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Abstract

In this thesis, we study a modified Markovian batch-arrival and bulk-

service queue including finite states for dependent control. We first consider

the stopped batch-arrival and bulk-service queue process Q∗, which is the

process with the restriction of the state-dependent control. After we obtain

the expression of the Q∗-resolvent, the extinction probability and the mean

extinction time are explored. Then, we apply a decomposition theorem

to resume the stopped queue process back to our initial queueing model,

that is to find the expression of Q-resolvent. After that, the criteria for

the recurrence and ergodicity are also explored, and then, the generating

function of equilibrium distribution is obtained. Additionally, the Laplace

transform of the mean queue length is presented. The hitting time behaviors

including the hitting probability and the hitting time distribution are also

established. Furthermore, the busy period distribution is also obtained by

the expression of Laplace transform. To conclude the discussion of the queue

properties, a special case that m = 3 for our queueing model is discussed.

Furthermore, we consider the decay parameter and decay properties of

our initial queue process. First of all, similarly we consider the case of the

stopped queue process Q∗. Based on this q-matrix, the exact value of the

decay parameter λC is obtained theoretically. Then, we apply this result

back to our initial queue model and find the decay parameter of our initial

queueing model. More specifically, we prove that the decay parameter can

be expressed accurately. After that, under the assumption of transient Q,

the criteria for λC-recurrence are established. For λC-positive recurrent

examples, the generating function of the λC-invariant measure and vector

are explored. Finally, a simple example is provided to end this thesis.
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Chapter 1

Introduction

The background of the continuous-time Markov chains, the Markov queue

processes and the decay parameters will be introduced to start this thesis.

Then, the main queueing model, which is mainly discussed throughout this

thesis, will be presented. Additionally, I will briefly illustrate the structure

of the thesis by the end of the chapter.

1.1 Background

How many fields of science or engineering can you enumerate? Which is

unconcerned about probabilities and uncertainties? In fact, even everyday

life cannot be explained clearly without randomness. The Markov pro-

cess is such a variety of tool which clearly demonstrates most fundamental

models of stochastic phenomenon. This significant concept was introduced

by A. A. Markov in 1906, with only study on the simple cases of a finite

number of states theoretically. The cases of countable infinite state spaces

were launched by A. N. Kolmogorov in 1936. More and more general mod-

els such as queueing theory and branching process have been discussed by

many mathematicians since then. Thus, the development of Markov pro-

cess is playing a critical role in most scientific researches such as applied

probabilities and statistics.

The continuous-time Markov chain (regarded as Markov chain through-

out this thesis for simplicity) is one of the main parts of Markov processes
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and has a huge number of applications. For example, Brownian motion,

which is the primary model applied in finance, is closely related to the

Markov chain for they have many similar properties. The first former intro-

ducing of this concept was made by A. N. Kolmogorov (1931). In his study,

he found that the transition probability law among the states of a Markov

process follows either one of two differential equations, which are called the

Kolmogorov backward and forward equations. This significant discovery

promoted more and more mathematicians devoting themselves to the study

of Markov chains. Recent two decades, Markov chains have shown their

huge power in many areas of science and engineering with real practices

and applications.

One of the most significant applications of Markov chains is the Markov

queues. The first research of queueing theory was made by A. K. Erlang in

1909 regarding telephone conversations. Queueing theory is considered as

an influential subject of mathematical sciences since the birth-death process

is introduced by W. Feller in 1930’s. In 1950’s, D. G. Kendall applied the

Markov chain into the queue behavior, which is a significant development

of queueing theory. In fact, many real cases, i.e. bulk-internet block and

the application of a season ticket of a football club, could be considered as

a queueing process.

In recent years, Markovian queue is more and more important both in

the general queueing theories (for instance, S. Asmussen (2003), D. Gross

and C. M. Harris (1985), L. Kleinrock (1975) and J. Medhi (1991)) and in

the application of Markov chains (for instance, W. Anderson (1991), K. L.

Chung (1967), Z. T. Hou and Q. F. Guo (1988) and X. Yang (1990)). During

their studies, the idea of state-dependent control of arrival and service was

established. The negative arrival, which is to reduce the number of people

in the system, is a quite useful concept introduced by E. Gelenbe (1991)

and E. Gelenbe, P. Glynn and K. Sigman (1991). Since then, many other

authors have followed, including N. Bayer and O. J. Boxma (1996), P.G.

Harrison and E. Pitel (1993), W. Henderson (1993) and G. Jain and K.

Sigman (1996). Furthermore, P. R. Parthasarathy and B. Krishna Kumar

(1991) discussed the queueing model with the state dependent control at the
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state 0, which means that the arrival distribution is arbitrary when nobody

is in the queue. Then A. Y. Chen and E. Renshaw (1997) (2004) established

the possibility to let the queue system idle(i.e. nobody is in the queue) at

any time. However, all the models discussed before are only the simple

queue (i.e. only one person arrives or leaves at the same moment), which

eliminates the cases such practical cases as the waiting for the lift and the

arrival of the passengers in the aircraft. Since M. F. Neuts (1979) introduced

versatile Markovian arrival processes by using several kinds of batch-arrival

process and M. L. Chaudhry and J. G. C. Templeton (1983) discussed the

first course of bulk queues, the theory of batch arrival and bulk service have

been well developed until now. For example, we can see the most recent

result from C. Armero and D. Conesa (2000), R. Arumuganathan and K.

S. Ramaswami (2005), S. H. Chang, D. W. Choi and T. S. Kim (2004),

D. Fakinos (1991), L. Srinivasan, N. Renganathan and R. Kalyanaraman

(2002), U. Sumita and Y. Masuda (1997) and P. V. Ushakumari and A.

Krishnamoorthy (1998).

The decay parameter corresponding with the invariant measures and

vectors is one of the main theoretical part in Markov chains. A. M. Yaglom

(1947) first established the idea to demonstrate the long-term behavior, by

using a kind of conditional distribution, called quasi-stationary distribution.

J. F. C. Kingman (1963) first showed the existence of decay parameter,

which will be defined in Chapter 2. Since then, many scholars such as D. C.

Flaspohler (1974), P. K. Pollett (1988), J. N. Darroch and E. Seneta (1967),

M. Kijima (1993), M. G. Nair and P. K. Pollett (1993), R. L. Tweedie (1974)

and E. A. Van Doorn (1985) (1991), have applied this significant discovery

into many researches.

In view of this, this thesis is still only consider bulk queues, and the

aim is to discuss both the basic properties and the decay properties of the

model incorporating state-dependent control of any finite number (denote

m (m ≥ 2) in the thesis) of people in the system and no more than m people

can be served at the same moment.
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1.2 The Main Queueing Model of The Thesis

The model we discuss in this thesis is presented by a q-matrix denoted

by Q = {qij, i, j ≥ 0} of transition rates which is written as

Q = Q∗ +Q(0), (1.2.1)

where Q∗ = {q∗ij, i, j ≥ 0} and Q(0) = {q(0)ij , i, j ≥ 0} are both conservative

q-matrices, whose elements are given by

q∗ij =

 bj−i+m if j ≥ i−m, i ≥ m,

0 otherwise,
(1.2.2)

and

q
(0)
ij =

 qij if i < m,

0 otherwise,
(1.2.3)

i.e.

Q =



q00 q01 q02 · · · q0m · · ·

q10 q11 q12 · · · q1m · · ·
...

...
...

. . .
...

. . .

qm−1,0 qm−1,1 qm−1,2 · · · qm−1,m · · ·

b0 b1 b2 · · · bm · · ·

0 b0 b1 · · · bm−1 · · ·

0 0 b0 · · · bm−2 · · ·
...

...
...

. . .
...

. . .



, (1.2.4)

Here, bj(j ≥ 0) must meet the conditions of

b0 > 0, bj ≥ 0 (j 6= m),
∞∑

j=m+1

bj > 0, and − bm =
∑
j 6=m

bj < +∞. (1.2.5)

and 0 ≤ −qii =
∑

j 6=i qij < +∞.

The sequence {bm+1, bm+2, · · · } ≡ {λ1, λ2, λ3, · · · } are the arriving rates

of a compound Poisson process. λ1 means the rate of 1 person arriving at
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the same moment, λ2 means the rate of 2 people arriving at the same time,

and so on. {b0, b1, · · · , bm−1} are the service rates with

bm−1 : The service rate for a single customer;

bm−2 : The service rate for a couple of customers (served together);
...

...

b0 : The service rate for m customers at the same time.

Thus, in this queueing model, the maximum of m people can be served at

the same time but no limit for arrival. Q∗, which is named the stopped bulk-

arrival and bulk-service generator, describes the general batch queueing

model and Q0 represents the state-dependent control.

It is recognized that the first m rows of the matrix, i.e. the so-called

state-dependent controls, mean intuitively that when the queue length is

less than the service capacity m, some manager may move arbitrary num-

ber of customers to the queue in order to increase the service efficiency.

This assumption undoubtedly represents a large number of cases in the real

world. For example, if the seats are still clear in a bus, then perhaps the

manager will let some other customers without seats to come. Therefore,

it is important to consider such kind of models. On the other hand, it can

be seen that introducing such state-dependent control will make our queue-

ing model far more interesting. More specifically, as a result of including

state-dependent control, neither the arrival times nor the service times will

still be independent and identically distributed random variables. More

than that, we do not even know whether they are stationary or not. It is

well known that these two conditions are the basic assumptions for most of

the queueing models, since nearly all the techniques and tools in discussing

the properties of queueing models are no longer well defined without these

assumptions.

Hence, in order to discuss such kind of Markov queueing model with bulk

arrival and bulk service incorporating state-dependent control, we should

rely particularly on a useful method introduced by A. Y. Chen and E.

Renshaw (1990) (1993a) (1993b), which has a close relationship with the

excursion and large deviation theory. The methods, especially for Markov
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queueing processes, branching processes and birth-death processes, were

discovered in A. Y. Chen and E. Renshaw (1995) (1997) (2000) and E.

Renshaw and A. Y. Chen (1997). In the study of A. Y. Chen, P. Pollett,

J. P. Li and H. J. Zhang (2010), state-dependent control was considered

in the model, which means that arbitrary arrivals and services are allowed

when the queue system is almost empty (actually less or equal 2 people). In

this thesis, I will extend it to more generalized models and find some new

methodology.

1.3 Outline of the Thesis

This thesis will be concentrating primarily on the basic and theoretical

study of the Markov process and queueing theory. It is undoubtedly that

these results are very useful in the applications of the actual world, but

these connections will be considered in the future.

Chapter Two will show the basic concepts, theories and properties of

Markov chains and queue theory. This should be known by most of special-

ists and students in the field, but it is obbligato in analyzing our model.

In Chapter Three, we develop a method to calculate the resolvent of the

minimal Q∗-transition function and then we apply the construction theo-

rem to find the transition function of the basic Q-matrix. Moreover, we

will discuss its recurrence property, equilibrium distribution, the extinction

probability, the mean extinction time and queue length distribution.

The decay parameters and decay properties incorporating the invariant

measures and quasi-stationary distributions will be discussed in Chapter

Four.

The last chapter, Chapter Five, summarizes the main conclusions of the

thesis and some related problems and applications which need to be solved

in the future.
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Chapter 2

Basic Results of Markov Queue

In this Chapter, I will briefly introduce the basic concepts of continuous-

time Markov chains and its useful properties and results, which are well

known. More specifically, all the definitions, propositions, lemmas and the-

orems in section 2.1 come from the Chapter 1, 2, 5 and 6 of W. Anderson

(1991), while those in section 2.2 come from the Chapter III of S. Asmussen

(2003). Additionally, I will extend it to queue theory for the preparation of

my main work.

2.1 Continuous-time Markov Chains

Definition 2.1.1. A continuous-time stochastic process {X(t), t ∈ [0,∞)},
which is defined on a probability space (Ω,F , P ), with values in a countable

set E (called the state space of the stochastic process), is called a continuous-

time Markov chain if for any finite set 0 ≤ t1 < t2 < · · · < tn < tn+1 of

times, and the corresponding set {i1, i2, · · · , in−1, i, j} ⊆ E of states such

that P{X(tn) = i,X(tn−1) = in−1, · · · , X(t1) = i1} > 0, we have

P{X(tn+1) = j|X(tn) = i,X(tn−1) = in−1, · · · , X(t1) = i1}

= P{X(tn+1) = j|X(tn) = i}. (2.1.1)

(2.1.1) is called the Markov property, means that the future behaviour
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is independent of the past when the process is certain at present. If for

all s, t ≥ 0 and all i, j ∈ E, the conditional probability P{X(t + s) =

j|X(s) = i} only depends on t and is independent with s, we can say that

the process {X(t), t ∈ [0,∞)} is homogeneous (in this thesis, this condition

is automatically assumed), or has the stationary transition probabilities.

Therefore, P{X(t+ s) = j|X(s) = i} = P{X(t) = j|X(0) = i}, and we can

define the transition function of the process pij(t):

pij(t) =: P{X(t) = j|X(0) = i}, i, j ∈ E, t ≥ 0.

It is easily known that the finite-dimensional probabilities of the process

{X(t), t ≥ 0}, which are probabilities of the form P{X(tn) = in, X(tn−1) =

in−1, · · · , X(t1) = i1}, where 0 ≤ t1 < t2 < · · · < tn and i1, i2, · · · , in−1, in ∈
E are all expressed by the transition function pij(t) and the initial prob-

ability distribution pi = P (X(0) = i) (i ∈ E) of X(0). According to the

stationary property of the transition function, we have

P{X(tn) = in, X(tn−1) = in−1, · · · , X(t1) = i1}

= P{X(tn) = in|X(tn−1) = in−1, · · · , X(t1) = i1}

· P{X(tn−1) = in−1, · · · , X(t1) = i1}

= P{X(tn) = in|X(tn−1) = in−1}

· P{X(tn−1) = in−1, · · · , X(t1) = i1}

= pin−1,inP{X(tn−1) = in−1, · · · , X(t1) = i1}

= · · ·

=
∑
i0

pi0Π
n
m=1pim−1,im(tm − tm−1), (2.1.2)

where t0 = 0. Furthermore, a continuous-time Markov chain is uniquely

decided by its transition function and given initial probability distributions

by applying the general theory of Markov chains. Hence, we can focus on

the transition function to discuss the process. Now, we give the properties

that the transition function must have the following properties:

8



(i) pij(t) ≥ 0 for all t ≥ 0 and i, j ∈ E and

∑
j∈E

pij(t) =
∑
j∈E

P{X(t) = j|X(0) = i} = P{X(t) ∈ E|X(0) = i} ≤ 1

(2.1.3)

for all i ∈ E;

(ii) For all i, j ∈ E,

pij(0) = δij =

 1, if i = j;

0, if i 6= j.

(iii) For all s, t ≥ 0 and i, j ∈ E, we have, according to the Markov prop-

erty,

pij(s+ t) = P{X(s+ t) = j|X(0) = i}

=
∑
k∈E

P{X(s+ t) = j,X(s) = k|X(0) = i}

=
∑
k∈E

P{X(s+ t) = j|X(s) = k,X(0) = i}

·P{X(s) = k|X(0) = i}

=
∑
k∈E

pik(s)pkj(t); (2.1.4)

(iv) limt→0 pii(t) = 1 for all i ∈ E.

If the equality in (2.1.3) holds true, then this transition function is hon-

est. The equation (2.1.4) is called Chapman-Kolmogorov equation. (iv)

means that the transition function is standard, which is the only assump-

tion considered in the thesis. In fact, this kind of Markov chain is the

Markov jump process with the parameter t. Based on the definition of the

transition function, we now discuss some of its basic properties.

Proposition 2.1.1. Let pij(t), i, j ∈ E be a transition function, then

(1) pii(t) > 0 for all t ≥ 0 and i ∈ E. If i 6= j and i, j ∈ E, and if pij(t) > 0

for some t > 0, then pij(s) > 0 for all s > 0;

(2) If pii(t) = 1 for some t > 0, then pii(t) = 1 for all t ≥ 0.
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Proposition 2.1.2. Let pij(t), i, j ∈ E be a standard transition function.

We have

(1) qi = limt→0[1− pii(t)]/t exists (or might be +∞), i.e. p ′ii(0) = −qi;

(2) pii(t) ≥ e−qit ≥ 1− qit for all t ≥ 0;

(3) qi = 0 if and only if pii(t) = 1 for all t ≥ 0.

If qi = −qii = 0, then the state i is an absorbing state, which means that

the process will no longer move whenever it is in the state i. If qi < +∞,

then the state i is said to be stable.

Proposition 2.1.3. Let pij(t), i, j ∈ E be a transition function, and let i

be a stable state. Then we can prove that qij = p ′ij(0) exists and is finite for

all j ∈ E.

Now we can define Q-matrix of the transition function, which is a sig-

nificant and useful method in the study of Markov chains.

Definition 2.1.2. Let pij(t), i, j ∈ E be a transition function. If the i, jth

element of the matrix Q is qij = p ′ij(0), then this matrix is called the q-

matrix of the transition function pij(t).

Based on the basic properties of the transition function, the matrix Q

must have the property that qij ≥ 0 if i 6= j and
∑

j 6=i qij ≤ −qii. The

matrix Q is a conservative matrix if
∑

j 6=i qij = −qii. If for all i ∈ E,

qi < +∞, then the Q matrix is called a stable q-matrix.

Again, let pij(t), i, j ∈ E be a transition function, define

rij(λ) =

∫ ∞
0

e−λtpij(t)dt, λ > 0, i, j ∈ E. (2.1.5)

In other word, rij(λ) is the Laplace transform of pij(t). Based on the prop-

erties of the transition function and the Laplace transform, we have

Proposition 2.1.4. The Laplace transform of pij(t), i, j ∈ E must have the

following properties:

(i) rij(λ) ≥ 0 for all i, j ∈ E and λ > 0;
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(ii) λ
∑

k∈E rij(λ) ≤ 1 for all i ∈ E and λ > 0;

(iii) rij(λ) − rij(µ) + (λ − µ)
∑

k∈E rik(λ)rkj(µ) = 0 for all i, j ∈ E and

λ, µ > 0;

(iv) limλ→∞ λrii(λ) = 1 for all i ∈ E and limλ→∞ λrij(λ) = 0 for all i 6= j

and i, j ∈ E.

In fact, rij(λ) is called a resolvent function if all the conditions of Propo-

sition 2.1.4 hold true. That is the Laplace transform of a transition function

is a resolvent function, and both rij(λ) and pij(t) are honest simultaneously.

Therefore, if rij(λ), i, j ∈ E is a resolvent function, then there is a unique

transition function pij(t), i, j ∈ E that rij(λ), i, j ∈ E is its Laplace trans-

form. In other word, in order to find the transition function of a q-matrix,

calculating the resolvent function is quite enough. The following proposition

illustrates some other properties of a transition function.

Proposition 2.1.5. Let pij(t), i, j ∈ E be a transition function, and if i is

a stable state, then

p ′ij(t) ≥
∑
k∈E

qikpkj(t), t ≥ 0, j ∈ E, (2.1.6)

p ′ij(t) ≥
∑
k∈E

pik(t)qkj, t ≥ 0, j ∈ E. (2.1.7)

(2.1.6) is called the backward inequality and (2.1.7) is called the forward

inequality. If the q-matrix Q is conservative, then the equality of (2.1.6)

holds, that is

p ′ij(t) =
∑
k∈E

qikpkj(t), t ≥ 0, j ∈ E. (2.1.8)

The following equation is the equality case of (2.1.7):

p ′ij(t) =
∑
k∈E

pik(t)qkj, t ≥ 0, j ∈ E. (2.1.9)
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Both (2.1.8) and (2.1.9) can be expressed by the matrix form, i.e.

P ′(t) = QP (t), (2.1.10)

P ′(t) = P (t)Q. (2.1.11)

Here, (2.1.8) and (2.1.10) are called the Kolmogorov backward equa-

tion and (2.1.9) and (2.1.11) are called the Kolmogorov forward equation.

Moreover, both equations can be expressed by the resolvent versions

λrij(λ) = δij +
∑
k∈E

qikrkj(λ), λ > 0, j ∈ E, (2.1.12)

λrij(λ) = δij +
∑
k∈E

rik(λ)qkj, λ > 0, j ∈ E. (2.1.13)

That is

λR(λ) = I +QR(λ), λ > 0, (2.1.14)

λR(λ) = I +R(λ)Q, λ > 0. (2.1.15)

In this thesis, the Kolmogorov forward equation is a key method in

calculating the transition function of our queueing model.

In nearly all cases, it is very hard to obtain the transition function.

However, it is much easier to get its Q matrix. So the problem is for a given

q-matrix, does its transition function exist? If so, is the transition function

unique?

Theorem 2.1.1. Let Q be a stable q-matrix (no requirement about con-

servative). Then there exists a (perhaps not honest) transition function

pij(t), i, j ∈ E such that both the Kolmogorov backward and forward equa-

tions hold. Furthermore, this pij(t) is the minimal solution, which means

that for any other transition function p̄ij(t), i, j ∈ E of Q, pij(t) ≤ p̄ij(t), i, j ∈
E, t ≥ 0.

This minimal solution was structured by W. Feller (1940) by using either
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the backward integral recursion or the forward integral recursion, that is

p
(n)
ij (t) =

 δije
−qit if n = 0

p
(0)
ij (t) +

∫ t
0
e−qit

∑
k 6=i qikp

(n−1)
kj (t− s)ds if n ≥ 1

(2.1.16)

and

p
(n)
ij (t) =

 δije
−qjt if n = 0

p
(0)
ij (t) +

∫ t
0
e−qjt

∑
k 6=j p

(n−1)
ik (t− s)qkjds if n ≥ 1

(2.1.17)

respectively.

In order to memorize this mathematician, this solution is called the

Feller minimal Q-function.

Now we want to find the criterion of the uniqueness of the Q-function.

Theorem 2.1.2. The following statements are equivalent:

(1) The Feller minimal Q-function is the only solution of the Kolmogorov

backward equation.

(2) The equation Qx = λx, 0 ≤ x ≤ 1, that is to say,

∑
j∈E

qijxj = λxi, 0 ≤ xi ≤ 1, i ∈ E, (2.1.18)

has only trivial solution for some (and hence for all) λ > 0.

(3) The inequality Qx ≥ λx, 0 ≤ x ≤ 1, that is to say,

∑
j 6=i

qijxj ≥ (λ+ qi)xi, 0 ≤ xi ≤ 1, i ∈ E, (2.1.19)

has only trivial solution for some (and hence for all) λ > 0.

(4) The equation Qx = λx,−1 ≤ x ≤ 1, that is to say,

∑
j∈E

qijxj = λxi,−1 ≤ xi ≤ 1, i ∈ E, (2.1.20)

has only trivial solution for some (and hence for all) λ > 0.

13



If Q is a conservative q-matrix, then the Feller minimal Q-function is the

unique transition function if and only if any one of (1)—(4) holds.

A conservative q-matrix Q is called regular if any condition of (1)—(4) in

Theorem 2.1.2 is true. In this case, the Feller minimal Q-function is honest

and thus is the unique Q-function. Here, (2) is the most commonly used

condition to prove the uniqueness throughout the previous studies. There

is a similar test for uniqueness of the solutions of the Kolmogorov forward

equation.

Theorem 2.1.3. Assume that the Feller minimal Q-function (Q is not

necessarily conservative) is dishonest. Then the following two statements

are equivalent:

(1) The Feller minimal Q-function is the unique one following the Kol-

mogorov forward equation.

(2) The equation yQ = λy, y ∈ l+, that is to say,

∑
i∈E

yiqij = λyj, yj ≥ 0, j ∈ E,
∑
j∈E

yj < +∞, (2.1.21)

has only trivial solution for some (and hence for all) λ > 0.

It is interested in discussing a regular q-matrix concerning the problems

of absorption, recurrence and ergodicity. We have already said that i is an

absorbing state if qi = 0.

Definition 2.1.3. Let pij(t), i, j ∈ E be a standard transition function.

Given any i, j ∈ E, we say that j can be reached from i if pij(t) > 0 for

some (and hence for all) t > 0. We say that i and j communicate (denote

i ↔ j) if i and j can be reached from each other. C is a communicating

class if for any i, j ∈ C, i↔ j.

However, as generally it is only given by a q-matrix, it is necessarily

to find the communicating class just in the q-matrix Q. In order to solve

this problem, we first define the related jump chain (this is a discrete time

14



Markov chain) of Q:

pij =


qij/qi if i 6= j and qi > 0

0 if i = j and qi > 0

δij if qi = 0

.

Proposition 2.1.6. Assume i, j ∈ E, i 6= j, then the following statements

are equivalent.

(1) j can be reached from i in the Feller minimal Q-function.

(2) j can be reached from i in the jump chain which is just defined.

Definition 2.1.4. A state i ∈ E is recurrent if∫ ∞
0

pii(t)dt = +∞,

and transient if ∫ ∞
0

pii(t)dt < +∞.

Moreover, the recurrent state i is positive recurrent if

lim
t→+∞

pii(t) > 0,

and null recurrent if

lim
t→+∞

pii(t) = 0.

It is easily proved that the recurrence and transience are class property,

which means that if one state in a communicating class C is recurrent

(positive or null) or transient, the same as any other state in C.

Proposition 2.1.7. Let C be a communicating class. Suppose that Q is

conservative on C. Then the following statements are equivalent.

(1) C is recurrent for the Feller minimal Q-function pij(t).
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(2) For any state k ∈ C, the following equations

∑
i∈C

miqij

 = 0 if j 6= k, j ∈ C

≤ 0 if j = k
mi ≥ 0, i ∈ C,mk = 1, (2.1.22)

have no solution except that the equivalent in (2.1.22) holds true.

(3) For any state k ∈ C, the following equations

∑
j∈C

qijyj = 0, i 6= k

have no solution except that all the yj, j ∈ C are equal.

Theorem 2.1.4. The limits pij(∞) exist for all i, j ∈ E. If R = {rij(λ), i, j ∈
E} is the resolvent function of pij(t), then we have

pij(∞) = limλ→0λrij(λ). (2.1.23)

Hence, if we can have some properties of the resolvent function, then

it is a brief method by using (2.1.23) to calculate the extinction probabil-

ity in many Markov models such as queue processes, branching processes

and birth-death processes, which could avoid trying to find the transition

function as it is quite difficult in most cases.

Definition 2.1.5. Let pij(t), i, j ∈ E be a transition function. The series

{ui : ui ≥ 0, i ∈ E} is called an invariant measure if the following equation

holds true. ∑
i∈E

uipij(t) = uj, for all j ∈ E, t ≥ 0, (2.1.24)

or

uP (t) = u for all t ≥ 0 (2.1.25)

in vector form. More specifically, u is regarded as an invariant distribution

if
∑

i∈E ui = 1.
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Theorem 2.1.5. Let pij(t), i, j ∈ E be an irreducible transition function.

Then this Markov process is positive recurrent if and only if there exists an

invariant distribution of the transition function pij(t).

This invariant distribution (sometimes it might be called stationary dis-

tribution or steady-state distribution) is generally called the limit distribu-

tion or the equilibrium distribution (generally denoted as πj, j ∈ E) of the

Markov chain. Similarly, the most basic kind of invariant measure could

also be defined.

Definition 2.1.6. Let pij(t), i, j ∈ C be the transition function, where C is

a communicating class. If for all t ≥ 0, two sets of strictly positive numbers

{mi, i ∈ C} and {xi, i ∈ C} satisfy the following equations

∑
i∈C

mipij(t) ≤ e−µtmj, j ∈ C, (2.1.26)

and

∑
j∈C

pij(t)xj ≤ e−µtxi, i ∈ C, (2.1.27)

where µ is some fixed nonnegative number, then {mi, i ∈ C} (or {xi, i ∈
C}) is called a µ-subinvariant measure (or vector) for the process pij(t).

Moreover, if the equality in (2.1.26) (or (2.1.27)) holds, then {mi, i ∈ C}
(or {xi, i ∈ C}) is called a µ-invariant measure (or vector). Furthermore,

if µ = 0, then they are generally called subinvariant or invariant measure

(vector) respectively.

For a transient communicating class C of a Markov chain, it is quite

normal to calculate the decay parameter and discuss its properties.

Theorem 2.1.6. Assume that C is a communicating class of a Markov

chain, denote pij(t), i, j ∈ C be its transition function.

(1) There exists a constant number λC ≥ 0 such that for each i, j ∈ C,

lim
t→+∞

1

t
logpij(t) = −λC . (2.1.28)
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(2) For each i ∈ C and t > 0,

pii(t) ≤ e−λCt. (2.1.29)

(3) There exists a constant positive number Mij such that for each i, j ∈ C,

pij(t) ≤Mije
−λCt. (2.1.30)

(4) λC ≤ infi∈Cqi.

(5) The communicating class C is transient if λC > 0.

λC in Theorem 2.1.6 is often called the decay parameter of the com-

municating class C. Furthermore, λC is the minimum of the nonnegative

numbers such that ∫ ∞
0

pii(t)e
atdt = +∞, i ∈ C.

In other words,

∫ ∞
0

pii(t)e
atdt =

 < +∞ if a < λC

= +∞ if a > λC
. (2.1.31)

If a = λC in (2.1.31), then both cases might be happened.

Definition 2.1.7. The state i(i ∈ C) is λC-recurrent if∫ ∞
0

pii(t)e
λCtdt = +∞,

and λC-transient if ∫ ∞
0

pii(t)e
λCtdt < +∞.

The same as the positive and null recurrence, we can define λC-positive

and λC-null recurrence.
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Definition 2.1.8. If the state i is λC-recurrent, then it is λC-positive re-

current if

lim
t→∞

eλCtpii(t) > 0,

and λC-null recurrent if

lim
t→∞

eλCtpii(t) = 0.

Proposition 2.1.8. If there exists a µ-subinvariant measure or µ-subinvariant

vector for pij(t), i, j ∈ C, then µ ≤ λC.

Proposition 2.1.9. Let pij(t), i, j ∈ C, t ≥ 0 be the transition function,

where C is a communicating class with decay parameter λC ≥ 0. Then there

exists λC-subinvariant measures and λC-subinvariant vectors for pij(t) on

C.

Proposition 2.1.10. Let pij(t), i, j ∈ C, t ≥ 0 be the transition function

and have the decay parameter λC on C. Assume that C is λC-recurrent, then

both λC-subinvariant measure and λC-subinvariant vector are unique up to

constant multiples. Moreover, both measure and vector are λC-invariant

measure and vector.

Similarly, since it is difficult to calculate the transition function, we

define the invariant measure and vector by connecting with the q-matrix.

Definition 2.1.9. A set of strictly positive numbers {mi, i ∈ C} (or {xi, i ∈
C}) is called a µ-subinvariant measure (or vector) for Q on C if for all

j ∈ C,

∑
i∈C

miqij ≤ −µmj, (2.1.32)

or ∑
j∈C

qijxj ≤ −µxi. (2.1.33)

Moreover, if the equality in (2.1.32) (or (2.1.33)) holds, then {mi, i ∈ C}
(or {xi, i ∈ C}) is called a µ-invariant measure (or vector).
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Proposition 2.1.11. Let Q be an q-matrix and pij(t) be its Feller minimal

Q-function. For a set of strictly positive numbers {mi, i ∈ C}, then the

following two statements are equivalent.

(1) {mi, i ∈ C} is a µ-subinvariant measure (or vector) for pij(t) on C;

(2) {mi, i ∈ C} is a µ-subinvariant measure (or vector) for Q on C.

Furthermore, the quasi-stationary distribution is needed to be calculated

so as to discuss the long-term behaviors.

Definition 2.1.10. Let P (t) = {pij(t) : i, j ≥ 0} be the transition function

and C a communicating class of E. Define

p̄ij(t) =: P {X(t) = j|X(0) = i,X(t) ∈ C} =
pij(t)∑
k∈C pik(t)

, i, j ∈ C,

If its decay parameter λC is strictly positive, then {p̄ij(∞)} exist and strictly

positive, which is called a quasi-stationary distribution.

In general, an irreducible and positive recurrent transition function pij(t),

i, j ∈ E is called ergodic. In other words, an ergodic transition function

must possess an equilibrium distribution πj, j ∈ E. Furthermore, an er-

godic transition function must have

lim
t→∞

∑
j∈E

|pij(t)− πj| = 0 for all i ∈ E. (2.1.34)

Definition 2.1.11. An ergodic transition function pij(t), i, j ∈ E is called

strongly ergodic if

‖ P (t)− Π ‖=: sup
i∈E

∑
j

|pij − πj| → 0 as t→∞. (2.1.35)

Definition 2.1.12. An ergodic transition function pij(t), i, j ∈ E is called

exponentially ergodic if there exist a positive number α and Cij such that

|pij(t)− πj| ≤ Cije
−αt for all t ≥ 0, i, j ∈ E. (2.1.36)
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For more details of the continuous-time Markov chains, a scholar can

refer to the books, for example, W. J. Anderson (1991) and S. Asmussen

(2003).

2.2 Markov Queue Theory

Whatever the queueing problems take, only three features can describe

the simple structure of a queue: the input or the arrival process that is

the process of the customers arriving to the queue; the service numbers

and the service time process, that is the facilities to serve customers in

the queue (These two features can be dealt with separately since they are

totally independent); and the queue discipline, which decides the rules to

run the queue system. However, to describe these features is a complicated

and lengthy progress. In 1953, D. G. Kendall use a simple notation system

to describe it. In this notation, a queueing process is simply denoted by

b/d/m, where b denotes the format of the inter arrival distribution, d denotes

the format of the service time distribution, and m denotes the number of

servers. Generally, the values of b and d are:

M : The exponential distribution or the Poisson distribution. (M is the

initial letter of Markovian. )

D: The distribution is certain at some point of (0,+∞). (D is the initial

letter of deterministic. In the real world, usually d = 1. )

Ek: The Erlang distribution with k stages, that is the sum of kth inde-

pendent exponential distributions with the same parameter.

Hk: The hyperexponential distribution with k stages, whose probability

density function follows

fX(x) =
k∑
i=1

fYi(x)pi,
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where Yi follows an exponential distribution with the parameter λi, and pi

is the probability that this hyperexponential distribution takes the form

of Yi.

PH: The generalized phase-type distribution.

G or GI: An arbitrary distribution. (G refers to general, GI refers to

general independent).

For example, M/D/1 refers to the queue process with the Poisson inter-

arrivals, the deterministic service time and only one server. There are some

types of queue disciplines:

FIFO: That means, the first customer is first served and customers are

served followed the order of the arrivals. This is the most common queue

discipline. Hence, this discipline is the assumption in most literature. Our

queueing model in the thesis follows this discipline. (FIFO=first in, first

out. )

LIFO: That means, the last customer is first served and customers are

served followed the reverse order of the arrivals. (LIFO=last in, first out.

)

SIRO: That is a server chooses an arbitrary customer randomly. For in-

stance, if we have some number of problems to solve, then we choose any

one to serve first. (SIRO=service in random order. )

PS: That is when n customers in the queue system, the server serves each

at the rate of 1/n, (PS=processor sharing. )

RR: That is to say, each customer is served for at most a fixed time and

goes to the back of the queueing line (if not having completed served).

(RR=Round Robin. )

There are still some notations to be used in queue theory:

Qt: That is the queue length in the system at time t, t ≥ 0. In Markov

chain, this is denoted Xt, t ≥ 0.
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Wn: That is to say, the waiting time of the nth customer in the queue, i.e.

the time interval starting from the time of the arrival of the customer to

the time that the customer is served.

Vt: The workload of the system at the time t, which means the total

remaining time to make the queue system empty at the time t.

One of the most classical models of Markov processes is the birth-death

process, whose q-matrix {qij, i, j ∈ E = N} is given by

Q =



−λ0 λ0 0 0 0 · · ·

−µ1 −(λ1 + µ1) λ1 0 0 · · ·

0 −µ2 −(λ2 + µ2) λ2 0 · · ·

0 0 −µ3 −(λ3 + µ3) λ3 · · ·
...

...
...

...
...

. . .


, (2.2.1)

where λi, i ≥ 0 are the birth intensities and µi, i ≥ 0 are the death inten-

sities. The most familiar example is the division and death of a group of

cells. This example is a linear birth-death process with λi = iλ and µi = iµ,

which means that each cell splits independently of any other with rate λ

and dies with rate µ and for i cells in the group, the rate of increase (or

decrease) one are i times of λ (or µ).

If λi ≡ λ and µi ≡ µ (i ≥ 0) in (2.2.1), then this birth-death process

is the simplest queueing process M/M/1, which is the most fundamental

process to be discussed. Here, λ and µ refer to the inter-arrival rate and

the service rate.

Proposition 2.2.1. Let {Xt, t ≥ 0} be an M/M/1 queue process with the

inter-arrival rate λ and the service rate µ. Then {Xt, t ≥ 0} is recurrent

if and only if λ/µ ≤ 1. Moreover, {Xt, t ≥ 0} is ergodic if and only if

λ/µ < 1.

In the ergodic case, there exists a equilibrium distribution πi, i ∈ N

according to the Theorem 2.1.5. Furthermore, it is easily calculated that
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πi, i ∈ N is geometric distributed, i.e.

πi = lim
t→∞

P (Xt = i) =

(
1− λ

µ

)(
λ

µ

)i
, i = 0, 1, 2, · · ·

If λi ≡ λ and µi = iµ (i ≥ 0) in (2.2.1), then this process is the

M/M/∞ queue process. In this queueing model, the sojourn time in the

queue system of each customer is independent with all other customers and

identically exponentially distributed with the rate µ. One example for this

process is the immigration-death process.

Proposition 2.2.2. For any values of λ and µ in the M/M/∞ queue,

the process is ergodic. Moreover, the equilibrium distribution π follows the

Poission distribution with the parameter λ/µ, that is

πi = e−λ/µ
(λ/µ)i

i!
, i = 0, 1, 2, · · ·

For details of M/M/∞ models, please see the literatures, for example,

J. Preater (2002).

If λi ≡ λ and µi = (i∧m)µ (i ≥ 0) in (2.2.1), then this process is called

the M/M/m queue process. In this process, (i∧m) is the number of servers

working when the process is at the state i.

Proposition 2.2.3. Let {Xt, t ≥ 0} be an M/M/m queue process with the

inter-arrival rate λ and the service rate µ. Then {Xt, t ≥ 0} is ergodic if

and only if λ < mµ.

Similarly, in the case of ergodic, the steady state distribution π is that

πi =


1
S

(λ/µ)i

i!
, i = 0, 1, · · · ,m

1
S

(λ/µ)m

m!

(
λ
mµ

)i−m
, i = m,m+ 1, · · ·

,
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where

S = 1 +
∞∑
i=1

λ0 · · ·λi−1
µ1 · · ·µi

=
m−1∑
i=0

(λ/µ)i

i!
+

(λ/µ)m

m!

∞∑
i=0

(
λ

mµ

)i
=

m−1∑
i=0

(λ/µ)i

i!
+

(λ/µ)m

m!

(
1− λ

mµ

)−1
.

Up to now, we have only discussed the infinite state space. However, in

many cases the queue system has a limited number of customers, or it will

be more than its capacity. For example, a barbershop cannot contain too

many people and thus all new customers will not enter in the room when

it is full. For a simple case, let {Xt, t ≥ 0} be an M/M/1 queue process

with the inter-arrival rate λ and the service rate µ and the maximum of the

waiting room size is K. Then λi = λ if i < K, λK = 0 and µi = µ, i ≤ K.

In this model, it is still easily obtained that the equilibrium distribution

exists, which is given by

πi =
1− λ/µ

1− (λ/µ)K+1
(λ/µ)i, i = 0, 1, · · · , K.

For the arbitrary M/M/1 queue, the transition function {pij(t), i, j ∈
N, t ≥ 0}, the busy-period distribution and the waiting times of the system

can be obtained. Define ρ =: λ/µ, ιn = e−(λ+µ)tρn/2In, n ∈ Z, where In is

Bessel function, i.e.

In =
∞∑
k=0

(lt)n+2k

k!(n+ k)!
, I−n = In, n ∈ N, l =

√
λµ.

Theorem 2.2.1. In the M/M/1 queue process, the transition function

{pij(t), i, j ∈ N, t ≥ 0} is given by

pij(t) = ιj−i + ρ−i−1ιi+j+1 + (1− ρ)(ρ)j
−j−i−2∑
n=−∞

ιn. (2.2.2)
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Theorem 2.2.2. In the M/M/1 queue process, the busy-period distribution

is given by the density function

g(t) = µe−(λ+µ)t[I0 − I2] =
ρ−0.5

t
e−(λ+µ)tI1. (2.2.3)

Theorem 2.2.3. In the M/M/1 queue process, the stationary waiting time

distribution is given by

P (Wn ≤ t) = 1− ρ+ ρ(1− e(λ−µ)t) = 1− ρe(λ−µ)t, (2.2.4)

where Wn denotes the the waiting time of the nth customer in the system.

For more details of Markov queue theory, one can check the literatures

such as S. Asmussen (2003) and A. Y. Chen (2010). For the model (1.2.1)—

(1.2.5) in the thesis, we will discuss its basic properties in the next section.
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Chapter 3

Markovian Batch-arrival and

Bulk-service Queues with

Finite State-dependent Control

In this Chapter, we discuss the properties of the model incorporating

bulk-arrival and bulk-service queue process with state-dependent control of

any finite number m of people in the system and at most m people can be

served at the same time.

3.1 Preliminaries

In order to find the transition function of our queueing model and its

properties, we need some lemmas for preparation. Some lemmas in this

section are the general cases of the lemmas in A. Y. Chen, P. Pollett, J. P.

Li and H. J. Zhang (2010).

Define a generating function of bj, j ≥ 0

B(s) =
∞∑
j=0

bjs
j.

Since
∑∞

j=0 |bj| < +∞, the convergence radius is no less than 1, that is to

say, this generating function is valid at least for s ∈ [−1, 1] and it is C∞ on
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(−1, 1). Further we define the expectations of birth and death rates

mb =:
∞∑

j=m+1

(j −m)bj

and

md =:
m−1∑
j=0

(m− j)bj,

respectively. It is clearly that 0 < mb ≤ ∞ and 0 < md < +∞ as m is

finite. In addition, we have

B ′(1) =
∞∑
j=0

jbj

=
∑
j 6=m

jbj +mbm

=
∑
j 6=m

jbj +m(−
∑
j 6=m

bj)

=
m−1∑
j=0

(j −m)bj +
∞∑

j=m+1

(j −m)bj

= mb −md. (3.1.1)

Furthermore, for any λ > 0, define

Bλ(s) = B(s)− λsm. (3.1.2)

Similarly as that of B(s), it is still clearly seen that Bλ(s) ∈ C∞(−1, 1).

Moreover, both B(s) and Bλ(s) can be extended to the complex functions

of the variable s. Obviously, both functions are well defined at least on the

closed circle {s : |s| ≤ 1}, and are analytic on the open circle {s : |s| < 1}.
Here, we need to discuss the properties of Bλ(s).

Lemma 3.1.1. For any λ > 0, Bλ(z) has exactly m zeros within the closed

circle {z ∈ C; |z| ≤ 1}, which are denoted as u1(λ), u2(λ), · · · , um(λ) .

Moreover, there is no zero on the edge of the circle {z ∈ C; |z| = 1}.

Proof. In order to prove that there are exactly m roots in the open circle,
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the Rouché’s Theorem will be applied. Separate Bλ(z) as

Bλ(z) = g(z) + f(z),

where

f(z) = (bm − λ)zm,

and

g(z) = Bλ(z)− f(z)

=
m−1∑
j=0

bjz
j +

∞∑
j=m+1

bjz
j.

There is no doubt that both f(z) and g(z) are analytic functions within

the open circle C01 = {z : |z| < 1} and continuous on the edge of circle

C = {z : |z| = 1}. Moreover, on the circle C, the following equations could

be obtained

0 < |g(z)| ≤
m−1∑
j=0

bj|z|j +
∞∑

j=m+1

bj|z|j

= −bm < −bm + λ = |(−bm + λ)zm|

= |f(z)|.

Therefore, according to Rouché’s Theorem, the two equations f(z) = 0 and

f(z) + g(z) = Bλ(z) = 0 have the same number of roots inside C. However,

it is apparently that f(z) = (bm − λ)zm = 0 has exactly m zeros inside C
and so does Bλ(z).

Finally, on the edge of the circle C = {z : |z| = 1},

|Bλ(z)| = |f(z)− g(z)| ≥ |f(z)| − |g(z)|

≥ (λ− bm)− (−bm) = λ > 0.

Therefore, it is impossible that Bλ(z) = 0 when |z| = 1, that is Bλ(z) = 0

does not have any root on C for any λ > 0.

Remark 3.1.1. The equation B(s) = 0 (just let λ=0 in the function
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(3.1.2)) has either m or m + 1 roots within the closed circle {z : |z| ≤ 1}.
Additionally, B(s) = 0 has exactly m + 1 roots if and only if B′(1) > 0

(in the case, B′(1) can be +∞). In this case, there are exactly two positive

real roots q and 1 within the interval [0, 1] and in the former case (that is

B(s) = 0 has exactly m roots), there exist only one positive root (it is trivial

that B(1) = 0 as
∑∞

j=0 bj = 0) on the real interval [0, 1].

In fact, even if there are m roots of the function Bλ(z) = 0, the number

of single real positive roots is just one.

Lemma 3.1.2. For any λ > 0, the equation Bλ(z) = 0 has exactly one

simple root u1(λ) (sometimes denoted by u(λ) for simplicity in the thesis)

in the open interval (0, 1), and the other m − 1 roots u2(λ), · · · , um(λ) in

the open circle C01 = {z : |z| < 1} are either complex or negative.

Proof. Firstly, it is clear that Bλ(0) = b0 > 0 and Bλ(1) = −λ < 0. Hence

the equation Bλ(z) = 0 has at least one positive root in (0, 1). From Lemma

3.1.1, we have that Bλ(z) = 0 has no more than m roots in (0, 1). Thus,

we could find the smallest (positive) root in (0, 1) and let u(λ) denote this

smallest positive root. Now define

B̃(z) = Bλ (u(λ)z) .

There is no doubt that z1 is a root of B̃(z) = 0 if and only if u(λ)z1

is a root of Bλ(z) = 0. On the other hand, consider the equation B̃(z) −
εzm = 0 for any ε > 0. According to the similar technique in Lemma

3.1.1 that applying Rouché’s Theorem once again, it is easily obtained that

B̃(z)− εzm = 0 has exactly m roots in Co1 . Let ε→ 0, we can get that each

root of B̃(z)− εzm = 0 will tend to a root of B̃(z) = 0, and from previous

lemmas we know that B̃(z) = 0 has at least m roots on Co1 . Therefore,

Bλ(z) = 0 has exactly m roots in Cu(λ) = {z : |z| ≤ u(λ)}. In other word,

Bλ(z) = 0 has no root in the interval (u(λ), 1) (or equivalently, B̃(z) has no

zero in (1, 1
u(λ)

)).

The remaining thing to do is to prove that u(λ) is simple. Here, it is only

required to show that B̃′(1) < 0. Suppose this is not true, then B̃′(1) ≥ 0,

we will prove that this will result in a contradiction. In fact, it is obvious
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that B̃(z) = Bλ (u(λ)z) > 0 for any z ∈ (0, 1). Hence the only possibility is

that B̃′(1) = 0, which is equivalent to

m−1∑
j=0

(m− j)b̃j =
∞∑

j=m+1

(j −m)b̃j, (3.1.3)

where b̃j = bj(u(λ))j. However,

B̃′′(1) =
∞∑
j=2

j(j − 1)b̃j

=
∞∑

j=m+1

[j(j − 1)−m(m− 1)]b̃j +
m−1∑
j=0

[j(j − 1)−m(m− 1)]b̃j

=
∞∑

j=m+1

[j2 −m2]b̃j −
m−1∑
j=0

[m2 − j2]b̃j

=
∞∑

j=m+1

(j +m)(j −m)b̃j −
m−1∑
j=0

(m+ j)(m− j)b̃j

> 2m
∞∑

j=m+1

(j −m)b̃j − (2m− 1)
m−1∑
j=0

(m− j)b̃j

=
m−1∑
j=0

(m− j)b̃j > 0.

However, we have proved that B̃(z) = 0 has no root in (1, 1/u(λ)), so

B̃(z) > 0 for any z ∈ (1, 1/u(λ)], which contradicts with B̃(1/u(λ)) =

Bλ(1) = −λ < 0.

Now, the whole lemma has been proved.

Lemma 3.1.3. The root ul(λ) (1 ≤ l ≤ m) defined in Lemma 3.1.2 has the

following properties.

(i) For all 1 ≤ l ≤ m, the root ul(λ) ∈ C∞(0,+∞);

(ii) u(λ) is decreasing with λ→ +∞;

(iii) u(λ) ↓ 0 and λ(u(λ))m → b0 with λ→ +∞;

(iv) Let q be the smallest positive root of B(s) = 0 on [0, 1], then
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u(λ) ↑ q

 = 1 if mb ≤ md

< 1 if mb > md

(3.1.4)

as λ→ 0;

(v) For any i ∈ Z+,

lim
λ→0

1− (u(λ))i

λ
=

 ∞ if mb ≥ md

i/(md −mb) if mb < md ;
(3.1.5)

(vi) If mb > md (thus q < 1 and B ′(q) <∞), then, for any i ∈ Z+,

lim
λ→0

1− (u(λ)/q)i

λ
=
−iqm−1

B ′(q)
(3.1.6)

and

lim
λ→0

1

λ

(
−iqm−1

B ′(q)
− 1− (u(λ)/q)i

λ

)
=

i

2

q2m−2

(B ′(q))3
((i+ 2m− 1)B ′(q)− qB ′′(q)) ; (3.1.7)

(vii) If mb = md (thus q = 1) then, for any i ∈ Z+,

lim
λ→0

1− (u(λ))i√
λ

=

 i
√

2
B ′′(1)

if B ′′(1) < +∞

0 if B ′′(1) = +∞
. (3.1.8)

(viii) If mb < md (and hence q = 1), then, for any i ∈ Z+,

lim
λ→0

(
i

λ(md −mb)
− 1− (u(λ))i

λ2

)

=


i((i+2m−1)(md−mb)+B

′′(1))
2(md−mb)3

if B ′′(1) <∞

∞ if B ′′(1) =∞.

(ix) For any positive i and for any l ∈ [1,m],
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lim
λ→0

1− (ul(λ)/ql)
i

λ
=
−iqm−1l

B ′(ql)
, (3.1.9)

and

lim
λ→0

1

λ

(
−iqm−1l

B ′(ql)
− 1− (ul(λ)/ql)

i

λ

)
=

i

2

q2m−2l

(B ′(ql))3
((i+ 2m− 1)B ′(ql)− qlB ′′(ql)) ; (3.1.10)

where ql = limλ→0 ul(λ).

Proof. Since u(λ) is the unique positive root of Bλ(s) = 0 on [0, 1], consider

the curves of two functions y = B(x) and y = λxm, then u(λ) can be

regarded as the x-coordinate of the intersection point between these two

curves. Therefore, it is obvious that u(λ) is decreasing with λ → +∞ as

y = λxm is increasing with λ in [0, 1]. So Parts (ii) has been proved.

In Part (iv), as it has just shown that u(λ) is a decreasing function, it

is trivial that u(λ) ↑ q when λ→ 0. From (3.1.1), we obtain that B′(1) > 0

if mb > md. In this case, there exists a number a ∈ [0, 1] such that B(s) is

strictly negative on (a, 1), and hence q < 1. When mb ≤ md, B
′(1) ≤ 0. In

this case, assume q < 1, then B(z) is strictly positive on the open interval

(q, 1) since q is the unique zero of B(z) within (0, 1). Thus, we can obtain

that B ′(q) > 0. Similarly, it is apparently that there still exists a zero in

(0, q), which contradicts the uniqueness of the zero in [0, 1]. Thus, q = 1

must be satisfied.

Part (iii) is obvious.

Next, since for all l ∈ [1,m], ul(λ) is the root of the equation λ =

s−mB(s), λ, which can be considered as a function of s ∈ (0, 1], is C∞.

Therefore, the inverse function of λ, that is ul(λ), also belongs to C∞[0,∞).

The proof of (i) has been completed. Up to now, we have proved (i)-(iv).

To complete the remaining of the proof, first of all substitute u(0) for q

in (3.1.4), then the following equation could be got by using the mean value

theorem:

u(λ)− q = λu ′(ξ) (0 < ξ < λ), (3.1.11)
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since u(λ) is a differentiable function for λ > 0. As from (3.1.4) mb > md

implies q < 1, for any i ∈ Z+, the equation

1− (u(λ))i > 0

is always right whenever λ is a sufficiently large number. Hence (3.1.5)

holds true in this case. Then, consider the case of mb ≤ md, i.e. q = 1.

Now, (3.1.11) is equivalent to

(1− u(λ))/λ = −u ′(ξ) (0 < ξ < λ). (3.1.12)

Recall that u(λ) is the root of Bλ(s) = 0, we can write

B(u(λ)) = λ(u(λ))m. (3.1.13)

Differentiating on both sides of (3.1.13) will become

B ′(u(λ))u ′(λ)−mλ(u(λ))m−1u ′(λ) = (u(λ))m. (3.1.14)

Letting λ → 0 on (3.1.14) and noting that both u(λ) and B ′(u(λ)) are

continuous functions of λ on [0,∞) so that λu(λ) tends to 0 when λ → 0

will lead us to conclude that

lim
λ→0

u ′(λ) =
qm

B ′(q)
.

Next, since mb ≤ md is equivalent to q = 1, from (3.1.12) and recall that

B ′(1) = mb −md, we have the result that

lim
λ→0

1

λ
(1− u(λ)) = lim

λ→0
u ′(λ) =

 1/(md −mb) if mb < md

∞ if mb = md ,
(3.1.15)

and so (3.1.5) holds true for i = 1. Moreover, when mb < md, (3.1.15) could

be rewritten as

u(λ) = 1− λ

md −mb

+ ◦(λ).
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Hence, for any i ∈ Z+,

(u(λ))i =

(
1− λ

md −mb

+ ◦(λ)

)i
= 1− iλ

md −mb

+ ◦(λ)

and thus

lim
λ→0

1

λ

(
1− (u(λ))i

)
=

 i/(md −mb) if mb < md

∞ if mb = md

.

Hence the proof of (v) is finished.

Then we need to prove (viii) in advance. Differentiating (3.1.14) will

lead to

u ′′(λ) (B ′(u(λ))−mλ(u(λ))m−1) + (u ′(λ))2 (B ′′(u(λ))

−m(m− 1)λ(u(λ))m−2) = 2m(u(λ))m−1u ′(λ),
(3.1.16)

for all λ > 0. Letting λ→ 0, provided that both B ′(q) and B ′′(q) are finite,

then we have

lim
λ→0

u ′′(λ) =

(
q

B ′(q)

)3 (
2mqm−2B ′(q)− qB ′′(q)

)
.

In particular, if md > mb, recall on the assumption that B ′′(1) is finite,

then use the similar technique in the proof of (v) will result

u(λ) = 1− λ

md −mb

+
(2m(md −mb) +B ′′(1))λ2

2(md −mb)3
+ ◦(λ2).

It can be then proved directly that, for any i ∈ Z+,

(u(λ))i = 1− iλ

md −mb

+
iλ2((i+ 2m− 1)(md −mb) +B ′′(1))

2(md −mb)3
+ ◦(λ2).

Hence part (viii) has been proved.
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Turn back to (vi), as mb > md (that is q < 1, both B ′(q) and B ′′(q)

are finite), it has been proved that u(λ) ↑ q < 1 as λ → 0. Then it follows

from (3.1.14) that limλ→0 u
′(λ) = qm/B ′(q). Therefore, by using the same

technique which has been used for (v), we obtain that for any i ∈ Z+,

u(λ) = q +
λqm

B ′(s)
+ ◦(λ),

which leads to

(u(λ))i = qi +
iλqi+m−1

B ′(q)
+ ◦(λ).

Therefore, (3.1.6) follows. Similarly from (3.1.16) we get

lim
λ→0

u ′′(λ) =
q2m−1

(B ′(q))3
(2mB ′(q)− qB ′′(q)).

Therefore,

u(λ) = q +
qm

B ′(q)
λ+

q2m−1

2(B ′(q))3
(2mB ′(q)− qB ′′(q))λ2 + ◦(λ2),

and then, for any positive integer i,

(u(λ))i = qi +
iqi+m−1

B ′(q)
λ

+
i ((i+ 2m− 1)B ′(q)− qB ′′(q))

2(B ′(q))3
q2m+i−2λ2 + ◦(λ2),

and thus (3.1.7) follows.

To prove (vii), a little technique is needed. Note that as md = mb,

q = 1. Besides that u(λ) is the root of Bλ(s) = 0, so λ(u(λ))m = B(u(λ)).
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Moreover, it is clear that

B(u(λ)) = (1− u(λ))2
1

m
(
∞∑

j=m+1

(j −m)bj)(
m−2∑
k=0

(k + 1)(u(λ)k)

− (u(λ))m
∞∑

j=m+1

bj(

j−m−2∑
k=0

(k + 1)sk)

+
m−1∑
j=1

bjs
j(

m−j−2∑
k=0

(k + 1)sk)

− 1

m
(
m−1∑
j=1

(m− j)bj)(
m−2∑
k=0

(k + 1)sk)

+
∞∑

j=m+1

(j −m)bjs
m−1(

j−m−1∑
k=0

sk)

for the case that md = mb. Recall u(λ) ↑ 1 as λ→ 0. Therefore, according

to the Monotone Convergence Theorem, we have

lim
λ→0

λ

(1− u(λ))2
= lim

λ→0

B(u(λ))

um(λ)(1− u(λ))2

=
m− 1

2

∞∑
j=m+1

(j −m)bj −
∞∑

j=m+1

bj
(j −m)(j −m− 1)

2

+
m−1∑
j=1

bj
(m− j)(m− j − 1)

2
− m− 1

2

m−1∑
j=1

(m− j)bj

+
∞∑

j=m+1

(j −m)2bj,

which is indeed B ′′(1)
2

.

Therefore,

lim
λ→0

1− u(λ)√
λ

=

√
2

B ′′(1)
(3.1.17)

and then (3.1.8) will be obtained very easily.

Finally, we prove (ix). Since ul(λ) must be complex, just write

ul(λ) = al(λ) + bl(λ)i.

Then it is obvious that al(0) = Re(ql) and bl(0) = Im(ql). Similarly, we
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have
al(0)− al(λ)

λ
= −a ′l (ξ) (0 < ξ < λ) (3.1.18)

and
bl(0)− bl(λ)

λ
= −b ′l (ξ) (0 < ξ < λ). (3.1.19)

Thus, (3.1.18) + (3.1.19)i yields

ql − ul(λ)

λ
= −u ′l (ξ) (0 < ξ < λ), (3.1.20)

and (3.1.9) could be obtained by the same method in proving (vi).

Corollary 3.1.1. For u(λ) defined in Lemma 3.1.3, from previous proofs,

we could conclude that

(i)

lim
λ→0

u ′(λ) =


1/(mb −md) if mb < md

−∞ if mb = md

qm/B ′(q) if mb > md ;

(ii)

lim
λ→0

u ′′(λ) =

 (2m(md −mb) +B ′′(1)) /(md −mb)
3 if mb < md

q2m−1

(B ′(q))3
(2mB ′(q)− qB ′′(q)) if mb > md

(recall that in the case of mb < md, q = 1 and B ′(1) = mb −md, so

these two expressions are totally the same);

(iii) For any i ∈ Z+,

lim
λ→0

d

dλ
(u(λ))i =

 i/(mb −md) if mb < md

iqi+m−1/B ′(q) if mb > md ;
(3.1.21)

(iv)

lim
λ→0

d2

dλ2
(u(λ))i =

 i ((i+ 2m− 1)(md −mb) +B ′′(1)) /(md −mb)
3 if mb < md

iqi+2m−2 ((i+ 2m− 1)B ′(q)− qB ′′(q)) /(B ′(q))3 if mb > md .

(3.1.22)
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Proof. The proofs of (i) and (ii) are in that of part (v) and part (viii) in

Lemma 3.1.3 respectively. In part (iii), note that

lim
λ→0

u(λ) = q

and the following equation is obtained by using the common derivative

d

dλ
(u(λ))i = i(u(λ))i−1u ′(λ).

Then letting λ→ 0 on both sides will result in (3.1.21).

Finally, to prove (iv), again we write

d2

dλ2
(u(λ))i = i(i− 1)(u(λ))i−2(u ′(λ))2 + i(u(λ))i−1u ′′(λ),

Then let λ → 0 and use the conclusion of (i), (ii) and (iii), (3.1.22) could

be obtained.

We have already done some preparations for our models, now the tran-

sition function and other properties of our model can be explored.

3.2 The Way to Find The Resolvent of the

Feller Minimal Q∗-transition Function

First of all, we want to discuss the model with m absorbing states

0, 1, 2, · · · ,m − 1 (qij ≡ 0 if i < m), whose q-matrix Q∗ is given by (1.2.2)

and (1.2.5), which is a much simper model. The practical meaning of this

model is that the queue process stops forever whenever it enters the state

0, 1, 2, · · · ,m− 1. In this queueing model, all the parameters are only from

the sequence {bj, j ≥ 1}.
Let P ∗(t) = {p∗ij(t), i, j ≥ 0} be the Feller minimal Q∗-transition func-

tion and let Φ∗(λ) = {φ∗ij(λ), i, j ≥ 0} be its resolvent function. It is clear

that the transition function of Q∗ is unique.

Theorem 3.2.1. Suppose all the roots of Bλ(s) = 0 are simple roots. For

each i ∈ N , and 0 ≤ j ≤ m−1, the resolvent function {φ∗ij(λ)} is the unique
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solution of the m equations

m−1∑
k=0

φ∗ik(λ)(ul(λ))k =
1

λ
(ul(λ))i. (1 ≤ l ≤ m), (3.2.1)

where ul(λ)(1 ≤ l ≤ m) are all the roots of the equation Bλ(s) = 0 (note

in Lemma 3.1.1 that there are exactly m roots). For j ≥ m, the generating

function of {φ∗ij(λ)} is given by

∞∑
j=0

φ∗ij(λ)sj =
B(s)

∑m−1
k=0 φ

∗
ik(λ)sk − sm+i

Bλ(s)
. (3.2.2)

More specifically, if 0 ≤ i ≤ m− 1, then

φ∗ij(λ) =
δij
λ
. (3.2.3)

Proof. To prove it, the Kolmogorov Forward Equation (2.1.15) is the basic

tool, which is certainly

Φ∗(λ)(λI −Q∗) = I.

This equation becomes

λφ∗ij(λ) =
∞∑
k=0

φ∗ik(λ)q∗kj + δij

=

j+m∑
k=m

φ∗ik(λ)bj−k+m + δij.

For every j(0 ≤ j < +∞), multiply sj on both sides of the equation will

result in

λ
∞∑
j=0

φ∗ij(λ)sj =
∞∑
j=0

(

j+m∑
k=m

φ∗ikbj−k+m)sj + si,
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or

λ
∞∑
j=0

φ∗ij(λ)sj − si

=
∞∑
k=m

∞∑
j=k−m

φ∗ik(λ)bj−k+ms
j

=
∞∑
k=m

φ∗ik(λ)
∞∑
j=0

bjs
j+k−m. (3.2.4)

Substitute B(s) to
∑∞

j=0 bjs
j in (3.2.4) will lead to

λ
∞∑
j=0

φ∗ij(λ)sj − si

= B(s)
∞∑
k=m

φ∗ik(λ)sk−m

=
B(s)

sm

[
∞∑
k=0

φ∗ik(λ)sk −
m−1∑
k=0

φ∗ik(λ)sk

]
.

Multiply sm on both sides and sum all the λφ∗ijs
j by j will lead to

λsm
∞∑
j=0

φ∗ij(λ)sj − sm+i = B(s)
∞∑
k=0

φ∗ik(λ)sk −B(s)
m−1∑
k=0

φ∗ik(λ)sk,

or

(B(s)− λsm)
∞∑
j=0

φ∗ij(λ)sj = B(s)
m−1∑
k=0

φ∗ik(λ)sk − sm+i.

In other word, the following equation is obtained:

∞∑
j=0

φ∗ij(λ)sj =
B(s)

∑m−1
k=0 φ

∗
ik(λ)sk − sm+i

Bλ(s)
, (3.2.5)

which is just (3.2.2). Therefore, if for all 0 ≤ j ≤ m − 1, φ∗ij(λ) is known,

then the generating function of {φ∗ij(λ) : j ≥ 0} will have been got.

For any ul(λ)(1 ≤ l ≤ m), Bλ(ul(λ)) = 0 is satisfied. Moreover, it is

obviously that
∞∑
j=0

φ∗ij(λ) (ul(λ))j < +∞
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for each l = 1, 2, · · · ,m, since

|ul(λ)| ≤ 1 and
∞∑
j=0

φ∗ij(λ) ≤ 1

λ
.

Therefore, in (3.2.5), by substituting each ul(λ) to s, it is apparent that the

denominator of the right side, i.e. Bλ(ul(λ)), is zero, and the left side of

the equation, i.e.
∑∞

j=0 φ
∗
ij(λ) (ul(λ))j, is a finite number. Thus, the only

possibility is that the numerator of the right side must also be zero. In

other word, for each 1 ≤ l ≤ m, we have

B(ul(λ))
m−1∑
k=0

φ∗ik(λ)(ul(λ))k = (ul(λ))m+i,

or
m−1∑
k=0

(φ∗ik(λ))k =
(ul(λ))m+i

B(ul(λ))
. (3.2.6)

Since B(ul(λ)) = λ(ul(λ))m, for each i ∈ N and l ∈ {1, 2, · · · ,m}, we have

m−1∑
k=0

φ∗ik(λ)(ul(λ))k =
1

λ
(ul(λ))i,

which is just (3.2.1). The next step is to prove the uniqueness of the solution

of the equation set.

If we denote xk = φ∗i,k+1(λ) for any fixed i, then (3.2.1) just means



x1 + u1(λ)x2 + u21(λ)x3 + · · ·+ um−11 (λ)xm = 1
λ
(u1(λ))i

x1 + u2(λ)x2 + u22(λ)x3 + · · ·+ um−12 (λ)xm = 1
λ
(u2(λ))i

· · · · · ·

x1 + um(λ)x2 + umm(λ)x3 + · · ·+ um−1m (λ)xm = 1
λ
(um(λ))i.

There are m unknown numbers in the equation set and its coefficient deter-
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minant is

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 u1(λ) u21(λ) · · · um−11 (λ)

1 u2(λ) u22(λ) · · · um−12 (λ)

1 u3(λ) u23(λ) · · · um−13 (λ)
...

...
...

. . .
...

1 um(λ) u2m(λ) · · · um−1m (λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.2.7)

However, (3.2.7) is indeed a Vandermonde matrix. Hence we have

∆ = Π1≤j<i≤m(ui(λ)− uj(λ)).

Thus, recall that none of any two roots of the equation Bλ(s) = 0 are the

same (the same as the assumption in the theorem that all the roots ul(λ), l =

1, 2, · · · ,m are simple roots), then ∆ 6= 0, that is φ∗ik(λ)(0 ≤ k ≤ m − 1)

are the unique solution of (3.2.1), which is given by

φ∗i0(λ) =
∆

(i)
1

∆
, · · · , φ∗i,m−1(λ) =

∆
(i)
m

∆
,

where ∆ is given in (3.2.7), ∆
(i)
1 is given by

∆
(i)
1 (λ) =

1

λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ui1(λ) u1(λ) u21(λ) · · · um−11 (λ)

ui2(λ) u2(λ) u22(λ) · · · um−12 (λ)

ui3(λ) u3(λ) u23(λ) · · · um−13 (λ)
...

...
...

. . .
...

uim(λ) um(λ) u2m(λ) · · · um−1m (λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.2.8)

∆
(i)
2 (λ) =

1

λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ui1(λ) u21(λ) · · · um−11 (λ)

1 ui2(λ) u22(λ) · · · um−12 (λ)

1 ui3(λ) u23(λ) · · · um−13 (λ)
...

...
...

. . .
...

1 uim(λ) u2m(λ) · · · um−1m (λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.2.9)

and ∆
(i)
k (1 ≤ k ≤ m) should be easily given similarly.
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Furthermore, for any i < m, we obtain that

∆
(i)
j =

δij
λ

∆,

which just means

φ∗ijλ =
δij
λ
.

Now the whole theorem has been proved.

The way to calculate the Q∗-resolvent function for all i, j ≥ m is just

solve a few equations. For example, for all i ≥ m, (3.2.5) could be rewritten

as

∞∑
j=0

φ∗ij(λ)sj =
B(s)

∑m−1
k=0 φ

∗
ik(λ)sk − sm+i

Bλ(s)

=
(B(s)− λsm)

∑m−1
k=0 φ

∗
ik(λ)sk + λsm

∑m−1
k=0 φ

∗
ik(λ)sk − sm+i

Bλ(s)

=
m−1∑
k=0

φ∗ik(λ)sk +
λsm

∑m−1
k=0 φ

∗
ik(λ)sk − sm+i

Bλ(s)
,

That is

∞∑
j=m

φ∗ij(λ)sj(
∞∑
j=0

bjs
j − λsm) = λsm

m−1∑
k=0

φ∗ik(λ)sk − sm+i.

Choose the parameter of sm on both sides will lead to

φ∗im(λ)b0 = λφ∗i0(λ)

and thus

φ∗im(λ) =
λ

b0
φ∗i0(λ).

Look at the term of sm+1, that is

φ∗im(λ)b1 + φ∗i,m+1(λ)b0 = λφ∗i1(λ),
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so

φ∗i,m+1(λ) =
λφ∗i1(λ)− φ∗im(λ)b1

b0

=
λ

b20
· (b0φ∗i1(λ)− b1φ∗i0(λ)) ,

and φ∗i,m+2(λ), φ∗i,m+3(λ), · · · could be obtained in the similar ways.

Even if we have calculated the whole resolvent of the Feller minimal

Q∗-function by the expression of ul(λ), l = 1, 2, · · · ,m, in fact, it is quite

difficult to find all the roots ul(λ), l = 1, 2, · · · ,m. Only some properties of

the roots could be obtained. Hence, this problem needs to be solved in the

future.

Recall that φ∗ij(λ) is the Laplace transform of the transition probabilities

p∗ij(t):

φ∗ij(λ) =

∫ ∞
0

e−λtp∗ij(t)dt.

Therefore, the Feller minimal Q∗-transition function could be get by invert-

ing this resolvent function.

Let s = 1 in (3.2.5) leads to

∞∑
j=0

φ∗ij(λ) =
1

λ
,

and thus the Feller minimal Q∗-function is honest.

Remark 3.2.1. In Theorem 3.2.1, it is assumed that all the roots ul(λ) are

simple roots. However, sometimes Bλ(s) = 0 have multiple-roots. In this

case, (3.2.5) does not have the unique solution since ∆ = 0 in this case.

Therefore, we need some other techniques to solve it.

From the basic equation (3.2.5), without loss of generality, we assume

that um−1(λ) is a double root of Bλ(s) and all the other roots u1(λ), u2(λ),

· · · , um−2(λ) are simple. That is

Bλ(um−1(λ)) = B ′(um−1(λ)) = 0.

As (3.2.5) is well-defined when s = um−1(λ), um−1(λ) is also a double root
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of the numerator of the fraction in the right side of (3.2.5).

Let

D(s) = B(s)
m−1∑
k=0

φ∗ik(λ)sk − sm+i, (3.2.10)

then

D(um−1(λ)) = D′(um−1(λ)) = 0.

Differentiating D(s) in (3.2.10) leads to

D′(s) = B′(s)
m−1∑
k=0

φ∗ik(λ)sk +B(s)
m−1∑
k=0

φ∗ik(λ)ksk−1 − (m+ i)sm+i−1.

Hence, we obtain two equations from this double root:
B(um−1(λ))

∑m−1
k=0 φ

∗
ik(λ)ukm−1(λ) = (um−1(λ))m+i

B′(um−1(λ))
∑m−1

k=0 φ
∗
ik(λ)ukm−1(λ) +B(um−1(λ))

∑m−1
k=0 φ

∗
ik(λ)kuk−1m−1(λ)

= (m+ i)(um−1(λ))m+i−1.

Therefore, we can still have exact m number of equations, which are given

by 

x1 + u1(λ)x2 + u21(λ)x3 + · · ·+ um−11 (λ)xm = 1
λ
(u1(λ))i

x1 + u2(λ)x2 + u22(λ)x3 + · · ·+ um−12 (λ)xm = 1
λ
(u2(λ))i

· · · · · ·

x1 + um−1(λ)x2 + umm−1(λ)x3 + · · ·+ um−1m−1(λ)xm = 1
λ
(um−1(λ))i

mx1 + (m− 1)um−1(λ)x2 + · · ·+ um−1m−1(λ) = m+i
λ

(um−1(λ))i

,

where φ∗i0(λ), φ∗i1(λ), · · · , φ∗i,m−1(λ) are its solution. For other kinds of mul-

tiple root, the similar technique can be used.

In the later part of the thesis, it is automatically assumed that all the

m roots of Bλ(s) = 0, i.e. u1(λ), u2(λ), · · · , um(λ) are single and different

with each other.
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3.3 The Extinction Probability and the Mean

Extinction Time

In our model, we regard the process ever entering the state {0, 1, 2, · · · ,m−
1} (starting from some other state {m,m+ 1, · · · }) as extinction. In other

word, the state-dependent part is not needed. Thus, Q∗ is the only matrix

to use in discussing the extinction property as the process will stop when-

ever it enters the first m states. Let (ak0, ak1, · · · , ak,m−1) (k ≥ m) be the

extinction probability vector starting from k (for example, ak0 is the prob-

ability that the process will ever enter the state 0 starting from the state

k, and the others are similar) and τ ∗ = (τ ∗0 , τ
∗
1 , · · · , τ ∗m−1) be the related

extinction time vector.

3.3.1 The Extinction Probability

Theorem 3.3.1. Suppose all the roots of B(s) = 0 in {s : |s| ≤ 1} except

the root s = 1 are simple roots. The extinction probability aik (k ≤ m−1, i ≥
m) is the unique solution of the following equations:

ai0 + ai1q1 + ai2q
2
1 + · · ·+ ai,m−1q

m−1
1 = qi1

ai0 + ai1q2 + ai2q
2
2 + · · ·+ ai,m−1q

m−1
2 = qi2

· · ·

ai0 + ai1qm + ai2q
2
m + · · ·+ ai,m−1q

m−1
m = qim

, (3.3.1)

where q1, q2, · · · , qm are the m roots of the equation B(s) = 0, i.e. for all

1 ≤ l ≤ m,

ql = lim
λ→0

ul(λ).

Proof. We start to prove this theorem by applying (3.2.1), i.e.

m−1∑
k=0

λφ∗ik(λ)(ul(λ))k = (ul(λ))i. (1 ≤ l ≤ m),
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Let λ→ 0, and recall from Theorem 2.1.4 that

lim
λ→0

λφ∗ik(λ) = aik,

then (3.2.1) becomes

m−1∑
k=0

aikq
k
l = qil (≤ l ≤ m), (3.3.2)

which is certainly (3.3.1).

Note that the coefficient determinant of the equation set (3.3.1) is

∆(q) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 q1 · · · qm−11

1 q2 · · · qm−12

...
...

. . .
...

1 qm · · · qm−1m

∣∣∣∣∣∣∣∣∣∣∣∣
= Π1≤j<i≤m(qi − qj).

It is assumed that q1, q2, · · · , qm are all different (although the possibility

that limλ→0 ui(λ) = limλ→0 uj(λ) might exist for some ui(λ) 6= uj(λ)), then

∆(q) 6= 0.

Thus, (3.3.1) has the unique solution.

More specifically, we can express all the elements of the extinction vector

by all the roots of B(s) = 0. The solution of the equation set (3.3.1) is given
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by

ak0 =

∣∣∣∣∣∣∣∣∣∣∣∣

qk1 q1 · · · qm−11

qk2 q2 · · · qm−12

...
...

. . .
...

qkm qm · · · qm−1m

∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣

1 q1 · · · qm−11

1 q2 · · · qm−12

...
...

. . .
...

1 qm · · · qm−1m

∣∣∣∣∣∣∣∣∣∣∣∣

−1

,

ak1 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 qk1 · · · qm−11

1 qk2 · · · qm−12

...
...

. . .
...

1 qkm · · · qm−1m

∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣

1 q1 · · · qm−11

1 q2 · · · qm−12

...
...

. . .
...

1 qm · · · qm−1m

∣∣∣∣∣∣∣∣∣∣∣∣

−1

,

and ak2, · · · , ak,m−1 could be obtained similarly.

Theorem 3.3.2. The overall extinction probability is 1 if and only if mb ≤
md, i.e. B ′(1) ≤ 0.

Proof. There is no doubt that the overall extinction probability is indeed∑m−1
k=0 aik. Define q = limλ→0 u(λ), where u(λ) is that unique simple positive

root of Bλ(s) = 0. From part (iv) of Lemma 3.1.3, q = 1 if mb ≤ md and

q < 1 if mb > md. Obviously, q must follow one of the equations (3.3.2),

that is
m−1∑
k=0

aikq
k = qi (3.3.3)

If q = 1 (i.e. mb ≤ md), then the equation (3.3.3) will become

m−1∑
k=0

aik = 1,

which means that the overall extinction probability is 1 in this case. On the

other hand, If q < 1, then the equation (3.3.3) will become

m−1∑
k=0

aikq
k−i = 1.

However, since i ≥ m > m − 1 ≥ k ≥ 0 and q < 1, thus qk−i > 1, which
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ensures that
m−1∑
k=0

aik <

m−1∑
k=0

aikq
k−i = 1.

Therefore, the overall extinction probability is 1 if and only if mb ≤ md, i.e.

the expectation of the birth rate is no more than that of the death rate.

3.3.2 The Mean Extinction Time

For the problems of extinction, it is not enough just to discuss the

extinction probability. The extinction time is also interesting. Denote

Ū (k)(λ) =
(
uk1(λ), uk2(λ), · · · , ukm(λ)

)
and

W (λ) =



Ū (0)(λ)

Ū (1)(λ)

Ū (2)(λ)
...

Ū (m−1)(λ)


=



1 1 1 · · · 1

u1(λ) u2(λ) u3(λ) · · · um(λ)

u21(λ) u22(λ) u23(λ) · · · u2m(λ)
...

...
...

. . .
...

um−11 (λ) um−12 (λ) um−13 (λ) · · · um−1m (λ)


,

is an m×m matrix.

Similarly, denote Ū (k)(0) = limλ→0 Ū
(k)(λ) and W (0) = limλ→0W (λ).

Recall the assumption that u1(λ), u2(λ), · · · , um(λ) are the m different roots

of the equation Bλ(s) = 0, it is clearly that W (λ) (∀λ ≥ 0) is invertible

since

det(W (λ)) = Π1≤j<i≤m(ui(λ)− uj(λ)) 6= 0.

Denote A(k) = (ak0, ak1, · · · , ak,m−1) (k ≥ m) be the absorbing probabil-

ity vector, and denote A(k)(λ) = (λφ∗k0(λ), λφ∗k1(λ), · · · , λφ∗k,m−1(λ)).

Proposition 3.3.1. The Laplace transform of the extinction time

τ ∗ =
(
τ ∗0 , τ

∗
1 , · · · , τ ∗m−1

)
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is given by

∫∞
0
e−λtP (τ ∗0 ≤ t|X(0) = k)dt = φ∗k0(λ)∫∞

0
e−λtP (τ ∗1 ≤ t|X(0) = k)dt = φ∗k1(λ)

· · ·∫∞
0
e−λtP (τ ∗m−1 ≤ t|X(0) = k)dt = φ∗k,m−1(λ),

where φ∗k0(λ), φ∗k1(λ), · · · , φ∗k,m−1(λ) are the resolvent of the Feller minimal

Q∗-function.

The mean extinction time to the state j is that

Ek(τ
∗
j |X∗(∞) = j) =

∫ ∞
0

P (τ ∗j > t|X∗(∞) = j)dt = lim
λ→0

akj − λφ∗kj(λ)

λ
, 0 ≤ j ≤ m−1.

That is the mean extinction time vector is just

lim
λ→0

1

λ
(A(k) − A(k)(λ)),

which is indeed (−1)A′k(0). Therefore, the only thing to do is to calculate

A′(k)(λ) and then let λ = 0. Moreover, the overall extinction probability is

given by

P (τ ∗ ≤ t) = P
(
∪m−1j=0 {τ ∗j ≤ t}

)
=

m−1∑
j=0

P (τ ∗j ≤ t).

Then, the mean extinction time starting from the state k is given by

Ek(τ
∗) =

∫ ∞
0

P (τ ∗ > t|X(0) = k)dt

= lim
λ→0

1−
∑m−1

j=0 λφ
∗
kj(λ)

λ

= lim
λ→0

∑∞
j=0 λφ

∗
kj(λ)−

∑m−1
j=0 λφ

∗
kj(λ)

λ

= lim
λ→0

∞∑
j=m

φ∗ij(λ).

Proposition 3.3.2. The mean extinction time is finite if and only if B ′(1) <

0.
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The proof could be seen in Theorem 3.6 of J. P. Li, A. Y. Chen and K.

W. Ng (2012).

Theorem 3.3.3. Again assume that all the ql are different, then the mean

extinction time exists and can be expressed by

(−1)A′(k)(0) =
[
Ū (k)(0)W−1(0)W ′(0)− Ū (k) ′(0)

]
W−1(0) (3.3.4)

Proof. Note from (3.2.1) that

m−1∑
k=0

φ∗ik(λ)(ul(λ))k =
1

λ
(ul(λ))i. (1 ≤ l ≤ m),

thus, express it by the matrix form will be

A(k)(λ)W (λ) = Ū (k)(λ) (k ≥ m),

and let λ→ 0 yields

A(k)(0)W (0) = Ū (k)(0) (k ≥ m).

Then we have

A(k)(λ) = Ū (k)(λ)W−1(λ), (3.3.5)

because both W (λ) and W (0) are invertible matrices. Then differentiating

both sides of the equation (3.3.5) leads to

A ′(k)(λ) =
dŪ (k)(λ)

dλ
W−1(λ) + Ū (k)(λ)

dW−1(λ)

dλ
. (3.3.6)

Denote C(λ) = W−1(λ) for simplicity, which is still a m ×m matrix, then

(3.3.5) and (3.3.6) will be

A(k)(λ) = Ū (k)(λ)C(λ),

and

A ′(k)(λ) = Ū (k) ′(λ)C(λ) + Ū (k)(λ)C ′(λ)
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respectively. Now let λ → 0 on both sides and use its continuous property

leads to

A′(k)(0) = Ū ′(k)(0)C(0) + Ū(k)(0)C ′(0).

In order to obtain C ′(0), C ′(λ) should be calculated. Obviously,

W (λ)C(λ) = I

⇒ W ′(λ)C(λ) +W (λ)C ′(λ) = 0

⇒ W ′(0)C(0) +W (0)C ′(0) = 0

⇒ C ′(0) = −W−1(0)W ′(0)C(0)

i.e. C ′(0) = −C(0)W ′(0)C(0).

Thus, it is easily obtained that

A′(k)(0) = Ū ′k(0)C(0) + Ūk(0)[−C(0)W ′(0)C(0)]

= Ū ′k(0)C(0)− Ūk(0)C(0)W ′(0)C(0)

=
(
Ū ′k(0)− Ūk(0)C(0)W ′(0)

)
C(0) (3.3.7)

As C(λ) = W−1(λ) and C(0) = W−1(0), (3.3.7) is just

A′(k)(0) =
(
Ū ′k(0)− Ūk(0)W−1(0)W ′(0)

)
W−1(0), (3.3.8)

and thus

(−1)A′(k)(0) =
(
Ūk(0)W−1(0)W ′(0)− Ū ′k(0)

)
W−1(0).

which is the same as (3.3.4).

To calculate the overall mean extinction time, just sum all the elements

of (−1)A′(k)(0), i.e.

Ek(τ
∗) = (−1)A′(k)(0)AT(k). (3.3.9)

Example 3.3.1. Take m = 2 as an example, let u(λ) and v(λ) be the two

roots of Bλ(s) = 0, from which u(λ) is the unique positive root, then we
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have

W (λ) =

 1 1

u(λ) v(λ)


and

W ′(λ) =

 0 0

u′(λ) v′(λ)

 .
Hence, we have

W−1(λ) =
1

v(λ)− u(λ)

 v(λ) −1

−u(λ) 1

 ,
and

W−1(0) =
1

q∗ − q

 q∗ −1

−q 1

 ,
where q = limλ→0 u(λ) and q∗ = limλ→0 v(λ). According to Lemma 3.1.3,

we have

W ′(0) =

 0 0

u′(0) v′(0)

 =

 0 0

q2/B′(q) q2∗/B
′(q∗)

 ,
where

Ū (k)(λ) =
(
uk(λ), vk(λ)

)
and

Ū (k)(0) =
(
qk, qk∗

)
.

Differentiating them results in

Ū ′(k)(λ) =

 kuk−1(λ)u′(λ)

kvk−1(λ)u′(λ)

T ,
and

Ū ′(k)(0) =

 kqk−1 q2

B′(q)

kqk−1∗
q2∗

B′(q∗)

T .
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Therefore, the mean extinction time vector is given by

(−1)A′(k)(0) =

(qk, qk∗)
1

q∗ − q

 q∗ −1

−q 1

 ·
 0 0

q2

B′(q)
q2∗

B′(q∗)


−
(
kqk+1

B′(q)
,
kqk+1
∗

B′(q∗)

)}
1

q∗ − q

 q∗ −1

−q 1


=

(qk, qk∗)
1

q∗ − q

 − q2

B ′(q)
− q2∗
B ′(q∗)

q2

B ′(q)
q2∗

B ′(q∗)


−
(
kqk+1

B′(q)
,
kqk+1
∗

B′(q∗)

)}
1

q∗ − q

 q∗ −1

−q 1


=

{
1

q∗ − q

[
qk∗q

2 − qk+2

B ′(q)
,
qk+2
∗ − q2∗qk

B ′(q∗)

]

−
(
kqk+1

B′(q)
,
kqk+1
∗

B′(q∗)

)}
1

q∗ − q

 q∗ −1

−q 1


=

1

(q∗ − q)2

 qk∗q
2+(k−1)qk+2−kqk+1q∗

B ′(q)

(1−k)qk+2
∗ −q2∗qk+kq

k+1
∗ q

B ′(q∗)

T ·
 q∗ −1

−q 1



=
1

(q∗ − q)2

 qk+1
∗ q2+(k−1)qk+2q∗−kqk+1q2∗

B ′(q) − (1−k)qk+2
∗ q−q2∗qk+kqk+1

∗ q
B ′(q∗)

−qk∗q
2+(k−1)qk+2−kqk+1q∗

B ′(q) + (1−k)qk+2
∗ −q2∗qk+1+kqk+1

∗ q2

B ′(q∗)


T

.

Particularly, if B ′(1) ≤ 0, i.e. q = 1, then

Ek(τ
∗) =

k − 1− kq∗ + qk∗
(q∗ − 1)B ′(1)

.

On the other hand, if B ′(1) > 0, then the mean extinction time must be

infinite since the overall extinction probability is strictly less than 1. There-

fore,

Ek(τ
∗) =


k−1−kq∗+qk∗
(q∗−1)B ′(1) if mb < md

+∞ if mb ≥ md

.

Note that the assumption that W (0) is invertible (i.e. B(s) = 0 has no

multiple roots) is necessary when we obtain (3.3.4). From A(k)(λ)W (λ) =
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Ū (k)(λ), we have

A(k)(λ) = Ū (k)(λ)W−1(λ),

where A(k)(λ) = (λφk0(λ), λφk1(λ), · · · , λφk,m−1(λ)). Afterwards, using the

property that Ū (k)(λ) and W−1(λ) are both infinite order differentiable func-

tions on (0,∞), we can find the derivative of them and let λ→ 0+. Finally,

we can get the result by using the continuous property on 0.

3.4 Decomposition Theorem and Resuming

the Process

Up to now, only the matrix Q∗ with m absorbing states has been dis-

cussed. The resolvent and the transition function calculated were only re-

garding to Q∗. The aim of this subsection is to explore the resolvent of the

whole q-matrix Q, which is the main model in the thesis by resuming the

process from known φ∗ij(λ), i, j ∈ E. The method is to apply the decompo-

sition theorem, which was initially studied by A. Y. Chen, H. J. Zhang and

Z. T. Hou (2002).

Let Q be a regular q-matrix, which is defined on a countable (might be

infinite) state space E = {0, 1, 2, · · · }. Define F = {0, 1, 2, · · · ,m− 1} and

G = E \ F = {m,m+ 1, · · · }, then Q could be partitioned as

Q =

 QFF QFG

QGF QGG

 ,

where

QFF =


q00 q01 q02 · · · q0,m−1

q10 q11 q12 · · · q1,m−1
...

...
...

. . .
...

qm−1,0 qm−1,1 qm−1,2 · · · qm−1,m−1

 ,
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QFG =


q0m q0,m+1 q0,m+2 · · ·

q1m q1,m+1 q1,m+2 · · ·
...

...
...

. . .

qm−1,m qm−1,m+1 qm−1,m+2 · · ·

 ,

QGF =


b0 b1 b2 · · · bm−1

0 b0 b1 · · · bm−2

0 0 b0 · · · bm−3
...

...
...

. . .
...

 ,

and

QGG =


bm bm+1 bm+2 · · ·

bm−1 bm bm+1 · · ·

bm−2 bm−1 bm · · ·
...

...
...

. . .

 .

Furthermore, let R(λ) = {rij(λ), λ > 0, i, j ∈ E} be the resolvent of the

Feller minimal Q-function. Similarly, R(λ) can be partitioned as the form

R(λ) =

 RFF (λ) RFG(λ)

RGF (λ) RGG(λ)

 .

Proposition 3.4.1. The resolvent of the Feller minimal Q-function R(λ)

could be written by the form

R(λ) =

 A(λ) A(λ)η(λ)

ξ(λ)A(λ) ξ(λ)A(λ)η(λ)

+

 0 0

0 Ψ(λ)

 , (3.4.1)

where

Ψ(λ) = {ψij(λ) : ψij(λ) = φ∗ij(λ), i, j ∈ G};

η(λ) = QFGΨ(λ),

i.e. ηaj(λ) =
∞∑
k=m

qakφ
∗
kj(λ) (a ∈ F, j ∈ G);
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and

ξ(λ) = Ψ(λ)QGF .

That is

rij(λ) =



φ∗ij(λ) + λ
∑m−1

l=0

∑m−1
k=0 φ

∗
ik(λ)fkl(λ)ηlj(λ) i ∈ G, j ∈ G∑m−1

k=0 fik(λ)ηkj(λ) i ∈ F, j ∈ G∑m−1
k=0 ξik(λ)fkj(λ) i ∈ G, j ∈ F

fij(λ) i ∈ F, j ∈ F

,

where for any i, j ∈ F ,

rij(λ) =: fij(λ) = λδij + λ
∞∑
k=m

ηik(λ)ξkj.

Moreover, after writing the column vector

η(λ) =
(
η(0)(λ), η(1)(λ), · · · , η(m−1)(λ)

)T
and the row vector

ξ(λ) =
(
ξ(0)(λ), ξ(1)(λ), · · · , ξ(m−1)(λ)

)
,

where for i ∈ F , the row vector

η(i)(λ) = {ηij(λ), j ∈ G},

and for i ∈ G, the column vector

ξ(j)(λ) = {ξij(λ), i ∈ G},

we have that

A(λ) = (C + λI + λ〈η(λ), ξ(λ)〉)−1 , (3.4.2)
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where

〈η(λ), ξ(λ)〉 =

{
dij : dij = λ〈η(i)(λ), ξ(j)(λ)〉 =

∑
k∈G

ηikξkj

}

and C = {cij} takes the form

cij =

 qij + limλ→+∞ λ〈η(i)(λ), ξ(j)(λ)〉 if i 6= j∑
j 6=i cij + limλ→+∞ λ〈η(i)(λ), 1−

∑
j ξ

(j)(λ)〉 if i = j
. (3.4.3)

Note that E is stable, we further have

cii = qi − lim
λ→+∞

λ〈η(i)(λ), ξ(i)(λ)〉. (3.4.4)

Now, each element of the resolvent R(λ) has been expressed in Propo-

sition 3.4.1. Therefore, the minimal Q-resolvent R(λ) could be obtained

by applying the Q∗-resolvent Φ∗(λ) analyzed in Section 3.2 to the proposi-

tion, and the transition function pij(t) could be get again by inverting its

resolvent. Hence, in theoretically, each element of the (unique) transition

function of the pij(t), i, j ∈ N can be expressed by all the roots of Bλ(s) = 0

even if it is hard to calculate the exact values of all the ul(λ).

Remark 3.4.1. From Proposition 3.4.1, it is obvious that Ψ(λ) is totally

determined by both of the QGF and QGG parts, and then so does ξ(λ). Return

to our basic model and rewrite

Q∗ = 0 +Q∗,

then we can still apply Proposition 3.4.1 to obtain the resolvent of Q∗-

function. Since the QGF and QGG parts are equal between Q and Q∗,

the ξ(λ)s of both q-matrix must also be equal. Note in Q∗, as the states

{0, 1, · · · ,m} are all absorbing states, it is clear that

A∗(λ) =
1

λ
Im,
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where A∗(λ) is the corresponding A(λ) of Q∗. Thus, it is obtained that

ξ(λ)

λ
= Φ∗GF (λ),

i.e. ξij(λ) = λφ∗ij(λ), i ∈ G, j ∈ F.

3.5 Recurrence and Equilibrium Distribution

As the transition function pij(t), i, j ∈ N of our queueing model has been

discussed, what is interesting are the properties incorporating the equilib-

rium behaviour. Firstly, assume that Q is irreducible, then the minimal

Q-transition function is also irreducible. According to Theorem 2.1.5, the

equilibrium distribution exists iff the Markov chain is positive recurrent.

Therefore, the recurrence property will be discussed first in this section.

3.5.1 Recurrence Properties of the Q-process

Theorem 3.5.1. The Q-process is recurrent if and only if B ′(1) ≤ 0 and is,

furthermore, positive recurrent if and only if B ′(1) < 0 and
∑∞

j=0 jqij < +∞
for all i ∈ {0, 1, · · · ,m− 1}.

Based on Theorem 3.5.1, other important properties regarding our new

(recurrent) queueing model, including equilibrium distribution, mean queue-

ing length and mean busy period, etc. should be able to be obtained. In

the remaining of the Chapter, the positive recurrent Q-process is only con-

sidered.

3.5.2 Equilibrium Distribution

The assumption that Q is irreducible and positive recurrent ensures that

its equilibrium distribution exists. Denote Π = (π0, π1, · · · , πm, · · · ) be the

equilibrium distribution.
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Theorem 3.5.2. In order to avoid confusion, let hij = qij for all i < m

here, i.e.

Q =



h00 h01 h02 · · ·

h10 h11 h12 · · ·
...

...
...

. . .

hm−1,0 hm−1,1 hm−1,2 · · ·

b0 b1 b2 · · ·

0 b0 b1 · · ·
...

...
...

. . .


,

and define the generating functions Hk(s) =
∑∞

j=0 hkjs
j (0 ≤ k ≤ m − 1).

The equilibrium distribution of the first m states π0, π1, · · · , πm−1 is the

solution of the following m equations:

1 =
m−1∑
k=0

πk
B′(1)−H ′k(1)

B′(1)
, (3.5.1)

m−1∑
k=0

πkHk(ql) = 0 (l = 1, 2, · · · ,m− 1), (3.5.2)

where ql (l = 1, 2, · · · ,m − 1) are the roots of B(s) = 0 other than s = 1.

The generating function of the remaining πk (k ≥ m) is given by

∞∑
k=m

πks
k = −s

m
∑m−1

k=0 πkHk(s)

B(s)
. (3.5.3)

Proof. First of all, we use the same technique as Theorem 3.2.1 to prove

the equilibrium incorporating the first m state. ΠQ = 0 leads to

∞∑
k=0

πkqkj =
m−1∑
k=0

πkhkj +

j+m∑
k=m

πkbj−k+m = 0 (j ≥ 0).

For every j ∈ {0, 1, · · · }, multiply sj on both sides of the equation and then

61



sum up all these equations will result

0 =
∞∑
j=0

(
m−1∑
k=0

πkhkj)s
j +

∞∑
j=0

(

j+m∑
k=m

πkbj−k+m)sj

=
∞∑
j=0

[
m−1∑
i=0

πihij +

m+j∑
i=m

πibj−i+m]sj

=
m−1∑
i=0

πi

∞∑
j=0

hijs
j +

∞∑
j=0

(

m+j∑
i=m

πibj−i+m)sj

=
m−1∑
i=0

πi

∞∑
j=0

hijs
j +

∞∑
i=m

πi

∞∑
j=i−m

bj−i+ms
j

=
m−1∑
i=0

πi

∞∑
j=0

hijs
j +

∞∑
i=m

πis
i−m

∞∑
j=0

bjs
j. (3.5.4)

Substitute B(s) and Hk(s)(0 ≤ k ≤ m − 1) to
∑∞

j=0 bjs
j and

∑∞
j=0 hkjs

j

respectively, then (3.5.4) will become

B(s)Π(s)−B(s)
m−1∑
k=0

πks
k + sm

m−1∑
k=0

πkHk(s) = 0.

In other words,

Π(s)
B(s)

sm
=
B(s)

sm

m−1∑
k=0

πks
k −

m−1∑
k=0

πkHk(s),

⇒ Π(s) =
m−1∑
k=0

πks
k − sm

∑m−1
k=0 πkHk(s)

B(s)
,

which is certainly (3.5.3). Therefore, checking the value of πk for all 0 ≤
k ≤ m− 1 is quite enough to finish the proof.

According to Theorem 3.5.1, B ′(1) < 0 for the case of positive recur-

rence, which results in that B(s) = 0 has exactly m roots in {s : |s| ≤ 1}
based on Lemma 3.1.1. Again from Theorem 3.5.1, we have that H ′(1) =∑∞

j=0 jhkj < +∞. Note that s = 1 is the root of all the Hk(s) and B(s),
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the following equation is obvious by applying L’Hopital Law:

∞∑
k=m

πk = −
m−1∑
k=0

πk lim
s→1

Hk(s)

B(s)
= −

m−1∑
k=0

πk
H ′k(1)

B ′(1)
,

which brings about (3.5.1). Substitute the remaining m − 1 roots ql (l =

1, 2, · · · ,m− 1) except the positive one to s in (3.5.3) from B(s) = 0, then,

similarly, the numerator of the fraction must be zero since the denominator

part is 0 in these cases, and the left side of the equation is finite. In other

word, for all l = 1, 2, · · · ,m− 1,

m−1∑
k=0

πkHk(ql) = 0,

which is indeed (3.5.2).

We do not need to show the existence of these roots for they are deter-

mined by the initial conditions. It is quite convenient to get some properties

concerning the queue size in the equilibrium distribution theoretically.

Now we want the solve the m equations of (3.5.1) and (3.5.2) by similar

way, then the coefficient determinant is

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣

1− H′0(1)

B′(1)
1− H′1(1)

B′(1)
· · · 1− H′m−1(1)

B′(1)

H0(q1) H1(q1) · · · Hm−1(q1)
...

...
. . .

...

H0(qm−1) H1(qm−1) · · · Hm−1(qm−1)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus, the solution is

π0 =
1

∆

∣∣∣∣∣∣∣∣∣∣∣∣

H1(q1) H2(q1) · · · Hm−1(q1)

H1(q2) H2(q2) · · · Hm−1(q2)
...

...
. . .

...

H1(qm−1) H2(qm−1) · · · Hm−1(qm−1)

∣∣∣∣∣∣∣∣∣∣∣∣
,
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π1 =
1

∆

∣∣∣∣∣∣∣∣∣∣∣∣

H0(q1) H2(q1) · · · Hm−1(q1)

H0(q2) H2(q2) · · · Hm−1(q2)
...

. . .
...

H0(qm−1) H2(qm−1) · · · Hm−1(qm−1)

∣∣∣∣∣∣∣∣∣∣∣∣
,

and the other πi could be expressed similarly.

3.6 The Mean Queue Length

In queue theory, the queue length distribution is also an interesting

aspect. In this section, we want to discuss it. We also assume that at least

one of qij for each i ∈ {0, 1, · · · ,m−1} is nonzero to avoid the extreme case

of absorbing states.

Define

Yi(λ, s) =
∞∑
k=m

qik

∞∑
j=m

φ∗kj(λ)sj. (0 ≤ i ≤ m− 1) (3.6.1)

Theorem 3.6.1. The generating functions of the resolvent of the Q-function

R(λ) = {rij(λ) : i, j ≥ 0} are given by

∞∑
j=0

rij(λ)sj =
m−1∑
j=0

rij(λ)
(
sj + Yj(λ, s)

)
(3.6.2)

for 0 ≤ i < m, and on the other hand, i.e. for i ≥ m,

∞∑
j=0

rij(λ)sj =
∞∑
j=m

φ∗ij(λ)sj

+λ
m−1∑
j=0

m−1∑
k=0

φ∗ik(λ)rkj(λ)
(
sj + Yj(λ, s)

)
, (3.6.3)

where each Yj(λ, s) has been defined in (3.6.1).

Proof. From Proposition 3.4.1, we have that theQ-resolventR(λ) = {rij(λ)}
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is given by

rij(λ) =



φ∗ij(λ) + λ
∑m−1

l=0

∑m−1
k=0 φ

∗
ik(λ)fkl(λ)ηlj(λ) i ∈ G, j ∈ G∑m−1

k=0 fik(λ)
(∑∞

t=m qktφ
∗
tj(λ)

)
i ∈ F, j ∈ G∑m−1

k=0 λφ
∗
ik(λ)fkj(λ) i ∈ G, j ∈ F

fij(λ) i ∈ F, j ∈ F

,

(3.6.4)

where

fij(λ) = λδij + λ
∞∑
k=m

(
∞∑
t=m

qitφ
∗
tk(λ)

)
λφ∗kj(λ).

Then, for each 0 ≤ i ≤ m− 1, it is satisfied that

∞∑
j=0

rij(λ)sj =
m−1∑
j=0

rij(λ)sj +
∞∑
j=m

[
m−1∑
k=0

rik(λ)

(
∞∑
t=m

qktφ
∗
tj(λ)

)]
sj

=
m−1∑
j=0

rij(λ)sj +
∞∑
j=m

m−1∑
k=0

∞∑
t=m

rik(λ)qktφ
∗
tj(λ)sj

=
m−1∑
j=0

rij(λ)sj +
m−1∑
k=0

rik(λ)
∞∑
t=m

qkt

∞∑
j=m

φ∗tj(λ)sj

=
m−1∑
j=0

rij(λ)sj +
m−1∑
k=0

rik(λ)Yk(λ, s)

=
m−1∑
j=0

rij(λ)
(
sj + Yj(λ, s)

)
,
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which is indeed (3.6.2); and for each i ≥ m,

∞∑
j=0

rij(λ)sj =
m−1∑
j=0

(
m−1∑
k=0

λφ∗ik(λ)fkj(λ)

)
sj

+
∞∑
j=m

[
φ∗ij(λ) + λ

m−1∑
l=0

m−1∑
k=0

φ∗ik(λ)rkl(λ)

(
∞∑
t=m

qltφ
∗
tj(λ)

)]
sj

=
∞∑
j=m

φ∗ij(λ)sj + λ
m−1∑
j=0

m−1∑
k=0

φ∗ik(λ)rkj(λ)sj

+λ
∞∑
j=m

m−1∑
l=0

m−1∑
k=0

∞∑
t=m

φ∗ik(λ)rkl(λ)qltφ
∗
tj(λ)sj

=
∞∑
j=m

φ∗ij(λ)sj + λ
m−1∑
j=0

m−1∑
k=0

φ∗ik(λ)rkj(λ)sj

+λ
m−1∑
l=0

m−1∑
k=0

φ∗ik(λ)rkl(λ)
∞∑
j=m

∞∑
t=m

qltφ
∗
tj(λ)sj

=
∞∑
j=m

φ∗ij(λ)sj + λ
m−1∑
j=0

m−1∑
k=0

φ∗ik(λ)rkj(λ)sj

+λ
m−1∑
l=0

m−1∑
k=0

φ∗ik(λ)rkl(λ)Yt(λ, s),

which is (3.6.3). Thus, the proof is complete.

Now, denote mi(t) be the mean length of our Markov queueing process

at the moment t (t > 0) under the condition that the process starts from

the state i (the initial queue length is i), i.e.

mi(t) = E[Xt|X0 = i] =
∞∑
j=0

jpij(t). (3.6.5)

Furthermore, define ςi(λ) as the Laplace transform of mi(t).

Theorem 3.6.2. The Laplace transforms of the mean queueing length func-

tions, ςi(λ), are given by

ςi(λ) =
m−1∑
j=0

rij(λ)

(
j +

∂Yj(λ, s)

∂s
|s=1

)
(3.6.6)
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for all 0 ≤ i ≤ m− 1; and for i ≥ m,

ςi(λ) =
∞∑
j=m

jφ∗ij(λ)

+ λ

m−1∑
j=0

m−1∑
k=0

φ∗ik(λ)rkj(λ)

(
j +

∂Yj(λ, s)

∂s
|s=1

)
, (3.6.7)

where each Yj(λ, s) has been defined in (3.6.1).

Proof. Since ςi(λ) is the Laplace transform of mi(t), the following equation

holds true because of (3.6.5):

ςi(λ) =
∞∑
j=0

jrij(λ) =
∂
(∑∞

j=0 rij(λ)sj
)

∂s
|s=1. (3.6.8)

As 0 ≤ i ≤ m− 1, combine (3.6.2) and (3.6.8) will yield

ςi(λ) =
m−1∑
j=0

rij(λ)

(
j +

∂Yj(λ, s)

∂s
|s=1

)
,

which is (3.6.6); i ≥ m, combine (3.6.3) and (3.6.8) will yield

ςi(λ) =
∞∑
j=m

jφ∗ij(λ)

+ λ

m−1∑
j=0

m−1∑
k=0

φ∗ik(λ)rkj(λ)

(
j +

∂Yj(λ, s)

∂s
|s=1

)
,

which is (3.6.7) and thus the proof has been completed.

3.7 Hitting Time Distribution

The hitting time (denotes τ), which is the time to make the queue

system empty (that is τ = inf{t > 0 : X(t) = 0}), is interesting in Markov

queue processes. In this section, it is meaningless whether the process will

continue or not when it is at the state i = 0. Thus, the state 0 can be

regarded as an absorbing state. Let q0j ≡ 0 (j ∈ E) in our queueing model
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(1.2.1)—(1.2.5) and denote the new q-matrix as Q(b), i.e.

Q(b) =



0 0 0 0 · · ·

q10 q11 q12 q13 · · ·

q20 q21 q22 q23 · · ·
...

...
...

...
. . .

qm−1,0 qm−1,1 qm−1,2 qm−2,3 · · ·

b0 b1 b2 b3 · · ·

0 b0 b1 b2 · · ·

0 0 b0 b1 · · ·
...

...
...

...
. . .



. (3.7.1)

Before discussing the hitting behaviors, we need to calculate the resol-

vent of the Feller minimal Q(b)-function similarly as that of Q∗.

Theorem 3.7.1. Denote Ψ
(b)
λ = {ψij(λ), i, j ∈ N} as the resolvent of the

Feller minimal Q(b)-function. Then, for all i ≥ 0 and 0 ≤ j ≤ m−1, ψij(λ)

is given by the following m equations:

λψi0(λ) +
m−1∑
k=1

ψik(λ)
(
λ(ul(λ))k −Hk(ul(λ))

)
= (ul(λ))i, (l = 1, 2, · · · ,m)

(3.7.2)

where ul(λ) (l = 1, 2, · · · ,m) are all the roots of the equation Bλ(s) = 0

within the unit circle {s : |s| < 1} and for all 0 ≤ k ≤ m− 1, Hk(s) is the

generating function of {qkj : j ≥ 0}, i.e.

Hk(s) =
∞∑
j=0

qkjs
j.

For j ≥ m, the generating function of the Q(b)-resolvent takes the form of

∞∑
k=0

ψik(λ)sk =
B(s)

∑m−1
k=0 ψik(λ)sk − si+m − sm

∑m−1
k=1 Hk(s)ψik(λ)

B(s)− λsm
.

(3.7.3)

More specifically,

ψ0j(λ) =
δ0j
λ
.
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Proof. The last part of the theorem is trivial since state 0 is the absorbing

state. For the remaining part, we use the similar technique incorporating

the Kolmogorov Forward Equations to solve this problem, which is given

by

λΨ(b)(λ)− I = Ψ(b)(λ)Q.

Then, for all i ≥ 1 and j,

λψij(λ) = δij +
∞∑
k=0

ψik(λ)qkj = δij +
∞∑
k=1

ψik(λ)qkj

= δij +
m−1∑
k=1

ψik(λ)qkj +

j+m∑
k=m

ψik(λ)bj−k+m.

Multiply sj on both sides and sum all the λψijs
j by j will lead to

⇒ λ
∞∑
j=0

ψij(λ)sj = si +
∞∑
j=0

(
m−1∑
k=1

ψik(λ)qkj

)
sj +

∞∑
j=0

(
j+m∑
k=m

ψik(λ)bj−k+m

)
sj

= si +
m−1∑
k=1

ψik(λ)
∞∑
j=0

qkjs
j +

∞∑
k=m

∞∑
j=k−m

ψik(λ)bj−k+ms
j

= si +
m−1∑
k=1

ψik(λ)Hk(s) +
∞∑
k=m

ψik(λ)
∞∑
j=0

bjs
j+k−m

= si +
m−1∑
k=1

Hk(s)ψik(λ) +

(
∞∑
k=m

ψik(λ)sk−m

)
B(s)

= si +
m−1∑
k=1

Hk(s)ψik(λ) +
1

sm

(
∞∑
k=m

ψik(λ)sk

)
B(s).

In other words,

(B(s)− λsm)
∞∑
k=0

ψik(λ)sk

= B(s)
m−1∑
k=0

ψik(λ)sk − si+m − sm
m−1∑
k=1

Hk(s)ψik(λ),
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So the generating function
∑∞

k=0 ψik(λ)sk is given by

∞∑
k=0

ψik(λ)sk =
B(s)

∑m−1
k=0 ψik(λ)sk − si+m − sm

∑m−1
k=1 Hk(s)ψik(λ)

B(s)− λsm
,

(3.7.4)

which is indeed (3.7.3).

Note that u1(λ), u2(λ), · · · , um(λ) are the roots of B(s)−λsm = 0. Thus,

the numerator of the right side must be zero by letting s = ul(λ), 1 ≤ l ≤ m

since the left side is finite at least inside the unit circle {s : |s| < 1} and the

denominator of the equation is 0 in these cases. That is for each 1 ≤ l ≤ m,

B (ul(λ))
m−1∑
k=0

ψik(λ)(ul(λ))k−(ul(λ))i+m−(ul(λ))m
m−1∑
k=1

Hk(ul(λ))ψik(λ) = 0.

(3.7.5)

Recall that

B(ul(λ)) = λ(ul(λ))m. (3.7.6)

Finally, (3.7.2) is obtained by combining (3.7.5) and (3.7.6).

In the hitting time problems, firstly we want to know the probability

that the process will hit the state 0.

Theorem 3.7.2. Denote a
(b)
k0 be the probability that the Markov process with

the q-matrix Q(b) will eventually hit the idle state 0 starting from the state

k, then a
(b)
k0 = 1 if and only if mb ≤ md.

Proof. If mb > md, as it was discussed in section 3.3.1, starting from the

initial state k, where k ≥ m, the extinction probability of Q∗ (the probabil-

ity that the process will enter any of the states {0, 1, · · · ,m−1})
∑m−1

j=0 akj

is less than 1, which is obviously no less than the hitting probability a
(b)
k0 .

That is

a
(b)
k0 < 1.

Otherwise, from the equation set (3.7.2), it is apparent that

ψk0(λ) =
|∆(b)

0 (λ, k)|
|∆(b)(λ)|

, (3.7.7)
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where

∆(b)(λ) = λ


1 λu1(λ)−H1(u1(λ)) · · · λum−11 (λ)−Hm−1(u1(λ))

1 λu2(λ)−H1(u2(λ)) · · · λum−11 (λ)−Hm−1(u2(λ))
...

...
. . . · · ·

1 λum(λ)−H1(um(λ)) · · · λum−1m (λ)−Hm−1(um(λ))


and

∆
(b)
0 (λ, k) =


uk1(λ) λu1(λ)−H1(u1(λ)) · · · λum−11 (λ)−Hm−1(u1(λ))

uk2(λ) λu2(λ)−H1(u2(λ)) · · · λum−11 (λ)−Hm−1(u2(λ))
...

...
. . . · · ·

ukm(λ) λum(λ)−H1(um(λ)) · · · λum−1m (λ)−Hm−1(um(λ))

 .

Therefore, recall that limλ→0 u1(λ) = 1 if mb ≤ md and Hi(1) = 0 (1 ≤ i ≤
m− 1), the hitting probability a

(b)
k0 is given by

a
(b)
k0 = lim

λ→0
λψk0(λ) = lim

λ→0

|∆(b)
0 (λ, k)|
|∆(b)(λ)|

= det


1 0 0 · · · 0

qk2 −H1(q2) −H2(q2) · · · −Hm−1(q2)
...

...
...

. . . · · ·

qkm −H1(qm) −H2(qm) · · · −Hm−1(qm)

 ·

det−1


1 0 0 · · · 0

1 −H1(q2) −H2(q2) · · · −Hm−1(q2)
...

...
...

. . . · · ·

1 −H1(qm) −H2(qm) · · · −Hm−1(qm)


= 1.

Hence, the proof is completed.

Corollary 3.7.1. In Theorem 3.7.1, we can find ψk0(λ), which is the Laplace

transform of the Feller minimal transition function p
(b)
k0 (t). In fact, as 0 is

the absorbing state, p
(b)
k0 (t) is exactly the hitting time distribution starting
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from the state k (k ≥ 1), that is

p
(b)
k0 (t) = P (τ ≤ t|X(0) = k).

Moreover, it is clearly that the mean hitting time Ek(τ), which is given by

Ek(τ) = lim
λ→0

1− λψk0(λ)

λ

is finite if and only if mb < md and
∑∞

j=0 jqij <∞ for each 1 ≤ i ≤ m− 1.

3.8 Busy Period Distribution

After we discuss the hitting time distribution, the busy period distribution

of our queueing process is now able to be considered. Without loss of

generality, it is assumed that the initial queue in the queue system is empty,

that is X(0) = 0. Denote this series of stopping times {σn : n ∈ N} as

σ0 = 0, σ1 = inf{t : t ≥ 0, X(t) 6= 0},

and for all n ≥ 1,

σ2n = inf{t : t > σ2n−1, X(t) = 0}, σ2n+1 = inf{t : t > σ2n, X(t) 6= 0}.

Its practical meaning is that the queue system is empty from the time 0

to σ1, and again empty at the time σ2, and so on. Hence, these random

variables {σ2n − σ2n−1 : n ≥ 1} (generally named as the excursion times

leaving the states 0) are described as the busy periods of our queueing model.

According to Itô’s excursion law (see K. Itô (1971)), {σ2n − σ2n−1 : n ≥ 1}
are independent, identically distributed. By applying the strong Markov
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property, their common distribution is given by

Pr(σ2n − σ2n−1 ≤ t)

=
∞∑
k=1

P (X(σ2n−1) = k)P (σ2n − σ2n−1 ≤ t | X(σ2n−1) = k)

=
∞∑
k=1

q0k
−q00

P (σ2n − σ2n−1 ≤ t | X(σ2n−1) = k)

=
∞∑
k=1

q0k
−q00

P (σ2 − σ1 ≤ t | X(σ1) = k). (3.8.1)

Recall from the last section that p
(b)
k0 (t) is the hitting time distribution

starting from the state k (k ≥ 1), it must be equivalent to the busy pe-

riod distribution under the condition that X(σ1) = k. Hence, the Laplace

transform of the busy period distribution gT (λ) is given by

gT (λ) =
∞∑
k=1

q0k
−q00

ψk0(λ)

=
m−1∑
k=1

q0k
−q00

ψk0(λ) +
λ

−q00

m−1∑
t=1

ψt0(λ)
∞∑
k=m

q0kφ
∗
kt(λ). (3.8.2)

Finally, the busy period distribution could be obtained again by the

same method to reverse the Laplace transform gT (λ).

3.9 The Example that m = 3

In this section, we discuss all the properties in the case of m = 3.

Corollary 3.9.1. According to Theorem 3.2.1, it is easily obtained that for

all i ≥ 0,
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φ∗i0(λ) =
1

λ

∣∣∣∣∣∣∣∣∣
ui1(λ) u1(λ) u21(λ)

ui2(λ) u2(λ) u22(λ)

ui3(λ) u3(λ) u23(λ)

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣

1 u1(λ) u21(λ)

1 u2(λ) u22(λ)

1 u3(λ) u23(λ)

∣∣∣∣∣∣∣∣∣
−1

=
{
ui1(λ)u2(λ)u3(λ) [u3(λ)− u2(λ)]

+u1(λ)ui2(λ)u3(λ) [u1(λ)− u3(λ)]

+u1(λ)u2(λ)ui3(λ) [u2(λ)− u1(λ)]
}

· [λ (u3(λ)− u2(λ)) (u3(λ)− u1(λ)) (u2(λ)− u1(λ))]−1 ,(3.9.1)

φ∗i1(λ) =
1

λ

∣∣∣∣∣∣∣∣∣
1 ui1(λ) u21(λ)

1 ui2(λ) u22(λ)

1 ui3(λ) u23(λ)

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣

1 u1(λ) u21(λ)

1 u2(λ) u22(λ)

1 u3(λ) u23(λ)

∣∣∣∣∣∣∣∣∣
−1

=
{
ui1(λ)

[
u22(λ)− u23(λ)

]
+ ui2(λ)

[
u23(λ)− u21(λ)

]
+ui3(λ)

[
u21(λ)− u22(λ)

]}
· [λ (u3(λ)− u2(λ)) (u3(λ)− u1(λ)) (u2(λ)− u1(λ))]−1 ,(3.9.2)

φ∗i2(λ) =
1

λ

∣∣∣∣∣∣∣∣∣
1 u1(λ) ui1(λ)

1 u2(λ) ui2(λ)

1 u3(λ) ui3(λ)

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣

1 u1(λ) u21(λ)

1 u2(λ) u22(λ)

1 u3(λ) u23(λ)

∣∣∣∣∣∣∣∣∣
−1

=
{
ui1(λ) [u3(λ)− u2(λ)] + ui2(λ) [u1(λ)− u3(λ)]

+ui3(λ) [u2(λ)− u1(λ)]
}

· [λ (u3(λ)− u2(λ)) (u3(λ)− u1(λ)) (u2(λ)− u1(λ))]−1 ,(3.9.3)

where u1(λ), u2(λ), u3(λ) are the roots of Bλ(s) = 0 in |s| < 1. Particularly,

if i = 0, 1, 2, then

φ∗ij(λ) =
δij
λ
. (3.9.4)

Moreover, we can use (3.2.5) to find the other elements of the Q∗-resolvent.

Corollary 3.9.2. According to Theorem 3.3.3, the extinction time vector
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can be calculated. In this example,

Ū (k)(0) = (qk1 , q
k
2 , q

k
3),

W (0) =


1 1 1

q1 q2 q3

q21 q22 q23

 ,

W ′(0) =


0 0 0

q31
B ′(q1)

q32
B ′(q2)

q33
B ′(q3)

2q41
B ′(q1)

2q42
B ′(q2)

2q43
B ′(q3)

 ,
and

W−1(0) =
1

(q3 − q2)(q3 − q1)(q2 − q1)


q2q3 −(q2 + q3) 1

−q1q3 q1 + q3 −1

q1q2 −(q1 + q2) 1

 .

Thus, we have

(−1)A ′(k)(0) =


(
qk1 , q

k
2 , q

k
3

)


q2q3 −(q2 + q3) 1

−q1q3 q1 + q3 −1

q1q2 −(q1 + q2) 1

 ((q3 − q2)(q3 − q1)(q2 − q1))−1

·


0 0 0

q31
B ′(q1)

q32
B ′(q2)

q33
B ′(q3)

2q41
B ′(q1)

2q42
B ′(q2)

2q43
B ′(q3)

−
(
kqk+2

1

B ′(q1)
,
kqk+2

2

B ′(q2)
,
kqk+2

3

B ′(q3)

)
·


q2q3 −(q2 + q3) 1

−q1q3 q1 + q3 −1

q1q2 −(q1 + q2) 1

 ((q3 − q2)(q3 − q1)(q2 − q1))−1 .

Moreover, if Q is recurrent, i.e. B ′(1) ≤ 0, then the mean extinction time
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is that

Ek(τ
∗) = lim

λ→0

1− λ (φ∗k0(λ) + φ∗k1(λ) + φ∗k2(λ))

λ
= lim

λ→0

{
(u3(λ)− u2(λ))u3(λ)u2(λ)(1− u1(λ)k)− (u23(λ)− u22(λ))(u1(λ)− uk1(λ))

+(u3(λ)− u2(λ))(u21(λ)− uk1(λ)) + (uk2(λ)u23(λ)− uk3(λ)u22(λ))(1− u1(λ)2)

+(uk2(λ)− uk3(λ))(u1(λ)− u21(λ))− (uk2(λ)u3(λ)− u2(λ)uk3(λ))(1− u21(λ))
}

· {λ(u3(λ)− u2(λ))(u3(λ)− u1(λ))(u2(λ)− u1(λ))}−1

=
k + ((q3 − q2)(q2 − 1)(q3 − 1))−1

[
(q3 − 1)2(1 + q2)

k + (q2 − 1)2(1 + qk3)
]

md −mb

.

Corollary 3.9.3. We now want to calculate the equilibrium distribution in

this case, then (3.5.1) and (3.5.2) will become
1 = π0

B ′(1)−H ′0(1)
B ′(1)

+ π1
B ′(1)−H ′1(1)

B ′(1)
+ π2

B ′(1)−H ′2(1)
B ′(1)

0 = π0H0(q1) + π1H1(q1) + π2H2(q1)

0 = π0H0(q2) + π1H1(q2) + π2H2(q2)

where q1 and q2 are the roots of B(s) = 0 except the root s = 1. Therefore,

π0, π1, π2 from the equilibrium distribution can be expressed by

π0 =
1

| ∆ |
(H1(q1)H2(q2)−H1(q2)H2(q1)) ,

π1 =
1

| ∆ |
(H0(q1)H2(q2)−H0(q2)H2(q1)) ,

π2 =
1

| ∆ |
(H0(q1)H1(q2)−H0(q2)H1(q1)) ,

where

∆ =


B ′(1)−H ′0(1)

B ′(1)

B ′(1)−H ′1(1)

B ′(1)

B ′(1)−H ′2(1)

B ′(1)

H0(q1) H1(q1) H2(q1)

H0(q2) H1(q2) H2(q2)

 .
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Corollary 3.9.4. Note from (3.7.7) that the Laplace transform of the hit-

ting time distribution is that

ψk0(λ) =
|∆(b)

0 (λ, k)|
|∆(b)(λ)|

=

∣∣∣∣∣∣∣∣∣
uk1(λ) λu1(λ)−H1(u1(λ)) λu21(λ)−H2(u1(λ))

uk2(λ) λu2(λ)−H1(u2(λ)) λu21(λ)−H2(u2(λ))

uk3(λ) λu3(λ)−H1(u3(λ)) λu23(λ)−H2(u3(λ))

∣∣∣∣∣∣∣∣∣
·1
λ

∣∣∣∣∣∣∣∣∣
1 λu1(λ)−H1(u1(λ)) λu21(λ)−H2(u1(λ))

1 λu2(λ)−H1(u2(λ)) λu22(λ)−H2(u2(λ))

1 λu3(λ)−H1(u3(λ)) λu23(λ)−H2(u3(λ))

∣∣∣∣∣∣∣∣∣
−1

.
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Corollary 3.9.5. According to (3.8.2), the Laplace transform of the busy

period distribution is given by

gT (λ) =
1

−λq00

∣∣∣∣∣∣∣∣∣
uk1(λ) λu1(λ)−H1(u1(λ)) λu21(λ)−H2(u1(λ))

uk2(λ) λu2(λ)−H1(u2(λ)) λu21(λ)−H2(u2(λ))

uk3(λ) λu3(λ)−H1(u3(λ)) λu23(λ)−H2(u3(λ))

∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣
1 λu1(λ)−H1(u1(λ)) λu21(λ)−H2(u1(λ))

1 λu2(λ)−H1(u2(λ)) λu22(λ)−H2(u2(λ))

1 λu3(λ)−H1(u3(λ)) λu23(λ)−H2(u3(λ))

∣∣∣∣∣∣∣∣∣
−1

·

q01 +
∞∑
k=3

q0k

∣∣∣∣∣∣∣∣∣
1 u1(λ) uk1(λ)

1 u2(λ) uk2(λ)

1 u3(λ) uk3(λ)

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣

1 u1(λ) u21(λ)

1 u2(λ) u22(λ)

1 u3(λ) u23(λ)

∣∣∣∣∣∣∣∣∣
−1

+
1

−q00

∣∣∣∣∣∣∣∣∣
1 uk1(λ) λu21(λ)−H2(u1(λ))

1 uk2(λ) λu21(λ)−H2(u2(λ))

1 uk3(λ) λu23(λ)−H2(u3(λ))

∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣
1 λu1(λ)−H1(u1(λ)) λu21(λ)−H2(u1(λ))

1 λu2(λ)−H1(u2(λ)) λu22(λ)−H2(u2(λ))

1 λu3(λ)−H1(u3(λ)) λu23(λ)−H2(u3(λ))

∣∣∣∣∣∣∣∣∣
−1

·

q02 +
∞∑
k=3

q0k

∣∣∣∣∣∣∣∣∣
1 uk1(λ) u21(λ)

1 uk2(λ) u22(λ)

1 uk3(λ) u23(λ)

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣

1 u1(λ) u21(λ)

1 u2(λ) u22(λ)

1 u3(λ) u23(λ)

∣∣∣∣∣∣∣∣∣
−1 .

3.10 Notes

This queueing model has not been discussed before, even if both the

theories of bulk queues and state-dependent control have already been de-

veloping. A. Y. Chen, E. Renshaw(2004) considered the special case of

m = 1, while the case of m = 2 has been studied in A. Y. Chen, P. Pollett,

J. P. Li, H. J. Zhang (2010). In section 3.1, two properties of the generating
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function B(s) (Lemma 3.1.1 and Lemma 3.1.2) have been explored in J.

P. Li, A. Y. Chen and K. W. Ng (2012), while Lemma 3.1.4 is new, which

are appropriate for our more generalized queueing models. The initial idea

of the decomposition theorem in section 3.4 comes from A. Y. Chen, H. J.

Zhang and Z. T. Hou (2002).
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Chapter 4

Decay Parameter and Decay

Properties of Our Queueing

Model

In the last Chapter, the primary properties of our queueing model

have been explored. It was automatically assumed the (positive) recurrence

condition of our queueing model Q, especially in the section 3.5—section

3.8. However, this assumption is not reasonable since there are still some

practical cases (even rarely seen) that the number in the queue system is

increasing. For example, if we regard the birth of each person as the time

to arrive in the queue and the death as the time to leave the queue, then,

the whole population could be considered as a queue system. In fact, it is

impossible that the human will disappear without huge disasters. For such

cases, the mean birth rate mb must be larger than the average death rate md

and thus such q-matrix is transient. In this Chapter, the decay parameter

and the decay properties will be discussed. In order to avoid some trivial

cases in analyzing, assume that
∑∞

j=m+1 bj > 0.

4.1 Preliminaries

In order to obtain the decay parameter and to discuss its properties, we

need some preparations. Some lemmas in this section are the general cases
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of the lemmas in A. Y. Chen, J. P. Li, Z. T. Hou and K. W. Ng (2010).

First of all, we still discuss the property of the sequence {b0, b1, · · · }. It

has already been defined that

Bλ(s) = B(s)− λsm,

but at the moment λ can be arbitrary real number. Thus it is the same as

Bλ(s) = B(s) + λsm. (4.1.1)

It has been proved that B(s) = 0 has at least 1 positive root in the

interval (0, 1]. Denote qS be the smallest positive root. Moreover, denote ρ

be

ρ =
1

lim supj→+∞(bj)
1
j

.

It is clear that ρ is the convergence radius, that is B(s) is convergent if

s ∈ (−ρ, ρ).

Lemma 4.1.1. The generating function B(s) = 0 has no more than two

roots on [0, ρ) if ρ = +∞. Moreover, B(s) = 0 has the unique root if and

only if B ′(1) = 0. In other words, if B ′(1) 6= 0, then B(s) = 0 has exactly

two roots on [0, ρ).

Proof. Since for all j ≥ m + 1, bj ≥ 0 and
∑∞

j=m+1 bj > 0, the (m + 1)th

order derivative of B(s), which is given by

B(m+1)(s) =
∞∑

j=m+1

j!

(j −m− 1)!
bjs

j−m−1,

is strictly positive for all s > 0. Hence B(m)(s) is strictly increasing. It is

clearly noted that

B(m)(0) = m! · bm < 0

and for all k = {0, 1, · · · ,m},

lim
s→+∞

B(k)(s) = +∞,
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since the convergence radius is infinite. It is clear that B(m)(s) = 0 has

exactly 1 root η(m) on (0,+∞). More specifically, B(m)(s) < 0 on [0, η(m))

and B(m)(s) > 0 on (η(m),+∞). Therefore, B(m−1)(s) is strictly decreasing

on [0, η(m)) and strictly increasing on [η(m),+∞).

Then we discuss the (m − 1)th order derivative B(m−1)(s), which has

two cases: either B(m−1)(0) = (m− 1)! · bm−1 = 0 or bm−1 > 0. We discuss

them separately.

Step (1) If bm−1 = 0, then obviously B(m−1)(s) = 0 has a root 0, which is de-

noted by η
(m−1)
1 . AsB(m−1)(s) is strictly decreasing on [0, η(m)) and

strictly increasing on [η(m),+∞), it is clear that B(m−1)(η(m)) < 0.

Similarly, note that B(m−1)(+∞) = +∞, we can conclude that

B(m−1)(s) = 0 has another (unique) root η
(m−1)
2 on [η(m),+∞),

which yields that B(m−1)(s) < 0 on (0, η
(m−1)
2 ) and B(m−1)(s) > 0

on (η
(m−1)
2 ,+∞). Therefore, B(m−2)(s) is strictly decreasing on

[0, η
(m−1)
2 ) and strictly increasing on [η

(m−1)
2 ,+∞). Then we can

discuss the (m − 2)th order derivative in the same way. In de-

tails, If bm−2 = 0, then repeat this step, i.e. Step (1); otherwise,

bm−2 > 0, then turn to Step (2) in the following.

Step (2) If bm−1 > 0, note that we still have that B(m−1)(s) is strictly

decreasing on [0, η(m)) and strictly increasing on [η(m),+∞). Then

B(m−1)(η(m)) is the minimum, and it might be either nonnegative

or negative:

(i) If B(m−1)(η(m)) ≥ 0, then B(m−1)(s) ≥ 0 for all s ≥ 0 and has

no more than 1 zero (if the root exists, then it must be η(m))

on the domain. Therefore, B(m−2)(s) is an increasing, strictly

positive function on (0,+∞) and B(m−2)(0) = (m − 2)! ·
bm−2 is nonnegative. Repeat this step for several times, then

we can find that B(s) is also an increasing, strictly positive

function. Recall that B(0) = b0 > 0, it is easily proved that

B(s) = 0 has no root. However, this is impossible because

s = 1 must be a root of B(s) = 0.

(ii) Otherwise, i.e. B(m−1)(η(m)) < 0, then combine this as-
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sumption with the other two facts that B(m−1)(0) > 0 and

B(m−1)(+∞) = +∞ will easily yield that B(m−1)(s) = 0

has exactly one root η
(m−1)
1 on [0, η(m)) and has another

one η
(m−1)
2 on [η(m),+∞). Hence, B(m−1)(s) is strictly pos-

itive on [0, η
(m−1)
1 ) ∪ (η

(m−1)
2 ,+∞) and strictly negative on

(η
(m−1)
1 , η

(m−1)
2 ). In other word, B(m−2)(s) is strictly increas-

ing on [0, η
(m−1)
1 ) ∪ (η

(m−1)
2 ,+∞) and strictly decreasing on

(η
(m−1)
1 , η

(m−1)
2 ). Apparently, B(m−2)(η

(m−1)
1 ) > B(m−2)(η

(m−1)
2 ).

If B(m−2)(η
(m−1)
2 ) ≥ 0, then repeat Step (2i), which will lead

to the contradiction. Otherwise, B(m−2)(s) = 0 has exactly

two roots η
(m−2)
1 and η

(m−2)
2 , where η

(m−2)
1 ∈ (η

(m−1)
1 , η

(m−1)
2 )

and η
(m−2)
2 ∈ (η

(m−1)
2 ,+∞). Similarly, B(m−2)(s) is strictly

positive on [0, η
(m−2)
1 ) ∪ (η

(m−2)
2 ,+∞) and strictly negative

on (η
(m−2)
1 , η

(m−2)
2 ) and hence B(m−3)(s) is strictly increas-

ing on (0, η
(m−2)
1 ] ∪ [η

(m−2)
2 ,+∞) and strictly decreasing on

[η
(m−2)
1 , η

(m−2)
2 ]. Then, we can go back to follow the step

either (2i) or (2ii).

After repeating these steps and noting the fact that B(0) > 0, we can

obtain that B(s) is strictly increasing on [0, η
(1)
1 ) ∪ (η

(1)
2 ,+∞) and strictly

decreasing on (η
(1)
1 , η

(1)
2 ), where η

(1)
1 , η

(1)
2 are the two roots of B ′(1) = 0 (note

if b1 = 0, then η
(1)
1 = 0). Therefore, if B ′(1) 6= 0, then B(s) has exactly

two roots qS and qL since B(1) = 0, where 0 < η
(1)
1 < qS < η

(1)
2 < qL < +∞

(here, qL denote the larger root). It is obvious that qS = qL = 1 is the

unique root If B ′(1) = 0.

Remark 4.1.1. In Lemma 4.1.1, it is discussed just in the condition that

ρ = +∞. Assuming that ρ < +∞ here, the following statements hold true.

(i) If 0 < B(ρ) ≤ +∞ or if B(ρ) = 0 and ρ > 1, then all the conclusions

of Lemma 4.1.1 are still correct.

(ii) If ρ = 1, then B(s) has one or two zeros on [0, 1]. More specifically,

B(s) has one zero if and only if B ′(1) ≤ 0.

(iii) If B(ρ) < 0, then B(s) = 0 has exactly one zero. (obviously in this

case B ′(1) 6= 0)
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Remark 4.1.2. Assuming that
∑∞

j=0 bj < 0, then all the conclusions in

Lemma 4.1.1 still hold true.

Lemma 4.1.2. Suppose λ ≥ 0 in (4.1.1). Then there exists a critical value

λ∗ ≥ 0, such that if λ ≤ λ∗ then Bλ(s) = B(s) + λsm has positive zeros

while for λ > λ∗, there exists no positive zero for Bλ(s). Moreover, λ∗ = 0

if and only if B′(1) = 0.

Proof. It is clear that the root of Bλ(s) = 0 is the x-coordinate of the

intersection point between the two functions f(s) = B(s) and g(s) = −λsm.

Since B(1) = 0, Bλ(s) = 0 has positive roots at least on λ = 0. Hence,

there exists a value λ∗, where 0 ≤ λ∗ ≤ +∞, such that for all λ ≤ λ∗,

Bλ(s) = B(s) + λsm has at least a positive zero.

Additionally, note that B(0) = b0 > 0 and q is the smallest positive

root of B(s) = 0. Hence, B(s) > 0 on the interval s ∈ [0, q). Moreover,

for all λ > 0, the function g(s) = −λsm is strictly negative at least on the

interval s ∈ (0,+∞). Let λ tend to +∞, the graph of the function g(s) will

approximate the y-axis. Thus, it is trivial that there exists a critical value

λ∗ ≥ 0, such that if λ > λ∗ then Bλ(s) = B(s) + λsm does not have any

positive zeros. The first part of the theorem has been proved.

Finally, λ∗ = 0 implies that B(s) ≥ 0 for all s ∈ [0,+∞), which ensures

that B ′(1) = 0 since B(1) = 0. In the reverse, B ′(1) = 0 yields that B(s)

is tangent to the s-axis at s = 1, and it is obtained from Lemma 4.1.1 that

B(s) = 0 has only one root on [0, ρ], i.e. s = 1. Hence B(s) ≥ 0 for all

s ≥ 0 and thus λ∗ = 0.

Define g(s) be

g(s) = sB ′(s)−mB(s), (4.1.2)

then the root of g(s) = 0 has the following properties.

Lemma 4.1.3. The equation g(s) = 0 has a unique zero s∗ on [0, ρ] if one

of the following conditions holds:

(i) ρ = +∞;

(ii) ρ < +∞ and B(ρ) = +∞;
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(iii) ρ < +∞, B(ρ) < +∞ and g(ρ) ≥ 0.

Otherwise, g(s) = 0 has no zero on [0, ρ].

Proof. The proof is very similar to that of Lemma 4.1.1. Note that for the

kth order derivative of g(s), where k = 0, 1, · · · ,m,

g(k)(s) = sB(k+1)(s)− (m− k)B(k)(s), (4.1.3)

and

g(k)(0) = (m− k)k! · bk

 ≤ 0 if 0 ≤ k ≤ m− 1

= 0 if k = m
. (4.1.4)

Hence, g(m)(s) = sB(m+1)(s) is strictly positive on (0, ρ). In other words,

g(m−1)(s) is strictly increasing on (0, ρ). Note that g(m−1)(0) could be either

0 or strictly negative, we need to discuss it separately.

Step (1) If g(m−1)(0) = 0, then g(m−1)(s) is strictly positive on (0, ρ) and

hence g(m−2)(s) is strictly increasing on (0, ρ). If g(m−2)(0) = 0,

then repeat this step; otherwise, turn to Step (2) or (3) in the

following.

Step (2) If g(m−1)(0) < 0 and g(m−1)(ρ) ≤ 0, then g(m−1)(s) is strictly nega-

tive on (0, ρ) and therefore g(m−2)(s) is strictly decreasing on (0, ρ).

Hence, g(m−2)(s) is also strictly negative on (0, ρ] and nonnegative

on s = 0. Repeating this step yields that g(s) is strictly negative

on [0, ρ] (since g(0) = −mb0 < 0), which yields that g(s) has no

zero on the domain.

Step (3) If g(m−1)(0) < 0 and g(m−1)(ρ) > 0 (including +∞), then g(m−1)(s) =

0 has a unique root s
(m−1)
∗ on (0, ρ) and thus g(m−2)(s) is strictly de-

creasing on (0, s
(m−1)
∗ ) and strictly increasing on (s

(m−1)
∗ , ρ). Note

that g(m−2)(0) ≤ 0.

(i) If g(m−2)(ρ) ≤ 0, then g(m−2)(s) is strictly negative on (0, ρ)

and then repeat Step (2).
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(ii) If g(m−2)(ρ) > 0, then g(m−2)(s) = 0 has the unique root

s
(m−2)
∗ on (s

(m−1)
∗ , ρ). and thus strictly negative on (0, s

(m−2)
∗ )

and strictly positive on (s
(m−2)
∗ , ρ). Then repeat Step (3).

After repeating these steps, we can easily conclude that there are only two

possibilities for g(s): g(s) is strictly increasing on (0, ρ), or g(s) is strictly

decreasing on (0, s
(1)
∗ ) and strictly increasing on (s

(1)
∗ , ρ). For both cases,

since g(0) < 0, g(s) = 0 has unique root s∗ on [0, ρ] if g(ρ) ≥ 0 and has no

root on [0, ρ] otherwise.

Lemma 4.1.4. Let {b̃j, j ≥ 0} be another set such that

b̃j = ajbj, (4.1.5)

where a is a strictly positive number and it is assumed that
∑∞

j=0 b̃j ≤ 0.

Define Q̃∗ = {q̃ij} be another q-matrix with the elements

q̃ij =

 b̃j−i+m if j ≥ i−m, i ≥ m

0 otherwise
.

Obviously C = {m,m + 1,m + 2, · · · } is the common irreducible class of

both Q∗ and Q̃∗. Then the decay parameters of the two q-matrices, λC and

λ̃C, have the relationship

λ̃C = amλC . (4.1.6)

Proof. If we can prove both λ̃C ≥ amλC and λ̃C ≤ amλC , then λ̃C = amλC

is obvious. Firstly, we want to prove that

λ̃C ≥ amλC . (4.1.7)

According to Proposition 2.1.9 and 2.1.11, since λC is the decay parameter

of Q∗ on C, there exists a set of strictly positive numbers {xj : j ≥ m},
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which is a λC-subinvariant vector for Q∗ on C, such that

∑∞
j=m bjxj ≤ −λCxm,∑∞
j=m−1 bjxj+1 ≤ −λCxm+1,

...,∑∞
j=0 bjxj+i−m ≤ −λCxi, i ≥ 2m.

(4.1.8)

Define x̃j = xj/a
j (j ≥ m), then x̃j (j ≥ m) are also strictly positive

numbers and the following inequalities could be obtained based on (4.1.8):



∑∞
j=m b̃jx̃j =

∑∞
j=m bjxj ≤ −λCxm = −(am)λC x̃m,∑∞

j=m−1 b̃jx̃j+1 = 1
a

∑∞
j=m−1 bjxj+1 ≤ − 1

a
λCxm+1 = −(am)λC x̃m+1,

· · · · · ·∑∞
j=0 b̃jx̃j+i−m =

1

ai−m
∑∞

j=0 bjxi+j−m ≤ −
1

ai−m
λCxi = −(am)λC x̃i, i ≥ 2m.

(4.1.9)

Hence, {x̃j : j ≥ m} is an amλC-subinvariant vector for Q̃∗ on C, and thus

λ̃C ≥ amλC based on Proposition 2.1.8.

On the other hand, note from (4.1.5) that bj = b̃j/a
j for all j ≥ 0, by

using the same method, we have that

λC ≥
λ̃C
am

. (4.1.10)

Therefore, combining (4.1.7) and (4.1.10) will lead to λ̃C = amλC .

Lemma 4.1.5. Let {b̃j : j ≥ 0} be the series such that

b̃j =

 bjβ
j if j 6= m

bjβ
j + α if j = m

, (4.1.11)

where α ≥ 0, β > 0 and it is assumed that
∑∞

j=0 b̃j = 0. Furthermore,

define a q-matrix Q̃∗ = {q̃ij, i, j ≥ 0} (not necessarily conservative) with the

elements

q̃ij =

 b̃j−i+m if j ≥ i−m, i ≥ m

0 otherwise
.
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Similarly, C = {m,m+1,m+2, · · · } is a irreducible class for Q̃∗. Then the

decay parameters λC and λ̃C of Q∗ and Q̃∗ respectively, have the relation

with

λ̃C = βmλC − αβm. (4.1.12)

Proof. In this example, Q̃∗ could be written as:

Q̃∗ = Q̄∗ + αI,

where Q̄∗ = {q̄ij, i, j ≥ 0} is given by

q̄ij =

 bj−i+mβ
j−i+m if j ≥ i−m, i ≥ m

0 otherwise
,

and

I =

 δij i ∈ C

0 otherwise
.

According to Lemma 4.1.4, the decay parameter λ̄C of Q̄∗ on C is given by

λ̄C = βmλC .

Additionally, from Lemma 2.5 in A. Y. Chen, J. P. Li, Z. T. Hou and K.

W. Ng (2010), (4.1.12) could be obtained automatically.

4.2 Decay Parameter of the Q∗-Process

In this section, the decay parameter of the stopped queue process Q∗

will be obtained. Recall that B(1) = 0, similarly in J. P. Li and A. Y. Chen

(2008), we can define the largest s such that B(s) is nonpositive, that is

ρ0 = sup{s : s ≥ 0, B(s) ≤ 0}.
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Obviously, If ρ = +∞, then B(ρ0) = 0, otherwise, B(ρ0) ≤ 0. Moreover,

define

λ∗ = sup{λ : λ ≥ 0;B(s) + λsm = 0 has a root in [0, ρ0]}. (4.2.1)

Since B(s) > 0 in [0, qS), (4.2.1) is equivalent to

λ∗ = sup{λ : λ ≥ 0;B(s) + λsm = 0 has a root in [qS, ρ0]}. (4.2.2)

Define

λ̄ = max{−B(s)

sm
: s ∈ [qS, ρ0]} = max{−B(s)

sm
: s ∈ [0, ρ0].}. (4.2.3)

then λ∗ = λ̄ is easily proved.

Lemma 4.2.1. λ∗ = λ̄.

The proof is almost the same as that of Lemma 3.1 in A. Y. Chen, J. P.

Li, Z. T. Hou and K. W. Ng (2010).

Define

f(s) =
B(s)

sm
,

where s ∈ [qS, ρ0]. Apparently, f(s) is C∞ on [qS, ρ0] and therefore, by the

properties of closed interval, there exists s∗ ∈ [qS, ρ0] such that

λ∗ = λ̄ = −B(s∗)

sm∗
. (4.2.4)

Lemma 4.2.2. For the s∗ in (4.2.4), if s∗ ∈ (qS, ρ0) (in this case, based on

Lemma 4.1.3, s∗ is the unique one), then

λ∗ = −B(s∗)

sm∗
= −B

′(s∗)

msm−1∗
; (4.2.5)

otherwise (this will happen if and only if g(ρ0) = g(ρ) ≤ 0),

λ∗ = −B(ρ0)

ρm0
. (4.2.6)
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Proof. In this first case, the front equation is apparent based on the defini-

tion of λ̄ and Lemma 4.2.1. Thus, −λ∗ is the minimum of f(s) on [qS, ρ0).

In other words,

f ′(s∗) =
s∗B

′(s∗)−mB(s∗)

sm+1
∗

= 0.

Thus,

B(s∗) =
s∗B

′(s∗)

m
,

i.e.− B(s∗)

sm∗
= −B

′(s∗)

msm−1∗
,

which is the latter equation of (4.2.5).

In the second case, since g(s) = 0 has no root on [qS, ρ0), g(s) < 0

for all 0 ≤ s < ρ0. That is f ′(s) < 0 on (0, ρ0) and thus f(s) is strictly

decreasing on (0, ρ0). Therefore, f(s) attains its minimum value on s = ρ0,

which results in (4.2.6). Moreover, if g(ρ0)=0, then let s∗ = ρ0 in (4.2.5),

the equation still holds.

Now the main result concerning the decay parameter for the stopped

queue process Q∗ will be presented.

Theorem 4.2.1. Unless the extreme case that g(ρ0) < 0 happened, the

decay parameter λC for the q-matrix Q∗ defined in (1.2.2) on C = {m,m+

1,m+ 2, · · · } is nothing else but λ∗, i.e.

λC = λ∗. (4.2.7)

Proof. Firstly, we consider the case that mb = md. It is obtained from

Lemma 4.1.2 that λ∗ = 0 in this case. Assume on the contrary that λC >

0. Then based on the definition of decay parameter, we have that for all

λ ∈ (0, λC) and i, j ∈ C, ∫ ∞
0

eλtpij(t)dt < +∞.
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Suppose i = m, then the following could be obtained according to the

Kolmogorov forward equation that



p ′m0(t) = pmm(t)b0

p ′m1(t) = pmm(t)b1 + pm,m+1(t)b0

...

p ′m,m−1(t) =
∑m−1

j=0 pm,m+j(t)bm−1−j,

which leads to ∫ ∞
0

eλtp ′mk(t)dt < +∞, (4.2.8)

for all 0 ≤ k ≤ m− 1. As it is well known that

eλt ≥ 1 + λt

for all λt ≥ 0, (4.2.8) guarantees that∫ ∞
0

tp ′mk(t)dt < +∞. (4.2.9)

Hence, ∫ ∞
0

t
m−1∑
k=0

p ′mk(t)dt < +∞. (4.2.10)

However, the left part of (4.2.10) is nothing else but Em[τ ∗] in the section

3.3.2. In other word, (4.2.10) just means that starting from the state m,

the mean extinction time is finite, which contradicts Proposition 3.3.2 with

the case of mb = md. Therefore,

λC = 0 = λ∗.

Now consider the general case mb 6= md. Based on Lemma 4.2.2, if

s∗ ∈ (qS, ρ0), then

B(s∗) = −λ∗sm∗ and B ′(s∗) = −msm−1∗ λ∗. (4.2.11)
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Define the sequence {b̃j : j ≥ 0}, where

b̃j =

 bjs
j
∗ if j 6= m

bjs
j
∗ + λ∗s

j if j = m
. (4.2.12)

Certainly, b̃j ≥ 0 for all j 6= m and

∞∑
j=0

b̃j = B(s∗) + λsm∗ = 0.

Define Q̃∗ = {q̃ij : i, j ≥ 0}, where

q̃ij =

 bj−i+m if i ≥ m, j ≥ i−m

0 otherwise
,

then obviously Q̃∗ is exactly a stopped bulk-arrival and bulk-service con-

servative q-matrix. According to Lemma 4.1.5, the decay parameter λ̃C is

given by

λ̃C = λCs
m
∗ − λ∗sm∗ . (4.2.13)

Now, define the generating function

B̃(s) =
∞∑
j=0

b̃js
j.

Then, the following two properties are easily obtained:

(1)

B̃(1) =
∞∑
j=0

b̃j = 0;

(2)

B̃ ′(1) =
∞∑
j=0

jb̃j =
∞∑
j=0

jbjs
j
∗ +mλ∗s

m
∗

= s∗B
′(s∗) +mλ∗s

m
∗ = 0,
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by using (4.2.11). According to the previous proof in the case of mb = md

(recall that this is equivalent to B ′(1) = 0), we can conclude that

λ̃C = 0. (4.2.14)

Therefore, λC = λ∗ is obtained by combining (4.2.13) and (4.2.14) and the

fact that s∗ > 0. Noting that in this case, even if Q∗ is not conservative,

i.e. B(1) < 0, the result is still correct.

Finally, if s∗ /∈ (qS, ρ0), then s∗ is either qS or ρ0. If s∗ = qS , then

note that B(qS) = 0, thus λ∗ = 0. According to Lemma 4.1.2, the only

possibility of λ∗ = 0 is that B ′(1) = 0, which has been discussed in the

beginning of the proof. If s∗ = ρ0 and g(ρ0) = 0, then

λ∗ = −B(ρ0)

ρm0
= −B

′(ρ0)

mρm−10

.

Hence, we can still use the previous method involving the creation of another

stopped queue process Q̃∗ to show that λC = λ∗. Otherwise, if g(ρ0) 6= 0

and s∗ = ρ0, obviously ρ0 = ρ < +∞. The case that g(ρ) > 0 does not need

to be considered since g(0) = −mb0 < 0, g(ρ0) = 0 must be followed. For

the case g(ρ) < 0, this is the extreme case that mentioned in the theory.

Remark 4.2.1. In the Theorem 4.2.1, Lemma 4.1.5 was applied, which did

not require Q∗ to be conservative. Therefore, if Q∗ is not conservative, then

the decay parameter λC is still λ∗.

Lemma 4.2.3. Assume that ρ = 1 and B ′(1) < 0, then the decay parameter

of the conservative matrix Q∗ on C = {m,m+ 1, · · · } is given by

λC = λ∗ = 0

We can use the similar method as that in J. P. Li, A. Y. Chen, Z. T.

Hou and K. W. Ng (2010) to prove this lemma.

Proof. Since ρ = 1 is the convergence radius, B(s) is not well defined for

all s > 1. Furthermore, B ′(1) < 0 is equivalent to qS = 1. Hence, it is
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clearly obtained that λ∗ = 0. Recall that
∑∞

j=m+1 bj > 0, thus there exists

N0 ≥ m + 1 such that bN0 > 0. For any n ≥ N0, define a new series

{b(n)j : j ≥ 0}, which is given by

b
(n)
j =

 bj if j ≤ n

0 if j > n
, (4.2.15)

and using this series to define a stopped bulk-arrival and bulk-service q-

matrix Q∗(n) = {q∗(n)ij , i, j ≥ 0} (not necessarily conservative) with the ele-

ments

q∗
(n)
ij =

 b
(n)
j−i+m if j ≥ i−m, i ≥ m

0 otherwise
. (4.2.16)

For the new series {b(n)j }, we can also define the generating function

B(n)(s) =
∞∑
j=0

b
(n)
j sj. (4.2.17)

Similar as the definition of (4.2.2), define

λ(n)∗ = sup{λ : λ ≥ 0, B(n)(s) + λsm = 0 has a root in [0, ρ
(n)
0 ]}, (4.2.18)

where ρ
(n)
0 is the largest positive s such that B(n)(s) ≤ 0. For each fixed n,

lim sup
j→+∞

(bj)
1
j = 0,

which means that the convergence radius of the series is +∞. According to

Theorem 4.2.1, the decay parameter λ
(n)
C of Q∗(n) for C is

λ
(n)
C = λ(n)∗ . (4.2.19)

Note that for all n ≥ N0, B(n)(0) = b0 > 0, B(n)(1) =
∑n

j=0 bj ≤ 0,

B ′(n)(1) =
∑n

j=1 jbj ≤ B ′(1) < 0 and B(n)(+∞) = +∞. According to

Remark 4.1.2, B(n)(s) = 0 has exactly two positive roots (denoted by q
(n)
S ,
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and q
(n)
L here), which satisfies the following inequality:

0 < q
(n)
S ≤ 1 < q

(n)
L < +∞. (4.2.20)

Moreover, since q
(n)
S < q

(n)
L and ρ(n) = +∞, there exists s

(n)
∗ ∈ (q

(n)
S , q

(n)
L )

such that

λ
(n)
C = λ(n)∗ = −

B(n)(s
(n)
∗ )

(s
(n)
∗ )m

. (4.2.21)

It is trivial that

B(N0)(s) ≤ B(N0+1)(s) ≤ · · ·B(s). (4.2.22)

Hence, for any n ≥ N0, we have B(n)(q
(n)
S ) ≤ B(n+1)(q

(n)
S ), which leads to

q
(n)
S ≤ q

(n+1)
S since B ′(n+1)(q

(n+1)
S ) < 0. Similarly, q

(n)
L ≥ q

(n+1)
L . The fact

that both {q(n)S } and {q(n)L } are bounded and monotonous yields that both

limn→∞ q
(n)
S and limn→∞ q

(n)
L exist and must have the following relation:

lim
n→∞

q
(n)
S ≤ 1 ≤ lim

n→∞
q
(n)
L . (4.2.23)

For all n ≥ N0, B(n)(q
(n)
L )=0, i.e.

∑
j 6=m

b
(n)
j (q

(n)
L )j = −bm(q

(n)
L )m. (4.2.24)

Since q
(n)
L ≥ limn→∞ q

(n)
L and b

(n)
j ≥ 0 for all j 6= m, it is obtained from

(4.2.24) that ∑
j 6=m

b
(n)
j ( lim

n→∞
q
(n)
L )j ≤ −bm(q

(n)
L )m.

Letting n→∞ on both sides will lead to

∑
j 6=m

bj( lim
n→∞

q
(n)
L )j ≤ −bm( lim

n→∞
q
(n)
L )m < +∞ (4.2.25)

and hence B(limn→∞ q
(n)
L ) < +∞. Recall the condition that ρ = 1, then

limn→∞ q
(n)
L ≤ 1. Combining this with (4.2.23) yields limn→∞ q

(n)
L = 1.
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Similarly, we have for all n ≥ N0, B(n)(q
(n)
S )=0, i.e.

∑
j 6=m

b
(n)
j (q

(n)
S )j = −bm(q

(n)
S )m.

Note that for a fixed j, both {b(n)j : n ≥ N0} and {q(n)S : n ≥ N0} are increas-

ing series with n, then by applying the monotone convergence theorem, it

is obtained that

∑
j 6=m

bj( lim
n→∞

q
(n)
S )j = −bm( lim

n→∞
q
(n)
S )m,

that is

B( lim
n→∞

q
(n)
S ) = 0.

Since s = 1 is the unique root of B(s) = 0, it is clearly that limn→∞ q
(n)
S = 1,

i.e.

lim
n→∞

q
(n)
S = lim

n→∞
q
(n)
L = 1, (4.2.26)

which yields that limn→∞ s
(n)
∗ = 1 since s

(n)
∗ ∈ (q

(n)
S , q

(n)
L ).

In order to find the decay parameter λC , the backward integral recursions

(2.1.16) are applied. Denote (k)P
∗(t) = {(k)p∗ij(t) : i, j ≥ 0} and P ∗(t) =

{p∗ij(t) : i, j ≥ 0} be the Feller minimal Q∗(k)-transition function and Q∗-

transition function respectively, where k ≥ N0. In other words, (k)P
∗(t) and

P ∗(t) are given by the recursion formulas

(k)p
∗(n)
ij (t) =

 δije
−q∗i t if n = 0

(k)p
∗(0)
ij (t) +

∫ t
0
e−q

∗
i t
∑

l 6=i q
∗(k)
il (k)p

∗(n−1)
lj (t− s)ds if n ≥ 1

,

(4.2.27)

and

p∗
(n)
ij (t) =

 δije
−q∗i t if n = 0

p∗
(0)
ij (t) +

∫ t
0
e−q

∗
i l
∑

l 6=i q
∗
ilp
∗(n−1)
lj (t− s)ds if n ≥ 1

(4.2.28)

respectively. According to the properties of backward integral recursions,

both (k)p
∗(n)
ij (t) and p∗

(n)
ij (t) are increasing with n to their limits (k)p

∗
ij(t) and
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p∗ij(t) respectively. Moreover, for all k ≥ N0 and n = 0, apparently

(k)p
∗(0)
ij (t) ≤(k+1) p

∗(0)
ij (t) ≤ p∗

(0)
ij (t).

Suppose for the (n− 1)th recursion, we have

(k)p
∗(n−1)
ij (t) ≤(k+1) p

∗(n−1)
ij (t) ≤ p∗

(n−1)
ij (t). (4.2.29)

Then combine (4.2.29) with the fact that for all i 6= j, q∗
(k)
ij ≤ q∗

(k+1)
ij ≤ q∗ij

leads to

(k)p
∗(n)
ij (t) = δije

−q∗i t +

∫ t

0

e−q
∗
i t
∑
l 6=i

q∗
(k)
il (k)p

∗(n−1)
lj

(t− s)ds

≤ δije
−q∗i t +

∫ t

0

e−q
∗
i t
∑
l 6=i

q∗
(k+1)
il (k+1)p

∗(n−1)
lj

(t− s)ds =(k+1) p
∗(n)
ij (t)

≤ δije
−q∗i t +

∫ t

0

e−q
∗
i l
∑
l 6=i

q∗ilp
∗(n−1)
lj (t− s)ds = p∗

(n)
ij (t).

Therefore, by applying the mathematical induction, we get that for all n ≥
0, i, j ≥ 0, t ≥ 0,

(k)p
∗(n)
ij (t) ≤(k+1) p

∗(n)
ij (t) ≤ p∗

(n)
ij (t),

which yields that for all i, j ≥ 0 and t ≥ 0,

(k)p
∗
ij(t) ≤(k+1) p

∗
ij(t) ≤ p∗ij(t). (4.2.30)

Recall from (2.1.31) that the decay parameter λ
(k)
C is the nonnegative num-

ber such that for i ∈ C,

∫ ∞
0

(k)p
∗
ii
(t)eatdt =

 < +∞ if a < λ
(k)
C

= +∞ if a > λ
(k)
C

.
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Hence, from (4.2.30), for all a < λ
(k+1)
C , we have∫ ∞

0
(k)p

∗
ii
(t)eatdt ≤

∫ ∞
0

(k+1)p
∗
ii
(t)eatdt < +∞,

which leads to

λ
(k)
C ≥ λ

(k+1)
C ≥ λC ≥ 0. (4.2.31)

Therefore, limn→∞ λ
(n)
C exists and limn→∞ λ

(n)
C ≥ λC . Recall from (4.2.31)

and the fact that limn→∞ s
(n)
∗ = 1, then

lim
n→∞

λ
(n)
C = −B(1) = 0,

and thus λC = 0. The proof is completed.

Now we can find the decay parameter of the stopped queue process Q∗

even if g(ρ0) < 0.

Theorem 4.2.2. For our stopped bulk-arrival and bulk-service queueing

model Q∗, the decay parameter λC for Q∗ on C = {m,m+ 1, · · · } is exactly

λ∗ whatever g(ρ0) is.

Proof. The case of g(ρ0) ≥ 0 has already been proved in Theorem 4.2.1.

Hence, consider the case of g(ρ0) < 0 is quite enough. In this case, ρ0 = ρ

and it is obtained from (4.2.6) that

λ∗ = −B(ρ)

ρm
.

Denote {b̃j : j ≥ 0} be the series such that

b̃j =

 bjρ
j if j 6= m

bjρ
j + λ∗ρ

m if j = m
. (4.2.32)

Moreover, define the generating function

B̃(s) =
∞∑
j=0

b̃js
j.
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Apparently, the convergence radius of B̃(s) is 1, and we also have

B̃(1) =
∞∑
j=0

bjρ
j + (−B(ρ)

ρm
) · ρm = B(ρ)−B(ρ) = 0

and

B̃ ′(1) =
∞∑
j=1

jbjρ
j +m · (−B(ρ)

ρm
) · ρm

= ρB ′(ρ)−mB(ρ)

= g(ρ) < 0.

Hence, B̃(s) satisfies all the conditions of Lemma 4.2.3 and thus the decay

parameter of Q̃∗ is that

λ̃C = 0,

where Q̃∗ = {q̃∗ij : i, j ≥ 0} is given by

q̃∗ij =

 b̃j−i+m if j ≥ i−m, i ≥ m

0 otherwise
.

Again, it is obtained from Lemma 4.1.5 that

λ̃C = ρmλC − λ∗ρm,

which leads to λC = λ∗ since ρ ≥ 1.

Corollary 4.2.1. We have shown that λC = λ∗. From Lemma 4.2.2, we

have that

λC = λ∗ =


−B

′(s∗)

msm−1∗
if g(ρ0) ≥ 0

−B(ρ0)

ρm0
if g(ρ0) < 0

, (4.2.33)

where s∗ is the unique positive root of g(s∗) = 0. In addition, s∗ = ρ0 if and

only if g(ρ0) = 0.

Remark 4.2.2. In fact, ρ0 is not difficult to find. There are only two

possibilities for ρ0: ρ0 is indeed qL, which is the largest root of B(s) = 0 (in
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this case the equation B(s) = 0 has exactly two roots); or ρ0 = ρ < +∞.

Corollary 4.2.2. Moreover, if mb > md, i.e. B ′(1) > 0, then the two

positive roots qS and qL are both in the interval (0, 1] (in this case, qL = 1),

and hence

g(ρ0) = g(qL) = B ′(1)− kB(1) > 0.

Thus, qS < s∗ < 1 and λC > 0.

If mb = md, i.e. B ′(1) = 0, then it is obtained that s = 1 is the unique

root of B(s) = 0 by using Lemma 4.1.2. Hence, s∗ = ρ0 = 1 and λC = 0.

If mb < md and thus qS = 1, then there are different results for the

different kinds of ρ: (i)ρ = +∞, or 1 < ρ < +∞ and B(ρ) ≥ 0; (ii) ρ = 1;

(iii) 1 < ρ < +∞, B(ρ0) < 0 and ρB ′(ρ) ≥ mB(ρ); (iv) otherwise. In

case (i), obviously B(ρ0) = 0 and B ′(ρ0) > 0, which leads to g(ρ0) > 0.

Thus, 1 < s∗ < ρ0 and λC > 0. In part (ii), the assumption ρ = 1 ensures

that B(s) > 0 on [0, 1) and B(1) = 0. Therefore, s∗ = 1 and λC = 0.

In the cases of (iii) and (iv), ρ0 = ρ and B(ρ0) < 0. The assumption

ρB ′(ρ) ≥ mB(ρ) just means that g(ρ) ≥ 0 (in the reverse, g(ρ) < 0). It is

obtained from Lemma 4.1.3 that 1 < s∗ ≤ ρ and λC > 0 in the case (iii)

(s∗ = ρ if and only if g(ρ) = 0), while in the case (iv), s∗ does not exist and

λC = −B ′(ρ)
ρm

.

Up to now, the decay parameter can be determined in a very simple

expression. What to do next is to discuss the decay properties.

4.3 Decay Properties of the transient Q-Process

In this section, we turn back to discuss the decay properties of our

general queueing model Q, which is including the part of state-dependent

controls. Since the decay parameter λC > 0 is the only significant one to

discuss, the transient processes are only considered. For the matrix Q, it

is known from Theorem 3.5.1 that Q is transient if and only if B ′(1) > 0.

It is automatically assumed that B ′(1) > 0 and Q-transition function is

irreducible in this section. Before the main theorem, we need to define

some functions in advance.
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Definition 4.3.1. It has been defined that B(s) =
∑∞

j=0 bjs
j and for all

i = {0, 1, · · · ,m − 1}, Hi(s) =
∑∞

j=0 qijs
j. For all 0 ≤ i ≤ m − 1, Define

gi(s) as

gi(s) = B(s)− sm−iHi(s). (4.3.1)

It is obvious that gi(s) = 0 has at least one root on (0, 1], since

gi(1) = B(1)−Hi(1) = 0.

Let si be the smallest positive root of gi(s) = 0, where 0 < si ≤ 1, then gi(s)

is strictly positive on [0, si) since gi(0) = b0 > 0. We further define

s̃ = min{s0, s1, · · · , sm−1, s∗}, (4.3.2)

where s∗ is the unique root of g(s) = 0 on (qS, 1) (recall from Corollary

4.2.2 that s∗ exists in the case of mb > md).

Theorem 4.3.1. Assuming that B ′(1) > 0 and letting C = {0, 1, · · · } be

the communicating class, we have the following conclusions.

(1) If s̃ = s∗, then the decay parameter λC of the Q-process on C is given

by

λC = −B(s∗)

sm∗
. (4.3.3)

(2) If s̃ = sk, where k ∈ {0, 1, 2, · · · ,m− 1}, then

λC = −B(sk)

smk
= −Hk(sk)

skk
. (4.3.4)

Proof. Firstly, consider the case s̃ = s∗, i.e. s∗ ≤ si holds true for all

i ∈ [0,m−1]. Denote λG be the decay parameter of Q on the communicating

class G, where G = {m,m+ 1, · · · }. Apparently, λG is the decay parameter

of the stopped bulk-arrival and bulk-service queueing model Q∗, thus based

on Theorem 4.2.2, we have that

λG =
B(s∗)

sm∗
.
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λC ≤ λG is always true, which has been proved in Lemma 2.2 of J. P. Li

and A. Y. Chen (2011). Hence, just prove λC ≥ λG is quite enough. Define

a series of {xj : j ≥ 0}, which is given by

xj = sj∗,

then for all i ≥ m,

∞∑
j=0

qijxj =
∞∑

j=i−m

bj−i+ms
j
∗

= si−m∗ B(s∗) = −λGsi∗ = −λGxi; (4.3.5)

and for all i < m,

∞∑
j=0

qijxj =
∞∑
j=0

qijs
j
∗

= Hi(s∗) ≤
B(s∗)

sm−i∗
= −λGsi∗ = −λGxi. (4.3.6)

The inequality of (4.3.6) is always true, since s∗ ≤ si leads to

0 ≤ gi(s∗) = B(s∗)− sm−i∗ Hi(s∗).

Therefore, according to (4.3.5) and (4.3.6), {xj : j ≥ 0} is a λG-subinvariant

vector and thus we have the conclusion that λG ≤ λC by using Proposition

2.1.8. Part (1) has been completely proved.

We now begin to prove part (2). For simplicity, define

µ = −B(sk)

smk
= −Hk(sk)

skk

(the second equality follows just from the fact that gk(sk) = 0), then what

we need to show is that λC = µ. Again define the series {xj : j ≥ 0} as
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xj = sjk. Then we have that for all i ≥ m,

∞∑
j=0

qijxj =
∞∑

j=i−m

bj−i+ms
j
k

= si−mk B(sk) = −µsik = −µxi; (4.3.7)

and for all i < m,

∞∑
j=0

qijxj =
∞∑
j=0

qijs
j
k

= Hi(sk) ≤
B(sk)

sm−ik

= −µsik = −µxi. (4.3.8)

Similarly, the inequality of (4.3.8) holds true, since sk ≤ si leads to 0 ≤
gi(sk) = B(sk)−sm−iHi(sk). Hence, {xj : j ≥ 0} is a µ-subinvariant vector,

which brings about λC ≥ µ. Suppose λC > µ, and define new sequences

{b̃j : j ≥ 0} and {h̃ij : j ≥ 0} for any fixed i (0 ≤ i ≤ m− 1), where

b̃j = bjs
j−m
k − δmj

Hk(sk)

skk
(4.3.9)

and

h̃ij = qijs
j−i
k − δij

Hk(sk)

skk
. (4.3.10)

Clearly, for all i 6= m,

b̃j = bjs
j−m
k ≥ 0

and for all i 6= j,

h̃ij = qijs
j−i
k ≥ 0.

We also obtain from these sequences that

∞∑
j=0

b̃j =
∞∑
j=0

bjs
j−m
k − Hk(sk)

skk
=
B(sk)

smk
− Hk(sk)

skk
= 0

and ∞∑
j=0

h̃ij =
∞∑
j=0

qijs
j−i
k − Hk(sk)

skk
=
Hi(sk)

sik
− B(sk)

skk
≤ 0.
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Hence, we can define another q-matrix Q̃ with the elements

q̃ij =


h̃ij if 0 ≤ i ≤ m− 1,

b̃j−i+m if j ≥ i−m, i ≥ m,

0 otherwise.

(4.3.11)

Similarly, define the generating function of {b̃j : j ≥ 0} as

B̃(s) =
∞∑
j=0

b̃js
j.

Then, we have

B̃(s) =
∞∑
j=0

bjs
j−m
k sj − Hk(sk)

skk
· sm

=
B(sks)

smk
− B(sk)s

m

smk
, (4.3.12)

and thus

B̃ ′(s) =
skB

′(sks)−msm−1B(sk)

smk
. (4.3.13)

Hence, B̃(1) = 0 and according to the fact that g(sk) ≤ 0 (since sk ≤ s∗

and s∗ is the unique root of g(s) = 0 on (qS, ρ0)), we have

B̃ ′(1) =
skB

′(sk)−mB(sk)

smk
=
g(sk)

smk
≤ 0,

which proves that Q̃ is recurrent based on Theorem 3.5.1. Therefore, the

decay parameter of Q̃ is that λ̃C = 0. Recall that λC is the decay parameter

for Q, then there exists a µ-subinvariant measure {mi : i ≥ 0} for Q such

that
m−1∑
i=0

miqij +

j+m∑
i=m

mibj−i+m ≤ −λCmj (4.3.14)

for all j ≥ 0. Multiplying sjk on both sides of (4.3.14) and letting m̃i = mis
i
k
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will yield

m−1∑
i=0

m̃iqijs
j−i
k +

j+m∑
i=m

m̃ibj−i+ms
j−i
k ≤ −λCm̃j, ∀j ∈ N. (4.3.15)

Next, letting (4.3.15) minus m̃j
Hk(sk)

skk
will leads to

m−1∑
i=0

m̃ih̃ij +

j+m∑
i=m

m̃ib̃j−i+m ≤ −
(
λC +

Hk(sk)

skk

)
m̃j, ∀j ∈ N. (4.3.16)

Hence, m̃i is a
(
λC + Hk(sk)

skk

)
-subinvariant measure for Q̃ and therefore

0 = λ̃C ≥ λC +
Hk(sk)

skk
≥ 0,

which contradicts our assumption that λC > µ = −Hk(sk)

skk
. Therefore, λC =

−Hk(sk)

skk
, which completes the proof.

Now the decay parameter λC of our main queueing model has been

obtained. Then, we can discuss its λC-recurrence property.

Theorem 4.3.2. Suppose our basic Q-process has the decay parameter λC >

0 on C = {0, 1, · · · }, that is Q is transient, then Q-process is λC-recurrent

if and only if

s0 = s1 = s2 = · · · , sm−1 ≤ s∗. (4.3.17)

Furthermore, Q is λC-positive recurrent if and only if

s0 = s1 = s2 = · · · , sm−1 < s∗. (4.3.18)

Proof. Suppose (4.3.17) does not hold true, then there are only two possibil-

ities: (i) s̃ = s∗ and there exists l (l ∈ {0, 1, ·,m−1}) such that sl > s∗; (ii) or

s̃ = sk for some k ∈ {0, 1, · · · ,m−1} and there exist l (l ∈ {0, 1, · · · ,m−1})
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such that sl > sk. In the case (i), it is obtained from Theorem 4.3.1 that

λC = −B(s∗)

sm∗

and {xj : xj = sj∗, j ∈ C} is a λC-subinvariant vector for Q. Since s∗ < sl,

we have that when i = l,

∞∑
j=0

qljxj =
∞∑
j=0

qljs
j
∗

= Hl(s∗) <
B(s∗)

sm−l∗
= −λCxl. (4.3.19)

Hence, {xj} is not a λC-invariant vector. However, according to Proposition

2.1.10, the λC-subinvariant vector {xj} is indeed a λC-invariant vector for

a λC-recurrent process. Therefore, our queueing model Q is λC-transient.

In the case (ii), similarly we have the decay parameter that

λC = −B(sk)

smk
= −Hk(sk)

skk

and a λC-subinvariant vector {xj : xj = sjk, j ∈ C} for Q. Similarly,

∞∑
j=0

qljxj < −λCslk = −λCxl. (4.3.20)

Hence, we can have the conclusion that Q is λC-transient by using the same

theory.

Now suppose (4.3.17) holds true. Since all the si(0 ≤ i ≤ m − 1) are

equal, we just let s̃ = s0 for simplicity. Now, the decay parameter

λC = −B(s0)

sm0
= −H0(s0)

and {xj : xj = sj0, j ∈ C} is a λC-subinvariant vector. Let Q̃ = {q̃ij : i, j ∈
C} be the same q-matrix defined in (4.3.9), (4.3.10) and (4.3.11) with k = 0,

that is

b̃j = bjs
j−m
0 + δmjλC
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and

q̃ij = qijs
j−i
0 + δijλC .

Denote P (t) = {pij(t) : i, j ∈ C} and P̃ (t) = {p̃ij(t) : i, j ∈ C} be the

Feller minimal Q and Q̃-function respectively. From Lemma 5.4.2 in W. J.

Anderson (1991), we have that for all i, j ∈ C,

pij(t)xj = e−λCtp̃ij(t)xi, (4.3.21)

that is

p̃ij(t) = eλCtpij(t)s
j−i
0 . (4.3.22)

In the proof of Theorem 4.3.1, we have mentioned that Q̃ is recurrent, that

is for all i ∈ C, ∫ ∞
0

p̃ii(t)dt =

∫ ∞
0

eλCtpii(t)dt = +∞, (4.3.23)

which yields that Q is λC-recurrent. Therefore, we can conclude that Q is

λC-recurrent if and only if s0 = s1 = · · · = sm−1 ≤ s∗.

If s0 = s1 = · · · = sm−1 = s∗, then

B̃ ′(1) =
g(s0)

sm0
= 0.

Hence, according to Theorem 3.5.1, Q̃ is null recurrent and thus

lim
t→+∞

p̃ii(t) = lim
t→+∞

eλCtpii(t) = 0,

which yields that Q is λC-null recurrent. If s0 = s1 = · · · = sm−1 < s∗, then

then B̃ ′(1) < 0. To prove that Q̃ is positive recurrent, it is enough just to

prove that
∑∞

j=0 jq̃ij < +∞, i.e. H ′i (1) < +∞ for all 0 ≤ i ≤ m − 1. It is

easily calculated that

H̃ ′i (s) =
H ′i (s0s)s0

si0
+ iλCs

i−1

107



and hence

H̃ ′i (1) =
H ′i (s0)s0

si0
+ iλC .

So we just need to verify H ′i (s0) < +∞. Note that

Hi(s0) = Hi(si) = B(si)s
m−i
i = B(s0)s

m−i
0 ,

and define f(s) = B(s)sm−i. Then since 0 < s0 < s∗, we have

H ′i (s0) = f ′(s0) = B ′(s0)s
m−i
0 + (m− i)sm−i−10 B(s0) < +∞.

Therefore, Q̃ is positive recurrent and thus

lim
t→∞

eλCtpii(t) > 0,

which yields that Q is λC-positive recurrent. The proof is now finished.

The next theorem is to calculate the λC-invariant measure and vector

for the λC-positive recurrent queue process.

Theorem 4.3.3. Suppose Q is λC-positive recurrent, then Q has the unique

λC-invariant measure {mi : i ≥ 0} and λC-invariant vector {xj : j ≥ 0} up

to constant multiples. Moreover, the λC-invariant vector is given by

xj = sj0, ∀j ≥ 0. (4.3.24)

For all 0 ≤ i ≤ m− 1, mi is the solution of the equation set



∑m−1
i=0 mi

(
si0 − sm0

s0H
′
i (s0)−mHi(s0)

s0B ′(s0)−mB(s0)

)
= 1∑m−1

i=0 mi (Hi(s0q̃1)−Hi(s0)q̃
m
1 ) = 0∑m−1

i=0 mi (Hi(s0q̃2)−Hi(s0)q̃
m
2 ) = 0

· · ·∑m−1
i=0 mi

(
Hi(s0q̃m−1)−Hi(s0)q̃

m
m−1
)

= 0

, (4.3.25)

where q̃l (1 ≤ l ≤ m− 1) are the other m− 1 roots of B(s0s)−B(s0)s
m = 0
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except that s = 1 and s0 is defined in Definition 4.3.1; and the generating

function of the λC-invariant measure mi is given by

M(s) =
∞∑
i=0

mis
i =

m−1∑
i=0

mis
i − sm

∑m−1
i=0 mi (Hi(s)s

m
0 −Hi(s0)s

m)

sm0 B(s)−B(s0)sm
.

(4.3.26)

Proof. According to Proposition 2.1.9 and Proposition 2.1.10, there exists

the unique λC-invariant measure and vector for Q since Q is λC-recurrent.

It is obtained from (4.3.7) and (4.3.8) that {xj : xj = sj0, j ≥ 0} is a

λC-subinvariant vector for Q and thus invariant.

Now we prove regarding the λC-invariant measure. Similarly, Let Q̃ =

{q̃ij : i, j ∈ C} be the same q-matrix defined in (4.3.9), (4.3.10) and (4.3.11)

with k = 0, that is

b̃j = bjs
j−m
0 + δmjλC

and

q̃ij = qijs
j−i
0 + δijλC .

Denote B̃(s) and H̃i(s) be the generating function of {b̃j} and {q̃ij} respec-

tively, i.e.

B̃(s) =
B(s0s)−B(s0)s

m

sm0

and

H̃i(s) =
Hi(s0s)−Hi(s0)s

m

si0
.

Obviously, B̃(1) = 0 and B̃ ′(1) < 0 and thus Q̃ is positive recurrent.

Clearly, Q̃ is another bulk-arrival and bulk-service queue process with state-

dependent control. Hence, by using Theorem 3.5.2, Q̃ has the equilibrium

distribution (it is certainly an invariant measure) {πi : i ≥ 0}. More specif-

ically, for all 0 ≤ i ≤ m− 1, πi is the unique solution of

m−1∑
i=0

πi
B̃′(1)− H̃ ′i(1)

B̃′(1)
= 1, (4.3.27)
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and
m−1∑
i=0

πiH̃i(q̃l) = 0 (l = 1, 2, · · · ,m− 1), (4.3.28)

where q̃l (l = 1, 2, · · · ,m − 1) are the roots of B̃(s) = 0 except that s = 1

(B̃(s) = 0 refers to B(s0s) − B(s0)s
m = 0). For all i ≥ 0, the generating

function of {πi} is expressed by

∞∑
i=0

πis
i =

m−1∑
i=0

πis
i − sm

∑m−1
i=0 πiH̃i(s)

B̃(s)
(4.3.29)

Let mi = πi/s
i
0, then (4.3.27) will become

m−1∑
i=0

mis
i
0

(
1− (s0H

′
i (s0)−mHi(s0))/s

i
0

(s0B ′(s0)−mB(s0))/sm0

)
= 1,

which is exactly the first equation of (4.3.25); (4.3.28) will be

m−1∑
i=0

mis
i
0

Hi(s0q̃l)−Hi(s0)q̃
m
l

si0
= 0, (l = 1, 2, · · · ,m− 1),

which is indeed the remaining m − 1 equations of (4.3.25); and (4.3.29)

yields

∞∑
i=m

mi(s0s)
i = −s

m
∑m−1

i=0 mis
i
0 (Hi(s0s)−Hi(s0)s

m)) /si0
(B(s0s)−B(s0)sm) /sm0

(4.3.30)

Hence, (4.3.26) can be obtained by using s/s0 to replace s in (4.3.30).

The remaining thing to prove is that this constructed {mi : i ≥ 0} is

indeed a λC-invariant measure. Recall that πi is an invariant measure for

Q̃, that is for all j ≥ 0,

m−1∑
i=0

πiq̃ij +

j+m∑
i=m

πib̃j−i+m = 0,
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which yields that

m−1∑
i=0

(mis
i
0)(qijs

j−i
0 ) +

j+m∑
i=m

(mis
i
0)(bj−i+ms

j−i
0 ) = −λCmjs

j
0. (4.3.31)

Then, by dividing sj0 on both sides, (4.3.31) will become

m−1∑
i=0

miqij +

j+m∑
i=m

mibj−i+m = −λCmj,

which indicates that {mi : i ≥ 0} is a λC-invariant measure on Q and hence

is the unique one. The proof is completed.

4.4 An Example

In this section, a simple example will be presented. Suppose m = 2 and

bj is given by

bj =



2 if j = 0,

−7 if j = 2,

5 if j = 3,

0 otherwise.

,

that is

B(s) = 2− 7s2 + 5s3.

Since B ′(1) = 15− 14 = 1 > 0, our queueing model is transient and hence

we can discuss the decay properties. Moreover, assume for i = 0, 1, qij is

given by

qij =


−0.25 if j = i,

0.25 if j = i+ 1,

0 otherwise.

,

i.e.

H1(s) = −0.25s+ 0.25s2 = sH0(s).
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Hence, our queue process could be expressed by a q-matrix

Q =



−0.25 0.25 0 0 0 · · ·

0 −0.25 0.25 0 0 · · ·

2 0 −7 5 0 · · ·

0 2 0 −7 5 · · ·
...

...
...

...
...

. . .


.

Corollary 4.4.1. It is given that

g(s∗) = s∗B
′(s∗)− 2B(s∗) = 5s3∗ − 4 = 0.

Hence, s∗ =
(
4
5

) 1
3 , and for the communicating class G = {2, 3, · · · }, the

decay parameter λG is given by

λG = −B(s∗)

s2∗
=

7 · 42/3 − 6 · 52/3

42/3
.

Then we want to calculate the decay parameter λC for the whole state C =

{0, 1, · · · } (it is indeed a communicating class). It is easily obtained that

g0(s) = g1(s) = B(s)− s2H0(s)

= 2− 6.75s2 + 4.75s3

= (s− 1)(4.75s2 − 2s− 2),

which results that

s0 = s1 =
1 +
√

10.5

4.75
≈ 0.8927 < s∗.

Therefore, it is clear that:

(1) the decay parameter λC is given by

λC = −B(s0)

s20
= −H0(s0) =

3.75−
√

10.5

19
≈ 0.02682;
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(2) the Q-process is λC-positive recurrent.

Corollary 4.4.2. To calculate the λC-invariant measure, first of all, define

{b̃j : j ≥ 0} and {q̃ij : j ≥ 0} be

b̃j = bjs
j−2
0 + δ2jλC

and

q̃ij = qijs
j−i
0 + δijλC

respectively, i.e.

B̃(s) = 2s−20 − (7− λC)s2 + 5s0s
3.

Thus, the two roots of B̃(s) = 0 are

q̃ = 1 and q̃∗ ≈ −0.5608

respectively. We also have that the limit distribution of Q̃ followsπ0
B̃ ′(1)−H̃ ′0(1)

B̃ ′(1)
+ π1

B̃ ′(1)−H̃ ′1(1)
B̃ ′(1)

= 1

π0H̃0(q̃∗) + π1H̃1(q̃∗) = 0.

i.e. 1.4015π0 + π1 = 1

−0.3483π0 + 0.1953π1 = 0

Hence,

π0 ≈ 0.3140 and π1 = 0.5600.

According to Theorem 4.3.3, the λC-invariant measure is given by

m0 = π0 ≈ 0.3140,m1 =
π1
s0
≈ 0.6273,
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and

M(s) ≈ 0.3140 + 0.6273s− −0.06256s2 − 0.06244s3 + 0.1279s4

1.5938− 5.5570s2 + 3.9846s3
.

4.5 Notes

Since the queueing model we are discussing is new, all the theories in this

chapter are not appropriate for those developed models. Section 4.2 mainly

discusses the stopped queueing model for any finite m, whose specific case

m = 1 has been viewed in J. P. Li and A. Y. Chen (2008) and m = 2 has

been explored by A. Y. Chen, J. P. Li, Z. T. Hou and K. W. Ng (2010).

Section 4.3 shows the decay properties for our main queue process Q, whose

specific case m = 1 has been considered by J. P. Li and A. Y. Chen (2011).
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Chapter 5

Conclusions and Future works

5.1 Conclusions

During this thesis, we have explored a practical queueing model which

includes batch-arrival and bulk-service with the most general form of state-

dependent control in Markovian languages, especially in the q-matrix. An

acceptable method has been given to get the Feller minimal Q-function.

In addition, some significant properties for our queue process have been

discussed in the thesis. Moreover, the decay parameter and the decay prop-

erties have also been researched. Let us start to summarize our main results

now.

5.1.1 Markovian Batch-arrival and Bulk-service Queues

with Finite State-dependent Control

In Chapter 3, we first presented a method to calculate the Resolvent

function of the stopped batch-arrival and bulk-service queue process Q∗,

whose practical meaning is that the process stopped whenever it enters

any of these states {0, 1, · · · ,m − 1}. Then we applied the decomposition

theorem to resume back to our initial model Q and thus obtained the Feller

minimal Q-transition function. Meanwhile, the probability that the process

will end finally and the mean time to stop the process (this was called

extinction in thesis) were also investigated. It is revealed that the extinction
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probability is exactly one if and only if the mean arrival rate is no more than

the mean service rate in the general queue part. More specifically, the mean

extinction time is finite if that mean arrival rate is strictly less than that

mean service rate.

Additionally, the condition for positive recurrence was obtained and un-

der this condition, the equilibrium distribution, the mean queue length dis-

tribution, the hitting time distribution to the idle state 0 and the busy

period distribution of our queue process were presented by the expressions

of the Q-resolvent.

Finally, an example regarding the case m = 3 associated with some of

its properties was discussed.

5.1.2 Decay Parameter and Decay Properties of Our

Queueing Model

In Chapter 4, it is assumed that our queueing model is transient on its

relative communicating class so that the discussion of the decay properties

is valuable. Firstly, the decay parameters of both the stopped queueing

model Q∗ and the main queueing model Q were presented and proved in

detail.

After we obtain the decay parameter λC , the λC-recurrence property was

discussed and proved by different kinds of Q. Then, under the condition

of λC-positive recurrence, the unique λC-invariant measure and vector were

also presented by applying the result of the limit distribution in Chapter 3.

Finally, a very simple example was presented. During this special model,

all the properties and related results of decay parameter were calculated in

detail.

5.2 Future works

This queueing model considered in the thesis is a classical model. It

is playing an important role in real world. Many applications have close

relationship with this model. However, there still exist some problems which
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have not been solved. Let me state them in detail.

Question 1. We have already proved that Bλ(s) = 0 has exactly m root

in the open circle {|s| < 1}. However, the only property which is always

true is that only 1 positive root exists in the interval [0, 1]. It is difficult for

us to calculate all the roots. We even have no idea to obtain the number

of real roots. Hence, for most results involving the Markovian batch-arrival

and bulk-service queues with finite state-dependent control, we can only

present the method to obtain them. Therefore, one of the most significant

future work is to explore more properties of all the roots to allow the results

look like much simpler.

Question 2. In our queueing model, it is assumed that the maximum

number of people can be served at the same moment is m, which is a finite

number. However, it is quite common that the queue system will vanish

at any state. Thus, it is somehow unreasonable to restrict the service since

there is no restriction in arrival. Hence, we need to extend this model to

more generalized cases even if it is difficult to discuss without any fresh

ideas.

Question 3. Since it is well known that for any Q-matrix, there exists

a unique λC-invariant measure if Q is λC-recurrent. In this thesis, we have

obtained the λC-invariant measure for the λC-positive recurrent case. We

must calculate it in the λC-null recurrent case. For the special case of m = 1,

it has been discussed by J. P. Li and A. Y. Chen (2011), while A. Y. Chen,

J. P. Li, Z. T. Hou and K. W. Ng (2010) have developed that in the stopped

queue process Q∗ of the case m = 2. Hence, it is necessary to extend it in

more generalized cases.

Finally, we have to say that most discussions in this thesis are theoretical.

Hence, the application is of importance. In the near future, we will try to

consider the actual cases as some different kinds of queue processes and

apply these results to classic problems in other fields, especially in finance

and risk aspects.
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