
Online Network Intrusion Detection System Using

Temporal Logic and Stream Data Processing

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in Philosophy by

Abdulbasit M. Ahmed

June 2013

Contents

Preface ix

Abstract xi

Acknowledgements xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Contribution . 2

1.3 Thesis Scope . 3

1.4 Thesis Organization . 3

1.5 Summary . 5

2 Intrusion Detection Systems 7

2.1 IDS Types . 8

2.2 Intruder Detection Methods . 9

2.2.1 Techniques of Anomaly Based Intrusion Detection 9

2.2.2 Techniques of Misuse based Intrusion Detection 10

2.3 NIDS Deployment . 11

2.4 Popular Network Intrusion Detection Systems 13

2.4.1 Open Sources NIDS . 13

2.4.1.1 Snort IDS . 14

2.4.1.2 Bro NIDS . 15

2.4.1.3 Suricata IDS . 16

2.4.2 Commercial NIDS . 16

2.5 Summary . 17

3 Temporal Logic and Intrusion Detection System 19

3.1 Why Temporal Logic? . 19

3.2 Related Work . 19

3.2.1 MONID . 20

3.2.2 ORCHIDS . 22

3.3 Summary . 23

4 Stream Data Processing (SDP) 25

4.1 SDP Overview . 25

iii

4.2 StreamBase Stream SQL . 29

4.3 StreamBase High Performance, scalability, and high availability Features . 32

4.3.1 High Performance Features . 33

4.3.2 Scalability and High Availability 36

4.4 Summary . 37

5 Temporal Stream Intrusion Detection System (TeStID) 39

5.1 Formal Specification . 39

5.1.1 Abstract View of Network Communications 39

5.1.2 MSFOMTL Syntax . 43

5.1.2.1 Terms . 43

5.1.2.2 Formulae . 43

5.1.3 MSFOMTL semantics . 44

5.2 Attack Classification . 45

5.3 The Proposed System . 50

5.3.1 TeStID System Architecture . 50

5.3.2 Tools And Software Used . 51

5.3.3 The Benefits of the Proposed System 52

5.4 Summary . 53

6 Temporal Logic to Stream Queries 55

6.1 Background . 55

6.2 The view of Time . 57

6.3 Mapping MSFOMTL into SSQL . 57

6.4 Correctness . 69

6.5 The Translator Development . 75

6.6 Summary . 85

7 Experiments and Results 87

7.1 Experiments Overview . 87

7.1.1 Experiments Aims . 87

7.1.2 The Experiment Setup and Approach 88

7.2 Single Packet Attacks With Payload Experiment 89

7.2.1 The Experiment Signatures Preparation 90

7.2.2 Results and Analysis . 93

7.2.3 Scalability and Performance . 96

7.2.3.1 Implementations of Single Packet Attacks With No Con-
currency and Multiplicity 98

7.2.3.2 Implementations of Single Packet Attacks With Concur-
rency and Multiplicity . 101

7.3 Multiple Packet Attacks Case Studies . 103

7.3.1 Results and Analysis of Multiple Packet Attacks Experiments . . . 105

7.4 Summary . 108

8 Potential Use of The New System in Anomaly Based IDS 111

8.1 Anomaly Based Network Intrusion Detection Overview 111

8.2 Protocol Anomaly Specifications . 113

8.2.1 Single Step Anomalies . 114

iv

8.2.2 Multiple Step Anomalies . 116

8.2.2.1 Multiple Step Anomalies for Weak Normal Behaviour
Requirements . 117

8.2.2.2 Multiple Step Anomalies for Strong Normal Behaviour
Requirements . 118

8.3 Protocol Anomaly Formulae Mapping . 124

8.4 Correctness . 125

8.5 Summary . 126

9 Conclusion 127

9.1 Summary . 127

9.2 Contribution . 128

9.3 Future Work and Research . 128

Bibliography 131

A ANTLR Grammar and String Template Group Files 141

A.1 Description of The Grammar File Structure 141

A.2 TeStID Grammar File . 143

A.3 TeStID String Template Group File . 160

B Single Packet Attacks With Payload Signatures Files 177

B.1 SNORT Single Packet Signatures File . 177

B.2 BRO Single Packet Signatures File . 183

B.3 TeStID Single Packet Signatures File . 194

v

Illustrations

List of Figures

2.1 The NIDS Deployment Options . 12

2.2 An Example of snort Rule . 15

4.1 A Simple Application Running In A Container Inside The StreamBaseServer 34

4.2 Applying Concurrency only on 4.1 . 35

4.3 Applying Multiplicity only on 4.1 . 36

4.4 A main module with a candidate component for using concurrency and mul-

tiplicity of 2. 37

5.1 Packet Encapsulation During Sending . 40

5.2 Packet Deencapsulation During Receiving . 41

5.3 TeStID System Architecture . 52

6.1 Reset Scan in StreamBase Studio . 65

6.2 Steps of Specification Translation into Stream Queries 69

6.3 TeStID The Translation Process . 76

6.4 Parser Rules (1 of 4) For The Misuse Based Detection of TeStID. 79

6.5 Parser Rules (2 of 4) For The Misuse Based Detection of TeStID. 80

6.6 Parser Rules (3 of 4) For The Misuse Based Detection of TeStID. 81

6.7 Parser Rules (4 of 4) For The Misuse Based Detection of TeStID. 82

6.8 Calling The String Template Group File During The Parsing 84

7.1 The Testing Environment . 89

7.2 bits/sec at 24 X . 94

7.3 packets/sec at 24 X . 95

7.4 packets/sec at 48 x . 96

7.5 bits/sec at 48 x . 96

7.6 Graphical representation of the program to capture one single packet attack

in the StreamBase studio . 97

7.7 Equivalent SSQL code for the StreamBase application 98

7.8 Three possible implementations to run single packet attack detection on the

StreamBase server without using the parallelism features 99

7.9 Single Packet Attack Program Using Module 101

7.10 All Possible Implementations For The Single Packet Attack With Payload . . 102

7.11 CC Input Code and NCC Attack module With/Without Multiplicity 104

7.12 Maximum packets/seconds for each data test file. Both of the in/out data

files of 06/04/1999 were used and they are illustrated in the same graph. . . 106

7.13 Maximum bits/seconds for each data test file 107

7.14 Packets/Sec and Bits/Sec Overlap graph for 05/04/1999 Data File 109

vii

8.1 Network Anomalies . 113

8.2 Parser Rules (1 of 3) . 120

8.3 Parser Rules (2 of 3) for The Anomaly Based Detection 121

8.4 Parser Rules (3 of 3) for The Anomaly Based Detection 122

8.5 Simultaneous Connection Synchronization (RFC793, September 1981) 123

List of Tables

7.1 Single Packet Attacks Final Results . 93

7.2 TeStID results without concurrency and multiplicity 100

7.3 Running SNORT, BRO, TeStID without parallel operations 100

7.4 Results of Single Packet Attacks With Concurrency and Multiplicity 103

7.5 Multiple Packets Attacks Results . 105

viii

Preface

This thesis is submitted solely to the University of Liverpool in accordance with the

requirements of the University of Liverpool for the degree of Doctor in Philosophy. It is

my own work and the sources from which material is drawn are identified within. Some

parts of this thesis have appeared in the following publications:

[1] A. Ahmed, A. Lisitsa, and C. Dixon. A network intrusion detection system using

temporal logic and stream processing. In Proceedings of the 17th Automated Rea-

soning Workshop. University of Westminster Harrow, United Kingdom, 2010. URL

http://www2.wmin.ac.uk/bolotoa/ARW/arw-2010.html.

[2] A. Ahmed, A. Lisitsa, and C. Dixon. A misuse-based network intrusion detection

system using temporal logic and stream processing. In P. Samarati, S. Foresti, J. Hu,

and G. Livraga, editors, Proceedings of the 5th International Conference on Network

and System Security, pages 18, Milan, Italy, 2011. IEEE. ISBN 978-1-4577-0458-1.

[3] A. Ahmed, A. Lisitsa, and C. Dixon.TeStID: A High Performance Temporal Intru-

sion Detection System. (Accepted) to appear in Proceedings of The Eighth International

Conference on Internet Monitoring and Protection, Rome, Italy, 2013.

Papers relating to the following are in progress:

[4] A. Ahmed, A. Lisitsa, and C. Dixon. Temporal logic and stream data processing

for misuse-based network intrusion detection. Journal paper (in preparation) relating

to Chapters 3-7.

[5] A. Ahmed, A. Lisitsa, and C. Dixon. Temporal logic and stream data processing

for anomaly-based network intrusion detection. Conference paper relating to Chapters

3, 4, 5, and 8.

ix

Abstract

These days, the world are becoming more interconnected, and the Internet has domi-

nated the ways to communicate or to do business. Network security measures must be

taken to protect the organization environment. Among these security measures are the

intrusion detection systems. These systems aim to detect the actions that attempt to

compromise the confidentiality, availability, and integrity of a resource by monitoring

the events occurring in computer systems and/or networks. The increasing amounts of

data that are transmitted at higher and higher speed networks created a challenging

problem for the current intrusion detection systems. Once the traffic exceeds the opera-

tional boundaries of these systems, packets are dropped. This means that some attacks

will not be detected.

In this thesis, we propose developing an online network based intrusion detection

system by the combined use of temporal logic and stream data processing. Temporal

Logic formalisms allow us to represent attack patterns or normal behaviour. Stream data

processing is a recent database technology applied to flows of data. It is designed with

high performance features for data intensive applications processing. In this work we

develop a system where temporal logic specifications are automatically translated into

stream queries that run on the stream database server and are continuously evaluated

against the traffic to detect intrusions.

The experimental results show that this combination was efficient in using the re-

sources of the running machines and was able to detect all the attacks in the test data.

Additionally, the proposed solution provides a concise and unambiguous way to formally

represent attack signatures and it is extensible allowing attacks to be added. Also, it

is scalable as the system can benefit from using more CPUs and additional memory on

the same machine, or using distributed servers.

xi

Acknowledgements

First and foremost I thank Almighty GOD, the compassionate, the almighty Merciful,

who kindly gave me the strength and His showers of blessing to complete the work on

this thesis.

I would like to express my deep and sincere gratitude to my primary supervisor

Dr. Alexei Lisitsa. Thank you for your guided directions and your highly constructive

criticisms and your commitment to making this thesis excellent. I would also like to

thank my second supervisor Dr. Clare Dixon. Thank you for your serious commitment

to the research, constructive criticisms, and for providing me with positive feedback as

well as invaluable advices. I know one thing for sure, my knowledge is not the same as

four years ago.

I am proud and feel honoured that I have completed this thesis in the University

of Liverpool. I have enjoyed working in the Computer Science Department during my

research. I would like to thanks all staff members and colleagues for their prompt help

when needed.

I would like to thank the Saudi Ministry of Higher Education for sponsoring me and

providing me with all the means to complete my research and for taking care of all my

family needs.

I am also sincerely thankful to StreamBase Systems Inc. for giving us the license

and permission to use their products in this research.

Last, and by no means least, I am extremely grateful to my mother for her love,

prayers, and caring; but I feel sorry for making her worry about me all the time. I am

very much thankful to my wife and my daughters for their love, understanding, prayers

and relentless support to complete this research work. Actually, their support started

when they asked me to step back to education and pursue my PhD degree; it is amazing

how things proceeded after that. Also, I would like to thanks all my brothers, sisters,

and all my other family members for their love, encouragement, and continuous support.

xiii

Chapter 1

Introduction

Intrusion detection is the process of monitoring the events occurring in computer systems

and networks and detecting the actions that attempts to compromise confidentiality,

availability, and integrity of a resource [90]. Intrusion detection system (IDS) is software

that automates this process. When the software takes preventive measures automatically

it becomes an intrusion prevention system (IPS). Combining both the functionality of

intrusion and prevention gives us what we call the Intrusion Detection and Prevention

System or IDPS [82].

This thesis proposes developing an online network based intrusion detection system

for high speed networks using temporal logic and stream data processing technology.

Temporal logic is a logic with operators that represent change over time. We can use

temporal logic as a notation to specify attack patterns or normal behaviour of protocols.

The temporal formalisms are translated into stream queries which are executed by a

stream data processing (SDP) engine to detect and monitor intrusion attempts. SDP

is a recent database technology designed with high performance features for processing

intensive flows of data. The results of the case studies and experimental work shows

that this approach is a promising solution.

The rest of this chapter is organised as follows. The motivation for the work is

presented in Section 1.1. The research contribution is presented in Section 1.2, and

the scope of work is presented in Section 1.3. Section 1.4 outlines the thesis structure.

Finally, a summary of this chapter is given in 1.5.

1.1 Motivation

The increased speed of today’s networks (typically Gbits/sec) introduces new problems

in the area of computer security. One of these problems appears in the intrusion detection

capabilities of existing systems running on customary hardware (i.e., generic PCs or

servers). Recently, IDSs have been unable to provide an effective security mechanism for

defending high speed networks [25, 48]. Existing Networks Intrusion Detection Systems

(NIDSs) can barely keep up with bandwidths of few hundred Mbps, whereas nowadays,

the network speed on Ethernet can reach 10 Gbps [48]. The performance of the two

1

Chapter 1. Introduction 2

predominant network based open source NIDSs, Snort [87] and Bro [50] in operational

Gbps environments was studied in [25]: Snort quickly consumed all the available CPU,

while Bro used all the available memory. The performance tests were conducted on

both stateless NIDS (i.e., inspecting a single packet at a time for attacks) and stateful

NIDS (i.e., inspecting packets of the same session for attacks). Snort is a stateless NIDS,

whereas Bro is a stateful NIDS. For stateless NIDS, the CPU load was the limiting factor

which is correlated with the types of analysis (e.g., payload inspection) as well as the

traffic characteristics (e.g., bursty traffic). For stateful NIDS, the available memory is

consumed because stateful NIDS maintains an in-memory representation of the current

state of the network at all times. This state provides the context necessary to evaluate

network events. The size of the states increases as the traffic volume increases, and is

constrained by the system’s available memory. The results of these studies indicate that

it is no longer possible to have a stateful or even stateless analysis of all the packets

that are monitored by a NIDS. To solve this problem the following solutions have been

considered:

• data reduction techniques (i.e., data based approach) [32, 49];

• load balancing, splitting, or parallel processing of traffic (i.e., distributed/parallel

execution based approach) [48];

• efficient algorithms for pattern matching (i.e., algorithm based) [23];

• hardware based approach such as using graphics processing units [105] or field-

programmable gate array (FPGA) devices [45].

Some work use combinations of the above [23, 45, 106]. The research area is still

active and there is no solution that can keep up with the increase in bandwidth. In

our research, we are trying to address the problem of IDS performance in high speed

networks. How we can build a more efficient system which is capable of handling the

increasing amount of traffic? What are the recent advances and new technologies that we

can utilize to address this problem? Also, we address the difficulties and non transparent

ways for specification of multiple packet attacks (or normal behaviour).

1.2 Thesis Contribution

This thesis contributes to the area of the performance of IDSs in high volume networks

addressed in the previous section. In the last decade, a new database technology has

emerged that deals with flows of data and high volume or data intensive applications.

This technology is called the stream data processing [1, 6, 7, 28, 92]. In addition, we will

use temporal logic for the formal specification of attack patterns or normal behaviour.

Using temporal logic provides high level declarative, concise, and clear semantics for-

malisms. The main research question is: “Can stream data processing technology be

utilised in conjunction with temporal logic to develop a system that works efficiently

Chapter 1. Introduction 3

and accurately in high volume networks?” By “efficiently”, the following sub-question

is addressed: “To what extent the proposed system uses its available resources to detect

all attacks in high volume networks?” By “accurately”, the following sub-question is

addressed: “To what extent is the system successful in detecting all the attacks in the

traffic?” Also, this research addresses if the performance and scalability of the proposed

system can be extended. The main contributions of this thesis are as follows:

• The combined use of TL and SDP as proposed in this thesis is a novel approach

and solution towards the issue of performance of IDS. There are two methods that

can be used in devising IDS: misuse based and anomaly based. The misuse based

approach is for detecting known attacks and the anomaly based approach is for

detecting deviations from normal behaviour as possible attacks. Both of these

detection methods are addressed in this thesis.

• Many Sorted First Order Metric Temporal Logic (MSFOMTL) using temporal op-

erators annotated with timing constraints is defined allowing us to unambiguously

and concisely represent complex, temporal attacks.

• Extensive experiments are conducted for testing and studying the parallel opera-

tions effect on the performance.

1.3 Thesis Scope

The scope of this thesis is summarized as follows:

• The proposed system is a network based IDS that will use the IP packets (headers

and payloads) as the source of inputs.

• Correlated distributed events attacks are beyond the scope of this thesis. In this

type of attacks, attacks are distributed in space as well as time. The events are

from many distributed resources such as logs and alerts from firewalls, intrusion

detection systems, operating systems, or other software. This category of attacks

we see as an issue by itself and as possible further extension to this research.

• TCP/IP protocol is selected in our case studies because it is the internet communi-

cation protocol and commonly used for wide area network. The developed system

can be viewed as proof of concept and could be extended to other protocols.

1.4 Thesis Organization

The thesis is organised as follows:

• Chapter 1 Introduction: This chapter contains an introduction to the field

of intrusion detection and the thesis. It contains information about the research

motivation, contributions, the scope of the research, and the thesis structure.

Chapter 1. Introduction 4

• Chapter 2 Intrusion Detection Systems: This chapter provides an overview

of intrusion detection systems. It includes information about existing IDSs, expla-

nations of different types of IDSs, and existing methods for intrusion detection. A

brief overview of the techniques used in each method are provided. Also, the basic

deployment options in switched and non switched environment are presented and

explained. Finally, an overview about popular network IDSs is given.

• Chapter 3 Temporal Logic: This chapter is about temporal logic and its use in

formal specification. It presents the basic theoretical background of using temporal

logic in intrusion detection systems. Also, the chapter presents the related work.

• Chapter 4 Stream Data Processing: This chapter presents an overview of the

stream processing technology. In this thesis, StreamBase is used as the stream

data processing engine. The available features and capabilities of StreamBaseis

presented and explained. StreamBase uses stream SQL (SSQL) as the query lan-

guage, the semantics of SSQL are given.

• Chapter 5 Temporal Stream Intrusion Detection System (TeStID): This

chapter presents the proposed system TeStID. The formal specifications of attack

patterns used in TeStID are presented. The abstract view of network communica-

tions, the syntax/semantics of MSFOMTL, and the attack specification and their

syntactical forms are given. Also, TeStID proposed system architecture, descrip-

tions of the tools and utility used for the development, and benefits are provided.

• Chapter 6 Temporal Logic to Stream Queries: This chapter provides some

background of using temporal logic to query databases. The view of time in

the proposed system is presented. Also, the mappings of formulae written in

MSFOMTL into SSQL and the correctness of the approach are presented. Finally,

the developed translator that parses and maps the syntax of MSFOMTL into SSQL

is presented.

• Chapter 7 Experiments and Results: This chapter provides case studies for

single and multiple packets misuse attacks. Experiments are described and the

results are presented. A discussion of the results is provided along with a discussion

of the scalability and performance aspects of the proposed system.

• Chapter 8 The Potential Use of The New System In Anomaly Based

IDS: This chapter presents a basic overview of anomaly based NIDS. Also, it

illustrates how temporal logic is used to formally represent the specifications of

parts of protocols. The mapping of the formal specifications and the correctness

of the approach are also explained in this chapter.

• Chapter 9 Conclusion: In this chapter a conclusion and a discussion of the

work done are provided. Finally, future work and further research opportunities

are discussed.

Chapter 1. Introduction 5

1.5 Summary

This chapter has provided an introduction to thesis and described the context of its

research. Briefly the research field, intrusion detections, is introduced and the moti-

vations for the research is provided. Further more, the contributions and the scope of

the research work which are related to the issue of performance of IDSs in high speed

network is declared. Finally, an overview of the thesis structure is provided.

The following chapter presents the background of intrusion detection systems. It

provide basic information about the IDS: types of IDSs, the existing methods and tech-

niques for detecting intruders, and the deployment options for IDSs. Also, information

about popular NIDSs are given.

Chapter 2

Intrusion Detection Systems

Nowadays, information has become an organization's most precious asset and everything

an organization does involves using information in some way or another [74]. The way of

conducting business has changed as the world has become more interconnected, and the

increase in this connectivity provides access to varied resources of data instantly; more-

over, it provides an access path to the data from virtually anywhere in the network-based

environment. The internet connectivity is no longer an option for most organizations

[90], consequently, securing the business running environment is one of the primary

concerns of an IT department that exist in any organization.

In 1980, Anderson's seminal paper [5] introduced the notion of intrusion detection.

He proposed the idea that audit trails contain vital information that could be valuable

if geared to the function of system security, that is, tracking user unauthorized use of

the resources. This work has the following impact:

• It focused attention on the deficit of security in the computer system environments.

• It introduced new notions and definitions (e.g., notion of intrusion, intruder defi-

nition and classification).

• It formed the basis for the development of IDS.

• It suggested the need for more research in this field.

During the following 30 years, more research were conducted and intrusion detection

systems were developed. Intrusion Detection Systems aim to detect the actions that

attempt to compromise the confidentiality, availability, and integrity of a resource by

monitoring the events occurring in computer systems and/or networks. These attempts

could be from intruders either from inside or outside the organization [76]. According

to Price [76] FBI studies have revealed that 80% of intrusions and attacks come from

within organizations. Network security approaches include building firewalls to protect

the internal systems and networks, using an intrusion detection system to detect an

intrusion, having strong authentication approaches, and using encryption to protect

sensitive data as they transit the network [56]. Authentication systems or firewalls

7

Chapter 2. Intrusion Detection Systems (IDS) 8

can not prevent legitimate users from carrying out harmful operations on computers

or networks. This functionality is provided by the IDS. Some of the current IDSs can

operate in either passive or active mode. In passive mode, the IDS monitors and detects

intrusion attempts. In active mode, the IDSs monitors, detects, and takes specified

preventive measures automatically. In the latter case, the system is called an intrusion

prevention system (IPS). Normally, the function of IPS could be enabled or disabled by

security administrators [82].

Section 2.1 presents information about types of IDS. Intruder detection methods

are presented in Section 2.2. In Section 2.3, the deployment options for network based

intrusion detection system are provided. Section 2.4 presents information about some

of the popular open source or commercial Network IDSs. Finally, a summary is given

in Section 2.5.

2.1 IDS Types

There are two main types of IDS: Host-based Intrusion Detection System (HIDS) and

Network-based Intrusion Detection System (NIDS). HIDS reside on a single host and

monitor all events for suspicious activity. Examples of events a host-based IDS might

monitor are network traffic (only for that host), event logs, system logs, running pro-

cesses, file access and modification, and system and application configuration changes.

The role of HIDS is to flag any tampering with a specific host and it can automatically

replace altered files when changed to ensure data integrity. These systems vary from

vendor to vendor, but they are usually system centric in their analysis. Most host-based

systems have agent detection software [82] and can be deployed as standalone or dis-

tributed in which each agent monitors the activity on a single host and transmits the

data to management servers, which may optionally use database servers for storage.

Each agent is typically designed to protect one of the following:

• A server: agents monitor a server’s operating system (OS) and some common

applications.

• A client host (desktop or laptop): agents monitor the OS and common client

applications such as e-mail clients and Web browsers.

• An application service: agents perform monitoring for a specific application service

only, such as a Web server program or a database server program.

The other type is Network-based Intrusion Detection System which resides on the net-

work, and it is designed to monitor network traffic for particular network segments or

devices and analyses the network and application protocol activity to identify suspicious

activity. The NIDS examines the traffic packet by packet in real time, or close to real

time, to attempt to detect intrusion patterns.

The NIDS is deployed with sensors. Sensors are agents that monitor networks on a

real time basis. They are available in two formats: appliance based and software based.

Chapter 2. Intrusion Detection Systems (IDS) 9

An appliance-based sensor is comprised of specialized hardware and sensor software. The

hardware is typically optimized for sensor use, including specialized network interface

cards and drivers for efficient capture of packets, and specialized processors for the

analysis of traffic. Additionally, parts or all of the IDS software might reside in firmware

for increased efficiency. The second sensor format is the software only sensors. This

software can be installed onto hosts that meet certain specifications. It might include a

customized OS, or it might be installed onto a standard OS just as any other application

would [82]. If more than one sensor is used, one or more servers and consoles for

management functions are used also in the deployment.

2.2 Intruder Detection Methods

There are two main approaches to devise an intrusion system to detect intruders:

anomaly based and misuse based detection systems. In anomaly based detection, in-

trusions are identified as unusual behaviour that differs from the normal behaviour of

the monitored system. In misuse based detection methods, intrusions are detected by

matching the events that occur in the monitored system with a predefined pattern of

known attacks.

Each of these two approaches has advantages and disadvantages. The main advan-

tage of anomaly based IDSs is their ability of detecting new attacks. In these systems,

the intrusive activity generates an alarm because it deviates from normal activity, not

because the system is looking for specific traffic. Thus, these deviations could be un-

known or new attacks. The main disadvantage of anomaly IDSs is that they tend to be

computationally expensive because several metrics are often maintained that need to be

updated against every system activity. Another disadvantage is that the anomaly IDSs

may be gradually trained incorrectly to recognize an intrusive behaviour as normal in

the future due to insufficient data. Furthermore, there is no guarantee that an attack

will generate an alarm if the intrusive activity is too close to normal activity. Conse-

quently, these factors affect their detection rate to be low and their false alarm rate to

be high. On the other hand, misuse based IDSs have the limitation that they look only

for known attacks, and may not be of much use in detecting unknown intrusions. On

the advantage side the misused IDSs have a very high detection accuracy and very low

false alarm rate.

Different methods have been proposed for detecting intrusions based on the anomaly

based or the misuse based approach. In the following subsection we will summarize each

method and its classification based on the employed techniques.

2.2.1 Techniques of Anomaly Based Intrusion Detection

There are many anomaly detection algorithms proposed in the literature that differ

according to the information used for analysis and according to the techniques used to

Chapter 2. Intrusion Detection Systems (IDS) 10

detect deviations from normal behaviour. The techniques found in the literature can be

classified as follows:

• Statistical methods in which the user, system, or network behaviour is moni-

tored by measuring certain variables over time (e.g., login and logout time of each

session). The basic models keep averages of these variables and detect whether

thresholds are exceeded based on the standard deviation of the variable [33, 65].

• Rule based systems in which the normal behaviour of users, networks and/or

computer systems are summarized by a set of rules and anomalous behaviour are

detected as deviations from them. Examples of rule based IDSs include Comput-

erWatch [24] and Wisdom & Sense [51].

• Distance based approaches attempt to overcome limitations of statistical outlier

detection approaches in higher dimensional spaces where it becomes increasingly

difficult and inaccurate to estimate the multidimensional distributions of the data

points and they detect outliers by computing distances among points [2].

• Model based in which anomalies are detected as deviations for a model that

represents the normal behaviour. Very often, researchers have used data mining

techniques such as Neural Networks to model the normal behaviour of individual

users, to build profiles of software behaviour or to profile network packets and

queue statistics [30, 80].

• Profiling methods in which profiles of normal behaviour are built for different

types of network traffic, users, programs, etc., and deviations from them are con-

sidered as intrusions. Profiling methods vary greatly ranging from different data

mining techniques to various heuristic-based approaches. ADAM (Audit Data and

Mining) is a hybrid anomaly detector trained on both attack-free traffic and traffic

with labelled attacks. The system uses a combination of association rule mining

and classification to discover attacks in TCPDUMP data [8].

2.2.2 Techniques of Misuse based Intrusion Detection

The concept behind misuse detection schemes is that there are ways to represent attacks

in the form of a pattern or a signature so that even variations of the same attack can be

detected [41]. Attacks are encoded as a set of footprints, which are patterns that occur

every time an attack takes place. The implementation of such systems usually involves

an expert system that performs the matching against the stored rule-base. The misuse

detection approaches can be classified into the following four main categories:

• Signature-based methods in which monitored events are matched against a

database of attack signatures to detect intrusions. Signature-based IDSs are unable

to detect unknown and emerging attacks since the signature database has to be

manually revised for each new type of intrusion that is discovered [85].

Chapter 2. Intrusion Detection Systems (IDS) 11

• Rule-based systems use a set of “If-Then” implication rules to characterize

computer attacks [54].

• Transition based in which state transition analysis requires the construction of

a finite state machine, in which states correspond to different IDS states, and

transitions characterize certain events that cause IDS states to change. IDS states

correspond to different states of the network protocol stacks or to the integrity and

validity of current running processes or certain files. Every time the automation

reaches a state that is flagged as a security threat, the intrusion is reported as a

sign of malicious attacker activity [107].

• Data mining methods in which each instance in a data set is labelled as “nor-

mal”or “intrusive”and a learning algorithm is trained over the labelled data. These

techniques are able to automatically retrain intrusion detection models on different

input data that include new types of attacks, as long as they have been labelled

appropriately [22, 61].

In this thesis we propose developing an online NIDS for both misuse and anomaly based

intrusion detections. In misuse based intrusion detection, we use signature based de-

tection method. We use temporal logic for formal representation of attack signatures

that will be checked against the incoming events which form the temporal models. For

anomaly based intrusion detection, we use model based detection method. We use tem-

poral logic to model the normal protocol behaviour and detect any deviation. MONID

[62] and ORCHIDS [69] are two NIDSs that use temporal logic for signature based in-

trusion detection. Also, MONID uses statistical based method for anomaly intrusion

detection. Both of these systems are discussed in Sections 3.2.1 and 3.2.2.

2.3 NIDS Deployment

Network based IDS monitors network traffic destined for all the systems in a network

segment. A sensor can be deployed for each network segment. Basic deployment options

are explained here along with the commonly used terminology.

In non switched networks or hub networks, the traffic coming to one port is copied

to all other ports. Thus, the network sensor device can be connected to any port on

the hub (see Figure 2.1(a)). The sensor device is either a commodity computer or

server that runs the intrusion detection software or a high performance device specially

manufactured with highly integrated number of CPUs, large amount of memory, many

network interfaces, and usually is designed to be high tolerant device and extensible.

In switched network environment where connection exists between communicating

points NIDS are usually implemented using a Test Access Point (TAP) device or Switch

Port ANalyser (SPAN ports). SPAN is a mirror port on the switch that has a copy

of the data that goes through other ports. The NIDS sensor can be connected to this

port to monitor intrusions as illustrated in Figure 2.1(b). TAP is a passive traffic

Chapter 2. Intrusion Detection Systems (IDS) 12

splitting mechanism installed between the sensor device and the network. Any data

pass through the TAP is passed to the sensor as well. Figure 2.1(c) shows this type

of deployment where the sensor is monitoring inter-switch traffic or connection to the

internet or intranet. As shown in Figure 2.1(d) we can use both TAP and SPAN to

deploy NIDS. In this setup, we use one sensor but we could use two: one is connected to

the TAP and one is connected to the SPAN port. If we use one sensor to monitor multi

network segments then we would use a hub to connect these segments with the sensor.

It is worth mentioning that the TAP implementation can not monitor intra-switch

traffic. Hence, using the SPAN port for leaf nodes and the TAP for inter-switch trunks

is a common practice. Regardless of how the sensor is implemented, it needs to pas-

sively listen to all the traffic. This means that the network interface needs to work in

promiscuous mode. In promiscuous mode, all the traffic that passes through the net-

work interface are passed to the core machine. In non-promiscuous mode only the traffic

addressed to the network interface is passed.

Figure 2.1: The NIDS Deployment Options. Figure 2.1(a) shows NIDS in non-
switched networks, Figure 2.1(b) shows NIDS in switched networks using SPAN port,
Figure 2.1(c) shows NIDS deployment using TAP, and Figure 2.1(d) shows NIDS de-

ployed using both SPAN and TAP.

There is a difference in deploying intrusion systems for detection only or for detection

and prevention. In intrusion detection and prevention system the sensor must be able

to block network traffic to stop attacks. Hence, the sensors are deployed inline so that

the network traffic it is monitoring must pass through it. In the next section, some of

Chapter 2. Intrusion Detection Systems (IDS) 13

the popular NIDSs can operate in this mode and prevent attacks. Later in Chapter 8,

we will see how using inline mode is effective as virtual software patch.

In intrusion detection only systems the sensor is deployed in passive mode where no

traffic is passed through the sensor, that is, only a copy of the real traffic is monitored.

Later in Chapter 7, we will explain the experiment setup and we will see that it is

actually equivalent to Figure 2.1(d), that is listening in passive mode to internal and

external replayed traffics.

2.4 Popular Network Intrusion Detection Systems

In recent years, network based intrusion detection systems have attracted more attention

due to the increasing use of internet. The data centric world needs security protection

against cyber attacks. NIDS can provide this security measure as it can monitor network

packets exchanged between computer systems. Popular NIDS that exist today can be

classified into two categories: open source NIDS and commercial NIDS. The following

subsections present detailed information about some of these NIDSs.

2.4.1 Open Sources NIDS

Open source NIDSs have been available for more than a decade ago. Snort [17] and

Bro[50] are the oldest and most popular NIDSs known today [103]. In 1998, Snort was

developed and released by Martin Roesch [87]. According to the Snort organization

site, over 4 million downloads and more than 400,000 registered users show the wide

popularity of Snort as a deployed IDS solution. Bro, was developed by Vern Pxson in

1999 [73] primarily as a research platform for intrusion detection and traffic analysis. It

is not intended to be an “out of the box” solution. This means that Bro is not readily

available to be deployed. It has no subscription service where you can download new

attack signatures like what the Snort community provides. Research into Bro is ongoing

and Vern Paxson continues to lead the project jointly with a core team of researchers

and developers at the International Computer Science Institute in Berkeley, CA.

Another interesting open source NIDS is Suricata developed by the Open Information

Security Foundation (OISF) [68]. OISF is a non-profit foundation part of and funded

by the Department of U.S Homeland Security’s Directorate for Science and Technology,

by the the Navy’s Space and Naval Warfare Systems Command, as well as by members

from the industry. The Suricata Engine, as the authors describe, is:

Next Generation Intrusion Detection and Prevention Engine. This engine is

not intended to just replace or emulate the existing tools in the industry, but

will bring new ideas and technologies to the field.

A beta version was released in December 2009, with the first standard release following

in July 2010 [68].

Chapter 2. Intrusion Detection Systems (IDS) 14

Even though all of these systems are network based intrusion detection, they vary

in their approach in monitoring and detecting intrusions, features, and capabilities. In

the following sections, we will look into these NIDSs in more detail.

2.4.1.1 Snort IDS

Snort is an open source network intrusion detection and prevention system. It performs

a packet level traffic monitoring and analysis. These packets are examined for matching

attack signatures and for protocol anomaly. Snort has a powerful signature matching

ability and an easy to code and expand signature system. It has a broad community

which contributes by adding new rules (Snort refers to signatures as rules) and suggests

improvements.

Snort can run in one of three operations mode available:

• Sniffer mode, which simply reads the packets and displays them in a continuous

stream on the console.

• Packet Logger mode, which logs the packets to disk.

• Network Intrusion Detection System mode, which allows Snort to analyse network

traffic for matching attack signatures or to detect protocol anomalies. If Snort

deployed inline with the IDS mode, then prevention actions can be configured to

be launched when an attack or an anomaly is detected.

The Snort architecture is modular and consists of a packet decoder, preprocessor, detec-

tion engine, and output plug-ins. Snort does not have native sniffer and uses LIBPCAP1

to capture packets from the network interface device. The decoder upon receiving the

raw data through LIBPCAP decodes the protocol packet elements at the data link, net-

work, and then at the transport layers. These data packets are then stored in a data

structure which is ready to be processed by the preprocessor and detection engine. The

preprocessor consists of functions that can be called to make sure that packets are nor-

mal or as it should be. When Snort is deployed in inline mode the malformed packets

can be configured to be dropped. The detection engine is the primary component of

Snort. It builds attack signatures by parsing Snort rules. The detection engine matches

the attack signatures with the packets it receives from the processor and the outcome or

matched signatures are sent to the output plug-ins. There are many plug-ins that can

be used for the output such as XML, CSV, or Database.

Another interesting feature of Snort is the Snort rules. Snort uses a simple description

language that is easy to learn and use. The rules are divided into two logical sections,

the rule header and the rule options. The rule header contains the rule’s action (e.g.,

alert, log, and drop), protocol, source and destination IP addresses and net masks,

and the source and destination ports information. The rule option section contains

1LIBPCAP is free software library developed by Lawrence Berkeley Laboratory. It consists of an
application programming interface (API) which can be used by other programs such as IDS to capture
network traffic.

Chapter 2. Intrusion Detection Systems (IDS) 15

alert messages and information on which parts of the packet should be inspected (e.g.,

payload, flags, and headers) to determine if the rule action should be taken. Figure 2.2

shows an example with the two logical structures. In the example, the rule is:

alert tcp any any -> any 25 (msg:"SMTP expn root", flags:A+;

content: "expn root"; nocase; classtype:attempted-recon;)

Figure 2.2: An Example of snort Rule

In this example, the action is alert which means an alert will be generated when

there is a match, the protocol where this rule applies to is tcp, the source ip is any,

the source port is any, “->” is the direction of communication (i.e., from to), the des-

tination ip is any, the destination port is 25, the msg is what to be printed when the

alert is generated, A+ means the Acknowledgement tcp flag is set and optionally other

flags, content specifies the packet payload data to match, and classtype is the internal

classification used for this attack in Snort. More about the Snort rule syntax with some

examples are given in Section 7.2. A full list of the rule options is in [17, 87].

2.4.1.2 Bro NIDS

Vern Paxson [73] described Bro as a standalone system for detecting network intruders in

real time by passively monitoring a network link over which the intruder’s traffic transit.

Bro has many interesting features as a NIDS. Like Snort, Bro can work on packet per

packet base when detecting attacks. In fact, it has Snort compatibility support that can

convert Snort signature into Bro signature. In addition, Bro maintains state information

of the communication protocols and store them as a related records of events and can

detect attacks over multiple packets.

The system architecture of Bro has three major components: a packet capturing and

filtering, an event engine, and policy script interpreter. Similar to Snort, Bro uses the

LIBPCAP packet library to capture and filter the traffic. The filtered packets are then

passed along to Bro’s event engine, which converts the filtered stream into higher level

events. Finally, Bro’s policy script interpreter executes custom scripts written in the

Bro scripting language. These scripts express a site’s security policy, i.e., what actions

to take when the monitor detects certain types of activity. The scripting language allows

Bro to track detailed information (or events) about the network’s activity and generate

real time alerts. The following code is an example of the policy script:

Chapter 2. Intrusion Detection Systems (IDS) 16

global attempts: table[addr] of int &default=0;

global threshold = 50;

event connection_rejected(c: connection) # Whenever a connection is rejected

{

local source = c$orig_h; # Get source address of the connection

local n = ++attempts[source]; # Increase counter.

if (n == threshold) # Check for threshold.

NOTICE(Scanner, source); # If so, report.

}

Two global variables are defined: (attempts) is a table of IP addresses and (thresh-

old) is assigned the value 50. The script increments the counter (attempts) whenever

a connection rejected event occur. The connection rejected event occurs whenever a

server rejects a TCP connection request from a client. When a connection is rejected,

the (attempts) counter for that source address (orig h in the connection record (c)) is

incremented by one and assigned to the local variable (n). If (n) is equal to 50 (the

threshold) then the source will be reported through the NOTICE output facility of Bro.

This example is simple and the policy script becomes more complicated when the num-

ber of processed events increases. For each multiple packet attack a policy file must be

written specifically.

2.4.1.3 Suricata IDS

Suricata is an open source NIDS that was officially released in July, 2010. The primary

goal of OISF as they state is to remain at the leading edge of open source IDS/IPS

development, community needs, and objectives.

The Suricata NIDS goal is to bring new technology to the IDS. The engine support

multithread processing to benefit from the multiple cores and multiple CPUs systems

that are becoming ubiquitous these days. Also, to achieve higher performance they use

hardware acceleration. NVIDIA, a technology partner of Suricata, developed CUDA

which is a parallel computation library that can be called to offload some computation

to GPU (Graphic Processing Unit).

In terms of detection Suricata is a misuse based and protocol anomaly based IDS.

The Snort rules are supported in Suricata and can be used as they are or they could

be modified into Suricata optimized rule sets to take advantages of the Suricata engine.

Protocol anomalies are provided with Suricata preprocessors and if it is deployed inline,

then prevention functionality could be activated.

2.4.2 Commercial NIDS

Many commercial network based intrusion detection systems are also available. These

systems are either appliance (hardware) based or software only based. RealSecure Server

Chapter 2. Intrusion Detection Systems (IDS) 17

Sensor from IBM Internet Security Systems is one of the popular NIDS software based

system [38]. RealSecure monitors, detects intrusions, and can also prevents intrusions by

blocking network packets. IBM also has an appliance based solution which is the IBM

Security Network Intrusion Prevention System [36]. Another appliance based NIDS is

the CISCO IOS Intrusion Prevention System [15]. This product can be installed on

any of the CISCO IPS 4200 series which scales up to meet the business performance

requirements. These IBM and CISCO products are signature based NIDSs that can

detect known attacks and can prevent protocol anomaly based traffic. A more recent

NIDS is Endace [26]. In 2007, Endace launched appliance based NIDS. It uses the

Linux-based operating system and the open source Snort inspection engine. Beside its

use for intrusion detection, Endace can be used for network forensics. It has analytic

application that allows IT security professionals to understand and review what really

happened on their networks. Endace appliance has 32 terabytes on board traffic buffer

that enables back-in-time contextual analysis of events.

Enterasys Intrusion Prevention System (also known as Dragon IPS) is another NIDS

from Enterasys Secure Networks [27]. Enterasys IPS is unique in its ability to be de-

ployed as network based or host based IDS. Enterasys’ Distributed Intrusion Prevention

(US Patent 7581249) and threat containment can block attackers at the source physi-

cal port. Effective threat containment requires the removal of the attacker’s ability to

continue the attack or to mount a new attack. The Enterasys Distributed IPS identifies

a threat or security event, locates the exact physical source of the event, and mitigates

the threat through the use of enforceable bandwidth rate limiting policies, quarantine

policies, or other port level controls.

2.5 Summary

This chapter provided an overview of intrusion detection systems. There are two types

of IDS: host based and network based. Host based IDS resides on a server or host and

protect that host through using the audit files on that host and/or the traffic it receives

from other systems. Network based IDS resides on the network and monitor packets for

intrusion attempts.

Two main detection methods exist for intrusion detection. The first method is misuse

based in which the attack signatures or patterns are known and the IDS system tries to

match it. The second method is anomaly based in which the normal behaviour of the

system is modelled and any deviation from this normal behaviour is raised as an alarm

of possible attack. Both of these detection methods have techniques that have been used

to devise IDS. A brief overview of these techniques was provided with some examples.

The basic deployment options in switched and non switched environments were pre-

sented and explained. Also, passive deployment or active (inline) deployment were

discussed. Inline deployment is a must if we need to perform intrusion prevention.

Chapter 2. Intrusion Detection Systems (IDS) 18

Finally, an overview is given about commonly used NIDS. An overview was given for

the popular open source and free NIDSs (Snort, Bro, and Suricata) and some commercial

NIDSs.

The next chapter is about temporal logic and its use in formal specification and

system verification. The syntax and semantics are defined for the formal representations

of attacks in misuse based IDS or the representations of normal specifications in anomaly

based IDS.

Chapter 3

Temporal Logic and Intrusion

Detection System

3.1 Why Temporal Logic?

Developing formal methods for specification and automatic verification of concurrent

and real-time systems has been an active computer science research area. Verification

techniques are concerned with showing that a system satisfies its specification. Some

of those verification techniques allow checking whether an execution of a system under

scrutiny satisfies or violates a given property.

Logical-based formal methods are commonly used in runtime verification techniques.

The reasons are mainly because they provide unambiguous and concise ways to formally

represent system specifications and provide the necessary mechanisms to reason about

given properties. Temporal logic is the extension of classical logic with operators that

deal with time which allows us to formally specify temporal events. In dealing with

real-time systems quantitative temporal properties play a dominant role. Koymans

[47] introduced the Metric Temporal Logic (MTL). In MTL, the qualitative temporal

operators are turned into quantitative or metric temporal operators. This transformation

from qualitative into quantitative is done in MTL by constraining the temporal operator

with bounded or unbounded intervals. For instance, ♦[0,5]φ means eventually φ will be

true within 0 to 5 seconds from now. This metric extension to temporal logic is very

useful in relating event occurrences in real-time systems.

The next section shows how temporal logic can be used in intrusion detection systems

and presents previous work using temporal logic for intrusion detection.

3.2 Related Work

In Chapter 2, two common approaches toward devising IDSs were explained: misuse

based and anomaly based. In misuse based systems the attack patterns are monitored

in the incoming traffic and an alarm is raised if an attack pattern detected. In anomaly

based deviations from normal behaviour is monitored in the incoming traffic and an

19

Chapter 3. Temporal Logic 20

alarm is raised as a possible attack if a deviation from a specified normal behaviour is

detected.

In intrusion detection systems, temporal logic is used to formally represent attack

patterns or normal behaviour. The theoretical base of using TL in misuse based detection

can be viewed as checking whether a formula representing the signature of the attack

is satisfied in a model M . These temporal models are created from a linear sequence

of events (packets). So, typically, the idea in misuse based detection is to check that φ

(an attack specification) holds in M (M |= φ). These signatures are the attack patterns

that we need to match against network traffic and raise an alarm when detected. For

anomaly based detection, normal protocol procedures or network behaviour are formally

represented using temporal logic. A property φ formally representing a normal procedure

or a network behaviour is checked against the temporal models M that were created from

the incoming network traffic. An alarm is raised if φ does not hold in M (M 6|= φ).

The following subsections present two related work MONID [62] and ORCHIDS [69]

that use temporal logic in network intrusion detection.

3.2.1 MONID

MONID [62] is a prototype tool based on Eagle [9]. Eagle is a runtime verification

or runtime monitoring system that uses finite traces. The implemented finite trace

monitoring logics in Eagle include future and past time temporal logic, extended regular

expressions, real-time logics, interval logics, forms of quantified temporal logics, and so

on. Simply, it is an observer which monitors the execution of a program and checks its

conformity with a requirements specification, often written in a temporal logic or as a

state machine.

The safe behaviour specification of a system is continuously monitored by Eagle in

a state-by-state basis, without storing the execution trace. An execution trace σ is a

finite sequence of program states σ = s1s2...sn , where |σ| = n is the length of the

trace. A trace si, where i > 1, satisfies a specification if each monitored formula for that

specification is satisfied from state s1 up to state si.

In Eagle, the specifications are written as rules. These rules are recursively parame-

terized by both logical formulae and data values, over a set of three primitive modalities

“next-time”, “previous-time”, and “concatenation”. The “next-time” and “previous-

time” operators can be used for defining future time and past time temporal logic,

respectively. The “concatenation” operator can be used to define interval logics and an

extended regular expression language.

Naldurg et al. [62] propose the use of Eagle in building a prototype online intrusion

detection system, which they called MONID. In MONID, linear temporal logic (LTL)

with real time constraints and statistical properties are used to represent a safety formula

φ (specification of the absence of an attack) and the system continuously evaluates φ

against a model M representing a finite sequence of events. Whenever φ is violated

an intrusion alarm is raised (i.e., M 6|= φ). The work in [62] showed how Eagle can

Chapter 3. Temporal Logic 21

be used to express security attacks with complex temporal event patterns, as well as

attacks whose signatures are inherently statistical in nature. The authors also see that

MONID can be used for simple type of anomaly based detection, that is, by specifying

the normal behaviour of systems or networks as temporal formulae involving statistical

predicates, and monitor the system execution to check if it violates these formulae. If

the observed execution violates any formula then an alarm is raised. This alarm means

that an intrusion has likely occurred.

The framework of MONID consists of three functions: information preprocessing,

event monitoring, and reporting. The preprocessing function starts by gathering the

information from various sources into a server. Then these gathered information are

merged by timestamp to form a single event trace. Subsequently, this timestamped

stream of events is monitored by the event monitoring function against a given specifi-

cation and an intrusion alarm is raised by the reporting function when the specification

is violated.

The safety formula or monitored formula (M) uses data-values and parameterized

recursive equations and it is typically specified in terms of maximal and minimal fixed

points of interpretation as follows:

max: �F = F ∧©(�F)

min: ♦F = F ∨©(♦F)

mon: M = �(max→ min)

(� = always, ♦ = eventually, © = next)

One of the given example in [62] is the “cookie-stealing” attack. A cookie is a session-

tracking mechanism issued by a web server to a client and store client session information.

An attack occurs when a malicious user hijacks a session by reusing an old cookie issued

to a different IP address. The formula below asserts that a particular cookie must always

be used by the same IP address.

min: SafeUse(string c, int i) = ((name = c)→ (ip = i)) ∧
⊙

SafeUse(c, i)

mon: CookieSafe = Always(SafeUse(name, ip))

A Cookie-stealing attack is detected whenever the monitored formula CookieSafe is

violated. SafeUse is a parametrized rule that corresponds to an event with name (cookie

name) and IP address of the client. Notice here also the previous operator
⊙

is used.

This example along with the other examples in [62] show how MONID is expressive

in representing complex temporal events with time constraints and statistical properties.

On the other hand, specifying safety formulae is not an easy task. There is no systematic

method in defining events, this is very clear by looking into the examples in [62] as events

have different schemas that need to be defined specifically per attack. Additionally,

Chapter 3. Temporal Logic 22

defining the named rules and their interpretations as maximal or minimal and defining

the monitoring named rule is not straight forward as these rules contains recursive

equations. This would be clear if we try to define an attack signature with many steps.

The more steps we have, the more complicated these rules become to code and follow.

MONID, as the authors explain, was mostly tested offline to detect attacks and to

calculate the overhead of detecting attacks. They found the overhead is low and the

authors concluded that this suggests MONID could be used as an online NIDS. No

information about the volume of traffic during the experiments was given, and as far

as we know the purpose of MONID was not to detect attacks in high volume networks.

Thus, it is hard to compare the experimental results to ours as we use online and multiple

speed replays of the data (in Chapter 7).

3.2.2 ORCHIDS

ORCHIDS [69] is another intrusion detection system that uses temporal logic. This

research project goal was to design and develop a prototype of an online IDS which is

capable of analyzing and correlating events over time. ORCHIDS is specialized in the

intrusion detection by scenario or sequence recognition. It provides a new correlation

methods based on efficient model checking of temporal logic. Correlation is the process

of recognizing event positions in time and the relations among them. ORCHIDS as

described in [69] uses misuse based detection approach. Bad behaviour or attacks is

specified in temporal logic and alerts are notified whenever a bad behaviour is detected.

This is essentially a model checking problem against linear Kripke models which are

formed from linear sequences of events.

In ORCHIDS, first order linear time temporal logic is extended with Wolper style

LTL [79]. This is done to increase the expressiveness of the logic to describe properties

of sequences that cannot be expressed in temporal logic. One example of properties

that can not be expressed in classical LTL is event count. Another example is when

expressing a given event that has to happen exactly every n steps. In general, Wolper

style LTL allows the representation of properties that are expressible in language based

on regular expressions.

The architecture of ORCHIDS [67] is composed of five main parts: a set of rule

defined using the logic we mentioned earlier, a compiler which translates rule definitions

into an internal automata representation, a set of compiled rules which is the knowl-

edge base of the whole system, a massively parallel virtual machine which simulates non

deterministic finite automata, and a set of input modules responsible for decoding in-

coming data from external sources. There are two kinds of input sources : real time and

polled inputs. Real time input sources notify their events autonomously (e.g., receiving

messages in real time via the UDP network protocol). The second kind of input sources

are polled input sources which are events data that need to be checked and retrieved

periodically (e.g., system and network logs files).

Chapter 3. Temporal Logic 23

Temporal formulae are typically of the form:

F1 ∧ ♦(F2 ∧ ♦(F3 . . .) ∨ F
′
2 ∧ ♦(F

′
3 . . .))

where the temporal operator ♦ is “there exist in the future”. The attack signatures are

represented with formulae which are described internally in the system as automata.

The ORCHIDS online algorithm matches these formulae against the logs and returns

enumerated matches. ORCHIDS deals with finite traces and are constrained to only

specify eventuality properties (a transition denotes either no time passes at all or “even-

tually in the future” ♦, and no next©). This is because the model-checker needs to work

on-line on some finite (and expanding over time) prefix of infinite sequence of events.

The model checker is not allowed to make multiple passes over the flow of events. This

means a product automaton cannot be rebuild each time a new event is added.

Similar to MONID, ORCHIDS testing was for the proof of concept and not for

detecting attacks in high volume networks. The sequence recognition in ORCHIDS is

equivalent to the pattern matching using the third syntactical form of the proposed

method of specification in this thesis which is presented in Chapter 5. In that chapter,

we explain the proposed Many Sorted First Order Metric Temporal Logic (MSFOMTL)

syntax and semantics for representing temporal patterns of attacks or normal behaviour.

The main differences between the system we described in this thesis as compared

with MONID and ORCHIDS is that the model checking problem (M |= φ) is reduced to

the stream query evaluation, which is subsequently executed by high-performance SDP

engine. Also, in the proposed system, the way of using temporal logic takes advantage

of its expressiveness and conciseness to allow the user to express attack signatures or

normal specifications transparently and independently from the underlying technical

implementations. In addition, using predefined syntactical forms for attacks, give the

benefit of producing SSQL code that does not require retesting beyond the testing of

the system that were carried following the development of the translator from these

syntactical forms.

3.3 Summary

This chapter was about temporal logic and its use in representing attack patterns in IDS.

The basic theoretical background of using temporal logic in intrusion detection systems

was explained. Also, the use of temporal logic in two related work were presented and

explained: ORCHIDS and MONID.

The next chapter presents information about stream data processing technology.

StreamBase is used for implementing TeStID. The high performance features and scal-

ability of StreamBase are presented and explained. Also, the semantics of stream SQL,

the query language of StreamBase is given.

Chapter 4

Stream Data Processing (SDP)

The previous chapter presented information about the background of using temporal

logic in intrusion detection system and the related work. In this chapter we present

the stream processing technology which we make use of as the execution engine in our

proposed solution. Section 4.1 presents an overview of the background, the main features

of these systems, and the current systems. StreamBase is one such system which is used

to develop the proposed NIDS in this thesis. StreamBase uses Stream SQL as the stream

query language. An overview of Stream SQL language and its semantics are provided

in Section 4.2. Section 4.3 presents the high performance features, scalability, and high

availability of StreamBase. Finally, a summary for this chapter is provided in Section

4.4.

4.1 SDP Overview

Stream Data Processing is referred to in the literature with different names, such as,

stream query processing [44], stream database manager [95], data flow database [10],

data stream management system [7], complex event processing [92], etc. Regardless of

the different names used, all these methods are concerned with handling and processing

flows of data. The data stream can be defined as a sequence of events that arrive

continuously in real-time. These sequence of events are ordered by their arrival time

either implicitly or explicitly by a time stamp [31].

The fundamental difference between traditional database systems and Data Stream

Management System (DSMS) is that the data takes the form of continuous data streams

rather than finite stored data sets. This difference makes DSMSs suitable for data-

intensive applications where the data model is transient data streams and not persistent

relations. These applications could be the capital market, network traffic monitoring,

telecommunication data management, and others. The difference between the DBMS

and the DSMS with respect to time processing is that the DSMS are suitable for ap-

plications that require real time processing. This is due to the reason that DSMS can

work totally in main memory.

25

Chapter 4. Stream Data Processing 26

DSMS are designed to handle large volumes of data arriving in rapid, time-varying

and continuous streams. They can handle queries that are issued once and then con-

tinuously evaluated over the data (continuous queries). For example, “write an alert

whenever price of X is less than 200”. Another useful feature is sliding window query

processing. This sliding window can be based on an ordered field (e.g., time) or tuple

count. With this feature, recently arrived data is maintained, meaning that old data

must be removed as time goes on. It is an approximation technique for bounded mem-

ory that we can use to extract a finite relation from an infinite stream and to compute

online statistics. These features are well suited for applications like network monitoring,

network traffic analysis, and intrusion detection. Multiplexing and demultiplexing are

features that are provided by DSMSs and it is very useful for stream processing. de-

multiplexing is the process of partitioning the stream into substreams based on the data

in each record (tuple). Multiplexing is used to recombine substreams with the same

data structure. Other useful features are aggregation, pattern matching, merging, and

mapping the stream based on a value(s) in the data.

Using stream data processing become a programming paradigm in its own because of

the natural requirements of processing ordered sets, that is data streams [44]. According

to Parker et al. [44], it is advantageous to generalize the set foundation of relational

data model to an ordered set model because ordered data can be processed more effi-

ciently than unordered data. Other reasons related to high bandwidth traffic analysis

are mentioned by Sullivan and Heybey [96] in their work of building Tribeca which is a

database stream management system that deals with network traffic are as follows:

• Fast sequential access to network traffic data is crucial but unlike conventional

relational database systems transactional updates, fast access to random records,

and concurrency control access are not.

• Traffic data is used few (or once) and the load time is significantly costly.

• The traffic traces contain many small records with few bits size and this noticeably

increase the database size.

• As network traffic is a sequence of time stamped protocol headers, processing

streams require sequence and temporal DBMSs.

• It is necessary to run batches of queries over single pass over the data and these

queries might use each other’s partial results when they run concurrently.

Stream processing systems can be classified into research, open source, private pro-

prietary, and commercial systems. Initially, stream processing started as a research area.

SEQ [84] and Tangram [44] were important early works in this field. In 1995, Seshadri

et al. [84] presented the SEQ which is a model for dealing with sequence data with an

expressive range of sequence queries. They viewed sequenced data over ordered domains

such as time or linear position. The model was introduced as the basis for a system to

manage temporal data. The model was not for specific stream oriented applications but

Chapter 4. Stream Data Processing 27

a general purpose model with algebraic operators to query sequence databases. In 1989,

Parker et al. [44] developed a system that they named the Tangram. The Tangram was

a stream processing system implemented as an extension to Prolog that integrates with

the UNIX operating system and database managers. The Tangram Stream Processor

(TSP) system is founded as abstraction to stream transducers. A transducer is the basic

building blocks in TSP that map one or more input streams into one or more output

streams. The transducers are maintained in an extensible library. For example, the

selection transducer expression in TSP is defined as:

SELECT(S,T,C)

Where:

S: is a substream of terms.

T: is a template the S must unify (or match) with.

C: is the condition that terms in S must satisfy.

The sliding windows, reasoning about time and pattern matching were among the im-

portant functionalities of this system. Between 1996 and 1998 Sullivan and Heybey

[95, 96] introduced Tribeca. Tribeca was a special system for analysing network traffic.

It only works for sequence data in contrast to SEQ that works for sequence and relational

data. The stream processing and data management implemented in the same engine to

have a tightly integrated running environment. This is something the authors see as

advantageous over the Tangram system that has Prolog as a back end and DBMS as a

front end. More recent work is STREAM [7]. STREAM is a prototype general-purpose

DSMS supporting a large class of declarative continuous queries over streams and tradi-

tional stored data set. The project started in 2002 and it was wound down in January

2006. To handle queries over streams, they developed the Continuous Query Language.

Another interesting project was conducted by the Brandeis University, Brown Univer-

sity, and Massachusetts Institute of Technology. They developed AURORA which is a

general-purpose DSMS in 2003. In 2005, the AURORA project was superseded by the

BOREALIS project. BOREALIS is a distributed multi-processor version of AURORA

[1].

A recent research presented Reflex which is a programming model facilitating the

construction of highly responsive Java applications [89]. Reflex is designed to make it

easy to write and integrate simple periodic tasks or complex stream processors. Reflex

tasks run in a part of memory free from garbage collection interference. These tasks are

organized in a graph and communicate through uni-directional, non-blocking channels.

To demonstrate the power and applicability of Reflexes on real world applications, Spring

[89] implemented a prototype intrusion detection system.

Open source stream processing systems are also available. Two examples are ES-

PER [28] and IEPSE [70]. ESPER is an open source Event Stream Processing (ESP)

and Complex Event Processing engine (CEP) written in JAVA. It provides rich Event

Processing Language (EPL) to express filtering, aggregation, and joins, possibly over a

sliding windows of multiple event streams. It also includes pattern semantics to express

complex temporal causality among events. ESPER can be fully embeddable in existing

Chapter 4. Stream Data Processing 28

Java based architectures such as Java Application Servers or Enterprise Service Bus. It

can also be used as a standalone container in any existing standalone applications [28].

IEPSE (Intelligent Event Processor Service Engine) is another open source CEP and

ESP engine [70] analogous to ESPER.

GIGASCOPE [18] is a proprietary DSMS and was developed by AT&T and it is

currently used in many AT&T network sites. All commercial or non open source DSMS

are proprietary, that is owned and controlled by a proprietor, but here we mean it is

owned and controlled and used privately by the proprietor. GIGASCOPE is special

purpose DSMS engine for detailed network applications including traffic analysis, intru-

sion detection, router configuration analysis, network research, network monitoring, and

performance monitoring and debugging. Johnson et al. [43] from AT&T research lab

argued that GIGASCOPE can serve as the foundation of the next NIDSs because of the

functionality and performance. They presented some written examples to detect Denial

of Service attacks.

Even though SDP early research started about 30 years ago, several commercial sys-

tems only started to appear in the market a decade ago. Some of these systems started

as academic research that have progressed to commercial products. At Cambridge uni-

versityAPAMA was developed and then commercialized and was acquired by Progress

Software [77]. CORAL8 is another commercial product that based on Stanford research.

It has been recently acquired by Sybase Inc. [97]. It has been superseded by Sybase

CEP which is a re-branded and updated version of the CORAL8 product. StreamBase

was originally research conducted jointly by Brandeis University, Brown University, and

Massachusetts Institute of Technology during the early 2000s [92]. Finally, there are also

some other SDP products that are offered by large vendors. IBM acquired CEP pioneer

AptSoft during 2008, renamed it WebSphere Business Events [37]. Oracle, thanks to its

BEA acquisition, offers a product called ORACLE CEP. TIBCO product is a leader in

the middleware CEP from TIBCO Software Incorporation. In 2008 they had a market

share of 40% [99].

All of these systems provide similar SDP functionalities. Some of them might offer

more than others and some might offer less than the others. The naming of functions

or operators might differ from a system to another system because there is no standard

for the stream SQL language. For instance in [96] the authors refer to partitioning the

stream into substreams based on the data demultiplexing, whereas in [92] it is called

filtering.

In this research we used StreamBase for the development of the proposed system.

StreamBase is a complex event processing software from STREAM BASE Inc. In the

next sections, an overview of StreamBase and its query language Stream SQL (SSQL).

Also, StreamBase high performance and scalability features are presented.

Chapter 4. Stream Data Processing 29

4.2 StreamBase Stream SQL

StreamBase [91] Complex Event Processing (CEP) platform allows us to build a system

that can analyse and act on real time data. StreamBase is extensible, that is, it allows

the developers to write adapters to connect to their input or output resources. Also,

developers can write their own functions, stored procedures, and operators and integrate

them with the StreamBase engine. StreamBase has a rich SDP functionalities that

enable us to translate from MSFOMTL to its stream SQL. It has a fine-grained high

performance and scalability features.

StreamBase provides the developers with two development approaches. The first

approach is for rapid development which is the graphical event flow tools (StreamBase

Studio). The second approach is text based which is the StreamSQL language (SSQL).

SSQL [94] is a query language that extends SQL with the ability to process continuous

data streams. Dealing with continuous streams means the stream query is evaluated

continuously. SSQL language has the following processing capabilities:

• Non temporal operators: These operators does not have time window and act

continuously on the stream (as the event arrives). These operators enable us to

filter streams, merge, create sequence, create timers, create table (in memory or

external storage), map values to the stream (e.g., adding time stamp), correlate

multiple streams, etc.

• Temporal operators: These operators have windowing constructs. These operators

allow us to query temporal events over a specified time window. The query is eval-

uated continuously within the sliding window. The pattern match and aggregate

operators both have time window. The pattern match operator accepts inputs and

matches specified temporal patterns in the query with these inputs. The aggregate

operator performs aggregations and computations on real time streams or stored

tables. The time window in this aggregate operator specifies the time window for

the aggregation and how to advance following the time window expiration.

• Extensibility: The StreamSQL operator set is extensible, developers can add func-

tions, operators, adapters (input or output operators).

SQL is primarily intended for manipulating relations (or tables), which are set of tuples

(or rows). A tuple is an ordered set of elements (columns). Each element has a domain

where its value is mapped from. SSQL manipulates streams, which are infinite sequences

of tuples that are not all available at the same time.

The SSQL language [93] has many operators. Some of these operators are data

definition language (DDL) operators, and some of them are data manipulation language

(DML) operators. To query data streams, the select statement is used (from DML).

The semantic of query depends on the clauses that are used in the select statement. We

have the filter, the pattern and the aggregate operators that are formed from the select

statement. The syntax and semantics for these operators are as follows:

Chapter 4. Stream Data Processing 30

• The syntax of the filter operator is:

SELECT target_list_entry [, target_list_entry...]

FROM event_source [...] |

[WHERE predicate]

[INTO stream_identifier]

where:

– target list entry: fields identifiers;

– event source: the source of input such as stream or table;

– predicate: conditions on select fields that limit the returned set by the select

statement;

– stream identifier: unique stream identifier. The stream can be either final

output stream or just stream that can be used by other SSQL components.

In stream processing a query is evaluated continuously. So, at any moment of

time a running query might be answered. Query is answered if it returns some

results and this means the query valuation is true, otherwise it is false. The filter

operator is used to query the incoming events and if there is a tuple that satisfy

the restrictions specified on the columns at a moment of time τ , then that tuple

is returned (output). This means the query valuation at τ is true. If no tuple

returned, then the query valuation at τ is false.

• The syntax of the pattern operator is:

SELECT target_list_entry [, target_list_entry...]

FROM event_source [...] |

FROM PATTERN template [pattern_operator template ...]

WITHIN (interval TIME)

[WHERE predicate]

[INTO stream_identifier]

where:

– target list entry: fields identifiers;

– event source: the source of input such as stream or table;

– predicate: conditions on select fields that limit the returned set by the select

statement;

– interval time: timeout in seconds;

– template: evaluates to stream identifier (one of the event source);

– pattern operator: logical operator that relates two pair of template (NOT

streamA, streamA AND streamB , streamA THEN streamB, streamA OR

streamB);

Chapter 4. Stream Data Processing 31

– stream identifier: unique stream identifier. The stream can final output

stream or just stream that would be used by other SSQL components.

The pattern operator query the event sources and only return true valuation if a

query on the first template return a tuple at τ that satisfy the conditions in the

where clause. Then within the specified time interval (within τ + interval TIME)

the second query on the second template return a tuple that satisfy the conditions

on the where clause and the logical pattern operator between the two templates.

No tuples are returned if the pattern operator fails to match any pattern and this

means the valuation of the pattern operator is false.

• The syntax of the aggregate operator is:

SELECT field_identifier_grouping [, ...]]

FROM stream_identifier ’[’window_specification | window_identifier’]’

[WHERE predicate]

[HAVING predicate]

[GROUP BY field_identifier_grouping [, ...]]

[ORDER BY field_identifier_ordering [, ...] [DESC] [LIMIT number]]

[INTO stream_identifier]

where:

– field identifier grouping: an output field used to group the entries in the result

set returned by the select statement. The “GROUP BY” clause must specify

the same set of this field identifier group;

– stream identifier: the source of input;

– window specification: specify how the aggregation is conducted by time, num-

ber of tuples, or specific values in the input fields. Also, size for the window

and an advance value can be specified;

– window identifier: a named window specification previously declared with a

“CREATE WINDOW window identifier” statement;

– predicate: conditions on select fields that limit the returned set by the select

statement. In a HAVING clause, the predicate can contain logical operators,

mathematical operators, and/or a “BETWEEN-AND” clause;

– field identifier ordering: An output field used to order the entries in the result

set returned by the statement. The ordering can be descending (DESC) and

can be limited to n number (LIMIT);

– stream identifier: unique stream identifier. The stream can final output

stream or just stream that would be used by other SSQL components.

The Aggregate operator computes aggregations over moving windows of tuple val-

ues. Each window is a view on a part of the input data. It accepts a single input

stream and start counting from zero. The type of aggregation to perform is based

on one of the following:

Chapter 4. Stream Data Processing 32

– the number of tuples in the window. A new window is established and evalu-

ated based on the number of arriving tuples. A tuple containing the results of

the aggregation is emitted and the window closed when it contains a specified

number of tuples;

– the time tuples arrive. A new window is managed and evaluated based on the

time a tuple arrives. For example, a tuple containing the aggregate results

may be emitted and the window closed when a tuple arrives outside the

period allowed for the currently open window. The new tuple begins the next

window;

– a field in the input tuples. A new window is established and evaluated based

on the value of a numeric field in the incoming tuple. A tuple containing

the results of the aggregation is emitted and the window closed when a tuple

arrives whose field value exceeds the specified range of the open window;

– a predicate expression. A new windows are opened, emitted from, and closed

based on the evaluation of a predicate expression;

We can see from the above list that the evaluation of the aggregate operators depends

on the aggregate window opening and closing. A tuple is emitted with the field identifier

grouping field(s) as heading and the computed aggregate value(s).

More information about the SSQL query operators mentioned here and all other

constructors can be found at [93].

4.3 StreamBase High Performance, scalability, and high

availability Features

The fact that stream processing deals with high volume data motivates the researchers

and vendors to implement a fast, robust, and scalable system to satisfy the processing

requirements. Many vendors have implemented high performance mechanisms and tech-

niques to meet the requirements of processing high volume data [37, 93, 99]. Another

aspect that the users like to have in SDP systems is the ability of the system to grow as

the data usage increases in the future, that is, the scalability of the system. Finally, for

critical environments that can not afford to have down time, the users like to have zero

down time robust system.

Looking and evaluating all existing systems are impossible due to the factors of

time, license, expertise, etc. Hence, in this project we selected the StreamBase for the

featured mentioned in the previous section. By using the high performance features of

StreamBase , we obtained a very promising results as can be seen in Chapter 7. In this

section these features are explained in some detail.

Chapter 4. Stream Data Processing 33

4.3.1 High Performance Features

High performance features in StreamBase can be achieved by processing the data in

parallel. In fact, StreamBase provides a very fine-grained control mechanism for parallel

execution. The option of running part of the code (can be a module or a single operator)

in parallel or multithreaded or both can be specified. There are some exceptions and

some operators where the parallel options can not be used, but these are few. For

example, the sequence operator which generates a new sequence value each time a tuple

pass through. Obviously, the parallel option is not suitable for this operator.

This fine-grained mechanism means that in an application there are many choices

for running different components in parallel. The best way to implement the parallelism

features require two important tasks need to be carried out by the developers. The first

task is to thoroughly analyse the application to find out the candidate components for

parallelism. The second task is to find out the suitable values for the degree of parallelism

that gives better performance. A component is a candidate for separate threading if the

component is long-running or compute-intensive, can run without data dependencies on

other components, and would not cause the containing module to block while waiting

for the component to return. The developer must have a good understanding of the

parallelism features and the execution order of StreamBase (i.e., the program execution

sequence before applying any parallelism). To help the developer, a profiling tool is

provided that helps in analysing the application execution and the developer can profile

a StreamBase application while it is running to extract statistics about the operators,

queues, and threads in that application, and about system resources consumed by that

application. The information can be viewed interactively or stored in a file for later

review and analysis.

The parallelism features in StreamBase are controlled with the concurrency and

multiplicity options. Here, we give explanations of these options along with the related

concepts and terms with some simple examples. The StreamBase manuals [93] contain

much more detailed and rich information.

First we explain how a simple module runs in the StreamBase server. A simple

running module, running in a container in StreamBase Server, with default concurrency

settings (no concurrency), operates in a single parallel region. The StreamBase container

is the most elementary parallel region. In Figure 4.1, a simple application that will be

used as a running example is shown. The application is a simple application with four

operators as follows:

• Input Adapter (IP Sniffer): this is an input adapter that reads the network packet

and passes it to the mapping operator. The schema of the packet is simply defined

as source address, source port, destination address, destination port, fragmentation

offset, and packet total length.

Chapter 4. Stream Data Processing 34

• Mapping operator (TotPacketSize): for each tuple (packet) it maps the value of

the total packet size up to this packet if it is a fragmented packet (if fragment

offset > 0). This can be calculated with the formula:

fragmentation offset ∗ 8 + packet total length

In the above formula, the offset is in bytes, so to convert it into bits we multiply

by 8. This calculated value is assigned to a variable say SumPacket.

• Filter operator (SizeAlert): Selects all tuples that has SumPacket > 5000.

• Output Operator (Output) : output the tuples found.

Figure 4.1: A Simple Application Running In A Container Inside The Stream-
BaseServer

In this application, the sequence of data is numbered 1 to 4. When a tuple arrives

it has to go through the sequence in order 1 to 4 and subsequent tuples will be queued

at the input adapter operator. The developer can speed up the processing and use the

concurrency and multiplicity options. The concurrency option means the instance(s) of

the component runs in its (their) own thread(s). Multiplicity refers to the number of

the instances of the components. The developer can set the concurrency option or the

multiplicity or both. The following scenarios are possible for a candidate component for

concurrency and multiplicity inside an application:

1. If the concurrency option is set without the multiplicity, this means a single in-

stance is to run in its own thread parallel to the main parallel region (main con-

tainer).

2. If only multiplicity is set, the number of instances designated by the multiplicity

in their own threads inside the main parallel region.

3. If both concurrency and multiplicity are set, the number of instances designated

by the multiplicity run in their own threads (parallel regions).

Back to our example in 4.1, the concurrency and multiplicity are applicable as the

process of each tuple is completely isolated from the processing of other tuples. To apply

the concurrency option, there are two options. The first is to use it for the filter operator

Chapter 4. Stream Data Processing 35

only. Second option is to rewrite the mapping and filtering operators as a referenced

module and use the concurrency and multiplicity operator on this module. A referenced

module is a module that can be called by another module (or main). For the explanation

purposes and not necessarily for best performance, we use the first option to explain the

concurrency and multiplicity.

Figure 4.2: Applying Concurrency only on 4.1

Figure 4.2 shows the use of concurrency only, that is, the filtering will run in a

separate thread (parallel region). The difference here from the sequential execution in

4.1 is that the stream out from the mapping (step 2) is going to the parallel region of

the filtering (step 3) which means the processing in this region is parallel to the main

parallel region, and if tuples arrive rapidly and need to be queued, it will be queued

here.

Figure 4.3 shows the use of multiplicity only (two are used) as applied to 4.1. With

the multiplicity, the dispatch style needs to be specified. The dispatch style designates

how each instance will receive its input. Three options are there: broadcast, round

robin, and according to a specified data value. In broadcast each instance will receive

a copy of every tuple. In round robin, the first tuple goes to the first instance and the

second goes to the second and so on. Based on value involves checking the value against

a test condition and then dispatching to the designated instance for that value. The

option that make a common sense for this example is to use round robin in Fig 4.3. The

execution sequence is labeled 1 to 6. No parallel execution as the concurrency option

is not used, so the first instance is processed up to completion and the second will be

processed by the second instance.

Chapter 4. Stream Data Processing 36

Figure 4.3: Applying Multiplicity only on 4.1

Figure 4.4 shows the implementation using both the concurrency and multiplicity (of

two) as applied to 4.1. Here, two instances of the filtering operator are simultaneously

running each in its own thread and parallel region. They receive input in round robin

fashion. Each instance operates independently from the other instance and has its own

queue if the tuples are dispatched rapidly and the instance could not process it fast

enough. We could expect better performance using this implementation, but really this

depends on how many cores exist on the machine. Please notice that, arbitrarily, we used

two instances but the optimal choice depends on how many cores exist on the machine

and if other applications are running. In general the rule of thumb is to use a number of

instances less than or equal to the number of the existing cores on the running machine.

4.3.2 Scalability and High Availability

Scalability refers to the capability of the systems to expand to meet an increase in the

traffic volume. StreamBase is scalable in two ways. First more CPUs can be added

and memory can be upgraded. The second way of scalability is through the support of

distributing processing over multiple servers. This is true for most of the commercial

SDP systems, if not all, that exist today.

High availability refers to having a production system running with minimal or zero

down time. StreamBase uses a high-availability (HA) solution. The solution is based

on a standard process-pairs approach in which two servers, a primary and a secondary,

operate as a processing pair. While the production system runs on the primary, the

secondary keeps a backup process that accumulates enough information through check

pointing and synchronization approach, to be able to pick up execution without gaps

Chapter 4. Stream Data Processing 37

Figure 4.4: A main module with a candidate component for using concurrency and
multiplicity of 2.

when the primary fail. In this way, fail over to the secondary server is transparent to

the client applications.

4.4 Summary

In this chapter we presented an overview of the stream data processing technology. The

differences between conventional RDBMSs and SDPs were highlighted. StreamBase is

the stream data processing system we make use of as the execution engine in the proposed

solution. We introduced it in this chapter and gave an overview of its query language

(SSQL) syntax and semantics. In addition, we described the high performance features

of StreamBase which is used in designing the proposed system in this thesis (TeStID).

The next section presents the proposed system.

Chapter 5

Temporal Stream Intrusion

Detection System (TeStID)

The last three chapters presented literature review of intrusion detection systems, tem-

poral logic, and stream data processing. This chapter presents the proposed system

Temporal Stream Intrusion Detection (TeStID). Section 5.1 is about the formal speci-

fication used in TeStID. It presents abstract view of network communications and the

syntax and semantics of the proposed logic. In Section 5.2, the attack classification

and the syntactical forms corresponding to this classification are given. Section 5.3 is

about the proposed system TeStID. The system description, architecture, and benefits

are given. Finally, a summary for this chapter is provided in Section 5.4.

5.1 Formal Specification

To formally model a real-time system and conduct runtime verification an abstract view

of the system events or behaviour is needed. The process models of sequence of events

can be timed or untimed. In the untimed process models, the sequence of events are

modelled but not the time at which the events occur. In the timed processing model

both the sequence of events and their occurrence times are modelled. The abstraction

choice depends on the system verification requirements.

The following subsections explain the abstraction view of the network communica-

tions that will be used in TeStID, the time model, and the syntax and semantics of

MSFOMTL.

5.1.1 Abstract View of Network Communications

Nodes (any devices connected to a computer network) in networked environment com-

municate by exchanging data over the network physical media. In Ethernet networks,

this physical media can be coaxial cable, twisted pair cable, or fibre cable. In order for

nodes to communicate, there are certain protocols that need to be followed and executed

by every communicating node for the communication to be successful.

39

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 40

In the OSI reference model1, when a node is ready to send data across the network,

this data is encapsulated with headers. Each succeeding network layer wraps a header

around the transferred data and thus the data can be handled properly by the layer

below (see Figure 5.1). The following steps summarizes the sending process:

Figure 5.1: Packet Encapsulation During Sending

• At the application layer, the data (payload) is created and this is actually just

simple data with a designated destination.

• At the transport layer, headers are added to these chunks of data to create TCP

or UDP segments. These headers include linking information to specific processes

at the destination.

• At the network layer, the Internet Protocol (IP) headers are added to create IP

data grams. The IP header includes information about the source and destination

address and thus at this point the data is being directed to a specific process

running on a specific computer on a specific network.

• At the data link layer, the Ethernet frame header is added which includes infor-

mation such as the physical MAC addresses of the source and destination and

checksums.

During the receiving process, the operation is reversed in direction (i.e., from the

physical layer to the application layer) and the headers are stripped away as the data is

moved and finally delivered to the destination process (see Figure 5.2). The destination

node monitors the Ethernet for frames addressed to its Ethernet network interface MAC

address. If one exists, then the following steps take place:

1Open System Interconnection Reference Model, a standard for network architecture developed by
International Organization for Standardization (ISO). It consists of a set of seven layers that define the
different stages that data must go through to travel from one device to another over a network.

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 41

• The data link layer strips the Ethernet header and the IP datagram is delivered

to the next top layer.

• The network layer strips the IP header and delivers the TCP (UDP) datagram to

the transport layer.

• The transport layer strips the TCP (UDP) header and delivers the data or payload

part to the destination process.

Figure 5.2: Packet Deencapsulation During Receiving

Logically, the incoming network stream packets form the temporal modelM. Packets

are captured in order by arrival time τ . Each captured packet belongs to a certain

network communication protocol (TCP, UDP, ICMP, etc). Formally, we represent each

type of packet as a predicate P which we denote as PTCP , PUDP , PICMP , etc. where

the subscript reflects the type of the protocol. The set of all packets of all possible types

is denoted by JPK, that is:

JPK = JPTCP , PUDP , PICMP , . . .K

In this thesis as we use only TCP as a case study and as there is no ambiguity we will

use P to represent a predicate of the TCP protocol type with 12-arity s1 × ... × s12

where sn (1 ≤ n ≤ 12) is a sort of a particular predicate argument (i.e., sender address,

receiver address, sender ports, etc.). These fields are selected based on our need to

represent attacks. In misuse IDS, we have the advantage of knowing in advance the

attack signatures and it is easy to identify the features or fields required. This is simply

done by cross referencing the attacks and the features needed by them. These features

are then used in the system. Of course, if new attacks are discovered requiring new

features, these would need to be included. The specification of a TCP predicate is:

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 42

P (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)

where:

• x1 : is a string variable representing the sender IP address;

• x2: is an integer variable representing the sender port;

• x3: is a string variable representing the receiver IP address;

• x4: is an integer variable representing the receiver port;

• x5: is an integer variable representing the sequence number;

• x6: is an integer variable representing the acknowledgment number;

• x7: is a Boolean variable representing the ack flag;

• x8: is a Boolean variable representing the syn flag;

• x9: is a Boolean variable representing the rst flag;

• x10: is a Boolean variable representing the push flag;

• x11: is a Boolean variable representing the urg flag.

• x12: is a string representing the payload or data.

Packets arrive at some point in time. So, we can consider the arrival of these packets

as instantaneous arbitrary occurring events. Two packets can not arrive at the same

time, one must be before the other. The model of time consists of a set of arrival points

T ⊂ R+ (where R+ is the set of non-negative real numbers) and we require T to be

discrete: for any finite interval [a, b], the set [a, b]∩T is finite. The model is represented

as M = 〈T , <, I, Is〉 where:

- T = {τ0, τ1, . . . } ⊂ R+, where R+ is a non-empty set of positive real numbers and

T is the set of all arrival moments.

- < is a linear order on T .

- I is an interpretation which maps T into JPK:

I : T → JPK

So, I(τi) represents a packet arriving at a moment τi ∈ T .

- Is is an interpretation over a domain Ds for sort s.

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 43

5.1.2 MSFOMTL Syntax

The syntax of MSFOMTL (Many Sorted First Order Metric Temporal Logic) is based

on the work of Manzano [55], Koymans [47], and Alur [4]. The symbols that are allowed

to be used in expressions can be grouped into logical and non-logical symbols. Logical

symbols are the quantifiers ∀ and ∃, the logical connectives ∧, ∨ and ¬, the logical

binary predicate symbols =, 6=, <,≤, >, and ≥, the bounded future temporal opera-

tors ♦[t1,t2] (“eventually”), and �[t1,t2] (“always”), the past bounded temporal operators

�[t1,t2] (“sometimes in the past”), and �[t1,t2] (“always in the past”). The subscripts

[t1, t2] in the operators refer to their scope (between the moments t1 and t2 from now).

In many sorted logic, the arguments of predicate and function symbols may have

different sorts s and every sort s ∈ S where S is a finite set of sorts. The non-logical

symbols of MSFOMTL consist of the finite disjoint sets of predicate symbols, function

symbols, constants, and variables. The alphabet of the language of MSFOMTL L con-

sists of the union of all the non-logical symbols.

5.1.2.1 Terms

The set of terms in L of sort s is the smallest set of expressions with the following

properties:

• Each constant symbol c of sort s is a term where s ∈ S.

• Each variable v of sort s is a term where s ∈ S.

• If f is a function symbol of n-arity s1 × ... × sn → s and tei is a term of sort si,

then f(te1, ..., ten) is a term of sort s.

• If te1 and te2 are numeric terms of sort s, then te1 + te2, te1 − te2, te1 × te2 and

te1 ÷ te2 are terms of sort s, where s ∈ S.

5.1.2.2 Formulae

The formulae of MSFOMTL are defined as follows:

• If te1 × ... × ten, where each tei is a term of sort si, and P is a predicate symbol

with n-arity s1 × ...× sn, then P (te1, ..., ten) is an atomic formula.

• If te1 and te2 are terms of the same sort s then te1 = te2, te1 6= te2, te1 > te2,

te1 < te2, te1 ≤ te2 and te1 ≥ te2, are formulae.

• Every atomic formula is a formula.

• If ϕ is a formula then ¬ϕ is a formula.

• If ϕ is a formula then ♦[t1,t2]ϕ, �[t1,t2]ϕ , �[t1,t2]ϕ and �[t1,t2]ϕ are formulae.

• If ϕ and ψ are formulae then ϕ ∧ ψ and ϕ ∨ ψ are formulae.

• If ϕ is a formula and x is a variable of sort s then (∀x)ϕ and (∃x)ϕ are formulae.

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 44

5.1.3 MSFOMTL semantics

In MSFOMTL the arguments of functions and predicates have different sorts and each

sort s ranges over a domain Ds. We denote Is as the interpretation over the domain Ds
of constant, variable, and symbol. The following mapping can be defined:

- Each variable v in L of sort s is evaluated as vIs which is an element in Ds.

- Each constant symbol c in L of sort s is evaluated as cIs which is an element in Ds.
The constants are viewed to be rigid which means they do not change overtime.

- Each functional symbol f of arity n and of sort s1 × ... × sn → s is mapped to

a function Ds1 × ... × Dsn → Ds. The evaluation of a function f(te1, ..., ten)Is =

f Is(te
Is1
1 , ..., te

Isn
n), where tei is a term of sort si.

- Each predicate symbol P with n-arity s1 × ... × sn is mapped to a predicate PI

which is a subset of Ds1 × ... × Dsn . A predicate is evaluated to be true when

(te
Is1
1 , ..., te

Isn
n) ∈ PI , where tei is a term of sort si.

A temporal formula ϕ holds at M = 〈T , <, I, Is〉 at an arrival time τi ∈ T , that is,

M, τi |= ϕ is defined recursively as follows:

M, τi |= P (te1, ..., ten) iff P I(te
Is1
1 , ..., teIsnn) = I(τi)

M, τi |= ¬ϕ iff M, τi 6|= ϕ

M, τi |= ϕ1 ∧ ϕ2 iff M, τi |= ϕ1 and M, τi |= ϕ2

M, τi |= ϕ1 ∨ ϕ2 iff M, τi |= ϕ1 or M, τi |= ϕ2

M, τi |= ♦[t1,t2]ϕ iff ∃ τ ′
(τi + t1 ≤ τ

′ ≤ τi + t2) s.t. M, τ
′ |= ϕ

M, τi |= �[t1,t2]ϕ iff ∀ τ ′
(τi + t1 ≤ τ

′ ≤ τi + t2) M, τ
′ |= ϕ.

M, τi |= �[t1,t2]ϕ iff ∃ τ ′
(τi − t1 ≥ τ

′ ≥ τi − t2) s.t. M, τ
′ |= ϕ

M, τi |= �[t1,t2]ϕ iff ∀ τ ′
(τi − t1 ≥ τ

′ ≥ τi − t2) M, τ
′ |= ϕ.

M, τi |= (∀x)ϕ iff ∀ Is (xIs = a) M, τi |= ϕ[x/a]

M, τi |= (∃x)ϕτ iff ∃ Is (xIs = a) s.t. M, τi |= ϕ[x/a]

In some attacks, we need to find out the number of moments where a formula ϕ (the

attack specification) holds within a period of time. To represent this, we introduce a

new operator “Repeated” R. This operator is time bounded and indicates the number

of times a formula holds repeatedly. The syntax is Rn[t1,t2], where n is a natural number,

and in words it means “for all t1, t2 ∈ T there are at least n many τ ∈ (t1 ≤ τ ≤ t2)

such that I(τ) ∈ JPK ”. Formally, the definition of this operator is as follows:

M, τi |= Rn[t1,t2]ϕ iff | {τ ′ | (τi + t1 ≤ τ
′ ≤ τi + t2) and

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 45

M, τ
′ |= ϕ} | ≥ n

If terms te1 and te2 are terms of the same sort s then the (in)equality of terms are

atomic formulae. These terms are evaluated in the usual way, for example:

M, τi |= (te1 = te2) iff teIs1 = teIs2

Finally, the arithmetic functions (e.g., ,+,−,×,÷) for numeral terms in L are the stan-

dard binary operations for arithmetic functions.

5.2 Attack Classification

The proposed first order temporal logic MSFOMTL has a formal semantics, it can repre-

sent temporal patterns, and complex attacks can be represented concisely. The temporal

patterns are the attack specifications that we need to match within the incoming events.

To represent these attacks formally and efficiently, we need to understand them and

to understand the nature of incoming events. The objective is to ease the process of

representing attacks using MSFOMTL.

Attacks in a network can be carried using one single packet or using sequences of

packets in some order. We identify four main attack patterns. One involves a single

packet and the other three are multiple packet attacks. The multiple packet attacks

are further divided into three groups based on the temporal properties of the attacks:

forward multiple packet attacks, backward multiple packet attacks, and repetition attacks.

In the following, we present more detailed information and the syntactical patterns

used to express many known attacks. For instance, the first syntactical form covers

single packet attacks. In Chapter 7 we selected 50 single packet attacks as they defined

in Snort. The latest version of Snort has about three thousand signatures [88]. These

attacks can be represented by the first syntactical form. The other syntactical forms can

cover all DARPA TCP/IP multiple packet attacks [60]. In Chapter 6, these syntactical

patterns are used by the translator to produce stream queries. The syntactical forms

are as follows:

1. Single packet attacks: These attacks have no temporal aspect and involve only one

packet. Technically, the attacker sends a packet with some fields in the header

set with values that take advantages of vulnerabilities in the victim’s machine. In

some attacks, the data or payload part of the packet is used as well. The canonical

form of these attacks is:

P ∧Q (5.1)

where:

• P is first order predicate (representing a packet).

• Q is conjunction of Boolean formulae built of the terms of P.

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 46

An example of this type of attack is the Land attack [60]. In this attack, the

attacker sends a spoofed syn packet in which the source address is the same as

the destination address. In some implementations of TCP/IP, this packet causes a

Denial of Service (DoS) attack. The attack can be represented formally as below:

(∃x1, x3, x8)((∃y2, y4, y5, y6, y7, y9, y10, y11, y12)

P (x1, y2, x3, y4, y5, y6, y7, x8, y9, y10, y11, y12)

∧(x1 = x3 ∧ x8 = 1)) (5.2)

Another example of single packet attacks using the payload is the code red v2 worm

[13]. This worm takes advantage of a vulnerability in Microsoft Index Server 2.0

described in security bulletin MS01-033 [57]. It causes a DoS attack and replicates

itself to other connected vulnerable machines. It sends a crafted Http request

to the vulnerable server on port 80. In the payload we can look for the word

“root.exe”. Formally, we can represent this code red v2 as:

(∃x3, x7, x12)((∃y1, y2, y4, y5, y6, y8, y9, y10, y11)

P (y1, y2, x3, y4, y5, y6, x7, y8, y9, y10, y11, x12)

∧(x3 = 80 ∧ x7 = 1) ∧ x12 = f(". ∗ root.exe. ∗ ")) (5.3)

The function f represents regular expression function. The function is called with

regular expression string syntax parameter ".*root.exe.*" where the ".*" means a

single character repeated zero or many times. We check if the TCP flag ack is set

and the other TCP flags are not significant in this signature.

2. Forward multiple packet attacks: In these attacks more than one packet is sent

in a specific order as the time progress. Each packet is a step of the protocol

communication. This allows us to represent the attacks that take advantages of

the vulnerabilities in the communication protocols. The canonical form of these

attacks is:

ϕ ∧ ♦[t1,t2]ψ

or:

ϕ ∧ ¬♦[t1,t2]ψ (5.4)

where:

• ϕ is a first order predicate (representing a packet).

• ψ is either a first order predicate or the same formula as 5.4.

A typical example of this type of attack is the WinNuke attack [66]. WinNuke is a

DoS attack against the Windows NT that sends Out Of Band data (MSG OOB)

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 47

to port 139 (NetBIOS), crashing the Windows NT machine. To detect this attack,

we need to look for a NetBIOS connection setup (handshake) followed by a packet

sent with the urg flag set. A distinguished sequence of events is as the following:

• The attacker sends a packet with his IP as the source IP (x1), his port as

the source port (x2), the destination or receiver IP (x3), the destination port

equal to 139, the syn flag set, the ack flag unset, the acknowledge number

equal to 0, and the urg flag unset, and the Initial Sequence Number (ISN)

(x5).

• The NetBIOS service (port 139) on the victim’s machine (the receiver) will

respond by sending a packet with his IP as the source IP (x3), the source port

139, the syn flag set, the ack flags set, acknowledgment number = x5 + 1,

and its own ISN = x6. This is the second step of the three tcp handshake

connection setup, the receiver acknowledges the sender ISN by incrementing

it by one (x5 + 1) and sending the sum as an acknowledgment number. This

increment is the mechanism to let the sender know the packet sequence he

expects to receive next from the sender.

• The attacker sends a packet with his IP as the source IP (x1), his port as the

source port (x2), the destination IP (x3), the destination port 139, ack flag

set, sequence number = (x5 + 1) (which the receiver expects), acknowledge

number = x6 + 1, the ack flag set, the syn flag unset, and the urg flag unset.

• The connection now is considered synchronized. The attacker sends a packet

to carry the attack that has his IP (x1), his port as the source port (x2),

the destination IP (x3) destination port equal to 139, his sequence number

(x5+1), the syn flag unset, the ack flag set, the acknowledge number equal to

x6+1, and the urg flag set. Notice that the attacker sends his sequence number

which is the same as in the previous step, the reason that the acknowledge

only packet did not contain data and thus the sequence number was not

incremented.

Formally we represent this attack as:

(∃x1, x2, x3, x5, x6)((∃y6, y9, y10, y12)P (x1, x2, x3, 139, x5, y6, 0, 1, y9, y10, 0, y12) ∧

♦[0,42]((∃z9, z10, z12)P (x3, 139, x1, x2, x6, x5 + 1, 1, 1, z9, z10, 0, z12) ∧

♦[0,42]((∃w9, w10, w12)P (x1, x2, x3, 139, x5 + 1, x6 + 1, 1, 0, w9, w10, 0, w12) ∧

♦[0,1](∃k9, k10, k12)P (x1, x2, x3, 139, x5 + 1, x6 + 1, 1, 0, k9, k10, 1, k12)))) (5.5)

In the above formula the time for the second predicate to hold is within 42 seconds

from the time that the first predicate holds and the same is true for the third

predicate when the second predicate holds. We assume that the timeout for the

TCP protocol is 42 seconds on the Windows NT but this can be changed to reflect

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 48

the real value used by the administrator. The third predicate is the last step of the

connection setup (TCP handshake). The attacker will send the fourth predicate

within one second following the session establishment with the urg flag set.

3. Backward multiple packet attacks: These attacks can be identified by an event

observed now and that certain events did not happen in the past. The canonical

form of these attacks is:

ϕ ∧�[t1,t2]¬ψ (5.6)

where:

• ϕ and ψ are first order predicates (representing packets).

An example of this attack is the Reset Scan. The Reset Scan is a probe attack in

which the attacker tries to learn or discover some services running on the network

and it is usually the initial stage to launching other types of attack. In this

attack, TCP packets with the rst flag set are sent to a list of IP addresses in the

network to determine which machines are active. If there is no response to the

reset packet, the machine is alive or exists. If a router or a gateway responds with

“host unreachable” then the machine does not exist [60].

The Reset Scan attack can be identified by looking for reset packet requests for

non existing sessions. The following are the sequence of events:

- No communication exists between node A and node B. The node is either

receiving packets and then acknowledging (sending acknowledgements for the

received packets) or sending packets to the other node and (the other node

is acknowledging), so, the absence of communication can be checked by the

absence of TCP packets sent or received by either node.

- A reset packet is sent to A (B).

In the first step above we check if either node is receiving or sending because in

the TCP/IP protocol the node is either receiving (and acknowledging) or sending

to the other node and (the other node is acknowledging).

To represent this attack formally:

(∃x1, x2, x3, x4)((∃y5, y6, y7, y8, y10, y11, y12)

P (x1, x2, x3, x4, y5, y6, y7, y8, 1, y10, y11, y12)

∧�[0,300](∃z5, z6, z7, z8, z10, z11, z12)

¬P (x1, x2, x3, x4, z5, z6, z7, z8, 0, z10, z11, z12)) (5.7)

In the above formula, notice that the rst flag is set in the first predicate and not

in the second and the session timeout is set to be 300 seconds.

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 49

4. Repetition attacks: These attacks have no effect unless they are repeated finitely

many times (n) within a specified time window. The canonical form of these

attacks is:

Rn[t1,t2]ϕ (5.8)

where:

• ϕ is any formula of the previous categories.

• n is the number of times ϕ holds repeatedly within [t1, t2].

The Neptune attack is an example of this type of attack. Neptune is a DoS

attack that causes a machine to stop accepting incoming TCP/IP connections. An

attacker sends many connection requests or syn packets with a spoofed IP address

to a particular port on a host. The victim responds with syn-ack packets, but the

sender host is unreachable, thus, this causes many half-open TCP connections.

Each half-open TCP connection causes the server to add a record to the data

structure that stores information describing all pending connections. This data

structure is of finite size, and eventually it will overflow. This means that the

server will be unable to accept any new incoming connections until the table is

emptied out. Normally, there is a timeout associated with a pending connection, so

the half-open connections will eventually expire and the victim server system will

recover. However, the attacking system can simply continue sending spoofed IP

packets requesting new connections faster than pending connections on the victim

system expire [60].

A Neptune attack can be identified by looking for a number of syn packets destined

for a particular machine which are coming from an unreachable host. This means

that we need to look for all the initiated connections that have not received the

third handshake ack packets. The sequence of events are the following:

• The attacker sends a TCP packet with the syn flag set with a spoofed IP

address of an unreachable host.

• The receiver responds with either:

– syn-ack packet (i.e., syn and ack flags set) if the connection request was

for a service using a valid port; or

– a rst packet (i.e., rst flag set) if the connection request was for a non

existing service or invalid port.

• This syn-ack request does not reach the host that initiated the request, thus

no acknowledgment packet will be received.

This will be repeated many times and the sender may use a different port every

20 times to send the packet from, also, he might select a different target port (not

necessary for the attack).

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 50

For the representation of this attack, there are two out of the three sequences

mentioned earlier that are repeated finitely often. These two sequences are the

first and the last one. We use these two sequences as a signature of this attack

and we write the following formula:

(∃x1, x3, x4)R20
[0,1]((∃x2)((∃y5, y9, y10, y11, y12)

P (x1, x2, x3, x4, y5, 0, 0, 1, y9, y10, y11, y12) ∧

¬♦[0,42] (∃z5, z6, z9, z10, z11, z12)

P (x1, x2, x3, x4, z5, z6, 1, 0, z9, z10, z11, z12))) (5.9)

This formula can be read as follows: a sender with address x1 sends a packet to

receiver with address x3 and with port x4 using sender port x2 and the sender is

not sending a packet with ack flag set within 42 seconds; this is repeated for at

least 20 times within a second. The 42 seconds is the assumed timeout for the

third or last TCP handshake arrival. This timeout is operating system dependent

and can be changed by the system administrator.

5.3 The Proposed System

The proposed system is a network based intrusion detection that uses both misuse based

and anomaly based detection methods. The main idea for the proposed system is:

• to use temporal logic for specifications of attacks in misuse based method and for

specifications of the normal behaviour in the anomaly based method.

• to use SDP as the attack detection engine.

We combine the expressiveness, concise representations, and clear semantics of temporal

logic with the temporal ordering and high volume data handling capabilities of stream

data processing technology to develop NIDS. The proposed system is named Temporal

Stream Intrusion Detection (TeStID).

5.3.1 TeStID System Architecture

The system architecture of TeStID is shown in Figure 5.3. It consists of the following

components:

• Data preprocessor: This component captures or sniffs the data that traverses the

network. When it captures the data, it can perform certain preprocessing or

filtering to the data as required by the module that uses it. For example, the

module for detecting attacks against TCP/IP will need to process all the TCP

packets, the data preprocessing will filter out all the TCP traffic and provide it

as a stream to the module. More filtering is possible like filtering by source port

or destination port. If the attack specification designates a certain source port as

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 51

part of the attack signature then it would be better for the performance of the

system if the attack code for this signature checks only the traffic with a source

port matching the one in the signature.

• Attack Signature: All the attack signatures are needed for the misuse based de-

tection component. The signatures are written using the syntax and semantics of

MSFOMTL (see Section 5.1). These are stored in a file and then it will be read

and parsed by the translator.

• The misuse based intrusion detection: After finishing from parsing the attack sig-

natures, the translator will translate each attack signature specified as MSFOMTL

formula into the equivalent Stream SQL language (SSQL). The SSQL code are

ready to run immediately on the StreamBase server and any traffic matching the

attack signature will be reported.

• Protocol Specification: The protocol specifications are needed by the anomaly

based detection component. The normal protocol specifications are written using

MSFOMTL syntax/semantics (similar to the attack signature component). These

will be stored in a file and will be fully parsed by the translator.

• The anomaly based intrusion detection: The parsed protocol specification will be

translated into the equivalent SSQL language. These SSQL codes can be run on

the server and any deviation from the protocol specification are reported.

• Intrusions log and reporting: Provide reporting and logging for the misuse and

anomaly based detection components.

The above are the components for TeStID to handle misuse based and anomaly

based intrusion detection. A detailed explanations of the specification and parsing of

attacks and protocol specifications are given in Chapter 5, 6, and 8. In the subsequent

sections we will introduce the tools used and the translation process from MSFOMTL

syntactical form into SSQL.

5.3.2 Tools And Software Used

In this section we will describe the software and tools that were used to build our

proposed NIDS as described in the previous section. These are as follows:

• TCPDUMP is commonly used free software developed by Lawrence Berkeley

Laboratory to intercept and display packets being transmitted or received over

the network to which a host is attached. All packets (TCP, ICMP, UDP, etc.)

can be captured and not only TCP as the name of the software might indicate.

It can be used online at the command prompt to capture network traffic and

either display or write the captured packets into a file. It can also read previously

captured file as source of input [98].

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 52

Figure 5.3: TeStID System Architecture

• LIBPCAP Also is a common free software library developed by Lawrence Berke-

ley Laboratory. It provides a high level user interface to the TCPDUMP capture

system. It consists of an application programming interface (API) which can be

used by other programs such as IDS to capture network traffic [98].

• JPCAP is a Java library based on LIBPCAP for capturing and sending network

packets [46].

• STREAMBASE is the stream data processing software described in Sections 4.1

and 4.2.

• ANTLR (ANother Tool for Language Recognition). ANTLR is a tool that pro-

vides a framework for constructing recognizers, compilers, and translators from

formal or grammatical descriptions [72]. Using ANTLR allow us to parse the

MSFOMTL formulae and to translate them into SSQL as presented in Chapter 6.

5.3.3 The Benefits of the Proposed System

There are many benefits of the proposed system that we can summarize as follows:

Chapter 5. Temporal Stream Intrusion Detection System (TeStID) 53

• It provides a concise and unambiguous way to formally write the attack specifica-

tions or protocol specifications (details in Chapters 5 and 8).

• It is extensible as in case of new attacks all that is needed is to add the attacks

formula in the formulae files and run the translator again.

• It is scalable.

• The experiments results in Chapter 7 shows that it is a promising solution even

though that we used a development version of StreamBase engine as the server

deployment engine provides much powerful execution speed.

5.4 Summary

This chapter presented the proposed system TeStID. In building the proposed system in

this research we use Many Sorted First Order Metric Temporal Logic (MSFOMTL). The

syntax and semantics of this logic was given. MSFOMTL is very expressive and allows

the specification of complex temporal patterns of events in concise and unambiguous

way. We presented here several syntactic attack patterns and showed how to use them

to represent some known attacks. This chapter also presented TeStID system architec-

ture, descriptions of the tools and utility used for the development, and highlighted the

benefits of the proposed system.

The next chapter provides some background of using temporal logic to query databases.

Also, it presents the mappings of the MSFOMTL syntactical forms defined for attack

patterns into SSQL, the correctness of the approach, and the translation process.

Chapter 6

Temporal Logic to Stream

Queries

In Chapter 5 we proposed the use of Many Sorted First Order Metric Temporal Logic

MSFOMTL to specify complex temporal patterns of events. Also, we presented several

syntactic attack patterns using a fragment of the proposed logic which are sufficient to

express many known attacks. In Chapter 4 we introduced the stream data processing

and its features in handling complex stream of events through in memory processing of

stream queries. Specific details about StreamBase were given as we selected it as the

stream processing engine to develop TeStID.

In this chapter we will present how to map and translate the temporal logic formulae

into SSQL. The outcome of the translation is the efficient stream queries that use the

practically defined temporal patterns in MSFOMTL. The translations here cover the

misuse based detection part of TeStID and the anomaly based detection will be covered

in Chapter 8.

Section 6.1 provides a historical background of using temporal logic to query databases.

In Section 6.2, we explain the view of time in the temporal logic and the temporal

database. Section 6.3 is about the mapping of MSFOMTL into SSQL. The correctness

of this approach is given in Section 6.4. The detail of how the translator is built is given

in 6.5. Finally, a summary is presented in 6.6.

6.1 Background

Time is an important aspect of the real world. Events occur in specific points of time

and time is used to relate their occurrences. Thus, modelling the temporal aspect of the

real world is very important in real-time computer systems. These temporal events are

stored in temporal databases. Temporal databases hold all the information required by

applications where the timing properties are an essential part of the processing. Early

research started more than 30 years ago and temporal logic was seen as the natural choice

for querying temporal databases [14, 75, 86]. This research mainly took three directions.

In the first direction, the research concentrated on extending the existing SQL language

55

Chapter 6. Temporal Logic to Stream Queries 56

with temporal handling capabilities [63, 81]. So, they believed and tried to show that

extending the capabilities of these well known SQL language is sufficient to express the

temporal processing requirements. The researchers in the second directions believed in

developing a temporal logic-based high level query language for temporal specification

and reasoning. This approach attempted to take full advantage of the mathematical and

temporal expressiveness properties of the logic to build an optimized system [29, 104].

The third directions is actually between the two earlier mentioned directions. In this

approach, a high level temporal queries written by the user is translated into temporal

SQL. The work done by Chomicki et al.[14] is the earliest work in this direction in which

temporal logic formulae were translated into a subset of ATSQL, a temporal extension

to SQL-92. The advantage of the approach is that it provides the user with a high level

abstraction to write queries against the temporal database. Practically, these queries

are translated into the equivalent ATSQL language and then executed.

In temporal databases there are different time aspects that could be used. These are

valid time, transaction time, and bitemporal time (the temporal database contains both

the valid time and the transaction time). These times were initially defined in the work

of Snodgrass and Ilsoo [86]. The valid time is defined as the time period where the data

is considered true with respect to the real world. The transaction time is the time in

which the database fact is/was stored. For instance, in a student registration database,

a student (e.g., Abdul) is registered to study from 24/09/2011 till 24/09/2012. So, this

reflects the valid time for the student registration data. This student registration data is

entered on the 01/09/2011 into the database and represents the start of the transaction

time. Both the valid time and the transaction time have a start time and an end time.

If the end time of the valid time is unknown, then it would be filled with infinity (∞)

in the database. Also, the end time can be infinite in the transaction time and it means

that there is no record supersedes the current record. Obviously, the data manipulation

requirements of the application with respect to time, specify the choice of the timing

that will be used.

Stream databases involve a move from static to data streams. Unlike conventional

and temporal databases they are characterized by the requirements of continuous pro-

cessing over flows of data (i.e., streams). The data model is transient (stored in memory)

and not persistent (stored in the database files). Queries are continuously evaluated as

the data flows which are potentially unbounded. When data items arrive, they can be

processed with stream SQL queries and are implicitly ordered by their arrival time or

explicitly by time stamps. These time stamps are allocated or mapped to each arrived

tuple. Chapter 4 of this thesis presented more historical and detailed information about

the stream management systems.

As it was presented in in Section 5.3, in the proposed system the MSFOMTL formulae

will be mapped into SSQL which is the language that can run directly on the StreamBase

server. This mapping will be used to develop the translator. The rest of this chapter

presents the translation process in detail.

Chapter 6. Temporal Logic to Stream Queries 57

6.2 The view of Time

Verification of real-time systems require formal specification of properties with respect

to time. Hence, using quantitative time is suitable for modelling and specifying real-time

systems [4]. Understanding the real system timing aspect influences the abstract view

of time that will be used in modelling with temporal logic.

For intrusion detection systems, the inputs are all the packets that traverse the

network. These packets arrive arbitrarily as time goes in increasing order sequence.

The fact that these packets arrive arbitrarily influence our choice to select a dense-time

model. We can look at these packets as events occurring in linear order. This linear

order can be represented by the set of positive real numbers R+ as we monitor the

traffic online. Thus, in MSFOMTL (Chapter 5), we considered the time to be dense

and it is point based on the arrival time of packets. In the dense-time model there is a

point between any two points, we consider the set of points T in any bounded interval

countable, that is, T ⊂ R+.

This formal model of time must have a corresponding execution model on the target

language. SSQL syntax and semantics supports processing streams of events by their

arrival times, that is, implicitly ordered. In fact it also supports explicit ordering by

time stamp (through system function calls) or even a numeric sequence order number

(through sequence generator function). Any reference to time in this thesis refers to

arrival time. In SSQL, the stream is a sequence Σ of events (tuples), each event is a σ

indexed by its arrival time τi, that is, Σ = (στ0 , στ1 , στ1 , ...). An event στi occurrence at

an arrival point of time τi means στi ∈ Σ.

Each packet in the network is represented as a predicate in temporal logic and as

a tuple in the SSQL. In temporal logic the predicate valuation is linked to its arrival

point, whereas in SSQL, the presence of a tuple is linked with its implicit actual arrival

time point. This will be clear in the discussion of the next section.

6.3 Mapping MSFOMTL into SSQL

A well formed formula written using MSFOMTL needs to be evaluated over finite but

expandable sequence of events as the time advances. SSQL provides the capability of

continuously evaluating a query against flows of data. So, the mechanism of evaluation

is the one needed to conduct run time verification. Basically, these queries are the

mappings of the temporal formulae. The mapping is the process of translating the

syntax and semantics of MSFOMTL into the equivalent syntax and semantics of SSQL.

We consider that the translation is successful if the formula semantic is equivalent

(has the same valuation) in the translated code. SQL was originally developed based on

the influential paper of Edgar Codd [16] of relational model based on first order predicate

logic. In that model, a relation with n degree is a table with n columns, a tuple is a

row of a table, and an attribute is a column of a table. In logic the predicate formally

represents a packet. This predicate name in SSQL is simply a table name (relation in

Chapter 6. Temporal Logic to Stream Queries 58

terms of temporal database). Predicates are mapped to tuples, that is, the terms in the

predicate are mapped to the fields of the tuple. These terms are of different sorts where

each sort has a predefined range. Stream SQL provides temporal extensions to SQL.

We show here how to translate the syntactical forms that we have defined using a

fragment of the MSFOMTL into SSQL. Some related definitions to the mapping process

are as follows:

• Schema in SSQL refers to a relation or a table with n degree. In the proposed

system TeStID (Figure 5.3), a preprocessing of the network data is conducted. So,

the traffic is filtered based on the protocol type and used as an input stream. In

this thesis, we use the TCP/IP protocol as a case study, thus, a schema is defined

for the TCP/IP protocol. The columns of the schema correspond to the sorts

defined in Section 5.1.1.

• A tuple is a row of a table consists of an ordered list of elements.

• Input Stream is the source of input for the stream query. The input stream is

structured according to the schema definition. In TeStID this is implemented as

input Java adapter that uses the TCPDUMP/LIBPCAP API (introduced earlier

in Chapter 5) to capture packets from the network interface in promiscuous mode

(i.e., listening to not only the traffic addressed to the interface but also to all the

traffic seen by the interface).

• Output Stream is the result of the query sent to the I/O device.

• Stream is an intermediate stream. A query processing an input stream can send

its output to an output stream or to an intermediate stream that acts as an input

stream to another query.

Four syntactical forms were defined in Section 5.2. In the following we define the

mapping functions for each of these syntactical forms. These functions map the formulae

of the same syntactical form into the same SSQL constructor and following the same

mapping process.

1. Single packet attacks: the syntactical form of these attacks was represented in

Section 5.2 and is reproduced here:

P ∧Q

where:

• P is first order predicate (representing a packet).

• Q is conjunction of Boolean formulae relating to terms in P.

The mapping process consists of two stages: pre-mapping preparations and the

actual mapping process. In the pre-mapping preparations, the data preprocessing

Chapter 6. Temporal Logic to Stream Queries 59

and the supporting SSQL components needed for the mapping process are han-

dled. In Figure 5.3 preprocessing of data is one component of TeStID in which the

data is preprocessed for further processing. StreamBase in general, recommends

having preprocessing or filtering of data as early as possible in stream process-

ing for more efficient processing (processing only the relevant or filtered tuples

by the later components). Also, in this pre-mapping stage, certain components

need to be defined to support the mapping process. This depends on the target

SSQL constructor for the mapping. The target mapping SSQL constructor for

this syntactical form is the filter constructor. This constructor requires an input

stream, output stream, and it has a ”WHERE” clause for specifying conditions

on the data. The input and output stream is created in the pre-mapping stage as

explained in the following:

• The input for the system is provided by the Java input adapter. This adapter

sniffs packets from the network and all the TCP/IP packets are streamed in

to what is called the inputstream. Subsequently, the inputstream can be used

by other SSQL components. The following is the code generated for this:

CREATE STREAM inputstream ;

APPLY JAVA "TCP_W_Payload" AS TCP_W_Payload (

schema0 = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n

<schema name=\"schema:TCP_W_Payload\">\n

<field description=\"\" name=\"x1\" type=\"string\"/>\n

<field description=\"\" name=\"x2\" type=\"int\"/>\n

<field description=\"\" name=\"x3\" type=\"string\"/>\n

<field description=\"\" name=\"x4\" type=\"int\"/>\n

<field description=\"\" name=\"x5\" type=\"long\"/>\n

<field description=\"\" name=\"x6\" type=\"long\"/>\n

<field description=\"\" name=\"x7\" type=\"bool\"/>\n

<field description=\"\" name=\"x8\" type=\"bool\"/>\n

<field description=\"\" name=\"x9\" type=\"bool\"/>\n

<field description=\"\" name=\"x10\" type=\"bool\"/>\n

<field description=\"\" name=\"x11\" type=\"bool\"/>\n

<field description=\"\" name=\"x12\" type=\"string\"/>

\n</schema>\n"

)

INTO inputstream;

In the above code there are two SSQL commands. One command is used to

create the stream inputstream (CREATE STREAM) and one is used to call

the Java adapter (APPLY JAVA) that will sniff all the TCP/IP packets and

direct the output to the inputstream. Now, the input stream is ready for use

the other components.

Chapter 6. Temporal Logic to Stream Queries 60

• Another supporting SSQL component is the outputstream. This is the com-

ponent that can receive the result of queries and direct them to the I/O

device. The code to create the outputstream is:

CREATE OUTPUT STREAM outputstream;

The second stage is the mapping process. For the mapping, we define the mapping

function (M1) which maps a subset of MSFOMTL (∆) into a subset of SSQL (Θ):

M1 : ∆ −→ Θ

The basic elements of the mapping function M1 are defined as follows:

� ∈ {=, <>,>,<,>=, <=} //� represents a relational operator

� ∈ {+,−, ∗, /} //� represents a mathematical operator

M1 : P (x1, x2, ..., xn) 7→ “ SELECT x1, x2..., xn FROM input stream”

M1 : ∧ 7→ “WHERE ” //the conjunction between P and Q

M1 : ∧ 7→ “ and ” //the conjunction in Q

M1 : ∨ 7→ “ or ” //the disjunction in Q

M1 : ci 7→ ci // where c is constant

M1 : xi 7→ xi // where x is variable

M1 : “(” 7→ “(” // parenthesis is in the Q

M1 : “)” 7→ “)” // parenthesis is in the Q

M1 : regexp 7→ regexp //regexp is regular expression in Java syntax

M1 : xi � 〈cj |xj〉 7→ xi� 〈cj|xj〉

M1 : xi � (xj � 〈xk|ck〉) 7→ xi� (xj � 〈xk|ck〉)

M1 : LF 7→ “ INTO outputstream; ” //line feed

In the above notice that the mapping of “∧” is translated based on its location in

the syntactical form.

Example 6.1: the following formula φ is a typical example of this syntactical form:

(∃x1, x3, x4)(P (x1, ..., x12) ∧ ((x1 = x3) ∧ (x4 = 80 ∨ x4 = 8080))

The mapping to SSQL using the mapping function M1 will be :

Mapping(φ) = M1(P (x1, ..., x12) +M1(“ ∧ ”) +M1(“(”) +M1(“(”) +M1(x1 = x3)

+M1(“)”) +M1(“ ∧ ”) +M1(“(”) +M1(x4 = 80)

+M1(“ ∨ ”) +M1(x4 = 8080) +M1(“)”) +M1(“)”)

Chapter 6. Temporal Logic to Stream Queries 61

The mapped SSQL code is the following:

SELECT * FROM inputstream

WHERE ((x1 = x3) and (x4 = 80 or x4 = 8080))

INTO outputstream;

2. Forward multiple packet attacks: these attacks cover attacks carried in multiple

packets with temporal distances in between. The descriptions for this classification

and syntax were given in Section 5.2 and the syntax is reproduced here:

ϕ ∧ ♦[t1,t2]ψ

or:

ϕ ∧ ¬♦[t1,t2]ψ (6.1)

where:

• ϕ is a first order predicate (representing a packet).

• ψ is either a first order predicate or the same formula as 6.1.

Like in the previous syntactical form, the mapping is done in two stages: pre-

mapping preparations and mapping to the SSQL pattern matching operator. The

pre-mapping stage consists of all the steps mentioned for the pre-mapping of the

first syntactical form in (1) plus another preprocessing step. This step will create

two additional streams by filtering the main stream by the contents of the constant

values of each predicate. The code template for this looks like:

CREATE STREAM Filter1; // creates input stream for first predicate

CREATE STREAM Filter2; // creates input stream for second predicate

SELECT * FROM Inputstream

WHERE xi = cj [and ...] // condition(s) on constant value(s)

INTO Filter1 // in predicate 1

WHERE xi = ck [and ...] // condition(s) on constant value in the predicate

INTO Filter2; // in predicate 2

For the mapping, we define the mapping function (M2) that maps a subset of

MSFOMTL (∆) into a subset of SSQL (Θ):

M2 : ∆ −→ Θ

Notice here that we use different function name (M2) from the previous syntactical

form (M1). The reason is that M1 maps to a different SSQL constructor from

M2. M1 maps to the filter constructor that has no temporal properties (the

first syntactical form does not have metric operator). M2 maps to the pattern

constructor that has temporal properties.

Chapter 6. Temporal Logic to Stream Queries 62

The mapping process to the pattern constructor deals with at least two predicates.

We can define the basic elements of the mapping function M2 as follows:

� ∈ {=, <>,>,<,>=, <=} //� represents a relational operator

� ∈ {+,−, ∗, /} //� represents a mathematical operator

M2 : constant 7→ constant

M2 : xi 7→ xi

M2 : “(” 7→ “(” // parenthesis is in the Q

M2 : “)” 7→ “)” // parenthesis is in the Q

// The first predicate is the first input to the pattern constructor and it is

// aliased as input1 and mapped as:

M2 : P (x1, ..., xn) 7→ “ SELECT input1.x1 as input1 x1, ..., input1.xn as

input1 xn,”

// The second predicate is the second input to the pattern constructor and is

// aliased as input2 and mapped as:

M2 : P (x1, ..., xn) 7→ “ input2.x1 as input2 x1, ..., input2.xn as

input2 xn,”

// The pattern template is constructed from the temporal operator of the

// formula as follows:

M2 : “ ∧ ♦” 7→ “ FROM PATTERN (Filter1 as input1 THEN Filter2 as input2)”

M2 : “ ∧ ¬♦” 7→ “ FROM PATTERN (Filter1 as input1 THEN NOT Filter2

as input2)”

M2 : [t1, t2] 7→ “ WITHIN t2 − t1 TIME ”

// The WHERE clause is constructed from the bound variables which must have

// the same values in all the predicates:

M2 : (bound variables) 7→ “WHERE′′

for example:

(∃x1, x3)P (x1, x2, x3, ..., xn) ∧ ♦[t1,t2]P (x3, x4, x1, ..., xn) 7→

“ WHERE input2.x1 = input1.x3 and input2.x3 = input1.x1 ... ;”

M2 : LF 7→ “ INTO outputstream; ” //line feed

Example 6.2 : We can use the TCP Reset attack which is used as case study in

Chapter 7 and represented with formula 7.1. The formula is reproduced below:

(∃x1, x2, x3, x4, x5)((∃y10, y11, y12)

P (x1, x2, x3, x4, x5, 0, 0, 1, 0, y10, y11, y12) ∧

Chapter 6. Temporal Logic to Stream Queries 63

♦[0,1](∃z10, z11,z12)

P (x1, x2, x3, x4, (x5 + 1), 0, 0, 0, 1, z10, z11, z12))

First we apply the pre-mapping rules for this syntactical forms and this gives the

following SSQL code:

CREATE STREAM inputstream ;

APPLY JAVA "TCP_W_Payload" AS TCP_W_Payload (

schema0 = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n

<schema name=\"schema:TCP_W_Payload\">\n

<field description=\"\" name=\"x1\" type=\"string\"/>\n

<field description=\"\" name=\"x2\" type=\"int\"/>\n

<field description=\"\" name=\"x3\" type=\"string\"/>\n

<field description=\"\" name=\"x4\" type=\"int\"/>\n

<field description=\"\" name=\"x5\" type=\"long\"/>\n

<field description=\"\" name=\"x6\" type=\"long\"/>\n

<field description=\"\" name=\"x7\" type=\"bool\"/>\n

<field description=\"\" name=\"x8\" type=\"bool\"/>\n

<field description=\"\" name=\"x9\" type=\"bool\"/>\n

<field description=\"\" name=\"x10\" type=\"bool\"/>\n

<field description=\"\" name=\"x11\" type=\"bool\"/>\n

<field description=\"\" name=\"x12\" type=\"string\"/>

\n</schema>\n"

)

INTO inputstream;

CREATE OUTPUT STREAM outputstream;

CREATE STREAM Filter1;

CREATE STREAM Filter2;

SELECT * FROM InputAdapter

WHERE x9 = 0 and x8 = 1 and x7 = 0 and x6 = 0

INTO Filter1

WHERE x9 = 1 and x8 = 0 and x7 = 0 and x6 = 0

INTO Filter2

;

In the second stage the mapping processing is conducted. The SSQL code is the

concatenation of the results of the following M2 function calls:

M2(P (x1, ..., xn)) + //P is the first predicate

M2(P (x1, ..., xn)) + //P is the second predicate

M2(∧♦)+

M2 : ([t0, t1])+

Chapter 6. Temporal Logic to Stream Queries 64

M2(bound variables)

The mapped SSQL code is the following:

SELECT input1.x1 AS input1_x1, input1.x2 AS

input1_x2, ...

input2.x1 AS input2_x1, ...

FROM PATTERN (Filter1 as input1 THEN Filter2 as input2)

WITHIN 1 TIME

WHERE input2.x1 = input1.x1 and

input2.x2 = input1.x2

and input2.x3 = input1.x3

and input2.x4 = input1.x4

and input2.x5 = (input1.x5 + 1)

INTO outputstream;

If three predicates are involved, then two pattern operators are used. The first

pattern operator will be mapped as described above. The outcome of the first

pattern is used as the first input to the second pattern operator, and the third

predicate will be used as the second input. If four predicates are involved, then

three pattern operators are needed, and so on.

3. Backward multiple packet attacks: As we describe this classification in 5.2, these

attacks occur when observing an event and a certain event was not present in the

past. The syntax form of this class of attacks is reproduced as:

ϕ ∧�[t1,t2]¬ψ

where:

• ϕ and ψ is a first order predicate (representing packets).

The mapping of this class is more complicated than the previous ones. This is

because the match pattern operator work with forward sliding windows. This

means it can not be used to look for something happen in the past (for some

windows) when certain events occur at the moment. But the requirements in the

formula can be translated using other built in SSQL operators.

As in the previous syntactical forms there are two stages: the pre-mapping and

the mapping process. To explain the the steps of the mapping, a typical example

is given and presentations of the steps are explained.

Example 6.3 : As an example we take the Reset Scan attack that was represented

earlier in formula 5.7 and reproduced as follows:

(∃x1, x2, x3, x4)((∃y5, y6, y7, y8, y10, y11, y12)

P (x1, x2, x3, x4, y5, y6, y7, y8, 1, y10, y11, y12)

Chapter 6. Temporal Logic to Stream Queries 65

∧�[0,300](∃z5, z6, z7, z8, z10, z11, z12)

¬P (x1, x2, x3, x4, z5, z6, z7, z8, 0, z10, z11, z12))

To help in presenting the steps of the mapping process, we use Figure 6.1 which is

a graphical representation of the mapped SSQL code. The steps for the mapping

is as follows:

(a) The pre-mapping stage is similar to the one done in the first syntactical

form. The input stream is created by calling the Java input adapter and

the output stream is created with the CREATE STREAM statement. Here,

an additional pre-mapping step is performed. Each incoming tuple will be

associated with a time stamp value (predicate time). In Figure 6.1 it is rep-

resented by the map operator that maps a time stamp to each tuple comes

out of the input adapter. The code is:

CREATE STREAM out_Map;

SELECT

inputstream.* AS *,

to_milliseconds(now()) AS predicate_time

FROM inputstream

INTO out_Map

;

Figure 6.1: Reset Scan in StreamBase Studio

(b) In the next step preprocessing is performed similar to the preprocessing in

the previous example, that is by the constant values in each predicate. The

only constant in our example formula is x9 and is represented by the operator

Filter1 in Figure 6.1. The SSQL code is as follows:

CREATE STREAM out_Filter1_1;

CREATE STREAM out_Filter1_2;

Chapter 6. Temporal Logic to Stream Queries 66

SELECT * FROM out_Map

where x9 = 1 INTO out_Filter1_1

where x9 = 0 INTO out_Filter1_2

;

We have two filtered streams, one with the the reset flag set and the other one

with the reset flag unset. Further processing from here is split into two. In

one path, all the tuples with flag unset are stored in the memory table with

a sequence number for each tuple that will be the primary key because the

sequence number is unique. In Figure 6.1 this is represented by the Sequence

operator (generate a sequence for each tuple), the Query1 operator inserts

the tuples in the QueryTable (memory table). On the other path, whenever

a tuple arrives with the reset flag set, a query is issued against the memory

table to see if there is any tuple exist with the values equal to the bounded

variables specified for all the predicates in the formula, that is x1, x2, x3, x4.

Also, the tuple arrival time is checked if it is within the last 300 seconds

which is specified in the formula. If there is no tuple that satisfies these

conditions then this means that there was no communication for 300 seconds

when the reset request is received. The operations in this path are represented

in Figure 6.1 by Query2 (to read all the records in the table outer joined with

the incoming stream), Filter2 (to check if no tuple exist within 300), and

the OutputStream (emit the result). Also, there is a maintenance operations

that are performed against the memory table which is represented by the

second path of Filter2 in the diagram, these are the Query3 and QueryTable.

Query3 is a query to read and delete all the records found (this means there

were some communications) or if the arrival time (predicate time) is more

than 300 seconds as we are only concerned with the last 300 seconds. The

following steps go through the mapping for the first path and then for the

second path.

(c) To generate the sequence the following code does this and the output stream

from this step is assigned to out Sequence.

DECLARE sequence1id long DEFAULT 0;

CREATE STREAM gen_seqIdSetter1 (

packetno long

);

CREATE STREAM out_Sequence ;

SELECT sequence1id + 1 AS packetno FROM out_Filter1_2

INTO gen_seqIdSetter1;

SELECT *, sequence1id AS packetno FROM out_Filter1_2

INTO out_Sequence;

UPDATE sequence1id FROM (SELECT * FROM gen_seqIdSetter1)

;

Chapter 6. Temporal Logic to Stream Queries 67

(d) The sequenced stream in the previous step is writing into the memory table.

The memory table needs to be created first and the code for that is:

CREATE MEMORY TABLE QueryTable1

(

packetno long,

predicate_time double,

x1 string,

x2 int,

x3 string,

x4 int

)

PRIMARY KEY (packetno) USING BTREE

SECONDARY KEY (predicate_time,x1,x2,x3,x4) USING HASH

;

Notice here we used the created sequence number and the global bounded

variables in the formula. As the primary key is sorted, the btree index type

is selected (also is the default in StreamBase). The secondary key is optional,

but as we access the memory table later with these keys, using the index

makes it faster. Next, the tuples are inserted. This can be inserted with the

insert or replace SSQL commands. Here we use the replace command as there

is no need to worry if a duplicate record is inserted as it would be replaced.

REPLACE INTO QueryTable (packetno, predicate_time, x1,x2,x3,x4)

SELECT packetno, predicate_time, x1,x2,x3,x4

FROM out_Sequence

;

(e) The second path mentioned in (b) starts when a tuple arrives with the reset

flag set. As we described in (b) the following code is for the Query2 operator:

CREATE STREAM out_Query2 ;

SELECT out_Filter1_1.x1, out_Filter1_1.x2, out_Filter1_1.x3,

out_Filter1_1.x4, out_Filter1_1.x5, out_Filter1_1.x6,

out_Filter1_1.x7, out_Filter1_1.x8, out_Filter1_1.x9,

out_Filter1_1.x10, out_Filter1_1.x11, out_Filter1_1.x12,

out_Filter1_1.predicate_time,

QueryTable.packetno AS tablepacketno,

QueryTable.predicate_time AS tablepredicate_time,

QueryTable.x1 AS tablex1,QueryTable.x2 AS tablex2,

QueryTable.x3 AS tablex3,QueryTable.x4 AS tablex4

FROM out_Filter1_1 OUTER JOIN QueryTable

WHERE QueryTable.predicate_time >=

(out_Filter1_1.predicate_time - 300)

and QueryTable1.predicate_time <=

out_Filter1_1.predicate_time

and QueryTable.x1 = out_Filter1_1.x1

Chapter 6. Temporal Logic to Stream Queries 68

and QueryTable.x2 = out_Filter1_1.x2

and QueryTable.x3 = out_Filter1_1.x3

and QueryTable.x4 = out_Filter1_1.x4

LIMIT 1

INTO out_Query2

;

The following code is for the Filter2 where we check the outcome of the query

if some tuple does not exist within the last 300 seconds. If there are some

records, this means there is no attack and the stream is directed to do the

maintenance step mentioned in (b).

CREATE STREAM out_Filter2 ;

SELECT * FROM out_Query2

WHERE isnull(tablex1) INTO OutputStream

WHERE true INTO out_Filter2

;

(f) In the maintenance step mentioned in (b), Query3 is the query for delete

operation and the code for this is as follows:

DELETE FROM QueryTable

USING out_Filter2_2

WHERE (QueryTable.predicate_time < out_Filter2.predicate_time - 300)

or (QueryTable.x1 = out_Filter2.x1 and

QueryTable.x2 = out_Filter2.x2 and

QueryTable.x3 = out_Filter2.x3 and

QueryTable.x4 = out_Filter2.x4)

;

4. Repetition attacks: As described in Section 5.2, these attacks have no effect unless

they are repeated finitely many times (n) within a specified time window. The

syntactical form of these attacks is reproduced as:

Rn[t1,t2]ϕ (6.2)

where:

• ϕ is any formula of the preceding classifications.

ϕ is translated according to its class. We just need the output of the matched

patterns that will be used as input to the repetition operator. The repetition

operator is mapped using the available aggregate constructors of the SB language

using the repetition number and window time as parameters. As example, suppose

ϕ was the formula in Example 6.3 and suppose the repetition number was “(20)”

and the time window is [0,5]. After we translate the formula as we presented in

Example 6.3, we will use the aggregate select statement to count the number of

packets arriving in a window of size of 20 tuples and window advance by 1. Then

we check to see if the last arrived matched pattern minus the first arrived matched

Chapter 6. Temporal Logic to Stream Queries 69

pattern is less than 5 seconds. The added code to Example 6.3 will be to create

the aggregate pattern window (the size and advancement) and then read the final

output stream (outputStream) in this pattern context:

CREATE STREAM patternSum ;

CREATE WINDOW sumOfPattern(SIZE 20 ADVANCE 1 TUPLES);

SELECT

count() AS Numberpackets,

firstval(predicate_time) AS FirstPatternT,

lastval(predicate_time) AS LastPatternT,

firstval(*) AS input_*

FROM outputstream[sumOfPattern]

INTO patternSum;

CREATE OUTPUT STREAM outputstream2;

SELECT * FROM patternSum

WHERE ((LastPatternT - FirstPatternT) <= 5000) INTO outputstream2

;

The firstval(p_time) and lastval(p_time) represent the time of the first and

the last tuple matched pattern in a current window respectively. We need the the

time between the first pattern and the last to be less or equal to 5 seconds.

6.4 Correctness

In this research we propose the use of Many Sorted First Order Metric Temporal logic

(MSFOMTL) to formally represent attack signatures or normal behaviour. These are

the temporal patterns that we need to match against network traffic. Then, we translate

the MSFOMTL formulae that represent attacks into the SSQL code. Consequently, this

SSQL code is run to detect temporal patterns specified in the original formula in the

incoming events.

Figure 6.2: Steps of Specification Translation into Stream Queries

Initially, the relational database model was introduced by Codd [16]. Later research

studied the relationship between logic and relational databases [78]. In these research

the database can be viewed as a set of first order formula. This view is called the

model-theoretic view and can be describe as:

Chapter 6. Temporal Logic to Stream Queries 70

• A database (DB) is a model (i.e., DB is an interpretation I of a first-order logical

language L).

• A query is a formula α of L.

• A query evaluation is a formula α evaluation with respect to the model (DB).

A query is an expression Qα of the following form:

Qα = [x̄ | Q̄ȳ α(x̄, ȳ)]

where:

• α(x̄, ȳ) is quantifier free first order formula with free variables (x̄, ȳ).

• Q̄ = Q1, Q2, ... where Qi is either existential quantifier ∃ or universal quantifier ∀.

In logical perspective, Qα is evaluated in model M = 〈T , <, I〉 at arrival time τ as:

Eval(Qα,M, τ) = {ā | M, τ |= Q̄ȳ α(ā, ȳ) where ā = x̄I}

In stream query perspective, a stream query (SQ) is evaluated continuously against

stream of incoming events. These incoming events form the temporal models. Each

event is a packet arrived at some moment of τ . The following are some basic mappings

used during the translation from α into SSQL query:

• predicate names are mapped to schema names,each of which is a relation or a table

with n-degree. This schema name refers to packets of type TCP/IP, UDP, ICMP,

etc.;

• interpretations of predicates (P (x̄, ȳ)) are mapped to set of tuples (x̄I , ȳI);

• sorts are mapped to tuple elements (or columns);

• constraints on sorts are mapped to constraints on columns.

At each moment (τ) a running query may return a set of tuple or no tuple at all. Query

valuation (v) is considered true in a given database if it is answered, that is, a set of

tuples is returned. If no tuple returned then the valuation of the query considered false.

So, if α holds in M, then the translated stream query SQ of α in Q must have true

valuation. Thus the evaluation of SQQα in a given database M (DB) is as follows:

Eval(SQQα ,M(DB), τ) = {set of tuples (x̄) for a given ȳ}

As can be seen from Figure 6.2, we write the attack signatures (or normal behaviour

specification) in well formed formula α using MSFOMTL. This formula is translated

Chapter 6. Temporal Logic to Stream Queries 71

into SSQL query. So, the formula evaluation in a model M will be transformed into

query evaluation in M (DB). The translation is correct if the following is true:

Eval(Qα,M, τ) = Eval(SQQα ,M(DB), τ)

In the proposed system, there are four syntactical forms. For each syntactical form, the

translation is correct if the formula interpretation at a moment τ is equivalent to the

stream query valuation at τ of the translated formula with respect to their models. For

the first syntactical form, and using its syntax as defined in formula 5.1, we can write

the following typical syntax formula:

(∃x1 . . . ∃xn)((∃y1 . . . ∃ym)P (x1, ..., xn, y1, ..., ym) ∧ [conditions on x1...xn]) (6.3)

This formula corresponds to query Qα = [x̄, ȳ | P (x̄, ȳ) ∧ [conditions on x̄]] and it will

be translated to the following stream query (SQQα):

SELECT x1,..xn,y1,..ym FROM schemaname

WHERE [Conditions on x1...xn]

INTO output;

To show the correctness of the translation, we compare the interpretation of the formula

and the valuation of the query. We need to show that they produce the same set of tuple

when they evaluated in their respective models. Using the semantics defined in Section

5.1.3, formula 6.3 is evaluated to true at τ if all the sorts including the ones which have

constraints on them have mapping values from the domains of the sorts, that is:

P I(x
Is1
1 , ..., xIsnn , y

Is1
1 , ..., yIsmm) = I(τ) (6.4)

In SSQL according to the semantics discussed in 4.2 the query SQQα will return tuples

with columns that have values satisfying the constraints. Notice that these constraints

within SQQα specify the same constraints on the tuples which make original formula

true. It follows that for the first syntactical form (formula 6.3):

Eval(Qα,M, τ) = Eval(SQQα)

The second syntactical form is defined in formula 5.4. This type of formulae has temporal

operator(s). It will be translated to the pattern operator in SSQL. The pattern operator

accepts inputs and allows us to specify the pattern required between the inputs. The

following is typical syntax for this form:

(∃x1 . . . ∃xn)((∃y1 . . . ∃ym)P (x1, ..., xn, y1, ..., ym) ∧

[¬]♦[t1, t2](∃w1 . . . ∃wm)P (x1, ..., xn, w1, ..., wm) (6.5)

Chapter 6. Temporal Logic to Stream Queries 72

The above formula corresponds to the following query:

Qα = [(x̄, ȳ, x̄, w̄) | P (x1, ..., xn, y1, ..., ym) ∧ [¬]♦[t1,t2]P (x1, ..., xn, w1, ..., wm)

It will be translated into the following typical SSQL query (SQQα):

SELECT input1.x1,...,input1.xn,input1.y1,...,input1.ym, // input1

input2.x1,...,input2.xn,input2.w1,..., input2.wm // input2

FROM PATTERN (input1 THEN [NOT] input2)

WITHIN [t2 - t1] TIME

WHERE input1.x1 = input2.x1 and // the common bound variables

...input1.xn = input2.xn // for both inputs

INTO output;

Now, we need to examine the evaluations of Qα and SQQα w.r.t their models. The for-

mula 6.5 is a WFF of MSFOMTL and it will be evaluated to true if P (x1, ..., xn, y1, ..., ym)

holds now at a moment τ and the second predicate P (x1, ..., xn, w1, ..., wm) holds at a

moment of time between [τ + t1, τ + t2] (or does not hold at all if there is a negation

before this predicate). This means P (x1, ..., xn, y1, ..., ym) holds at τ , that is:

P I(x
Is1
1 , ..., xIsnn , y

Is1
1 , ..., yIsmm) = I(τ) (6.6)

Then, P (x1, ..., xn, w1, ..., wm) must hold (or must not hold if there is a negation) at

τ
′
(τ + t1 ≤ τ

′ ≤ τ + t2) and all the common bound variables (x1, ..., xn) must have the

same values as in the predicate in formula 6.6, such that:

P I(x
Is1
1 , ..., xIsnn , w

Is1
1 , ..., wIsmm) = I(τ

′
) (6.7)

In the translated SSQL query SQQα , the query is evaluated to true if a tuple (x̄, ȳ) is

selected first with columns that have values satisfying the constraints. Notice that these

constraints on tuples are the same constraints specified original formula for this part

6.6 that make the formula true. Then, within the time window mapped from original

formula 6.5, some tuples (x̄, w̄) are selected with columns that have values satisfying

the constraints (or no tuple is selected if there is negation). These tuple(s) is (are)

selected within the specified time window and have the same constraints on sorts that

are specified in original formula 6.7 that make the formula true (or no tuple in case of

negation). It follows that :

Eval(Qα,M, τ) = Eval(SQQα)

The second syntactical form can have two or more predicates. If there are three predi-

cates, then the pattern operator will be used twice. Once with the first two predicates

as inputs and again using the outcome tuple from this pattern as first input and the

third predicates as second input. The second pattern structure and semantics is like the

first pattern. This also true if more patterns are in the translated formula. So, we can

Chapter 6. Temporal Logic to Stream Queries 73

see that, inductively, the correctness are preserved.

The third syntactical form is defined in formula 5.6. A Typical syntax for this formula

is as follows:

(∃x1, . . . , xn)((∃y1, . . . , ym)P (x1, . . . , xn, y1, . . . , ym)

∧�[t1,t2](∃w1, . . . , wm)¬P (x1, . . . , xn, w1, . . . , wm)) (6.8)

The above formula corresponds to the following query:

Qα = [(x̄, ȳ, x̄, w̄) | P (x1, ..., xn, y1, ..., ym) ∧�[t1,t2]P (x1, ..., xn, w1, ..., wm)

In stream SQL the pattern operator does not have past windows. Thus, to implement

this type of formula we used other stream SQL operators. Figure 6.1 is typical example

of this category. You can see that we need ten different operators. The main idea of the

implementation is as follows:

• Create a memory table to store packets.

• Use a memory table to store packets represented by the second predicate bound

variables in the formula.

• When a packet arrives that represents the first predicate, the table is checked for

the the occurrences of the second predicate within the past time window. If there

are no records retrieved then an alarm is raised.

For the proof of correctness we examine the queries that correspond to the predicates in

formula 6.8. The formula will be evaluated to true if P (x1, ..., xn, y1, ..., ym) holds now

at a moment τ and P (x1, ..., xn, w1, ..., wm) did not hold at any moment τ
′

in the past

(τ − t1 ≥ τ
′ ≥ τ − t2). This means P (x1, ..., xn, w1, ..., wm) holds at τ , that is:

P I(x
Is1
1 , ..., xIsnn , y

Is1
1 , ..., yIsmm) = I(τ) (6.9)

and, P (x1, ..., xn, w1, ..., wm) did not hold at (τ − t1 ≥ τ
′ ≥ τ − t2) that is:

P I(x
Is1
1 , ..., xIsnn , w

Is1
1 , ..., wIsmm) = I(τ

′
) (6.10)

In SSQL all the tuples of the past event (representing by the second predicate in formula

6.8) are selected from the input stream and inserted into memory table, the code for

that is as follows:

INSERT INTO QueryTable (predicate_time, x1,...)

SELECT predicate_time, x1,...

FROM stream

;

Chapter 6. Temporal Logic to Stream Queries 74

Another query runs to check if a tuple arrives with the specified constraints values at

τ . These constraints values are the same values for sorts in formula 6.9 that make it

true. If it arrives, then the following query is issued to check if there is at least one

tuple matching the arrived packet and the query table tuple in the same time window

that reflect the time of window in 6.8. Another query is run to examine the result of

the previous query if it is null (no match) then the final query result is true, otherwise

it will be false. The stream queries (simplified) are:

SELECT stream.x1,...

stream.predicate_time,

QueryTable.predicate_time AS tablepredicate_time,

QueryTable.x1 AS tablex1,...,

FROM out_Filter1_1 OUTER JOIN QueryTable

WHERE QueryTable.predicate_time >=

(stream.predicate_time - t2)

and QueryTable.predicate_time <=

styream.predicate_time

and QueryTable.x1 = stream.x1

..

and QueryTable.x4 = stream.x4

LIMIT 1

INTO output1

;

SELECT * FROM output1

WHERE isnull(tablex1) INTO OutputStream

;

These two queries are the translated SSQL for the second predicate in formula 6.8.

Checking the table tuples with constraints originally mapped from formula 6.10 means

if there is no tuple found then only tuple (x̄, ȳ) of the first predicate (formula 6.9) is

returned which makes the valuation of SQQα true.

We can conclude from the above, that:

Eval(Qα,M, τ) = Eval(SQQα)

The fourth syntactical form defined in formula 5.8 and we represent it in the following

typical syntactical form:

Rn[t1,t2]ϕ

Where ϕ can be one of the other syntactical forms (i.e., formulae 6.3, 6.5, and 6.8). The

output of the matched patterns (ϕ) that will be used as input to the repetition operator.

Thus, here, we are concerned with the correctness of mapping this output which will be

the input to the aggregate SSQL. First let us examine the semantics of this according

to MSFOMTL, taking the repetition number as “n” and the time window is [t1, t2], R

Chapter 6. Temporal Logic to Stream Queries 75

holds in a model M at arrival moment τ iff:

M, τ |= Rn[t1,t2]ϕ iff | {τ ′ | (τi + t1 ≤ τ
′ ≤ τi + t2) and

M, τ
′ |= ϕ} | ≥ n

This means there are at least n arrival points τ
′

between t1 and t2 where ϕ is true. In

SSQL having the repetition number as “n” and the time window is [t1, t2], means the

aggregate select statement that the repetition formula above will be mapped to has to

count the number of tuples arriving in a window of size of n tuples and window advance

by 1 (i.e., we count n arrived tuples). Then we check to see if the last arrived matched

pattern minus the first arrived matched pattern is within the time window. The mapped

code will be the following:

CREATE STREAM patternSum ;

CREATE WINDOW sumOfPattern(SIZE n ADVANCE 1 TUPLES);

SELECT

count() AS Numberpackets,

firstval(predicate_time) AS FirstPatternT,

lastval(predicate_time) AS LastPatternT,

firstval(*) AS input_*

FROM outputstream[sumOfPattern]

INTO patternSum;

CREATE OUTPUT STREAM outputstream;

SELECT * FROM patternSum

WHERE ((LastPatternT - FirstPatternT) <= t2 -t1) INTO outputstream

;

The first select or query counts the arrival of n tuples as defined by the window clause.

In addition, it records the time of the first arrival and the last arrival of these n tuples.

The second query checks if the time for these tuples to arrive is between the time window

specified. Tuples is in the logical model are the matched predicates. Comparing the two

semantics we conclude that the predicates holds n times within a specified time window

is equivalent to the query counting n tuples in the same specified time window and vice

versa. We conclude that:

Eval(Qα,M, τ) = Eval(SQQα)

6.5 The Translator Development

In Figure 5.3, the system specifications (attacks or protocol) is specified in MSFOMTL.

This need to be translated into the equivalent SSQL code that can be run on the Stream-

Base server to detect intrusions. The overall view of the process of the translation is

shown on Figure 6.3. There are three main labeled process(es) as shown in the figure.

Chapter 6. Temporal Logic to Stream Queries 76

The process of the translation starts with the process labeled as (1) that is providing

the input text that needs to be translated. The input text is the specifications written

in a flat file using the MSFOMTL syntax. The group of processes labeled as (2) are the

translator processes. The code for these processes was built using ANTLR to recognize

and translate the specifications. This translator first reads the specifications as stream

of characters. This is done using the lexical analyzer which breaks up the input stream

into tokens. Next, the parser analyzer feeds off these tokens to recognize the formula

structure. if there is (are) no error(s) the formula will be translated into SSQL in the

final phase (the emitting phase). The output from the translation can be emitted di-

rectly by executing actions that are positionally triggered during the parse process or

through the use of string templates. String templates are text documents with holes in

it. These holes are filled by the emitter with incoming data values or expressions that

operate on these values. The final process labeled as (3) of the translator is the SSQL

deployment files. These files can be deployed and run on the StreamBase server by the

administrator.

Figure 6.3: TeStID The Translation Process

Technically, the translation process is a mapping from the syntax/semantics of MS-

FOMTL into the syntax/semantics of SSQL. ANTLR allows us to define the desired

syntax of the formulae in a grammar file. This grammar file contains the lexical and

parser rules from which ANTLR will generate the lexical and parser analyzers. The

translation is performed by executing embedded actions within the grammar and emit

output directly or by using string templates. These actions are executed according to its

positions in the grammar file. The description of the general structure of the grammar

file is given in Appendix A.1. Before using ANTLR to generate the parser and translator,

Chapter 6. Temporal Logic to Stream Queries 77

it is important to know precisely how to translate each MSFOMTL formula. In Section

5.2 four syntactical forms are used for the misuse based attacks. During the translation,

each of these forms has its own mapping structure and rules. More syntactical forms

can be defined in the same way if needed in the future. The grammar file for the misuse

is in Appendix A.2. The grammar file contains all the parser and lexical rules. It has

many variables (of scalar types or list arrays) which are assigned values during the actual

parsing of formulae and sent to string template for constructing structured texts. Also

these variables could be used by embedded Java classes for constructing text. These

Java classes are part of the grammar file and it will be included in the generated target

file (i.e., the translator). The translation also is embedded or specified in the grammar

file and a string templates are used to format the output to emit the output. These

string templates are grouped in string group file (see Appendix A.3).

It is very difficult to follow the grammar file and it is much easier to follow the syntax

diagrams provided by ANTLR. These parsing rules are shown in Figures (6.4, 6.5, 6.6,

and 6.7) and is explained as follows:

• tokens or constants: there are tokens defined at the beginning of the grammar file

for later use by the parse rules these are:

tokens {

PLUS = ’+’ ;

MINUS = ’-’ ;

MULT = ’*’ ;

DIV = ’/’ ;

PREDSYM = ’P’;

AND = ’&’;

OR = ’|’;

ALWAYS = ’G’;

ALWAYSP = ’H’;

EVENTUALLY = ’F’;

NEG = ’’;

EQUAL = ’=’;

NOTEQUAL = ’<>’;

GT = ’>’;

GE = ’>=’;

LT = ’<’;

LE = ’<=’;

EXIST = ’E’;

REOCCUR = ’R’;

}

• prog: is the first rule that will be triggered during the parsing process. It just

says that there is one or more formulae in the input file need to be parsed. Each

formula correspond to one attack classification (Section 5.2).

Chapter 6. Temporal Logic to Stream Queries 78

• formulaseq: When reading the formulae from the file each formula is preceded

by “# sid - number” + new line where the white space is ignored and number

is digit(s) (0-9) as in Figure 6.6. The “sid” designate the system identifier for

this attack. Later during the translation it will be attached to the output of the

matched pattern when reporting attacks. Next, the formula should be available

for parsing. Also, it is possible to allow extra new lines in the input file to make

reading easier (for human).

• formula: formula can be in one of four forms: formula1, formula2, formula3, or

formula4. These are the syntactical forms as presented in Sections 5.2.

• formula1: this is for the single packet attack. It has a first order predicate and

conjunction of disjunction Boolean formulae of terms in the predicate.

• formula2: this is the forward multiple packet attack.

• formula3: this the backward multiple packet attack.

• formula4: this is the repetition attacks.

• atomic formula: is first order predicate.

• terms: can be either var,constant, or functions. One function is defined which is

for searching for text in the packet payload. It is a term and it is represented as

function call with regular expression syntax as argument. The regular expression

syntax is defined in the regex rule in Figure 6.6. The regex rule specifies all the

characters that are possible to use in the syntax. Also, a match rule can be part

of the regex rule and it corresponds to the operator of regular expression “match

at the beginning of the line”. The regex syntax here is based on the StreamBase

regular expression function syntax.

• other rules are simple and used by the above rules, like exq for the existential

quantifier, number (one or more digits), digit for a single digit from 0-9, bigchar

for capital letter, smallchar for small letters, newline for the new line or carriage

return, whitespace for space, tab and form feed, and unicode for defining unicode

(used in the regexp rule).

We can give an overall view of how the actual translator work using the grammar

file in A.2 and the templates group file in Appendix A.3. Also, Figure 6.8 is used to

explain how the string templates group file is instructed or called to emit the output

(the translation) from within the grammar file.

When a formula is read from the input file, the parser starts the processing by the

start rule which is prog. Prog is considered the start rule in Antlr terminology and it

just points to the formulaSeq rule. The formulaSeq rule reads the formula and then the

formula rule is invoked. If the formula is of the first syntactical form then rule formula1

is invoked, if it is of the second form, then the second rule formula2 is invoked, and so

Chapter 6. Temporal Logic to Stream Queries 79

F
ig
u
r
e
6
.4
:

P
ar

se
r

R
u
le

s
(1

o
f

4
)

F
o
r

T
h

e
M

is
u

se
B

a
se

d
D

et
ec

ti
o
n

o
f

T
eS

tI
D

.

Chapter 6. Temporal Logic to Stream Queries 80

F
ig
u
r
e
6
.5
:

P
a
rser

R
u
les

(2
o
f

4
)

F
o
r

T
h

e
M

isu
se

B
a
sed

D
etection

of
T

eS
tID

.

Chapter 6. Temporal Logic to Stream Queries 81

F
ig
u
r
e
6
.6
:

P
ar

se
r

R
u
le

s
(3

o
f

4
)

F
o
r

T
h

e
M

is
u

se
B

a
se

d
D

et
ec

ti
o
n

o
f

T
eS

tI
D

.

Chapter 6. Temporal Logic to Stream Queries 82

F
ig
u
r
e
6
.7
:

P
a
rser

R
u
les

(4
o
f

4
)

F
o
r

T
h

e
M

isu
se

B
a
sed

D
etection

of
T

eS
tID

.

Chapter 6. Temporal Logic to Stream Queries 83

forth for the third and the fourth syntactical forms. From within formula1, formula2,

formula3, or formula4 all the other parsing rules that deal with each formula syntax are

invoked and are not shown in Figure 6.8.

During the parsing of rules, there are some actions or string template defined. An

action is a code written in the target language and is included inside curly brackets.

The target language is the language that will be used to write the parser and analyzer

by Antlr. The target language is defined in the grammar file (A.2) in the options

section (language=Java;). String template is defined by a name and argument(s) as:

template name(arg1 = value1, . . . , argn = valuen). An argument can be text from

the input, calculated value with a Java call to methods written as members inside the

grammar files, or a variable defined in a rule and manipulated with action (e.g., formula

counter, Boolean variable, etc.).

In Figure 6.8, When formulaSeq is parsed, the operator “->” directs the translator

to use the string template prog. Prog has two arguments formulae and isFormula1. Prog

plays an important rule as it is the entry to the string template group. In the template

group file Appendix (A.3), it is the first string template defined after the group name

(SB):

group SB;

prog(formulae,isFormula1) ::= <<

<if (isFormula1)>

.

.

<formulae; separator="\n">

>>

So, this template is called with two arguments: isFormula1, which is set to true in

formula1 rule as can be seen from the grammar file and if it is true then some deployment

files will be created for this category of formulae (will be explained later in this section).

The other argument (formulae) is Java list array variable defined at the prog rule level.

When the formula rule is parsed an action is defined to add the computed string template

of formula rule to the formulae list array (prog::formulae.add(formula.st);) (Figure 6.8).

In Antlr, each rule has an associated string template. So, the formula rule has four

possible values: formula1.st, formula2.st, formula3.st, and formula4.st. In the prog

template “<formulae; separator="\n">” is a template string language expression. It

means process each value of the attribute (formulae) where these values are separated

by newline. So, for instance, if the value is formula1.st, then when formula1 rule is

processed, it will invoke the the string template category1. As can be seen in the

grammar and template files category1 has many arguments that are used to write the

translation of the first syntactical form. The details of expressions and statements used

in the template can be found at [108].

Producing Deployment files: As shown in Figure 5.3 the translation process produces

ready for deployment files. It does not just translate the MSFOMTL into the SSQL

code only. It creates all the necessary files needed ultimately to run on the server.

Chapter 6. Temporal Logic to Stream Queries 84

Figure 6.8: Calling The String Template Group File During The Parsing

This means nothing needs to be done after the translation other than copying these

files in the StreamBase server and run them. The number of deployment files depends

on the number of attacks specified in the input file. Also, this number depends on the

syntactical form of the attack. In multiple packet attacks, the SSQL code for each attack

is in one file. For single packet attacks it is much more complicated as to deploy this

type with the ability to use the parallelism features (Section 4.3.1 and 7.2.3), we have to

write the attacks as referenced modules and in StreamBase referenced modules must be

in a file on its own (explained in Section 4.3.1). Also, there will be data preprocessing or

filtering (Figure 5.3). The filtering is done based on the source port or destination port

if specified in the attack (these are commonly used TCP services). This means three files

are generated for filtering: one based on the source ports, one based on the destination

ports, and one for all other streams. So, for single step formulae the deployment files

are:

• main.ssql which is the main file that calls all the other module files and links them.

• allp.ssql, allsrc.ssql, and alldst.ssql are the filtered stream files. These are generated

once for the input file if it contains at least one single step attack formula. They

read all the incoming traffic and output filtered traffic.

• m<number>.ssql where number is the number of formula in the input file. Each

attack module will be written with a unique name as a referenced module. The ref-

erenced modules obtain their input streams from one of the three filtered streams.

The translator will assign the filtered stream to the referenced module automati-

cally based on whether common source or destination port is specified.

Chapter 6. Temporal Logic to Stream Queries 85

The emitting of texts into different files is not possible in the current version of ANTLR.

To overcome this, the output is generated (using the template) with embedded Unix

shell commands. Simply, in this script we echo each piece of the translation into the

designated output file. When executing this file all the deployment files will be generated.

When the string template named (prog) is called and the Boolean variable (isFor-

mula1) is set to true, then three filtering files (allp.ssql, src.ssql, and dst.ssql) will

be be generated that read from the Java adapter which captures the network traffic.

These will be used as input to the first syntactical formula as the requirement of the

formula in terms of input preprocessing filtering needs. The code for this starts from

(<if (isFormula1)>) and ends at (¡endif¿) in the string template group file (Appendix

A.3).

In this section, we give the overall view of how Antlr process the grammar and how

it is linked to the string templates group file to emit the output. The lexer and parser

files that are generated from the grammar by Antlr are about 5300 lines of Java code.

6.6 Summary

This chapter presented the concept and the work related to the process of using temporal

logic to query temporal and stream databases. Many research exist and the temporal

logic seems like the monotonic choice. The view of time, the mapping, and the cor-

rectness of the approach were presented and explained. Finally, an overview of the

development process of building the translator was given.

Using the translator produced, we conducted many experiments for single packet,

single packet with payload, and multiple packets attacks. These attacks were written

using MSFOMTL and translated with the translator built as described in this chapter.

The next chapter has the experiments and results details.

Chapter 7

Experiments and Results

7.1 Experiments Overview

The previous chapters proposed the new methodology and the new system TeStID for

intrusion detections. This method is based on specifying patterns of attack (or normal

behaviour) with temporal logic which will be translated it into SSQL code. This code can

be executed to identify the existence of an attack in the case of misuse based intrusion

detection or the deviation from normal behaviour in the case of anomaly based intrusion

detection.

This chapter presents the experimental work done to demonstrate the capabilities

of the system to detect misuse based attacks. Section 7.1.1 states the experiment aims.

Section 7.1.2 describes the approach and setup used during the experimental work.

Section 7.2 deals with single packet attacks with payload. We run the experiments

on TeStID and two well known open source intrusion detection systems, SNORT [87]

and BRO [50], and the results were compared. Section 7.2.3 provides discussion on the

scalability and performance aspects of TeStID. Also, the experimental work and results

of using the parallel features of StreamBase is given. In Section 7.3, we provide case

studies on multiple packet misuse attacks and illustrate the results of these experiments.

A summary of the work included in this Section was published in [3]. Finally, a summary

is given for this chapter in Section 7.4.

7.1.1 Experiments Aims

This research project introduced a new system for network intrusion detection in a high

volume network environment. The experiments were conducted to address the following

issues:

• Coverage: One of the main performance requirement of any NIDS is the ability of

the system to detect all the attacks that exist in the traffic. This coverage rate of

the tested systems could be measured quantitatively against specified attacks in a

data set.

87

Chapter 7. Experiments and Results 88

• Efficiency: As the traffic volume increases to what extent is the system able to

detect the attacks successfully?

• Performance: The performance of the systems in quantitative and qualitative

terms. Quantitatively, the use of system resources and maximum bandwidth

achieved are the criteria used to compare the tested systems. Qualitatively, the

scalability and performance of the systems are discussed for the tested systems.

Misuse based intrusion detection systems are well known for their superior capa-

bilities to detect known attacks with very low false alarms. This has been proven by

the analysis of the systems that participated in the DARPA IDS evaluation in 1999

[52]. Moreover, the rates of false positives (false alarms) in the misuse based attacks are

usually very low compared to anomaly based NIDS [52, 82]. In our experiments, we are

interested in the false negatives rate (the inability of the system to detect real security

events) in high volume traffic. It was mentioned in the introduction that this rate drops

as the traffic volume increases (see Section 1.1).

7.1.2 The Experiment Setup and Approach

An obvious choice for testing our system is on a real high volume network. However,

whilst this is possible such an unrestricted environment does not allow us to control the

data (e.g., the load) being sent or to know precisely how many attacks are present in

the traffic. For testing NIDS you need to have data that includes some attacks. These

specified attacks must be known to measure the detection rate of the tested system.

Moreover, if we need to do the test repeatedly then working with trace files is much

better choice. Other reasons for not using a real environment are the security of the

environment and the privacy of the users.

The setup of our environment must closely resemble the actual deployment of NIDS.

In all the deployment options mentioned in Section 2.3, the network sensor device re-

ceives a copy of all the traffic that traverse the network. In fact, the way it gets a copy

of the data is irrelevant. Thus, the testing environment is setup as follows:

• The TeStID is installed on an INTEL® Core™ i5 2.26 GHz machine with 4 GB of

memory and a Gigabit Network interface that is capable of running in promiscuous

mode (i.e., listening to all network traffics).

• Another computer (INTEL® Core™2 Quad Processor Q6600 and 2 GB memory)

with a Gigabit Network interface is used to replay the data.

• TCPREPLAY was used to replay the trace files. TCPREPLAY [102] is a tool

that replays libpcap format files at specified speeds onto the network. Libpcap is

a portable C/C++ library for low-level network monitoring used by TCPDUMP

and many other network capturing tools. TCPDUMP/Libpcap are open source

software originally developed at Lawrence Berkeley Laboratory by Jacobson et al.

[42] and it is now maintained by the the TCPDUMP organization or group [98].

Chapter 7. Experiments and Results 89

• A switch to connect the two PCs or simply crossover network cable (see Figure

7.1).

• WIRESHARK the open source network protocol analyzer tool kit was used to

analyze the results and produce graphs [71].

In Section 7.3 the experiments are concerned with multiple packet misuse attacks

against TCP/IP. We used the US Defence Advanced Research Projects Agency (DARPA)

publicly available IDS evaluation data sets [19, 59]. For each multiple packet attack we

implemented we used the corresponding DARPA data test files that contain the attack.

In Section 7.2 the experiments are concerned with the single packet attacks with

payload against the TCP/IP. The DARPA data set does not have an adequate number

of attacks to test these kind of misuse attacks and as far as we know there is no publicly

available data set we knew about exist. So, we customized the data which we prepared

by using a DARPA dump test file and injected some known attacks from the free license

version of Traffic IQ Professional™[39].

Figure 7.1: The Testing Environment

7.2 Single Packet Attacks With Payload Experiment

This section is concerned with single packet attacks. Single packet attacks are attacks

that are launched against a victim machine by sending a single packet. In Section 5.2

we explained this category of attacks and how the intruder can by taking an advantage

Chapter 7. Experiments and Results 90

of a vulnerability in an operating system, an application, or a service in the targeted

machine launch a misuse attack. The main aim is to show TeStID ’s capabilities in deep

packet inspection and pattern matching and comparing the results with SNORT and

BRO.

Previously, in Section 7.1.2 we explained how the test data is prepared for the Single

packet attack experiments. Section 7.2.1 presents explanations of the signatures used

and how it is obtained. In Section 7.2.2, the results and analysis of experimenting with

TeStID are presented. Additionally, we run the same test using SNORT and BRO on

the same testing environment for the purpose of comparison and evaluation. The results

achieved with TeStID using different scalability and performance features, these are

presented and discussed in Section 7.2.3. Finally, a summary is given in Section 7.4.

7.2.1 The Experiment Signatures Preparation

The single packet attacks can be classified into two types. In the first type, only the

packet headers are used (i.e., IP and TCP headers) in the attack. In the second type,

the payload or the data field of the packet is also used. Intuitively, the second type

needs more processing time per packet. This processing time varies depending on how

far from the beginning of the payload field the NIDS needs to match a specific string,

word, or pattern of characters (the payload size in each TCP/IP packet is between 46

and 1500 bytes). For instance, if a packet of payload size 1500 needs to be processed and

if the signature of the attack specifies that the string “CD root” must be matched at the

beginning of the payload , then it will be processed faster than if the signature specifies

that it needs to be checked at the end. Of course, more processing time will be needed

for matching if the signature specifies that “CD root” should be matched anywhere in

the payload.

To achieve the best processing speed possible when handling text patterns match-

ing, SNORT and BRO use regular expressions (regexp). SNORT uses Perl Compatible

Regular Expression (PCRE1) library and BRO follows FLEX’s2 regular expression syn-

tax [50]. TeStID uses Java regular expression available from the StreamBase Language

standard functions library [93]. Using these variants of regular expression syntax to

represent an attack results in different regular expression search strings. This needs

to be coded carefully for testing the attacks with payload for each variant. A single

missing/extra wild card character results in missing an attack.

For this experiment, a selected set of attacks from SNORT official signatures are

used which were developed and tested by the Sourcefire Vulnerability Research Team®
(VRT) [88]. This set consists of 50 attacks specified by SNORT syntax signatures

(see Appendix B.1). Using BRO signature language, we can rewrite the same SNORT

1PCRE is an open source library written in C. The library is a set of functions that implement
regular expression pattern matching using the same syntax and semantics as Perl 5. More information
at http://www.pcre.org.

2Fast LExical analyzer is free software for scanning and recognizing lexical patterns in text. More
information at http://flex.sourceforge.net

Chapter 7. Experiments and Results 91

signatures. BRO has a Python script (snort2bro) that converts SNORT ’s signatures

into BRO signatures. We make use of this to convert from SNORT to BRO. It works

well most of the time but manual intervention is sometimes needed [11]. Appendix

B.2 presents the equivalent BRO signature file used in the experiment. For TeStID

these selected SNORT signatures are written using the proposed MSFOMTL syntax

and semantic in Section 5.1. Each attack is represented by a MSFOMTL formula; the

file that contains all the selected attacks is presented in Appendix B.3.

To illustrate the differences between these three systems in terms of writing or spec-

ifying a signature, let us take an example which is SNORT signature id 255 (sid-255).

In SNORT signature syntax it is specified as follows:

alert tcp $EXTERNAL_NET any -> $HOME_NET 53 (msg:"sid-255 DNS zone transfer

TCP"; flow:to_server,established; content:"|00 00 FC|"; offset:15;

metadata:policy security-ips drop; reference:arachnids,212; reference:cve,

1999-0532; reference:nessus,10595; classtype:attempted-recon; sid:255;

rev:17;)

Explanations for the keywords used in this signature are:

• “alert tcp” means that alert should be generated and it is a signature for TCP.

• “$EXTERNAL NET any” refers to the source IP address which is defined in the

system globally by the variable $EXTERNAL NET and the source port (any port).

• “$HOME NET 53” refers to the destination IP address which is defined globally

in the system by the variable $HOME NET and the port 53.

• “msg:“sid-255 DNS zone transfer TCP”” is the message written into the log file

when an attack occurs.

• the “flow” refers to the direction of the flow.

• “content” is the content in hexadecimal that needs to be checked in the payload. In

SNORT you can specify the contents using hexadecimal or strings or combination

of both.

• “offset” means how many bytes to skip from the beginning of the payload.

• “sid” is the signature id as identified in SNORT.

• the rest keywords are information keywords. A full description of all the available

keywords are available at [17].

The equivalent for this SNORT signature using BRO signature language is:

signature sid-255 {

ip-proto == tcp

src-ip != local_nets

Chapter 7. Experiments and Results 92

dst-ip == local_nets

dst-port == 53

event "DNS zone transfer TCP"

tcp-state established,originator

payload /.{14}.*\x00\x00\xFC/

}

Explanations for the keywords used in this signature are:

• “signature” refers to the signature id for identifying and logging.

• “ip-proto” refers to the protocol type (TCP, UDP, etc.)

• “src-ip” refers to the source IP address. This address could be specific or globally

defined in a variable (local net).

• “dst-ip” refers to the destination IP address.

• the “dst-port” refers to the destination port.

• “event” is part of the logged message when this attack occur.

• “tcp-state” information about the tcp-state at the time of receiving this packet.

• “payload” search string in the payload.

Notice here that not specifying the source port means any port. Also, the content that

need to be search in the payload is typed directly with regexp syntax.

In MSFOMTL, formally the representation of the attack is:

(∃x4, x12)((∃y1, y2, y3, y5, y6, y7, y8, y10, y11)

P (y1, y2, y3, x4, y5, y6, y7, y8, 1, y10, y11, x12)

∧(x4 = 53) ∧ (x12 = f(".{14}. ∗ \u0000\u0000\u00fc. ∗ ")))

In the above formula, the regular expression is expressed as Java regexp syntax. x12 is

the payload and x4 is the destination port. All other arguments are exactly as explained

in Section 5.1.1.

Beside the signature preparation overhead for these three systems, there is the over-

head of the interpretation of the logged events. BRO reports by session and this means

it would report less than SNORT. This means the attacks for the same session is reported

per session not per each packet that trigger the attack in the session. TeStID reports

each packet that carries an attack. Fortunately, BRO and SNORT have the capability

to run in offline mode (reading the dump file directly) and this allows us to establish how

all the existing attacks in the trace are reported by each system. For TeStID this was

done manually by validating the results of running against the test file with the result

obtained by running SNORT and BRO in the offline mode. In addition, WIRESHARK

helped analyzing and verifying the packets inside the trace file.

Chapter 7. Experiments and Results 93

7.2.2 Results and Analysis

The three systems were tested independently using a custom data file. The data files

have in total 3,014,600 packets. The 50 different testing attacks are distributed over 792

packets. This means 792 total instances of the 50 attacks. The time it takes to replay

the file at normal speed (recorded speed) is about 13 hours.

Tested IDS x 2 x 4 x 8 x 16 x 24 x48

BRO v1.5.1 0 0 -1 -28 -78 -85

SNORT v2.9.1 -119 -125 -134

TeStId v1.0 0 0 0 0 0 -1

Table 7.1: Single Packet Attacks Final Results

The final results of testing these three systems are given in Table 7.1. The first

column shows the tested system name. Columns two through seven contain the results

of running each system while using multiple replay speeds of 2, 4, 8, 16, 24, and 48

respectively, to send the packets (blank if no test is done).

The packets size and not the packets number affects the amount of system processing

and resources. Here, each packet header and the payload is checked per signature. To

minimize the number of packets that need to be checked per signature, both SNORT

and BRO (TeStID also) have a prefiltering for the traffic or partitioning the traffic based

on the tcp port or service. Even though this prefiltering helps to minimize the processing

number of packets per signature, the intensity of the traffic to a certain port or service

results in an increase in the demand of the system processing power and the increase of

the rate of missing attacks due to packets dropping. According to Cabrera et al. [12]

the time spent in processing a signature accounts for 75% of the processing time with

mean payload checking time 4.5 times larger than mean header checking time. Figures

7.2 and 7.5 show the intensity of the test data in terms of bits/sec during the experiment

replay speed of 24 and 48, respectively. The intensity in terms of packets can be seen in

Figures 7.3 and 7.4, respectively.

We can see from Table 7.1 that BRO performed well and did not miss any attacks

until the replay speed increased to multiple of 8. The missing number of attacks increased

from 1 at speed of 8 until it reaches 85 at speed of 48. From Figure 7.5 we can see that

there were many spikes at 30 Mbps or close to 30 Mbps at replay speed of 48. At speed

8 most of the spikes are close to 8 Mbps (not possible to show the graph).

SNORT on the other hand missed 119 attacks when the replay speed was 2 and 125

when the replay speed was 4; this is why further replay speed tests were not carried out

for SNORT. At speed 2 the volume was hitting 4.5 Mbps. This was surprising at first

but looking at the work in [21] in which SNORT was missing attacks when hitting 3.1

Mbps with dropped packets rate of 2%, our results for SNORT sound reasonable. Day

and Burns [21] concluded in their experiments that SNORT does not utilize multi-cores

machine.

Chapter 7. Experiments and Results 94

F
ig
u
r
e
7
.2
:

b
its/

sec
a
t

2
4

X

Chapter 7. Experiments and Results 95

F
ig
u
r
e
7
.3
:

p
a
ck

et
s/

se
c

a
t

2
4

X

Chapter 7. Experiments and Results 96

Figure 7.4: packets/sec at 48 x

Figure 7.5: bits/sec at 48 x

TeStID did very well up to the multiple speed of 48. Actually, many implementations

using the fine-grained parallelism features of StreamBase (see Section 4.3.1) were tested.

In the next section, a detailed view of these implementations and the results obtained

are provided.

7.2.3 Scalability and Performance

The volume of traffic in high speed links increases due to many reasons. As organizations

move to higher speed links, the nature of use, the increase in the number of users, and

the increase in the dependencies on network applications may contribute to the increase

of the network traffic as time goes. Obviously, having an intrusion detection system that

Chapter 7. Experiments and Results 97

is scalable, is what the system administrators are looking for. By scalable we mean the

system capabilities to handle an increased volume of traffic without a significant decline

in performance. Here, we consider the different features StreamBase provides to deal

with parallelism.

Figure 7.6: Graphical representation of the program to capture one single packet
attack in the StreamBase studio

In Section 4.3.1 we presented the StreamBase scalability and high performance fea-

tures. StreamBase has a very fine-grained parallel control mechanism for application

scalability. This fine-grained control can be specified at the SSQL command level. In

fact, the final results obtained in Table 7.1 for TeStID obtained by using these fea-

tures. Different parallel control mechanisms were implemented to obtain an optimal

performance. To explain these implementations, we start by showing in Figure 7.6 the

operators needed to capture one single packet attack. It is a simple application with

only four operators, these are:

• Input adapter: This is an input adapter written in JAVA which captures the

packets from the network interface.

• Filter: This filter operator is used to match the required signature.

• Map: This operator maps or appends the attack identifier to the already matched

packet by the filter operator.

• Output: The output stream is dispatched to the standard output device.

The mapping of these operators into the equivalent SSQL code can be seen in Figure

7.7. The reason for showing the graphical representation is that it is much easier to

explain the implementations using the diagram later in the text.

According to the StreamBase manual, the default when processing data in an ap-

plication is that all operations are executed in a predictable order and input tuples are

each processed individually to completion (i.e., no parallel execution). If portions of the

StreamBase application can run without dependencies on the other streaming data in

the application, the overall throughput of the application can be improved by specify-

ing that some portions of the application run in their own processing threads. Running

multiple threads in parallel, can result in faster performance on multiprocessor machines

(for more detail see Section 4.3.1).

Chapter 7. Experiments and Results 98

Figure 7.7: Equivalent SSQL code for the StreamBase application

Two categories of experiments were conducted. The first category is without using

the concurrency and multiplicity options. Setting the concurrency option causes the code

to run in its own thread. Using the multiplicity option we specify how many instances

of the same code will be running. The second category of experiments use these options.

In all these experiments, the customized data (Section 7.1.2) was used.

7.2.3.1 Implementations of Single Packet Attacks With No Concurrency

and Multiplicity

This set of experiments were conducted without using the parallel features of Stream-

Base. Figure 7.8 shows three possible ways of structuring the system to run on the

StreamBase server without using the parallelism features. Table 7.2 shows the results

of running these three different ways of structuring the system. The first column of the

table contains description of the implementation used. The second column contains the

result obtained while replaying the customized data file at multiple speed of 2. The

third and fourth columns contain the results obtained while replaying the customized

data file at multiple speed of 4 and 8, respectively.

In the first row, 50 different program files run each with the SSQL code in Figure 7.7.

The difference between these files were in the filter and mapping codes as they are coded

to detect different attacks. This means each attack has its filter and mapping codes.

The filter contains the stream SQL code for one of the 50 attacks and the mapping code

appends the correct attack identifier to the matched signature. This implementation

Chapter 7. Experiments and Results 99

gives the worst coverage rate as it misses six attacks in the multiple speed of two. The

result makes sense as each program needs to capture the packets with the input adapter

code which in turns calls a JAVA code that interfaces with the network interface and

then the rest of the program processes the packets (tuples) in sequential fashion. This

scenario is the same for all the 50 programs which means each program will have its own

space (parallel region or container in StreamBase terminology). A container is the basic

execution unit running on the StreamBase server. The StreamBase engine suffers from

the overhead of having to interact with all these regions (see Figure 7.8 (a)).

Figure 7.8: Three possible implementations to run single packet attack detection on
the StreamBase server without using the parallelism features. In Figure 7.8(a), each
attack is written as an independent program that runs in its own container. Figure
7.8(b) shows how each attack is an independent program but all programs are using
the same container. The last Figure 7.8(c), all the attacks are written as one program

and run in one container sharing the input adapter.

In the second row, all the 50 attack codes are encapsulated in one program file (i.e.,

one container) and run (Figure 7.8(b)). This implementation gives slightly better results

as it misses 116 attacks in the multiple speed of four. With this implementation the

StreamBase engine done more efficient processing with the decrease of inter process

Chapter 7. Experiments and Results 100

handling overhead. Here, still there are 50 JAVA calls to feed the filter and map of each

attack.

In the last row, all the attacks codes are in one file but only one input adapter

code is used (Figure 7.8(c)). All the filtering codes are reading from the same input

adapter. This means less resources from the system are used. In StreamBase when a

tuple (packet) arrives it must be processed till completion before the next tuple arrives.

This means the input adapter feeds the tuple to the first coded filter and then coded

map of the first attack. If another tuple (packet) arrived, it will be retained in a buffer

until the first processing is finished (more information about execution order in Section

4.3.1). This type of implementation was the best without the use of concurrency and

multiplicity options as it misses 6 attacks at the multiple speed of four.

Implementation X 2 X 4 X 8

50 independent program files -6 -139 -384

50 independent programs in one file 0 -116 -323

one adapter code + 50 filter/map codes 0 -6 -74

Table 7.2: TeStID results without concurrency and multiplicity

The last type of implementation in Table 7.2 is the fairest experiment to compare

with SNORT and BRO (both are single-threaded engines). In this type of implementa-

tion, in TeStID, all the attack detection codes take the input from a shared input adapter

and everything run in single thread (or container). This is similar to SNORT, where

the attack detection engine share the output of the decoder and preprocessor. In BRO,

the output of the packet filtering and capturing are used by all the attack scripts file.

Table 7.3 contains the results of running SNORT, BRO, and TeStID without parallel

operations. BRO misses only one attack in the multiple speed of eight, whereas TeStID

misses 6 at the speed of 4.

Tested IDS X 2 X 4 X 8

BRO v1.5.1 0 0 -6

SNORT v2.9.1 -119 -125 -134

one adapter code + 50 filter/map codes 0 -6 -74

Table 7.3: Running SNORT, BRO, TeStID without parallel operations

These results gave the motivation to investigate the high performance features of

StreamBase and thus a second set of experiments were carried out as follows in the next

section.

Chapter 7. Experiments and Results 101

7.2.3.2 Implementations of Single Packet Attacks With Concurrency and

Multiplicity

Using concurrency and multiplicity options allow us to achieve higher performance. The

understanding of the following definitions will help to understand the set of experiments

in this section:

• Concurrency means part of the code (operator or referenced module (group of

operators)) run in its own thread.

• Multiplicity refer to the number of instances of the code.

• Dispatch style is related to the multiplicity. The dispatch style specifies how each

instance receives tuples in round robin, broadcast, or based on a data value. In

broadcast each instance will receive a copy of the incoming tuple. In round robin

the first tuple goes to the first instance and the second goes to the second and

so on. Based on value is by checking the value against a test condition and then

dispatch to the designated instance for that value.

Figure 7.9: Single Packet Attack Program Using Module

In StreamBase the concurrency can be set, the multiplicity, or both. According to the

StreamBase manual, these options can be used for portions of the application that meet

certain criteria:

• if the code portion is long-running or compute-intensive;

• can run without data dependencies on the rest of the application;

• it would not cause the containing module to be waiting or blocked.

To use these options in our program in Figure 7.6, we need to apply these guidelines.

Also, in SSQL, it is allowed to use these options for modules only. In StreamBase, a

module is a set of operators that include input and output streams, and is written in one

SQL file. Figure 7.9 illustrates the change. The application contains two components:

the input adapter and a referenced module (from here on we refer to them as input

Chapter 7. Experiments and Results 102

code and attack module). The attack module contains the filter, map, and output

operators for a single attack written as a referenced module. For the input code, we

can use the concurrency option but not the multiplicity as it has no input stream. For

the attack module we can use both options. This means that there are eight possible

implementations as can be seen in Figure 7.10. Table 7.4 shows the results of all the

Figure 7.10: All Possible Implementations For The Single Packet Attack With Pay-
load

experiments of this category. In this table (CC) denotes “Concurrency”. (NCC) denotes

“No Concurrency”, (1) denotes single instance or no multiplicity, and (n) denotes n

multiplicity where n is an integer such that n > 1. For instance, the first row shows

the results of running non concurrent input code (NCC) and non concurrent (NCC) 50

attack modules of (1) instance each (i.e., no multiplicity). The following are observations

on these results:

• The first row result is almost the same result obtained previously with no concur-

rency and no multiplicity (the third row in Table 7.2). The difference is that we

implement the attack code as a module, but we did not use the concurrency or the

multiplicity.

• Using input code with concurrency and no concurrency for the attack module gives

better results in general (rows 7-11).

• Row number 9 has the result of best performance where three non concurrent in-

stances of attack modules are used. In rows 7-8 less than three number of instances

used and in rows 10-11 more than three instances used. Increasing the number of

instances above three cause the performance to degrade. This is consistent with

StreamBase rule of thumb that is for best performance the number of instances

should be equal to the number of cores on the machine or less. So, we have three

instances in addition to the input module running on four cores on the testing

machine.

• Using input code with concurrency and multiplicity for the attack module gives us

the best result that exceeded the results of SNORT and BRO which are presented

in Table 7.1.

Chapter 7. Experiments and Results 103

TeStID perform well with parallel input code and running multiple threads of the

attack modules (rows 7-11). Simple graphical representation for this implementation is

in Figure 7.11. When multiplicity option are set, the attack module threads receive input

in round robin fashion, so each thread will process a tuple (packet) and the subsequent

packet will be processed by another thread. This scenario occurs for all the 50 attack

modules. These threads all exist in the main region (no concurrency) which gives the

StreamBase engine less overhead when it was running in parallel (with concurrency) in

the rows 5 and 6.

Finally, the the developer version StreamBase Server was used to run all the exper-

iments. The enterprise edition is an ultra low-latency application server optimized for

high production level performance [92], but the results achieved by using the developer

version was adequate to show the efficiency of using SDP.

Implementation X2 X4 X8 X16 X24 X48

1 NCC Input Code + 50 NCC Attack Module (1) 0 -3 -79

2 NCC Input Code + 50 NCC Attack Module (2) 0 -2 -67

3 NCC Input Code + 50 CC Attack Module (1) -293

4 NCC Input Code + 50 CC Attack Module (2) -299

5 CC Input Code + 50 CC Attack Module (1) -3 -126

6 CC Input Code + 50 CC Attack Module (2) -84 -128

7 CC Input Code + 50 NC Attack Module (1) 0 0 0 -5

8 CC Input Code + 50 NC Attack Module (2) 0 0 0 0 0 -2

9 CC Input Code + 50 NC Attack Module (3) 0 -1

10 CC Input Code + 50 NC Attack Module (5) 0 -2

11 CC Input Code + 50 NC Attack Module (10) 0 -5

Table 7.4: Results of Single Packet Attacks With Concurrency and Multiplicity

7.3 Multiple Packet Attacks Case Studies

As a case study we selected a set of typical multiple packet attacks against the TCP

protocol to test TeStID. The test data used was selected from the DARPA publicly

available IDS Evaluation Data sets [19, 59]. The selected attacks are the DoSNuke (also

known as the WinNuke), TCP syn flood attack (Neptune), and the Reset Scan attack.

With the exception of the TCP Reset attack, all the other attacks were fully explained

in detail and their formal specifications were given in Section 5.2. Here, we give the

detail and the formal specification for the TCP Reset attack.

The TCP Reset attack is a Denial of Service (DoS) attack in which the attacker sends

a forged TCP packet with rst flag set to disrupt a TCP connection [19, 60]. When the

attacker has access to the network and as soon as he sees a TCP connection request he

sends a forged TCP reset packet to disrupt the connection.

Chapter 7. Experiments and Results 104

Figure 7.11: CC Input Code and NCC Attack module With/Without Multiplicity

One way to identify this attack with minimum false alarms is to look for the session

setup and reset request originating from the same machine (the sender). The sequence

of the events are as follows:

- The sender sends a TCP packet with the syn flag set and Initial Sequence Number

(ISN) = x5.

- The attacker will send a forged TCP packet on behalf of the sender with rst flag

and sequence number equal to x5 + 1. To guarantee the success of the attack, the

attacker sends the reset packet as soon as he sees any connection request. In our

test we set the time for this second packet to be sent to one second or less.

The representation of the attack using MSFOMTL is:

(∃x1, x2, x3, x4, x5)((∃y10, y11, y12)

P (x1, x2, x3, x4, x5, 0, 0, 1, 0, y10, y11, y12) ∧

♦[0,1](∃z10, z11,z12)

P (x1, x2, x3, x4, x5 + 1, 0, 0, 0, 1, z10, z11, z12)) (7.1)

Notice that the syn (term 8) in the first predicate is set. In the second predicate the rst

flag (term 9) is set and the ISN (x5) is incremented by 1. Bear in mind that the sooner

the attacker sends the rst packet, the better success rate he gets.

Chapter 7. Experiments and Results 105

7.3.1 Results and Analysis of Multiple Packet Attacks Experiments

The new system was evaluated and analysed using the experimental setup described in

Section 7.1.2 and the DARPA evaluation data files. The result of running the experi-

ments is in Table 7.5.

For each attack name in the first column, one or more evaluation data files were

used. Originally, DARPA recorded these data files inside and outside the local network

everyday for five weeks. The first three weeks contain training data and the last two

weeks contain testing data. Each file is labeled by the date and the place where it was

recorded inside (in) or outside (out) the LAN. For instance, the first row at Table 7.5

shows the results of running the inside TCP dump file of the 1st of April, 1999. The third

column shows the number of packets replayed from the designated day. These replayed

packets are equivalent to the actual total number of packets recorded in each designated

file. In the fourth column, we state the number of attacks captured at normal replay

(as recorded). It takes about 22 hours to replay each file at a rate of 30 to 43 packets

per second depending on the number of packets in each file. The fifth column shows the

number of attacks captured while using the multiplier option to replay the packets at

1350 times the original recorded speed. We compare the results we got with DARPA’s

attack detection results (shown in column 6) and we discovered that the system was

successful in detecting all of the existing attacks in the used test data files.

Attack Data Packets Normal 1350X Actual No.

Name Set Replayed Replay Normal of Attacks

DoSNuke 01/04/99 in 2,356,503 1 1 1

05/04/99 in 2,291,319 2 2 2

06/04/99 in 3,404,824 1 1 1

Neptune 05/04/99 in 2,291,319 1 1 1

06/04/99 out 2,558,481 3 3 3

09/04/99 in 3,393,918 1 1 1

TCPReset 06/04/99 in 3,404,824 2 2 2

07/04/99 in 2,087,942 1 1 1

09/04/99 in 3,393,918 1 1 1

ResetScan 08/04/99 in 3,201,381 2 2 2

Table 7.5: Multiple Packets Attacks Results

A total of seven different files were used in evaluating the new system. Figure 7.12

shows that the average number of packets successfully replayed is between 29,830 and

43,650 packets/sec. The highest or peak number of packets replayed is between 100,000

and 250,000 packets/sec. The time elapsed to replay these files is between 70 and 85

seconds.

The maximum number of bits/sec replayed is between 160,000,000 and 550,000,000.

The average number of bits/sec is between 5,988,352 and 16,467,111 (see Figure 7.13).

Chapter 7. Experiments and Results 106

Figure 7.12: Maximum packets/seconds for each data test file. Both of the in/out
data files of 06/04/1999 were used and they are illustrated in the same graph.

We used WIRESHARK the open source network protocol analyzer tool kit to ana-

lyze and produce these figures [71]. WIRESHARK actually captures and measures the

data at the link layer and above for graphical analysis purposes. Thus, the maximum

bandwidth rate recorded does not include the overhead of the Ethernet physical layer.

Every packet sent over the wire must be preceded by seven preamble bytes and one start

frame delimiter byte [53]. These eight bytes allow a device to recognize a new incoming

frame. In addition, there is an inter-frame gap which is the idle time between frames.

Transmitters are required to wait for a period of transmitting 96 bits (12 bytes) before

transmitting subsequent frames. So, a total of 20 bytes (160 bits) Ethernet overhead

in sending a packet is not accounted for in the calculation of the maximum bandwidth

by WIRESHARK. We can calculate the actual bandwidth by multiplying the number

of packets per second reached at the maximum bits transmitted per sec by 160. From

Chapter 7. Experiments and Results 107

Figure 7.13: Maximum bits/seconds for each data test file

Figure 7.14, we can see that 125,000 packets/sec is sent at 550,000,000 bits/sec which

is the max bandwidth reached. Multiplying 125,000 X 160 gives us 20,000,000. Adding

this to 550,000,000 gives us 570,000,000 bits/sec.

Capturing the specified attacks without dropping packets at rate up to 570,000 bit-

s/sec and 250,000 packets/sec is really a promising solution toward IDS in high volume

traffic networks. For the multiple packet attacks, the number of packets/seconds is

very important. This is because of the nature of the attacks in multiple packet attacks.

These attacks use multiple packets (arriving in specific order) with certain header values.

This means, the more number of packets received by the system the more processing is

needed. In Figure 7.12 we can see that in the first half of the experiments in all the data

files, an average of 60,000 to 80,000 packets/sec were replayed (this is the rush hours as

DARPA recorded the data starting at 8:00 am).

Chapter 7. Experiments and Results 108

Dreger et al. [25] have experimented with running BRO in high volume networks.

BRO is a well known open source NIDS that works with multiple packets attacks.

During their experiments, the best of what BRO achieved with using a file that contains

a denial of service attacks was 35,000 packets/sec, but with the loss of few packets.

They concluded that BRO which is highly stateful intrusion detection systems was using

memory resources to keep state information and these states could cause the system to

run out of memory and crash. Stateful detection means the system is keep tracking

of each established session states. So, the detection can be performed by analyzing

the information contained in the current packet or from previous packets. Indeed, the

system crashed in 2.5 days using normal traffic test data with no attacks.

It was difficult to test BRO in our environment as there are no BRO script files ready

to use that detect the specified attacks in the experiments. Moreover, writing scripts for

these attacks is not easy. Nevertheless, we ran a test using four TCP/IP policy files that

come with the BRO software package. One of these files was the synflood attack; the

others were policy files that deals with multiple packet attacks. A few seconds after the

experiments started and at multiple speed of 1000, the machine running BRO crashed.

This highlights the advantage using TeStID. In TeStID the events are kept in memory

as long as the temporal distances between these events are valid. Actually, during the

experiments less than 400 Mb of memory was used, that is, at the top speed achieved.

We could not perform the same experiments with SNORT because SNORT does not

have the capability to deal with multiple packets attacks. Only signatures for a single

packet attacks with or without payload can be specified. SNORT could be configured

to report single packet attacks that repeat certain times, but it can not report multiple

packets attacks either with or without repetition.

We could not make a comparison to ORCHIDS or MONID which are temporal

logic based NIDSs (see Section 3.2). This is because we could not obtain working

systems. Furthermore, as these systems were presented as the proof of concept, it is

not clear whether these systems have necessary network interfaces to run in a realistic

experimental setup.

7.4 Summary

This chapter presented all the results obtained from testing and evaluating the proposed

system TeStID in misuse attacks. The experiments were conducted to find out the

coverage rate of the system, how efficiently it works in high volume environment, and

the performance. The experiments covered both single and multiple packet attacks. The

experimental setup allow us to replay the data to the sensor machine with the ability

to control the volume of the data and to repeat the test. The well known DARPA 1999

evaluation data files and a customized data were used. Using data files with predictable

baseline allows us to quantitatively measure the tested systems.

Chapter 7. Experiments and Results 109

Figure 7.14: Packets/Sec and Bits/Sec Overlap graph for 05/04/1999 Data File

For the multiple packet attacks, the results for TeStID were promising as it was

able to achieve up to 250,000 packets/sec. SNORT is not capable of detecting multiple

packets, thus no comparison was attempted. BRO can detect multiple packets attacks

and previously in [25] the best result achieved was 35,000 packets/sec with drop of

few packets. Moreover, we tried to run BRO with the highest speed TeStID achieved

using equivalent attacks script files; BRO simply crashed. An advantage of TeStID is

that it does not store session information internally like BRO. The events are kept and

evaluated in specified temporal distance and discarded when it is no longer needed. This

means the events are kept in memory as long as they needed and it will be discarded

atuomatically. ORCHIDS and MONID does not have published results to compare with

and we could not obtain the source codes to experiment with.

For single packet attacks with payload, two sets of experiments were conducted with

and without the data parallelism features. Also, these tests were carried for SNORT

and BRO. The results for TeStID without parallelism was better than SNORT but

worse than BRO. TeStID achieved full coverage rate at the multiple speed of 2 but BRO

achieved it at multiple speed at 4. With the parallelism features, TeStID achieved much

better results as it only missed one attack at the multiple speed of 48. The fine-grained

parallelism features of StreamBase raised the performance substantially. In Day and

Burns [21] experiments, SNORT could not noticeably benefit from multi-cores machine.

Intuitively, this is true for BRO as it is not written to utilize such architecture [50].

In the next chapter, we look at how TeStID can be used to detect attacks using pro-

tocol anomaly which is the second part of this thesis. In this method normal behaviour

of the communication protocol must be specified and any deviation from these normal

behaviour are triggered as possibility of an attack.

Chapter 8

Potential Use of The New System

in Anomaly Based IDS

So far all what we have presented in the previous chapters were about the misuse based

IDS. As we mentioned in Chapter 2 there are two methods that can be used for intrusion

detection. The first method is misuse based and the second is anomaly based. In the

proposed system (Figure 5.3), both of theses methods can be implemented. This chapter

presents and shows how the same approach and techniques we used for developing the

misuse based IDS can also be used to develop protocol anomaly based IDS. This means

the syntax and semantics defined in Chapter 5 will be used for specification of normal

behaviour and then this specification is translated into SSQL using the same tools (Antlr)

presented in Chapter 6.

Section 8.1 presents a basic overview of anomaly based network intrusion detection.

Section 8.2 presents and discusses the specifications of protocols using temporal logic.

The mapping of the formal specifications are presented in Sections 8.3. In Section 8.4,

the correctness of the translations are given. Finally, a summary is provided in Section

8.5.

8.1 Anomaly Based Network Intrusion Detection Overview

Anomaly based NIDSs detect intrusions by monitoring the networks for unusual be-

haviour that differ from normal behaviour. The NIDS resides on the network and ex-

amines network traffics packet per packet in real time, or close to real time, to detect

deviations from normal behaviour. In some research, a model of normal behaviour is

created from the normal ways of network communications, that is, by using the RFC1

protocol specifications [20, 45] (i.e., by enforcing protocol conformance as a way to detect

intrusions). In fact, all the commercial systems mentioned in Section 2.4.2 use protocol

anomaly detection. In other research, the normal behaviour is modelled using the traffic

1Request for Comments (RFC) is a memorandum published by the Internet Engineering Task Force
(IETF) describing methods, behaviours, research, or innovations applicable to the working of the Internet
and Internet-connected systems.

111

Chapter 8. Potential Use of The new System in Anomaly Based IDS 112

characteristics or network behaviour. In these research, different techniques are used

such as statistical methods in which the basic models keep averages of some defined

variables and detect whether thresholds are exceeded based on the standard deviation

of the variable [33, 65]. Other research suggests use of data mining techniques such as

clustering and classification [58].

An interesting use of anomaly based detection is suggested by HP in their Tipping

Point intrusion prevention system [34]. HP tipping point intrusion prevention system

is misuse based and anomaly based NIDS. It provides the ability to detect and prevent

network attacks (i.e., filtering). For known attacks it uses signatures misused based

detection. For unknown attacks they use vulnerability, protocol anomaly, and traffic

anomaly. The vulnerability filters are interesting as it behaves like a network-based

“virtual software patch” to protect downstream hosts from network-based attacks on

unpatched systems. This is useful for organizations with tens or hundreds of systems

to protect vulnerable systems from compromise when patches have not been applied.

The vulnerability filter monitors the traffic and blocks it when a specific sequence of

events is not met completely. The vulnerability filter is concerned with proprietary

application/protocols, whereas the protocol anomaly is concerned with enforcing the

RFC protocol conformance as a way to detect intrusions. HP provides Digital Vaccine

Services that deliver new filters to their customers on regular basis [35].

Figure 8.1 shows the possible sources of modelling normal behaviour in networks as

discussed so far. Actually, the protocol anomaly is a generalization of the proprietary

protocols implementations. This means they only differ by the source of the specifica-

tions. The protocol anomaly specifications are from the RFC and is publicly announced,

but the other is private and not usually announced. Hence from here, we use protocol

anomaly to refer to both. Network protocol is a set of rules and messages that can

be exchanged between computing systems. These rules and messages of protocols are

specified in a set of RFCs. These RFCs describe the syntax, semantics, and the function

of the protocol apart from how they should be implemented. This fact may cause the

existing of many implementations for a protocol such as the TCP/IP (e.g., Windows,

different implementations of Linux/Unix OSs, etc.). This means that an attack may

affect some platforms which are not complied by the RFCs. Also, another reason for

the success of an attack is that the RFC itself has vulnerability. For instance, the Land

attack uses spoofed source address, and so it would be blocked in any implementation

that is totally in compliance with RFC 2267 [64]. This attack simulates a TCP connec-

tion, but use the victim’s own IP address as the source address. The victim computer

then attempts to contact itself in order to respond to the simulated connection request.

If the target systems are not compliant with RFC 2267, then they may crash or lose

services for some time. The point here is that when this attack appeared first time in

1997 it was vulnerability in the original TCP RFCs. So, the attack succeeded on some

platforms because of the weakness in the specification and because it was not accounted

for by the implementers of the affected platforms. In 1998, the RFC 2267 was released

Chapter 8. Potential Use of The new System in Anomaly Based IDS 113

Figure 8.1: Network Anomalies

and the attack affects only the systems that did not implement this specification. It was

resurfaced again in 2005 on Windows 2003 and Windows XP SP2 [83] as these operating

systems were not compliant with the RFC 2267.

In the rest of this chapter, we continue to use the TCP/IP as our case study. For pro-

tocol anomaly, parts of the specifications are used. These parts usually are selected due

to the reason of their frequent use (e.g., session establishments and fragmentation/de-

fragmentation of packets) or due to their critical nature (e.g., secure data transfer and

authentication).

8.2 Protocol Anomaly Specifications

Formally, we use the MSFOMTL to represent parts of the TCP protocol normal specifi-

cation φ and detect any deviation from this specification in the TL models M (incoming

events) (i.e., the protocol specification φ is not satisfied in M (M 6|= φ). As before,

we formally represent a packet as a first order predicate with multi sorts. In TCP/IP

a packet has the total number of fields (IP + TCP) of 34. But using 34-arity predi-

cate in the specification is undoubtedly unpleasant for the users (to read or write) and,

practically, an error prone task. Hence, it is highly desirable to restrict this only to the

required fields. For misuse based intrusion detection since all the attack signatures are

known, it is an easy task to identify all the common used fields. Only if a new attack

is discovered that uses a new field then this field needs to be included. Many of these

signatures have been known for almost 30 years and the chance of using new fields is

Chapter 8. Potential Use of The new System in Anomaly Based IDS 114

unlikely, but is possible. For our experiments, we used 12-arity predicate and it was

enough to formally represent all the involved attacks.

In anomaly based intrusion detection, the situation is totally different. We are not

dealing with attacks but we are dealing with specifications of normal behaviour. Each

function in the specification uses a subset of the fields. But again, using 34-arity is very

cumbersome to use. On the other hand, there is no magic number of fields to use. In

this chapter, we stick to the 12-arity predicate in our examples. This is adequate to

show the concept of using TeStID in anomaly detection.

The protocol specifies steps and formulates messages to be exchanged in some order.

The way these messages are passed is through packets. Also, the formulation of the

packet is self adhere to rules. These rules may specify the acceptable range of some fields

or the allowed values of some fields relative to other field value and so on. We consider

two categories. The first category covers the normal formation of a single packet. The

second category covers the multi step protocol specifications where we model normal

behaviour of a fragment of the protocol. More details about these categories are in the

subsequent sections.

8.2.1 Single Step Anomalies

In the specifications of protocols, a packet is formulated to exchange a formatted message

or information. This information is contained within the fields in such way that they are

understandable by the receiving node. Understandable means the combination or use of

fields altogether adhere to the protocol specification. So, there are some restrictions on

the fields either by limit, range, and relativeness. Limit means there is upper or lower

bound values on that field. Range means that the value for the field must be within a

certain range. Relativeness refers to a value that is based on another field value using

logical comparison and/or arithmetic operation (e.g., x6 ≥ x5+1,). Taking these facts in

consideration, the following pseudo code monitors the traffic for single packet anomalies:

Whenever a packet arrives, do:

1. Check the values of the fields that has restrictions.

2. If any value check in step (1) fails, then report this packet as abnormal.

In logic, a packet is represented as a predicate and the fields are the arguments of the

predicate. These arguments have different sorts. So, whenever there is a predicate we

check that all the arguments with specified conditions on them satisfy their conditions.

Formally this can be represented in logic as the following canonical form:

ϕ→ ψ (8.1)

where:

• ϕ is first order predicate (representing a packet).

Chapter 8. Potential Use of The new System in Anomaly Based IDS 115

• ψ is simple first order formula that can be in one of the following forms:

– simple first order formula in the form (term 〈 =, 6=, <,≤, >,≥ 〉 term);

– simple first order formula [〈 ∧,∨〉 simple first order formula]∗ , where (*)

denotes one or more;

– (formula as any of the previous) → (formula as any of the previous).

For single packet anomaly, the user writes a formula that represents normal behaviour

using formula 8.1. When this formula is not satisfied, an alarm is raised. Thus, we are

looking for ¬(ϕ → ψ). There are two forms that the above formula take according to

the definition of ψ in formula 8.1. These forms are:

• ψ is simple first order formula or nested simple first order formulae with conjunc-

tion or disjunction. So, the negation of formula 8.1 is:

ϕ ∧ ¬ψ (8.2)

Here, ψ could be one or more of the conditions that if not satisfied, then an alarm

is raised.

• ψ takes the form: π → φ, where both π and φ is a formula as described above

(simple first order formula or nested simple first order formulae with conjunction

or disjunction). So, the formula 8.1 after replacing ψ: (ϕ → (π → φ)) and the

negation of the above formula is:

(ϕ ∧ (π ∧ ¬φ)) (8.3)

Here, an alarm is raised if the condition(s) specified in π hold(s) and the condi-

tion(s) in φ do(es) not hold. So, the user is expected to enter the initial conditions

that need to hold in π and the condition(s) that if violated an anomaly alarm is

raised in φ. Example 7.2 is given to clarify this type of specifications.

Example 7.1 : RFC6335 [100] states that the port range is from 0-65535. Also, it states

that the lowest and top bound usually is reserved. So, ports 0 and port 65535 are

officially reserved by IANA [101]. To write this normal specification requirements then

we would make sure that the packet port is between 0-65535 exclusively. This means

there are no packet with a source port (x2) or a destination port (x4) with a value less

than or equal 0 and greater or equal 65535. Formally using the syntactical formula 8.1,

this can be represented as:

((∀x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)

P (x1, x2, x3, x4, x5, x6, x7, x8, x9.x10, x11, x12)→

(((x2 > 0) ∧ (x2 < 65535)) ∧ ((x4 > 0) ∧ (x4 < 65535))))

Chapter 8. Potential Use of The new System in Anomaly Based IDS 116

The above formula represents the normal specification. The negation form that will be

translated into SSQL is obtained using formula 8.2 as follows:

((∃x1, x2, x3, x4, x5, x6, x7, x8, x9.x10, x11, x12)

P (x1, x2, x3, x4, x5, x6, x7, x8, x9.x10, x11, x12)∧

(((x2 ≤ 0) ∨ (x2 ≥ 65535)) ∨ ((x4 ≤ 0) ∨ (x4 ≥ 65535))))

The translated code for the above specification was run against the test data files that

we used in Chapter 7 for the experiments on the misuse based IDS. Interestingly, two

anomalies were raised, and by examining them, we found that they belong to an already

known attack in Snort which is sid-524 (Appendix B.1). This attack uses TCP port 0

for scanning target machines. Port 0 is outside the range of normal specification and

this is why it was caught.

Example 7.2 : As another example for single packet, we use the RFC793 for TCP/IP

specification. In this specification, the reliability of TC/IP is described. One of the

basic requirements for this reliability (not losing data and ability to recover) is assigning

a sequence number to each octet transmitted, and requiring a positive acknowledgment

from the receiving TCP [40]. This means if the ack flag is set (x7) the acknowledgment

number (x6) must be greater than 0. Formally, using 8.1 this is represented as:

(∀x1, x2, x3, x4, x5, x6, x7, x8, x9.x10, x11, x12)

(P (x1, x2, x3, x4, x5, x6, x7, x8, x9.x10, x11, x12)→ (x7 = 1→ x6 > 0))

Applying formula 8.3 gives us the negation of the above formula as follows:

(∃x1, x2, x3, x4, x5, x6, x7, x8, x9.x10, x11, x12)

(P (x1, x2, x3, x4, x5, x6, x7, x8, x9.x10, x11, x12) ∧ ((x7 = 1) ∧ (x6 ≤ 0)))

From these examples, we can see how TeStID can be used in anomaly based intrusion

detection. In the misuse based detection, the user needs to write the signature of the

attack using MSFOMTL, but in anomaly based detection, the user needs to enter the

normal specification.

8.2.2 Multiple Step Anomalies

To implement the protocol RFCs specifications multiple steps are required. Each step

is merely a packet description with a defined message or information. This packet in

connection oriented protocol scheme, such as TCP also refers to a certain state which

is defined in the specification. For intrusion detection, parts of these specifications can

be used for anomaly behaviour detection. This part must be from the observed portion

of the specifications of the protocol which is reflected by the information stored in the

Chapter 8. Potential Use of The new System in Anomaly Based IDS 117

packet captured on the wire. The unobserved parts are specifications within one of the

communication end such as storing connection requests in some data structure (TCP

control block TCB) and using the local connection as pointer to access the TCB for this

connection if needed.

The reporting of malicious traffic in anomaly detection is different from reporting in

the misuse [20]. When and what to report is important and essential for further study

or to analyse the incidents found in the traffic. In misuse based, when the pattern is

matched, then we report this incident with the attack identification. Part or even all

of the packet contents can also be part of the report. But it is clear that if the whole

pattern is not matched, then nothing would be reported. In anomaly based detection, the

situation is different. When a specification has multiple steps, what should be reported

as anomaly? Should we only report when all the steps fail to complete successfully (e.g.,

all steps are successful except the last)? Or, should we report on the failure of the second

step, if not the third step, and so on? For example, suppose we are specifying the normal

three handshake steps of the TCP/IP protocol. These three steps if all successful, then

this is a normal situation. Now, suppose the first step was initiated and the second

step but not the third; or the first step initiated and not followed by the second. These

situations are both abnormal, but do we need to report them? Perhaps, not always,

as it may mean for example that the network connections are congested and nothing

malicious is happening.

We propose two syntactical forms. The first syntactical form is for weak requirements

situation. By weak requirements we mean all the steps must be satisfied. If the last

step is not satisfied, then we raise an alarm. The second syntactical form is for strong

requirements, that is, when each consecutive step must be satisfied or an alarm is raised.

8.2.2.1 Multiple Step Anomalies for Weak Normal Behaviour Requirements

The syntactical form of this classification is the following:

�(ϕ→ ψ) (8.4)

where:

• ϕ is a predicate (representing a packet).

• ψ is either:

– Formula of the form ♦[t1,t2]Pi , where Pi is first order predicate;

– the same form as 8.4.

Using the above syntax, we can write formulae for two or more steps as follows (Pi

denotes first order predicate):

�(P1 → ♦[t1,t2]P2)

Chapter 8. Potential Use of The new System in Anomaly Based IDS 118

�(P1 → �[t1,t2](P2 → ♦[t3,t4]P3))

�(P1 → �[t1,t2](P2 → �[t3,t4](P3 → ♦[t5,t6]P4)))

.

.

. (8.5)

So, the negation forms of the above formulae are:

♦(P1 ∧ ¬♦[t1,t2]P2)

♦(P1 ∧ ♦[t1,t2](P2 ∧ ¬♦[t3,t4]P3))

♦(P1 ∧ ♦[t1,t2](P2 ∧ ♦[t3,t4](P3 ∧ ¬♦[t5,t6]P4)))

.

.

. (8.6)

Each formula of the above will not hold if the last step does not hold. So, the syntax of

formula 8.4 can be used if raising an alarm is required if all the steps fail to complete.

8.2.2.2 Multiple Step Anomalies for Strong Normal Behaviour Require-

ments

If we need to raise an alarm at certain step of the multiple steps specification, then

formula 8.4 can be applied up to that step. For example, if we have four specification

steps and the requirement is to have an alarm when the third and the fifth steps failed,

then we use formula 8.4 twice. Once to represent the first three steps of the specification

and again to represent the full four steps of the specification. If the requirements is to

raise at each step, then we would need to use formula 8.4 three times, that is, for the

first two, first three, and all the four steps. This means we need to write three formulae

that will have syntax similar to the three formulae in 8.5. Also, the negation of these

formulae will have similar syntax to the formulae in 8.6. It would be more convenient if

this requirement of raising alarm at each step can be entered in one formula. For this,

we suggest the second syntactical formula:

�(ϕ→ ψ) (8.7)

where:

• ϕ is a predicate (representing a packet).

• ψ is either:

– Formula of the form ♦[t1,t2]Pi , where Pi is first order predicate;

– Pi ∧ ψ

Chapter 8. Potential Use of The new System in Anomaly Based IDS 119

Using the above syntax, we can write formulae for two or more steps as follows (Pi

denotes first order predicate):

�(P1 → ♦[t1,t2]P2)

�(P1 → ♦[t1,t2](P2 ∧ ♦[t3,t4]P3))

�(P1 → ♦[t1,t2](P2 ∧ ♦[t3,t4](P3 ∧ ♦[t5,t6]P4)))

.

.

. (8.8)

If we take the last formula above to represent four normal steps specification we can

conclude the following about when it will not hold in one of the following cases:

• if P1 holds but not P2;

• if P1 and P2 holding and not P3;

• if P1, P2, and P3 holding and not P4.

We can argue that this way of writing stronger requirements makes it easier in case we

need to raise an alarm at each consecutive steps. In the grammar file, the parse and

lexical rules for these syntax are shown in Figures 8.2, 8.3, and 8.4.

Example 7.3 : In this example we use the TCP simultaneous connection synchronization

specification as described in RFC793 [40]. There are two ways for establishing connec-

tions in TCP as in the RFC, the three-way handshake and the simultaneous connection

synchronization. In the simultaneous connection specification the normal steps between

clients A and B for the process as in the RFC is shown in Figure 8.5. In the following

we specify the equivalent to observable steps 2,3,5,6 in Figure 8.5:

• Client A sends a packet to B with source IP (x1), source port (x2), destination IP

(x3), destination port (x4), initial sequence number = SA, and sets the syn flag.

• Client B just after the time that A is sending the above request, sends a packet

to A with source IP (x3), source port (x4), destination IP (x1), destination port

(x2), initial sequence number = SB, and sets the syn flag.

• Client A receives the synchronization request from B and responds with a packet

that has the acknowledge number = SB + 1 and both the syn and ack flags set.

• Client B receives the synchronization request from A and responds with a packet

that has the acknowledge number = SA + 1 and both the syn and ack flags set.

To formally represents the above specification, we use the syntax form 8.4 as follows:

Chapter 8. Potential Use of The new System in Anomaly Based IDS 120

F
ig
u
r
e
8
.2
:

P
a
rser

R
u
les

(1
o
f

3
)

Chapter 8. Potential Use of The new System in Anomaly Based IDS 121

F
ig
u
r
e
8
.3
:

P
a
rs

er
R

u
le

s
(2

o
f

3
)

fo
r

T
h

e
A

n
o
m

a
ly

B
a
se

d
D

et
ec

ti
o
n

Chapter 8. Potential Use of The new System in Anomaly Based IDS 122

F
ig
u
r
e
8
.4
:

P
a
rser

R
u
les

(3
o
f

3
)

fo
r

T
h

e
A

n
o
m

a
ly

B
a
sed

D
etection

Chapter 8. Potential Use of The new System in Anomaly Based IDS 123

Figure 8.5: Simultaneous Connection Synchronization (RFC793, September 1981)

�((∀x1, x2, x3, x4, SA, SB)

((∃y6, y7, y9, y10, y11, y12)P (x1, x2, x3, x4, SA, y6, y7, 1, y9, y10, y11, y12)→

�[0, 1]((∃w6, w7, w9, w10, w11, w12)P (x3, x4, x1, x2, SB, w6, w7, 1, w9, w10, w11, w12)→

�[0, 1]((∃z9, z10, z11, z12)P (x1, x2, x3, x4, SA, SB + 1, 1, 1, z9, z10, z11, z12)→

♦[0,1](∃k9, k10, k11, k12)P (x3, x4, x1, x2, SB, SA + 1, 1, 1, k9, k10, k11, k12)))))

The above formula is the formula of the specification entered by the user. In the mapping

the above formula is translated into the negative form (formula 8.6 as following:

((∃x1, x2, x3, x4, SA, SB)

♦[0,1]((∃y6, y7, y9, y10, y11, y12)P (x1, x2, x3, x4, SA, y6, y7, 1, y9, y10, y11, y12)∧

♦[0,1]((∃w6, w7, w9, w10, w11, w12)P (x3, x4, x1, x2, SB, w6, w7, 1, w9, w10, w11, w12)∧

♦[0,1]((∃z9, z10, z11, z12)P (x1, x2, x3, x4, SA, SB + 1, 1, 1, z9, z10, z11, z12)∧

¬♦[0,1](∃k9, k10, k11, k12)P (x3, x4, x1, x2, SB, SA + 1, 1, 1, k9, k10, k11, k12)))))

The above formula is for weak normal requirements specification, which means that it

will raise an alert only when the fourth packet or the fourth step of the simultaneous

handshake is missing. This formula was translated into SSQL code and tested using the

custom data file prepared in section 7.1.2. No alert or alarm was raised. In fact, the

custom data file has a total of 88458 TCP connection records, but the simultaneous way

of TCP connection is used to handle simultaneous requests for a connection which occur

rarely.

The interesting finding was when we implemented this example (7.3) as strong re-

quirements, which means that an alert will be raised whenever a step (2,3, or 4) is not

completed. The result was a total of 88458 alerts. This is because all the connections

in the test data file used the three handshake way of tcp connection (explained earlier

in Section 5.2). The three way TCP handshake and the simultaneous TCP handshake

share the first step but they differ in the second step. This take us back to the reporting

Chapter 8. Potential Use of The new System in Anomaly Based IDS 124

issue of anomaly behaviour in multiple step specifications that we discussed earlier in

this chapter.

8.3 Protocol Anomaly Formulae Mapping

To map the syntactical anomaly formulae defined in the previous section, we use the

negation of the formula entered by the user.

Single Packet Anomaly : The negated forms we are going to map are the negations

of formula 8.1:

(ϕ ∧ (ψ ∧ ¬π))

and

(ϕ ∧ ¬π)

where:

• ϕ is a first order predicate.

• ψ and π is conjunction or disjunction of Boolean formulae built of the terms of ϕ.

For the mapping we are concerned with mapping a subset of MSFOMTL (∆) into a

subset of SSQL (Θ), the mapping function (M) is:

M : ∆ −→ Θ

We use the same definition for schema, tuple, input stream, output stream, and stream

as in Section 6.3. The basic elements of the mapping function is defined as before:

� ∈ {=, <>,>,<,>=, <=} //� represents a relational operator

� ∈ {+,−, ∗, /} //� represents a mathematical operator

M1 : P (x1, x2, ..., xn) 7→ “ SELECT x1, x2, ..., xn FROM input stream”

M1 : ∧ 7→ “WHERE ” //the first conjunction

M1 : ci 7→ ci // where c is constant

M1 : xi 7→ xi // where x is variable

M1 : xi � 〈cj |xj〉 7→ xi� 〈cj|xj〉

M1 : ¬(xi � 〈cj |xj〉) 7→ (xi�̄〈cj|xj〉)

M1 : xi � (xj � 〈xk|ck〉) 7→ xi� (xj � 〈xk|ck〉)

M1 : (¬(xi � (xj � 〈xk|ck〉)) 7→ (xi�̄(xj � 〈xk|ck〉))

M : ¬(BFi ∧BFj) 7→ (¬BFi or ¬BFj) // BF=Boolean formula of terms

M : ¬(BFi ∨BFj) 7→ (¬BFi and ¬BFj)

M1 : LF 7→ “ INTO outputstream; ” //line feed

Chapter 8. Potential Use of The new System in Anomaly Based IDS 125

As an example for mapping, we take the the example 7.1 from Section 7.2.1, and its

negation form is as follows:

P (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)

∧ ¬(((x2 > 0) ∧ (x2 < 65535)) ∧ ((x4 > 0) ∧ (x4 < 65535)))

Following the above rules, the mapping is as follows:

P (x1, ..., x12) 7→ SELECT x1, ..., x12 FROM inputstream

∧ 7→ WHERE / ∗ this is the first conjunction in the form

¬(((x2 > 0) ∧ (x2 < 65535)) ∧ ((x4 > 0) ∧ (x4 < 65535))) 7→

(¬((x2 > 0) ∧ (x2 < 65535)) or ¬((x4 > 0) ∧ (x4 < 65535))) 7→

((¬(x2 > 0) or ¬(x2 < 65535) or ¬(x4 > 0) or ¬(x4 < 65535))) 7→

(((x2 <= 0) or (x2 >= 65535) or (x4 <= 0) or (x4 >= 65535)))

The final mapping or SSQL code is:

SELECT x_1,...,x_12 FROM inputstream

WHERE (((x_2 = 0) or (x2 >= 65535) or (x4 <= 0) or (x4 >= 65535)));

Multiple Steps Anomaly : The negation form of this syntactical form (formula 8.6) is

similar to what has been defined for the forward multiple packet attacks (Section 6.3).

The pattern operator(s) will be used and the mapping function basic elements are the

same.

8.4 Correctness

In this chapter, three syntactical forms have been proposed for specification of normal

behaviour. The correctness of the translations of these forms follows from the proof

of correctness presented in Section 6.4 of other syntactical forms used for misuse based

intrusion detection. Here, for the translation, we use the negation form of the syntactical

formula. So, we need to show the correctness of the translations of these negation forms.

The first syntactical form is the single step anomaly (formulae 8.2, 8.3). These

syntactical forms have a predicate and some constraints on some of its arguments. This

will be mapped to the filter operator exactly as the first syntactical form defined for

misuse formula 5.1. The formula 5.1 has the same structure, that is, a predicate and

some constraints on its arguments. So, the correctness of the syntactical form (formulae

8.2, 8.3) follows from the proof in Section 6.4 for formula 5.1.

The second syntactical form (formula 8.6) is for multiple step weak normal behaviour

requirements. This form will be translated into the pattern operator exactly as the

forward multiple packet attacks (formula 5.4). Thus the proof follows the proof in

Section 6.4 for formula 5.4.

Chapter 8. Potential Use of The new System in Anomaly Based IDS 126

The last syntactical form is for the multiple step strong requirements (formula 8.8).

This form is implemented by using formula 8.6 for weak normal behaviour requirements

repeatedly. For example, if this formula is used for three steps specification, then formula

8.6 will be used twice (i.e., reporting the second and third steps failures). This syntax

was proposed to make it easier for the user, that is, if he wants to report the failure of

each step. The proof of correctness follows from the proof for the formula 8.6.

8.5 Summary

This chapter explored the potential use of the proposed approach of using temporal

logic and stream data processing in anomaly based network intrusion detection. A basic

overview of anomaly based network intrusion detection is presented. Specifically, the use

of the proposed system for protocol anomaly based detection is considered. In protocol

anomaly based intrusion detection, deviations from protocol normal specifications are

considered suspicious activities. Parts of protocol specifications is normally used. The

specifications can be from RFCs, or from proprietary or vendor specific protocol such

as Microsoft DCOM protocol. Some syntactical forms for normal specifications are

provided with examples. The mapping of these syntactical form into SSQL presented

and explained. Finally, the correctness of the translations of the syntactical forms are

given.

Chapter 9

Conclusion

In this chapter a summary of the research conducted is presented in Section 9.1. The

scientific contributions of the research and the significance of the proposed novel ap-

proach to develop network based intrusion detection system are presented in Section

9.2. Finally, future work and further research opportunities are suggested in 9.3.

9.1 Summary

An intrusion detection system is one of the security mechanisms that must exist in

any IT infrastructure to protect connected systems and networks. The current network

intrusion detection systems can not keep up with the constant increase of network speed.

The buffers in these systems are filled up with packets very quickly and are dropped

before they can be processed. To address this issue of IDS in high volume networks,

the research of this thesis has used a combination of temporal logic and stream data

processing to develop network based IDS. The main research question is: “Can stream

data processing technology be utilised in conjunction with temporal logic to develop

a system that works efficiently and accurately in high volume networks?” How the

proposed system efficiently uses the available resources and accurately detects all attacks

(coverage rate) were addressed in this research.

The research to develop TeStID involves the use of temporal logic for specifications

of attacks in misuse based method and for specifications of the normal behaviour in the

anomaly based method, the process of mapping logical specifications into SSQL, and the

use of SDP as the attack (or normal behaviour) detection engine. As part of the system

an automated translator was built to parse MSFOMTL formulae and then translate into

SSQL.

The abstract view and modelling of the system presented in Chapter 5. Also, the

syntax and semantics of Many Sorted First Order Metric Logic which is used to specify

attack patterns or normal behaviour of parts of protocols was defined in this chapter.

Chapter 4 presented an overview of SDP technology and the proposed system architec-

ture. The mapping of temporal logic into stream queries and developing the translator

were explained in Chapter 6. The experimental setup and results were presented in

127

Chapter 9. Conclusion 128

Chapter 7. Finally, potential use of the system in anomaly based intrusion detection

was given in Chapter 8. In the next section, the contributions of the thesis and findings

are presented.

9.2 Contribution

Combining the use of temporal logic and stream data processing technology gives a

promising solution and a valuable contribution to the field of intrusion detection. The

experiments carried out involved testing and comparing with Snort and Bro on the

same machine configuration and with the same data sets. The following highlights the

findings:

• TeStID was more efficient than Bro and Snort as it achieved higher bandwidth

with full coverage rate. In some of the experiments we used the parallel features

of StreamBase and these features show that it can boost the performance of the

system. This has been achieved using the developer edition and not the enterprise

edition. The StreamBase enterprise edition (or StreamBase Server) is an ultra

low-latency application server optimized for high production level performance

[92], but the results achieved by using the developer version was adequate to show

the efficiency of the proposed system.

• Using temporal logic for the specifications has the advantages of giving the users

an easy, concise, unambiguous, and transparent (abstract from technical details)

way to specify attacks or normal behaviour.

• TeStID is easy to maintain. To add, modify, and delete attacks all what is required

is to modify the formulae in the text file and run the translator.

• When the experiments run at the top achievable speed by the hardware using

TCPREPLAY with top speed option (close to 1 Gbits/Sec), Bro crashed, whereas

TeStID did not crash but the coverage rate was dropped. Bro is stateful NIDS

and maintains information about connections. On the other hand TeStID only

maintains information as needed, that is, as long as the temporal relations between

events hold.

The above results encourage the use of this approach to develop a full intrusion

detection system. Although StreamBase system was used, the same design and concepts

can be used with other commercial or open data stream systems. Further work and more

research opportunities are discussed in the next section.

9.3 Future Work and Research

In this section we propose further improvements and research opportunities following

from this research.

Chapter 9. Conclusion 129

• Extending the work on misuse based NIDS for other protocols (ICMP, UDP, etc.)

should not be difficult following the work in this thesis.

• Extending the initial work on anomaly protocol intrusion detection using TCP and

covering other communication protocols.

• NIDS uses network packets as source of input. The packet structure covers all

the layers of the network including the application layer. Thus writing application

specific intrusion detection is further extension to this research.

• In this research, temporal logic formulae were mapped to SSQL. An alternative

research opportunity would be to have executable temporal logic using the stream

engine low level interface to interact directly with the internal data structure and

streaming handling API.

• Correlated distributed events attacks are new attacks that intruders launch to

avoid normal IDS. The events may be from several distributed resources such as

logs and alerts from firewalls, intrusion detection systems, operating systems, or

other software. A research opportunity is to study dealing with these type of

attacks with the proposed system.

• Further evaluation of TeStID is to install it on an appliance and compare it to

appliance based IDSs.

• Using other techniques with SDP for intrusion detection can be investigated such

as using neural networks, fuzzy logic, probabilistic logic, etc.

• Detecting intrusions in encrypted traffic.

• Formulating specifications in temporal logic from normal traffic for application or

protocol.

Bibliography

[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J. Hwang,

W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik.

The design of the Borealis stream processing engine. In Proceedings of the Second

Biennial Conference on Innovative Data Systems Research (CIDR’05), Asilomar,

CA, Jan. 2005.

[2] C. Aggarwal and P. Yu. Outlier detection for high dimensional data. In Proceedings

of the ACM SIGMOD International Conference on Management of Data, Santa

Barbara, CA, USA, 2001.

[3] A. Ahmed, A. Lisitsa, and C. Dixon. A misuse-based network intrusion detection

system using temporal logic and stream processing. In P. Samarati, S. Foresti,

J. Hu, and G. Livraga, editors, Proceedings of the 5th International Conference

on Network and System Security, pages 1–8, Milan, Italy, 2011. IEEE. ISBN

978-1-4577-0458-1.

[4] R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In REX

Workshop, pages 74–106, 1991.

[5] J. Anderson. Computer security threat monitoring and surveillance. Technical

report, James P. Anderson Co., 1980.

[6] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein,

and J. Widom. STREAM: The Stanford stream data manager. In SIGMOD

Conference, page 665, 2003.

[7] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani,

U. Srivastava, and J. Widom. STREAM: The Stanford data stream management

system. Technical Report 2004-20, Stanford InfoLab, 2004. URL http://ilpubs.

stanford.edu:8090/641/.

[8] D. Barbara, N. Wu, and S. Jajodia. Detecting novel network intrusions using

bayes estimators. In Proceedings of the First SIAM Conference on Data Mining,

Chicago, IL, USA, 2001.

131

http://ilpubs.stanford.edu:8090/641/
http://ilpubs.stanford.edu:8090/641/

Bibliography 132

[9] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-

cation. In Proceedings of the VMCAI’04, 5th International Conference on Veri-

fication, Model Checking and Abstract Interpretation, pages 44–57, Venice, Italy,

2004.

[10] L. Bic and R. L. Hartmann. AGM: A dataflow database machine. ACM Trans.

Database Syst., 14(1):114–146, Mar. 1989. ISSN 0362-5915. doi: 10.1145/62032.

62037. URL http://doi.acm.org/10.1145/62032.62037.

[11] BroWiki. Reference Manual: Signatures. http://www-old.bro-ids.org/wiki/

index.php/Reference_Manual:_Signatures, 2009. Accessed on 02 January

2013.

[12] J. Cabrera, J. Gosar, W. Lee, and R. Mehra. On the statistical distribution of

processing times in network intrusion detection. In Decision and Control, 2004.

CDC. 43rd IEEE Conference on, volume 1, pages 75 – 80 Vol.1, dec. 2004. doi:

10.1109/CDC.2004.1428609.

[13] CERT/CC. CERT® Advisory CA-2001-19 “Code Red” Worm Exploiting Buffer

Overflow In IIS Indexing Service DLL. http://www.cert.org/advisories/

CA-2001-19.html, 2001.

[14] J. Chomicki, D. Toman, and M. H. Böhlen. Querying ATSQL databases with

temporal logic. ACM Trans. Database Syst., 26(2):145–178, June 2001. ISSN

0362-5915. doi: 10.1145/383891.383892. URL http://doi.acm.org/10.1145/

383891.383892.

[15] CISCO. Cisco IOS Intrusion Prevention System (IPS). http://www.cisco.com/

en/US/products/ps6634/index.html, 2012. Accessed on 02 January 2013.

[16] E. F. Codd. A relational model of data for large shared data banks. Commun.

ACM, 13(6):377–387, 1970. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/

362384.362685.

[17] K. J. Cox. Managing Security with Snort and IDS Tools. O’Reilly & Associates,

Inc., Sebastopol, CA, USA, 2004. ISBN 0596006616.

[18] C. Cranor, T. Johnson, and O. Spataschek. Gigascope: A stream database for

network applications. In SIGMOD, pages 647–651, 2003.

[19] R. Cunningham, R. Lippmann, J. Fried, S. Garfinkel, R. Kendall, S. Webster,

D. Wyschogrod, and M. Zissman. Evaluating intrusion detection systems without

attacking your friends: The 1998 DARPA intrusion detection evaluation. Technical

report, Defense Advanced Research Projects Agency, Department of US Defense,

1998.

http://doi.acm.org/10.1145/62032.62037
http://www-old.bro-ids.org/wiki/index.php/Reference_Manual:_Signatures
http://www-old.bro-ids.org/wiki/index.php/Reference_Manual:_Signatures
http://www.cert.org/advisories/CA-2001-19.html
http://www.cert.org/advisories/CA-2001-19.html
http://doi.acm.org/10.1145/383891.383892
http://doi.acm.org/10.1145/383891.383892
http://www.cisco.com/en/US/products/ps6634/index.html
http://www.cisco.com/en/US/products/ps6634/index.html

Bibliography 133

[20] K. Das. Protocol Anomaly Detection for Network-based Intrusion Detection.

http://www.sans.org/reading_room/whitepapers/detection/protocol_

anomaly_detection_for_networkbased_intrusion_detection_349?show\

unhbox\voidb@x\bgroup\let\unhbox\voidb@x\setbox\@tempboxa\hbox{3\

global\mathchardef\accent@spacefactor\spacefactor}\accent223\

egroup\spacefactor\accent@spacefactor49.php&cat=detection, 2002.

Accessed on 02 January 2013.

[21] D. Day and B. Burns. A performance analysis of Snort and Suricata network

intrusion detection and prevention engines. In Proceedings of the ICDS’11, 5th

International Conference on Digital Society, pages 187–192, Gosier, Guadeloupe,

France, 2011.

[22] H. Debar, M. Becker, and D. Siboni. A neural network component for intrusion

detection system. In Proceedings of the 1992 IEEE Computer Society Symposium

on Research in Security and Privacy, pages 240–250, Los Alamitos, CA, USA,

1992. IEEE Computer Society Press.

[23] S. Dharmapurikar, J. Lockwood, and M. Ieee. Fast and scalable pattern match-

ing for network intrusion detection systems. IEEE Journal on Selected Areas in

Communications, 24:2006, 2006.

[24] C. Dowell and P. Ramstedt. The ComputerWatch data reduction tool. In Proceed-

ings of the 13th National Computer Security Conference, Washington DC, USA,

1990.

[25] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Operational experiences

with high-volume network intrusion detection. In Proceedings of the SIGSAC: 11th

ACM Conference on Computer and Communications Security (CSS’04), pages 2–

11, 2004.

[26] Endace Ltd. EndaceAccess™. http://www.endace.com/, 2012. Accessed on 02

January 2013.

[27] Enterasys Secure Networks. Enterasys® Intrusion Prevention Sys-

tem: Post-Connect threat analysis, prevention and containment.

http://www.enterasys.com/products/advanced-security-apps/

dragon-intrusion-detection-protection.aspx, 2012. Accessed on 02

January 2013.

[28] EsperTech Inc. Esper - event stream and complex event processing for

java. http://esper.codehaus.org/esper-3.3.0/doc/reference/en/html_

single/index.html, 2009. Accessed on 02 January 2013.

[29] D. M. Gabbay and P. McBrien. Temporal logic & historical databases. In Pro-

ceedings of the 17th International Conference on Very Large Data Bases, VLDB

http://www.sans.org/reading_room/whitepapers/detection/protocol_anomaly_detection_for_networkbased_intrusion_detection_349?show\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {3\global \mathchardef \accent@spacefactor \spacefactor }\accent 22 3\egroup \spacefactor \accent@spacefactor 49.php&cat=detection
http://www.sans.org/reading_room/whitepapers/detection/protocol_anomaly_detection_for_networkbased_intrusion_detection_349?show\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {3\global \mathchardef \accent@spacefactor \spacefactor }\accent 22 3\egroup \spacefactor \accent@spacefactor 49.php&cat=detection
http://www.sans.org/reading_room/whitepapers/detection/protocol_anomaly_detection_for_networkbased_intrusion_detection_349?show\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {3\global \mathchardef \accent@spacefactor \spacefactor }\accent 22 3\egroup \spacefactor \accent@spacefactor 49.php&cat=detection
http://www.sans.org/reading_room/whitepapers/detection/protocol_anomaly_detection_for_networkbased_intrusion_detection_349?show\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {3\global \mathchardef \accent@spacefactor \spacefactor }\accent 22 3\egroup \spacefactor \accent@spacefactor 49.php&cat=detection
http://www.sans.org/reading_room/whitepapers/detection/protocol_anomaly_detection_for_networkbased_intrusion_detection_349?show\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {3\global \mathchardef \accent@spacefactor \spacefactor }\accent 22 3\egroup \spacefactor \accent@spacefactor 49.php&cat=detection
http://www.endace.com/
http://www.enterasys.com/products/advanced-security-apps/dragon-intrusion-detection-protection.aspx
http://www.enterasys.com/products/advanced-security-apps/dragon-intrusion-detection-protection.aspx
http://esper.codehaus.org/esper-3.3.0/doc/reference/en/html_single/index.html
http://esper.codehaus.org/esper-3.3.0/doc/reference/en/html_single/index.html

Bibliography 134

’91, pages 423–430, San Francisco, CA, USA, 1991. Morgan Kaufmann Pub-

lishttp://tools.ietf.org/html/rfc6335hers Inc. ISBN 1-55860-150-3. URL http:

//dl.acm.org/citation.cfm?id=645917.672332.

[30] A. Ghosh and A. Schwartzbard. A study in using neural networks for anomaly

and misuse detection. In Proceedings of the Eighth USENIX Security Symposium,

pages 141–151, Washington DC, USA, 1999.

[31] L. Golab and M. T. Özsu. Issues in data stream management. SIGMOD Rec., 32

(2):5–14, June 2003.

[32] M. Grzenda. Towards the reduction of data used for the classification of network

flows. In E. Corchado, V. Snášel, A. Abraham, M. Woźniak, M. Graña, and

S. Cho, editors, Hybrid Artificial Intelligent Systems, volume 7209 of Lecture Notes

in Computer Science, pages 68–77. Springer Berlin Heidelberg, 2012. ISBN 978-

3-642-28930-9. doi: 10.1007/978-3-642-28931-6 7. URL http://dx.doi.org/10.

1007/978-3-642-28931-6_7.

[33] J. Haggerty, Q. Shi, and M. Merabti. Statistical signatures for early detection

of flooding denial-of-service attacks. In R. Sasaki, S. Qing, E. Okamoto, and

H. Yoshiura, editors, Security and Privacy in the Age of Ubiquitous Comput-

ing, volume 181 of IFIP Advances in Information and Communication Technol-

ogy, pages 327–341. Springer US, 2005. ISBN 978-0-387-25658-0. doi: 10.1007/

0-387-25660-1 22. URL http://dx.doi.org/10.1007/0-387-25660-1_22.

[34] Hewlett-Packard Development Company, L.P. A complete set of security so-

lutions that address today’s sophisticated security threats at the perimeter

and interior of your business. http://h17007.www1.hp.com/us/en/products/

network-security/index.aspx, 2012. Accessed on 02 January 2013.

[35] Hewlett-Packard Development Company, L.P. Tipping Point Digital Vac-

cine Services. http://h17007.www1.hp.com/docs/security/400931-004_

DigitalVaccine.pdf, 2012. Accessed on 02 January 2013.

[36] IBM Corp. Introducing IBM Security Network Intrusion Prevention Sys-

tem (IPS) products. http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/

topic/com.ibm.ips.doc/concepts/landing_page.htm, 2012. Accessed on 02

January 2013.

[37] IBM Corp. WebSphere Business Events. http://www-01.ibm.com/software/

integration/wbe/, 2012. Accessed on 02 January 2013.

[38] IBM Corp. RealSecure® Server Sensor. http://pic.dhe.ibm.com/infocenter/

sprotect/v2r8m0/topic/com.ibm.legacy.doc/RealSecure_Server_Sensor.

htm?resultof=%22%72%65%61%6c%73%65%63%75%72%65%22%20%22%72%65%61%

6c%73%65%63%75%72%22%20, 2012. Accessed on 02 January 2013.

http://dl.acm.org/citation.cfm?id=645917.672332
http://dl.acm.org/citation.cfm?id=645917.672332
http://dx.doi.org/10.1007/978-3-642-28931-6_7
http://dx.doi.org/10.1007/978-3-642-28931-6_7
http://dx.doi.org/10.1007/0-387-25660-1_22
http://h17007.www1.hp.com/us/en/products/network-security/index.aspx
http://h17007.www1.hp.com/us/en/products/network-security/index.aspx
http://h17007.www1.hp.com/docs/security/400931-004_DigitalVaccine.pdf
http://h17007.www1.hp.com/docs/security/400931-004_DigitalVaccine.pdf
http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/topic/com.ibm.ips.doc/concepts/landing_page.htm
http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/topic/com.ibm.ips.doc/concepts/landing_page.htm
http://www-01.ibm.com/software/integration/wbe/
http://www-01.ibm.com/software/integration/wbe/
http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/topic/com.ibm.legacy.doc/RealSecure_Server_Sensor.htm?resultof=%22%72%65%61%6c%73%65%63%75%72%65%22%20%22%72%65%61%6c%73%65%63%75%72%22%20
http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/topic/com.ibm.legacy.doc/RealSecure_Server_Sensor.htm?resultof=%22%72%65%61%6c%73%65%63%75%72%65%22%20%22%72%65%61%6c%73%65%63%75%72%22%20
http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/topic/com.ibm.legacy.doc/RealSecure_Server_Sensor.htm?resultof=%22%72%65%61%6c%73%65%63%75%72%65%22%20%22%72%65%61%6c%73%65%63%75%72%22%20
http://pic.dhe.ibm.com/infocenter/sprotect/v2r8m0/topic/com.ibm.legacy.doc/RealSecure_Server_Sensor.htm?resultof=%22%72%65%61%6c%73%65%63%75%72%65%22%20%22%72%65%61%6c%73%65%63%75%72%22%20

Bibliography 135

[39] IDAPPCOM Ltd. Traffic IQ Library. http://www.idappcom.com/index.php,

2012. Accessed on 02 January 2013.

[40] IETF. Transmission Control Protocol Specification. https://tools.ietf.org/

html/rfc793, 1981. Accessed on 02 January 2013.

[41] X. W. J. Lin and S. Jajodia. Abstraction-based misuse detection: High-level spec-

ification and adaptable strategies. In Proceedings of the 11th Computer Security

Foundation Workshop, pages 190–201, Washington, DC, 1998.

[42] Jacobson, C. Leres, and S. McCannee. The TCPDUMP Manual Page. Lawrence

Berkeley Laboratory, Berkeley, CA, June, 1989.

[43] T. Johnson, S. Muthukrishnan, O. Spatscheck, and D. Srivastava. Streams, se-

curity and scalability. In Proceedings of the 19th annual IFIP WG 11.3 work-

ing conference on Data and Applications Security, DBSec’05, pages 1–15, Berlin,

Heidelberg, 2005. Springer-Verlag. ISBN 3-540-28138-X, 978-3-540-28138-2. doi:

10.1007/11535706 1. URL http://dx.doi.org/10.1007/11535706_1.

[44] D. S. P. Jr., R. R. Muntz, and H. L. Chau. The Tangram stream query processing

system. In ICDE, pages 556–563. IEEE Computer Society, 1989. ISBN 0-8186-

1915-5.

[45] D.-H. Kang, B.-K. Kim, J.-T. Oh, T.-Y. Nam, and J.-S. Jang. FPGA based

intrusion detection system against unknown and known attacks. In Z.-Z. Shi and

R. Sadananda, editors, Agent Computing and Multi-Agent Systems, volume 4088

of Lecture Notes in Computer Science, pages 801–806. Springer Berlin Heidelberg,

2006. ISBN 978-3-540-36707-9. doi: 10.1007/11802372 97. URL http://dx.doi.

org/10.1007/11802372_97.

[46] Keita Fujii. A Java library for capturing and sending network packets. http:

//netresearch.ics.uci.edu/kfujii/Jpcap/doc/index.html, 2007. Accessed

on 02 January 2013.

[47] R. Koymans. Specifying real-time properties with metric temporal logic. Real-

Time Systems, 2(4):255–299, 1990. ISSN 0922-6443. doi: http://dx.doi.org/10.

1007/BF01995674.

[48] H. Lai, S. Cai, J. Xi, and H. Li. A parallel intrusion detection system for high-speed

networks. ACNS 2004. LNCS, 3089:439–451, 2004.

[49] K.-Y. Lam, L. Hui, and S.-L. Chung. A data reduction method for intrusion

detection. J. Syst. Softw., 33(1):101–108, Apr. 1996. ISSN 0164-1212. doi: 10.

1016/0164-1212(95)00106-9. URL http://dx.doi.org/10.1016/0164-1212(95)

00106-9.

http://www.idappcom.com/index.php
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
http://dx.doi.org/10.1007/11535706_1
http://dx.doi.org/10.1007/11802372_97
http://dx.doi.org/10.1007/11802372_97
http://netresearch.ics.uci.edu/kfujii/Jpcap/doc/index.html
http://netresearch.ics.uci.edu/kfujii/Jpcap/doc/index.html
http://dx.doi.org/10.1016/0164-1212(95)00106-9
http://dx.doi.org/10.1016/0164-1212(95)00106-9

Bibliography 136

[50] Lawrence Berkeley National Laboratory. Bro Intrusion Detection System. http:

//www.bro-ids.org/, 2011. Accessed on 02 January 2013.

[51] G. Liepins and H. Vaccaro. Anomaly detection purpose and framework. In Pro-

ceedings of the 12th National Computer Security Conference, pages 495–504, Bal-

timore, MD, USA, 1989.

[52] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. We-

ber, S. Webster, D. Wyschogrod, R. Cunningham, and M. Zissman. Evalu-

ating intrusion detection systems: The 1998 DARPA off-line intrusion detec-

tion evaluation. In DARPA Information Survivability Conference and Exposi-

tion, 2000. DISCEX ’00. Proceedings, volume 2, pages 12 –26 vol.2, 2000. doi:

10.1109/DISCEX.2000.821506.

[53] P. Loshin. TCP/IP Clearly Explained. Morgan Kaufmann, 1999.

[54] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, P. G. Neumann,

H. Javitz, A. Valdes, and T. D. Garvey. A real time intrusion detection expert

system (IDES). SRI technical report, Defense Advanced Research Projects Agency,

Department of US Defense, 1992.

[55] M. Manzano. Introduction to many-sorted logic. John Wiley & Sons, Inc., New

York, NY, USA, 1993. ISBN 0-471-93485-2.

[56] G. Marcus. Firewalls. McGraw-Hill, 2000.

[57] Microsoft. Microsoft Security Bulletin MS01-033 Unchecked Buffer in Index Server

ISAPI Extension Could Enable Web Server Compromise. http://technet.

microsoft.com/en-us/security/bulletin/ms01-033, 2001. Accessed on 02

January 2013.

[58] Z. Miller, W. Deitrick, and W. Hu. Anomalous network packet detection using

data stream mining. J. Information Security, 2(4):158–168, 2011.

[59] MIT Lincoln Laboratory. DARPA Intrusion Detection Data Sets. http://www.ll.

mit.edu/mission/communications/ist/corpora/ideval/data/index.html,

1999. Accessed on 02 January 2013.

[60] MIT Lincoln Laboratory. Intrusion Detection Attacks Database. http:

//www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/

docs/attackDB.html, 1999. Accessed on 02 January 2013.

[61] M. Moorthy and S. Sathiyabama. Article: A hybrid data mining based intrusion

detection system for wireless local area networks. International Journal of Com-

puter Applications, 49(10):19–28, July 2012. Published by Foundation of Computer

Science, New York, USA.

http://www.bro-ids.org/
http://www.bro-ids.org/
http://technet.microsoft.com/en-us/security/bulletin/ms01-033
http://technet.microsoft.com/en-us/security/bulletin/ms01-033
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/docs/attackDB.html
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/docs/attackDB.html
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/docs/attackDB.html

Bibliography 137

[62] P. Naldurg, K. Sen, and P. Thati. A temporal logic based framework for intrusion

detection. In Proceedings of the 24th IFIP WG 6.1 International Conference on

Formal Techniques for Networked and Distributed Systems, Madrid, Spain, 2004.

[63] S. Navathe and R. Ahmed. Temporal extensions to the relational model and

SQL. In Temporal Databases: Theory, Design, and Implementation, pages 92–

109. Benjamin/Cummings Publishing Company, 1993.

[64] Network Working Group, IETF Org. Network Ingress Filtering: Defeating Denial

of Service Attacks which employ IP Source Address Spoofing. http://www.ietf.

org/rfc/rfc2267.txt, 1998. Accessed on 02 January 2013.

[65] P. G. Neumann and P. A. Porras. Experience with EMERALD to date. In Pro-

ceedings of the 1st conference on Workshop on Intrusion Detection and Network

Monitoring - Volume 1, ID’99, pages 8–8, Berkeley, CA, USA, 1999. USENIX

Association. URL http://dl.acm.org/citation.cfm?id=1267880.1267888.

[66] NIST. Vulnerability Summary for CVE-1999-0153. http://web.nvd.nist.gov/

view/vuln/detail?vulnId=CVE-1999-0153, 1997. Accessed on 02 January 2013.

[67] Official LSV Web Site. ORCHIDS: Real-time event analysis and

temporal correlation for intrusion detection in informations systems.

http://www.streambase.com/products/streambasecep, 2012. Accessed on 02

January 2013.

[68] OISF Open Information System Foundation. SURICATA. http://www.

openinfosecfoundation.org/, 2012. Accessed on 02 January 2013.

[69] J. Olivain and J. Goubault-Larrecq. The ORCHIDS intrusion detection tool. In

Proceedings of the 17th International Conference on Computer Aided Verification

(CAV’05), 2005.

[70] OpenESP. What is the IEP SE? http://wiki.open-esb.java.net/Wiki.jsp?

page=IEPSE, 2009. Accessed on 02 January 2013.

[71] A. Orebaugh, G. Ramirez, J. Burke, and L. Pesce. Wireshark & Ethereal Network

Protocol Analyzer Toolkit (Jay Beale’s Open Source Security). Syngress Publishing,

2006. ISBN 1597490733.

[72] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages.

Pragmatic Programmers. Pragmatic Bookshelf, first edition, May 2007. ISBN

0978739256.

[73] V. Paxson. Bro: a system for detecting network intruders in real-time. Com-

puter Networks, 31(23-24):2435–2463, 1999. URL http://www.icir.org/vern/

papers/bro-CN99.pdf.

http://www.ietf.org/rfc/rfc2267.txt
http://www.ietf.org/rfc/rfc2267.txt
http://dl.acm.org/citation.cfm?id=1267880.1267888
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-1999-0153
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-1999-0153
http://www.openinfosecfoundation.org/
http://www.openinfosecfoundation.org/
http://wiki.open-esb.java.net/Wiki.jsp?page=IEPSE
http://wiki.open-esb.java.net/Wiki.jsp?page=IEPSE
http://www.icir.org/vern/papers/bro-CN99.pdf
http://www.icir.org/vern/papers/bro-CN99.pdf

Bibliography 138

[74] J. Peppard. IT Strategy for Business. Pitman Publishing, 1993.

[75] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE Computer

Society, 1977.

[76] K. Price. Introduction to Intrusion Detection. http://www.cerias.purdue.edu/

about/history/coast_resources/idcontent/introduction.html, 1999. Ac-

cessed on 02 January 2013.

[77] Progress Software. Data streams. http://www.progress.com/en/data-streams.

html, 2012. Accessed on 02 January 2013.

[78] R. Reiter. Towards a logical reconstruction of relational database theory. In On

Conceptual Modelling (Intervale), pages 191–233, 1984.

[79] M. Roger and J. Goubault-Larrecq. Log auditing through model-checking. In

Proceedings of the 14th IEEE workshop on Computer Security Foundations, CSFW

’01, pages 220–, Washington, DC, USA, 2001. IEEE Computer Society. URL

http://dl.acm.org/citation.cfm?id=872752.873518.

[80] J. Ryan, M. Lin, and R. Miikkulainen. Intrusion detection with neural networks.

In Proceedings of the AAAI Workshop on AI Approaches to Fraud Detection and

Risk Management, pages 72–77, Providence, RI, USA, 1997.

[81] N. Sarda. Extensions to SQL for historical databases. IEEE Transactions on

Knowledge and Data Engineering, 2:220–230, 1990. ISSN 1041-4347. doi: http:

//doi.ieeecomputersociety.org/10.1109/69.54721.

[82] K. Scarfore and P. Mell. Guide to intrusion detection and prevention systems

(IDPS). Special Publication 800-94, National Institute of Standards and Technol-

ogy (NIST), Feb. 2007.

[83] SecurityFocus. Windows Server 2003 and XP SP2 LAND attack vulnerability.

http://www.securityfocus.com/archive/1/392354, 2005. Accessed on 02 Jan-

uary 2013.

[84] P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: A model for sequence

databases. In In ICDE, pages 232–239, 1995.

[85] S. E. Smaha. Haystack: An intrusion detection system. In Proceedings of the

IEEE Fourth Aerospace Computer Security Applications Conference, 1988.

[86] R. Snodgrass and I. Ahn. Temporal databases. Computer, 19(9):35–42, Sept. 1986.

ISSN 0018-9162. doi: 10.1109/MC.1986.1663327. URL http://dx.doi.org/10.

1109/MC.1986.1663327.

[87] Sourcefire. SNORT. http://www.snort.org/, 2010. Accessed on 02 January

2013.

http://www.cerias.purdue.edu/about/history/coast_resources/idcontent/introduction.html
http://www.cerias.purdue.edu/about/history/coast_resources/idcontent/introduction.html
http://www.progress.com/en/data-streams.html
http://www.progress.com/en/data-streams.html
http://dl.acm.org/citation.cfm?id=872752.873518
http://www.securityfocus.com/archive/1/392354
http://dx.doi.org/10.1109/MC.1986.1663327
http://dx.doi.org/10.1109/MC.1986.1663327
http://www.snort.org/

Bibliography 139

[88] Sourcefire. Download Snort Rules. http://www.snort.org/snort-rules/, 2012.

Accessed on 02 January 2013.

[89] J. H. Spring. Reflexes: programming abstractions for highly responsive comput-

ing in Java. PhD thesis, IC, Lausanne, 2008. URL http://library.epfl.ch/

theses/?nr=4228.

[90] W. Stallings. Network Security Essentials: Applications and Standards. Prentice

Hall, Upper Saddle River, NJ, 2000.

[91] StreamBase Systems. StreamBase CEP: Complex Event Processing Platform.

http://www.streambase.com/products/streambasecep, 2012. Accessed on 02 Jan-

uary 2013.

[92] StreamBase Systems. StreamBase Server. http://www.streambase.com/products-

StreamBaseServer.htm, 2012. Accessed on 02 January 2013.

[93] StreamBase Systems. Product Documentation. http://www.streambase.com/

support/product-documentation, 2012. Accessed on 02 January 2013.

[94] StreamBase Systems. StreamSQL. http://www.streambase.com/products/

streambasecep/streamsql, 2012. Accessed on 02 January 2013.

[95] M. Sullivan. Tribeca: A stream database manager for network traffic analysis. In

T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, editors, VLDB,

page 594. Morgan Kaufmann, 1996. ISBN 1-55860-382-4.

[96] M. Sullivan and A. Heybey. Tribeca: A system for managing large databases

of network traffic. In Proceedings of the annual conference on USENIX Annual

Technical Conference, ATEC ’98, pages 13–24, Berkeley, CA, USA, 1998. USENIX

Association. URL http://dl.acm.org/citation.cfm?id=1268256.1268258.

[97] Sybase Incorporation. Coral8. http://www.sybase.com/products/

archivedproducts/coral8, 2012. Accessed on 02 January 2013.

[98] The TCPDUMP Group. TCPDUMP and LIBPCAP. http://www.tcpdump.org/,

2010. Accessed on 02 January 2013.

[99] TIBCO Software Inc. Introducing TIBCO BusinessEvents™3.0. http://www.

tibco.com/products/business-optimization/complex-event-processing/

businessevents/default.jsp, 2012.

[100] J. Touch, M. Kojo, E. Lear, A. Mankin, K. Ono, M. Stiemerling, and L. Eggert.

Request for Comments: 6335. https://tools.ietf.org/html/rfc6335, 2011.

Accessed on 02 January 2013.

http://www.snort.org/snort-rules/
http://library.epfl.ch/theses/?nr=4228
http://library.epfl.ch/theses/?nr=4228
http://www.streambase.com/support/product-documentation
http://www.streambase.com/support/product-documentation
http://www.streambase.com/products/streambasecep/streamsql
http://www.streambase.com/products/streambasecep/streamsql
http://dl.acm.org/citation.cfm?id=1268256.1268258
http://www.sybase.com/products/archivedproducts/coral8
http://www.sybase.com/products/archivedproducts/coral8
http://www.tcpdump.org/
http://www.tibco.com/products/business-optimization/complex-event-processing/businessevents/default.jsp
http://www.tibco.com/products/business-optimization/complex-event-processing/businessevents/default.jsp
http://www.tibco.com/products/business-optimization/complex-event-processing/businessevents/default.jsp
https://tools.ietf.org/html/rfc6335

Bibliography 140

[101] J. Touch, M. Kojo, E. Lear, A. Mankin, K. Ono, M. Stiemerling, and

L. Eggert. Service Name and Transport Protocol Port Number Reg-

istry. https://www.iana.org/assignments/service-names-port-numbers/

service-names-port-numbers.txt, 2012. Accessed on 02 January 2013.

[102] TRAC. Welcome to TCPREPLAY. http://tcpreplay.synfin.net/, 2010. Ac-

cessed on 02 January 2013.

[103] R. Trost. Practical Intrusion Analysis: Prevention and Detection for the Twenty-

First Century. Pearson Education, 2009. ISBN 9780321591883. URL http:

//books.google.co.uk/books?id=3y2fhCaJJA0C.

[104] A. Tuzhilin and J. Clifford. A temporal relational algebra as a basis for temporal

relational completeness. In Proceedings of the sixteenth international conference on

Very large databases, pages 13–23, San Francisco, CA, USA, 1990. Morgan Kauf-

mann Publish Inc. ISBN 0-55860-149-X. URL http://dl.acm.org/citation.

cfm?id=94362.94390.

[105] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S. Ioannidis.

Gnort: High performance network intrusion detection using graphics processors. In

Proceedings of the 11th international symposium on Recent Advances in Intrusion

Detection, RAID ’08, pages 116–134, Berlin, Heidelberg, 2008. Springer-Verlag.

ISBN 978-3-540-87402-7. doi: 10.1007/978-3-540-87403-4 7. URL http://dx.

doi.org/10.1007/978-3-540-87403-4_7.

[106] G. Vasiliadis, M. Polychronakis, and S. Ioannidis. Midea: a multi-parallel intrusion

detection architecture. In Proceedings of the 18th ACM conference on Computer

and communications security, CCS ’11, pages 297–308, New York, NY, USA, 2011.

ACM. ISBN 978-1-4503-0948-6. doi: 10.1145/2046707.2046741. URL http://

doi.acm.org/10.1145/2046707.2046741.

[107] G. Vigna and R. A. Kemmerer. A network-based intrusion detection approach.

Journal of Computer Security, 7:37–71, 1999.

[108] G. Wideman. ST condensed – Templates and expressions. http://www.antlr.

org/wiki/display/ST/ST+condensed+--+Templates+and+expressions, 2009.

Accessed on 02 January 2013.

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
http://tcpreplay.synfin.net/
http://books.google.co.uk/books?id=3y2fhCaJJA0C
http://books.google.co.uk/books?id=3y2fhCaJJA0C
http://dl.acm.org/citation.cfm?id=94362.94390
http://dl.acm.org/citation.cfm?id=94362.94390
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://doi.acm.org/10.1145/2046707.2046741
http://doi.acm.org/10.1145/2046707.2046741
http://www.antlr.org/wiki/display/ST/ST+condensed+--+Templates+and+expressions
http://www.antlr.org/wiki/display/ST/ST+condensed+--+Templates+and+expressions

Appendix A

ANTLR Grammar and String

Template Group Files

A.1 Description of The Grammar File Structure

grammar <grammar file name>;

<optionsSpec>

<tokensSpec>

<attributeScopes>

<actions>

/** For multi line comments*/

// for single line comment

rule1 : ... | ... | ... ;

rule2 : ... | ... | ... ;

...

The first line of the grammar file specifies the name of the file as stored in the file system.

The options section specify the options set to be used for processing this grammar file.

The options syntax is:

options {

name1 = value1;

name2 = value2;

...

}

For instance, if we set language = JAVA then this will set the target language to be

JAVA which will cause ANTLR to generate the lexer and parser analysers in JAVA.

The tokens section allow to assign aliases for string literals or allow to introduce or

define imaginary or dummy token. The syntax for the tokens section is:

tokens {

token-name1 ;

token-name2 = ’string-literal’;

141

Appendix A. ANTLR Grammar and String Template Group Files 142

...

}

The attributes section is for defining attributes at each rule and these attributes can

pass information between chained rules or deeply nested rules. This is very useful in

writing actions that depends on attributes that come from different rules. The syntax

for the attributes section is:

scope name {

type1 attribute-name1;

type2 attribute-name2;

...

}

The actions section allows you to add snippets of code that you write in the target

language and embed in your grammar. ANTLR generates a method for each rule in

a grammar. The methods are wrapped in a class definition for object-oriented target

languages. ANTLR provides named actions so you can insert variables and instance

methods into the generated class definition. The syntax is as follows:

@action-name { ... }

@action-scope-name::action-name { ... } // scope can be for

// parser or lexer

....

The named actions has a place in the grammar file and ANTLR will inserts them into the

generated recognizer according to their positions relative to the surrounding grammar

elements. Some of the common named actions are as follows:

• @header the code here will appear before the class definition (e.g., import state-

ment and package definition).

• @members this section contains codes that are placed outside rules and globally

defines instance variables and methods.

• @init is placed before a rule in the grammar file. Its code is executed at the

beginning of a matched rule.

• @after is placed before a rule in the grammar file and executed after the rule is

matched.

Finally, in the grammar file rules must be specified at the end of the grammar files.

These rules can be a lexer rule or a parser rule. Lexer rule start with capital letter and

parser rule start with small letter. A simple example for the lexer and parser rules is:

decl: type ID (’,’ ID)* ; // e.g., "int a", "int a,b"

type: ’int’ | ’float’; // match either an int or float keyword

ID : ’a’..’z’+ ; // match one ore more small letters from a to z

In the above example, decl and type are parser rules and ID is a lexer rule.

Appendix A. ANTLR Grammar and String Template Group Files 143

A.2 TeStID Grammar File

grammar TeStID;

options {

output = template;

language=Java;

}

tokens {

PLUS = ’+’ ;

MINUS = ’-’ ;

MULT = ’*’ ;

DIV = ’/’ ;

PREDSYM = ’P’;

AND = ’&’;

OR = ’|’;

ALWAYS = ’G’;

ALWAYSP = ’H’;

EVENTUALLY = ’F’;

NEG = ’~’;

EQUAL = ’=’;

NOTEQUAL = ’<>’;

GT = ’>’;

GE = ’>=’;

LT = ’<’;

LE = ’<=’;

EXIST = ’E’;

REOCCUR = ’R’;

}

@header {

import org.antlr.stringtemplate.*;

import java.util.ListIterator;

import java.util.List;

import java.lang.String;

}

@members {

public String checkconsistence(List varterms,List vpindx,int formulano) {

String error=null;

Boolean found = false;

int termindex=0;

for (int i=0; i < vpindx.size(); i++) {

Integer pp = (Integer)vpindx.get(i);

if (pp == 2) {

termindex = i;

found = false;

for (int j=0; j < vpindx.size(); j++) {

Appendix A. ANTLR Grammar and String Template Group Files 144

Integer p = (Integer)vpindx.get(j);

if (p == 1)

if (varterms.get(i).equals(varterms.get(j)))

found = true;

}

if (!found) {

error = varterms.get(termindex) + " variable is not defined previously

in formula number " + formulano;

return error;}

}

} //for i

return error;

} //proc

public String checkpredicate(List preds, List terms) {

String error="Inconsistence number of terms in predicates";

if (terms.size() \% preds.size() == 0)

return null;

else

return error;

}

public List wcond(int formulano,List arity,List filter,List constant){

Object currentfilter;

String wcondition;

List conditions = new ArrayList();

String strconst = null;

if (filter.size() >= 1) {

currentfilter = filter.get(0);

strconst = constant.get(0).toString();

if (constant.get(0).equals("0")) strconst = "false";

if (constant.get(0).equals("1")) strconst = "true";

wcondition = "where x"+arity.get(0)+" = "+ strconst;

for(int i = 1; i < filter.size(); i++) {

if (filter.get(i).equals(currentfilter)) {

strconst = constant.get(i).toString();

if (constant.get(i).equals("0")) strconst = "false";

if (constant.get(i).equals("1")) strconst = "true";

wcondition = wcondition + " and " + "x"+arity.get(i)+" = "+ strconst;

} else {

wcondition = wcondition + " INTO out__Filter" + formulano +

"_" + currentfilter;

conditions.add(wcondition);

currentfilter = filter.get(i);

strconst = constant.get(i).toString();

Appendix A. ANTLR Grammar and String Template Group Files 145

if (constant.get(i).equals("0")) strconst = "false";

if (constant.get(i).equals("1")) strconst = "true";

wcondition = "where x" + arity.get(i)+ " = " + strconst.get(i);

}

}

wcondition = wcondition + " INTO out__Filter" + formulano +

"_"+ currentfilter;

conditions.add(wcondition);

return conditions;

}

return null;

}

public String select(int cat,int formulano,int patternno,List<Integer> window,

List vars,List vindx,List vpindx,List Neg)){

String s = " \n";

List prefix = new ArrayList();

String prefix1 = "output1";

String prefix2 = "output2";

String tmpprefix = null;

for(int k = 1; k <= patternno; k++) {

if (k == 1) {

prefix.add("output1");

prefix.add("output2");

String cond = "WHERE ";

if (patternno != 1 || cat == 4)

s = s + "CREATE STREAM out__Pattern" + formulano + "_" + k +

"; \n SELECT ";

else

s = s + "SELECT ";

for (int l =0; l < prefix.size(); l++) {

for (int j = 1; j < 13; j++) {

s = s + prefix.get(l) + "." + "x" + j + " AS " + prefix.get(l) +

"_x" + j +"," ;

}

}

s = s.substring(1,s.length() - 1) + "\n"; // remove last comma

s = s + "FROM PATTERN (" + "out__Filter" + formulano + "_" + k + " AS "

+ prefix.get(0) + " THEN" + Neg.get(k-1) + "out__Filter" +

formulano + "_" + (k+1) + " AS " + prefix.get(1) + ")";

Integer w = (Integer)window.get(0);

s = s + " WITHIN " + w + " TIME \n";

for (int i = 0; i < vpindx.size(); i = i + 1) {

Integer p = (Integer)vpindx.get(i);

Appendix A. ANTLR Grammar and String Template Group Files 146

if (p == 1) {

for (int j = 0; j < vpindx.size(); j = j + 1) {

Integer pp = (Integer)vpindx.get(j);

if (pp == 2)

if (vars.get(j).equals(vars.get(i)))

if (!cond.toString().equals("WHERE "))

cond = cond + " AND " + prefix.get(1) + "." + "x" +

vindx.get(j) + " = " + prefix.get(0) + "." + "x"

+ vindx.get(i);

else

cond = cond + prefix.get(1) + "." + "x" + vindx.get(j) +

" = " + prefix.get(0) + "." + "x" + vindx.get(i);

}

}

}

if (patternno == 1 & cat ==2)

s = s + cond + "\n"+ " INTO OutputStream" + formulano + "; \n \n";

else

s = s + cond + "\n"+ " INTO out__Pattern" + formulano + "_" + k +

"; \n \n";

} //if pattern (k) = 1 end here

else {

prefix.add("output" +(k+1));

for (int m = 0; m < k; m ++) {

String temp = prefix.get(m).toString();

prefix.remove(m);

temp = temp.replace(’.’ , ’_’);

prefix.add(m, "pattern" + (k-1) + "."+ temp);

}

if (patternno != k || cat==4)

s = s + "CREATE STREAM out__Pattern" + formulano + "_" + k +

"; \n SELECT ";

else

s = s + "SELECT ";

for (int l =0; l < prefix.size(); l++) {

if (l == prefix.size() - 1) {

for (int j = 1; j < 13; j++) {

s = s + prefix.get(l) + "." + "x" + j + " AS " +prefix.get(l) +

"_x" + j +"," ;

}

}

else {

for (int n = 1; n < 13; n++) {

tmpprefix = prefix.get(l).toString();

s = s + prefix.get(l) + "_" + "x" + n + " AS " +

Appendix A. ANTLR Grammar and String Template Group Files 147

tmpprefix.replace(’.’, ’_’) + "_x" + n +"," ;

}

}

}

s = s.substring(1,s.length() - 1) + "\n"; // remove last comma

s = s + "FROM PATTERN (" + "out__Pattern" + formulano + "_" +

(k-1) + " AS " + "pattern" + (k-1) + " THEN" + Neg.get(k-1) +

"out__Filter" + formulano + "_" + (k+1) + " AS "

+ prefix.get(k) + ")";

Integer w = (Integer)window.get(k-1);

s = s + " WITHIN " + w + " TIME \n";

String cond = "WHERE ";

for (int i = 0; i < vpindx.size(); i = i + 1) {

Integer p = (Integer)vpindx.get(i);

if (p == k) {

for (int j = 0; j < vpindx.size(); j = j + 1) {

Integer pp = (Integer)vpindx.get(j);

if (pp == k+1)

if (vars.get(j).equals(vars.get(i)))

if (!cond.toString().equals("WHERE "))

cond = cond + " AND " + prefix.get(1) + "_" + "x" +

vindx.get(j) + " = " + prefix.get(0) + "_" +

"x" + vindx.get(i);

else

cond = cond + prefix.get(1) + "_" + "x" +

vindx.get(j) + " = " + prefix.get(0)

+ "_" + "x" + vindx.get(i);

}

}

}

if (patternno == k && cat == 2)

s = s + cond + "\n"+ " INTO OutputStream" +

formulano + "; \n \n";

else

s = s + cond + "\n"+ " INTO out__Pattern" +

formulano + "_" + k + "; \n \n";

} // end last else

}

return s;

}

public String items(List varterms,List vlindx,List vpindx) {

String List= "";

for (int i=0; i < vpindx.size(); i++) {

Integer p = (Integer)vpindx.get(i);

if (p == 1) {

for (int j=i+1; j < vpindx.size(); j++)

Appendix A. ANTLR Grammar and String Template Group Files 148

if (varterms.get(i).equals(varterms.get(j))) {

List = List + varterms.get(i);

Integer pos = (Integer)vlindx.get(i);

switch(pos) {

case 1:

List=List+" string" + ", \n";

break;

case 2:

List=List+" int" + ", \n";

break;

case 3:

List=List+" string" + ", \n";

break;

case 4:

List=List+" int" + ", \n";

break;

}

}

}

}

List = List.substring(0,List.length() - 3) + "\n) \n";

return List;

}

public List skey(List varterms,List vlindx,List vpindx) {

List keys= new ArrayList();

for (int i=0; i < vpindx.size(); i++) {

Integer p = (Integer)vpindx.get(i);

if (p == 1) {

for (int j=i+1; j < vpindx.size(); j++)

if (varterms.get(i).equals(varterms.get(j))) {

keys.add(varterms.get(i));

}

}

}

return keys;

}

public String regexpmatch(String regexp) {

String regexpf = "";

regexpf = "regexmatch" + "(\\" + regexp.substring(2,regexp.length()-2) + "\\" +

regexp.substring(regexp.length()-2,regexp.length()-1) + ", x12)";

// adding slash for shell

return regexpf;

}

public String preproc(List term1, List term2, List term3, List term4) {

String filter = "allp";

for (int i=0; i < term1.size(); i++) {

Appendix A. ANTLR Grammar and String Template Group Files 149

if (term1.get(i).equals("x2")) {

if ((term2.get(i).equals("20")) || (term2.get(i).equals("53")) ||

(term2.get(i).equals("0"))) {

filter = "src" + term2.get(i);

return filter;}

else if ((term2.get(i).equals("80")) || (term2.get(i).equals("8080")) ||

(term2.get(i).equals("8000")) || (term2.get(i).equals("8001"))) {

filter = "srchttp";

return filter;}

}

if (term1.get(i).equals("x4")) {

if ((term2.get(i).equals("21")) || (term2.get(i).equals("53")) ||

(term2.get(i).equals("79")) || (term2.get(i).equals("1080")) ||

(term2.get(i).equals("15104")) || (term2.get(i).equals("161")) ||

(term2.get(i).equals("139")) || (term2.get(i).equals("162")) ||

(term2.get(i).equals("3128")) || (term2.get(i).equals("705")) ||

(term2.get(i).equals("143")) || (term2.get(i).equals("25"))) {

filter = "dst" + term2.get(i);

return filter;}

else if ((term2.get(i).equals("80")) || (term2.get(i).equals("8080")) ||

(term2.get(i).equals("8000")) || (term2.get(i).equals("8001"))) {

filter = "dsthttp";

return filter;}

}

}

for (int i=0; i < term3.size(); i++) {

if (term3.get(i).equals("x2")) {

if ((term4.get(i).equals("20")) || (term4.get(i).equals("53")) ||

(term4.get(i).equals("0"))){

filter = "src" + term4.get(i);

return filter;}

else if ((term4.get(i).equals("80")) || (term4.get(i).equals("8080")) ||

(term4.get(i).equals("8000")) || (term4.get(i).equals("8001"))) {

filter = "srchttp";

return filter;}

}

if (term3.get(i).equals("x4")) {

if ((term4.get(i).equals("21")) || (term4.get(i).equals("53")) ||

(term4.get(i).equals("79")) || (term4.get(i).equals("1080")) ||

(term4.get(i).equals("15104")) || (term4.get(i).equals("161")) ||

(term4.get(i).equals("139")) || (term4.get(i).equals("162")) ||

(term4.get(i).equals("3128")) || (term4.get(i).equals("705")) ||

(term4.get(i).equals("143")) || (term4.get(i).equals("25"))) {

filter = "dst" + term4.get(i);

return filter;}

Appendix A. ANTLR Grammar and String Template Group Files 150

else if ((term4.get(i).equals("80")) || (term4.get(i).equals("8080")) ||

(term4.get(i).equals("8000")) || (term4.get(i).equals("8001"))) {

filter = "dsthttp";

return filter;}

}

}

return filter;

}

public Boolean Allp(String filter) {

if (filter == "allp")

return true;

else

return false;

}

public Boolean Src(String filter) {

if (filter.substring(0,3).equals("src"))

return true;

else

return false;

}

public Boolean Dst(String filter) {

if (filter.substring(0,3).equals("dst"))

return true;

else

return false;

}

}

/*--

* PARSER RULES

--/

prog

scope {

List formulae;

List sfilter;

List constlist;

List lindx;

List clindx;

List pindx;

int formulaindex;

List vpindx;

List attackid;

Boolean isFormula1;

}

@init {

$prog::formulae = new ArrayList();

$prog::lindx = new ArrayList();

$prog::formulaindex = 1;

Appendix A. ANTLR Grammar and String Template Group Files 151

$prog::attackid = new ArrayList();

$prog::isFormula1 = false;

}

: formulaSeq+ -> prog(formulae={$prog::formulae},

isFormula1={$prog::isFormula1})

;

formulaSeq

scope {

int sfilterindx;

List wc;

String select;

int patternindex;

List window;

List size;

List varterms;

List vlindx;

String table;

String regexp;

List secondary;

List rwindow;

String error;

List Negation;

}

@init {

$prog::sfilter = new ArrayList();

$formulaSeq::sfilterindx = 1;

$prog::clindx = new ArrayList();

$prog::constlist = new ArrayList();

$prog::pindx = new ArrayList();

$prog::vpindx = new ArrayList();

$formulaSeq::wc = new ArrayList();

$formulaSeq::select = null;

$formulaSeq::patternindex = 0;

$formulaSeq::window = new ArrayList();

$formulaSeq::varterms = new ArrayList();

$formulaSeq::vlindx = new ArrayList();

$prog::pindx = new ArrayList();

$formulaSeq::table = null;

$formulaSeq::regexp = null;

$formulaSeq::secondary = new ArrayList();

$formulaSeq::size = new ArrayList();

$formulaSeq::rwindow = new ArrayList();

$formulaSeq::error=null;

$formulaSeq::Negation = new ArrayList();

}

: ’#’ ’sid-’ NUMBER {$prog::attackid.add("sid-"+$NUMBER.text);} NEWLINE

formula NEWLINE {$prog::formulae.add($formula.st);}

Appendix A. ANTLR Grammar and String Template Group Files 152

{$prog::formulaindex++;}

| NEWLINE

;

formula

scope {

List terml1;

List terml2;

List terml3;

List terml4;

List equality;

List operator;

List conjunction;

List conjunction2;

int termindx;

Boolean isVar;

Boolean isFunc;

List isVarL2;

List isVarL5;

List isVarL6;

List isFuncL2;

List isFuncL5;

List isFuncL6;

Boolean isArth;

Boolean isnotArth;

Boolean F;

List isArthL;

String Filler;

Boolean isF1;

Boolean isF2;

Boolean isF3;

List exvar;

int cat;

String filter;

Boolean isAllp;

Boolean isSrc;

Boolean isDst;

}

@init {

$formula::equality=new ArrayList();

$formula::operator=new ArrayList();

$formula::conjunction=new ArrayList();

$formula::conjunction2=new ArrayList();

$formula::isVarL2 = new ArrayList();

$formula::isVarL5 = new ArrayList();

$formula::isVarL6 = new ArrayList();

$formula::isFuncL2 = new ArrayList();

$formula::isFuncL5 = new ArrayList();

Appendix A. ANTLR Grammar and String Template Group Files 153

$formula::isFuncL6 = new ArrayList();

$formula::isArthL = new ArrayList();

$formula::isArth = true;

$formula::isnotArth = false;

$formula::terml1 = new ArrayList();

$formula::terml2 = new ArrayList();

$formula::terml3 = new ArrayList();

$formula::terml4 = new ArrayList();

$formula::Filler = "!!";

$formula::F = false;

$formula::isF1=false;

$formula::isF2=false;

$formula::isF3=false;

$formula::cat=0;

$formula::exvar = new ArrayList();

$formula::isAllp=false;

$formula::isSrc=false;

$formula::isDst=false;

}

@after {

$prog::attackid=new ArrayList();

}

: formula1 -> {$formula1.st}

| formula2 -> {$formula2.st}

| formula3 -> {$formula3.st}

| formula4 -> {$formula4.st}

;

exQ : ’(’ EXIST var (’,’ var)* ’)’;

atomic_formula

@init {

$formula::termindx = 1;

}

: PREDSYM ’(’ p+=term {$prog::lindx.add($formula::termindx++);}

(’,’ p+=term {$prog::lindx.add($formula::termindx++);})*’)’

;

formula1

: exQ ’[’ exQ atomic_formula

{$prog::sfilter.add($formulaSeq::sfilterindx++);} AND

{$prog::sfilter.add($formulaSeq::sfilterindx);}

{$formula::conjunction2.add($formula::F);} (disjunction (AND

{$formula::conjunction2.add("and");} disjunction)*) ’]’

{$formulaSeq::error=checkconsistence($formulaSeq::varterms,

$prog::vpindx,$prog::formulaindex);}

{$formula::filter=preproc($formula::terml1,$formula::terml2,

$formula::terml3,$formula::terml4);}

Appendix A. ANTLR Grammar and String Template Group Files 154

{$formula::isAllp = Allp($formula::filter);}

{$formula::isSrc = Src($formula::filter);}

{$formula::isDst = Dst($formula::filter);}

{$prog::isFormula1=true;}

-> category1(term1={$formula::terml1}, term2={$formula::terml2},

equality={$formula::equality}, operator={$formula::operator},

isVar2={$formula::isVarL2}, isVar5={$formula::isVarL5},

isVar6={$formula::isVarL6}, formulaindex={$prog::formulaindex},

term5={$formula::terml3}, term6={$formula::terml4},

isArth={$formula::isArthL},regexp={$formulaSeq::regexp},

isFunc2={$formula::isFuncL2}, isFunc5={$formula::isFuncL5},

isFunc6={$formula::isFuncL6}, conj={$formula::conjunction},

attackid={$prog::attackid},conj2={$formula::conjunction2},

filter={$formula::filter},

isAllp={$formula::isAllp},isSrc={$formula::isSrc},

isDst={$formula::isDst},error={$formulaSeq::error})

;

formula2

: exQ? ’[’ exQ atomic_formula

{$prog::sfilter.add($formulaSeq::sfilterindx++);} AND

{$formulaSeq::Negation.add(" ");} (NEG

{$formulaSeq::Negation.remove($formulaSeq::patternindex);}

{$formulaSeq::Negation.add(" NOT ");})?

EVENTUALLY ’[’ NUMBER’,’ N2=NUMBER

{$formulaSeq::window.add(Integer.parseInt($N2.text));} ’]’

{$formulaSeq::patternindex++;} (formula2 |exQ atomic_formula

{$prog::sfilter.add($formulaSeq::sfilterindx++);}) ’]’

{$formulaSeq::error=checkpredicate($prog::sfilter,$prog::lindx);

$formula::cat=2;

$formulaSeq::wc = wcond($prog::formulaindex,$prog::clindx,$prog::pindx,

$prog::constlist);

$formulaSeq::select = select($formula::cat,$prog::formulaindex,

$formulaSeq::patternindex, $formulaSeq::window,$formulaSeq::varterms,

$formulaSeq::vlindx,$prog::vpindx,$formulaSeq::Negation);}

-> category2(sfilter={$prog::sfilter},wc={$formulaSeq::wc},

formulaindex={$prog::formulaindex},select={$formulaSeq::select},

error={$formulaSeq::error})

;

formula3

: exQ ’[’ exQ atomic_formula

{$prog::sfilter.add($formulaSeq::sfilterindx++);} AND

ALWAYSP ’[’ NUMBER’,’ N=NUMBER

{$formulaSeq::window.add(Integer.parseInt($N.text));}’]’

exQ NEG atomic_formula

{$prog::sfilter.add($formulaSeq::sfilterindx++);}’]’

{$formulaSeq::error=checkpredicate($prog::sfilter,$prog::lindx);

$formulaSeq::table = items($formulaSeq::varterms,$formulaSeq::vlindx,

Appendix A. ANTLR Grammar and String Template Group Files 155

$prog::vpindx);

$formulaSeq::secondary=skey($formulaSeq::varterms,$formulaSeq::vlindx,

$prog::vpindx);

$formulaSeq::wc = wcond($prog::formulaindex,$prog::clindx,$prog::pindx,

$prog::constlist);}

-> category3(formulaindex={$prog::formulaindex},

varterms={$formulaSeq::varterms},

vlindx={$formulaSeq::vlindx},vpindx= {$prog::vpindx},

items={$formulaSeq::table}, skey={$formulaSeq::secondary},

sfilter={$prog::sfilter},wc={$formulaSeq::wc},

w={$formulaSeq::window},error={$formulaSeq::error})

;

formula4

: (’(’ EXIST var1=var {$formula::exvar.add($var1.text);} (’,’ var2=var

{$formula::exvar.add($var2.text);})* ’)’)?

REOCCUR (’[’ NUMBER’,’ N=NUMBER

{$formulaSeq::rwindow.add(Integer.parseInt($N.text) * 1000);}’]’ ’[’

S=NUMBER {$formulaSeq::size.add(Integer.parseInt($S.text));}’]’)

(formula1 {$formula::isF1=true;}|formula2 {$formula::isF2=true;}|formula3

{$formula::isF3=true;})

{$formula::cat=4;

$formulaSeq::wc = wcond($prog::formulaindex,

$prog::clindx,$prog::pindx,$prog::constlist);

$formulaSeq::secondary=skey($formulaSeq::varterms,

$formulaSeq::vlindx,$prog::vpindx);

$formulaSeq::select = select($formula::cat,$prog::formulaindex,

$formulaSeq::patternindex, $formulaSeq::window,

$formulaSeq::varterms,$formulaSeq::vlindx,$prog::vpindx,

$formulaSeq::Negation);

$formulaSeq::table = items($formulaSeq::varterms,

$formulaSeq::vlindx,$prog::vpindx);}

-> category4(sfilter={$prog::sfilter},

formulaindex={$prog::formulaindex},

isF1={$formula::isF1},isF2={$formula::isF2},

isF3={$formula::isF3},term1={$formula::terml1},

term2={$formula::terml2}, isFunc2={$formula::isFuncL2},

isFunc5={$formula::isFuncL5}, isFunc6={$formula::isFuncL6},

conj={$formula::conjunction}, conj2={$formula::conjunction2},

filter={$formula::filter},isAllp={$formula::isAllp},

isSrc={$formula::isSrc},isDst={$formula::isDst},

equality={$formula::equality}, operator={$formula::operator},

isVar2={$formula::isVarL2}, isVar5={$formula::isVarL5},

isVar6={$formula::isVarL6}, term5={$formula::terml3},

term6={$formula::terml4},isArth={$formula::isArthL},

w={$formulaSeq::rwindow}, s={$formulaSeq::size},

exvar={$formula::exvar},wc={$formulaSeq::wc},

select={$formulaSeq::select},p={$formulaSeq::patternindex},

Appendix A. ANTLR Grammar and String Template Group Files 156

items={$formulaSeq::table},

skey={$formulaSeq::secondary},error={$formulaSeq::error})

;

disjunction

: (’(’ (term1=term {$formula::terml1.add($term1.text);} (E1=EQUAL

{$formula::equality.add($E1.text);}|G1=GE

{$formula::equality.add($G1.text);}

|G2=GT {$formula::equality.add($G2.text);}|L1=LT

{$formula::equality.add($L1.text);}|L2=LE

{$formula::equality.add($L2.text);}|N1=NOTEQUAL

{$formula::equality.add($N1.text);})

(term2=term {$formula::terml2.add($term2.text);

$formula::isVarL2.add($formula::isVar);

$formula::isFuncL2.add($formula::isFunc);

$formula::isArthL.add($formula::isnotArth);

$formula::terml3.add($formula::Filler);

$formula::terml4.add($formula::Filler);

$formula::isVarL5.add($formula::F);

$formula::isVarL6.add($formula::F);

$formula::isFuncL5.add($formula::F);

$formula::isFuncL6.add($formula::F);

$formula::operator.add($formula::Filler);}

|’(’ term5=term {$formula::terml3.add($term5.text);

$formula::isVarL5.add($formula::isVar);

$formula::isFuncL5.add($formula::F);} (Pl1=PLUS

{$formula::operator.add($Pl1.text);}|Mi1=MINUS

{$formula::operator.add($Mi1.text);}

|Mu1=MULT {$formula::operator.add($Mu1.text);}

|Di1=DIV {$formula::operator.add($Di1.text);}) term6=term

{$formula::terml4.add($term6.text);

$formula::isVarL6.add($formula::isVar);

$formula::isFuncL6.add($formula::F);

$formula::terml2.add($formula::Filler);

$formula::isVarL2.add($formula::F);

$formula::isFuncL2.add($formula::F);} ’)’

{$formula::isArthL.add($formula::isArth);})

(or=OR {$formula::conjunction2.add($formula::F);}

{$formula::conjunction.add("or");} term3=term

{$formula::terml1.add($term3.text);} (E2=EQUAL

{$formula::equality.add($E2.text);}|G3=GE

{$formula::equality.add($G3.text);}

|G4=GT {$formula::equality.add($G4.text);}

|L3=LT {$formula::equality.add($L3.text);}

|L4=LE {$formula::equality.add($L4.text);}

|N2=NOTEQUAL {$formula::equality.add($N2.text);})

(term4=term {$formula::terml2.add($term4.text);

Appendix A. ANTLR Grammar and String Template Group Files 157

$formula::isVarL2.add($formula::isVar);

$formula::isFuncL2.add($formula::isFunc);

$formula::isArthL.add($formula::isnotArth);

$formula::terml3.add($formula::Filler);

$formula::terml4.add($formula::Filler);

$formula::isVarL5.add($formula::F);

$formula::isVarL6.add($formula::F);

$formula::isFuncL5.add($formula::F);

$formula::isFuncL6.add($formula::F);

$formula::operator.add($formula::Filler);}

|’(’ term5=term {$formula::terml3.add($term5.text);

$formula::isVarL5.add($formula::isVar);

$formula::isFuncL5.add($formula::F);} (Pl2=PLUS

{$formula::operator.add($Pl2.text);}|Mi2=MINUS

{$formula::operator.add($Mi2.text);}

|Mu2=MULT {$formula::operator.add($Mu2.text);}

|Di2=DIV {$formula::operator.add($Di2.text);})

term6=term {$formula::terml4.add($term6.text);

$formula::isVarL6.add($formula::isVar);

$formula::isFuncL6.add($formula::F);

$formula::terml2.add($formula::Filler);

$formula::isVarL2.add($formula::F);

$formula::isFuncL2.add($formula::F);} ’)’

{$formula::isArthL.add($formula::isArth);}))*)) ’)’

;

term

: var {$formulaSeq::varterms.add($var.text);}

{$formulaSeq::vlindx.add($formula::termindx);}

{$prog::vpindx.add($formulaSeq::sfilterindx);}

-> {new StringTemplate($var.text); $formula::isVar=true;}

| constant

| function

| (’(’ term (PLUS|MINUS|MULT|DIV) term ’)’)

;

constant

: (BIGCHAR {$prog::constlist.add($BIGCHAR.text);

$formula::isVar=false;$formula::isFunc=false;}

| NUMBER {$prog::constlist.add($NUMBER.text);

$formula::isVar=false;})+

{$prog::clindx.add($formula::termindx);}

{$prog::pindx.add($formulaSeq::sfilterindx);}

;

var

: (SMALLCHAR)(NUMBER)+

;

function

: ’f("’ regex ’")’ {$formulaSeq::regexp = regexpmatch($function.text);}

Appendix A. ANTLR Grammar and String Template Group Files 158

{$formula::isFunc=true;$formula::isVar=false;}

;

regex

: (SMALLCHAR|BIGCHAR|REOCCUR|EXIST|ALWAYSP|PREDSYM|EVENTUALLY|ALWAYS

| NUMBER|spchar|UNICODE|match)+

;

spchar

: (’.’ | ’*’ | ’%’ |’^’ | ’{’ |’}’ |’)’ |’(’ |’\\’ |’:’ |’<’ |’>’ |’<>’

|’~’ |’?’ |’-’ |’,’|’&’|’=’ |’/’)

;

match

: (’[’ ’^’? (SMALLCHAR|BIGCHAR|REOCCUR|EXIST|ALWAYSP|PREDSYM|EVENTUALLY

|ALWAYS|UNICODE)+’]’)

;

UNICODE

: ’\\u0000’ // null

| ’\\u000a’ // LF

| ’\\u0020’ // SP

| ’\\u0025’ // %

| ’\\u0026’ // &

| ’\\u0028’ // (

| ’\\u0029’ //)

| ’\\u002f’ // / forward slash

| ’\\u002d’ // - minus

| ’\\u002e’ // . (dot)

| ’\\u0030’ // 0

| ’\\u0031’ // 1

| ’\\u0032’ // 2

| ’\\u0033’ // 3

| ’\\u0034’ //4

| ’\\u0035’ // 5

| ’\\u0038’ // 8

| ’\\u0039’ // 9

| ’\\u003a’ // :

| ’\\u003c’ // <

| ’\\u003d’ // =

| ’\\u003e’ // >

| ’\\u0041’ //A

| ’\\u0042’ // B

| ’\\u0043’ // C

| ’\\u0044’ // D

| ’\\u0045’ //E

| ’\\u0046’ // F

| ’\\u0047’ // G

| ’\\u0048’ // H

| ’\\u0049’ // I

| ’\\u004a’ // J

Appendix A. ANTLR Grammar and String Template Group Files 159

| ’\\u004b’ // K

| ’\\u004c’ // L

| ’\\u004d’ // M

| ’\\u004e’ // N

| ’\\u004f’ // O

| ’\\u0050’ // P

| ’\\u0051’ // Q

| ’\\u0052’ // R

| ’\\u0053’ // S

| ’\\u0054’ // T

| ’\\u0055’ // U

| ’\\u0056’ // V

| ’\\u0057’ // W

| ’\\u0058’ // X

| ’\\u0059’ // Y

| ’\\u005a’ // Z

| ’\\u005c’ // \ (backslash)

| ’\\u0061’ // a

| ’\\u0062’ // b

| ’\\u0063’ // c

| ’\\u0064’ // d

| ’\\u0065’ // e

| ’\\u0066’ // f

| ’\\u0067’ // g

| ’\\u0068’ // h

| ’\\u0069’ // i

| ’\\u006a’ // j

| ’\\u006b’ // k

| ’\\u006c’ // l

| ’\\u006d’ // m

| ’\\u006e’ // n

| ’\\u006f’ // o

| ’\\u0070’ // p

| ’\\u0071’ //q

| ’\\u0072’ // r

| ’\\u0073’ // s

| ’\\u0074’ // t

| ’\\u0075’ // u

| ’\\u0076’ // v

| ’\\u0077’ // w

| ’\\u0078’ // x

| ’\\u0079’ // y

| ’\\u007a’ // z

| ’\\u00fc’ //

;

BIGCHAR

: (’A’..’Z’)+

Appendix A. ANTLR Grammar and String Template Group Files 160

;

SMALLCHAR

: (’a’..’z’)

;

WHITESPACE

: (’\t’ | ’ ’| ’\u000C’)+ { $channel = HIDDEN; }

;

NUMBER : DIGIT+;

fragment DIGIT : ’0’..’9’;

NEWLINE :’\r’? ’\n’;

A.3 TeStID String Template Group File

group SB;

prog(formulae,isFormula1) ::= <<

<if (isFormula1)>

echo "CREATE OUTPUT STREAM allStream ;

APPLY JAVA \"TCP_W_Payload\" AS TCP_W_Payload (

schema0 = \"\<?xml version=\\\\\"1.0\\\\\" encoding=\\\\\"UTF-8\\\\\"?>\n\

<schema name=\\\\\"schema:TCP_W_Payload\\\\\">\n

\<field description=\\\\\"\\\\\" name=\\\\\"x1\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x2\\\\\"

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x3\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x4\\\\\"

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x5\\\\\"

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x6\\\\\"

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x7\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x8\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x9\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x10\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x11\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x12\\\\\"

type=\\\\\"string\\\\\"/>

Appendix A. ANTLR Grammar and String Template Group Files 161

\n\</schema>\n\"

)

INTO allStream;" > allp.ssql

echo "CREATE STREAM allStream ;

APPLY JAVA \"TCP_W_Payload\" AS TCP_W_Payload (

schema0 = \"\<?xml version=\\\\\"1.0\\\\\" encoding=\\\\\"UTF-8\\\\\"?>\n\

<schema name=\\\\\"schema:TCP_W_Payload\\\\\">\n

\<field description=\\\\\"\\\\\" name=\\\\\"x1\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x2\\\\\"

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x3\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x4\\\\\"

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x5\\\\\"

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x6\\\\\"

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x7\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x8\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x9\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x10\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x11\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x12\\\\\"

type=\\\\\"string\\\\\"/>

\n\</schema>\n\"

)

INTO allStream;

CREATE OUTPUT STREAM src20;

CREATE OUTPUT STREAM src53;

CREATE OUTPUT STREAM src0;

CREATE OUTPUT STREAM srchttp;

SELECT * FROM allStream

WHERE x2 = 20 INTO src20

WHERE x2 = 53 INTO src53

WHERE x2 = 0 INTO src0

WHERE x2 = 80 or x2 = 8000 or x2 = 8001 or x2 = 8080 INTO srchttp

Appendix A. ANTLR Grammar and String Template Group Files 162

;" > src.ssql

echo "CREATE STREAM allStream;

APPLY JAVA \"TCP_W_Payload\" AS TCP_W_Payload (

schema0 = \"\<?xml version=\\\\\"1.0\\\\\" encoding=\\\\\"UTF-8\\\\\"?>\n\

<schema name=\\\\\"schema:TCP_W_Payload\\\\\">\n

\<field description=\\\\\"\\\\\" name=\\\\\"x1\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x2\\\\\"

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x3\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x4\\\\\"

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x5\\\\\"

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x6\\\\\"

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x7\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x8\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x9\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x10\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x11\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x12\\\\\"

type=\\\\\"string\\\\\"/>

\n\</schema>\n\"

)

INTO allStream;

CREATE OUTPUT STREAM dst21;

CREATE OUTPUT STREAM dst53;

CREATE OUTPUT STREAM dst79;

CREATE OUTPUT STREAM dst1080;

CREATE OUTPUT STREAM dst15104;

CREATE OUTPUT STREAM dst161;

CREATE OUTPUT STREAM dst139;

CREATE OUTPUT STREAM dst3128;

CREATE OUTPUT STREAM dst162;

CREATE OUTPUT STREAM dst705;

CREATE OUTPUT STREAM dst143;

CREATE OUTPUT STREAM dst25;

CREATE OUTPUT STREAM dsthttp;

Appendix A. ANTLR Grammar and String Template Group Files 163

SELECT * FROM allStream

WHERE x4 = 21 INTO dst21

WHERE x4 = 53 INTO dst53

WHERE x4 = 79 INTO dst79

WHERE x4 = 1080 INTO dst1080

WHERE x4 = 15104 INTO dst15104

WHERE x4 = 161 INTO dst161

WHERE x4 = 139 INTO dst139

WHERE x4 = 3128 INTO dst3128

WHERE x4 = 162 INTO dst162

WHERE x4 = 705 INTO dst705

WHERE x4 = 143 INTO dst143

WHERE x4 = 25 INTO dst25

WHERE x4 = 80 or x4 = 8000 or x4 = 8001 or x4 = 8080 INTO dsthttp

;" > dst.ssql

echo "CREATE STREAM allp;" > main.ssql

echo "APPLY PARALLEL MODULE \"allp.ssql\" AS allpm INTO allStream = allp ;"

\>> main.ssql

echo "CREATE STREAM out_src20 ;

CREATE STREAM out_src53 ;

CREATE STREAM out_src0 ;

CREATE STREAM out_srchttp ;

APPLY PARALLEL MODULE \"src.ssql\" AS srcm

INTO src20 = out_src20, src53 = out_src53, src0 = out_src0 ,

srchttp = out_srchttp;

CREATE STREAM out_dst21 ;

CREATE STREAM out_dst53 ;

CREATE STREAM out_dsthttp ;

CREATE STREAM out_dst79 ;

CREATE STREAM out_dst1080 ;

CREATE STREAM out_dst15104 ;

CREATE STREAM out_dst161 ;

CREATE STREAM out_dst139 ;

CREATE STREAM out_dst3128 ;

CREATE STREAM out_dst162 ;

CREATE STREAM out_dst705 ;

CREATE STREAM out_dst143 ;

CREATE STREAM out_dst25 ;

APPLY PARALLEL MODULE \"dst.ssql\" AS dstm

INTO dst21 = out_dst21, dst53 = out_dst53, dsthttp = out_dsthttp ,

dst79 = out_dst79, dst1080 = out_dst1080, dst15104 = out_dst15104,

dst161 = out_dst161, dst139 = out_dst139, dst3128 = out_dst3128,

Appendix A. ANTLR Grammar and String Template Group Files 164

dst162 = out_dst162, dst705 = out_dst705, dst143 = out_dst143,

dst25 = out_dst25

;" \>> main.ssql

<endif>

<formulae; separator="\n">

>>

category1(term1,term2,equality,operator,isVar2,isVar5,isVar6,formulaindex,

term5,term6,isArth,regexp,isFunc2,isFunc5,isFunc6,conj,attackid,conj2,

filter,isAllp,isSrc,isDst,error) ::= <<

<if (error)>

******** <error> *******

<else>

echo "CREATE INPUT STREAM Filter<formulaindex> (

x1 string,

x2 int,

x3 string,

x4 int,

x5 long,

x6 long,

x7 boolean,

x8 boolean,

x9 boolean,

x10 boolean,

x11 boolean,

x12 string

);" > m<formulaindex>.ssql

echo "CREATE OUTPUT STREAM Filtero<formulaindex> ;" \>> m<formulaindex>.ssql

echo "CREATE STREAM out_Filter<formulaindex> ;" \>> m<formulaindex>.ssql

echo "SELECT * FROM Filter<formulaindex> " \>> m<formulaindex>.ssql

echo "WHERE (<term1,equality,operator,term2,isVar2,isVar5,isVar6,isFunc2,

isFunc5,isFunc6,term5,term6,isArth,conj,conj2:{t1,eq,op,t2,isVar2,isVar5,

isVar6,isFunc2,isFunc5,isFunc6,t5,t6,isArth,conj,conj2|<if(!isArth)>

<if(conj2)>) <conj2> (<else><endif><if(isVar2)><t1><eq><t2> <conj>

<elseif(isFunc2)><regexp> <conj> <else><t1> <eq> <t2> <conj> <endif><else>

<t1> <eq><if(isVar5)><t5> <op> <else> <t5> <op> <endif><if(isVar6)><t6> <conj>

<else><t6><conj><endif><endif>};separator ="">) INTO out_Filter<formulaindex>

;" \>> m<formulaindex>.ssql

echo "SELECT

out_Filter<formulaindex>.x1,

out_Filter<formulaindex>.x2,

out_Filter<formulaindex>.x3,

out_Filter<formulaindex>.x4,

out_Filter<formulaindex>.x12,

\"<attackid>\" AS attack

Appendix A. ANTLR Grammar and String Template Group Files 165

FROM out_Filter<formulaindex>

INTO Filtero<formulaindex>

;" \>> m<formulaindex>.ssql

echo "CREATE OUTPUT STREAM Output<formulaindex>;" \>> main.ssql

<if (isAllp)>echo "APPLY USING CONCRETE 5 MODULE \"m<formulaindex>.ssql\" AS

allpm<formulaindex> FROM Filter<formulaindex> = <filter> USING round_robin

INTO Filtero<formulaindex> = Output<formulaindex>;" \>> main.ssql

<elseif (isSrc)>echo "APPLY USING CONCRETE 5 MODULE \"m<formulaindex>.ssql\"

AS srcm<formulaindex> FROM Filter<formulaindex> = out_<filter> USING

round_robin INTO Filtero<formulaindex> = Output<formulaindex>;" \>> main.ssql

<elseif (isDst)>echo "APPLY USING CONCRETE 5 MODULE \"m<formulaindex>.ssql\"

AS dstm<formulaindex> FROM Filter<formulaindex> = out_<filter>

USING round_robin INTO Filtero<formulaindex> = Output<formulaindex>;"

\>> main.ssql<endif>

<endif>

>>

category2(sfilter,wc,formulaindex,select,error)::= <<

<if (error)>

******** <error> *******

<else>

echo "CREATE OUTPUT STREAM OutputStream<formulaindex>;

CREATE STREAM out__InputAdapter2_<formulaindex> ;

APPLY JAVA \"TcpSniffer\" AS InputAdapter<formulaindex> (

schema0 = \"\<?xml version=\\\\\"1.0\\\\\" encoding=\\\\\"UTF-8\\\\\"?>

\n\<schema name=\\\\\"schema:TCP_W_Payload\\\\\">\n

\<field description=\\\\\"\\\\\" name=\\\\\"x1\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x2\\\\\"

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x3\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x4\\\\\"

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x5\\\\\"

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x6\\\\\"

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x7\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x8\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x9\\\\\"

type=\\\\\"bool\\\\\"/>\n

Appendix A. ANTLR Grammar and String Template Group Files 166

\<field description=\\\\\"\\\\\" name=\\\\\"x10\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x11\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x12\\\\\"

type=\\\\\"string\\\\\"/>

\n\</schema>\n\"

)

INTO out__InputAdapter2_<formulaindex>;

<sfilter:{CREATE STREAM out__Filter<formulaindex>_<it>}; separator=";\n">;

SELECT * FROM out__InputAdapter2_<formulaindex>

<wc; separator="\n">;

<select>

" > b<formulaindex>.ssql

<endif>

>>

category3(formulaindex,varterms,vlindx,vpindx,items,skey,

sfilter,wc,w,items,skey,error)::= <<

<if (error)>

******** <error> *******

<else>

echo "CREATE OUTPUT STREAM OutputStream<formulaindex>;

CREATE MEMORY TABLE QueryTable<formulaindex>

(

packetno long,

predicate_time double,

<items>

PRIMARY KEY (packetno) USING BTREE

SECONDARY KEY (predicate_time,<skey; separator=",">) USING HASH;

CREATE STREAM out__InputAdapter3_<formulaindex>;

APPLY JAVA \"TcpSniffer\" AS InputAdapter<formulaindex> (

schema0 = \"\<?xml version=\\\\\"1.0\\\\\" encoding=\\\\\"UTF-8\\\\\"?>

\n\<schema name=\\\\\"schema:TCP_W_Payload\\\\\">\n

\<field description=\\\\\"\\\\\" name=\\\\\"x1\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x2\\\\\"

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x3\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x4\\\\\"

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x5\\\\\"

Appendix A. ANTLR Grammar and String Template Group Files 167

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x6\\\\\"

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x7\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x8\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x9\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x10\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x11\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x12\\\\\"

type=\\\\\"string\\\\\"/>

\n\</schema>\n\"

)

INTO out__InputAdapter3_<formulaindex>;

CREATE STREAM out__Map3_<formulaindex> ;

SELECT

out__InputAdapter3_<formulaindex>.* AS *,

to_milliseconds(now()) AS predicate_time

FROM out__InputAdapter3_<formulaindex>

INTO out__Map3_<formulaindex>

;

<sfilter:{CREATE STREAM out__Filter<formulaindex>_<it>}; separator=";\n">;

SELECT * FROM out__Map3_<formulaindex>

<wc; separator="\n">;

CREATE STREAM out__Query2_<formulaindex> ;

SELECT out__Filter<formulaindex>_1.x1, out__Filter<formulaindex>_1.x2,

out__Filter<formulaindex>_1.x3, out__Filter<formulaindex>_1.x4,

out__Filter<formulaindex>_1.x5, out__Filter<formulaindex>_1.x6,

out__Filter<formulaindex>_1.x7, out__Filter<formulaindex>_1.x8,

out__Filter<formulaindex>_1.x9, out__Filter<formulaindex>_1.x10,

out__Filter<formulaindex>_1.x11, out__Filter<formulaindex>_1.x12

, out__Filter<formulaindex>_1.predicate_time,

QueryTable<formulaindex>.packetno AS tablepacketno,

QueryTable<formulaindex>.predicate_time AS tablepredicate_time,

<skey:{QueryTable<formulaindex>.<it> AS table<it>}; separator=",">

FROM out__Filter<formulaindex>_1 OUTER JOIN QueryTable<formulaindex>

WHERE QueryTable<formulaindex>.predicate_time >=

(out__Filter<formulaindex>_1.predicate_time - <w>) and

Appendix A. ANTLR Grammar and String Template Group Files 168

QueryTable<formulaindex>.predicate_time

\<= out__Filter<formulaindex>_1.predicate_time and

<skey:{QueryTable<formulaindex>.<it> = out__Filter<formulaindex>_1.<it>};

separator = " and ">

LIMIT 1

INTO out__Query2_<formulaindex>;

DECLARE sequence1id long DEFAULT 0;

-- seqIdSetter

CREATE STREAM gen__seqIdSetter<formulaindex> (

packetno long

);

CREATE STREAM out__Sequence<formulaindex>_1 ;

SELECT sequence1id + 1 AS packetno FROM out__Filter<formulaindex>_2 INTO

gen__seqIdSetter<formulaindex>;

SELECT *, sequence1id AS packetno FROM out__Filter<formulaindex>_2 INTO

out__Sequence<formulaindex>_1;

CREATE STREAM out__Filter<formulaindex>_3 ;

SELECT * FROM out__Query2_<formulaindex>

WHERE isnull(tablex1) INTO OutputStream<formulaindex>

WHERE true INTO out__Filter<formulaindex>_3

;

REPLACE INTO QueryTable<formulaindex> (packetno, predicate_time, <skey:{<it>};

separator=",">)

SELECT packetno, predicate_time, <skey:{<it>}; separator=",">

FROM out__Sequence<formulaindex>_1

;

DELETE FROM QueryTable<formulaindex>

USING out__Filter<formulaindex>_3

WHERE (QueryTable<formulaindex>.predicate_time \<

out__Filter<formulaindex>_3.predicate_time - <w>) or

(<skey:{QueryTable<formulaindex>.<it> = out__Filter<formulaindex>_3.<it>};

separator=" and ">)

;

UPDATE sequence1id FROM (SELECT * FROM gen__seqIdSetter<formulaindex>);"

> c<formulaindex>.ssql

<endif>

>>

category4(sfilter,formulaindex,isF1,isF2,isF3,term1, term2, isFunc2, isFunc5,

isFunc6, conj, conj2, filter,isAllp, isSrc, isDst,equality,

operator,isVar2, isVar5,isVar6, term5, term6,isArth,w,s,exvar,

wc,select,p,error)::= <<

Appendix A. ANTLR Grammar and String Template Group Files 169

<if(isF1)><formula1()><elseif(isF2)><formula2()><elseif(isF3)><formula3()>

<endif>

>>

formula1() ::= <<

<if (error)>

******** <error> *******

<else>

echo "CREATE INPUT STREAM Filter<formulaindex> (

x1 string,

x2 int,

x3 string,

x4 int,

x5 long,

x6 long,

x7 boolean,

x8 boolean,

x9 boolean,

x10 boolean,

x11 boolean,

x12 string

);" > d<formulaindex>.ssql

echo "CREATE OUTPUT STREAM Filtero<formulaindex> ;" \>> d<formulaindex>.ssql

echo "CREATE STREAM out_Filter<formulaindex> ;" \>> d<formulaindex>.ssql

echo "SELECT * FROM Filter<formulaindex> " \>> d<formulaindex>.ssql

echo "WHERE (<term1,equality,operator,term2,isVar2,isVar5,isVar6,isFunc2,

isFunc5, isFunc6,term5,term6,isArth,conj,

conj2:{t1,eq,op,t2,isVar2,isVar5,isVar6,isFunc2,isFunc5,

isFunc6,t5,t6,isArth,conj,conj2| <if(!isArth)><if(conj2)>)

<conj2> (<else><endif><if(isVar2)><t1><eq><t2> <conj>

<elseif(isFunc2)><regexp> <conj> <else><t1> <eq> <t2> <conj>

<endif><else><t1> <eq><if(isVar5)><t5> <op> <else> <t5>

<op> <endif><if(isVar6)><t6> <conj><else>

<t6><conj><endif><endif>};separator ="">)

INTO out_Filter<formulaindex>

;" \>> d<formulaindex>.ssql

echo "CREATE STREAM out_Map<formulaindex> ;

SELECT

out_Filter<formulaindex>.* AS *,

to_milliseconds(now()) AS predicate_time

FROM out_Filter<formulaindex>

INTO out_Map<formulaindex>

;

CREATE STREAM out_PatternSum_<formulaindex> ;

-- Calculates how many orders for the submitted category

Appendix A. ANTLR Grammar and String Template Group Files 170

CREATE WINDOW sumOfPattern<formulaindex>(SIZE <s> ADVANCE 1 TUPLES);

SELECT

<if(exvar)><exvar;separator = " , ">,<endif>

count() AS Numberpackets,

firstval(predicate_time) AS FirstPatternT,

lastval(predicate_time) AS LastPatternT,

firstval(*) AS input_*

FROM out_Map<formulaindex>[sumOfPattern<formulaindex>]

<if(exvar)>GROUP BY <exvar;separator = " , "><endif>

INTO out_PatternSum_<formulaindex>;

SELECT * FROM out_PatternSum_<formulaindex>

WHERE ((LastPatternT - FirstPatternT) \< <w>) INTO Filtero<formulaindex>

;

" \>> d<formulaindex>.ssql

echo "CREATE OUTPUT STREAM Output<formulaindex>;" \>> main.ssql

<if (isAllp)>echo "APPLY MODULE \"d<formulaindex>.ssql\" AS allpm<formulaindex>

FROM Filter<formulaindex> = <filter>

INTO Filtero<formulaindex> = Output<formulaindex>;"

\>> main.ssql

<elseif (isSrc)>echo "APPLY MODULE \"d<formulaindex>.ssql\"

AS srcm<formulaindex>

FROM Filter<formulaindex> = out_<filter> INTO Filtero<formulaindex> =

Output<formulaindex>;" \>> main.ssql

<elseif (isDst)>echo "APPLY MODULE \"d<formulaindex>.ssql\"

AS dstm<formulaindex>

FROM Filter<formulaindex> = out_<filter> INTO Filtero<formulaindex> =

Output<formulaindex>;" \>> main.ssql<endif>

<endif>

>>

formula2() ::= <<

<if (error)>

******** <error> *******

<else>

echo "CREATE OUTPUT STREAM OutputStream<formulaindex>;

CREATE STREAM out_InputAdapter4_<formulaindex> ;

APPLY JAVA \"TcpSniffer\" AS InputAdapter<formulaindex> (

schema0 = \"\<?xml version=\\\\\"1.0\\\\\" encoding=\\\\\"UTF-8\\\\\"?>

\n\<schema name=\\\\\"schema:TCP_W_Payload\\\\\">\n

\<field description=\\\\\"\\\\\" name=\\\\\"x1\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x2\\\\\"

Appendix A. ANTLR Grammar and String Template Group Files 171

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x3\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x4\\\\\"

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x5\\\\\"

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x6\\\\\"

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x7\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x8\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x9\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x10\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x11\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x12\\\\\"

type=\\\\\"string\\\\\"/>

\n\</schema>\n\"

)

INTO out_InputAdapter4_<formulaindex>;

<sfilter:{CREATE STREAM out__Filter<formulaindex>_<it>}; separator=";\n">;

SELECT * FROM out_InputAdapter4_<formulaindex>

<wc; separator="\n">;

<select>

CREATE STREAM out_Map<formulaindex> ;

SELECT

out__Pattern<formulaindex>_<p>.* AS *,

to_milliseconds(now()) AS predicate_time

FROM out__Pattern<formulaindex>_<p>

INTO out_Map<formulaindex>

;

CREATE STREAM out_PatternSum_<formulaindex> ;

-- Calculates how many orders for the submitted category

CREATE WINDOW sumOfPattern<formulaindex>(SIZE <s> ADVANCE 1 TUPLES);

SELECT

<if(exvar)><exvar;separator = " , ">,<endif>

count() AS Numberpackets,

firstval(predicate_time) AS FirstPatternT,

lastval(predicate_time) AS LastPatternT,

Appendix A. ANTLR Grammar and String Template Group Files 172

firstval(*) AS input_*

FROM out_Map<formulaindex>[sumOfPattern<formulaindex>]

<if(exvar)>GROUP BY <exvar;separator = " , "><endif>

INTO out_PatternSum_<formulaindex>;

SELECT * FROM out_PatternSum_<formulaindex>

WHERE ((LastPatternT - FirstPatternT) \< <w>) INTO OutputStream<formulaindex>

;

" > d<formulaindex>.ssql

<endif>

>>

formula3() ::= <<

<if (error)>

******** <error> *******

<else>

echo "CREATE OUTPUT STREAM OutputStream<formulaindex>;

CREATE MEMORY TABLE QueryTable<formulaindex>

(

packetno long,

predicate_time double,

<items>

PRIMARY KEY (packetno) USING BTREE

SECONDARY KEY (predicate_time,<skey; separator=",">) USING HASH;

CREATE STREAM out__InputAdapter4_<formulaindex>;

APPLY JAVA \"TcpSniffer\" AS InputAdapter<formulaindex> (

schema0 = \"\<?xml version=\\\\\"1.0\\\\\" encoding=\\\\\"UTF-8\\\\\"?>

\n\<schema name=\\\\\"schema:TCP_W_Payload\\\\\">\n

\<field description=\\\\\"\\\\\" name=\\\\\"x1\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x2\\\\\"

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x3\\\\\"

type=\\\\\"string\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x4\\\\\"

type=\\\\\"int\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x5\\\\\"

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x6\\\\\"

type=\\\\\"long\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x7\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x8\\\\\"

type=\\\\\"bool\\\\\"/>\n

Appendix A. ANTLR Grammar and String Template Group Files 173

\<field description=\\\\\"\\\\\" name=\\\\\"x9\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x10\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x11\\\\\"

type=\\\\\"bool\\\\\"/>\n

\<field description=\\\\\"\\\\\" name=\\\\\"x12\\\\\"

type=\\\\\"string\\\\\"/>

\n\</schema>\n\"

)

INTO out__InputAdapter4_<formulaindex>;

CREATE STREAM out__Map4_<formulaindex> ;

SELECT

out__InputAdapter4_<formulaindex>.* AS *,

to_milliseconds(now()) AS predicate_time

FROM out__InputAdapter4_<formulaindex>

INTO out__Map4_<formulaindex>

;

<sfilter:{CREATE STREAM out__Filter<formulaindex>_<it>}; separator=";\n">;

SELECT * FROM out__Map4_<formulaindex>

<wc; separator="\n">;

CREATE STREAM out__Query2_<formulaindex> ;

SELECT out__Filter<formulaindex>_1.x1, out__Filter<formulaindex>_1.x2,

out__Filter<formulaindex>_1.x3, out__Filter<formulaindex>_1.x4,

out__Filter<formulaindex>_1.x5, out__Filter<formulaindex>_1.x6,

out__Filter<formulaindex>_1.x7, out__Filter<formulaindex>_1.x8,

out__Filter<formulaindex>_1.x9, out__Filter<formulaindex>_1.x10,

out__Filter<formulaindex>_1.x11, out__Filter<formulaindex>_1.x12,

out__Filter<formulaindex>_1.predicate_time,

QueryTable<formulaindex>.packetno AS tablepacketno,

QueryTable<formulaindex>.predicate_time AS tablepredicate_time,

<skey:{QueryTable<formulaindex>.<it> AS table<it>}; separator=",">

FROM out__Filter<formulaindex>_1 OUTER JOIN QueryTable<formulaindex>

WHERE QueryTable<formulaindex>.predicate_time >=

(out__Filter<formulaindex>_1.predicate_time - <w>) and

QueryTable<formulaindex>.predicate_time \<=

out__Filter<formulaindex>_1.predicate_time and

<skey:{QueryTable<formulaindex>.<it> =

out__Filter<formulaindex>_1.<it>}; separator = " and ">

LIMIT 1

INTO out__Query2_<formulaindex>;

Appendix A. ANTLR Grammar and String Template Group Files 174

DECLARE sequence1id long DEFAULT 0;

-- seqIdSetter

CREATE STREAM gen__seqIdSetter<formulaindex> (

packetno long

);

CREATE STREAM out__Sequence<formulaindex>_1 ;

SELECT sequence1id + 1 AS packetno FROM out__Filter<formulaindex>_2

INTO gen__seqIdSetter<formulaindex>;

SELECT *, sequence1id AS packetno FROM out__Filter<formulaindex>_2

INTO out__Sequence<formulaindex>_1;

CREATE STREAM out__Filter<formulaindex>_3 ;

CREATE STREAM out__Filter<formulaindex>_4 ;

SELECT * FROM out__Query2_<formulaindex>

WHERE isnull(tablex1) INTO out__Filter<formulaindex>_3

WHERE true INTO out__Filter<formulaindex>_4

;

REPLACE INTO QueryTable<formulaindex> (packetno, predicate_time, <skey:{<it>};

separator=",">)

SELECT packetno, predicate_time, <skey:{<it>}; separator=",">

FROM out__Sequence<formulaindex>_1

;

DELETE FROM QueryTable<formulaindex>

USING out__Filter<formulaindex>_3

WHERE (QueryTable<formulaindex>.predicate_time \<

out__Filter<formulaindex>_3.predicate_time - <w>) or

(<skey:{QueryTable<formulaindex>.<it> =

out__Filter<formulaindex>_3.<it>}; separator=" and ">)

;

CREATE STREAM out__PatternSum_<formulaindex> ;

-- Calculates how many orders for the submitted category

CREATE WINDOW sumOfPattern<formulaindex>(SIZE <s> ADVANCE 1 TUPLES);

SELECT

count() AS Numberpackets,

firstval(predicate_time) AS FirstPatternT,

lastval(predicate_time) AS LastPatternT,

firstval(*) AS input_*

FROM out__Filter<formulaindex>_3[sumOfPattern<formulaindex>]

INTO out__PatternSum_<formulaindex>;

SELECT * FROM out__PatternSum_<formulaindex>

WHERE ((LastPatternT - FirstPatternT) \< <w>) INTO OutputStream<formulaindex>

;

UPDATE sequence1id FROM (SELECT * FROM gen__seqIdSetter<formulaindex>);"

Appendix A. ANTLR Grammar and String Template Group Files 175

> d<formulaindex>.ssql

<endif>

>>

Appendix B

Single Packet Attacks With

Payload Signatures Files

B.1 SNORT Single Packet Signatures File

LOCAL RULES

alert tcp $EXTERNAL_NET any -> $HOME_NET 53 (msg:"sid-255 DNS zone

transfer TCP"; flow:to_server,established; content:"|00 00 FC|";

offset:15; metadata:policy security\-ips drop; reference:arachnids,212;

reference:cve,1999\-0532; reference:nessus,10595;

classtype:attempted-recon; sid:255; rev:17;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 79 (msg:"sid-323 FINGER root query";

flow:to_server,established; content:"root"; reference:arachnids,376;

classtype:attempted-recon; sid:323; rev:7;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"sid-334 FTP .forward";

flow:to_server,established; content:".forward"; reference:arachnids,319;

classtype:suspicious-filename-detect; sid:334; rev:8;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"sid-361 FTP SITE EXEC

attempt"; flow:to_server,established; content:"SITE"; nocase;

content:"EXEC"; distance:0;nocase; pcre:"/^SITE\s+EXEC/smi";

reference:arachnids,317; reference:bugtraq,2241; reference:cve,1999-0080;

reference:cve,1999-0955; classtype:bad-unknown; sid:361;

rev:18;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"sid-1919 FTP CWD overflow

attempt"; flow:to_server,established; content:"CWD"; nocase; isdataat:180,

relative; pcre:"/^CWD(?!\n)\s[^\n]{180}/smi"; reference:bugtraq,11069;

reference:bugtraq,1227; reference:bugtraq,1690; reference:bugtraq,6869;

reference:bugtraq,7251; reference:bugtraq,7950; reference:cve,1999-0219;

reference:cve,1999-1058; reference:cve,1999-1510; reference:cve,2000-1035;

reference:cve,2000-1194; reference:cve,2001-0781; reference:cve,2002-0126;

177

Appendix B. Single Packet Attacks With Payload Signatures Files 178

reference:cve,2002-0405; classtype:attempted-admin; sid:1919; rev:28;)

alert tcp $HOME_NET any <> $EXTERNAL_NET any (msg:"sid-241 DDOS shaft

synflood"; flow:stateless; flags:S,12; seq:674711609;

reference:arachnids,253; reference:cve,2000-0138;

classtype:attempted-dos; sid:241; rev:10;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 15104 (msg:"sid-249 DDOS mstream

client to handler"; flow:stateless; flags:S,12; reference:arachnids,111;

reference:cve,2000-0138; classtype:attempted-dos; sid:249; rev:8;)

alert tcp $EXTERNAL_NET 20 -> $HOME_NET :1023 (msg:"sid-503 DELETED MISC Source

Port 20 to <1024"; flow:stateless; flags:S,12; reference:arachnids,06;

classtype:bad-unknown; sid:503; rev:8;)

alert tcp $EXTERNAL_NET 53 -> $HOME_NET :1023 (msg:"sid-504 DELETED MISC source

port 53 to <1024"; flow:stateless; flags:S,12; reference:arachnids,07;

classtype:bad-unknown; sid:504; rev:8;)

alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any (msg:"sid-497

ATTACK-RESPONSES file copied ok"; flow:established;

content:"1 file|28|s|29| copied"; nocase; metadata:policy balanced-ips drop,

policy security-ips drop; reference:bugtraq,1806; reference:cve,2000-0884;

classtype:bad-unknown; sid:497; rev:14;)

alert tcp $EXTERNAL_NET any <> $HOME_NET 0 (msg:"sid-524 DELETED BAD-TRAFFIC

tcp port 0 traffic"; flow:stateless; classtype:misc-activity; sid:524; rev:10;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 161 (msg:"sid-1418 SNMP request tcp";

flow:stateless; reference:bugtraq,4088; reference:bugtraq,4089;

reference:bugtraq,4132; reference:cve,2002-0012; reference:cve,2002-0013;

classtype:attempted-recon; sid:1418; rev:15;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-1497 DELETED

WEB-MISC cross site scripting attempt"; flow:to_server,established;

content:"|3C 53 43 52 49 50 54|"; classtype:web-application-attack; sid:1497;

rev:10;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"sid-530 NETBIOS NT NULL

session"; flow:to_server,established; content:"|00 00 00 00|W|00|i|00|n|00

|d|00|o|00|w|00|s|00| |00|N|00|T|00| |00|1|00|3|00|8|00|1";

reference:arachnids,204; reference:bugtraq,1163; reference:cve,2000-0347;

classtype:attempted-recon; sid:530; rev:11;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 3128 (msg:"sid-618 DELETED SCAN Squid

Proxy attempt"; flow:stateless; flags:S,12; classtype:attempted-recon; sid:618;

rev:11;)

Appendix B. Single Packet Attacks With Payload Signatures Files 179

alert tcp $EXTERNAL_NET any -> $HOME_NET 1080 (msg:"sid-615 DELETED SCAN SOCKS

Proxy attempt"; flow:stateless; flags:S,12; reference:url,

help.undernet.org/proxyscan/; classtype:attempted-recon; sid:615; rev:11;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 8080 (msg:"sid-620 DELETED SCAN Proxy

Port 8080 attempt"; flow:stateless; flags:S,12; classtype:attempted-recon;

sid:620; rev:12;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"sid-622 SCAN ipEye SYN

scan"; flow:stateless; flags:S; seq:1958810375; reference:arachnids,236;

classtype:attempted-recon; sid:622; rev:8;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"sid-623 DELETED SCAN NULL";

flow:stateless; ack:0; flags:0; seq:0; reference:arachnids,4;

classtype:attempted-recon; sid:623; rev:8;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-974 WEB-IIS

Directory transversal attempt"; flow:to_server,established; content:"..|5C|..";

fast_pattern:only; reference:bugtraq,2218; reference:cve,1999-0229;

classtype:web-application-attack; sid:974; rev:15;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-978 WEB-IIS

ASP contents view"; flow:to_server,established;

content:"%20"; content:"&CiRestriction=none"; nocase;

content:"&CiHiliteType=Full"; fast_pattern:only; reference:bugtraq,1084;

reference:cve,2000-0302; reference:nessus,10356;

reference:url,www.microsoft.com/technet/security/bulletin/MS00-006.mspx;

classtype:web-application-attack; sid:978; rev:17;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-981 DELETED

WEB-IIS unicode directory traversal attempt"; flow:to_server,established;

content:"/..%c0%af../"; nocase; reference:bugtraq,1806;

reference:cve,2000-0884; reference:nessus,10537;

classtype:web-application-attack; sid:981; rev:13;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-983 DELETED

WEB-IIS unicode directory traversal attempt"; flow:to_server,established;

content:"/..%c1%9c../"; nocase; reference:bugtraq,1806;

reference:cve,2000-0884; reference:nessus,10537;

classtype:web-application-attack; sid:983; rev:13;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-1002 WEB-IIS

cmd.exe access"; flow:to_server,established; content:"cmd.exe"; fast_pattern;

nocase; http_uri; metadata:policy balanced-ips drop, policy connectivity-ips

drop, policy security-ips drop, service http; classtype:web-application-attack;

sid:1002; rev:14;)

Appendix B. Single Packet Attacks With Payload Signatures Files 180

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-1042 WEB-IIS

view source via translate header"; flow:to_server,established;

content:"Translate|3A| F"; fast_pattern:only; reference:arachnids,305;

reference:bugtraq,14764; reference:bugtraq,1578; reference:cve,2000-0778;

reference:nessus,10491; classtype:web-application-activity; sid:1042; rev:17;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-1070

WEB-MISC WebDAV search access"; flow:to_server,established; content:"SEARCH ";

depth:8; nocase; reference:arachnids,474; reference:bugtraq,1756;

reference:cve,2000-0951; classtype:web-application-activity;

sid:1070; rev:12;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-1112 DELETED

http directory traversal"; flow:to_server,established; content:"..|5C|";

reference:arachnids,298; classtype:attempted-recon; sid:1112; rev:9;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-1113 DELETED

WEB-MISC http directory traversal"; flow:to_server,established; content:"../";

reference:arachnids,297; classtype:attempted-recon; sid:1113; rev:7;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-1122

WEB-MISC /etc/passwd"; flow:to_server,established; content:"/etc/passwd";

nocase; http_uri; classtype:attempted-recon; sid:1122; rev:9;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-1136

WEB-MISC cd.."; flow:to_server,established; content:"cd.."; nocase;

classtype:attempted-recon; sid:1136; rev:8;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-1147

WEB-MISC cat%20 access"; flow:to_server,established; content:"cat ";

nocase; http_uri; reference:bugtraq,374; reference:cve,1999-0039;

classtype:attempted-recon; sid:1147; rev:11;)

alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any (msg:"sid-1201

ATTACK-RESPONSES 403 Forbidden"; flow:from_server,established; content:"403";

http_stat_code; classtype:attempted-recon; sid:1201; rev:8;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (msg:"sid-1239 NETBIOS RFParalyze

Attempt"; flow:to_server,established; content:"BEAVIS"; content:"yep yep";

metadata:policy balanced-ips drop, policy connectivity-ips drop,

policy security-ips drop; reference:bugtraq,1163; reference:cve,2000-0347;

reference:nessus,10392; classtype:attempted-recon; sid:1239; rev:11;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"sid-1292 ATTACK-RESPONSES

directory listing"; flow:established; content:"Volume Serial Number";

classtype:bad-unknown; sid:1292; rev:9;)

Appendix B. Single Packet Attacks With Payload Signatures Files 181

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"sid-1378 TP wu-ftp bad file

completion attempt"; flow:to_server,established; content:"~";

content:"{"; distance:0; reference:bugtraq,3581; reference:bugtraq,3707;

reference:cve,2001-0550; reference:cve,2001-0886; reference:nessus,10821;

classtype:misc-attack; sid:1378; rev:20;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 162 (msg:"sid-1420 SNMP trap tcp";

flow:stateless; reference:bugtraq,4088; reference:bugtraq,4089;

reference:bugtraq,4132; reference:cve,2002-0012; reference:cve,2002-0013;

classtype:attempted-recon; sid:1420; rev:15;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 705 (msg:"sid-1421 SNMP AgentX/tcp

request"; flow:stateless; reference:bugtraq,4088; reference:bugtraq,4089;

reference:bugtraq,4132; reference:cve,2002-0012; reference:cve,2002-0013;

classtype:attempted-recon; sid:1421; rev:15;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"sid-1529 FTP SITE overflow

attempt"; flow:to_server,established; content:"SITE"; nocase; isdataat:100,

relative; pcre:"/^SITE(?!\n)\s[^\n]{100}/smi"; reference:cve,1999-0838;

reference:cve,2001-0755; reference:cve,2001-0770; classtype:attempted-admin;

sid:1529; rev:14;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"sid-1530 DELETED FTP format

string attempt"; flow:to_server,established; content:"%p"; nocase;

reference:bugtraq,1387; reference:bugtraq,2240; reference:bugtraq,726;

reference:cve,1999-0997; reference:cve,2000-0573; reference:nessus,10452;

classtype:attempted-admin; sid:1530; rev:14;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"sid-1734 FTP USER overflow

attempt"; flow:to_server,established; content:"USER"; nocase; isdataat:100,

relative; pcre:"/^USER(?!\n)\s[^\n]{100}/smi"; reference:bugtraq,10078;

reference:bugtraq,10720; reference:bugtraq,1227; reference:bugtraq,1504;

reference:bugtraq,15352; reference:bugtraq,1690; reference:bugtraq,22044;

reference:bugtraq,22045; reference:bugtraq,4638; reference:bugtraq,7307;

reference:bugtraq,8376; reference:cve,1999-1510; reference:cve,1999-1514;

reference:cve,1999-1519; reference:cve,1999-1539; reference:cve,2000-0479;

reference:cve,2000-0656; reference:cve,2000-0761; reference:cve,2000-0943;

reference:cve,2000-1035; reference:cve,2000-1194; reference:cve,2001-0256;

reference:cve,2001-0794; reference:cve,2001-0826; reference:cve,2002-0126;

reference:cve,2002-1522; reference:cve,2003-0271; reference:cve,2004-0286;

reference:cve,2005-2123; reference:cve,2005-3683; classtype:attempted-admin;

sid:1734; rev:40;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-1807

WEB-MISC Chunked-Encoding transfer attempt"; flow:to_server,established;

content:"Transfer-Encoding|3A|"; nocase; http_header; content:"chunked";

nocase; http_header; reference:bugtraq,4474; reference:bugtraq,4485;

Appendix B. Single Packet Attacks With Payload Signatures Files 182

reference:bugtraq,5033; reference:cve,2002-0071; reference:cve,2002-0079;

reference:cve,2002-0392; reference:nessus,10932;

classtype:web-application-attack; sid:1807; rev:15;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 143 (msg:"sid-1930 IMAP auth literal

overflow attempt"; flow:established,to_server; pcre:"/.* [aA][uU][tT][hH].*/";

metadata:policy balanced-ips drop, policy connectivity-ips drop, policy

security-ips drop, service imap; reference:bugtraq,21724;

reference:cve,1999-0005; reference:cve,2006-6424; classtype:misc-attack;

sid:1930; rev:11;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"sid-1945 DELETED

WEB-IIS unicode directory traversal attempt"; flow:to_server,established;

content:"/..%255c.."; nocase; reference:bugtraq,1806; reference:cve,2000-0884;

reference:nessus,10537; classtype:web-application-attack; sid:1945; rev:8;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"sid-1971 FTP SITE EXEC format

string attempt"; flow:to_server,established; content:"SITE"; nocase;

content:"EXEC"; distance:0; nocase; pcre:"/^SITE\s+EXEC\s[^\n]*?%[^\n]*?%/smi";

reference:bugtraq,1387; reference:bugtraq,1505; classtype:bad-unknown;

sid:1971; rev:9;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"sid-1973 FTP MKD overflow

attempt"; flow:to_server,established; content:"MKD"; nocase; isdataat:150,

relative; pcre:"/^MKD(?!\n)\s[^\n]{150}/smi"; reference:bugtraq,11772;

reference:bugtraq,15457; reference:bugtraq,39041; reference:bugtraq,612;

reference:bugtraq,7278; reference:bugtraq,9872; reference:cve,1999-0911;

reference:cve,2005-3683; reference:cve,2009-3023; reference:cve,2010-0625;

reference:nessus,12108; reference:url,www.kb.cert.org/vuls/id/276653;

reference:url,www.microsoft.com/technet/security/bulletin/MS09-053.mspx;

classtype:attempted-admin; sid:1973; rev:22;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"sid-1972 FTP PASS overflow

attempt"; flow:to_server,established; content:"PASS"; nocase; isdataat:100,

relative; pcre:"/^PASS(?!\n)\s[^\n]{100}/smi"; reference:bugtraq,10078;

reference:bugtraq,10720; reference:bugtraq,15457; reference:bugtraq,1690;

reference:bugtraq,22045; reference:bugtraq,3884; reference:bugtraq,8601;

reference:bugtraq,9285; reference:cve,1999-1519; reference:cve,1999-1539;

reference:cve,2000-1035; reference:cve,2002-0126; reference:cve,2002-0895;

reference:cve,2005-3683; classtype:attempted-admin; sid:1972; rev:24;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"sid-1975 FTP DELE overflow

attempt"; flow:to_server,established; content:"DELE"; nocase; isdataat:100,

relative; pcre:"/^DELE(?!\n)\s[^\n]{100}/mi"; reference:bugtraq,15457;

reference:bugtraq,2972; reference:bugtraq,46922; reference:cve,2001-0826;

reference:cve,2001-1021; reference:cve,2005-3683; reference:cve,2010-4228;

reference:nessus,11755; classtype:attempted-admin; sid:1975; rev:17;)

Appendix B. Single Packet Attacks With Payload Signatures Files 183

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"sid-1992 FTP LIST directory

traversal attempt";flow:to_server,established;pcre:"/.*LIST.{1}.*...{1}.*../";

reference:bugtraq,2618; reference:cve,2001-0680; reference:cve,2002-1054;

reference:nessus,11112; classtype:protocol-command-decode; sid:1992; rev:11;)

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:"sid-2087 SMTP From

comment overflow attempt"; flow:to_server,established; content:"From|3A|";

nocase;content:"<><><><><><><><><><><><><><><><><><><><><><>"; distance:0;

content:"|28|"; distance:1; content:"|29|"; distance:1;

reference:bugtraq,6991; reference:cve,2002-1337;

reference:url,www.kb.cert.org/vuls/id/398025; classtype:attempted-admin;

sid:2087; rev:10;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 143 (msg:"sid-2105 IMAP authenticate

literal overflow attempt"; flow:established,to_server; content:"AUTHENTICATE";

fast_pattern:only; nocase; pcre:"/\sAUTHENTICATE\s[^\n]*?\{/smi";

byte_test:5,>,256,0,string,dec,relative; reference:bugtraq,21724;

reference:cve,1999-0042; reference:cve,2006-6424; reference:nessus,10292;

classtype:misc-attack; sid:2105; rev:11;)

B.2 BRO Single Packet Signatures File

signature sid-255 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 53

event "DNS zone transfer TCP"

tcp-state established,originator

payload /.{14}.*\x00\x00\xFC/

}

signature sid-323 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 79

event "FINGER root query"

tcp-state established,originator

payload /.*root/

}

signature sid-334 {

Appendix B. Single Packet Attacks With Payload Signatures Files 184

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 21

event "FTP .forward"

tcp-state established,originator

payload /.*\.forward/

}

signature sid-361 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 21

event "FTP site exec"

tcp-state established,originator

payload /.*[sS][iI][tT][eE] .*.{0}.*[eE][xX][eE][cC] /

}

signature sid-241-a {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

header tcp[13:1] & 255 == 2

header tcp[4:4] == 674711609

event "DDOS shaft synflood"

}

signature sid-241-b {

ip-proto == tcp

src-ip == local_nets

dst-ip != local_nets

header tcp[13:1] & 255 == 2

header tcp[4:4] == 674711609

event "DDOS shaft synflood"

}

signature sid-249 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 15104

header tcp[13:1] & 255 == 2

event "DDOS mstream client to handler"

}

signature sid-503 {

Appendix B. Single Packet Attacks With Payload Signatures Files 185

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

src-port == 20

dst-port >= 0

dst-port <= 1023

header tcp[13:1] & 255 == 2

event "MISC Source Port 20 to <1024"

}

signature sid-504 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

src-port == 53

dst-port >= 0

dst-port <= 1023

header tcp[13:1] & 255 == 2

event "MISC source port 53 to <1024"

}

signature sid-497 {

ip-proto == tcp

src-ip == http_servers

dst-ip != local_nets

src-port == http_ports

event "ATTACK-RESPONSES file copied ok"

tcp-state established,responder

payload /.*1 [fF][iI][lL][eE]\([sS]\) [cC][oO][pP][iI][eE][dD]/

}

signature sid-524-a {

ip-proto == tcp

src-ip == local_nets

dst-ip != local_nets

src-port == 0

event "BAD-TRAFFIC tcp port 0 traffic"

}

signature sid-524-b {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 0

event "BAD-TRAFFIC tcp port 0 traffic"

}

Appendix B. Single Packet Attacks With Payload Signatures Files 186

signature sid-1418 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 161

event "SNMP request tcp"

}

signature sid-1497 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-MISC cross site scripting attempt"

tcp-state established,originator

payload /.*<[sS][cC][rR][iI][pP][tT]>/

}

signature sid-530 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 139

event "NETBIOS NT NULL session"

tcp-state established,originator

payload /.*\x00\x00\x00\x00\x57\x00\x69\x00\x6E\x00\x64\x00\x6F\x00\x77\x00

\x73\x00\x20\x00\x4E\x00\x54\x00\x20\x00\x31\x00\x33\x00\x38\x00\x31/

}

signature sid-618 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 3128

event "SCAN Squid Proxy attempt"

header tcp[13:1] & 255 == 2

}

signature sid-615 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 1080

header tcp[13:1] & 255 == 2

event "SCAN SOCKS Proxy attempt"

}

Appendix B. Single Packet Attacks With Payload Signatures Files 187

signature sid-620 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 8080

event "SCAN Proxy (8080) attempt"

header tcp[13:1] & 255 == 2

}

signature sid-622 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

header tcp[13:1] & 255 == 2

header tcp[4:4] == 1958810375

event "SCAN ipEye SYN scan"

}

signature sid-623 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

header tcp[8:4] == 0

header tcp[13:1] & 255 == 0

header tcp[4:4] == 0

event "SCAN NULL"

}

signature sid-974 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-IIS access"

tcp-state established,originator

payload /.*\x2e\x2e\x5c\x2e\x2e/

}

signature sid-978 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-IIS ASP contents view"

tcp-state established,originator

payload /.*%20/

payload /.*&[cC][iI][rR][eE][sS][tT][rR][iI][cC][tT][iI]

Appendix B. Single Packet Attacks With Payload Signatures Files 188

[oO][nN]=[nN][oO][nN][eE]/

payload /.*&[cC][iI][hH][iI][lL][iI][tT][eE][tT][yY][pP]

[eE]=[fF][uU][lL][lL]/

}

signature sid-981 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-IIS unicode directory traversal attempt"

tcp-state established,originator

payload /.*\/\.\.%[cC]0%[aA][fF]\.\.\//

}

signature sid-983 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-IIS unicode directory traversal attempt"

tcp-state established,originator

payload /.*\/\.\.%[cC]1%9[cC]\.\.\//

}

signature sid-1002 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-IIS cmd.exe access"

tcp-state established,originator

payload /.*[cC][mM][dD]\.[eE][xX][eE]/

}

signature sid-1042 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-IIS view source via translate header"

tcp-state established,originator

payload /.*[tT][rR][aA][nN][sS][lL][aA][tT][eE]\x3a [fF]/

}

signature sid-1070 {

ip-proto == tcp

Appendix B. Single Packet Attacks With Payload Signatures Files 189

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-MISC WebDAV search access"

tcp-state established,originator

payload /.{0,1}[sS][eE][aA][rR][cC][hH] /

}

signature sid-1112 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-MISC http directory traversal"

tcp-state established,originator

payload /.*\.\.\\/

}

signature sid-1113 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-MISC http directory traversal"

tcp-state established,originator

payload /.*\.\.\//

}

signature sid-1122 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-MISC /etc/passwd"

tcp-state established,originator

payload /.*\/[eE][tT][cC]\/[pP][aA][sS][sS][wW][dD]/

}

signature sid-1136 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-MISC cd.."

tcp-state established,originator

payload /.*[cC][dD]\.\./

}

Appendix B. Single Packet Attacks With Payload Signatures Files 190

signature sid-1147 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-MISC cat%20 access"

tcp-state established,originator

payload /.*[cC][aA][tT]%20/

}

signature sid-1201 {

ip-proto == tcp

src-ip == http_servers

dst-ip != local_nets

src-port == http_ports

event "ATTACK-RESPONSES 403 Forbidden"

tcp-state established,responder

payload /HTTP\/1\.1 403/

}

signature sid-1239 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 139

event "NETBIOS RFParalyze Attempt"

tcp-state established,originator

payload /.*BEAVIS/

payload /.*yep yep/

}

signature sid-1292 {

ip-proto == tcp

src-ip == local_nets

dst-ip != local_nets

event "ATTACK-RESPONSES directory listing"

tcp-state established,responder

payload /.*Volume Serial Number/

}

signature sid-1378 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 21

event "FTP wu-ftp bad file completion attempt {"

Appendix B. Single Packet Attacks With Payload Signatures Files 191

tcp-state established,originator

payload /.*~.{1}.*\{/

}

signature sid-1420 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 162

event "SNMP trap tcp"

}

signature sid-1421 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 705

event "SNMP AgentX/tcp request"

}

signature sid-1529 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 21

event "FTP SITE overflow attempt"

tcp-state established,originator

payload /.*[sS][iI][tT][eE] [^\x0a]{100}/

}

signature sid-1530 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 21

event "FTP format string attempt"

tcp-state established,originator

payload /.*%[pP]/

}

signature sid-1734 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 21

event "FTP USER overflow attempt"

tcp-state established,originator

Appendix B. Single Packet Attacks With Payload Signatures Files 192

payload /.*[uU][sS][eE][rR] [^\x0a]{100}/

}

signature sid-1807 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-MISC Transfer-Encoding: chunked"

tcp-state established,originator

payload /.*[tT][rR][aA][nN][sS][fF][eE][rR]-[eE][nN]

[cC][oO][dD][iI][nN][gG]:/

payload /.*[cC][hH][uU][nN][kK][eE][dD]/

}

signature sid-1919 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 21

event "FTP CWD overflow attempt"

tcp-state established,originator

payload /.*[cC][wW][dD] [^\x0a]{100}/

}

signature sid-1930 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 143

Not supported: byte_test: 5,>,256,0,string,dec,relative

event "IMAP auth overflow attempt"

tcp-state established,originator

payload /.* [aA][uU][tT][hH]/

payload /.*\{/

}

signature sid-1945 {

ip-proto == tcp

src-ip != local_nets

dst-ip == http_servers

dst-port == http_ports

event "WEB-IIS unicode directory traversal attempt"

tcp-state established,originator

payload /.*\/\.\.%255[cC]\.\./

}

Appendix B. Single Packet Attacks With Payload Signatures Files 193

signature sid-1971 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 21

event "FTP SITE EXEC format string attempt"

tcp-state established,originator

payload /.*[sS][iI][tT][eE].*.{0}.*[eE][xX][eE][cC] .{1}.*%.{1}.*%/

}

signature sid-1973 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 21

event "FTP MKD overflow attempt"

tcp-state established,originator

payload /.*[mM][kK][dD] [^\x0a]{100}/

}

signature sid-1972 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 21

event "FTP PASS overflow attempt"

tcp-state established,originator

payload /.*[pP][aA][sS][sS] [^\x0a]{100}/

}

signature sid-1975 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 21

event "FTP DELE overflow attempt"

tcp-state established,originator

payload /.*[dD][eE][lL][eE] [^\x0a]{100}/

}

signature sid-1992 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 21

event "FTP LIST directory traversal attempt"

payload /.*LIST.{1}.*\.\..{1}.*\.\./

Appendix B. Single Packet Attacks With Payload Signatures Files 194

}

signature sid-2087 {

ip-proto == tcp

src-ip != local_nets

dst-ip == smtp_servers

dst-port == 25

event "SMTP From comment overflow attempt"

tcp-state established,originator

payload /.*From:.*.{0}.*<><><><><><><><><><><><><><><><><><><><><><>.{1}

.*\(.{1}.*\)/

}

signature sid-2105 {

ip-proto == tcp

src-ip != local_nets

dst-ip == local_nets

dst-port == 143

Not supported: byte_test: 5,>,256,0,string,dec,relative

event "IMAP authenticate literal overflow attempt"

tcp-state established,originator

payload /.* [aA][uU][tT][hH][eE][nN][tT][iI][cC][aA][tT][eE] .*.{0}.*\{/

}

B.3 TeStID Single Packet Signatures File

sid-255

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 53) & (x12 = f(".{14}.*\u0000\u0000\u00fc.*"))]

sid-323

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 79) & (x12 = f("(?s).*root.*"))]

sid-334

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 21) & (x12 = f(".*\\\\.forward"))]

sid-361

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 21) & (x12 =

f("(?ms).*[sS][iI][tT][eE] .*.{0}.*[eE][xX][eE][cC] .*"))]

sid-241

(Ex5,x8)[(Ey1,y2,y3,y4,y6,y7,y9,y10,y11,y12) P(y1,y2,y3,y4,x5,y6,y7,x8,y9,y10,

y11,y12) & (x5 = 674711609) & (x8 = TRUE)]

sid-249

(Ex4,x8)[(Ey1,y2,y3,y6,y7,y9,y10,y11,y12) P(y1,y2,y3,x4,x5,y6,y7,x8,y9,y10,y11,

y12) & (x4 = 15104) & (x8 = TRUE)]

sid-503

Appendix B. Single Packet Attacks With Payload Signatures Files 195

(Ex2,x4,x8)[(Ey1,y3,y6,y7,y9,y10,y11,y12) P(y1,x2,y3,x4,x5,y6,y7,x8,y9,y10,y11,

y12) & (x2 = 20) & (x4 >= 0) & (x4 <= 1023) & (x8 = TRUE)]

sid-504

(Ex2,x4,x8)[(Ey1,y3,y6,y7,y9,y10,y11,y12) P(y1,x2,y3,x4,x5,y6,y7,x8,y9,y10,y11,

y12) & (x2 = 53) & (x4 >= 0) & (x4 <= 1023) & (x8 = TRUE)]

sid-497

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x2 = 80 | x2 = 8000 | x2 = 8001 | x2 = 8080) & (x12 =

f("(?ms).*1 [fF][iI][lL][eE]\\\\([sS]\\\\) [cC][oO][pP][iI][eE][dD].*"

))]

sid-524

(Ex4)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11,y12) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,y12) & (x2 = 0)]

sid-1418

(Ex4)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11,y12) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,y12) & (x4 = 161)]

sid-1497

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) & (x12 =

f("(?ms).*<[sS][cC][rR][iI][pP][tT]>.*"))]

sid-530

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 139) & (x12 = f("(?ms).*\u0000\u0000\u0000\u0000

\u0057\u0000\u0069\u0000\u006e\u0000\u0064\u0000\u006f\u0000\u0077

\u0000\u0073\u0000\u0020\u0000\u004e\u0000\u0054\u0000\u0020\u0000

\u0031\u0000\u0033\u0000\u0038\u0000\u0031.*"))]

sid-618

(Ex4,x8)[(Ey1,y2,y3,y6,y7,y9,y10,y11,y12) P(y1,y2,y3,x4,x5,y6,y7,x8,y9,y10,y11,

y12) & (x4 = 3128) & (x8 = TRUE)]

sid-615

(Ex4,x8)[(Ey1,y2,y3,y6,y7,y9,y10,y11,y12) P(y1,y2,y3,x4,x5,y6,y7,x8,y9,y10,y11,

y12) & (x4 = 1080) & (x8 = TRUE)]

sid-620

(Ex4,x8)[(Ey1,y2,y3,y6,y7,y9,y10,y11,y12) P(y1,y2,y3,x4,x5,y6,y7,x8,y9,y10,y11,

y12) & (x4 = 8080) & (x8 = TRUE)]

sid-622

(Ex5,x8)[(Ey1,y2,y3,y4,y6,y7,y9,y10,y11,y12) P(y1,y2,y3,y4,x5,y6,y7,x8,y9,y10,

y11,y12) & (x5 = 1958810375) & (x8 = TRUE)]

sid-623

(Ex5,x6,x7,x8,x9,x10,x11)[(Ey1,y2,y3,y4,y12) P(y1,y2,y3,y4,x5,x6,x7,x8,x9,x10,

x11,y12) & (x5 = 0) & (x6 = 0) & (x7 = FALSE) & (x8 = FALSE) &

(x9 = FALSE) & (x10 = FALSE) & (x11 = FALSE)]

sid-974

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) & (x12 =

f("(?ms).*\\\\.\\\\.\\\\\u005c\\\\.\\\..*"))]

sid-978

Appendix B. Single Packet Attacks With Payload Signatures Files 196

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) &

(x12 = f("(?ms).*%20.*&[cC][iI][rR][eE][sS][tT][rR][iI][cC][tT][iI]

[oO][nN]=[nN][oO][nN][eE].*&[cC][iI][hH][iI][lL][iI][tT][eE][tT][yY]

[pP][eE]=[fF][uU][lL][lL].*"))]

sid-981

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) &

(x12 = f("(?ms).*/\\\\.\\\\.%[cC]0%[aA][fF]\\\\.\\\\./.*"))]

sid-983

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) &

(x12 = f("(?ms).*/\\\\.\\\\.%[cC]1%9[cC]\\\\.\\\\./.*"))]

sid-1002

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) &

(x12 = f("(?ms).*[cC][mM][dD]\\\\.[eE][xX][eE].*"))]

sid-1042

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) &

(x12 = f("(?ms).*[tT][rR][aA][nN][sS][lL][aA][tT][eE]\u003a [fF].*"))]

sid-1070

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) &

(x12 = f(".{0}[sS][eE][aA][rR][cC][hH] .*"))]

sid-1112

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) &

(x12 = f("(?ms).*\\\\.\\\\.\\\\\u005c.*"))]

sid-1113

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) &

(x12 = f("(?ms).*\\\\.\\\\./.*"))]

sid-1122

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) &

(x12 = f("(?ms).*/[eE][tT][cC]/[pP][aA][sS][sS][wW][dD].*"))]

sid-1136

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) &

(x12 = f("(?ms).*[cC][dD]\\\\.\\\\..*"))]

sid-1147

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) &

(x12 = f("(?ms).*[cC][aA][tT]%20.*"))]

sid-1201

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

Appendix B. Single Packet Attacks With Payload Signatures Files 197

y11,x12) & (x2 = 80 | x2 = 8000 | x2 = 8001 | x2 = 8080) &

(x12 = f("(?s)HTTP/1\\\\.1 403.*"))]

sid-1239

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 139) & (x12 = f("(?ms).*BEAVIS.*yep yep.*"))]

sid-1292

(Ex12)[(Ey1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x12 = f("(?ms).*Volume Serial Number.*"))]

sid-1378

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 21) & (x12 = f(".*~.{1}.*\\\\{"))]

sid-1420

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 162)]

sid-1421

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 705)]

sid-1529

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 21) & (x12 =

f("(?ms).*[sS][iI][tT][eE] [^\u000a]{100}.*"))]

sid-1530

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 21) & (x12 = f("(?ms).*%[pP].*"))]

sid-1734

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 21) & (x12 =

f("(?ms).*[uU][sS][eE][rR] [^\u000a]{100}.*"))]

sid-1919

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 21) & (x12 =

f("(?ms).*[cC][wW][dD] [^\u000a]{100}.*"))]

sid-1807

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) &

(x12 = f("(?ms).*[tT][rR][aA][nN][sS][fF][eE][rR]-[eE][nN][cC][oO][dD]

[iI][nN][gG]:.*[cC][hH][uU][nN][kK][eE][dD].*"))]

sid-1930

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 143) &

(x12 = f("(?ms).* [aA][uU][tT][hH].*\\\\{.*"))]

sid-1945

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 80 | x4 = 8000 | x4 = 8001 | x4 = 8080) &

(x12 = f("(?ms).*/\\\\.\\\\.%255[cC]\\\\.\\\\..*"))]

sid-1971

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

Appendix B. Single Packet Attacks With Payload Signatures Files 198

y11,x12) & (x4 = 21) & (x12 = f("(?ms).*[sS][iI][tT][eE].*.{0}.*[eE]

[xX][eE][cC] .{1}.*%.{1}.*%.*"))]

sid-1973

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 21) & (x12 = f("(?ms).*[mM][kK][dD]

[^\u000a]{100}.*"))]

sid-1972

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 21) & (x12 = f("(?ms).*[pP][aA][sS][sS]

[^\u000a]{100}.*"))]

sid-1975

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 21) & (x12 = f("(?ms).*[dD][eE][lL][eE]

[^\u000a]{100}.*"))]

sid-1992

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 21) & (x12 = f("(?ms).*LIST\\\\..*"))]

sid-2087

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 25) & (x12 = f("(?ms).*From:.*.{0}.*<><><><><><><><>

<><><><><><><><><><><><><><>.{1}.*\\\\(.{1}.*\\\\).*"))]

sid-2105

(Ex4,x12)[(Ey1,y2,y3,y5,y6,y7,y8,y9,y10,y11) P(y1,y2,y3,x4,y5,y6,y7,y8,y9,y10,

y11,x12) & (x4 = 143) & (x12 = f("(?ms).* [aA][uU][tT][hH][eE][nN]

[tT][iI][cC][aA][tT][eE] .*.{0}.*\\\\{.*"))]

	Preface
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Thesis Contribution
	1.3 Thesis Scope
	1.4 Thesis Organization
	1.5 Summary

	2 Intrusion Detection Systems
	2.1 IDS Types
	2.2 Intruder Detection Methods
	2.2.1 Techniques of Anomaly Based Intrusion Detection
	2.2.2 Techniques of Misuse based Intrusion Detection

	2.3 NIDS Deployment
	2.4 Popular Network Intrusion Detection Systems
	2.4.1 Open Sources NIDS
	2.4.1.1 Snort IDS
	2.4.1.2 Bro NIDS
	2.4.1.3 Suricata IDS

	2.4.2 Commercial NIDS

	2.5 Summary

	3 Temporal Logic and Intrusion Detection System
	3.1 Why Temporal Logic?
	3.2 Related Work
	3.2.1 MONID
	3.2.2 ORCHIDS

	3.3 Summary

	4 Stream Data Processing (SDP)
	4.1 SDP Overview
	4.2 StreamBase Stream SQL
	4.3 StreamBase High Performance, scalability, and high availability Features
	4.3.1 High Performance Features
	4.3.2 Scalability and High Availability

	4.4 Summary

	5 Temporal Stream Intrusion Detection System (TeStID)
	5.1 Formal Specification
	5.1.1 Abstract View of Network Communications
	5.1.2 MSFOMTL Syntax
	5.1.2.1 Terms
	5.1.2.2 Formulae

	5.1.3 MSFOMTL semantics

	5.2 Attack Classification
	5.3 The Proposed System
	5.3.1 TeStID System Architecture
	5.3.2 Tools And Software Used
	5.3.3 The Benefits of the Proposed System

	5.4 Summary

	6 Temporal Logic to Stream Queries
	6.1 Background
	6.2 The view of Time
	6.3 Mapping MSFOMTL into SSQL
	6.4 Correctness
	6.5 The Translator Development
	6.6 Summary

	7 Experiments and Results
	7.1 Experiments Overview
	7.1.1 Experiments Aims
	7.1.2 The Experiment Setup and Approach

	7.2 Single Packet Attacks With Payload Experiment
	7.2.1 The Experiment Signatures Preparation
	7.2.2 Results and Analysis
	7.2.3 Scalability and Performance
	7.2.3.1 Implementations of Single Packet Attacks With No Concurrency and Multiplicity
	7.2.3.2 Implementations of Single Packet Attacks With Concurrency and Multiplicity

	7.3 Multiple Packet Attacks Case Studies
	7.3.1 Results and Analysis of Multiple Packet Attacks Experiments

	7.4 Summary

	8 Potential Use of The New System in Anomaly Based IDS
	8.1 Anomaly Based Network Intrusion Detection Overview
	8.2 Protocol Anomaly Specifications
	8.2.1 Single Step Anomalies
	8.2.2 Multiple Step Anomalies
	8.2.2.1 Multiple Step Anomalies for Weak Normal Behaviour Requirements
	8.2.2.2 Multiple Step Anomalies for Strong Normal Behaviour Requirements

	8.3 Protocol Anomaly Formulae Mapping
	8.4 Correctness
	8.5 Summary

	9 Conclusion
	9.1 Summary
	9.2 Contribution
	9.3 Future Work and Research

	Bibliography
	A ANTLR Grammar and String Template Group Files
	A.1 Description of The Grammar File Structure
	A.2 TeStID Grammar File
	A.3 TeStID String Template Group File

	B Single Packet Attacks With Payload Signatures Files
	B.1 SNORT Single Packet Signatures File
	B.2 BRO Single Packet Signatures File
	B.3 TeStID Single Packet Signatures File

