).
The reader’s attention is drawn to the fact that (m, n) € N,, that is, a lattice node belongs to the
set of its nearest neighbours.

This thesis is concerned with the propagation of time-harmonic disturbances through lattices.

Therefore, solutions of the form Uy, ,(t) = sy ,e™" are sought and Fy, ,(t) is restricted to the

! It is emphasised that the term “inertia matrix” is used purely for convenience and Z need not correspond to
physical inertia. For mechanical lattices (chapters B-[]), Z is the matrix of nodal masses. For the heat conduction
problem (chapter f), the matrix Z describes the heat capacity of the nodes.

14
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class of functions such that F,, ,(t) = fmme"“’t, where w is the radian frequency. The functions
Uy 7 x Ny > C? and Joun 7* x Ny = C? are the potential and load complex amplitudes
respectively. It is understood that the physical fields are given by the real parts of U, ,(t) and

Fp 1 (t). For time-harmonic potentials, (21)) reduces to

2 CP:un,q - (iw)SInum,n :fm,n' (2.2)
(p.9)eNn

Upon application of the discrete Fourier transform, which may be defined as

F [um,n] = uEF (f) = Z Um,.n €XP (_if 'xm) ) (2.3)

meZ4

equation (£.7) takes the form

iy [Cpae ™% = (@) Tdug | " (&) = 17 (8), (2.4)
P:9)eNn

where 8,4 is the Kronecker delta. Here, the Fourier variables are restricted to the unit cell in the
reciprocal space, & € E. In particular, the unit cell in the reciprocal space is the d-parallelotope
spanned by the reciprocal lattice vectors, a;, where [ay, as, . ..,a4] = 277 L, where (-)™ T de-
notes the inverse and transpose of the parenthesised quantity. For the planar diatomic triangu-
lar lattice shown in figure B.1 on page 25, the direct and reciprocal lattice vectors and associated

elementary cells are shown in figure P.1. Introducing the block matrices

Ong(, €) = p% [Cpge™* = (1) Lung (2.52)
together with the vectors
u” () R (%)
U (§) = ugF.(f) and F'T(£) = FEF.(O : (2.5b)
uS%) FSF'@ )

where Q is the number of nodes in the elementary cell, equation (2.4) may be written compactly

as

o(w, E)UTF (&) = FF (). (2.6)

For the unforced problem in mechanical lattices (s = 2) one may set F*'"' (£) = 0 and immediately

obtain the dispersion equation for Bloch-Floquet waves: det o(w,&) = 0. The potential field
pFF

iXm

then has the well known form u,, , = ug ne €. For non-trivial , the potential field can be

obtained by means of the inverse Fourier transform

_ FF gy, ~1 iExm
Un = 2] R[ F (£)07 (0, &)e*ndE, (2.7)

where R = {&: —m < &;x0,, - €; < 7} and e; is the unit vector along the i axis; the symbol | - |
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denotes the Lebesgue measure.

2.2 Lattice interactions

With the exception that C, ; should be square, no restrictions have been placed on the form
of the interaction matrices. The precise form of the interaction matrices depend on the type
of lattice link considered. It is remarked that the interaction matrices may not only depend on
the parameters p and g, but will also depend on the physical and geometrical properties of the
lattice. The physical lattices consider later in this thesis will be restricted to two-dimensional
planar lattices. For such lattices, it is convenient to construct fundamental interaction matrices
A and B which describe the behaviour of a single lattice link oriented along e; as shown in
figure P.7. It is emphasised that the shape of the links in figure 2.7 is purely illustrative. Indeed,
the specific shape of the lattice links will depend on the type of physical interaction considered.
Using the matrices A and B, together with appropriate rotation matrices one may then construct
the interaction matrix C,  for any two lattice points. For example, consider a single mechanical
lattice link oriented along the e; axis as illustrated in figure P.2. If uy and u are the displacements

at the ends of the link, then the force at x = 0 can be written in the form
f, = Aug + Buy. (2.8)

If f,, uo, ug € C", then A and B are n x n matrices. The force at x = [/, 0]" can be determined
by applying a sequence of rotations to the system. In particular, the force at x = [£,0]T can be
expressed as

f, = RAR" u; + RBR" uy, (2.9)

where R € SO(n,R) is a rotation matrix such that Re; = —e;. The reader is referred to sec-
tion [.2.7] for a more detailed discussion of the rotation matrices. Hence, the interaction matri-
ces have the form Cp; = A = RART, Ce,n =B,C_1 = RBR".

In this section, the fundamental interaction matrices required in later chapters will be intro-
duced with the emphasis on brevity rather than exposition. Discussion of the significance and
physical interpretation of these interactions is deferred to later chapters. The full interaction
matrices will depend on the geometry and physical problem considered, and therefore, will be
constructed as needed in later chapters. The following is not intended to represent a complete
list of all possible interactions, nor is any particular significance attached to these particular
models beyond that they will be required later in the thesis. For all except heat conduction, in

which s = 1, one should set s = 2 in equations (2.1))-(2.4) in the previous section.

2.2.1 Out-of-plane shear

Out-of-plane shear is, perhaps, the simplest mechanical interaction possible. In this case the
blue lattice link illustrated in figure .2 corresponds to a massless bond of stiffness k, for which

the load is f = 4/(x) and the displacement field satisfies (see, for example, [53])

d2u

@ =0, M(O) = ug, u(E,O) = uy. (2.10)
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Figure 2.2: Two lattice nodes sepa-

" ” rated by a distance /. A
range of “interactions”

M are illustrated in blue;
it is emphasised that
the shape of the lat-
0 [ ! ] tice link will depend
e x= [ OJ on the type of interac-

tion considered.

Here, 1y and u; denotes the out-of-plane (into and out of the page in figure P.7) displacements
of ends of the spring (x = 0 and x = [¢, 0] respectively). The force at x = 0 is then

Ug — U

fo=k 7 es. (2.11)
In this case, the fundamental interaction matrices are, in fact, scalars
k k
AS=-=  and BS=-. 2.12
7 7 (2.12)

The superscript S is used to emphasise that these fundamental interaction matrices refer to the

out-of-plane shear interaction.

2.2.2 Heat conduction

In this case the lattice nodes are connected by thin massless rod of thermal conductivity k and
uniform cross-sectional area S. If the lateral surface of the rod is thermally isolated from the

surroundings, the temperature distribution along the rod is then

IR
— X

G(X) :®0+ 7 s

(2.13)
where x is distance along the rod, and @, and @ are the temperatures at x = [£,0] and x = 0
respectively. According to Fourier’s law, the local rate of heat flow through the cross section of

the rod is
0Q _ks

ot 0

Hence, for this simple model of heat conduction the fundamental interaction matrices are again

(©¢ - 0y). (2.14)

scalars and of a similar form as the out-of-plane shear interaction

k
Al = —73 and B= R (2.15)

2.2.3 Elastic in-plane motion: Central interactions

Returning to mechanical interactions, let #, and u, denote the displacement amplitudes of the
end-points of a thin elastic rod of length ¢, Young’s modulus E, uniform density p, and constant
cross-sectional area S. For central interactions, that is interactions that only depend on the
distance between two points and not the relative orientation, only the longitudinal vibrations of

the rod need to be considered. The time harmonic longitudinal displacement amplitude u(x)
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then satisfies (see, for instance, [63])

d? W?
—+—|u(x)=0, u(0)=wup-e;, u(l)=wuy-e, (2.16)
dx? 2

where ¢ = E/p and w? is the angular frequency of the vibrations. The force at x = 0 is then

du u; -e; —ug - ey cos(wl/c)
= ES — = ES) : 2.17
I dx lx=0 ° ( sin(wf/c) ° (217)
whence the fundamental interaction matrices have the form
AC _ _ wES (cot(wé/c) 0) and BC - wES (csc(wﬁ/c) 0) . (2.18)
c 0 0 c 0 0

The fundamental interaction matrices for a non-inertial lattice link can be obtained from (P.18)
by taking the limit as ¢ - oo (p — 0). In this case the fundamental interaction matrices take the

particularly simple form

1 0 1 0
AC:—%(O O) and BC:%(O 0). (2.19)

2.2.4 Elastic in-plane motion: Central and torsional interactions

Consider the thin elastic rod discussed in section connecting the two end points. In addi-
tion, located at each end point is a torsional spring of stiftness 7. If the elastic rod is rigid in the
transverse direction (e,) and connected to the nodes at x = 0 and x = [¢,0]T by pin joints, then
for small transverse displacements u - e,, the torsional spring exerts a torque T = —Tu - €,/{ on

the rod. Thus,the fundamental interaction matrices are then

(0 ) g (B 0)
0 —T/E 0 T/g

This type of interaction has been examined in previous works in the frameworks of homogeni-
sation theory, see [[102, 107, [11] among others, and is studied here in contrast to the Euler-

Bernoulli interaction which follows this section.

2.2.5 Elastic in-plane motion: Euler-Bernoulli interactions

Consider the longitudinal and flexural vibrations of the thin rod discussed in the previous sec-
tion. The longitudinal displacement amplitude u(x) is still governed by the time-harmonic wave
equation (2.16). The transverse amplitude w(x) is governed by the Euler-Bernoulli beam equa-

tion (see [53], among many others)

d* @
w(0)=ug-e, w(l)=u;-e, w'(0)=ug-es, w'(l)=uy-e;, (2.21b)
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My M, Figure 2.3: A segment of an Euler-
Bernoulli beam, subjected
to shear forces and bend-
ing moments. Notice the
relationship between the
directions of the forces

and moments.

where, in this case, a* = EI/(pS). The displacement amplitudes at the end points are denoted
by u,, u, € C? respectively. In particular, u, = [u(a), w(a),w”(a)]*. The second derivative
of the transverse displacement represents the curvature of the beam about e;. Hence, the first
two components of the vector are the rectilinear displacement along e; and e, whilst the third

component is the rotation about es;. The bending moment (about e3) at x = 0 is then

5 cos Al — cosh A4
cos Al cosh Al — 1

, sinh A¢ —sin A¢

EIw"(0) = EIL
w(0) cosAlcosh Al -1

u,- ey +EIA u,-e;

in A/ sinh A¢ cosh A¢sin A¢ — sinh A¢ cos A¢
22 e, + EIL :

" cos M cosh Al — 1 noe2 cos M cosh Al — 1 Hn €3

(2.22a)
with A = \/w/a. Similarly, the shear force (along e,) at x = 0 is
in A¢ + sinh A¢ cosh A/ — cos M/
EIW"(0) = —~EI\3 22 e, + EI\? :

w(0) cos Al cosh Al — lup et cos Al cosh Al — lup & (2.22b)

T B cosh Al sin Al + cos Al sinh A4 b e+ B2 sinh AZsin A4 be '

cos M cosh Al — 1 n't2 cosAlcosh Al —1 "

For lattices with Euler-Bernoulli links where the shear forces and bending moments couple, it
is important to understand the orientation of the loads. In particular, the application of a pos-
itive (negative) bending moment to an element of the rod generates a negative (positive) shear
load, as illustrated in figure P.3. A more detailed discussion of the relationship between bending
moments and shear forces in Euler-Bernoulli beams can be found in [53] and other classical text-
books. Formally, the bending moment and shear forces at x = £ can be computed and compared

with those at x = 0 (see equations (£.22)) to confirm the direction of the forces. In particular,

, cosh Al —cos Al , sinh Al —sin A4

EIw'"(¢) = EIA : EIL .
w(6) cos Al cosh Al — lun e cos Al cosh Al — lun & (2.23)
+ EI\2 sin A¢ sinh A/ o er+ ED cosh Al sin A¢ — sinh Al cos A¢ "y e '
cosAlcosh Al —1 F 7 cos M cosh Al -1 p"
and
EIw”(0) = —EI? sin A4 + sinh A4 U, - ey + BV cos Al — cosh MY ", e
cos Al cosh Al -1 cos A cosh Al —1 (2.24)

sinh A¢ sin A¢ 3cosh A¢sin Al + cos A¢sinh Y

EIV? -e, + EIL
" cos M cosh Al -1 Hprert cos A cosh Al -1
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The fundamental interaction matrices are shown in equation (2.26) on page 21. It is remarked
that, as in section [.2.3, one may obtain the classical interaction matrix for massless links by
taking the limit of (2.26) as p — 0. For the case of non-inertial links, the fundamental interaction

matrices are
SE / / 0 0 sE / 14 0 0

=—| 0o 12EI/P 6EI/P and  B"P=| 0 12BI/P -6EI/P|. (225)
0  6EI/P  4EIJI 0 6EI/P  —EIJI

AEB
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2.2.6 Thermoelastic lattices

Consider the central interaction for elastic in-plane motion discussed in section 2.2.3 in com-
bination with the heat conduction interaction introduced in section 2.2.2. Let the two ends of
a thin elastic massless conducting rod of length ¢ be exposed to two temperatures @) and ©,.
The thermal strain in the rod as a result of temperature distribution 6(x) is e = af(x), where
« is the linear coefficient of thermal expansion. The subscript T denotes thermal, as opposed to

elastic, strain. In absence of constraint forces, the axial elongation of the rod will be

L
u=a f 0(x) dx, (2.27)
0
or more explicitly
u= afw. (2.28)

Thus the compressive force required to maintain equilibrium is

@+ 0
f= aESK%, (2.29)

Combining this thermal interaction with the elastic response of a thin rod (2.19), the fundamen-

tal interaction matrices are

ATE _ ES[1-af (®n+®p)] (1 0) and BTE = ES[1-at (®ﬂ+®P)] (1 O)‘ (2.30)

- 20 20

2.2.7 The rotation matrices

Consider a regular distribution of lattice points in R? at positions x,, », connected by lattice
links. The load-potential relationship between a lattice point at x,, , and its nearest neighbours
is governed by equation (£.7). The potential amplitudes in equation (£.7) are stated in some
global basis, whereas the fundamental interaction matrices are written in local coordinates, with
the first component of the potential vectors being aligned along the link axis. Let R(p,q) €

SO(n,R) be a rotation matrix, where 7 is the dimension of the potential vector up 4, such that

X.
2L~ R(p,q)e. (2.31)
’xp,q|

In other words, R(p, q) sends the Cartesian unit vector e; to the unit vector which is directed

along the lattice link from X, , t0 X1 p,n+q. If #4p 4 is the potential in global coordinates, then

RY(p,q)up, (2.32)

is potential in local coordinates. Furthermore, the load on node (m, n) as a result of potential

uy 4 in local coordinates is

[A8.081q + B(1 - 85,00,9)IR" (P, q)tp g, (2.33)

22



Chapter Two Lattice preliminaries

where &p  is the two-dimensional Kronecker delta for indices p, m € Z?* such that pm =

8pym1 Op,m,. Finally, in global coordinates the load becomes

R(p,q)[A8p,00,g + B(1 = 85.00uq) IR (P, q)t1p.q, (2.34)

whence equation (2.2) may be written as

>, R(P,9)[A0p00ug +B(1 = 8p,00g) IR" (P, Q)tpg = (i0) Tuttman =y (2.35)
(P,q)eNn

The coefficient of u, 4 in equation (P.34) represents the interaction matrix C, ;4 defined in (2.2).
It is remarked that if the fundamental interaction matrix is a scalar multiple of the identity
matrix, then since RT (p, q)R(p, q) = I by definition, and hence the full interaction matrix will
also be a scalar multiple of the identity matrix. Such cases occur for uniform scalar lattices,

where all lattice points are the same and the potentials are scalar.
With the necessary notation and preliminary results established, the following chapter will
be concerned with the dispersive properties of an elastic triangular lattice and in particular, ex-

amination of the effect of distributed inertia on the effective group velocities of elastic waves.
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Chapter Three

Elastic lattices with distributed inertia

o
\%C

Classically, mechanical lattices can be thought of as a regular array of point masses connected by
massless springs, thin rods, or beams so that all of the mass of the lattice is concentrated at the
nodal points. In this sense, that the lattices are said to have non-inertial links. The primary focus
of the present chapter is to examine the behaviour of lattices where the inertia is distributed
over the lattice links in addition to at the nodal points. The addition of inertial links brings
many interesting features not present in the lattices with non-inertial links. In particular, for
lattices with inertial links the deformation of the links are no longer simply functions of the
displacements at the lattice points, but also depend on the frequency of excitation. Moreover, in
contrast to massless links, inertial links have their own spectrum of fundamental modes, which
contribute to the overall dispersive properties of the lattice.

In the present chapter, the effect of dynamic micro-polar interactions on the response of dis-
crete inertial systems outside the standard homogenisation regime is be examined. Several types
of interaction are considered and a comparison with the earlier work of Maz’ya et al. [102] and
Morozov [107] is made. Explicit analytical formulae are derived for the effective group velocities
in the long wavelength limit. The chapter begins with an introduction of the lattice geometry
and governing equations. Although only one particular lattice geometry is considered, the ideas
and methods presented herein are entirely general and can equally be applied to other regular lat-
tice geometries and higher dimensional lattices. The dispersion equation is then examined with
particular emphasis placed on the low-frequency, quasi-static limit. Effective group velocities
are derived and homogenised Lamé coefficients are deduced for different types of interactions.
Several types of lattice interactions are considered where the lattice links correspond to: thin
rods (§ £.2.3), thin rods with rotational springs (§ P.2.4) and Euler-Bernoulli beams (§ 2.2.5).

3.1 The geometry and governing equations

The diatomic triangular lattice in R? consider in this chapter is shown in figure B.1. The diatomic

elements consist of the red and blue masses (see figure B.1)) having contrasting inertial proper-
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Figure 3.1: The diatomic triangular lattice and its elementary cell shaded in grey. The lattice vectors
t, and ¢, are also indicated. The vectors e; = [1,0]" and e, = [0,1]T are counting
indices.

ties. This particular lattice, whilst relatively simple, can be used to illustrate a range of interesting
phenomena. For example, the static response of such a lattice is isotropic; however, as will be
shown later in the thesis, at higher frequencies this lattice exhibits strong dynamic anisotropy.
Moreover, the diatomic nature of the lattice allows the dynamic effects of multi-atomic lattices
to be investigated, whilst not greatly overcomplicating the exposition. More importantly, the tri-
angular geometry permits investigation of not only lattices with Euler-Bernoulli links (§ 2.2.5),
but also the case of purely central interactions (§ B.2.3). The triangular geometry also allows
convenient investigation of monatomic lattices. For other lattice geometries in R?, the system
is either degenerate if bending moments are neglected (e.g. square lattices), or cannot accom-
modate monatomic structures (e.g. hexagonal lattices).

This chapter will deal exclusively with in-plane elastic motion, with forces as applied loads
and elastic displacements as potentials. In this case, the interaction matrices are correspond to
stiffnesses. For mechanicallattices, s = 2 and (R.1)) is simply Newton’s second law. It is convenient
to work with non-dimensional units. Therefore, the length of the lattice links as well as the mass
of the blue nodes and the longitudinal stiffness of the lattice links (ES//) are taken as natural
units. Other natural units will be introduced when convenient. With this in mind, the direct
lattice vectors are ¢; = [2,0]T and t, = [1/2,1/3/2]T. The position of particle (m, 1) is

2my + m2/2 + 6271
Xpn = ", 3.1
m,n ( mz\/g/z ) ( )

and the sets of nearest neighbours are

N1 ={(0,0),(0,1),(e2,0),(—e; +ex,1),(—e; +ex,1),(—e1,1),(—e,0)}, (3.2a)

and

Nz = {(0,0), (81, —1), (62,0), (62, —1), (0, —1), (—82,0), (81 — e, —1)}. (32b)
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For the unforced problem, f, = 0, whence the Fourier transformed equations of motion and the
dispersion equation are
o(w,§)UT (&) =0, (3.3a)

and
det o(w, &) =0, (3.3b)

where the matrix o(w, &) has ng-block entries

g8) = 3 {@ T80 + R(p, ) [A0p,00u + B(1 - 3,00, IR(p, q) e ™} (3.4)
PENR

3.1.1 The dispersion equation and the quasi-static group velocity

Plotting the (w, &) solutions of (B-3H) results in a two-dimensional dispersion surface. The gra-
dientf] of the dispersion surface yields the group velocity of Bloch waves travelling through the
lattice, v(w, &) = Vgdeto(w,&). Later in this chapter the quasi-static group velocity, that is
v(w, &) for small w and |&|, will be evaluated. In particular, for small w and |€] the dispersion
equation may be formally expanded in a Taylor series
a @ s
0= [0%deto(w, &)1l 0.0y %, where 0% = aawal 88?‘{‘2;7?7

|at|>0

(3.5)

and the multi-index o = (a7, &z, a3) has been introduced. It is clear from (B:4) and the fun-
damental interaction matrices (£.1I8), (£.20), and (2.2§) that for w = 0 the only solution to the
dispersion equation (B-3H) is & = 0. Thus, there is no constant term in (B.5). Moreover, (B-4),
(2.18), (2.20), and (2.26) are symmetric about the origin with respect to w. Hence, the coefhi-
cients of w**~! (where n € N) in the expansion (5.5) must vanish. With the view of obtaining
two quasi-static dispersion surfaces, that is the two conical acoustic dispersion surfaces near the

origin, terms of order up to and including || = 4 are kept in (B.5) yielding

0~ ag(€) + ay(&)w* + ag(&)w?, (3.6)

where a,(§) are polynomials in & of, at most, degree 4 — n. Equation (B-§) is the quasi-static
dispersion equation, whose positive solutions (") yield the frequency as a function of wave
vector. The quasi-static group velocities may then be found by taking the gradient of w() with
respect to the wave vector &.

In the following sections, three types of interaction are considered. The dispersion surfaces are
presented and the dispersive properties of the lattice examined. Expressions for the quasi-static
group velocities are derived, from which Lamé parameters corresponding to a homogenised

plane strain system can be deduced.

! 1t should be understood that all operators herein are expressed in terms of natural units. That is, the gradient is
non-dimensionalised by multiplication by the length of the lattice links 4.
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3.1.2 A note on numerical solutions of the dispersion equation

Although this thesis is not focussed on numerical analysis, it is appropriate to briefly discuss the
nature of equation (B.3H) and the difficulties associated with finding solutions of the dispersion
equation numerically.

In general, for fixed &, equation (B.30) is a transcendental equation in w, the real solutions of
which yield the frequencies of propagating waves for a given Bloch vector &. These roots may
have a non-unitary multiplicity and may coincide with removable singularities, both of which
present significant challenges when searching for roots numerically. The former property pre-
vents classical root bracketing, and hence those root finding algorithms which require bracket-
ing. The latter property presents the obvious difficulty of dealing with removable singularities
numerically.

For the interactions considered here, the dispersion equation is sufficiently smooth to be
amenable to approximation by polynomial expansion. In particular, using the MATLAB li-
brary CHEBFUN [[42] equation (B-3B) may be approximated by an expansion in Chebyshev
polynomials over a specified interval, allowing the roots to be found efficiently. For the Euler-
Bernoulli interaction, the commercial finite element software Comsol Multiphysics® is also used
to solve the dispersion equation using finite elements. This allows independent verification of
the CHEBFUN approximation for the Euler-Bernoulli interaction.

For the case of non-inertial links, the dispersion equation (B:3B) det 6(w, &) = 0 need not be
solved directly. From a numerical point of view, it is far more efficient and convenient to solve
the eigenvalue problem by, for example, Schur decomposition. However, for the case of inertial
links it is necessary to solve the dispersion equation directly.

Consider the block entries of o(w, &) as introduced in (B-4) for non-inertial matrices and
fixed &. Introducing the square auxiliary matrices G = diag[Zy,Zs, . .., Zg]f| and H(w, £), with

nqg-block entries

Hyg(w, &) = - ZN {R(P,9)[A0p 00 + B(1 = 8p080) IR (p,)e ™%}, (37)
PENR

the equations of motion (B.3d) may be written as
w?GUYT (&) = H(w, &)U (&), (3.8)
The hermitian transpose of H, 4(w, §) is

H) (0,€) =~ ;v {[R" (. )] [A"0p.00nq + B'(1 - 8p.000) IR (p. )™ ¥} (39)
PENn

The rotation matrices are real hence,

Hyg(w, &) = - % {R(D, Q)[A"8p.08nq + B'(1 = 85,00,9)IR" (p, q) ™7} (3.10)
PENR

If p € NV, then it follows immediately that —p € AV, and further it is clear that x_, = —x,. Physi-

% In this case, Q = 2.
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cally, this means that node (m, n) is connected to node (m + p, n + q) by a lattice link along x,

and, equally, node (m + p, n + q) is connected to node (m, n) by a lattice link along —x,. Hence,

Hiy(0,8) == 3 {R(=p,q)[A"8p.08nq + BT (1= 0.00,:9)IR" (-p,q)e ™}, (3.11)
PN

where it is emphasised that the summation is now over AV, that is the set of nodes connected to
node (m + p,n + q) in the elementary cell, rather than NV, (the set of nodes connected to node
(m, n)). For planar rotations (rotations about the x3 axis), R(=p, q) = R(p, 9)R, where Rx = —x,

i.e. arotation by 7 about the x3 axis. For the fundamental interaction matrices considered in
. . ~ +37T ~ +=T
the previous section, RATR" =AT=Aand RB'R™ = B, whence

H} (,) = - % {R(p,q)[A0p 08 + B(1 = 8p.080) K" (p, )¢ ™%} = Hyn(w,8). (3.12)
PENg

Thus, for fixed &, the square matrix H = H(&) is normal and has N real eigenvalues (eigenfre-
quencies) and N linearly independent eigenvectors (eigenmodes), where N is the dimension of
H.

3.2 Central interactions

For central lattice interactions, as in section .2.3, the in-plane elastic displacement amplitude of

particle (m, n) is denoted by u, , € C*. The rotation matrix is the 2 x 2 skew-symmetric matrix

R(p.q) = cosby, —sinty, (3.13)
’ sinfp, cosbp, |’

where Gp’q is the angle between Xpg and e;. At this point, it is convenient to introduce the non-
dimensional parameter # = w,/p, which characterises the natural frequency of longitudinal
vibrations in the lattice linksf. Indeed, # is the eigenvalue of the wave equation (2.16) which
governs the longitudinal vibration of a thin prismatic rod. The elements of the diagonal blocks

o011 and 02, of matrix ¢(w, &) are as follows:
eyl = —3ncotn ]
UJ’J’]H = mjw” = 3ncotn + 5 cosgeser
3
[01'1']12 = [Ujj]zl = ’7% cosgcsen ) (3.14a)
3
[afj]zz = mjw’ — 3y coty + - cosescn

where ¢ = k- Te, = (£, +/3&,)/2, T = [t1,,] is the translation matrix, and m; = 81j + md;.

Similarly, the off-diagonal blocks 01 = o}, where (-)" indicates the Hermitian transpose, have

* In the current system of natural units, the frequency w and density of the lattice links p are themselves
non-dimensional. For definiteness, the corresponding quantities expressed in dimensional form are @ =

w\/ES/(m£) and p = pm, [(S), where m, is the mass of the blue lattice points in figure B1|.

28



Chapter Three Elastic lattices with distributed inertia

the entries ) v
; e +e’
[012]y; = [(e_z’fll + T) + 1] nesen

P+ eV

[o12]y; = [012] = _\/gTﬂ cscH, ) (3.14b)
eV eI

[012]22 = T377 csey

where y = £- T (e; — €;) = (3§, — /3,) /2. The corresponding entries for the case of massless
links can be recovered by taking the limit of (B.14) as # — 0. Doing so yields

[on]yy = -3+ =2
2
\/§cos
[ou1]y; = [ou]y = Tﬁl’ ) (3.15a)
3
2
and ' .
. —ip 4 o
el fes 752
e eV
[012]12 = [0-12]21 = _\/§T7 . (315b)
—iy —iQ

From (B.6)), the following equation is obtained for the quasi-static (i.e. small w and |&]) dis-

persion surfaces
2 4 2 2 814
3(1+m+3p)w -9 (1+m+3p)w +1—6|E| =0, (3.16)

whence the positive solutions are

1 3 €]

S .| B 3.17
“e 2/T+m+3p’ (3.172)
0 = vi__ I (3.17b)

where m is the mass of the red nodes (see figure B.I). The corresponding quasi-static effective

group velocities are then

~

v - 54, (3.18a)
2 Temisp
v - vi__ & (3.18b)

2 JT+m+3p
where & = &/|€|. The first observation that may be drawn from (B.I§) is that the quasi-static
group velocities are isotropic. In other words, in the low frequency limit, the wave speeds of
elastic waves travelling through the triangular lattice with central interactions do not depend

on the direction of propagation. Secondly, in this low frequency regime, the group velocities
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coincide with the phase velocities (a)(ci) E/|E)).

The neighbourhood of the quasi-static limit (w, &) — 0, also referred to as the long wavelength
limit, is the region in which classical homogenisation is applied. In this regime, the dynamic
response of a micro-structured solid may be treated as a continuum with appropriately chosen
elastic moduli and densities. Typically, these effective moduli are determined from the static
response of the lattice (see [27,50, 100, 123]among others).

Consider the well known wave speeds for elastic waves in a linear homogeneous isotropic

1+2
=1/ o (3.19)
0

Ve=4 /=, (3.19b)

elastic medium

where A, p and p are the Lamé constants and density respectively. The subscript p and s in (B.19)

denote the pressure and shear wave speeds respectively. It is observed that vél) > v(cz), hence,

comparing (B.18) and (B.I9) it can be inferred that v(cl) corresponds to pressure waves and v(Cz)
corresponds to shear waves in the quasi-static limit. Moreover, equating v(cl) = v, and vg) = v

implies A = y and hence v = 1/4. Further, treating o as the quasi-static effective density of the
lattice, that is taking o = (1 +m + 3p)/\/3, equations (B.18) and (B.19) imply

o= Y2 (3.20)

In the long wavelength limit, the macroscopic density o (sometimes known as the relative
density) is usually determined by computing the microscopic density of the elementary cell, as
done in [50,127]. The total density of the elementary cellis (1+m+6p)//3 (refer to figure B1)),
that is the mass of the two particles and six lattice links, with the area of the elementary cell being
V3 = |t; x t,]. However, considering equations (B.19) and (B.I8) one is lead to the conclusion
that o = (1 +m + 3p)/\/3. Thus, the macroscopic density obtained from taking the static limit
of the dynamic system is different to the macroscopic density obtain by purely considering the
distribution of mass in the lattice. In this sense, there is said to be a morphological change to the
static group velocity of elastic waves in the lattice.

The morphological change to the group velocity is a result of the distribution of mass along
the lattice links. For the case of non-inertial links (p = 0), the macroscopic density obtained
from the limit case of the dynamic system is identical to the so-called relative density obtained
from the static analysis. However, for a lattice with inertial links (p > 0), the effective macro-
scopic density obtained from the quasi-static limit case of the dynamic system is not equivalent
to the density obtained from the static analysis. In particular, consider two diatomic triangular
lattices, identical in every way, except that one lattice has massless links connecting alternating
nodes of unit mass and m = 9 as illustrated in figure B.1, and the second lattice has links of unit
density connecting alternating masses of unit mass and m = 3. In both cases the total mass in the
elementary cell is identical. According to the static analysis, both lattices have the same elastic
moduli and relative densities and therefore have the same group velocities. However, according

to (B.I9) and the previous discussion, the quasi-static limit of the dynamic system predicts dif-
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Figure 3.2: The four dispersion sur-
faces for the diatomic tri-
angular lattice with non-
inertial links (p = 0) and
m = 10.

ferent effective group velocities. From the dynamic system, the effective group velocities even in
the quasi-static limit depend on the distribution of inertia in the elementary cell, not simply the
total mass. Qualitatively, the effect of distributing the mass of the lattice over the lattice links is
to increase the quasi-static group velocities, i.e. the higher the proportion of mass in the lattice
links, the higher the group velocity.

For the case of massless links (o = 0), the effective material properties in the quasi-static limit

agree with those already in the literature for static systems (see, for example, [123]).

3.2.1 A remark on central interactions and square lattices

At the outset of this chapter it was remarked that for some other planar lattice geometries, con-
sidering only central interactions leads to a degenerate system for in-plane mechanical motion.
For the square lattice, 0, ; in the rotation matrix (B.13) are integer multiples of 77/2 which, for a

monatomic square lattice with massless links, leads to an interaction matrix of the form

w2—4sin2(%) 0

0 w2—4sin2(—2)
2

o(w,£) = (321)

Thus, the system decouples and degenerates into a model of the one-dimensional wave propaga-
tion in two non-interacting chains. In particular, the lattice permits Bloch waves of amplitude
us,? = [8i1,0;2] €™ with angular frequencies w(® = 2sin&;/2 and &; € [0, 7). Analysis of
a square lattice with inertial links yields a less concise, but still diagonal, interaction matrix.
Hence, the square lattice with inertial links is also degenerate when only central interactions are

considered.

3.2.2 Dispersion properties and standing waves

Figures B.2-B.4 show dispersion diagrams for the diatomic triangular lattice with central inter-

actions for a range of parameter values. The dispersion surfaces are the zero (w, &) isosurfaces
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Figure 3.3: The first four dispersion
surfaces for the diatomic
triangular lattice with iner-
tial links, for p = 1 and
m = 10.

Figure 3.4: The first four dispersion
surfaces for the diatomic
triangular lattice with iner-
tial links, for p = 1 and
m=4.
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of the dispersion equation (B.3D)), that is the set {(w, &) : det 6(w, &) = 0}. Formally, the ele-
mentary cell in the reciprocal lattice is the parallelogram spanned by the principle lattice vectors
b, = n[1,-1/3/3]" and b, = 47[0,1/\/3]T. However, it is convenient to plot the dispersion
surfaces of the rectangular region & = [~m, 7] x [-57/(2v/3),57/(2\/3)], which contains an
elementary cell of the reciprocal lattice.

Figure B.7 shows the dispersion surfaces for lattice with non-inertial links. For this particu-
lar configuration (diatomic triangular lattice with non-inertial links and central interactions),
the dispersion equation is a quadratic polynomial in w* and as such has closed form solutions
w = w(&). However, these solutions are cumbersome when expressed in the form w = w(§).
Furthermore, for the configurations examined later it is not possible to obtain closed form solu-
tions. Nevertheless, relevant information may be extracted from the dispersion equation itself.
Since the dispersion equation is quadratic in w? and symmetric about w = 0, there exists at most
four distinct positive solutions and hence not more than four dispersion surfaces. Figure B.2
shows the two acoustical dispersion surfaces and the two optical dispersion surfaces separated
by a band gap of finite width. The characteristic semi-infinite band gap for discrete structures
exists above the highest dispersion surface.

In the vicinity of the origin, the two acoustic dispersion sur-

faces are conical with circular cross-sections. Hence, in the quasi- Some features of the disper-

static limit the response of the lattice is isotropic, as expected surfaces may by difficult

from the analysis in section B.2. The finite-width band gap is

to discern in the static 2D rep-

bounded from below by an acoustic dispersion surface and from ... presented  here.

above by an optical surface. On the boundary of the band gap, -, erefore, 3D MATLAB figure

the dispersion surfaces have local maxima and minima charac- files corresponding to these dis-

terising standing waves (waves with zero group velocity). The persion surfaces are provided at

presence of these stationary points allow the width of the stop hEtp://dx. doi.org/10.

band to be estimated. 5084,/m9 . Figshare . 746915.

The maxima of the upper acoustic surface bounding the band
gap from below lies at the edge of the elementary cell of the recip-
rocal lattice along b, — by, where b; and b, are the basis vectors of the reciprocal lattice. At this
point, & = (b, — b;)/2, the off-diagonal block matrices 01, and 0, vanish (see equations (B.15))

and the dispersion equation reduces to

[(7 = 203) (9 - 20%) - 3][(7 - 2mwi ) (9 - 2mw]) - 3] = 0, (3.22)

with solutions w? corresponding to acoustic modes and w? corresponding to optical modes,
where wﬁ < wé. It has been assumed, without loss of generality, that m > 1. The lower bound of
the band gap is then given by max{w, }: w; = \/5/m where w4 < w;. Similarly, the minima of the
optical surfaces bounding the stop band from above occurs at the boundary of the elementary
cell in the reciprocal lattice along the vector b;. Again, the off-diagonal block entries 0}, and

021 vanish at & = b; /2, whence the dispersion equation becomes

[(5-2w3) (3 - 2w3) - 3][(5 - 2mw? ) (3 - 2mw}) - 3] = 0. (3.23)
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In this case, the upper bound of the band gap is then min{wo}: w, = 1. Thus, the finite width

band gap is defined by the interval max{w, } < @ < min{wo}, or more explicitly

5
\/j <w<1. (3.24)
m

For the numerical values used to produce figure B.2, in particular m = 10, the interval is 1/\/2 <
w < 1, which agrees with the position of the band gap in figure B.2. Thus, the width of the
finite band gap may be controlled by adjusting the parameter m. The position of the band gap is
determined by the sum of the nodal masses. It is observed that the band gap interval becomes
the empty set if m < 5. Thus, a minimum contrast in mass is required to maintain a finite-width
band gap.

The lower bound of the semi-infinite band gap may be obtained by taking max{wo} from
equation (3:22) to obtain w; = /5, which again agrees with the position of the band edge on
the dispersion surface.

Figures B.3 and .4 show the first four dispersion surfaces for the diatomic lattice with inertial
links. It is emphasised that, in contrast with the non-inertial lattices, there is an infinite number
of dispersion surfaces and only the first four are shown here. The parameter values are p = 1
and m = 10, and p = 1, m = 4 for figures B.3 and .4 respectively. The lattice corresponding to
figure B.3 has the same distribution of mass at the junctions as the non-inertial lattice considered
previously. However, the macroscopic density of the lattice is increased as a result of the lattice
links having unitary density. Figure .4 corresponds to a lattice with the same macroscopic
density as the non-inertial lattice, but with a different contrast in mass at the nodes to account
for the additional mass contribution from the links with unitary density. In both figures B.3

and B.4, it is observed that the finite band gap of figure B.2 is no longer present.

3.3 Central and torsional interactions

This class of interaction is similar to the central interactions presented in the previous section,
and was considered in 102,107, 111]. As in .2, the potential u,, , corresponds to the in-plane
elastic displacement amplitudes and the associated rotation matrix is as defined in (B.13). The
distinction between this and the previous interaction is characterised by an additional torsional
interaction between the links. In particular, each link resists transverse motion at the nodes.
Physically the interaction may be understood in terms of massless Hookean torsional springs
which retard changes in angle between the lattice links (cf. § P.2.4). In the works of Maz'ya et
al. [102], Morozov [107], and Nazarov and Paukschto [111], this resistance to transverse motion
is referred to as “transverse rigidity” where the force per unit mass between points x and y is
1
F(e) = K(u() ~u(e).y -2 25 e Lfu()-u(), -0 L o
ly - x| ly - x|

where (y — x)* denotes the vector perpendicular (in the right-handed sense) to y — x. The first
term corresponds to the central interaction, whilst the second is the transverse interaction. It

should be emphasised that this “transverse rigidity” is not equivalent to the flexural rigidity (i.e.
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Euler-Bernoulli flexural stiffness) as it is understood in the engineering literature. Rather, “trans-
verse rigidity” refers to the torsional spring type interaction discussed in section £.2.4.
Returning to the present work, the elements of the diagonal blocks ¢;; and 03, of matrix
o(w,§) are
3T +ncosgcscy
2
[oi],, = [ JJ] V3 cos (P(Z csen =) . (3.26a)

[ajj]u = mjw2 -3(r+ncotn) +

T+ 31cos@cscy
2

[UJ'J']zz = mjw2 -3(r+ncotn) +

The off-diagonal blocks 0}, = 03, have the entries

. —ip 4 oY ;
[012]y; = [(ezzfllJr e P +e )+ 14 3TSIH17:|71CSC}7
4 n
e eV
[012]1, = [012]5, = —\/ET(q csen — 1), ) (3.26b)
eV 4 e?
[o12],, 1 (3ncscn + 1)

where ¢, mj, and y have the same definitions as in (B.14). It is remarked that the elements of
o(w, &) are written in (B.26) are equivalent to those for the central interaction (B.14) if 7 = 0,
that is if the stiffness of the torsional springs is neglected. The quasi-static dispersion equation
is

(1+m+3p)2(3+107+ 15)w* = 3|E*(1 + m+3p)(3 + 137+ 137° + 37 ) w*

9
+Igmﬁ(3+101+3¥)2:0,(32n

which has the positive solutions

(1) \/_ 3+ 71

_ 3.28
Wrg = 2 1+m+3p|£|a (3.28a)
and \/_
(2) 1+37
T &l 3.28b
“1s = 7 1+m+3p|€| ( )

The corresponding quasi-static group velocities are then

(1) \/_ 3+ 71

BRI 3.29
s T 1+m+@& (3.292)
and \/_
(2) 1+37 -
—_— 3.29b
s T 1+m+@¢ (3.29%)

where & = &/|¢|. Comparing equations (3:18) and (8:29), it is evident that in the quasi-static
limit the qualitative effect of the torsional springs is a stiffer structure than that with only cen-
tral interactions. Assuming, without loss of generality, that 0 < 7 < 1 gives 1 + 37 < 3+ 1

and equations (B.294) and (B.29H) may be associated with quasi-static pressure and shear waves
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respectively. The Lamé parameters may then be determined as

A=§(1—5T) and y=§(1+31), (3.30)
with the macroscopic density defined as p = 1 + m + 3p as before. For the special case of a fine
isotropic triangular lattice, Maz'ya et al. [102, ch. 20] determined the effective Lamé parameters
for the static case (as opposed to the quasi-static case considered here) as A = 3(K - 5L)/8 and
¢ = 3(K + 3L)/8, where K and L are the longitudinal and transverse rigidities per unit area
respectively. The Lamé coefficients derived in [[102, ch. 20] are consistent with those derived
here once the difference in normalisation has been accounted for.

Again, as was the case for the central interactions, it is evident from equations (B.29) that
redistributing the inertia over the lattice links results in a morphological change in the effective
group velocities in the quasi-static limit. The dispersive properties are similar to those of the
central interaction. Therefore, the dispersion diagrams and analysis of the dispersive properties

for this interaction are omitted.

3.4 Euler-Bernoulli interactions

For the Euler-Bernoulli interaction introduced in section P.2.5, the three-dimensional vector
U n € C* now denotes the displacement amplitude with the first two components correspond-
ing to the in-plane elastic displacement amplitudes, whilst the third component corresponds to
in-plane rotations about the axis perpendicular to the plane of motion. In this case, the rotation

matrix is an augmented matrix representing rotation about a single axis in three dimensions

cosbp, —sinty, 0
R(p,q) =|sinfp, cosbp, Of. (3.31)
0 0 1

The elements of the block matrices 0,4 are not stated here explicitly. Instead, the reader is re-
ferred to equations (2:26) and (B.4) for the form of the block entries for o(w, §).

With reference to equation (B.§), the quasi-static dispersion equation is

B*(1+2B)(1+18B) [9(1 + 2B)|E[* — 4w* (1 + m + 6p) ]
x [3(1+6P)[E] - 40’ (1+m+6p)] =0, (3.32)

whence the positive solutions are immediately apparent

1 3 1+2,3
==/ — 3.33
Wpp 2\/ 1+m+6p|€|’ (3.33a)

3 1+6
@=Ly

= 3.33b
EB= 2 Vi+m+ep ( )

where the non-dimensional parameter 8 = 2I/(s¢*) has been introduced. The quasi-static effec-

36



Chapter Three Elastic lattices with distributed inertia

a 3 1+28 -
=2/ ——— 3.34
VEB T 5 1+m+6p£’ (3.342)

) 3 1+68
Y 34
VEB T ) 1+m+6p£ (3.34b)

tive group velocities are then

In contrast to the quasi-static group velocities for the central interaction (B.1§), and the central

and torsional interaction (B.29), the effective density of lattice is equal to the macroscopic density
1 + m + 6p. In other words, redistributing the inertia over the lattice links does not result in a
morphological change in the quasi-static group velocities for lattices with the Euler-Bernoulli
interaction.

It is also observed that setting 3 = 0 does not recover the case of central interactions. However,
if one considers the governing equation (2.21d), it is immediately apparent that the differential
equation is singularly perturbed for small 8 (large A). Thus, one would not necessarily expect
the Euler-Bernoulli interaction to correspond to the central interaction for the case of f = 0.
Moreover, with reference to (2.22) it can be deduced that the elements of ¢ do not converge as
B — 0" (or, equivalently, A — o). However for massless links (A — 0), the governing equa-
tion (2:214) is regularly perturbed (w(™") = 0) and the Euler-Bernoulli does indeed correspond
to the central interaction if both A and f vanish. Hence, the equivalence of the effective group
velocities for the central interaction (B.I§) and the Euler-Bernoulli interaction (3.34) when both
B and p vanish.

3.4.1 Dispersion properties and standing waves

As in section B.2.2, figures .5 and B.7 show examples dispersion diagrams for the diatomic
triangular lattice with the Euler-Bernoulli interaction. Figure .5 shows the dispersion diagram
for the case of a diatomic triangular lattice with non-inertial links. The dispersion diagrams for
the case of a triangular lattice with inertial links is shown in figure B.7. Again, the dispersion
surfaces are plotted over the rectangular region & = [, 7] x [-57/(2v/3), 57/(2\/3)], which
contains the elementary cell in the reciprocal space.

Comparing figures B.2 and B.5, the most striking difference between the two is the presence
of two relatively flat low frequency dispersion surfaces in B.5. These surfaces correspond to
modes dominated by rotational motion. An example of one of these micopolar mode is shown in
figure B.6; this mode corresponds to a periodic solution (§ = 0) for the case of non-inertial links.
It is apparent from figure .4 that the translational displacements of the nodes are much smaller
than the rotational components. Hence, for a simple estimate, the translational displacement of
the nodes may be neglected. For periodic, purely rotational motion, the equations of motion for

the nodes in the elementary cell of the lattice reduce to
J:0,0 = () _ (14/36” + 4/39“"’) Li=1,2. (3.35)

Here, the superscript indices label particles within the elementary cell and it is emphasised that
repeated indices are not summed over. The symbols 0Mand () represent the non-dimensional

angular displacement and torque respectively. For time-harmonic waves 940" = 0?0 and
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Figure 3.5: The six dispersion surfaces for the diatomic triangular lattice with non-inertial Euler-
Bernoull links (p = 0) and m = 10.

Figure 3.6: An example of a micopo-
lar mode, superimposed
on the undeformed struc-
ture.

Figure 3.7: A range of dispersion surfaces for the diatomic triangular lattice with Euler-Bernoull
inertial links for p = 1 and m = 10.
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Figure 3.8: An example of an eigen-
mode where the beams vi-
brate at their fundamental
frequency and the nodal
displacements are small.

in the absence of external loads 7(") = 0; the system (B35) has non-trivial solutions if and only

if
14f - w? 4
T R P -0 (3.36)
4p 148 - w*];

The positive solutions for w then yield the estimates for the frequencies of the standing rotational
modes:

ﬁ 1/2

Wi = (]—]( ]1+7]2:k:\/49 (]§+]§)—82]1]2)) : (3.37)
12

Taking the parametric values used to produced figure B.3: J; = 2, J, = 6, f = 0.001 yields
numerical estimates of w} = 0.0853 and wy = 0.0454, which are in good agreement with the
numerical solutions to the full spectral problem. In the case of lattices with inertial links, for low
frequencies and sufficiently small values of 2o/ 3, the equations of motion for pure rotations take
the form (B.39) to leading order. For the values of the parameters used in figure B.5 the results
of the finite element computations are in good agreement with the estimates, w5** = 0.0845
and wi™ = 0.0452. Usually, triangular lattices are treated as so-called truss structures where
the flexural rigidity of the links is considered negligible and only central interactions are taken
into account. However, if the flexural rigidity of the lattice links is neglected, then these low-
frequency micro-polar modes are also neglected. Thus, it is important to take into account the
flexural rigidity of the lattice links of triangular lattices, even in the low-frequency regime.

With reference to the dispersion diagram of figure .5, there exists a finite-width stop band
for the diatomic lattice with non-inertial links. Using the same approach as employed in sec-
tion B.2.7, the width of the stop band may be determined. Similarly to the case of central inter-
actions, the maxima of the upper acoustic surface bounds the stop band from below and lies at
the edge of the elementary cell of the reciprocal lattice along the vector b, — b;. At this point,
& = (b, - by)/2, the off-diagonal block matrices are sparse

0 0 -338
on=| 0 0 38 |=dl, (3.38)

338 =38 0

and the diagonal blocks are

miw® -7/2-278  \/3(1-6B)/2 0
gi=| V3(1-6B)/2 mjw*-9/2-21p 0 , forj=1,2, (3.39)
0 0 Jjw* - 108
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where m; = §1; + m&yj and J; = &1j + /2. Assuming that 011 and 02, are not simultaneously

singularf], the eigenvalue problem may be recast thusf}:
(oii — O-lzaj;la'{z)uzFF = 07 fori= 1, 2and i ij, (340)

and where j is chosen such that det oj; # 0. It is emphasised that repeated indices are not summed

over. The matrix product 01207 o1, has the same distribution of zeros as (3:39). Hence, the

1
i

translational and micropolar modes decouple and the frequencies of the two micropolar modes
can immediately be obtained from the equation [g;; — 0120]-;10’{2] 3 = 0. Explicitly, the equation

for the frequency of these micropolar modes is

188

2 . L

iw” =25+ ———— ] =0, fori=1,2andi#j. 3.41
J /3( miw2—3—30/3) / (3.41)
For thin beams, the typical bending stiffness is much smaller than the longitudinal stiffness of
the links; in the notation used herein this corresponds to 0 < 8 << 1. For example, for a beam of
unit length and circular cross-section with slenderness ratiof] r/I = 0.1, the parameter 8 = 0.0025.
Hence, for small 8 equation (B-41)) has the solution w ~ /103/J;. Thus, these standing waves

correspond to the low frequency micropolar modes mentioned earlier.
FF

Having established that the rotational and translational modes decouple, that is [u;" ]; is in-
dependent of [ul'Y']5 for i,j = 1,2, it is sufficient to consider the problem for the reduced block
matrices G, which have elements [d;j]i, for k,I = 1,2. In this case, the reduced off-diagonal

matrices vanish and the dispersion equation reduces to det 01, det 02, = 0, or more explicitly
(5+ - w?)(3+308 - w?)(5+p - maw*)(3+308 - maw) = 0. (3.42)

Assuming, without loss of generality, that m > 1 the parenthesised terms involving m correspond

to the acoustic modes; whence the lower bound of the band gap is

w; = max{+/(5 + 188) /m,\/(3 + 30B)/m}. (3.43)

The minima of the optical dispersion surface bounding the finite band gap from above occurs
at the edge of the Brillouin zone along b;. At & = b /2, the block matrix entries of ¢ have the
same structure as above, although the values are indeed different. Hence, following the same

procedure the upper bound of the finite band gap is

W, = min{\/l n 18,8,\/3+6/3}. (3.44)

For small 3, specifically for 0 < 3 < 1/6, the width of the finite band gap is defined by the interval

>+18p <w<+/1+18B. (3.45)

m

*Equivalently m # 1 and/or J; # J,.
*Since 011 and 02,, and hence their inverses, are hermitian, the product 01201-;1 a;rz is also hermitian.
®The ratio of beam radius to length.
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Comparing inequalities (B.24) and (B.49), it is observed that (for small ) the band gaps are
of approximately the same width and occur at the same frequencies as for the case of central
interactions.

Figure B.7 shows the dispersion diagram for the triangular diatomic lattice with inertial links.
The dispersion diagram shares many features with the diagram for the lattice with non-inertial
links (figure B.5). However, figure B.7 is distinguished from figure B.3 by the presence of several
densely packed, relatively flat surfaces in what was the band gap in figure B.3. These surfaces
correspond to modes where the nodal displacements are small, or indeed zero; an example of
such a mode is shown in figure B.§. These flat dispersion surfaces are associated with the funda-
mental modes of the lattice links; an estimate of their location can be obtained by considering an
isolated Euler-Bernoulli beam with clamped ends. Such systems have been treated extensively
in the literature (see the book by Graft [53], among others); a brief discussion is included here
for completeness.

Consider the boundary value problem for the non-dimensional time-harmonic deflection of

an Euler-Bernoulli beam of unit length, clamped at both ends

d’ 24 =0 0,1 3.46

@_ y(X)— 5 XE[,], ( a)
and

y(0) = (1) = y'(0) = y'(1) = 0, (3.46b)

where A* = 2w?p/p. The well known family of solutions is y, = A;[cos(A,x) — cosh(1,x)] +
Ay [sin(A,x) —sinh(A,x)], where A, satisfy the transcendental equation cos A, cosh A,, = 1, with

An # 0. The first eigenfrequency is then

0!~ 4.730% /2£’ (3.47)
p

which for the parameter values used to produce figure B.7 yields w}gigm ~ 0.5. In figure B.7 there
are several approximately flat surfaces which lie between w = 0.4932 and w = 0.5044.
Consider the Dirichlet boundary value problem for the non-dimensional time-harmonic lon-

gitudinal displacement amplitude of a thin rod of unit length

w

d2 2
(@ - 7)y(x) =0, xe0,1], (3.48a)

and
»(0) =y(1) = 0. (3.48b)

In this case, the spectrum is w, = nm/,/p for n € N. Thus, for the parameter values used here
(p = 1and 0 < 8 « 1), the lowest frequency resonant longitudinal mode is much higher than
the first flexural mode. Indeed, the resonant frequency for the first longitudinal mode of a thin

rode lies beyond the frequency range shown in figures B.2-B.5, and B.7.
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3.5 Remarks

Conventionally, triangular lattices are treated as so-called truss structures where flexural defor-
mations are neglected and only central interactions are considered. However, the analysis pre-
sented in this chapter indicates that care is required if important features are not to be neglected.
If the flexural rigidity of the links is small compared with their longitudinal stiffness, then ac-
counting for flexural deformations offers a small correction to the width of the finite band gap
(see inequalities (B.24) and (B.45)). However, if the lattice links are inertial then the band gap
becomes populated with flexural standing modes. Moreover, for inertial links in the low fre-
quencies regime, neglecting flexural deformations results in erroneous estimates for the long
wavelength group velocities. Finally, the two low frequency micropolar modes (evidenced by
the flat low frequency surfaces in figures B.5 and B.7) will be absent if flexural deformations are

neglected.
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Chapter Four

Dynamic anisotropy and focusing in

discrete media

The previous chapter was concerned with the low frequency response of two dimensional lat-
tices. In the current chapter, the finite frequency response is considered. In particular, where in
the previous chapter it was demonstrated that the quasi-static response of the triangular lattice
was isotropic, it is demonstrated that for higher frequencies the response is strongly anisotropic.
It is in this sense that lattices are said to posses dynamic anisotropy. The present chapter exam-
ines the diffraction of time harmonic fields by an infinite lattice in R? and is developed as follows.
First, the dynamic response of both square and triangular scalar lattices will be analysed, with
emphasis on Green’s functions and the diffraction patterns generated by a point load. The cur-
rent chapter is also concerned with the dynamic anisotropy of discrete elastic structures in the
full vector setting of planar elasticity. The analysis is focused on the directionally localised wave-
forms, which correspond to saddle points on the dispersion surfaces. Here, the term “localised”
is used in a similar sense to that used in several papers (see, for example [5,121]) to describe an
effect where the field is predominantly confined to one or more finite width “beams” with dif-
fering orientations. Finally, a design for a structured elastic slab of finite width, which possesses

focusing properties for waves within a certain frequency range, is developed.

4.1 Primitive waveforms in scalar lattices

Consider the out-of-plane displacement of a regular array of uniform point masses in R? con-
nected by massless Hookean springs and loaded at a single lattice point. The governing equa-
tions of motion are those described in section 2.1 with the fundamental interaction matrix given
in section £.2.1]. In this section, two different monatomic lattice geometries will be considered:

square and triangular.
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4.1.1 The square monatomic lattice

(m -

1

Figure 4.1: The monatomic square lattice and its elementary cell (shaded in grey). The lattice vec-
tors #; (in red) and t, (in blue) are also indicated. The vectors e; are defined as follows:
e, =[1,0]T and e, = [0,1]7.

Consider first, the uniform square lattice as illustrated in figure f.1. The lattice consists of a
regular array of unitary point masses connected by linear springs of unit stiffness. The assump-
tion of uniformity is purely for convenience and may be weakened without significant additional
work. The lattice is uniform and the particles are indistinguishable; the lattice nodes are labelled
by the double index m € Z? (see § P.1)). Let the lattice be forced harmonically at a single point.
Given the uniformity of the lattice, the forcing point is chosen as the origin m = 0 for conve-

nience and without loss of generality. The displacement field is then given by the Fourier Integral

(see equation (2.7) in § 21

1 exp(im- &)
o=l “otwn )

where o(w, &) = w? —4+2(cos &, +cos &,). The scalar o is even with respect to & and the region
R is symmetric about &; = 0 (i = 1,2), hence the odd terms in exp(im - &) do not contribute to

the integral and the Lattice Green’s Function may be expressed as

1 cos(m &) cos(myé,)
iy = 3 Ofé oD dE. (4.2)

Alternative representations of the Lattice Green’s function and detailed analysis in various fre-
quency regimes may be found in many texts, including [32,97,99,[109], in addition to later in
the present text. For certain restrictions of w one, but not both, of the integrals in (£.7) may be

evaluated in closed form; alternatively, the integral may be converted to a semi-infinite integral

44



Chapter Four Dynamic anisotropy and focusing in discrete media

over the positive semi-axis. However, for the purposes of this chapter it suffices to consider the
Lattice Green’s function in the form (f.2).

The dispersion surface (the zero isosurface {(w, ) : o(w,&) = 0}) is shown in figure {.29
and has a number of interesting features. In particular, it is observed that within the Brillouin
zone the surface has one maximum, with the four points at the corners of the Brillouin zone each
contributing one quarter of a maximum, and two saddle points, with the four points labelled +A
and +B each contributing one half of a saddle point. The saddle points all lie at the frequency
w = 2, for which the slowness contour is shown in figure .25 in addition to its representation
on the dispersion diagram f.24. The saddle points lie at the vertices of the rhombic slowness

contour. Figure .7 is fully consistent with those figures presented in [5,121].

(a)

Figure 4.2: (a) The dispersion surface for the square cell lattice together with the projections of the
level curves onto the w = 0 plane. (b) The slowness contour at the frequency coincid-
ing with the saddle points, w = 2. The saddle points lie at the vertices of the rhombic
slowness contour.

The optical analogue of (£.2) is the so-called diffraction integral [I0,52,118]. In optics, the
term aberration is used to describe perturbation of the wave front away from its ideal shape as
a result of a lens or diffraction grating [[[0,52]. The aberration function is used to quantitatively
characterize the phase perturbation at the exit pupil plane. The distinction is often made between
two types of aberration: chromatic and monochromatic. The latter is attributed to the geometry
of the lens or grating whilst the former results from the dispersive properties of the lens. In
the case of a uniform mechanical (or conductive) lattice, there is no such distinction since the
dispersive properties arise as a result of the geometry of the medium. Hereinafter, the term
aberration is used to describe the features of the field resulting from the dispersive properties of
the lattice.

The displacement field for the square cell lattice when the forcing frequency coincides with the
frequency of the saddle points w = 2 is shown in figure £.3. The field is determined by computing
(B2) numerically using the Gauss-Kronrod quadrature algorithm in MATLAB® for each m in

a given range. The displacement field is consistent with the star shaped contours observed in
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Figure 4.3: The displacement field of the square cell lattice for a forcing frequency of w = 2.
The colour represents the anti-plane displacements of the masses, from blue (minimal)
through green (zero) to red (maximal)

references [B, 90, 91, 121]]. However, a novel feature is observed: the rhombic aberration in the
vicinity of the point source. This feature was not apparent in the previous publications as only
equi-displacement contours were plotted in the case of references [, 90, 91] or all points over
a given threshold were plotted with equal weight [121]. The effect is sensitive to perturbations
in the frequency around the saddle points +A and +B in figure f.2d. For example, changing the
frequency by as little as 0.01 significantly alters the diffraction pattern shown in figure f.3. This
sensitivity can be understood in terms of the group velocity which varies rapidly in the vicinity
of the saddle points. Moreover, the phenomena of star shaped contours and aberrations is closely
linked with the nature of the slowness contours. In particular, consider the slowness contour in
figure f.2B. It is observed that the direction (but not the magnitude) is piecewise constant over
the Brillouin zone. These constant directions, corresponding to the normals of the sides of the
rhombus, are precisely those of the four rays shown in figure §.3. The group speed is maximal

at the centre of each side of the rhombus and is zero at the vertices.

A stationary point of a different kind

Consider the dispersion equation 0(w, §) = w*~4+2(cos &, +cos &,) = 0. Since | cos £, +cos &,| <
2 V &, there exist no solutions for w? > 8; hence the square lattice possesses a semi-infinite stop
band for frequencies w? > 8 where no propagating solutions exist. For the case of free oscilla-
tions, Martin [99] found that there exist solutions of the form u,, = (=1)"*"2. These so-called
lattice waves exist at the resonant frequency w = 21/2 which demarcates the pass band and the
stop band, i.e. these are the maxima in figure f.2d. A similar phenomenon is observed in the
case of forced excitation. In particular, figure .4 shows a plot of the field for such a resonant fre-

quency. The white (black) nodes indicate maximal positive (negative) displacement. In direct
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Figure 4.4: Lattice waves where the origin of the lattice is forced at the resonant frequency w = 2v/2.
White nodes indicate maximal positive displacement, while black nodes correspond to
maximal negative displacement.

analogy to the lattice waves described in [99], the displacement of the nodes can be approxi-
mately described by u(m) ~ (—=1)™""u(0). Here, no preferential direction of propagation is

observed.

4.1.2 The triangular cell lattice

Figure 4.5: The monatomic triangular lattice and its elementary cell (shaded in grey). The lattice
vectors t; (in red) and £, (in blue) are also indicated. The vectors e; are defined thus:
e, =[1,0]T and e, = [0,1]7.

Asa further example, the triangular lattice with basis vectors t; = [1,0]Tand t, = [1/2,/3/2]"
as illustrated in figure 1.5 is considered. In this case, the physical field has the representation

Um = g éf cos[(my + my/2)&,] cos[nV/3E,/2]07  (&; w)dE, (4.3)

where 0(&; w) = w? —6+2cos&; +4cos(&,/2) cos(v/3&,/2) and R = [0, 27] x [0,27//3]. The

dispersion surface, together with the slowness contour for the frequency w = 2/2 correspond-
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Figure 4.6: (a) The dispersion surface for the triangular cell lattice and (b) the slowness contour at
the frequency coinciding with the saddle points, w = 21/2. The saddle points lie at the
vertices of the hexagon.

ing to the position of the saddle points (+A, +B and +C), is shown in figure .6. As in the case of
the square lattice, the direction of the group velocity is piecewise constant along the sides of the
hexagon, with the saddle points located at the vertices. Here, six preferential directions of prop-
agation (directions of maximal group velocity) corresponding to the perpendicular bisectors of
the six sides are clearly identifiable. The displacement field for the triangular lattice when the
forcing frequency is w = 2v/2 is shown in figure fi.7. As expected, the star shaped waveforms
with the six rays corresponding to the six discrete directions of group velocity, as indicated by
the slowness contour in figure §.6H, are evident. Figure [.7 is consistent with the star shaped
contours shown in [5,121].

The determination of the position of the semi-infinite stop band requires a little more atten-
tion than in the case of a square lattice. With reference to the dispersion equation w* — 6 +
2cos &) +4cos(&;/2) cos(v/3€,/2) = 0, the band edge corresponds to the global minimum of
the function (§) = 2cos&; + 4cos(&;/2) cos(v/3&,/2). Since the dispersion equation is pe-
riodic with respect to the elementary cell of the reciprocal lattice, & may be restricted to the
parallelogram spanned by the two primitive vectors by = 7[2,-2/v/3]T and b, = [0,47/v/3]*
in the reciprocal lattice. The first partial derivatives, Hessian determinant, and second partial

derivative with respect to & are then

OB i) S
H(&) = % {Cos £ +cos(V/3E,) +2 [cos (%) + cos (%)]} , (4.4b)

and
%z—ZCOSEI—COS(%)COS(@). (4.4¢)

Within the irreducible Brillouin zone, the function f(&) has stationary points at the following
positions

& = {[0,0]", [, 7/V/3]", [4n/3,0]"}. (4.5)

Analysis of the signs of the Hessian determinant and second derivatives at the stationary points
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Figure 4.7: The magnitude of the out-
of-plane displacement
field of the triangular
cell lattice for a forcing
frequency of @ = 2/2.
The colour scale runs
from blue (zero) to red
(maximal).

reveal that the first is a local maximum of f(§), the second is a saddle point, whilst the third is
alocal minimum. Indeed, since these are the only stationary points in the irreducible Brillouin
zone of the reciprocal lattice, the local extrema are global extrema. Thus, the maximum value
of w which corresponds to the minima of f(&) is w = 3. Hence, there exists a semi-infinite stop
band for frequencies w > 3, whilst propagating solutions are supported for 0 < w < 3. The saddle
point frequency, corresponding to the saddle points of f(£), is w = 21/2 as stated earlier. Finally,

as expected, the minimum value of w, corresponding to the maxima of (&) is w = 0.

4.2 Diffraction in elastic lattices

The section is devoted to the analysis of the vector elasticity analogue of the problems presented
in the previous section. The in-plane elasticity problem is distinct from the scalar system and
presents a number of novel features and challenges. In particular, it is demonstrated that the
orientation of the applied force can be used to select one or more of the preferential directions
defined by the dispersive properties of the lattice. In the scalar case, the papers [5,121] have
focused on the preferential directions, primitive waveforms, and star shaped contours at resonant
(saddle point) frequencies. As mentioned in the previous section, these primitive waveforms
and associated effects are sensitive to perturbation in the frequency around the saddle points.
In contrast to the scalar problem, when working in the framework of vector elasticity it will be
shown that similar star shaped waveforms exist at frequencies other than resonant frequencies.
In other words, the presence of star shaped waveforms is not necessarily linked to the existence
and position of stationary points on the dispersion surfaces.

The concept of preferential directions of propagation in discrete elastic structures has been
demonstrated in [29], which built on the earlier work for the structured continuum [81] and for
the discrete interface embedded within the continuum [[6]. The three papers [[16,29,81] also
illustrate the effects of filtering and focusing of plane elastic waves and the formation of image
points.

Consider a regular triangular array of uniform point masses arranged in R? as depicted in
figure £.5. The point masses are connected by Euler-Bernoulli beams of constant density (see
§ B-2.5 and B4). In this case, the 3 x 3 Hermitian matrix o(w, ) is as introduced in section B-4
using equations (2.26) and (B.4). The displacement amplitude u,, € C? is a three-dimensional
vector with the first two components corresponding to translational motion and the third de-

scribing micropolar rotations. The field has the same representation as (.3) and the dispersion
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Table 4.1: The material and geometrical

Property Value parameters used to produce
Young’s Modulus (E) 200 GPa the dispersion surface§ and fi-
Second Moment of Inertia (I) 349 x 1078 m* nite element computations.
Cross Sectional Area (S) 2.12x107° m?

Beam Density (p) 7850 kg m™2

Beam Length (/) 1m

Nodal Mass () 91.531 kg

Polar Mass Moment of Inertia (J)  66.568 kg m?

equation is det o(w, &) = 0.

4.2.1 Dispersive properties

SN
QR
ZRXRN
R
RS
R
%

MR

N \‘\\‘\“\‘
R
IRV,

RNRIW
AR
R

\\\\\\\ \\\\ \T
M

RIS
X
QX
i

R

ZRRN

SRR

L OCROY A\
RN
“\‘\\}\ \\\\\\\}\\ \

X
XX
Q“f’i’;
X8

X
X

N
QKRR

5
&%
e

T RIIHHHHwss:
AN X
R
R
)

SRR
SR

RN

Figure 4.8: The first three dispersion surfaces for the triangular lattice of masses connected by Euler-

Bernoulli beams in R?.

The dispersion surfaces for the infinite lattice system are shown in figure §.8. In this case,

it is convenient to work with dimensional units. The material parameters used to produce the

dispersion surfaces are detailed in table . 1. The first surface, which is relatively flat, is associated

with micropolar modes (see § B.4.1 and in particular p. 7). Here the focus will be on the second

and third surfaces, which contain saddle points. Figure shows the slowness contour for

the resonant frequency f = 615Hz. The contour exhibits the same characteristic hexagonal

shape as the slowness contour of the scalar triangular lattice (see figure l.6H) suggesting that

the characteristic shape of the slowness contours are a feature of the geometry of the lattice. It

is emphasised that the governing equations for vector elasticity are significantly different from

those of scalar problems. As in the scalar case, the six preferential directions can be identified as

the normals to the edges of the hexagon, although here, the slowness contour is rotated by 7/2

compared with the scalar case. Now consider figure .95, which shows the slowness contours

for the frequency f = 323 Hz. Here a similar hexagonal slowness contour is observed, with the
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Chapter Four Dynamic anisotropy and focusing in discrete media
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Figure 4.9: The slowness contours for a range of frequencies starting at 150 Hz (a) and ending at
the saddle point frequency near the band edge (e). The solid lines correspond to the

lower conical surface, whilst the dotted lines correspond to the upper conical surface.
The elementary cell in the reciprocal space is shaded in grey.

same orientation as for the scalar case. However, f = 323 Hz does not correspond to a resonant
frequency, that is there are no saddle points on the dispersion surfaces which coincide with f =
323 Hz. Nevertheless, the six preferential directions of propagation are clearly visible. This is in
contrast to the scalar problems considered earlier in this chapter (§ f.1) and in the papers [5,121],

where these polygonal-like slowness contours were associated exclusively with saddle points.

The forced problem in elastic structured media.

Following the structure of the previous section on scalar lattices, the forced in-plane problem is
now considered. In particular, the monatomic uniform triangular lattice described above is sub-
jected to a concentrated load (either linear or torsional) at a single lattice point. The triangular
lattice is chosen because it is isotropic in the long wavelength limit [29]. Here, the emphasis is
on the dynamic anisotropy at higher frequencies and in particular on the existence of localised
primitive waveforms, in direct analogy to the scalar case previously considered. The finite ele-
ment software COMSOL Multiphysics® is used to determine the displacement field. The lattice
nodes on the boundary are fixed and PML-like absorbing boundary conditions are applied to
the lattice links in the vicinity of the boundary nodes in order to reduce reflection. The har-
monic disturbance is generated in a similar fashion as in the scalar case: by prescribing a time-
harmonic displacement of magnitude 107° m in a given direction or a time-harmonic rotation

at node (0,0). The material parameters are as detailed in table f.1]. A selection of the displace-
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Chapter Four Dynamic anisotropy and focusing in discrete media

ment amplitude fields for various forcing orientations and frequencies are shown in figure .10
Figures [.104, f.10d and [.104 correspond to an excitation frequency of 323 Hz for which the
slowness contours are shown in figure f.95. Similarly, figures .100, .10d and £.10f correspond

to a excitation frequency of 615.8 Hz for which the slowness contours are shown in figure f.9¢.

It is observed that the slowness contours of figure .99 correspond to the saddle point on the
upper dispersion surface of figure f.8. The other frequency of 323 Hz (see figure f.9F) is not a
saddle point frequency. However, the slowness contour corresponding to the lower dispersion
surface has six segments with almost zero curvature, and the normal vector to this slowness
contour shows the preferential directions at this particular frequency. The slowness contours
for the saddle point at 428.67 Hz on the lower dispersion surface are shown in figure f.9d; the
contour corresponding to the lower dispersion surface contains corner points but the curvature

of the smooth parts of the boundary is large.

(a) Horizontal excitation (323 Hz) (b) Horizontal excitation (615.8 Hz)

(c) Vertical excitation (323 Hz) (d) Vertical excitation (615.8 Hz)

(e) Torsional excitation (323 Hz) (f) Torsional excitation (615.8 Hz)

Figure 4.10: Finite element computations showing the magnitude of the [real] displacement ampli-
tude fields for different types of applied load. For figures (a),(c) & (e), the excitation
frequency is 323 Hz and 615.8 Hz in (b),(d) & (f). The colours indicate the magnitude
of the displacement field from blue (zero) to red (maximal). The white regions are
those regions where the displacement field is outside the range.

The displacement fields have a number of interesting features. Firstly, one may observe the so-
called primitive waveforms already demonstrated in the scalar case [5,90,91,121]. However, in
contrast to the scalar case, the presence of these star shaped contours (or localised waveforms) is
not associated with the resonant frequencies as identified in [5,121]. In the present problem, the

localised waveforms are associated with frequencies where the slowness contours exhibit strong
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(a) Horizontal excitation (b) Vertical excitation (c) Torsional excitation

Figure 4.11: Finite element computations showing the magnitude of the displacement amplitude
fields for different types of the applied force. The excitation frequency is 428.67 Hz,
which coincides with the saddle point frequency for which the slowness contours are
shown in figure f.9d. The colours indicate the magnitude of the displacement field
from blue (zero) to red (maximal). The white regions are those regions where the dis-
placement field is above the range.

preferential directions (see figure .9). For the two frequencies considered, the six preferential
directions of propagation corresponding to the outward unit normals may be identified. It is
emphasised that only figures and correspond to a resonant frequency and yet the lo-
calised waveforms persist at the non-resonant frequency of 323 Hz due to the shape of slowness
contour in figure f.9H. In contrast to the scalar lattice, where the applied loading was anti-planar
and hence isotropic, the in-plane elasticity problem allows the freedom to choose any in-plane
direction (and type) of the applied loading. As can be observed from the computations shown
in figure f.10, the orientation of the applied force has a significant effect on the resultant field.
The effect is strongest in directions that have a component of the group velocity perpendicular
to the applied force. The hexagonal aberrations and wave envelopes, are evident at the resonant

frequency (see figures f.10H, f.10d and {.101).

For comparison, figure ff.T1] also shows the displacement amplitude at the saddle point fre-

quency of 428.67 Hz, with the slowness contours shown in figure f.9d. Three types of loading,
similar to those of figure .10, are shown. Although the directional preference is clearly visible,
the aberration is more pronounced for this case compared to figure {.10.

The different orientations of the hexagonal slowness contours and hence, the different prefer-
ential directions of propagation for different frequencies are a novel feature of the elastic lattice,
which are absent in the scalar cases. One may envisage applications in shielding and focusing
of elastic waves where this “switch” in preferential direction coupled with the ability to “select”
a given direction via the applied force could be useful. The frequency at which this switching
of preferential direction occurs is exactly the saddle point frequency of 428.67 Hz. This saddle
point also marks the frequency at which a similar rotation in the hexagonal-like contours oc-
curs. As can be seen from figure f.94, this is also the frequency at which the slowness contours

intersect at two corners and the centre of each side of the elementary cell in the reciprocal lattice.

4.3 A discrete structural interface: shielding, negative refraction,

and focusing

In this section, applications of the dispersive properties of Bloch-Floquet waves in discrete sys-
tems are considered. In particular, applications relating to the effects of filtration and focusing

of elastic waves by a “metamaterial flat lens” for certain frequencies are presented. The effects of
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Figure 4.12: A schematic diagram of the lattice system with the heterogeneous diatomic interface
(highlighted). The regions to the left and to the right of the interface consist of homo-
geneous monatomic lattices.

Table 4.2: The material and

Property Value geometrical param-
Young’s Modulus 200 GPa eters for the am-
] 8 4 bient and interface
Second Moment of Inertia 349 x 107° m lattices. The param-
Cross Sectional Area 2.12x107° m? eters of the ambient
. D) and interface nodes
Beam Density 7850 kg m are links are differ-
Beam Length I'm entiated where re-
Nodal Mass (Ambient) 91.531 kg ?uired ?1nd are uni-
t ise.
Nodal Mass (Interface m,) 16.642 kg o ofherwise
Nodal Mass (Interface m,) 166.42 kg

Polar Mass Moment of Inertia (Ambient) 66.568 kg m?
Polar Mass Moment of Inertia (Interface J;)  633.284 kg m?
Polar Mass Moment of Inertia (Interface J,)  99.852 kg m?

focussing and filtering for solutions of the Helmholtz equation have already been demonstrated
in the literature, see for example [103]. More recently, Jones et al. [81] analysed similar effects
for the case of vector elasticity in a structured continuum. Here, the effects of focussing and
filtration of elastic waves in discrete structures are discussed.

Consider a finite triangular lattice, of the same geometry as in section f.7. Let the ambient lat-
tice be monatomic and homogeneous. Within the ambient lattice a finite slab of heterogeneous
diatomic lattice of the same geometry is embedded. Both the ambient lattice and interface lat-
tice (finite slab) are lattices with inertial links, formed from Euler-Bernoulli beams. The material
and geometrical parameters of the lattices are detailed in table f.2. A schematic diagram of the
ambient and interface lattices is shown in figure .12

Consider the time-harmonic propagation of elastic in-plane waves through the ambient lattice
and structural interface as shown in figure fl.13H. The wave is generated by a single point source:

a time-harmonic displacement of amplitude 10~° m in the horizontal direction is prescribed at
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Source

(a)

Source Interface

(b)

Figure 4.13: Part (a) shows a harmonic wave propagating through the ambient lattice. Part (b)
shows a harmonic wave interacting with the structured interface. This figure is for
the same configuration as part (b), except that the structured interface has been em-
bedded in the ambient lattice. The magnitude of the displacement field is plotted. It
is observed that the displacement field is essentially unaffected by the presence of the
interface. In both cases, the forcing frequency is 100 Hz.
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Figure 4.14: The dispersion surfaces corresponding to heterogeneous diatomic interface lattice. Of
particular interest, in addition to the band gap at 700 Hz, is the surface labelled ¥,
which possesses saddle points.

Figure 4.15: The sixth dispersion sur-
face, labelled ¥ in fig-
ure .14, possessing the
saddle point of interest.
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Source

Interface

Figure 4.16: The same configuration as in figure f.I3H, but with a forcing frequency of 700 Hz,
which lies in the band gap of the dispersion diagram for the interface lattice. The wave
is reflected from the interface as would be expected for frequencies within the stop
band for the interface.

one of the lattice nodes. Damping is applied to the lattice links in the neighbourhood of the fixed
boundary nodes in order to reduce reflection from the boundary of the computational domain.

Consider now the dispersion surfaces for the elementary cell of the structured interface, shown
in figure f.14. The transmission problem is formally distinct from the Bloch-Floquet spectral
problem. Nevertheless, the dispersion diagram may be used in order to predict the reflection
and transmission patterns. Figure f.13H shows the magnitude of the displacement amplitudef]
when the forcing frequency is 100 Hz. A similar wave pattern can clearly be observed on both
sides of the interface layer, indicating that the low frequency response of the structured inter-
face is very close to that of the ambient medium. A resembling wave pattern can also be seen in
figure .13d where the structured interface has been removed entirely. In contrast, figure £.14
shows the magnitude of the displacement field when the forcing frequency is 700 Hz, which
lies in the stop band of figure {.14. In this case, the incoming wave is reflected, with very little
transmission.

It has been suggested that the phenomenon of focusing by a flat interface is linked to the
presence of saddle points and regions of negative group velocities (see, for example, [81,103]).
Referring to the dispersion surfaces for the heterogeneous interface lattice (figure f.14), it is
observed that the surface labelled ¥ and shown in figure .15 possesses a saddle point and
regions where the group velocity is negative. In particular, for small perturbations around the
saddle point it is observed that the components of the group velocity (Ow/90§) will have opposing
signs. Figure f.17 shows a plot of the magnitude of the displacement field when the forcing
frequency is 642.5 Hz. The frequency was chosen in the vicinity of the saddle point on the
corresponding dispersion surface. The effect described here is typical for neighbourhoods of
saddle points. A clear directional preference can be observed within the interface. In addition,

the secondary source on the right hand side of the interface can also be observed. Figure {.17

"That is, |u(x)]|.
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Source Image Point

Interface

Figure 4.17: The same configuration as in figure f.I3B, but with a forcing frequency of 642.5 Hz.
The image point is visible on the right hand side of the interface. The image point is
shifted along the direction of preferential propagation of the interface lattice.

shows the preferential direction of propagation and the effect of focusing. This feature of the
waves persists in a small interval containing the saddle point.

Finally, in figure f.1§ a simulation where the source has been shifted away from the interface
region is presented. In this case, the forcing frequency is 654.4 Hz, which again is in the vicinity
of the saddle point and within the region where there is a preferential direction of propagation.
Moreover, where the beams intersect on the right hand side, we can see the formation of the
image point. This effect is strongly frequency dependent and, as was the case with the primitive

waveforms discussed earlier, is sensitive to perturbation in the frequency.

4.4 Remarks

In contrast to the previous chapter, which primarily dealt with the low frequency response of
discrete metamaterial structures, the discussion in the present chapter has been focused on the
finite frequency response. It has been demonstrated that, even uniform, structured media may
exhibit vastly different behaviour at higher frequencies compared with the low frequency re-
sponse. In particular, strongly anisotropic wave propagation associated with polygonal slowness
contours is exhibited at higher frequencies.

The dynamic anisotropy of both scalar and elastic discrete systems has been examined. In par-
ticular, extending the previous work with scalar lattices, the presence of directionally localised
waveforms in elastic lattices which are isotropic in the long wavelength limit have been demon-
strated. These waveforms are identified with regions on the dispersion surfaces and slowness
contours with several preferential directions of propagation. The presence of aberrations in the
displacement fields, corresponding to the shape of the slowness contours have been observed
and connection has been made with the notion of aberration in optics.

In addition, it has been demonstrated that the dispersive properties of Bloch-Floquet waves

in an infinite lattice structure can be used in problems of optimal design for finite size micro-
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Source Image Point
Interface

Figure 4.18: In this case the source has been shifted further away from the interface. Correspond-
ingly, this leads to a shift in the image point due to the preferential direction within
the layer. Here, the forcing frequency is 654.5 Hz.

structures. In particular, the interaction of waves with a heterogeneous diatomic lattice of finite
width was considered. Special attention is drawn to the range of frequencies in the neighbour-
hood of saddle points on the dispersion diagram. The corresponding regime shows directional
preferences for waves interacting with the structured medium. The apparent focussing and cre-
ation of an image point, by a flat elastic ‘lens’ is one of the interesting outcomes of this work.
Having consider the low frequency response of discrete metamaterial structures in chapter
and the behaviour around resonant frequencies in the present chapter, the next chapter examines

the behaviour of such structured media at even higher frequencies in the stop band.
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Chapter Five

Localised modes for rectilinear defects

in a square lattice

A well-known and interesting feature of discrete media is the existence of pass and stop bands,
as demonstrated in chapters fj and f. In the present chapter, localised defect modes associated
with the eigenmodes of a finite line of defects in an infinite square lattice are examined.

The present chapter is developed as follows. In section p.1, the problem of a finite line of
defects (created by a perturbation of point masses) embedded in an infinite square lattice is con-
sidered. Several representations for the Green’s matrix are presented, including integral forms
and representation in terms of generalised hypergeometric functions. Localised defect modes
for the finite line are analysed in section p.I.1l. Therein, the necessary and sufficient condition
for the existence of localised modes is formulated, and asymptotic expansions in the far field
are also presented. Band edge expansions are constructed using an analytic continuation of the
Greenss function. Illustrative examples for a finite number of defects are given in section p.2,
where eigenfrequencies and eigenmodes are presented and compared with the asymptotic re-
sults from the previous section. Here, the defects a characterised by one or more lattice nodes
having a mass smaller than the nodes in the ambient lattice. For one- and three-dimensional
multi-atomic lattices, there exists some lower bound on the difference in mass between the de-
fect and ambient nodes such that alocalised mode may be initiated [98]. However, in the present
chapter, it is demonstrated that this is not the case for two-dimensional lattices: there is no lower
bound on the mass that should be removed from a defect node in order to initiate a localised
mode. The analysis of a finite-sized defect region is accompanied by the waveguide modes that
may exist in a lattice containing an infinite chain of point masses. A brief discussion of the in-
finite waveguide problem is presented, for completeness, in section p.3. Finally, in section p.4,
a numerical simulation illustrates that the solution for the problem of the infinite chain can be
used to predict the range of eigenfrequencies of localised modes for a finite but sufficiently long

array of masses representing a rectilinear defect in a square lattice.
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5.1 A finite inclusion in an infinite square lattice

Consider a square meshing of R? such that each node is labelled by the double index n € Z?,
where n = (n;,n,). Let there be N > 0 defects (with N € N) distributed along 1, = 0 as shown in
figure b.1. The defects are characterised by a non-dimensional mass 0 < r < 1, where the mass
of the ambient nodes is taken as a natural unit. The stiffness and lengths of the lattice bonds are
uniform and taken as further natural units. All physical quantities, such as the frequency and
displacement, have been normalized according to these natural units and are therefore dimen-

sionless. Let u, denote the complex amplitude of the time-harmonic out-of-plane displacement

Figure 5.1: A finite line of defects in

-2 an infinite square lattice.
The length of the links,

the stiffness of the bonds

and the mass of the black
nodes are taken as natu-
-1 0 1 2 3 4 ny=>5 ral units.
of node n. Then, the equation of motion is (see § 2.1 and 2.2.1)
5 5 N-1
Unte, + Un—e, + Unre, + Un-e, + (0" = 4)tty = (1 = 1) 0" S0, Y UnOp (5.1)
p=0

where w is the radian frequency, ¢; = [8);, 82,]", and d; is the Kronecker Delta. By means of

the discrete Fourier Transform the governing equation (b.1)) may be written

(w* —4+2cos& +2cos &)u™T (&) = (1 - r)w? NZI up o exp(—ipé;). (5.2)

p=0
In the notation of section P.]| the parenthesised term on the left hand side is o(w, &) and the right
hand side of equation (b.2) is the Fourier Transform of the load fy_;(&;). The positive root of
the parenthesised term represents the dispersion equation for the ambient lattice. As mentioned
earlier in section f.1.1), it is observed that for w? > 8 there exist no real solutions to the dispersion
equation. Hence, the ambient lattice possesses a semi-infinite stop band: w? € (8, o0). Inverting

the transform yields the discrete field

N-1
Mn(CU) = (1 - r)wZ 2) ”p,Og("7P§ (U), (53)
p:
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where g(n, p; w) is the shifted Green’s matrix defined as:

g(n,p;w) = — ff cos ([m EI)COS(HZ£2) d§,dé&,. (5.4)

4+2cos£1 +2cosé&,

For the purposes of numerical evaluation and asymptotic analysis in the stop band of the ambient

lattice (w? > 8), it is convenient to rewrite the Green’s matrix as a single integral

(VR =1 - q)mrl
g(”vP?“’):%_[[( 2 ! a) COS(”Z&Z)dé‘Z? (55)

Va2z-1

where a(&,; w) = w?/2 -2+ cos &,. Reversing the order of integration yields the same result, but
with 1 — p and n; interchanged, and ¢, interchanged with &,. An alternative representation can
be found in the book by van der Pol [[143] as

(-1

)nl—p+n2 ey ~
g(n,p;w) = fflm_p(x)lnz(x)e dx, (5.6)
0

where I,,,(x) is the modified Bessel function of the first kind, &« = w?/2 — 2 > 2. The integral
is symmetric about n; — p = 0 and n, = 0 and therefore it may be assumed, without loss of
generality, that n; > p and n, > 0. The integral (5.6) may then be represented in terms of

regularised generalised hypergeometric functions (see [131], section 3.15.6, equation 8)

(_1)m+n2

(206) 1+m+ny

a, ay, az, az . 4

1)? 4F -
(m ) s bis -1 a2 |

g(n,p;w) = (5.7)
wherem =ny —p,a; = (L+m+mny)/2,a, = 2+m+np)/2,by = 1+m,and by = 1+ ny.
The series (5.7) is convergent for a® > 4 (see [[120]), that is, everywhere in the stop band of the
ambient lattice. It is observed that along the ray m = n,, the Green’s matrix may be written in

terms of Gauss’ hypergeometric function. In particular, equation (.7) reduces to

((2n)!)? 1/2+n, 1/2+n_4

g(n,n,O;CU) = (2“)1+2n 21 1+2}’l bl “2 *

(5.8)
The function (B.§) is strictly positive in the region n > 0 and « > 2. Hence, for a single defect,
the lattice nodes along the diagonal rays do not oscillate relative to each other.

Furthermore, for the case of m = n, = 0, the integral representation (f.4) reduces to the 2-fold
Watson integral (see, for example, [82] and [[I50]). Using a simple change of variables (p.4) can

be written in terms of an elliptic integral, or alternatively, one can use (5.§) and observe that

w0 - [ (4) 59

1 a? an \ a2

where K(x) is the complete elliptical integral of the first kind. Together with equation (F.9), the
representation (b.€) is particularly useful since, by repeated integration by parts and use of the

identity I,,(x) = 2I;,_;(x) — I,_2(x), one can iterate from g(0,0; w) to a general g(n, p; w).
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5.1.1 Localised modes

Of primary interest are localised modes, that is, modes of vibration at frequencies that are not
supported by the ambient lattice and therefore decay rapidly away from the defect. Introduc-
ing the vector U = [ug, Uz, . .-, uN_LO]T and choosing n, = 0 in equation (b.3) yields the
eigenvalue problem

U=(1-rw’G(o), (5.10)

where the matrix entries [G(w)]; = g(i —1,0,j - 1;w). Clearly, G is symmetric and Toeplitz

(and hence bisymmetric and centrosymmetric)

gu G2 95 - Giwn-y 9N
gu G2 - Ginz)y G-
Gu - G-z Gin-
G- 11 | 1(1‘\1 3) 1(1'\] 2) | (5.11)
gn G2
gu

which greatly reduces the number of required computations. Indeed, for N defects the matrix
G has N independent elements. The solvability condition of the spectral problem (5.10) yields a

transcendental equation in w,
det [Iy - (1 - r)w*G] =0, (5.12)

where Iy is the N x N identity matrix. Equation (p.12) is the necessary and sufficient condition
for the existence of localised modes. Symmetry implies that there exists an orthonormal set of
N eigenvectors of G and hence, N eigenvalues (frequencies). The centrosymmetry of G allows
the number of symmetric and skew-symmetric modes to be determined (see, for example, [21]).

Introducing the N x N exchange matrix

0 0 1
0 0 1 0
Jn = ) , (5.13)
0o .-
0
an eigenmode is said to be symmetric if iU = JnU and skew-symmetric if Y = —JnU. For

a system of N defects there exist [N/2] symmetric modes and | N/2| skew-symmetric modes,
where [-] and || are the ceiling and floor operators respectively. Of course here, symmetry
refers to the symmetry of the eigenmodes in the n; direction about the centre of the defect line.
Due to the symmetry of the system, all modes are symmetric about the line n, = 0.

Consider the total force on an inclusion containing N defects
N-1

F=" (tp-10+ tips1,0 + 2up1 —4lpyp) . (5.14)
p=0
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By definition, for a skew-symmetric mode u, o = —un-1-p 0 and further u, 4 = —un-1- 4. Hence,
for all skew-symmetric modes the inclusion is self-balanced (i.e. F = 0) and therefore, all skew-
symmetric localised modes can be considered as multipole modes.

For the illustrative examples presented later, the eigenvalue problem (b.I0) will be solved for

the unit eigenvectors (|U|| = 1).

5.1.2 Asymptotic expansions in the far field

Here, asymptotic expansions in the far field are considered for some particular cases. Asymp-
totic expansions for an isolated Green’s matrix in various configurations have been considered

in [109] and the approach detailed therein is used here.

Far field, along the line of defects. The case of n; - oo, n, = 0 and finite N is considered.
Introducing the small parameter € = p/ny, the kernel of (5.5) may be expanded for small || < 1.

In particular,
a?-1-a lmip‘~ a?-1-a i l-clog(Va2-1-a ‘m'. (5.15)
(V ) (v ) [1-etos(v )]

It is observed that at large n; and sufficiently small N, the dominant contribution to the inte-

gral (5.5) comes from a small region in the vicinity of &, = 7. Therefore,

P [n1—p| > |1 fz Il
( a—l—a) P~(\/c—1—c) [1 S\T/%]

|1
x[l—slog(\/c2—1 ) ;7\7/%] . (5.16)

where ¢ = w?/2 - 3. Thus,

( a2-1- a)lm_p| ~ (\/c2 -1- c)|m_p| exp [—|n1 p|g\/_)] (5.17)

In addition, 1/v/a? — 1 ~ 1/7/c? — 1. Hence, for 0 < ¢ << 1 and making use of (5.5)

Vet (&)
st - W% Jew|mon

]d£2 (5.18)

Making the substitution x = (7 — fz)\/|711 - p|/(2v/¢* - 1), and performing the resulting inte-
gration yields

|n1—p|
(ve-1-9""
g(n1,0,p; w) ~ as n; - oo. (5.19)

Ver/2 -1 VIm-pl
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Thus from (p.3)), the physical field has the following approximate representation for n; — oo

|ni—pl
- 21—
- 10§ LET )t
1, )
=0 Vem/2—1  Im-pl
where 1, o(w) should be determined from (5.10). It is observed that when N = 1 equation (5.20)

is consistent with equation (4.17) of [L09] up to a change in sign.

(5.20)

Far field, perpendicular to the line of defects. Here, the case considered is n; = p’, n, - oo
with Nand p’ finite. The method used here follows the same general procedure as in the previous
case. However in this case, the kernel is oscillatory and is therefore approximated as a product of
decaying and oscillatory functions. For sufficiently small |p’ - p| and large 15, the non-oscillatory

part of the integrand in (b.5) is approximated as before, leading to

(va=i-9" 7 (n-8,)’
24/ ¢?

e mi) - e [l

£

]cos([p'—p]fl)dfl. (5.21)

Making a similar change of variable, x = (7 - &;)\/|n2|/(2V/¢? — 1), and integrating, it is found

that

(\/ 2-1- C)I”Z\ . - [_(p, 2 /21
V8mvc2 -1 \/W 2|ny|

Hence, for n, — oo the physical field in (5.3) may be approximated by

g(p' 2, p;w) ~ (~1) ") ] . (5.22)

( ) ( ) 2( -1 _C)|n2‘ N_l( )(P’ p) [ ( / )2
Uy py (@) ~ (1-1) 0" ———== > (-1)¥Y Pexp|-(p' -p
g 8aVc2 -1 p=0

It is observed that for N = 1 and p’ = p, the above equation (F.23) is consistent with equation
(4.17) of [109] up to a change in sign. Moreover, for the case of p’ = p, (5:23) reduces to (5.20).

. (5.23)

Vit - 1] up,o(w)

2|n2| |7’12’

5.1.3 Band edge expansions

The representations of Green’s matrix (5.5)-(5.7) are valid in the stop band. However, given that
the hypergeometric function in the representation (5.7) is zero balanced, that is, the sum of the
bottom parameters minus the sum of the top parameters vanishes: 2(b; +b,)—1-2(a;+ay) = 0,

the stop band Green’s matrix can be extended to the boundary of the pass band by analytic
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continuationf]. In particular, the analytical continuation of the function (p.7) has the form

g(n,p;w) = "

(—4)mm (([1+m+n2]/2)j)2(1_ 4 )j

7[(2(X)1+m+”2 e ]l 2

s O | yaei-B)
0 {([1+m+m)f2);}

. 1l+m+ . 4
+y(1+)) - w(M +J) - log(l - @)]

2
gy S kit )]

k= {([1+m+n2]/2)i}

5 H(m, nz,k)} (5.24)

where the reader is reminded that m = n; — p, (-); is the Pochhammer symbol, y(x) is the

Digamma function, and

5.25
k! m, n (5:25)

H(m,n,k) = (m)i(n)k 2[(m+n2)/2, (m+ny)/2, _k;l].

The symbol ,F,[...] denotes the generalised hypergeometric function, which is related to the

regularised generalised hypergeometric function thus:

pEqlar, ... apiby, .. bg;z] = {T(b1)...T(bg)} pFglar, ... ap;b1,... by 2].

In this case, the continuation (5.24) holds for & > 4, which in terms of frequency corresponds
to w? > 8. It is emphasised that in this section, the term “vicinity of the band edge” refers to a
small interval 8 < w? < 8 + &, where 0 < £ < 1.

Hence, choosing j = 0 yields the leading order behaviour of (5.7) as a* - 4* (w? — 8%), that
is, as w approaches the boundary of the pass band from the stop band:

B R ()

i:: (k-1)!

[1+m+ nz]/Z)k}

H(Wl,nz,k)}, (526)

where y is the Euler-Mascheroni constant. Alternative representations of the leading order con-
tinuations for general zero-balanced 4,1F, were derived by Saigo and Srivastava [[135]. Since
k > 0, the series representation of the hypergeometric function in (5.25) has a finite number of
terms and therefore may be computed exactly. The convergence condition for the infinite sums
in (5.24) and (5.2§) is 2 + m + ny + j > 0, and is automatically satisfied since it was assumed
(without loss of generality) at the outset that m > 0 and n, > 0.

The asymptotic expression (5.26) is particularly interesting as it elucidates the nature of the
singularity of the lattice Green’s matrix at the band edge. In particular, the asymptotic repre-

sentation (5.24) captures the logarithmic singularity as w®> — 8*. This logarithmically singular

!Indeed, for any integer balanced hypergeometric function 441 F there exists an analytic continuation to the bound-
ary of the unit disk (see [[[9], among others, for details).
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Figure 5.2: The solid curve shows the asymptotic ex-
pression for the displacement field along

the diagonal (n; = n, with p = 0)

s in the vicinity of the band edge (see
TR TR TRV v equation (5.27H)). The dashed curve
vy shows the corresponding asymptotic ex-
i ] pression for the field along the bond line

(see equation (p.27d)). The frequency
n chosen is w = 2.829.

behaviour near the band edge is not obvious from the original representations presented earlier
(see equations (5.5)-(B.7)).
For some particular cases, equation (5.26) reduces to the following simplified forms. Along

the raysfj m = 0 (i.e. n; = p):

_A\1+n
g(p,m,piw) ~ Lo [2y+ W(l ; nz) +1Og(1 B %)] £ gV (my30),  (5.272)

TI( 2 0() 1+n;
and along the diagonal rays m = n;:

16™

g(ni,m, p;w) ~ —W

[2y+1//(% +m) +log(1 - %)] 2 5l (4. ), (5.27b)
The Digamma function grows logarithmically as m — oo and the term 2y +y/(1/2+m) is strictly
positive for m > 0. Therefore, for sufficiently small m the bracketed term in equations (5.27)
is negative in the neighbourhood of & = 2. Hence, in the vicinity of the band edge, the stop
band Green’s matrix exhibits fundamentally different behaviour along the bond lines compared
with the diagonal rays. In particular, along the bond lines the masses will oscillate out of phase,
whereas for the diagonal ray lines the masses will oscillate in phase, as illustrated in figure p.2.
In the far field, equations (5.27) further reduce to

-4 1+ny 4

g(p,n2, p;w) ~ W [Zy + log (%) + log (l - ;)] , as 1y — 00, (5.28a)
" 4

glm,m,p;w) ~ —W [2)/ +logm + log (1 - ;)] , as m — oo. (5.28b)

Using equations (5.3) and (5.27) the out-of-plane displacement for a lattice with N defects has

the following asymptotic representation in the vicinity of the band edge

Up, o(w) ~ (1- r)cu2 Z Up.0 g(b"“d)(nl -p;w), as w? - 8", (5.29a)
p=0
N-1 .
Uny py—p(@) ~ (1 - r)w2 Z Up.0 g‘d‘ag)(nl -p;w), as w® - 8", (5.29b)
p=0

along the rays n, = 0 and n, = n; — p respectively.

*Equivalently, one may substitute #, by 1 — p in (5:274) to obtain expansions of g along 7, = 0
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5.2 Illustrative examples

Several particular cases are considered here corresponding to relatively short defects with N €
[1,3]. The solid curves in figure 5.3 show the i solution, ry;(w), of the solvability condi-
tion (B.12) for a line of N defects. The shaded region indicates the stop band (w* > 8) of the
ambient lattice. For frequencies in this region, waves in the ambient lattice will decay exponen-
tially away from the defect or source.

It is interesting to note that, for one- and three-dimensional multi-atomic lattices, there exists
some lower bound on the amount of mass that should be removed from the defect nodes such
that a localised mode may be initiated (see, for instance, [98]). However, here the image of
rn,N(w), indicated by the solid curves in figure 5.3, is (0,1). In other words, there is no lower
bound on the mass that should be removed from a defect node in order to initiate a localised
mode. As r — 1, that is, as the lattice approaches a homogeneous lattice, the frequency of
the localised mode approaches the band edge (w?* — 8%). It is also observed that for N > 1,
the solid curves intersect the band edge at several distinct values of r. This suggests that for a
given number of defects, there exists a maximum value of r below which all possible localised
eigenmodes may be initiated. Above this value of r it is only possible to initiate a subset of
the possible eigenmodes with the lower frequency eigenmodes being filtered out. In all cases,
the highest frequency eigenmode persists for all possible values of  on (0, 1). For fixed w, the
solvability condition (5.12) for a system of N defects is a polynomial in r of at most degree N.
Therefore, there exist no more than N solutions for a given frequency w.

The dashed curves correspond to the problem of an isolated chain of N particles of non-
dimensional mass r*, connected by springs to two nearest neighbours and surrounded by rigid

foundations. For such a problem, the out-of-plane displacement of mass # € Z satisfies
L[vo,v1,-+vn-1]" =0, (5.30)
where the matrix £ has elements
(L] = (r*@® —4)8; + 8i1 + 8ijo1. (5.31)

The dashed curves in figure represent the solutions ry;(w) of the solvability condition:
det £ = 0. It is observed that as w — oo, the dashed curves approach the solid curves from
below.

5.2.1 A single defect

For the case of a single defect located at the origin, the quantity G in (5.10) is a scalar:

G(w) = %K(i) , (5.32)

o

where K(x) is the complete elliptical integral of the first kind. The solvability condition may be

-1
e

written as
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0.8

0.6

04

0.2

0.0

(a) A single defect (N=1) (b) A pair defects (N =2) (c) A triplet of defects (N = 2)

Figure 5.3: The solid curves show the i solution, ry ;(w), of the solvability condition (5.12) for a
system of N defects embedded in the square lattice. The shaded region (w? > 8) indicates
the stop band of the ambient lattice. The dashed curves show the corresponding i
solution, ry;(w), of the solvability condition for an isolated system of N defects (see

equation (p.30)).

which has the leading order asymptotic representation

4
i~ — as W — 0. (5.34)

w?’
It is observed that the solvability condition for equation (5.30) with N = 1 agrees precisely with
the leading order high frequency asymptotic expansion, hence, the observed coalescence of the
solid and dashed curves in figure 5.34.

The localised defect mode is shown in figure p.4d, together with field along the line n, = 0 and
the associated asymptotic field as n; — oo in figure p.4H. Figures p.4d and 5.4d show the field
(solid line) and the band edge asymptotics (dashed line) for a value of a = 2.006. The asymptotic
expansions show good agreement with the computed field, even for the far field asymptotics in
the neighbourhood of the defect.

5.2.2 A pair of defects

In the case of a pair of defects, G(w) is a 2 x 2 matrix with the diagonal elements given by (5.32).

The oft-diagonal elements have the form

9002 =5 - 5-K(). (5.35)

4 2m \a?

The solutions of the solvability condition are

r=1- dn(w” ~4) Y (5.36)
nw?(w? —4) - 20 (w? - S)K(m)

raa=1+ 4n(w’ ~4) Y (5.37)
nw?(w? —4) - 2w4K(m)
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Figure 5.4: (a) The localised defect mode for a single defect with r = 0.8 and w = 2.83. (b) The
solid curve is the out-of-plane displacement along the line 7, = 0 and the dashed curve
is the asymptotic expansion for n; — oo (see equation (5.20)). (c) The out-of-plane

displacement along the line n; = n, (solid curve) with the corresponding asymptotic
expansion (p.270) for the band edge (dashed curve). (d) As for (b), but the dashed
curve represents the band edge expansion along 7, = 0 (see equation (p.299)).

whence the leading order high frequency asymptotic expansions are

3 5
1~ — and rp~— as W~ oo, (5.38)
w

w2
which agree with the solvability condition of the isolated system (5.30) for N = 2, hence, the
observed coalescence of the solid and dashed curves in figure p.3.

Figure p.5 shows the two defect modes together with the field along the lines n; = 0, and
ny = 0 and the associated asymptotic field at infinity. In addition, the dash-dot line in figure
shows the band edge expansion in the vicinity of & = 2. In this case, figure 5.5d corresponds
to value of « ~ 2.025. Once again, the asymptotics are in good agreement with the computed
field. Due to the symmetry, the field along the line n; = 1 is identical to that in figure p.5¢ for
the symmetric case and identical up to a reflection in the line ug ,, = 0 in figure 5.5 for the
skew-symmetric case.

The lower solid curve in figure 5.3} corresponds to r; ; as defined in (5.36). The maximum
value of the lower solid curve is given by

(max) _

1
1’2’1 = lim 2,1 = E (539)

w28+

Hence for a pair of defects, a symmetric localised mode cannot be initiated for r > 1/2.
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(a) Symmetric mode at w = 2.84 (b) Skew-symmetric mode at w = 3.35

08, i 6n 5 10 08, i 6n 5 10

(c) The field along the line 1, = 0 for the
symmetric mode

0§,

(=}
[y
(=}

-5
N

(e) The field along the line n; = 0 for the
symmetric mode

(d) The field along the line #n, = 0 for the
skew-symmetric mode

0§, -5 0 5 10
n
2

(f) The field along the line #n; = 0 for the
skew-symmetric mode

Figure 5.5: The localised defect mode for a pair of defects with » = 0.49. The solid curves show
the out-of-plane displacement along the indicated line, and the dashed curves are the
associated asymptotic expansions in the far field (see equations (5.20) and (5.23) as ap-
propriate). The dash-dot curve in figure 5.5 shows the band edge expansion (see equa-

tion (p.299)).
5.2.3 A triplet of defects
For the case of three defects, the 3 x 3 matrix G(w) has the [G]; and [G];, elements as defined

in equations (5.37)) and (5.35). The remaining independent component is

[90)]5 = [0y, - 5 + 2E( ;). (5.40

o2

where E(x) is the complete Elliptic Integral of the second kind. The solutions of the solvability

condition are of similar form to the previous two cases and are omitted for brevity. The high
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frequency asymptotics for r(w) are

4-/2 4
I 32~ —, and 3,3~
w w

4+2

w2

3~ as W — 00, (5.41)

which again coincide with the solvability condition for (5.30) for the case of a particle triplet

(N = 3). The maximum values of r3 ;(w) are rgnllax) =1-37n/16, rgnzlax) =7/8 (8 -4m)7!, and
(max) _
33 = 1.

The three localised eigenmodes, along with plots of the associated asymptotic expressions are
shown in figures 5.6-p.§ for a contrast ratio of r = 0.4. Plots of the displacement field along
the lines n, = 0, n; = 1 and n; = 0 are also provided together with their associated asymptotic
fields. In each case, the solid curves show the displacement field, whilst the dashed curves show
the associated asymptotics in the far field. The dash-dot line in figure 5.6H shows the band edge
expansion in the vicinity of & = 2. In this case, figure p.6H corresponds to value of a ~ 2.017.
There are two symmetric modes (the lowest and highest frequency modes) and a single skew-
symmetric mode, as expected from the properties of G discussed in the previous subsection.
(max)
3,1

However, for defects of mass r > r , it is not possible to initiate the lower frequency sym-

metric eigenmode and only a further symmetric mode and a skew-symmetric mode persist. For

(max)
2

values of r > r3

, it is only possible to initiate the highest frequency symmetric mode.

-10 =5 0 5 10
-10 -5 0 5 10 n

m
(b) The field along the line n, = 0 for the
symmetric mode

(a) Symmetric mode at w = 2.83

0.8

0.6r

~10 5 0 5 10 39 = 0 5 10
m n

(c) The field along the line #; = 0 for the (d) The field along the line n; = 1 for the

symmetric mode symmetric mode

Figure 5.6: The first localised defect mode for a triplet of defects with » = 0.4. The solid curves
show the out-of-plane displacement along the indicated line, and the dashed curves are
the associated asymptotic expansions in the far field (see equations (5.20) and (5.23)
as appropriate). The dash-dot line in (b) corresponds to the band edge expansion (see

equation (p.299)).
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(b) The field along the line n, = 0 for the

(a) Skew-symmetric mode at w = 3.33 skew-symmetric mode
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(c) The field along the line #; = 0 for the (d) The field along the line n; = 1 for the
skew-symmetric mode skew-symmetric mode

Figure 5.7: The second localised mode for a triplet of defects. The solid curves show the out-of-
plane displacement along the indicated line, and the dashed curves are the associated
asymptotic expansions in the far field (see equations (b.20) and (5.23) as appropriate).

5.3 An infinite inclusion in an infinite square lattice

The section will be devoted to the discussion of an infinite line of defects embedded in an in-
finite square lattice, as shown in figure p.9. As in the previous section, the defects are charac-
terised by a non-dimensional mass 0 < r < 1. A recent paper by Osharovich and Ayzenberg-
Stepanenko [122] studied the waveguide problem for an infinite linear defect embedded in
a square lattice. More recently, Colquitt et al. [B2] studied in detail this precise problem. It
should be emphasised that the work reported in section 4 of [32] was primarily carried out by
Dr Michael Nieves and not the present author. Therefore, the work detailed in [32, §4] is be

briefly recounted here in section 5.3 purely in order to provide context for the following section.

5.3.1 The equations of motion

Given the symmetry of the system about the line #, = 0 (see figure 5.9), it is convenient to reduce
the problem to a half-plane system, which may be formulated as follows. The displacement

amplitude field for time-harmonic disturbances in the upper-half plane, n € Z x Z* is

2
Unie, + Un—g, + Unte, + Un—e, + (0" —4)Uy =0, (5.42a)
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(b) The field along the line n, = 0 for the

(a) The second symmetric mode at w = 3.77 .
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(c) The field along the line #; = 0 for the (d) The field along the line n; = 1 for the
second symmetric mode second symmetric mode

Figure 5.8: The third localised defect mode for a triplet of defects. The solid curves are the out-of-
plane displacement along the indicated line, and the dashed curves are the associated
asymptotic expansions in the far field (see equations (p.20) and (5.23) as appropriate).

and for n; € Z, ny = 0 is
2
Upi+1,0 T Un-1,0 T Upy 1 + Up -1+ (1’(() - 4)14”1’() =0. (542b)

Taking the discrete Fourier Transform in the n; direction yields

”52+1 + ”1;2—1 =204 (¢, w)”EZ =0, (5.43a)
and
Wl +u - 20,8 0)ub =0, (5.43b)
where ,
(&, w) = 1+2$in2(§)—/37w (5.44)

and ¢ is the Fourier parameter. For 1, > 1 a solution of the form
uy, = A"uy,  with [\ <1, (5.45)

is sought. The case of || = 1 corresponds to a displacement field which propagates sinusoidally,
with constant amplitude, away from the defect along n, = 0. The condition |A| < 1 corresponds to

a localised mode, the amplitude of which, decays exponentially away from the waveguide along
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Figure 5.9: A square cell lattice
containing an infinite
chain of defects with
non-dimensional mass
r along n, = 0, and an
ambient lattice com-
posed of particles with
unit mass. As before,
the stiffness and length
of the links are taken as
natural units.

ny = 0. The primary focus of this chapter is localised modes, therefore the following discussion
will be devoted to the latter case of |A| < 1. For a detailed analysis of the system, the reader is
referred to [32, §4]. Together, equations (p.43d) and (5.43) yield an expression for the factor A

corresponding to localised modes

2

. rw

/\:1+281n2(§)——. (5.46)
2 2

Skew-symmetric solutions. Consider solutions that are skew-symmetric about the line n, = 0.

These modes satisfy the symmetry condition u,, », = —uy, —n,» whence u, o = 0 and hence

uy = 0. In other words, the only skew-symmetric solution is the trivial one.

Symmetric solutions. For the case when symmetry conditions are imposed about 1, = 0, that
iS tp, n, = Un, —n,, the dispersion equation for localised defect modes supported by the infinite

line defect is given by

1/2

0O (£) = { [1 +25in2(£/2) +/1+4(1 - )2sin(€/2)(1 + sinZ(s/z))]}

r(2-r)

(5.47)
This dispersion relation is determined in two parts. First, the symmetry conditions are imposed
about the line n, = 0 and a linear system is derived which links the displacements along the
rows n, = 0 and n, = 1. Then, the solvability of this system is considered for various cases of A,
and (5.47) is deduced. The reader is referred to [32, §4] for a detailed discussion and derivation
of (5.47). In figure p.10, the dispersion relation (5.47) is plotted for several values of r. The in-
phase standing wave solution, of the form (F.49), is always given when £ = 0 and corresponds

to the minima of the dispersion curves. The frequency of the in-phase standing wave is

[ 4
w = m y (548)
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10

r decreasing

.

6 Figure 5.10: The quantity w), given

in equation (547,

4 /_\/\ plotted as a function of

/\/\ the normalised Bloch

/\_/\ parameter &/m  for

5 1 > 3 7 r = 0.05,0.25,0.5 and
¢/ 0.75.

whereas for the out-of-phase solution, at ¥ = 7 corresponding to the maxima of the dispersion

curves, is

w:\/ 2 [3+\/1+8(1—r)2]. (5.49)

r(2-r)

5.4 From an infinite inclusion to a large finite defect: The case of

large N

In this section, it will be demonstrated that the range of eigenfrequencies for which localised
eigenmodes exist for the model of finite inclusions described in section b.1}, can be predicted
using the model of an infinite chain of defects considered in section f.3. The motivation for this
is as follows. In order to determine the frequencies of localised modes, according to the analysis
presented in section b.1}, it is required to solve a transcendental equation (e.g. equation (5.33))
for w. Hence, one must resort to numerical methods. Moreover, the equation in question (the
solvability condition (f.12)) is obtained by setting the determinant of a matrix system to zero.
For a system of N defects the matrix system is N x N; hence, for a large system of defects, this
becomes computationally intensive. However, as will be shown in the current section, if one
is merely interested in the range of permitted localised frequencies, this information may be
obtained from the dispersion equation of the infinite system.

As an illustrative example, a defect with N = 20 particles of non-dimensional mass r = 0.25
is embedded within an infinite square lattice. The eigenfrequencies of the finite defect are com-
puted using the method described in section p.I and are shown as dash-dot, and dashed, lines in
figure B.T1]. In this figure, the eigenfrequency wmi, = 3.0374 corresponds to an in-phase stand-
ing wave solution, whereas the frequency wmax = 4.9344 represents the out-of-phase solution.
The maximum and minimum eigenfrequencies are indicated by the dashed lines in figure p.11].

Since N is large, it is useful to consider the model of an infinite chain embedded in a square
lattice. Expressions (p.48) and (p.49) predict the values of the frequency w for which there exist
such solutions. For the numerical values above, the in-phase solution occurs when & = 0 and
@ = 3.0237 and the out-of-phase solution occurs when { = 7 and w = 4.9432. These values

of the frequency are close to those encountered in the problem of the finite defect for N = 20.

76



Chapter Five Localised modes for rectilinear defects in a square lattice

Figure 5.11: The dispersion equation (5.47), for
the infinite chain, plotted as a func-
tion of the normalised Bloch pa-
rameter, for r = 0.25, represented
by the solid curve. Also shown are
the blue dash-dot lines correspond-
ing to the eigenfrequencies com-
puted for a finite defect containing
N = 20 masses. The red dashed
lines correspond t0 Wi and Wmax.

Moreover, all the eigenfrequencies computed for the finite defect lie within the passband for the

infinite defect, as shown in figure p.11].

0.4

—0.055 0 5 1o 15 20 045 0 5 o 15 20
1

(a) In-phase mode at w = 3.037 (b) Out-of-phase mode at w = 4.934
Figure 5.12: The blue solid lines are the eigenmodes for the maximum and minimum eigenfrequen-

cies for a finite line containing 20 defects. The envelope functions defined in (5.56) are
shown by the red dashed lines.

Figure p.12 shows the plot of the eigenmodes for the maximum and minimum eigenfrequen-
cies computed for the line defect containing 20 masses. The maximum eigenfrequency wmax
corresponds to the out-of-phase mode, whereas the minimum eigenfrequency wpm, gives the
in-phase mode.

It is remarked that both the field in figure p.124, and the envelope of the field in figure p.12H
resemble the first eigenmode of an homogenised rectilinear inclusion. Using this motivation,

the difference operator
Dp ()p = (')p+e1 + (')p—el + (')p+e2 + (')p—ez -4 (')pa (5.50)

is introduced. Making use of (B.3), it is found that

D N-1
(%’0 + 1) Upo=(1-r) Z Up 0 (Dnl,O + wz)g(nl,o,p; w), (5.51)
p=0

where n = (n1,ny) has been restricted to {n : 0 < n; < N-1, ny = 0}. Since the lattice Green’s

matrix is a difference kernel (i.e. depends on the difference |n; — p|),

D N-1
(%’0 + 1) U o= (1-7) Z Up0 (Dpp + wz)g(nl, 0,p; w), (5.52)
p=0
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whence, and recalling from (5.1)) that (D, + w*)g(n, p, ) = 8, pOn, 0, it is found that
(Dn+rw2)u,,:0, for ne{n:0<n <N-1,n,=0}. (5.53)

It is observed that for a sufficiently large inclusion, the field above and below the inclusion be-
haves as uy,, 1 = up, —1 » Auy, o, with || < 1, in a similar manner to the infinite inclusion. Hence,

using (5.53) together with the aforementioned approximation yields
Uny 1,0 + Uny—1,0 — 2uno + [r0” =2 (1= 1) | up, 0 =0, (5.54)

for 0 < n; < N — 1. The first three terms on the left hand side of (5.54) correspond to the
second order central difference operator. Hence, introducing the continuous variable n = n;

(where the reader is reminded that the length of the lattice links has been normalised to unity)
equation (b.54) is written as

d2
— +rw?-2(1-21)|u(y) = 0. (5.55)

dn?

The form of equation (5.53) suggests that the homogenised system is analogous to a string on an
elastic foundation, with the constant 2 (1 — 1) characterising the effective stiffness of the foun-
dation. It is emphasised that |A| < 1 and as such, the stiffness of the elastic foundation is positive.

Consider the problem of an infinite inclusion. According to equation (5.44), the value of A
corresponding to the lowest eigenmode is A = 1 — rw?/2. For this value of A, the second order
derivative vanishes according to equation (5.55). Moreover, for the displacement at infinity to
be finite, u(#) must be constant for all #. In this case, the solution of the infinite waveguide
problem (b.42) (i.e. uy,, o = const.) is obtained.

For the finite inclusion, it is observed that the displacements at the endpoints are small (see
figure p.124). Hence, for a simple estimate it suffices to impose ©(0) = u(N —1) = 0 whence the
solution to (5.55) is

2
u(n) = upsin (11 rw? —2(1 —/\)) , withdA=1+ % [(Nq—ﬂ) - rwz] , (5.56)

where g is an odd number and u an arbitrary scaling constant. The first eigenmode corresponds
to A = —=0.1396, which is close to the mean value of A obtained from the full numerical compu-
tation (A = —0.1426). The approximation (5.56) for A = —0.1396 is shown in figure p.124 by
the red dashed line. The same approximation is used to produce the envelope function shown
by the dashed lines in figure .I2H. One can observe that this, relatively simple, homogenised
model predicts the envelope of the field very well.

5.5 Remarks

In this chapter the problem of localised vibrations around a finite rectilinear defect embedded
in an infinite square lattice has been discussed in detail. The waveguide problem for an infinite

defect has also been briefly described and a comparative analysis of the two classes of problems
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has been presented.

Although the physical configurations and the methods of analysis of these problems are dif-
ferent, one can observe remarkable properties of solutions, which can be used to make a strong
connection. As illustrated in figure p.11), the pass band for frequencies of waveguide modes, lo-
calised around an infinite chain of masses in a square lattice, contains all eigenmodes describing
vibrations localised around a rectilinear defect built of a finite number of masses embedded into
the lattice.

In particular, the reader’s attention is drawn to the band edges of the dispersion diagram for
the infinite defect: figure shows that the frequencies of the eigenmodes for a finite line defect
are distributed non-uniformly and they cluster around the edges of the pass band identified
for the infinite waveguide. Furthermore the limit, as one approaches the band edge frequency,
corresponds to a homogenisation approximation of the linear defect as an inclusion embedded
into a homogenised ambient system. The illustrative numerical simulation is produced for an
array of 20 masses. It is emphasised that the effect shown is generic and, with an increased
number of masses, the density of frequencies of localised modes near the band edges increases.

Symmetric and skew-symmetric modes have been constructed and analysed for a rectilin-
ear “inclusion” built of a finite number of masses embedded into the lattice. It has also been
shown that the total force exerted on the ambient by the vibrating discrete inclusion is zero
for all skew-symmetric modes. Consequently, the displacement fields, associated with skew-
symmetric modes, decay at infinity like dipoles, vanishing faster than the displacements cor-
responding to symmetric modes. This follows from the analytical representations for the so-
lutions and illustrated in figures 5.5 and f.§ where the skew-symmetric modes appear to be
localised to a much higher degree than symmetric modes. In the aforementioned numerical
simulations, the skew-symmetric and symmetric modes appear in pairs, and the frequency of
the skew-symmetric mode is higher than the frequency of the corresponding symmetric mode.
With reference to figure p.3 it is also observed that, in contrast to the one- and three-dimensional
multi-atomic cases, there is no lower bound on the perturbation of mass required to initiate a
localised mode.

Finally, the reader’s attention is drawn to the symmetric and skew-symmetric eigenmodes for
a chain of 20 masses shown in figure p.12. The corresponding frequencies are the maximum
and minimum values in the array of frequencies associated with horizontal lines of figure p.11.
The envelope curves for both diagrams in figure represent the first eigenmode of a ho-
mogenised rectilinear inclusion. The simple homogenised model presented in section f.4 pro-
vides the envelope curves for the finite inclusion. The form of the homogenised system suggests
that, macroscopically, the inclusion behaves as a string on an elastic foundation. As expected,

the skew-symmetric mode of figure has the higher frequency than the symmetric mode
of figure p.124.
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Chapter Six

Thermal striping of a micro-structured

edge-cracked solid

A5
iyt

Having studied static inclusions in scalar lattices, the current chapter will be devoted to the anal-
ysis of the response of a triangular lattice and a continuum containing a conducting finite edge
crack under sinusoidal thermal loading. The material parameters of the continuum are chosen
such that they correspond to the homogenised lattice. The response of the lattice to the uncou-
pled thermoelastic problem is examined and the notion of an ‘effective stress intensity factor” is
introduced using the crack opening displacements behind the crack tip. The ‘effective stress in-
tensity factor” is then compared with the stress intensity factor for an edge-cracked continuum

obtained by use of a J-integral derived for formulations of uncoupled thermoelasticity.

6.1 Crack-tip fields and the J-integral

For the purpose of the present chapter, it will be necessary to evaluate the stress intensity factor
for an edge crack in a two-dimensional elastic body under the assumptions of plane strain. The
stress intensity factor provides a convenient measure of the stress state in the vicinity of the
crack tip. Indeed, stress intensity factors are often incorporated into fracture criteria. One such
fracture criteria is Paris’ law [124], which has found extensive use in problems related crack
growth under fatigue. The scholarly literature on fracture mechanics, and particularly fracture
in linear elasticity, is very well developed. For a more detailed discussion of fracture mechanics,
the reader is referred to [6,[15,59,64,146] and references therein.

Consider a semi-infinite crack y = {x : —0o < x; < 0, x, = 0} in R? as shown in figure B.1|.
The stresses in the vicinity of the crack-tip (x = 0) are singular. In particular, to leading order

the stresses in the vicinity of the crack tip are of the form (see, for example, [[15,124])

5. . Ji0)
U} \/; ’

(6.1)
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Figure 6.1: A semi-infinite crack (solid red line) defined by the set y = {x : =00 < x; < 0, x, = 0}
embedded in an elastic body. The dashed blue lines indicate the contours of integration.

where r and 6 are the polar distance and angle respectively. In the present chapter, it will be
sufficient to consider mode I loading. Under mode I loading, the crack opening displacements
are odd with respect to x, [65] such that u,(x1,x;) = —uz(x1, —x;); the displacements parallel
to the crack are even: u; (x1,x2) = u1(x1, —x2). According to the definition given by Irwin [64],

the mode I stress intensity factor is
K= linol V2mragy(r,0). (6.2)
r—

To leading order, the normal stress ahead of the crack tip can then be written as

om0~ (6.3)
000|p—p ~ —F—- .
=0 Vamr
In general the leading order stresses can be expressed as
K; 0 ( . 2 9) K; 3 0 K; . 5
Op~——cos—[1+sin“=|, o0gg~——=cos’ =, 0,9~ ——=sin—cos”" =, (6.4)
T w2 2 V2mr 27 2w

with 0., = v(0,, + 0gg).

6.1.1 The J-integral

The J-integral provides a convenient method through which the stress intensity factor for a notch
or crack may be evaluated. The J-integral is a path independent energetic contour integral and
was developed independently by Cherepanov [26] and Rice [[134] in the late 1960’s. A detailed
development of the J-integral may be found, for example, in the initiating two papers [26,134]
or classical reference texts such as [15] among many others.

Consider a crack, defined by the set y = {x : —oco < x; < 0, x; = 0}, embedded in a linearly
elastic medium and oriented as illustrated in figure p.I. The J-intgeral introduced by Rice can
be written in the form

Ji = f (Wn; - ojknjukﬂ') ds, (6.5)

T
where W is the strain energy density functional, #; is the i'" component of the outward unit
normal to some arbitrary closed contour I, index summation notation is used and subscript

commas followed by indices indicate differentiation. Here, J; represents the i component of
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the J-integral, corresponding to crack opening displacements in the x; direction. Application of

Green’s theorem yields integration over the region enclosed by I’
0
Ji= f — (W8 — ojuiy.;) dA. (6.6)
3 Oxj

In the absence of body forces the equilibrium equation is 0j;; = 0, whence (ojxux,i); = Ojxux jj.
Moreover, for sufficiently smooth u, oyex; ; = %(o‘kluk’li + Oy 1) = Ot ik since o is symmetric.
Thus,
Ji = / (W ;8ij — opaen,i) dA. (6.7)
Q

For elastic material the stress is related to the energy strain functional by oy; = gTV:’, hence ‘g—)‘?_f =

ow
mSkl’i and ﬁnally

Ji= / (owens,i — oneni) dA = 0. (6.8)
Q

Thus, the J-integral vanishes around any closed contour which encloses a simply connected re-
gion without any stress singularitiesf] Moreover, it may be shown that if the crack faces are

traction free, then the J-integral is path-independent.
The fact that the J-integral vanishes over an appropriate contour allows convenient determi-
nation of the stress intensity factor. Consider now the contour I' = I'y u T’y uT_ U T, as shown
in figure B.I. In particular, let T, = {x : |x| < &}, where ¢ — 0 but I'g be arbitrary. Since the

J-integral vanishes over I’

/ (Wni - ojknjuk’,-) ds+ f (Wni - ajknjuky,-) ds
To I,
+ f (Wni - ojknjukJ) ds + f (Wni - ajknjukj) ds=0. (6.9)

I T

Evaluating the integral over I'; it is found that, in the case of plane strain and mode I loading

(setting i = 1),

E E
K% = .2 -/ (Wﬂl - O'jknjl/lk’l) ds - 12 f O'jkﬂjudeS, (610)
To | )

where the fact that the contribution of #; vanishes over I'y U I'_ has already been used. Hence,
the stress intensity factor for mode I loading can be determined by evaluating the integral over
the remote contour Iy and an integral involving the tractions and derivative of displacements
over the crack faces. Moreover, if the crack faces are traction free such that g;;n; = 0, then the

final integral vanishes and the J integral becomes path-independent.

'Hereinafter appropriate contour.
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Modifying the J-integral

In the present chapter, the J-integral method is used to compute the stress intensity factor for
a quasi-staticf] thermoelastic problem. However, care is required when treating thermoelastic
problems using the J-integral. In particular, it was demonstrated by Wilson and Yu [147] that the
J-integral as defined by Rice [134] does not vanish around an appropriate contour for thermoe-
lastic problems. The non-trivial nature of the J-integral may be easily demonstrated by noting
that, for a two-dimensional linearly elastic isotropic body under a quasi-static thermal load, the

stress-strain relationship in plane strain is

Ea
0j = Afii(sij +2pei — 1_—21)T8ija

6.11)
where T(x;t) is the temperature field and « is the coefficient of linear thermal expansion. The
first and second Lamé parameters are denoted by A and u respectively and are related to Young’s
modulus and Poisson’s ratio by A = (HV)EW and y = ﬁ The first two terms in the ex-
pression are the standard expressions for plane strain linear isotropic homogeneous elasticity
and the analysis presented in the previous section leading to equation (p.§) follows through ex-
actly. However, the final term on the right hand side of (b.11)) yields an area integral leading to

a non-vanishing J-integral

Ea

A
Q

1
|:T,z'£jj - E(Tejj),i] dA. (6.12)

Thus, in contrast to the standard elastic case, the stress intensity factor cannot be determined by
a line integral over an appropriate remote contour. Instead, an additional area integral must be
evaluated. In this case, equation (f.10) takes the form

E B« 1
K=—_ / Wny —oyniuy )ds+ ———— / [T'e-- — —(Tgj; ] dA, 6.13
I~ 12 ( 1= Ujkhy k71) (1-v2)(1-2v) i) 2( J;),z ( )
To Q
where the crack faces are assumed to be traction free for convenience. By means of Green’s

theorem equation (6.13) may be written

E Ea E*a oT
- f R L d+—f io—dA. (6.14
T ( TR R 0”‘"1”"’1) e ) Ton (614
0

The first integral on the right hand side of equation (.14) is the so-called J*-integral introduced
by Wilson and Yu [[147].

It should be emphasised that here, 0;; is the thermoelastic stress tensor (6.11) and W is the
corresponding energy density functional; Q) is the area enclosed by I'y. The integral in (.13)
as well as the alternative integrals presented by Wilson and Yu [[147] require evaluation of the
derivatives of strain, which may be numerically challenging, particularly in the vicinity of the

crack tip. However, the representation (b.14) requires only derivatives of the temperature field,

*Quasi-static in the sense that no inertia term appears in the equations of motion, but the temperature field may
depend, parametrically, on time
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o x=h)2
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o xy=—h)2

X1:d

Figure 6.2: A finite edge-crack (solid red line) defined by the set M, = {x : 0 < x; < a, x, = 0}
embedded in an elastic body Q = {x: 0 < x; < d, |x,| < h/2}.

which for the present application, are known analytically and are smooth.

6.2 The uncoupled thermoelastic problem

In the continuum, the thermal striping problem for the rectangle Q = {x : 0 < x; < d, |x,| <
h/2}, containing a finite edge crack M, = {x: 0 < x; < a, x, = 0}, with the crack faces M (see
figure p.7), satisfies the following problem for the elastic displacement field U(x; t):

LU(x;t) = a(31 +2u)VT(x;1), xeQ~M,, (6.15a)
e [U](x;t) = (31 + 2u)nT(x; 1), x€ByUByUM, UM, (6.15b)
U(x;t) =0, xe{x:0<x; <d,|xz] = h/2}, (6.15¢)

where LU = yAU+ (A+u)VV-U, B, = {x:x1 =1, |x3] < h/2}, X and p are the Lamé coefficients
and « is the coefficient of linear thermal expansion. The differential operator of tractions is
denoted by 6™ [U] = {A(V - U)I + u{VU + (VU)T]}n, with n being the outward unit normal
and I being the 2 x 2 identity matrix. Physically, system (.I5) corresponds to the uncoupled
thermoelastic problem on a finite plate of width d and height 4. The plate is clamped on the
horizontal boundaries (|x,| = #/2) and mechanically free on the lateral boundaries (x; = 0, d).
The solution U(x;t) is then the elastic displacement for a given temperature field T(x;¢). The
problem is uncoupled in the sense that, in the elastic problem, the time t is treated as a parameter
and T(x; t) is the solution of an appropriate heat conduction problem (see (6.19)).

Consider a uniform triangular meshing of R? with nodes at discrete positions x,, = £7 m,

84



Chapter Six Thermal striping of a micro-structured edge-cracked solid

where m € Z? labels the nodes separated by distance ¢ and

1 12
T = (0 \/5/2) (6.16)

The reader is referred to section .| for further details and clarification of notation. It is conve-

nient to introduce the following sets of nodes

Interior nodes: r= {m :0<x1(m) <d, |x(m)| < g},
. 1 h
Lateral boundaries: Yo = {m :0<x(m) < > |x2(m)]| < 5},

a={med=2 <xm) <d(m) < 5.

14 h
Horizontal boundaries: Y = {m )2 <x1(m)<d- > |x2(m)| = 5} .
In addition, the set containing the lattice nodes on the crack faces is denoted as ML = {m :
0 < x;(m) < a, —/30/2 < x3(m) < 0}, and the set of nodes connected to node m is written
N ={q:|x(m+q) —x(m)| = £} ~ ML. The problem for the in-plane elastic displacement u,y,
of a thermally striped lattice with a finite edge crack is then (see § 2.2.6)

¢
S B(q) {ttmeq(t) — tim ()} = “7 S b(q) {Opig(t) + Om()} ,peT, (6.172)

q<Nm qeN (m)
uu(t) =0,mey,, (6.17b)

where O, (t) is the temperature at node m at time t. The matrices B(q) and vectors b(q) describe

the direction of interaction between lattice nodes m + q and m. In particular

2 ;
B(q) = ( cos” ¢ cosgozsmgo), b(q) - (cos (p)7 (6.18)

cos @sin ¢ sin” ¢ sin ¢

where ¢ is the angle between the point 7 q and the positive x;-axis. Physically, problem (6.17)
corresponds to a triangular array of thin conducting rods connected via pin-joints. In the lan-
guage of earlier sections, the lattice nodes interact via the central interaction (see § £.2.3). The
variation of temperature from some “stress free” reference configuration creates elastic strains
within the rods.

It is remarked that in problem (f.17), the equation of motion is independent of the stiffness
of the lattice links. This may, initially, appear to be counter-intuitive. However, it is emphasised
that this is a quasi-static problem, that is, there is no inertia term. The variation in temperature
between two lattice nodes generates a strain in the lattice link connecting the two nodes. The
stress generated by the thermal strain and the stress generated by the nodal displacements are

both proportional to the stiffness of the link, hence, the absence of any elastic parameters in the

equilibrium equation (p.17q).
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6.3 The heat conduction problem

Time-harmonic fluctuations in temperature are studied in the present section. Therefore, it
is convenient to formulate the heat conduction problem in terms of the complex amplitudes:
6(x) for the continuum and 9,, for the lattice. The continuum amplitude satisfies the following

problem on the rectangle Q = {x: 0 <x; <d, |x;| < h/2}

kAB(x) = iwb(x), xeQ, (6.19a)
0(x) = Ty, xe{x:x; =0, x| <h/2}, (6.19b)

6(x) =0, xe{x:x =d|x;] <h/2}, (6.19¢)
v[0(x)]-n=0, xe{x:0<x; <d,|x|=h/2}, (6.19d)

where w is the radian frequency of the thermal load and « is the thermal diffusivity of Q. Physi-
cally (6.19) corresponds to the time-harmonic thermal striping of a finite conducting rectangle
by a sinusoidal load applied to the left face x; = 0. The right face x; = d is isothermal, whilst the
upper and lower faces x, = +h/2 are adiabatic. The crack is perfectly conducting. The boundary

value problem (6.19) has the following unique solution

sinh[(1 +1)B(d-x1)]

6(x) =To sinh[(1+1)Bd]

(6.20)

where % = w/2x.
Similarly, the time-harmonic heat conduction problem on a finite lattice can be written in
terms of the discrete complex amplitude 9,, (see SE.2.2)

1

- Imeq: meT, (6.21a)
" iwE + [N (m)] qeg(:m) "
9 = To, mey,, (6.21b)
9 =0, mey,, (6.21¢)
1
O = Z Omiqs mey,, (6.21d)

"N (m)] qeN (m)

here & = C/(SA) and N'(p) = {q : |x(p + q) — x(p)| = £} denotes the set of nodes connected
to node p, with q € Z?. Physically, problem (.21)) describes heat conduction through an array
of masses of heat capacity C connected by massless conducting links of thermal conductivity A,
cross-sectional area S and length /. Neglecting the mass of the conducting links (equivalently
the heat capacity of the links) results in a constant temperature gradient along the rods. The
reader is referred to section for discussion of the fundamental interaction matrices for
heat conduction. For a direct comparison with the continuum solution (p.20) the ratio £ should
be chosen such that the homogenised problem corresponds to the continuum heat conduction
problem (B.19). In particular, choosing £ = £2\/3/x means that the homogenised limit of the
lattice problem (p.21)), corresponds to the continuum problem (b.19).

The lattice conduction problem (6.21)) is formally equivalent to a finite difference problem on

a triangular mesh and is therefore amenable to the associated numerical techniques. The Gauss-
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Seidel iterative method is used to solve (6.21)). The numerical solution reveals that the heat flow

is approximately one-dimensional. Indeed, for the frequency range in question, the variation

in the solution with x;, is below 1% of the striping amplitude. Figure p.3 shows a comparison

of the temperature solution as a function of distance from the striped face for three character-

istic striping frequencies. The three striping frequencies chosen characterise the typical range

found in a model test rig of a prototype fast reactor [[/7]. The comparison indicates that the tem-

perature distribution on lattice approximates the continuum temperature distribution very well.

Therefore, for the current regime, it is appropriate to impose the continuum temperature distri-

bution (6.20) for the uncoupled thermoelastic problem in both the continuum and a sufficiently

refined lattice.
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Figure 6.3: The solutions to the heat conduction problem in the continuum (f.19) (solid red curve)

and the heat conduction problem in the lattice (5.21)) (dashed blue curve) as a function
of x; (depth through the plate). The lattice links are of length £ = 1 x 10™*m.

Parameter

Symbol  Description Numerical Value
S/t Ratio of the length of the lattice links to cross-sectional area (m) 1074
To Amplitude of thermal striping load (°C) 10

K Thermal diffusivity (m?/s) 2.29%x107°

h Block height (m) 1.161/3 x 1072

d Block width (m) 1072

E Young’s Modulus (GPa) 163.5

v Poisson’s ratio 1/4

o Linear thermal expansion coefficient (1/°C) 2x107

Table 6.1: The parametric values used for the purposes of numerical computations.
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6.4 Numerical simulations: the displacement fields and the stress

intensity factor

Both the continuum (f.15) and the lattice (6.17) problems are solved using the finite element
method for a plate of height 1.16v/3 x 1072m and width 1 x 1072 m. The commercial package
Comsol Multiphysics® is used to simulate the thermal striping problem for three characteristic
striping frequencies and different crack lengths. The problem is solved using a transient solver
with the continuum temperature field being imposed as an external time-harmonic load with
complex amplitude as given in (6.20). For the continuum, one half of the plate is modelled with
the mode I symmetry condition applied to the uncracked boundary ahead of the crack and the
zero displacement condition applied to the horizontal boundary x, = h/2. The triangular lattice
possesses no vertical symmetry and therefore the entire plate must be modelled. Two lattices of
varying refinements are considered: (a) a sparse lattice with links of length £ = 2 x 10™*m and
cross-sectional area of S = 2 x 1078m?; and (b) a fine lattice with links of length £ = 1 x 10™*m
and cross-sectional area of S = 1 x 10 *m?. The material and geometric parameters are chosen
such that the homogenised limit of both lattices correspond to the continuum parameters, as
discussed in section B.2. The numerical values are summarised in table B.1 and are chosen to

correspond to typical values for steel.
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Figure 6.4: The axial stresses in the sparse and fine lattices.

Figure .4 shows the absolute values of the axial stresses in the two lattices. In contrast to the
continuum, all the stresses in the lattice are finite. However, figure 6.4 does show a concentration
of stress in the vicinity of the crack tip. In order to define an ‘effective stress intensity factor” for
the lattice, it is assumed that for a sufficiently refined lattice the vertical displacements behind
the crack tip exhibit similar asymptotic behaviour to the continuum. Indeed, for mode Iloading
of a semi-infinite crack in a triangular lattice excited by a remote load, it has been shown (see, for
example, [115] and [139]) that in the long wavelength limit, the u, displacement behaves in the

1/2

same way as the continuum, that is, u,(x;) ~ agla — x1|'/*. For the present work, it is assumed

that for a sufficiently refined lattice

uz(m) ~ Q —Kliz)y \/ a- ch;(m) +by[a—x1(m)]+by[a - xl(m)]3/2+b3 [a-x1(m)], (6.22)
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forme {p:x1(p) <a, x2(p) = 0}; here k = 3—4v and y is the shear modulus corresponding to
the homogenised continuum. It should be understood that the coeflicients K; and b; depend on
t. In direct analogy to the displacement extrapolation method for the continuum (see [63,124]
among others), the stress intensity factor at a particular time can be determined by fitting the
expansion (6.27) to the displacements behind the crack tip. Figure p.5 shows that the expan-
sion (p.27) is sufficient to accurately capture the behaviour of the u, displacements behind the
crack tip and that the displacements exhibit the same qualitative behaviour as in the continuum.

Of primary interest is the peak-to-peak amplitude of the stress intensity factor

AK;= max Ki(t) - min Kg(¢). (6.23)
fo<t<to+2m/w fo<t<to+2m/w
Data is taken from the region x € {x:a—1x 107> <x; <a -/, x, = 0}, that is, along the upper
face of the crack from the node adjacent to the crack tip node for a distance of 1 x 10~>m, behind
the crack tip (see figure p.7). Here, a > 0.01 is the crack length and 0 < ¢ < a is the length of a
lattice link.
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Figure 6.5: The u, displacements for the two lattices and the continuum against distance from the
crack tip, together with the fitted expansion curves (see equation (6.27)) for a represen-
tative crack depth and time.

For the continuum, it is convenient to use a J-integral type approach to compute the stress
intensity factor for the edge-cracked plate. In particular, equation (p.14) is used to determine
the stress intensity factor. The line and area integrals in (p.I4) are computed from the finite
element results using fourth order quadrature over three contours in the vicinity of the crack tip.
The positions of the contours are varied to ensure path independence.

Figure p.g shows the maximum AKj values for the thermally striped continuum and the two
lattices at three striping frequencies: 0.0625Hz, 1Hz and 6.25Hz. The continuum curves show
similar behaviour to that observed in [72, 77], with the local maxima of AKj increasing and
shifting further to the right for lower frequencies. For sufficiently long cracks, the lattice curves
exhibit the same qualitative behaviour as the continuum. Compared with the continuum, the

lattices have a reduced stress intensity factor, except for shorter cracks at higher frequencies. It
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Figure 6.6: The maximum AK] for the continuum and the two lattices against crack depth for three
characteristic frequencies.

is also apparent that the more “refined” the lattice, the closer the stress intensity factor is to the
continuum value. For shorter edge cracks (smaller than 2 x 107>m) the nodal displacements no

longer exhibit the square root asymptotic behaviour (see equation (f.22)).

6.5 Remarks

This chapter has examined the effect of a discrete microstructure on quasi-static crack growth
in a thermally striped plate for in-plane elasticity. The heat conduction problem on a triangular
lattice was formulated and solved numerically. It was demonstrated that the thermal field in
the lattice can be approximated by the analytical solution to the heat conduction problem on
the corresponding continuous plate. The thermal striping problem, for both the continuum
and triangular lattice, was solved using the finite element method. It was shown that, although
there is no singularity in the lattice, there is a stress concentration in the neighbourhood of the
crack tip. Moreover, the crack face displacements were shown to exhibit the same characteristic
square root behaviour, consistent with earlier works (see [115,139] among others). The notion
of an ‘effective stress intensity factor” was introduced via the crack face displacements in direct
analogy to the continuum displacement extrapolation method [63,124] and compared with the
stress intensity factor for a corresponding continuum obtained via a modified J-integral. The
‘effective stress intensity factor”, and the stress intensity factor itself, were shown to exhibit the
same qualitative properties. In particular, the local maxima of AKj increases and shifts further
to the right for lower frequencies. In physical terms, this means that in the quasi-static regime
cracks will tend to grow further for lower striping frequencies. For a sufficiently long crack and
low frequency, the ‘effective stress intensity factor”for the lattice is lower than the corresponding
continuum. Moreover, the more refined lattice, the closer the ‘effective stress intensity factor” is

to the stress intensity factor for the corresponding continuum.
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Chapter Seven

A microstructured invisibility cloak

The present chapter is devoted to the development of a square invisibility cloak for fields gov-
erned by the Helmholtz equation. The Helmholtz equation arises in a wide variety of fields
including electromagnetism, elasticity, and acoustics. Therefore, solutions to the cloaking prob-
lem for the Helmholtz equation have a wide range of potential applications. However, for defi-
niteness and ease of exposition the language of elasticity will be used throughout this chapter.
The current chapter is structured as follows. A description of the regularised cloak in the con-
tinuum model of out-of-plane shear elastic waves follows the introduction. This also includes
the discussion of the essential and natural interface conditions on the boundaries of the cloak.
An explicit analytical ray algorithm is developed, and the phenomenon of negative refraction
on the interface boundaries is explained. Numerical scattering measures are included, with de-
tailed simulations. The analysis also incorporates Neumann and Dirichlet boundary conditions
on the inner contour of the cloak. As a demonstration of the effectiveness of the regularised
cloak, a Young’s double slit experiment is presented. A recent paper by Greenleaf et al. [54] con-
siders an application of cloaking via transformation optics in quantum mechanics. In particular,
Greenleaf et al. present a class of invisible reservoirs and amplifiers for waves and particles. The
issues discussed in the present chapter, which are raised by this linkage between cloaking and
quantum mechanics, are in some ways similar to those discussed by Greenelaf et al. It is also
shown that one of the undeniable advantages of such an approximate cloak is the straightfor-
ward connection with the discrete lattice structures. These connections are analysed in detail,

and accompanied by a range of physical simulations.

7.1 The regularised continuum cloak

The classical approach to cloaking via transformation geometry involves deforming a region
such that a point is mapped to a finite region corresponding to the inner boundary of the cloak.

Indeed, the square push out transformation proposed by Rahm et al. [132] maps a point to a
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Chapter Seven A microstructured invisibility cloak

square. The mapping is non-singular everywhere except at the inner boundary of the cloak. In
the present paper, a regularised version of the square push out transformation is used. In partic-
ular, the trapezoids X(i) are mapped to the trapezoids Q" as illustrated in figure [/.1 with conti-
nuity, but not smoothness, imposed on the interfaces between the four trapezoids. The mapping
is non-singular on the closure of the cloak, and hence, all corresponding material properties are
finite. It will be shown that this regularised transformation yields an effective broadband cloak,

with finite material properties which may easily be approximated by a regular lattice.

7.1.1 The transformation

o
o)
N ) @
v
r® y(z)

QP O QYU oW

y M

@ (

Figure 7.1: The transformation  maps the undeformed region y = (" U y® U y® U ™ to the
deformed configuration Q_ = oY ua®ua® ua®. The boundary between Q.
and QO is denoted I'”), while the interface between Qo and Q" is denoted y@. The
corresponding boundaries in the undeformed configuration are denoted by I'” and ¢(*)
respectively.

Consider a small square y, = {X : |Xi| < ¢,|Xz| < &} c R?, which via the transformation F
is mapped to the square Qg = {x : |x1| < a, |x2] < a} c R% The exterior of the cloak remains
unchanged by the map, that is, X = F(X) for X € Q,, where the bar denotes the closure of the
domain. Physically w is the thickness of the cloak, a is the semi-width of the inclusion Qy, and
¢ is the initial semi-width of the square y, where 0 < ¢/a <« 1. In this case, it is convenient
to decompose the cloak into four sub-domains y = ¥y U ¥ U ) U ¥*), as illustrated in
figure [ Formally, F defines a pointwise map from X € y = ™ u @ u y® u y® to
x=FX)eQ_= oW ua®ua® ua™. The mapping is continuous and non-linear on y,
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and defined in a piecewise fashion such that F = F ) (X) for X ¢ y), where

:| ’ ,7:(2) (X) _ [061X1 + 062X1/X2]

OC1X1 + 0y

o X + 0(2X2/X1 a1 Xy + o

FO(X) = [

Xy — o
a1 Xo — X5 /Xy

.7-'(3)(X) - l ]’ F@) (X) = l“lxl - “2X1/X2] ’

Xy —ap

with a; = w/(a+w—-¢)and ay = (a+ w)(a—¢)/(a+w - ¢). The Jacobian matrices and

determinants are then

X201 X102
[24] 0
(1) ) X2 — &2 xz(az—xz)
I = I = )
X1 (X X101
Xl(az—xl) X1 — & 0 441
X0 X102
[24] 0 ( )
X)+ay X0 + X
](3) - I(4) -
)
X201 00 X101
Xl((XZ +X1) X1+ ay 0 a1
2 2 2 2
O BE e G e % J—
) 9y ) .
X1 — &y Xy — 0y X1+ &y Xy + 0y

It is emphasised that J(7 (x;) = det J) = tr J&) is strictly positive for x € 0% and ¢ # 0, that
is, the map is continuous on both the interior and boundary of the cloak. The metric of the
deformed space o is g = (I(i)](i)T)’l.

The present section will be devoted to the propagation of time harmonic out-of-plane shear
waves of radian frequency w and displacement amplitude u(x). Lemma 2.1 in [LI16] allows the
Helmholtz equation for an isotropic homogeneous medium uVx - (Vx)u(X) + ow?*u(X) = 0 for

X € x to be written in deformed co-ordinates as

[V (CD(x)V) + p(x)w?]u(x) = 0, xe Qgi), (7.1)
where u is the constant ambient stiffness, g is the constant ambient density, the transformed

stiffness tensor may be expressed as

V@) = =T U 1",

=0 @ (7.2)

and p() (x) = o/J®(x) is the scalar transformed density. The differential operator V is written
in the undeformed space and should be distinguished from V which is written in the deformed
coordinates.

Since the mapping is continuous on Q_, the material properties of the cloak are non-singular.
It is obvious from the representation ([.2) that the transformed stiffness tensor is symmetric and
positive definite. Physically, the transformed material properties correspond to a heterogeneous

anisotropic membrane.
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7.1.2 Interface conditions

Without loss of generality, it is convenient to restrict the following analysis to a single side of
the cloak. With reference to figure [/.1}, consider a sub-domain Q(,i) c R? in the absence of the
inclusion and remaining three sides of the cloak. In the absence of sources, the amplitude of
the out-of-plane shear deformation of an outgoing time-harmonic wave of angular frequency w

satisfies the following equation
[V (Ax)V) + p(x) 0’ [ u(x) =0, (7.3)

together with the Sommerfeld radiation condition at infinity. Here, A(x) and p(x) are defined

as
C(x) forxe ot p(x) forxe ot
Ax) - L) - o
pl forxe Q. 0 forxe Q.
Let v(x) be a continuous piecewise smooth solution of the Helmholtz equation in R? satisfy-
ing the Sommerfeld radiation condition at infinity. Integrating the difference u(x)[V-(A(x)V)+
p(x) @ v(x) —v(x)[ V- (A(x) V) + p(x)w*]u(x) over a disc D, of radius r containing ot yields

0= f (uV -AVv—vV - AVu) dx,

D,
= [ (un-AVv —v n-AVu )dx - f (u'n-AVv' —v'n-AVY") dx
a0 s
+y/ (un-Vv+vn-Vu) dx,
oD,

where the fact that Vu - AVv = Vv - AVu (since A is symmetric) has already been used. Since
u(x) and v(x) represent outgoing solutions, the integral over 9D, vanishes as r - oco. Thus, the

essential interface condition is the continuity of the field
[u] =0 on 0a®, (7.5)
and the natural interface condition is continuity of tractions, that is,

[n-A(x)Vu] =0 on aat. (7.6)

7.1.3 The cloaking problem

Consider the propagation of a time harmonic out-of-plane deformation, generated by a point
source, in a homogeneous infinite elastic solid containing an inclusion surrounded by a cloak.

The displacement amplitude then satisfies
[V - (A(x)V) + p(x)w?Ju(x) = —8(x - x0), xeR*\ Qy, x0 € Qy (7.7)

[V - (V) + 000’ Ju(x) =0,  x€Qy, (7.8)
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with the continuity condition (7.5) for u(x) and the condition (f.§) for traction on all inter-
face boundaries. Additionally, the Sommerfeld radiation condition is imposed at infinity. The

stiffness tensor A(x) and density p(x) are

c() (x) forxe o® p(i) (x) forxe o®
A(x) = ;o plx) = : (7.9)
pl forxe Q. 0 forxe Q.

and p, and gy are the stiffness and density of the inclusion respectively.

7.1.4 The ray equations

Whilst, in principle, it is possible to find the displacement field by solving the cloaking prob-
lem it is useful to consider the leading order behaviour of rays through the cloak. Consider a
WKB-type expansion (see WKB Expansions in the appendices on page [[26) of the displacement
amplitude in terms of angular frequency w, and the amplitude and phase functions U,(x) and
¢(x) respectively

u(x 1w¢(x) Z i"Un (x) as w — oo. (7.10)

The leading order equation for the phase on the interior of the cloak has the form
H(x,s) =0, (7.11)

where H(x,s) = yo~'s- g 's— 1, s = V¢ is the slowness vector, 4 and o are the stiffness and
the density of the ambient medium respectively, and g is the metric of the transformation. In
terms of wave propagation, the conserved quantity H(x,s) represents the first order slowness
contours(see, for instance, [I10]). The characteristics of the quantity H(x,s) then satisfy the

following system
dH 0 dx _OH ds OH

de At 9s’ At 9x’

where tis the ray (time-like) parameter. At this point, it is convenient to introduce index summa-

(7.12)

tion notation where summation from 1 to 2 over repeated indices is assumed. The system ([.12)

may then be expressed as follows

ds, _ OJ'm dx;
=-2p lﬂsmsn]nl l .

=20 ulalys; 1
N . P ululiisis (7.13)

where J;; = (J);j are the components of the Jacobian matrix and should be distinguished from
the J, the Jacobian determinant. The superscript labels have been omitted for brevity, but J;; and
J should be understood as ]fjk) and J® for k = 1,...4, corresponding to the four sides of the
cloak. Written in terms of wave normals n and the phase velocity v, equation ([/.11)) takes the
form

uo 'n-g'n—-v*=0. (7.14)
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The representation ([/.14) is obtained by assuming a plane wave solution to the Helmholtz equa-
tion (see, for example [I10])[f.
From (/.11)) and ([.14) the slowness vector can be expressed in terms of the original material

properties (through p and y) and the map (through J) as

n n 0
s=—= £ 7.15
v T W (7.15)

Further, in the undeformed configuration, the equivalent conserved quantities are yo'8-8-1 =
0and up! = V2. Together with (7.11)) and (7.14), these two equations imply that

—T
s=J's= I N_ ]_TN\/E, (7.16)
14 Z

where J-T = (JT)~! denotes the inverse and transpose of J.

Now, consider a ray (i.e. a line) in the ambient medium, in direction N passing through X,
and parameterised by t. The corresponding curve in the cloak is x(t) = F (X, + tN), whence

dX,'
E = ]IJNza

which using (7.16) can be rewritten in the form

dx; Y
i JiTi 5j\/£~ (7.17)

Taking the derivative of (/.1€) for constant N yields

ds; i [u
e Sk Sn Jij Jim Jnm a—xl\/g

Here is it emphasised that ]ﬁl = (J7')ij as opposed to 1/J;;. Using the compatibility condition,
that is, the deformation gradient should be irrotational under finite deformation & 0]/ 0x; =

Ogi» the partial derivative above can be written as 8] ;/Ox;, whence

dsi a]ml
— —/— 7.18
dr =Sm SnJne Ox; Q’ ( )
where ¢i is the permutation tensor and the equality J;, 8]]711 [Ox; = — ]ﬁl('?] 1m/Ox; has been used.
Consider the characteristic equations for the waves in the cloak (.13), together with the equa-
tions of the transformed rays (7.17) and (/.I8). The system ([/.17) and (F.I§) are the equations
of characteristics in the cloak, up to an arbitrary scaling constant 2/u/ 0. Thus, to leading order,

rays (or straight lines) in the ambient medium map directly to rays in the cloak.

! Alternatively, seeking a solution of the full wave equation in the form of the leading term in a WKB expansion
"Un(x,t
W, 1) ~ €9 t)Zl (x ) 25 @ > 0o,

yields the same result with 9¢/dt = v.
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Figure 7.2: Plots of the ray paths through the cloak for a cylindrical source. The grey lines indicate
the deformation of the space inside the cloak. (Animated versions of these figures may
be found in the supplementary material [30].)

Figure [/.2 shows rays emanating from a point source, passing through the cloak and emerg-
ing from the cloak along their original trajectory. In this sense, the object is “invisible” to an
observer outside the cloaking region. Figure [/.7 clearly illustrates how wave propagation in the
cloak is related to the map. Animated versions of figure /.7 can be found in the supplementary
material [B0Q].

An interesting alternative perspective is apparent if figure /.7 is viewed, not as rays diverging
from a source, but as rays converging to a focal point. It is observed that the rays converge to
the focal point around the inclusion. One can envisage several applications where such an effect
can be useful. For example, image distortion from the mirror mounts in telescopes could be
reduced by cloaking the mounts. In addition, apparatus and mounting structures on microwave
receivers could be cloaked to improve the quality of the signal. One could also conceive of
cloaking mounting points and the surrounding structures in laser cutting machines to protect

them from accidental damage.

Negative refraction

It is evident from figure [/.2 that, whilst the rays are continuous, they are not necessarily smooth.
In particular, at the interfaces of the cloak, refraction occurs characterised by the discontinuity
of the first order spatial derivatives of the rays. Of particular interest are the regions on the outer
boundary of the cloak where negative refraction occurs.

Consider figure[/.2d. Negative refraction occurs on the right hand interface between the cloak
and the ambient medium. A ray exiting the right hand side of the cloak with gradient M at point
X(©) = x(%) can be described by the equation ng) —Xgo) =M (ng) —XEO) ) in the ambient medium,
where X(*) is the position of the source. The behaviour of the ray at the interface is characterised
by the position of the source relative to the interface, its initial gradient and the properties of the
cloak. Therefore, without loss of generality, the following analysis is restricted to the right hand

side of the cloak. On the interior of the right hand side of the cloak, the ray exiting the cloak at
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x(0) is characterised by

@ (3" - Mxﬁ”))

X1 — a3

x2=x1(M+

The gradient of the ray as it approaches the exterior boundary from the interior of the cloak is

then
dx, M(a+w-e)(a+w) —xgo)(a +€)

= 1 pad
" xla(l;?w)‘ dx w(a+w)

Thus, the gradient is discontinuous at the exterior interface. For negative refraction it is required

that m* M < 0. This inequality is satisfied when either

a+eé or (0) a+é
2 (a+w)(a+w—-¢)

0<M<x” <M<0. (7.19)

(a+w)(a+w-¢)’
For a source located on the line X, = 0 as in figure [/.2d, the above inequalities reduce to the
single inequality
a+w)(w-2e¢
X9 < - (a+w)( ) ’
a+e

which is satisfied for all sources outside the cloak XES) < —(a+ w), provided w < a + 3¢. Thus,
for a sufficiently thin cloak and a cylindrical source placed along X, = 0 at any distance from the
cloak, negative refraction is expected on the opposite side of cloak.

For a source located along the line X; = 0, the inequalities (7.I9) become

(a+w)(w-2¢) ) _(a+w)(w-2e)

(s)
X 0 7.20
(a+w-¢) (a+w-¢) RRcE (7.20)

0<x% <
where the fact that |x§0)] < (a + w) has been used. Since a,w > 0, and 0 < ¢/a < 1, the
above inequalities are never satisfied, hence, the lack of negative refraction on the horizontal
interfaces in figure [/.2d. Similar arguments may be used in other regions to decide whether
negative refraction occurs or not. It is observed that negative refraction always occurs at the
interfaces between the different regions of the cloak, where the material properties (equivalently

the transformation) are not smooth.

7.1.5 Scattering measure

It is desirable to have some quantifiable measure of the quality of the cloak with respect to shield-
ing, rather than relying on visual observations. However, it is not obvious what “quality” means
with respect to a cloak, given that there are essentially three fields involved, i.e. the ideal field
in the absence of both cloak and inclusion, the uncloaked field with an inclusion present but
without a cloak, and the cloaked field with both the inclusion and cloak. Previous experimental
works [141] have used an L, norm computed directly from the measured fields to place a numer-
ical value on the quality of the cloak. It is in this spirit that the following “scattering measure” is

formally introduced as a tool to quantify the cloaking effect

-1

E(ur, up, R) = /\ul(x)—uz(x)\zdx fyuz(x)yzdx , (7.21)
R R
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where R c R? is some region outside the cloak, and u; (x) and u,(x) are any two fields. In the
present chapter, the quantities € (u,, ug, R) and € (u,, up, R) are given for a series of illustrative
simulations. The field up(x) = i Hgl) (wmpc — Xo|)/4 is the Green’s function for the unper-
turbed problem and represents the “ideal” field, u, (x) and u.(x) are the uncloaked and cloaked
fields respectively. Thus, perfect cloaking corresponds to a vanishing £. Along with the raw
scattering measures an additional quantity, Q = |€(uy, uo, R) — € (uc, uo, R)|/E (uy, o, R), is
also presented. The parameter Q characterises the relative reduction of the scattering measure
by the introduction of a cloak. It should be emphasised that this is only one of a number of

possible measures of quality.

X0 -

X0

(@) Strict scattering region (b) Forward Scattering (c) Corner Scattering

Figure 7.3: The three regions used for computation of the scattering measure.

Choice of R. For the purpose of illustration three different regions of integration are consid-
ered, as shown in figure .3. The three regions used were chosen as follows: (a) R is the most
strict region used taking into account significant near field effects and a wide range of scattering
angles. However, it is unlikely that this region would be measurable in practice. (b) The forward
scattering region (R,) is relevant if the scattered field is measurable over a wide range of forward
scattering angles. (c) The corner scattering region (R3) is employed for sources located along
the diagonal of the square inclusion. It is emphasised that | R; || # | R2| = | R3], and the leading
edges of the regions R, and R3 are located at the same distance from the source.

In the following section the scattering measures will be presented for a series of illustrative

simulations.

7.1.6 Illustrative simulations

A series of illustrative simulations were created using the finite element software COMSOL Mul-
tiphysics®. Perfectly matched layers were used in the vicinity of the boundary of the computa-
tional domain in order to simulate an infinite domain. For the purposes of these computations,
the following non-dimensional parameter valuesf] were chosen: a = 0.5, w = 0.5, y = ¢ = 1,
Uy =0.1, 00 = 0,& = 1 x 107°. Figures /4 and .3 show the displacement amplitude field u(x)

for a cylindrical source oscillating at w = 5 and w = 10 respectively. The figures clearly illustrate

*Throughout this chapter, all numerical parameters are normalised such y = g = 1 unless otherwise stated.
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Source Scattering Measure £
Position Frequency Uncloaked Cloaked Q
Scattering region R
[-3,0]" 5 0.1529 4351x107%  0.9972
[-3,0]T 10 0.1455 4514x107%  0.9969
[-3,3]Y/V2 5 0.2002 3.941 x 107" 0.9980
[-3,3]%/v2 10 0.3286 4.068x 107 0.9988
Scattering region R,
[-3,0]T 5 0.3224 3.664x 107" 0.9989
[-3,0]T 10 0.3093 1.167x 107> 0.9962
Scattering region R3
[-3,3]T/V2 5 0.2988 3.654x 107" 0.9988
[-3,3]%/v2 10 0.2988 7.803x107%  0.9974

Table 7.1: The scattering measures corresponding to the simulations shown in figures 4 and 3.

N0
"), S

(a) Uncloaked, xo = [-3,0]T (b) Cloaked, xo =

\ 7

& A ‘
(c) Uncloaked, xy = [-3,3]%/v/2 (d) Cloaked, xy = [-3,3]T/V2

-0.1 -0.08 -0.06 -0.04 -0.02 O 0.02 0.04 0.06 0.08 0.1

Figure 7.4: Plots of the field u for the uncloaked and cloaked square inclusion, where the angular
frequency of excitation is w = 5. The position x, of the source is indicated under the
relevant plot.
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(c) Uncloaked, xy = [-3,3]T/v2 (d) Cloaked, x, = [-3,3]"/V/2

Figure 7.5: Plots of the field u for the uncloaked and cloaked square inclusion where the angular
frequency of excitation is w = 10. The position x, of the source is indicated under the
relevant plot and the inclusion is located at the centre of the image in all cases. The
colour scale is as indicated in figure 4.

0.15/ ;T e I N
; . ~.n ot /., .......
1 /.
! /
0.11 ,' —No Inclusion | X A
W . Cloaked Inclusion Qo |/
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0.05r f i =
i N
1 g I
!
% 5 10 15 0 5 10 15
w w
(a) (b)

Figure 7.6: (a) The scattering measure plotted against angular frequency. (b) The log of the scat-
tering measure plotted against angular frequency. The solid line corresponds to the
continuum in the absence of both an inclusion and cloak. The dashed line represents
the cloaked inclusion and the dash-dot line corresponds to the uncloaked inclusion. The
region R, (see figure .3 and the associated text) was used to compute the error measure.
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Source Scattering Measure £
Boundary Condition Frequency Uncloaked Cloaked Q

Scattering region R

Neumann 5 0.1624 4351 x 1074 0.9973

Neumann 10 0.1558 4540 x107*  0.9971

Dirichlet 5 0.2931 1.038 x 1072 0.9646

Dirichlet 10 0.2553 7.875x107  0.9692
Scattering region R,

Neumann 5 0.3436 3.664 x 107 0.9989

Neumann 10 0.3258 1.163x 107 0.9964

Dirichlet 5 0.4864 1.566 x 1072 0.9678

Dirichlet 10 0.5030 1.673 x 1072 0.9667

Table 7.2: The scattering measures for a void with Neumann and Dirichlet boundary conditions.
Here the source is located at [-3,0] 7.

the efficacy of the square cloak, even at relatively high frequencies. Table [/.1 shows the corre-
sponding scattering measures as introduced in section [/.I1.5. It is clear that this square “push
out” cloak is highly effective. Indeed, for the illustrative simulations presented here, the cloak
reduces the scattering measure by not less than 99.62% compared with the uncloaked inclusion.

Figure [/.6 shows the scattering measure plotted against non-dimensional angular frequency
w (with g = p = 1). The solid curve in figure [/.§ corresponds to the continuum, in the absence of
both cloak and inclusion. This curve gives an indication of the numerical error in the simulation
induced by, for example, the use of perfectly matched layers and the numerical discretisation.
The dashed curve corresponds to the cloaked inclusion, whilst the dash-dot curve corresponds
to the uncloaked inclusion. It is observed that the numerical measure of the cloaked inclusion
remains close to that of the intact continuum for a large range of frequencies. Moving to di-
mensional quantities, suppose the simulation corresponded to a particular polarization of an
electric wave travelling through glass at a speed of approximately 2 x 10® m/s. The line w = 10

on figure [.g then corresponds to a frequency of approximately 340 MHz.

Boundary considerations

Whilst cloaking via transformation geometry has been extensively treated in the literature, the
sensitivity of the cloaking effect to the boundary conditions is rarely discussed. The cloak is
formed by deforming a small region (a point in the case of the classical radial transformation [126]),
into a larger finite region. If the region is an inclusion, then the natural interface conditions may
be determined following the method outlined in section [/.1.7. If the cloaked region is a void or
rigid inclusion, however, there is some freedom in choosing the boundary condition, subject to
the constraints of the physical problem. Figure [/77] shows the field u(x) for a cloaked void, with
Neumann (parts (a) and (b)) and Dirichlet (parts (c) (d)) conditions applied to the interior of
the cloaked region. The corresponding scattering measures are shown in table [/.2.

Although the square cloak is effective in both cases, it is clear from both the figures and the
table of scattering measures that the type of boundary condition imposed on the cloaked object

affects the quality of the cloaking. Indeed, for a void (Neumann) the cloaking reduces the scat-
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(c) Uncloaked, Dirichlet (d) Cloaked, Dirichlet

Figure 7.7: Plots of the field u for the uncloaked and cloaked square inclusion with Neumann
boundary conditions on the boundary of the inclusion in parts (a) and (b), and Dirich-
let boundary conditions on the boundary of the inclusion in parts (c) and (d). Here the
source is located at x = [-3,0]" and oscillates at w = 10. The colour scale is as indicated
in figure /4.
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tering measure by between 99.7% and 99.9% for both w = 5 and w = 10. In contrast, cloaking
reduces the scattering measure of a rigid inclusion (Dirichlet) by between 96.5% and 96.8% for
w = 5 and between 96.7% and 96.9% for w = 10. The effect of the boundary condition may
be interpreted in the following way. As a result of the transformation, the cloaked object and
cloak together behave as if the void is small. In this sense, the cloaked inclusion represents a
singular perturbation of the fundamental solution of the Helmholtz equation. In the case of a
free void with Neumann conditions, the leading order term in the asymptotic expansion is the
dipole term, which is of order ¢* and decays like the first derivative of the fundamental solu-
tion. On the other hand, for a fixed void with Dirichlet conditions, the leading order term in the
expansion is the monopole term which is of order € and decays like the fundamental solution.
Thus, the perturbation from the free void is smaller than the perturbation from the fixed void,

leading to improved cloaking

7.2 Cloaking path information

In recent years there has been much interest in experiments to elucidate the fundamental prin-
ciples of quantum mechanics, and in particular the relationship between measurement and sys-
tem behaviour. One basic experiment which with its variants features in many such experimen-
tal studies is the classical Young’s double slit experiment (see, for example, [66,67]). This sug-
gested that it may be of interest to consider the interaction of the excellent mechanical cloaking
demonstrated earlier with the foundational quantum mechanics experiment. A recent paper by
Greenleaf et al. [64] considers an application of cloaking via transformation optics in quantum
mechanics. In particular, Greenleaf et al. present a class of invisible reservoirs and amplifiers
for waves and particles. The issues discussed below, which are raised by this linkage between
cloaking and quantum mechanics, are in some ways similar to those discussed by Greenelaf et
al.

Thus, a Young’s double slit experiment is considered where a monochromatic plane wave is
incident on a screen with two apertures. Due to the superposition of the waves passing through
the two apertures, the distinctive double slit interference pattern is produced on an observation
screen placed on the opposite side of the apertures to the source. The result of a simulation of
the standard experiment is shown in figure /.84, with the diffraction pattern produced on the
observation screen (in this case, a vertical line near the right hand edge of figures [/.84-/.8d)
shown as curve (a) in figure [/.8d. Placing an object (inclusion) over one slit, as in figure .88,
partially destroys the diffraction pattern. The corresponding pattern on the observation screen
is shown as line (b) in figure .8d. However, coating the object with the square push out cloak
presented earlier, as shown in figure [/.8d, restores the original diffraction pattern almost entirely.
The interference pattern corresponding to the cloaked object is shown as curve (c) in figure .8d.

The simulation, shown in the supplementary material [30], confirms that the excellent cloak-
ing for the inclusion position of figure [.8d, exemplified in figure .84, holds irrespective of the
inclusion position. It has thus been conclusively demonstrated that the cloaking is of sufficient
quality to render the interference pattern almost immune to movement in the position of the

cloaked obstacle. In particular movement of the cloaked obstacle, it would seem, does not yield
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(b)
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Figure 7.8: (a)-(c) The field u(x) for the Young’s double slit experiment with no inclusion, an un-
cloaked inclusion, and a cloaked inclusion respectively. (d) A plot of |u(x)| over the
observation screen illustrating the interference fringes for cases (a)-(c). (An animated
version of this figure may be found in the supplementary material [37].)
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Figure 7.9: The lattice formed from the principal directions of the stiffness matrix for the contin-
uum cloak.

any information about the passage of waves through one slit or the other. This consideration
would be important if one were able to carry out an experiment in which single quantised ele-
ments of vibration were in the system at any given instance in time. The quantum mechanical
view would be that, if no path information were available from measurements, the interference
fringes behind the double slit should persist.

This proposed quantum experiment raises interesting questions if an appropriate vibration
transducer were embedded within the cloak, so that information about vibrations moulded by
the cloak were available to experimentalists. One would assume, in line with the results of say
optical experiments of the type referred to in [66], that any path information gained in this way
would be evident in a change in the fringe pattern. This suggests the interest of a comprehensive
quantum mechanical treatment of the interaction between mechanical cloaks and measurement

systems.

7.3 Cloaking with a lattice

Cloaks designed using transformation optics may have such extreme physical attributes that the
requisite materials cannot be physically realised without recourse to metamaterials. It is with
this motivation in mind that the following approximate cloak in the low frequency regime is
developed. The cloak is constructed as an approximation to the continuum square cloak consid-
ered earlier, but is realised using a discrete lattice structure, formed from rods and point masses.
The advantage of a discrete structure over a continuous material is that much higher contrasts
in material properties are easily realisable using lattices. The development of an approximate
cloaking material using a lattice may allow the practical construction of cloaks. In the following
discussion, it is emphasised that repeated indices are not summed over.

With reference to the formulae for the Jacobian of the transformation in section [.1.1], the
symmetric stiffness tensors ct = (u/ J0 150 ](i)T are positive definite. Therefore, the stiffness

matrix admits the following diagonalisation
¢ = p* A p), (7.22)

where P() = [egi), egi)] are the matrices with columns consisting of the principal directions

106



Chapter Seven A microstructured invisibility cloak

(eigenvectors) of C(), and A() = diag(/lgi) , /\Ei)) is the diagonal matrix of the corresponding
ordered [positive] eigenvalues such that Aii) > /\g). The eigenvectors yield the principal lattice
vectors of the locally orthogonal lattice with homogenised stiffnesses /lj(i) in direction ej(i) . In
particular, the lattice nodes lie at the intersection points of the solutions of the following non-

linear system of first order differential equations

d i, (i . .
Exj.()ze].()(x]()), fori=1,...4, andj=1,2, (7.23)

for some array of initial positions, where xj(i) is the position vector along the characteristic de-

fined by ej(i) inside the i side of the cloak and 7 parametrises the curve. Naturally, this would
lead to a lattice with curved links. However, for a sufficiently refined lattice the curved members
may be replaced with linear links. The lattice links are then the linearisation of the characteristic
between two neighbouring nodes on the characteristic. Figure /.9 shows the geometry of the
lattice formed from the principal vectors of the stiffness matrix. Requiring local conservation
of flux allows the stiffness of the lattice link parallel to ej(i) to be determined as Eij/\j(i), where
¢j; is the length of the link along ej(i) . 'The distribution of nodal mass may be determined by
evaluating the integral
m(xp)= [ px)d,
A(xp)

over the unit cell A(x,) containing the lattice node at x,.

In principle, the lattice cloak may be constructed exactly as described above and illustrated in
figure [/.9. However, for narrow cloaks where w/a < 1, the locally orthogonal lattice depicted
in figure .9 may be approximated by a globally orthogonal regular square lattice. A regular
square lattice is more convenient to implement compared with the non globally orthogonal lat-
tice generated from the eigendecomposition of the stiffness matrix. Although the geometry of
the approximate lattice is regular, it should be emphasised that the stiffness of the links and mass

of the nodes vary with position according to the projection of A(x) and p(x) as described above.

7.3.1 Geometry and governing equations for an inclusion cloaked by a lattice

Consider a square inclusion Qy = {x : |x;| < a,|x,| < a}, a > 0, embedded in R?, surrounded
byacloak Q_ = {x:a < |x1| <a+w,a < |xz] < a+w} N Qp, where w > 0 is the thickness of
the cloak. The cloak consists of a discrete lattice structure with lattice points at x = ¢p, where
peZ?n{n:fneQ_}. Thelattice is statically anisotropic with links parallel and perpendicular
to the boundaries having contrasting material properties, as shown in figure [/.17.

As for the continuum cloak, solutions of the Helmholtz equation are of primary interest. In

particular, the following problem for the field u(x) is studied

[uV - (V) + ow*Ju(x) = =8(x - xo), x,x0 € Q. (7.24)

[V - (V) + 000’ Ju(x) =0,  x€Qy, (7.25)

m(p)o’u(p)+ Y. tn(q.p) [u(p+a) - u(p)] =0,  inQ., (7.26)
q<N (p)
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Figure 7.10: The lattice cloak Q_, surrounding the square inclusion Q, embedded in the ambient
medium Q.. The thick black lines in the lattice cloak indicate links of high stiffness or
conductivity, while the thick grey lines indicate links of low or stiffness conductivity.

where e; = [8;1,012] %, p € Z*, and N = {+e,, e, } is the set of nearest neighbours. The stiffness
and density of the ambient continuum are denoted by y and p respectively, whilst the corre-
sponding quantities of the inclusion are denoted by y, and go. The stiffness of the lattice links
are the restriction of the eigenvalues of the stiffness matrix to the links. In particular, for the
link connecting nodes p and p+q, (q, p) takes the value /\Ei) |1¢p,¢(p+q)] if the vector q is parallel
to the exterior boundary of the cloak, I'), and /lgi) |[¢p,e(p+q)] Otherwise. The corner regions are
matched as illustrated in figure /.10. Here, /\j(i) |1¢p,¢(p+q)] indicates the restriction of /\j(i) to the
line [4p, ¢(p + q)]. The associated interface conditions corresponding to continuity of tractions

are

0 forxe 0O andx+/q ¢ Q-
n-vu(x) =1 ty(¥q,p)u(x+ Lq)/u forxe T andxxqeQ_, i=1,...,4, (7.27)
ln(Fq,p)u(x +Lq)/u, forxel y@D andx+qe Q.

and the Sommerfeld radiation condition at infinity. The quantity #(q, p) is the projection of the
diagonalised stiffness matrix onto the lattice link connecting lattice points p and p + q.
Physically, (7.24)-(7.27) corresponds to the problem of the propagation of time-harmonic
waves of angular frequency w generated by a point load at xy. The field u(x) then corresponds
to the out-of-plane displacement amplitude field. The region Q_ consists of an array of nodes

of mass m, connected by massless rods of length ¢ and stiffness according to their orientation.
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Source Scattering Measure £
Position Frequency Uncloaked Cloaked Q
Scattering region R
[-3,0]" 3 0.1430 0.1662  0.1617
[-3,3]7/V2 3 0.1113 0.1816 0.6327
[-3, O]T 5 0.1529 0.2495 0.6318
[-3,3]T/V2 5 0.2002 0.3538 0.7676

Scattering region R,

[-3,0]" 3 0.2341 0.3362 0.4363

[-3,0]T 5 0.3224 0.4671 0.4489
Scattering region R3

[-3,3]Y/V2 3 0.1578 0.3455 1.189

[-3,3]T/V2 5 0.2988 0.6011 1.012

Table 7.3: The scattering measures corresponding to the simulations for the basic lattice model

shown in figures /.11 and .12

7.3.2 Illustrative lattice simulations

The approximate lattice cloaks were examined using the finite element software Comsol Multi-
physics®. Perfectly matched layers were used in the vicinity of the boundary of the computational
domain in order to simulate an infinite domain. For the purpose of illustration, a square of semi-
width a = 0.5, surrounded by a lattice cloak with w = 0.1 and links of length 5 x 1073 was used.

The inclusion is located at the origin of the computational window.

A basic lattice cloak

Before proceeding to the illustrative simulations for the regular lattice with heterogeneous distri-
butions of stiffness and mass, it is instructive to consider a simple approximation. Many cloaks
created via transformation optics have the general characteristic of having a high phase speed
parallel to the boundary of the cloak, and a low phase speed in the direction normal to the bound-
ary (see [B9] among others). Therefore, as an initial approximation, the case of a regular square
lattice with a homogeneous, but orthotropic distribution of stiffness and a homogeneous distri-
bution of mass is considered. Consider the right-hand side of the cloak Q") For a narrow cloak
with w/a << 1, x; ~ a+wand hence the density may be approximated by p ~ 1+a/w. The greatest
contrast in stiffness occurs at x, = 0, thus the vertical links are assigned stiffness m§” (a+w,0)
and the horizontal links stiffness ﬁxlgl) (a + w,0). The mass of the nodes is /2(1 + a/w). The
material properties of the remaining three sides of the cloak are adjusted accordingly.

Figures [/.I1] and show the field u(x) for the uncloaked inclusion (a) and (d), and the
inclusion cloaked with this basic cloak (b) and (e). For w = 3 figure [.I]] indicates that the ba-
sic cloak partially mitigates the shadow cast by the inclusion and acts to reform the cylindrical
wave fronts behind the inclusion. As illustrated by figure [.12, this partial cloaking effect de-
teriorates with increasing frequency. Indeed, in some cases, the presence of the lattice cloak
seems to increase the shadow region. Table [/.3 details the values of the scattering measures for
the fields illustrated in figure /.11 and [/.12. The scattering measures shown in table [/.3 suggest

109



Chapter Seven A microstructured invisibility cloak

€90

(a) Uncloaked (b) Basic cloak (c) Refined cloak

(d) Uncloaked (e) Basic cloak (f) Refined cloak

Figure 7.11: Plots of the field u(x) for a cylindrical wave incident on a square inclusion in the
absence of a cloak (parts (a) and (d)), a square inclusion coated with the basic lattice
(parts (b) and (e)), and an inclusion coating with the refined lattice (parts (c) and (f)).
Here the angular frequency of excitation is w = 3 and the source is located at xy =
[-3,0]T in (a)-(c), and at xy = [-3,3]T/\/2 in (e)-(f). The colour scale is as indicated
in figure /4.

that, although visually the basic lattice cloak appears to work reasonably well, this may not be
the case. The fact that the basic lattice cloak increases the scattering measure compared with
the uncloaked inclusion further emphasises the need for an objective measure of the quality of
cloaks, rather than simply relying on visual observations.

This increase in the scattering measure by the basic lattice cloak motivates the introduction

of the following refined model.

A refined lattice cloak

Consider now the lattice described in section .31, i.e. the regular square lattice with inhomo-
geneous distribution of stiffness and mass. Figures [.11] and .12 show the field u(x) for the
uncloaked inclusion and the inclusion with a lattice cloaking. With reference to the simulations
for the basic cloak (b) and (e) the refined lattice cloak (c) and (f), it is observed that the efficiency
of the refined lattice cloak, whilst not as high as that of the continuum cloak, is much greater than
that of the basic cloak. The table of scattering measures for the approximate cloak is shown in
table 7.4 and further evidences the effectiveness of the refined lattice cloak. Indeed, for several
simulations (in particular those where the scattering measure is taken over the forward or cor-
ner scattering regions R and R, respectively) the efficiency of the refined cloak in reducing the

scattering measure approaches that of the continuum cloak.
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D))DD "

(a) Uncloaked (b) Basic cloak (c) Refined cloak

(d) Uncloaked (e) Basic cloak (f) Refined cloak

Figure 7.12: Plots of the field u(x) for a cylindrical wave incident on a square inclusion in the
absence of a cloak (parts (a) and (d)), a square inclusion coated with the basic lattice
model (parts (b) and (e)), and an inclusion coating with the refined lattice (parts (c)
and (f)). Here the angular frequency of excitation is w = 5 and the source is located
at xo = [-3,0]" in (a)-(c), and at xy = [-3,3]T/\/2 in (e)—(f). The colour scale is as

indicated in figure /4.
Source Scattering Measure £
Position Frequency Uncloaked Cloaked Q
Scattering region R
[-3, O]T 3 0.1430 0.01191 0.8929
[-3,3]T/V2 3 0.1113 3.385x 1072 0.9763
[-3,0]T 5 0.1529 0.04324 0.7173
[-3,3]T/v2 5 0.2002 0.03125 0.8438
Scattering region R,
[-3,0]T 3 0.2341 0.01150 0.9508
[-3,0]T 5 0.3224 0.0172 0.9508
Scattering region R3
[-3,3]T/V2 3 0.1578 5.047x 107 0.9680
[-3,3]%/v2 5 0.2988 0.02114 0.9292

Table 7.4: The scattering measures corresponding to the simulations shown for the refined lattice
model in figures .11 and 12,
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As expected the effectiveness of the lattice cloaks reduce with increasing frequency. However,

for sufficiently low frequencies the refined lattice cloak in particular, works well.

7.4 Remarks

The work reported in this, the final chapter of the present thesis, represents a comprehensive
treatment of a non-singular cloak for a square inclusion. The significant advantage of this contin-
uous cloak is the straightforward correspondence with a discrete metamaterial lattice structure.
Such a connection may present a method through which a physical cloak may be fabricated. The
material and geometric properties of the discrete cloak are directly linked to the properties of the
continuum cloak, and hence, to the properties of the formal map. The effectiveness of such dis-
crete cloaks, particularly at low frequencies, was demonstrated through numerical simulations
and the use of objective scattering measures.

Particular attention was paid to the objective measurement of the quality of the cloaking effect.
The quality of the cloaks was primarily assessed using a scattering measure introduced as an
L, norm of the difference between the cloaked field and the ideal unperturbed field. A further
demonstration of the efficacy of the square push out cloak was presented via the classical Young’s
double slit experiment. It was shown that the interference pattern on the observation screen
was significantly modified when an obstacle was place in front of one of the apertures. However,
if the obstacle was cloaked then the interference pattern remained almost entirely unperturbed.
This numerical experiment presents a further, perhaps more interesting, method through which
the quality of particular cloaks may be examined. Moreover, the experiment raises interesting

questions regarding the interaction between cloaking and quantum mechanics.
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Chapter Eight

Concluding remarks

The present text represents a comprehensive study of a range of physical problems which may be
described by the unified theme of the dynamic response of metamaterial structures. Discrete lat-
tice models were first employed by Newton [112], who used simple mass-spring systems to study
the propagation of sound. As exemplified by the present thesis and references herein, such lat-
tice models remain both useful and interesting systems to study, providing a range of problems
and many fascinating phenomena. The dynamic response of structured media depends on sev-
eral factors including the geometrical and material properties of the micro-structure in addition
to the external load (e.g. applied force or incident wave). For low-frequencies, the structured
medium is often homogenised with the effective material properties being determined from the
static response. However, as demonstrated in chapter [, the effective material properties de-
rived as a limiting case of the dynamic response (for small frequency and wave number) may
not necessarily correspond to those derived from the purely static response. Moreover, in the
finite frequency regime the response of discrete lattice systems is strongly anisotropic yielding
striking primitive waveforms as shown in chapter f|. Such effects can be employed to create in-
teresting systems such as flat “metamaterial lenses”, which exhibit the novel effects of filtering,
focusing, and negative refraction for elastic media. It is also possible to control the width and
position of stop bands as well as the resonant frequencies for discrete lattice structures. With
this in mind, compact estimates for the widths of stop bands, and the position of saddle points,
maxima and minima of the dispersion surfaces were derived in chapter J.

The dynamic response of lattices with defects, considered in chapters f and f, also brings many
interesting features. In particular, for rectilinear defects in square lattices it was demonstrated
that a connection can be made with the problem of a infinite line defect and a homogenised con-
tinuous inclusion. In chapter ], the defect was created by removing some mass from a line of lat-
tice nodes, such that their mass was smaller than those of the ambient lattice. For one- and three-
dimensional multi-atomic lattices, there exists some lower bound on the amount of mass that

should be removed from the defect nodes such that a localised mode may be initiated [98,109].
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However, as shown in chapter [, this is not the case for uniform two-dimensional lattices: there
is no lower bound on the mass that should be removed from a defect node to initiate a localised
mode. The primary tool used to study these localised modes for finite rectilinear defects are the
lattice Green’s functions, which have direct connections to so-called Watson Integrals (see [[150]
and references therein). In general, the lattice Green’s functions cannot be expressed in terms
of elementary functions. Nevertheless, their representation in terms of hypergeometric func-
tions allows compact asymptotic expansions to be derived for band-edge modes using analytic
continuation. Discrete metamaterial structures also have wide applicability in coupled systems,
such as the thermoelastic problem discussed in chapter f. It was demonstrated that a connection
can be made between the discrete problem for a thermally striped lattice and the corresponding
problem for the continuum. In particular, it was shown that it is possible to define an ‘effec-
tive stress intensity factor” for the discrete thermoelastic lattice. Moreover, for sufficiently long
cracks and low frequencies, the peak-to-peak amplitude of this ‘effective stress intensity factor”
was shown to be lower than that of the continuum. In this sense, the discrete lattice micro-
structure is said to reduce the stress intensity factor of an edge-cracked plate similar to the case
of micro-structured continua [[114].

One novel area of research in which metamaterials have found extensive use is that of invisi-
bility cloaks (see, for example, [89,137,[141]). In chapter [}, a design for a square metamaterial
cloak for fields governed by the Helmholtz equation was discussed. The material properties of
the cloak are continuous and piecewise smooth on the closure of the cloak. Nevertheless, the
contrast in principle stiffnesses required to achieve the cloaking effect is far beyond what can be
realised with “natural” materials. However, the metamaterial lattice model presented in chap-
ter [] is far less restrictive. With the approximate discrete mass-spring cloak design presented in
this thesis it was possible to obtain the requisite contrast in principle stiffnesses to physically re-
alise the cloaking effect. The material and geometric properties of the lattice cloak were derived,
analytically, for a continuum cloak. As demonstrated by the numerical simulations presented in
chapter [, such an approximate lattice cloak provides effective cloaking particularly in the low
frequency regime.

In summary, the present thesis provides a detailed study of wave propagation and the dy-
namic response of metamaterial structures in the physical settings of out-of-plane and in-plane
elasticity, electromagnetism, acoustics, heat conduction, and thermoelasticty. A wide range
of analytical and numerical techniques have been employed to study the problems presented
herein, leading to connections with other fields. To conclude, wave propagation in metamate-
rial structures remains an active area of research with many interesting phenomena yet to be
investigated. The reader is referred to the concluding remarks at the end of each chapter for a

more detailed summary of the work contained within the present thesis.
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WKB expansions

The WKB (also WKB] and occasionally LG) expansion is a semiclassical method for approximat-
ing solutions to singularly perturbed problems. In particular, WKB expansions are employed to
find approximate solutions to differential equations where the highest order derivative is multi-
plied by some small positive parameter, ¢. The method was developed in the 1920’s by Wentzel,
Kramers, Brillouin, and Jeffreys [[12, 13, 68, 87, 145], although the foundations of the method
can be considered to have been developed almost a century earlier by Carlini, Liouville, and
Green. The method is now standard and is included in many graduate level texts, see [/, 119]
for example.

Consider the second order ordinary differential equation (Helmholtz equation in 1D)
d2
(szﬁ+Q(x))u(x) =0, Q(x)>0,0<ex1. (1)
x

It would be natural to seek a solution of the form u(x) ~ A(x)e*®/%, § - 0*, where A(x)
and S(x) are commonly referred to as the amplitude and phase functions respectively. However,
it should be noted that in this form, the amplitude and phase functions depend on the small
parameter 8. The implicit dependencies may be made explicit by expanding A(x) and S(x) as

power series in §, whence

u(x) ~ exp{i 8"_1i”8n(x)} , as d > 0. (2)

n=0
The form () is the classical WKB expansion (see [7]). Alternatively, (f}) may be recast as

u(x) ~ e/ Y i"Au(x)8", asd — 0. (3)
n=0

The above form will be most convenient for the purposes of this thesis. Direct substitution of
(B) into ([I)) yields

2 (P2 (x) + Qx)A]

82 ()4, (1) + 20/ (D4,(0)] - 1829 (P} =0 @)

In order to balance the term involving Q(x), the ratio £2/8* must be of order unity. Hence, § o< &
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WKB expansions

and for convenience one may chose ¢ = §. Comparing power of ¢, a hierarchy of equations is

obtained, the first of which is the eikonal equation for the phase

?'(x) = +/Q(x), (5a)
followed by the transport equation
29" (%) Ag(x) + Aogp” (x) = 0, (5b)
with the higher order terms satisfying
¢"(x)An+2¢ (x)AL + Al | =0, forn>1. (5¢)

The solution to leading order is then
u(x) ~ QM4 (x){ ¢y exp [is_1 f VvV Q(1) dt] + ¢ exp [—is_l f V Q(1) dt] , (6)
X0 X0

where ¢y, ¢, and xp are arbitrary constants. Here Q /%(x) is the solution of the transport equa-
tion (up to a multiplicative constant, and the exponential functions satisfy the eikonal equation.
It is remarked that the leading order solution (ff) for the Helmholtz equation is equivalent to
that derived in [[]] for the Schrédinger equation, if Q(x) is taken to be strictly negative in [7]; it
is emphasised that Bender and Orsza [/] took the WKB expansion in the form (), as opposed
to the form () as is done here.

Of course, one may obtain more accurate representations of u(x) by continuing to construct
the hierarchy of equations (§). However, this isn't always necessary and much information may
be extracted from the eikonal and transport equations without recourse to the leading, or higher
order, solutions. Indeed, for the purposes of this thesis, it will be sufficient to simply consider
the eikonal equation.

In chapter [, the WKB expansion is applied to equations of the form
[SZV -P(x)V + Q(x)] u(x) =0, for x € Q c R? (7)

Nevertheless, the WKB approach outlined here remains applicable with the extension to two
dimensions adding only to the tediousness of the algebra, rather than any additional technical
difficulty.
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