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Abstract

Argument systems are computational models that enable an artificial intelligent agent

to reason via argumentation. Basically, the computations in argument systems can be

viewed as search problems. In general, for a wide range of such problems existing

algorithms lack five important features. Firstly, there is no comprehensive study

that shows which algorithm among existing others is the most efficient in solving a

particular problem. Secondly, there is no work that establishes the use of cost-effective

heuristics leading to more efficient algorithms. Thirdly, mechanisms for pruning

the search space are understudied, and hence, further pruning techniques might be

neglected. Fourthly, diverse decision problems, for extended models of argument

systems, are left without dedicated algorithms fine-tuned to the specific requirements

of the respective extended model. Fifthly, some existing algorithms are presented in

a high level that leaves some aspects of the computations unspecified, and therefore,

implementations are rendered open to different interpretations. The work presented

in this thesis tries to address all these concerns.

Concisely, the presented work is centered around a widely studied view of what

computationally defines an argument system. According to this view, an argument

system is a pair: a set of abstract arguments and a binary relation that captures the

conflicting arguments. Then, to resolve an instance of argument systems the acceptable

arguments must be decided according to a set of criteria that collectively define the

argumentation semantics. For different motivations there are various argumentation

semantics. Equally, several proposals in the literature present extended models that

stretch the basic two components of an argument system usually by incorporating

more elements and/or broadening the nature of the existing components. This work

designs algorithms that solve decision problems in the basic form of argument systems

as well as in some other extended models. Likewise, new algorithms are developed

that deal with different argumentation semantics. We evaluate our algorithms against

existing algorithms experimentally where sufficient indications highlight that the new

algorithms are superior with respect to their running time.
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Chapter 1

Introduction

This chapter outlines the contributions and presents preliminaries. In section 1.1

argument systems are introduced. In section 1.2 the contributions of this research

are highlighted. Section 1.3 discusses the role of experimental analysis in evaluating

the performance of algorithms in argument systems. Section 1.4 recalls the formal

definition of argument systems and gives an overview of a selection of prevalent

argumentation semantics for which this work develops new algorithms. Section 1.5

presents an introduction to value based argument systems. In section 1.6 argument

systems with recursive attacks are described briefly. Section 1.7 gives an overview of

the existing algorithms that are closely related to the algorithms designed in this work.

Lastly, section 1.8 illustrates the structure of the dissertation.

1.1 Applications of Computational Argumentation

Humans, by nature, are able to reason through arguing about their opinions, decisions

and actions. An AI system might be able to reason by incorporating computational

mechanisms for argumentation: so-called argument systems. An argument system is

a reasoning model that is likely to be a mainstay in the study of other areas such as:

• Decision support systems (see e.g. [5, 62]).

• Agent interaction in multi agent systems (see e.g. [73, 20]).

• Legal reasoning (see e.g. [14, 89]).

• Merging conflicting knowledge bases (see e.g. [23, 3]).

• Machine learning ( see e.g. [79]).

A comprehensive review of the topic of computational argumentation is given in [15],

[18] and [90]. This research is centered around a widely studied model of computa-

tional argumentation put forward by Dung [37] where he abstractly views an argument

system as a pair: set of arguments and a binary relation to represent the conflicting
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arguments. The importance of this model is attributed to its abstract nature that facili-

tates the focus on the calculus of the “acceptability” of arguments, thereby providing a

simple, unified way for automating argument-based reasoners. Section 1.4 recalls the

definition of argument systems of [37] along with the related argumentation semantics.

1.2 Research Contributions

The contributions of this research are:

1. Engineering algorithms for decision problems in Dung’s abstract argument sys-

tem [37] under various argumentation semantics taking into account the subse-

quent points.

2. Developing concrete algorithms that are more efficient than the existing algo-

rithms of [28, 35, 78, 95, 97], and verifying performance improvements by con-

ducting empirical evaluation and presenting analytical comparisons with exist-

ing algorithms.

3. Computations in argument systems can be seen primarily as search problems.

The search space can be visualized as a tree where every node in the tree repre-

sents a different state of an argument system. The root of the tree is the initial

state while zero or more of the leaf nodes represent goal states, which corre-

spond to solution(s) to some decision problem. Figure 1.1 shows a binary search

tree. The first efficiency matter considered is the nature of the search tree. That

is, the branching factor and the tree depth. Broadly speaking, the smaller the

branching factor and/or the shorter tree depth, the better performance is attained.

These two aspects form an important measure to distinguish between various

algorithms. Thus, new algorithms are designed that work in an efficient tree

structure. One determinant factor is to define a powerful mechanism through

which an argument system transitions from a state to another. This is exactly

what the new algorithms achieve. Lastly, we state that depth-first search (DFS)

is the adopted traverse method in this work for two reasons:

(a) DFS allows the use of heuristics while breadth-first search (BFS) does not.

(b) Broadly speaking, space complexity of DFS procedures grows polynomially

while BFS requires space in exponential order.

4. The goal state(s) might be anywhere in the search tree. So, one might wonder

whether or not there is a cost-effective way to predict the likelihood of a goal

state to be encountered if a branch is proceeded, and thus, to allow the search

process to prioritize following a branch over another, based on that speculation.

This is the second efficiency matter this research examines; we describe powerful
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Figure 1.1: Visualizing the search space as a tree such that every node represents a
state of the underlying argument system.

heuristics that might guide the search process to the shortest path to the goal

state. This is particularly important when the concerned decision problem is

around finding one solution rather than all solutions.

5. As not all leaf nodes are goal states, it will be an unproductive use of time

to explore some subtrees. Consequently, an important feature in designing a

search algorithm is to find out which properties of a search state would detect

such fruitless subtrees, and thereby, the search process avoids expanding them.

This is the third performance issue we addressed; we specify effective pruning

strategies for a wide range of decision problems in argument systems.

6. The algorithms of this work are introduced in full and unambiguously. It might

be the case that some algorithms in the literature are presented in a high level, and

therefore, implementations of some computations are left open to different inter-

pretations. This work designs meticulous procedures while keeping formality in

all aspects.

7. In the literature there are several extended models of Dung’s argument system. In

this research it is argued that algorithms for decision problems in such extended

models are understudied. Subsequently, algorithms are built for two examples

of such models: value based argument systems [13] and argument systems with

recursive attacks [7]. The developed algorithms take into account the issues

discussed earlier in the previous points.
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1.3 Research Methodology

The importance of experimental evaluation for algorithms in argument systems can

be summarized as three benefits:

1. Theoretical evaluation might not reveal which algorithm among others is most

efficient in solving a given problem practically, while empirical analysis might

be a useful methodology in this matter. For example, the dominant simplex

algorithm for linear programming runs efficiently in practice although it has an

exponential worst-case time complexity.

2. Experimental analysis often provides a means to evaluate the average practical

behavior of algorithms. This is already exploited in studying the behavior of

algorithms solving the satisfiability problem.

3. As stated earlier, computations in argument systems can be seen as search prob-

lems, and so, it is essential to measure empirically the effectiveness of the applied

heuristics.

Hence, in addition to analyzing our algorithms in comparison to existing algo-

rithms we conduct experiments to verify the efficiency gain of the new algorithms.

To this end, we track the average elapsed time of the concerned algorithms running

over randomly generated argument systems, using the reported running times as a ba-

sis to compare between algorithms. A full description of experiments settings will be

presented within the thesis. But next we provide some necessary background material.

1.4 Argument Systems: Preliminaries

An argument system, as defined in [37], is a pair (A,R) where A is a set of arguments

and R ⊆ A×A is a binary relation called the attack relation. We refer to (x, y) ∈ R as

x attacks y (or y is attacked by x). We denote by {x}− respectively {x}+ the subset

of A containing those arguments that attack (resp. are attacked by) the argument x,

extending this notation in the natural way to sets of arguments, so that for S ⊆ A,

S− = { y ∈ A : ∃ x ∈ S s.t. y ∈ {x}−}
S+ = { y ∈ A : ∃ x ∈ S s.t. y ∈ {x}+}

An argument x is acceptable w.r.t. S ⊆ A if and only if for every (y,x) ∈ R, there is some

z ∈ S for which (z, y) ∈R. A subset S⊆A is conflict free if and only if for each (x, y) ∈ S×S,

(x, y) < R. A subset S ⊆ A is admissible if and only if it is conflict free and every x ∈ S

is acceptable w.r.t. S. A preferred extension is a maximal (w.r.t. ⊆) admissible set.

Focusing on preferred semantics, an argument is skeptically accepted if and only if the

argument is in all preferred extensions. On the other hand, an argument is credulously
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Figure 1.2: An argument system.

accepted if and only if the argument is in at least one preferred extension. A set S ⊆ A

is stable iff S is conflict free and S+ = A\S. A subset S ⊆ A is a complete extension if and

only if S is admissible such that for each x acceptable w.r.t. S, x ∈ S. For S ⊆ A, the

range of S is defined as S∪S+. Then, S is a stage extension if and only if S is a conflict

free set with a maximal (w.r.t. ⊆) range. A set S ⊆ A is a semi stable extension if and

only if S is an admissible set with a maximal (w.r.t. ⊆) range. A set S ⊆ A is ideal if and

only if S is admissible and for every preferred extension pre f , S ⊆ pre f . Ideal semantics

[39] provides a unique extension called the ideal extension, which is the maximal (w.r.t.

⊆) ideal set. Coming to grounded semantics, let F : 2A→ 2A be a function that, given

S ⊆ A, returns the set of acceptable arguments w.r.t. S. Then the grounded extension

is the least fixed point of F. Preferred, complete, stable and grounded semantics are

introduced in [37], whereas ideal semantics, stage semantics and semi stable semantics

are defined in [39, 96, 24] respectively. For instance, consider the argument system

depicted in figure 1.2 where nodes represent arguments and edges correspond to

attacks (i.e. elements in R). For this argument system {x,z} is the preferred, grounded,

stable, ideal, complete, semi stable and stage extension. Note that we do not mean by

this example to show differences between semantics. For an excellent introduction to

argumentation semantics see [6].

1.5 Value Based Argument Systems: Preliminaries

To consider mechanisms with which to model persuasive argument in practical rea-

soning (i.e. reasoning about what to do, which is distinguished from reasoning about

what to believe) Bench-Capon [13] extends Dung’s system to accommodate the notion

of arguments promoting “social values”. Bench-Capon’s value based argument sys-

tem is a 4-tuple (A,R,V,η) where A is a set of arguments, R ⊂A×A is a binary relation,

V is a non-empty set of social values, η : A→ V maps arguments in A to values in V.

A total ordering, α of V is referred to as a specific audience. Given a specific audience,

α, we refer to (vi,v j) ∈ α as “vi is preferred to v j” or “vi � v j”. We denote the set of

all specific audiences by U. Audiences offer a means to distinguish attacks (x, y) ∈ R

which do not succeed as a consequence of expressed value priorities recognizing that

different audiences may have different interests and aspirations. Formally, we say x

defeats y w.r.t. the audience α if and only if (x, y) ∈ R and (η(x),η(y)) ∈ α. An argument

x is acceptable for an audience α w.r.t. S ⊆ A if and only if for every y that defeats

x (w.r.t. α) there is some z ∈ S that defeats y w.r.t. α. A set S ⊆ A is conflict free for
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Figure 1.3: A value based argument system.

the audience α if and only if for all x, y ∈ S it is not the case that x defeats y w.r.t. α.

Similarly, S is admissible under α if and only if it is conflict free under α and every

x ∈ S is acceptable for α w.r.t. S. The α-preferred extensions are the maximal (w.r.t.

⊆) admissible under α sets. An argument x is objectively accepted if and only if for

every α, x is in every α-preferred extension1. On the other hand, x is subjectively ac-

cepted if and only if there is some α for which x is in an α-preferred extension. For

instance, consider the value based argument system in figure 1.3 where A = {x, y,z},

R = {(x, y), (y,z), (z, y)}, V = {v1,v2} and η = {(x,v1), (y,v2), (z,v2)}. The nodes in figure 1.3

are labelled by argument-value identifiers. If v1 � v2 the (v1 � v2)-preferred extension

is {x,z} otherwise the (v2 � v1)-preferred extensions are {{x, y}, {x,z}}. Therefore, x is

objectively accepted while y and z are subjectively accepted.

1.6 Argument Systems with Recursive Attacks: Preliminaries

To provide an explicit way to weaken an attack the formalisms of [76, 57, 7] extend

Dung’s argumentation system such that attacks (i.e. elements of R) are subject to attacks

themselves. In chapter 6 we develop algorithms for an instance of such formalisms:

argument systems with recursive attacks introduced in [7].

An argument system with recursive attacks is a pair (A,R) where A is a set of

arguments and R is a set of pairs (x, y) such that x ∈ A and (y ∈ A or y ∈ R). Let

x= (y,z) ∈R then we say that y is the source of x, denoted as src(x)= y, and z is the target

of x, denoted as trg(x) = z. Let x ∈ A∪R and y ∈ R then we say that y directly de f eats x

if and only if x = trg(y). Let x, y ∈ R then we say y indirectly de f eats x if and only if

src(x) = trg(y). Let x ∈ A∪R and y ∈ R, we say y de f eats x if and only if y directly or

indirectly defeats x.

A subset S⊆A∪R is conflict free if and only if there does not exist (x, y) ∈ S×S with

x de f eats y. An element x ∈ A∪R is acceptable w.r.t. S ⊆ A∪R if and only if for each

y ∈ R : y de f eats x, there is some z ∈ S : z de f eats y. A subset S ∈ A∪R is admissible if

and only if S is conflict free and for each x ∈ S, x is acceptable w.r.t. S. A preferred

extension is a maximal (w.r.t. ⊆) admissible set. A subset S⊆A∪R is a stable extension

if and only if S is conflict free and for each x ∈A∪R : x < S, there exists y ∈ S : y de f eats x.

A subset S ⊆ A∪R is a complete extension if and only if S is admissible and every

element of A∪R which is acceptable w.r.t. S belongs to S. For S ⊆ A∪R, the range of

1Note that under the assumption of [13] such that directed cycles of arguments involve at least two
distinct values, the α-preferred extension is unique.
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Figure 1.4: An argument system with recursive attacks.

S is defined as S∪S+, where S+ = {x ∈ A∪R | ∃y ∈ S : y de f eats x}. A subset S ⊆ A∪R

is a stage extension if and only if S is a conflict free set with a maximal (w.r.t. ⊆)

range. A subset S ⊆ A∪R is a semi stable extension if and only if S is an admissible

set with a maximal (w.r.t. ⊆) range. An ideal set is an admissible set S such that for

every preferred extension pre f , S ⊆ pre f . The ideal extension is the maximal (w.r.t. ⊆)

ideal set. Coming to grounded semantics, let F : 2A∪R→ 2A∪R be a function that, given

S ⊆A∪R, returns {x | x is acceptable w.r.t. S}. Then the grounded extension is the least

fixed point of F. Referring to figure 1.4, {x,z,w, t} is the grounded, stable, preferred,

ideal, complete, stage and semi stable extension.

1.7 Related Algorithms

Here we highlight the closely related works that present algorithms for deciding some

of the problems addressed in this thesis. Specifically, we evaluate the new algorithms

by comparing with:

• The algorithm of Doutre and Mengin [35] for enumerating preferred extensions.

• The algorithms of Cayrol et al. [28] for deciding credulous/skeptical acceptance

under preferred semantics.

• The algorithm of Verheij [97] for deciding credulous acceptance under preferred

semantics.

• The algorithm of Modgil and Caminada [78] for enumerating preferred exten-

sions.

• The algorithms of Thang et al. [95] for deciding credulous/skeptical acceptance

under preferred semantics.

Nonetheless, in every chapter we discuss, occasionally in the summary section,

other previous works that are related to the content of the respective chapter. Moreover,

in chapter 7 we dedicated a section for reviewing other available literature that is

connected to the present work in the general sense.
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1.8 Dissertation Structure

The rest of this dissertation is organized as follows:

• Chapter 2 motivates empirical analysis as a methodology for this research where

we undertake experiments to evaluate the efficiency of algorithms that decide

arguments’ acceptance in the extended argument systems of [76] and value based

argument systems. The content of this chapter is presented in [85, 84].

• In chapter 3 we present a new algorithm for enumerating preferred extensions.

We show that the new algorithm is faster than the existing algorithms of [35, 78].

Likewise, we present new algorithms for deciding skeptical/credulous accep-

tance. Then we demonstrate that the new algorithms are more efficient than the

existing algorithms of [28, 95, 97]. The content of this chapter is presented in

[83, 86].

• In chapter 4 we design algorithms for stable semantics, ideal semantics, semi

stable semantics , stage semantics and complete semantics. Also, we present an

implementation of the algorithm of [78] for grounded semantics.

• In chapter 5 we engineer a novel algorithm for enumerating preferred extensions

of a value based argument system. Afterwards, we build algorithms for deciding

objective/subjective acceptance. The content of this chapter is presented in [83].

• In chapter 6 we show how to enumerate different kinds of extensions for an

instance of formalisms that allow attacks on attacks: namely argument systems

with recursive attacks [7].

• Chapter 7 concludes the thesis by reviewing the contributions, discussing further

related works and setting up an agenda for future research.
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Chapter 2

Experimental Analysis of
Algorithms in Argument Systems

From theoretical computational perspectives, decision problems in argument systems

are either polynomial solvable or intractable. To investigate practical efficiency, the-

oretical evaluation of applied algorithms does not necessarily reveal performance

dissimilarities. More specifically, theoretical analysis of algorithms often draw the

behavior in worst-case scenarios, which can be uncommon, while the average behav-

ior is left uncaught. Further, the dominant asymptotic-based analysis pictures the

growth trend of the running time, and in turn, does not trace the exact performance.

Thus, theoretical evaluation might not reveal which algorithm among others is most

efficient in solving a given problem practically [74]. Therefore, the main purpose of

this chapter is to motivate the role of experimental evaluation in analyzing algorithms’

behavior for decision problems in argument systems where theoretical analysis might

be of little help. To this end, we pick two extended argument systems, which are

basically derived from Dung’s argumentation system, as a case study to empirically

examine the efficiency of algorithms related to the acceptance of arguments. In par-

ticular, in section 2.1 we introduce a case in which we study experimentally three

different algorithmic methods that decide arguments’ acceptability in Modgil’s argu-

ment system1 [76]. Afterwards, in section 2.2 we give another case where we analyse

empirically algorithms for objective/subjective acceptance in value based argument

systems2. Finally in section 2.3 we close the chapter offering further discussions and

related works.

1In his paper [76] Modgil refers to his model as “extended argumentation frameworks”.
2In this chapter we discuss algorithms in value based argument systems under the assumption of

multi-value cycles [13], i.e. there does not exist a cycle such that all arguments in the cycle promote the
same social value, while in chapter 5 we present labeling algorithms for enumerating preferred extensions
of any value based argument system.
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2.1 Experimental Algorithms for Modgil’s Argument System

In the context of practical reasoning, Modgil [76] elaborated a way to reason about

preferences in argument systems, and thus, introduced an extended formalism of

Dung’s argument system.

Definition 1. A Modgil argument system is a 3-tuple (A,R,D) such that A is a set of

arguments, R ⊆ A×A, D ⊆ A×R and if (x, (y,z)), (x′, (z, y)) ∈ D then (x,x′), (x′,x) ∈ R. We

refer to (x, (y,z)) ∈D as x attacks (y,z) or (y,z) is attacked by x.

Referring to the Modgil argument system in figure 2.1, A= {w,x, y,z}, R= {(w,x), (w,z),

(x,z), (y,w), (z, y)}, D = {(w, (x,z)),(y, (w,x)), (z, (w,z)),(z, (y,w))}. In Modgil’s argument

system not all attacks are defeats, an attack is considered a defeat w.r.t. to a set of

arguments if and only if the attack is not attacked by any member of that set.

Figure 2.1: An instance of Modgil’s argument system that is referenced throughout
this section.

Definition 2. Let (A,R,D) be a Modgil argument system and S ⊆ A. Then x de f eatsS y if

and only if (x, y) ∈ R and @z ∈ S s.t. (z, (x, y)) ∈D.

In Modgil’s notation, y⇀ z denotes (y,z) ∈ R, x� (y⇀ z) denotes (x, (y,z)) ∈D and

y→S z denotes y de f eatsS z. Now we come to conflict freeness in Modgil’s argument

system. A set of arguments is conflict free if there is no two members that attack each

other and there is no member that defeats another w.r.t. to the set itself.

Definition 3. Let (A,R,D) be a Modgil argument system. Then S ⊆ A is conflict free if and

only if ∀x, y ∈ S : i f (x, y) ∈ R, then (y,x) < R and ∃z ∈ S s.t. (z, (x, y)) ∈D.

Referring to the Modgil argument system in figure 2.1, {w,z} is conflict free while

{x,z} is not. The acceptability in Modgil’s argument system does not only require

defending an argument but it needs also to check for the reinstatement of that defense.

Definition 4. Let S ⊆ A in (A,R,D). Then RS = {x1→
S y1, ...,xn→

S yn} is a reinstatement

set for w→S z, if and only if:

1. w→S z ∈ RS,
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2. for i = 1...n,xi ∈ S,

3. ∀x→S y ∈ RS,∀y′ s.t. (y′, (x, y)) ∈D, there is a x′→S y′ ∈ RS.

Definition 5. Let (A,R,D) be a Modgil argument system. Then y ∈ A is acceptable w.r.t.

S ⊆ A, if and only if ∀x s.t. x→S y,∃z ∈ S s.t. z→S x and there is a reinstatement set for

z→S x.

Referring to the Modgil argument system in figure 2.1, y is acceptable w.r.t. {x, y}

and the reinstatement set for x→S z is {x→S z, y→S w}. A subset S⊆A is an admissible

set if and only if S is conflict free and for each x ∈ S : x is acceptable w.r.t. S. A set S⊆A is

a preferred extension if and only if S is a set inclusion maximal admissible set. Referring

to the Modgil argument system in figure 2.1, {x, y} and {w,z} are preferred extensions.

With respect to preferred semantics, an argument might be in all extensions, and so,

it is skeptically accepted. On the other hand, an argument might be in at least one

preferred extension, and hence, it is credulously accepted. In the next section we offer

basic methods that could be used in computing skeptical/credulous acceptance.

2.1.1 Algorithms for Acceptability

In this section we present three different algorithmic methods for deciding the accept-

ability of an argument w.r.t. to a set of arguments. The first method is taken from [47]

while we formulate the other two methods. The three methods result in algorithms

that run in polynomial time [47]. Nevertheless, experiments in section 2.1.2 suggest

that the algorithms show differences in practical behavior.

2.1.1.1 Method 1

[47] define an algorithm for deciding the acceptability of arguments in Modgil’s argu-

ment system, see algorithm 1. To exemplify, consider the Modgil argument system in

figure 2.1. Then to decide the acceptability of y w.r.t. {x, y} algorithm 1 removes w⇀ x

(line 1) and then colors z⇀ y blue (line 2). Afterwards, it colors x⇀ z red (line 5) and

subsequently w� (x⇀ z) blue (line 7). Next, it colors y⇀ w red (line 5) and later

z� (y⇀ w) blue (line 7). At this stage (line 16), algorithm 1 finds y attacked by z, but

z is attacked by x. Hence, y is acceptable w.r.t. {x, y}. Note that lines 9-15 do not do any

action in this example.

2.1.1.2 Method 2

As we could say that an argument is acceptable w.r.t. a set of arguments, we might also

say that an argument is refutable w.r.t. a set of arguments if the argument is defeated

by a member of the respective set and there is a reinstatement set for that defeat.
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Algorithm 1: Deciding the acceptability of x ∈A w.r.t. S⊆A in a Modgil argument
system (A,R,D).

1: R← R\ {(y,z) : y9S z}
2: color each attack y→S x BLUE
3: repeat

4: for all y ∈ A s.t. y→S x or (y, (u,v)) is BLUE do

5: color z→S y RED for each z ∈ S s.t. z→S y
6: for all z→S y colored RED do

7: color each attack (v, (z, y)) ∈D BLUE
8: until no change in attack colors
9: repeat

10: if ∃y ∈ A s.t. (y, (v,w)) is BLUE and there is no u→S y colored RED then

11: R← R\ {(v,w)}
12: D←D\ {(y, (v,w))}
13: if ∃z ∈ S s.t. ((z, y) is RED with (y, (u,v)) BLUE) and @(p, (z, y)) ∈D then

14: D←D\ {(y, (u,v))}
15: until no change in D
16: Report whether x is acceptable w.r.t. S in the (A,R)

Definition 6. Let (A,R,D) be a Modgil argument system. Then x ∈A is refutable w.r.t. S⊆A

, if and only if ∃y ∈ S s.t. y→S x and there is a reinstatement set for y→S x.

Consider the Modgil argument system in figure 2.1, x is refutable w.r.t. S = {w,z}

since w→S x and {w→S x,z→S y} is the reinstatement set. To decide whether an

argument is acceptable to a set of arguments or not, method 2 examines the attackers

who defeat the argument w.r.t. the concerned set. If all defeaters are refutable then

method 2 asserts acceptability otherwise it halts and declines acceptability. Method 2

decides that an argument is refutable w.r.t. a set of arguments if:

1. there is a member of the respective set that defeats the argument in question, and

2. all arguments which attack the defense in (1), are also refutable w.r.t. the respec-

tive set.

Method 2 is represented by algorithms 2-4. Algorithm 2 traverses the defeaters of

the argument in question, and then, checks the refutability of each defeater by invoking

algorithm 3. Actually, algorithm 3 calls algorithm 4 and vice versa where the objective

of both algorithms is to find out the refutability of an argument. These algorithms

make use of a simple coloring scheme. The default color is green while the red color is

given to any argument or attack that is currently under processing to prevent infinite

recursion; upon finishing the green color is returned.

As an example, consider the Modgil argument system in figure 2.1. To decide

whether the conflict free S = {x, y} is an admissible set or not, we need to check the

acceptability of x and y w.r.t. to S. For x, the only attacker w9S x and so x is acceptable.
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For y, z→S y, and therefore, algorithm 2 calls algorithm 3 (line 3) to decide whether

z is refutable w.r.t. S or not. At this point, algorithm 3 finds x→S z, and so, calls

algorithm 4 (line 8) to see whether this defense is reinstated. Indeed, algorithm 4

finds that w� (x⇀ z) (line 2). Thereafter, algorithm 4 (line 4) invokes algorithm 3 to

decide whether w is refutable or not. Actually, y→S w (line 8) and so algorithm 3 calls

algorithm 4 that finds z� (y⇀ w) (line 2). As z is RED (i.e. visited), this signals that

w and z are refutable w.r.t. S and subsequently y is acceptable w.r.t. S. In what follows

we present the proof of algorithms 2-4.

Proposition 1. Let (A,R,D) be a Modgil argument system, S⊆A, x ∈A and (y,x) ∈R. Then:

1. x is acceptable w.r.t. S if and only if algorithm 2 returns true.

2. x is not acceptable w.r.t. S if and only if algorithm 2 returns false.

3. x is refutable w.r.t. S if and only if algorithm 3 returns true.

4. x is not refutable w.r.t. S if and only if algorithm 3 returns false.

5. Let y→S x, then there is a reinstatement set for y→S x if and only if algorithm 4 returns

true.

6. Let y→S x, then there is no reinstatement set for y→S x if and only if algorithm 4

returns false.

Proof:

1. By definition 5, if x is acceptable w.r.t. S then for each y→S x, there is z ∈ S s.t.

z→S y and there is a reinstatement set for z→S y. Algorithm 2 returns true (line

5) if for every y→S x, y is refutable w.r.t. S (line 3), which implies (by definition 6)

there exists z ∈ S with z→S y and there is a reinstatement for z→S y.

2. x is not acceptable w.r.t. S implies that there exists y→S x s.t. for every z ∈ S,

z9S y or there is no reinstatement set for z→S y (definition 5). Algorithm 2

returns false (line 4) if there is y→S x (line 2) while y is not refutable w.r.t. S (line

3), being not refutable means (by definition 6) for every z ∈ S, z9S y or there is

no reinstatement set for z→S y.

3. x is refutable w.r.t. S implies there exists y ∈ S s.t. y→S x and there is a reinstate-

ment set for y→S x (definition 6). Algorithm 3 returns true (lines 6 and 10) if

there is y ∈ S : y→S x and there is a reinstatement set for y→S x (line 8).
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4. If x is not refutable w.r.t. S then for each y ∈ S, y9S x or there is no reinstatement

set for y→S x (definition 6). Algorithm 3 returns false (line 12) if and only if for

all y ∈ S, y9S x or there is no reinstatement set for y→S x.

5. Algorithm 4 returns true (line 8) if for every z� (y⇀ x) (line 2), z is refutable

w.r.t. S (line 4), which means (by definition 6) there is w ∈ S with w→S z and

there is a reinstatement set for w→S z.

6. Algorithm 4 returns false (line 6) if there exists z� (y⇀ x) (line 2) and z is not

refutable w.r.t. S (line 4), which means for each w ∈ S, w9S z or there is no

reinstatement set for w→S z (definition 6).

■

Algorithm 2: Acceptable(x ∈ A ,S ⊆ A)

1: for all (y,x) ∈ R do

2: if y→S x then

3: if Re f utable(y,S) = false then

4: return false

5: return true

Algorithm 3: Refutable(x ∈ A ,S ⊆ A)

1: color x RED
2: for all (y,x) ∈ R do

3: if y ∈ S then

4: if (y,x) is RED then

5: color x GREEN
6: return true

7: else

8: if y→S x∧Reinstated((y,x),S) = true then

9: color x GREEN
10: return true

11: color x GREEN
12: return false

2.1.1.3 Method 3

In method 2, there are 3 algorithms for 3 tasks. From an algorithmic design point of

view, that architecture can be reasonable, because, checking refutability, which is the

job of algorithm 3, is a common process between algorithms 2 and 4. Nonetheless,

method 3 is composed of two algorithms that fulfill the task of the three algorithms of

14



Algorithm 4: Reinstated((y,x) ∈ R ,S ⊆ A)

1: color (y,x) RED
2: for all (z, (y,x)) ∈D do

3: if z is GREEN then

4: if Re f utable(z,S) = false then

5: color (y,x) GREEN
6: return false

7: color (y,x) GREEN
8: return true

method 2. Method 3 is represented by algorithms 5 and 6. Observe that the idea of

method 3 is close to the idea of method 2. We present them both to show, in section 2.1.2,

how experimental results can be misleading in analyzing the performance of method

2 versus method 3.

Analogous to algorithm 2, algorithm 5 traverses the defeaters. However, algo-

rithm 5 checks if a defeater can be defeated by a member in the relevant set instead

of delegating that task to another algorithm as it is in the case of algorithm 2. If a

defeater is defeated, then algorithm 5 calls algorithm 6 to decide whether that defense

is reinstated or not. The duty of algorithm 6 is two-fold. The first one is similar to

the task of algorithm 3 while the other duty is in line with the job of algorithm 4. In

algorithm 6, RED color designates that an attack is under processing and subsequently

infinite procedure invocation is avoided.

Referring to the Modgil argument system in figure 2.1. To determine the acceptabil-

ity of y to S= {x, y}, algorithm 5 finds (line 2) that z→S y. As x→S z (line 4), algorithm 5

invokes algorithm 6 to check the reinstatement for x→S z. Now, algorithm 6 finds that

w� (x⇀ z) (line 2) and finds that y→S w (line 4). At this stage, algorithm 6 calls itself

to determine the reinstatement for y→S w (line 8). Subsequently, algorithm 6 finds

that z� (y⇀ w) (line 2) and x→S z (line 4). Since x→S z is RED (line 5), this indicates

that the reinstatement is assured for both y→S w and x→S z. Hence, y is acceptable

w.r.t. S. Now, we introduce the proof of algorithms 5 and 6.

Algorithm 5: Acceptable(x ∈ A,S ⊆ A)

1: for all (y,x) ∈ R do

2: if y→S x then

3: for all z ∈ S do

4: if z→S y∧Reinstated((z, y),S) = true then

5: go to line 1 for next iteration
6: return false

7: return true

Proposition 2. Let (A,R,D) be a Modgil argument system, S⊆A, x ∈A and (y,x) ∈R. Then:

1. x is acceptable w.r.t. S if and only if algorithm 5 returns true.
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Algorithm 6: Reinstated((y,x) ∈ R,S ⊂ A)

1: color (y,x) RED
2: for all (z, (y,x)) ∈D do

3: for all w ∈ S do

4: if w→S z then

5: if (w,z) is RED then

6: go to line 2 for next iteration
7: else

8: if Reinstated((w,z),S) then

9: go to line 2 for next iteration
10: color (y,x) GREEN
11: return false

12: color (y,x) GREEN
13: return true

2. x is not acceptable w.r.t. S if and only if algorithm 5 returns false.

3. Let y→S x, then there is a reinstatement set for y→S x if and only if algorithm 6 returns

true.

4. Let y→S x, then there is no reinstatement set for y→S x if and only if algorithm 6

returns false.

Proof:

1. If x is acceptable w.r.t. S then for every y→S x there is z ∈ S : z→S y and there is

a reinstatement set for z→S y (definition 5). Algorithm 5 returns true (line 7) if

for every y→S x (line 2), there is z ∈ S : z→S y and there is a reinstatement set for

z→S y (line 4).

2. If x is not acceptable w.r.t. S then there is y→S x s.t. for each z ∈ S, z9S y or there

is no reinstatement set for z→S y (definition 5). Algorithm 5 returns false (line 6)

if there exists y→S x (line 2) s.t. for each z ∈ S, z9S y or there is no reinstatement

set for z→S y (line 4).

3. Algorithm 6 returns true (line 13) if for every z � (y ⇀ x) (line 2), there is

w ∈ S : w→S z (line 4) and there is a reinstatement set for w→S z (line 8).

4. Algorithm 6 returns false (line 11) if there is z� (y⇀ x) (line 2) s.t. for every

w ∈ S, w9S z (line 4) or there is no reinstatement set for w→S z (line 8).

16



■

As to which method is the fastest in practice, it is far from clear. In the subsequent

section we present the experiments that evaluate these three methods.

2.1.2 Experiments

We start with a description of the conducted experiments then we show how to use the

results of these experiments in analyzing the performance of the methods discussed

in section 2.1.1. We implemented the experiments using Java on a Fedora (release

13) based machine3 of 4 processors (Intel core i5-750 2.67GHz) and 16GB of memory.

Instances of Modgil’s argument system were generated randomly and approximately

with equal probability. In particular, if y ∈ A would attack two arguments and two

attacks (note that deciding the number of attacks originated from a given argument can

be random as well). Then x ∈A\{y} is selected to be attacked by y with a probability of
1
|A|−1 , and subsequently, z ∈A\ {y,x} is selected to be attacked by y with a probability of

1
|A|−2 . Likewise, (t,u) ∈R is selected to be attacked by y with a probability of 1

|R| and then

(v,w) ∈ R \ {(t,u)} is selected to be attacked by y with a probability of 1
|R|−1 . In testing

the implemented algorithms, we ran more than 100,000 Modgil argument systems. In

the experiments we consider two criteria to measure the behavior of the methods. The

first criterion is the average elapsed time in milliseconds denoted as αtime. We used

the Java method System.currentTimeMillis() to measure the elapsed time. The second

comparison criterion is the average total of elements of D processed in an execution,

we denote this criteria by αd. Note that the second criterion is implementation inde-

pendent. In general, we cannot rely solely on the elapsed time in evaluating different

algorithms because such a measure depends on the implementation of the algorithms

(i.e. programming/coding) as well as the underlying structure of these algorithms.

Thus, we conducted three experiments for three questions:

1. which method is the most efficient as |A| grows?

2. what is the impact of the increase in |R| on the performance of the methods?

3. how do the methods behave as |D| grows?

In all experiments we pictured the behavior of the methods in solving the credu-

lous/skeptical acceptance problems. As to the first experiment, we generated 1000

Modgil argument systems where |A| ranges from 6 to 20, the number of attacks is

limited up to 7 per argument and the number of attacks on attacks is limited up to 4

per argument. The behavior of all methods is captured by figures 2.2, 2.3, 2.4 and 2.5.

In these figures we use logarithmic scale. In the second experiment, we generated

1000 Modgil argument systems where |R| varies from 12, 24, 36 ... to 132, |A| as 12

3This is the machine for all experiments conducted in this work.
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and the number of attacks on attacks is 2 per argument. Figures 2.6 and 2.7 trace

the results of this experiment. In the third experiment, we generated 1000 Modgil

argument systems where |D| varies from 12, 24, 36 ... to 132, |A| as 12 and the number

of attacks on arguments is 4 per argument. The outcome of this experiment is shown

in figures 2.8 and 2.9. To ensure accuracy, we repeated these experiments on different

data with various parameters other than those mentioned above and the trends were

completely consistent. Among several versions, we present here only one version of

the conducted experiments. Moreover, observe that by these experiments we mean to

know which algorithm is the fastest and hence there is no need, although it is possible,

to consider very large argument systems as long as there are sufficient clues about

algorithms’ behavior under systems not considered to be very large. The size of in-

stances might be of concern if the main objective is to study the underlying problem

behavior, in that case it might be important to see how the computations are behaving

in very large argument systems as well as small ones.

Figure 2.2: Deciding credulous acceptance, trend of αtime as |A| grows.

To analyze, figures 2.2, 2.3, 2.4 and 2.5 show the performance for all methods indi-

cating that methods 2 and 3 are faster than method 1 in deciding credulous/skeptical

acceptance. However, although figures 2.2 and 2.4 suggest that methods 2 and 3 have

nearly similar αtime trends, figures 2.3 and 2.5 indicate that method 2 is more efficient

in terms of αd. In such situation where two measures do not agree we seek a third one

to decide which method is the most efficient. The overhead of procedure invocation

might resolve the conflict, bearing in mind that method 2 is composed of 3 procedures

and method 3 comprises two only. Figures 2.10 and 2.11 indicate that method 2 has

a higher number of procedure invocations than method 3, and conclusively, methods

2 and 3 perform comparably. By examining the effect of |R|, figures 2.6 and 2.7 sug-

gest that method 2 runs faster as |R| grows in deciding credulous/skeptical acceptance.

Figures 2.8 and 2.9 indicate that the rise in |D| almost has an inverse impact on the effi-
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Figure 2.3: Deciding credulous acceptance, trend of αd as |A| grows.

Figure 2.4: Deciding skeptical acceptance, trend of αtime as |A| grows.

ciency of method 2 in solving the credulous/skeptical acceptance problems. Although

figures 2.6, 2.7, 2.8 and 2.9 depict the behavior of method 2, the other methods showed

similar trends, which are omitted to avoid redundancy. Data tables for all charts are

presented in appendix A.

2.2 Experimental Algorithms for Value Based Argument Sys-

tems

For preliminaries of value based argument systems we refer the reader to section 1.5.

Deciding Objective/subjective acceptance is believed to be intractable [40, 68]. How-

ever, as in any intractable problem, there are classes of value based argument systems

that could be solved in linear time. The following proposition identifies value based

argument systems that allow for linear time reasoning. In particular, problem instances

with unrestricted number of arguments sharing the same value are solvable trivially
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Figure 2.5: Deciding skeptical acceptance, trend of αd as |A| grows.

Figure 2.6: Trend of αd as |R| grows in method 2 deciding credulous acceptance.

with only one property: none of the attacks involves arguments sharing the same

value.

Proposition 3. Let (A, R, V, η) be a value based argument system. Then unattacked arguments

are objectively accepted while the attacked ones are subjectively accepted if ∀(x, y) ∈ R (η(x) ,

η(y)).

Proof: It is straightforward that unattacked arguments are objectively accepted.

By contradiction we can prove that the remaining attacked arguments are subjectively

accepted. Assume that not all of the attacked arguments are subjectively accepted, then

one or more are either indefensible (i.e. neither objectively nor subjectively accepted)

or objectively accepted. By definition an objectively accepted argument is attacked

only by indefensible arguments. In fact, an indefensible argument x is attacked by

accepted argument(s) that promote(s) η(x). Contradiction. ■

A naive approach to deciding objective/subjective acceptance needs to check all
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Figure 2.7: Trend of αd as |R| grows in method 2 deciding skeptical acceptance.

Figure 2.8: Trend of αd as |D| grows in method 2 deciding credulous acceptance.

total value orders (i.e. permutations of values in V). Thus, the acceptance of an argu-

ment will be computed in time proportional to |V|! even if the underlying value based

argument system is solvable in linear time. This stimulates us to look for a different

approach that checks the minimum required value orders to decide acceptance, and

so, in the next subsection we end up with algorithms having an improved running

time.

2.2.1 Algorithms for Deciding Arguments’ Acceptance

The idea of the new algorithm is based on the notion that acceptance of arguments

is decided according to the acceptance of attackers. This notion has been already

employed in algorithmic aspects of argument systems (see e.g. [78]). Indeed, the new

algorithm searches the tree induced by a given argument s.t. the argument is the root

and the children are the attackers and the children of these are their attackers and so

on, provided that values are not repeated in a single directed path unless the repetition
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Figure 2.9: Trend of αd as |D| grows in method 2 deciding skeptical acceptance.

Figure 2.10: Trend of average of procedure invocations as |A| grows in deciding cred-
ulous acceptance.

happens in a row. We call such a tree the dispute tree.

Definition 7. Let (A, R, V, η) be a value based argument system. Then the dispute tree

induced by x ∈ A, denoted by Tx, has x as the root and ∀y,z ∈ A, y is a child of z if and only if

(y,z) ∈ R and (η(y) = η(z) or η(y) does not appear on the directed path from z to x).

Example 1. Consider the value based argument system in figure 2.12 (throughout the dis-

sertation we use argument-value as labels for nodes). The dispute tree Ty of y is depicted in

figure 2.13. Note that we do not consider attacks with repeated values unless they are consec-

utive, for instance, in Ty the attack from x against z is dropped since x has the same value of y.

The dropped attack is unsuccessful if v2 is preferred to v1, and it is unreachable if v1 is preferred

to v2.

Actually the new approach works on dispute trees. Before presenting the formal

algorithms it might be helpful to discuss an example to capture the general idea.
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Figure 2.11: Trend of average of procedure invocations as |A| grows in deciding skep-
tical acceptance.

Figure 2.12: A value based argument system.

Example 2. Consider the value based argument system in figure 2.12. The new approach

decides that y is subjectively accepted since it is not defeated if v1 is most preferred (see

figure 2.14) and defeated when v2 is most preferred (see figure 2.15). In total, y is subjectively

accepted.

Every time a social value is considered most preferred, the dispute tree changes

accordingly. We refer to the new resulting tree as the pruned dispute tree under the

superiority of some value.

Definition 8. Let (A, R, V, η) be a value based argument system, x ∈ A, v ∈ V and T = Tx.

Then the pruned dispute tree under the superiority of v, denoted by Tv, is defined as {(y,z) ∈

T | η(y) = η(z)∨η(z) , v}.

Example 3. Let T be the tree Ty in figure 2.13. Then Tv2 = {(z, y), (s, y), (u,s), (z,u)}.

One more helpful term we have to define is related to the recursive nature of

the new approach. Recall that we decide the acceptance of an argument based on
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Figure 2.13: Referring to figure 2.12, the dispute tree Ty of y.

Figure 2.14: Referring to figure 2.12, the dispute tree of y if v1 is most preferred noting
that dashed-arrows represent dropped attacks.
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Figure 2.15: Referring to figure 2.12, the dispute tree of y if v2 is most preferred noting
that dashed-arrows represent dropped attacks.

attackers’ acceptance, and thus, the acceptance of an attacker is computed according

to the dispute subtree that is branched from that attacker.

Definition 9. Let (A, R, V, η) be a value based argument system, x ∈ A and T = Tx. Then

the subtree T(y) is defined as {(z,s) ∈ T | s = y ∨ there is a directed path in T from s to y}.

Example 4. Let T be the tree Tv2 from example 3. Then T(s) = {(u,s), (z,u)}.

The new approach to objective/subjective acceptance is formally presented in al-

gorithms 7 and 8. Algorithm 7 decides statusx that denotes the objective/subjective

acceptance of x ∈ A while algorithm 8 decides status′x that denotes whether or not x

is in a preferred extension under the superiority of some social value. Note that the

second parameter, T, of algorithm 7 is initially, i.e. in the first invocation, equal to Tx

where x is the argument in question.

Example 5. Consider the value based argument system in figure 2.12, to find the acceptance of

w the values {v1,v2,v3,v4} are to be investigated. Now, if v1 is most preferred then w is defeated

as depicted in figure 2.16. Note that dispute trees in all figures are constructed left-to-right

while arguments’ statuses are decided bottom-up. Back to the acceptance of w, in the same way

w is defeated if v2 and v3 are most preferred respectively (see figures 2.17 & 2.18). However, if

v4 is most preferred then w is undecided (see figure 2.19). At this stage, two more value orders

are to be explored, namely, v1 is preferred to v3 and v3 is preferred to v1. In fact, w is also

defeated in the latter two cases (see figures 2.20 and 2.21), and therefore, w is indefensible. To

appreciate the benefit of algorithms 7 and 8, observe that a naive method would need to check

24 value orders (i.e. |V|!) to decide the acceptance of w, but the developed algorithms find the

acceptance after checking only 6 value orders.
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Algorithm 7: DecideStatus(x ∈ A,T ⊆ Tx )

1: for all v ∈ V : ∃(y,z) ∈ T s.t. (η(y) = v∨η(z) = v) do

2: status′x← StatusAtValue(x,T,v)
3: if (statusx is 2 or null)∧ status′x = 2 then

4: statusx← 2
5: else

6: if (statusx is 0 or null)∧ status′x = 0 then

7: statusx← 0
8: else

9: if status′x = 1 ∧ T is not chain then

10: s←DecideStatus(x,Tv)
11: if (statusx is 2 or null)∧ s = 2 then

12: statusx← 2
13: else

14: if (statusx is 0 or null)∧ s = 0 then

15: statusx← 0
16: else

17: return 1
18: else

19: return 1
20: return statusx

Algorithm 8: StatusAtValue(x ∈ A,T ⊆ Tx,v ∈ V)

1: status′x← 2
2: for all y ∈ A s.t. (y,x) ∈ T do

3: if η(x) , v∨η(y) = η(x) then

4: status′y = StatusAtValue(y,T(y),v)
5: if status′y = 2∧ (η(x) = η(y)∨η(y) = v) then

6: return 0
7: else

8: if status′y , 0 then

9: status′x = 1
10: return status′x
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Figure 2.16: Progress of algorithms in example 5: the state when v1 is most preferred.

Figure 2.17: Progress of algorithms in example 5, the state when v2 is most preferred.
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Figure 2.18: Progress of algorithms in example 5, the state when v3 is most preferred.

Figure 2.19: Progress of algorithms in example 5, the state when v4 is most preferred.
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Figure 2.20: Progress of algorithms in example 5, the state when v4 is most preferred
and v1 is preferred to v3.

Figure 2.21: Progress of algorithms in example 5, the state when v4 is most preferred
and v3 is preferred to v1.
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In the remainder of this section we present the proof of algorithms 7 and 8. The

algorithms are recursive and so the proof is by induction. These proofs basically

identify the base and inductive cases that are directly provable from the definition

of subjective/objective acceptance and the other definitions presented in this section.

In fact, algorithm 8 is a depth first search procedure that visits the attackers of the

argument in question, say x, until it returns 0 indicating that x is not a member of

a preferred extension, 1 indicating undecided (w.r.t. whether or not x in a preferred

extension) or 2 indicating that x is in a preferred extension.

Proposition 4. Let (A, R, V, η) be a value based argument system and x ∈ A. Under the

superiority of v ∈V over any other social value promoted by arguments in the tree T, algorithm 8

returns status′x equal to:

1. 0 if and only if ∀S ⊆ A : S is admissible (x < S).

2. 2 if and only if ∃S ⊆ A : S is admissible with x ∈ S.

3. 1 otherwise.

Proof: In the base case the algorithm stops and returns 2 for one of two reasons.

Firstly, if there is no attacker against x at all (line 2). Secondly, if η(x) = v and all

attackers of x in T do not promote v (line 3). This follows directly from the defeat

notion in value based argument systems. The inductive case: given y attacks x such

that status′y = 2, i.e. y is in an admissible set, and η(y) = v or η(y) = η(x) then status′x is 0

(line 6), otherwise, if status′y is not equal to 0 then status′x = 1 (i.e. undecided, see line 9).

The inductive case follows directly from the fact: with respect to any total value order

there is only one preferred extension under the assumption of multi-value cycles [13].

The base case establishes (2) while the inductive case shows (1) & (3). ■

Algorithm 7 is also a recursive procedure that returns: 0 for indefensible arguments,

1 for subjective acceptance or 2 for objective acceptance.

Proposition 5. Let (A, R, V, η) be a value based argument system and x ∈A. Then algorithm 7

returns statusx equal to:

1. 0 if and only if x is indefensible.

2. 1 if and only if x is subjectively accepted.

3. 2 if and only if x is objectively accepted.

Proof: The proof follows directly from proposition 4 and the definition of subjec-

tive/objective acceptance. In the base case the algorithm stops for one of two reasons.

Firstly, if there are no values left for investigation then the algorithm returns statusx as

0 or 2 (lines 1, 4, 7, 12, 15 & 20). Secondly, the algorithm returns 1 if statusx is not null
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and statusx , status′x and (status′x , 1 or T is a chain) (line 19). Inductive case: if statusx

is null or 0 (respectively 2) then statusx stays 0 (respectively 2) if the status of x w.r.t. Tv

is 0 (respectively 2), see lines 10-15. Otherwise, statusx is 1 (line 17). ■

2.2.2 Experiments

We implemented the algorithms presented in the previous section in Java on a Linux-

based machine of 4 CPUs (Intel core i5-750 2.67GHz) and 16GB of memory. We

generated instances of value based argument systems for these experiments such that

all steps are implemented randomly with approximately equal probability. These steps

include choosing the number of arguments, number of social values and number of

attacks, which arguments attack which others and finally which argument is mapped

to which value. We tested the algorithm with 100,000 value based argument systems

where |V| ranges from 2 to 7 and |A| ranges from 2 to 15.

We ran three experiments. For each experiment we aimed at generating 10000

value based argument systems. But then we had to drop inapplicable instances, which

have a cycle of arguments promoting the same social value. The first experiment was

to show how our algorithm compares to a naive approach, in which every total value

order is examined in order to decide subjective/objective acceptance. For this purpose,

we experimented 9844 value based argument systems grouped by |V|. Table 2.1 details

each group while table 2.2 presents the average total of value orders processed in an

execution, denoted asαvalue−order, and the average elapsed time in milliseconds, denoted

as αtime, for each group under the new algorithm versus a naive algorithm. We used

the Java method System.currentTimeMillis() to track the elapsed time. The second

experiment was to show how our algorithm’s behavior is affected by the increase of

|V|. Figures 2.22 and 2.23 show the behavior in terms αvalue−order and αtime respectively.

The charts in figures 2.22 and 2.23 are obtained from 9753 value based argument

systems where the number of attacks against any argument is limited up to 4, |A| is

30 and |V| ranges from 2 to 20. The last experiment was to evaluate, in the context of

the new algorithm, the correlation between the number of attacks against any single

argument and the performance measured by αvalue−order and αtime. The results of the

last experiment are presented in figures 2.24 and 2.25 where the charts plot 9500 value

based argument systems with |A| as 20, |V| as 4 and the number of attacks against any

argument ranges from 2 to 20. As an illustration on how to read these figures, the point

(15,83.22) in figure 2.22 means that for a collection of value based argument systems

with |V| = 15 the algorithm needs to check on average 83.22 value orders to decide the

acceptance. The data tables for all figures are presented in appendix A.

To sum up, the outcome of the experiments shows that the new algorithm has on

average a better behavior than a naive algorithm as stated by table 2.2. Figures 2.22

and 2.23 point that the time complexity of the new algorithm might be exponential,
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Figure 2.22: The effect of increase in |V|.

Figure 2.23: The effect of increase in |V|.

Figure 2.24: The effect of increase in attacks per argument.
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Table 2.1: Value based argument systems referenced by table 2.2.

group |V| |value based argument systems| range(|A|) range(|R|)

1 2 1284 2-12 0-45

2 3 1400 3-15 0-58

3 4 1505 4-17 1-87

4 5 1422 5-18 3-927

5 6 1405 7-20 8-109

6 7 1404 8-20 10-135

7 8 996 8-20 13-140

8 9 428 9-20 20-138

Table 2.2: The new algorithm versus a naive algorithm.

group
the new algorithm a naive algorithm
αvalue−order αtime αvalue−order αtime

1 1.66 0.04 2.00 0.03

2 2.37 0.11 6.00 0.15

3 3.10 0.33 24.00 1.06

4 3.83 0.91 120.00 7.17

5 4.53 3.46 720.00 31.20

6 5.12 11.00 5,040.00 221.36

7 5.60 32.91 40,320.00 2,438.76

8 5.92 103.40 362,880.00 45,676.53

which is not surprising since the problem of subjective/objective acceptance is believed

to be hard (see e.g. [40]). Finally, figures 2.24 and 2.25 show that the increase in the

number of attacks against any single argument has no extreme impact on the behavior

of the new algorithm.

2.3 Summary

We presented a case study on experimental algorithms in the context of two instances

of extended argument systems. The concern was to show the potential of empirical

analysis in evaluating algorithms for decision problems in argument systems. Ana-

lyzing algorithms is a crucial process in engineering practical algorithms. The role

of experimental methodology becomes evident in cases where theoretical evaluation

might fall short in discovering the performance differences between algorithms.

We projected our discussions on algorithms in value based argument systems and

Modgil’s argument system. This should not be construed as giving favor to these sys-

tems over other formalisms such as [1, 57]. We did not mean in this chapter to analyze

the semantics of the concerned formalisms or even to show the link between them

and other related argumentation theories. Although we examined the efficiency of
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Figure 2.25: The effect of increase in attacks per argument.

somewhat simple algorithms, we believe that the experimental treatments introduced

in this chapter are applicable to other algorithmic issues in argument systems.

Considering experiments as a means for evaluating the performance of algorithms

is generally not new in the field of computer science (see e.g. [74]). However, making

use of empirical investigations in the context of argument systems for the purpose of

developing algorithms is, to the best of our knowledge, considered by only a few works.

In [54] experiments were conducted to evaluate the effectiveness of an algorithm for

constructing logic-based arguments. In [70] experiments have been conducted to

examine approximation versus exact computations in the context of argument systems

while [12] empirically evaluated the effect of splitting a given argument system on the

computation of preferred extensions. We see these previous works as complementary

to our experimental study presented in this chapter in the sense that experimental

algorithmics give insights to various features according to the objectives of the research

question under study. This does not imply, by no means, that experiments in the

general sense have not been undertaken by other works for objectives away from

designing and analyzing dedicated algorithms, see for example [53, 51, 19].

Empirical evaluation of algorithms can be taken further to several algorithmic is-

sues in the context of arguments systems as we show in the coming chapters. For

example, [28, 97, 95] have proposed algorithms to decide credulous/skeptical accep-

tance. From an application perspective it is still an open question concerning which of

these algorithms is the most efficient in practice.
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Chapter 3

New Algorithms for Preferred
Semantics

Doutre and Mengin [35] and later Modgil and Caminada [78] presented algorithms

for computing preferred extensions. Informally, the two algorithms are based on the

notion that arguments which might be included in an extension are labeled IN while

arguments which might not be in the respective extension are labeled OUT and the

undecided arguments are labeled UNDEC. Both algorithms start with some initial label

for all arguments and then the labels change, through what are so-called transitions,

several times until some condition holds. At this point, the arguments labeled IN make

up an admissible set. These algorithms go through different sequences of transitions,

and hence, they find admissible sets in order to construct the preferred extensions.

Nonetheless, the two algorithms mainly differ in two issues. Firstly, the arguments’

initial labels. Secondly, the transitions of arguments’ labels. As we show, these issues

affect the performance significantly.

The contribution of this chapter can be summarized in four points. Firstly, we

improve labels’ transitions by utilizing further labels, and hence, the preferred exten-

sions are enumerated faster than existing algorithms. Secondly, we introduce a new

mechanism for pruning the search space such that transitions leading to “dead ends”

are avoided at an early stage. Thirdly, we present a cost-effective heuristic rule that

selects arguments for transitions such that a goal state (i.e. a preferred extension)

might be achieved earlier. Fourthly, by incorporating the three improvements, we

design algorithms for answering the skeptical/credulous acceptance question without

explicitly enumerating all preferred extensions.

We develop in section 3.1 a new algorithm that enumerates all preferred extensions.

Supported by experiments presented in section 3.3, we argue in section 3.2 that our

algorithm is faster in deciding the preferred extensions than the existing algorithms

of Doutre and Mengin [35] and Modgil and Caminada [78]. Regarding the acceptance

problem, the skeptically/credulously accepted arguments might be simply decided by

enumerating all preferred extensions. However, in situations where the acceptance
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problem is confined to a specific argument then it is more efficient to avoid enumerating

all preferred extensions explicitly, especially when the underlying argument system is

dynamic (i.e. changes frequently such as in a dialog setting). Adhering to this view, in

section 3.4 we engineer algorithms for the acceptance problem that outperform, with

respect to running time, the existing algorithms of Cayrol et al. [28], Thang et al. [95]

and the algorithm of Verheij for the credulous acceptance problem [97]. With respect

to the acceptance algorithms, we introduce comparisons with existing algorithms and

empirical evaluation in section 3.5. Lastly, we offer further discussions, review of

related works and conclusions in section 3.6.

3.1 Preferred Extension Enumeration: The New Algorithm

Besides applying the labels IN, OUT and UNDEC that are used by the existing al-

gorithms of [35, 78], we introduce the use of MUST OUT and IGNORED. In what

follows we informally explain the usage of the five labels in our algorithm. The IN

label identifies arguments that might be in a preferred extension. The OUT label iden-

tifies an argument that is attacked by an IN argument. The UNDEC label is for any

unprocessed argument whose final label is not decided yet. The MUST OUT label

identifies arguments that attack IN arguments. The IGNORED label designates argu-

ments which might not be included in a preferred extension because they might not be

defended by any IN argument. The precise usage of these labels is introduced shortly.

To enumerate the preferred extensions our algorithm starts with UNDEC as the

initial label for all arguments. Next, the algorithm forks to two sets of new labels via

two kinds of transitions: IN-TRANS and IGNORE-TRANS. During IN-TRANS three

actions are taken. Firstly, an UNDEC argument becomes IN. Secondly, attackers of the

newly IN argument become MUST OUT. Thirdly, arguments attacked by the newly

IN argument are labeled OUT.

Definition 10. Let (A,R) be an argument system, x ∈ A, Lab : A→ {IN,OUT,MUST OUT,

IGNORED,UNDEC} be a total mapping such that Lab(x) =UNDEC. Then the in transition

on x, denoted as IN-TRANS(x), is defined by the next ordered actions:

1. Lab′← Lab, and then

2. Lab′(x)← IN, and then

3. for all (x, y) ∈ R do Lab′(y)←OUT, and then

4. for all (z,x) ∈ R : Lab′(z) ,OUT do Lab′(z)←MUST OUT, and then

5. return Lab′.
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Figure 3.1: How algorithm 9 works on an argument system.

The purpose of the IGNORE-TRANS is to try to find a preferred extension excluding

the IGNORED argument. Hence, the IGNORE-TRANS is applied by labeling an

argument IGNORED as the following definition states.

Definition 11. Let (A,R) be an argument system, x ∈A , Lab : A→ {IN,OUT,MUST OUT,

IGNORED,UNDEC} be a total mapping such that Lab(x) = UNDEC. Then the ignore

transition on x, denoted as IGNORE-TRANS(x), is defined by the following steps:

1. Lab′← Lab, and then

2. Lab′(x)← IGNORED, and then

3. return Lab′.

Algorithm 9 defines formally our approach. The idea of algorithm 9 is to change

arguments’ labels via IN-TRANS and IGNORE-TRANS repeatedly until there is no

argument that is UNDEC. At this stage, the IN arguments make up an admissible set

if and only if no argument is MUST OUT. Figure 3.1 shows how algorithm 9 works on

the argument system of figure 1.2.

Let us now improve the efficiency of algorithm 9 by applying three enhancements.

For the first enhancement, algorithm 9 selects an UNDEC argument for IN-TRANS

arbitrarily (line 12); however, as we demonstrate it is more productive to apply the

following selection rule:

37



Algorithm 9: Enumerating all preferred extensions of an argument system (A,R).

1 Lab : A→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;
2 foreach x ∈ A do Lab← Lab∪{(x,UNDEC)};

3 Epre f erred ⊆ 2A; Epre f erred← φ;

4 call find-preferred-extensions(Lab);
5 report Epre f erred is the set of all preferred extensions;

6 procedure find-preferred-extensions(Lab)
7 if @x ∈ A : Lab(x) =UNDEC then

8 if @x ∈ A : Lab(x) =MUST OUT then

9 S← {y ∈ A | Lab(y) = IN};
10 if @T ∈ Epre f erred : S ⊆ T then Epre f erred← Epre f erred∪{S};

11 else

12 select any x ∈ A s.t. Lab(x) =UNDEC;
13 Lab′← IN-TRANS(x);
14 call find-preferred-extensions(Lab′);
15 Lab′← IGNORE-TRANS(x);
16 call find-preferred-extensions(Lab′);

17 end procedure

1. select any x ∈A s.t. x is UNDEC and for each (y,x) ∈ R, y is OUT or MUST OUT.

2. otherwise select any x ∈ A s.t. x is UNDEC and |{x}+| is maximal.

Later in this section we will explain the reason behind the first part of this selection

rule. As to the second part, the intuition is that this might accelerate reaching a goal

state, that is, an admissible set. Recall that the set of IN arguments is admissible if

and only if all arguments in the system are IN, OUT or IGNORED. Thus, the goal

state(s) of the search might be reached faster as much as we minimize the number of

UNDEC/MUST OUT arguments by maximizing the number of OUT arguments1. In

the opposite way, as long as the first part of the selection rule failed, one might pick

up an UNDEC argument x for IN-TRANS such that the number of arguments that

attack x is minimal. At first sight, such selection seems sensible because it produces

almost a minimal number of MUST OUT arguments. However, recall that we get to

a goal state (i.e. admissible set) if and only if no argument is UNDEC or MUST OUT,

and thus, minimizing the number of MUST OUT arguments will not be helpful as far

as the number of UNDEC arguments is not also minimized. In section 3.3 we show

experimentally the efficiency of our heuristic rule against some other options.

For the second enhancement to algorithm 9, we reactivate a pruning mechanism

(originally used by [35] but here we improve the utilization to maximize the profit

as we explain in section 3.2.1) that detects the branch of the search space that will

eventually take us to a dead end. In particular, the pruning mechanism says that if

1This is also noted by [33] in deciding stable extensions.
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Figure 3.2: How algorithm 10 works on an example argument system.

at any state of the search there exists a MUST OUT argument that is not attacked by

an UNDEC argument then proceeding further is fruitless and so the algorithm simply

must backtrack.

For the third enhancement, we use a further pruning tactic which skips ignoring

an argument x that is attacked only by OUT or MUST OUT arguments; note that if an

admissible set S will be found while such x is ignored then S∪{x} is certainly admissible

and so there is no need to ignore x in the first place. At this point it is convenient to

show the grounds of the first part of our heuristics that selects an UNDEC argument x

such that for each (y,x) ∈ R y is OUT or MUST OUT; notice that the earlier we make

such x IN, the bigger part of the search tree that would be bypassed (keeping in mind

the third enhancement).

Furthermore, we modify algorithm 9 by two minor changes. For the first change,

note that IGNORE-TRANS does only change the transitioned argument, and so, there

is no need to fork to a new set of labels via IGNORE-TRANS. Simply, we drop

the IGNORE-TRANS and label the transitioned argument IGNORED. For the sec-

ond change, we rewrite the IN-TRANS by its definition to make the algorithm self-

contained. Now, we give algorithm 10 that reinforces algorithm 9 by incorporating the

three enhancements mentioned before alongside the two minor changes. Figure 3.2

shows how algorithm 10 computes the preferred extensions of the argument system

of figure 1.2. To prove algorithm 10 we have to show three issues. Firstly, the IN argu-

ments make up an admissible set if and only if no argument is UNDEC or MUST OUT.

Secondly, a decided admissible set is a preferred extension if and only if the set is not a

subset of any previously decided preferred extension. Thirdly, algorithm 10 discovers

all preferred extensions.
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Algorithm 10: Improvement of algorithm 9 that enumerates preferred extensions
of an argument system (A,R).

1 N(y) ≡ |{z ∈ A | (y,z) ∈ R}|;
2 Lab : A→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;
3 foreach x ∈ A do Lab← Lab∪{(x,UNDEC)};

4 Epre f erred ⊆ 2A; Epre f erred← φ;

5 call find-preferred-extensions(Lab);
6 report Epre f erred is the set of all preferred extensions;

7 procedure find-preferred-extensions(Lab)
8 while ∃y ∈ A : Lab(y) =UNDEC do

9 select y ∈ A s.t. Lab(y) =UNDEC and ∀(z, y) ∈ R
(Lab(z) ∈ {OUT,MUST OUT}), otherwise select y ∈ A s.t. Lab(y) =UNDEC
and ∀z ∈ A : Lab(z) =UNDEC, N(y) ≥N(z);

10 Lab′← Lab;
11 Lab′(y)← IN;
12 foreach (y,z) ∈ R do Lab′(z)←OUT;
13 foreach (z, y) ∈ R do

14 if Lab′(z) ∈ {IGNORED,UNDEC} then

15 Lab′(z)←MUST OUT;
16 if @(w,z) ∈ R : Lab′(w) =UNDEC then

17 Lab(y)← IGNORED;
18 goto line 8;

19 call find-preferred-extensions(Lab′);
20 if ∃(z, y) ∈ R : Lab(z) ∈ {UNDEC, IGNORED} then

21 Lab(y)← IGNORED;
22 else

23 Lab← Lab′;

24 if @y ∈ A : Lab(y) =MUST OUT then

25 S← {y ∈ A | Lab(y) = IN};
26 if @T ∈ Epre f erred : S ⊆ T then Epre f erred← Epre f erred∪{S};

27 end procedure
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Proposition 6. Let (A,R) be an argument system and Epre f erred be the set of subsets of A

reported by algorithm 10. Then:

1. ∀S ∈ Epre f erred, ∃T ⊆ A : T is a preferred extension ∧ T = S.

2. ∀T ⊆ A, if T is a preferred extension then ∃S ∈ Epre f erred : S = T.

Proof: Firstly, we demonstrate that for each S ∈ Epre f erred, S is admissible. To establish

that S is conflict free, assume that there is z, y ∈ S s.t. (z, y) ∈R. Thus, y would be labeled

OUT according to algorithm 10, see line 12. This contradicts line 25, which implies

that for each x ∈ S Lab(x) = IN. To show that for each x ∈ S x is acceptable w.r.t. S,

suppose that there is y ∈ S, (z, y) ∈ R with no w ∈ S s.t. (w,z) ∈ R. So, z would be labeled

MUST OUT according to lines 13-15. This contradicts the actions of lines 24-26, which

basically report S admissible and subsequently add S to Epre f erred if and only if there

does not exist w ∈ A s.t. Lab(w) =MUST OUT.

Secondly we need to prove the maximality (w.r.t. ⊆) of the elements in Epre f erred.

Assume that there is S ∈ Epre f erred s.t. S is not maximal. Given the action of line 26,

there exists an admissible set SS ⊃ S s.t. SS < Epre f erred. This basically means there is

y ∈ SS s.t. y < S. This contradicts the actions of algorithm 10 by which it firstly labels y

IN (see line 11) and then later IGNORED (see lines 17 and 21). These actions basically

imply that SS would be discovered before S and consequently SS would be added to

Epre f erred according to line 26.

Lastly, it follows directly that algorithm 10 finds all preferred extensions. Note that

algorithm 10 examines all subsets of A by labeling every argument y initially labeled

UNDEC to be IN (see line 11) and afterwards IGNORED (see lines 17 and 21) which

reflects the exploration of all subsets that include, respectively exclude, y. ■

3.2 The Advantage of the New Algorithm over Existing Algo-

rithms

3.2.1 The Algorithm of Doutre and Mengin

In [35] Doutre and Mengin (DM for short) present an algorithm to enumerate all

preferred extensions using three labels: IN, OUT and UNDEC. As in algorithm 10

that we have presented, DM algorithm starts with all arguments UNDEC and then

the algorithm forks via two transitions iteratively. However, there are five differences

between DM algorithm and algorithm 10 as illustrated in the following.

Firstly, DM algorithm selects an UNDEC argument for transitions according to

somewhat expensive heuristic rules such that if one rule fails to select an argument

another rule is applied and so forth. Here we give three DM rules:
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R1. DM selects an UNDEC argument x s.t. the following conditions hold altogether:

i. ∀(y,x), y is not IN nor UNDEC and y is attacked by x or an IN argument,

ii. ∀(x,z), z is not IN.

R2. DM selects an UNDEC argument x s.t. for each (y,x) ∈ R, y is not attacked by an

IN (or UNDEC) argument.

R3. DM selects an UNDEC argument x s.t. there exists z ∈ A s.t. z is IN, (y,z) ∈ R,

(x, y) ∈ R and for each (w, y) ∈ R s.t. w , x, w is OUT.

By comparing only these rules (leaving aside the other DM rules) against our rules

(which, we recall, select an UNDEC argument x s.t. for each (y,x) ∈ R, y is OUT

or MUST OUT otherwise the rule selects an UNDEC argument x such that |{x}+| is

maximal), one can see that our heuristic rules are potentially computationally lighter

than the DM rules. Furthermore, we present in section 3.3 experiments indicating that

our rules are more cost-effective than the heuristics of DM.

Secondly, in DM algorithm the counterpart transition of IN-TRANS labels the

attackers of an IN argument OUT while in our approach such attackers are labeled

MUST OUT. The benefit of the MUST OUT label is to streamline a pruning mechanism

as we demonstrate next. DM algorithm stops exploring a branch further and backtracks

if there is (x, y) ∈ R s.t. x is OUT, y is IN and for each (z,x) ∈ R z is OUT; this is checked

after every transition. Nevertheless, algorithm 10 backtracks if a MUST OUT argument

is not attacked by an UNDEC argument; this is checked only during the IN-TRANS that

produces new MUST OUT arguments. We note that algorithm 10 needs to check the

condition of this pruning strategy less frequently than the algorithm of DM. Besides,

this pruning check is verified on average more efficiently in algorithm 10 compared

to DM algorithm. Notice that searching for a MUST OUT argument runs in the order

of |A| while searching for an OUT argument that attacks an IN argument runs in the

order of |R|; typically |R| > |A|.

Thirdly, the DM counterpart of IGNORE-TRANS labels the respective argument as

OUT instead of IGNORED. To appreciate the benefit of the IGNORED label consider

what follows. Once the DM algorithm finds an admissible set, the labels of all argu-

ments are either IN or OUT, and thus, one cannot tell which of the OUT arguments are

in conflict with the IN arguments. Comparing with our algorithm, an admissible set is

reported if and only if all arguments are IN, OUT or IGNORED, and in effect, one easily

can see that the OUT arguments attack (or are attacked by) an IN argument while the

IGNORED arguments are those which are excluded from the respective admissible set

since they might be indefensible by the IN arguments.

Fourthly, to ensure the maximality of the reported preferred extensions DM algo-

rithm checks that for each T ⊆ {y : y is OUT}, T∪ {x : x is IN} is not admissible. This
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is more expensive than the approach of algorithm 10 that simply reports a maximal

admissible set S if and only if S is not a subset of a previously decided preferred

extension.

Fifthly, we stress that our algorithm utilizes a new pruning mechanism that skips

ignoring an argument that is attacked only by OUT or MUST OUT arguments as we

illustrated earlier in section 3.1.

3.2.2 The Algorithm of Modgil and Caminada

In [78] Modgil and Caminada (MC) present an algorithm to enumerate all preferred

extensions using three labels: IN, OUT and UNDEC. We show six differences between

MC algorithm and algorithm 10.

Firstly, MC approach starts with all arguments IN while our approach starts with

all arguments UNDEC. We believe that this is not a stylistic issue, the initial state

dramatically affects the performance, keeping in mind that the initial state defines

what kind of transitions are applicable. Transitions bear two efficiency factors. Firstly,

the computations incurred by applying the transition itself. Secondly, the number of

applicable transitions by which the algorithm might fork at a time. In what follows

we emphasize on these two issues.

Secondly, for transitions MC select an IN argument (super-illegally in MC terms)

that is attacked by a legally IN (or UNDEC) argument. An IN argument x is legally

IN if and only if for each (y,x) ∈ R, y is OUT. An UNDEC argument x is legally

UNDEC if and only if x is not attacked by an IN argument while x is attacked by an

UNDEC argument. If there are no super-illegally arguments then MC algorithm picks

an illegally IN argument, i.e. an argument attacked by an IN (or UNDEC) argument.

Contrastingly, algorithm 10 picks up an UNDEC argument x s.t. for each (y,x) ∈ R, y is

OUT or MUST OUT otherwise algorithm 10 selects an UNDEC argument x such that

|{x}+| is maximal. Therefore, the selection process of MC runs in the order of |R|2 while

in algorithm 10 the selection process runs in the order of |R|.

Thirdly, in MC approach there is one kind of transition which is completely different

from our transitions. In MC transition, an illegally IN argument is changed to OUT

and due to this change any OUT argument (illegally OUT in MC terminology) that is

not attacked by an IN argument anymore is changed to UNDEC. Hence, in MC the

transitions need to process the attackers of a set of OUT arguments. This set contains

the newly OUT argument plus the OUT arguments which are attacked by that newly

OUT argument. We note that our transition methods are computationally cheaper than

the transition method of MC: the IGNORE-TRANS only processes one argument while

the IN-TRANS processes the attackers of the newly IN argument plus the arguments

which are attacked by that newly IN argument.

Fourthly, MC algorithm might find, at any stage, several illegally IN arguments,
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and so, each illegally IN argument induces a transition. Consider the case where every

argument attacks all of the other arguments, then there are |A| illegally IN arguments,

and subsequently, there are |A| transitions. Afterwards, there are |A| − 1 illegally IN

arguments and so forth. Thus, MC algorithm runs in the order of |A|! transitions.

However, algorithm 10 (DM algorithm as well) runs in the order of 2|A| due to the fact

that our algorithm forks via exactly two transitions at any time.

Fifthly, to ensure the maximality (w.r.t. ⊆) of the decided preferred extensions MC

algorithm drops, once there is no illegally IN argument, the decided admissible sets

which are subsets of the current set of IN arguments. As we have shown, algorithm 10

reports a maximal admissible set if the set of IN arguments is not a subset of any

previously decided preferred extension. Then, it is usually the case that algorithm 10

bears fewer computations to warrant the maximality since the number of preferred

extensions is typically less than the number of admissible sets.

Sixthly, MC algorithm incorporates a pruning mechanism which is different from

the one used in algorithm 10. MC algorithm stops and backtracks if the set of IN

arguments is a subset of a previously decided admissible set. In essence experimental

evaluation presented in section 3.3 suggests that our pruning mechanism is more

powerful.

3.3 Empirical Evaluation

We undertook experiments to verify that algorithm 10 is more efficient than existing

algorithms. In the next section we describe the settings of our experiments.

3.3.1 Experiments Description

All the algorithms of this thesis, new and previous ones, were implemented in C++2 on

a Fedora (release 13) based machine with 4 processors (Intel core i5-750 2.67GHz) and

16GB of memory. We tested the algorithms of this chapter with at least 100,000 ran-

domly generated argument systems. We generated instances of argument systems by

two methods. The first method is described by algorithm 11, while the other method is

done by setting an attack between two arguments with a specific probability, which we

declare for each reported experiment. As we show, the first method is more representa-

tive w.r.t. |R|, i.e. algorithm 11 generates small |R| as well as somewhat large |R|, while

generating argument systems with a specific probability will produce instances with

nearly similar density w.r.t. |R|. Hence, we believe that using algorithm 11 is sufficient

for the purpose of our experiments. However, we also consider generating argument

systems by setting attacks with a specific probability because it is, perhaps, a more

common method than algorithm 11, and therefore, we mean to remove any doubts

2Apart from the algorithms of chapter 2, which are implemented in Java.
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that a skeptical reader might have. To compare between algorithms we tracked the

average elapsed time in milliseconds, denoted by αtime. The elapsed time was obtained

by using the time command of Linux. In addition, to provide a platform-independent

measure, we reported the average total number of attacks processed during an execu-

tion, denoted by αattacks. Each measurement of αtime or αattacks represents the average for

100 generated argument systems where each system might have a different |R|. This

section describes our experimental settings in general for the rest of this thesis, and so,

we might refer to this section wherever we report experimental results.

Algorithm 11: Generating an instance of an argument system (A,R)

1 A← {a1,a2...an};
2 R← φ;
3 s← Choose (uniformly at random) a natural number between 1 and n−1;
4 // i.e. P[s = k] = 1/(n−1);
5 foreach i : 1 ≤ i ≤ n do

6 t← Choose (uniformly at random) a natural number between 0 and s;
7 // i.e. P[t = k] = 1/(s+1);
8 foreach k : 1 ≤ k ≤ t do

9 j← Choose (uniformly at random) a natural number between 1 and n s.t.
j , i and (ai,a j) < R;

10 R← R∪{(ai,a j)};

3.3.2 Evaluating the Algorithm in Contrast to Existing Algorithms

As tables 3.1 and 3.2 indicate, algorithm 10 is more efficient than the algorithm of Doutre

and Mengin [35]. Similarly, tables 3.3 and 3.4 suggest that algorithm 10 outperforms

the algorithm of Modgil and Caminada [78]. Moreover, we compare algorithm 10

with dynPARTIX [52] which is based on a dynamic programming algorithm where

a tree decomposition is computed for the given argument system and then the pre-

ferred extensions are decided by working on that decomposition, and thus, the time

complexity of the algorithm mainly depends on the tree width of the given argument

system while it is linear in the size of the argument system. As suggested by tables 3.5

and 3.6, algorithm 10 is faster than dynPARTIX (version 2).

3.3.3 Evaluating Heuristics

In selecting an UNDEC argument x for IN-TRANS, we consider three selection strate-

gies in the event of there is no x ∈ A with x is UNDEC satisfying for each (y,x) ∈ R, y is

OUT or MUST OUT. Specifically

SELC1. select x such that |{x}+| is maximal.

SELC2. select x uniformly at random from those labeled UNDEC.
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Table 3.1: Algorithm of Doutre and Mengin versus algorithm 10, argument systems
were generated by using algorithm 11.

|A| Range of |R|
Algorithm of Doutre and Mengin Algorithm 10
αtime αattacks αtime αattacks

16 16-152 42.90 173,985.18 10.10 1,079.52

17 17-185 82.50 342,125.92 10.00 1,484.46

18 18-190 138.10 606,814.63 10.80 2,033.13

19 19-208 235.80 1,043,640.02 10.00 2,298.23

20 20-232 526.40 2,227,440.78 27.00 3,317.15

21 21-269 1,269.10 5,135,244.41 16.30 4,274.53

22 22-279 1,964.60 8,250,082.03 14.10 5,354.97

23 23-306 4,499.40 18,103,628.02 13.60 7,833.88

Table 3.2: Algorithm of Doutre and Mengin versus algorithm 10, argument systems

were generated by setting attacks with a probability of
2×loge|A|
|A| .

|A|
Algorithm of Doutre and Mengin Algorithm 10
αtime αattacks αtime αattacks

16 40.90 162,669.60 0.30 509.94

17 64.30 278,827.90 0.00 622.34

18 140.50 620,731.02 0.00 770.78

19 217.00 956,478.06 0.00 862.77

20 452.60 1,989,006.80 0.00 1,103.40

21 1,013.50 4,202,136.39 0.10 1,360.33

22 1,955.40 8,167,079.65 0.00 1,636.15

23 3,381.80 14,010,377.81 0.00 1,973.35

Table 3.3: Algorithm of Modgil and Caminada versus algorithm 10, argument systems
were generated by using algorithm 11.

|A| Range of |R|
Algorithm of Modgil and Caminada Algorithm 10

αtime αattacks αtime αattacks

7 7-36 13.90 116,748.55 10.10 55.83

8 8-44 27.40 878,620.66 10.10 81.96

9 9-53 123.00 7,518,451.58 10.30 120.10

10 10-67 1,341.30 95,136,946.42 11.30 165.20

11 11-81 17,718.70 1,289,875,022.46 16.80 230.57

12 12-102 198,260.00 14,843,459,628.78 20.50 297.07
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Table 3.4: Algorithm of Modgil and Caminada versus algorithm 10, argument systems

were generated by setting attacks with a probability of
2×loge|A|
|A| .

|A|
Algorithm of Modgil and Caminada Algorithm 10

αtime αattacks αtime αattacks

7 10.40 180,048.15 0.00 65.89

8 47.20 2,468,480.49 0.00 100.31

9 245.50 16,156,341.51 0.00 124.11

10 1,717.40 122,267,084.12 0.00 149.15

11 13,839.10 1,022,422,791.17 0.00 176.05

12 129,694.00 9,398,228,010.93 2.80 222.20

Table 3.5: The average elapsed time of algorithm 10 versus dynPARTIX, argument
systems were generated by using algorithm 11.

|A| Range of |R| dynPARTIX Algorithm 10

21 21-255 61.70 36.00

22 22-268 91.70 37.50

23 23-299 148.80 38.00

24 24-337 298.90 30.00

25 25-332 223.80 33.33

26 26-369 485.30 40.00

27 27-458 650.40 35.00

28 28-470 1,431.70 30.00

29 29-467 1,525.50 26.00

30 30-484 2,933.40 25.00

Table 3.6: The average elapsed time of algorithm 10 versus dynPARTIX, argument

systems were generated by setting attacks with a probability of
2×loge |A|
|A| .

|A| dynPARTIX Algorithm 10

21 36.30 0.00

22 51.70 0.00

23 71.00 0.00

24 96.90 0.00

25 142.50 0.20

26 191.80 0.10

27 294.40 0.00

28 388.20 0.00

29 585.60 0.10

30 831.00 0.20
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Table 3.7: Evaluating heuristics for algorithm 10 by tracing the average elapsed time,
argument systems are generated by using algorithm 11.

|A| Range of |R|
αtime

SELC1 SELC2 SELC3

51 51-1420 33.10 79.90 109.60

52 52-1514 36.60 81.60 151.80

53 53-1565 70.10 156.70 276.10

54 54-1654 40.20 140.70 190.70

55 55-1542 50.40 118.00 162.80

56 56-1740 47.00 110.20 200.40

57 57-1747 99.70 198.80 395.30

58 58-1820 84.40 223.10 269.10

59 59-1919 104.30 275.80 428.60

60 60-2008 83.30 364.30 722.90

Table 3.8: Evaluating heuristics for algorithm 10 by tracing the average total attacks
processed in an execution, argument systems were generated by using algorithm 11.

|A| Range of |R|
αattacks

SELC1 SELC2 SELC3

51 51-1420 56,674,350.00 419,600,980.00 497,036,320.00

52 52-1514 77,158,060.00 506,418,890.00 718,256,140.00

53 53-1565 142,804,040.00 885,072,160.00 1,260,449,180.00

54 54-1654 88,628,520.00 892,263,610.00 977,251,560.00

55 55-1542 98,386,710.00 708,626,820.00 777,678,830.00

56 56-1740 95,596,010.00 646,236,060.00 1,003,608,330.00

57 57-1747 218,721,530.00 1,061,332,270.00 1,700,097,880.00

58 58-1820 168,321,570.00 1,269,828,260.00 1,369,440,260.00

59 59-1919 202,274,190.00 1,521,032,860.00 1,882,353,340.00

60 60-2008 181,076,010.00 2,175,114,920.00 3,070,755,730.00

SELC3. select x such that |{x}−| is minimal.

We evaluated all these selection options; tables 3.7, 3.8, 3.9 and 3.10 show that the first

strategy is the most efficient. Recall that we illustrated the reasons behind this earlier

in section 3.1.

3.4 Deciding Skeptical and Credulous Acceptance: New Al-

gorithms

In deciding acceptance, it might be desirable to produce some kind of proof (i.e.

explanation) as to why an argument is credulously accepted. In order to define what

makes up a proof for the credulous acceptance let us recall a helpful term. We say that

an argument x is reachable from an argument y if and only if there is a directed path

from y to x. For example, consider the argument system depicted in figure 3.3 where
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Table 3.9: Evaluating heuristics for algorithm 10 by tracing the average elapsed time,

argument systems were generated by setting attacks with a probability of
2×loge|A|
|A| .

|A|
αtime

SELC1 SELC2 SELC3

51 23.10 44.40 60.00

52 28.60 51.20 75.40

53 34.20 61.30 96.50

54 39.30 66.90 111.70

55 35.30 61.90 90.70

56 38.40 72.10 108.70

57 43.60 84.70 122.70

58 53.40 101.40 153.40

59 59.50 114.50 183.60

60 71.40 141.70 216.10

Table 3.10: Evaluating heuristics for algorithm 10 by tracing the average total attacks
processed in an execution, argument systems were generated by setting attacks with a

probability of
2×loge|A|
|A| .

|A|
αattacks

SELC1 SELC2 SELC3

51 124,211,520.00 388,755,410.00 436,034,330.00

52 155,233,160.00 457,403,240.00 554,937,770.00

53 187,574,380.00 566,546,030.00 690,943,580.00

54 217,752,000.00 621,320,020.00 807,769,740.00

55 210,179,920.00 585,514,800.00 684,125,670.00

56 233,738,620.00 696,231,930.00 827,515,780.00

57 268,330,940.00 809,601,160.00 915,755,090.00

58 325,295,100.00 979,667,610.00 1,134,830,850.00

59 362,701,330.00 1,119,429,760.00 1,348,104,360.00

60 435,559,000.00 1,353,460,680.00 1,608,847,260.00
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Figure 3.3: An argument system.

A = {u,v,w,x, y,z} and R = {(u,w), (v,u), (w,z), (v,z), (z,x), (x, y), (y,x)}. In figure 3.3 x is

reachable from u through the directed path 〈(u,w), (w,z), (z,x)〉while u is not reachable

from x. Thus, a credulous proof of a given argument is made up of two sets: an

admissible set containing the argument and the set of all counter arguments.

Definition 12. Let (A,R) be an argument system, S ⊆A be an admissible set containing x s.t.

∀z ∈ S x is reachable from z. Then, S∪S− is a credulous proof for x.

It follows directly that our definition of the credulous proof is compatible with the

definition of credulous acceptance. Note that a given argument is credulously accepted

if and only if the argument is in an admissible set, which is explicitly expressed in

definition 12. Algorithm 12 determines a credulous proof of an argument (should

such exist).

Basically, algorithm 12 is a modification of algorithm 10 such that instead of finding

all preferred extensions algorithm 12 tries to find an admissible set containing the

argument in question. Hence, algorithm 12 makes use of six labels: PRO (short for

proponent), OPP (short for opponent), IGNORED, OUT, MUST OUT and UNDEC.

An argument x is labeled PRO to indicate that x might be in an admissible set and the

argument in question is reachable from x. An argument y is labeled OUT if and only if y

is attacked by a PRO argument. The MUST OUT label identifies arguments that attack

PRO arguments. An argument y is labeled OPP if and only if y is attacked by a PRO

argument and y attacks a PRO argument. An argument y is labeled IGNORED to signal

that y cannot be in an admissible set with the current PRO arguments. The UNDEC

label is for any unprocessed argument whose label is not decided yet. The precise

usage of these labels is defined in algorithm 12. The basic notion of algorithm 12 is to

change arguments’ labels iteratively according to the labeling scheme outlined earlier

until there does not exist an argument that is MUST OUT. At this point, PRO/OPP

arguments make up a credulous proof for the argument in question such that PRO

arguments represent the admissible part of the proof.

Referring to the argument system in figure 3.3, {v,x, y,z} is a credulous proof for x

where {v,x} is admissible, see figure 3.4 that demonstrates how algorithm 12 works.

Although figure 3.4 does not reflect every aspect of algorithm 12, the figure might help

the reader to capture the general idea. To prove algorithm 12, it is essential to show

that PRO arguments make up an admissible set.

Proposition 7. Let (A,R) be an argument system and x ∈ A. Then:
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Figure 3.4: Deciding a credulous proof for the argument x by using algorithm 12.

1. If algorithm 12 decides that x is credulously proved by T = {y ∈A | Lab(y) ∈ {PRO,OPP}}

then ∃S ⊆ A : S is admissible ∧ S = T \ {y ∈ A | Lab(y) =OPP}.

2. If x is credulously accepted then algorithm 12 decides that x is credulously proved by

{y ∈ A | Lab(y) ∈ {PRO,OPP} }.

Proof: To prove both parts, we need to show that {y ∈ A | Lab(y) = PRO}, denoted

by SS, is admissible. To establish that SS is conflict free, assume that there are z, y ∈

SS s.t. (z, y) ∈ R. Thus, y would be labeled OUT or OPP according to algorithm 12, see

lines 5, 12, 22, 25 and 34. This contradicts SS = {y ∈ A | Lab(y) = PRO}. To show that

for each y ∈ SS y is acceptable w.r.t. SS, suppose that there is y ∈ SS, (z, y) ∈ R with no

w ∈ SS s.t. (w,z) ∈ R. Thus, z would be labeled MUST OUT according to lines 8 and 28.

This contradicts the actions of lines 16 and 41. These actions imply that SS is reported

admissible conditional on that there is no w ∈ A with Lab(w) =MUST OUT. ■

Regarding the decision problem of skeptical acceptance, the proof for a skeptically

accepted argument x can be fulfilled by any admissible set containing x provided

that there does not exist a preferred extension that does not contain x. We modified

algorithm 10 to algorithm 13 that decides the skeptical acceptance of an argument x.

Firstly, algorithm 13 looks for a credulously accepted argument that attacks x. If there

exists such an attacker then algorithm 13 concludes that x is not skeptically accepted.

Otherwise, algorithm 13 searches for a preferred extension that expels x. If such an

extension is found then x is not skeptically accepted, or else x is skeptically accepted

provided that x is in an admissible set S, and subsequently, S might form the skeptical

proof of x. Algorithm 13 is somewhat self-explanatory. However, see figure 3.5 that

shows how the algorithm works in deciding the skeptically accepted argument w in the
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Algorithm 12: Constructing a credulous proof of an argument x in an argument
system (A,R).

1 N(y) ≡ |{z ∈ A | (y,z) ∈ R}|;
2 Lab : A→ {PRO,OPP,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;
3 foreach y ∈ A do Lab← Lab∪{(y,UNDEC)};
4 Lab(x)← PRO;
5 foreach (x, y) ∈ R do Lab(y)←OUT;
6 foreach (z,x) ∈ R do

7 if Lab(z) =UNDEC then

8 Lab(z)←MUST OUT;
9 if @(w,z) ∈ R : Lab(w) =UNDEC then

10 x is not credulously accepted; exit;

11 else

12 if Lab(z) =OUT then Lab(z)←OPP;

13 if is-accepted(Lab) = true then x is proved by {y ∈ A | Lab(y) ∈ {PRO,OPP}};
14 else x is not credulously acceptable;

15 procedure is-accepted(Lab)
16 foreach y ∈ A : Lab(y) =MUST OUT do

17 while ∃(z, y) ∈ R : Lab(z) =UNDEC do

18 select z ∈ A s.t. Lab(z) =UNDEC and (z, y) ∈ R and ∀(w,z) ∈ R
(Lab(w) ∈ {OUT,MUST OUT,OPP}), otherwise select z ∈ A s.t.
Lab(z) =UNDEC and (z, y) ∈ R and
∀(w, y) ∈ R : Lab(w) =UNDEC, N(z) ≥N(w);

19 Lab′← Lab; Lab′(z)← PRO;
20 foreach (z,u) ∈ R do

21 if Lab′(u) =MUST OUT then

22 Lab′(u)←OPP;
23 else

24 if Lab′(u) ,OPP then

25 Lab′(u)←OUT;

26 foreach (v,z) ∈ R do

27 if Lab′(v) ∈ {IGNORED,UNDEC} then

28 Lab′(v)←MUST OUT;
29 if @(w,v) ∈ R : Lab′(w) =UNDEC then

30 Lab(z)← IGNORED;
31 goto line 17;

32 else

33 if Lab′(v) =OUT then

34 Lab′(v)←OPP;

35 if is-accepted(Lab′) = true then

36 Lab← Lab′;
37 return true;

38 else

39 Lab(z)← IGNORED;

40 return false;

41 return true;
42 end procedure
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Figure 3.5: Deciding the skeptical acceptance of the argument w by using algorithm 13.

argument system depicted in figure 3.3. Note that figure 3.5 grows from left to right.

The proof of algorithm 13 would be in two parts. The first part, which directly follows,

is about showing that a given argument is not skeptically accepted if the argument is

attacked by a credulously accepted argument, while the second part would be identical

to the proof of algorithm 10.

3.5 The Advantage of these Algorithms over Existing Algo-

rithms

3.5.1 The Algorithms of Cayrol et al.

We start by highlighting the main differences between algorithm 12 and the algorithm

of Cayrol et al [28] (abbreviated by CAYCred) for the decision problem of credulous

acceptance. Notice that CAYCred makes use of three labels: PRO, OPP and OUT.

We use PRO/OPP in the same way CAYCred does. However, CAYCred labels an

argument x OUT on three occasions: First, if x is attacked by a PRO argument; Second,

if x attacks a PRO argument; Third, if x cannot be in an admissible set with the current

PRO arguments. As we demonstrate, it is more efficient to use a different label on each

distinct occasion. This is exactly what algorithm 12 does where we put in service OUT

on the first occasion, MUST OUT on the second occasion and IGNORED on the third
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Algorithm 13: Deciding the skeptical proof of an argument x in an argument
system (A,R).

1 N(y) ≡ |{z ∈ A | (y,z) ∈ R}|;
2 Lab : A→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;
3 foreach y ∈ A do Lab← Lab∪{(y,UNDEC)};

4 Epre f erred ⊆ 2A; Epre f erred← φ;

5 if @(y,x) ∈ R then

6 x is skeptically proved by {x}; exit;
7 foreach (y,x) ∈ R do

8 invoke algorithm 12 passing on A, R and y;
9 if algorithm 12 decided that y is credulously accepted then

10 x is not skeptically accepted; exit;

11 call decide-skeptical-acceptance(Lab);
12 if Epre f erred , φ then

13 x is skeptically proved by Epre f erred;

14 procedure decide-skeptical-acceptance(Lab)
15 while ∃y ∈ A : Lab(y) =UNDEC do

16 select y ∈ A s.t. Lab(y) =UNDEC and ∀(w, y) ∈ R
(Lab(w) ∈ {OUT,MUST OUT}), otherwise select y ∈ A s.t. Lab(y) =UNDEC
and ∀z ∈ A : Lab(z) =UNDEC, N(y) ≥N(z);

17 Lab′← Lab; Lab′(y)← IN;
18 foreach (y,z) ∈ R do

19 Lab′(z)←OUT;
20 foreach (z, y) ∈ R do

21 if Lab′(z) ∈ {IGNORED,UNDEC} then

22 Lab′(z)←MUST OUT;
23 if @(w,z) ∈ R : Lab′(w) =UNDEC then

24 Lab(y)← IGNORED;
25 goto line 15;

26 call decide-skeptical-acceptance(Lab′);
27 if ∃(z, y) ∈ R : Lab(z) ∈ {IGNORED,UNDEC} then

28 Lab(y)← IGNORED;
29 else

30 Lab← Lab′;

31 if @y ∈ A : Lab(y) =MUST OUT then

32 S← {y ∈ A | Lab(y) = IN};
33 if @T ∈ Epre f erred : S ⊆ T then

34 Epre f erred← Epre f erred∪{S};

35 if Lab(x) , IN then

36 Epre f erred← φ;

37 x is not skeptically accepted; terminate and exit;

38 end procedure
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occasion. To see the profit of our labeling scheme consider the following. CAYCred

stops exploring further and backtracks if and only if there is x ∈ A s.t. x attacks a

PRO argument and for each (z,x) ∈ R z is OUT. This stop condition is checked every

time an argument is labeled PRO. Conversely, algorithm 12 backtracks if and only

if a MUST OUT argument is not attacked by an UNDEC argument. This backtrack

condition is checked every time an argument is labeled MUST OUT. Observe that

searching for an argument attacking a PRO argument in CAYCred runs in the order

of |R| while looking for a MUST OUT argument in algorithm 12 runs in the order

of |A|; as we noted earlier typically |R| > |A|. Most importantly, CAYCred selects an

argument to be PRO arbitrarily while algorithm 12 uses an effective heuristic rule that

picks up an UNDEC argument attacked only by OPP, OUT or MUST OUT arguments,

otherwise the rule picks an UNDEC argument x such that |{x}+| is maximal, and so,

the running time is improved as suggested by the experiments that we present shortly.

Regarding the IGNORED label, the objective is to discriminate, and then to avoid,

those arguments that previously failed to be in an admissible set with the current PRO

arguments. The merit of the IGNORED label is also captured by CAYCred through

the OUT label.

Concerning the decision problem of skeptical acceptance, the idea of the algorithm

of Cayrol et al. [28] (CAYSkep for short) is based on an argument x not being skeptically

accepted if at least one of two conditions holds:

1. x is attacked by a credulously accepted argument z (where z is decided by using

CAYCred).

2. There exists an admissible set that does not contain x and cannot be expanded

into one that contains it.

Otherwise, x is skeptically accepted provided that there exists an admissible set

that contains x. Notice that, given the admissibility of the empty set and condition

2, it suffices to find just one admissible set containing x to ensure - conditions 1 &

2 having reported negatively - that x is skeptically accepted. Regarding condition

(1), we commented earlier about the efficiency of CAYCred versus algorithm 12. In

deciding condition (2), CAYSkep uses two labels IN and OUT, and so, an argument y

is labeled IN to indicate that y might be in an admissible set. The usage of the OUT

label is described earlier in the discussion on CAYCred. To check whether S ⊆ A is an

admissible set that can be expanded into one that contains the argument in question

or not, CAYSkep verifies that S is maximally admissible in {y ∈ A | Lab(y) ∈ {IN,OUT}}.

Such verification is relatively expensive, and thus, it is avoided by algorithm 13. Recall

that algorithm 13 decides that an admissible set is maximal if and only if the set is not

a subset of any previously decided preferred extension.
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Table 3.11: Algorithm of Cayrol et al. for credulous acceptance versus algorithm 12,
argument systems were generated by algorithm 11.

|A| range of |R|
Algorithm of Cayrol et al. Algorithm 12
αtime αattacks αtime αattacks

55 55-1613 36.26 1,251,284.28 17.27 104,083.12

60 60-2028 52.60 2,031,521.23 19.80 167,708.98

65 97-2335 92.70 3,596,327.17 24.00 277,111.35

70 70-2654 120.70 5,399,152.38 30.70 413,788.19

75 75-2985 188.60 8,807,724.16 39.60 652,614.29

80 80-3687 277.20 13,099,196.22 63.00 1,085,469.36

85 85-3774 427.30 21,043,549.30 92.40 1,753,413.95

90 90-4374 617.80 31,069,987.87 129.50 2,582,447.94

95 95-4942 802.80 40,306,006.16 155.50 3,078,886.39

100 100-5410 1,326.80 67,985,810.32 245.80 5,251,456.56

Table 3.12: Algorithm of Cayrol et al. for credulous acceptance versus algorithm 12,

argument systems were generated by setting attacks with a probability of
2×loge|A|
|A| .

|A|
Algorithm of Cayrol et al. Algorithm 12
αtime αattacks αtime αattacks

55 70.30 3,203,294.39 18.20 167,594.91

60 121.20 5,717,097.24 30.10 309,147.83

65 211.20 9,923,949.12 51.10 542,240.70

70 365.60 17,746,378.47 86.40 948,694.78

75 621.30 30,285,694.59 148.60 1,645,812.26

80 1,013.20 50,020,197.35 260.90 2,924,630.80

85 1,852.20 91,931,844.61 479.90 5,328,965.38

90 3,055.00 152,084,077.32 771.80 8,493,395.25

95 5,009.10 255,574,227.54 1,291.40 14,701,867.73

100 8,146.10 416,991,952.56 2,316.70 26,152,189.79

We conducted experiments to show the efficiency of algorithms 12 and 13 in com-

parison with the algorithms of Cayrol et al. for credulous and skeptical acceptance. In

subsection 3.3.1 we described the settings of our experiments. Concerning the exper-

imental results, tables 3.11, 3.12, 3.13 and 3.14 suggest that algorithms 12 and 13 are

more efficient than the algorithms of Cayrol et al.

3.5.2 The Algorithms of Thang et al.

The algorithm of Thang et al. [95] (abbreviated by ThCred) for the decision problem

of credulous acceptance is based on classifying arguments into four sets: P, O, SP and

SO. As an initial step, the argument in question is added to SP and P while O and SO

are empty. Next, the following three operations are applied iteratively s.t. in every

iteration one or more tuples of (P,O,SP,SO) might be generated.

Op1 If there is some x ∈ P s.t. SP∩ {x}− = ∅ then x is removed from P and every
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Table 3.13: Algorithm of Cayrol et al. for skeptical acceptance versus algorithm 13,
argument systems were generated by algorithm 11.

|A| range of |R|
Algorithm of Cayrol et al. Algorithm 13
αtime αattacks αtime αattacks

16 16-159 86.50 1,182,283.26 28.20 2,554.26

17 17-200 231.70 3,933,513.50 22.40 3,186.59

18 18-200 679.50 13,680,403.49 20.10 5,092.02

19 19-241 626.20 12,444,896.57 27.00 4,994.59

20 20-237 3,088.20 61,452,174.66 25.60 7,328.86

21 21-280 2,829.80 45,166,810.64 22.70 7,068.00

22 22-264 7,645.50 158,528,969.88 24.40 8,382.35

23 23-327 14,247.70 301,829,977.25 25.00 11,295.71

24 24-357 51,162.70 1,114,893,329.39 23.00 17,736.67

25 25-365 97,529.40 2,014,486,555.51 24.20 17,308.47

Table 3.14: Algorithm of Cayrol et al. for skeptical acceptance versus algorithm 13,

argument systems were generated by setting attacks with a probability of
2×loge|A|
|A| .

|A|
Algorithm of Cayrol et al. Algorithm 13
αtime αattacks αtime αattacks

16 88.90 1,646,992.36 5.90 2,731.00

17 251.00 4,812,274.54 5.60 4,125.40

18 1,123.80 24,160,850.86 5.70 6,154.13

19 1,196.60 25,971,371.74 7.10 6,108.26

20 2,803.40 61,296,848.52 9.30 8,077.34

21 5,400.80 121,497,830.73 7.30 9,751.24

22 14,353.40 321,656,752.02 10.30 13,304.90

23 22,277.60 496,105,603.76 9.50 13,151.45

24 95,019.60 2,214,991,030.88 14.70 20,753.46

25 161,399.10 2,282,838,566.26 27.90 21,620.36
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y ∈ {x}− \SO is added to O.

Op2 An argument x is added to SP and P if and only if there exists {x}+∩O , ∅ and

x <O∪SO.

Op3 An argument y is moved from O to SO if {y}−∩SP , ∅.

Hence, ThCred at any time might have more than one tuple of (P,O,SP,SO). This

reflects that ThCred explores the admissibility of different subsets of A. ThCred reports

that the argument in question is credulously accepted if and only if there exists a tuple

(P,O,SP,SO) s.t. P and O are both empty. Otherwise, the argument is not credulously

accepted. To compare with algorithm 12, we stress three issues.

Firstly, ThCred algorithm might reconsider an argument x to be added to SP and P

although x might already have failed to be in an admissible set with the same, current

arguments in SP. Recall that algorithm 12 utilizes the IGNORED label to designate

an argument x that failed to be in an admissible set, and so, x is avoided in future

computations.

Secondly, ThCred might add arguments to O despite being attacked by arguments

in SP. This eventually might waste time because ThCred might unnecessarily try

further arguments to be added to SP and P to counter the newly added arguments to

O. In algorithm 12, this situation is avoided by using the OUT label s.t. as soon as an

argument x is labeled PRO, every argument that is attacked by x will be labeled OUT.

Recall that algorithm 12 explores MUST OUT arguments, whereas OUT arguments

are disregarded because they are already attacked by a PRO argument.

Thirdly, ThCred does not feature heuristics or pruning machineries to accelerate

the search process while algorithm 12 deploys pruning mechanisms and an effective

heuristic rule that selects arguments for transitions as we showed in section 3.1.

Regarding skeptical acceptance, the algorithm of Thang et al. [95] (THSkep for

short) relies for its correctness on the concept of a complete base (for x). A base, B for

x being a set of admissible sets B = {S1,S2, ...,Sn} each of which contains x, and such

that for every preferred extension, E containing x, there exists S ∈ B with S ⊆ E. A

base B is complete if for every preferred extension, E, there is some S ∈ B for which

S ⊆ E. The process of verifying skeptical acceptance of x is shown to be equivalent to

identifying a complete base for x. Thus the skeptical proof of x consists of such a base

and the efficiency of THSkep is determined not only by the performance of THCred,

since THSkep depends on THCred in searching for admissible sets, but also on the

efficiency with which a candidate collection can be validated as a complete base: this

approach is not that adopted within algorithm 13.

We conducted experiments to show the efficiency of algorithms 12 and 13 in com-

parison with the algorithms of Thang et al. for credulous and skeptical acceptance. In

subsection 3.3.1 we described the settings of our experiments. Concerning the experi-
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Table 3.15: Algorithm of Thang et al. for credulous acceptance versus algorithm 12,
argument systems were generated by using algorithm 11.

|A| range of |R|
Algorithm of Thang et al. Algorithm 12
αtime αattacks αtime αattacks

26 26-407 105.90 156,842.93 12.50 3,788.83

27 27-406 182.50 263,501.54 13.60 4,312.80

28 28-480 334.70 463,823.87 11.30 5,193.49

29 29-545 534.40 759,273.63 11.20 5,714.35

30 30-540 726.80 1,025,980.91 11.00 6,807.88

31 34-587 970.30 1,304,047.51 13.20 7,803.19

32 44-585 1,003.60 1,405,827.47 11.40 8,704.97

33 33-722 1,661.10 2,115,693.68 11.20 9,478.59

34 34-677 3,523.30 4,429,569.59 11.80 11,775.78

35 35-763 4,689.19 5,414,065.42 12.80 12,468.76

Table 3.16: Algorithm of Thang et al. for credulous acceptance versus algorithm 12,

argument systems were generated by setting attacks with a probability of
2×loge|A|
|A| .

|A|
Algorithm of Thang et al. Algorithm 12

αtime αattacks αtime αattacks

26 886.40 1,188,915.47 3.50 3,986.67

27 1,274.60 1,587,213.93 4.30 4,349.90

28 1,848.10 2,230,412.10 4.40 5,006.85

29 3,217.40 3,570,786.55 4.60 5,724.25

30 6,447.80 6,761,709.98 7.10 6,757.64

31 7,840.10 8,302,807.05 5.90 7,834.19

32 13,063.00 12,916,358.74 7.20 8,586.04

33 20,009.50 19,562,812.87 2.30 10,005.02

34 48,028.00 45,190,073.97 8.30 12,741.22

35 109,077.60 80,256,368.60 13.40 14,289.45

mental results, tables 3.15, 3.16, 3.17 and 3.18 indicate that our algorithms outperform

the algorithms of Thang et al.

3.5.3 The Algorithm of Verheij

Verheij [97] presented an algorithm for the credulous acceptance problem. Verheij

classifies arguments into two sets J and D. Initially, J contains the argument in question

while D is empty. Then, two functions are repeatedly executed on every pair of (J,D).

The first function is

ExtendByAttack((J,D)) ≡ {(J,D′) |D′ = D ∪ J−}

The second function ExtendByDe f ence((J,D)) is given by,

{(J′,D) | J′is a conflict free, minimal superset of J, s.t. ∀y ∈D ∃x ∈ J′∩{y}−}
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Table 3.17: Algorithm of Thang et al. for skeptical acceptance versus algorithm 13,
argument systems were generated by using algorithm 11.

|A| range of |R|
Algorithm of Thang et al. Algorithm 13
αtime αattacks αtime αattacks

11 11-81 20.20 3,744.24 12.10 567.72

12 12-94 29.20 4,463.72 11.80 937.50

13 13-108 58.80 8,971.51 12.40 1,322.93

14 14-125 95.90 11,680.88 11.50 1,479.11

15 15-129 177.80 17,659.00 11.00 2,154.33

16 16-182 320.30 22,933.12 12.40 2,871.67

17 17-173 844.80 46,866.46 11.20 2,629.22

18 18-195 1,538.80 62,819.86 11.90 4,309.18

19 19-234 3,597.80 96,327.30 11.60 5,181.75

20 20-232 6,539.90 124,679.03 13.20 6,256.34

Table 3.18: Algorithm of Thang et al. for skeptical acceptance versus algorithm 13,

argument systems were generated by setting attacks with a probability of
2×loge|A|
|A| .

|A|
Algorithm of Thang et al. Algorithm 13

αtime αattacks αtime αattacks

11 26.90 8,204.52 2.10 846.01

12 36.50 10,781.42 2.40 1,214.93

13 84.80 25,630.05 1.80 1,502.19

14 169.90 39,257.39 2.30 1,718.46

15 302.90 54,498.72 2.40 2,353.65

16 754.80 93,401.01 6.40 3,274.23

17 2,384.00 156,534.51 6.20 3,857.90

18 5,559.50 268,672.44 8.10 4,568.57

19 8,961.40 332,887.49 6.40 6,044.24

20 18,586.40 502,895.22 8.00 8,394.86
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Table 3.19: Algorithm of Verheij for credulous acceptance versus algorithm 12, argu-
ment systems were generated by using algorithm 11.

|A| range of |R|
Algorithm of Verheij Algorithm 12
αtime αattacks αtime αattacks

21 21-245 136.30 409,670.86 19.20 1,932.56

22 22-297 117.10 513,117.24 19.60 2,086.22

23 23-284 227.50 980,685.42 19.80 2,647.67

24 34-356 318.30 1,537,036.22 20.20 2,983.99

25 25-356 553.60 2,615,823.22 17.70 3,181.49

26 26-387 790.10 3,654,956.54 18.70 3,937.03

27 27-411 1,386.40 5,925,777.07 18.90 4,390.59

28 28-458 2,778.30 11,754,982.28 19.70 5,437.08

29 29-501 4,049.50 15,948,103.70 19.90 5,851.49

30 30-576 5,693.94 25,065,980.18 19.80 7,127.35

Next, if there exists (J′,D′) and (J,D) such that J′ = J and D′ = D then the argument

in question is credulously proved by (J′,D′). At any stage if no new pair (J′,D′)

is produced from applying the two functions on all current pairs of (J,D) then the

argument is not accepted. To evaluate the performance of Verheij’s approach in contrast

to algorithm 12 we consider four efficiency matters.

Firstly, notice the price of finding a minimal defense set J′ against the arguments

in D, see the definition of ExtendByDe f ence earlier. This is totally bypassed by algo-

rithm 12.

Secondly, Verheij might extend D by adding superfluously arguments already

attacked by arguments in J. This might worsen the efficiency of computing J′ where

more arguments in D might lead to more possible defense sets, and consequently,

finding a minimal defense set J′ would be more difficult. In algorithm 12 this situation

is handled by using the OUT label designating arguments that are attacked by PRO

arguments, and thus no further action is taken regarding the OUT arguments.

Thirdly, Verheij might extend J by adding arguments that already failed to form an

admissible set with the same, current arguments in J. Perceive that algorithm 12 takes

advantage of the IGNORED label to characterize the arguments that cannot make up

an admissible set with the PRO arguments, and in consequence, IGNORED arguments

will not be re-examined later.

Fourthly, the algorithm of Verheij does not employ heuristics or pruning tech-

niques to enhance the search progression whereas algorithm 12 makes use of such

performance boosters as we explained earlier in section 3.1.

We conducted experiments to show the efficiency of algorithms 12 in comparison

with the algorithm of Verheij for credulous acceptance. In subsection 3.3.1 we described

the settings of our experiments. Concerning the experimental results, tables 3.19

and 3.20 show that algorithm 12 is faster than the algorithm of Verheij.
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Table 3.20: Algorithm of Verheij for credulous acceptance versus algorithm 12, argu-

ment systems were generated by setting attacks with a probability of
2×loge|A|
|A| .

|A|
Algorithm of Verheij Algorithm 12
αtime αattacks αtime αattacks

21 249.50 1,215,070.67 2.10 1,777.89

22 454.70 2,205,743.88 3.30 2,085.41

23 781.00 3,672,245.30 4.00 2,457.69

24 1,369.90 6,190,955.17 3.30 2,949.88

25 2,166.00 9,866,104.89 3.10 3,312.02

26 3,834.60 16,921,018.16 5.30 3,796.28

27 6,970.90 29,189,155.84 4.10 4,548.34

28 10,679.60 42,854,169.54 3.70 4,829.02

29 18,789.90 73,944,520.95 5.40 5,663.20

30 33,697.20 124,127,437.05 7.40 6,614.57

3.6 Summary

In this chapter we developed a new algorithm for enumerating preferred extensions

of an argument system. We have shown that the new algorithm computes extensions

faster than the existing algorithms of [35, 78]. In the next chapter we design algorithms

for enumerating extensions under a number of argumentation semantics other than

the preferred semantics. Indeed, argumentation semantics can be defined by using

labellings as well as extensions, see e.g. [6, 64]. In this work we present new algorithms

that make use of labels as an algorithmic vehicle rather than introducing new label-

based semantics. In fact, Doutre and Mengin have developed their labeling-based

algorithm without elaborating label-based semantics [35]. On the other hand, in [78]

Modgil and Caminada introduced label-based semantics as a foundation for their

algorithm. The notion of labeling is also employed in dialog games see e.g. [21].

Likewise, we presented algorithms that decide the credulous and skeptical accep-

tance problems without explicitly enumerating all preferred extensions. An added

feature of the developed algorithms is the production of proofs as to why an argument

is accepted. We have shown, analytically and empirically, that our algorithms are more

efficient than the existing algorithms of [28, 95, 97]. Some authors call the algorithms

that yield proofs “dialectical proof procedures” referring to the fact that a proof of an

accepted argument might be, roughly speaking, defined by the arguments put forward

during a dialog between two parties. In fact, argumentation semantics can be defined

by using the dialog notion (see e.g. [63, 100, 43, 75]). Hence, Cayrol et al. [28] set di-

alogs under preferred semantics as a means for presenting their algorithms. However,

Thang et al. [95] make use of so-called “dispute trees” to pave the way for introducing

their algorithms, while Verheij [97] defined his algorithm by employing the notion

of “labellings” rather than specifying formal dialogs. Furthermore, argument-based
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dialogs have been extensively studied as a backbone for interactions between agents

in multi-agent systems, see e.g. [73] for an overview.

Broadly, there are several works around computing decision problems in argument

systems. [99] discussed algorithmically the efficiency of deciding minimally admissible

sets. [80] modified the algorithm of Doutre and Mengin [35] to compute preferred

extensions for the extended systems of [81] so-called “argument systems with sets of

attacking arguments”. The work of [36] specifies dialogs for skeptical proofs under

preferred semantics. The algorithms of [25, 27] find semi stable, respectively stage,

extensions. Another line of research concerns encoding decision problems of argument

systems into other formalisms and then solving them by using a respective solver, see

for example [16, 82, 56, 2, 51, 58]. The work of [70] examines approximation versus

exact computations in the context of argument systems, whereas the experiments of [12]

evaluate the effect of splitting an argument system on the computation of the preferred

extensions. The work of [71] shows how to partially reevaluate the acceptance of

arguments if R changes. From a computational theoretical perspective, the decision

problems of skeptical and credulous acceptance under preferred semantics are believed

to be intractable, see e.g. [34, 40, 87].
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Chapter 4

New Algorithms For a Selection of
Argumentation Semantics

In this chapter we develop algorithms for enumerating extensions under a number

of prevalent argumentation semantics, which we defined in section 1.4. In particular,

we design algorithms for enumerating stable extensions in section 4.1, complete ex-

tensions in section 4.2, stage extensions in section 4.3, and semi stable extensions in

section 4.4. In section 4.5 we present an algorithm for deciding the ideal extension

while in section 4.6 we offer an implementation to an existing algorithm for deciding

the grounded extension. We explore the efficiency of these algorithms by comparing

with ASPARTIX [56], which is an Answer Set Programming encoding for several ar-

gumentation semantics. We used the DLV system [69] (release 21/12/2011) in solving

the encodings. Lastly, we close the chapter in section 4.7.

4.1 A New Algorithm for Stable Semantics

Algorithm 14 decides all stable extensions. Indeed, algorithm 14 is a modification of

algorithm 10, which decides preferred extensions. In algorithm 10 we find a preferred

extension pre f if and only if for every x ∈A, x is not UNDEC nor MUST OUT and pre f

is not a subset of a previously decided preferred extension. However, in algorithm 14

we encounter a stable extension if and only if for each x ∈ A, x is not UNDEC nor

MUST OUT nor IGNORED. Furthermore, algorithm 14 applies an additional pruning

strategy (see lines 21 and 29) such that we skip ignoring an argument y if and only

if there does not exist (z, y) ∈ R s.t. z is UNDEC. To see why, note that we get a stable

extension if and only if for each x ∈A, x is not UNDEC nor MUST OUT nor IGNORED.

Thus, if we ignore an argument y that will stay IGNORED, since there is no (z, y)∈R s.t. z

is UNDEC, then it is more efficient to avoid ignoring such an argument in the first place.

Tables 4.1 and 4.2 show the performance of algorithm 14 versus DLV system solving

the ASPARTIX encoding. Recall that in this thesis we report the average elapsed time

in milliseconds. Note that in table 4.2 ASPARTIX performs better than algorithm 14
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when the probability is
2×loge|A|
|A| . However, in light of the results of table 4.1 algorithm 14

on average outperforms ASPARTIX if we consider sparse argument systems and dense

ones altogether. Table 4.2 reflects that algorithm 14 performs better when the input

argument system is more dense; this performance transition seems to occur around

the probability of
3×loge|A|
|A| . Notice that as |R| is getting larger, labeling an argument x

with IN will expel a larger number of arguments (i.e. {x}+ ∪ {x}−) thereby leaving a

fewer UNDEC arguments for the possibility to be included in the candidate extension,

which means a fewer steps until a decision can be made about whether the arguments

labeled IN make up an extension or not.

4.2 A New Algorithm for Complete Semantics

Algorithm 15 decides all complete extensions. Indeed, algorithm 15 is a modification of

algorithm 10, which decides preferred extensions. In algorithm 10 we find a preferred

extension pre f if and only if for each x ∈ A, x is not UNDEC nor MUST OUT and pre f

is not a subset of a previously decided preferred extension. However, in algorithm 15

we encounter a complete extension if and only if

∀x ∈ A, x is not MUST OUT and
@ z ∈ A : z is IGNORED or UNDEC with ∀(y,z) ∈ R y is OUT.

Tables 4.3 and 4.4 show the performance of algorithm 15 versus ASPARTIX.

4.3 A New Algorithm for Stage Semantics

Algorithm 16 decides all stage extensions. In particular, algorithm 16 decides candidate

conflict free subsets of A (see lines 14-29) in the same way (i.e. using the same set of

labels) algorithm 10 does in deciding preferred extensions. Recall that algorithm 10

actually enumerates admissible sets rather than conflict free sets. Thus, algorithm 10

decides that IN arguments make up an admissible set if and only if for each x ∈ A x

is not UNDEC nor MUST OUT while algorithm 16 reports IN arguments as a conflict

free set if and only if for each x ∈A, x is not UNDEC. Then, for every reported conflict

free set S algorithm 16 also determines S′ ≡ {x ∈ A | x is OUT}. After accumulating all

candidate S∪S′, algorithm 16 decides that a conflict free set S is a stage extension if

and only if S∪S′ is maximal, see lines 7-11.

Heuristics and pruning strategies used in semantics that are based on admissible

sets will not be applicable to stage semantics, which are based on conflict free sets.

Therefore, as a pruning strategy we skip (see line 27 of algorithm 16) ignoring an

argument y if and only if for each z ∈ {y}+∪{y}−, z is OUT or MUST OUT or IGNORED.

Note that labeling such y IGNORED is unnecessary as we explain shortly. On selecting

the next UNDEC argument to be labeled IN, there are two options. For the first option,

denoted by Heu1, we take into account the following rule:
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Algorithm 14: Enumerating all stable extensions of an argument system (A,R).

1 N(y) ≡ |{z ∈ A | (y,z) ∈ R}|;
2 Lab : A→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;
3 foreach x ∈ A do Lab← Lab∪{(x,UNDEC)};

4 Estable ⊆ 2A; Estable← φ;
5 call find-stable-extensions(Lab);
6 report Estable is the set of all stable extensions;

7 procedure find-stable-extensions(Lab)
8 while ∃y ∈ A : Lab(y) =UNDEC do

9 select y ∈ A s.t. Lab(y) =UNDEC and ∀(z, y) ∈ R
(Lab(z) ∈ {OUT,MUST OUT}), otherwise select y ∈ A s.t. Lab(y) =UNDEC
and ∀z ∈ A : Lab(z) =UNDEC, N(y) ≥N(z);

10 Lab′← Lab;
11 Lab′(y)← IN;
12 foreach (y,z) ∈ R do Lab′(z)←OUT;
13 foreach (z, y) ∈ R do

14 if Lab′(z) ∈ {IGNORED,UNDEC} then

15 Lab′(z)←MUST OUT;
16 if @(w,z) ∈ R : Lab′(w) =UNDEC then

17 if ∃(v, y) ∈ R : Lab(v) =UNDEC then

18 Lab(y)← IGNORED;
19 goto line 8;

20 else

21 return;

22 call find-stable-extensions(Lab′);
23 if ∃(z, y) ∈ R : Lab(z) =UNDEC then

24 Lab(y)← IGNORED;
25 else

26 if @(z, y) ∈ R : Lab(z) = IGNORED then

27 Lab← Lab′;
28 else

29 return;

30 if @y ∈ A : Lab(y) ∈ {MUST OUT, IGNORED} then

31 S← {y ∈ A | Lab(y) = IN};
32 Estable← Estable∪{S};

33 end procedure
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Algorithm 15: Enumerating all complete extensions of an argument system (A,R).

1 N(y) ≡ |{z ∈ A | (y,z) ∈ R}|;
2 Lab : A→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;
3 foreach x ∈ A do Lab← Lab∪{(x,UNDEC)};

4 Ecomplete ⊆ 2A; Ecomplete← φ;

5 call find-complete-extensions(Lab);
6 report Ecomplete is the set of all complete extensions;

7 procedure find-complete-extensions(Lab)
8 if @y ∈ A : Lab(y) =MUST OUT then

9 if @x ∈ A : Lab(x) ∈ {IGNORED,UNDEC} and ∀(z,x) ∈ R Lab(z) =OUT then

10 S← {w ∈ A | Lab(w) = IN};
11 Ecomplete← Ecomplete∪{S};

12 while ∃y ∈ A : Lab(y) =UNDEC do

13 select y ∈ A s.t. Lab(y) =UNDEC∧∀(z, y) ∈ R (z ∈ {OUT,MUST OUT}),
otherwise select y ∈ A s.t. Lab(y) =UNDEC and
∀z ∈ A : Lab(z) =UNDEC, N(y) ≥N(z);

14 Lab′← Lab;
15 Lab′(y)← IN;
16 foreach (y,z) ∈ R do Lab′(z)←OUT;
17 foreach (z, y) ∈ R do

18 if Lab′(z) ∈ {IGNORED,UNDEC} then

19 Lab′(z)←MUST OUT;
20 if @(w,z) ∈ R : Lab′(w) =UNDEC then

21 Lab(y)← IGNORED;
22 goto line 12;

23 call find-complete-extensions(Lab′);
24 if ∃(z, y) ∈ R : Lab(z) ∈ {UNDEC, IGNORED} then

25 Lab(y)← IGNORED;
26 else

27 Lab← Lab′;

28 end procedure
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Table 4.1: The average elapsed time of algorithm 14 versus ASPARTIX, argument
systems were generated by using algorithm 11.

|A| Range of |R| ASPARTIX algorithm 14

61 61-1952 30.80 13.30

62 62-1842 31.30 12.90

63 94-2101 34.40 14.80

64 64-2208 34.10 14.30

65 65-2458 38.20 15.40

66 66-2334 39.30 15.00

67 67-2477 37.30 18.70

68 68-2526 41.10 17.50

69 100-2628 45.60 16.40

70 70-2795 50.80 19.80

Table 4.2: The average elapsed time of algorithm 14 versus ASPARTIX, argument
systems were generated by setting attacks with a specific probability.

|A|
probability=

2×loge|A|
|A| probability=

3×loge|A|
|A| probability=

4×loge |A|
|A|

ASPARTIX Alg. 14 ASPARTIX Alg. 14 ASPARTIX Alg. 14

61 20.30 36.20 86.9 43.2 66.90 12.50

62 20.50 42.00 89.8 45.2 69.50 13.10

63 20.40 47.40 90.4 51.6 74.70 13.60

64 22.00 52.10 95.4 55.6 76.00 16.30

65 24.50 63.60 101.8 63.1 82.50 19.40

66 23.30 68.20 101.9 68.6 87.60 21.40

67 25.00 81.20 110 75.6 91.20 23.10

68 24.90 92.00 121.6 82.8 92.90 25.60

69 28.10 112.20 126.9 93.8 102.70 30.30

70 28.20 122.20 132.3 103.9 111.40 34.30

1. select an UNDEC argument y s.t. for each z ∈ {y}+∪{y}−, z is OUT or MUST OUT

or IGNORED.

2. otherwise select an UNDEC argument y such that |{y}+| is maximal.

For the second possibility, denoted by Heu2, we consider the following rule:

1. select an UNDEC argument y s.t. for each z ∈ {y}+∪{y}−, z is OUT or MUST OUT

or IGNORED.

2. otherwise select an UNDEC argument y such that |{y}+|+ |{y}−| is maximal.

The aim of the first part of Heu1 & Heu2, which is identical in both selection rules,

is to maximize the gain of the pruning strategy that skips ignoring y, i.e. the selected
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Table 4.3: The average elapsed time of algorithm 15 versus ASPARTIX, argument
systems were generated by using algorithm 11.

|A| Range of |R| ASPARTIX Algorithm 15

56 56-1849 43.90 15.10

57 57-1786 47.90 16.50

58 91-1880 52.70 20.80

59 59-1893 57.80 12.90

60 60-2047 61.00 20.30

61 61-1989 61.10 19.10

62 62-2037 68.60 24.10

63 63-2275 75.10 21.30

64 92-2160 77.60 33.20

65 65-2154 86.00 37.70

Table 4.4: The average elapsed time of algorithm 15 versus ASPARTIX, argument
systems were generated by setting attacks with a specific probability.

|A|
probability=

2×loge|A|
|A| probability=

4×loge|A|
|A|

ASPARTIX Algorithm 15 ASPARTIX Algorithm 15

56 30.20 34.70 137.70 9.90

57 33.10 41.60 167.10 10.50

58 38.60 47.60 173.70 10.20

59 40.30 57.00 189.20 10.10

60 44.60 72.80 198.90 10.70

61 42.90 76.50 221.00 14.20

62 44.70 90.80 245.20 17.70

63 53.50 107.90 283.00 19.50

64 54.90 127.10 303.70 22.70

65 62.70 150.30 337.40 25.30

argument in the the first part of the rules, based on the following property: if a conflict

free set S will be captured while such y is ignored then S∪{y} is conflict free as well,

and so, there is no need to ignore y in the first place. Consequently, the earlier we

label such y IN, the bigger part of the search tree that will be bypassed. Turning to the

second part of Heu1 & Heu2. Recall that the aim of heuristics in our algorithms is to

accelerate achieving a goal state. In algorithm 16 a goal state is a conflict free set with a

maximal range such that there is no x ∈A : x is UNDEC. So, we note Heu2 is potentially

more powerful, because, by maximizing the number of OUT/MUST OUT arguments

the number of UNDEC arguments is minimized more than Heu1 which maximizes

only the number of OUT arguments. See tabels 4.5 and 4.6 that reflect the efficiency of

algorithm 16 by using Heu1 and Heu2 versus DLV solving ASPARTIX encodings.
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Algorithm 16: Enumerating stage extensions of an argument system (A,R).

1 N(y) ≡ |{z ∈ A | (y,z) ∈ R}|;
2 O(y) ≡ |{z ∈ A | (z, y) ∈ R}|;
3 Lab : A→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;
4 foreach x ∈ A do Lab← Lab∪{(x,UNDEC)};
5 Estage : (A→ {IN,OUT,MUST OUT, IGNORED,UNDEC})×Z; Estage← φ;
6 call find-conflict-free-sets(Lab);
/* The next loop is to collect conflict free sets, those which have

a maximal range */

7 foreach (Lab1, i) ∈ Estage do

8 foreach (Lab2, j) ∈ Estage : j , i do

9 if (|{x : Lab1(x) ∈ {IN,OUT}}| , |{z : Lab2(z) ∈ {IN,OUT}}|∨Lab1 = Lab2) and
∀y ∈ A : Lab1(y) ∈ {IN,OUT} (Lab2(y) ∈ {IN,OUT}) then

10 Estage← Estage \ {(Lab1, i)};
11 continue to next iteration from line 7;

12 foreach (Lab1, i) ∈ Estage do

13 report {x : Lab1(x) = IN} as a stage extension;

14 procedure find-conflict-free-sets(Lab)
15 while ∃y ∈ A : Lab(y) =UNDEC do

16 select y ∈ A s.t. Lab(y) =UNDEC and
∀z ∈ {y}+∪{y}− (Lab(z) ∈ {OUT,MUST OUT, IGNORED}), otherwise select
y : Lab(y) =UNDEC satis f ying ∀z : Lab(z) =UNDEC, (N(y)+O(y)) ≥
(N(z)+O(z));

17 Lab′← Lab;
18 Lab′(y)← IN;
19 foreach (y,z) ∈ R do Lab′(z)←OUT;
20 foreach (z, y) ∈ R do

21 if Lab′(z) ∈ {IGNORED,UNDEC} then

22 Lab′(z)←MUST OUT;

23 call find-conflict-free-sets(Lab′);
24 if ∃z ∈ {y}+∪{y}− and Lab(z) =UNDEC then

25 Lab(y)← IGNORED;
26 else

27 Lab← Lab′;

28 Estage← Estage∪{(Lab, |Estage|+1)};
29 end procedure
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Table 4.5: The average elapsed time of algorithm 16 versus ASPARTIX, argument
systems were generated by using algorithm 11.

|A| Range of |R| ASPARTIX Algorithm 16 using Heu1 Algorithm 16 using Heu2

21 21-245 302.90 1.80 1.10

22 22-293 392.10 3.60 1.50

23 23-332 541.40 6.10 2.40

24 24-322 724.50 8.50 4.60

25 25-379 813.40 19.40 6.70

26 26-471 1,328.90 26.90 11.70

27 27-396 1,619.00 39.30 13.10

28 28-463 2,143.80 80.00 17.10

29 29-552 4,027.90 93.30 47.20

30 30-483 3,717.70 140.00 45.40

4.4 A New Algorithm for Semi Stable Semantics

Algorithm 17 decides all semi stable extensions. In particular, algorithm 17 decides

candidate admissible sets (see lines 13-32) in the same way algorithm 10 does in decid-

ing preferred extensions. However, for every decided admissible set S algorithm 17

also collects S′ ≡ {x ∈ A | x is OUT}. After accumulating all S∪S′, algorithm 17 decides

that an admissible set S is a semi stable extension if and only if S∪S′ is maximal, see

lines 6-10. Tables 4.7 and 4.8 show the performance of algorithm 17 versus ASPARTIX.

4.5 A New Algorithm for Ideal Semantics

Algorithm 18 decides the ideal extension. In particular, algorithm 18 decides candi-

date admissible sets (see lines 11-31) in the same way algorithm 10 does in deciding

preferred extensions. However, in enumerating admissible sets algorithm 18 collects

(line 29) S ≡ {x | there is an admissible set T s.t. x ∈ {T}+}. After enumerating a set of

admissible sets and having S determined, algorithm 18 decides that an admissible set

T is the ideal extension if and only if for each z ∈ T z < S, see lines 7-10. Note that we

collect candidate admissible sets in a descending order, that is from the largest set to the

smallest one. Table 4.9 shows the performance of algorithm 18. We did not compare

with ASPARTIX since it is very slow such that we were not able to run ASPARTIX on

quite large argument systems.

4.6 Deciding the Grounded Extension

Algorithm 19 can be seen as another implementation of the algorithm described in [78]

for deciding the grounded extension. We report in tables 4.10 and 4.11 the efficiency
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Algorithm 17: Enumerating semi stable extensions of an argument system (A,R).

1 N(y) ≡ |{z ∈ A | (y,z) ∈ R}|;
2 Lab : A→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;
3 foreach x ∈ A do Lab← Lab∪{(x,UNDEC)};
4 Esemistable : (A→ {IN,OUT,MUST OUT, IGNORED,UNDEC})×Z; Esemistable← φ;
5 call find-admissible-sets(Lab);
/* The next loop is to pick up admissible sets, those which have a

maximal range */

6 foreach (Lab1, i) ∈ Esemistable do

7 foreach (Lab2, j) ∈ Esemistable : j , i do

8 if (|{x : Lab1(x) ∈ {IN,OUT}}| , |{z : Lab2(z) ∈ {IN,OUT}}|∨Lab1 = Lab2) and
∀y ∈ A : Lab1(y) ∈ {IN,OUT} (Lab2(y) ∈ {IN,OUT}) then

9 Esemistable← Esemistable \ {(Lab1, i)};
10 continue to next iteration from line 6;

11 foreach (Lab1, i) ∈ Esemistable do

12 report {x : Lab1(x) = IN} as a semi stable extension ;

13 procedure find-admissible-sets(Lab)
14 while ∃y ∈ A : Lab(y) =UNDEC do

15 select y ∈ A with Lab(y) =UNDEC and ∀z ∈ {y}− (z ∈ {OUT,MUST OUT}),
otherwise
select y with Lab(y) =UNDEC and ∀z : Lab(z) =UNDEC, N(y) ≥N(z);

16 Lab′← Lab;
17 Lab′(y)← IN;
18 foreach (y,z) ∈ R do Lab′(z)←OUT;
19 foreach (z, y) ∈ R do

20 if Lab′(z) ∈ {IGNORED,UNDEC} then

21 Lab′(z)←MUST OUT;
22 if @(w,z) ∈ R : Lab′(w) =UNDEC then

23 Lab(y)← IGNORED;
24 goto line 14;

25 call find-admissible-sets(Lab′);
26 if ∃(z, y) ∈ R : Lab(z) ∈ {UNDEC, IGNORED} then

27 Lab(y)← IGNORED;
28 else

29 Lab← Lab′;

30 if @y ∈ A : Lab(y) =MUST OUT then

31 Esemistable← Esemistable∪{(Lab, |Esemistable|+1)};
32 end procedure
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Algorithm 18: Deciding the ideal extension of an argument system (A,R).

1 N(y) ≡ |{z ∈ A | (y,z) ∈ R}|;
2 Lab : A→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;
3 foreach x ∈ A do Lab← Lab∪{(x,UNDEC)};

4 Eideal :Z→ 2A; Eideal← φ;
5 S← φ;
/* S will hold the arguments that are not in the ideal extension */

6 call find-admissible-sets(Lab);
7 foreach i : 1 to |Eidea| do

8 if ∀x ∈ Eideal(i) (x < S) then

9 report Eideal(i) is the ideal extension;
10 exit;

11 procedure find-admissible-sets(Lab)
12 while ∃y ∈ A : Lab(y) =UNDEC do

13 select y with Lab(y) =UNDEC and ∀(z, y) ∈ R (z ∈ {OUT,MUST OUT}),
otherwise
select y with Lab(y) =UNDEC and ∀z : Lab(z) =UNDEC, N(y) ≥N(z);

14 Lab′← Lab;
15 Lab′(y)← IN;
16 foreach (y,z) ∈ R do Lab′(z)←OUT;
17 foreach (z, y) ∈ R do

18 if Lab′(z) ∈ {IGNORED,UNDEC} then

19 Lab′(z)←MUST OUT;
20 if @(w,z) ∈ R : Lab′(w) =UNDEC then

21 Lab(y)← IGNORED;
22 goto line 12;

23 call find-admissible-sets(Lab′);
24 if ∃(z, y) ∈ R : Lab(z) ∈ {UNDEC, IGNORED} then

25 Lab(y)← IGNORED;
26 else

27 Lab← Lab′;

28 if @y ∈ A : Lab(y) =MUST OUT then

29 S← S∪{x ∈ A | Lab(x) =OUT};
30 Eideal← Eideal∪{(|Eidea|+1, {z ∈ A | Lab(z) = IN})};

31 end procedure
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Table 4.6: The average elapsed time of algorithm 16 versus ASPARTIX, argument
systems were generated by setting attacks with a specific probability.

|A|
probability=

2×loge|A|
|A| probability=

4×loge|A|
|A|

ASPARTIX Algorithm 16 ASPARTIX Algorithm 16

21 220.80 0.20 112.30 0.30

22 303.30 0.20 142.50 0.70

23 389.90 0.00 184.40 0.20

24 540.20 0.00 218.90 2.90

25 784.40 0.50 286.30 0.10

26 1,069.80 0.40 330.50 0.80

27 1,494.10 3.40 462.50 0.30

28 2,153.20 7.60 608.30 0.20

29 3,057.20 10.20 882.50 0.40

30 4,468.90 12.30 1,288.50 0.20

Table 4.7: The average elapsed time of algorithm 17 versus ASPARTIX, argument
systems were generated by using algorithm 11.

|A| Range of |R| ASPARTIX Algorithm 17

36 36-780 224.80 1.20

37 37-766 226.60 1.60

38 38-794 284.30 2.10

39 39-894 293.80 1.60

40 40-818 338.50 3.30

41 41-916 375.40 3.40

42 63-907 428.70 5.60

43 43-1000 411.60 5.20

44 44-1160 453.70 5.70

45 45-1159 521.90 6.40

of algorithm 19 versus ASPARTIX.

4.7 Summary

We developed algorithms for enumerating extensions under stable semantics, com-

plete semantics, stage semantics, semi stable semantics and ideal semantics. We have

shown that these algorithms intersect with our algorithm for enumerating preferred

extensions. Actually, all these semantics, except stable and stage semantics, are based

on admissible sets and thus these algorithms enumerate admissible sets in order to

construct the respective extensions. To explore the efficiency of these algorithms we

implemented them and profiled their performance against solving the encoding of
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Table 4.8: The average elapsed time of algorithm 17 versus ASPARTIX, argument
systems were generated by setting attacks with a specific probability.

|A|
probability=

2×loge|A|
|A| probability=

4×loge|A|
|A|

ASPARTIX Algorithm 17 ASPARTIX Algorithm 17

36 167.60 2.00 242.00 1.70

37 207.10 0.20 273.70 3.20

38 186.40 0.30 300.00 4.80

39 268.90 4.30 339.30 6.00

40 277.60 3.80 354.00 2.00

41 372.20 7.90 403.00 0.50

42 336.50 8.10 442.60 0.30

43 371.30 10.80 504.50 0.60

44 375.80 11.50 558.10 0.20

45 464.30 11.50 594.50 0.30

Table 4.9: The average elapsed time of algorithm 18, argument systems were generated
by using algorithm 11.

|A| Range of |R| algorithm 18

51 75-1484 10.80

52 52-1456 9.00

53 78-1519 10.60

54 54-1698 11.40

55 55-1704 13.10

56 56-1769 15.80

57 57-1892 17.90

58 5-1788 18.50

59 59-1848 17.20

60 60-1929 21.40

ASPARTIX [56] using DLV system [69]. One main objective of this chapter was to

show whether heuristics and pruning strategies exploited in enumerating preferred

extensions are equally useful for deciding extensions under other semantics. There-

fore, we found that heuristics and pruning strategies applied for preferred semantics

are totally transferable to complete, ideal and semi stable semantics. We have shown,

however, that stage and stable semantics need slightly different approaches concern-

ing heuristics and pruning tactics. In fact, the existing algorithms of [35, 78] can also

be re-engineered towards developing algorithms for the semantics addressed in this

chapter. For example, [25, 27] presented algorithms for enumerating semi stable, re-

spectively stage, extensions based on the algorithm of [78]. [41] (respectively [48])

presented an algorithm that constructs the ideal extension given that the credulous
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Algorithm 19: Deciding the grounded extension of an argument system (A,R).

1 Lab : A→ {IN,OUT,UNDEC}; Lab← φ;
2 foreach w ∈ A do Lab← Lab∪{(w,UNDEC)};
3 while ∃x ∈ A : Lab(x) =UNDEC∧∀y ∈ {x}− (Lab(y) =OUT) do

4 foreach x ∈ A : Lab(x) =UNDEC∧∀y ∈ {x}− (Lab(y) =OUT) do

5 Lab(x)← IN;
6 foreach z ∈ {x}+ do Lab(z)←OUT;

7 report the grounded extension is {w | Lab(w) = IN};

Table 4.10: The average elapsed time of algorithm 19 versus ASPARTIX, argument
systems were generated by using algorithm 11.

|A| Range of |R| ASPARTIX algorithm 19

110 110-6417 216.50 6.80

120 120-7082 264.70 7.20

130 512-9099 286.30 8.10

140 392-10040 378.50 8.20

150 150-11641 468.50 9.00

160 160-13165 591.00 10.80

170 170-14960 633.10 11.30

180 274-16563 813.80 12.40

190 190-18691 961.20 15.00

200 298-21091 1,027.20 14.70

acceptance (respectively the skeptical acceptance) for each argument is already iden-

tified. [33] presented a significant algorithm for enumerating extensions of the theory

of [91] for default reasoning, which can be also used for computing stable extensions.

The algorithm of [33] uses four labels that correspond to: IN, OUT, UNDEC and

“FORBIDDEN”. In contrast to algorithm 14 for stable semantics, the FORBIDDEN

label is used instead of the labels IGNORED and MUST OUT. In sections 3.2 & 3.5

we illustrated the advantages of using the labels: IGNORED and MUST OUT. The

heuristics and pruning strategies of [33] intersect with the approaches of algorithm 14.

Highlighting differences, we explained in section 4.1 that the IGNORED label allows

for an additional pruning property to be exploited. As to the rules for selecting the

next argument to be labeled IN, the algorithm of [33] applied further two advanced

criteria in addition to the measures that are adopted by algorithm 14. Showing one of

these advanced criteria, [33] might select an argument from the minimal set S ⊆A that

makes {(x, y) ∈ R : x, y ∈ A \S} acyclic. However, [33] stated that finding such a set S is

likely to be an intractable problem, and hence [33] uses an approximation method to

compute such S. Recall that algorithm 14 adheres to a simple heuristic selection rule.

In section 3.3 we have shown, experimentally in terms of overall running times, that
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Table 4.11: The average elapsed time of algorithm 19 versus ASPARTIX, argument
systems were generated by setting attacks with a specific probability.

|A|
probability=

2×loge |A|
|A| probability=

4×loge|A|
|A|

ASPARTIX Algorithm 19 ASPARTIX Algorithm 19

110 173.20 0.30 165.20 0.20

120 216.40 0.00 213.80 0.20

130 272.50 0.00 268.70 0.00

140 338.10 0.00 330.20 0.30

150 406.60 0.60 400.30 0.70

160 494.60 0.50 481.70 0.10

170 592.50 0.40 578.60 0.50

180 698.30 0.50 682.80 0.30

190 819.80 0.00 795.80 0.20

200 950.60 0.20 920.50 0.40

using unsophisticated heuristics tends to be more cost-effective than using involved

heuristics as is the case in the algorithm of Doutre and Mengin [35].
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Chapter 5

Labeling Algorithms for Value
Based Argument Systems

In this chapter we develop algorithms for value based argument systems under pre-

ferred semantics. We refer the reader to section 1.5 for the technical background on

value based argument systems. In section 5.1 we build algorithms for enumerating

preferred extensions. In section 5.2 we verify the efficiency of these algorithms ex-

perimentally. In section 5.3 we design algorithms for deciding objective/subjective

acceptance without requiring enumeration of all preferred extensions explicitly. Sec-

tion 5.4 closes the chapter with a summary.

5.1 A Novel Algorithm for Enumerating Preferred Extensions

To determine all preferred extensions over all specific audiences a naive approach

would enumerate all specific audiences, leading to |V|! running time. We develop a

new approach that avoids forming all such audiences leading to improved expected

running time. The new approach is presented by algorithms 20, 21, 22, and 23.

Algorithm 20 builds total orders on V (that is, specific audiences) dynamically on

the fly. For this purpose, we define q : V→Z a mapping from social values to integers1.

Every time a social value is mapped to an integer by q (line 13), algorithm 20 might

call (line 17) algorithm 21 and attempt to label an argument x IN: the effect of the value

order encoded in q. In doing so, algorithm 21 may then call (line 10) algorithm 22.

Algorithm 22 checks whether an argument, y ∈ {x}−, labelled UNDEC may be labelled

OUT under q or not. That is to say whether, w.r.t. the audience described by q, y is

defeated. Thus, algorithm 22 might call (line 5) algorithm 21 to decide whether an

UNDEC labelled attacker of y can be labelled IN or not. To avoid infinite recursion

the algorithms 21 and 22 employ W ⊆ A to hold processed arguments. In summary,

every time q is changed, algorithms 21 and 22 together determine IN/OUT labels on

UNDEC arguments to reflect this change in q. Once no eligible social value is left

1We discuss the benefit of using q with more examples later in this section.
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unmapped by q (line 19 of algorithm 20), algorithm 20 calls (line 20) algorithm 23 to

find the preferred extensions under the audience encoded by q. Algorithm 23 is almost

identical to algorithm 9 with one exception related to the defeat notion of value based

argument systems. This requires us to define a transition rule, IN-TRANS-VAL, for

algorithm 23 instead of IN-TRANS that is used by algorithm 9.

Definition 13. Let (A,R,V,η) be a value based argument system, x ∈A, Lab : A→ {IN,OUT,

MUST OUT, IGNORED,UNDEC} be a total mapping such that Lab(x) = UNDEC, and

q : V→ Z. Then the in transition step on x under q, denoted as IN-TRANS-VAL(x,q), is

defined by the following steps:

1. Lab′← Lab,

2. Lab′(x)← IN,

3. foreach (x, y) ∈ R : q(η(x)) ≤ q(η(y)) do Lab′(y)←OUT,

4. foreach (z,x) ∈ R : Lab′(z) ,OUT∧q(η(z)) ≤ q(η(x)) do Lab′(z)←MUST OUT,

5. return Lab′.

Algorithm 20: Enumerating all preferred extensions of a value based argument
system H = (A,R,V,η).

1 Lab : A→ {IN,OUT,MUST OUT, IGNORED,UNDEC};
2 Lab← φ;
3 foreach x ∈ A do

4 Lab← Lab∪{(x,UNDEC)};
5 q : V→Z; q←∅;
6 foreach v ∈ V do

7 q← q∪{(v,∞)};
8 i← 1;
9 call find-preferred-extensions(Lab,q, i);

10 procedure find-preferred-extensions(Lab,q, i)
11 foreach v ∈ V : (q(v) =∞)∧ (∃x Lab(x) =UNDEC)∧ (η(x) = v) do

12 q′← q;
13 q′(v)← i;
14 Lab′← Lab;
15 foreach z : Lab′(z) =UNDEC∧η(z) = v do

16 W←∅;
17 invoke algorithm 21 on (H,Lab′,z,q′,W);

18 call find-preferred-extensions(Lab′,q′, i+1);

19 if @v ∈ V : (q(v) =∞)∧ (∃x Lab(x) =UNDEC)∧ (η(x) = v) then

20 invoke algorithm 23 on (H,Lab,q);
21 end procedure
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Algorithm 21: Labeling an argument x IN in a value based argu-
ment system H = (A,R,V,η) under q : V → Z given that Lab : A →
{IN,OUT,MUST OUT, IGNORED,UNDEC} holds the current labels for all ar-
guments and W ⊆ A holds preprocessed arguments.

1 W←W∪{x};
2 foreach y ∈ {x}− : q(η(y)) ≤ q(η(x)) do

3 if Lab(y) = IN then

4 return false;
5 else

6 if y ∈W∧Lab(y) =UNDEC then

7 return false;
8 if y <W∧Lab(y) =UNDEC then

9 W′←W;
10 invoke algorithm 22 on (H,Lab,q,W′, y);
11 if algorithm 22 returned false then

12 return false;

13 Lab(x)← IN;
14 foreach z ∈ {x}+ : q(η(x)) ≤ q(η(z)) do

15 Lab(z)←OUT;
16 return true;

Algorithm 22: Labeling an argument y OUT in a value based ar-
gument system H = (A,R,V,η) under q : V → Z given that Lab : A →
{IN,OUT,MUST OUT, IGNORED,UNDEC} holds the current labels for all ar-
guments and W ⊆ A holds preprocessed arguments.

1 W←W∪{y};
2 foreach s ∈ {y}− : q(η(s)) ≤ q(η(y)) do

3 if s <W∧Lab(s) =UNDEC then

4 W′←W;
5 invoke algorithm 21 on (H,Lab,q,W′,s);
6 if algorithm 21 returned true then

7 Lab(y)←OUT;
8 return true;

9 return false;
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Algorithm 23: Enumerating preferred extensions of a value based ar-
gument system H = (A,R,V,η) under q : V → Z given that Lab : A →
{IN,OUT,MUST OUT, IGNORED,UNDEC} holds the current labels for all ar-
guments.

1 PEXT←∅;
2 call find-preferred-extensions(H,Lab);
3 report PEXT is the set of preferred extensions under the audience encoded by q;

4 procedure find-preferred-extensions(H,Lab)
5 if ∀x Lab(x) ,UNDEC then

6 if ∀x Lab(x) ,MUST OUT then

7 S← {y ∈ A | Lab(y) = IN};
8 if @T ∈ PEXT : S ⊆ T then

9 PEXT← PEXT∪{S};

10 else

11 select any x ∈ A with Lab(x) =UNDEC;
12 Lab′← IN−TRANS−VAL(x,q);
13 call find-preferred-extensions(H,Lab′);
14 Lab′← IGNORE−TRANS(x);
15 call find-preferred-extensions(H,Lab′);

16 end procedure

Figure 5.1 shows how the algorithms work on the framework of figure 1.3. A benefit

of q : V→ Z defined in algorithm 20, we believe, is that building value orders on V

incrementally by using q improves the efficiency of computing preferred extensions.

To see why, notice that q does not map the social values that are promoted by OUT

labelled arguments because these values are irrelevant in deciding the labels of the

remaining UNDEC arguments. Since the example of figure 5.1 does not show the gain

of q we present figure 5.2 that shows how the algorithms work on another value based

argument system. In this example the algorithms decide the α-preferred extensions in

four stages corresponding to q as:

{(v1,1), (v2,∞), (v3,2)},
{(v1,2), (v2,1), (v3,∞)},
{(v1,2), (v2,∞), (v3,1)},
{(v1,3), (v2,2), (v3,1)}.

In contrast, working on a precomputed set of all specific audiences enforces 6 total

orders which necessitates 6 stages. More specifically, referring to figure 5.2 the total

orders: v1 � v2 � v3 and v1 � v3 � v2 would produce the same α-preferred extensions.

Noting that as v1 is the most preferred value then the argument y is OUT and hence the

relative position of v2 is unimportant. Thus, the value order v1 � v2 � v3 is not critical

and can be ignored. This is exactly what our approach does where algorithm 20 does

not build a function q to embody v1 � v2 � v3. Similarly, algorithm 20 does not develop

a function q to represent the value order v2 � v3 � v1 indicating that the order of v3 is not
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critical: v3 is associated with only OUT arguments (the argument z in this example).

We now turn to proving the correctness of our approach. Let us first define the set

of critical total value orders U′. Subsequently we prove that U′ would produce the

same α-preferred extensions as those generated by considering all specific audiences.

Afterwards, we establish the correctness of algorithms 20, 21, 22 and 23.

Definition 14. Let H = (A,R,V,η) be a value based argument system andU denote the set of

all specific audiences over V. Then the set of critical total value orders,U′, is

U \ {α ∈U | ∃(vi,v j) ∈ α : vi , v j ∧

∀x : η(x) = vi,@S1 ⊆ A : S1 is admissible under α with x ∈ S1 ∧

∃S2 ⊆ A : S2 is admissible under α ∧
∃y ∈ S2 : y defeats x w.r.t. α}.

Proposition 8. Let (A,R,V,η) be a value based argument system, PREF be the set of all

preferred extensions w.r.t. all specific audiences in U, PREF′ be the set of all preferred

extensions w.r.t. the set of critical total value ordersU′. Then PREF = PREF′.

Proof: Assume there exists T ∈ PREF : T < PREF′. In this case

∃p1 ∈U : T is a pre f erred extension under p1 and
∀p2 ∈U

′, T is not a pre f erred extension under p2.

By definition ofU andU′

∃(vi,v j) ∈ p1 : vi , v j∧

∀x ∈ A : η(x) = vi, @S1 ⊆ A : S1 is admissible under p1 with x ∈ S1∧

∃S2 ⊆ A : S2 is admissible under p1∧

∃y ∈ S2 : y de f eats x w.r.t. p1.

Thus,

∀p2 ∈U
′ : p2 =

(p1 \ {(vi,v j) ∈ p1 | vi , v j∧

∀x ∈ A : η(x) = vi, @S1 ⊆ A : S1 is admissible under p1 with x ∈ S1∧

∃S2 ⊆ A : S2 is admissible under p1 with some y ∈ S2 : y de f eats x w.r.t. p1})
∪

{(vk,vl) < p1 | (vl,vk) ∈ p1∧

∀x ∈ A : η(x) = vl, @S1 ⊆ A : S1 is admissible under p1 with x ∈ S1∧

∃S2 ⊆ A : S2 is admissible under p1 with some y ∈ S2 : y de f eats x w.r.t. p1},

∀T ∈ PREF : T is a pre f erred extension under p1, T is a pre f erred extension under p2.

Contradiction. ■

Proposition 9. Let (A,R,V,η) be a value based argument system and U′ be the set of all

critical total value orders. Then:

1. for every q : V → Z constructed by algorithm 20, ∃p ∈ U′ : ∀vi,v j ∈ V : q(vi) ≤

q(v j), (vi,v j) ∈ p.
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Figure 5.1: How algorithms 20, 21, 22 and 23 work on a value based argument system.
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Figure 5.2: Showing the benefit of our approach by tracing algorithms 20, 21, 22 and
23 on a value based argument system.

2. ∀p ∈ U′, algorithm 20 constructs q : V→Z such that ∀vi,v j ∈ V : (vi,v j) ∈ p, q(vi) ≤

q(v j).

Proof:

1. Assume

∃q constructed by algorithm 20 : ∀p ∈U′, ∃vi,v j ∈ V : q(vi) ≤ q(v j)∧ (vi,v j) < p.

By Algorithm 20, lines 15 and 17

∃x ∈ A : η(x) = vi and Lab(x) ∈ {IN,UNDEC} w.r.t. q.

By proposition 10 (of which paragraph 1 states the conditions under which an

argument is labelled IN or left UNDEC by algorithm 21) and after simplifications

∃S1 ⊆ A : S1 is admissible under q with x ∈ S1 or
@S2 ⊆ A : S2 is admissible under q with some y ∈ S2∩{x}

− s.t. q(η(y)) ≤ q(η(x)).

This contradicts the definition ofU′ (definition 14): recall thatU′ contains total

value orders including those which satisfy the previous implication.

2. Assume that

∃p ∈U′ : f or every q : V→Z constructed by algorithm 20,
∃vi,v j ∈ V : (vi,v j) ∈ p∧q(vi) > q(v j).
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By definition ofU′

∃x ∈ A : η(x) = vi, ∃S1 ⊆ A : S1 is admissible under p with x ∈ S1or
@S2 ⊆ A : S2 is admissible under p with some y ∈ S2 : y de f eats x w.r.t. p.

By proposition 10, x will be labelled IN or it stays UNDEC.

By algorithm 20 (lines 8, 11 and 13), there exists q(vi) = 1. Contradiction.

■

Proposition 10. Let (A,R,V,η) be a value based argument system, Lab(x) = UNDEC and

q : V→Z formed by algorithm 20. Then:

1. Lab(x)← IN under q by algorithm 21 if and only if

∃S1 ⊆ A : S1 is admissible under q with x ∈ S1 and
@S2 ⊆ A : S2 is admissible under q with some y ∈ S2∩{x}

− s.t. q(η(y)) ≤ q(η(x)).

2. Lab(x)←OUT under q by algorithm 21 (respectively algorithm 22) if and only if

@S1 ⊆ A : S1 is admissible under q with x ∈ S1 and
∃S2 ⊆ A : S2 is admissible under q with some y ∈ S2∩{x}

− s.t. q(η(y)) ≤ q(η(x)).

3. If neither (1) nor (2) hold, Lab(x) =UNDEC.

Proof:

1. Assume x is labelled IN under q by algorithm 21 and

@S1 ⊆ A : S1 is admissible under q with x ∈ S1 or
∃S2 ⊆ A : S2 is admissible under q with some y ∈ S2∩{x}

− s.t. q(η(y)) ≤ q(η(x)).

By algorithm 21 lines 4, 7 & 12

∀(y,x) ∈ R : q(η(y)) ≤ q(η(x)) Lab(y) =OUT. Contradiction.

2. Assume x is labelled OUT under q by algorithm 21 (respectively algorithm 22)

and

∃S1 ⊆ A : S1 is admissible under q with x ∈ S1 or
@S2 ⊆ A : S2 is admissible under q with some y ∈ S2∩{x}

− s.t. q(η(y)) ≤ q(η(x)).

By algorithm 21 line 15 (respectively algorithm 22 line 7)

∃(y,x) ∈ R : q(η(y)) ≤ q(η(x))∧Lab(y) = IN. Contradiction.

3. Immediate from (1) & (2).

■
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Proposition 11. Let (A,R,V,η) be a value based argument system, q : V→Z, and let PEXT

be the preferred extensions under q decided by algorithm 23. Then,

1. ∀pext ∈ PEXT, ∃S ⊆ A : S is a preferred extension under q ∧ S = pext, and

2. ∀S ⊆ A, if S is a preferred extension under q then ∃pext ∈ PEXT : S = pext.

Proof: Follows from proposition 6 and similar structure of algorithm 23 and algo-

rithm 10. ■

We close this section by considering rewriting a value based argument system

into a Dung argument system [76, 77] by, in general, adding an argument to A for

every specific audience p ∈ U; thus A will grow by |V|!. So, any algorithm (e.g.

algorithm 9) working on the target argument system will run in the order of 2|A|+|V|!

while our approach (i.e. algorithms 20, 21, 22 and 23 altogether working on the original

value based argument system) runs in the order of |V|! ∗ 2|A| which is more efficient.

More importantly, recall the profit of q that might induce steps fewer than |V|! as we

illustrated earlier. The bottom line is, our approach is faster than any other mechanism

that would consider every specific audience p ∈Uwhere our algorithms only consider

critical audiencesU′ ⊆U as stated by proposition 9, which is a key contribution of our

algorithms. Equally, our algorithms establish an efficient method for encoding total

orders over V such that the space complexity is upper bounded to the squared number

of values (i.e. |V|2) rather than to the number of all total value orders (i.e. |V!|), which

is the case if a naive approach is adopted.

5.2 Experimental Evaluation

We present experimental results to support our claim in the last section regarding the

benefit of our algorithms. The implementation was in C++, on a Fedora (release 13)

based machine with 4 processors (Intel core i5-750 2.67GHz) and 16GB of memory.

We tested the algorithms of this chapter with 25,000 randomly generated instances.

We generated instances of value based argument systems by setting attacks between

arguments with a probability of 0.1 where each instance has 30 arguments. We report

in table 5.1 the average number of processed total value orders in an execution of 100

instances.

Table 5.1: The average number of total value orders processed in executing algo-
rithms 20, 21, 22 and 23.

|V| 5 6 7 8 9

naive approach 120.00 720.00 5,040.00 40,320.00 362,880.00

new approach 115.88 650.34 3,843.91 25,653.87 171,224.62
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5.3 Algorithms for Subjective and Objective Acceptance

Here we provide algorithms that decide subjective/objective acceptance without ex-

plicitly enumerating extensions of a value based argument system. Algorithms 24 and

25 (besides algorithms 21 and 22) decide subjective acceptance while the algorithms

26 and 27 (besides algorithms 21 and 22) decide objective acceptance. In fact these

algorithms are self-explanatory since they are alterations of algorithms 12, 13 and 20

as we specify in what follows. Firstly, note that algorithms 24 and 26 are modified

versions of algorithm 20 for deciding the subjective, respectively the objective, accep-

tance problem. Secondly, we reform algorithm 12 to get algorithm 25 that works in

conjunction with algorithm 24 to decide the subjective acceptance problem. Thirdly,

we change algorithm 13 to get algorithm 27 that works jointly with algorithm 26 in

deciding the objective acceptance problem.

Algorithm 24: Deciding subjective acceptance of x in a value based argument
system H = (A,R,V,η).

1 Lab : A→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;
2 foreach y ∈ A do Lab← Lab∪{(y,UNDEC)};
3 q : V→Z; q← φ;
4 foreach v ∈ V do q← q∪{(v,∞)};
5 i← 1;
6 if is-subjectively-accepted(Lab,q, i) then x is subjectively accepted;
7 else x is not subjectively accepted;

8 procedure is-subjectively-accepted(Lab,q, i)
9 foreach v ∈ V : (q(v) =∞)∧ (∃y : Lab(y) =UNDEC)∧ (η(y) = v) do

10 q′← q;
11 q′(v)← i;
12 Lab′← Lab;
13 foreach z : Lab′(z) =UNDEC∧η(z) = v do

14 W←∅;
15 invoke algorithm 21 with (Lab′,H,z,q′,W);
16 if Lab′(x) = IN then

17 return true;

18 if is-subjectively-accepted(Lab′,q′, i+1) then

19 return true;

20 if Lab(x) =UNDEC and @v ∈ V : (q(v) =∞)∧ (∃y : Lab(y) =UNDEC)∧ (η(y) = v)
then

21 invoke algorithm 25 passing on (H,x,q);
22 if algorithm 25 reports x is credulously accepted then

23 return true;

24 return false;
25 end procedure
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Algorithm 25: Finding a credulous proof of x in a value based argument system
H = (A,R,V,η) w.r.t. q : V→ Z.

1 Lab : A→ {PRO,OPP,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;
2 foreach y ∈ A do Lab← Lab∪{(y,UNDEC)};
3 Lab(x)← PRO;
4 foreach (x, y) ∈ R : q(η(x)) ≤ q(η(y)) do Lab(y)←OUT;
5 foreach (z,x) ∈ R : q(η(z)) ≤ q(η(x)) do

6 if Lab(z) ∈ {IGNORED,UNDEC} then

7 Lab(z)←MUST OUT;
8 if @(w,z) ∈ R : Lab(w) =UNDEC and q(η(w)) ≤ q(η(z)) then

9 x is not credulously accepted; exit;

10 else

11 if Lab(z) =OUT then

12 Lab(z)←OPP;

13 if is-accepted(Lab) then

14 x is proved by {y ∈ A | Lab(y) ∈ {PRO,OPP}};
15 else

16 x is not credulously acceptable;

17 procedure is-accepted(Lab)
18 foreach y ∈ A : Lab(y) =MUST OUT do

19 while ∃(z, y) ∈ R : Lab(z) =UNDEC ∧q(η(z)) ≤ q(η(y)) do

20 select z ∈ {y}− s.t. Lab(z) =UNDEC and q(η(z)) ≤ q(η(y)) and
∀w ∈ {z}− : q(η(w)) ≤ q(η(z)) (Lab(w) ∈ {OPP,OUT,MUST OUT}),
otherwise select z ∈ {y}− s.t. Lab(z) =UNDEC and q(η(z)) ≤ q(η(y)) and
∀w ∈ {y}− : q(η(w)) ≤ q(η(y)) ∧ Lab(w) =UNDEC (|{s ∈ {z}+ : q(η(z)) ≤
q(η(s))}| ≥ |{t ∈ {w}+ : q(η(w)) ≤ q(η(t))}|);

21 Lab′← Lab; Lab′(z)← PRO;
22 foreach (z,u) ∈ R : q(η(z)) ≤ q(η(u)) do

23 if Lab′(u) =MUST OUT then

24 Lab′(u)←OPP;
25 else

26 if Lab′(u) ,OPP do Lab′(u)←OUT;

27 foreach (u,z) ∈ R : q(η(u)) ≤ q(η(z)) do

28 if Lab′(u) ∈ {IGNORED,UNDEC} then

29 Lab′(u)←MUST OUT;
30 if @(w,u) ∈ R : Lab′(w) =UNDEC and q(η(w)) ≤ q(η(u)) then

31 Lab(z)← IGNORED; goto line 19;

32 else

33 if Lab′(u) =OUT then

34 Lab′(u)←OPP;

35 if is-accepted(Lab′) then

36 Lab← Lab′; return true;
37 else

38 Lab(z)← IGNORED;

39 return false;

40 return true;
41 end procedure
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Algorithm 26: Deciding objective acceptance of x in a value based argument
system H = (A,R,V,η).

1 Lab : A→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;
2 foreach y ∈ A do Lab← Lab∪{(y,UNDEC)};
3 q : V→Z;
4 q← φ;
5 foreach v ∈ V do

6 q← q∪{(v,∞)};
7 i← 1;
8 if is-objectively-accepted(Lab,q, i) then

9 x is objectively accepted;
10 else

11 x is not objectively accepted;

12 procedure is-objectively-accepted(Lab,q, i)
13 foreach v ∈ V : (q(v) =∞) ∧ (∃y : Lab(y) =UNDEC)∧ (η(y) = v) do

14 q′← q;
15 q′(v)← i;
16 Lab′← Lab;
17 foreach z : Lab′(z) =UNDEC∧η(z) = v do

18 W←∅;
19 invoke algorithm 21 (Lab′,H,z,q′,W);
20 if Lab′(x) =OUT then

21 return false;

22 if ¬ is-objectively-accepted(Lab′,q′, i+1) then

23 return false;

24 if Lab(x) =UNDEC and @v ∈ V : (q(v) =∞) ∧ (∃y : Lab(y) =UNDEC)∧ (η(y) = v)
then

25 invoke algorithm 27 with (Lab,H,x,q);
26 if algorithm 27 decided that x is not skeptically accepted then

27 return false;

28 return true;
29 end procedure

89



Algorithm 27: Deciding the skeptical acceptance of x in a value based argu-
ment system H = (A,R,V,η) w.r.t. q : V → Z given a total labelling Lab : A→
{IN,OUT,MUST OUT, IGNORED,UNDEC}.

1 PEXT←∅;
2 if @(y,x) ∈ R : q(η(y)) ≤ q(η(x)) then

3 x is skeptically proved by {x}; exit;
4 foreach (y,x) ∈ R : q(η(y)) ≤ q(η(x)) do

5 invoke algorithm 25 on (H, y,q);
6 if algorithm 25 decided that y is credulously accepted then

7 x is not skeptically accepted; exit;

8 call decide-skeptical-acceptance(Lab);
9 if PEXT , ∅ then

10 x is skeptically proved by PEXT; exit;

11 procedure decide-skeptical-acceptance(Lab)
12 while ∃y : Lab(y) =UNDEC do

13 select y s.t. Lab(y) =UNDEC and ∀(z, y) ∈ R : q(η(z)) ≤ q(η(y))
(Lab(z) ∈ {OUT,MUST OUT}),

14 otherwise select y s.t. Lab(y) =UNDEC and ∀w : Lab(w) =UNDEC
(|{s ∈ {y}+ : q(η(y)) ≤ q(η(s))}| ≥ |{t ∈ {w}+ : q(η(w)) ≤ q(η(t))}|);

15 Lab′← Lab; Lab′(y)← IN;
16 foreach (y,z) ∈ R : q(η(y)) ≤ q(η(z)) do

17 Lab′(z)←OUT;
18 foreach (z, y) ∈ R : q(η(z)) ≤ q(η(y)) do

19 if Lab′(z) ∈ {IGNORED,UNDEC} then

20 Lab′(z)←MUST OUT;
21 if @(w,z) ∈ R : Lab′(w) =UNDEC ∧q(η(w)) ≤ q(η(z)) then

22 Lab(y)← IGNORED; goto line 12;

23 call decide-skeptical-acceptance(Lab′);
24 if ∃(z, y) ∈ R : Lab(z) ∈ {IGNORED,UNDEC} then

25 Lab(y)← IGNORED;
26 else

27 Lab← Lab′;

28 if @y : Lab(y) =MUST OUT then

29 S← {y | Lab(y) = IN};
30 if @T ∈ PEXT : S ⊆ T then

31 PEXT← PEXT∪{S};
32 if Lab(x) , IN then

33 PEXT←∅;
34 x is not skeptically accepted; terminate;

35 end procedure

5.4 Summary

In the context of value based argument systems, we developed novel labeling based al-

gorithms for deciding preferred extensions and subjective/objective acceptance. High-

lighting some related works, the computational complexity of subjective/objective
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acceptance is believed to be intractable (see e.g. [40, 68, 67]). The algorithms of [42]

decide the preferred extensions under the assumption of multi-value cycles (i.e. no cy-

cle includes exclusively arguments that are all mapped to the same social value [13].)

Notice that the algorithms presented in chapter 2 for deciding objective/subjective

acceptance in value based argument systems are also under the assumption of multi-

value cycles. However, the algorithms of this chapter solve an arbitrary value based

argument system.
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Chapter 6

Labeling Attacks as a
Generalization of Labeling
Arguments

In this chapter we illustrate how to enumerate extensions under a number of argu-

mentation semantics by labeling attacks along with arguments instead of labeling

arguments only. This is of interest in argumentation formalisms that allow attacks on

attacks e.g. [76, 57, 7]. To achieve this goal, we develop algorithms for enumerat-

ing extensions of argument systems with recursive attacks [7] under preferred, stable,

complete, stage, semi stable, grounded and ideal semantics in sections 6.1, 6.2, 6.3, 6.4,

6.5, 6.6 and 6.7 respectively. We refer the reader to section 1.6 for the background on

argument systems with recursive attacks. We believe that enumerating extensions by

labeling attacks alongside arguments is computationally expensive as much as listing

extensions by labeling arguments only. To confirm this, we report in each section an ex-

perimental evaluation on the efficiency of the concerned algorithm. Lastly, section 6.8

closes the chapter with a summary.

6.1 Enumerating Preferred Extensions

Algorithm 28 enumerates all preferred extensions. The idea is based on using five

labels: IN, OUT, MUST OUT, IGNORED and UNDEC. An attack α ∈ R is labeled IN to

indicate that αmight be in a preferred extension. An argument, say x, is labeled OUT

if and only if there is α ∈ R s.t. α is IN and trg(α) = x. An attack β ∈ R is labeled OUT if

and only if there is α ∈ R s.t. α is IN and trg(α) ∈ {β,src(β)}. An argument x is labeled

IN, suggesting that x might be in a preferred extension, if and only if:

(i) ∃α ∈ R : α is IN and src(α) = x or

(ii) ∀β ∈ R : trg(β) = x, β is OUT.
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An attack β is labeled MUST OUT if and only if there is α ∈ R s.t. α is IN and

trg(β) ∈ {α,src(α)}. An attack α is labeled IGNORED trying to find a preferred extension

excluding α. UNDEC is the initial label for all arguments and attacks. Nonetheless,

the precise approach to enumerating preferred extensions is defined in algorithm 28.

To get the general idea see figure 6.1 that shows how the algorithm works on the

system depicted in figure 1.4. Now we highlight heuristics and pruning strategies

employed by our algorithm. Referring to algorithm 28, line 9 represents the strategy

by which we pick the next attack to be labeled IN. This heuristic rule, and its grounds

as well, is in parallel to the heuristic rule applied in algorithm 10 for enumerating

preferred extensions of standard argument systems. Likewise, algorithm 28 applies

two pruning tactics, which are in line with the pruning strategies of algorithm 10. For

the first pruning tactic, algorithm 28 backtracks if there is β ∈ R labelled MUST OUT

while there is no λ ∈ R is labeled UNDEC with trg(λ) ∈ {β,src(β)}, see lines 20- 23. For

the second pruning tactic, algorithm 28 (see lines 25- 28) skips ignoring an attack α ∈ R

if and only if for each β ∈ R s.t. trg(β) ∈ {α,src(α)}, β is OUT or MUST OUT. Table 6.1

shows the efficiency of algorithm 28 versus algorithm 10 working on argument systems

with recursive attacks expressed as standard argument systems [7] as follows: given an

argument system with recursive attacks (A,R), then the corresponding Dung argument

system (A′,R′) is formed with A′ = A∪R and R′ = {(x, y) | x, y ∈ A∪R and x de f eats y}.

Hence, both algorithms 28 and 10 run in the order of 2|A|+|R|. This is confirmed by the

experimental results of table 6.1. Note that the differences between the two algorithms

with regards to the elapsed time shown in table 6.1 are negligible. We do not see such

subtle differences contradict with the earlier mathematical analysis indicating that the

overall performance of both algorithms is comparable.

6.2 Enumerating Stable Extensions

Algorithm 29 enumerates all stable extensions. Actually, algorithm 29 is a modifica-

tion of algorithm 28, which decides preferred extensions. In algorithm 28 we find

a preferred extension, say pre f , if and only if for each x ∈ A∪R x is not UNDEC nor

MUST OUT and pre f is not a subset of a previously decided preferred extension. How-

ever, in algorithm 29 we encounter a stable extension if and only if for each x ∈A∪R x

is not UNDEC nor MUST OUT nor IGNORED. Moreover, algorithm 29 applies an

additional pruning strategy such that the algorithm backtracks if a condition holds,

see lines 26 & 34. Table 6.2 displays the performance of algorithm 29 in contrast to

algorithm 14.
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Algorithm 28: Enumerating preferred extensions of an argument system with

recursive attacks (A,R).

1 N(x) ≡

{

0 if x ∈ R;

|{β ∈ R | src(β) = x}| if x ∈ A;

2 Lab : (A∪R)→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;

3 foreach x ∈ A∪R do Lab← Lab∪{(x,UNDEC)};

4 Epre f erred ⊆ 2A∪R; Epre f erred← φ;

5 call find-preferred-extensions(Lab);

6 report Epre f erred is the set of all preferred extensions;

7 procedure find-preferred-extensions(Lab)

8 while ∃α ∈ R : Lab(α) =UNDEC do

9 select α ∈ R : Lab(α) =UNDEC and

∀β ∈ R : trg(β) ∈ {α,src(α)} (Lab(β) ∈ {OUT,MUST OUT}), else pick

α ∈ R : Lab(α) =UNDEC and Lab(trg(α)) ,OUT and ∀β ∈ R : Lab(β) =UNDEC

(N(trg(α)) ≥N(trg(β))), otherwise select any α ∈ R : Lab(α) =UNDEC;
10 Lab′← Lab;
11 Lab′(α)← IN;
12 Lab′(src(α))← IN;
13 if trg(α) ∈ A then

14 Lab′(trg(α))←OUT;

15 foreach β ∈ R : src(β) = trg(α) do

16 Lab′(β)←OUT;

17 else

18 Lab′(trg(α))←OUT;

19 foreach β ∈ R : Lab′(β) ∈ {UNDEC, IGNORED}∧ trg(β) ∈ {α,src(α)} do

20 Lab′(β)←MUST OUT;

21 if @ λ ∈ R : Lab′(λ) =UNDEC∧ trg(λ) ∈ {β,src(β)} then

22 Lab(α)← IGNORED;
23 goto line 8;

24 call find-preferred-extensions(Lab′);

25 if ∃β ∈ R : Lab(β) ∈ {UNDEC, IGNORED}∧ trg(β) ∈ {α,src(α)} then

26 Lab(α)← IGNORED;

27 else

28 Lab← Lab′;

29 if @β ∈ R : Lab(β) =MUST OUT then

30 foreach x ∈ A : Lab(x) =UNDEC∧∀β ∈ R : trg(β) = x (Lab(β) =OUT) do

31 Lab(x)← IN;

32 S← {x ∈ (A∪R) | Lab(x) = IN};

33 if ∀T ∈ Epre f erred (S * T) then

34 Epre f erred← Epre f erred∪{S};

35 end procedure
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Figure 6.1: How algorithm 28 works on an argument system with recursive attacks.

Table 6.1: The average elapsed time of algorithm 28 versus algorithm 10, instances of
argument system with recursive attacks were generated randomly with |A| = 25 and
by setting attacks with a probability p.

p 0.01 0.02 0.03 0.04 0.05 0.06

average of |R| 7.63 17.73 31.77 46.62 65.64 91.22

algorithm 28 5.40 4.70 0.80 4.30 66.90 1,320.70

algorithm 10 9.50 9.80 10.00 10.50 126.60 2,059.60
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Algorithm 29: Enumerating stable extensions of an argument system with recur-

sive attacks (A,R).

1 N(x) ≡

{

0 if x ∈ R;

|{β ∈ R | src(β) = x}| if x ∈ A;

2 Lab : (A∪R)→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;

3 foreach x ∈ A∪R do Lab← Lab∪{(x,UNDEC)};

4 Estable ⊆ 2A∪R; Estable← φ;
5 call find-stable-extensions(Lab);

6 report Estable is the set of all stable extensions;

7 procedure find-stable-extensions(Lab)

8 while ∃α ∈ R : Lab(α) =UNDEC do

9 select α ∈ R : Lab(α) =UNDEC and

∀β ∈ R : trg(β) ∈ {α,src(α)} (Lab(β) ∈ {OUT,MUST OUT}), else pick

α ∈ R : Lab(α) =UNDEC and Lab(trg(α)) ,OUT and ∀β ∈ R : Lab(β) =UNDEC

(N(trg(α)) ≥N(trg(β))), otherwise select any α ∈ R : Lab(α) =UNDEC;
10 Lab′← Lab;
11 Lab′(α)← IN;
12 Lab′(src(α))← IN;
13 if trg(α) ∈ A then

14 Lab′(trg(α))←OUT;

15 foreach β ∈ R : src(β) = trg(α) do

16 Lab′(β)←OUT;

17 else

18 Lab′(trg(α))←OUT;

19 foreach β ∈ R : Lab′(β) ∈ {UNDEC, IGNORED}∧ trg(β) ∈ {α,src(α)} do

20 Lab′(β)←MUST OUT;

21 if @ λ ∈ R : Lab′(λ) =UNDEC∧ trg(λ) ∈ {β,src(β)} then

22 if ∃λ ∈ R : Lab(λ) =UNDEC∧ trg(λ) ∈ {α,src(α)} then

23 Lab(α)← IGNORED;
24 goto line 8;

25 else

26 return;

27 call find-stable-extensions(Lab′);

28 if ∃β ∈ R : Lab(β) =UNDEC∧ trg(β) ∈ {α,src(α)} then

29 Lab(α)← IGNORED;
30 else

31 if @β ∈ R : Lab(β) = IGNORED∧ trg(β) ∈ {α,src(α)} then

32 Lab← Lab′;
33 else

34 return;

35 if @β ∈ R : Lab(β) ∈ {MUST OUT, IGNORED} then

36 foreach x ∈ A : Lab(x) =UNDEC∧∀β ∈ R : trg(β) = x (Lab(β) =OUT) do

37 Lab(x)← IN;

38 Estable← Estable∪{x ∈ (A∪R) | Lab(x) = IN};

39 end procedure
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Table 6.2: The average elapsed time of algorithm 29 versus algorithm 14, instances of
argument system with recursive attacks were generated randomly with |A| = 35 and
by setting attacks with a probability p.

p 0.01 0.02 0.03 0.04 0.05

Average of |R| 8.82 23.75 50.34 96.63 175.11

Algorithm 29 0.00 0.50 8.70 4,056.30 259,912.20

Algorithm 14 0.50 1.80 16.30 16,046.60 354,590.50

6.3 Enumerating Complete Extensions

Algorithm 30 decides all complete extensions. Indeed, algorithm 30 is a modification of

algorithm 28, which decides preferred extensions. In algorithm 28 we find a preferred

extension, say pre f , if and only if for each x ∈ A∪R, x is not UNDEC nor MUST OUT

and pre f is not a subset of a previously decided preferred extension. However, in

algorithm 30 we encounter a complete extension if and only if

@β ∈ R : Lab(β) =MUST OUT and

@λ ∈ R : Lab(λ) ∈ {IGNORED,UNDEC} with ∀α ∈ R : trg(α) ∈ {λ,src(λ)} Lab(α) =OUT.

Table 6.3 displays the performance of algorithm 30 versus algorithm 15.

6.4 Enumerating Stage Extensions

Algorithm 31 decides all stage extensions. In particular, algorithm 31 decides conflict

free candidate subsets of A∪R (see lines 15-29) by using the same five labels that are

used in algorithm 28, which enumerates preferred extensions. Recall that algorithm 28

actually finds admissible sets rather than conflict free sets. Thus, algorithm 28 decides

that elements in A∪R, which are labeled IN, make up an admissible set if and only if for

each x ∈A∪R, x is not UNDEC nor MUST OUT. Algorithm 31 decides that elements in

A∪R, which are labeled IN, make up a candidate conflict free set if and only if for each

x ∈ R x is not UNDEC, see lines 15 & 32. Then, for every conflict free set S determined

algorithm 31 also records S′ ≡ {x ∈ A∪R | x is OUT}. After accumulating all candidate

S∪S′, algorithm 31 decides that S is a stage extension if and only if S∪S′ is maximal,

see lines 8-12. As we stated in chapter 4, heuristics and pruning strategies used in

semantics that are based on admissible sets will not be applicable to stage semantics,

which are based on conflict free sets. Therefore, as a pruning strategy we skip ignoring

an attack y if and only if

∀z ∈ R : trg(z) ∈ {y,src(y)}∨ trg(y) ∈ {z,src(z)}, z is OUT or MUST OUT or IGNORED.

On selecting the next UNDEC attack to be labeled IN, we apply the following rule:
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Algorithm 30: Enumerating complete extensions of an argument system with

recursive attacks (A,R).

1 N(x) ≡

{

0 if x ∈ R;

|{β ∈ R | src(β) = x}| if x ∈ A;

2 Lab : (A∪R)→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;

3 foreach x ∈ A∪R do Lab← Lab∪{(x,UNDEC)};

4 Ecomplete ⊆ 2A∪R; Ecomplete← φ;

5 call find-complete-extensions(Lab);

6 report Ecomplete is the set of all complete extensions;

7 procedure find-complete-extensions(Lab)

8 if @β ∈ R : Lab(β) =MUST OUT and @λ ∈ R : Lab(λ) ∈ {IGNORED,UNDEC} with

∀α ∈ R : trg(α) ∈ {λ,src(λ)} (Lab(α) =OUT) then

9 foreach x ∈ A : Lab(x) =UNDEC and ∀β ∈ R : trg(β) = x (Lab(β) =OUT) do

10 Lab(x)← IN;

11 Ecomplete← Ecomplete∪{x ∈ (A∪R) | Lab(x) = IN)};

12 while ∃α ∈ R : Lab(α) =UNDEC do

13 select α ∈ R : Lab(α) =UNDEC and

∀β ∈ R : trg(β) ∈ {α,src(α)} (Lab(β) ∈ {OUT,MUST OUT}), else pick

α ∈ R : Lab(α) =UNDEC and Lab(trg(α)) ,OUT and ∀β ∈ R : Lab(β) =UNDEC

(N(trg(α)) ≥N(trg(β))), otherwise select any α ∈ R : Lab(α) =UNDEC;
14 Lab′← Lab;
15 Lab′(α)← IN;
16 Lab′(src(α))← IN;
17 if trg(α) ∈ A then

18 Lab′(trg(α))←OUT;

19 foreach β ∈ R : src(β) = trg(α) do

20 Lab′(β)←OUT;

21 else

22 Lab′(trg(α))←OUT;

23 foreach β ∈ R : Lab′(β) ∈ {UNDEC, IGNORED}∧ trg(β) ∈ {α,src(α)} do

24 Lab′(β)←MUST OUT;

25 if @ λ ∈ R : Lab′(λ) =UNDEC∧ trg(λ) ∈ {β,src(β)} then

26 Lab(α)← IGNORED;
27 goto line 12;

28 call find-complete-extensions(Lab′);

29 if ∃β ∈ R : Lab(β) ∈ {UNDEC, IGNORED}∧ trg(β) ∈ {α,src(α)} then

30 Lab(α)← IGNORED;

31 else

32 Lab← Lab′;

33 end procedure
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Table 6.3: The average elapsed time of algorithm 30 versus algorithm 15, instances of
argument system with recursive attacks were generated randomly with |A| = 30 and
by setting attacks with a probability p.

p 0.01 0.02 0.03 0.04 0.05

Average of |R| 5.59 15.46 31.03 58.07 98.26

Algorithm 30 0.00 0.40 1.40 844.50 361,490.20

Algorithm 15 0.00 0.00 1.70 1,105.50 384,902.10

1. select an UNDEC attack y s.t. for each z∈R : trg(z)∈ {y,src(y)}∨trg(y)∈ {z,src(z)}, z

is OUT or MUST OUT or IGNORED.

2. otherwise select an UNDEC attack y such that the number of attacks that are

attacking y (or src(y)) alongside the attacks (or their source arguments) that are

attacked by y is maximal.

The aim of the first part of this rule is to maximize the gain of the pruning strategy

that skips ignoring y, which is the attack picked up according to the first part of the

rule, based on the property that if a conflict free set, say S, will be decided while such

y is ignored then S∪{y} is conflict free as well, and hence, there is no need to ignore

y in the first place. Consequently, the earlier we label such y IN, the bigger part of

the search space that will be pruned. Before coming to the second part of the heuristic

rule, recall that the aim of heuristics in our algorithms is to accelerate reaching a goal

state, which is a conflict free set in the case of algorithm 31. Note that such a goal state

is reached if and only if for each x ∈ R, x is not UNDEC. Thus, by applying the second

part of the heuristic rule we maximize the number of OUT/MUST OUT attacks and

minimize the number of UNDEC attacks. Table 6.4 demonstrates the performance of

algorithm 31 versus algorithm 16.

6.5 Enumerating Semi Stable Extensions

Algorithm 32 decides all semi stable extensions. In particular, algorithm 32 decides

admissible sets (see lines 14-31) in the same way algorithm 28 does in enumerating

preferred extensions. However, for every decided admissible set S algorithm 32 also

determines S′ ≡ {x ∈ A∪R | x is OUT}. After accumulating all candidate S∪S′, algo-

rithm 32 decides that an admissible set S is a semi stable extension if and only if S∪S′

is maximal, see lines 7-11. Table 6.5 shows the efficiency of algorithm 32 in comparison

with algorithm 17.
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Algorithm 31: Enumerating stage extensions of an argument system with recur-

sive attacks (A,R).

1 N(x) ≡

{

0 if x ∈ R;

|{β ∈ R | src(β) = x}| if x ∈ A;

2 Given β ∈ R, then O(β) ≡ |{α ∈ R | trg(α) ∈ {β,src(β)}}|;

3 Lab : (A∪R)→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;

4 foreach x ∈ A∪R do Lab← Lab∪{(x,UNDEC)};

5 Estage : ((A∪R)→ {IN,OUT,MUST OUT, IGNORED,UNDEC})×Z;

6 Estage← φ;
7 call find-conflict-free-sets(Lab);
/* The next loop is to collect conflict free sets, those which have

a maximal range */

8 foreach (Lab1, i) ∈ Estage do

9 foreach (Lab2, j) ∈ Estage : j , i do

10 if (|{x : Lab1(x) ∈ {IN,OUT}}| , |{z : Lab2(z) ∈ {IN,OUT}}|∨Lab1 = Lab2) and

∀y ∈ A∪R : Lab1(y) ∈ {IN,OUT} (Lab2(y) ∈ {IN,OUT}) then

11 Estage← Estage \ {(Lab1, i)};
12 continue to next iteration from line 8;

13 foreach (Lab1, i) ∈ Estage report {x : Lab1(x) = IN} as a stage extension ;

14 procedure find-conflict-free-sets(Lab)

15 while ∃α ∈ R : Lab(α) =UNDEC do

16 select α ∈ R : Lab(α) =UNDEC and ∀β ∈ R : trg(β) ∈ {α,src(α)}∨ trg(α) ∈
{β,src(β)} (Lab(β) ∈ {OUT,MUST OUT, IGNORED}), else pick

α ∈ R : Lab(α) =UNDEC and Lab(trg(α)) ,OUT and

∀β ∈ R : Lab(β) =UNDEC ((N(trg(α))+O(α)) ≥ (N(trg(β))+O(β))), otherwise

select any α ∈ R : Lab(α) =UNDEC;
17 Lab′← Lab; Lab′(α)← IN; Lab′(src(α))← IN;
18 if trg(α) ∈ A then

19 Lab′(trg(α))←OUT;

20 foreach β ∈ R : src(β) = trg(α) do Lab′(β)←OUT;

21 else

22 Lab′(trg(α))←OUT;

23 foreach β ∈ R : Lab′(β) ∈ {UNDEC, IGNORED}∧ trg(β) ∈ {α,src(α)} do

24 Lab′(β)←MUST OUT;
25 call find-conflict-free-sets(Lab′);

26 if ∃β ∈ R : Lab(β) =UNDEC and (trg(β) ∈ {α,src(α)}∨ trg(α) ∈ {β,src(β)}) then

27 Lab(α)← IGNORED;

28 else

29 Lab← Lab′;

30 foreach x ∈ A : Lab(x) =UNDEC and ∀β ∈ R : trg(β) = x (Lab(β) =OUT) do

31 Lab(x)← IN;

32 Estage← Estage∪{(Lab, |Estage|+1)};
33 end procedure
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Algorithm 32: Enumerating semi stable extensions of an argument system with

recursive attacks (A,R).

1 N(x) ≡

{

0 if x ∈ R;

|{β ∈ R | src(β) = x}| if x ∈ A;

2 Lab : (A∪R)→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;

3 foreach x ∈ A∪R do Lab← Lab∪{(x,UNDEC)};

4 Esemistable : ((A∪R)→ {IN,OUT,MUST OUT, IGNORED,UNDEC})×Z;

5 Esemistable← φ;
6 call find-admissible-sets(Lab);
/* The next loop is to pick up admissible sets, those which have a

maximal range */

7 foreach (Lab1, i) ∈ Esemistable do

8 foreach (Lab2, j) ∈ Esemistable : j , i do

9 if (|{x : Lab1(x) ∈ {IN,OUT}}| , |{z : Lab2(z) ∈ {IN,OUT}}|∨Lab1 = Lab2) and

∀y ∈ A∪R : Lab1(y) ∈ {IN,OUT} (Lab2(y) ∈ {IN,OUT}) then

10 Esemistable← Esemistable \ {(Lab1, i)};
11 continue to next iteration from line 7;

12 foreach (Lab1, i) ∈ Esemistable report {x : Lab1(x) = IN} as a semi stable extension ;

13 procedure find-admissible-sets(Lab)

14 while ∃α ∈ R : Lab(α) =UNDEC do

15 select α ∈ R : Lab(α) =UNDEC and

∀β ∈ R : trg(β) ∈ {α,src(α)} (Lab(β) ∈ {OUT,MUST OUT}), else pick

α ∈ R : Lab(α) =UNDEC and Lab(trg(α)) ,OUT and ∀β ∈ R : Lab(β) =UNDEC

(N(trg(α)) ≥N(trg(β))), otherwise select any α ∈ R : Lab(α) =UNDEC;
16 Lab′← Lab; Lab′(α)← IN; Lab′(src(α))← IN;
17 if trg(α) ∈ A then

18 Lab′(trg(α))←OUT;

19 foreach β ∈ R : src(β) = trg(α) do Lab′(β)←OUT;

20 else

21 Lab′(trg(α))←OUT;

22 foreach β ∈ R : Lab(β) ∈ {UNDEC, IGNORED}∧ trg(β) ∈ {α,src(α)} do

23 Lab′(β)←MUST OUT;

24 if @ λ ∈ R : Lab′(λ) =UNDEC∧ trg(λ) ∈ {β,src(β)} then

25 Lab(α)← IGNORED;
26 goto line 14;

27 call find-admissible-sets(Lab′);

28 if ∃β ∈ R : Lab(β) ∈ {UNDEC, IGNORED}∧ trg(β) ∈ {α,src(α)} then

29 Lab(α)← IGNORED;

30 else

31 Lab← Lab′;

32 if @β ∈ R : Lab(β) =MUST OUT then

33 foreach x ∈ A : Lab(x) =UNDEC and ∀β ∈ R : trg(β) = x (Lab(β) =OUT) do

34 Lab(x)← IN;

35 Esemistable← Esemistable∪{(Lab, |Esemistable|+1)};

36 end procedure
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Table 6.4: The average elapsed time of algorithm 31 versus algorithm 16, instances of
argument system with recursive attacks were generated randomly with |A| = 15 and
by setting attacks with a probability p.

p 0.01 0.02 0.03 0.04 0.05

Average of |R| 1.13 2.80 4.52 7.44 10.54

Algorithm 31 0.20 0.30 0.70 22.90 583.90

Algorithm 16 0.10 1.30 3.60 153.00 1,832.80

Table 6.5: The average elapsed time of algorithm 32 versus algorithm 17, instances of
argument system with recursive attacks were generated randomly with |A| = 25 and
by setting attacks with a probability p.

p 0.01 0.02 0.03 0.04 0.05 0.06

Average of |R| 7.95 18.77 31.89 47.81 66.59 86.77

Algorithm 32 10.40 9.00 10.00 11.20 29.40 395.10

Algorithm 17 10.60 9.80 10.60 11.50 49.80 611.70

6.6 Deciding the Grounded Extension

Algorithm 33 decides the grounded extension. As is the case in all algorithms in this

chapter, algorithm 33 can be seen as a generalization of algorithm 19. Table 6.6 shows

the efficiency of algorithm 33 in comparison with algorithm 19.

6.7 Deciding the Ideal Extension

Algorithm 34 decides the ideal extension. In particular, algorithm 34 decides ad-

missible sets (lines 11-31) in the same way algorithm 28 does in deciding preferred

extensions. However, in enumerating admissible sets algorithm 34 also determines S

that is described as

S ≡ {x ∈ A∪R | there is y in an admissible set s.t. y ∈ R and trg(y) ∈ {x,src(x)}}

After enumerating a set of candidate admissible sets and having S determined,

algorithm 34 decides that an admissible set T is the ideal extension if and only if

T∩ S = φ, see lines 7-9. Recall that all algorithms, including algorithm 34, decide

admissible sets in an ascending order, i.e. from the largest set to the smallest one.

Table 6.7 reports the efficiency of algorithm 34 in comparison with algorithm 18.
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Algorithm 33: Deciding the grounded extension of an argument system with

recursive attacks (A,R).

1 Lab : (A∪R)→ {IN,OUT,UNDEC}; Lab← φ;

2 foreach w ∈ A∪R do Lab← Lab∪{(w,UNDEC)};

3 while ∃x ∈ R : Lab(x) =UNDEC∧∀y ∈ R : trg(y) ∈ {x,src(x)} (Lab(y) =OUT) do

4 foreach x ∈ R : Lab(x) =UNDEC∧∀y ∈ R : trg(y) ∈ {x,src(x)} (Lab(y) =OUT) do

5 Lab(x)← IN;
6 Lab(src(x))← IN;
7 Lab(trg(x))←OUT;
8 if trg(x) ∈ A then

9 foreach z ∈ R : trg(x) = src(z) do

10 Lab(z)←OUT;

11 foreach x ∈ A : Lab(x) =UNDEC∧∀β ∈ R : trg(β) = x (Lab(β) =OUT) do

12 Lab(x)← IN;

13 report the grounded extension is {w ∈ A∪R | Lab(w) = IN};

Table 6.6: The average elapsed time of algorithm 33 versus algorithm 19, instances of
argument system with recursive attacks were generated randomly with |A| = 100 and
by setting attacks with a probability p.

p 0.01 0.02 0.03 0.04 0.05

Average of |R| 132.89 738.87 3,071.67 11,546.59 41,471.95

Algorithm 33 5.80 10.00 25.20 63.80 207.10

Algorithm 19 9.50 18.90 46.20 144.00 521.00
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Algorithm 34: Deciding the ideal extension of an argument system with recursive

attacks (A,R).

1 let N(x) ≡

{

0 if x ∈ R;

|{β ∈ R | src(β) = x}| if x ∈ A;

2 Lab : (A∪R)→ {IN,OUT,MUST OUT, IGNORED,UNDEC}; Lab← φ;

3 foreach x ∈ A∪R do Lab← Lab∪{(x,UNDEC)};

4 Eideal :Z→ 2A∪R; Eideal← φ;
5 S← φ;
/* S will hold the arguments/attacks that certainly are not in the
ideal extension */

6 call find-admissible-sets(Lab);
7 foreach i : 1 to |Eidea| do

8 if ∀x ∈ Eideal(i) (x < S) then

9 report Eideal(i) is the ideal extension; exit;

10 procedure find-admissible-sets(Lab)

11 while ∃α ∈ R : Lab(α) =UNDEC do

12 select α ∈ R : Lab(α) =UNDEC and

∀β ∈ R : trg(β) ∈ {α,src(α)} (Lab(β) ∈ {OUT,MUST OUT}), else pick

α ∈ R : Lab(α) =UNDEC and Lab(trg(α)) ,OUT and ∀β ∈ R : Lab(β) =UNDEC

(N(trg(α)) ≥N(trg(β))), otherwise select any α ∈ R : Lab(α) =UNDEC;
13 Lab′← Lab;
14 Lab′(α)← IN;
15 Lab′(src(α))← IN;
16 if trg(α) ∈ A then

17 Lab′(trg(α))←OUT;

18 foreach β ∈ R : src(β) = trg(α) do

19 Lab′(β)←OUT;

20 else

21 Lab′(trg(α))←OUT;

22 foreach β ∈ R : Lab′(β) ∈ {UNDEC, IGNORED}∧ trg(β) ∈ {α,src(α)} do

23 Lab′(β)←MUST OUT;

24 if @ λ ∈ R : Lab′(λ) =UNDEC∧ trg(λ) ∈ {β,src(β)} then

25 Lab(α)← IGNORED;
26 goto line 11;

27 call find-admissible-sets(Lab′);

28 if ∃β ∈ R : Lab(β) ∈ {UNDEC, IGNORED} and trg(β) ∈ {α,src(α)} then

29 Lab(α)← IGNORED;

30 else

31 Lab← Lab′;

32 if @β ∈ R : Lab(β) =MUST OUT then

33 foreach x ∈ A : Lab(x) =UNDEC and ∀β ∈ R : trg(β) = x (Lab(β) =OUT) do

34 Lab(x)← IN;

35 S← S∪{x ∈ (A∪R) | Lab(x) =OUT};

36 Eideal← Eideal∪{(|Eideal|+1, {z ∈ (A∪R) | Lab(z) = IN})};

37 end procedure
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Table 6.7: The average elapsed time of algorithm 34 versus algorithm 18, instances of
argument system with recursive attacks were generated randomly with |A| = 35 and
by setting attacks with a probability p.

p 0.01 0.02 0.03 0.04 0.05

Average of |R| 8.65 23.31 51.24 99.97 174.24

Algorithm 34 0.10 0.10 5,064.20 166,875.70 817,050.40

Algorithm 18 0.50 0.00 9,347.20 175,207.40 709,018.50

6.8 Summary

We presented algorithms for enumerating extensions under several semantics in ar-

gument systems with recursive attacks. Thus, we offered a unified approach to enu-

merating extensions for both standard argument systems and argument systems with

recursive attacks. This follows from the fact that Dung argument systems are a special

case of argument systems with recursive attacks [7]. By doing so, we showed how

labeling attacks alongside arguments can be used as a basis for enumerating extensions

in argument systems, especially those formalisms that allow attacks on attacks (e.g.

[76, 57, 7]). In fact, extensions of an argument system expressed in such formalisms

can be computed by firstly translating the argument system back into a standard Dung

argument system. Nonetheless, we demonstrated how labeling can be applied directly

on the native form of such formalisms to enumerate extensions without compromising

efficiency. Turning to related works, [75] defined labeling-based semantics for Modgil’s

argument system introduced in [76] while [98] described argumentation semantics in

terms of attacks rather than arguments in the context of Dung argument systems. [57]

set semantics for the extended argument systems of [11] that also allow attacks on

attacks.
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Chapter 7

Conclusion

In this chapter we close the thesis. Section 7.1 summarizes the contributions by re-

viewing the algorithms we engineered. In section 7.2 we discuss further related works

while in section 7.3 we present directions for future developments.

7.1 Thesis Review

In the present work we stressed that experimental analysis is essential in engineering

algorithms in the context of argument systems. We motivated experimental algorithms

by presenting two case studies. The first case study was to compare the performance of

different algorithmic methods for computing an argument’s acceptance in the setting

of Modgil’s argument system [76], whereas the second case study was to analyze the

behavior of an algorithm for deciding acceptance in value based argument systems

proposed by Bench-Capon [13].

In addition we developed a novel concrete algorithm for preferred semantics. Ex-

isting labeling-based algorithms use three labels while our algorithm employs further

labels to enhance efficiency. Essentially, our algorithm is characterized by applying

powerful pruning mechanisms and cost-effective heuristic rules. Also, our algorithm

simplifies ensuring the maximality, which is a core property of preferred extensions, via

exploring candidate sets in descending order. After giving an analytical comparison

between our algorithm and the existing algorithms of [35, 78], we reported experi-

mental results indicating that our algorithm is superior with respect to the running

time. Afterwards, we modified our algorithm to answer credulous/skeptical accep-

tance without explicitly enumerating all preferred extensions. Then, we introduced

more comparisons with the existing algorithms of [28, 95, 97], which are dedicated to

deciding credulous/skeptical acceptance. As further evidence we documented empir-

ical results indicating that our algorithm for credulous/skeptical acceptance is more

efficient than the algorithms of [28, 95, 97].

As it might be expected, our algorithm for preferred semantics can be altered to find

extensions under other semantics. Therefore, we engineered precise algorithms for sta-
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ble, semi stable, stage, complete, ideal semantics. As we have shown, the designed

algorithms for admissibility-based semantics (i.e. preferred, semi stable, complete

and ideal semantics) make use of the same pruning mechanisms and heuristics. For

stable semantics we exploit a further pruning property besides the strategies used

in admissibility-based semantics. For stage semantics, which is a conflict-freeness-

based semantics, we illustrated that those pruning techniques and heuristics applied

in admissibility-based semantics are not effective, and thus, we utilized slightly dif-

ferent pruning techniques and heuristics. To explore the efficiency of the developed

algorithms we compared with ASPARTIX [56], which is an implemented system for

solving decision problems under several argumentation semantics.

The objective/subjective acceptance problem in value based argument systems is

computationally more challenging than credulous/skeptical acceptance in standard

argument systems. This is because, to answer objective/subjective acceptance one has

to evaluate preferred extensions for every total value order. However, we established

that it might be the case that there are some redundant total value orders that can

be safely ignored. Thus, in this regard we developed labeling-based algorithms for

deciding objective/subjective acceptance by enumerating preferred extensions w.r.t.

only “critical” total value orders. Similarly, we have set an efficient approach to

encoding total orders over the set of social values, V, such that the space complexity is

upper bounded to the squared number of values (i.e. |V|2) rather than to the number

of all total value orders (i.e. |V!|), which is the case if a naive approach is adopted.

The concept of allowing attacks on attacks, i.e. informally allowing a given at-

tack to attack an attack, has been a central motivation for developing a number of

argumentation formalisms (see e.g. [76, 57, 7]). In fact, the algorithms designed for

standard argument systems are not applicable directly to such formalisms. Therefore,

we designed a generalization to our earlier algorithms such that attacks along with

arguments are subject to labeling rather than labeling arguments only. Subsequently,

under a number of prevalent argumentation semantics we ended up with algorithms

that operate on standard argument systems as well as on argument systems with re-

cursive attacks [7], which is an instance of formalisms that allow attacks on attacks.

We verified experimentally that enumerating extensions by labeling attacks besides

arguments is as efficient as listing extensions by labeling arguments alone.

7.2 Further Related Works

We stress that we compare our algorithms with the existing algorithms of [35, 78, 28,

97, 95] analytically and empirically. Also, we show the efficiency of our algorithms

against the implemented systems of dynPARTIX and ASPARTIX experimentally. In

each chapter we reviewed closely related works respectively in the summary section.
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However, in this section we outline some other available works which tackle problems

in the field of computational argumentation other than the problems addressed by

our algorithms. We aim by this section to give another perspective to the topic of

this research. Thus, we do not present deep analysis for the literature listed in the

following overview.

To start with, in the setting of so-called “dynamic abstract argumentation frame-

works” (DAFs for short) [93], [92] defined heuristic-based pruning rule that might

help in improving the efficiency of deciding the acceptance of arguments. A main

idea in DAFs is that the universal set of arguments is divided into two parts: active

and inactive. To decide the acceptance of a given argument with respect to the active

arguments, a pruning technique is applied based on a heuristic function that reflects

the strength of arguments in the universal set. [92] stated that computing arguments’

strength is expensive given the nature of their heuristic function. However, [92] argued

after conducting experiments that their pruning strategy was successful in enhancing

the performance under the assumption that active/inactive arguments are dynamic

while the universal set is static. Thus, the one-off cost of computing the heuristic value

for all arguments in the universal set will be paid off over time according to [92].

[61] introduced a formalism, so-called “DeLP”, that combines logic programming

with defeasible argumentation, and so, [61] presented a dialectical proof procedure for

deciding the warrant (i.e. acceptance) of a given argument.

In the context of Dung’s argument system the work of [94] discussed the impact

on the status of arguments in a “dialectical tree” if some argument is dropped from

the tree while [30] specified a model for so-called the “exhaustive dialectical tree” of

an argument. the later model is somewhat similar to the base concept of [95] which is

an essential, but not sufficient, condition for skeptical acceptance.

The works of [17] and [55] are concerned with building algorithms for finding

logic-based arguments/counterarguments from a knowledgebase.

[59, 38] presented dialectical proof procedures for a specific instantiation of Dung’s

argument system: so-called “assumption based argumentation frameworks”. In fact

these dialectical procedures use similar notions of the procedures of [95] which we

have discussed in chapter 3.

The work of [60] proposed an algorithm that translates value based argument

systems to neural networks. The formalism of [65] extended value based argument

systems such that arguments promote multiple social values rather than one value,

and then, [65] defined an algorithm for computing the grounded extension in the new

model.

The algorithm of [49] finds extensions under so-called “cf2” argumentation seman-

tics. [66] described proof theories for deciding credulous acceptance under preferred

semantics. Finally, [9] suggested a distributed approach to argumentation.
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7.3 Future Developments

This work can be taken further in several directions:

• We plan to expand our work to cover other Dung’s style argumentation se-

mantics such as “resolution-based semantics” [8], “cf2” semantics [10], “stage2”

semantics [50], “prudent” semantics [32] and “eager” semantics [26].

• We intend to engineer algorithms for other argumentation systems that extend

Dung’s model such as argument systems with “varied strength attacks” [72, 46],

“bipolar” argument systems [29], “weighted” argument systems [44], “uniform

argumentation frameworks“ [4], and argument systems with “higher order at-

tacks” [57].

• We aim to set up concrete algorithms for other decision problems in the context

of argument systems such as “argument aggregation” (see e.g. [31, 45]) and

“dynamics” of argument systems (see e.g. [71, 93]).

• We plan to build algorithms for other argumentation formalisms such as the

systems of [22] so-called “assumption based argumentation frameworks”, the

frame of [88] so-called “structured argumentation frameworks”, and logic-based

argumentation systems [18].

• In all the above perspectives the main research question is around constructing

formal search algorithms that feature essentially three efficiency elements:

1. a powerful mechanism through which the underlying system transitions

from a state (i.e. node of the search tree) to another state.

2. a pruning strategy by which branches of the search tree are bypassed.

3. heuristics that might guide the search process to the shortest path leading

to the concerned goal state.

• The dialectical nature of argumentation explains why argument systems provide

a backbone for the study of agent dialogs, see [73] for a general review. Hence,

we see that the notion of transitions, heuristics and pruning tactics presented

in this work are all potentially applicable in improving the efficiency of agent

interactions in different scenarios. Nonetheless, this is to be seen by doing further

concrete research.

• In this work we only explored three possible heuristic rules for selecting the next

argument to be included in a candidate extension. Our intention was to keep

heuristics as simple as possible to ensure cost-effectiveness. However, it would

be worth investigating the effectiveness of other applicable selection rules that

might be considered quite sophisticated.
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Appendix A

Data Tables for Charts in Chapter 2

We provide tables A.1- A.5 that are traced by figures presented in section 2.1.2. Recall

that |(A,R,D)| refers to the number of instances of Modgil’s argument system. Also,

tables A.6 & A.7 are the data for the figures in section 2.2.2.

Table A.1: Data traced by figures 2.6 and 2.7.

|R| |(A,R,D)| Credulous Acceptance Skeptical Acceptance

12 73 1606.29 16675.35

24 102 676.11 5560.71

36 87 367.24 2831.97

48 98 210.32 1992.07

60 87 132.65 1380.45

72 106 76.43 1030.04

84 75 58.53 713.38

96 93 51.04 586.36

108 111 26.89 363.77

120 82 7.01 164.71

132 86 43.14 80.13

Table A.2: Data traced by figures 2.8 and 2.9.

|D| |(A,R,D)| Credulous Acceptance Skeptical Acceptance

12 98 76.13 894.17

24 82 192.73 1888.52

36 86 332.49 3295.78

48 93 530.73 4700.22

60 90 723.45 5961.42

72 101 1124.95 7825.10

84 84 1435.98 9758.77

96 82 2039.03 11627.13

108 87 2103.00 13596.98

120 91 2488.44 14595.18

132 106 3054.75 17240.23
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Table A.3: Trend of αtime traced by figures 2.2 and 2.4.

|A| |(A,R,D)|
Credulous Acceptance Skeptical Acceptance

method 1 method 2 method 3 method 1 method 2 method 3

6 59 0.11 0.01 0.00 0.59 0.05 0.03

7 58 0.19 0.04 0.03 1.14 0.28 0.26

8 60 0.38 0.05 0.06 2.47 0.33 0.40

9 82 0.74 0.14 0.10 5.34 1.00 0.88

10 82 1.30 0.22 0.17 10.68 2.10 1.83

11 67 2.31 0.40 0.39 16.90 4.54 4.22

12 78 4.20 0.91 0.71 28.49 9.18 7.99

13 56 5.81 1.64 1.10 50.61 15.75 13.09

14 66 10.27 3.14 2.23 97.95 24.55 20.48

15 73 20.01 5.14 4.08 207.88 43.71 39.82

16 75 29.00 7.29 5.87 431.88 86.04 78.55

17 65 64.29 13.26 11.92 904.14 171.09 161.51

18 55 107.93 19.72 17.74 2089.15 355.98 336.53

19 61 260.89 45.58 42.06 4402.82 720.59 687.08

20 63 543.86 94.83 87.46 9378.41 1597.16 1523.00

Table A.4: Trend of αd traced by figures 2.3 and 2.5.

|A| |(A,R,D)|
Credulous Acceptance Skeptical Acceptance

method 1 method 2 method 3 method 1 method 2 method 3

6 59 336.07 11.08 15.54 1498.64 40.41 71.07

7 58 673.63 16.21 28.60 3304.17 73.03 165.74

8 60 1217.52 27.48 59.78 6836.10 145.38 386.58

9 82 2274.21 45.06 113.70 14811.65 302.40 994.82

10 82 3501.13 62.54 182.02 28183.44 488.74 1793.34

11 67 6540.31 106.19 352.07 56080.57 902.18 3681.01

12 78 12296.06 168.41 672.05 109885.96 1648.50 7699.22

13 56 21324.02 282.00 1109.52 238857.05 3524.80 17659.18

14 66 47516.56 628.24 3151.11 489937.58 6611.92 37132.82

15 73 99504.17 1195.12 6275.61 1089272.55 13456.51 79450.23

16 75 134600.25 1720.37 9947.99 2146528.56 27514.96 182848.55

17 65 317136.59 3324.86 19759.54 4600649.11 52010.05 348581.34

18 55 502602.26 5110.63 33008.86 9820289.53 98532.38 731753.42

19 61 1252398.48 10388.59 72271.21 20347795.93 168775.64 1238087.48

20 63 2633976.96 24870.89 182065.24 43625689.46 429361.43 3438985.17
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Table A.5: Trend of average of procedure invocations traced by figures 2.10 and 2.11.

|A| |(A,R,D)|
Credulous Acceptance Skeptical Acceptance
method 2 method 3 method 2 method 3

6 59 19.75 10.63 57.22 30.69

7 58 23.55 12.54 75.91 40.36

8 60 32.89 17.54 114.42 61.22

9 82 46.01 24.52 176.38 94.41

10 82 55.68 29.49 222.85 118.07

11 67 74.25 39.42 325.88 174.33

12 78 90.26 47.51 375.45 199.08

13 56 126.24 66.43 550.36 290.84

14 66 147.26 77.27 683.53 359.95

15 73 197.75 103.84 970.84 512.59

16 75 245.42 128.95 1307.55 689.51

17 65 336.99 176.93 1787.48 941.37

18 55 350.34 182.65 2020.67 1057.09

19 61 498.77 258.84 2753.92 1434.75

20 63 616.76 320.26 3624.71 1892.14

Table A.6: Data traced by figures 2.22 and 2.23.

|V| |value based argument systems| αvalue−order αtime

2 340 1.94 1.32

3 350 2.56 2.37

4 354 3.14 3.10

5 356 3.66 4.08

6 340 4.14 5.94

7 355 4.43 8.75

8 394 4.87 11.23

9 431 5.55 13.91

10 466 7.19 18.73

11 557 10.97 24.57

12 551 15.41 30.53

13 589 33.64 40.18

14 646 52.66 61.59

15 724 83.22 82.46

16 778 160.87 134.18

17 816 287.60 201.12

18 769 430.10 331.25

19 567 759.19 499.55

20 370 1,186.06 754.96
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Table A.7: Data traced by figures 2.24 and 2.25.

|attacks per argument| αvalue−order αtime

2 35.84 0.05

3 53.67 0.48

4 62.63 1.47

5 66.28 4.19

6 68.63 8.67

7 70.37 13.22

8 71.24 18.76

9 72.35 26.19

10 73.24 35.04

11 72.54 41.82

12 73.78 52.03

13 73.92 64.02

14 73.59 69.70

15 74.52 82.64

16 75.39 91.84

17 75.07 99.70

18 74.71 104.36

19 75.38 114.39

20 75.67 123.15
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[23] R.F. Brena, C.I. Chesñevar, and J.-L. Aguirre. Argumentation-supported infor-

mation distribution in a multiagent system for knowledge management. In

S. Parsons, N. Maudet, P. Moraitis, and I. Rahwan, editors, Argumentation in

Multi-Agent Systems, Second International Workshop, ArgMAS 2005, volume 4049

of Lecture Notes in Computer Science, pages 279–296. Springer, 2005.

[24] M. Caminada. Semi-stable semantics. In P.E. Dunne and T.J.M. Bench-Capon,

editors, Computational Models of Argument: Proceedings of COMMA 2006, volume

144 of Frontiers in Artificial Intelligence and Applications, pages 121–130. IOS Press,

2006.

[25] M. Caminada. An algorithm for computing semi-stable semantics. In K. Mellouli,

editor, Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 9th

European Conference, ECSQARU 2007, Proceedings, volume 4724 of Lecture Notes

in Computer Science, pages 222–234. Springer, 2007.

[26] M. Caminada. Comparing two unique extension semantics for formal argu-

mentation: ideal and eager. In M.M. Dastani and E. de Jong, editors, 19th

Belgian-Dutch Conference on Artificial Intelligence, BNAIC 2007, Proceedings, pages

81–87, 2007.

[27] M. Caminada. An algorithm for stage semantics. In P. Baroni, F. Cerutti, M. Gi-

acomin, and G.R. Simari, editors, Computational Models of Argument: Proceedings

of COMMA 2010, volume 216 of Frontiers in Artificial Intelligence and Applications,

pages 147–158. IOS Press, 2010.

[28] C. Cayrol, S. Doutre, and J. Mengin. On decision problems related to the preferred

semantics for argumentation frameworks. Logic and Computation, 13(3):377–403,

2003.

[29] C. Cayrol and M.-C. Lagasquie-Schiex. On the acceptability of arguments in

bipolar argumentation frameworks. In L. Godo, editor, Symbolic and Quantitative

Approaches to Reasoning with Uncertainty, 8th European Conference, ECSQARU

116



2005, Proceedings, volume 3571 of Lecture Notes in Computer Science, pages 378–

389. Springer, 2005.
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