
Distributed Navigation

Thesis submitted in accordance with the requirements of
the University of Liverpool for the degree of Doctor in Philosophy by

Andrew Collins

July 2013

Contents

Contents vii

Acronyms xiii

List of Symbols xv

Preface xvii

Abstract xxi

Acknowledgements xxiii

1 Introduction 1
1.1 Rendezvous Problem . 1
1.2 Network Patrolling . 2
1.3 Additional Topics . 3
1.4 Outline . 3
1.5 Authors contribution . 4

2 Distributed Navigation 5
2.1 Algorithms . 5

2.1.1 Distributed Algorithms . 7
2.2 Analysis of Algorithms . 8
2.3 Graph Theory . 9
2.4 Studied Problems . 11

2.4.1 Rendezvous Problem . 11
Deterministic Rendezvous . 14

2.4.2 Network Patrolling . 16
2.4.3 Additional Work . 19

Parasitic Computation . 19
Basic Walk . 20
Graph Visualisation and Analysis 21

3 Synchronous Rendezvous for Location-Aware Agents 23
3.1 Linear Time Rendezvous on the Infinite Line 23
3.2 Linear Time Rendezvous in Trees . 27

iii

3.2.1 One-Way Rendezvous in the Half-Line 27
3.2.2 Rendezvous in trees . 28

3.3 Rendezvous in the Higher-Dimensional Space 29
3.4 Rendezvous in Arbitrary Graphs . 32

4 Asynchronous Rendezvous With Location Information 35
4.1 The Problem and the Model . 36
4.2 Efficient Construction of Space-Covering Sequences 37
4.3 The Rendezvous Algorithm . 44

5 Optimal Patrolling of Fragmented Boundaries 45
5.1 Introduction . 45

5.1.1 Model, Preliminaries, and Notation 46
5.1.2 Outline and Results of the Work 48

5.2 Optimal Patrolling Strategy for the Segment 48
5.3 Optimal Patrolling Strategy for the Cycle 50
5.4 Computing Optimal Agent Trajectories 60

5.4.1 Optimal Lids . 62

6 Other Work 65
6.1 Parasitic Computation . 66

6.1.1 Background . 66
6.1.2 This work . 67

6.2 Basic Walk . 70
6.2.1 Average cycle length . 71
6.2.2 Longest cycle length . 72

nn 2D Square Grids . 73
kn 2D Square Grids . 74
Distance to longest cycle . 75

6.2.3 Probability of a cycle of given length appearing 77
6.3 Graph Visualisation and Analysis . 81

6.3.1 Graph Visualisation . 82
6.3.2 Graph Analysis . 85

7 Conclusion 89
7.1 Conclusion and Further Work . 89

A Summary of all cycles up to length 34 93
A.1 Definitions . 93
A.2 Cycle length 4 . 93
A.3 Cycle length 6 . 93
A.4 Cycle length 8 . 94
A.5 Cycle length 10 . 94
A.6 Cycle length 12 . 94
A.7 Cycle length 14 . 94
A.8 Cycle length 16 . 95

iv

A.9 Cycle length 18 . 95
A.10 Cycle length 20 . 95
A.11 Cycle length 22 . 96
A.12 Cycle length 24 . 97
A.13 Cycle length 26 . 98
A.14 Cycle length 28 . 99
A.15 Cycle length 30 . 100
A.16 Cycle length 32 . 102
A.17 Cycle length 34 . 105

Bibliography 109

v

Illustrations

List of Figures

2.1 A page from Al-Khwārizmī’s “Al-kitāb al-mukhtas.ar fī h. isāb al-ğabr wa’l-
muqābala” . 6

2.2 The problem of the Seven Bridges of Königsberg [178] 10
2.3 Abstract graph corresponding to bridges of Königsburg [178] 10

4.1 The symmetric structure of layers LiQ, L
i+1
C , Li+1

Q , Li+2
C and Li+2

Q 40
4.2 Connectors between siblings (dotted line squares) and parent (solid lines). In

case (a) the parent comes from HC family and in case (b) the parent comes
from HQ . 42

6.1 Average number of edges across all cycles in grids of size n2 (100 to 2000) . . 71
6.2 Average number of vertices across all cycles in grids of size n2 (100 to 2000) . 72
6.3 Number of vertices in the longest cycle in n2 grids 73
6.4 Number of edges in the longest cycle in n2 grids 73
6.5 The basic walk performed on a 1502 2d Square grid. Longest cycle is the

black (or darkest coloured) cycle. 74
6.6 An example 2 × n grid, with neighbouring vertices sharing a common port

arrangement . 75
6.7 Number of edges in the longest cycle in k × n grids 76
6.8 The average maximum eccentricity of the longest cycle in various Stanford

Network Analysis Package (SNAP) graphs . 77
6.9 The combined Facebook friend relation data of several PhD students from

the University of Liverpool Computer Science department. 83
6.10 A network comprising of interactions between Twitter users interested in the

Papal elections. Vertices are scaled by Betweenness Centrality. 87
6.11 A network comprising of interactions between Twitter users interested in the

Papal elections. Vertices are scaled by Page Rank. 87

List of Tables

2.1 The running times (rounded up) of different algorithms on inputs of increas-
ing size, for a processor performing a million high-level instructions per sec-
ond. In cases where the running time exceeds 1025 years, we simply record
the algorithm as taking a very long time [112]. Key: s = second, m = minute,
h = hour, D = day, Y = year . 9

6.1 The result of generating the first 10 hexadecimal digits of π. Table shows
that with each digit, an additional k = 9 digits are also generated. 69

vii

6.2 Average number of edges and vertices in 2d regular grids. All values are
approximations . 72

6.3 The Pr values computed when calculating the chance of a cycle of a given
length m occurring . 79

6.4 Table showing the exact number of cycles of length m seen empirically (A),
and the number of cycles of length m expected (E) to be seen. Actual data
is averaged over 100 experiments. 80

6.5 Number of self avoiding cycle and self intersecting cycles of size m where
4 ≤ m ≤ 34 . 81

A.1 Cycle length 4. 2 discovered. Pr = 0.024691358024691 93
A.2 Cycle length 6. 4 discovered. Pr = 0.0054869684499314 94
A.3 Cycle length 8. 22 discovered. Pr = 0.0039628105471727 94
A.4 Cycle length 10. 120 discovered. Pr = 0.0029805754542837 94
A.5 Cycle length 12. 624 discovered. Pr = 0.0019512984508158 94
A.6 Cycle length 14. 3,600 discovered. Pr = 0.0014551631005762 95
A.7 Cycle length 16. 21,388 discovered. Pr = 0.0011655010842754 95
A.8 Cycle length 18. 129,284 discovered. Pr = 0.00090980297250102 95
A.9 Cycle length 20. 803,296 discovered. Pr = 0.0007474755606491 96
A.10 Cycle length 22. 5,075,292 discovered. Pr = 0.00062426369979494 97
A.11 Cycle length 24. 32,542,624 discovered. Pr = 0.00052549119764244 98
A.12 Cycle length 26. 211,437,956 discovered. Pr = 0.00045000966789279 99
A.13 Cycle length 28. 1,389,206,920 discovered. Pr = 0.00039062296525159 100
A.14 Cycle length 30. 9,217,403,992 discovered. Pr = 0.0003411190501216 102
A.15 Cycle length 32. 61,693,656,876 discovered. Pr = 0.00030079203258124 . . . 105
A.16 Cycle length 34. 416,145,092,064 discovered. Pr = 0.00026736342673897 . . 108

viii

List of Algorithms

1 Rendezvous on the infinite line . 25
2 One-way rendezvous . 28
3 Rendezvous in the δ-dimensional grid . 31

4 Algorithm RV (point p ∈ 2d space) . 44

5 Partition strategy (on the segment) . 49
6 Cyclic strategy (on the cycle) . 50
7 Combined strategy (on the cycle) . 51
8 TestLidSize(k, d, p): {true,false}; . 61
9 FastLidSearch(l, C): {true, false}; . 63

10 ForceDirectedLayout(V , E) . 84

ix

xi

Acronyms

AJAX Asynchronous Javascript and XML.

BBP Bailey-Borwein-Plouffe Algorithm.

CAPTCHA Completely Automated Public Turing test to tell Computers and Humans
Apart.

CPU Central Processing Unit.

GNSS Global Navigation Satellite System.

GUI Graphical User Interface.

HTTP Hyper-Text Transport Protocol.

LCA Lowest Common Ancestor.

OCR Optical Character Recognition.

PRNG Pseudo-Random Number Generator.

SAP Self Avoiding Polygon.

SNAP Stanford Network Analysis Package.

TSP Travelling Salesmen Problem.

xiii

List of Symbols

α An agent.

A A set of agents A = {α0, α1, α2, . . .}.

O Asymptotic worst case for that an algorithm will perform in.

E A set of edges E = {e0, e1, e2, . . .}.

G = (V,E) A Graph containing a set of Vertices V and a set of edges E.

Z The set of integers.

π ratio of circumference of circle to its diameter.

R The set of reals.

−∞ Negative infinity.

+∞ Positive infinity.

V A set of vertices V = {v0, v1, v2, . . .}.

Λ Vital Regions.

λ Vital Point.

xv

Preface

The main part of this thesis consists of three papers which have been peer reviewed
and accepted to three significant conferences. The chapters in this thesis are a refor-
matted version of those papers with minor amendments to make the thesis consistent
throughout. In addition to the chapters related to published work an additional chapter
is presented which provides discussion on the experimental and exploratory work that
was also conducted by the author.

Firstly, Chapter 3 contains the paper, “Synchronous rendezvous for location-aware
agents” which was co-authored with Jurek Czyowicz, Leszek Gąsieniec, Adrian Kosowski
and Russell Martin, and accepted and published in the proceedings of the 25th Interna-
tional Symposium on Distributed Computing.

We study rendezvous of two anonymous agents, where each agent knows
its own initial position in the environment. Their task is to meet each other as
quickly as possible. The time of the rendezvous is measured by the number
of synchronous rounds that agents need to use in the worst case in order
to meet. In each round, an agent may make a simple move or it may stay
motionless. We consider two types of environments, finite or infinite graphs
and Euclidean spaces. A simple move traverses a single edge (in a graph)
or at most a unit distance (in Euclidean space). The rendezvous consists in
visiting by both agents the same point of the environment simultaneously (in
the same round).

In this paper, we propose several asymptotically optimal rendezvous al-
gorithms. In particular, we show that in the line and trees as well as in
multi-dimensional Euclidean spaces and grids the agents can rendezvous in
time O(d), where d is the distance between the initial positions of the agents.

The problem of location-aware rendezvous was studied before in the asyn-
chronous model for Euclidean spaces and multi-dimensional grids, where the
emphasis was on the length of the adopted rendezvous trajectory. We point
out that, contrary to the asynchronous case, where the cost of rendezvous
is dominated by the size of potentially large neighbourhoods, the agents are
able to meet in all graphs of at most n nodes in time almost linear in d,
namely, O(d log 2n).

xvii

We also determine an infinite family of graphs in which synchronized
rendezvous takes time Ω(d). [53]

Chapter 4 contains the paper, “Tell Me Where I Am So I Can Meet You Sooner”
which was co-authored with Jurek Czyowicz, Leszek Gąsieniec, and Arnaud Labourel,
and was accepted and published in the proceedings of the 37th International Colloquium
on Automata, Languages and Programming.

In this paper we study efficient rendezvous of two mobile agents moving
asynchronously in the Euclidean 2d-space. Each agent has limited visibility,
permitting it to see its neighbourhood at unit range from its current location.
Moreover, it is assumed that each agent knows its own initial position in the
plane given by its coordinates. The agents, however, are not aware of each
others position. The agents possess coherent compasses and the same unit
of length, which permit them to consider their current positions within the
same system of coordinates. The cost of the rendezvous algorithm is the
sum of lengths of the trajectories of both agents. This cost is taken as the
maximum over all possible asynchronous movements of the agents, controlled
by the adversary.

We propose an algorithm that allows the agents to meet in a local neigh-
bourhood of diameter O(d), where d is the original distance between the
agents. This seems rather surprising since each agent is unaware of the possi-
ble location of the other agent. In fact, the cost of our algorithm is O(d2+ε),
for any constant ε > 0. This is almost optimal, since a lower bound of Ω(d2) is
straightforward. The only up to date paper [61] on asynchronous rendezvous
of bounded-visibility agents in the plane provides the feasibility proof for ren-
dezvous, proposing a solution exponential in the distance d and in the labels
of the agents. In contrast, we show here that, when the identity of the agent
is based solely on its original location, an almost optimal solution is possible.

An integral component of our solution is the construction of a novel type
of non-simple space-filling curves that preserve locality. An infinite curve of
this type visits specific grid points in the plane and provides a route that can
be adopted by the mobile agents in search for one another. This new concept
may also appear counter-intuitive in view of the result from [99] stating that
for any simple space-filling curve, there always exists a pair of close points in
the plane, such that their distance along the space-filling curve is arbitrarily
large. [52]

Chapter 5 contains the paper, “Optimal Patrolling of Fragmented Boundaries” which
was co-authored with Jurek Czyzowicz, Leszek Gąsieniec, Adrian Kosowski, Evangelos
Kranakis, Danny Krizanc, Russell Martin and Oscar Morales Ponce in the proceedings
of the 25th ACM Symposium on Parallelism in Algorithms and Architectures.

xviii

A set of mobile agents are deployed on a simple curve of finite length,
composed of a finite set of vital segments separated by neutral segments.
The agents have to patrol the vital segments by perpetually moving on the
curve, without exceeding their maximum speed. The quality of patrolling is
measured by the idleness, i.e. the longest time period during which any vital
point on the curve is not visited by any agent. Given a configuration of vital
segments, our goal is to provide algorithms describing the movement of the
agents along the curve so as to minimize the idleness.

Our main contribution is a proof that the optimal solution to the pa-
trolling problem is attained either by the cyclic strategy, in which all the
agents move in one direction around the curve, or by the partition strategy,
in which the curve is partitioned into sections which are patrolled separately
by individual agents. These two fundamental types of strategies were studied
in the past in the robotics community in different theoretical and experimen-
tal settings. However, to our knowledge, this is the first theoretical analysis
proving optimality in such a general scenario. Throughout the paper we as-
sume that all agents have the same maximum speed. In fact, the claim is
known to be invalid when this assumption does not hold, cf. [62]. [54]

Finally Chapter 6 discusses unpublished experimental and exploratory work in the
area of parasitic computing, basic walk, graph visualisation and analysis that was con-
ducted in parallel to the previously mentioned chapters.

xix

Abstract

In this thesis, a number of problems are looked at predominately in the area of mobile
agent communication protocols. Particularly, with the recent uptake of unstructured,
large and dynamic networks there is a demand for cheap, ubiquitous and reliable pro-
tocols that will assist in the support of the network through tasks such as information
dissemination, information search and retrieval, and network monitoring.

One of the exciting new possible solutions to this is in the area of mobile agents where
by a team of dedicated agents (physical or purely virtual) act independently or within a
team on the network in the goal of solving simple, yet highly valuable, tasks. Independent
agents may work within the bounds of their environment and without influence from their
colleagues to solve simple or potentially complex tasks. Further, the agents may also act
independently but in actuality work as a very complex team with simple underlying
principles allowing for large scale networks and problems to be handled autonomously.

In this work, two problems are investigated in detail, the Rendezvous Problem and
Network Patrolling. In the rendezvous problem, the goal is to identify algorithms that
will permit two agents to rendezvous within some known or unknown environment. This
problem, while at first can feel trivial, it can be incredibly difficult when it is realised
that all agents are expected to be identical at wake-up time, and that methods must be
found that allow for the breaking of symmetry. This thesis provides an investigation into
a number of models and environments and tries to provide optimal algorithms for allow
rendezvous to occur. Secondly in the area of network patrolling, this work investigates
the problem where there exists an environment, in which parts of it are viewed as being
vital to network integrity and as such must be monitored. When there are less agents
than vital regions the challenge of identifying traversal routes that minimise idle time
becomes apparent. In this work an algorithm is presented that minimises this in the ring
environment.

Finally, this work also looks at other problems in distributed computing and provides
exploratory foundation work that could provide alternative models for routing problems,
distributed processing, community identification, and presents a number of open prob-
lems.

xxi

Acknowledgements

This project has been both an interesting and exciting time, while also challenging and
testing. Undoubtedly this project would not have as successful without the people around
me who have provided support and guidance. So in this small section of acknowledge-
ments I would like to use this opportunity to thank those most notable.

Firstly and foremost, this project would not have been possible without those who
have been responsible for the supervision of this project, Leszek A. Gąsieniec, Darek
Kowalski, and Jurek Czyzowicz.

Secondly, many parts of this work were produced with the help of valuable con-
tributions from my co-authors, Adrian Kosowski, Evangelos Kranakis, Danny Krizanc,
Arnaud Labourel, Russell Martin, and Oscar Ponce. Additionally, and while not offi-
cially a co-author in a published work, I would like to thank the invaluable contributions
made to this project by Evangelos Bampas and Ralf Klasing.

Further, I would also like to thank my examiners Prudence Wong and Costas Iliopou-
los for both their thoroughness of this work and advice for future work.

Finally, I would like to thank family and friends, who have tolerated the many hours
I have dedicated purely to this project over the previous years.

xxiii

Chapter 1

Introduction

In this thesis the field of Computer Science is investigated, and specifically problems in
the area of the Theoretical Computational Complexity of certain Distributed Algorithms.
Also within this work are other more applied aspects of distributed algorithms and graphs
in general, which were of the authors interests, that were investigated during the main
themes of this project. Firstly a general introduction to the two main themes discussed
in this thesis are provided, though a more detailed introduction to the problems can be
found in Chapter 2.

1.1 Rendezvous Problem

The Rendezvous Problem is defined as the problem of getting two or more entities to
rendezvous in an environment, in the most simplest of terms this can be thought of as two
individuals who agree to meet at a location only to later discover that the location they
agreed to meet within is larger than visibility permits thus requiring the two individuals
to explore their environment to find each other. Further, as a rule of this problem, it is
expected that those attempting to meet do not know initially where the other person is,
or are able to communicate. One of the most common examples of this problem is that
two tourists agree to meet at Central Park, New York only to arrive and later realise
that the park is far larger than they imagined and thus requiring the tourists to begin
searching for the other person.

With the recent and continued popularity of large unstructured and often dynamic
network environments it has become important for a need for robust and universal yet
inexpensive distributed network algorithms. The objective of the network algorithms
are to support the integrity of the basic functionality of the network purpose as well as
to assist in specific tasks such as information dissemination, network exploration and
searching, as well as monitoring and patrolling including that of supporting emergencies.

One of the unusual yet encouraging alternatives that could support networks such as
these is through the use of dedicated teams of mobile agents that can operate indepen-
dently of the network processes. Though while the use of agents may be a challenge to
develop, there are a number of possibilities, such as, representing software agents [124]

1

Chapter 1. Introduction 2

occupying network nodes or traversing between them, autonomous mobile robots [160]
located in a geometric (real world) environment, or a group of people that have to meet
in a city whose streets form a road network [8]. The independence of the agents allows
for them to be adaptable to cases when the environment is either stable or unstable due
to accidental or intentional failures within the network.

Further to this, agents can also be considered as representing other types of complex
systems on their own. For instance a traditional communication network can be replaced
by a more arbitrary environment in which a collection of networked or free-standing
agents represent groups of humans, animals, vehicles or specialised robots which are
asked to perform a dedicated computational task. This could be done in the form of
a fully-coordinated effort or as a collection of (semi-)independent individual (possibly
greedy) performances.

The rendezvous of agents is often a challenge on its own. Alternatively, it can be used
as a subroutine in a range of basic network integrity and co-ordination mechanisms. The
agent’s ability to act autonomously including observation, communication and relocation
impels the design and further implementation of efficient communication and navigation
mechanisms. In this thesis this challenge of getting the agents to perform rendezvous
are discussed by showing methods discovered in the published works [52, 53] for solving
specific scenarios within the wider rendezvous problem.

1.2 Network Patrolling

Similarly to the previous topic, another problem that is becoming of interest due to both
the continued popularity of large networks and also due to the rise of more complex and
autonomous robotics is that of Network Patrolling. Protecting an environment through
the use of a set of stationary or mobile point-guards has been studied before in various
scenarios. The problem of patrolling a one-dimensional boundary using agents has many
real-world applications, and is extensively studied under the names of boundary patrolling
and fence patrolling in the robotics literature [62]. In order to prevent an intruder from
penetrating into a protected region, the boundary of the region must be patrolled. Some
parts of the boundary may be monitored with stationary devices like sensors or cameras
(or they do not need to be monitored at all), while other portions require the aid of
moving robots such as walking guards, illumination rays, mobile robotic devices, etc.
Since the feasibility of an intrusion likely depends on the time during which the intruder
remains undiscovered, it is important to design patrolling algorithms which minimise the
time during which boundary points are unprotected.

In this the concept of agents is extended from rendezvous to that of network patrolling
by the requirement that the agents are required to perform a given task autonomously
and at some minimal cost. Where as in the previous case the mobile agents were required
to locate each other, in this case the agents can be considered as trying to avoid each
other and instead trying to locate areas to monitor that are not currently monitored.

Chapter 1. Introduction 3

While this at first may seem trivial, the task becomes difficult once the regions that are
required to be monitored is greater than the number of mobile agents, thus requiring an
agent to move between monitored regions.

1.3 Additional Topics

In addition to the main themes of this topic as discussed in §1.1 and §1.2 this work will
also look at some of the more applied interests conducted during this project, which are
also in relation to distributed algorithms.

There are three topics which were investigated, the first is in Parasitic Computing.
Parasitic computing is the concept of exploiting existing algorithms and protocols that
are being executed by a host to provide a resource of computing power for the parasite,
without the hosts knowledge of the exploits occurring. This allows for a distributed
algorithm to essentially latch on to an unknown host to bleed a small amount of Central
Processing Unit (CPU) time that across a large network (e.g. the Internet) can result in
the parasite having access to an immense amount of computing power.

The second topic that will be looked at is the Basic Walk, the basic walk is a de-
terministic counter-part to a Random Walk. In this topic the algorithm is performed on
very large graphs, with analysis conducted on the output. In the results of this work
it is discovered that there are various unexpected trends leading to the possibilities of
interesting future directions.

Finally, the third topic to be discussed was a by-product of the previous topic. As
larger and larger graphs were investigated it came to prominence that a tool would be
required to allow for the efficient storage and visualisation of these graphs, and as the
tools became more efficient the more interesting it came of interest to other parties in
the fields of social media and biology. In this topic the tools that were built and the
algorithms that were utilised are reviewed, as well as future directions considered.

1.4 Outline

This thesis presents work related to the main topic of this doctorate and as well as
discussion on a number of a side projects undertaken through the duration. The topics
are organised as follows:

Chapter Two continues the outlines provided in this chapter and goes into further
detail. It provides a more detailed introduction and background to the topics that
are mentioned above and looks at the background to algorithms and distributed
computing, and how the rendezvous problem can be applied, as well as the interest
of network patrolling in these contexts.

Chapter Three discusses in more detail the concept of synchronous rendezvous and
shows the results that were obtained during the execution of this project. Specifi-
cally the results that were presented in [53] are discussed.

Chapter 1. Introduction 4

Chapter Four also looks into a topic of rendezvous, however, in this chapter the asyn-
chronous rendezvous model is investigated. In this chapter the results produced
for [52] are shown.

Chapter Five looks away from rendezvous and focuses instead on a slightly different
topic, that of network patrolling. Once again this chapter is also dedicated to results
produced in this project, specifically that of [54].

Chapter Six contains a look at some of the other work that was conducted by the
author through the duration of this project that have either taken academic or
industrial interest but do not fit into the preceding chapters. The topics of parasitic
computation, the basic walk, and finally graph visualisation are mentioned in this
chapter.

Chapter Seven shows the final conclusions of these works and looks at potential di-
rections for future work.

1.5 Authors contribution

The work completed in Chapter 3, 4, and 5 were completed by the author with significant
contributions by the co-authors. Specifically the author has a general interest in linear
structures and all of these works make or developed on linear structures. In Chapter 3, the
author contributed in the development of the solutions for the infinite line, the half-line
and the tree environments, as well as contributed in discussions towards the remaining
problems discussed. In Chapter 4 the author contributed towards the development of
the tree structure of central and quad partitions which were an attempt to reduce a 2D
space to that of a linear structure (space-covering sequence). In Chapter 5 the author
contributed towards the development of the solution produced for the linear stuctures
and also contributed towards the discussions in the ring environment which appear in
the paper. Finally the work completed in Chapter 6 was completed solely by the author,
however, specifically in terms of §6.3, additional development work has been contributed
to this project from both under-graduate and post-graduate students with guidance from
the author.

Chapter 2

Distributed Navigation

In this chapter the background work that has lead to the production of this thesis is
introduced. This chapter is intended to be a lighter introduction to the topic for readers
which are unfamiliar with the topics that will be discussed, however, readers acquainted
with the topics may find that they can skip this chapter and proceed to Chapter 3.

First the field of computer science and specifically the concept of algorithms will be
introduced, and further the difference of a traditional algorithm to that of a distributed
algorithm. The significance of these two topics in computer science and examples of
where they have been utilised will be highlighted.

Secondly the problems that have been worked on within this thesis will be discussed,
from their origins and aims to their current form. Specifically, the rendezvous problem
and network patrolling as well as the topographical models that these techniques are
applied to.

Finally, the other content of this thesis that will be covered in the final chapters, in
more detail, is introduced.

2.1 Algorithms

The word “algorithm” is a descendant of al-Khwārizmī from Abū ’Abdallāh Muh. ammad
ibn Mūsā al-Khwārizmī1 (Father of Abdullah, Mohammad, son of Moses, native of
Khwārizm), a Persian astronomer, geographer and mathematician. One of al-Khwārizmī’s
most famous works is the “Al-kitāb al-mukhtas.ar fī h. isāb al-ğabr wa’l-muqābala” (“The
Compendious Book on Calculation by Completion and Balancing”), which also where the
word “algebra” (al-ğabr) originates from [113].

Since this work, a number of interpretations of the works title, and of the authors
name have occurred which has confused the origins of the term algorithm leading to
instances where Latin has been mistakenly suggested as the source. Further to this, many
variations of the spelling have existed, though today the term and spelling “algorithm”
is the preferred, which is defined by [163] as being:

1Variations of Al-Khwārizmī’s are quite frequent across the literature. The only general consistency
is in the surname, al-Khwārizmī

5

Chapter 2. Distributed Navigation 6

Figure 2.1: A page from Al-Khwārizmī’s “Al-kitāb al-mukhtas.ar fī h. isāb al-ğabr wa’l-
muqābala”

Definition 2.1 (Algorithm). A procedure or set of rules used in calculation and problem-
solving; (in later use spec.) a precisely defined set of mathematical or logical operations
for the performance of a particular task.

Though while this definition owes at the very least its origins to 1811 according to
[163] it is in 1937 that the modern concepts of an algorithm, and the computational
model were formalised by Alan Turing [169].

As per the definition, an algorithm is considered as a strictly defined series of in-
structions that will accept a value or a set of values as an input parameter and then
return a value or set of values as the output. Algorithms can be considered as a tool
for solving various computational problems where their exists a problem scenario, some
form of input, and some form of output. From this basic definition an algorithm can
be viewed as the process that a computer undertakes to generate the answer for a given
question.

Perhaps one of the most well known and certainly most important types of algorithms
in computing is that of the sorting algorithm. A sorting algorithm is an algorithm which
takes a series of input values (e.g. 1, 5, 3, 8, 0, 13, 1) and returns the values sorted by
a required criteria (e.g. in non-decreasing order: 0, 1, 1, 3, 5, 8, 13). While this concept
seems trivial and initially unimportant it is easy to see its significance when a computer
must work with large amounts of data. For instance, consider a dictionary, due to the
expectation that a dictionary is sorted one can generally identify the word that is being
looked for by opening the book at the mid point, and then through gradually splitting

Chapter 2. Distributed Navigation 7

the book further (i.e. at the quaternary points) and further the word should eventually
be reached. In a dictionary of approximately 1, 000 pages one would hope to find the
word that is being looked for after approximately 10 page turns (or log2 n where n is
defined as the number of pages). Now if the dictionary was not sorted then this method
would be unsuccessful, and only a complete search from the first page to the last page
would identify the word that one would like to find. So specifically, if their are 1, 000

pages it would require up to 1, 000 page turns (or n). From this simple example the
reader can get a feel for the significance of sorting, because as the input grows, finding a
specific record will become much more difficult in unsorted data than it would in sorted
data. The concept of measuring expected run time is discussed in more detail in later
sections.

It is for this very reason as to why sorting is so important in computing, as to
work with very large datasets would be impossible if a computer could not accurately
predict where a specific record within the dataset is to be found. Sorting of course may
not refer to words or numbers, it could apply to any criteria (by date, location, etc.),
and be ordered in any direction ascending, descending, or even randomly if required
[56, 112, 129].

However, regardless of the efficiency (though with some exceptions) of an algorithm,
the size of the input can eventually reach a point where a single processor may find it
infeasible to run on a given input and it is in this scenario when the concept of distributed
algorithms must be considered.

2.1.1 Distributed Algorithms

Traditionally an algorithm is designed such that a single processor may execute the
algorithm for the given inputs in its entirety and be solely responsible for the production
of the output. For many day-to-day requirements of computers this model is completely
satisfactory, however, there exists cases where this model cannot currently, and perhaps
may never, succeed. A good algorithm will generally be abstract enough such that it
is not hardware or software dependent, and further to this a distributed algorithm will
allow for a single algorithm to be run across various different hardware configurations in
parallel, regardless of the hardware, speed or reliability of each processor.

At the time of writing, the world is currently in a position where it is becoming
more and more connected, and more so since the popularity of the Internet and mobile
communications. Further to this, computing has become incredibly inexpensive allowing
for various, and possibly unexpected, devices to employ the use of small processors for
the purpose of capturing or adapting to sensor results within the device. For instance
the CERN Large Hadron Collider produces around 15 petabytes of data per year [125],
which itself is large, however, even this is small compared to the envisioned exabytes
of data that will be produced per day by the Square Kilometre Array [32], a figure
that is believed to be larger than the current total amount of information available on
the Internet. Figures that are simply impossible to process for a single processor. In

Chapter 2. Distributed Navigation 8

combination with this issue, it is forecast that the theoretical limitations of Moore’s Law
are gradually being reached [111, 132]. It is for that reason algorithms which can be
distributed across multiple processors must be considered, to enable a drastically higher
theoretical limit to the amount of processing power that is available for a single task.

With, as mentioned, the advent of large scale networks such as the Internet and
the coming availability of ubiquitous computing it now seems more sensible that such
algorithms should be considered to counter the problem of large data and exploit the
vast pool computing power available. Though this thesis by no means sees this as a
new or unknown problem as there are a number of existing examples where distributed
computing is being used to solve large data inputs. Already distributed computing can
be found in applications related to institutes that utilise cloud computing [100], large
scale scientific projects [135, 176, 186], mobile computing [31, 158], and various others.

2.2 Analysis of Algorithms

Computational Complexity Theory (or simply, Complexity Theory) is a well studied field
within theoretical computer science and specifically, the theory of computation. The
concept of complexity theory is to provide a means of classifying the difficulty of any
given problem so as to allow for the classified problems to be related to each other. Within
the wider field of complexity theory exists the concept of Algorithm Analysis (Or, the
Analysis of Algorithms) which focuses on a similar but related challenge. Specifically the
concept of algorithm analysis is to identify the difficulty of any given algorithm which then
permits for any algorithms that solve the same tasks to be compared. The significance
of this area is to identify the scalability of an algorithm. While for small inputs generally
it could be said that “any algorithm is good enough” as computation speeds today can
be sufficient for even the most difficult algorithms. However, once an input grows it
needs to be understood how this will effect the run time or memory requirements of an
algorithm, as it is common for these constraints not to scale linearly with the size of
the input. However, while computation power is increasing, if an algorithm cannot scale
then there may be only a tiny gain or even no gain if the size of the input increases too.

Consider Table 2.1 reproduced from [112] which shows that if an algorithm requires
2n steps to complete, then it would require less than 1 second with an input of size 10,
however, if the input size increases by a factor of 10 to 100 then it would require 1017

years to complete, even if computational power increases by the same factor then it would
still require 1016 years to complete. However, if the algorithm was to require n2 steps to
complete then for both inputs it would be expected that the algorithm would terminate
after 1 second. From this very simple example it can be seen that while initially, “any
algorithm is good enough” when the input is very small, once the input starts to grow it
becomes more and more important that efficient algorithms are required to be discovered.
Further, the importance of why algorithms need to be analysed can also be seen.

Chapter 2. Distributed Navigation 9

Input Size n n log n n2 n3 1.5n 2n n!

10 < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s 4 s
30 < 1 s < 1 s < 1 s < 1 s < 1 s 18 m 1025 Y
50 < 1 s < 1 s < 1 s < 1 s 11 m 36 Y v. long

100 < 1 s < 1 s < 1 s 1 s 12, 892 Y 1017 Y v. long
1, 000 < 1 s < 1 s 1 s 18 m v. long v. long v. long

10, 000 < 1 s < 1 s 2 m 12 D v. long v. long v. long
100, 000 < 1 s 2 s 3 h 32 Y v. long v. long v. long

1, 000, 000 1 s 20 s 12 D 31, 710 Y v. long v. long v. long

Table 2.1: The running times (rounded up) of different algorithms on inputs of in-
creasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 1025 years, we simply record the algorithm as
taking a very long time [112]. Key: s = second, m = minute, h = hour, D = day, Y =

year

The two topics of most interest within complexity theory are those of time complexity
and space complexity. Time complexity refers to what was previously discussed, the
amount of steps that that an algorithm must perform to complete the given task for
the specified input. Similarly space complexity refers to the amount of memory space
required to complete a given task, in terms of algorithm efficiency it is both of these
aspects that should be minimised. Realistically a good algorithm should be abstracted
away from any specific hardware or language, which leads to the use of Big O Notation,
as this notation allows for the generalising of algorithm behaviours without regard for
the implementation.

Big O notation is used as a mathematical method for describing the asymptotic
behaviour of functions. Its intent is to allow for the defining of a function’s behaviour for
very large inputs so that any pair of functions can be compared to identify which is more
efficient than the other. In this work the symbol O is used to denote the asymptotic
upper bound for the magnitude of a function in terms of another2.

Big O notation can be used for analysing both the space and time complexity of
algorithms.

2.3 Graph Theory

Throughout this work elements of graph theory and the graph model will be used. In
the fields of mathematics and computer science the graph model is used as a means of
constructing an abstract model of relationships between objects. Graph theory owes its
history to Leonhard Euler’s, “Solutio problematis ad geometriam situs pertinentis” (“The
solution of a problem relating to the geometry of position”) which was published in the
journal, “Commentarii academiae scientiarum Petropolitanae” in 1741.

In this work Euler discusses the problem, now known as, the “Seven Bridges of Königs-
berg”. The goal of this problem is to identify a path through the city of Königsberg

2Though in other works O may simply be used.

Chapter 2. Distributed Navigation 10

(formerly in Prussia, now known as Kaliningrad, Russia) that would involve crossing all
seven bridges exactly once (shown in Figure 2.2). Further, the rules of the problem state
that a bridge must always be crossed in its entirety and that to get to the parts of the
city only connected by bridges, a bridge must be used.

Figure 2.2: The problem of the Seven Bridges of Königsberg [178]

Euler identified and proved that no such solution to this problem exists, through the
use of an abstract terminology that has since lead to the development of graph theory.
In modern terms Euler showed that it was possible to reduce the problem such that
there exists two elements, a set of Vertices3, and a set of Edges4, by mapping each land
mass to a vertex and mapping each bridge to an edge connected to the two vertices that
represent the two land masses the bridge connected. Thus producing the graph shown
in Figure 2.3.

Figure 2.3: Abstract graph corresponding to bridges of Königsburg [178]

3Sometimes referred to as a nodes or points, though in this work the terms vertex and vertices are
preferred.

4Similarly, sometimes referred to as lines.

Chapter 2. Distributed Navigation 11

In modern graph theory the concept of mapping objects and their relations to that of
a graph is re-used and denoted using G = (V,E), where a graph is a set of vertices V and
a set of edges E. Through modelling, using this concept, many problems can be reduced
to something that can easily be studied using established techniques, and consequently,
through studying problems using this model many solutions can be applied to various
complex problems. Common applications modelled through this technique are social
networks [134], computer networks [127], traffic networks [128], and various others.

2.4 Studied Problems

While these areas are becoming more established as demand increases, this work looks
at a lesser investigated area, specifically the concept of distributed navigation. In this
thesis identification of the time complexity of a number of theoretical models that are
designed to map directly to abstract distributed processes will be shown.

The models will be reduced to methods for solving the Rendezvous Problem, and for
performing Network Patrolling.

2.4.1 Rendezvous Problem

In the rendezvous problem two, or more, mobile agents are required to meet, or more
aptly, to rendezvous. Though in this work only two agent rendezvous is investigated.
All of the agents are placed at different positions within the environment, however,
initially each agent does not know the location of any other agent. Thus this leads to the
interesting challenge of discovering algorithms that allow for all agents to rendezvous. To
do this, an agent is required to explore its current environment, or at the very least part
of it, until it can locate all of the other agents. As per the prior section big O notation
will be used to denote the expected time complexity of the solutions, however, in this
scenario the initial distance of the agents from each other is used as the measure of cost
and the agents must rendezvous relative to this cost.

One of the early references to the rendezvous problem is a 1960 work from the field of
political science. In this early work, Schelling [156] discussed the co-ordination problem
whereby there exists two players that must attempt to successfully guess the location of
a common meeting point. The players are only provided with one opportunity to meet
and if the attempt fails then the players fail.

Since this work, the rendezvous problem has been redefined and was informally re-
introduced by Alpern [5], in 1976. In this early work Alpern introduced a number of
problems such as the Astronaut Problem and the Telephone Problem, of which so far
despite the large body of research on rendezvous problems, do not yet have solutions:

Definition 2.2 (Astronaut Problem). Two astronauts land on a spherical body that is
much larger than the detection radius (within which they can see each other). The body
does not have a fixed orientation in space, nor does it have an axis of rotation, so that no
common notion of position or direction is available to the astronauts for coordination.

Chapter 2. Distributed Navigation 12

Given unit walking speeds for both astronauts, how should they move about so as to
minimise the expected meeting time T (before they come within the detection radius)?
[10]

Definition 2.3 (Telephone Problem). In each of two rooms, there are n telephones
randomly strewn about. They are connected in a pairwise fashion by n wires. At discrete
times t = 0, 1, 2, . . . players in each room pick up a phone and say “hello”. They wish to
minimise the time T when they first pick up paired phones and can communicate. What
common randomisation procedure should they adopt for choosing the order in which
they pick up the phones? [10]

In later years the topic became more popular due to the influential work by Anderson
and Weber [17] on discrete location rendezvous. Since then the topic has continued
to get more popular and formulation of the problems has continued through the work
of Alpern [6]. The topic has reached such a level in popularity that there are now a
number of documents providing overviews, such as the two extensive surveys by Alpern
[6, 7], and also a book by Alpern and Gal [10] which discusses various methods of
performing rendezvous using randomised techniques. Further other authors have also
written exhaustively on sub-problems within rendezvous such as the book by Kranakis
et al. [122] which focuses on rendezvous in the ring, and the book by Alpern et al. [12]
that provides an overview to various aspects of the topic suitable for various fields such
as computer science, mathematics and biology. In addition to this the topic can also be
looked at from different aspects such as was investigated by Olfati-Saber et al. [144] in
his work related to the consensus problem.

In general, the results produced so far in the field can be classified as those considering
a form of geometric setting, such as, rendezvous in the line [14, 28, 29, 95], in the ring
[66, 72, 120, 122] whereby agents must meet in a linear structure, or rendezvous in the
plane [15, 16, 61, 130, 165, 167]) whereby the agents must meet in a more (real-world)
2d or 3d environment, and those considering rendezvous in graphs [6, 11].

Secondly, the environment an agent is deployed within can be classified as either finite,
or of unbounded in size. While in the finite case, exploration of the environment can be
feasible, however in the unbounded case, having the agents perform rendezvous requires
the discovery of search algorithms that preserve the locality of the solution. Without
this requirement the complexity of the solution could be unbounded. In addition to this,
another important network attribute refers to the localisation property, whether the
agents have knowledge of their current location, and also to the sense of direction. For
example, in the geometric setting these two properties refer to the system of co-ordinates
accompanied by geographic directions, i.e. through having access to a positioning system
such as a Global Navigation Satellite System (GNSS). Flocchini et al. [87] have previously
shown that by providing a sense of direction it can greatly improve the chance of solving
and the efficiency to a number of problems in distributed computing, with Barriere et al.
[26] further showing it to be important in rendezvous as well. However, the network
itself can be reliable, or it can report to its users inaccurate and potentially unusable

Chapter 2. Distributed Navigation 13

information and in such error prone network rendezvous time can be largely elongated
or meeting may prove to be impossible [71].

Finally, another critical property refers to the availability of a global clock to the
agents within the network. In particular, in a synchronous network it is assumed access
to the global clock allows agents to co-ordinate their actions, including their movement,
using time frames such that at each time frame an action is performed. In contrast,
in asynchronous networks it is assumed their is no accessible global clock, and thus
the speed with which an agent performs an action is indeterminable and thus cannot
be co-ordinated. In this case rendezvous occurs either through utilisation of predefined
trajectories [168], or through the analysis of the current configuration of the network
[150].

The rendezvous problem can be examined in different ways and different communities
are known to look at the problem differing directions. For instance the computer science
community are known for showing interest in identifying solutions to the problems with
a focus on efficient algorithms in terms of the resource usage (i.e. time, or memory).
Meanwhile the operations research community has shown more interest in identifying
methods for maximising the chance of the two agents meeting and also reducing the
time it takes to meet. However, regardless of the different directions the communities
are taking, both share a common interest in performing rendezvous in the line, of which
so far there are various deterministic and non-deterministic results in this environment.

In regards to the line, it was Alpern who introduced and provided a solution to
the problem of symmetric rendezvous. Alpern [6] provided a solution of 5d where d is
defined as the original distance between the agents within the environment. In this result
Alpern proposed that the agents should initially select a direction at random and traverse
towards the position at d from their current position. Once at this destination the agents
should then return in the opposing direction for 2d steps at a unit speed. Further, Alpern
and Gal [9] provided a proof stating that for all symmetric rendezvous strategies, the
agents should meet after at least 3.25 · d steps. While Alpern and Gal [9] discussed
lower bounds, other authors such as Anderson and Essegaier [14] proposed that when
mixed movements are used there will be an upper bound of 4.5678 · d. However, since
these results in 1995 work has continued to refine them with Baston [27] making minor
improvements in 1999 to provide an upper bound of 4.4182 · d. Later still, Uthaisombut
[170] showcased a fresh look at a mixed strategy that gave another slight improve to the
upper bound with 4.3931 · d. His results also gave an argument for a lower bound being
revised to 3.9546 · d. However, in an even more recent result, Han et al. [103] considered
both of these bounds and provide arguments for an upper bound of 4.2574 · d and lower
bound of 4.1520 · d, with also a conjecture that the rendezvous is asymptotically equal
to 4.25 · d.

While most of the deterministic rendezvous algorithms in the line use asynchronous
models which uses the total walk distance of any agent as the cost of the rendezvous
process, there is however work in other environments. Dessmark et al. [69] for instance

Chapter 2. Distributed Navigation 14

discuss efficient rendezvous strategies in tree environments and propose for rendezvous
occurring with a cost of O(n) on a route of length n. There is also work by De Marco
et al. [67] which considers the infinite line with the difference that the agents are not
only labelled but also know the value of d. In this work, rendezvous is shown to occur
in O(d|Lmin|2), where |Lmin| is defined as the length of the smallest label and O(d3 +

|Lmax|3), where |Lmax| is defined as the length of the largest label, if d is not known.
Recently, Stachowiak [166] improved the result for when d is not know known to O(d ·
log2 d+ d · d log d|Lmax|+ d|Lmin|2 + |Lmax||Lmin| log |Lmin|).

Deterministic Rendezvous

One of the fundamental issues in the deterministic rendezvous algorithms is the problem
of symmetry breaking, since identical agents starting at some symmetric positions may
never meet, indefinitely locked to performing symmetric moves at a distance d between
each other. One possible way to break symmetry is to have agents identified with dif-
ferent labels. For the case of agents which are unlabelled, i.e. anonymous, [90] studied
rendezvous in trees, assuming that agents have bounded memory. However, trees are
a special case in which rendezvous is often feasible, supposing that neither vertices nor
agents are labelled or marked. Rendezvous in a graph is feasible, see [63], if and only
if the starting positions of the anonymous agents are asymmetric, i.e. the views of the
graph from the initial positions of the agents are distinguishable, cf. [181]. In [184] the
problem of gathering many agents with unique labels was studied. In [69, 118] deter-
ministic rendezvous in graphs with labelled agents was considered. One usual approach
used for labelled agents consists in finding a (usually non-simple) cycle in the graph,
computable by an agent placed at any starting vertex, and an integer bijection f on the
set of labels. The agent α goes f(α) times around such cycle and different agents are
forced to meet (see e.g. [60, 63, 67, 118]). In [63] it was proved that the log-space mem-
ory is sufficient in order to decide whether a given instance of the rendezvous problem is
feasible for any graph and any initial positions of the agents.

However, in most of the papers above, the synchronous setting was assumed. In the
asynchronous setting it is assumed that the timing of each action may be arbitrarily
slowed down by an adversary. The efficiency of the asynchronous algorithms is deter-
mined by the worst-case possible behaviour of the adversary. Asynchronous gathering
in geometric environments has been studied, e.g. in [48, 86] in different models than
this: anonymous agents are oblivious (they can not remember past events), but they
are assumed to have at least partial visibility of the scene. The first paper to consider
deterministic asynchronous rendezvous in graphs was [67], where the complexity of ren-
dezvous in simple classes of graphs, such as rings and infinite lines, was studied for
labelled agents. In [61] the feasibility of asynchronous rendezvous for labelled agents was
considered both for graphs and the 2d-space. It was proved that rendezvous is feasible in
any connected (even countably infinite) graph. For this purpose, an enumeration of all

Chapter 2. Distributed Navigation 15

quadruples containing possible pairs of agent labels and their starting positions is consid-
ered. According to this enumeration, the routes of the agents involved in each quadruple
is extended in such a way that their meeting is always ensured. If the graph is unknown,
the enumeration is constructed while the graph is explored. The cost of the rendezvous
algorithm is exponential in the original distance between the agents. On the other hand,
asynchronous rendezvous is infeasible for agents starting at arbitrary positions in the
plane, unless the agents have an ε > 0 visibility range, see [61]. The assumption that the
agents operating in the geometric environment has a bounded, non-zero visibility range
is very natural (cf. [16, 61, 96, 130]). The process of learning, and the adaptivity of the
agents depends on their memory as well as on observation and communication abilities.
For example, in some models it is assumed that the agents are memoryless, where the
agents rely on the use of a random walk procedure [55]. The random walk is an example
of a randomised procedure requiring access to random bits.

Earlier it was discussed that there are two types of environments that a network
may be classified as: geometric, or graph based. The graph based environment models
the nodes of the network as vertices. However, the vertices themselves may have the
property that they are labelled and thus each point within the network is identifiable,
or the vertices may have no identifying qualities and thus in this case the network is
anonymous. An anonymous vertex can only be identified by it’s degree, which in some
cases can be quite revealing, however, should any pair of vertices have the same degree
then these are impossible to differentiate. Further, exploration of the neighbours does
not resolve this in certain graphs, for instance a complete bipartite graph has only two
vertex types, regardless of the number of vertices. Breaking symmetry can depend on
whether the agents can be given identities (such as through adopting the identifying of
the vertex they initiate at) [69, 117], or the agents can mark the vertices they traverse5

(e.g. see [29, 65, 121, 122]). Finally, rendezvous can also be achieved through exploring
the asymmetric positions of the agents in the graph (e.g. [63]).

In Chapter 3, which is based on [53], yet another method of breaking symmetry
is used, by always providing to each agent information about its current position in
the environment (this implies that the environment may not be unknown to the agent).
This assumption that the agents know their initial location in the geometric environment
was considered in the past in the context of geometric routing, e.g. [1, 35, 119, 123],
where it was assumed that the agent knows its own position as well as the position
of the destination, or broadcasting, (cf. [82, 83]), where the position awareness of the
broadcasting vertex only was admitted. Such assumption, partly encouraged by the
availability and the popularity of GNSS, is sometimes called location awareness of agents
or vertices in the network, and it often leads to better bounds of the proposed solutions.
More recently Dieudonné and Pelc [70] showed that rendezvous is also possible when
only the initial positions of the agents are known, however, this result came at a higher
cost.

5In the literature, this is some times referred to as leaving a pebble at the vertex, or by having an
agent mark a whiteboard on the vertex

Chapter 2. Distributed Navigation 16

Further, in Chapter 4, which is based on [52], the rendezvous problem for location-
aware agents in the asynchronous case is discussed. Previously, the asynchronous ren-
dezvous was studied by De Marco et al. [67] for lines and rings, while for arbitrary
graphs [67] gave an exponential-time rendezvous procedure, under the condition that the
bound on the size of the graph is known to the agent. This condition was suppressed in
[64], where feasibility of asynchronous rendezvous was settled for arbitrary (even infinite)
graphs and geometric environments. Both approaches in [67], and in [64] lead to very
inefficient, exponential-time rendezvous algorithms for labelled agents. However, in [52]
the concept of covering sequences that permitted location aware agents to meet along the
route of polynomial length in d in multi-dimensional grids was introduced. This result
was further advanced in [25], where the proposed algorithm provides a route, leading to
rendezvous, of length being only a poly-logarithmic factor away from the optimal ren-
dezvous trajectory. The inherent bottleneck, however, in asynchronous location aware
rendezvous is in scenarios where there are potentially a large number of local neighbour-
hoods. In the worst case, every agent must search through its entire neighbourhood of
radius d when, e.g. the other agent is immobilised by the adversary that controls the
actions of both agents.

The main emphasis in this thesis is on local rendezvous, i.e. the agents are expected
to meet without visiting remote parts of the network. In this setting the rendezvous
cost tends to be proportional to d. Some local rendezvous strategies were studied in the
geometric setting where the agents have either a complete or limited visibility [165]. E.g.
Ando et al. [18] studied convergence stability of multiple agents represented as points on
the plane. In a similar geometric setting Cohen and Peleg [50] considered convergence
properties of gravitational algorithms including scenarios populated by crash faults.

The synchronous deterministic rendezvous for labelled agents in graphs was first
studied in [69], where the main result was a polynomial-time rendezvous algorithm. The
authors of [118] and [168] independently extended the approach of [69] to the case of
agents starting their movement with an arbitrary delay. However the algorithms from
[69, 118, 168] are highly polynomial in the size of the network. Thanks to the location
awareness assumption, the approach used in Chapter 3 results in a variety of very efficient
algorithms, linear or slightly super-linear in the initial distance d between the agents,
working, in some cases, also for infinite graphs and multi-dimensional grids and spaces.

2.4.2 Network Patrolling

The second problem that is investigated in this work is that of network patrolling. In
network patrolling the previously discussed model of mobile agents is used to monitor
and protect an environment. Protecting an environment through the use of a set of
stationary or mobile point guards has been studied before in various scenarios. The
problem of patrolling a one-dimensional boundary using mobile agents has many real-
world applications, and is extensively studied under the names of boundary patrolling and
fence patrolling in the robotics field [62]. In order to prevent an intruder from penetrating

Chapter 2. Distributed Navigation 17

into a protected region, the boundary of the region must be patrolled. Some parts of
the boundary may be monitored using a variety of stationary devices and sensors, such
as motion sensors, cameras, or microphones (or they do not need to be monitored at
all), while other parts of the environment may require the aid of mobile robots such as
walking guards, illumination rays, mobile robotic devices, or others. In this work it is
considered that the feasibility of an intrusion being likely wholly depends on the time
during which the intruder remains undetected, so for that reason the focus is aimed
towards the discovery of patrolling algorithms which minimise the time during which
boundary points are unprotected.

The act of patrolling is defined as the perpetual process of surveillance consisting of
walking around a terrain in order to protect or supervise it; it is performed either in a
static or in a dynamically changing environment. It has been studied extensively in the
robotics literature (cf. [4, 43, 77, 79, 80, 104, 131, 183]) and it is sometimes viewed as a
variant of coverage - a central task in robotics. Patrolling can be useful in settings where
objects or humans need to be rescued from a disaster environment, but also network
administrators may use agent patrols to detect network failures or to discover web pages
which need to be indexed by search engines, cf. [131].

Similarly, boundary patrolling may be motivated by the task of detecting intruders
(from the exterior) in a two dimensional terrain by patrolling its boundary. There exist
several studies on boundary patrolling (cf. [3, 79, 80, 148]); often the approach followed
is ad hoc, emphasising either experimental results (e.g. [131]), or uncertainty of the
model and robustness of the solutions when failures are possible (e.g. [79, 80, 104]), or
non-deterministic solutions (e.g. [3]). Several fundamental concepts, including models
of agents (e.g. visibility or depth of perception), locomotion, (relative movement of the
agents in the environment or motion co-ordination), means of communication, as well as
measures of algorithm efficiency can be found in the experimental paper [131].

The fundamental measure for evaluating the efficiency of patrolling is the criterion of
idleness, first introduced in [131]. The general idea is to measure algorithmic efficiency
by frequency of visits of the points of the environment by incoming agents (cf. [4, 43, 79,
80, 131]). As such the idleness is sometimes viewed as the average (cf. [80]), worst-case
(cf. [183]), probabilistic (cf. [3]) or experimentally verified (cf. [131]) time elapsed since
the last visit of a node (cf. [4, 43]). Also, in some papers the terms of blanket time (cf.
[183]) or refresh time (cf. [148]) are being used instead, so as to indicate a similar measure
of algorithm efficiency. Several approaches to patrolling based on idleness criteria were
surveyed in [4], including machine learning, negotiation mechanisms for generating paths,
heuristics based on local idleness, as well as an approximation to the Travelling Salesmen
Problem (TSP).

Some papers study patrolling based on swarm or ant-based algorithms (cf. [81, 133,
183]) and explore various agent capabilities (sensing, memory, locomotion, etc.). The
skeletonisation technique, where a terrain is first partitioned into cells is often applied
in geometric environments prior to employing graph-theoretic methods in discrete time.

Chapter 2. Distributed Navigation 18

In graph environments, cyclic strategies often rely on either TSP-related solutions or
spanning tree-based approaches ([94, 148]). For the case of boundary patrolling where
the agents maintain distinct maximal speeds partial solutions for small numbers of agents
were proposed (cf. [62]).

One may also consider as a variant of patrolling the problem of searching a graph
or polygon by teams of agents (cf. e.g. [89, 182]), which are looking for a stationary or
mobile intruder. This falls into the vastly investigated domain of cops and robbers (see
[88]).

The patrolling problem may be viewed as a version of an art gallery question, in
which a set of stationary or mobile guards have to protect a given geometric environ-
ment (see [136, 145, 159]). In the setting with stationary guards, in most research papers
the number of guards, needed to view the entire environment, has to be minimised. The
problem is NP-hard and many approximation and inapproximability results were ob-
tained (cf. [78, 98]). For the case of mobile guards, often known as the watchman route
problem, the question of a single watchman was most often addressed. The optimisation
criterion is the path length traversed by the watchman, so that every point of the en-
vironment is seen from some position on the path. This is closely related to the TSP.
Unsurprisingly, many general watchman route problems are NP-hard (e.g. watchman
tours of simple polygon with holes, suggested in [44] and corrected in [74]), touring a
sequence of non-convex polygons [73], or link-distance watchman tours of simple polygon
with holes [20]). However, for many specific cases polynomial-time algorithmic solutions
are available. The solution for simple polygons was proposed by [45], while [46], [110]
and [58] solve, respectively, the “zookeeper route”, “safari route” and “aquarium keeper”
problems.

In the m-watchmen routes problem, the sum S of m path-lengths must be minimised,
so that each point of the environment must be seen from some position of one of the
watchmen (cf. e.g. [140, 147]). Clearly, S decreases with increasing m. Hence at one
extremity, the case is obtained when m is large enough to have S = 0 (m stationary
guards for art gallery are sufficient), and on the other extremity the single watchman
question arises. As the m-watchmen routes problem is NP-hard for simple polygons (cf.
[2]), some restricted classes of polygons were considered in [42, 141].

Central to the watchman route problem is the notion of visibility. Some papers (e.g.
[110, 143]) considered limited visibility of the mobile (e.g. [143]) or stationary (e.g. [110])
guards. This work corresponds to a patrolling problem in the case of zero visibility, in
which the agent sees only the point of the environment at which it is currently present.

As mentioned a boundary may be monitored by a number of different types of devices
from static devices to completely mobile devices. In chapter 5 the scenario is shown in
which only a finite number n of boundary partitions, referred to as vital regions, need
to be patrolled by a set of k agents. The remaining part of the boundary, referred to
as neutral regions, do not have to be monitored by the agents, but may nevertheless be
traversed by an agent since this may be the way to reach one vital region from another.

Chapter 2. Distributed Navigation 19

Chapter 5 discusses the problem of patrolling with the goal of minimising the idleness
of points located in the vital regions, i.e. the longest time during which such a point
remains unvisited by an agent. It is assumed that at any time during the traversal, the
speed of each agent cannot exceed a certain maximum value, identical for all agents.
The goal of this work is to define a set of functions describing the trajectories of all the
agents in time.

The most common heuristics adopted in the past to solve a variety of patrolling
problems include the cyclic strategy, where agents move in one direction around the
cycle covering the environment, and the partition strategy, in which the environment is
partitioned into sections patrolled separately by individual agents (or subsets of agents),
using the terminology introduced by Chevaleyre [43]. However, to the best of the authors’
knowledge, no theoretical studies formally proving the optimality of such approaches in
this setting were done previously.

It is worth noting, that in the more heterogeneous scenario where agents have different
maximum speeds, neither the cyclic strategy nor the partition strategy leads to the
optimal performance. In fact, it has been shown in [62] that for the case of 3 mobile
agents with different maximal speeds patrolling a cycle (forming a single vital region),
neither a partition strategy nor a cyclic strategy is optimal. It turns out that a specific
hybrid strategy is better than each of these two fundamental approaches. See also [109].

2.4.3 Additional Work

In this section the topics that are to be discussed in Chapter 6 are introduced, specifically
those of parasitic computation, the basic walk, and graph visualisation and analysis.

Parasitic Computation

The amount of computational power available to the planet is immense though it requires
little thought to realise that a large volume of that power is currently unused, and
essentially wasted. The amount of processing power that the average user has available
to them is perhaps far surpassing their needs as a high performance processor is barely
utilised for the purposes of browsing web pages or writing documents. For this reason it
could be no surprise that many modern processors may be relatively idle for the duration
of their life time, and as processors become more powerful along with the combination of
more efficient algorithms, the time in which a processor is fully utilised will only decrease.

As was shown earlier in §2.1.1, there are methods to combat this through the use
of large scale distributed computing projects, however, in this work a slightly different
model is considered that may reduce some of the barriers to these projects, if implemented
correctly and ethically. Specifically, it will be shown that through the use of existing
technology and software algorithmic parasites can be developed that are able to spread
across hosts and be executed unknowingly by the host to exploit unused resources for
the parasite’s originator. As mentioned this concept has existed, though it will be shown
that it can be achieved without the requirement of installing additional software and

Chapter 2. Distributed Navigation 20

becomes almost feasible to be executed by any types of hardware or software for as long
as it has a modern standards compliant web browser installed. In Chapter 6 there is a
further look into this model and the results from successfully building a prototype that
allowed for the generation of the binary expansions of π. This work was inspired by work
undertaken previously by the author in [51].

Basic Walk

Also inspired by [51], is another interesting aspect of this work that refers to develop-
ing new alternative approaches in time and energy efficient distributed communication.
Imagine, e.g. an agent in a network at a source vertex s that is destined for another ver-
tex, t. If the topological structure of the network is unknown one of the simplest methods
for routing the agent is by utilising the random walk principle, whereby the agent at each
vertex selects a neighbouring vertex at random and traverses towards it. This process is
repeated until t is reached. Apart from the routing time that is likely to be excessive,
either the agent or the network nodes (even in static networks) must have access to a
Pseudo-Random Number Generator (PRNG), and though despite its simplicity can be
shown as comparable to more intelligent techniques in some environments [92].

Two major and interesting alternatives to the random walk are the rotor-router (or
Propp machine) [23, 24, 183] and the basic walk [59]. In many previous approaches,
focus has been on the performance of one agent performing graph exploration, however,
relatively little is currently known in the case where multiple agents are expected to
collaborate within these models. The initial focus of this part of the work is on the
random basic walk.

The significant feature of the basic walk is it allows for the formation of multiple
directed cycles with at least one cycle of a size linear to |V |. The basic walk is performed
on the network formed of a graph G(V,E) where V is a set of vertices and E is a set of
directed edges, and specifically the graph should hold the property that it is undirected.
The network G is seen as a digraph where each vertex v has a set of incoming edges
v←−
E
⊂ E and a set of outgoing edges v−→

E
⊂ E. To enable the basic walk to be performed

by an agent, each vertex must label each of its own −→e with a random unique label (port
number) from the set of integers {0, . . . , deg(v)− 1}.

To initiate the process, an agent first selects an outgoing edge v−→u to a neighbouring
vertex u (at random or through some other method) and traverses to the neighbouring
vertex, and arriving through u←−v (v−→u ≡ u←−v). At u, the agent must identify the associated
port number i of the edge u−→v , i.e. that of the port number associated with the outgoing
edge to v. Following this the agent can then select the next vertex to traverse to by
identifying the u−→e associated with the port number (i+ 1) mod deg(u).

Once this process has been repeated until an edge previously visited is found, a unique
directed cycle will have been discovered. Should this process be repeated on all remaining
unvisited edges, it will lead to the partitioning of a graph into a series of directed cycles
(rings). This leads to the motivation of this work which is to apply the basic walk to

Chapter 2. Distributed Navigation 21

any unknown general graph and reduce it to a series of rings, up on which more efficient
algorithms can be utilised.

In §6.2 this model is explored in more detail and empirical results are shown when
performing this algorithm on various types of generated and real world graphs. Theo-
retical ideas are also proposed as to why the results produced are created.

Graph Visualisation and Analysis

Through the work that was conducted in the previous section it became important to
develop a software solution that would be capable of generating and processing graphs
of various types. As the work advanced it became more critical that the software would
be able to both import and export graphs, as well as handle graphs with millions of
vertices or edges. To assist in verifying the correctness of algorithms developed for §2.4.3
a rendering component was created to allow for any graph to be visualised and interacted
with.

While many existing products exist that are capable of this (E.g. Gephi [97], Cy-
toscape [57], and Tulip [21]), at the time development started no product was suitable for
the needs of project particularly due to the requirements of port numbering, thus requir-
ing a new product. Initially the project was known under it’s development workspace
name “GUI_Graph” due it being quite simply a graph with a Graphical User Interface
(GUI). However, as the project evolved and the user gained the ability to interact and
draw graphs themselves the project changed to “GraphDraw”, a name which has so far
stuck, though it would not be surprising to the author that should development continue
this will inevitably have to change again. For the purposes of this thesis, the software
that was constructed will be referred to as “GraphDraw”.

As GraphDraw evolved to handle large graphs it became critical that several aspects
were factored in. Firstly the software needed to be performance aware to allow for larger
and larger graphs to be processed within reasonable time and memory costs. Particularly
this requirement meant that the software could be used in desktop environments where
processing and memory capacities could be constrained, thus demanding all algorithms
adopted should be implemented as optimally as feasible through the use of high quality
algorithms and good programming practice. Secondly, the visual component itself needed
to be able to support very large graphs as the very purpose of the software would be to
support the user in visually inspecting the correctness of graphs generated or algorithms
executed to provide intuition into results obtained. Further, not only should the software
render the graph but it should also allow for the user to interact with the graph with
ease. Finally the software needed to support common data interchange formats to allow
the user to quickly import and export their graphs with other tools.

Interestingly as the development advanced, GraphDraw caught the attention of Dol-
lywagon Ltd., a media science organisation interested in the visualisation and analysis
of social media data. Social networks and social media have recently become popular
topics due to social networking web sites such as Facebook, Twitter, Linkedin and many

Chapter 2. Distributed Navigation 22

others. Facebook [84] currently state they have 1.11 billion monthly active users, with
a daily active reaching 665 million. While Linkedin and Twitter currently acknowledge
they have over 200 million active users [142, 177].

More recently, while the joint work has continued, at the time of writing, with Dol-
lywagon, GraphDraw has been adopted by other departments within the authors insti-
tution as potential replacement for the competing products listed above.

In §6.3 algorithms adopted by GraphDraw are discussed in terms of their effectiveness
and potential future directions.

Chapter 3

Synchronous Rendezvous for
Location-Aware Agents

This chapter introduces the results for performing synchronous rendezvous in various
settings. This work was accepted to the 25th International Symposium on Distributed
Computing, c.f. [53].

In this work it is assumed that the network environment is represented by a graph
(finite or infinite) in which mobile agents visit nodes by traversing edges in both direc-
tions. The approach is also extended to the continuous, geometric setting. It is assumed
that all agents move with a uniform speed. More precisely, a mobile agent requires a
unit of time to traverse an edge of the graph, or a segment of length 1 in the geometric
setting. Each agent can access its clock and the agents’ clocks are synchronised to tick
at the same time moments. An agent can count the number of rounds (clock ticks)
and use this information to plan its actions. It is assumed that both agents start their
actions simultaneously, i.e. both clocks indicate the same time. Agents are anonymous.
However, each agent is aware of its initial location that can be adopted as its unique
label. We also assume that the agents are fully aware of the network topology. The
agents can meet each other on vertices of the graph, and they can pass through each
other without meeting, while traversing an edge in opposite directions. Deterministic
rendezvous procedures (i.e. no randomisation is allowed) are focused on. The movement
of an agent is determined by its current location and the time on its clock.

Specifically for this work, the algorithms are developed with the intention of allowing
two agents to perform rendezvous, however, some algorithms may permit (with minor
modification) for more than two agents to perform rendezvous. Though more than two
agent rendezvous is not considered in this work.

3.1 Linear Time Rendezvous on the Infinite Line

The first case that is considered here refers to the infinite line where line L = (−∞,+∞).
Firstly, note that the agents are aware of their initial location in the line and have a sense
of (positive or negative) direction. Further, note that in this setting it is trivial to meet

23

Chapter 3. Synchronous Rendezvous for Location-Aware Agents 24

agents at, say, the origin of the line as the agents know their own location and thus
the distance to the origin. This, however, will not guarantee local rendezvous. I.e. the
agents may have to traverse a very long distance, much longer than the distance d that
separates the initial positions of the agents.

Instead, the agents travel in a zig-zag fashion at increasing distances. For agents
starting at distance d, this guarantees rendezvous in time O(d).

Initially it is assumed that all agents are originally situated at positions within Z in
the line, and they all begin the rendezvous procedure at time t = 0. Later, the positions
within R are also discussed.

To conduct rendezvous in the line, the algorithm is performed in a series of iterations.
Each iteration with the index i ≥ 1 consists of two stages: stage 1, and stage 2. First,

set `i = 2i−2, for i ≥ 2. Informally speaking, during iteration i, the agents are initially
divided into odd and even groups located at a distance of 2`i from each other. The odd
agents move to the right a distance of `i (stage 1), then to the left a distance of 2`i

(stage 2). The even agents move left a distance of `i (stage 1), then right a distance of
2`i (stage 2). Thus, groups of agents meet both of their neighbouring groups, and then
some of the groups will merge at the end of the iteration.

More formally, the following can be defined F c1 (k) = {k} for each integer k. Then,
the following invariant can be demonstrated. During each iteration i = 1, 2, 3, . . ., the
agents are partitioned according to their initial positions on the line into the following
groups at the end of stage 1 and stage 2:

1. F hi (k) = {k · 2i − 2i−1, k · 2i − 2i−1 + 1, . . . , k · 2i + 2i−1 − 1} for k ∈ Z, on the
conclusion of stage 1.

2. F ci (k) = {k · 2i, k · 2i + 1, . . . , k · 2i + 2i− 1} for k ∈ Z, on the conclusion of stage 2.

These two groups F h and F c correspond to the location of the agents after each stage,
specifically with F h representing the positions of the agents half-way through completing
an iteration (Stage 1) and F c representing the positions of the agents after completing
the iteration (stage 2).

Further there are two more invariants, namely:

3. label(α) = k for all agents α ∈ F ci (k), for all i > 0, k ∈ Z.

4. At the end of iteration i ≥ 1, the agents in group F ci (k) are located at position
k · 2i + 1

2(2i − 1) on the line.

Theorem 3.1. For two agents α1, and α2 starting at distance d (and at integer points)
on the line L, Algorithm 1 permits rendezvous within at most 6d synchronised rounds.

Proof. The four invariants mentioned above are easy to establish by induction.
First note that using the definitions of the sets F hi (k) and F ci (k) above that for all

i ≥ 1 and k ∈ Z, the following would hold:

Chapter 3. Synchronous Rendezvous for Location-Aware Agents 25

Algorithm 1: Rendezvous on the infinite line
`⇐ 1

2
for all α ∈ A do
label(α)⇐ position of α on the line

end for

for i⇐ 1, 2, 3, . . . do
for all α ∈ A do

Stage 1 {form the groups F hi (k)}
if odd(label(α)) then
move right distance `

else
move left distance `

end if

Stage 2 {form the groups F ci (k)}
if odd(label(α)) then
move left distance 2`

else
move right distance 2`

end if

end for
`⇐ 2 · `
label(α)⇐

⌊
label(α)

2

⌋
end for

F hi (k) = F ci−1(2k − 1) ∪ F ci−1(2k),

F ci (k) = F ci−1(2k) ∪ F ci−1(2k + 1).

Start with sets F c1 (k) = {2k, 2k+ 1} for all k ∈ Z. Before the iteration with index 2,
note that each F c1 (k) is located at position 2k.

Inductively, the agents in the group F ci (2k) (with label 2k, by assumption) will first
meet those in group F ci (2k − 1) (with label 2k − 1, again by assumption) in stage 1 of
iteration i+ 1, and will then meet those in group F ci (2k+ 1) (with label 2k+ 1) in stage
2 of iteration i+ 1.

Now, since label(F ci (2k)) = 2k (i.e. label(α) = 2k ∀α ∈ F ci (2k)) and label(F ci (2k +

1)) = 2k + 1, it can be found that all agents in F ci+1(k) = F ci (2k) ∪ F ci (2k + 1) will have
label k at the end of iteration i + 1. Further, by assumption, the group F ci (2k) begins
iteration i+ 1 at location 2k · 2i + 1

2(2i− 1) in the line. During iteration i+ 1, this group
first moves left a distance of 2i−1, then right for a distance of 2i. Hence, this group ends
iteration i+ 1 at the location

2k · 2i + 1
2(2i − 1)− 2i−1 + 2i = k · 2i+1 + 1

2(2i+1 − 1).

Chapter 3. Synchronous Rendezvous for Location-Aware Agents 26

In a similar manner, it can be shown that group F ci (2k + 1) ends iteration i + 1 at
the exact same location as group F ci (2k), the pair of them together comprising F ci+1(k).

Finally, by the end of iteration i ≥ 2, each agent has met all other agents that began
the rendezvous procedure at distance at most 2i−1, and each agent has moved a distance
of 3

∑i
j=1 `j , where `j = 2j−2, as before.

Consider two agents that begin the rendezvous at positions α1 < α2. Then, let i be
the integer such that 2i−1 < d = α2 − α1 ≤ 2i. From the claim above, α1 and α2 have
met by the end of iteration i+ 1. Thus, this process takes time

2 + 3
i+1∑
j=2

`j = 2 + 3
i+1∑
j=2

2j−2 = 2 + 3
i∑

j=1

2j−1 = 2 + 3 · (2i − 1)

= 6 · 2i−1 − 1 < 6d

Now consider non-integer starting positions of the agents. For d ∈ R>1, let us define
the function T (d) = 6 · 2i−1− 1, where i is the integer that satisfies 2i−1 < d ≤ 2i. From
Theorem 3.1, agents starting on integer points at distance d rendezvous in time at most
6d. This can be carried over to arbitrary (non-integer) starting points and distances, at
least in the case where d ≥ 1.

Lemma 3.2. Suppose two agents α1, and α2 are placed in the line L at distance d ≥
1. Then, Algorithm 1 can be adapted so that α1 and α2 are able to rendezvous within
T (dde) < 6d synchronous rounds.

Proof. The adaptation of Algorithm 1 is a natural one to consider. An agent not begin-
ning at an integer point initially adopts as its first move as a contiguous final segment
of the first move of a close by (possibly hypothetical) agent that did begin at an integer
point. If the starting location of α is not an integer, then consider α− bαc and dαe −α.
Either one of these two quantities is smaller than the other, or they are equal, i.e. α is
closer to one of two integers, or α = bαc+ 1

2 . In the first case, α adopts the final segment
of the first move of the (hypothetical) agent at bαc or dαe, and then adopts the label
of that agent and its behaviour for the remaining part of the rendezvous procedure. (If
α = bαc+ 1

2 , then α can arbitrarily adopt the label and procedure of dαe.)
Now assume that d > 1. (The case of d = 1 is easily handled by a special analysis very

similar to the one given below.) Assume that α1 < α2 and, as before, let d = α2 − α1.
Let us write d = d∗ + ε, where d∗ = bdc and ε < 1.

There are integers x < y such that d∗ = y − x

x− 1 < α1 ≤ x < y ≤ α2 < y + 1.

Since ε = (x− α1) + (α2 − y) < 1, either x− α1 or α2 − y is strictly smaller than 1
2 .

Assume that x− α1 <
1
2 . (The other case is similar.)

Chapter 3. Synchronous Rendezvous for Location-Aware Agents 27

In this case, by the end of iteration 1, α1 has adopted the behaviour of (the hypo-
thetical) agent x. Similarly, α2 has adopted the behaviour of either agent y or y + 1

(depending upon α2’s exact location in the interval [y, y + 1)). This means that α1 and
α2 will meet in the same time that it takes the agents at positions x and x+bdc or x and
x + dde to meet. In particular, this means that α1 and α2 will meet in time (at most)
T (dde).

As before, let i be the integer such that 2i−1 < d ≤ 2i. Then also note that 2i−1 <

dde ≤ 2i. As has been noted already that α1 and α2 will meet in time T (dde) and since

T (dde)
dde ≤ T (dde)

d
<

6 · 2i−1 − 1

2i−1
< 6

this establishes the bound of the lemma.

In general, it is impossible to define a deterministic rendezvous procedures for agents
that start at an arbitrarily small distance d > 0 and to guarantee that they will meet
in time O(d). In the case where the agents are located very close to each other this
algorithm guarantees rendezvous on the conclusion of iteration 2, i.e. in time 4.

3.2 Linear Time Rendezvous in Trees

In this section it is shown that the time complexity of rendezvous in trees is O(d). It is
first shown that the two agents can meet in time < 12d in the half-line [0,+∞), where
they are allowed to move only in one direction towards the location 0. Later it is shown
how to adopt this algorithm to obtain a O(d) time rendezvous in trees.

3.2.1 One-Way Rendezvous in the Half-Line

Consider a half-line L′ = [0,+∞) where the agents α1 and α2 are labelled by their initial
integer positions p1 and p2 respectively. Assume also that this time the agents can move
only in one direction towards the closed end (0) of L′.

The algorithm is executed in iterations formed of stages 1 and 2. The following in-
variants are used. During each iteration i = 2, 3, . . . the agents are partitioned according
to their labels. Specifically, notation F h and F c are re-used to to define invariants that
will hold after each stage of this algorithm. F h denotes the location of the agents after
executing stage 1 of the algorithm (a half iteration), F c denotes the location of the agents
after executing stage 2 (a full iteration) of the algorithm:

1. F hi (k) = {(k + 1)2i − 2i−1 − 1, . . . , (k + 1)2i + 2i−1 − 2}, for k > 0, and
F hi (0) = {0, . . . , 2i + 2i−1 − 2} on the conclusion of stage 1,

2. F ci (k) = {(k + 1)2i − 1, . . . , (k + 2)2i − 2}, for k > 0, and
F ci (0) = {0, . . . , 2i+1 − 2} on the conclusion of stage 2.

Chapter 3. Synchronous Rendezvous for Location-Aware Agents 28

Furthermore, it is assumed that the agents with labels in F hi (k) and F hi (k) are aligned
at position k · 2i on the conclusion of respective stages. For the completeness of the
argument observe that before the rendezvous algorithm is executed, F c0 (k) contains the
agent with label k located at position k ≥ 0. Also on the conclusion of iteration 1 each
F c1 (k) contains agents with label 2k + 1 and 2k + 2 located at position 2k on the line.

Algorithm 2: One-way rendezvous
for all α ∈ A do
label(α)⇐ position of α in the line

end for
for i = 1, 2, 3, . . . do
stage 1: form F hi (k) = F ci−1(2k) ∪ F ci−1(2k + 1) by moving agents grouped in
F ci−1(2k + 1) by 2i−1 positions towards 0
stage 2:
if k > 0 then
form F ci (k) = F ci−1(2k + 1) ∪ F ci−1(2k + 2)

else
form F ci (k) = F hi (k) ∪ F ci−1(2k + 2) by moving agents grouped in F ci−1(2k + 2)
by 2i positions towards 0

end if
end for

Proposition 3.3. Algorithm 2 has the enclosure property, i.e. for any three agents α1,
α2 and α3 located initially at positions 0 ≤ p1 < p2 < p3 when agents α1 and α3 meet,
they also meet α2.

Proof. The enclosure property is a straightforward consequence of the fact that groups
of agents formed on the conclusion of stages 1 and 2 form partitions in which each group
is a contiguous segment of positions in L′.

Using reasoning similar to the proof of Theorem 3.1 the following is obtained.

Theorem 3.4. Two agents α1, and α2 executing Algorithm 2 and initially located at dis-
tance d, on integer points in the half-line L′ = [0,+∞), require at most 12d synchronised
rounds to rendezvous.

3.2.2 Rendezvous in trees

In this section it is assumed that the agents α1 and α2 are located at some two vertices
p1 and p2 in a finite tree T . The vertices in the tree are uniquely identified and the
agents are aware of the entire structure of the tree, which is held in memory1. This
allows the agents to select independently a unique vertex in T that becomes the root r
of T . Assume that d1 and d2 are respective distances from p1 and p2 to r. Without loss

1However, while not discussed specifically in this work as the focus is on time rather than memory,
it would be feasible to reduce this memory requirement as in principle the agents only need to know the
direction of the (path towards the) root vertex.

Chapter 3. Synchronous Rendezvous for Location-Aware Agents 29

of generality, assume that d2 ≤ d1. Let x be the Lowest Common Ancestor (LCA) for
p1 and p2 in T with respect to the root r, where dx is the distance separating x from
r. For the purpose of rendezvous, the vertices in the tree adopt their distances to r as
their labels. For example, the root r adopts the label 0 and vertex x adopts the label
dx. The new labels d1 and d2 of the vertices p1 and p2 are also adopted by the agents α1

and α2, respectively. In order to rendezvous, the agents execute Algorithm 2 designed
for the half-line L′ = [0,+∞) moving gradually towards the root r with the label 0.

Note that if x = p2, i.e. vertex p2 is located on the route from p1 to r, the distance
between p1 and p2 is d = d1 − dx, and according to Theorem 3.4 the rendezvous process
will be completed in time 12d. Otherwise, the initial distance between p1 and p2 in T is
d = d1 + d2 − 2dx.

Let a vertex p′2 located on the path from p1 to r, at distance d2 from r be the starting
position of a hypothetical agent α′2. Note that during the execution of Algorithm 2 agent
α′2 acts the same way as α2, and in particular the distances between r and α2 as well
as r and α′2 are always the same. Assume also that vertex x is a starting position of
another hypothetical agent αx.

Due to the enclosure property, see Corollary 3.3, during the execution of Algorithm
2 when the agents αx and α1 meet they also meet α′2. But since the moves of α2 and α′2
are identical and all of the agents move only towards the root r, when agents αx and α1

meet, they also meet α2. Thus according to Theorem 3.4 agents α1 and α2 rendezvous
in time 12(d1 − dx) < 12(d1 + d2 − 2dx) = 12d. The following theorem follows.

Theorem 3.5. Two agents, α1 and α2 executing Algorithm 2 initially located at distance
d on the vertices of a rooted tree T can rendezvous in ≤ 12d synchronous rounds.

3.3 Rendezvous in the Higher-Dimensional Space

In this section an algorithm is presented that produces the paths of two agents, placed
in δ-dimensional grid, which achieve rendezvous in optimal O(d) time, where d denotes
the rectilinear (i.e. `1) distance between the original positions of the agents. Observe
that this result may be used to achieve rendezvous for agents starting at arbitrary initial
positions in the δ-dimensional space.

In order to give an efficient synchronous rendezvous algorithm recall, following [25],
the concept of the sequence of central space partitions Π = π1, π2, Each πi is

1. A partition of δ-dimensional space into hypercubes of side length 2i.

2. The hypercubes are aligned with the axis of the space so they form a δ-dimensional
grid.

3. One of these hypercubes is the central hypercube, having as its centre the origin of
the δ-dimensional Cartesian space.

Chapter 3. Synchronous Rendezvous for Location-Aware Agents 30

Observe that the corners of hypercubes in πi are points u = (u1, u2, . . . , uδ) such
that ∀r ∈ {1, 2, . . . , δ}, ur = 2i−1 + k2i for some integer k. Note that all the (δ − 1)-
dimensional hyperplanes used in all the partitions of Π are different. To assure that each
πi forms an exact partition assume that each hypercube H contains, besides its interior
points, the corner v having maximum co-ordinates, as well as all open f -faces incident
to v, for f = 1, 2, . . . , δ − 1.

The idea of the rendezvous algorithm is to direct each agent through a sequence of
some potential meeting points. These meeting points are the centres of hypercubes of
increasing sizes belonging to the successive partitions π1, π2, The hypercubes are
chosen in such a way that the path traversed by each agent is not too long, and that it
occurs that eventually both of the agents reach the same meeting point. Since the agents
will traverse, in general, different distances to reach the successive meeting points, their
movements will be synchronised with the aid of some waiting periods. A couple of lemmas
will serve to prove the correctness and the time complexity of this approach.

Lemma 3.6. Any hypercube H located in partition πi intersects the set S of 3δ hypercubes
belonging to partition πi−1. A centre of any hypercube from set S is at a distance of at
most δ · 2i−1 from the centre of H.

Proof. It can be assumed, by symmetry, that H is the central hypercube of partition
πi and s is any of its sides. Observe that the middle point of side s coincides with
the centre of some hypercube of πi−1. Since the side length of each hypercube of πi
equals 2i, which is twice the side length of hypercubes of πi−1, s intersects exactly three
hypercubes of πi−1. By induction on dimension, all hypercubes of πi−1 intersected by H
form a hypercube G of side length 3 ·2i, i.e. a hypercube whose volume is 3δ ·2δi. Hence,
G is a union of 3δ hypercubes of the partition πi−1, each one of the volume of 2δi.

To prove the second part of the claim, note that the centre of each hypercube of πi−1

which intersects H belongs to the closure of H. The shortest rectilinear path from the
boundary of H to its centre is maximised when the path starts at a vertex of H. Since
the length of the side of H equals 2i, one of its vertices has all δ Cartesian co-ordinates
equal to 2i−1. An agent, moving along the shortest rectilinear path from such vertex to
the centre of H, in each synchronous round moves from a point x to a point y, such that
y has the same coordinates as x, except one coordinate which is reduced by one (with
respect to this coordinate for point x). Hence δ ·2i−1 rounds are needed in order to reach
the origin (the centre of H).

The following lemma can be derived from Lemma 3 in [25].

Lemma 3.7. For any pair of points p1 and p2, initially placed at rectilinear distance d
in the δ-dimensional grid, such that d ≤ 2i, for some i = 1, 2, . . . there exists a hypercube
H of size at most 2i+δ+1 belonging to the hierarchy of partitions Π, such that H contains
both points p1, p2.

Now an algorithm which achieves rendezvous in linear time of the original distance
between the two agents is given.

Chapter 3. Synchronous Rendezvous for Location-Aware Agents 31

Algorithm 3: Rendezvous in the δ-dimensional grid
i⇐ 0
while ¬rendezvous do
H ⇐ hypercube of πi containing your initial position p
move to the centre of H
wait until δ · 2i−1 rounds are completed since the start of the current iteration
i⇐ i+ 1

end while

The agent’s trajectory produced by Algorithm 3 is in O(d) is now proven, when
d is original distance between the agents, i.e. that Algorithm 3 is optimal (up to a
multiplicative constant).

Theorem 3.8. Suppose that two location-aware agents are placed at rectilinear distance
d in the δ-dimensional grid and the agents simultaneously start their movements pro-
duced by Algorithm 3. Then the rendezvous of both agents is achieved within d · δ · 2δ+2

synchronous rounds.

Proof. Let i∗ be an integer, such that 2i
∗−1 < d ≤ 2i

∗ .
Observe that, in the first iteration of the loop of Algorithm 3, the centre of the

hypercube of side length 2 belonging to π1 is reached from the initial position of the
agent contained within this hypercube in at most δ rounds. By Lemma 3.6, within the
ith iteration of Algorithm 3, δ ·2i−1 synchronous rounds are sufficient to reach the centre
of the hypercube H. Therefore the waiting time is sufficiently long, so that at round
number δ · 2i−1 of the ith iteration, both agents are mutually present at the centres of
the corresponding hypercubes (despite the fact that the original distance to the centre
was different for each of them). Hence if two agents aim for the centre of the same
hypercube at the ith iteration, they have to meet there before the completion of the
iteration. By induction on the iteration number, both of the agents are synchronised
so that they start and finish their movement of each subsequent iteration at the same
moments of time. By Lemma 3.7, both of the agents eventually aim for the centre of the
same hypercube H, whose side length equals at most 2i

∗+δ+1, and they meet there. Such
hypercube H belongs to partition πi∗+δ+1, hence its centre is reached by the agents in
iteration i∗ + δ + 1. The number of rounds spent by each agent until the end of iteration
i∗ + δ + 1 equals

∑
1≤i≤i∗+δ+1 δ · 2i−1 < δ · 2i∗+δ+1 < d · δ · 2δ+2 .

Algorithm 3 may be adapted to achieve rendezvous in δ-dimensional space. It is
sufficient that the agents construct a common grid, each agent moves first to the closest
grid position and then they continue their movements according to Algorithm 3. The
cost of such algorithm becomes d · δ · 2δ+2 + δ, where δ extra rounds are used first by
each agent to reach the closest grid position.

Chapter 3. Synchronous Rendezvous for Location-Aware Agents 32

Corollary 3.9. Suppose that two location-aware agents are placed at rectilinear distance
d in the δ-dimensional space. The rendezvous of the agents may be achieved within
δ(d · 2δ+2 + 1) synchronous rounds.

For the Euclidean distance case, when the agents do not need to walk along the axis
of the δ-dimensional space, a finer grid may be constructed, so each agent may reach a
grid point in a single step and the time given by Corollary 3.9 reduces to δ · d · 2δ+2 + 1.
For this purpose it is sufficient to scale down the grid by at least a factor of

√
δ

2 .

3.4 Rendezvous in Arbitrary Graphs

In this section it is assumed that the agents α1 and α2 are located at some two vertices
in a finite graph. In the same discrete model as for the earlier studied case of trees,
the agents are aware of the topology of the graph and all nodes are uniquely identified.
Initially it will be shown that unlike in all the cases discussed so far, there exist graph
instances which require Ω(d) time to achieve rendezvous. In fact, rendezvous time of
Ω(d logn

log logn) is required for graphs of extremal girth, with logarithmic average degree. In
the following, all logarithms are assumed to be base 2.

Theorem 3.10. Let ε be arbitrarily fixed. For any integers N > 8 and d > 0, such
that d < min{N1−ε, N/8}, there exists a graph of order N , such that for any rendezvous
algorithm A there is a pair of starting locations at distance d such that rendezvous using
algorithm A requires at least ε

4
d logN

log logN rounds, even when assuming a simultaneous start.

Proof. From [34, Theorem III.1.1] it follows that for any integer k > 3, there exists a
graph G = (V,E) with n = 2k vertices, having m = 1

2nk edges, whose shortest cycle is
of length g > k/ log k + 1. Let A be any algorithm defining the behaviour of an agent.
Firstly it is shown that there exists a pair of neighbouring vertices in G such that the
time required for the rendezvous of the agents starting from this pair of vertices (with
d = 1), using algorithm A, is at least equal to min{(g − 1)/2, k/2}. Suppose, to the
contrary, that for all possible initial locations of the agents in G, the agents rendezvous
within some time t < min{(g − 1)/2, k/2}. For all v ∈ V , let Av ⊆ G be the sub-graph
spanned by the edges visited by an agent following algorithm A, starting from vertex v,
during the first t rounds, under the assumption that the agent does not meet the other
agent. Each graph Av has at most t edges. For any pair of adjacent vertices u, v of G,
the intersection of graphs Au and Av must contain at least one vertex w; otherwise, no
vertex will be visited by both of the agents starting at u and v, hence such agents cannot
meet. Both of the graphs Au and Av are connected and of diameter at most t < (g−1)/2.
Consequently, it must hold that w ∈ {u, v}, since otherwise G would contain a cycle of
length less than g, obtained by traversing the shortest path from v to w in Av, traversing
the shortest path from w to u in Au, and finally traversing the edge {u, v}. It follows
that u is a vertex of Av, or v is a vertex of Au; without loss of generality, assume the
former case. Then, the edge {u, v} belongs to Av, since otherwise the shortest path

Chapter 3. Synchronous Rendezvous for Location-Aware Agents 33

connecting u and v in Av would form a cycle with the edge {u, v} with a length less
than g. Since u and v were arbitrarily chosen, it follows that each edge e ∈ E belongs to
some graph Av, i.e. e ∈

⋃
v∈V E(Av). Consequently,

∑
v∈V |E(Av)| ≥ m, and so, there

must exist a vertex v such that |E(Av)| ≥ m/n ≥ k/2. However, this is a contradiction
with |E(Av)| ≤ t < k/2. It follows that t ≥ min{(g − 1)/2, k/2} ≥ k/(2 log k). Given a
value of N , consider an input graph on N vertices consisting of graph G for k = blogNc
(with n = 2k), and N−n additional vertices, attached with single edges to an arbitrarily
chosen vertex of G. Since this modification does not affect rendezvous time, for any value
of N a lower-bound of 1

2
blogNc

logblogNc is obtained on rendezvous time for agents starting from
neighbouring vertices, i.e. for d = 1.

To prove the claim of the theorem for larger values of d, we construct a graph G′ =

(V ′, E′) from G = (V,E) by inserting a path of d− 1 vertices on each edge of G. Graph
G′ has n′ = n+m(d− 1) vertices and m′ = md edges. Let A be a fixed algorithm for an
agent which always reaches rendezvous in G′ in time at most t < dmin{(g − 1)/2, k/2},
and let A′v ⊆ G′, for v ∈ V , be defined as the sub-graphs spanned by the edges visited
by an agent following algorithm A, starting from vertex v during the first t rounds,
under the assumption that the agent does not meet the other agent. By an argument
similar to that for the case of d = 1, we have that for all e′ ∈ E′, e′ ∈ ⋃v∈V E(A′v), and
consequently, there exists a vertex v ∈ V such that |E(A′v)| ≥ m′/n = dm/n ≥ dk/2.
This is a contradiction with |E(A′v)| ≤ t < dk/2. In this way we obtain a lower-bound of
dk/(2 log k) on rendezvous time in G′. Given a value of N , we consider an input graph
on N vertices consisting of graph G′ for k = blog(N/d)c (with n′ = d2k), and N − n′
additional vertices, attached with single edges to an arbitrarily chosen vertex of G′. Since
this modification does not affect the rendezvous time, we obtain for any value of N a
lower-bound of 1

2
dblog(N/d)c

logblog(N/d)c >
ε
4
d logN

log logN on the rendezvous time for the agents starting
at distance d, where it has been taken into account that d < N1−ε.

In conclusion, we point out that a poly-logarithmic overhead in n is sufficient to
achieve rendezvous, assuming the simultaneous starting of the agents.

Theorem 3.11. Suppose that two location-aware agents are placed at a distance of d in a
known arbitrary graph G = (V,E) of order n. Then the agents which start simultaneously
can rendezvous within O(d log2 n) synchronous rounds.

Theorem 3.12. Suppose that two location-aware agents are placed at a distance of d in
a known graph G = (V,E) of order n. Then the rendezvous of agents with simultaneous
starting is achieved within O(d) synchronous rounds if G is a circular-arc graph, and
within O(d log n) synchronous rounds if G is a chordal graph or a co-comparability graph.

Chapter 4

Asynchronous Rendezvous With
Location Information

This chapter introduces the results for performing asynchronous rendezvous when the
agents have access to location information. This work was accepted to the 37th Interna-
tional Colloquium on Automata, Languages and Programming, cf. [52].

In this work efficient rendezvous of two mobile agents moving asynchronously in the
Euclidean 2d space is studied. Each agent has limited visibility, permitting it to see
its neighbourhood at unit range from its current location. Moreover, it is assumed that
each agent knows its own initial position in the plane given by its coordinates. The
agents, however, are not aware of each others position. The agents possess coherent
compasses and the same unit of length, which permit them to consider their current
positions within the same system of coordinates. The cost of the rendezvous algorithm is
the sum of lengths of the trajectories of both agents. This cost is taken as the maximum
over all possible asynchronous movements of the agents, controlled by the adversary.

An algorithm is proposed that allows the agents to meet in a local neighbourhood of
diameter O(d), where d is the original distance between the agents. This seems rather
surprising since each agent is unaware of the possible location of the other agent. In
fact, the cost of this algorithm is O(d2+ε), for any constant ε > 0. This is almost
optimal, since a lower bound of Ω(d2) is straightforward. The only up to date paper
[61] on asynchronous rendezvous of bounded-visibility agents in the plane provides the
feasibility proof for rendezvous, proposing a solution exponential in the distance d and
in the labels of the agents. In contrast, it is shown here that, when the identity of the
agent is based solely on its original location, an almost optimal solution is possible.

An integral component of this solution is the construction of a novel type of non-
simple space-filling curves that preserve locality. An infinite curve of this type visits
specific grid points in the plane and provides a route that can be adopted by the mobile
agents in search for one another. This new concept may also appear counter-intuitive in
view of the result from [99] stating that for any simple space-filling curve, there always

35

Chapter 4. Asynchronous Rendezvous With Location Information 36

exists a pair of close points in the plane, such that their distance along the space-filling
curve is arbitrarily large.

4.1 The Problem and the Model

A pair of identical agents are located at two points in the plane. Each of the agents
have limited visibility, permitting them to see their neighbourhood at unit range from
their current location. In this work it is assumed that each agent knows its own initial
position in the plane given by its co-ordinates, i.e. it is location aware. However, each
agent does not know the position of the other agent. It is also assumed that the agents
possess coherent compasses and the same unit of length, which permit them to consider
their current positions within the same system of coordinates. Therefore each agent may
consider its initial location as its unique identity.

The route of each agent is a sequence of segments which are subsequently traversed
during its movement. The entire route of the agent depends uniquely on its initial
position. The actual walk of each agent along every segment is asynchronous, i.e. it is
controlled by an adversary. The agents meet if they eventually get within the visibility
range of each other, i.e. at some point in time the distance between their current positions
will not be greater than one. Note that this work uses the continuous geometric model,
and thus visibility is provided to ensure that the agents are able to meet within the
discrete 2d grid that this algorithm utilises, i.e. to allow for agents to meet as they
traverse into and out of a meeting point.

Next the power of the adversary is more precisely defined. The adversary initially
places both agents at any two points in the plane. Given its initial location a0, the
route chosen by the agent is a sequence of segments (e1, e2, . . .), such that in stage i the
agent traverses segment ei = [ai−1, ai], starting at ai−1 and ending at ai. Stages are
repeated indefinitely until rendezvous. It is assumed that each agent may start its walk
at any time, but both of the agents are placed by the adversary at their respective initial
positions at the same moment, and since at that time any moving agent may find the
other agent, even if the other agent did not start its walk yet.

The walk f of an agent on its route, similarly as in [61]: let R = (e1, e2, . . .) be the
route of an agent. Let (t1, t2, . . .), where t1 = 0, be an increasing sequence of reals, chosen
by the adversary, that represent points in time. Let fi : [ti, ti+1] → [ai, ai+1] be any
continuous function, chosen by the adversary, such that fi(ti) = ai and fi(ti+1) = ai+1.
For any t ∈ [ti, ti+1], the following is defined, f(t) = fi(t). The interpretation of the walk
f is as follows: at time t the agent is at the point f(t) of its route.

The adversary may arbitrarily vary the speed of the agent, as long as the walk of
the agent in each segment is continuous, eventually bringing the agent from the starting
endpoint to the other endpoint of the corresponding segment of its route1.

1This defines a very powerful adversary. Notice that the presented algorithm is valid even with this
powerful adversary, and the lower bound argument works also for a weaker adversary that can only

Chapter 4. Asynchronous Rendezvous With Location Information 37

The agents with routes R1 and R2 and with walks f (1) and f (2) meet at time t, if
points f (1)(t) and f (2)(t) are identical. A rendezvous is guaranteed for routes R1 and
R2, if the agents using these routes meet at some time t, regardless of the walks chosen
by the adversary. The cost of the rendezvous algorithm is measured by the sum of the
lengths of the trajectories of both agents from their starting locations until the time t
of the rendezvous. Since the actual portions of these trajectories may vary depending
on the adversary, the maximum of this sum can be considered, i.e. the worst-case over
all possible walks chosen for both agents by the adversary. In this chapter the intention
is to identify the rendezvous algorithm of the smallest possible cost with respect to the
original distance d between the agents.

4.2 Efficient Construction of Space-Covering Sequences

An interesting context of this work is its relationship to space-filling curves extensively
studied at various contexts in the literature, see, e.g. [40, 99, 137, 180]. One of the
most important attributes of space-filling curves is sometimes called the preservation of
locality, i.e. that if two points are close in the 2d space they are also closely located on
the space-filling curve. In this context, however, Gotsman and Lindenbaum [99] pointed
out that space-filling curves fail in preserving the locality in the worst case. They show
that, for any space-filling curve, there always exist some close points in the 2d space that
are arbitrarily far apart on the space-filling curve. In this work it is shown that such
deficiency of space-filling curves comes from a very strong assumption that curves visit
each point in a discrete 2d space exactly once. An alternative to space-filling curves is
proposed that preserves locality also in the worst case. Namely, space-covering sequences
will be introduced, that traverse points in a discrete 2d space multiple times. It can
be shown that, for any ε > 0, there exists a space-covering sequence, such that, for any
two points located at distance d in the 2d space there are well defined and efficiently
computable instances of these two points in the sequence at distance O(d2+ε) apart.

The trajectories constructed in the work follow grid lines except for their initial
segments by which each agent, starting from its arbitrary initial position, reaches its
closest grid point. It is possible that the first agent traverses an arbitrarily long portion
of its route, while the adversary holds the other agent on its initial segment being not
visible from any grid line. To prevent this it is assumed, without loss of generality, that
the 2d space is rescaled so that the value of

√
2

2 corresponds to the unit length of the 2d

space. This way the considered grid is fine enough, and the agent visiting an integer grid
point v will see another agent, situated in any interior point of a unit grid square with
vertex v.

The fundamental concept used in the design of the rendezvous algorithm is the space-
covering sequence on which both agents are walking until rendezvous. The space-covering
sequence is infinite in both directions. It is formed of short segments with the endpoints

speed up or slow down the agent, without moving it back (corresponding to a walk function f which
must be additionally monotonous). Hence these results also hold in this (perhaps more realistic) model.

Chapter 4. Asynchronous Rendezvous With Location Information 38

located at the integer grid points. Every point of the integer grid is visited by the space-
covering sequence infinitely many times. Each agent starting from its arbitrary initial
position in the plane walks first to the closest grid point and then it starts making a spe-
cial zig-zag movement on the sequence, each time covering more and more distance. The
actual points at which the agent changes the direction of its movement are determined
by the co-ordinates of the initial position of the agent, and the purpose of this algorithm
is to determine them so that an efficient rendezvous will always be possible.

The construction of the space-covering sequence utilises a hierarchy of infinite grids of
squares, of increasing sizes. This hierarchy is an amalgamate HQC of two complementary
hierarchies of square partitions: the quad-tree partition hierarchy HQ and the central
square partition hierarchy HC . For the clarity of presentation an argument leading to
the rendezvous algorithm is demonstrated, of cost O(d4) and later it is extended to obtain
a O(d2+ε) cost solution.

Definition 4.1 (Quad-tree hierarchy HQ). The first hierarchy of partitions HQ has the
form of an infinite quad-tree like structure, (for information on quad-trees see, e.g. [154])
in which the central point of the partition from each layer is aligned with the origin
(0, 0) of the plane. The ith layer LiQ of the hierarchy, for i = 0, 1, 2, . . ., is formed of an
infinite grid of squares of size 2i. Hence the lowest level of the hierarchy HQ corresponds
to the standard integer grid. In layer LiQ a square SiQ(x, y) with the corners located at
points (listed in the clockwise order counting from the top-left corner) is denoted by,
(x · 2i, y · 2i), ((x+ 1) · 2i, y · 2i), ((x+ 1) · 2i, (y − 1) · 2i) and (x · 2i, (y − 1) · 2i).

The overlapping squares at two neighbouring layers LiQ and Li+1
Q are engaged in

a parent-child relationship. In particular, a square Si+1
Q (x, y) at layer Li+1

Q has four
children squares SiQ(2x, 2y), SiQ(2x+ 1, 2y), SiQ(2x+ 1, 2y− 1) and SiQ(2x, 2y− 1) at the
layer LiQ, for i = 0, 1, 2, . . .

Definition 4.2 (Central-square hierarchy HC). The second hierarchical partition HC is
formed of (infinitely many) enumerated layers, where the ith layer LiC is an infinite grid
with squares of size 2i, for i = 1, 2, Each layer in HC is aligned, such that, the origin
(0, 0) of the plane is associated with the centre of one of the squares in this layer.

In particular, in layer LiC a square SiC(x, y) with the corners located at points (listed
in the clockwise order counting from the top-left corner) is denoted by ((x ·2i)−2i−1, (y ·
2i) + 2i−1), ((x · 2i) + 2i−1, (y · 2i) + 2i−1), ((x · 2i) + 2i−1, (y · 2i)− 2i−1), and ((x · 2i)−
2i−1, (y · 2i)− 2i−1).

Definition 4.3 (Hierarchy HQC). By HQC it can be understood that the infinite se-
quence of plane partitions

π1 = L0
Q, π2 = L1

C , π3 = L1
Q, π4 = L2

C , π5 = L2
Q, . . .

Hence πi is a grid partition of the 2d space into squares of size 2bi/2c, with a grid
point having each coordinate of the form 2bi−1/2c + k2bi/2c, for any integer k.

Chapter 4. Asynchronous Rendezvous With Location Information 39

To assure that each layer of HQC forms an exact partition, it can be assumed that
each square contains, besides its interior points, its right and top open sides as well as
the top-right vertex.

Intuitively, the hierarchical partition HQC provides a mechanism used to guarantee
that any two points p1 and p2 located at distance d in the 2d space are covered by
some square of size O(d) in either HQ or in HC . The smallest square in the hierarchical
structure with this property is referred to as the rendezvous square R(p1, p2).

Less formally, the HQC can be considered as two infinite trees which overlap. The
first tree consists of the well known quad-tree structure. The idea of the quad tree is that
for any unit point within the space, there exists a level of the tree representing this point.
At higher levels of the tree, the same unit point is amalgamated with four neighbouring
points of the original space to form a square. As the levels in the tree increase, the number
of points represented by the branch of the tree quadruple as neighbouring squares are
merged as the level increases. Secondly, the other tree is a central tree structure, this
structure varies from the quad tree in that while the lowest level of the tree encapsulates
the unit point of the space, the higher levels of the tree intersect nine squares from the
previous level. The combination of these trees enable an agent to effectively zig-zag in
its local space yet while also intersecting the local space of other agents, a concept that
would not be possible with one of the trees alone. Figure 4.1 will show the tree structure
in more detail later.

The following two lemmas directly continue from the definitions of HQ and HC .

Lemma 4.4. Any square SiC(x, y) located in layer LiC , for i = 1, 2, . . ., encapsulates
exactly four squares Si−1

Q (2x− 1, 2y + 1), Si−1
Q (2x, 2y + 1), Si−1

Q (2x, 2y), and Si−1
Q (2x−

1, 2y), in layer Li−1
Q .

Lemma 4.5. Any square SiQ(x, y) located in layer LiQ, for i = 1, 2, . . ., overlaps with
exactly four squares SiC(x, y), SiC(x + 1, y), SiC(x + 1, y − 1) and SiC(x, y − 1) in layer
LiC .

The following tree-like structure TQC is useful to visualise the functioning of this
approach: each square of every layer of HQC is a node of TQC . For every such square S
from layer i > 1 of HQC the squares from layer i− 1 intersecting S are children of S in
TQC . By lemmas 4.4 and 4.5 TQC is a quaternary tree. TQC is infinite (does not a have
a root) and its leaves are unit squares of the integer grid.

The observation stated in the following lemma is the basis of the complexity proof of
this algorithm.

Lemma 4.6. For any two points p1 and p2 located at distance d in the 2d space there
exists a square in HQC of size O(d) that contains p1 and p2.

Proof. Assume that 2i−1 < d ≤ 2i. Consider five consecutive layers from HQC , LiQ,
Li+1
C , Li+1

Q , Li+2
C , and Li+2

Q , where i meets the condition stated. Since any layer in HQC
forms a partition of the 2d space into squares, within the layer Li+2

Q there exists a unique

Chapter 4. Asynchronous Rendezvous With Location Information 40

square Si+2
Q (x, y) containing p1. Since four quad-tree children of Si+2

Q (x, y) partition it,
exactly one of them, a square belonging to Li+1

Q also contains p1. Similarly, there is
exactly one square from LiQ, one of the sixteen grandchildren of Si+2

Q (x, y) in the quad-
tree, which contains p1, see Figure 4.1. Let S∗ ∈ LiQ denote the square containing p1.
Note that, since d ≤ 2i, the d-neighbourhood of S∗ intersects nine squares of LiQ - the
square S∗ itself and eight squares surrounding S∗. Hence p2 must belong to one of these
nine squares.

Figure 4.1: The symmetric structure of layers Li
Q, L

i+1
C , Li+1

Q , Li+2
C and Li+2

Q .

The cases depending which of these sixteen squares is S∗. Due to the symmetry
of the five layers in HQC , without loss of generality, only one needs to be considered,
e.g. the top-left quadrant of Si+2

C (x, y), which contains four squares at LiQ. One of the
following three possible cases can occur.

Case 1 If S∗ containing p1 corresponds to the square depicted by γ1, then p2 must be
located within Si+2

C (x, y), since Si+2
C (x, y) contains the entire d-neighbourhood of

γ1.

Case 2 If S∗ corresponds to the square depicted by γ2 then p2 must be located within
Si+2
Q (x, y).

Chapter 4. Asynchronous Rendezvous With Location Information 41

Case 3 If S∗ is one of the two remaining, symmetrically located squares within the
selected quadrant depicted by γ3, then p2 is located either in Si+2

Q (x, y), Si+2
C (x, y)

or in Si+1
C (2x, 2y − 1).

Thus in all three cases there exists a square within layers LiQ, L
i+1
C , Li+1

Q , Li+2
C , and

Li+2
Q , that contains both p1 and p2. Moreover, since squares at those layers are of size
O(d), the thesis of the lemma follows.

In fact a stronger result holds too.

Corollary 4.7. Take any fragment of HQC formed of three consecutive layers LiQ, L
i+1
Q ,

and Li+2
Q in HQ interleaved with two respective layers Li+1

C and Li+2
C in HC , such that,

d ≤ 2i. This fragment contains also a square that contains p1 and p2.

Proof. The three cases from Lemma 4.6 also apply here.

Definition 4.8 (Space-covering sequences). Recall, that at the lowest layer of the struc-
ture HQC there is partition π1 containing unit squares of L0

Q. On the basis of unit
squares, atomic space-covering sequences can be formed, constituting basic components
of length O(1). The atomic sequence based on a point p belonging to a unit square in
the 2d space is referred to as the source s(p) of p. Suppose that s(p) is the sequence
formed of a single point, being the top left corner of the unit square containing p.

At any higher layer πi recursively form a longer sequence associated with each square
S from this layer by concatenating the sequences from layer πi−1, corresponding to the
children of S in the tree TQC (i.e. for even i - squares from πi−1 that are covered by S∗,
see Lemma 4.4, and, for odd i - squares from πi−1 that overlap with S∗, see Lemma 4.5).

To perform such construction connectors are used. Connectors link together the
portions of the space-covering curve already created for the squares at the lower level.
For the simplicity of presentation suppose that the portion of the space-covering curve
corresponding to any square S starts and ends at the top left corner of S. Assume that
the children of the same parent of TQC are arranged in the clockwise order starting from
the top left child. The connectors are the line segments joining the top left corners of
the siblings. The connectors are used twice, once in the increasing order of the siblings
(which, by convention, corresponds to the left-to-right traversal of the space-covering
sequence) and the other time in the decreasing order. For example connectors A,B,C
link, respectively, squares SiQ(2x−1, 2y+1), SiQ(2x, 2y+1), SiQ(2x, 2y) and SiQ(2x−1, 2y)

in Figure 4.2(a) and squares SiC(x, y), SiC(x+ 1, y), SiC(x+ 1, y− 1) and SiC(x, y− 1) in
Figure 4.2(b). Note that, in the former case, the obtained curve already starts and ends
at the top left corner of the parent square Si+1

C (x, y). In the latter case, connector D
is also added (cf. Figure 4.2(b)), taken twice, in order to make the constructed portion
start and end at the top left corner of the parent square SiQ(x, y).

This process can be iterated for as long as it is required. The space-covering sequence
associated with the rendezvous square R(p1, p2) will be used to obtain rendezvous of two

Chapter 4. Asynchronous Rendezvous With Location Information 42

participating agents located initially at points p1 and p2. In what follows, it will be shown
how to explore the space-covering sequence efficiently during the rendezvous process.

Note that, since each layer in HQC is a partition of the 2d space into squares, ev-
ery point p in the 2d space can be associated with a unique infinite list of squares
S1(p), S2(p), . . . from the consecutive layers π1(p), π2(p), . . . in HQC , respectively, such
that, each square contains p. Note also, that the space-covering sequence associated
with Si(p), for each i ≥ 1 forms a contiguous segment of positions in the space-covering
sequence associated with Si+1(p). Let left(S) and right(S) denote, respectively, the left-
most and the rightmost position on the space-covering sequence corresponding to square
S. This then gives left(Si+1(p)) ≤ left(Si(p)) ≤ right(Si(p)) ≤ right(Si+1(p)).

Si+1
C (x, y)

Si
Q(2x, 2y)

Si
Q(2x− 1, 2y + 1)

Si
Q(2x− 1, 2y)

Si
Q(2x, 2y + 1)

A

B

C

(a)

A

B

C

D

Si
Q(x, y)

Si
C(x, y)

Si
C(x, y − 1) Si

C(x + 1, y − 1)

Si
C(x + 1, y)

(b)

Figure 4.2: Connectors between siblings (dotted line squares) and parent (solid lines).
In case (a) the parent comes from HC family and in case (b) the parent comes from

HQ

Lemma 4.9. For any two points p1 and p2 at distance d in the 2d space, the space-
covering sequence associated with the rendezvous square R(p1, p2), is of length O(d4).

Proof. Recall that the lengths of space-covering sequences associated with squares in
π1 = L0

Q are O(1). Assume now that the sequences associated with squares of size 2k−1

at layer Lk−1
Q are of size f(2k−1), for some positive integer function f . Note that the

connectors from layer k, used for linking the endpoints of the space-covering sequences
for the squares from layer k− 1, are of length O(2k). Thus the space-covering sequences
associated with squares in LkC have length 4 · f(2k−1) + O(2k). Similarly, associate
the squares in layer LkQ with space-covering sequences of length 4(4 · f(2k−1) +O(2k)) +

O(2k) = 16 ·f(2k−1)+O(2k). Thus the length of the space-covering sequences associated
with the squares in LkQ (also in LkC) can be described by the recurrence:

f(2k) =

O(1) if k = 0

16 · f(2k−1) +O(2k) if k > 1

Since, by Lemma 4.6, the rendezvous square R(p1, p2) is of size O(d), the recurrence
will be applied at most log d +O(1) times. Thus the total length of the space-covering
sequences for the squares from the layers LkQ and LkC is O(d4).

Chapter 4. Asynchronous Rendezvous With Location Information 43

It is now shown that certain layers coming from HC can be removed from HQC ,
obtaining a new hierarchy H∗QC , such that the distance separating p1 and p2 on the
corresponding space-covering sequence can be reduced toO(d2+ε), for any constant ε > 0.

Definition 4.10 (Hierarchy H∗QC). Fix a natural number z. H∗QC is formed of a sequence
of blocks, each block containing z + 4 layers. The ith block, for i = 0, 1, . . ., contains
z consecutive layers of HQ - Li(z+2)

Q , Li(z+2)+1
Q , . . . , L

i(z+2)+z−1
Q , followed by four layers

L
i(z+2)+z
C , Li(z+2)+z

Q , Li(z+2)+z+1
C , Li(z+2)+z+1

Q . E.g. the portion of H∗QCcorresponding to
the first two blocks is

L0
Q, L

1
Q, . . . , L

z−1
Q , LzC , L

z
Q, L

z+1
C , Lz+1

Q , Lz+2
Q , . . . , L2z+1

Q , L2z+2
C , L2z+2

Q , L2z+3
C , L2z+3

Q

Note that, if some layer of H∗QCcomes from HC , i.e. it is LkC , for some value of k,
its predecessor in H∗QC is Lk−1

Q , hence Lemma 4.4 directly applies. On the other hand,
for any layer of H∗QCcoming from HQ, say LkQ, its predecessor in H∗QC is either LkC or
Lk−1
Q . In the former case Lemma 4.5 directly applies. In the latter case each square

from LkC partitions exactly into four squares of Lk−1
Q , hence the claim of Lemma 4.5

is true as well. Therefore the tree T ∗QC representing hierarchy H∗QCmay be obtained
and the space-covering sequences are constructed similarly as in the case of HQC , where
in case of missing layers from HC the concatenation process is performed according to
the structure of squares located in the hierarchical partition HQ. Similarly, in H∗QCthe
rendezvous square R(p1, p2) of two points p1 and p2 is the square on a lowest layer which
contains the two points. The following lemma holds.

Lemma 4.11. For any constant ε > 0, there exists H∗QC in which the space-covering
sequence associated with the rendezvous square R(p1, p2) of two arbitrary points p1 and
p2 located at distance d in the 2d space is of length O(d2+ε).

Proof. According to Corollary 4.7, R(p1, p2) - the rendezvous square for p1 and p2 is
present in H∗QC . Moreover, R(p1, p2) belongs to layer k, such that k = log d+z+O(1) =

log d+O(1), for some constant z, meaning that the size of the rendezvous square is still
O(d). The size of the space-covering sequence at layer k in H∗QC is then bounded by

O(4k · 42· k
z+2), where contribution O(4k) comes from the structure of HQ and O(42· k

z+2)

comes from HC . Note that the constant z can be chosen, such that, the exponent in the
second term is the smallest constant that is required. Also since k = log d + z + O(1)

the second term translates to

O(42· log d+z+O(1)
z+2) ≤ O(42· log d+z+O(1)

z) = O(4
2
z
·log d) = O(d

4
z).

Thus for any ε > 0, an integer constant z ≥ 4
ε can be found, such that, the length of

the space-covering sequence in H∗QC for any two points at distance d in the 2d space is
O(d2+ε).

Chapter 4. Asynchronous Rendezvous With Location Information 44

4.3 The Rendezvous Algorithm

This rendezvous algorithm utilises the nested structure of space-covering sequences as-
sociated with the list of squares defined for each point p in the 2d space. The agent
determines the list of squares in H∗QCaccording to its initial location p. Then, for each
square Si(p) from the list, the agent visits the leftmost and the rightmost point on the
space-covering sequence, corresponding to the computed traversal of Si, until it encoun-
ters the other agent.

Algorithm 4: Algorithm RV (point p ∈ 2d space)
visit an integer grid point of the 2d space which the closest to p
i⇐ 1
repeat
Si(p)⇐ square from layer i of H∗QCcontaining p
Go right on the space-covering curve until reaching right(Si(p))
Go left on the space-covering curve until reaching left(Si(p))
i⇐ i+ 1

until rendezvous is reached

Theorem 4.12. Two location aware agents located in points p1 and p2 at distance d in
the 2d space executing algorithm RVwill meet after traversing asynchronously a trajectory
of length O(d2+ε), for any constant ε > 0.

Proof. By Corollary 4.7, there exists the square R(p1, p2) in H∗QCcontaining p1 and p2.
This square is on the list of squares considered in step 4 of the algorithm by each agent.
Suppose, by symmetry, that agent α1 is the first one to terminate at time t step 6 of the
algorithm for the iteration i during which Si(p1) = R(p1, p2). If agent α2 has not yet
completed its execution of step 1 of the algorithm, it must belong to S1(p2) - a unit square
included in R(p1, p2) - and α1 completing step 6 must meet α2. Hence it can be assumed
that, at time t agent α2 must be traversing a portion of the space-covering sequence,
corresponding to some square included in R(p1, p2). All intermediate space-covering se-
quences associated with the predecessors of R(p1, p2) in the lists of squares for p2 form
the space-covering sequences included in the interval [left(R(p1, p2)), right(R(p1, p2))].
Hence, while agent α1 traverses this interval in step 6, it must meet agent α2, which,
by this assumption, is within this segment at time t. The total length of the trajectory
adopted by the agents is linear in the size of the space-covering sequence due to expo-
nential growth of intermediate sequences associated with the consecutive squares in the
list of squares.

Remark 4.13. Note that as there are Ω(d2) integer grid points within distance d from
any point in the 2d space. Therefore, since the adversary can keep one of the agents
immobile, the rendezvous implies that the other agent has to explore its d-environment,
adopting a route of length Ω(d2). Thus the cost of this algorithm is almost optimal.

Chapter 5

Optimal Patrolling of Fragmented
Boundaries

5.1 Introduction

This chapter introduces the results for performing network patrolling in a ring environ-
ment. This work was accepted to the 25th ACM Symposium on Parallelism in Algorithms
and Architectures, cf. [54].

A set of mobile robots is deployed on a simple curve of finite length, composed of
a finite set of vital segments separated by neutral segments. The robots have to patrol
the vital segments by perpetually moving on the curve, without exceeding their uniform
maximum speeds. The quality of patrolling is measured by the idleness, i.e. the longest
time period during which any vital point on the curve is not visited by any robot.
Given a configuration of vital segments, our goal is to provide algorithms describing the
movement of the robots along the curve so as to minimize the idleness.

Our main contribution is a proof that the optimal solution to the patrolling problem is
attained either by the cyclic strategy, in which all the robots move in one direction around
the curve, or by the partition strategy, in which the curve is partitioned into sections
which are patrolled separately by individual robots. These two fundamental types of
strategies were studied in the past in the robotics community in different theoretical and
experimental settings. However, to our knowledge, this is the first theoretical analysis
proving optimality in such a general scenario. Throughout the paper we assume that all
robots have the same maximum speed. In fact, the claim is known to be invalid when
this assumption does not hold.

Protecting an environment by a set of stationary or mobile point-guards has been
studied before in various scenarios. The problem of patrolling a one-dimensional bound-
ary using mobile robots has many real-world applications, and is extensively studied
under the names of boundary patrolling and fence patrolling in the robotics literature
[62]. In order to prevent an intruder from penetrating into a protected region, the bound-
ary of the region must be patrolled. Some parts of the boundary may be monitored with

45

Chapter 5. Optimal Patrolling of Fragmented Boundaries 46

stationary devices like sensors or cameras (or they do not need to be monitored at all),
while other portions require the aid of moving robots such as walking guards, illumina-
tion rays, mobile robotic devices, etc. Since the feasibility of an intrusion likely depends
on the time during which the intruder remains undiscovered, it is important to design
patrolling protocols which minimize the time during which boundary points are unpro-
tected.

Some portions of the boundary may be impenetrable at all, or they may be monitored
with stationary devices like sensors or cameras. This work is devoted to the scenario in
which only a finite number n of boundary segments, referred to as vital regions, need
to be patrolled by a set of k mobile agents. The remaining part of the boundary, called
neutral regions, do not have to be monitored by the mobile agents, but may nevertheless
be traversed by an agent since this may be the way to reach one vital region from
another. The problem studied is that of patrolling with the goal of minimising the
idleness of points located in the vital regions, i.e. the longest time during which such a
point remains unvisited by an agent. It is assumed that at any time during the traversal
the speed of each agent cannot exceed a certain maximum value, identical for all agents.
The goal is to define a set of functions describing the trajectories of all of the agents in
time.

The most common heuristics adopted in the past to solve a variety of patrolling
problems include the cyclic strategy, where agents move in one direction around the
cycle covering the environment, and the partition strategy, in which the environment is
partitioned into sections patrolled separately by individual agents (or subsets of agents),
using the terminology introduced in [43]. However, to the best of the authors knowledge,
no theoretical studies formally proving the optimality of such approaches in this setting
were done in the past.

It is worth noting, that in the more heterogeneous scenario where robots have different
maximum speeds, neither the cyclic strategy nor the partition strategy leads to the
optimal performance. In fact, it has been shown in [62] that for the case of 3 mobile
agents with different maximal speeds patrolling a cycle (forming a single vital region),
neither a partition strategy nor a cyclic strategy is optimal. It turns out that a specific
hybrid strategy is better than each of these two fundamental approaches. See also [109].

5.1.1 Model, Preliminaries, and Notation

k ≥ 1 agents are considered. Each agent moves along a continuous rectifiable curve C,
i.e. a curve of finite length.

Definition 5.1 (Traversal strategy). A traversal strategy for a single agent is a contin-
uous function f : [0,+∞) → C such that t 7→ f(t), whereby f(t) is the position of the
agent on the rectifiable curve at time t ≥ 0. A traversal strategy for k agents consists of
k such continuous functions, one fi for each agent 1 ≤ i ≤ k.

Without loss of generality, assume that the curve C is either a segment of unit length
(when C is an open curve), or a cycle of unit perimeter (when C is a closed curve). In

Chapter 5. Optimal Patrolling of Fragmented Boundaries 47

both cases, this work will adopt the unit segment [0, 1] to represent uniquely all points
on the curve, noting that in the case of the cycle, points 0 and 1 are identical with
each other. All agents move along C at speeds not exceeding the unit maximum value
understood to be 1.

Definition 5.2 (Unit maximum speed). Let dist(p, q) denote the distance between any
points p, q ∈ C along the curve C. The traversal strategy for k agents respects the agents’
unit maximum speed if for any 1 ≤ i ≤ k and any t1, t2 ∈ [0,+∞) then the following
will hold dist(fi(t1),fi(t2))

|t1−t2| ≤ 1.

In what follows, this work will always consider traversal strategies that respect the
maximum speed of each agent. The task of the k agents is to patrol so-called vital regions,
located in the unit-length curve C (along which the agents move), so as to minimise the
idleness of the points in the vital regions.

Definition 5.3 (Vital and neutral regions). Each considered curve C contains n disjoint
vital regions represented by closed intervals Λ1,Λ2, . . . ,Λn, where Λi = [bi, ei] and ei <
bi+1 for 1 ≤ i ≤ n − 1, with b1 = 0 and en ≤ 1. The vital regions are separated by
open intervals from N called neutral regions. In other word the curve C = (Λ, N), where
[0, 1] ⊇ Λ =

⋃n
i=1 Λi, and N = [0, 1] \ Λ.

Definition 5.4 (Idleness). Let A be a traversal strategy consisting of k continuous
functions fi for a system of k agents, respectively, and traversing the given curve.

1. The idleness induced by A at a point x of the curve, denoted by Ix(A), is the
supremum of the length of time intervals during which point x remains unvisited
by any agent:

Ix(A) = sup
{0≤T1<T2 : ∀i∀t∈[T1,T2] fi(t)6=x}

(T2 − T1).

2. The idleness of the system of k agents induced by A is defined by the supremum
taken over all vital points of the curve:

I(A) = sup
x∈Λ

Ix(A)

3. Finally, the idleness of the system of k agents is defined by Iopt = infA I(A), the
infimum taken over all traversal strategies A.

With these definitions in mind the main question that will be addressed in this work
can be formulated.
Question. Suppose that there are k agents traversing a given rectifiable open curve
(resp., closed curve) C = (Λ, N), represented without loss of generality as the unit-
length segment (resp., the unit-perimeter cycle). What traversal strategy should the
agents follow so as to minimise the idleness of the system?

Chapter 5. Optimal Patrolling of Fragmented Boundaries 48

Observe that this assumes a very general setting for the schedules of the agents: these
are arbitrary continuous functions of the time parameter. In all cases it will be necessary
to prove the optimality of the proposed schedules by showing tight upper and lower
bounds on the idleness thus attained. Although, in most instances the upper bound will
consist of simple algorithms describing how the agents should traverse the given curve,
the lower bounds will be more challenging by proving that they are valid even for the
most general settings of the class of continuous functions.

The main challenge in this study is the requirement that an algorithm with optimal
idleness is being sought, for traversing all the vital intervals in the curve while at the
same time the agents do not necessarily have to traverse neutral intervals.

5.1.2 Outline and Results of the Work

Lets start by recalling the partition strategy of patrolling in §5.2, in which each agent
traverses some sub-interval of the curve back and forth. This strategy is always optimal
on open curves (i.e. on the unit segment), but it need not be optimal for closed curves
(i.e. for the unit cycle).

The main results concern closed curves, and are given in §5.3. This work proves
that the optimal idleness for patrolling the boundary is always attained by the better
of two strategies: the before-mentioned partition strategy, and the cyclic strategy, in
which equally-spaced agents patrol the cycle, moving in the same direction. The choice
of the strategy and the agents’ responsibilities depends on the arrangement of the vital
regions around the boundary. This approach consists in showing that finding the optimal
idleness for k agents and for any set of n vital intervals may be reduced to finding the
idleness for some critical set of 2k+1 vital points (always resulting in the cyclic strategy)
or of a critical set of k + 1 vital points (resulting in either the cyclic or the partition
strategy).

Finally, in §5.4, anO(kn log n) algorithm is proposed for designing traversal strategies
with optimal idleness for agents on both open and closed curves.

5.2 Optimal Patrolling Strategy for the Segment

Firstly, patrolling with k agents, is shown, of a terrain modelled by a curve C = (Λ, N)

consisting of n vital regions in Λ ⊆ [0, 1], recall Definition 5.3.
In order to describe the region patrolled by a single agent in the partition strategies

this work will frequently refer to the concept of a lid which will be employed, in particular,
to define a patrolling strategy.

Definition 5.5 ((d,k)-Lid cover). A d-lid is a contiguous interval on the curve of length
d. Curve C = (Λ, N) has a (d, k)-lid cover if all of its vital regions can be covered by
some set of k (not necessarily disjoint) d-lids.

Chapter 5. Optimal Patrolling of Fragmented Boundaries 49

A natural approach to patrolling the segment is based on the partition strategy, in
which each of the agents patrols exactly one of the k lids of the lid cover of minimum lid
size L. The agent moves back and forth between its endpoints at maximum speed.

Algorithm 5: Partition strategy (on the segment)
Compute a (L, k)-lid cover of C, where L is chosen as the minimum lid length for
which C admits such a lid cover.
Let the ith lid, 1 ≤ i ≤ k, be a segment of the form [ci, ci + L].
Deploy the ith agent so that at time t = 2Lj + τ , where j is a non-negative integer
and −L ≤ τ < L, the position fi(t) of this agent on the lid is fi(t) = ci + |τ |.

Note, that in this section it is Algorithm 5 that will be discussed, the algorithm that
is used for computing the (L, k)-lid cover of C will be shown later in §5.4.1.

Observe that each of the points of every lid, and consequently every vital point of
the segment, is visited at least once during each time interval of size 2L. So, for this
strategy there is an idleness of I ≤ 2L. The idleness of the partition strategy is, in fact,
optimal on the segment.

Theorem 5.6 (k agents). The optimal idleness for k agents moving at speed at most
1 on a unit segment is given by I = 2L, where L is the minimum value such that the
terrain admits a (L, k)-lid cover.

To prove the theorem, the following property is shown of a greedy cover of the segment
with lids.

Lemma 5.7. Suppose that L is the minimum value, such that, a given terrain C admits
a (L, k)-lid cover, and let L′ < L. Then, C \ [0, L′] does not admit a (L′, k− 1)-lid cover.

Proof. Indeed, if the region C \ [0, L′] admitted a (L′, k − 1)-lid cover, then one could
obtain a (L′, k)-lid cover of C simply by adding lid [0, L′] to the lid cover obtained for
the region C \ [0, L′]. This contradicts the minimality of L.

Lemma 5.8. Any patrolling strategy may be converted to a strategy, achieving the same
idleness, for which the relative order of the agents on the segment is maintained through-
out the traversal.

Proof. The proof is based on the simple observation that when two agents meet while
moving in opposite directions they can “exchange” roles, so that the coverage of the
points on the segment by one agent is the same as coverage by the other. Since after
this change of roles the set of visited nodes at any time remains the same, this does not
affect the idleness of the visited nodes.

The proof of the claim I ≥ 2L now proceeds by induction on the number of agents.
It is clearly true for k = 1, since the idleness of the strategy cannot be smaller than twice
the distance between the extremal vital points C, which corresponds precisely to the size
of the smallest lid cover.

Chapter 5. Optimal Patrolling of Fragmented Boundaries 50

Suppose, by contradiction, that there exists a value of k and some terrain C such that
the idleness of some patrolling strategy A is I = 2L′ < 2L. By Lemma 5.8, without loss
of generality it can be assumed that the agents never change places along the segment.
Consider the trajectory of the leftmost agent α1 following strategy A. Let c be the
supremum of all points along the segment reached by agent α1. If point c is reached by
agent α1 at some time t, its last visit to point 0 must have been no later than at time
t − c, and the next visit to point 0 will take place at time not earlier than t + c. From
Lemma 5.8, it occurs that point 0 is never visited by any agent when it is not visited by
α1. Consequently, it must exist that 2c ≤ 2L′, and so c ≤ L′. It follows that the region
C \ [0, L′] must be patrolled solely by the set of k−1 agents, without the help of α1, with
idleness at most 2L′. From the inductive assumption, this gives C \ [0, L′] admits a L′-lid
cover. This is a contradiction, by Lemma 5.7. This completes the proof of Theorem 5.6.

The complexity of computing the optimal lid cover for the partition strategy is dis-
cussed in detail in §5.4.

5.3 Optimal Patrolling Strategy for the Cycle

In this section computing the optimal idleness for k agents traversing terrains represented
as a unit-perimeter cycle C = (Λ, N), is shown, with vital and neutral regions in Λ and
N respectively. The class of strategies under consideration in a cycle is larger than in
the case of a segment due to the ability of the agents to traverse the perimeter of the
cycle. In particular, the agents on the cycle can also apply a cyclic strategy, performing
clockwise (direction aligned with increasing indices of intervals in Λ ⊆ [0, 1]) rotations
around the cycle with even time spacing.

Algorithm 6: Cyclic strategy (on the cycle)
Deploy the ith agent at time 0 at position i/k along the circumference of the cycle.
Release all agents at their maximum speed to perform a clockwise traversal of the
cycle.

Observation 5.9. The idleness of the cyclic strategy on the cycle is I = 1/k, for any
(non-empty) set of vital regions.

At the same time, observe that the partition strategy introduced in the previous
section is also applicable in the cycle, achieving an idleness of I = 2L, where L is the
size of the minimum lid cover of the vital regions of the cycle with k lids. Depending on
the configuration of the vital regions, one or the other of these two strategies may prove
superior. In one extremal case when the cycle has no neutral regions, the cyclic strategy
achieves an idleness of 1/k, while the partition strategy has an idleness of 2/k. At the
other extreme, for vital regions consisting of k discrete points, the idleness of the cyclic
strategy is still 1/k, but the partition strategy has an idleness of 0. This leads naturally
to a strategy which selects the better of the two approaches.

Chapter 5. Optimal Patrolling of Fragmented Boundaries 51

Algorithm 7: Combined strategy (on the cycle)
Let L be the lid size of the minimum (with respect to lid size) lid cover of the vital
regions of the cycle with k lids.
if 2L < 1/k then
Apply Partition strategy.

else
Apply Cyclic strategy.

end if

Observation 5.10. The idleness of the combined strategy on the cycle is I = min{1/k, 2L},
where L is the minimum possible lid size of a (L, k)-lid cover of the cycle.

This claim gives rise to the following natural question. Does there exist any other
strategy which can achieve better idleness than both the partition and cyclic approaches?
Such a question admits a positive answer for the cycle in the scenario where agents have
different speeds [62], even when neutral regions are not present. In this scenario, with
neutral regions but for agents with equal maximal speeds, the combined strategy turns
out to be optimal. The proof of this fact is surprisingly involved.

Theorem 5.11. The idleness I(A) of any traversal strategy A in a cycle with neutral
regions satisfies I ≥ min{1/k, 2L}, where L is the minimum possible lid size of a (L, k)-
lid cover of the cycle.

The rest of this section is devoted to the proof of Theorem 5.11, which proceeds in
three technical lemmas. First, it is shown that for any cycle with neutral regions it can
be found that their are a subset of either exactly k + 1 or exactly 2k + 1 (discrete) vital
points that satisfy specific properties. Then, it is shown that the lower bound can be
proved simply by considering the patrolling problem on the selected subset of points.

Lemma 5.12 (Critical point). Let C = (Λ, N) be a cycle with set of vital regions Λ.
Let L be the minimum size of the lid cover of the vital regions of C with k lids, and let
B = sup{dist(b, e) : b, e ∈ [0, 1], [b, e] ⊆ N}. Then:

(1) If B ≥ 1/(2k), then there exists a set of k+1 vital points {λ0, . . . , λk} ⊆ Λ, ordered
clockwise, such that min0≤i≤k dist(λi, λ(i+1) mod (k+1)) ≥ min{1/(2k), L}.

(2) If B < 1/(2k), then there exists a set of 2k + 1 vital points {λ0, . . . , λ2k} ⊆ Λ,
ordered clockwise, such that min0≤i≤2k dist(λi, λ(i+2) mod (2k+1)) > 1/(2k).

Proof. To prove clause (1), let λ0 be the first vital point located at the clockwise endpoint
of a neutral region of length B. Fix ε > 0 and consider the set of points chosen iteratively
as follows: let λi+1 be the first vital point located at arc distance not less than L − ε
from λi, moving in the clockwise direction. Point λk is reached before completing one
full rotation around the cycle, starting from λ0. Indeed, if this were not the case, then
there would exist a set of k lids: [λ0, λ0 + L − ε], . . . , [λk−1, λk−1 + L − ε], covering

Chapter 5. Optimal Patrolling of Fragmented Boundaries 52

the whole of Λ, a contradiction with the minimality of lid cover size L. Finally, note
that the distance between points λ0 and λk is at least B ≥ 1/(2k). Parametrising each
of the points λi as λi(ε), it follows that for any ε > 0, their can be found a set of
k+ 1 points (λ0(ε), λ1(ε), . . . , λk(ε)) such that min0≤i≤k dist(λi(ε), λ(i+1) mod (k+1)(ε)) ≥
min{1/(2k), L}−ε. By taking into account that the set of vital points Λ is a closed set and
λi(ε) is non-decreasing and bounded (with regards to shifts in the clockwise direction)
for any sequence ε↘0, converge to a sequence of vital points (λ0(0), . . . , λk(0)) satisfying
clause (1).

To prove clause (2), a slightly stronger version “(2’)” of this clause in which the
assumption “B < 1/(2k)” is replaced by “B ≤ 1/(2k)”. Suppose that terrain (Λ, N) is a
counterexample to the claim of (2’), such that for any other terrain (Λ′, N ′) which violates
clause (2’) it holds that Λ′ (Λ. (Such an inclusion-wise minimal counterexample always
exists, since the set of vital points is by assumption a closed set.) By the minimality of
Λ, the set of its vital points must be discrete, say, Λ = {u0, . . . , un−1}.

Assume that for some 0 ≤ i ≤ n, dist(ui, u(i+2) mod (n)) ≤ 1/(2k). The terrain
(Λ \ {ui+1}, N ∪ {ui+1}) has no neutral intervals of length greater than 1/(2k), and
thus is a smaller counter-example to this claim, a contradiction. It will now follow
that min0≤i<n dist(ui, u(i+2) mod (n)) > 1/(2k). Further to this, since for all 0 ≤ i <

n, dist(ui, u(i+1) mod (n)) < 1/(2k), there must be n ≥ 2k + 1. So, choosing points
{λ0, . . . , λ2k} as λi = ui, for all 0 ≤ i ≤ 2k, it can be found in Λ the subset of vital
points satisfying clause (2’). So, Λ cannot be a counter-example to the claim.

Lemma 5.13 (k + 1 points). Let (λ0, λ1, . . . , λk) be a set of k + 1 points chosen from
vital regions of the terrain, arranged in the clockwise order. The idleness I(A) of any
traversal strategy A for k agents in this terrain satisfies I(A) ≥ min

{
1
k , 2s

}
, where: s =

min0≤i 6=j≤k dist(λi, λj).

Proof. Let (λ0, λ1, . . . , λk) be k+1 vital points chosen so that dist(λi, λ(i+1)) ≥ s, for all
0 ≤ i ≤ k. Throughout the proof, indices of points and agents are understood modulo
k + 1, i.e. for all integers i, j assume λi ≡ λi mod (k+1) and αj ≡ αj mod (k+1). It can be
shown that the claim holds even if {λ0, λ1, . . . , λk} are the only vital points of the cycle.

If the idle time of any strategy is at least equal to 2s, the claim holds. Now, consider
any (sufficiently small) ε > 0 such that there exists a strategy A with I(A) < 2s − ε

2 .
There exists a point λi, 0 ≤ i ≤ k, such that the time between some two consecutive
visits of an agent to point λi is greater than τ = 1

k − ε when following strategy A. (This
completes the proof of the Lemma, since there is for any ε > 0, I(A) < 2s − ε

2 −→
I(A) > 1

k − ε.)
Without loss of generality, by modifying the trajectories of the agents, a strategy A

can be converted into another strategy A′ so that the following properties are satisfied
by A′:

(i) if an agent following A′ leaves some vital point λi, then it does not re-enter this
vital point before reaching some other vital point first (namely, λi−1 or λi+1),

Chapter 5. Optimal Patrolling of Fragmented Boundaries 53

(ii) no two agents following A′ ever meet,

(iii) if a vital point is visited by an agent following strategy A at time t, then it is
visited by an agent following strategy A′ within the interval [t− ε

4 , t+ ε
4].

For completeness, an outline the technical steps which are required to perform the
above conversion follows. First, property (i) is achieved by modifying the trajectories of
the agents in neutral regions, only. Next, properties (ii) and (iii) can be ensured by first
converting the strategy to one which preserves the ordering of the agents as in Lemma
5.7, and then delaying the movements of some of the agents to avoid meetings, without
changing the time intervals during which a vital point is occupied by more than ε

4 .
By property (iii), if a point is unvisited by A′ in time interval [t1, t2], then it is

unvisited by A in the time interval [t1 + ε
4 , t2 − ε

4]. It now suffices to show that the
time between some two consecutive visits of an agent following strategy A′ to point λi
is greater than τ + ε

2 = 1
k − ε

2 . Moreover, I(A′) ≤ I(A) + ε
2 < 2s. From now on lets

consider agents following A′, only.
Since no two agents following A′ ever meet by (ii), an arbitrarily chosen agent can be

denoted by α1, and the other agents by α2, . . . , αk in clockwise order; this order never
changes throughout the traversal.

Suppose that at some time t, an agent αj leaves point λi on the arc towards point
λi+1. By (i), the next vital point it reaches has to be point λi+1. Therefore, agent αj
cannot re-enter point λi before time t + 2dist(λi, λi+1) ≥ t + 2s > t + I(A′). So, some
other agent must visit point λi in between the two visits by agent αj . Since the agents
never meet, it follows that within the time interval [t, t+I(A′)], agent αj−1 entered node
λi. Before this visit, the previous vital point visited by αj−1 must have been λi−1. It
follows that to each traversal of the arc (λi, λi+1) by agent αj that starts at some time t,
a distinct traversal can be assigned of the arc (λi−1, λi) by agent αj−1 that ends within
the time interval [t, t+ I(A′)]. Fix two values of time T1 and T2, 0 ≤ T1 < T2. From now
on, this work will apply certain counting arguments within the time interval [T1, T2]. Let
us denote by Cj(i, i + 1) the number of traversals of arc (λi, λi+1) by agent αj starting
in the time interval [T1, T2]. Since only the first and last traversals of (λi, λi+1) by agent
αj within this time interval may be unmatched by corresponding traversals of (λi−1, λi)

by agent αj−1 within the same time interval, thus providing:

Cj(i, i+ 1)− Cj−1(i− 1, i) ≤ 2.

Let C(i, i+1) =
∑k

j=1Cj(i, i+1) be the total number of traversals of the arc (λi, λi+1)

by all agents starting within the time interval [T1, T2]. Summing the above inequalities,
gives:

C(i, i+ 1)− C(i− 1, i) ≤ 2k.

Chapter 5. Optimal Patrolling of Fragmented Boundaries 54

An analogous analysis can be performed for the counter-clockwise direction, i.e. con-
sidering values of the form C(i+ 1, i), corresponding to traversal of the arc from λi+1 to
λi. This obtains:

C(i, i− 1)− C(i+ 1, i) ≤ 2k.

In general, by iterating the above around the cycle, for any two vital points λi1 and
λi2 this obtains:

C(i1, i1 + 1)− C(i2, i2 + 1) ≤ 2k2.

Denoting by Ccw = min0≤i≤k C(i, i+ 1), provides for any i:

C(i, i+ 1) ≤ Ccw + 2k2.

An analogous analysis can be performed for the counter-clockwise direction, i.e. con-
sidering values of the form C(i+ 1, i), corresponding to traversal of the arc from λi+1 to
λi. Consequently, denoting Ccc = min0≤i≤k C(i+ 1, i), there is for any i:

C(i+ 1, i) ≤ Ccc + 2k2.

Now, denote by Wj(i) ≥ 0 the total time spent by agent αj at point λi within the
time interval [T1, T2], and let W (i) =

∑k
j=1Wj(i). Without loss of generality, let λ0 be

a vital point with the minimal total waiting time, i.e. W (0) = min0≤i≤kW (i).
With respect to point λ0, the trajectory of each agent αj within the time interval

[T1, T2] can be described by an ordered sequence of time moments (e1
j , l

1
j , e

2
j , l

2
j , . . . , l

nj

j),
where epj is the time at which agent αj enters point λ0 for the pth time, whereas lpj is
the time at which agent αj leaves point λ0 for the pth time. It can be assumed that
T1 ≤ e1

j ≤ l1j < e2
j ≤ l2j < . . . < e

nj

j ≤ l
nj

j ≤ T2, where e1
j = T1 is put if agent αj was

located at node λ0 at time T1, and l
nj

j = T2 if agent αj was located at node λ0 at time
T2. For the sake of notation, let l0j = T1 and enj+1

j = T2.
During the time interval [T1, T2], point λ0 is covered by an agent during the set of

moments X given as:

X =

k⋃
j=1

nj⋃
p=1

[epj , l
p
j],

such that |X| = W (0). (Here, |X| denotes the measure of X, i.e. the sum of lengths
of time intervals contained in X. Note that all of the time intervals [epj , l

p
j] in the above

union are disjoint, since no two agents following strategy A′ ever meet by the definition
of the strategy.) During the remaining time, i.e. X = [T1, T2] \ X, no agent is located
at λ0. Observe that X is a union of at most 1 +

∑k
j=1 nj intervals. Hence, there exists

some time interval of length τ :

Chapter 5. Optimal Patrolling of Fragmented Boundaries 55

τ ≥ |X|
1 +

∑k
j=1 nj

=
(T2 − T1)− |X|

1 +
∑k

j=1 nj
=

(T2 − T1)−W (0)

1 +
∑k

j=1 nj
(5.1)

during which λ0 remains unvisited.
Notice that each agent αj leaves point λ0 at least nj − 1 times in the time interval

[T1, T2], going towards either point λ1 or point λk. Thus, their is:

C(0, 1) + C(0, k) ≥
k∑
j=1

(nj − 1) =

k∑
j=1

nj − k.

Taking into account that C(0, 1) ≤ Ccw + 2k2 and C(0, k) ≤ Ccc + 2k2, provides:

k∑
j=1

nj ≤ Ccw + Ccc + 4k2 + k. (5.2)

Moreover, since each arc of the cycle is traversed in either direction a total of at least
Ccw +Ccc times, the total distance covered by all the agents is at least Ccw +Ccc. Thus,
the total time of the movement for all k agents within the time interval [T1, T2] is at least
Ccw + Ccc, and the following inequality is obtained:

Ccw + Ccc +

k∑
i=0

W (i) ≤ k(T2 − T1)

Ccw + Ccc ≤ k(T2 − T1)− (k + 1)W (0). (5.3)

Combining inequalities (5.1), (5.2), and (5.3), results in:

τ ≥ (T2 − T1)−W (0)

k(T2 − T1)− (k + 1)W (0) + 4k2 + k + 1
≥

≥ 1

k + 4k2+k+1−W (0)
(T2−T1)−W (0)

≥ 1

k + 4k2+k+1
(T2−T1)−(4k2+k+1)

>

>
1

k
− 4k2 + k + 1

(T2 − T1)− (4k2 + k + 1)
.

In the above, is is assumed that (T2 − T1)−W (0) > 0, i.e. there cannot be an agent
covering λ0 throughout the time interval [T1, T2]. This is true, since otherwise, taking
into account that W (i) ≥ W (0) for all 1 ≤ i ≤ k, all k + 1 points would have to be
covered by an agent throughout [T1, T2], and there are only k agents, a contradiction.

Now, suppose that T2 is chosen to be sufficiently large so that 4k2+k+1
(T2−T1)−(4k2+k+1)

< ε
2 .

This gives τ ≥ 1
k − ε

2 , and so there exists a vital point on the cycle such that the time
between some two successive visits of agents following A′ to this point is greater than
1
k − ε

2 . This completes the proof of Lemma 5.13.

Chapter 5. Optimal Patrolling of Fragmented Boundaries 56

Lemma 5.14 (2k + 1 points). Let (λ0, λ1, . . . , λ2k) be a set of 2k + 1 points chosen
from the vital regions of the terrain, which are listed in the clockwise order, such that,
dist(λi, λ(i+2) mod (2k+1)) >

1
2k . The idleness I(A) of any traversal strategy A for k

agents in this terrain satisfies I(A) ≥ 1
k .

Proof. Let (λ0, λ1, . . . , λ2k) be 2k+1 vital points chosen in accordance with the assump-
tions of the lemma. For the proof of the lower bound, the concept is introduced of a
shadow agent, which can be seen as an auxiliary agent which temporarily appears in the
system and assists agents in their patrolling task. More precisely, given a strategy A,
consider the trajectory of an agent αj . Suppose that the agent leaves a vital point λi
at some time ta, moves to an adjacent vital point λi1 ∈ {λi−1, λi+1} and then returns
to point λi at time tb, without encountering any other vital points within the interval
[ta, tb]. A shadow agent αi∗j is created at time ta at point λi, waits at λi protecting
it until time tb, and then disappears. The addition of such a shadow agent, obviously,
cannot increase the idleness of the strategy.

Observe that one agent can create at most two shadow agents at a time: when αj is
located anywhere within a closed arc [λi, λi+1], then it may only have the shadow agents
αi∗j and α

(i+1)∗
j . Agent αj and its shadow agents can wait at not more than two vital

points simultaneously.
Will show that the claim holds even if {λ0, λ1, . . . , λ2k} are the only vital points of the

cycle. The rest of the proof proceeds analogously to the proof of Lemma 5.13, subject to
the inclusion of shadow agents in the team of agents patrolling the terrain. Once again,
for a fixed ε > 0, modify the trajectories of the agents, converting any strategy A into
another strategy A′ fulfilling the following properties:

(i) if an agent following A′ leaves some vital point λi, then it does not re-enter this
vital point before reaching some other vital point first (namely, λi−1 or λi+1),

(ii) no two agents following A′ ever meet each other or the shadow agents of other
agents,

(iii) if a point P is visited by an agent following strategy A at time t, then it is visited
by an agent or shadow agent following strategy A′ within the interval [t− ε

4 , t+ ε
4].

From now on consider agents (α1, α2, . . . , αk) and their shadow agents following A′,
only, and proceed to perform a modification of the proof of Lemma 5.13 which takes
shadow agents into account.

Suppose that I(A′) < 1/k − ε. A traversal of the directed arc (λi, λi+1) by agent αj
will be referred to as shadowless if after arriving at λi+1, the next vital point visited by
agent αj is λi+2 (not λi). Equivalently, a traversal of arc (λi, λi+1) is shadowless if αj
does not leave its shadow agent αi∗j at λi during this traversal.

Fix a time interval [T1, T2]. For all 0 ≤ i ≤ 2k, denote by Cj(i, i + 2) the number
of shadowless traversals of the directed arc (λi, λi+1) by agent αj starting in this time
interval. Suppose that agent αj initiates a shadowless traversal at some time t. Since

Chapter 5. Optimal Patrolling of Fragmented Boundaries 57

dist(λi, λi+2) > 1
2k by assumption, it is now known that the next visit of this agent to

λi takes place after time t + 1/k > t + I(A′). Since λi is not occupied by a shadow
agent, the agent αj−1 must arrive at point λi at some time t′ ∈ (t, t+1/k). The previous
vital point occupied by agent αj−1 before t′ must have been λi−1. Before that, the agent
cannot have occupied vital point λi, since then, during its traversal from λi to λi−1 and
back to λi, the shadow agent αi∗j−1 would have existed at λi. This shadow agent must
have met agent αi at point λi at time t, which contradicts the assumption that agents
and shadow agents do not meet. It follows that before arriving at λi−1 agent αj−1 must
have been located at λi−2. Thus, agent αj−1 was performing a shadowless traversal of
(λi−2, λi−1). This traversal counts towards Cj−1(i− 2, i) if agent αj left λi−2 within the
interval [T1, T2]. Following the reasoning from Lemma 5.13, this obtains the following
bound:

Cj(i, i+ 2)− Cj−1(i− 2, i) ≤ 2.

Summing the above inequalities over all agents, and performing analysis for the
counter-clockwise direction gives:

C(i, i+ 2)− C(i− 2, i) ≤ 2k.

C(i, i− 2)− C(i+ 2, i) ≤ 2k.

Since the number of points 2k + 1 is odd, by iterating the above around the cycle at
most 2k times in one direction, for any two vital points λi1 and λi2 obtains:

C(i1, i1 + 2)− C(i2, i2 + 2) ≤ 2k2.

C(i1, i1 − 2)− C(i2, i2 − 2) ≤ 2k2.

Denoting Ccw = min0≤i≤2k C(i, i + 2) and similarly Ccc = min0≤i≤2k C(i + 2, i),
provides for any i:

C(i, i+ 2) ≤ Ccw + 2k2.

C(i+ 2, i) ≤ Ccc + 2k2.

Now, denote by Wj(i) ≥ 0 the total time spent by agent αj at point λi and by its
shadow αi∗j within the time interval [T1, T2], and let W (i) =

∑k
j=1Wj(i). Without loss

of generality, let λ0 be a vital point with the minimal total waiting time, i.e. W (0) =

min0≤i≤2kW (i).
With respect to point λ0, the trajectory of each agent αj within the time interval

[T1, T2] can be described by an ordered sequence of time moments (e1
j , l

1
j , e

2
j , l

2
j , . . . , l

nj

j),

Chapter 5. Optimal Patrolling of Fragmented Boundaries 58

where epj is the time at which agent αj enters point λ0 for the pth time after a shadowless
traversal (of arc (λ2k−1, λ2k) or (λ2, λ1)), whereas lpj is the time at which agent αj leaves
point λ0 starting its pth shadowless traversal (of arc (λ0, λ1) or (λ0, λ2k)). Assume that
T1 ≤ e1

j ≤ l1j < e2
j ≤ l2j < . . . < e

nj

j ≤ l
nj

j ≤ T2, and make the same boundary
assumptions as in the proof of Lemma 5.13.

During the time interval [T1, T2], point λ0 is covered by some agent or some shadow
agent during the set of moments X given as:

X =

k⋃
j=1

nj⋃
p=1

[epj , l
p
j],

such that |X| = W (0). During the remaining time, i.e. X = [T1, T2] \X, no agent
and no shadow agent is located at λ0. Observe that X is a union of at most 1 +

∑k
j=1 nj

intervals. Hence, there exists some time interval of length τ during which point λ0

remains unvisited, lower-bounded by an inequality of the same form as (5.1):

τ ≥ |X|
1 +

∑k
j=1 nj

=
(T2 − T1)− |X|

1 +
∑k

j=1 nj
=

(T2 − T1)−W (0)

1 +
∑k

j=1 nj
(5.4)

Notice that each agent αj leaves point λ0 at least nj − 1 times in the time interval
[T1, T2], embarking on a shadowless traversal of the arc either to point λ1 (and then to
λ2) or to point λ2k (and then to λ2k−1). Thus, this gives:

C(0, 2) + C(0, 2k − 1) ≥
k∑
j=1

(nj − 1) =
k∑
j=1

nj − k.

Taking into account that C(0, 2) ≤ Ccw + 2k2 and C(0, 2k − 1) ≤ Ccc + 2k2, this
results in:

k∑
j=1

nj ≤ Ccw + Ccc + 4k2 + k. (5.5)

For any agent αj , its trajectory can be traced within the time interval [T1, T2], looking
at the number of shadow agents in time. At any time, αj and its shadow agents may be
waiting at at most two vital points in total. Moreover, suppose that αj embarks on a
shadowless traversal of some arc (λi, λi+1), leaving λi at some moment of time t, arriving
at λi+1 not earlier than at time t + dist(λi, λi+1). Then, throughout the time interval
[t, t+dist(λi, λi+1)], agent αj can have at most one shadow located at λi+1. Suppose this
shadow agent α(i+1)∗

j exists. Then, the last traversal of αj preceding time t must have
been one of the arc (λi+1, λi), and not shadowless. Tracing back in time the zig-zags of
agent αj between points λi, λi+1, during which it had shadows at both λi and λi+1, leads
back to the earliest traversal of arc (λi, λi+1) (or possibly arc (λi+1, λi), directly after
the agent’s arrival from λi−1 (respectively, from λi+2). During this traversal, of duration
at least dist(λi, λi+1), agent αj had precisely one shadow located at λi (respectively,

Chapter 5. Optimal Patrolling of Fragmented Boundaries 59

at λi+1). In summary, is has been shown that during every shadowless traversal of arc
(λi, λi+1), agent αj either has no shadow, or it has exactly one shadow and it can be
associated with this traversal another time period of length dist(λi, λi+1) during which it
has exactly one shadow (with no overlap of time periods). The same argument applies for
the counter-clockwise direction. Thus, a bound has been obtained on the total waiting
time of agent αj and its shadows:

2k∑
i=0

Wj(i) ≤ 2(T2 − T1)

−2
2k∑
i=0

(Cj(i, i+ 2) + Cj(i+ 1, i− 1)− 2)dist(λi, λi+1),

where the constant is subtracted from Cj to account for boundary conditions around
times T1 and T2. Summing over all k agents obtains:

2k∑
i=0

W (i) ≤ 2k(T2 − T1)

−2
2k∑
i=0

(C(i, i+ 2) + C(i+ 1, i− 1)− 2)dist(λi, λi+1).

Taking into account that the circumference of the cycle is 1 and that W (0) is the
minimum of all W (i), allows:

W (0) ≤ 1

2k + 1

2k∑
i=0

W (i) ≤

≤ 2k(T2 − T1)− 2(Ccc + Ccw) + 4

2k + 1
.

and finally:

Ccc + Ccw < k(T2 − T1)− (k + 1
2)W (0) + 2. (5.6)

Combining inequalities (5.4), (5.5), and (5.6), obtains:

τ ≥ (T2 − T1)−W (0)

k(T2 − T1)− (k + 1
2)W (0) + 4k2 + k + 3

≥

≥ 1

k + 1
2

2(4k2+k+3)−W (0)
(T2−T1)−W (0)

≥ 1

k + 4k2+k+3
(T2−T1)−2(4k2+k+3)

>

>
1

k
− 4k2 + k + 3

(T2 − T1)− 2(4k2 + k + 3)
.

In the above, it is assumed that (T2 − T1)−W (0) > 0, i.e. there cannot be an agent
covering λ0 throughout the time interval [T1, T2]. This is true, since otherwise, taking

Chapter 5. Optimal Patrolling of Fragmented Boundaries 60

into account that W (i) ≥ W (0) for all 1 ≤ i ≤ k, all 2k + 1 points would have to be
covered by an agent or its shadow agent throughout [T1, T2], and there are at most 2k

agents and shadow agents in total at any time, a contradiction.
Now, suppose that T2 is chosen to be sufficiently large so that 4k2+k+3

(T2−T1)−2(4k2+k+3)
< ε

2 .
This then gives τ ≥ 1

k − ε
2 , and so there exists a vital point on the cycle such that the

time between some two successive visits of agents following A′ to this point is greater
than 1

k − ε
2 . This completes the proof of the lemma.

To complete the proof of Theorem 5.11, consider an arbitrary terrain C = (Λ, N).
Let B be the length of the longest neutral interval of C, as defined in Lemma 5.11. There
are two cases to consider.

• If B ≥ 1/(2k), then by clause (1) of Lemma 5.12, there exists a subset of k + 1

vital points {λ0, . . . , λk} ⊆ Λ such that for these points, in Lemma 5.13 gives
s = min{1/(2k), L}. Now, by Lemma 5.13 it can be obtained that for any strategy
A, the idleness is lower bounded by I(A) ≥ min{1/k, 2s} = min{1/k, 2L}.

• If B < 1/(2k), then by clause (2) of Lemma 5.12, there exists a subset of 2k + 1

vital points {λ0, . . . , λ2k} ⊆ Λ that satisfies the assumptions of Lemma 5.14. Thus,
by Lemma 5.14 it can be obtained that for any strategy A, the idleness is lower
bounded by I(A) ≥ 1/k.

In either case, this obtains that the idleness of any strategy patrolling C is at least
min{1/k, 2L}, which proves the claim of the Theorem.

5.4 Computing Optimal Agent Trajectories

Let C = (Λ, N) be the unit segment [0, 1] with vital and neutral regions. Assume without
loss of generality that the vital intervals in C are arranged in a data structure from left
to right as Λi = [bi, ei], for i = 1, 2, . . . , n where b1 = 0, bi ≤ ei < bi+1. Assume that
arithmetic operations involving these values can be performed in unit time.

Recall that in this case the solution is based on the use of lids, where with each
lid a different agent is associated. Firstly, it can be shown that one can test in time
O(min{n, k log n}) whether for a collection of k lids each of length d can cover all vital
points in [0, 1].

A recursive procedure TestLidSize(k, d, p) is proposed that operates on sub-intervals
of the form [p, 1] of C, where k stands for the number of available lids and d ≤ 1 refers
to the uniform length of the lids. The procedure returns value true if all vital points in
C can be covered by the collection of k lids. Otherwise the returned value is false.

Lemma 5.15. For any positive integer k, d > 0, and p ∈ C = (Λ, N), such that p is
vital, procedure TestLidSize(k, d, p) verifies in time O(min{n, k log n}) whether all vital
points in [p, en] can be covered by k lids of length d.

Chapter 5. Optimal Patrolling of Fragmented Boundaries 61

Algorithm 8: TestLidSize(k, d, p): {true,false};
Use the next lid to cover segment [p, p+ d]
if (p+ d) ≥ en then
return true {all vital points are covered}

end if
p∗ = inf{p′ ∈ Λ : p′ > p+ d} {p∗ exists since p+ d < en}
if (k > 1) then
returnTestLidSize(k − 1, d, p∗)

else
return false

end if

Proof. Firstly it is shown that this recursive procedure performs verification correctly.
In the proof induction is used on k. More precisely, it is assumed inductively that for
any 1 ≤ l < k and q ∈ C the call TestLidSize(l, d, q) verifies whether one can cover all
valid points in the interval [q, en] using l lids of length d.

Consider the call TestLidSize(k, d, p) in which the first lid is chosen to cover all vital
points in [p, p+d]. A further recursive call TestLidSize(k−1, d, p∗) verifies whether the
remaining k − 1 lids suffice to cover all valid points in [p∗, en], where p∗ = inf{vital p′ ∈
C = [p + d, en] : p′ > p + d}. By the inductive assumption on k, it is known that this
call provides the correct answer. And if this answer is positive, i.e. the vital points in
[p∗, en] can be covered by k − 1 lids it can be concluded that all vital points in [p, en]

(formed of vital points in [p, p+ d] and [p∗, en]) can be covered by k lids. Alternatively,
if k − 1 lids are insufficient to cover vital points [p∗, en] the extra lid that covers vital
points in [p, p + d] is of no use for valid points in [p∗, en] since the left endpoint of this
lid must be aligned with p. Thus in this case, as expected, the answer computed by
TestLidSize(k, d, p) is also negative.

The time complexity O(min{n, k log n}) is dominated by computation of p∗ at most k
times, see line 3. If p+d is vital and (p+d) 6= ej , for any 1 ≤ j < n, p∗ can be computed
in constant time. Otherwise, one must either use binary search on points b1, . . . , bn to
find p∗ imposing complexity O(k log n) or one can search through this list of points in
time O(n).

To show how to efficiently compute the optimal (minimal) size of the lid, following
lemma is needed.

Lemma 5.16. If L is the optimal (minimal) size of lids, there must be some integer
1 ≤ l ≤ k, such that, L =

ej−bi
l , for some 1 ≤ i ≤ j ≤ n.

Proof. Consider any cover based on lids with the minimal size. In such a cover one
can arrange the lids so that they touch but do not overlap with each other. If such an
arrangement is not possible, one could decrease the length of the lids, contradicting the
minimality of their length. Thus, it can be assumed that in the cover all of the lids are
partitioned into maximal sequences, such that in each sequence the lids are placed tightly

Chapter 5. Optimal Patrolling of Fragmented Boundaries 62

one after another, but different sequences do not share their endpoints. Consider any
such sequence based onm lids. The left endpoint of the leftmost lid in this sequence must
coincide with some bi. Otherwise, this would not be the leftmost lid in the sequence. If
the right endpoint of the rightmost (mth) lid in this sequence coincides with some ej ,
the claim of the lemma follows. Assume, to the contrary, that this is not the case for
any maximal sequence of lids. This means that the last lid in each maximal sequence
overlaps with some neutral region, and consequently, that the length of the lids could be
decreased.

5.4.1 Optimal Lids

The algorithm that computes the optimal size of lids is now presented. Using Lemma 5.16,
one can observe that testing at most O(kn2) values is needed in search for the optimal
size of lids. These values can be sorted in time O(kn2 log n) and later use binary search
to find the optimal value. The number of tests during the binary search is O(log n) and
the cost of each test is O(min{n, k log n}), see Lemma 5.15. Thus the total complexity
is dominated by sorting performed in time O(kn2 log n).

Observation 5.17. The optimal size of lids can be computed in time O(kn2 log n).

The complexity of this algorithm can be further improved if an implicit representation
is used of O(kn2) candidates based on values ej−bi

l , for 1 ≤ i ≤ j ≤ n and 1 ≤ l ≤ k,
and perform search for the optimal size of lids in a more sophisticated fashion. Searches
among are performed on values based on each l separately.

Let M l
i represent implicitly the list of values (ei−bil , ei+1−bi

l , . . . , en−bil), for 1 ≤ i ≤ n.
Each list M l

i contains at most n values. Any value from this list can be calculated on
the basis of the sequence ei, . . . , en, where values e1 through en are stored in an array
of length n. In particular, using this representation one can calculate the value of any
requested element in M l

i in constant time.
The search algorithm operates in rounds on allM l

i s simultaneously. At the beginning
all entries inM l

i are potential candidates for being the optimal length of the lids. During
each round the list of candidates in half of the M l

i s is reduced by half but the remaining
candidates in M l

i always form a sublist of consecutive elements in M l
i . The reduction

process in each round is performed as follows.
Note that the cost of each round, in which there are a ≤ kn non-empty lists M l

i ,
can be bounded by O(a + min{n, k log n}). The bound on the total number of rounds
can now be computed. At the start associate with each list M l

i a potential of log n.
This means that the combined potential of all lists is kn log n. During each round the
potential of half of the lists is reduced by 1. Eventually some lists M l

i become empty
which is reflected in the null potential. Note that until at least kn

2 lists are non-empty
the combined potential is reduced by kn

4 during each round. Thus the number of rounds
with at least kn

2 non-empty lists is limited by (kn log n)/(kn4) = 4 log n, and the total
duration of these rounds is O(log n · (kn + min{n, k log n})). Furthermore, reduce the
number of non-empty lists from kn

2 to nk
4 also in at most (kn2 log n)/(kn8) = 4 log n rounds,

Chapter 5. Optimal Patrolling of Fragmented Boundaries 63

Algorithm 9: FastLidSearch(l, C): {true, false};
repeat
Find the medians ml

i among the remaining candidates in each M l
i

Find the median m∗ among ml
i, for all 1 ≤ i ≤ n

Use procedure TestLidSize to test whether m∗ is long enough
if true then
Reduce by half the content of lists M l

i with m
l
i > m∗

else
Reduce by half the content of lists M l

i with m
l
i < m∗

end if
until only one candidate value is left

and the total duration of these rounds is O(log n · (kn2 + min{n, k log n})). Thus, if one
continues this process until only one element in one list is left, the total time of execution
is bounded by:

O
(∑log(kn)

j=0

(
log n · (kn

2j
+ min{n, k log n})

))
=

= O(kn log n+ log n(log n+ log k) min{n, k log n}) =

= O(kn log n+ k log3 n+ n log k log n) = O(kn log n).

Corollary 5.18. The optimal size of lids can be computed in time O(kn log n).

This approach is also applicable to the combined strategy on the cycle, since, in fact,
the optimal lid size only needs to be computed in the case when the cycle contains some
neutral region Ni of length at least 1/(2k). Then, the problem on the cycle C reduces
to that on the closed segment C \Ni. This provides the following:

Theorem 5.19. Consider k agents patrolling a boundary cycle (resp., segment) with n
vital regions. The agent trajectories which result in minimal idleness can be described
using the combined strategy (resp., the partition strategy). Such a description can be
computed using an O(kn log n) algorithm.

Chapter 6

Other Work

In this chapter some of the other work that has been conducted in relation to the main
body of this project is discussed. Specifically, other models and aspects are looked at
in relation to distributed computing. The first section looks at Parasitic Computation
a method for performing distributed computation tasks using existing web technologies.
The second section discusses the Basic Walk concept and the experimental results ob-
tained through using this method on various graph structures. Finally the third section
shows a summary of the work completed in Graph Visualisation and Analysis during the
production of “GraphDraw”.

Unlike previous chapters, no work in this chapter has yet been published. The bulk
of this work was executed as a side interest by the author and for that reason has been
completed predominately by the author, however, a number of contributions were made
by third parties. Firstly, the formula discovered in §6.1 was discovered during the au-
thors internship at “Institut national de recherche en informatique et en automatique”
(“National Institute for Research in Computer Science and Control”), which took place
at the “Laboratoire Bordelais de Recherche en Informatique” (“Bordeaux Laboratory for
Research in Computer science”) with the assistance of Dr. Ralf Klasing, and Dr. Evan-
gelos Bampas. Further, in §6.2.2, the results in relation to logarithmic cycle length were
discovered with the assistance of Prof. Leszek Gąsieniec, Prof. Evangelos Kranakis, and
Dr. Russell Martin.

Secondly, it should also be noted that while the third section on graph visualisation
and analysis was initiated by the author due to it being a by-product of the Basic
Walk work, this work is no longer continued alone as a number of undergraduate and
postgraduate students have since become involved in contributing new algorithms to
the software. The work completed by the students, so far, is available in [102, 179].
The algorithms utilised in this project are cited throughout the section itself to their
respective authors.

65

Chapter 6. Other Work 66

6.1 Parasitic Computation

In this chapter the work that was performed on parasitic computing is shown. Firstly,
before the model and methodology is shown for this work, the terminology that is used
must be defined.

Definition 6.1 (Parasite - Biology). An organism which lives in or on another organism
(its host) and benefits by deriving nutrients at the other’s expense [161].

A parasite is defined as an entity which exploits the resources upon which the host
has available to it. A point that should be made is that the parasite is not defined as
intentionally trying to harm the host, though this may happen, but instead simply trying
to gain something for free at their expense. In contrast the definition of a computer virus
should be looked at.

Definition 6.2 (Virus - Computing). A program or piece of code which when executed
causes itself to be copied into other locations, and which is therefore capable of propagat-
ing itself within the memory of a computer or across a network, usually with deleterious
results [162].

In this definition the difference between the two terms can be seen, where as a parasite
simply exploits the resources of a host, a virus not only exploits the host but also tries to
spread itself without care for the integrity of the host. This leads to the requirement of a
new definition, a computational parasite, which is defined as a process that exploits the
resources of a host but does not attempt to spread itself or harm the host. Specifically:

Definition 6.3 (Parasitic Computing). The concept of exploiting existing protocols to
unwittingly force a host machine to execute known protocols in a specific manner so as
to inadvertently cause the host to perform computation for a third party with no direct
benefit to the host machine.

6.1.1 Background

In a previous work by the author [51], the Bailey-Borwein-Plouffe Algorithm (BBP) [22]
was implemented in the Java programming language to generate the binary expansions
of the number π for the purpose of experimenting with irrational numbers as a PRNG.
It is within this work that the following observations were made.

Observation 6.4 (Parallelism of n digits). The BBP algorithm is classed as a spigot
algorithm, an algorithm which does not generate a sequence in its entirety or to a given
n but instead only generates the value at the nth position. Therefore n digits of π can
be generated by n processors independently of each other.

Observation 6.5 (Parallelism of the nth digit). To generate a single digit of π requires the
computation of a summation, however, each iteration of the summation is independent
of all other iterations in the summation thus allowing for a single digit to be split across
multiple processors.

Chapter 6. Other Work 67

Through utilising Observation 6.4, it is easy to see that the BBP algorithm can be
used in a distributed setting where by one would like to compute n digits by p processors.
Each processor within p is assigned a digit from {0, . . . , n} to compute until all digits
up to n are assigned and computed. However, assigning work using this method is not
necessarily suitable as the difficulty of computing the nth digit grows in the order of
O(n log n). Due to this there will exist a threshold such that the cost of calculating the
nth digit will become greater than the amount of time that can be feasibly assigned to a
given processor.

To counter this issue, Observation 6.5 becomes of interest. Through utilising Obser-
vation 6.5 a single processor will be able to share its workload with another (or many)
processors until the workload returns to a manageable size. More so these two observa-
tions can be applied into a MapReduce model [19, 68].

Observation 6.4 is of course trivial and in no way surprising, and further Observation
6.5 is also well known and has been previously exploited by the PiHex project [149], a
distributed attempt that found the quadrillionth hexadecimal digit of π, which at the
time was unknown.

The third observation which was made is in how the algorithm is constructed.

Observation 6.6 (Arithmetic of BBP). All operations within BBP are comprised of simple
mathematical operations, using only the operators; addition, subtraction, multiplication,
division, modulus, and exponentiation within R.

Through this observation it becomes possible to realise that the BBP algorithm may
be implemented in most programming languages with relative ease.

As it is now clear that this algorithm is easily parallisable in many programming
languages, it allows for the realisation that this algorithm may map quite easily to a
distributed project. For instance in reviewing some of the most noteworthy projects1

such as the Great Internet Mersenne Prime Search (GIMPS) [135], Folding@Home [186],
and SETI@Home [176], a common issue existing in all of these is that software is required
to be be installed on the user’s system. Something that is not always possible due to
security, general acceptance (due to trust), or possibly many other issues. This leads
to the question, can a distributed project be constructed that does not require the user
to install any third party software and only utilises what is generally assumed to be
available to most Internet connected personal computers.

6.1.2 This work

Due to this an alternative distributed model was considered that would allow for the
BBP algorithm to be implemented in a distributed manner without the requirement of
a third party software installation using the concept of parasitic computation.

1Noteworthy for their mainstream acceptance and consequently high volume of accessible computing
power.

Chapter 6. Other Work 68

One such option to meet this target is to use a language such as Javascript. Javascript
is a scripting language used in web browsers to allow a website to add interactive ac-
tions to its pages. Interestingly, Javascript contains all of the necessary functionality,
and if implemented correctly could mean that a distributed project could be run entirely
through a web browser with no additional software installation. Not only is Javascript
able to perform the necessary arithmetic operations, it is also capable of remotely retriev-
ing or storing data from an external resource using a technique known as Asynchronous
Javascript and XML (AJAX). This would mean that it would be possible to use Javascript
as a client to remotely request a job from a server. Specifically a Javascript process is
able to request a job which would contain the nth digit, calculate it, and then return
the calculated nth digit back to the server for storage, as per the traditional client-server
model. Finally, as Javascript is generally executed without user interaction, this would
allow for the possibility of a user to casually access a web page and unwittingly generate
a digit of π as per the principle of parasitic computation.

To test this model a prototype was built that would allow a user visiting a web page
with any standards compliant web browser, which supports Javascript, to generate a digit
of π. For the model to work, a user must be able to generate an arbitrary digit selected by
the server, be able to return it for storage, and must not be forced to use any extensions,
plugins or such forth. In the prototype it was selected that the prototype would generate
continuously further values of n starting from the 0th digit. This would give sufficient data
to test the model and also experimentally assist in identifying strengths and weakness
of the model. Further it would take a considerably large value of n before a user would
be unable to process a single digit in a reasonable amount of time thus preventing the
need to cater for Observation 6.5. For ethical reasons the only modification from the
previously discussed model that was made was that the user would be required to interact
with the web page to voluntarily choose to contribute towards the project.

Since development of the prototype nearly 8, 000, 000 of the first digits of π have been
generated from approximately 300 unique users from across industry and academia2.
While firstly these results show that the model in itself is feasible, it secondly has lead
to a number of observations.

Observation 6.7 (BBP allows trust). Generating the nth digit of π does not only generate
the nth digit but also the next k digits where k is related to the length of the data type
that is used.

As a consequence of Observation 6.7 if n digits are generated where n > k then it is
possible for the n− k to n− 1 digits preceding n to predict the expected value of the nth

digit, thus allowing for a level of trust to be given to the processor of the nth digit. When
floating point data types are used, some of the digits will be erroneous due to a loss of
precision. Further a weaker form of trust can be given by looking at the n+ k digits, if
the nth digit predicted these values correctly then it is possible to assume that the nth

2IP address logs have shown digits were generated from within a number of university and from high
profile industrial interest such as Intel Corporation.

Chapter 6. Other Work 69

was from a trustworthy source and also correct. For instance see Figure 6.1 which shows
the digits generated for 0 ≤ n ≤ 9.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 2 4 3 f 6 a 8 8 8 5
1 4 3 f 6 a 8 8 8 5 a
2 3 f 6 a 8 8 8 5 a 3
3 f 6 a 8 8 8 5 a 3 0
4 6 a 8 8 8 5 a 3 0 8
5 a 8 8 8 5 a 3 0 8 d
6 8 8 8 5 a 3 0 8 d 3
7 8 8 5 a 3 0 8 d 3 1
8 8 5 a 3 0 8 d 3 1 3
9 5 a 3 0 8 d 3 1 3 1

Table 6.1: The result of generating the first 10 hexadecimal digits of π. Table shows
that with each digit, an additional k = 9 digits are also generated.

A result of this observation is that this algorithm can be safely distributed in an
environment with malicious and or corrupted processors, as long as the allocation of
work is done safely and securely (i.e. no single processor will generate a pair of digits,
n and m where |n − m| ≤ k) so as to prevent a processor gradually manipulating a
sequence of length k. In a technique such as this, trust is a significant issue since all
aspects are open due to the nature of Javascript being that of an interpreted language.
Not only is the source code of the algorithm public (though obfuscation is possible it is
not recommended [155]), all aspects of data transmission are also visible since it runs over
known protocols (Hyper-Text Transport Protocol (HTTP), etc.). The result of this is
that all work must be easily verifiable by the server otherwise any algorithm run through
this method has a serious attack vector which can be exploited. In the BBP algorithm, it
is feasible to verify a task by comparing a processor’s results to that of another processor.
However, if a different algorithm is used to solve a different problem then a new method
of verification is required.

Observation 6.8 (Scaling to NP). Parasitic computing is feasible for many problems in
NP that are suited for the Javascript language.

This leads to the next matter of interest, the application of this technique. While
generating the expansions of π is interesting, it is perhaps not of general interest, and
further more there are faster algorithms [37, 47] that have been implemented that have
long since discovered more digits than this method will be able to handle [30, 114, 115] in
the near future. This leads to the question, can the method be used for other problems.
From the experimental work conducted it becomes feasible to identify potential suitable
problems. Particularly this method is well suited for problems where the cost required
to identify an answer the problem is high, while the cost to verify the correctness of
an answer is low. Specifically, if a large workload can be passed to a processor to
compute and the server is only responsible for verifying that the answer is correct then
the requirement of trust is bypassed as a server can simply reject answers which are
incorrect, and then reassign the same job to a different processor.

Chapter 6. Other Work 70

Finally as the model can now be abstracted to solve any problem that is in NP
(though Observation 6.6 must hold), motivation is now needed as to why a processor
may want to join the grid and donate its computational power. Due to the nature of
this model already running completely on the web and being transparent (as per its
parasitic nature) then an application is perhaps easy to find. Consider for instance the
well known, and unappreciated, but widely used Completely Automated Public Turing
test to tell Computers and Humans Apart (CAPTCHA) that is used to keep robots away
from certain resources [139]. The purpose of a CAPTCHA is to identify a robot from
a human by presenting the user with a question that a computer cannot answer. While
many CAPTCHA’s are successful in this objective, most will eventually become defeated
by a computer as Optical Character Recognition (OCR) algorithms improve and more
computational power becomes available. For the sake of simplicity one could utilise the
technique outlined so far to create a “Computational CAPTCHA”3 in that the human
and robot are not tested, but are instead required to work for access to a resource, similar
to the concept of pricing functions as proposed by Dwork and Naor [75] for e-mail. While
both the user and the robot can pass this test, one may notice it while the other may
not, if each access to a resource requires 30 seconds of computation time, then this would
be unnoticeable to a human as the computation could be completed in the time it takes
to read or write text (e.g. a message board post, registration form, etc.), or further this
could be combined with existing CAPTCHA techniques. However, to a robot this would
require 30 seconds of resources to complete a task that otherwise would take a trivial
amount of time, the result is that a resource, and further, a financial cost is attached
to accessing a resource. Further, as computation improves, the problem difficulty can
increase. The problem that is used could be that of academic or commercial importance
such as what is performed in existing distributed projects, or it could be something such
as BitCoin mining4 [138] to provide a means of requiring work to access a resource and a
financial pay off to the resource owner as an alternative to existing advertisement based
revenue models.

6.2 Basic Walk

As a part of the investigation into the Basic Walk in networks with randomly arranged
ports, one of the main goals was to develop a simple usable software solution that would
provide a platform for the generation of various 2d square grids (e.g. tori) firstly to
gain familiarity with the concept of the basic walk, and secondly to gain more intuition
concerning the structure of cycles formed through the execution of the basic walk concept.
The early direction of the work was to take a more thorough look at [39] to ascertain the
correctness of Brunell’s results and to provide a starting point for this work. However,

3Clearly the naming is inappropriate but this name may emphasise what is being proposed.
4The author has not investigated the feasibility of this specific application, however, it serves as an

example.

Chapter 6. Other Work 71

[39] is by no means itself an in-depth study of the basic walk as both its software solution
and the quality of the observations are limited.

In this work, the length of each cycle and the length of the longest cycle are investi-
gated.

6.2.1 Average cycle length

The initial experiments for the n2 2d square grid produced results consistent with those
results shown in [39], that were first observed by Kosowski et al. [116], particularly
that the average length of all cycles would be approximately 78. However, through the
experiments performed in this work it will be shown that this value converges to 78.6±ε.

To identify this result, the following methodology was performed. For each n where
n = {2, . . . , 2000}, 100 randomised n2 grids were generated, and the basic walk was
performed on each. The purpose of the increasing values of n was to try to identify
whether the average cycle length was the result of a very slow growing function (such as
log log) or was in fact a constant value as originally suggested. Secondly, the purpose of
the 100 iterations per n were performed to dampen noise that could occur in the results
due to the random nature of the model.

Through recording the average number of vertices and edges in all experiments, Fig-
ures 6.1 and 6.1 can be produced. Through these results, not only is the existing observa-
tion made on the average cycle length further refined but a new and previously unknown
constant is discovered.

70.6

71.6

72.6

73.6

74.6

75.6

76.6

77.6

78.6

79.6

80.6

81.6

82.6

83.6

84.6

85.6

86.6

87.6

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

A
ve

ra
ge

 C
yc

le
 L

e
n

gt
h

 -
 E

d
ge

s

Grid size

Average number of edges across all cycles in grids of n²

Median Mean

Figure 6.1: Average number of edges across all cycles in grids of size n2 (100 to 2000)

Observation 6.9 (Average number of edges in a cycle). For any grid n2 where n > 100,
the average number of edges within a cycle is 78.6± ε.
Observation 6.10 (Average number of vertices in a cycle). For any grid n2 where n > 100,
the average number of vertices within a cycle is 41± ε.

Chapter 6. Other Work 72

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

A
ve

ra
ge

 C
yc

le
 L

e
n

gt
h

 -
 V

e
rt

ic
e

s

Grid size

Average number of vertices across all cycles in grids of n²

Median Mean

Figure 6.2: Average number of vertices across all cycles in grids of size n2 (100 to
2000)

As can be seen in Figures 6.1 and 6.1, neither of the results appear to show any
indication that the value grows as n grows, thus indicating that either the rate of growth
is incredibly slow as to be unnoticeable or that in fact the values observed are constants.
The reasoning for these constants is as of yet, unknown.

In addition to the previous two identified constants, similar constants were also ob-
served in both 2d triangular grids and 2d hexagonal grids using the same methodology.
Table 6.2 shows the constants that were identified.

Edges Vertices
Hexagonal 102 62
Square 78.6 41
Triangular 78 32

Table 6.2: Average number of edges and vertices in 2d regular grids. All values are
approximations

6.2.2 Longest cycle length

Through investigating the average cycle length it was observed that for nearly all graphs
their is always a cycle that contains significantly more edges than all other cycles. This
cycle is referred to as the longest cycle.

This cycle is interesting from the perspective of creating new network topologies as it
is hoped its presence will allow data or agents to traverse this large cycle and simply hop
off when they reach their destination. Similarly as to how one would hop onto a motorway
and then hop off when one reaches their destination (or local area of). Particularly this
investigation focuses on the properties in the 2d square grid, however, the longest cycle
has been observed in various real world graphs, sensor networks and various other grids.

Chapter 6. Other Work 73

n2 2d Square Grids

Through experimental analysis of n2 2d square grids the following observations were
made.

Observation 6.11. For any n2 grid of adequate size, there will always exist a longest cycle
that contains approximately 1

2 · |V | of vertices within the graph, and further will also
contain approximately 1

3 · |E| of all edges in the graph.

The empirical results to support Observation 6.11 are shown in Figures 6.3 and 6.4.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Lo
n

ge
st

 C
yc

le
 L

e
n

gt
h

 -
 V

e
rt

ic
e

s

Grid size

Number of vertices in longest cycle in grids of n²

Median Mean

Figure 6.3: Number of vertices in the longest cycle in n2 grids

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Lo
n

ge
st

 C
yc

le
 L

e
n

gt
h

 -
 E

d
ge

s

Grid size

Number of edges in longest cycle in grids of n²

Median Mean

Figure 6.4: Number of edges in the longest cycle in n2 grids

The significance of this observation is that it allows for the consideration of this model
as a means of routing data through a network, while there is wastage within the route,

Chapter 6. Other Work 74

this can be offset by providing more resources to the route, such as for instance how a
motorway network may not be the shortest path between point A and point B, however,
this is offset by the greatly increased capacity and throughput available to the path.

Figure 6.5 shows an example of a grid with a longest cycle which covers most of
the space and any area not covered is a relatively short distance, further reinforcing the
previous suggested application.

Figure 6.5: The basic walk performed on a 1502 2d Square grid. Longest cycle is the
black (or darkest coloured) cycle.

k × n 2d Square Grids

However, this observation does not appear for any grid size, it only occurs (that has so
far been observed) in n2 grids. If a grid of a size k×n where k is a fixed size the longest
cycle appears to be logarithmic in length as can be seen in Figure 6.7. Specifically,

Observation 6.12 (Logarithmic run in k × n girds). For any grid k × n where k 6= n the
longest cycle will be logarithmic in length.

Chapter 6. Other Work 75

Certainly in the case where k = 2, it appears that their may be a good reason for
this to occur, consider that in the 2 × n grid there are 3! possible port arrangements,
disregarding rotations this gives 2 possible port arrangements for any given vertex (ex-
cluding corner vertices). For the sake of simplicity these vertex arrangements can be
labelled arbitrarily as A or B. Further, it can be stated that should their ever exist two
neighbouring vertices with the same port labellings (i.e. A → A or B → B) then these
two vertices will contain the same cycle as it will be connected through those two vertices
(Figure 6.6). Finally, in a sequence of length n, what is longest sub-sequence (or longest
run) that contains solely A or B?

Figure 6.6: An example 2 × n grid, with neighbouring vertices sharing a common
port arrangement

Schilling [157]’s award winning article provides a brief overview as to what could be
expected in a similar situation, the longest run of heads in a series of coin flips. In [157],
the author refers to the “log n law”, in that the longest sub-sequence will be logarithmic
to the number of coins. It is this log n law that is occurring within the k × n grids that
have been tested. However, as of yet it has not been identified at what point the longest
cycle ceases to be logarithmic and becomes linear, or as to why it eventually becomes
linear. Further to this, it has not yet been identified whether any of these properties
exist in similar grids (hexagonal or triangular). What has been observed is that most
graphs do seem to have the property of a longest cycle.

Distance to longest cycle

With the property shown that their exists a longest cycle and it covers a large proportion
of the grid, the next logical question to ask is, from any other cycle, what is the distance
(in terms of number of hops) to get to the longest cycle (i.e. what is the maximum
eccentricity of the largest cycle). In addition to this, can this be applied to any, real
world, graph. To test this graphs from [126] were investigated.

Figure 6.8 shows the longest eccentricity in all5 of the SNAP graphs. The results were
obtained by taking each graph, and firstly mapping each edge to that of an undirected
digraph before secondly reducing them to the largest connected component. After this
100 iterations of assigning random ports to each edge with the basic walk being performed
on each iteration. The average of the longest eccentricities are shown in the chart.

5This excludes the “Memetracker” and “Twitter” graphs as these networks as simply too large for any
resources that are available to the author. Further, it should be noted that the archive of SNAP graphs
may have expanded since this work was completed.

Chapter 6. Other Work 76

y = 291.11ln(x) - 627.88

y = 357.55ln(x) - 757.11

y = 459.41ln(x) - 1112.9

y = 542.91ln(x) - 1314

2000

2500

3000

3500

4000

4500

E
d

g
e

s
in

 l
o

n
g

e
st

 c
y

cl
e

The length of the longest cycle in various KN grids

y = 29.113ln(x) - 38.118

y = 70.196ln(x) - 116.64

y = 113.49ln(x) - 224.71

y = 160ln(x) - 284.26

y = 216.5ln(x) - 399.96

y = 291.11ln(x) - 627.88

0

500

1000

1500

0 2500 5000 7500 10000

E
d

g
e

s
in

 l
o

n
g

e
st

 c
y

cl
e

N

Figure 6.7: Number of edges in the longest cycle in k × n grids

In Figure 6.8 the reader may notice that certain graph types (roadNet-X and web-X)
seem to perform poorly in comparison to the other graphs. While these graphs have been
too large to visualise to see exactly why the eccentricities are so large in comparison to
the others, it is possible to hypothesis a possible reason. The road networks are for an
entire state, and presumably this means there are various small communities (villages,
towns, cities) which are quite dense within the graph, all of which are connected by a few
sparser connections (i.e. motorways, small roads). The side effect of this is the basic walk
may have difficulty escaping a community resulting in several large cycles forming for
each of the clustered areas. Similarly, it is possible a related issue occurs with web graphs
as their is most likely various strongly connected areas within a university website (e.g.
faculties, departments, or research groups), and then only sparse connections between
them. However, this property is interesting in itself as it could suggest that the basic
walk could be used as a method of identifying communities such as how random walks
are currently already used [13, 41, 107].

With exception of the graph types mentioned it seems that in general the eccentricity
of the longest cycle to all other cycles is very low, generally ≤ 3, with even in the
exceptional cases it is possible for the eccentricity to be low as shown by web-NotreDame
and web-Google. This further reinforces the possibility that this methodology could be
used as a routing mechanism.

Chapter 6. Other Work 77

1

1

1

1

1

1

1

10

6.5

12.4

2.1

2

2

2

2

8

3.2

3.1

7.5

p2p Gnutella06

p2p‐Gnutella08

p2p‐Gnutella09

p2p‐Gnutella24

p2p‐Gnutella25

p2p‐Gnutella30

p2p‐Gnutella31

roadNet‐CA

roadNet‐PA

roadNet‐TX

soc‐Epinions1

soc‐sign‐Slashdot081106

soc‐sign‐Slashdot090216

soc‐sign‐Slashdot090221

soc‐sign‐epinions

web‐BerkStan

web‐Google

web‐NotreDame

web‐Stanford

Longest Eccentricity

3.40

2.50

2.40

2.40

2.30

2.40

2.4

2.10

2.7

2.00

2.10

2.50

1.60

1.00

1.90

1

1

1

Amazon0302

Amazon0312

Amazon0505

Amazon0601

CA‐AstroPh

CA‐CondMat

CA‐GrQc

CA‐HepPh

CA‐HepTh

Cit‐HepPh

Cit‐HepTh

Email‐Enron

Email‐EuAll

Wiki‐Vote

WikiTalk

p2p‐Gnutella04

p2p‐Gnutella05

p2p‐Gnutella06

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

Figure 6.8: The average maximum eccentricity of the longest cycle in various SNAP
graphs

6.2.3 Probability of a cycle of given length appearing

To investigate both the longest cycle and the average cycle length, the structure of all
cycles was considered. Specifically, for any n2 grid, how many cycles of length m will

Chapter 6. Other Work 78

approximately appear. If C contains the set of all possible cycles of length m then the
following would answer this:

Pr =
∑
c∈C

2c
s

6ct
(6.1)

Which when multiplied with the size of the grid will provide an approximation of the
number of cycles of length m.

]m = n2 · Pr (6.2)

Recall that each vertex has 6 possible permutations and that further once any vertex
is utilised once, there is only 2 remaining possible permutations for the vertex to be
assigned. Which further leads to cs is defined as the number of vertices which are visited
singularly and ct is defined as the total number of vertices in cycle c where s ≤ t.

However, what should be noted in this formula is that it depends on prior knowledge
of the entire set C for any given m which so far there is no known formula for calculating
these values. Once m becomes greater than 10 it becomes infeasible to calculate these
numbers manually as already for m = 10 their are 120 possible cycles. For this reason
a brute force cycle generator was developed to identify the number of cycles for larger
values. However, despite heavy optimisation the algorithm still had a theoretical cost
of O(m3) thus limiting the results to m ≤ 34. This bound is related to the fact that
the algorithm discovers cycles through the method of entering a vertex and has three
possible exits to explore, thus producing a ternary tree. The full results generated are
available in Appendix A and can be used to feed into Equation 6.1. Table 6.3 contains
the precomputed Pr values, though for better accuracy in large n, re-computing the
values with higher precision may be necessary.

To check the accuracy of the formula, a series of experiments were performed to
provide empirical results as to the the actual distribution of cycles. Table 6.4 shows the
actual number of cycles of length 4 ≤ m ≤ 34 from every n2 grid 100 ≤ n ≤ 1000 at
intervals of 100. For each experiment, 100 iterations were generated and the averages
number of cycles is shown in the table. While, as expected, the formula does not produce
the exact count, however, the margin of error can be seen to be very small providing
some level confidence in the correctness of the formula.

Table 6.5 shows a summary of the types of cycles that were identified. In this table the
cycles are categorised into two types of single, a self-avoiding cycle and a self-intersecting
cycle. A self-avoiding cycle is defined as a cycle that only visits a cycle once, i.e. there
is no point in the cycle when the walk intersects. A self-intersecting cycle is the counter
of this definition, in that it is defined as the set of cycles which contain vertices that are
visited more than once.

Most interesting, yet perhaps not surprising, is that one of these sequences is well
known. While the the total number of cycles appears to match no know sequence, one of
the component parts does. What is referred to here as a self-avoiding cycle is well known

Chapter 6. Other Work 79

m Pr Value
4 0.024691358024691
6 0.0054869684499314
8 0.0039628105471727
10 0.0029805754542837
12 0.0019512984508158
14 0.0014551631005762
16 0.0011655010842754
18 0.00090980297250102
20 0.0007474755606491
22 0.00062426369979494
24 0.00052549119764244
26 0.00045000966789279
28 0.00039062296525159
30 0.0003411190501216
32 0.00030079203258124
34 0.00026736342673897

Table 6.3: The Pr values computed when calculating the chance of a cycle of a given
length m occurring

in the physics and chemistry literature as a Self Avoiding Polygon (SAP) and has been
investigated at least since the 1950’s [172–174] with earlier works in a slightly different
context by Wakefield [171] and Orr [146], in 1951 and 1947 respectively. While the early
works were limited due to the lack of access to modern day computing, the work is still
of interest today and recent works have greatly enhanced the earlier works to identify
higher values of m [49, 108]. However, even still Clisby and Jensen [49] have so far only
managed to reach m = 130 after using 25, 000 CPU hours using 1, 000 processors and
2.5TB of memory. The results of Clisby and Jensen can be found in [164].

Despite so far over 60 years of research in what seems to be a trivial problem, these
values are still only being identified through the means of brute forcing them and future
values can only be predicted using an asymptotic formula. More aptly the opening
paragraph in the preface of the book by Guttmann [101] states the situation most clearly,

The problem of counting the number of self-avoiding polygons on a square
grid, either by their perimeter or their enclosed area, is a problem that is
so easy to state that, at first sight, it seems surprising that it hasn’t been
solved. It is however perhaps the simplest member of a large class of such
problems that have resisted all attempts at their exact solution. These are all
problems that are easy to state and look as if they should be solvable. They
include percolation, in its various forms, the Ising model of ferromagnetism,
polyomino enumeration, Potts models and many others. These models are
of intrinsic interest to mathematicians and mathematical physicists, but can
also be applied to many other areas, including economics, the social sciences,

Chapter 6. Other Work 80

m
A
/E

100
200

300
400

500
600

700
800

900
1000

4
A

242.52
982.39

2,207.99
3,908.50

6,101.62
8,807.17

11,992.94
15,656.31

19,812.84
24,447.41

E
246.91

987.65
2,222.22

3,950.62
6,172.84

8,888.89
12,098.77

15,802.47
20,000.00

24,691.36
6

A
54.57

216.59
491.47

873.71
1,354.65

1,949.62
2,664.65

3,471.15
4,396.02

5,437.47
E

54.87
219.48

493.83
877.91

1,371.74
1,975.31

2,688.61
3,511.66

4,444.44
5,486.97

8
A

39.59
158.42

353.63
629.77

983.79
1,409.39

1,919.26
2,506.16

3,177.84
3,924.30

E
39.63

158.51
356.65

634.05
990.70

1,426.61
1,941.78

2,536.20
3,209.88

3,962.81
10

A
29.06

119.01
268.93

471.13
739.52

1,068.26
1,443.16

1,892.08
2,393.43

2,969.38
E

29.81
119.22

268.25
476.89

745.14
1,073.01

1,460.48
1,907.57

2,414.27
2,980.58

12
A

19.47
77.99

174.31
307.67

481.00
695.21

943.87
1,238.70

1,563.59
1,930.96

E
19.51

78.05
175.62

312.21
487.82

702.47
956.14

1,248.83
1,580.55

1,951.30
14

A
14.70

58.03
130.02

231.99
358.25

518.15
706.40

928.63
1,169.08

1,439.50
E

14.55
58.21

130.96
232.83

363.79
523.86

713.03
931.30

1,178.68
1,455.16

16
A

11.97
45.50

104.38
185.67

288.83
421.91

566.41
741.10

939.49
1,152.48

E
11.66

46.62
104.90

186.48
291.38

419.58
571.10

745.92
944.06

1,165.50
18

A
8.79

35.36
81.36

142.77
226.35

324.84
440.02

577.60
727.79

897.03
E

9.10
36.39

81.88
145.57

227.45
327.53

445.80
582.27

736.94
909.80

20
A

7.32
29.67

66.08
117.13

184.57
268.64

366.73
473.71

600.37
739.74

E
7.47

29.90
67.27

119.60
186.87

269.09
366.26

478.38
605.46

747.48
22

A
5.89

24.29
55.43

98.18
154.06

220.50
302.93

397.98
497.97

616.13
E

6.24
24.97

56.18
99.88

156.07
224.73

305.89
399.53

505.65
624.26

24
A

5.37
21.35

46.59
83.13

130.69
188.57

257.59
332.54

421.16
520.66

E
5.25

21.02
47.29

84.08
131.37

189.18
257.49

336.31
425.65

525.49
26

A
4.48

18.46
39.93

72.89
111.70

160.12
220.20

289.07
362.45

445.75
E

4.50
18.00

40.50
72.00

112.50
162.00

220.50
288.01

364.51
450.01

28
A

3.83
16.17

34.66
62.91

98.01
139.98

188.66
247.94

314.91
385.07

E
3.91

15.62
35.16

62.50
97.66

140.62
191.41

250.00
316.40

390.62
30

A
3.75

13.46
31.18

54.20
84.54

122.32
165.51

215.03
274.48

338.57
E

3.41
13.64

30.70
54.58

85.28
122.80

167.15
218.32

276.31
341.12

32
A

3.32
12.36

27.54
47.44

74.59
106.87

146.77
189.48

240.67
296.21

E
3.01

12.03
27.07

48.13
75.20

108.29
147.39

192.51
243.64

300.79
34

A
3.00

11.17
24.48

43.16
66.04

98.14
132.69

169.61
215.17

263.24
E

2.67
10.69

24.06
42.78

66.84
96.25

131.01
171.11

216.56
267.36

T
a
ble

6.4:
T
able

show
ing

the
exact

num
ber

of
cycles

of
length

m
seen

em
pirically

(A
),

and
the

num
ber

of
cycles

of
length

m
expected

(E
)
to

be
seen.

A
ctualdata

is
averaged

over
100

experim
ents.

Chapter 6. Other Work 81

m Total Cycles Self-Avoiding Cycles Self-Intersecting Cycles
4 2 4 0
6 4 4 0
8 22 14 8
10 120 56 64
12 624 248 376
14 3,600 1,176 2,424
16 21,388 5,876 15,512
18 129,284 30,536 98,748
20 803,296 163,652 639,644
22 5,075,292 899,144 4,176,148
24 32,542,624 5,042,540 27,500,084
26 211,437,956 28,770,752 182,667,204
28 1,389,206,920 166,580,848 1,222,626,072
30 9,217,403,992 976,769,056 8,240,634,936
32 61,693,656,876 5,790,865,320 55,902,791,556
34 416,145,092,064 34,665,748,728 381,479,343,336

Table 6.5: Number of self avoiding cycle and self intersecting cycles of size m where
4 ≤ m ≤ 34

the biological sciences and even to traffic models. It is the widespread applica-
bility of these models to interesting phenomena that makes them so deserving
of our attention. [101, pg. vii]

While the results so far do not show a formula cannot exist, it merely and rather
optimistically has not been found yet. Further, should a formula be found how does this
affect the problem in this work, such as could it through some manipulation allow for
counting the self-intersecting cycles of lengthm and thus, the combination of the two, the
counting of all possible cycles of length m. Also, vice versa, could a formula that counts
all possible cycles help in solving the problem of calculating all possible self-avoiding
cycles and thus solve the problem for SAP’s that have great importance to other fields.

6.3 Graph Visualisation and Analysis

Another direction that has been looked at through the duration of this project is that
of graph visualisation. Through the process of investigating the basic walk the problem
of visualising graphs was considered to assist in identifying the correctness of the im-
plemented algorithm and the analysing of the results. Due to the nature of the work
with the basic walk exploring large graphs, the visualiser had to be capable of handling
graphs of at least one million vertices.

The visualiser was built in Java with the intention of visualising specific graphs such
as the 2d grid. However, through peer feedback and from general interest the visualiser
was quickly expanded to allow for drawing of various graph topologies (i.e. 2d triangular
grid, complete graph, wheel graph, and others.) as well as allowing for graphs to be
manually drawn through the GUI to allow for a user to draw any graph that they had

Chapter 6. Other Work 82

interest in. Further to this to allow for experimentation with real datasets a number
of common data formats were added to allow for importing from the SNAP data set
repository [126], Matrix Market [33], as well as more general formats such as Trivial
Graph Format [185] and Graph Modelling Language [105].

With the addition of the data import formats it started to become more common
to test real data which lead to the importance of identifying methods of visualising the
data when no location information was present. In §6.3.1 some of the methods used for
visualisation are discussed. Further once a good visualisation was possible it became
necessary to analyse the graphs through the use of algorithms, a selection of algorithms
used for this are discussed in §6.3.2. Through developing a good implementation of
these two methods the software attracted industrial interest from Dollywagon Media
Services Ltd which utilised these tools in the “Efficient Harvesting of Social Network
Data”; a joint partnership between industry and the University of Liverpool. Further
software has also attracted interest from Biological research and is currently central to the
project, “Efficient Biological Networks Discovery and Analysis” [85], which is a Natural
Environment Research Council funded project between the Department of Computer
Science and the Institute of Integrative Biology, both of the University of Liverpool.

In the following sections discussions on the steps taken to reach the functionality
that was of interest to Dollywagon and its clientèle are presented, and discussions on
the experimental work conducted. Specifically as per the project title, interest branched
over to looking specifically at social network data.

6.3.1 Graph Visualisation

While analysis of a graph can be performed without ever having a visual representation
of it, it can be beneficial to see exactly what the results are indicating just as how a
chart can reveal more than a table alone can.

One of the key interests in graph visualisation is in identifying methods of distributing
the vertices within the viewing space such that the vertices do not overlap or obscure
each other and also the number of edges which cross over each other are minimised.
For instance, simply positioning vertices through the use of a PRNG could be tweaked
to allow for the property of non-overlapping vertices to be met, however, it would be
incredibly difficult and time consuming to position the vertices randomly with minimal
edge crossings. However, deterministic algorithms can be the most suitable in some
scenarios where the structure is easily defined, such as for example in a bipartite graphs,
complete graphs, or tree structures. Though even still, for any arbitrary graph structural
information alone may not provide any intuition as to how to position the data.

For instance, in data such as social network data it is common to find that there
exists distinct groupings of vertices (cliques) that are separated by various bridging ver-
tices, for example as can be seen in Figure 6.9. This leads to the issue that while a
simple deterministic method is unsuitable, and further still randomised methods are also
completely unsuited. This leads to the need for a method that will group the cluster but

Chapter 6. Other Work 83

Figure 6.9: The combined Facebook friend relation data of several PhD students from
the University of Liverpool Computer Science department.

separate each cluster from each other while still preserving locality. A common solution
which was looked at is that of force directed layouts. This type of algorithm first came to
prominence thanks to the work of Eades [76] though was later adapted and improved by
Fruchterman and Reingold [93]. Since then there have been a number of papers on the
topic providing a number of improvements in the complexity through different methods,
for example: Holten and van Wijk [106] discusses the concept of edge bundling where
by groupings of vertices are identified and then collapsed to reduce edge calculations
and paths, Quigley [151, 152] considers grouping vertices by their location and then per-
forming force direction on the groups to reduce the complexity dramatically so that it
depends less on the number of vertices and more on the number groupings identified
using a method such as quad trees.

However, due to time constraints this work adopted the simple, yet very effective
Fruchterman and Reingold Algorithm, which is reproduced in Algorithm 10. Though

Chapter 6. Other Work 84

while this algorithm is considerably simplistic in comparison to its successors, it provides
a very good starting point for understanding how these algorithms work and why they
are so interesting. The objective of these algorithms is to separate all vertices by some
distance using the principle of Coulomb’s inverse-square law to repulse each vertex from
each other vertex so that no pair of vertices will be located near any other vertex. Sec-
ondly the algorithm combines this with the use of Hooke’s Law to control the attraction
of vertices. That being that any pair of connected vertices are attracted to each other at
a force proportional to their distance. The resulting combination of these two techniques
is that connected vertices will be located close to each other, and that unconnected ver-
tices should be located at some distance, with the fortunate property that edge crossings
will become minimised. In a social network the resulting graph should clearly show
communities due to their high connectivity while at the same time ensuring that each
community is placed in a position that reflects the connectivity between clusters, as can
be seen in Figure 6.9.

Algorithm 10: ForceDirectedLayout(V , E)
for all v ∈ V do
for all u ∈ V do
v = v − u

end for
end for
for all v ∈ V do
for all u ∈ ∆ v do
v = v + u

end for
end for
for all v ∈ V do
v = displacementv

end for

This algorithm proved to be highly effective for the needs of this work and also for
the third parties that had taken interest in the software. While faster algorithms will
of course permit for large datasets to be rendered, this algorithm, and specifically the
slightly modified version of it which reduced the run-time by only performing V 2 repulsion
loop when vertices were within close distance, permitted the rendering of graphs with
up to 10,000 vertices to be rendered in a reasonable amount of time. For most of the
use cases where a rendering tends to be required, a minimal amount of vertices that
can be quickly looked at and understood is critical so, of which 10,000 exceeds this
minimal limit by an order of magnitude. While inevitably there will be use cases where
higher numbers of vertices would be interesting to see, and this algorithm was shown
to successfully handle greater numbers, the time required to generate makes most cases
infeasible and better algorithms would need to be adopted.

Finally what also should be mentioned in terms of visualisation, is that through
good programming practice, real time interactivity with large graphs is possible with

Chapter 6. Other Work 85

GraphDraw. Specifically the software makes extensive use of high quality algorithms that
require linear or logarithmic time complexity to minimise processing of graph elements
that are not currently in the users view ports and makes extensive use of indexing to
enable for interactivity with single elements. The result of this is that not only can a
user visualise a reasonably or very large graph in a way that is appealing and intuitive,
but also quickly interactive with the viewing area and focus on single elements without
a noticeable delay.

6.3.2 Graph Analysis

The high quality of the algorithms that are core to GraphDraw’s ability to render, index
and search the loaded GraphDraw permit the user to analyse the graph with ease. In
addition to visualising the graph, analysing the graph was also of interest to try to
identify points of interest that should be looked at more thoroughly. To do this methods
of analysing a graph using algorithms was considered. Specifically, GraphDraw currently
implements the Page Rank algorithm [38], Betweenness Centrality algorithm [36, 91],
Closeness Centrality [36, 153], Clustering Coefficient [175] and various other less common
algorithms.

In Figure 6.9, one of the aforementioned algorithms, betweenness centrality, has been
calculated for the graph, and then applied as the scaling for the vertices. Through having
the visual component and also being able to calculate these metrics on the graph it is
possible to easily see which vertices within the graph are significant for some reason.
With combination with the work completed in the prior section this allows an end user
to immediately focus on a significant vertex and discover its properties or the properties
of its neighbours to identify why a given vertex might be significant. This has become
greatly important to the users of GraphDraw as it has allowed the industrial partners to
use the software as a means of discovering significant users or organisations that are in
a social network, and in the biological context it has allowed the biologists to identify
genes, proteins, or similar, to be identified that seem to be significant for some reason
to the remainder of the network.

What has been learned from working with and applying these algorithms to hundreds
of networks through the duration of this project is that there is no ’one size fits all’ algo-
rithm, and still, little is known about what an algorithm is actually discovering. While
it is fully understood what each algorithm is discovering in a theoretical sense, how this
applies to specific contexts is a completely different matter. For example, two algorithms
can produce vastly different results, however, which one is more interesting and why.
In Figure 6.10 and Figure 6.11 are two different algorithms that have been executed on
a graph, and then applied as the vertex scaling. This data was collected during the
retirement of Pope Benedict XVI and election of Pope Francis from the Twitter social
network. What this graph shows is the interactivity between different Twitter users, each
vertex is a Twitter user and any pair of vertices has an edge between them if the two

Chapter 6. Other Work 86

users have interacted in some way such as through responding to the other persons mes-
sage, retweeting it (forwarding it) or through simply messaging that user in one of their
own messages. Firstly, when using the betweenness centrality algorithm some interesting
users become highlighted such as the “Catholic News Svc”, “Opinionated Catholic”, and
“A Radical Catholic”, as well as a number of perhaps unclear users such as “Rachel Zoll”,
“James Toups”, “lukecoppen”, and “Joshua McElwee”. Through further investigation of
these users, it can be learned that they are all journalists and religious correspondents or
editors for media organisations, such the Associated Press, The Catholic Herald and the
National Catholic Reporter. The only exception to this is James Toups who is neither
and simply a prominent catholic follower who has a very large following.

Now contrast this with the Page Rank algorithm which seems to discover more fa-
miliar names such as “Pope Francis” himself, “The Assosicated Press”, “Catholic News
Svc”, “Reuters”, “Huffington Post” and many others. Immediately it is quite clear to see
that this algorithm is discovering a different set of users as being significant and in par-
ticular is discovering the “big media” agencies that millions of users follow and regularly
communicate back with.

What this seems to show is that while the Betweenness Centrality algorithm seems
to be discovering the information creators, they do not have enough direct influence or
popularity to be directly noticed by the general network. However, it is these very people
who are the content producers for the big media groups that Page Rank discovers. Both
of these groups are interesting for different reasons and this shows different algorithms
must be utilised depending on the specific goal of the analysis. If the content producers
and the bottle necks of the network are required, then in this context it appears to be
Betweenness Centrality that should be used, however, if it is the users that are actually
influencing and interacting with the bulk of the network, then Page Rank should be
utilised.

Finally, in closing to this section, it should be noted that none of the algorithms
implemented and deployed have ever realistically been designed or considered for the
uses in which they are now being used for and for that reason it is perhaps still too
early to fully understand exactly what they are discovering in the new and unexpected
types of data that is being experimented with. However, what can be commented on
by the author is that similar results for these algorithms were seen in various different
data sets and this could perhaps indicate that there is a need to fully experiment with
these algorithms in a supervised manner and try to fully understand exactly what type
of significant data these algorithms are discovering.

Chapter 6. Other Work 87

Figure 6.10: A network comprising of interactions between Twitter users interested
in the Papal elections. Vertices are scaled by Betweenness Centrality.

Figure 6.11: A network comprising of interactions between Twitter users interested
in the Papal elections. Vertices are scaled by Page Rank.

Chapter 7

Conclusion

7.1 Conclusion and Further Work

In this thesis a number of solutions were presented for problems within the general area
of the Rendezvous Problem and Network Patrolling. Specifically the algorithms present
new time efficient solutions that are either the current, as of writing, state of the art, or
have been superseded during the period of the production of this work by newer work
that builds on the results in this thesis.

In Chapter 3, synchronous rendezvous was discussed in various environments. Firstly
an algorithm was shown that would allow rendezvous to occur for two agents in the
infinite line in linear time. Later the problem of rendezvous in trees was shown, to solve
this firstly an algorithm for permitting rendezvous in O(d) was shown for the half-line,
where one side of the line is fixed at the origin and the other side extends towards ∞.
In this structure the agents meet by traversing the structure in one direction, towards
the origin. The algorithm shown to achieve this is then further extended to allow for
rendezvous to be performed in linear time in tree structures. Finally Chapter 3 discusses
higher dimensional space and arbitrary graphs; it is shown that in this environment
rendezvous can be achieved in linear time through the partitioning of the space and
establishing a route between meeting points within the partitions.

In future work in synchronous rendezvous there are a number of potential directions
that can be taken. Firstly, the algorithms that were identified, while linear and near
optimal, were affected by some small constant. It would be interesting to see if more
efficient algorithms can be produced to reduce these constants further. Further, while a
number of structures are considered, other specific structures could be considered.

In Chapter 4, asynchronous rendezvous was considered and an algorithm was shown
that would permit rendezvous to occur in a near optimal time for 2d spaces. This
algorithm showcased the concept of space covering sequences in regards to the rendezvous
problem.

Since completed, this work was superseded by [25] which managed to apply the
same techniques developed in the results produced for this thesis but further reduce the
overall cost of rendezvous to O(d2 polylog d) by producing a more efficient space covering

89

Chapter 7. Conclusion 90

sequence through pruning of the hierarchical tree structure . However, while this work
does provide a near optimal result, further improvements could possibly still be made.
Also, both of these works focused solely on the 2d space which further leads to the future
direction in applying these techniques (or altered techniques) to other environments in
hope of also finding similar optimal solutions.

In Chapter 5, a slightly different problem was introduced though still in a similar
direction as the previous chapters, and that is the topic of network patrolling. In this
chapter, an algorithm that will discover a traversal sequence for k agents that minimises
the amount of time in which a vital part of the ring is idle. In this work an algorithm was
discovered that requires the time complexity of O(kn log n) to discover minimal idleness
trajectories, of which this cost is optimal. As per the prior chapters, once again in this
chapter, as a direction for possible future work the methodologies developed in this work
should be considered for other environments to see if this or similar algorithms can be
applied. For instance, one possible avenue is that of the infinite line, while for a finite k
agents it would be impossible for an infinite line to be solvable (as an agent beginning
a walk would never return, and thus never patrol), however, fixing some aspects of the
infinite line may allow for some solutions to be developed.

Overall, in Chapter 3, 4, and 5 the algorithms shown are presented primarily with
rendezvous for two agents in mind, however, it is reasonable to see that some of these
algorithms may extend to three or more agents with either no or minor modifications.
As no discussion, or proofs are provided in this work for more than two agents, it would
be the responsibility of a future work to develop on this idea and see if the proofs in this
thesis can be extended or whether completely new algorithms are required to be found.

Finally Chapter 6, three topics were discussed by the author in relation to experi-
mental and exploratory works.

Firstly the topic of parasitic computing was discussed. This topic showcased a model
and opened discussions for possible applications that could be developed using this model,
such as large scale computation of data through, revenue generation and security for on-
line resources. An application of this model was submitted and accepted by the Biotech-
nology and Biological Sciences Research Council special funding call “Crowd sourcing
for the biological sciences”. Specifically this project will allow for the construction of a
system that will provide a potentially massive amount of computational power for the
Human Proteome Project.

The second topic discussed was that of investigations into the basic walk method.
This work confirmed previous weaker works and discovered new phenomena within the
model. Further this work lead to the discovery of a new formula for calculating the
probable number of cycles within a grid and also discovered all possible cycles that can
be constructed in n2 grids up to a length of 34, the highest as of writing. Also, in this work
experimental results hinted possible models that could be built using this concept due
to the low eccentricity of cycles. In future work, there are number of possible directions
such as proving the reasoning for the discovered phenomena of longest and average cycle

Chapter 7. Conclusion 91

length, discovering better algorithms for discovering all possible cycles of a given length
and further testing whether the model can be used in the application of network routing
and in the application of boundary discovery.

Finally, the software developed during this project “GraphDraw” was showcased.
The work in this project has built on many established algorithms and made them all
available in one place. Since GraphDraw’s initial development it has gained academic
and industrial interest due to its ability to process large data and due to the quality of its
implementation. This project has great potential and is already receiving both financial
support (through the Natural Environment Research Council and through industry) as
well additional development support with a number of bachelor, master and doctoral
level projects being launched that will continue to add more algorithms for visualising
data, analysing data and integrating the software with other tools. While at the time of
writing, no algorithms have been developed specifically by the author or those involved
in the project but if support continues at the current rate it would come as no surprise to
the author that this project will directly lead to assisting in discovering new algorithms
for computer scientists and provide a means in which other fields discover new results
within their own data.

Appendix A

Summary of all cycles up to length
34

A.1 Definitions

This chapter contains all of the results generated for cycles n = {4, . . . , 34}.
To read the following tables, each section contains the result for a given n. Each row

defines a cycle classification based on the number of vertices repeated within it’s cycle.
Specifically, for any cycle c the vertices within it can be identified as vx where x is the
number of times that vertex is visited by the same cycle. A vertex that is contained
within a cycle can visited a minimum of one to a maximum of four when the basic walk
is ran on the 2D Grid.

To read a row, the frequency column states how many cycles of that classification
exists, the total vertices column defines how many vertices were in that given cycle and
then cx shows the the frequency of cycles with that type. For example n = 8 has a cycle
with 7 total vertices of which one of the vertices is crossed once, there are eight cycles of
this type. The Pr value is calculated from performing the summation in Equation 6.1
using the data below.

Finally, as of writing, these tables are believed to be the only attempt at generating
these values, and consequently so far contain the largest n value.

A.2 Cycle length 4

Frequency Total Vertices v1 v2 v3 v4

2 4 4 0 0 0

Table A.1: Cycle length 4. 2 discovered. Pr = 0.024691358024691

A.3 Cycle length 6

93

Appendix A. Summary of all cycles up to length 34 94

Frequency Total Vertices v1 v2 v3 v4

4 6 6 0 0 0

Table A.2: Cycle length 6. 4 discovered. Pr = 0.0054869684499314

A.4 Cycle length 8

Frequency Total Vertices v1 v2 v3 v4

8 7 6 1 0 0
14 8 8 0 0 0

Table A.3: Cycle length 8. 22 discovered. Pr = 0.0039628105471727

A.5 Cycle length 10

Frequency Total Vertices v1 v2 v3 v4

32 8 6 2 0 0
32 9 8 1 0 0
56 10 10 0 0 0

Table A.4: Cycle length 10. 120 discovered. Pr = 0.0029805754542837

A.6 Cycle length 12

Frequency Total Vertices v1 v2 v3 v4

8 8 5 2 1 0
208 10 8 2 0 0
160 11 10 1 0 0
248 12 12 0 0 0

Table A.5: Cycle length 12. 624 discovered. Pr = 0.0019512984508158

A.7 Cycle length 14

Frequency Total Vertices v1 v2 v3 v4

64 10 6 4 0 0
48 10 7 2 1 0
352 11 8 3 0 0
1128 12 10 2 0 0
832 13 12 1 0 0
1176 14 14 0 0 0

Appendix A. Summary of all cycles up to length 34 95

Table A.6: Cycle length 14. 3,600 discovered. Pr = 0.0014551631005762

A.8 Cycle length 16

Frequency Total Vertices v1 v2 v3 v4

32 10 5 4 1 0
64 11 6 5 0 0
144 11 7 3 1 0
1104 12 8 4 0 0
432 12 9 2 1 0
3008 13 10 3 0 0
6248 14 12 2 0 0
4480 15 14 1 0 0
5876 16 16 0 0 0

Table A.7: Cycle length 16. 21,388 discovered. Pr = 0.0011655010842754

A.9 Cycle length 18

Frequency Total Vertices v1 v2 v3 v4

32 11 5 5 1 0
20 12 6 6 0 0
640 12 7 4 1 0
128 12 8 2 2 0
1472 13 8 5 0 0
1152 13 9 3 1 0
11600 14 10 4 0 0
2480 14 11 2 1 0
20928 15 12 3 0 0
35496 16 14 2 0 0
24800 17 16 1 0 0
30536 18 18 0 0 0

Table A.8: Cycle length 18. 129,284 discovered. Pr = 0.00090980297250102

A.10 Cycle length 20

Frequency Total Vertices v1 v2 v3 v4

48 11 5 4 1 1
64 12 5 6 1 0

Appendix A. Summary of all cycles up to length 34 96

80 12 6 4 2 0
48 12 7 2 3 0
12 12 8 0 4 0
512 13 6 7 0 0
864 13 7 5 1 0
128 13 8 3 2 0
4104 14 8 6 0 0
7888 14 9 4 1 0
896 14 10 2 2 0

25160 15 10 5 0 0
10208 15 11 3 1 0
91600 16 12 4 0 0
13728 16 13 2 1 0
137376 17 14 3 0 0
205984 18 16 2 0 0
140944 19 18 1 0 0
163652 20 20 0 0 0

Table A.9: Cycle length 20. 803,296 discovered. Pr = 0.0007474755606491

A.11 Cycle length 22

Frequency Total Vertices v1 v2 v3 v4

16 12 4 6 2 0
448 13 6 5 2 0
384 13 7 4 1 1
608 14 6 8 0 0
3760 14 7 6 1 0
2920 14 8 4 2 0
544 14 9 2 3 0
48 14 10 0 4 0

8992 15 8 7 0 0
20256 15 9 5 1 0
3456 15 10 3 2 0
72364 16 10 6 0 0
69920 16 11 4 1 0
5696 16 12 2 2 0

260784 17 12 5 0 0
70464 17 13 3 1 0
657232 18 14 4 0 0
75552 18 15 2 1 0
887008 19 16 3 0 0

Appendix A. Summary of all cycles up to length 34 97

1217040 20 18 2 0 0
818656 21 20 1 0 0
899144 22 22 0 0 0

Table A.10: Cycle length 22. 5,075,292 discovered. Pr = 0.00062426369979494

A.12 Cycle length 24

Frequency Total Vertices v1 v2 v3 v4

96 13 5 6 1 1
256 14 5 8 1 0
648 14 6 6 2 0
192 14 6 7 0 1
832 14 7 4 3 0
480 14 7 5 1 1
96 14 8 2 4 0
128 15 6 9 0 0
4488 15 7 7 1 0
9448 15 8 5 2 0
352 15 8 6 0 1
1824 15 9 3 3 0
2064 15 9 4 1 1
192 15 10 1 4 0

20896 16 8 8 0 0
67312 16 9 6 1 0
35788 16 10 4 2 0
1216 16 10 5 0 1
4848 16 11 2 3 0
216 16 12 0 4 0

159776 17 10 7 0 0
229664 17 11 5 1 0
29696 17 12 3 2 0
208 17 12 4 0 1

870272 18 12 6 0 0
538288 18 13 4 1 0
33856 18 14 2 2 0

2232408 19 14 5 0 0
457296 19 15 3 1 0
4528464 20 16 4 0 0
420128 20 17 2 1 0
5698144 21 18 3 0 0
7308944 22 20 2 0 0

Appendix A. Summary of all cycles up to length 34 98

4841568 23 22 1 0 0
5042540 24 24 0 0 0

Table A.11: Cycle length 24. 32,542,624 discovered. Pr = 0.00052549119764244

A.13 Cycle length 26

Frequency Total Vertices v1 v2 v3 v4

368 14 5 6 3 0
192 14 5 7 1 1
48 14 6 4 4 0
160 15 5 9 1 0
1248 15 6 7 2 0
48 15 6 8 0 1

2048 15 7 5 3 0
2976 15 7 6 1 1
320 15 8 3 4 0
1536 15 8 4 2 1
4048 16 6 10 0 0
15600 16 7 8 1 0
31088 16 8 6 2 0
2688 16 8 7 0 1
16704 16 9 4 3 0
7808 16 9 5 1 1
3200 16 10 2 4 0
42368 17 8 9 0 0
160496 17 9 7 1 0
126784 17 10 5 2 0
6176 17 10 6 0 1
19776 17 11 3 3 0
11344 17 11 4 1 1
1152 17 12 1 4 0

446472 18 10 8 0 0
941952 18 11 6 1 0
319856 18 12 4 2 0
9888 18 12 5 0 1
31808 18 13 2 3 0
1056 18 14 0 4 0

2276928 19 12 7 0 0
2129664 19 13 5 1 0
216256 19 14 3 2 0
1984 19 14 4 0 1

Appendix A. Summary of all cycles up to length 34 99

8272892 20 14 6 0 0
3765808 20 15 4 1 0
198416 20 16 2 2 0

17417168 21 16 5 0 0
2887488 21 17 3 1 0
30702016 22 18 4 0 0
2373600 22 19 2 1 0
36632128 23 20 3 0 0
44516352 24 22 2 0 0
29067296 25 24 1 0 0
28770752 26 26 0 0 0

Table A.12: Cycle length 26. 211,437,956 discovered. Pr = 0.00045000966789279

A.14 Cycle length 28

Frequency Total Vertices v1 v2 v3 v4

288 14 5 6 1 2
336 14 6 4 2 2
8 15 4 9 2 0

208 15 5 7 3 0
192 15 5 8 1 1
352 15 6 6 2 1
864 15 7 4 3 1
576 15 8 2 4 1
172 16 4 12 0 0
432 16 5 10 1 0
6656 16 6 8 2 0
224 16 6 9 0 1

13800 16 7 6 3 0
4672 16 7 7 1 1
4720 16 8 4 4 0
2816 16 8 5 2 1
352 16 9 2 5 0
2752 17 6 11 0 0
27072 17 7 9 1 0
85728 17 8 7 2 0
3600 17 8 8 0 1
66368 17 9 5 3 0
40928 17 9 6 1 1
6528 17 10 3 4 0
14912 17 10 4 2 1

Appendix A. Summary of all cycles up to length 34 100

120336 18 8 10 0 0
487248 18 9 8 1 0
636720 18 10 6 2 0
29248 18 10 7 0 1
210144 18 11 4 3 0
62496 18 11 5 1 1
30176 18 12 2 4 0

1041264 19 10 9 0 0
2722616 19 11 7 1 0
1393600 19 12 5 2 0

72080 19 12 6 0 1
172416 19 13 3 3 0
65328 19 13 4 1 1
7456 19 14 1 4 0

6650456 20 12 8 0 0
9747248 20 13 6 1 0
2418280 20 14 4 2 0

71520 20 14 5 0 1
189072 20 15 2 3 0
5524 20 16 0 4 0

25439608 21 14 7 0 0
17331520 21 15 5 1 0
1459776 21 16 3 2 0

16528 21 16 4 0 1
70257616 22 16 6 0 0
25244848 22 17 4 1 0
1165824 22 18 2 2 0

129371272 23 18 5 0 0
18040832 23 19 3 1 0

206663728 24 20 4 0 0
13639104 24 21 2 1 0

236392128 25 22 3 0 0
274448352 26 24 2 0 0
176737152 27 26 1 0 0
166580848 28 28 0 0 0

Table A.13: Cycle length 28. 1,389,206,920 discovered. Pr = 0.00039062296525159

A.15 Cycle length 30

Frequency Total Vertices v1 v2 v3 v4

Appendix A. Summary of all cycles up to length 34 101

96 15 4 8 2 1
240 16 4 10 2 0
448 16 5 8 3 0
176 16 5 9 1 1
2080 16 6 6 4 0
2688 16 6 7 2 1
80 16 6 8 0 2
640 16 7 4 5 0
2432 16 7 5 3 1
2880 16 7 6 1 2
2688 16 8 4 2 2
960 17 5 11 1 0
9280 17 6 9 2 0
960 17 6 10 0 1

24448 17 7 7 3 0
13232 17 7 8 1 1
17504 17 8 5 4 0
24048 17 8 6 2 1
1792 17 9 3 5 0
8992 17 9 4 3 1
3456 17 10 2 4 1
7972 18 6 12 0 0
58624 18 7 10 1 0
274912 18 8 8 2 0
18880 18 8 9 0 1
325040 18 9 6 3 0
103648 18 9 7 1 1
118864 18 10 4 4 0
61504 18 10 5 2 1
2304 18 10 6 0 2
5952 18 11 2 5 0
768 18 12 0 6 0

203136 19 8 11 0 0
1036128 19 9 9 1 0
1894560 19 10 7 2 0
96160 19 10 8 0 1
959008 19 11 5 3 0
394496 19 11 6 1 1
109184 19 12 3 4 0
94528 19 12 4 2 1

2745964 20 10 10 0 0

Appendix A. Summary of all cycles up to length 34 102

8846944 20 11 8 1 0
7612352 20 12 6 2 0
362784 20 12 7 0 1
1904736 20 13 4 3 0
442848 20 13 5 1 1
205376 20 14 2 4 0

17734832 21 12 9 0 0
33581008 21 13 7 1 0
12444416 21 14 5 2 0
577728 21 14 6 0 1
1265568 21 15 3 3 0
383632 21 15 4 1 1
48512 21 16 1 4 0

81268048 22 14 8 0 0
87056368 22 15 6 1 0
16914616 22 16 4 2 0
475168 22 16 5 0 1
1094912 22 17 2 3 0
31024 22 18 0 4 0

242996208 23 16 7 0 0
130570784 23 17 5 1 0
9517184 23 18 3 2 0
127744 23 18 4 0 1

559207432 24 18 6 0 0
165901504 24 19 4 1 0
6915008 24 20 2 2 0

935509168 25 20 5 0 0
112514336 25 21 3 1 0
1387758112 26 22 4 0 0
79630368 26 23 2 1 0

1532949952 27 24 3 0 0
1709896120 28 26 2 0 0
1086259392 29 28 1 0 0
976769056 30 30 0 0 0

Table A.14: Cycle length 30. 9,217,403,992 discovered. Pr = 0.0003411190501216

A.16 Cycle length 32

Frequency Total Vertices v1 v2 v3 v4

232 16 4 8 4 0
128 16 4 9 2 1

Appendix A. Summary of all cycles up to length 34 103

576 16 5 8 1 2
448 16 6 6 2 2
1056 17 5 9 3 0
960 17 5 10 1 1
6080 17 6 7 4 0
5200 17 6 8 2 1
1152 17 6 9 0 2
320 17 7 5 5 0

11200 17 7 6 3 1
3488 17 7 7 1 2
8704 17 8 4 4 1
4032 17 8 5 2 2
3984 18 5 12 1 0
25632 18 6 10 2 0
800 18 6 11 0 1

93664 18 7 8 3 0
25328 18 7 9 1 1
121456 18 8 6 4 0
84896 18 8 7 2 1
1936 18 8 8 0 2
32992 18 9 4 5 0
64704 18 9 5 3 1
18016 18 9 6 1 2
2432 18 10 2 6 0
9216 18 10 3 4 1
14112 18 10 4 2 2
21984 19 6 13 0 0
158400 19 7 11 1 0
624704 19 8 9 2 0
39296 19 8 10 0 1
970448 19 9 7 3 0
351216 19 9 8 1 1
442416 19 10 5 4 0
454976 19 10 6 2 1
4928 19 10 7 0 2
44784 19 11 3 5 0
106272 19 11 4 3 1
16704 19 12 2 4 1
504380 20 8 12 0 0
2949392 20 9 10 1 0
6743168 20 10 8 2 0

Appendix A. Summary of all cycles up to length 34 104

371456 20 10 9 0 1
5062616 20 11 6 3 0
1488384 20 11 7 1 1
1354240 20 12 4 4 0
645120 20 12 5 2 1
20896 20 12 6 0 2
67584 20 13 2 5 0
13568 20 13 3 3 1
5376 20 14 0 6 0

6546560 21 10 11 0 0
24123760 21 11 9 1 0
28109280 21 12 7 2 0
1340168 21 12 8 0 1
9810384 21 13 5 3 0
3144512 21 13 6 1 1
1061056 21 14 3 4 0
569600 21 14 4 2 1
4864 21 15 2 3 1

49338456 22 12 10 0 0
121448992 22 13 8 1 0
74202920 22 14 6 2 0
3394240 22 14 7 0 1

14662976 22 15 4 3 0
2947456 22 15 5 1 1
1278912 22 16 2 4 0

238120800 23 14 9 0 0
341308616 23 15 7 1 0
99028240 23 16 5 2 0
4173712 23 16 6 0 1
8525680 23 17 3 3 0
2265792 23 17 4 1 1
304352 23 18 1 4 0

848282144 24 16 8 0 0
708530944 24 17 6 1 0
113894688 24 18 4 2 0
3076384 24 18 5 0 1
6331232 24 19 2 3 0
181928 24 20 0 4 0

2119101632 25 18 7 0 0
940999680 25 19 5 1 0
61114368 25 20 3 2 0

Appendix A. Summary of all cycles up to length 34 105

939680 25 20 4 0 1
4280983120 26 20 6 0 0
1081015360 26 21 4 1 0
41482336 26 22 2 2 0

6660111240 27 22 5 0 0
703747360 27 23 3 1 0

9320678144 28 24 4 0 0
471664464 28 25 2 1 0

9992462976 29 26 3 0 0
10751026008 30 28 2 0 0
6738451488 31 30 1 0 0
5790865320 32 32 0 0 0

Table A.15: Cycle length 32. 61,693,656,876 discovered. Pr = 0.00030079203258124

A.17 Cycle length 34

Frequency Total Vertices v1 v2 v3 v4

224 16 4 8 2 2
1488 17 5 8 3 1
576 17 5 9 1 2
3072 17 6 6 4 1
3264 17 6 7 2 2
800 17 7 4 5 1
112 18 4 12 2 0
6336 18 5 10 3 0
1408 18 5 11 1 1
20720 18 6 8 4 0
13696 18 6 9 2 1
464 18 6 10 0 2

17792 18 7 6 5 0
27904 18 7 7 3 1
21088 18 7 8 1 2
7680 18 8 4 6 0
23040 18 8 5 4 1
37760 18 8 6 2 2
416 18 9 2 7 0
1152 18 9 3 5 1
10752 18 9 4 3 2
4608 19 5 13 1 0
42096 19 6 11 2 0
480 19 6 12 0 1

Appendix A. Summary of all cycles up to length 34 106

229600 19 7 9 3 0
75808 19 7 10 1 1
355904 19 8 7 4 0
235136 19 8 8 2 1
16832 19 8 9 0 2
138560 19 9 5 5 0
367360 19 9 6 3 1
62400 19 9 7 1 2
7296 19 10 3 6 0

149344 19 10 4 4 1
45696 19 10 5 2 2
8064 19 11 2 5 1
23728 20 6 14 0 0
392352 20 7 12 1 0
1862456 20 8 10 2 0
70608 20 8 11 0 1

3860160 20 9 8 3 0
889696 20 9 9 1 1
2871552 20 10 6 4 0
1649984 20 10 7 2 1
37728 20 10 8 0 2
596000 20 11 4 5 0
760832 20 11 5 3 1
106576 20 11 6 1 2
50432 20 12 2 6 0
112704 20 12 3 4 1
68096 20 12 4 2 2

1210784 21 8 13 0 0
6949360 21 9 11 1 0

19519616 21 10 9 2 0
966528 21 10 10 0 1

19655904 21 11 7 3 0
5486176 21 11 8 1 1
6493376 21 12 5 4 0
4922480 21 12 6 2 1
98368 21 12 7 0 2
483680 21 13 3 5 0
875296 21 13 4 3 1
13824 21 14 1 6 0
83520 21 14 2 4 1

16027868 22 10 12 0 0

Appendix A. Summary of all cycles up to length 34 107

71535232 22 11 10 1 0
111816416 22 12 8 2 0
5356800 22 12 9 0 1

59391200 22 13 6 3 0
14787968 22 13 7 1 1
12170352 22 14 4 4 0
4871264 22 14 5 2 1
149552 22 14 6 0 2
521184 22 15 2 5 0
138496 22 15 3 3 1
29184 22 16 0 6 0

129814592 23 12 11 0 0
378956896 23 13 9 1 0
316767776 23 14 7 2 0
15279032 23 14 8 0 1
85578048 23 15 5 3 0
23160624 23 15 6 1 1
8235520 23 16 3 4 0
3418432 23 16 4 2 1
62528 23 17 2 3 1

714529488 24 14 10 0 0
1358051568 24 15 8 1 0
635597648 24 16 6 2 0
27283104 24 16 7 0 1
103726368 24 17 4 3 0
19123648 24 17 5 1 1
7799360 24 18 2 4 0

2729329920 25 16 9 0 0
3083885312 25 17 7 1 0
736455264 25 18 5 2 0
28697600 25 18 6 0 1
55211392 25 19 3 3 0
13453648 25 19 4 1 1
1892096 25 20 1 4 0

7970539488 26 18 8 0 0
5446132992 26 19 6 1 0
752461240 26 20 4 2 0
19786400 26 20 5 0 1
36864928 26 21 2 3 0
1088144 26 22 0 4 0

17447219520 27 20 7 0 0

Appendix A. Summary of all cycles up to length 34 108

6608062592 27 21 5 1 0
390536960 27 22 3 2 0
6681440 27 22 4 0 1

31985403668 28 22 6 0 0
7026159568 28 23 4 1 0
251616064 28 24 2 2 0

46986191920 29 24 5 0 0
4424108096 29 25 3 1 0
62697759616 30 26 4 0 0
2829942864 30 27 2 1 0
65466410112 31 28 3 0 0
68139566944 32 30 2 0 0
42137654656 33 32 1 0 0
34665748728 34 34 0 0 0

Table A.16: Cycle length 34. 416,145,092,064 discovered. Pr = 0.00026736342673897

Bibliography

[1] I. Abraham, D. Dolev, and D. Malkhi. LLS: a locality aware location service for mobile ad
hoc networks. In Proceedings of the 2004 joint workshop on Foundations of mobile computing,
DIALM-POMC 2004, pages 75–84, New York, NY, USA, 2004. ACM. ISBN 1-58113-921-7. doi:
10.1145/1022630.1022643.

[2] A. Aggarwal. The Art Gallery Theorem and Algorithm. PhD thesis, Johns Hopkins University,
1984.

[3] N. Agmon, S. Kraus, and G. Kaminka. Multi-robot perimeter patrol in adversarial settings. In
IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pages 2339 –2345,
may 2008. doi: 10.1109/ROBOT.2008.4543563.

[4] A. Almeida, G. Ramalho, H. Santana, P. Tedesco, T. Menezes, V. Corruble, and Y. Chevaleyre.
Recent advances on multi-agent patrolling. In A. L. C. Bazzan and S. Labidi, editors, Advances in
Artificial Intelligence - SBIA 2004, volume 3171 of Lecture Notes in Computer Science, pages 474–
483. Springer Berlin Heidelberg, 2004. ISBN 978-3-540-23237-7. doi: 10.1007/978-3-540-28645-5_
48.

[5] S. Alpern. Hide and seek games. Institut für Höhere Studien, July 1976. Seminar.

[6] S. Alpern. The rendezvous search problem. SIAM Journal on Control and Optimization, 33(3):
673–683, May 1995. ISSN 0363-0129. doi: 10.1137/S0363012993249195.

[7] S. Alpern. Rendezvous search: A personal perspective. Operations Research, 50(5):772–795, 2002.
ISSN 0030364X.

[8] S. Alpern. Bilateral street searching in Manhattan (line-of-sight rendezvous on a planar lattice).
Technical Report LSE-CDAM-2004-09, Centre for Discrete and Applicable Mathematics, London
School of Economics, 2004.

[9] S. Alpern and S. Gal. Rendezvous search on the line with distinguishable players. SIAM
Journal on Control and Optimization, 33(4):1270–1276, 1995. ISSN 0363-0129. doi: 10.1137/
S0363012993260288.

[10] S. Alpern and S. Gal. The Theory of Search Games and Rendezvous, volume 55 of International
Series in Operations Research & Management Science. Springer, 2003. ISBN 978-0-7923-7468-8.

[11] S. Alpern, V. J. Baston, and S. Essegaier. Rendezvous search on a graph. Journal of Applied
Probability, 36(1):pp. 223–231, 1999. ISSN 00219002.

[12] S. Alpern, R. Fokkink, L. Gąsieniec, R. Lindelauf, and V. S. Subrahmanian, editors. Search
Theory: A Game Theoretic Perspective. Springer New York, 2013. ISBN 978-1-4614-6824-0. doi:
10.1007/978-1-4614-6825-7.

[13] A. Alshukri, F. Coenen, and M. Zito. Web-site boundary detection using incremental random
walk clustering. In M. Bramer, M. Petridis, and L. Nolle, editors, Research and Development in
Intelligent Systems XXVIII, pages 255–268. Springer London, 2011. ISBN 978-1-4471-2317-0. doi:
10.1007/978-1-4471-2318-7_20.

[14] E. J. Anderson and S. Essegaier. Rendezvous search on the line with indistinguishable players.
SIAM Journal on Control and Optimization, 33(6):1637–1642, Nov. 1995. ISSN 0363-0129. doi:
10.1137/S0363012993260707.

109

Bibliography 110

[15] E. J. Anderson and S. P. Fekete. Asymmetric rendezvous on the plane. In Proceedings of the four-
teenth annual symposium on Computational geometry, 14th Annual ACM Symposium on Compu-
tational Geometry, pages 365–373, New York, NY, USA, 1998. ACM. ISBN 0-89791-973-4. doi:
10.1145/276884.276925.

[16] E. J. Anderson and S. P. Fekete. Two dimensional rendezvous search. Operations Research, 49(1):
107–118, 2001. ISSN 0030364X.

[17] E. J. Anderson and R. R. Weber. The rendezvous problem on discrete locations. Journal of
Applied Probability, 28:839–851, 1990.

[18] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed memoryless point convergence algo-
rithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Automation,
15(5):818–828, oct 1999. ISSN 1042-296X. doi: 10.1109/70.795787.

[19] Apache Software Foundation. Apache hadoop, 2013. URL http://hadoop.apache.org.

[20] E. M. Arkin, J. S. B. Mitchell, and C. D. Piatko. Minimum-link watchman tours. Information
Processing Letters, 86(4):203–207, May 2003. ISSN 0020-0190. doi: 10.1016/S0020-0190(02)
00502-1.

[21] D. Auber and P. Mary. Tulip. http://tulip.labri.fr, 2013.

[22] D. H. Bailey, P. Borwein, and S. Plouffe. On the rapid computation of various polylogarithmic
constants. Mathematics of Computation, 66(218):903–913, 1997. ISSN 0025-5718. doi: http:
//dx.doi.org/10.1090/S0025-5718-97-00856-9.

[23] E. Bampas, L. Gąsieniec, N. Hanusse, D. Ilcinkas, R. Klasing, and A. Kosowski. Euler tour lock-
in problem in the rotor-router model. In I. Keidar, editor, DISC, volume 5805 of Lecture Notes
in Computer Science, pages 423–435. Springer, 2009. ISBN 978-3-642-04354-3. doi: 10.1007/
978-3-642-04355-0_44.

[24] E. Bampas, L. Gąsieniec, R. Klasing, A. Kosowski, and T. Radzik. Robustness of the rotor-router
mechanism. In OPODIS, pages 345–358, 2009. doi: 10.1007/978-3-642-10877-8_27.

[25] E. Bampas, J. Czyzowicz, L. Gąsieniec, D. Ilcinkas, and A. Labourel. Almost optimal asynchronous
rendezvous in infinite multidimensional grids. In Proceedings of the 24th international conference
on Distributed computing, 24th international conference on Distributed computing, pages 297–311,
Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-15762-9, 978-3-642-15762-2.

[26] L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro. Rendezvous and election of mobile agents:
Impact of sense of direction. Theory of Computing Systems, 40(2):143–162, 2007. ISSN 1432-4350.
doi: 10.1007/s00224-005-1223-5.

[27] V. Baston. Note: Two rendezvous search problems on the line. Naval Research Logistics, 46(3):
335–340, 1999. ISSN 1520-6750. doi: 10.1002/(SICI)1520-6750(199904)46:3<335::AID-NAV6>3.
0.CO;2-Q.

[28] V. Baston and S. Gal. Rendezvous on the line when the players’ initial distance is given by an
unknown probability distribution. SIAM Journal on Control and Optimization, 36(6):1880–1889,
1998. ISSN 0363-0129. doi: 10.1137/S0363012996314130.

[29] V. Baston and S. Gal. Rendezvous search when marks are left at the starting points. Naval
Research Logistics, 48(8):722–731, 2001. ISSN 1520-6750. doi: 10.1002/nav.1044.

[30] F. Bellard. Computation of 2700 billion decimal digits of pi using a desktop computer, 2010. URL
http://bellard.org/pi/pi2700e9/pipcrecord.pdf.

[31] J. Blom, G. Chittaranjan, and D. Gatica-Perez. Mining large-scale smartphone data for personality
studies. Personal and Ubiquitous Computing, 17(3):433–450, 2013. ISSN 1617-4909. doi: 10.1007/
s00779-011-0490-1.

[32] F. Boekhorst, H. Kamerman, and R. Zane. From big bang to big data: ASTRON and IBM
collaborate to explore origins of the universe, 2012. URL http://www.ibm.com/press/us/en/
pressrelease/37361.wss.

http://hadoop.apache.org
http://bellard.org/pi/pi2700e9/pipcrecord.pdf
http://www.ibm.com/press/us/en/pressrelease/37361.wss
http://www.ibm.com/press/us/en/pressrelease/37361.wss

Bibliography 111

[33] R. F. Boisvert, R. Pozo, and K. A. Remington. The matrix market exchange formats: Initial
design. Technical Report NISTIR 5935, National Institute of Standards and Technology, 2013.

[34] B. Bollobás. Extremal Graph Theory. Dover Books on Mathematics Series. Dover, 1978. ISBN
9780486435961.

[35] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Routing with guaranteed delivery in ad
hoc wireless networks. Wireless Networks, 7:609–616, 2001. ISSN 1022-0038. doi: 10.1023/A:
1012319418150.

[36] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25:
163–177, 2001.

[37] R. P. Brent. Fast multiple-precision evaluation of elementary functions. Journal of the ACM, 23:
242–251, 1976.

[38] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In Seventh
International World-Wide Web Conference, pages 107–117, Amsterdam, The Netherlands, 1998.
Elsevier Science Publishers B. V.

[39] I. F. Brunell. Cycles of tours in a directed graph. Master’s dissertation, University of Liverpool,
2008.

[40] K. Buchin. Constructing delaunay triangulations along space-filling curves. In A. Fiat and
P. Sanders, editors, Algorithms - ESA 2009, volume 5757 of Lecture Notes in Computer Sci-
ence, pages 119–130. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-04127-3. doi: 10.1007/
978-3-642-04128-0_11.

[41] B. Cai, H. Wang, H. Zheng, and H. Wang. An improved random walk based clustering algorithm
for community detection in complex networks. In Systems, Man, and Cybernetics (SMC), 2011
IEEE International Conference on, pages 2162–2167, 2011. doi: 10.1109/ICSMC.2011.6083997.

[42] S. Carlsson, B. J. Nilsson, and S. C. Ntafos. Optimum guard covers and m-watchmen routes for
restricted polygons. International Journal of Computational Geometry and Applications, 03(01):
85–105, 1993. doi: 10.1142/S0218195993000063.

[43] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling problem. In Intelligent Agent
Technology, 2004. (IAT 2004). Proceedings. IEEE/WIC/ACM International Conference on, pages
302–308, 2004. doi: 10.1109/IAT.2004.1342959.

[44] W.-P. Chin and S. Ntafos. Optimum watchman routes. In Proceedings of the second annual sympo-
sium on Computational geometry, SCG ’86, pages 24–33, New York, NY, USA, 1986. ACM. ISBN
0-89791-194-6. doi: 10.1145/10515.10518. URL http://doi.acm.org/10.1145/10515.10518.

[45] W.-P. Chin and S. Ntafos. Shortest watchman routes in simple polygons. Discrete and Computa-
tional Geometry, 6:9–31, 1991. ISSN 0179-5376. doi: 10.1007/BF02574671.

[46] W.-P. Chin and S. Ntafos. The zookeeper route problem. Information Sciences, 63(3):245–259,
Sept. 1992. ISSN 0020-0255. doi: 10.1016/0020-0255(92)90072-G.

[47] D. V. Chudnovsky and G. V. Chudnovsky. The computation of classical constants. Proceedings
of the National Academy of Sciences, 86(21):8178–8182, 1989.

[48] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving the robots gathering problem.
In Proceedings of the 30th international conference on Automata, languages and programming,
ICALP’03, pages 1181–1196, Berlin, Heidelberg, 2003. Springer-Verlag. ISBN 3-540-40493-7.

[49] N. Clisby and I. Jensen. A new transfer-matrix algorithm for exact enumerations: self-avoiding
polygons on the square lattice. Journal of Physics A: Mathematical and Theoretical, 45(11):115202,
2012.

[50] R. Cohen and D. Peleg. Convergence properties of the gravitational algorithm in asynchronous
robot systems. SIAM Journal on Computing, 34(6):1516–1528, June 2005. ISSN 0097-5397. doi:
10.1137/S0097539704446475.

http://doi.acm.org/10.1145/10515.10518

Bibliography 112

[51] A. Collins. 2d graph exploration using irrational numbers. Master’s dissertation, University of
Liverpool, 2009.

[52] A. Collins, J. Czyzowicz, L. Gąsieniec, and A. Labourel. Tell me where I am so I can meet
you sooner. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, and P. G. Spi-
rakis, editors, Automata, Languages and Programming, volume 6199 of Lecture Notes in Com-
puter Science, pages 502–514. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-14161-4. doi:
10.1007/978-3-642-14162-1_42.

[53] A. Collins, J. Czyzowicz, L. Gąsieniec, A. Kosowski, and R. Martin. Synchronous rendezvous for
location-aware agents. In D. Peleg, editor, Distributed Computing, volume 6950 of Lecture Notes
in Computer Science, pages 447–459. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-24099-7.
doi: 10.1007/978-3-642-24100-0_42.

[54] A. Collins, J. Czyzowicz, L. Gąsieniec, A. Kosowski, E. Kranakis, D. Krizanc, R. Martin, and
O. Ponce. Optimal patrolling of fragmented boundaries. In Proceedings of the 25th ACM sympo-
sium on Parallelism in algorithms and architectures. ACM, 2013.

[55] C. Cooper, A. Frieze, and T. Radzik. Multiple random walks and interacting particle sys-
tems. In S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. Nikoletseas, and W. Thomas,
editors, Automata, Languages and Programming, volume 5556 of Lecture Notes in Computer
Science, pages 399–410. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-02929-5. doi:
10.1007/978-3-642-02930-1_33.

[56] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT
Press, 3 edition, 2009.

[57] Cytoscape Consortium. Cytoscape. http://www.cytoscape.org, 2013.

[58] J. Czyzowicz, P. Egyed, H. Everett, D. Rappaport, T. Shermer, D. Souvaine, G. Toussaint, and
J. Urrutia. The aquarium keeper’s problem. In Proceedings of the second annual ACM-SIAM sym-
posium on Discrete algorithms, SODA ’91, pages 459–464, Philadelphia, PA, USA, 1991. Society
for Industrial and Applied Mathematics. ISBN 0-89791-376-0.

[59] J. Czyzowicz, S. Dobrev, L. Gąsieniec, D. Ilcinkas, J. Jansson, R. Klasing, I. Lignos, R. Martin,
K. Sadakane, and W.-K. Sung. More efficient periodic traversal in anonymous undirected graphs.
In Proc. 16th Colloquium on Structural Information and Communication Complexity (SIROCCO
2009), pages 174–188, 2009.

[60] J. Czyzowicz, D. Ilcinkas, A. Labourel, and A. Pelc. Asynchronous deterministic rendezvous in
bounded terrains. In B. Patt-Shamir and T. Ekim, editors, Structural Information and Commu-
nication Complexity, volume 6058 of Lecture Notes in Computer Science, pages 72–85. Springer
Berlin Heidelberg, 2010. ISBN 978-3-642-13283-4. doi: 10.1007/978-3-642-13284-1_7.

[61] J. Czyzowicz, A. Labourel, and A. Pelc. How to meet asynchronously (almost) everywhere. In
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’10, pages 22–30, Philadelphia, PA, USA, 2010. Society for Industrial and Applied Mathematics.
ISBN 978-0-898716-98-6.

[62] J. Czyzowicz, L. Gąsieniec, A. Kosowski, and E. Kranakis. Boundary patrolling by mobile agents
with distinct maximal speeds. In C. Demetrescu and M. M. Halldórsson, editors, Algorithms -
ESA 2011, volume 6942 of Lecture Notes in Computer Science, pages 701–712. Springer Berlin
Heidelberg, 2011. ISBN 978-3-642-23718-8. doi: 10.1007/978-3-642-23719-5_59.

[63] J. Czyzowicz, A. Kosowski, and A. Pelc. How to meet when you forget: log-space rendezvous
in arbitrary graphs. Distributed Computing, 25:165–178, 2012. ISSN 0178-2770. doi: 10.1007/
s00446-011-0141-9.

[64] J. Czyzowicz, A. Pelc, and A. Labourel. How to meet asynchronously (almost) everywhere. Trans-
actions on Algorithms, 8(4):37:1–37:14, Oct. 2012. ISSN 1549-6325. doi: 10.1145/2344422.2344427.

[65] S. Das. Distributed computing with mobile agents: solving rendezvous and related problems. PhD
thesis, University of Ottawa, Ottawa, Canada, 2007. AAINR49344.

Bibliography 113

[66] S. Das. Mobile agent rendezvous in a ring using faulty tokens. In S. Rao, M. Chatterjee, P. Jayanti,
C. Murthy, and S. Saha, editors, Distributed Computing and Networking, volume 4904 of Lecture
Notes in Computer Science, pages 292–297. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-
77443-3. doi: 10.1007/978-3-540-77444-0_29.

[67] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U. Vaccaro. Asynchronous
deterministic rendezvous in graphs. Theoretical Computer Science, 355(3):315–326, Apr. 2006.
ISSN 0304-3975. doi: 10.1016/j.tcs.2005.12.016.

[68] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Communica-
tions of the ACM, 51(1):107–113, Jan. 2008. ISSN 0001-0782. doi: 10.1145/1327452.1327492.

[69] A. Dessmark, P. Fraigniaud, D. R. Kowalski, and A. Pelc. Deterministic rendezvous in graphs.
Algorithmica, 46(1):69–96, Sept. 2006. ISSN 0178-4617. doi: 10.1007/s00453-006-0074-2.

[70] Y. Dieudonné and A. Pelc. Deterministic polynomial approach in the plane. In F. Fomin,
R. Freivalds, M. Kwiatkowska, and D. Peleg, editors, Automata, Languages, and Programming,
volume 7966 of Lecture Notes in Computer Science, pages 533–544. Springer Berlin Heidelberg,
2013. ISBN 978-3-642-39211-5. doi: 10.1007/978-3-642-39212-2_47.

[71] Y. Dieudonné, A. Pelc, and D. Peleg. Gathering despite mischief. In Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, pages 527–540. SIAM,
2012.

[72] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Multiple agents rendezvous in a ring in spite
of a black hole. In M. Papatriantafilou and P. Hunel, editors, Principles of Distributed Systems,
volume 3144 of Lecture Notes in Computer Science, pages 34–46. Springer Berlin Heidelberg, 2004.
ISBN 978-3-540-22667-3. doi: 10.1007/978-3-540-27860-3_6.

[73] M. Dror, A. Efrat, A. Lubiw, and J. S. B. Mitchell. Touring a sequence of polygons. In Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, STOC ’03, pages 473–482, New
York, NY, USA, 2003. ACM. ISBN 1-58113-674-9. doi: 10.1145/780542.780612.

[74] A. Dumitrescu and C. D. Tóth. Watchman tours for polygons with holes. Computational Geometry:
Theory and Applications, 45(7):326–333, Aug. 2012. ISSN 0925-7721. doi: 10.1016/j.comgeo.2012.
02.001.

[75] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In Proceedings of the
12th Annual International Cryptology Conference on Advances in Cryptology, Lecture Notes In
Computer Science, pages 139–147, London, UK, 1992. Springer-Verlag. ISBN 3-540-57340-2.

[76] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160, 1984.

[77] K. Easton and J. Burdick. A coverage algorithm for multi-robot boundary inspection. In Proceed-
ings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005,
pages 727 – 734, april 2005. doi: 10.1109/ROBOT.2005.1570204.

[78] S. Eidenbenz, C. Stamm, and P. Widmayer. Inapproximability results for guarding polygons and
terrains. Algorithmica, 31:79–113, 2001. ISSN 0178-4617. doi: 10.1007/s00453-001-0040-8.

[79] Y. Elmaliach, A. Shiloni, and G. A. Kaminka. A realistic model of frequency-based multi-robot
polyline patrolling. In Proceedings of the 7th international joint conference on Autonomous agents
and multiagent systems, volume 1 of AAMAS ’08, pages 63–70, Richland, SC, 2008. International
Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-0-9817381-0-9.

[80] Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot area patrol under frequency constraints.
Annals of Mathematics and Artificial Intelligence, 57(3-4):293–320, Dec. 2009. ISSN 1012-2443.
doi: 10.1007/s10472-010-9193-y.

[81] Y. Elor and A. M. Bruckstein. Autonomous multi-agent cycle based patrolling. In Proceedings of
the 7th international conference on Swarm intelligence, ANTS’10, pages 119–130, Berlin, Heidel-
berg, 2010. Springer-Verlag. ISBN 3-642-15460-3.

Bibliography 114

[82] Y. Emek, E. Kantor, and D. Peleg. On the effect of the deployment setting on broadcasting in
euclidean radio networks. In Proceedings of the twenty-seventh ACM symposium on Principles
of distributed computing, PODC ’08, pages 223–232, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-989-0. doi: 10.1145/1400751.1400782.

[83] Y. Emek, L. Gąsieniec, E. Kantor, A. Pelc, D. Peleg, and C. Su. Broadcasting in UDG radio
networks with unknown topology. Distributed Computing, 21:331–351, 2009. ISSN 0178-2770. doi:
10.1007/s00446-008-0075-z.

[84] Facebook. Facebook reports first quarter 2013 results.
http://investor.fb.com/releasedetail.cfm?ReleaseID=761090, 2013.

[85] F. Falciani, L. Gąsieniec, and O. Vasieva. Efficient biological networks discovery and analysis.
http://environmentalomics.org/efficient-biological-networks-discovery-and-analysis/, 2013.

[86] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous oblivious
robots with limited visibility. In Proceedings of the 18th Annual Symposium on Theoretical Aspects
of Computer Science, STACS ’01, pages 247–258, London, UK, 2001. Springer-Verlag. ISBN 3-
540-41695-1.

[87] P. Flocchini, B. Mans, and N. Santoro. Sense of direction in distributed computing. Theoretical
Computer Science, 291(1):29–53, 2003. ISSN 0304-3975. doi: 10.1016/S0304-3975(01)00395-4.

[88] F. V. Fomin and D. M. Thilikos. An annotated bibliography on guaranteed graph searching.
Theoretical Computer Science, 399(3):236–245, June 2008. doi: 10.1016/j.tcs.2008.02.040.

[89] F. V. Fomin, P. A. Golovach, A. Hall, M. Mihalák, E. Vicari, and P. Widmayer. How to guard a
graph? Algorithmica, 61:839–856, 2011. ISSN 0178-4617. doi: 10.1007/s00453-009-9382-4.

[90] P. Fraigniaud and A. Pelc. Deterministic rendezvous in trees with little memory. In Proceedings
of the 22nd international symposium on Distributed Computing, DISC ’08, pages 242–256, Berlin,
Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-87778-3. doi: 10.1007/978-3-540-87779-0_17.

[91] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40(1):35–41,
1977.

[92] G. Froc, I. Mabrouki, and X. Lagrange. Random walk based routing protocol for wireless sensor
networks. In Proceedings of the 2nd international conference on Performance evaluation method-
ologies and tools, ValueTools ’07, pages 71:1–71:10, Brussels, Belgium, 2007. Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering. ISBN 978-963-9799-00-4.

[93] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement. Software
Practice and Experience, 21(11):1129–1164, November 1991. ISSN 0038-0644. doi: 10.1002/spe.
4380211102.

[94] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous areas by a mobile robot.
In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on,
volume 2, pages 1927–1933, 2001. doi: 10.1109/ROBOT.2001.932890.

[95] S. Gal. Rendezvous search on the line. Operations Research, 47(6):pp. 974–976, 1999. ISSN
0030364X.

[96] A. Ganguli, J. Cortes, and F. Bullo. Multirobot rendezvous with visibility sensors in nonconvex
environments. Robotics, IEEE Transactions on, 25(2):340–352, april 2009. ISSN 1552-3098. doi:
10.1109/TRO.2009.2013493.

[97] Gephi Consortium. Gephi. http://gephi.org, 2013.

[98] S. K. Ghosh. Approximation algorithms for art gallery problems in polygons and terrains. In
Proceedings of the 4th international conference on Algorithms and Computation, WALCOM’10,
pages 21–34, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-11439-3, 978-3-642-11439-7.
doi: 10.1007/978-3-642-11440-3_3.

[99] C. Gotsman and M. Lindenbaum. On the metric properties of discrete space-filling curves. Image
Processing, IEEE Transactions on, 5(5):794–797, may 1996. ISSN 1057-7149.

Bibliography 115

[100] D. Gottfrid. Self-service, prorated supercomputing fun! All the Code That’s
Fit to printf(), November 2007. URL http://open.blogs.nytimes.com/2007/11/01/
self-service-prorated-super-computing-fun/.

[101] A. J. Guttmann. Polygons, Polyominoes and Polycubes. Springer Publishing Company, Incorpo-
rated, 1 edition, 2009. ISBN 1402099266, 9781402099267.

[102] D. D. Hamilton. Graph drawing algorithmics. Bachelor’s dissertation, University of Liverpool,
2013.

[103] Q. Han, D. Du, J. C. Vera, and L. F. Zuluaga. Improved bounds for the symmetric rendezvous
value on the line. Operations Research, 56(3):772–782, 2008.

[104] N. Hazon and G. A. Kaminka. On redundancy, efficiency, and robustness in coverage for multiple
robots. Robotics and Autonomous Systems, 56(12):1102–1114, Dec. 2008. ISSN 0921-8890. doi:
10.1016/j.robot.2008.01.006.

[105] M. Himsolt. Gml: A portable graph file format. Technical report, University of Passau, 2010.

[106] D. Holten and J. J. van Wijk. Force-directed edge bundling for graph visualization. Computer
Graphics Forum, 28(3):983–990, 2009.

[107] J. Huang, T. Zhu, and D. Schuurmans. Web communities identification from random walks.
In J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors, Knowledge Discovery in Databases:
PKDD 2006, volume 4213 of Lecture Notes in Computer Science, pages 187–198. Springer Berlin
Heidelberg, 2006. ISBN 978-3-540-45374-1. doi: 10.1007/11871637_21.

[108] I. Jensen. A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice.
Journal of Physics A: Mathematical and General, 36(21):5731, 2003.

[109] A. Kawamura and Y. Kobayashi. Fence patrolling by mobile agents with distinct speeds. In
K.-M. Chao, T.-s. Hsu, and D.-T. Lee, editors, Algorithms and Computation, volume 7676 of
Lecture Notes in Computer Science, pages 598–608. Springer Berlin Heidelberg, 2012. ISBN
978-3-642-35260-7. doi: 10.1007/978-3-642-35261-4_62. URL http://dx.doi.org/10.1007/
978-3-642-35261-4_62.

[110] G. Kazazakis and A. Argyros. Fast positioning of limited-visibility guards for the inspection of
2d workspaces. In Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on,
volume 3, pages 2843–2848, 2002. doi: 10.1109/IRDS.2002.1041701.

[111] L. B. Kish. End of moore’s law: thermal (noise) death of integration in micro and nano electronics.
Physics Letters A, 305(3âĂŞ4):144–149, 2002. ISSN 0375-9601. doi: 10.1016/S0375-9601(02)
01365-8.

[112] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2005. ISBN 0321295358.

[113] D. E. Knuth. Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-Wesley
Professional, 3 edition, 1997. ISBN 0201896834.

[114] S. Kondo and A. J. Yee. 5 trillion digits of pi - new world record: Pushing the limits of personal
computing... how much further can we go?, 2010. URL http://www.numberworld.org/misc_runs/
pi-5t/details.html.

[115] S. Kondo and A. J. Yee. Round 2... 10 trillion digits of pi: Same program, same computer, just a
longer wait..., 2011. URL http://www.numberworld.org/misc_runs/pi-10t/details.html.

[116] A. Kosowski, R. Elsässer, and T. Sauerwald. Personal communication, 2008.

[117] D. R. Kowalski and A. Malinowski. How to meet in an anonymous network. In In Proc. 13th
Sirocco, pages 44–58, 2006.

[118] D. R. Kowalski and A. Malinowski. How to meet in anonymous network. Theoretical Computer
Science, 399(1-2):141–156, June 2008. ISSN 0304-3975. doi: 10.1016/j.tcs.2008.02.010.

http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://dx.doi.org/10.1007/978-3-642-35261-4_62
http://dx.doi.org/10.1007/978-3-642-35261-4_62
http://www.numberworld.org/misc_runs/pi-5t/details.html
http://www.numberworld.org/misc_runs/pi-5t/details.html
http://www.numberworld.org/misc_runs/pi-10t/details.html

Bibliography 116

[119] G. Kozma, Z. Lotker, M. Sharir, and G. Stupp. Geometrically aware communication in random
wireless networks. In Proceedings of the 23rd annual ACM symposium on Principles of distributed
computing, PODC ’04, pages 310–319, New York, NY, USA, 2004. ACM. ISBN 1-58113-802-4.
doi: 10.1145/1011767.1011813.

[120] E. Kranakis, N. Santoro, C. Sawchuk, and D. Krizanc. Mobile agent rendezvous in a ring. In
Proceedings of the 23rd International Conference on Distributed Computing Systems, pages 592–
599, 2003. doi: 10.1109/ICDCS.2003.1203510.

[121] E. Kranakis, D. Krizanc, and S. Rajsbaum. Mobile agent rendezvous: A survey. In P. Flocchini
and L. Gąsieniec, editors, Structural Information and Communication Complexity, volume 4056
of Lecture Notes in Computer Science, pages 1–9. Springer Berlin Heidelberg, 2006. ISBN 978-3-
540-35474-1. doi: 10.1007/11780823_1.

[122] E. Kranakis, D. Krizanc, and E. Markou. The Moblie Agent Rendezvous Problem in the Ring.
Synthesis Lectures on Distributed Computing Theory Series. Morgan & Claypool, 2010. ISBN
9781608451364. doi: 10.2200/S00278ED1V01Y201004DCT001.

[123] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc routing: of theory
and practice. In Proceedings of the twenty-second annual symposium on Principles of distributed
computing, PODC ’03, pages 63–72, New York, NY, USA, 2003. ACM. ISBN 1-58113-708-7. doi:
10.1145/872035.872044.

[124] D. B. Lange and M. Oshima. Seven good reasons for mobile agents. Communications of the ACM,
42(3):88–89, Mar. 1999. ISSN 0001-0782. doi: 10.1145/295685.298136.

[125] C. Lefevre. Lhc: The guide. Technical Report CERN-Brochure-2008-001-Eng, CERN, 2008.

[126] J. Leskovec. Stanford network analysis project, 2013. URL http://snap.stanford.edu.

[127] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking
diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, KDD ’05, pages 177–187, New York, NY, USA,
2005. ACM. ISBN 1-59593-135-X. doi: 10.1145/1081870.1081893.

[128] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community structure in large net-
works: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics,
6:29–123, 2009. doi: 10.1080/15427951.2009.10129177.

[129] A. V. Levitin. Introduction to the Design and Analysis of Algorithms. Addison-Wesley, Boston,
MA, USA, 2011. ISBN 9780132316811.

[130] J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent rendezvous problem - the asyn-
chronous case. In Decision and Control, 2004. CDC. 43rd IEEE Conference on, volume 2, pages
1926–1931, dec 2004. doi: 10.1109/CDC.2004.1430329.

[131] A. Machado, G. Ramalho, J.-D. Zucker, and A. Drogoul. Multi-agent patrolling: an empirical
analysis of alternative architectures. In Proceedings of the 3rd international conference on Multi-
agent-based simulation II, MABS’02, pages 155–170, Berlin, Heidelberg, 2003. Springer-Verlag.
ISBN 3-540-00607-9.

[132] C. A. Mack. Fifty years of moore’s law. Semiconductor Manufacturing, IEEE Transactions on,
24(2):202–207, 2011. ISSN 0894-6507. doi: 10.1109/TSM.2010.2096437.

[133] A. Marino, L. Parker, G. Antonelli, and F. Caccavale. Behavioral control for multi-robot perimeter
patrol: A finite state automata approach. In Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, pages 831–836, may 2009. doi: 10.1109/ROBOT.2009.5152710.

[134] J. J. McAuley and J. Leskovec. Learning to discover social circles in ego networks. In P. L.
Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States, pages 548–556, 2012.

[135] Mersenne Research, Inc. Great internet mersenne prime search (GIMPS), 2013. URL http:
//www.mersenne.org.

http://snap.stanford.edu
http://www.mersenne.org
http://www.mersenne.org

Bibliography 117

[136] J. S. Mitchell. Chapter 15 - geometric shortest paths and network optimization. In J.-R. Sack
and J. Urrutia, editors, Handbook of Computational Geometry, pages 633–701. North-Holland,
Amsterdam, 2000. ISBN 978-0-444-82537-7. doi: 10.1016/B978-044482537-7/50016-4.

[137] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering properties of
the hilbert space-filling curve. IEEE Trans. Knowl. Data Eng., 13(1):124–141, 2001.

[138] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report, Bitcoin Project,
2009. URL http://bitcoin.org/bitcoin.pdf.

[139] M. Naor. Verification of a human in the loop or identification via the turing test.
http://www.wisdom.weizmann.ac.il/ naor/PAPERS/human_abs.html, 1996.

[140] B. J. Nilsson. Guarding art galleries; Methods for mobile guards. PhD thesis, Lund University,
Sweden, 1995.

[141] B. J. Nilsson and D. Wood. Optimum watchmen route in spiral polygons. In 2nd Canadian
Conference on Computational Geometry, pages 269–272, 1990.

[142] D. Nishar. 200 million members! In Linkedin Blog. Linkedin Corporation, 2013. URL http:
//blog.linkedin.com/2013/01/09/linkedin-200-million.

[143] S. Ntafos. Watchman routes under limited visibility. Computational Geometry: Theory and
Applications, 1(3):149–170, Mar. 1992. ISSN 0925-7721. doi: 10.1016/S0925-7721(99)00022-X.

[144] R. Olfati-Saber, J. Fax, and R. Murray. Consensus and cooperation in networked multi-agent
systems. Proceedings of the IEEE, 95(1):215–233, jan. 2007. ISSN 0018-9219. doi: 10.1109/
JPROC.2006.887293.

[145] J. O’Rourke. Art gallery theorems and algorithms. Oxford University Press, Inc., New York, NY,
USA, 1987. ISBN 0-19-503965-3.

[146] W. J. C. Orr. Statistical treatment of polymer solutions at infinite dilution. Transactions of the
Faraday Society, 43:12–27, 1947. doi: 10.1039/TF9474300012.

[147] E. Packer. Computing multiple watchman routes. In Proceedings of the 7th international conference
on Experimental algorithms, WEA’08, pages 114–128, Berlin, Heidelberg, 2008. Springer-Verlag.
ISBN 3-540-68548-0, 978-3-540-68548-7.

[148] F. Pasqualetti, A. Franchi, and F. Bullo. On optimal cooperative patrolling. In 49th IEEE
Conference on Decision and Control, pages 7153–7158, Atlanta, GA, USA, 12 2010.

[149] C. Percival. The quadrillionth bit of pi is ’0’. Available from: http://oldweb.cecm.sfu.ca/
projects/pihex/announce1q.html, 2001.

[150] G. Prencipe. Impossibility of gathering by a set of autonomous mobile robots. Theoretical Com-
puter Science, 384(2-3):222–231, 2007. ISSN 0304-3975. doi: 10.1016/j.tcs.2007.04.023.

[151] A. J. Quigley. Large Scale Relational Information Visualization, Clustering, and Abstraction. PhD
thesis, University of Newcastle, Newcastle, UK, 2001.

[152] A. J. Quigley. Experience with fade for the visualization and abstraction of software views. In
10th International Workshop on Program Comprehension, pages 11–20, 2002. doi: 10.1109/WPC.
2002.1021304.

[153] G. Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603, 1966. ISSN 0033-
3123. doi: 10.1007/BF02289527.

[154] H. Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys, 16
(2):187–260, June 1984. ISSN 0360-0300. doi: 10.1145/356924.356930.

[155] K. Scarfone, W. Jansen, and M. Tracy. Guide to general server security. Technical Report SP
800-123, National Institute of Standards and Technology, 2008.

[156] T. C. Schelling. The strategy of conflict. Journal of Politics, 23:374–376, 4 1960. ISSN 1468-2508.
doi: 10.2307/2126712.

http://bitcoin.org/bitcoin.pdf
http://blog.linkedin.com/2013/01/09/linkedin-200-million
http://blog.linkedin.com/2013/01/09/linkedin-200-million
http://oldweb.cecm.sfu.ca/projects/pihex/announce1q.html
http://oldweb.cecm.sfu.ca/projects/pihex/announce1q.html

Bibliography 118

[157] M. F. Schilling. The longest run of heads. College Mathematics Journal, 21(3), 1991.

[158] S. Shekhar, V. Gunturi, M. R. Evans, and K. Yang. Spatial big-data challenges intersecting
mobility and cloud computing. In Proceedings of the Eleventh ACM International Workshop on
Data Engineering for Wireless and Mobile Access, MobiDE ’12, pages 1–6, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1442-8. doi: 10.1145/2258056.2258058.

[159] T. Shermer. Recent results in art galleries [geometry]. Proceedings of the IEEE, 80(9):1384 –1399,
sep 1992. ISSN 0018-9219. doi: 10.1109/5.163407.

[160] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Autonomous Mobile Robots.
The MIT Press, 2 edition, 2011. ISBN 9780262015356.

[161] J. Simpson and E. Weiner, editors. Parasite, n. - Oxford English Dictionary. Oxford University
Press, Oxford, 3 edition, 2005.

[162] J. Simpson and E. Weiner, editors. Virus, n. - Oxford English Dictionary. Oxford University
Press, Oxford, 3 edition, 2008.

[163] J. Simpson and E. Weiner, editors. Algorithm, n. - Oxford English Dictionary. Oxford University
Press, Oxford, 3 edition, 2012.

[164] N. J. A. Sloane. Number of self-avoiding polygons of length 2n on square lattice (not allowing
rotations). Technical Report A002931, The On-Line Encyclopedia of Integer Sequences, 2013.
URL http://oeis.org/A002931.

[165] S. Souissi, X. Défago, and M. Yamashita. Using eventually consistent compasses to gather memory-
less mobile robots with limited visibility. Transactions on Autonomous and Adaptive Systems, 4
(1):9:1–9:27, Feb. 2009. ISSN 1556-4665. doi: 10.1145/1462187.1462196.

[166] G. Stachowiak. Asynchronous deterministic rendezvous on the line. In M. Nielsen, A. Kuc̆era,
P. Miltersen, C. Palamidessi, P. Tůma, and F. Valencia, editors, SOFSEM 2009: Theory and
Practice of Computer Science, volume 5404 of Lecture Notes in Computer Science, pages 497–508.
Springer Berlin Heidelberg, 2009. ISBN 978-3-540-95890-1. doi: 10.1007/978-3-540-95891-8_45.

[167] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric
patterns. SIAM Journal on Computing, 28(4):1347–1363, Mar. 1999. ISSN 0097-5397. doi: 10.
1137/S009753979628292X.

[168] A. Ta-Shma and U. Zwick. Deterministic rendezvous, treasure hunts and strongly universal ex-
ploration sequences. In Proceedings of the eighteenth annual ACM-SIAM symposium on discrete
algorithms, SODA ’07, pages 599–608, Philadelphia, PA, USA, 2007. Society for Industrial and
Applied Mathematics. ISBN 978-0-898716-24-5.

[169] A. M. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, s2-42(1):230–265, 1937. ISSN 1460-244X. doi:
10.1112/plms/s2-42.1.230.

[170] P. P. Uthaisombut. Symmetric rendezvous search on the line using move patterns with different
lengths. Technical report, University of Pittsburgh, 2006.

[171] A. J. Wakefield. Statistics of the simple cubic lattice. InMathematical Proceedings of the Cambridge
Philosophical Society, volume 47, pages 419–435. Cambridge University Press, 1951.

[172] F. T. Wall, L. A. Hiller, and D. J. Wheeler. Statistical computation of mean dimensions of
macromolecules. i. The Journal of Chemical Physics, 22(6):1036–1041, 1954. doi: 10.1063/1.
1740258.

[173] F. T. Wall, J. L. A. Hiller, and W. F. Atchison. Statistical computation of mean dimensions of
macromolecules. iii. The Journal of Chemical Physics, 23(12):2314–2321, 1955. doi: 10.1063/1.
1741872.

[174] F. T. Wall, J. L. A. Hiller, and W. F. Atchison. Statistical computation of mean dimensions of
macromolecules. ii. The Journal of Chemical Physics, 23(5):913–921, 1955. doi: 10.1063/1.1742147.

http://oeis.org/A002931

Bibliography 119

[175] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks. Nature, 393(6684):
440–442, 1998.

[176] D. Werthimer, J. Cobb, M. Lebofsky, D. Anderson, and E. Korpela. Setihome massively dis-
tributed computing for seti. Computing in Science and Engineering, 3(1):78–83, Jan. 2001. ISSN
1521-9615. doi: 10.1109/5992.895191.

[177] K. Wickre. Celebrating #twitter7. In Twitter Blog. Twitter Inc., 2013. URL https://blog.
twitter.com/2013/celebrating-twitter7.

[178] Wikipedia. Seven bridges of Königsberg — wikipedia, the free encyclopedia, 2013. URL
http://en.wikipedia.org/w/index.php?title=Seven_Bridges_of_K%C3%B6nigsberg&oldid=
551783723.

[179] K. Williams. Social network cohesiveness, centrality, and connectedness. Bachelor’s dissertation,
University of Liverpool, 2013.

[180] B. Xu and D. Z. Chen. Density-based data clustering algorithms for lower dimensions using space-
filling curves. In Z.-H. Zhou, H. Li, and Q. Yang, editors, Advances in Knowledge Discovery and
Data Mining, volume 4426 of Lecture Notes in Computer Science, pages 997–1005. Springer Berlin
Heidelberg, 2007. ISBN 978-3-540-71700-3. doi: 10.1007/978-3-540-71701-0_112.

[181] M. Yamashita and T. Kameda. Computing on anonymous networks. part i. characterizing the
solvable cases. Parallel and Distributed Systems, IEEE Transactions on, 7(1):69 –89, jan 1996.
ISSN 1045-9219. doi: 10.1109/71.481599.

[182] M. Yamashita, H. Umemoto, I. Suzuki, and T. Kameda. Searching for mobile intruders in a
polygonal region by a group of mobile searchers. Algorithmica, 31:208–236, 2001. ISSN 0178-4617.
doi: 10.1007/s00453-001-0045-3.

[183] V. Yanovski, I. A. Wagner, and A. M. Bruckstein. A distributed ant algorithm for effi-
ciently patrolling a network. Algorithmica, 37:165–186, 2003. ISSN 0178-4617. doi: 10.1007/
s00453-003-1030-9.

[184] X. Yu and M. Yung. Agent rendezvous: A dynamic symmetry-breaking problem. In F. Meyer
and B. Monien, editors, Automata, Languages and Programming, volume 1099 of Lecture Notes
in Computer Science, pages 610–621. Springer Berlin Heidelberg, 1996. ISBN 978-3-540-61440-1.
doi: 10.1007/3-540-61440-0_163.

[185] yWorks. yFiles for Java Developer’s Guide: Exporting a Graph’s Visual Representation, chapter 9.
yWorks GmbH, 2012.

[186] B. Zagrovic, E. J. Sorin, and V. Pande. β-hairpin folding simulations in atomistic detail using an
implicit solvent model. Journal of Molecular Biology, 313(1):151–169, 2001. ISSN 0022-2836. doi:
10.1006/jmbi.2001.5033.

https://blog.twitter.com/2013/celebrating-twitter7
https://blog.twitter.com/2013/celebrating-twitter7
http://en.wikipedia.org/w/index.php?title=Seven_Bridges_of_K%C3%B6nigsberg&oldid=551783723
http://en.wikipedia.org/w/index.php?title=Seven_Bridges_of_K%C3%B6nigsberg&oldid=551783723

	Contents
	Acronyms
	List of Symbols
	Preface
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Rendezvous Problem
	1.2 Network Patrolling
	1.3 Additional Topics
	1.4 Outline
	1.5 Authors contribution

	2 Distributed Navigation
	2.1 Algorithms
	2.1.1 Distributed Algorithms

	2.2 Analysis of Algorithms
	2.3 Graph Theory
	2.4 Studied Problems
	2.4.1 Rendezvous Problem
	Deterministic Rendezvous

	2.4.2 Network Patrolling
	2.4.3 Additional Work
	Parasitic Computation
	Basic Walk
	Graph Visualisation and Analysis

	3 Synchronous Rendezvous for Location-Aware Agents
	3.1 Linear Time Rendezvous on the Infinite Line
	3.2 Linear Time Rendezvous in Trees
	3.2.1 One-Way Rendezvous in the Half-Line
	3.2.2 Rendezvous in trees

	3.3 Rendezvous in the Higher-Dimensional Space
	3.4 Rendezvous in Arbitrary Graphs

	4 Asynchronous Rendezvous With Location Information
	4.1 The Problem and the Model
	4.2 Efficient Construction of Space-Covering Sequences
	4.3 The Rendezvous Algorithm

	5 Optimal Patrolling of Fragmented Boundaries
	5.1 Introduction
	5.1.1 Model, Preliminaries, and Notation
	5.1.2 Outline and Results of the Work

	5.2 Optimal Patrolling Strategy for the Segment
	5.3 Optimal Patrolling Strategy for the Cycle
	5.4 Computing Optimal Agent Trajectories
	5.4.1 Optimal Lids

	6 Other Work
	6.1 Parasitic Computation
	6.1.1 Background
	6.1.2 This work

	6.2 Basic Walk
	6.2.1 Average cycle length
	6.2.2 Longest cycle length
	nn 2D Square Grids
	kn 2D Square Grids
	Distance to longest cycle

	6.2.3 Probability of a cycle of given length appearing

	6.3 Graph Visualisation and Analysis
	6.3.1 Graph Visualisation
	6.3.2 Graph Analysis

	7 Conclusion
	7.1 Conclusion and Further Work

	A Summary of all cycles up to length 34
	A.1 Definitions
	A.2 Cycle length 4
	A.3 Cycle length 6
	A.4 Cycle length 8
	A.5 Cycle length 10
	A.6 Cycle length 12
	A.7 Cycle length 14
	A.8 Cycle length 16
	A.9 Cycle length 18
	A.10 Cycle length 20
	A.11 Cycle length 22
	A.12 Cycle length 24
	A.13 Cycle length 26
	A.14 Cycle length 28
	A.15 Cycle length 30
	A.16 Cycle length 32
	A.17 Cycle length 34

	Bibliography

