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Abstract 

It is hypothesised that there are distinct mechanisms involved in cartilage ageing 

and disease which can be determined using next-generation technologies including 

mass spectrometry and RNA-sequencing. The aims of this thesis were to firstly 

characterise molecular mechanisms associated with age-related and arthritis-

related changes in cartilage gene and protein signatures. Secondly the thesis 

developed new techniques to identify novel cleavage sites in matrix proteins and to 

quantify some known proteolytic events in articular cartilage using mass 

spectrometry-based proteomics platforms. Finally the levels of key proteinases and 

their inhibitors involved in the pathogenesis of OA were measured using mass 

spectrometry. 

Osteoarthritis (OA) is an extremely common cause of morbidity in both man and 

animals. OA involves the biomechanical failure of articular cartilage, together with 

changes in the subchondral bone and inflammation of the joints and leads to a 

variety of symptoms including pain, stiffness and reduced mobility. Age is an 

important factor in the development of OA and represents a huge challenge for 

society as whilst life span increases, the quality of life faced by an ageing population 

is often poor. Articular cartilage is susceptible to age-related diseases such as OA, 

but it is not an inevitable result of ageing and is a consequence of a complex inter-

relationship between age and further predisposing factors.  There have been major 

advances in technologies used to interrogate proteins and genes due to genome 

sequencing enabling gene and protein sequences to be determined. These ‘next-

generation technologies’ include mass spectrometry (MS) and next-generation 

sequencing. This thesis has used these technologies in an attempt to address 

important questions relating to cartilage ageing and disease. 

The use of an inflammatory model of early OA in equine and human cartilage 

enabled the discovery and quantification of important proteins and pathways 

involved, using relative and absolute mass spectrometry techniques. In the equine 

secretome pathway enrichment analyses confirmed the up-regulation of glycolytic 

proteins. The novel proteins clathrin and LIM and SH3 domain protein-1 were 
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identified for the first time in cartilage proteomics. QconCAT technology and gene 

expression analysis enabled normal and OA cartilage extract to be interrogated. 

Absolute quantification values were demonstrated for the first time for aggrecan; 

first and third globular domains, biglycan, cartilage oligomeric matrix protein, 

decorin and fibromodulin. Whilst a novel MS based technique enabled previously 

identified and novel extracellular matrix cleavage sites derived from matrix 

metalloproteinase 3 and a disintegrin and metalloproteinase with thrombospondin 

motifs 4 digestion of cartilage to be determined. Some of these sites of degradation 

were also evident in OA but not normal cartilage using matrix assisted laser 

desorption ionization imaging MS (MALDI-IMS). Tentative markers of OA and ageing 

cartilage were also demonstrated. Finally an RNA sequencing study on ageing 

equine cartilage found an age-related failure of matrix, anabolic and catabolic 

cartilage factors together with a reduction in Wnt signalling.  

This thesis developed novel proteomic methodologies to identify and quantify 

distinct differences between cartilage ageing and disease. Several proteins not 

previously described in cartilage were identified. In addition many novel cartilage 

degradation products were identified and age-related peptides were visualised in 

cartilage for the first time.  
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1.0.   General Remarks and Introduction 

The Arthritis Research Campaign web site states that more than 6 million people in 

the UK suffer from osteoarthritis (OA) of the knee and 650,000 have osteoarthritis 

of the hip. More than 1 million adults consult their GP each year with OA 

(http://www.arc.org.uk). In the future OA is projected to rank second for women 

and fourth for men in the developed countries in terms of years lived with a 

disability (Lohmander, 2000). Osteoarthritis is an extremely common cause of 

morbidity in both man and animals. OA involves the biomechanical failure of 

articular cartilage, together with changes in the subchondral bone and 

inflammation of the joints and leads to a variety of symptoms including pain, 

stiffness and reduced mobility. Age is an important factor in the development of OA 

and represents a huge challenge for society as whilst life span increases, the quality 

of life faced by an ageing population is often poor (Baek et al., 2011). Articular 

cartilage is susceptible to age-related diseases such as OA, although it is not an 

inevitable result of ageing and is a consequence of a complex inter-relationship 

between age and further predisposing factors.   

Recently there have been major advances in the technologies used to interrogate 

proteins and genes. These ‘next-generation technologies’ include mass 

spectrometry and next-generation sequencing and have become available due our 

knowledge of whole genome and proteome sequences. These technologies have 

enabled new pathways involved in disease to be discovered as they allow the 

discovery and quantification of hundreds to thousands of genes and proteins to be 

identified in a single sample. The careful use of these technologies will allow 

important questions to be addressed relating to cartilage ageing and disease.  

One way to provide new insights into the development and treatment of OA is to 

obtain an understanding of how cartilage responds to pathological degradation and 

physiological remodelling evident in ageing.  Throughout life there is constant 

turnover of cartilage matrix by both synthesis and degradation. A prominent 

feature of OA is loss from the tissue of cartilage matrix proteins, a process that 

occurs as a consequence of proteolytic fragmentation by proteolysis. Whilst a 
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number of cleavage sites have been identified by use of specific neoepitope 

monoclonal antibodies (Chang et al., 2011) quantified using immunoblotting 

techniques studies focus on a small number of cleavage products. In order to test 

our hypothesis that there are distinct mechanisms involved in cartilage ageing and 

disease the project aims were to; 

1. Characterise molecular mechanisms associated with age-related and 

arthritis-related changes in cartilage gene and protein signatures. 

2. Develop new techniques to identify novel cleavage sites in matrix proteins 

and to quantify some known proteolytic events in articular cartilage using 

mass spectrometry-based proteomics platforms.  

3. Measure levels of key proteinases and their inhibitors involved in the 

pathogenesis of OA using mass spectrometry. 

 

1.1. The structure and function of normal cartilage  

Cartilage is a specialised connective tissue, which consist of cells; the chondrocyte 

and extracellular components; the extracellular matrix (ECM) (Poole et al., 2001). 

Unlike other adult connective tissues it does not contain blood vessels and nerves 

and therefore receives nutrients via synovial fluid and subchondral bone. 

Depending on the composition of the matrix, cartilage is classified into elastic, fibro-

cartilage and hyaline cartilage. The gliding surfaces of synovial joints are covered 

with hyaline cartilage, also known as ‘articular cartilage’. Hyaline cartilage provides 

a low-friction gliding surface, which compared to bone has increases compressive 

strength and resistance to wear under normal physiological conditions (Voorhees et 

al., 2011). The primary function of articular cartilage is load-bearing. In low friction 

articulation it acts as a shock absorber and minimizes peak pressure on subchondral 

bone.  

During embryonic development cartilage arises from mesenchymal condensations. 

Mesenchymal cells aggregate to form a blastema, the cells of which begin to 

secrete cartilage matrix and are then called chondroblasts. Further development 

pushes the chondrocytes apart due to ECM production. The ECM consist of, ground 



3 
 

substance (hyaluronan, chondroitin sulphates keratin sulphate and other cartilage 

molecules) and tropocollagen, which polymerises extracellularly into collagen 

fibres. Then mesenchymal tissue surrounding the blastema gives rise to a 

membrane called the perichondrium. After growth has ceased there is no 

detectable cell division of chondrocytes in healthy adult articular cartilage (Muir, 

1995). 

In diarthrodial joints the hyaline cartilage faces the joint cavity on one side and 

connects to the subchondral bone on the other by a narrow layer of calcified 

cartilage tissue. A capsule encloses the entire joint and retains the synovial fluid 

(Figure 1.1). 

 

Figure 1.1 Hierarchical structures of diarthrodial joints and articular cartilage 
(Mow and Hayes, Basic Orthopaedic Biomechanics 1997). Clockwise from top left 
(following the arrows) illustrates the composite structure of diarthrodial joints. The 
next level indicates in more detail the actual bearing surface of the joint. The next 
level shows the existence of the structural features of articular cartilage including 
the chondrocytes and the organization of type II collagen fibrils. 
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1.2. Components of cartilage  

a. Chondrocyte 

In mammals the chondrocytes fulfil two major roles. During development, most 

bones form through endochondral ossification in which bone is first laid down as 

cartilage precursors (Karsenty and Wagner, 2002). Whilst in the adult, chondrocytes 

are the sole cell type of articular cartilage and play crucial roles in joint function 

(Aigner et al., 2002). 

Articular cartilage has the lowest cellular density of any tissue in the human body. 

In humans, chondrocytes contribute to only about 1% of the tissue volume and are 

situated in small cavities called lacunae within the cartilage and have an average 

size of 13μm. The spherical cells are found in a ‘chondron’, a structural unit 

comprising one or two chondrocytes and its pericellular microenvironment (Poole 

et al., 1988). Even in chondrons there is no cell-cell contact (Elfervig et al., 2001). 

Single cilia extend into the surrounding ECM  (Buckwalter and Mankin, 1998). 

Recently it has been elucidated that the cilium act like switches, that when toggled 

by cyclical pulses of lacunocanalicular fluid or cartilage compression send signals 

(for instance by Ca2+ signalling).  This influxes into the cell to trigger a cascade of 

events that include appropriate gene activations to maintain and strengthen bone 

and cartilage (Whitfield, 2008). The cells sense the structure and composition of the 

ECM (which they synthesise) and carry out their primary function which is to 

maintain it (Buckwalter and Mankin, 1998).  

Irrespective of the size of a given animal, there is an inverse relationship between 

cell density and cartilage thickness. As cartilage is avascular, its nutrition depends 

on diffusion from outside and this may limit the total number of cells that can be 

sustained in a given volume (Stockwell, 1971). Moreover chondrocytes can exist 

under very low oxygen tensions and metabolise glucose primarily by glycolysis to 

produce lactate. This anaerobic pathway is maintained even under aerobic 

conditions (Buckwalter et al., 1994). 
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Articular chondrocytes have great longevity and normally live as long as their 

‘owners’. The metabolic state of the arrested cell division breaks down, however, 

whenever the integrity of the collagen network is compromised, as happens in the 

vicinity of lesions in OA. Here cell division appears to be reactivated, although any 

division is slow (Muir, 1995). 

b. Collagen 

Collagen accounts for two thirds of the dry weight of adult articular cartilage with 

the large aggregating proteoglycan aggrecan accounting for a large part of the 

remainder. The material strength of cartilage depends upon the extensive cross-

linking of the collagen as well as the zonal changes in fibrillar architecture with 

tissue depth. Collagen concentration is highest at the surface where collagen is 

orientated parallel to the surface to resist shear forces. Currently, there are at least 

28 members of the collagen super family, which function as structural components 

of the peri- and ECM in vertebrate tissue (Eyre et al., 2004). Articular cartilage 

contains at least eight collagens types; II, VI, IX, X, XI, XVI, XX and XXVII Types II, IX 

and XI form the characteristic basic architecture whilst the remainder are found in 

smaller amounts (Eyre, 2002). Type II collagen (a fibrillar collagen) constitutes 90-

95% of collagen in the ECM and in association with type XI it forms a meshwork 

wherein type IX member of the collagen subgroup FACIT (Fibril Associated collagens 

with Interrupted Triple Helices) is covalently linked to the surfaces of the type II 

fibrils and further enables a cross-linked framework to aggrecan (Eyre, 1995). Thus 

collagen II, IX and XI consist as heterotypic copolymers. The non-fibrillating type VI 

forms elastic fibres and can be found pericellularly in middle zone and throughout 

the ECM in small amounts of up to 1% of overall collagen (Wu and Eyre, 1989). 

Furthermore it has been shown that Collagen VI interacts directly with the cell 

surface (Poole et al., 1988).  

Collagen has a high level of structural organization and is represented as extended 

extracellular proteins composed of three polypeptide chains (α-chains), each 

possessing a characteristic tripeptide sequence (gly-x-y) that forms a left-handed 

helix. The three α-chains in each molecule are twisted tightly into a right-handed 
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helix to form a rope-like structure that is stabilised by hydrogen bonds. Glycine 

placed at every third residue of the tripeptide sequence, is small enough to occupy 

interior of the helix, while frequent other amino acids are proline and 

hydroxyproline.  The collagen precursors, or procollagen are synthesized with large 

C- and N- terminal extensions which aid in chain assembly. These extension 

propeptides are cleaved by procollagen peptidases after secretion but before fibril 

formation. Furthermore collagen fibrils are stabilized by cross-links that involve 

lysine residues with fibrillar collagen, the biologically functional form, resulting from 

a series of post translational modifications (Muir, 1995). 

Mature collagen fibres provide the capacity to withstand tensile and shear forces. 

Type II, specific to cartilage is often used as a marker of chondrocyte differentiation. 

Moreover the triple helix is composed of three identical alpha chains synthesized 

from the COL2A1 gene. Type II exists in two splice variants (IIA and IIB), in IIB, the 

dominant form found in mature cartilage, exon 2 is spliced out (encodes a 69 amino 

acid cystine-rich domain in the N-terminal propeptide). In IIA, a transient embryonic 

form found in prechondrogenic mesenchyme, perichondrium and vertebrae, this 

domain is retained (Sandell, 1994). Human OA chondrocytes  also produce IIA (Zhu 

et al., 2001), which suggests a hypertrophic change in OA resembling the cartilage 

of a developing joint (Salminen et al., 2001). 

Collagen is synthesized by chondrocytes as a precursor called procollagen. This 

consists of N and C terminal globular domains known as the N and C propeptides 

(NPII and CPII) which are attached to short linear sequences at each end; N and C 

telopeptides (Groutars et al., 2000) ( Figure 1.2). These telopeptides form covalent 

links with the triple helix.  Hydroxylations and glycosylations, primarily O-linked, 

modify the protein prior to the formation of the triple helix. Winding of the chains 

in a C-N direction occurs due to disulphide bonds formed at the C-terminal region 

of three α chains. Glycine and hydroxyproline residues form hydrogen bonds within 

the helical centre, these stabilise the triple helix. The three α-chains in each 

molecule are twisted tightly into a right-handed helix to form a rope-like structure. 

The folded triple helix is secreted into the ECM. Tropocollagen is then formed 



7 
 

following the removal of the N and C propeptides by extracellular proteinases C and 

N. Aggregation of procollagens and fibril formation can then take place.  

 

 

Figure 1.2. Schematic representation of collagen secreted into cartilage ECM 

Propeptides may be released from the ECM  into biological fluids, where their levels 

are believed to reflect type II collagen synthesis. Greatest concentrations of NPII 

and CPII are evident in foetal cartilage, three fold reductions are evident at birth 

which reduce further to very low levels in adults (3.9% of newborn). There is an 

increase in CPII levels in cartilage in OA, though this is not reflected in serum (Verzijl 

et al., 2000a). Interestingly by comparing sequence analyses of C-terminal regions, 

Van der Rest et al. 1986 (Van der Rest et al., 1986) demonstrated that the primary 

structure of chondrocalcin, a calcium-binding protein and CPII are identical. Thus 

CPII has functions in assembly of triple helical collagen II in cartrilage and cartilage 

calcification. 

c. Proteoglycans 

Proteoglycans (PGs) are protein polysaccharide molecules that form 10-20% wet 

weight and provide a compressive strength to articular cartilage. There are two 

major classes of PG found in articular cartilage, large aggregating PG monomers or 

aggrecan and small proteoglycans including decorin, biglycan and fibromodulin (van 

den Bemt et al., 2000). The cartilage PG aggregate is a unique structure of 

macromolecules that, together with type II collagen and a number of minor 

accessory molecules, gives cartilage its specific biomechanical properties. 

Moreover, aggrecan is immobilized in the collagen network and the importance of 
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aggrecan in articular cartilage function is emphasized by altered metabolism and 

abnormal expression in animal models with arthritis (Hargrave et al., 2000). 

i. Aggrecan  

The aggrecan family of proteoglycans contains aggrecan, versican, brevican and 

neurocan. All contain an amino-terminal domain capable of binding HA, a central 

domain containing covalently bound chondroitin sulphate (CS) chains and a 

carboxy-terminal containing C-type lectin domains. Recently it was demonstrated 

that aggrecan through the C-type lectin domain can interact with certain matrix 

proteins containing EGF-repeats. These include the fibrillins, fibulins and tenascin 

(Day et al., 2004). Aggrecan has a 220- to 250-kDa multiple domain protein core 

which is substituted with the glycosaminoglycans CS and keratan sulphate (KS) 

chains in addition to N- and O-linked oligosaccharides (Kiani et al., 2002). The core 

protein possesses two globular regions near the amino-terminus, known as G1 and 

G2, separated by an interglobular domain (IGD). A third globular region, G3, is 

found at the carboxy terminal end of the core protein, whilst an extended region 

containing KS and CS attachment sites is found between G2 and G3 domains, the 

CS1 and CS2 domains (Figure 1.3). 

Extraction and purification techniques developed in the 1960’s enabled a more 

detailed study of PGs. A novel extraction technique based on denaturing solvents 

such as 4M guanidine hydrochloride allowed most of the cartilage matrix molecules 

except cross-linked collagens to be extracted through the breakdown of all except 

covalent protein bonds. Further purification was achieved using caesium chloride 

gradient centrifugation (Sajdera and Hascall, 1969). This technique demonstrated 

that PGs form specific aggregates with a second protein, later identified as 

hyaluronan (HA) which together with link protein formed large aggregates 

(Hardingham and Muir, 1972).  The binding of a ten sugar sequence of HA is 

mediated through G1 and stabilised by link protein (a 45- to 50-kDa glycoprotein) 

which joins HA and G1. HA is a polysaccharide having repeating disaccharide 

structure. Furthermore receptors on the surface of chondrocytes to HA  function to 

provide a gel to which chondrocytes attached (Hardingham, 1981). 
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The GAG chains impart many of the physical properties to the PG. CS is composed 

of repeating disaccharide units of glucuronic acid and galactosamine, with a 

sulphate group per disaccharide. KS consist of repeating disaccharide units of 

glucosamine and galactose, also averaging a sulphate group per disaccharide. The 

sulphate and carboxy groups on the CS and KS chains become charged in solution 

and in-situ. The total fixed charge density (FCD) in cartilage ranges from 0.05 to 0.3 

mEq/g wet weight of tissue (Mow et al., 1999) and it is this FCD that is responsible 

for the high Donnan equilibrium ion distribution in the interstitium. It is the Donnan 

osmotic pressure measured in cartilage (Lai et al., 1991) which contributes to the 

overall compressive stiffness of cartilage. The fixed negative charges of the PG serve 

to maintain a high degree of hydration in articular cartilage by generating a 

substantial osmotic pressure within the tissue (Hopewell and Urban, 2003). This 

explains why cartilage has a tendency to swell, but this is resisted by the collagen 

network, which is therefore under constant tension, even when unloaded. High 

transient loads are accommodated by changes in osmotic and hydrostatic pressure 

when fluid is forced from loaded to unloaded areas, while aggrecan remains 

immobilised within the collagen network provided it is intact and bound to the 

hyaluronan. 
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Figure 1.3. Schematic representation of domain organisation and structure of 
cartilage aggrecan. A. Diagram of the domains and GAGs within aggrecan; G1, G2, 
G3; globular regions 1, 2, 3, IGD; interglobular domain, KS; keratan sulphate-rich 
region, CS-1, -2; chondroitin sulphate-rich regions. Amino acid residue number line 
is not to scale. B. The post-translational modifications on aggrecan are shown.
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ii. Small Leucine-Rich Proteoglycans  

Members of the small leucine-rich repeat protein family of proteoglycans (SLRP) 

include fibromodulin along with decorin, biglycan and lumican. SLRPs modulate 

tissue organization, cellular proliferation, matrix adhesion, growth factor and 

cytokine responses, and sterically protect the surface of collagen type I and II fibrils 

from proteolysis by matrix metalloproteinases (MMPs) (Geng et al., 2006). They are 

characterised by 40kda core proteins containing 6-10 leucine-rich repeats flanked 

by cysteine rich domains. The presence of these repeats accounts for their horse-

shoe like conformation which allows their functional ability to interact with other 

proteins in the ECM. Furthermore their structure contains CS (decorin and 

biglycan), dermatan sulphate or KS (fibromodulin and lumican) side chains. Decorin 

has a role in the regulation of collagen fibrillogenesis and interacts with fibrils of 

type I and II collagen (Reed and Iozzo, 2002) as well as acting as a reservoir for 

transforming growth factor β (TGF-β) in the ECM (Finnson et al., 2012). Biglycan has 

similar functions but interacts with type VI collagen aiding in the formation of its 

network (Wiberg et al., 2003). 

The structure of decorin and biglycan can vary with age, indeed decorin synthesis 

increases with age (when foetal and adult cartilage are compared) (McAlinden et 

al., 2001). Structural changes are most evident in biglycan, where in aged ECM 

there appears to be a cleavage in the amino terminal domain resulting in a ‘no-

glycan’ biglycan as the terminal peptide containing the GAG chain separates from 

the protein core. It has recently been demonstrated in-vitro that antibodies to the 

no-glycan biglycan have a role in rheumatoid arthritis (RA) (Antipova and Orgel, 

2012). Further proteolytic modification of the core proteins in decorin and biglycan 

occurs in OA (Roughley et al., 1993).  Work by Melching et.al. 2006 (Melching et al., 

2006) found that biglycan was a substrate for ADAMTS-4 and -5 at a site within the 

fifth leucine rich region at an asparginine-cysteine bond. The group also 

demonstrated that human articular chondrocytes (HAC) from OA and RA joints 

contained the cleaved product within the ECM. In addition biglycan is also 

susceptible to cleavage by MMP-13 (at 177G -178 V in human).  This may represent an 
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early critical event in OA as it could result in collagen cleavage sites being exposed 

to MMP-13. Decorin can also undergo proteolysis by MMPs (Monfort et al., 2006).   

Fibromodulin is a 59-kDa collagen-binding protein (Heathfield et al., 2004)  which is 

tyrosine sulphated in its N-terminal extension (Antonsson et al., 1991). Binding of 

fibromodulin to both type I and type II collagen in-vitro has been demonstrated and 

provides an important role in regulating assembly of collagen fibrils (Hedbom and 

Heinegard, 1989). The binding appears to be independent of disulphide bridging 

and includes a region in the C terminus of fibromodulin (Font et al., 1998). 

Interestingly fibromodulin has been demonstrated to bind to the same site on the 

collagen fibril as lumican, whereas decorin appears to bind to a separate site 

(Hedbom and Heinegard, 1993; Svensson et al., 2000). Using neoepitope 

antibodies, cleavage products of fibromodulin  during IL-1 stimulated cartilage 

explant studies in-vitro were found to be identical to those obtained following  

MMP-13 stimulated degradation (Monfort et al., 2006). ADAMTS-4 has also been 

identified as having activity against fibromodulin at the same site of cleavage as 

MMP-13 (Kashiwagi et al., 2004). As the observed cleavage occurs between the N-

terminal negatively charged domain of fibromodulin and the region binding to 

collagen, the main fragment is retained for longer in the tissue, apparently by its 

binding to collagen. Degraded fragments of the core protein have been observed in 

OA cartilage (Cs-Szabo et al., 1995) and with age (Roughley et al., 1996) and 

removal of this portion of fibromodulin results in weaker interactions of a particular 

collagen fibre to surrounding structures.  

 

d. Cartilage Oligomeric Matrix Protein  

Cartilage oligomeric matrix protein (COMP) is one of the five members of the 

thrombospondin matricellular (TSP) protein family. TSPs are extracellular calcium-

binding proteins that function as adapter molecules to guide ECM and tissue 

organisation. COMP, also known as thrombospondin 5 is a 524kDa 

homopentameric, extracellular matrix glycoprotein with five identical subunits 

(Hedbom et al., 1992), enabling it to bind five collagen molecules simultaneously.  

The carboxy terminal globular domain binds to collagens I, II, and IX and fibronectin. 
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COMP also interacts with other ECM proteins including matrilin-3 and aggrecan. 

COMP can influence the fibril formation of collagens I and II by promoting early 

association of collagen molecules, thereby accelerating fibrillogenesis with a 

distinct organisation of the fibrils (Halasz et al., 2007). Thus it acts to bring the 

collagen fibres together in early fibril formation. A consequence of this is that if 

concentrations of COMP are elevated relative to collagen this will result in the 

occupancy of most binding sites on collagen by a single COMP, causing a reduction 

in collagen fibril formation. This is evident in OA when COMP production and 

presence is high, but collagen production is diminished (Chen et al., 2007).   

 

COMP is considered a marker of cartilage breakdown, and has been studied as a 

biological marker (Tseng et al., 2009). Measurement of intact COMP and fragments 

thereof in synovial fluid or serum correlates to cartilage destruction in RA and OA 

patient studies (Mansson et al., 1995; Saxne and Heinegard, 1992).  Interestingly 

COMP levels can be detected  at ten times higher in synovial fluid than in serum 

indicating preferential release from the affected joints (Tseng et al., 2009). In 

synovial fluid COMP is present to some extent as an apparently intact protein, 

however the majority is found as several different fragments (Neidhart et al., 1997). 

Elevated synovial fluid COMP concentration in the joints of racehorses has been 

demonstrated as a useful marker for carpal joint osteochondral fragments (Abiola 

et al., 1990).  

 

1.3. Organisation of the matrix  

The thickness of normal articular cartilage is dependent on the joint, region within 

the joint and species. In the human medial femoral head it measures 2 to 3 mm 

thick, whilst on the patella it can be up to 5mm thick. In the horse the 

metacarpophalangeal joint it is 762 ± 131μm thick (Brommer et al., 2005) and is 

1.5-2mm in the stifle joint (Frisbie et al., 2006). The organisation of the ECM and its 

distribution into zones differs between immature and mature cartilage; being 

thicker and less stratified in immature tissue. Chondrocytes are distributed in a 

random fashion and as the tissue matures the matrix becomes arranged in defined 
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zones, together with an increase in mechanical competence. The zones of articular 

cartilage are superficial (tangential), the middle (transitional), the deep (radial) and 

calcified cartilage. Where different zones are isolated and cultured, differences in 

terms of morphology, metabolism, phenotypic stability and responsiveness to 

signalling molecules,  such as interleukin -1 (IL-1) are evident (Homandberg et al., 

1992). In man the superficial zone is approximately 200μm thick and includes 

collagen fibr es tangential to the articular surface, with transition to more randomly 

orientated fibres in deeper regions. The parallel arrangement of fibrils is 

responsible for providing the great tensile and shear strength. Additionally 

chondrocytes in this zone (which are flattened ellipsoid) synthesize high 

concentrations of collagen and low concentrations of PG. The middle zone is 

approximately 1mm thick with randomly orientated collagen fibres. Collagen fibres 

are orientated perpendicular to the joint surface in the deep zone, which is 

approximately 600μm thick and contains the highest concentration of PG with the 

lowest cell density. It is at this point that a smoothly undulating tidemark separates 

the deep zone from the calcified cartilage. This is characterised by rounded 

chondrocytes arranged in columns, a high PG content and a radial collagen network 

(Figure 1.4). 

1.4. Pathological perturbations 

 

1.4.1. Osteoarthritis 

Osteoarthritis (OA), the most common form of arthritis, is a chronic degenerative 

disease that affects diarthrodial joints. The disease, characterized by progressive 

destruction of articular cartilage, affects the entire joint, including the synovial 

membrane, joint capsule, ligaments, peri-articular muscles and tendons and 

subchondral bone (Altman et al., 1986). Additionally,  there is a suggested role for 

subchondral bone adaptation in traumatic overload arthrosis in the racehorse (Barr 

et al., 2009) and this is in agreement with proposals that one of the mechanisms of 

initiation of joint failure may be steep stiffness gradient in the underlying 

subchondral bone (Radin and Rose, 1986). 
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Primary OA is a chronic degenerative disorder related to but not caused by ageing 

and is characterised by its late onset and no obvious cause. Secondary OA has an 

earlier onset and an identifiable cause such as injury or a developmental 

abnormality (Goldring and Goldring, 2007). Clinical manifestations include pain, 

stiffness and impairment of joint motion. There are, as yet no recognisable disease 

modifying treatments for OA, with most current treatments being entirely 

symptomatic.  

The loss of the normal structure and function of articular cartilage is fundamental in 

OA. For instance there is shift in the collagen composition in OA cartilage with 

increased concentrations of collagen types I and III, which are considered as ‘non 

cartilage’ collagens (Aigner et al., 1993). In addition the expression of type X 

collagen, which is normally present at sites near cartilage mineralization containing 

hypertrophic chondrocytes (Grant et al., 1985), is increased at  osteophytes and in 

fibrillated cartilage matrix (Hoyland et al., 1991).  Major shifts are found in the 

turnover and structure of aggrecan with incorporation rate of aggrecan  decreasing 

(Bulstra et al., 1989). Interestingly in experimental and human OA cartilage there is 

an increased release of both pre-existing and newly synthesized aggrecan (Inerot et 

al., 1991).  

 

Following damage to cartilage an initial increase in water content is evident. 

Following disruption of the collagen the negatively charged glycosaminoglycans 

(GAGs) attract water resulting in swelling. The surface of the cartilage becomes 

fibrillated resulting in a reduction in resistance to shear forces. As OA progresses 

fibrillations become deep, vertical clefts, due to collagen orientation in the deeper 

layers, resulting in further ECM disruption (Libicher et al., 2005).  
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Figure 1.4. Organisation of cartilage ECM. A. Schematic representation of the zones within articular cartilage. B. Histological slide of 
equine cartilage from the metacarpus stained with haematoxylin and eosin. Cartilage components and zones are marked.
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1.4.2. Osteoarthritis in equines 

OA is a common cause of lameness with one study stating  that it makes up 54% of 

lame horses (Todhunter and Lust, 1992) and it is estimated to account for 68% of 

lost training days in racehorses (Rossdale et al., 1985).  Single event trauma or more 

insidious damage, has been suggested to be a common etiological factor in the 

occurrence of OA, with an increased incidence of OA in young horses used for 

athletic activity reported (Hoffman et al., 1984). This is due to prolonged ‘wear and 

tear’ from athletic training (Kidd et al., 2001) similar to that described in ageing 

(Aigner et al., 2004b). However a study of wild ponies suggested that OA in horses 

can also occur spontaneously (Cantley et al., 1999). Whilst joint loading is required 

in healthy joints to stimulate ECM protein production, excessive loading is harmful, 

suggesting that there is an injurious threshold of joint loading (Maly, 2008). 

Clinically OA in the horse is frequently seen as a slow progressive frequently 

bilateral lameness. Clinical signs are similar to those in man with commonly 

affected joints including the metacarpophalangeal, carpal joints, distal intertarsal 

and tarsometatarsal joints, and proximal interphalangeal joints (McIlwraith, 2012). 

 

1.4.3. Cartilage degradation 

Studies of the fragmentation of the ECM constituents have determined a series of 

cartilage protein degradations. Models were factors such as cytokines induce the 

breakdown of cartilage explants work by inducing a series of proteolytic enzymes. 

Initially aggrecan is fragmented and released followed by other molecules such as 

COMP, fibromodulin and collagens (Heathfield et al., 2004). The mechanisms by 

which the major components of cartilage ECM are degraded in OA have received a 

large amount of research. The mechanisms involved include both non-proteolytic 

and proteolytic. In the former, degradation by free radicals produced by neutrophils 

has been proposed (Roberts et al., 1987). However far more important are a 

number of specific proteinases which originate from the chondrocyte or the cells 

infiltrating inflamed synovium (as in RA and primary synovitis). There is evidence for 

the sequential degradation of matrix molecules by multiple proteinases. There are 

four distinct types of proteolytic enzymes which are classified according to their 

catalytic mechanisms. These groups are termed cysteine, aspartic, serine and 
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metalloproteinases, the former three will have a cysteine, aspartic acid or serine 

respectively within their active site (Burrage et al., 2006). Interestingly matrix 

fragments themselves can induce proteases. For example Johnson et al. 2004 

(Johnson et al., 2004)  demonstrated that upon stimulation with fibronectin 

fragments COMP was released from equine cartilage explants. 

 

1.4.3.1. Cysteine, aspartic and serine proteinases 

 

The cathepsin papain-family of cysteine protease are distinguished by their 

structure (a 25kDa catalytic unit), catalytic mechanism, and which proteins they 

cleave. Cysteine proteinases include cathepsins B, H, K, L and S. Although cathepsin 

B and D work ideally at an acid pH, both are able to cleave aggrecan at pH as high as 

6.5 (Handley et al., 2001). Cathepsin B  has been implicated in various extracellular 

degradative processes (Mort and Buttle, 1997) and has been identified to be 

elevated in both RA and OA patients (Mort et al., 1984).  Mature cathepsin B has 

the ability to degrade several ECM components including aggrecan (Fosang et al., 

1992)  and has been  implicated in the progression of arthritis (Tortorella et al., 

2000b). Studies in bovine cartilage have identified two cathepsin cleavage sites in 

link protein (LP) and five in aggrecan (Hou et al., 2003). Cathepsin K has activity 

against aggrecan, link protein and collagen. In addition the collagenolytic activity 

allows the cleavage of the triple helix of type I and II collagen, though at different 

sites to MMP’s (Verzijl et al., 2002). In both OA and increasing age there is an 

increase in the neoepitope produced by the action of cathepsin K on collagen 

(Dejica et al., 2008). 

 

Cathepsin D is a lysosomal aspartic protease of the pepsin family. Early  studies in 

OA indicated that Cathepsin D enzyme activity was present in two to three times 

greater amounts in articular cartilage from patients with OA than in normal human 

cartilages (Sapolsky et al., 1973). Experiments using bovine cartilage have 

demonstrated that aggrecan digested with cathepsin D at pH 5.2 results in aggrecan 

core protein fragments due to cleavage at 5 sites within the core protein (Handley 

et al., 2001). 
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Members of the serine protease family include trypsin, elastase, chymotrypsin and 

plasminogen. The plasminogen activator (PA) system is a general proteolytic 

enzyme system  suggested to play an important role in the degradation of the ECM 

during the development of RA (Belcher et al., 1996). Plasminogen is the zymogen of 

the serine protease plasmin. However, plasmin can directly degrade ECM 

components including the glycoproteins fibronectin, laminin, and elastin, as well as 

proteoglycans (Kwaan, 1992).  Furthermore plasmin indirectly contributes to matrix 

degradation by proteolytically activating MMPs and proteoglycanases (Williams et 

al., 2010).  

 

1.4.3.2. Metalloproteinase Enzymes  

a. Matrix metalloproteinases 

Two families of metalloproteinases are capable of degrading cartilage specific 

collagen and aggrecan. These are the MMPs and the disintegrin and 

metalloproteinase with thrombospondin motifs (ADAMTs). Many 

metalloproteinases have been identified as being over-expressed in OA (Struglics et 

al., 2006). Using proteomics, metalloproteinase cleavage products in HAC have 

been identified including  a wide variety of peptide cleavage sites from matrix 

components collagens I, II, III, biglycan, fibromodulin, prolargin, fibronectin, 

decorin, COMP and  aggrecan  (Zhen et al., 2008). 

 

The MMPs form a multigene family and can be classified into subfamilies on the 

basis of domain structure and substrate selectivity. There are currently 23 identified 

MMPs (Kevorkian et al., 2004) which are categorized into the following groups: 

collagenases, gelatinases, stromelysins, matrilysins, metalloelastases, and 

membrane-type matrix metalloproteinases (MT-MMPs). The MMPs  are considered 

the one of the main enzymes responsible for degradation of aggrecan and collagens 

in cartilage (Okada and Hashimoto, 2001). The expression of several MMPs is 

elevated in cartilage and synovial tissues of patients with OA (Okada and 

Hashimoto, 2001; Tetlow et al., 2001). Those over-expressed in cartilage are key 

enzymes in the development of OA (Dean et al., 1989). In OA inflammatory 
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cytokines such as IL-1β and tumor necrosis factor-alpha (TNFα) stimulate the 

production of MMPs which degrade many components of the ECM. 

 

All MMPs are expressed as pro-proteins, whilst most share a conserved domain 

structure of pro-domain, catalytic domain, hinge region and hemopexin domain. 

Furthermore all are synthesized with a signal peptide, which is cleaved during 

transport through the secretory pathway. The common classification of MMPs is 

based on substrate specificity and cellular location (Figure 1.5). 

 

Matrix metalloproteinase Group  Members  

Collagenases  MMP-1, MMP-8, MMP-13  

Matrilysin  MMP-7, MMP-26  

Metalloelastase  MMP-12  

Gelatinases  MMP-2, MMP-9  

Enamelysin  MMP-20  

Stromolysins  MMP-3, MMP-10, MMP-11  

Membrane-type MMPs  MMP-14, MMP-15, MMP-16, MMP-17, 

MMP-24, MMP-25  

Other  MMP-19, MMP-21, MMP-23A, MMP-

23B, MMP-27, MMP-28  

Inhibitors  TIMP1, TIMP2, TIMP3, TIMP4, α-2 

macroglobulin 

 

Figure 1.5. Table of the classification of MMPs. 
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i. Collagenases 

The collagenases, which include MMP-1, MMP-8, and MMP-13, have the ability to 

initiate cleavage of triple helical collagens I, II, and III at neutral pH   (Billinghurst et 

al., 1997). The site of cleavage of these fibrillar collagens has been shown to be at a 

single locus, a 775Gly–776Ile/Leu bond in the collagen α chains, three-quarters of the 

distance from the amino terminal end of each chain, resulting in the distinctive ¾ 

(TCA) and ¼ (TCB) fragments (Miller et al., 1976; Mitchell et al., 1996).  In cartilage 

MMP-13 preferentially cleaves type II collagen. Damage to the fibrillar network in 

cartilage, 90-95% of which is made up of type II collagen,  is considered the critical 

event in OA due to the slow rate of collagen turnover in cartilage (McAnulty, 1990). 

The fragments produced spontaneously unwind (denature) at physiologic 

temperature, making them susceptible to further degradation by the gelatinases; 

MMP-2 and MMP-9 as well as further degradation by the collagenases and 

proteinases. However, cleavage of the collagen fibril itself requires removal of small 

proteoglycans and cleavage of interfibrillar cross-links in order for the collagenases 

to access triple helical regions. Additional elements in the gelatinases (the 

fibronectin-type-II repeats and the hemopexin domain) assist proteolysis by binding 

to the substrate and also enable the enzyme to attach to other components of the 

connective tissue matrix (Steffensen et al., 1998). 

 

Collagenases have been detected in synovial fluid of patients with OA (Lohmander 

et al., 1993a) and rheumatoid arthritis (RA) (Clark et al., 1993). Interestingly IL-1 has 

been demonstrated to increase the expression of MMP-8 and MMP-13 in normal 

human articular chondrocytes (Chubinskaya et al., 1996; Reboul et al., 1996). 

 

ii. Gelatinases 

Gelatinases are composed of the 72-kDa MMP-2 and the 92-kDa MMP-9. Both have  

fibronectin type II repeats, which mediate binding to collagens, inserted into the 

catalytic domain (Page-McCaw et al., 2007). These enzymes are known to cleave 

native type IV, V, VII, and X collagens and elastin, as well as the products of 

collagens types I, II and III after proteolysis by collagenases. MMP-2, reported to be 
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expressed in chondrocytes (Goessler et al., 2005) is capable of cleaving soluble 

triple helical type I collagen (Aimes and Quigley, 1995).  MMP-9 mRNA expression is 

elevated in OA chondrocytes (Tsuchiya et al., 1996) and  increased expression of 

MMP-9 precedes fibrillation of cartilage in OA (Tsuchiya et al., 1997). Thus MMP-2 

and MMP-9 may have a role in the degradation of various matrix components. 

iii. Stromelysins 

The stromelysin group is composed of MMP-3, MMP-10, and MMP-11. MMP-3 and 

MMP-10 have an identical broad spectrum of activity, a broad optimum pH range 

however MMP-3 is more potent. Their substrates include proteoglycan core protein, 

laminin, fibronectin, elastin, as well as non-helical regions of collagens (Nagase and 

Woessner, 1999). MMP-3 (stromelysin 1) is one of the most highly expressed 

proteases in cartilage and is significantly decreased in expression in OA in a number 

of studies (Davidson et al., 2006; Swingler et al., 2009) as well as in RA (So et al., 

1999). The function of MMP-3 in cartilage homeostasis is not certain, although it is 

capable of degrading aggrecan and also of activating procollagenases. It is possible 

that MMP-3 has a maintenance function in cartilage that is lost in end-stage OA 

(Swingler et al., 2009). 

 

iv. Matrilysins and metalloelastases 

 

The sole member of the matrilysin group is MMP-7, has greater activity than the 

other MMPs against versican, a chondroitin sulphate proteoglycan. Ohta et al. 1998 

(Ohta et al., 1998) have reported over-expression of MMP-7 in human OA cartilage 

chondrocytes and suggested that cytokine-induced MMP-7 may play an important 

role in the degradation of ECM in OA cartilage. 

MMP-12 is a metalloelastase with activity against elastin. It is also capable of 

degrading proteoglycan (Janusz et al., 1999), fibronectin, laminin, vitronectin, type 

IV collagen and heparin sulphate (Jormsjo et al., 2000). 
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v. Membrane-type MMPs 

The membrane type MMPs (MT-MMPs) are similar in structure to the soluble 

MMPs. Four different membrane-type MMPs have been identified MT-MMP 1 

(MMP-14), MT-MMP 2 (MMP-15), MT-MMP 3 (MMP-16), and MT-MMP 4 (MMP-

17)). MT-MMPs play a dual role in cell surface proteolysis. Firstly, they cleave a 

variety of ECM components in-vitro. These include gelatin, fibronectin, and laminin, 

vitronectin and dermatan sulphate proteoglycan (Kajita et al., 2001). Secondly, they 

are initiators of activation of MMP-2 (Murphy et al., 1999).  

 

The expression of MMP-16 has demonstrated variable results. In one study of 

human OA cartilage, quantitative gene analysis revealed that there was no 

significant difference between OA and normal samples (Yamanaka et al., 2000).  

Work undertaken in equine OA cartilage suggested that MMP-16 may not have a 

role in matrix destruction in equine cartilage diseases (Garvican et al., 2008). 

However, in studies of naturally occurring human OA, MMP-16 was the only MT-

MMP found to be significantly increased in OA cartilage and synovium compared 

with normal cartilage (Davidson et al., 2006; Kevorkian et al., 2004). Furthermore in 

a recent study also in human OA cartilage MMP-16 mRNA was found to be 

significantly increased in OA compared to normal cartilage (Swingler et al., 2009). 

 

1.4.3.3. Tissue inhibitors of metalloproteinases  

MMP activity is also regulated by a family of tissue-specific inhibitors, of which 

there are four known tissue inhibitors of metalloproteinases (TIMPs); TIMP-1, TIMP-

2, TIMP-3, and TIMP-4 (English et al., 2006). In addition α2-macroglobulin 

synthesised in the liver and by macrophages can inhibit the MMPs and the ADAMs 

(Baker et al., 2002). Besides their inhibitory role,  TIMPs have other functions such 

as growth factor-like and anti-angiogenic activity (Gomez et al., 1997). The TIMPs 

are secreted by a variety of cells including chondrocytes and macrophages and their 

activity is increased by platelet-derived growth factor (PDGF) and TGF-β and either 

increased or decreased by different interleukins (Fabunmi et al., 1998). Disruption 

of this MMP–TIMP balance can result in disorders such as OA. 
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TIMP concentrations generally far exceed the concentration of MMPs in tissue and 

extracellular fluids, thereby limiting their proteolytic activity to focal pericellular 

sites. The four TIMPs act as a further level of extracellular regulation of MMP 

activity whilst also possessing specific patterns of gene regulation and tissue-

specific expression (Folgueras et al., 2004). TIMP-3 appears to be the most potent 

inhibitor of ADAMTS-4 and ADAMTS-5 (Mengshol et al., 2002). It also appears to 

inhibit aggrecan degradation in cultured articular chondrocytes stimulated with IL-1 

(Nagase and Brew, 2003). Interestingly TIMP-1 may have some inhibitory capacity 

against ADAMTS-5 (Tortorella et al., 1999). TIMP-4 is a weak inhibitor of ADAMTS-4 

but not ADAMTS-5 (Mengshol et al., 2002). Both TIMP-2 and TIMP-3 are reported to 

inhibit ADAMTS-1 (Rodriguez-Manzaneque et al., 2002). Presently it is believed that 

the local balance of metalloproteinase and TIMP activities is crucial for cartilage 

homeostasis, with disturbances producing higher levels of MMPs over TIMPs 

resulting in pathological changes.  

 

1.4.3.4. Matrix metalloproteinase driven cartilage degradation 

 

a. Collagen degradation 

Fibrillar collagen in its native state is resistant to breakdown by proteolytic 

enzymes. However, it may be damaged by helical cleavage resulting in denaturation 

or by telopeptide cleavage, which can lead to the removal of cross-links and 

depolymerisation of the fibrillar network (Barrett, 1978). At neutral pH the 

breakdown of the helices may occur as a consequence of MMP-13 and to a lesser 

extent MMP-1 and MMP-8 (Knauper et al., 1996) at a specific site Gly-Leu/Ileu bond 

generating the characteristic ¾ and ¼ fragments. These fragments may then be 

degraded further by MMP-1 or by enzymes with gelanotolytic activity such as 

MMP-2, MMP-9,  neutrophil elastase and plasmin at neutral pH and at acidic pH by 

cathepsin B, S, L (Kafienah et al., 1998). Additionally it has also been demonstrated 

that cathepsin K cleaves collagen II in the N-terminal region of the helical domain 

(Kafienah et al., 1998).  
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b. Aggrecan degradation 

Under pathological conditions aggrecan degradation occurs as an early event and is 

mediated by proinflammatory cytokines within the joint (Hubbard et al., 2000). 

Aggrecan degradation products are derived predominantly from two protease 

families the aggrecanases and the MMPs. Although aggrecan fragments found in-

vivo are predominantly the products of aggrecanase activity, the MMPs are also 

involved (Fosang et al., 1996b; Struglics et al., 2006). Some studies have indicated a 

lack of MMP involvement in aggrecan degradation in short term studies of explants 

with cytokines (Durigova et al., 2008) others have demonstrated that they may be 

involved in later stages of OA (van Meurs et al., 1999). Indeed, Durigova et al. 2011 

(Durigova et al., 2011)  demonstrated MMP mediated aggrecan degradation within 

the IGD was only evident after day 12 of bovine cartilage explant culture.  

 

Many in-vitro cartilage studies using agents such as IL-1, retinoic acid and TNF-α 

have been identified as promoting cartilage degradation (Ismaiel et al., 1992; 

MacDonald et al., 1992). These agents have been identified as causing the up-

regulation of some MMPs in chondrocytes which suggested a link between MMP 

expression and cartilage degradation. Additionally specific MMP inhibitors prevent 

loss of aggrecan from cartilage explant cultures in-vivo (Cawston et al., 1999; Mort 

et al., 1993).  

 

b. Aggrecanases 

The ADAMTSs family is made up of 19 proteases which are expressed in a wide 

range of tissues, but are more restricted in foetal tissues. The ADAMTS family are 

multi-domain metalloproteases that are secreted into the extracellular space as 

furin-active proteases (Bondeson et al., 2008). They are composed of a signal 

sequence, prodomain, catalytic domain, disintegrin-like domain, spacer region, 

thrombospondin motifs (TSP) and submotifs (Figure 1.6).  
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Figure 1.6. Schematic representation of the domain structure of ADAMTS-1, -4, 
and -5 involved in aggrecan degradation. 
 

The latter regulate both their activity and substrate specificity (Bondeson et al., 

2008).  A subgroup of the enzymes, ADAMTS-1, 4, 5, 7, 8, 9, 12 and 15 have roles in 

the pathogenesis of arthritis with the ability to degrade aggrecan within the 

cartilage ECM (Hoch et al., 2011). Expression of ADAMTS-1, -4, -5, -9, and -15 has 

been found in normal HAC (Bau et al., 2002; Bondeson et al., 2008; Wachsmuth et 

al., 2004). However studies have demonstrated conflicting information on 

expression changes of these potential aggrecanases in OA compared with normal 

human cartilage. Both increased (Bau et al., 2002; Wachsmuth et al., 2004) and 

decreased (Kevorkian et al., 2004) levels being reported. 

 

ADAMTS-4 and ADAMTS-5 are the pertinent enzymes in the pathogenesis of OA as 

demonstrated by their high in-vitro activity for aggrecan cleavage, expression in OA 

cartilage and localized expression in areas of aggrecan degradation (Fosang et al., 

2008). Work in human chondrocytes and explants revealed that both ADAMTS-4 
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and -5 were important mediators of cytokine stimulated aggrecan loss in normal 

and OA cartilage. It was hypothesised that this may be due to a greater induction of 

ADAMTS-4 in man in the presence of catabolic stimuli (Song et al., 2007). Indeed it 

is still not clear if ADAMTS-4 or -5 is the major aggrecanases in man as  ADAMTS-5 is 

constitutively expressed in human chondrocytes and synovial fibroblasts, were as 

previously mentioned in cytokine induced degradation ADAMTS-4 expression is 

predominant (Fosang et al., 2008).  A recent study using equine cartilage revealed 

an significant increase in ADAMTS-5 in synovial tissue form OA joints whilst OA 

cartilage revealed a significant increase in ADAMTS-4, indicating it may be the 

principle aggrecanases in equine OA (Kamm et al., 2010).  Furthermore the use of 

transgenic mice has enabled the analysis of  aggrecanolysis from in- vitro cultures of 

mouse femoral head cartilage which has helped to determine further the role of 

these enzymes in aggrecan degradation (Stanton et al., 2011). 

 

Aggrecan is the first matrix component to experience measurable loss in OA 

(Mankin and Lippiello, 1970). Aggrecanase-mediated aggrecan degradation is one 

of the significant early events in this disease (Huang and Wu, 2008). Degradation is 

due to increased proteolytic cleavage of the aggrecan interglobular domain (IGD) 

(Sandy, 2006). Its loss is attributed to its accelerated degradation within the two 

major proteolytic cleavage sites of the IGD; the Asn341-Phe342 and Glu373-Ala374 

bonds. As discussed earlier it is known that MMPs can cleave the Asn341-Phe342 

bond. The signature activity of the aggrecanases; primarily ADAMTS-4 and 

ADAMTS-5 is the cleavage of the Glu373-Ala374 bond (Tortorella et al., 2000b). The 

degradation products cleaved at the Glu373-Ala374 bond have been detected in 

cartilage explants and chondrocyte culture (Lark et al., 1995; Loulakis et al., 1992; 

MacDonald et al., 1992; Sandy et al., 1991) and in the synovial fluids of patients 

with joint disease (Sandy et al., 1992) An assay detecting cleavage at this site has 

recently been developed using an immunoaffinity based LC/MS/MS (Dufield et al., 

2010a).  In addition to the two major cleavage sites within the IGD, proteolysis of 

aggrecan in-vivo also occurs within the CS  domain (Ilic et al., 1995; Loulakis et al., 

1992) (Figure 1.7) and studies using recombinant ADAMTS-4 and ADAMTS-5 

indicate preferential cleavage of aggrecan in the CS-2 domain (Tortorella et al., 
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2002; Tortorella et al., 2000b).  In bovine aggrecan the two most favoured cleavage 

sites correspond in human to FKEEE1714-1715GLGSV and ASELE1545-1546GRGTI. 

Cleavage then occurs at the signature site in the IGD and in the corresponding 

human sequences at PTAQE1819-1820AGEGP and TISQE1919-1920LGQRP. Similar 

cleavage preferences have been identified by native aggrecanases in chondrocytes 

culture (Sandy and Verscharen, 2001). 

 

The proteolysis within the CS attachment domain has been demonstrated in 

cartilage explant cultures treated with IL-1 or retinoic acid (Ilic et al., 1995; Loulakis 

et al., 1992) and in the synovial fluids from arthritic joints (Lohmander et al., 

1993b). Sequencing analyses revealed that these cleavage sites are located in gap 

regions, which are relatively devoid of glycosaminoglycan chains, within the CS 

domain (Sandy et al., 1995).  

 

1.5. Cartilage ageing  

Although the OA disease process is distinctive from normal ageing, the relationship 

between age and OA is important. Not only is age a major risk factor for OA but 

treatments aimed at delaying cartilage ageing provide potential therapeutics. The 

prevalence of the OA increases with age with between 30 and 50% of adults over 

65 years experiencing the condition (Felson, 2004). However, OA is not an 

inevitable consequence of ageing (Loeser, 2010). Consistent with the heterogenous 

nature of OA, ageing is just one (though the greatest) of the many risk factors 

involved (Suri et al., 2012). The interactions between other OA risk factors and age 

in ascertaining the sites and severity of OA are illustrated in Figure 1.8. 

 

There have been a number of theories as to why ageing and in particular cartilage 

ageing plays such a major role in OA pathogenesis. Joint health is dependent on the 

normal structure and function of all the constituent tissues and OA is a disorder of 

the entire joint. Cartilage is the most susceptible tissue within the joint to damage 

and demonstrates the most intense age related changes. 
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Figure 1.7.  Schematic diagram depicting major human aggrecan cleavage sites. 
G1, G2, G3 represents the respective globular domains, IGD; interglobular domain, 
KS; keratan sulphate-rich region, CS-1, -2; chondroitin sulphate-rich regions.  
Aggrecanase (AGG) and MMP cleavage site sequences in the IGD and CS-2 domains 
are shown. Numbering of amino acids corresponds with the human sequence.  
 

With advancing age changes occur in both in the ECM and chondrocytes. Mitotic 

activity and synthetic activity of chondrocytes alter with age whereas in OA 

chondrocytes are characterised by increased cell activation, proliferation and gene 

expression (Aigner et al., 2004b). A number of theories postulate as to why age 

contributes to cartilage degeneration. One established theory is that OA develops 

due to continuous accruing of repetitive load cycles which instigates constant 

microtrauma due to physiological loading, resulting in a loss of structure and 

function (Loeser, 2009). Another theory relates to ECM modifications including 

collagen and aggrecan with age. Increased cross-linking of collagen over time 

causes cartilage to stiffen, thus reducing flexibility during physiological 

deformation. Aggrecan structure also changes with age due to degradation and 
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impaired synthesis. The molecule becomes smaller and there is a reduction in sugar 

side chains (Glant et al., 1998). This affects the ability of aggrecan to bind water and 

it is this feature that gives aggrecan and therefore cartilage the compressive 

stiffness required for function. Finally glycation end products increase with age 

(known as advanced glycation end products (AGEs)) (Verzijl et al., 2002). These are 

non-enzymatic protein modifications that affect both matrix integrity and 

chondrocyte biology and therefore affect the mechanical properties of the 

cartilage. 

 

1.5.1. Mechanisms of ageing in cells and tissues in the development of OA 

Three main areas have been demonstrated as contributing to ageing in cartilage in 

relation to the development of OA. These are cell senescence, ECM ageing and age 

related oxidative stress.  

 

a. Chondrocyte senescence 

The senescence model for ageing  theorises that chondrocytes become senescent 

due to proliferation and/or oxidative cell stress resulting in the inability of 

chondrocytes to maintain matrix turnover (Aigner et al., 2004b).  

 

There is little evidence of chondrocyte turnover in adult articular cartilage (Martin 

and Buckwalter, 2001). Although they can divide occasionally, adult articular 

cartilage is classified as post-mitotic with trivial cell turnover. Consequently they are 

long lived and disposed to the accumulation of age-related changes over time. 

There is limited evidence for the existence of progenitor cells in cartilage which 

would allow senescent cells to be replaced. One study identified mesenchymal 

progenitor cells in human normal and OA cartilage (Alsalameh et al., 2004)  whilst a 

study in young bovine tissue identified a progenitor cell population on the articular 

surface (Williams et al., 2010). Additionally equine derived cartilage progenitor cells 

are capable of functional cartilage repair (McCarthy et al., 2012). Should a local pool 

of progenitor cells exist they seem unable to replaced senescent chondrocytes.  
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Studies have demonstrated cellular degenerations including DNA damage in OA 

chondrocytes (Helmick et al., 2008) which normally results in apoptosis.  The extent 

of apoptosis is debated. Although some believe it is rare in OA cartilage (Horton et 

al., 1998) there is evidence for both an age-related (Adams and Horton, 1998)  and 

OA (Morgenroth et al., 2012) induced loss of chondrocytes from apoptosis.  There 

does, in humans at least,  appear to be a reduction in chondrocyte number with age 

progression (Dieppe, 1995).  

 

A reduction in the chromatin protein high mobility box group B2 (HMGB2) in the 

cartilage superficial zone chondrocytes of animals and man with age occurs which 

may contribute to chondrocytes death (Taniguchi et al., 2009). The protein is a 

transcriptional regulator which maintains superficial zone chondrocytes survival 

through β-catenin signalling and in addition controls gene expression profile of the 

superficial zone cells. HMGB2 null mice display early-onset OA-like alterations 

associated with increased susceptibility to cell death (Taniguchi et al., 2009).  

 

Telomere shortening, unrelated to replicative senescence, has been identified in 

chondrocytes with advancing age (Martin et al., 1997). This is possibly due to 

oxidative damage or inflammation (Grahame and Schlesinger, 2012). These finding 

may contribute to chondrocyte senescence in-vivo (Aigner et al., 2004b). There are 

a number of concepts evident in cell senescence. In classic replicative senescence 

there is an inability of the cells to experience further cell division. However there is 

also evidence for phenotypic alterations; the ‘senescent secretory phenotype’ 

(Campisi, 2005). Accumulation of these cells, which secrete increased amounts of 

MMPs and cytokines, contributes to cell ageing. Given the enhanced production of 

cytokines and MMPs in OA this provides a direct link between ageing and OA 

(Loeser, 2010).  

 

Finally cell senescence has been linked to a reduction in the capacity of 

chondrocytes to respond to growth factors with age and OA  (Campisi, 2005) 

including insulin growth factor-1 (IGF-I) and TGF-β, which may contribute to the 

imbalance between anabolic and catabolic activity in OA. 
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Figure 1.8. The relationship between OA risk factors and ageing changes in OA.
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Since IGF-I has an  important autocrine survival role in cartilage this age related 

reduction may be pivitol in age-related cell death (Loeser and Shanker, 2000). 

 

b. Cartilage matrix ageing 

There is evidence of a gradual loss of cartilage matrix with ageing as demonstrated 

in knee magnetic resonanace imaging (MRI) studies (Connie et al., 2011). This is due 

to a loss of chondrocytes, reduced growth factor activity, and cartilage water loss. 

The water content of cartilage is largely controlled by the presence of aggrecan. 

This  changes in its structure, glycosylation extent and size with age (Buckwalter et 

al., 1994). The age-related matrix protein modifications AGEs have a role in OA 

development (Loeser, 2009). As increased collagen cross-links are evident as a 

result of AGEs, cartilage biomechanical properties are effected resulting in 

susceptibilty to failure (Verzijl et al., 2000b). Thus overall these changes result in 

collagen that is less flexible, aggrecan that is smaller and less able to ‘hold’ water 

and altered phenotype leading to alterations in the anabolic/catabolic balance. 

 

c. Age-related oxidative stress 

Oxidative damage from chronic formation of reactive oxygen species (ROS) results 

in age related tissue changes (Carlo and Loeser, 2003). Both ROS  and reactive 

nitrogen species such as nitric oxide  are produced by HAC. Furthermore, rat studies 

identified increased ROS with age (Jallali et al., 2005). Studies have also found 

increased oxidised glutathione (an intracellular anti-oxidant) with age in human 

chondrocytes (Jallali et al., 2005). Other anti-oxidants are detected at reduced 

levels  with age (Jallali et al., 2005)  and in OA. Whilst increased ROS results in 

deoxyribonucleic acid (DNA) damage leading to reduced chondrocyte viability and  

matrix production. Interestingly  ROS  interferes with  IGF-I signalling leading to 

reduced matrix production (Yin et al., 2009).  Further ROS may be stimulated by 

cytokines such as IL-1 and TNF-α which are elevated in OA. This increase in ROS can 

then increase MMP production (Forsyth et al., 2005).   

 

1.6. What is proteomics? 
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Proteins are the molecules that are responsible for the majority of functions within 

the cell. Until recently it has been difficult to study global protein expression as 

proteins cannot be replicated easily in the laboratory. Furthermore, proteins do not 

have complimentary sequences like DNA and RNA that can be used as probes. Thus, 

historically scientists have relied on gene expression analysis to indicate how a 

protein is being regulated. As new technologies develop the examination of 

proteins has become more accessible and the study of proteins, known as 

proteomics, has become a discipline itself.  Proteomics is the large scale study of 

proteins including their structure and functions. It is the systematic analysis of 

proteins expressed by a genome at a given time, including the set of protein 

isoforms and modifications (de Hoog and Mann, 2004). The concept was first 

proposed by Wilkins (Wilkins et al., 1996) and is analogous to genomics, the study 

of the gene. However, whereas a species genome is more or less constant, the 

proteome differs from cell to cell and from time to time depending upon the age, 

environment and diseases to which the animal is exposed. One of the challenges 

when studying the proteome is the number of proteins that need to be identified. 

The 20,322 genes in the equine genome (Wade et al., 2009) can code for at least 

ten times as many proteins.  Measurement of transcript; messenger ribonucleic 

acid (mRNA) levels do not give complete information on cellular regulations. This is 

because there are a myriad of post translational modifications that occur following 

gene expression which results in many times more proteins than the coding 

potential of the organism (Cobon et al., 2002). As the complete genome sequence 

of many organisms has been identified, a shift in emphasis is taking place towards 

making genomics functional. Molecular biology has provided powerful tools for 

high-throughput DNA analysis (see 1.6 next generation sequencing) and emerging 

techniques that also allow the equivalent in protein analysis are becoming 

available. Previously these tools have resulted in an emphasis on message (mRNA 

or cDNA) rather than product of that message (protein). One of the advantages of 

proteomics is the potential to detect changes that occur after the mRNA 

(‘message’) step, thus giving quantitative analysis of protein expression profiles.  

1.6.1. Methodologies for studying proteomics 
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Many elegant tools have been designed to study proteomics. These include light 

and electron microscopy for the imaging of cells, protein arrays, and mass 

spectrometry (MS). Affinity based assays cannot detect and quantify all proteins in 

a given species and consequently MS provides a powerful additional method to 

analyse complex protein samples. The technique is capable of identifying and 

quantifying thousands of proteins in complex samples.  

Proteomics can be divided into expression proteomics and functional proteomics.  

Expression proteomics is the large scale study of variations in protein expression 

and is analogous to differential gene expression.  It is based on the technique of 

two-dimensional gel electrophoresis followed by the characterisation of the protein 

spots by mass spectrometry. A good gel can separate several thousand proteins. 

One of the limitations is that certain classes of proteins such as membrane proteins 

do not readily enter gels and because abundance varies over a wide range 

enrichment strategies are required. Functional proteomics is the study of protein 

complexes and signalling pathways in order to understand how proteins interact to 

form cellular machines. It is not two-dimensional gel and image analysis based but 

uses inherent enrichment of proteins of interest by affinity purification. Affinity 

purification can be approached through the optimisation of various affinity 

reagents, such as antibodies, with specificity towards the proteins within a complex 

of interest. In a recent study an immunoaffinity-based liquid chromatography-

tandem mass spectrometry (LC-MS/MS) method was used to detect cleavage at the  

two sites in the cartilage protein aggrecan (Dufield et al., 2010a). 

 

1.6.2. Mass spectrometry 

a. Separation techniques  

The foundation of MS proteomic research requires the separation of a large 

number of proteins prior to identification by MS. The separation stage is a crucial 

step. In order to detect anything but the most abundant proteins in a sample and to 

simplify MS spectra so that they can be interpreted, a proteome must be 
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fractionated prior to MS. This may be achieved by gel electrophoresis or gel-free 

techniques which normally involve LC, so-called “shotgun-proteomics”. 

i. Gel-based separation 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was the 

first separation method developed. Following pre-treatment involving 

solubilisation, denaturation and reduction, to completely breakdown interactions 

between the proteins (Rabilloud, 1996), cellular or tissue extracts are separated on 

a polyacrylamide gel. Proteins then migrate according to their molecular weight 

when a current is applied. In two-dimensional electrophoresis (2-DE) (O'Farrell, 

1975) proteins are separated in two dimensions, first by the pH at which the net 

charge is zero; the isoelectric point and then by size. Both types of gels are 

subsequently stained. To identify protein spots of interest these are cut from the 

gel prior to in-gel digestion using a protease of choice, normally trypsin. Various MS 

techniques can then be employed in order to identify the protein. 

 

iii. Gel-free separation 

Gel-free proteomics consists of multidimensional fractionation, commonly strong 

cation exchange and reverse phase C18 high-performance liquid chromatography 

(HPLC) (Wang et al., 2003). These techniques are high-throughput since they can be 

automated and run in-line with the mass spectrometer.  

 

b. Protein identification using mass spectrometry 

 

MS determines the mass-to-charge ratio (m/z) of gas phase ions is increasingly 

becoming the method of choice for the analysis of complex protein samples.  MS-

based proteomics is made possible by the availability of gene and genome 

sequence databases. In the most simplistic model a mass spectrometer is a 

sensitive weighing scale. The basic principle involves the ionisation of peptides 

produced following protein digestion. In addition from a pool of detected peptides 

specific precursor ions may be selected for fragmentation. Collisional activities 

result in product ion mass spectra which are recorded and used to identify the 

http://science.jrank.org/pages/6847/Tissue.html
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amino acid sequence of the peptides selected. Data dependant analysis (DDA) is the 

most common implementation of the method. Here the precursor ions are selected 

automatically from ions detected in a survey scan preceding the ion selection. If 

DDA is combined with stable-isotope labelling workflows, these protein 

identification methods allow relative (compared to a reference) or absolute 

quantification of the proteins identified.  

 

1.6.3. Mass spectrometry instrumentation 

A mass spectrometer consists of an ion source, a mass analyser that measures m/z 

of the ionized analyte, and a detector that registers the number of ions at each m/z 

value (Figure 1.9).  

 

Figure 1.9.  Schematic of a mass spectrometer.  

The two most commonly used techniques to volatize and ionize the proteins or 

peptides for mass spectrometric analysis are electrospray ionization (ESI) and 

matrix-assisted laser desorption/ionization (MALDI) (Fenn et al., 1989; Karas and 

Hillenkamp, 1988). Both methods are known as "soft" ionisation methods because 

the sample is ionised by the addition or removal of a proton. Additionally very little 

extra energy remains to cause fragmentation of the sample ions. ESI is readily 

coupled to liquid based separation tools as it ionizes the analyte out of solution 

enabling the analysis of complex samples when integrated with LC; LC-MS. It is 

usually coupled to ion traps and triple quadrupole instruments. The  fragment ion 
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spectra (collision-induced spectra or CID) of selected precursor ions are then 

produced (Aebersold and Mann, 2003). Interestingly samples with molecular 

weights greater than 1200 Da tend to produce multiply charged ions. Here the m/z 

values can be expressed as: 

m/z = (MW + nH+)/n 

m/z  = the mass-to-charge ratio of the spectrum; 

MW  = the molecular weight of the sample 

n  = the number of charges on the ion 

H  = the mass of a proton = 1.008Da 

This is summarised in Figure 1.10. 

Notation Charge Observed m/z 

[M+H]+ single M + 1Da 

[M+2H]2+ double (M + 2Da)/2 

[M+3H]3+ triple (M + 3Da)/3 

Figure 1.10.  Table illustrates the m/z notation used in MS.  

Proteins have many suitable sites for protonation. Theoretically all of the backbone 

amide nitrogen atoms could be protonated. In addition, certain amino acids such as 

lysine and arginine contain primary amine functionalities which can also carry 

charge.  

The mass analyser plays a central role in MS as its primary function is to resolve the 

ions formed in the ionisation source of the mass spectrometer according to their 

m/z.  It provides varying degrees of the key parameters; sensitivity, mass accuracy, 

resolution and the ability to produce mass spectra from peptide fragmentation, so 

called tandem MS. In proteomic research three types of mass analysers are used 

primarily; the ion trap, time-of-flight (TOF), quadrupole and Fourier transform ion 

cyclotron (FT-MS). The compatibility of mass analysers with the numerous 
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ionisation methods varies. Whilst all types of analyser can be used in conjunction 

with electrospray ionisation, MALDI is rarely coupled to a quadrupole analyser.  

The final part of the mass spectrometer is the detector which monitors ion current. 

The ion current is amplified and the signal transmitted to a data system which is 

recorded in the form of a mass spectra. The number of components in the sample, 

the molecular mass of each component, and the relative abundance of the various 

components in the sample are determined by plotting the m/z values of the ions 

against their intensities. More common detectors include the photomultiplier, the 

electron multiplier and the micro-channel plate detectors.  

1.6.4. Protein identification 

The two principle methods used for protein identification are peptide mapping 

(Henzel et al., 1993) and peptide sequencing.  In the former the proteins are 

digested with a proteolytic enzyme (usually trypsin) to produce a set of tryptic 

fragments unique to that protein. The m/z of peptides are then determined by MS 

in the gas phase by observing their flight in electric and/or magnetic fields. Once 

ions are formed they can be separated according to their m/z and detected. 

Historically the most common system employed for this is matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometer (MALDI-TOF). MALDI uses a 

solid matrix and a laser to produce short burst of ions. Digested peptides are mixed 

with a matrix substance, normally α-cyanocynamic acid. Small ions move at a higher 

velocity and are detected prior to larger ions, thus producing a ‘time-of-flight’ (El-

Aneeda et al., 2009). The molecular weight values of trypsinised peptides obtained 

by MALDI-TOF are then used to identify the predicted proteins using web-based 

search engines such as MASCOT (Perkins et al., 1999). 

 

An alternative method employed for protein identification is peptide sequencing. 

Sequencing peptide spectra produced are used to search an in-silico digested 

proteome sequence database. Peptides are fragmented in the collision cell of the 

mass spectrometer to generate fragment ions of progressively lower mass to aid 

identification by fingerprinting.  This workflow is called tandem mass spectrometry 

http://science.jrank.org/pages/2541/Enzyme.html
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(MS/MS)  and uses instrumentation such as quadrupole mass spectrometry (Q-TOF) 

(Morris et al., 1997).  

The fragment ions observed in an MS/MS spectrum will only be detected if they 

carry at least one charge. If this charge is retained on the N-terminal fragment, the 

ion is classed as either a, b or c. If the charge is retained on the C-terminal fragment 

the ion type is either x, y, or z (Figure 1.11). The difference in mass between 

adjacent y or b ions corresponds to that of an amino acid. Mass spectrometry does 

not fully sequence the sample but creates sufficient information that will identify 

the unknown protein by searching appropriate databases. 

 

 

 

Figure 1.11.  The fragment ions generated upon peptide dissociation (Zhang et al., 

2006a). 

 

1.6.5. Protein quantification using mass spectrometry 

In discovery experiments large numbers of proteins are identified with no relevance 

to the biological question posed, whilst some proteins which may be relevant can 

be missed.  Furthermore the absence of a protein from the identification list does 

not mean the protein is absent from the sample. It has been suggested that if 

reproducible and quantitatively accurate data can be generated for all proteins that 

are involved in a particular process then proteomics will make a greater impact in 
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biology (Ren et al., 2006). Thus a quantitative approach to proteomics identifying 

and quantifying sets of defined proteins will progress our understanding of 

biological systems and disease states.  

 

There are three principle methods used to compare amounts of proteins using MS. 

These are relative quantification, absolute quantification and protein kinetics or 

turnover. In addition two approaches can be used for quantitative; the utilisation of 

stable isotope labelling and’ label-free’ techniques. 

 

a. Relative Quantification 

 

Relative quantification measures changes in expression levels. Numerous 

quantitative methodologies have been dedicated to the extensive comparison of 

multiple proteomes commonly using isotopic-labelling approaches including stable 

isotope labelling with amino acids in cell culture; SILAC (Aebersold and Mann, 

2003), isotope-coded affinity tagging; ICAT (Shiio and Aebersold, 2006). These 

methods involve labelling peptides, with reagents or labels that are chemically 

identical but vary in their isotope composition, prior to the sample being run on LC-

MS. In addition isobaric tagging reagents have been used known as iTRAQ (isobaric 

tagging for relative and absolute quantification) (Wiese et al., 2007)and ‘label-free 

protocols’ have also been implemented (Wong and Cagney, 2010).  

 

Label-free techniques have some advantages over labelling approaches. Although 

they require high mass precision instruments they do not require expensive isotope 

labels, or particular software and they can analyse many proteins in a single sample 

and many samples in a single experiment concurrently. Label-free quantitation uses 

either area under the curve, relying on signal intensity founded on precursor ion 

spectra or spectral counting  which uses the number of peptides assigned to a 

protein in an MS/MS study (Zhu et al., 2010). The spectral counting approach uses 

data processing involving applications such as ‘exponentially modified protein 

abundance index’ or emPAI (Ishihama et al., 2005).  
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b. Absolute Quantification 

 

Systems biology approaches, which require the ability to make quantitative 

measurements have furthered the demand for absolute protein abundance values 

for input into models (Otto et al., 2012). Absolute quantification is a ‘targeted 

approach’ as it focuses on a specific set of peptides. Thus prior information is 

required in order to produce MS assays for the detection and quantification of 

predetermined analytes in a mixture. As the method is hypothesis driven, a subset 

of peptides uniquely associated with the proteins of interest are targeted.   In 

absolute quantification copies per cell of a protein from a cell lysate or molar 

quantities of a protein from a secretome or media can be determined. One 

advantage of this method is that it allows the real comparison of data between 

laboratories. Such precise determination of concentrations requires internal 

standards which must perform in the linear range of the system. The three types of 

isotope-labelled quantification standards are AQUA (for absolute quantification) 

(Gerber et al., 2003), QconCAT (quantification concatamers) (Beynon et al., 2005) 

and PSAQ (protein standard absolute quantification)  (Dupuis et al., 2008) 

standards. In the latter a full-length protein with homologous biochemical 

properties of the target protein are spiked in at the start of the analytical process. 

 

i. AQUA 

 

In 2003 a strategy known as Protein-Aqua was presented for absolute 

quantification by using isotopically labelled peptides for downstream analysis by LC-

MS (Gerber et al., 2003).  This method, also known as stable isotope dilution (SID) is 

regarded as  the gold standard for quantitation by LC-MRM-MS (Pan et al., 2009). 

Commonly isotope-labelled internal standards are used to measure small molecules 

such as hormones in analytical chemistry. The method employs de novo chemically 

synthesised, isotopically labelled internal standards. Interestingly due to the 

chemical synthesis of the peptide standards, AQUA has enabled quantification of 

post-translational modifications and biomarkers (Cummings et al., 2008). Peptides 

are quantified by monitoring either accurate mass retention time (AMRT) (Silva et 
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al., 2005)  or monitoring multiple reaction monitoring (MRM) transitions for each 

peptide (Figure 1.12). 

 

i. QconCAT 

 

A method using artificial concatamers of a set of standard peptides (Q-peptides) 

was introduced by Beynon et al. in 2005 (Beynon et al., 2005); QconCAT. This 

extends the number of proteins that can be quantified in parallel. A synthetic gene 

is produced which is then inserted into plasmid DNA. At least two peptides per 

protein are incorporated into the QconCAT in order to reduce the risk associated 

with poorly ionizing or difficult peptides (Pratt et al., 2006). 

 

 

Figure 1.12.  Mass spectrometry methodology using AQUA and multiple reaction 
monitoring (MRM). MS is undertaken using a triple quadrupole. At a set elution 
time the first quadrupole (Q1) is used to target and detect the parent ion of a given 
peptide (both heavy; AQUA peptide and light; native peptide co-elute at the same 
time from the LC column). This is fragmented by the collision cell, product ions are 
detected by the third quadrupole (Q3). 
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In addition to the Q-peptides, the artificial protein contains a C-terminal 

hexahistidine-tag (His-Tag) sequence for purification, fibrinopeptide following the 

initiator methionine and glufibrinopeptide ‘EGVNDNEEGFFSAR’ for quantification of 

the QconCAT. The fibrinopeptide and glufibrinopeptide also allow assessment of 

expression of the QconCAT as if both are present in a QconCAT digest this means 

the full length protein has been expressed. The genes are subsequently expressed 

in Escherichia coli (E.Coli) grown in media containing the selected label. Where 

trypsin is the proteolytic enzyme of choice for digestion L-lysine (13C6, 
15N2) and L-

arginine (13C6, 
15N4) are the labels of choice providing a 6Da mass shift between 

standard and analyte. Following proteolysis each Q peptide is released in 

stoichimetry of 1:1. Subsequently the quantification of each selected peptide by MS 

can then be undertaken (Pratt et al., 2006). Normally trypsin is used for 

endoproteolysis, in order to cleave proteins into peptides suitable for MS; however 

other endoproteinases can be used were trypsin digestion provides inappropriate 

surrogate peptides.  Trypsin cleaves C-terminal to arginyl and lysyl residues except 

arginyl-propyl and lysyl-propyl sequences which are not cleaved. It produces a 

range of peptides between 600-4000Da which are ideal for analysis with MS. 

Additionally tryptic peptides are normally doubly charged ions [M+2H]2+ which aids 

in MS/MS analysis used in MRM experiments. Because the standard is biologically 

synthesised one of the advantages of QconCAT over AQUA is that once conceived 

and validated a QconCAT gene may be used for repeated production of unlimited 

amounts of isotopically-labelled peptide standards (Rivers et al., 2007). A further 

advantage is that were appropriate, QconCAT may be co-digested with the analyte 

protein in order to overcome problems associated with differential susceptibility to 

proteolysis (Rivers et al., 2007). Moreover it has also been suggested that by 

putting the peptides in sequence where they are surrounded by their native 

flanking sequence this may avoid this problem (Kito et al., 2007). 

 

Experiments using AQUA and QconCAT can be performed on two MS platforms; ion 

trapping (e.g. Orbitrap) and quadrupole based instruments (e.g. triple quadrupole, 

quadrupole-time of flight (TOF)). Ion trapping instruments use AMRT.  Figure 1.13 

demonstrates the quadrupole methodology. For each peptide, pairs of precursor 
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and fragment ion m/z values (called transitions) are monitored during the predicted 

elution time, allowing hundreds of peptides to be analyzed in a single experiment.  

 

QconCAT methodology also has its shortcomings. These include the poor solubility 

of some QconCATs, variable expression, incomplete digestion and  post 

translational modifications during digestion (Aebersold and Mann, 2003).  In a study 

conducted by Mizaei et al. 2008 (Mirzaei et al., 2008) the group compared AQUA 

peptide and QconCAT peptide absolute quantification using the Caenorhabditis 

elegans proteome. Results indicated that although most QconCAT peptides were in 

equimolar ratios, digestion efficiencies were an important factor for some. 

Additionally solubilisation of some AQUA peptides was reflected in the 

overestimation of some QconCAT peptides. The conclusion was there was no 

superior method.  

 

1.1.1. Mass spectrometric imaging of cartilage 

 A further way in which MS is useful in interrogating cartilage is through imaging 

mass spectrometry (IMS). Mass spectrometry has the capabilities to determine the 

mass of a large mass range of molecules; from large biomolecular complexes down 

to small organic molecules, even single atoms and their isotopes. Continual 

development has enabled improvements in terms of its sensitivity, resolution and 

mass range. The introduction of ESI and MALDI has allowed the ionisation of 

smaller biomolecules such as metabolites as well as larger biomolecules such as 

lipids, peptides and proteins (Leinweber et al., 2009).  

 

Imaging mass spectrometry is a powerful tool to study molecular distributions at 

biomedical tissue surfaces. It allows ‘label free’ biomolecular imaging technique in 

life sciences by the rapid detection, localisation and identification of molecules 

from even complex, biological samples. The technique enables detailed 

appreciation of biological processes on different length scales, from subcellular to 

entire organs. In terms of OA, knowledge of the dynamic distribution and the 

variation of molecules in different stages of disease, from a spatial point of view, 
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are essential to understand the principal factors implicated in OA development in 

order to establish efficient treatments.  

 

1.1.1.1. Basic Principles 

There are three main platforms for MSI are; physics secondary ion mass 

spectrometry (SIMS),  matrix assisted desorption ionisation mass spectrometric 

imaging MALDI-IMS (Caprioli et al., 1997) and desorption electrospray ionization 

(DESI) (Takats et al., 2004). There are four stages to an IMS experiment; sample 

preparation, desorption and ionisation, mass analysis and image registration. 

Following sample preparation methods specific to the tissue analysed, the 

biomolecules are desorbed and ionized from the surface. The entire surface of the 

sample is examined in order to collect mass spectral information about the 

molecular composition and distribution of the analysed molecules at each point. 

These ionised molecules may be intact proteins, peptides, lipids or small molecules. 

Ion images are then presented from the resulting molecular ion distributions.   

 

1.1.1.2 MALDI-IMS 

MALDI-IMS is the most common  method for measuring intact peptide and protein 

due to its high sensitivity, tolerance for salts, wide mass range, little fragmentation 

and simple data interpretation as the majority of ions are singly protonated 

(Chughtai and Heeren, 2010). It also enables the analysis and detection of other 

biomolecules (such as lipids) directly from tissue sections. It is capable of producing 

intact higher MW ions by the implementation of pulsed laser beams combined with 

energy absorbing matrix molecules. The MALDI desorption and ionisation process is 

shown in Figure 1.14. In a MALDI-IMS experiment the laser beam is rastered across 

the surface of the treated tissue, enabling desorption and ionization of 

biomolecules. The ablation crater has a depth of 1μm or more (Heeren et al., 2006).  
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Figure 1.13. Workflows used for absolute quantification with AQUA and QconCAT.
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Figure 1.14.  Schematic representation of MALDI desorption and ionisation 
process. 
 

1.1.1.2. Imaging mass spectrometry of cartilage 

IMS has been used to identify the molecular distribution of peptides in many tissues 

including brain (Taban et al., 2007), liver (Lee et al., 2011) and kidney (Meistermann 

et al., 2006). Additional molecules including lipids (Hankin et al., 2011) and small 

molecules (Blatherwick et al., 2011) have been localised in numerous tissues. There 

have been very limited studies using IMS in musculoskeletal tissues. Indeed there 

are only two peer-reviewed citations. One study used a time of flight secondary ion 

mass spectrometry (TOF-SIMS) workflow in order to afford molecular-specific 

spatial distribution of lipids in normal and OA cartilage (Cillero-Pastor et al., 2012b). 

The study revealed lipid, calcium and phosphate distributions that distinguished 

human normal from OA cartilage. The other study investigated synovial membrane 

in rheumatoid arthritis with MALDI imaging in order to identify biomarkers 

(Kriegsmann et al., 2012). Recently a study identified potential biomarkers of OA 

using MALDI-IMS on OA cartilage (Cillero-Pastor et al., 2012c).  
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1.1.2. The role of proteomics in the study of cartilage and OA 

Gene expression levels of many proteins involved in OA have been studied under 

experimental conditions (Aigner and Dudhia, 2003), but these do not always 

correlate to protein expression  due to protein degradation, and alternative 

transcriptional and translational steps. Furthermore, post-translational 

modifications of proteins are not considered and it is proteins that regulate the cell 

phenotype important in OA.  By studying proteomics a snap-shot of what is actually 

occurring in the tissue at a given time can be studied. Proteomic studies of cartilage 

are also important to provide insights into normal molecular pathways, discover 

disease specific biomarkers for disease, identify novel therapeutic targets in disease 

and identify factors that contribute to disease pathogenesis. In the case of 

biomarkers these can be monitor disease stage and progression. Although the study 

of cartilage and OA using proteomics has also used chondrocyte mitochondria(Ruiz-

Romero et al., 2009), synovial fluid (Mateos et al., 2012), and serum (Yanagida et 

al., 2012), two types of samples have been used primarily; the cartilage secretome 

and cartilage tissue. 

1.1.2.1.  Cartilage secretomics 

The secretome is the global study of proteins that are secreted by a cell, tissue or 

organism at a given time, or under certain conditions.  Secreted proteins are an 

important class of active molecules with roles in a number of physiological and 

pathological mechanisms. Protein secretion is a well regulated and balanced 

process required for normal physiologic function. Any aberrations in the secretory 

profile of a cell may lead to pathological conditions and so analysis of the complete 

secretome of a cell may also provide diagnostic biomarkers in disease.  

Cartilage cells grown in monolayer rapidly lose their phenotype as demonstrated by 

a loss of the chondrocyte gene expression profile (Moskalewski et al., 1979) and a 

change in morphology to a more fibroblastic state (Kuettner et al., 1982). Although 

analysis of the secretome immediately after isolation minimizes the phenotypic 

changes, enzymatic isolation results in destruction of the ECM and associated cell-

surface proteins. Proteomic analysis of the secretome using this system has limited 
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relevance to the cartilage proteome in-vivo. Cartilage explants allow chondrocytes 

to be retained within their ECM and are assumed to be less destabilized by their 

culture environment. The ECM also provides native substrates for proteolysis and 

protein release, equivalent to the shedding the proteins into the synovial fluid 

during cartilage degeneration. Proteins released into the media represent a 

combination of new protein synthesis and secretion as well as active and passive 

loss of pre-existing proteins within cartilage. Some of the proteins may be 

contained in cartilage explants via diffusion from the synovial fluid. Whilst this 

exchange of material between cartilage and synovium can produce cartilage 

derived proteins entering the serum, it has the potential to allow some serum 

derived proteins to enter the cartilage.  

Pro-inflammatory cytokines such as IL-1β and TNF-α induce matrix degrading 

enzymes significant in the pathogenesis of OA (Goldring and Goldring, 2004). The 

use of catabolic stimulants on primary chondrocytes and explants, combined with 

proteomic analysis can offer an important approach to elucidate novel mechanisms 

in cartilage degradation. Studies have assessed the effect of IL-1β stimulation on 

the cartilage secretome (Catterall et al., 2006; De Ceuninck et al., 2004; Stevens et 

al., 2008) and more recently a SILAC study was carried out on IL-1β stimulated 

primary HAC (Polacek et al., 2010b). In a study undertaken in juvenile bovine 

cartilage explants secretome profiles were compared in groups treated with IL-1 β 

or TNF-α or traumatic mechanical compression and then cultured for 5 days 

(Stevens et al., 2008). The composition of proteins from the secretome from 

cytokine treated and untreated samples were similar and included proteins 

associated with innate immune, and stress responses including acute phase and 

complement proteins. In addition a number of novel cartilage proteins were 

discovered. In a recent study an IL-1 stimulated equine explants model was used to 

provide high throughput proteomic analysis of the secretome. Peptides identified 

included aggrecan, COMP, fibronectin, fibromodulin, thrombospondin-1, clusterin, 

cartilage intermediate layer protein-1, chondroadherin and MMP-1 and -3 

(Clutterbuck et al., 2011). The explantation and cutting of articular cartilage for 

explant studies can activate intracellular inflammatory signalling pathways and 
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induces expression of mRNA for IL-1α and IL-1β (Gruber et al., 2004). This highlights 

the need to maintain explants in culture for at least 24h prior to experimentation. 

 

The first application of 2-DE followed by LC-MS/MS to analyze the secretome of 

normal and OA articular cartilage was undertaken by Hermansson et al. 2004 

(Hermansson et al., 2004). There was an increase in the synthesis of type II collagen 

in OA cartilage media along with the anabolic factors pro-inhibin βA and activin A. 

Soon after another group evaluated different methodologies to evaluate the OA 

cartilage secretome (De Ceuninck et al., 2005) including 2-DE, off-gel 

electrophoresis coupled to tandem MS, and antibody-based protein microarrays. 2-

DE of explant culture media is difficult as it contains high concentrations of highly 

anionic compounds which interfere with isoelectric focalization. Off-gel 

electrophoresis provided a tool for discarding abundant proteins and concentrating 

less abundant ones. Antibody microarrays provided a method to identify low 

molecular weight proteins, minor and poorly stained proteins when electrophoretic 

techniques produced limited results. Using this combination of methods 43 proteins 

were identified.  

Recently a quantitative proteomic analysis study was undertaken with primary HAC. 

In this SILAC study both the quantitative analysis of the IL-1β treated HACs 

proteome and the HAC secretome were undertaken. It revealed a global increase in 

cellular chaperones concurrent with a down-regulation of the actin cytoskeleton. 

Secretion of aggrecan,  vitamin K-dependent proteins, and thrombospondin  was  

reduced (Polacek et al., 2010a) . 

 

Using 2-DE and ESI MS/MS a further study assessed the effects of IL-1β and 

oncostatin M on the secretome of human and bovine chondrocytes. It was 

determined that some of the secreted proteins for example MMP-1, MMP-3, YKL-

40 and cyclophilin A were cleaved into smaller fragments by proteolysis (Catterall et 

al., 2006). Thus a proteomics approach is able to offer further insight into protein 

processing which cannot be determined by genomic studies.  
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Human endemic OA was investigated using the cartilage cell culture media from 

normal and Kashin-Beck disease (KBD) (Du et al., 2010). KBD is an endemic 

deformed osteochondropathy prevalent in China, whose aetiology is uncertain. 2-D-

DIGE (difference gel electrophoresis) and MALDI-TOF/TOF analysis revealed 

differences in 27 proteins mainly involving cellular redox homeostasis and stress 

response, glycolysis, cell motility and cytoskeletal organisation, indicating these 

processes are aberrant in KBD.  

1.1.2.2. Whole cartilage proteomics 

In order to successfully analyse the cartailge proteome  extraction techniques are 

required which are both effectual and reproducible. A number of reviews discuss 

the approaches to cartilage proteomics within different cartilage extracts (Ruiz-

Romero and Blanco, 2009; Ruiz-Romero and Blanco, 2010; Wilson et al., 2009). 

Unfortunately none are suitable for the analysis of all proteins. The two major 

proteins in cartilage; proteoglycans, with their anionic nature, high density and size 

and highly abundant insoluble collagens are the greatest hurdles in proteomic 

analysis. In addition to the presence of small numbers of high abundance proteins 

masking the identification of less abundant proteins, their properties impede the 

biochemical behaviour of proteins such as isoelectric focussing in 2-DE potentially 

disguising other important proteins (Wilson et al., 2009). As a consequence of this 

most studies have been undertaken following proteoglycan removal using 

molecular weight cut-off filtration (Garcia et al., 2006) or cetylpyridinium chloride 

precipitation of anionic PG followed by 2-DE (Hermansson et al., 2007). A further 

approach to reduce sample complexity and problems associated with high 

concentrations of GAGs in the sample is to undertake secretome studies of 

chondrocytes or cartilage explants. It must be remembered that all techniques have 

disadvantages, as demonstrated by the large number of techniques employed in 

cartilage proteomics (Iliopoulos et al., 2010). A table illustrating the techniques 

employed historically are demonstarted in Figure 1.15.  For instance the removal of 

PGs can result in the loss of other proteins both partially or totally (Wilson et al., 

2008). 
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One of the first  MS-based proteomic studies of OA whole cartilage, undertaken by 

Garcia et al. (Garcia et al., 2006) revealed a limited number of proteins due to the 

presence of a few highly abundant proteins and free sugars in the form of GAGs 

from proteoglycans. However a 1-D SDS-PAGE in-gel digest also performed was 

more revealing identifying 100 different proteins from OA cartilage.  

A novel method of tissue dissection and sample prefractionation was used in the 

proteomic analysis of mouse growth plates using 4M guanidine extraction and a 

100kDa molecular weight cut-off (MWCO) filters to prefractionate the sample. This 

was used as most proteins detected with 2-DE are between 10-100kDa. By the 

removal of higher molecular mass (Mr) this allowed the enrichment of low Mr 

proteins resulting in more proteins identified with 2-DE (Belluoccio et al., 2006).   

Solubility-based fractionation techniques have been used to increase reproducibilty 

and allow comparative experiments in neonatal mouse growth plates. Intracellular 

proteins were extracted using NaCl buffer (to enrich cellular proteins) followed by a 

guanidine extraction in order to interrupt matrix components and thus enrich them 

allowing additional proteins to be identified (Wilson et al., 2010b). Sequential 

extraction methods separated the proteome into distinct subgroups as analyzing all 

the proteins in one fraction (and expecting good coverage) was thought to be too 

ambitious and would produce a reduction in the performance of the 

chromatography. The analysis of sequential extracts indicated a transition in 

protein solubilty from readily soluble proteins in juvenile cartilage to a high 

proportion of poorly soluble in neocartilage. Proteins were evident as significantly 

enriched dependant upon whether the sample was neonatal or juvenile cartilage. 
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Citation Species Tissue  Technique Proteomic 
analysis 

(Garcia et al., 
2006) 

human whole 
cartilage  

Cartilage minced, 
Liberase digestion, 
100kDa centricon 
filter 

Supernantant 
either 1D-SDS-
PAGE or  in 
solution tryptic 
digest; 
LC/MS/MS 

(Hermansson 
et al., 2004) 

human whole 
cartilage 

Cartilage microtome 
sliced, extraction 
buffer with NaCl, CPC 
precipitation, 
methanol/chloroform 
precipitation 

2DE, tryptic 
digestion,MALDI-
TOF 

(Guo et al., 
2008) 

human whole 
cartilage 

Cartilage powdered, 
extraction buffer 
with urea, high 
speedcentrifugation, 
acetone precipitation 

2DE, tryptic 
digestion, 
LC/MS/MS 

(Wu et al., 
2007) 

human whole 
cartilage 

Cartilage minced, 4M 
guanidine extraction, 
centrifuge, caesium 
chloride gradient  

1D-SDS-PAGE, 
tryptic digestion, 
LC/MS/MS 

(Belluoccio 
et al., 2006) 

mouse whole 
cartilage 

Cryosection of 
cartilage, guanidine 
extraction, 100kDa 
filter,  ethanol 
precipitation, 
resuspend IEF buffer 

2DE, tryptic 
digestion, 
LC/MS/MS and 
western blotting 

(Wilson et 
al., 2008) 

mouse cartilage 
explants 
and 
media 

Cartilage pulversied, 
chondrotinase ABC, 
guanidine extraction, 
100Kda filter, ethanol 
precipitation, 
resuspend IEF buffer 

2DE, tryptic 
digestion, 
LC/MS/MS and 
westerern 
blotting 

(Guo et al., 
2008) 

any whole 
cartilage 

Cartilage pulverised, 
chondroitinase ABC, 
guanidine extraction, 
100Kda filter, 
concentrate on 3kDa 
filter to remove 
disaccarides 
released, retenate 
ethanol precipitated 

2DE, tryptic 
digestion, 
LC/MS/MS 

(Wilson et 
al., 2010b) 

mouse whole 
cartilage 

Cartilage pulverised, 
chondroitinase ABC, 
NaCl extraction, 
guanidine extraction, 
100kDa filter, ethanol 
precipitation, 
resuspend in 
solubilsation 
buffer(7M urea, 2M 
thiourea, 4% CHAPS). 
Insoluble fraction 
incubated with 
pepsin to release 
collagen 
polypeptides 

Novel in-solution 
tryptic digest 
with methanol, 
LC/MS/MS 

Figure 1.15. Table of the techniques used in cartilage proteomic studies 
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1.5. Next-generation sequencing 

Whilst mass spectrometry has enabled massive steps forward in the discovery and 

quantification of proteins, the advent of next-generation sequencing has become 

the premier tool in genetic and genomic analysis. Next-generation sequencing 

(NGS) otherwise known as high-throughput sequencing allows the  parallel 

sequencing of millions of sequences at once (Hall, 2007). In principle, the bases of a 

small fragment of DNA are sequentially identified from signals emitted as each 

fragment is re-synthesized from a DNA template strand. NGS enables this process 

across millions of reactions in a parallel fashion. This enables rapid sequencing of 

large stretches of DNA base pairs spanning entire genomes. One NGS platform is 

ribonucleic acid (RNA) sequencing. This enables deep coverage and base-level 

resolution, providing information on differential expression of genes, including gene 

alleles and differently spliced variants; non-coding RNAs; post-transcriptional 

mutations; and gene fusions. 

 

1.6.1. Deep transcriptome sequencing (RNA-Seq)  

In order to comprehend development and disease and define the molecular 

constituents of cells and tissues, it is essential to understand the transcriptome. 

Various technologies have been developed to deduce and quantify the 

transcriptome, including hybridization such as microarrays (Clark et al., 2002) and 

sequence-based approaches. Microarray systems employ glass slides containing up 

to millions of anchored oligonucleotides designed to hybridise to predefined 

transcripts. Microarrays though high-throughput are hypothesis driven requiring 

knowledge of the genes expressed in a given set of conditions. In addition they 

have limits in the dynamic range of detection and specificity. In contrast sequence-

based approaches directly determine cDNA sequence using tagged libraries of short 

cDNAs (Figure 1.16). RNA-seq is a technique that enables deep sequencing of the 

transcriptome of any species with single base resolution and without the need for a 

known reference genome sequence. It provides massive and valuable information 

about functional elements in the genome including   identification and 

quantification of all RNA species, of any size or abundance and it can provide 
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greater resolution and accuracy than microarrays (Marioni et al., 2008). However, 

RNA-seq is a complicated, multistep process involving sample preparation, 

amplification, fragmentation, purification and sequencing (Mortazavi et al., 2008).  

 

 

 Figure 1.16. Diagrammatic scheme of an RNA-Seq pipeline.  RNA is fragmented 
into smaller pieces (1). Libraries are constructed from the fragments and sequenced 
at a high coverage (2). The sequenced reads are aligned to a reference genome (3) 
and the results are analyzed statistically and interpreted (4). Depending on the 
specific application, reads may be counted across genes (4a), SNPs detected (4b) or 
other analyses carried out such as splice variant detection. 
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1.6.2. RNA-Seq in the study of cartilage 

Whilst a number of studies have used microarrays to investigate cartilage 

physiology (Diaz-Prado et al., 2012) and arthritis (Geyer et al., 2009; Loeser, 2010) 

there are currently no published studies using RNA-Seq to interrogate cartilage. 
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Proteomic Characterisation and Quantification of an In-vitro Early Equine 

Inflammatory Model 

Abstract 

Introduction: Osteoarthritis (OA) is characterized by a loss of extracellular matrix 

(ECM) which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage 

secretome, enables the global study of this important class of molecules with roles 

in numerous pathological mechanisms. Previous studies have identified profiles of 

secreted proteins, but there has been a lack of quantitative proteomics techniques 

implemented which would enable further biological questions to be addressed. The 

aim of the study was to identify and quantify secreted proteins in an equine 

cartilage explant model of inflammation.  

Methods: An in-vitro model of cartilage degradation using stimulation of cartilage 

explants (n=8) with interleukin-1 (IL-1) enabled us to identify and quantify 

reproducible data sets of defined proteins using a label-free liquid chromatography 

mass spectrometry (LC-MS/MS) based strategy. Cartilage explant supernatants 

were analyzed by one dimensional sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (1D-SDS-PAGE) followed by in-gel tryptic digestion to assess 

quantitative/qualitative differences in protein profiles. In-solution tryptic digestion 

of explant supernatants were analyzed using an LTQ-Orbitrap Velos and 

Progenesis™ LC-MS software enabled label-free quantification. The resulting gene 

list was used for gene ontology, pathway enrichment analysis and protein network 

analysis for up-regulated and down-regulated proteins. 
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Results: A total of 248 proteins were identified; 100 differentially expressed in the 

model. 13% of down-regulated proteins were attributed to ‘ECM’ and 15% of up-

regulated proteins to ‘glycolysis’ using gene ontology. Novel proteins clathrin and 

LIM and SH3 domain protein-1 were identified for the first time in cartilage 

proteomics.  

Conclusion: A highly sensitive proteomic comparison together with insightful data 

mining enabled us to identify proteins and pathways involved in early OA which 

could aid the development of early OA diagnostic markers and therapeutics. 

 

Introduction 

The surfaces of long bones within diarthrodial joints are lined with articular 

cartilage, an avascular connective tissue that provides a nearly frictionless bearing 

surface for transmitting and distributing mechanical loads between the bones of 

the skeleton (Mow et al., 1992). Articular cartilage is composed of a single cell type, 

the chondrocyte (Archer and Francis-West, 2003), embedded within an 

extracellular matrix (ECM) and its  unique load bearing properties are dependent 

upon its structural composition and organisation, particularly the interactions 

between collagens and proteoglycans (Poole et al., 2001). Progressive degeneration 

of articular cartilage leads to joint pain and dysfunction that is clinically identified as 

osteoarthritis (OA). Under normal circumstances, there is equilibrium between 

matrix deposition and degradation which is disrupted in OA leading to the excessive 
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digestion and progressive loss of important matrix components, especially aggrecan 

and collagens.  

The degradation of the ECM in OA is driven by catabolic cytokines released by 

chondrocytes and synoviocytes which include IL-1β (Goldring and Goldring, 2004), 

nitric oxide (Chapman et al., 2001) and tumour necrosis factor (TNFα) (Fernandes et 

al., 2002). These induce chondrocyte apoptosis (Nelson et al., 1998), and the 

proteolytic enzymes matrix metalloproteinases and aggrecanases (A Disintegrin and 

metalloproteinases with Thrombospondin Motifs; ADAM-TSs) which favour 

degradation, whilst matrix synthesis is limited and so cannot compensate 

accordingly (Sandell and Aigner, 2001).  

Proteomic studies have allowed the investigation of the functional molecules of 

cartilage to elucidate the pathogenesis of arthritis (Iliopoulos et al., 2010; Wilson et 

al., 2009). Even so, knowledge of the underlying pathological processes still requires 

greater research efforts as treatment is primarily symptomatic in the form of pain 

relief, with no effect on disease progression. Additionally, in this highly prevalent 

disease there are limited early diagnostic techniques, whilst those present lack 

sensitivity. There have been proteomic analyses of the osteoarthritic cartilage 

secretome (Catterall et al., 2006; Polacek et al., 2010a; Stevens et al., 2008). The 

cartilage secretome is composed of proteins in the media surrounding the 

chondrocyte or explants and may be proteins that are secreted or shed from the 

cell surface, in addition to intracellular proteins released into the media due to cell 

lysis, apoptosis or necrosis. In cartilage explant studies proteins released into 

media, by chondrocytes and ECM are similar to proteins released in-vivo in cartilage 



62 
 

degradation (Wilson et al., 2009) and data from these studies has improved our 

understanding of OA pathogenesis (Fosang et al., 2008). Our work has focused on 

the cartilage explant secretome as this approach preserves the three dimensional 

background allowing chondrocytes to be retained within the ECM; essential for the 

chondrocyte phenotype. Additionally, the ECM provides native substrates for 

proteolysis and protein release, equivalent to the shedding of the proteins into the 

synovial fluid during cartilage degeneration. Initial discovery experiments identified 

proteins released into the media, which represent a combination of new protein 

synthesis and secretion, as well as active and passive loss of pre-existing proteins 

within cartilage. Furthermore, catabolic stimulation of the explants, an accepted 

method of studying matrix metabolism in experimental investigations of OA in-vitro 

(Arner et al., 1998; Goldring and Goldring, 2004) was employed. 

 

Relative quantification of the cartilage secretome have been undertaken in studies 

incorporating sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) and analysis by liquid chromatography tandem mass spectrometry (LC-

MS/MS) (Stevens et al., 2008), two dimensional electrophoresis (2-DE) and mass 

spectrometry (MS) (De Ceuninck et al., 2005; Hermansson et al., 2004), and more 

recently by in-solution trypsin digestion of the cartilage explant supernatant 

followed by LC/MS/MS (Clutterbuck et al., 2011). Quantitative proteomic analyses 

of cartilage tissue and its secretome are fundamental to the understanding of 

protein dynamics and for development of diagnostic methods of early disease. 

Furthermore reliable methods to accurately quantify differentially expressed 
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proteins allow the identification of potential biomarkers in disease (Simpson et al., 

2009). Recently MS approaches to quantification have been applied to cartilage 

studies using stable isotope labelling with amino acids in cell culture (SILAC 

)(Polacek et al., 2010a). These relative quantification studies allow the distinction by 

molecular weight using amino acid labelling during the growth of different cell 

populations. 

In this work we applied relative quantification with a label-free approach to the 

cartilage secretome. An in-vitro model of degradation using stimulation of cartilage 

explants with IL-1β enabled us to identify and quantify reproducible data sets of 

defined proteins. 

 

Materials and Methods 

Cartilage isolation and explant culture 

Full thickness equine articular cartilage was harvested from the entire surfaces of 

the metacarpophalangeal joints of eight skeletally mature horses aged between 8 

and 14 years, with grossly normal joints under sterile conditions obtained from an 

abattoir. Ethical approval was not required for the study as samples were deemed 

waste products of meat processing. Cartilage was diced into explants approximately 

2mm2, mixed and  placed in complete medium [Dulbecco’s modified Eagle’s 

medium (DMEM), supplemented with foetal calf serum (10% v/v), 100U/ml 

penicillin, 100U/ml streptomycin (Invitrogen, Paisley, UK) 500 ng/ml amphotericin B 

(BioWhittaker, Lonza, USA). Explants were washed twice with serum-free DMEM (to 
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deplete serum and synovial proteins) and allowed to equilibrate in complete 

medium for 24h at 37oC in 5% CO2 in 12 well plates (2ml/well). Media was then 

replaced with serum-free DMEM prior to incubation, supplemented were 

applicable with human recombinant IL-1β (10ng/ml; R&D Systems, Abingdon, UK) 

to induce cartilage degradation or DMSO (Il-1β diluent) as a control. The media 

(with and without IL-1β) was exchanged 48h after initiation of treatment, and 

cultures harvested after 96h. In this study 48h and 96h supernatant samples were 

pooled, following the addition of protease inhibitors (Complete protease Inhibitors, 

EDTA-free, Roche, Lewes, UK)  and stored at -80oC prior to downstream analysis 

thus representing the total secretome over 96h. Protein concentrations of 

supernatants were estimated by Bradford assay (Thermo Scientific, Rockford, USA ). 

Cartilage explants were lyophilized in order to obtain a tissue dry weight for 

normalisation. 

 

The viability of the chondrocytes within the explants treated for 96h with or 

without IL-1β was verified with trypan blue staining in a separate experiment (n=3). 

Cells were isolated from the explants using collagenase as previously described 

(Peffers et al., 2010). Isolated chondrocytes were counted and tested for cell 

viability employing the trypan blue (Gibco, Paisley, UK) exclusion assay using 0.4% 

trypan blue. Statistically significant differences between chondrocyte viability of 

control and treated cultures were analysed using paired Students T test following 

normality testing. The analyses were undertaken using SPSS (IBM, Hampshire, UK). 

 



65 
 

Western blot analysis of the secretome  

Western blotting with matrix metalloproteinase 3 (MMP-3) was used as a 

complimentary methodology to validate the early OA model. Volumes of cartilage 

explant supernatant from all donors and conditions were adjusted to represent 

equal dry weights of cartilage. Human recombinant MMP-3 (Merckt, Darmstadt, 

Germany) was used as a positive control. Samples were heated to 80oC for 10 min 

in  NuPAGE® LDS sample buffer (Invitrogen, Paisley, UK) and electrophoresed for 1h 

at 200V under reducing  conditions on Novex 4-12% SDS-PAGE gels (Invitrogen, 

Paisley, UK). Protein transfer to nitrocellulose was performed using the Invitrogen X 

Cell Sure Lock apparatus according to standard protocol. Membranes were blocked 

with TBS (pH 7.4) containing 0.1% Tween-20 (Invitrogen, Paisley, UK) (TBST) and 5% 

dried skimmed milk for 1 h at room temperature. A goat polyclonal MMP-3 primary 

antibody (Abcam, Cambridge, UK) was diluted to 1:1000 in milk powder/Tween and 

added to the membrane for overnight incubation at 4°C. Following washing in TBST, 

membranes were incubated for 1h at room temperature with the secondary 

antibody conjugated to horseradish peroxidise (HRP); polyclonal rabbit anti-goat 

IgG HRP (Abcam, Cambridge, UK) at 1:5000 diluted with TBST containing 5% dried 

skimmed milk. Chemiluminescence was used to detect the protein bands using 

Western Lightning™ and Western Lightning Plus Chemiluminescence reagents 

(Perkin Elmer, Beaconsfield, USA). ImageJ software (http://rsbweb.nih.gov/ij/) was 

used to quantify bands using densitometry. The relative intensity of IL-1β treated 

samples were compared to control for each donor.  

 

http://rsbweb.nih.gov/ij/
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1-D SDS PAGE separation and in-gel trypsin digestion 

Cartilage explant supernatants using 10μg protein loading per lane from four 

individual donors were analyzed by one dimensional sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (1D-SDS-PAGE) followed by in-gel tryptic 

digestion to assess quantitative/qualitative differences in protein profiles, as 

previously described (Peffers et al., 2012). 

Protein identification by linear ion trap quadruple (LTQ) mass spectrometry  

Peptides generated from each gel digest were prepared for LC-MS/MS on a Dionex 

Ultimate 3000 coupled to a Thermo Electron LTQ as previously described (McClean 

et al., 2007). Raw spectra were converted to Mascot generated files (MGF) using 

Proteome Discoverer software (Thermo, Hemel Hempstead, UK). The resulting MGF 

files were searched against the Swiss-Prot databases (version 9, taxonomy; 

mammalian) sequence databases using an in-house Mascot (Perkins et al., 1999) 

server (Matrix Sciences, London, UK). Search parameters used were; peptide mass 

tolerances 1.8Da, fragment mass tolerance of 0.6Da, 1+, 2+ and 3+ ions, missed 

cleavages; 1, and instrument type ESI-TRAP. Modifications included were; fixed; 

carbamidomethyl cysteine and variable; oxidation of methionine. 

 

In-solution tryptic digestion and mass spectrometry using linear ion-trap Orbitrap 

mass spectrometer (LTQ-Orbitrap Velos) 

Cartilage supernatants for each individual donor for each experimental condition 

were supplemented with a digestion enhancer; 1% (w/v) Rapigest (Waters, 
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Manchester, UK) for 10min at 80oC in 25mM ammonium bicarbonate. Protein 

samples were reduced and alkylated with 3mM DTT (60oC for 10 minutes) and then 

9mM IAA (30 min in the dark at room temperature) with trypsin at a ratio of 1:50 

protein: trypsin ratio overnight at 37oC. Rapigest was inactivated by incubating for 

45min at 37oC with trifluoroacetic acid (VWR International) to a final concentration 

of 0.5% (v/v).  The soluble phase was retrieved following centrifugation at 

13500rpm for 15 minutes and used for LC/MS/MS. 

LC/MS/MS analysis was performed on an aliquots of tryptic peptides from 

individual digests, in duplicate or triplicate using a nanoAcquityTM ultraperformance 

LC (Waters, Manchester, UK) in line with a LTQ-Orbitrap Velos (Thermo-Fisher 

Scientific, Hemel Hempstead) as previously described (Claydon et al., 2012).  

 

Label-free peptide quantification 

The Thermo raw files of the acquired spectra were analysed by the Progenesis™ LC-

MS software (version 3.1.4003, Nonlinear Dynamics) for label-free quantification. 

Progenesis™ LC-MS takes profile data of the MS scans and transforms them to peak 

lists. One sample was selected as a reference after checking the 2-D mapping (m/z 

versus retention time), and the retention times of the other samples within the 

experiment were aligned. Features without the 1+, 2+, 3+ and 4+ charge and 

isotope peaks of ≤2 were excluded from further analysis. Samples were divided into 

the appropriate groups using between subject design (between horse variation, 

between control and IL-1β treatment variation and between technical replicate 
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variations). Feature raw abundances were normalised which corrects for factors 

due to experimental variation (such a sample load). 

Following feature picking the top 3 spectra for each feature were exported from 

Progenesis™ LC-MS and utilized for peptide identification with a locally 

implemented Mascot server; Mascot (version 2.2) in the Ensembl database for 

horse (Equus caballus; EquCab2.56.pep 

(ftp://ftp.ensembl.org/pub/current_fasta/equus_caballus/pep/) containing 22,640 

protein sequences. Search parameters used were: 10ppm peptide mass tolerance 

and 0.6Da fragment mass tolerance, one missed cleavage allowed, fixed 

modification; carbamidomethylation, variable modifications; methionine oxidation, 

hydroxylysine, hydroxyproline. Mascot determined peptides with ion scores of 23 

and above and only proteins with at least one unique peptide ranked as top 

candidate were considered and re-imported into Progenesis™ LC-MS software.  

Following the import of the Mascot results for quantification, statistical analysis 

was performed on all detected features using transformed normalized abundances 

for one-way analysis of variance (ANOVA). The total cumulative abundance was 

calculated by summing the abundances of all peptides allocated to the respective 

protein. All peptides (with Mascot score >23 and p<0.05) of an identified protein 

were included and the protein p value (one-way ANOVA) and q-value (p value 

adjusted to false discovery rate (FDR)) were then performed on the sum of the 

normalized abundances for all runs. Adjusted ANOVA values of p<0.05 and 

additionally regulation of >2-fold or < 0.5-fold were regarded as significant. 

 

ftp://ftp.ensembl.org/pub/current_fasta/equus_caballus/pep/
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Submission of MS data to PRIDE 

Progenesis™ LC-MS generated files used to search Mascot provided  fragmentation 

spectra, protein and peptide identifications using the  Equus caballus database are 

available in the PRIDE database (Jones and Cote, 2008) 

(http://www.ebi.ac.uk/pride/) at the European Bioinformatics Institute under 

accession numbers 19447 - 19479. The data was converted into PRIDE using the 

PRIDE Converter (http:// code.google.com/p/pride-converter). 

Gene Ontology, Pathway Enrichment Analysis and Protein Network Analysis 

The gene symbols for each identified protein were searched in the Ensembl 

database for horse and converted to the gene symbol of the corresponding human 

orthologue. The resulting gene list was used for pathway enrichment analysis for 

up-regulated and down-regulated proteins, were the relative cumulative peptide 

intensities between IL-1β stimulated and control explant secretomes was ≤0.5 (≥ 

2.0) and the corresponding adjusted to FDR p value calculated with the ANOVA test 

was ≤ 0.05.  The enrichment analysis tool of the ConsensusPathDB program (version 

12) (Kamburov et al., 2009) acquired the enriched pathways from both gene sets. 

Protein network analysis was carried out with the Search Tool for Retrieval of 

Interacting Genes/Proteins (STRING) tool version 8.2 (http:// string.embl.de) 

(Jensen et al., 2009)on gene symbols for identified up-regulated and down-

regulated proteins (p < 0.05 and > 2-fold or < 0.5-fold) as well as unregulated 

proteins (p > 0.05 and regulation between 2 and 0.5-fold). The protein interaction 

maps were created by allowing for experimental evidence in addition to the 
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predicted functional links; co-occurrence, co-expression, databases, and text-

mining. The minimum required confidence was set for the software at 0.7 (high 

confidence). 

Protein classification with gene ontology (GO) was used to identified proteins with 

gene ontology (GO) term annotations ‘secreted’, ‘extracellular matrix’ and 

‘glycolysis’ based on homo sapiens with DAVID (DAVID bioinformatics resources 

6.7). 

Results 

Chondrocyte viability and model evaluation using western blotting 

Chondrocyte viability was unaffected by IL-1β treatment of explants for 96 hours 

using Students T-test (Table 1). 

 

Donor Control IL-1β 

1 95 ± 1.4 93.5 ± 0.7 

2 96 ± 0 94 ± 1.4 

3 97.5 ± 0.7 96.5 ± 0.8 

 

Table 1. Cell viability of cartilage explants was unaffected following IL-1B 

stimulation. Trypan blue staining was used to determine the chondrocytes viability 

following culture for 96 hours. Data are given as mean of two technical replicates ± 

SD.  

In order to relate the results of the study to OA, and validate our inflammatory 

model, MMP-3 protein in the secretome was evaluated with western blotting 

(Figure 1). There was an increase in MMP-3 expression following IL-1β stimulation 

in explant supernatant from all donors. 
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Comparative analysis by mass spectrometry of proteins secreted from IL-1β-

stimulated cartilage explants  

Catabolic stimulation of equine cartilage explants with IL-1β was used as an in-vitro 

model of early OA. The repertoire of proteins secreted  by explants in response to 

IL-1β treatment in comparison to un-stimulated (control) explants was analysed by 

LC-MS/MS. Media from control and IL-1β-stimulated cartilage explants were 

analysed by 1D SDS-PAGE and stained with Coomassie Brilliant Blue to reveal their 

qualitative differences (Figure 2A). The major bands were cut from the gel, digested 

with trypsin and the peptides identified using LC-MS (Figure 2B). Proteins included 

in results had a Mascot score >40 with 2 or more identifying peptides, and a 

confidence interval of 95%.  

Although some slight differences in protein loading were observed, as determined 

by densitometry (data not shown), the appearance of additional bands was 

observed by 1-D SDS-PAGE and Coomassie staining in all donors following IL-1β 

stimulation. Both control and IL-1β treated cartilage explant secretomes expressed 

a number of cartilage matrix proteins such as COMP. Furthermore, when exposed 

to IL-1β-stimulation proteins associated with catabolic aspects of cartilage matrix 

turnover such as MMP-3 were increasingly evident. Interestingly, the expression of 

proteins involved in glycolysis; lactate dehydrogenase, α-enolase and pyruvate 

kinase, from chondrocytes particularly within the IL-1β-stimulated explants was 

revealed. These findings suggested a more comprehensive investigation of the 

equine cartilage secretome was required. 
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Figure 1.  Cartilage explants stimulated with Il-1β demonstrate increased MMP-3 
protein expression. Western blot analysis using antibodies to MMP-3 of cartilage 
explant supernatant cultured with and without IL-1β for 96 hours. Representative 
images of western blots for control and IL-1β treated cartilage explants.  Volumes of 
supernatant loaded were normalised to dry weight of cartilage. Histogram shows 
relative intensity of each band based on arbitrary units following analysis in ImageJ. 

 

Label-free relative quantification of the equine OA secretome  

Principal component analysis (PCA) of all identified peptides revealed that the 

peptides cluster according to the control versus IL-1β treatment with a principal 

component of 25% (Figure 3A). Quantitative analysis of two technical replicates for 

each of eight donors with and without IL-1β for each condition was performed 

using Progenesis™ LC-MS software as described.  We identified a total of 248 

proteins, of which 224 were identified with 2 or more peptides (Figure 3B). 115 

proteins were differentially expressed between IL-1β stimulation and control 
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(p≤0.05 (adjusted to FDR) and more than 2-fold change), 100 of which had ≥2 

peptides. 81 proteins were up-regulated in IL-1β stimulated conditions 68 of these 

with ≥ 2 peptides, 34 were down-regulated in IL-1β stimulated conditions 32 of 

these with ≥ 2 peptides (Table 2A, 2B, 2C). Log2 IL-1β treatment/control for some 

key proteins differentially expressed in this study are depicted in Figure 4. Our IL-1β 

stimulated explant model was validated by the LC-MS/MS results. Figure 5 

illustrates expression profile views of selected proteins produced by Progenesis™ 

LC-MS. As predicted this demonstrated an increase in cytokine driven proteases and 

ECM proteins.   
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Figure 2. Analysis of proteins induced in cartilage explants by IL-1β treatment. A) 
Equine articular cartilage explants (n=8) were cultured in media supplemented with 
10ng/ml IL-1β or un-supplemented media (control). Culture media were collected 
at 2 and 4 days and pooled for further analysis by SDS-PAGE and staining with 
Coomassie Brilliant Blue. Equal supernatant protein loading of 10μg of protein per 
well allowed a qualitative comparison of the secretomes. Dry weight of cartilage 
explants from each well is indicated on the image which is representative of all 
donors which produced similar results. B) The differentially abundant proteins in 
the media marked at the positions of the bands were excised from the gel, trypsin 
digested, and the protein content of each single band was analysed using peptides 
identified using LC-MS/MS. Proteins indicated on the gel correlate to the size and 
are the primary  protein identified in that gel analysis.  

 



75 
 

  

 

Figure 3. Label-free quantification of the early OA secretome using Progenesis™. 
A) Volcano plot showing differentially abundant proteins (log2 fold change, x axis; 
log10 p value ANOVA, y axis) from equine secretome control against IL-1β with two 
or more peptides. Horizontal line indicates p <0.05 and vertical lines indicates 
between 2 fold and 0.5 fold abundance changes. P-values of 0.000 were set to 
0.0005 in order to limit scaling. Black boxes are regulated proteins; between the 
lines indicate unregulated proteins. B) Principal component analysis clustered the 
samples into two groups; control (red dots) and IL-1β treatment (blue dots), with a 
principle component 1 of 25%.   
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Table 2A. Detailed information on the differentially expressed proteins in control and IL-1β treated cartilage explants*  

Accession Protein description Peptide 

count 
Anova 

(p)* 

Adjusted 

p value 

(q) 

Max 

fold 

change 

Highest 

mean 

condition 

Log2 

T/C 

Sub-

cellular 

location 

Functional annotation  

(GO ontology) 

gi|194227196 Gamma-enolase  6 8.22E-02 4.93E-02 15.17 Control -4.02 c glycolysis 

gi|149707887 CSE1 chromosome segregation 1-like  4 2.88E-05 3.15E-05 9.06 Control -3.26 c,n export receptor for importin-alpha 

gi|149720563 A-kinase anchor protein 3 1.02E-04 1.00E-04 8.69 Control -3.11 n compartmentation protein kinase 

gi|149737045 HHIP-like 2  2 2.06E-09 4.24E-09 7.75 Control -2.95 s carbohydrate metabolism 

gi|194214305 clusterin 11 2.96E-14 2.59E-13 7.04 Control -2.84 s apoptosis 

gi|149731850 secreted phosphoprotein 1 isoform 1 5 9.70E-06 1.16E-05 5.65 Control -2.56 c,n chaperone 

gi|194225491 collagen, type X, alpha 1 14 3.63E-07 5.75E-07 4.68 Control -1.62 s extra cellular matrix 

gi|194210084 collagen alpha-1(VI) chain 13 3.78E-07 5.75E-07 4.35 Control -2.02 s extra cellular matrix 

gi|194223750 glycogen phosphorylase, brain form 8 2.66E-03 2.15E-03 3.97 Control -1.97 c carbohydrate metabolism 

gi|194206303 HLA-B associated transcript 2 11 5.32E-07 4.32E-06 3.82 Control -1.33 m presents antigen to immune system 

gi|149743847 fibulin 1 3 1.39E-02 1.02E-02 3.62 Control -1.58 s extra cellular matrix 

gi|126352708 chitinase 3-like 1  10 5.34E-06 6.77E-06 3.60 Control -1.87 s cellular  responce to  environment 

gi|149704620 S-methyl-5-thioadenosine phosphorylase 2 7.24E-04 6.28E-04 3.47 Control -1.79 c polyamine metabolism 

gi|194208128 angiomodulin, partial 2 1.29E-08 2.29E-08 3.46 Control -1.80 s cell growth regulation 

gi|194225666 sperm-membrane associated protein P47 4 2.58E-10 6.28E-10 3.45 Control -1.83 m cell adhesion 

gi|149742627 cofilin-1  6 3.65E-10 8.24E-10 3.43 Control -1.75 c actin polymerisation 

gi|149691897 procollagen C-endopeptidase enhancer 2 

precursor  

7 3.61E-07 5.56E-07 3.08 Control -1.64 s collagen metabolism 

gi|126352584 connective tissue growth factor  3 1.65E-09 3.46E-09 2.89 Control -1.49 s Proliferation, differenciation chondrocytes 

gi|149722894 neuroblastoma-amplified protein 3 2.47E-09 2.21E-09 2.73 Control -0.88 n unknown 

gi|194216449 Peptidylglycine alpha-amidating 

monooxygenase 

3 9.60E-06 1.16E-05 2.73 Control -1.42 s,m protein regulation 

gi|194226973 melanoma inhibitory activity 2 5.54E-06 6.93E-06 2.66 Control -1.44 s chemokine 

gi|126352530 AKT interacting protein 3 2.50E-10 2.50E-09 2.60 Control -0.83 m K channels 

gi|194228715 exosome complex exonuclease RRP42  3 1.32E-03 1.10E-03 2.46 Control -1.36 c,n exosome complex 

gi|126352554 retinoic acid receptor responder  2 7.96E-05 8.11E-05 2.44 Control -1.33 m regulator cell proliferation 

gi|126352506 cullin-3  4 1.37E-02 1.01E-02 2.40 Control -1.18 n scaffold protein 

gi|126723289 tissue inhibitor of metalloproteinase-1 5 1.49E-02 1.08E-02 2.33 Control -1.30 s protease inhibitor 

gi|149722142 cysteine and glycine-rich protein 1 4 2.15E-02 1.52E-02 2.33 Control -1.29 n neuronal development 

gi|149705894 cysteine-rich with EGF-like domains 1 3 7.73E-06 9.54E-06 2.18 Control -1.08 s transport regulator 

gi|194213893 tumor protein p73 2 8.11E-05 8.18E-05 2.17 Control -1.07 n apoptosis 

gi|126722914 immunogobulin gamma 1 heavy chain 2 1.93E-03 1.57E-03 2.12 Control -1.10 s innate immune response 

gi|126352340 centromere protein E 10 5.41E-05 5.62E-05 2.05 Control -0.95 c,n nucleosome complex 

gi|149710093 leucine-rich repeats and WD repeat 

domain 1 

2 3.00E-02 2.03E-02 2.01 Control -1.01 n chromatin metabolism 

gi|149695415 heat shock 70kDa protein 1-like 7 8.87E-13 4.05E-12 9.07 IL-1β 3.75 c anti-apoptotic 

gi|126352604 heat shock protein 90kDa alpha 3 0.00E+00 0.00E+00 1370.34 IL-1β 11.31 c anti-apoptotic 
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Table 2B. Detailed information on the differentially expressed proteins in control and IL-1β treated cartilage explants* 

Accession Protein description Peptide 
count 

Anova 
(p)* 

Adjusted 
p value (q) 

Max 
fold 

change 

Highest 
mean 

conditio
n 

Log2 
T/C 

Sub-
cellular 
location 

Functional annotation  
(GO ontology) 

gi|149725588 heterogeneous nuclear ribonucleoprotein A3 2 3.31E-13 1.66E-12 57.34 IL-1β 5.75 c,n DNA repair 
gi|194211344 high-mobility group box 1 2 6.54E-04 6.50E-03 34.04 IL-1β 5.62 n DNA binding protein  
gi|194224640 coatomer protein complex, subunit gamma 5 0.00E+00 0.00E+00 20.89 IL-1β 4.35 c protein transport 
gi|194219069 clathrin, light polypeptide A isoform 1 3 6.89E-07 1.00E-06 19.33 IL-1β 4.28 cv,m protein uptake at the plasma membrane 
gi|149712445 valosin  3 9.20E-06 1.12E-05 17.61 IL-1β 4.25 c DNA repair 
gi|149733345 heat shock 70kDa protein 1A 6 8.87E-13 4.05E-12 14.86 IL-1β 3.83 c anti-apoptotic 
gi|194225092 phosphoglycerate kinase 1 9 0.00E+00 0.00E+00 14.29 IL-1β 3.82 c glycolysis 
gi|149732058 histone cluster 3, H2bb 3 9.99E-13 4.32E-12 14.22 IL-1β 3.81 c,n transcription regulation 
gi|149737681 protein disulfide-isomerase A6 precursor 2 3.86E-14 2.90E-13 12.99 IL-1β 3.68 c, ER chaperone 
gi|149713810 endoplasmic reticulum protein 29 2 2.28E-13 1.48E-13 10.95 IL-1β 4.06 c, ER processes secretory proteins 
gi|194217031 thioredoxin 2 4.73E-05 4.96E-05 10.74 IL-1β 3.45 s,n,c redox reaction 
gi|149727540 transketolase 10 0.00E+00 0.00E+00 10.36 IL-1β 3.34 c transferase 
gi|194218400 xanthine dehydrogenase/oxidase 4 1.03E-12 4.32E-12 8.98 IL-1β 3.16 s purine degradation 
gi|194208492 lactate dehydrogenase B isoform 2 3 6.05E-05 6.23E-05 8.58 IL-1β 3.21 c glycolysis 
gi|149744840 solute carrier family 27, member 1 2 9.92E-05 9.82E-05 8.21 IL-1β 2.94 m  fluid transport 
gi|194205801 matrix metallopeptidase 1  18 2.43E-11 7.29E-11 8.14 IL-1β 3.03 s protease 
gi|149751386 phosphatidylethanolamine-binding protein 1  5 6.31E-13 3.01E-12 7.99 IL-1β 2.95 c serine protease inhibitor  
gi|149705551 scinderin isoform 1 4 0.00E+00 0.00E+00 7.75 IL-1β 2.96 c cell proliferation and differentiation 
gi|194211488 matrix metallopeptidase 13 7 8.70E-03 6.71E-03 7.70 IL-1β 2.97 s protease 
gi|194221214 beta actin 6 9.99E-16 1.31E-14 7.26 IL-1β 2.83 c cell motility 
gi|194211629 phosphoglycerate mutase 1 4 6.66E-15 6.35E-14 7.16 IL-1β 2.80 c glycolysis 
gi|194225438 peptidylprolyl isomerase B 3 4.07E-06 5.40E-06 7.07 IL-1β 2.85 c, ER protein folding and transduction  
gi|153792484 alpha-enolase 19 9.51E-12 3.22E-11 7.03 IL-1β 2.76 c glycolysis 
gi|149728149 triosephosphate isomerase 1 9 1.11E-16 1.66E-15 6.72 IL-1β 2.81 c glycolysis 
gi|194211290 heterogeneous nuclear ribonucleoprotein D 2 4.58E-11 1.30E-10 6.59 IL-1β 2.64 c,n transcription regulation 
gi|149716415 serum amyloid A 5 1.89E-12 7.35E-12 6.29 IL-1β 2.61 s acute phase reactant 
gi|194208939 NME1-NME2 protein 2 8.77E-11 2.36E-10 6.17 IL-1β 2.59 c,n cell proliferation, differenciation, development 
gi|149733335 vimentin 23 0.00E+00 0.00E+00 6.06 IL-1β 2.58 cy intermediate filaments 
gi|194221417 progerin isoform 1 12 2.55E-15 2.80E-14 5.99 IL-1β 2.60 c intermediate filament 
gi|149730943 desmin 10 7.69E-12 2.69E-11 5.84 IL-1β 2.54 c intermediate filament 
gi|194209022 eukaryotic translation elongation factor 1 α2 2 1.34E-11 4.40E-11 5.74 IL-1β 2.50 c GDP exchange 
gi|194209740 histone cluster 1, H2ag 2 1.05E-07 1.64E-07 5.71 IL-1β 2.47 c,n transcription regulation 
gi|194220200 testis expressed sequence 15 5 1.68E-12 6.76E-12 5.65 IL-1β 2.54 n,m testis specific, several cancers 
gi|149709520 peroxiredoxin 5 4 3.69E-10 8.24E-10 5.62 IL-1β 2.47 c oxidative stress 
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Table 2C. Detailed information on the differentially expressed proteins in control and IL-1β treated cartilage explants* 

Accession Protein description Peptid
e 

count 

Anova 
(p)* 

Adjusted p 
value (q) 

Max 
fold 

change 

Highest 
mean 

condition 

Log2 
T/C 

Sub-
cellular 
location 

Functional annotation  
(GO ontology) 

gi|126352349 heterogeneous nuclear ribonucleoproteins A2 4 1.11E-16 1.66E-15 5.57 IL-1β 2.46 c,n RNA processing 
gi|149695427 HNRPA1 protein isoform 1 2 1.42E-11 4.52E-11 5.25 IL-1β 2.42 c,n RNA metabolism 
gi|194206498 annexin A2 isoform 2 4 3.41E-14 2.75E-13 5.25 IL-1β 2.39 s membrane binding protein 
gi|194210704 GDP dissociation inhibitor isoform 2 4 8.52E-14 5.96E-13 5.15 IL-1β 2.33 c regulates GDP/GTP 
gi|149701529 semaphorin III/collapsin-1 4 4.55E-09 8.69E-09 4.90 IL-1β 2.25 s guides axons towards their target,  
gi|149712406 coagulation factor XIII, A1 polypeptide 3 2.42E-09 4.88E-09 4.82 IL-1β 2.31 s coagulation 
gi|194210816 fructose-bisphosphate aldolase A  4 1.91E-11 5.88E-11 4.76 IL-1β 2.24 c glycolysis 
gi|194227132 catalase 4 9.92E-07 1.42E-06 4.43 IL-1β 2.15 p anti-oxidant 
gi|149699070 histone H4 replacement CG3379-PC 3 8.12E-08 1.31E-07 4.22 IL-1β 2.16 n nucleosome compnemt 
gi|194223331 zinc finger protein 618  2 2.44E-05 2.70E-05 4.21 IL-1β 2.43 n transcription regulation 
gi|194210100 lamina-associated polypeptide 2 isoform alpha 6 2.95E-02 2.01E-02 4.10 IL-1β 2.03 n organisation nuclear envelope 
gi|149730340 TNF receptor-associated factor 3  protein 1 4 5.75E-12 2.15E-11 3.76 IL-1β 1.97 c regulates NFK B and MAPK pathways 
gi|194211375 pyruvate kinase PK-R isoenzyme 5 1.29E-03 1.08E-03 3.68 IL-1β 1.85 c,n glycolysis 
gi|149713770 uncharacterized protein C2orf67 isoform 1 4 1.00E-06 1.42E-06 3.60 IL-1β 1.87 u unknown 
gi|194226682 pyruvate kinase 3 16 2.66E-15 2.80E-14 3.56 IL-1β 1.81 c,n glycolysis 
gi|194218887 Parkinson disease protein 7 5 6.88E-11 1.90E-10 3.49 IL-1β 1.84 c,n oxidative stress 
gi|194220952 protein disulfide-isomerase A4 precursor 4 2.26E-04 2.16E-04 3.48 IL-1β 1.81 ER chaperone 
gi|194217817 peptidyl-Pro cis trans isomerase isoform 1 3 1.23E-10 3.16E-10 3.27 IL-1β 1.74 n protein folding 
gi|194225174 lipocortin-1 5 4.30E-08 7.16E-08 3.26 IL-1β 1.67 c,n regulates phopholipase A2 
gi|194209131 ribosomal protein S28 2 3.08E-09 5.99E-09 3.20 IL-1β 1.63 c,mi ribosome 
gi|149743864 non-selenium glutathione phospholipid 2 2.04E-07 2.04E-07 2.95 IL-1β 2.16 c anti-oxidant 
gi|194222987 gelsolin 11 1.69E-13 1.04E-12 2.88 IL-1β 1.52 s actin modifying protein 
gi|194226345 phosphodiesterase 5A, cGMP-specific 4 3.21E-10 7.48E-10 2.75 IL-1β 1.47 c signal tansduction 
gi|194221085 preproalbumin 6 1.03E-06 1.43E-06 2.70 IL-1β 1.43 s transporter 
gi|194227342 peroxisomal long-chain acyl-coA thioesterase  2 2.63E-10 6.28E-10 2.54 IL-1β 1.38 p fatty acid metabolism 
gi|194220937 matrix metalloproteinase 3 16 2.83E-04 2.68E-04 2.45 IL-1β 1.26 s protease 
gi|126723507 malate dehydrogenase, cytoplasmic  5 4.81E-09 9.01E-09 2.30 IL-1β 1.20 c TCA cycle 
gi|194221681 matrilin 3 2 1.47E-06 2.00E-06 2.21 IL-1β 1.12 s extra cellular matrix 
gi|149727656 IMP cyclohydrolase  7 2.00E-05 2.28E-05 2.06 IL-1β 0.98 c,mi purine biosynthesis 
gi|126352369 glyceraldehyde-3-phosphate dehydrogenase 3 4.44E-06 5.82E-06 2.06 IL-1β 1.08 c,n,m glycolysis 

* These proteins were selected from the 248 proteins differentially identified from the 8 donors. The following criteria were applied; the proteins were identified 
and quantified with ≥2 unique proteins in all samples,> 2-fold change and p-value anova <0.05 as determined by Progenesis. Log2 T/C indicates Log 2 of Il-1β 
treatment/control. This data is depicted graphically for some selected proteins in Figure 3.  Location: c; cytoplasmic, cy; cytoplasmic vesicle, ER; endoplasmic 
reticulum, m; membrane, mi; mitochondria, n; nucleus, p; peroxisome, s; secreted. 
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Figure 4. Differentially expressed proteins in the equine cartilage explant 
secretome. Histogram depicts results of label-free relative protein quantification 
using Progenesis™ software for selected differentially expressed proteins.  Changes 
in protein expression of log2 IL-1β stimulation/control for proteins identified with 
≥2 peptides and FDR adjusted p≤0.05 and more than 2-fold regulated are depicted. 
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Figure 5. Expression profile view of selected proteins produced by Progenesis™ LC-MS. All proteins were identified by 2 or more 
peptides with greater than 2 fold abundance change and p values <0.01. Control samples are red dots on pink background and IL-
1βtreatment blue dots and background. A; cartilage proteases and inhibitors, B; glycolytic proteins, C; extracellular matrix proteins, D; 
secreted proteins. Plots display the mean arcsinh transformed normalised volume for each group. Error bars demonstrate 3 standard 
errors within groups. 
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Network and pathway enrichment analysis, gene ontology  

Using ConsensusPathDB for pathway enrichment analysis, several significantly 

(p≤0.01) up-regulated pathways in the IL-1β stimulated (early OA model) conditions 

were identified (Table 3). These included ‘metabolism of carbohydrates’ 

(Reactome), ‘glycolysis and gluconeogenesis’ (Wiki pathways, KEGG pathways) and 

‘glucose metabolism’ (NetPath) reflecting altered state of glucose metabolism in 

our model. No pathways were down-regulated in the IL-1β stimulated secretome. 

 

Pathway name 
Set 
Size 

Measured 
Genes 

p-value q-value 
Pathway 
Source 

Metabolic pathways - 
Homo sapiens (human) 

937 14 0.000122 0.00488 KEGG 

Metabolism of 
carbohydrates 

129 10 0.00195 0.0391 Reactome 

Glycolysis and 
Gluconeogenesis 

47 9 0.00391 0.0391 Wikipathways 

Glucose metabolism 62 9 0.00391 0.0391 Reactome 

EGFR1 249 8 0.00781 0.0521 NetPath 

Glycolysis / 
Gluconeogenesis - Homo 
sapiens (human) 

65 8 0.00781 0.0521 KEGG 

 

Table 3. Pathway enrichment using ConsensusPathDB pathway enrichment 
analysis. 

 

ConsensusPathDB pathway enrichment analysis using proteins which were 

significantly up-regulated in the IL-1β stimulated explant secretome as identified by 

a fold change >2 and p<0.05 (adjusted to FDR) using Progenesis™. Wilcoxon signed 

rank test was used to test enrichment analysis. 

Protein network analysis followed transformation of proteins identified to non-

redundant gene identifier lists of the respective human homologues using STRING. 

Analyses with the subsets of up-regulated, down-regulated or unregulated proteins 

in the model were undertaken.  Whereas down-regulated proteins, contain only 

one connectivity between clusterin and TIMP-1 the network produced by STRING 

http://cpdb.molgen.mpg.de/CPDB/showSetDetails?sp=p&st=0
http://cpdb.molgen.mpg.de/CPDB/showSetDetails?sp=p&st=0
http://cpdb.molgen.mpg.de/CPDB/showSetDetails?sp=p&st=1
http://cpdb.molgen.mpg.de/CPDB/showSetDetails?sp=p&st=1
http://cpdb.molgen.mpg.de/CPDB/showSetDetails?sp=p&st=2
http://cpdb.molgen.mpg.de/CPDB/showSetDetails?sp=p&st=2
http://cpdb.molgen.mpg.de/CPDB/showSetDetails?sp=p&st=3
http://cpdb.molgen.mpg.de/CPDB/showSetDetails?sp=p&st=3
http://cpdb.molgen.mpg.de/CPDB/showSetDetails?sp=p&st=4
http://cpdb.molgen.mpg.de/CPDB/showSetDetails?sp=p&st=4
http://cpdb.molgen.mpg.de/CPDB/showSetDetails?sp=p&st=5
http://cpdb.molgen.mpg.de/CPDB/showSetDetails?sp=p&st=5


79 
 

for the subset of up-regulated proteins (Figure 6) contains a  connected sub 

network of several proteins involved in glycolytic pathways such as PKLR (pyruvate 

kinase LR), TPI1 (triosephosphate isomerise), GAPDH (glutaraldehyde phosphate 

dehydrogenase), PGAM1 (phosphoglycerate mutase 1), PGK1 (phosphoglycerate 

kinase 1), ENO1 (alpha1-enolase),  ENO2 (alpha2-enolase), LDHA (lactate 

dehydrogenase), PKM2 (pyruvate kinase, muscle) and MDH1 (malate 

dehydrogenase 1). STRING analysis of the subset of unregulated proteins resulted in 

an overall loosely connected network within which two more highly connected sub 

networks were contained, one containing the structural components of the ECM 

and the other involving complement pathway proteins. 

  

 

Figure 6. STRING generated protein-protein interaction (PPI) map of up-regulated 
proteins in IL-1β-stimulated cartilage explant secretome (p < 0. 05 and more than 2 
fold up-regulated). Following identification of peptides with Mascot in the Ensembl 
horse database, identified peptides were merged into proteins and significantly 
regulated proteins were subjected to protein network analyses using STRING. This 
allows for experimentally verified and predicted PPIs. High confidence level (0.700) 
was set in the analysis as the minimum required confidence. The confidence view is 
shown here. Stronger associations are represented by thicker lines.  

 

Using DAVID gene ontology analysis all genes identified were loaded into the 

functional annotation chart.  We determined that 34% of genes were identified as 

‘secreted’ and 21% were identified as belonging to ‘extracellular matrix’. Next we 
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considered the GO term ‘extracellular matrix’ and ‘glycolysis’ for the sets of genes 

produced previously by Progenesis™ considered to be differentially regulated (up-

regulated, down-regulated) or not changed in regulation. For the term ‘extracellular 

matrix’ 9% genes were evident in the up-regulated group, 13% of genes in the 

down-regulated and 28% genes in the unregulated group were defined with this 

term. When the term GO term ‘glycolysis’ was used 15% of genes from the up-

regulated group only were identified. 

 

Discussion 

The dominance of matrix components within cartilage, where the cell population is 

less than 1% of tissue volume presents one of many challenges to cartilage 

proteomic analysis (Schulz et al., 2006). In contrast the secretome provides a more 

amenable sample for investigation of the pathogenesis of OA and biomarker 

discovery using mass spectrometry based proteomics. In this study we have 

explored the quantitative differences found in the equine cartilage media when 

challenged with IL-1β, resulting from an established model of early OA in both 

human (Ismaiel et al., 1992) and horse (MacDonald et al., 1992). The horse 

provided a suitable species for the study of cartilage in health and disease (Arner et 

al., 1998; Catterall et al., 2006; Clutterbuck et al., 2011; Polacek et al., 2010a) whilst 

the cytokine stimulated cartilage explant secretome presented an appealing 

secondary proteome for elucidating pathological pathways involved in matrix 

degeneration and remodelling. Cartilage proteomics has progressed on from 

protein identification to quantitation; the protein abundance differences in 

cartilage under different conditions at a given time (Ong et al., 2003). Many 

cartilage studies have identified profiles of secreted proteins which have increased 
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our knowledge of physiological processes in health and disease (Catterall et al., 

2006; Clutterbuck et al., 2011; Polacek et al., 2010a; Wilson et al., 2008). These 

studies have employed relative quantification approaches using platforms including 

2-D gel approaches (Catterall et al., 2006; Hermansson et al., 2004), SILAC studies 

(Polacek et al., 2010a), isobaric tags for relative and absolute quantitation (iTRAQ) 

(Stevens et al., 2009), and quantitative western blotting (Clutterbuck et al., 2011). 

Our approach to the determination of quantitation uses label-free techniques, 

undertaken for the first time to our knowledge, in order to obtain relative 

quantification for a large set of secreted protein. This approach has the advantages 

of being economical due to no labelling reagent costs, increased sequence coverage 

and overall proteome coverage and significantly it enables the use of explants. 

Biomarker discovery and disease pathways in OA are likely to benefit from this form 

of global-view quantitation.  Indeed sets of proteins with unique expression 

patterns in response to a particular stimulus, rather than single specific proteins will 

be involved in pathological processes.  

Inflammation has an important role in OA (Fernandes et al., 2002) with 

inflammatory mediators  being secreted by chondrocytes (Gruber et al., 2004). 

Inflammatory cytokines such as IL-1β stimulate the production of matrix 

metalloproteinases (MMPs), enzymes that can degrade all components of the 

extracellular matrix (Goldring and Goldring, 2004). Initial results derived from 

western blotting and then identified later in the label-free experiments 

demonstrated that cytokine stimulation indeed provided a model to study 

differential protein expression in early OA as previously demonstrated. Initial 1D 
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SDS-PAGE experiments used a qualitative proteomics approach to validate our early 

OA model. We utilised serum-free media in order to reduce contamination with 

abundant serum proteins which reduces the identification of lower abundance 

proteins. In addition pooled, chopped cartilage from skeletally mature horses was 

mixed in order to minimize potential error caused by the variability in proteoglycan 

synthesis observed in various sites within joints (Little et al., 2005). Finally as 

identification of proteins relies on the comprehensiveness of the sequence data for 

a given species, for our studies, the equine genome was used where possible (Wade 

et al., 2009). Evidence for our approach is demonstrated by identification of major 

ECM proteins, plus protease abundance changes following IL-1β stimulation. The 

data strongly suggested differential protein expression in our model, with induction 

of some proteins previously identified in proteomic studies in OA identified 

including alpha-enolase (Ma et al., 2011), MMP-3 (Clutterbuck et al., 2011), lactate 

dehydrogenase (Ruiz-Romero and Blanco, 2009) and pyruvate kinase (Stevens et al., 

2008). Interestingly, in agreement with Haglund et al. 2008 (Haglund et al., 2008) 

results from the 1-D gel indicated that substantial alterations of cartilage matrix 

components was not part of the initial response to cytokine stimulation. 

Next we adopted high-throughput proteomic technologies which create large data 

sets posing challenges in interpretation. We therefore implemented a number of 

methodologies to aid in this. The first was the use of a proteomics tool called 

Progenesis™ LC-MS (Gorman et al., 2009) which allowed us to analyse and compare 

(in terms of relative quantification), using label-free LC-MS, large sets of data 

produced by a high mass resolution mass spectrometer. Then we used the 
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bioinformatic tools DAVID (Huang da et al., 2009), STRING (Jensen et al., 2009), and  

ConsensusPathDB (Kamburov et al., 2009) in order to interpret the data in 

relationship to protein functions and identify any central players within our early 

OA model. As proteins do not act independently within cartilage, the production of 

interactome networks can provide important information on novel proteins and 

their networks involved in OA pathogenesis (Iliopoulos et al., 2010). Gene ontology, 

which uses statistical analysis to validate results has been used previously in 

proteomic studies of OA (Wu et al., 2007) and was used here to categorise proteins 

within our early OA model into functional groups.  

Data presented following LC-MS/MS of the secretome demonstrated evidence of 

changing ECM dynamics in response to IL-1β treatment. There was significant up-

regulation of important proteolytic enzymes involved in cartilage degradation such 

as MMP-1, MMP-3 (also validated using western blotting), and MMP-13 (Tetlow et 

al., 2001) as well as a reduction in TIMP-1 (Martel-Pelletier et al., 1994). 

Interestingly collagens identified as significantly altering in the media; collagen VI 

alpha 1 and type X alpha 1 were present in lower levels following IL-1 β treatment. 

This was in accordance with previous findings in IL-1β stimulated rabbit 

chondrocytes (Yudoh et al., 2007), human chondrocytes (Shakibaei et al., 2007) and 

human fibroblast (Nawrat et al., 2005) where  a reduction in collagen biosynthesis 

was evident. In our model we are demonstrating either the cartilage anabolic 

properties of IL-1β or a lack of release of collagen into the media. Contrastingly, 

prolonged periods of IL-1β treatment (greater than three weeks) of cartilage 
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explants cultures have revealed an increase in collagen in the media (Homandberg 

et al., 1997; Matsuka et al., 1997).  

A number of our findings were consistent with previous in-vitro studies; Inhibin–

Beta A, a member of the transforming growth factor β group, thought to be 

anabolic for cartilage and previously induced by IL-1 treatment of chondrocytes 

(Hermansson et al., 2004) was induced in our model. Furthermore, the actin-

capping protein gelsolin result concurred with other IL-1 stimulated explant studies 

were a reduction of the protein in explant media was noted (Wilson et al., 2008). 

Our findings together with an increase in other cytoskeletal proteins such as β-

actin, LIM and SH3 domain protein 1, cofilin-1, desmin and progerin provide 

additional evidence of cytoskeletal rearrangement previously identified in arthritic 

cartilage (Lambrecht et al., 2008).  Interestingly the non-collagenous oligomeric 

matrix protein matrilin-3 was also found to be regulated in the media following IL-

1β treatment. Our data is in agreement with others findings; matrilin-3 has been 

demonstrated in advanced OA synovial fluid (Vincourt et al., 2012) and its 

expression up-regulated in human articular chondrocytes in OA (Pullig et al., 

2002a). It has been hypothesised that this is due to a cellular response to the 

modified microenvironment in OA. In contrast, 2-DE mouse studies found that 

although retinoic acid (RetA) treatment of mouse cartilage explants increased 

matrilin-3, Il-1β treatment did not regulate it. Our model used skeletally mature 

cartilage whereas Wilson et al. (Wilson and Bateman, 2008) used 24 day old mouse 

tissue and the either differences in cartilage maturity, or species differences may 

affect the response of cartilage to cytokine stimulation.  
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Data from label-free studies confirmed, using the GO category ‘extracellular matrix’, 

that only six genes were differentially expressed according to our criteria, and 

whilst only matrilin-3 was up regulated, five were down regulated; tissue inhibitor 

of metalloproteinase (TIMP-1), collagen VI alpha-1 (COL6A1), collagen X alpha-1 

(COL10A1), chitinase 3-like 1 and fibulin-1. TIMP-1 is a protease inhibitor capable of 

inhibiting the activities of matrix metalloproteinases. TIMP-1 protein has been 

identified as being up-regulated in OA subchondral bone (Hulejova et al., 2007) 

human articular chondrocytes (HAC), HAC explant culture (Polacek et al., 2010b) 

and in the IL-1β-stimulated equine explants (Clutterbuck et al., 2011) cultures and 

HAC secretome in a recent SILAC study (Calamia et al., 2011). However a HAC 

explant study comparing OA and with normal patients indicated that TIMP-1 

synthesis was unchanged in arthritic explants (Martel-Pelletier et al., 1994; Selsted 

et al., 1996). A further study demonstrated that IL-1β stimulation has a marked 

inhibitory effect on TIMP-1 expression by chondrocytes (REF?). 

 

 

 COL6A1 is exclusively distributed in the pericellular matrix (Poole, 1997) and is 

involved in regulating the mechanical environment of chondrocytes, with the 

pericellular matrix of COL6A1 knockout mice revealing a reduction in  mechanical 

properties (Alexopoulos et al., 2009). Interestingly a HAC SILAC study demonstrated 

an increase in COL6A1 in the HAC secretomes (Polacek et al., 2010b) and analysis of 

the OA human articular cartilage proteome revealed an increase in type VI collagen 

compared to normal (Guo et al., 2008). It has been suggested that type VI may have 

a protective role for chondrocytes (Peters et al., 2011). Thus this increase may be a 
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protective response by the chondrocyte to cytokine stimulation. The role of 

COL10A1 in OA is controversial (Eyre, 2002). COL10A1, produced by hypertrophic 

cartilage, is normally restricted to a thin layer of calcified cartilage were it is 

adjacent to bone. To our knowledge it has not previously been identified in the 

cartilage secretome. Interestingly both chitinase 3-like 1 (a matrix regulating agent) 

and fibulin-1 (which binds to proteoglycans and is a co-factor of ADAMTS-1) have 

been previously identified as increased in OA cartilage proteomes (Wu et al., 2007). 

The mechanisms behind the reductions in these matrix proteins following IL1β 

stimulation are unclear. The systems involved in the reduced turnover evident by 

these results may include altered matrix binding, reduced synthesis, or better 

binding of these matrix components with the cartilage ECM.  

Pathway enrichment analysis following label-free relative quantification allowed us 

to group the observed changes between control and our early OA model samples. 

Among the significantly up regulated pathways were ‘glycolysis, ‘metabolism of 

carbohydrates’ and ‘glucose metabolism’. Furthermore, protein network analysis 

using STRING  on up-regulated proteins revealed a sub-network of proteins involved 

in glycolytic pathways; PKLR, TPI1, GAPDH, PGAM1, PGK1, ENO1, ENO2, LDHA, 

PKM2 and MDH1. The GO term ‘glycolysis’ was also found in 15% of up-regulated 

genes whereas no genes in down-regulated or unchanged were matched to this 

term. Although it could be argued that the increase in glycolytic enzymes is due to 

necrosis or apoptosis there was no significant difference in cell viability in this study 

between control and IL-1β stimulation. Indeed it has been previously demonstrated 

that IL-1 alone does not cause apoptosis in chondrocytes (Blanco et al., 1995). This 
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suggests that one of the principal features in our model is an altered status of 

glycolysis and glucose metabolism and is in agreement with finding by Guo et al. 

2008 (Guo et al., 2008) in OA cartilage. Chondrocytes survive in a hypoxic 

environment whilst maintaining tissue integrity via matrix production. They are 

extremely dependent on glucose metabolism to drive the ECM biosynthetic 

machinery (Peng et al., 2008) requiring anaerobic glycolysis to generate adenosine 

tri-phosphate  (ATP) indeed glycolysis constitutes 95% of their energy production. 

Adequate ATP is needed for chondrocytes to respond to stress, such as IL1β 

stimulation (Fontan et al., 2000) thus a high rate of anaerobic glycolysis is essential 

for this ATP generation. It is hypothesised that in our model glycolysis is increased 

in an attempt to increase ECM production in the face of MMP-driven degradation. 

This leads to an increase in the leakage of the up-regulated enzymes involved in this 

pathway and so ultimately an increase in these proteins is evident within the early 

OA secretome. These findings intimate that further research into this field could 

provide help in the development of therapeutics for early OA. 

In our label-free study we identify proteins with a <0.5 or >2 fold change to be 

differentially expressed. However it is possible that proteins out-with these 

parameters could pose relevance either as biomarkers of early OA or within the 

pathogenesis of OA. Previous work has established that threshold parameters 

applied to data sets can affect the conclusions drawn from studies (Miller et al., 

1996; Yao et al., 2008). In data analysis we did assess the validity of conclusions by 

using a range of threshold parameter and examining the interactions of un-

regulated proteins within our early OA secretome. 
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One of the major findings in this study was the discovery of novel and interesting 

proteins. There can be a reduction in the identification of less abundant proteins of 

the ECM when cartilage proteomic studies use whole tissue due to the abundance 

in cellular proteins. The use of the cartilage secretome allowed a less complex 

mixture of proteins to be analysed and thus a number of proteins up-regulated 

following IL-1β stimulation to be identified for the first time. Clathrin light chain 

(CLH1), an intracellular trafficking protein and the actin-binding protein LIM and 

SH3 domain protein 1 (LASP1) were found to be over-expressed in our early OA 

secretome, leading to the possibility of their use as early OA biomarkers. Our study 

is the first to identify these proteins in spent media of cartilage. Clathrin-coated 

vesicles (CCVs) form at the plasma membrane where they select protein and lipid 

cargo for endocytic entry into cells. In addition CCVs form at the trans-Golgi 

network, where they function in protein transport from the secretory pathway to 

the endosomal/lysosomal system and secretory granule sorting (Sahota et al.; Yang 

et al., 1999). In addition clathrin light chain has been implicated in actin 

organisation (Hyman et al., 2006).  Previously the cytokine IL-7, which is produced 

by OA patients (Long et al., 2008) has been identified as inducing clathrin mediated 

internalisation (Henriques et al., 2010). It may be that here cytokine stimulated 

cartilage degradation is increasing intracellular trafficking leading to an up-

regulation of clathrin, which is then identified in very high abundance in our 

secretome. Interestingly as no increase in clathrin heavy chain was identified in the 

secretome it could be that clathrin light chain is acting independently of the heavy 

chain. An interesting alternative hypothesis is that there is a secretory pathway 

stimulated by IL-1β that has not yet been identified.  
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Interestingly LASP1 was one of the most highly up-regulated proteins identified in 

the study. A direct link between cytoskeletal remodelling and disease development 

in OA has been previously identified. In addition the RhoA/ROCK/LIMK/cofilin 

pathway has been implicated in OA pathogenesis (Appleton et al., 2010; 

Haudenschild et al., 2010). Taken together the substantial increase in both clathrin 

light chain and LASP1 points to a change in cytoskeletal modelling in our model.  

 

Conclusions 

Our aim was to identify and quantify reproducible data sets of defined proteins in 

an establish model of cartilage degeneration in order to ascertain cellular 

mechanisms of arthritis. This was accomplished by detecting differentially abundant 

proteins, some of which have a relationship with the pathogenesis of arthritis from 

previous works; others were seen for the first time providing exciting new targets 

for the further investigation of OA pathogenesis. High sensitivity in the proteomics 

comparison in combination with insightful data mining enabled us to identify some 

pathways involved in early OA which could be investigated in future research. The 

evidence presented here increases our knowledge of early OA pathophysiology 

which could aid in the development of early OA diagnostic markers and 

therapeutics.  
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APPENDIX TO MANUSCRIPT 1 

A quantitative comparison of label-free and absolute methodologies in the 

quantification of equine cartilage oligomeric matrix protein and fibromodulin 

Introduction 

A QconCAT was developed for quantification of the human osteoarthritic 

secretome. The QconCAT was used to absolutely quantify cartilage oligomeric 

matrix protein (COMP) and fibromodulin, in the IL-1β stimulated equine cartilage 

explant secretome as the q-peptides for these proteins were homologous between 

human and horse.  The aim of this study was to assess the absolute quantification 

of these proteins compared to the label-free approach using Progenesis™LC-MS 

(Manuscript 1). 

Materials and methods  

Cartilage isolation, explant culture, and cytokine stimulation 

See Manuscript 1. 

Determining peptide sequence homology 

Using the basic local alignment search tool (BLAST®); 

(http://blast.ncbi.nlm.nih.gov/Blast) homology between human and Equus caballus 

was identified for the q-peptides for fibromodulin and COMP. SRM methodology 

was used to quantify these proteins. 

 

Protein digestion for absolute quantification 

100μg protein for each sample of explant supernatant was detergent-treated, 

reduced, alkylated and trypsin digested as described above. Due to the poor 

expression of the QconCAT it was not possible to co-digest it with the analyte 

sample and so previously trypsin digested QconCAT was spiked into the samples. 

Samples were run in duplicate technical replicates.  

http://blast.ncbi.nlm.nih.gov/Blast
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SRM experiments were conducted with 500ng of tryptic analyte peptides spiked in 

with either 10 fmol, 1 fmol or 0.1 fmol heavy QconCAT, was loaded onto column.  

 

LC-SRM/MS quantification and data analysis  

Transitions and data analysis for SRM studies have been previously described in the 

manuscript 3. 

Western blot validation  

Western blotting was used to validate the quantification of COMP and fibromodulin 

in the control and IL-1β stimulated cartilage explant secretomes for each donor. 

Volumes of cartilage explant supernatant from all donors and conditions were 

adjusted to represent equal dry weights of cartilage. Using previously described 

protocols (Manuscript 1) membranes were probed with primary antibodies against 

the following; mouse polyclonal to fibromodulin (1:2000 dilution, # 67596 Abcam) 

and rabbit polyclonal to equine COMP (1:1000, a kind gift from Jay Dudhia, RVC, 

London, UK). Appropriate secondary antibodies conjugated to horseradish 

peroxidise (HRP); polyclonal rabbit anti-mouse IgG HRP  or polyclonal goat anti-

rabbit IgG HRP  (both Sigma, Dorset, UK) at 1:2000 were used.  

 

Statistical analysis 

Statistically significant differences in the absolute quantification of cartilage 

secretomes between control and treated cultures were identified using mixed 

effects linear regression to allow for donors with significant biological variation. 

Statistical analyses were undertaken using S-Plus and Excel software. 

 

Results 

Peptide sequence homology 

BLAST indicated that human QconCAT q-peptide amino acid sequences from for 

each of COMP; SSTGPGEQLR and DTDLDGFPDEK and fibromodulin; 

IPPVNTNLENLYLQGNR, and LYLDHNNLTR were homologous to the equine 
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sequence. However as LYLDHNNLTR had been determined a ‘type C’ peptide (see 

Manuscript 2), due to poor fragmentation of the parent peptide, this could not be 

used for quantification purposes. 

Absolute quantification of target proteins using QconCAT 

IL-1β stimulation of equine cartilage explants cultures for 4 days significantly 

increased COMP release into the media in all donors (mean for SSTGPGEQLR; 3628 

to 6282pmol/g dry weight, mean for DTDLDGFPDEK; 3111 TO 6032pmol/g dry 

weight),  p<0.0001 (Figure 1). 

 

 

Figure 1. Effects of 10ng/ml IL-1β treatment for 4 days on COMP protein 
concentrations in cartilage explant supernatants measured using QconCAT. Data 
are represented as pmol/g dry weight. Histograms represent means + SEM. Data 
evaluated using mixed effects linear regression and * indicates significant 
difference relative to control. Statistical values for this study were * p<0.0001 (n=8).  

 

In the quantification of fibromodulin individual donors produced variable responses 

to IL-1β stimulation (Figure 2a). Overall there was a non-significant reduction in 

fibromodulin within the IL-1β stimulated cartilage explant secretome (208 to 

186pmol/g dry weight) (Figure 2b). 
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Figure 2. Effects of 10ng/ml IL-1β treatment for 4 days on absolute fibromodulin 
protein concentrations measured using QconCAT. a, data represents individual 
donors for the absolute quantification using the q-peptide IPPVNTNLENLYLQGNR. b, 
data represents the mean absolute quantification (n=8). All data are represented as 
pmol/g dry weight.  Histograms represent means + SEM. Data evaluated using 
mixed effects linear regression indicated no significant difference for IL-1β 
stimulated explant cultures relative to control.  

 

Western blot validation of COMP and fibromodulin 

The absolute quantification of COMP and fibromodulin was validated using western 

blots probed with equine COMP antibody and human fibromodulin antibody (Figure 

3). The position of the bands for each protein probed revealed in the western blots 

corresponded to the expected size of the full-length proteins. Western blots probed 

with equine COMP antibody confirmed the findings obtained by QconCAT 

quantification; there was a general increase in signal in the IL-1β stimulated 

cartilage explant secretomes compared to control. For western blots probed with 

antibody to human fibromodulin although results were not as convincing, overall it 
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was demonstrated that results were similar between western blots and protein 

concentration as determined using QconCAT. 

  

 

Figure 3. Western validation of SRM protein quantification results for a. COMP 
and b. Fibromodulin. Western blot images of the secretome of for all donors. 
Protein loading was normalised to dry weight of explants and compared to 
histograms of absolute amounts using QconCAT quantification. 

 

Discussion 

The determination of fibromodulin and COMP regulation following IL-1β 

stimulation for 4 days using Progenesis™LC-MS did not identify any significant 

differences in protein expression (Manuscript 1). Absolute quantification using 

QconCAT allowed precise amounts of these proteins to be quantified, and was 
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undertaken in order to compare these results with label-free quantification 

approach employed by Progenesis™LC-MS.  

The QconCAT had been designed using two q-peptides per protein. For COMP both 

q-peptides (SSTGPGEQLR and DTDLDGFPDEK) were used, however for fibromodulin 

the physicochemical properties of one of the q-peptides; LYLDHNNLTR were not 

amenable to quantification using MS. Thus for further analysis only the q-peptide 

IPPVNTNLENLYLQGNR was used. 

Using QconCAT it was determined from results of both q-peptides that there was a 

significant increase in COMP release into IL1-β stimulated explant media. This was 

confirmed by probing western blots with equine specific COMP antibodies. The 

slightly reduced levels quantified by the DTDLDGFPDEK q-peptide could be due to 

the propensity for incomplete proteolysis caused by an acidic residue aspartic acid 

(D) adjacent to the site of tryptic cleavage (Siepen et al., 2007). DTDLDGFPDEK 

consistently producing a lower ratio of light peak area/heavy peak area compared 

to SSTGPGEQLR. Analysis of Mascot data of analyte digests discovered that 

occasional miscleavage of DTDLDGFPDEK was evident; this probably led to an 

underestimation of protein abundance when this peptide was used for absolute 

quantification. Interestingly label-free quantification for COMP indicated a small 

(8%) but non-significant increase in COMP in the early OA secretome. Differences in 

quantification results may be due to the nature of the two methods of 

quantification. Indeed Progenesis™LC-MS analysis uses all identified peptides for 

that specific protein in quantification whereas we used only two for absolute 

quantification. Label-free approaches provide quantitation techniques compatible 

with whole proteome analysis, a linear dynamic range of 2-3 logs but it gives the 

lowest accuracy. In contrast stable-isotope labelling provides the greatest accuracy 

with a dynamic range of 2-5 logs dependant on the MS mode used, where SRM 

gives the greatest dynamic range (Fries et al., 2007) . 

Fibromodulin expression was unaffected by IL-1β stimulation when quantified using 

both label-free and QconCAT. Western blotting indicated similar trends to our SRM 

data for most but not all donors. This could be as western blotting analysis may be 
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subject to more variability than MS based quantification. Results are more 

subjective and its high sensitivity allows errors in loading to have a substantial 

effect. Loading cannot be verified with a housekeeping protein as it is difficult to 

identify a protein with constant expression levels that remain unaltered in 

secretome experiments.  

 

Conclusions 

Overall this study identified similar findings in protein quantification of COMP and 

fibromodulin using a relative and absolute approach to quantification. Western 

blotting though useful for validation poses more room for experimenter error.  
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Absolute Quantification of Cartilage Extracellular Matrix 

Abstract 

Articular cartilage is composed of a single cell type, the chondrocyte, embedded 

within an extracellular matrix (ECM). Osteoarthritis (OA) is characterised by the 

slow degeneration of the ECM. The degradation of matrix proteins is a consequence 

of proteolytic fragmentation by key proteinases at defined sites. Cleavage of some 

matrix molecules in cartilage is currently identified semi-quantitatively with specific 

neoepitope monoclonal antibodies. Although proteomic profiling of cartilage has 

progressed the absolute quantification of matrix proteins is undefined in cartilage. 

There is a need for absolute quantification to describe the mechanisms of matrix 

turnover in health and disease. A QconCAT was designed as a concatenation of 

tryptic quantotypic peptides to measure absolute amounts of matrix proteins and 

assess whether degradation of specific matrix proteins at specific sites could be 

quantified using mass spectrometry. Matrix proteins from normal and OA equine 

articular cartilage were quantified using selected reaction monitoring (SRM). 

Absolute quantification values for normal and OA cartilage were identified for 

aggrecan; first and third globular domains, biglycan, cartilage oligomeric matrix 

protein, decorin and fibromodulin. A peptide spanning a known biglycan cleavage 

site was significantly reduced in OA cartilage. However it was not possible to 

quantify the extent of hydrolysis of targeted matrix proteins due to the variability in 

peptide abundance between cleaved and non-cleaved peptides. Examination of the 

relationship between cartilage proteins and mRNA levels revealed that transcripts 

provided little predictive value with respect to the amount of protein expressed. 

The equine degradome QconCAT will provide a useful tool in future cartilage 

research.   

 

Introduction 

Osteoarthritis (OA) is an significant disease of articular cartilage in man and animals  

caused by multiple overlapping and independent disease mechanisms resulting in 
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biochemical and biomechanical failure (Brew et al., 2008).  Articular cartilage is 

composed of a single cell type the chondrocyte, embedded at low cell density in a 

complex extracellular matrix (ECM) that confers its unique load bearing properties. 

This matrix consists of a dense network of collagen fibres; conferring shape and 

form, and a high concentration of proteoglycans that provide compressive 

properties associated with load bearing.  There is a constant turnover of these 

matrix proteins in life with an imbalance between synthesis and degradation being 

the primary event in OA. The degradation of cartilage matrix is elicited through 

proteolysis by defined groups of proteinases including matrix metalloproteinases 

(MMPs) (Burrage et al., 2006) and the ‘disintegrin and metalloproteinase with 

thrombospondin motifs’ (ADAMTSs) (Arner, 2002).  

 

There is evidence for increased expression and synthesis of these proteases, in 

patients with OA in cartilage, synovial tissue and joint fluids (Lohmander et al., 

1993b; McCachren, 1991);(Dean et al., 1989). The role these enzymes play in 

cartilage turnover and  disease has not been fully elucidated given that  although 

increased activity of proteases in OA cartilage has been established (Yoshihara et 

al., 2000), the majority of the enzymes described in cartilage are in the  inactive 

proenzyme form (Dean et al., 1989). Recent studies have suggested that MMPs are 

principally involved in normal turnover and may have a reduced role in aggrecan 

breakdown in OA (Struglics and Hansson, 2012). Methods to measure MMP activity 

in-situ remain a challenge (Lombard et al., 2005) and further methods to improve 

MMP assays are desirable.  

 

The sites of proteinase cleavage for many of the major matrix proteins including 

aggrecan (Sandy et al., 1991), biglycan (Monfort et al., 2006) cartilage oligomeric 

matrix protein (COMP) (Dickinson et al., 2003), decorin (Zhen et al., 2008) and type 

II collagen (Mitchell et al., 1996) are well characterised. The cleavage of aggrecan 

(Madsen et al., 2010) and type II collagen (Billinghurst et al., 1997) is defined using 

monoclonal neoepitope antibodies for each hydrolysis site. Whilst neoepitope 

antibodies have allowed the determination of some of the important sites of 

proteolytic action in cartilage degradation (Fosang et al., 2010) the results are semi-
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quantitative at best and unlike mass spectrometry they do not provide absolute 

molecular specificity.  Western blotting (Heidebrecht et al., 2009) and enzyme-

linked immunosorbent assay (ELISA) have historically been the most widely applied 

methods for targeted semi-quantitative analysis of proteins. Western blotting is 

excellent at the detection of proteins, as it provides a sensitive and highly specific 

approach (if good antibodies are available), it is limited when quantitation is 

needed due to issues of reproducibility and dynamic range. Comparatively, ELISAs 

are better for quantitation but are less specific as there is no information regarding 

protein size and they are susceptible to interference from cross-reacting fragments.  

Mass spectrometry workflows now allow selectivity and sensitivity in protein 

quantification.  Recently there have been major advances in proteomic profiling of 

cartilage (Garcia et al., 2006; Wilson et al., 2010a). Whilst these techniques have 

been revealing, they provide a discovery platform to primarily identify cartilage 

components. There are limitations to these approaches for example in 

demonstrating low abundance proteins, in particular cleavage products, which are 

less likely to be identified without refinement in sample preparation and analysis. 

Indeed, whilst there is value in the discovery of differentially expressed proteins in 

terms of fold change, a more quantitative data set will allow further interpretation 

and is needed for predictive biology using a systems biology approach (Otto et al., 

2012). Systems biology studies the complex interactions of biological components 

through the collection, integration and analysis of complex data sets. Mathematical 

and mechanistic modelling is then used to discover emergent properties in 

pathways, cells and tissues. One of the keys to this analysis is the input of real 

numbers into the models for example as absolute amount of proteins (Brownridge 

et al., 2011). Thus absolute quantification of both intact matrix proteins and the 

extent of protein cleavage will be required to describe completely the mechanisms 

of cartilage matrix turnover.  

 

Proteomics has developed into a quantitative science resulting in more refined 

methods being developed for absolute quantification. This includes the application 

of selected reaction monitoring (SRM) based experiments using isotope labelled 

standards (Aye et al., 2012; Gerber et al., 2003). Some of these methods rely on the 
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principles of surrogacy where, following protease digestion of a protein, the 

resultant peptides are identified by mass spectrometry (MS) and used to deduce 

identification of the protein itself. One well described method of absolute 

quantification is through stable isotope label. There is differential incorporation of 

stable isotopic nuclei (2H, 13C, 15N, 18O) (which acts as a standard) enabling the 

‘light’ and ‘heavy’ form of the same peptide to be resolved in the MS due to their 

mass difference. The ratio of signal intensities of the two peptides measures 

peptide abundance and, correspondingly, the relative abundance of the proteins. A 

number of methods are available to generate these protein standards (Dupuis et 

al., 2008). One approach enables the  highly accurate parallel absolute 

quantification of large sets of analyte proteins using an artificial protein QconCAT 

(Beynon et al., 2005). QconCATs are constructs of a set of mass-tagged internal 

standard peptide (q-peptides) with sequences unique to the proteins of interest. 

Multiple peptides are concatenated into a synthetic gene and expressed as a 

heterologous QconCAT protein in bacterial cultures (Pratt et al., 2006; Rivers et al., 

2007), allowing large numbers of biological samples to be analyzed which is cost 

effective and reliable. The aim of this study was to develop techniques to reveal 

absolute quantification data of intact matrix proteins, the extent of hydrolysis at 

specific sites (which could allow OA progression monitoring) in some of these 

proteins and understand the role of matrix metalloproteinases in normal and OA 

cartilage. In addition the relationship between transcript and protein abundance 

was investigated. An innovative platform for the quantification of matrix proteins in 

equine articular cartilage is described which combines a relatively simple tissue 

preparation technique, which overcomes some of the technical challenges related 

to its biochemical properties, with QconCAT technology. This has provided a novel 

tool for cartilage research through the design and optimisation of SRM assays which 

was then used in an attempt to define the cartilage degradome in normal and 

osteoarthritic equine articular cartilage.  
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Materials and Methods 

Selection of quantotypic peptides in the QconCAT design 

The design for the degradome QconCAT included peptides representative of the 

matrix proteins; aggrecan, biglycan, cartilage oligomeric matrix protein (COMP), 

decorin, type II collagen and fibromodulin. A list of peptides from a previous study 

(Manuscript 1) was used as a library for q-peptide selection. In addition we wished 

to incorporate additional peptides to quantify proteolytically cleaved molecules and 

zymogens of specific proteases (Figure 1).  

Bioinformatics screening of known aggrecan, collagen-II, cartilage oligomeric matrix 

protein (COMP), decorin and fibromodulin cleavage sites was undertaken using in-

silico digests using Protein Prospector version 5.6.2 (http://prospector.ucsf.edu). In 

addition screening of two important metalloproteinases matrix metalloproteinase 3 

(MMP-3) and matrix metalloproteinase 13 (MMP-13) was undertaken as we wished 

to measure the quantity of zymogen (inactive form of the enzyme including the 

pro-peptide) compared to active enzyme. A similar approach was used in the 

quantification of cleavage sites; however the position of cleavage was the junction 

between the propeptide and the peptide for the enzyme concerned. Finally 

following further bioinformatics screening of all known markers of collagen 

synthesis and degradation a marker of collagen synthesis; procollagen type II C-

propeptide (PIICP) was identified as a candidate for inclusion. It has been 

demonstrated that there is an increase in type II collagen synthesis in early OA in 

man (Otterness et al., 1999). The final QconCAT design contained 28 q-peptides 

(Table 1a).  

With the exception of fibromodulin, which contained a single peptide for 

quantification, all other intact proteins were quantified with at least two q-

peptides. Fibromodulin was quantified with a single peptide as previous studies had 

demonstrated the IPPVNTNLENLYLQGNR peptide provided an ideal q-peptide for 

SRM studies (Manuscript 3). Criteria applied in selection of intact protein peptides 

have been  described by Pratt et al. (Pratt et al., 2006) and  included their suitability 

score, physicochemical properties deemed to promote MS detectability,  and 

http://prospector.ucsf.edu/
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uniqueness to a given protein. In addition amino acids which were prone to 

oxidation (cysteine, methionine or tryptophan) and miscleavage were avoided 

where possible and all peptides were either lysine or arginine terminated. All 

peptides where placed in sequence context were possible in order to minimize 

differences in sequence context and therefore digestion context between QconCAT 

and analyte.  

 

 

 

Figure 1. Principle of the use of QconCAT to quantify cartilage degradation. A. 
Tryptic quantotypic Q-peptides distant to the any known cleavage sites were used 
to quantify intact protein (non-cleaved control peptide; NCC). A tryptic Q-peptide 
spanning the cleavage site was also incorporated into the QconCAT (non-cleaved 
spanning; NCS). If no hydrolysis was evident at the given cleavage site our 
hypothesis was that NCC1=NCC2=NCS. Should cleavage occur at the site the NCS 
peptide would be less abundant (NCC1>NCS<NCC2). Thus the amount of cleavage 
of the protein at that site could be quantified. B. Decorin is used as an example; 
VHENEITK and VPGGLADHK were used as NCC peptides to quantify MMP-3 
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degradation of VDAASLR between the underlined amino acids S - serine and L – 
leucine.  

Peptide 
Order 

Protein Protein 
Accession 

Peptide 
Type 

Q-peptide Amino-acid Sequence 

1 COLLAGEN TYPE II  Q28396 NCC TGPAGAAGAR 

2 AGGRECAN-G3 O46556 NCC YEINSLVR 

3 AGGRECAN- G3 O46556 NCC TIEGDFR 

4 AGGRECAN-G3 O46556 NCC YQCTEGFVQR 

5 CARTILAGE OLIGOMERIC 
MATRIX PROTEIN 

Q9BG80 NCC SSTGPGEQLR 

6 CARTILAGE OLIGOMERIC 
MATRIX PROTEIN 

Q9BG80 NCC DTDLDGFPDEK 

7 MATRIX 
METALLOPROTEINASE 13 

O18927 NCC ISELGFPK 

8 BIGLYCAN Q865A8 NCC GLQHLYALVLVNNK 

9 DECORIN Q865A7 NCC VPGGLADHK 

10 DECORIN Q865A7 NCS VDAASLR 

11 MATRIX 
METALLOPROTEINASE 3 

Q28397 NCS CGVPDVGHFTTFPGMPK 

12 BIGLYCAN Q865A8 NCS GVFSGLR 

13 COLLAGEN TYPE II  Q28396 NCC GPEGAQGPR 

14 AGGRECAN-G1 O46556 NCC YPIVSPR 

15 DECORIN Q865A7 NCC ELHLDNNK 

16 FIBROMODULIN A2Q126 NCC IPPVNTNLENLYLQGNR 

17 MATRIX 
METALLOPROTEINASE 13 

O18927 NCS CGVPDVGEYNVFPR 

18 
MATRIX 
METALLOPROTEINASE 3 

Q28397 NCC GEILFFK 

19 BIGLYCAN Q865A8 NCC NHLVEIPPNLPSSLVELR 

20 BIGLYCAN Q865A8 NCC VPAGLPDLK 

21 CARTILAGE OLIGOMERIC 
MATRIX PROTEIN 

Q9BG80 NCS NTVMECDACGMQPAR 

22 BIGLYCAN Q865A8 NCS NMNCIEMGGNPLENSGFQPGAFDGLK 

23 COLLAGEN TYPE II  Q28396 PIICP SLNNQIESIR 

24 CARTILAGE OLIGOMERIC 
MATRIX PROTEIN 

Q9BG80 NCS AVAEPGIQLK 

25 MATRIX 
METALLOPROTEINASE 3 

Q28397 NCC EHGDFFPFDGPGK 

26 MATRIX 
METALLOPROTEINASE 13 

O18927 NCC GETMVFK 

27 BIGLYCAN Q865A8 NCC LAIQFGNYK 

28 DECORIN Q865A7 NCC VHENEITK 

 

Table 1a. Equine cartilage QconCAT signature peptides. The table includes peptide 
order within the QconCAT design and peptide type relates to non-cleaved control 
(NCC), non-cleaved spanning (NCS) or procollagen type II C-propeptide (PIICP). For 
aggrecan three peptides were located in the 1st globular domain (G1) and a single 
peptide in the third globular domain (G3).  
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This was to minimize differences in digestion kinetics. Subsequent to design and 

construction of the QconCAT a further update of the Ensembl database for horse 

(Equus caballus; (ftp://ftp.ensembl.org/pub/current_fasta/equus_caballus/pep/) 

indicated that two peptides decorin; ELHLDNNK and COMP; AVAEPGIQLK were no 

longer identified as unique as they were also present in biglycan and 

thrombospondin-4 respectively. Subsequently no further analysis is included for 

these peptides. 

 

Q-peptides that spanned known cleavage sites were selected following prediction 

of suitable candidates in-silico (Table 1b). A similar criterion in selection was 

adopted as for the used to quantify intact peptides, except we were unable to avoid 

certain amino acids that are prone to oxidation in some spanning peptides.  

 

Protein Q-peptide Amino-acid Sequence Protease responsible for cleavage 

DECORIN VDAASLR MMP-3 (Imai et al., 1997) 

BIGLYCAN GVFSGLR MMP-13 (Monfort et al., 2006) 
BIGLYCAN NMNCIEMGGNPLENSGFQPGAFDGLK ADAMTS-4 (Melching et al., 2006) 

COMP NTVMECDACGMQPAR ADAMTS-5*(Holden, 2012) 

    

Table 1b. Equine cartilage non-cleaved spanning peptides. The amino acids in bold 
red indicate the site of protease cleavage. References refer to studies which 
demonstrated the cleavage of the given protein by the specified protease (Cartilage 
oligomeric matrix protein; COMP).   

 

The amino acid sequence was sent to PolyQuant GmBH (Enchelon, Germany) for 

gene synthesis of the QconCAT (Figure 2). The transformation, expression and 

purification of QconCATs have been described in manuscript 3.  

ftp://ftp.ensembl.org/pub/current_fasta/equus_caballus/pep/
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Figure 2. Amino-acid sequence of equine degradome QconCAT. The QconCAT 
sequence sent to PolyQuant GmBH for gene production included an sacrificial 
peptide containing the initiator methionine (also protects the N terminus of the 
initial q-peptide from exoproteases), glufibrinopeptide B (Glufib) (for quantification 
of the QconCAT using an unlabelled Glufib standard), fibrinopeptide (a sequence 
variant of Glufib, to establish full length expression of the gene), and hexahistidine 
purification tag (His-Tag). 

 

Retrospective peptide screening using bioinformatics tools 

Prediction tools available following the production of the QconCAT were utilised to 

assess peptide detectability and potential for missed cleavage. CONSeQuence 

(consensus predictor for quantotypic peptide sequence) (Eyers et al., 2011)was 

applied to the list of peptides by submitting the FASTA files to 

http://king.smith.man.ac.uk/CONSeQuence. The number of internal miscleaves was 

set at 0 and prediction type; rank score. A missed cleavage predictor; MCPRED was 

applied to peptides within the analyte and QconCAT context by submitting FASTA 

files to (http://king.smith.man.ac.uk/mcpred/). The ‘select predictor’ SVM (support 

vector machine) predictor (Webb-Robertson et al., 2008) was selected.   
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Characterisation of the QconCAT 

The QconCAT protein was confirmed to be intact and most proteins discernible by 

the in-gel digestion of a protein band corresponding to the expected molecular 

mass for the QconCAT of 45KDa using MALDI-TOF as described in Manuscript 3.  

Cartilage sampling and histological assessment 

Equine articular cartilage was obtained from the entire condylar surface of the 

metacarpophalangeal III bone of the fetlock joints of 11 normal and 9 osteoarthritic 

horses between 2 and 20 years old, either from an abattoir or with informed 

consent from thoroughbred racehorses in training prior to euthanasia due to 

orthopaedic disease. Cartilage for each donor was randomly split and either rinsed 

and snap frozen in liquid nitrogen for proteomic analysis or stored in RNA Later 

(Ambion, Applied Biosystems, Warrington, UK) for gene expression analysis.  The 

distal surface of metacarpal III was examined by gross observation immediately 

after death in the case of ‘normal’ donors or following post-mortem and storage at 

-20oC for diseased material. Macroscopic scoring of the metacarpophalangeal joint 

was measured using a macroscopic grading system, recommended for spontaneous 

OA in Table 2 (Kawcak et al., 2008).   

 

Sections of palmar metacarpal condyles, obtained for histology were placed into 4% 

paraformaldehyde for 48 hours. Following decalcification in EDTA, they were 

sectioned at 6μm and stained with haematoxylin and eosin (H and E) and safranin O 

stains in order to score structural differences and assess glycosaminoglycan (GAG) 

distribution. Histopathological preparation was undertaken in the Histopathology 

Department at the University of Liverpool.  

Standard sections were examined using an Eclipse 80i (Nikon, Kingston-upon-

Thames, UK) light microscope at x4 and x10 magnifications. A DS-U1 camera (Nikon, 

Kingston-upon-Thames, UK) was used to obtain images. A modified Mankin scoring 

system was used (as recommended by the OARSI histopathology initiative) for 

semi-quantitative histological assessment of equine cartilage (Zardi et al., 1985). 
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Lesion Grade Description 

Wear Lines 0 None 

 1 1 or 2 partial-thickness wear lines/joint 
surface 

 2 3 to 5 partial-thickness or 1 to 2 full 
thickness wear lines/joint surface 

 3 >5 partial thickness or >2 full thickness 
wear lines/joint surface 

Erosions 0 None 

 1 Partial-thickness erosion,<5mm diameter 

 2 Partial-thickness erosion,>5mm diameter 

 3 Full thickness erosion 

Palmar arthrosis 
(osteochondral lesions 
distal palmar MC) 

0 None 

 1 Partial-thickness erosion, <5mm diameter 

 2 Partial-thickness erosion, purple 
discoloration >5mm diameter 

 3 Full-thickness erosion, purple discoloration, 
>5mm diameter 

 

Table 2. Macroscopic scoring system of the pathology of the distal condyles of 
MCIII. 
 
 
Cartilage protein extraction and sample preparation for MS 

A method was developed in order to produce a sample that was high pressure 

liquid chromatography (HPLC) compatible; the addition of impurities or compounds 

that would irreversibly bind to the pre-column (trap) or column were reduced,  

whilst washing of both the protein extract and tryptic digests were enabled. 

Furthermore the removal of a substantial amount of GAGs was believed prudent. 

As the molecular weight (MW) of the proteins of interest for quantification was 50-

250kDa, a filter size of at least twice that was necessary hence a 10kDa molecular 

weight cut-off (MWCO) was selected. A MWCO spin column enabled the protein 

sample to be washed and the guanidine to be diluted to an extent that provided 

optimal conditions for tryptic digestion. As the enzymatic digestion took place 

above the filter a final spin allowed separation of tryptic peptides to the filtrate. 

Finally samples were desalted and purified using C18 resin in the form of a ZipTip® 

(Merck Millipore, USA). 



109 
 

Previously frozen cartilage was pulverised and lyophilized in order to obtain a dry 

weight for normalisation. To 10mg of lyophilised cartilage powder 1ml of guanidine 

extraction buffer (4M guanidine hydrochloride (GdnHCl), 65mM dithiothreitol 

(DTT), 50mM sodium acetate) was added and extraction performed with end-over-

end mixing for 20h at 4oC. 25mM DTT was added 2h prior to 80mM iodoacetamide 

(IAA) addition for the last 2h in the dark. The soluble fraction was removed 

following centrifugation for 15min at 13000g at 4oC. Protein concentrations of 

aliquots of soluble fraction were estimated by Bradford assay using Coomassie 

Plus™ protein assay reagent (Thermo Scientific, Rockford, USA) read at 600nm 

following acetone precipitation. Guanidine-extracted proteins were then washed 

with ammonium bicarbonate (AMBIC) to give a final concentration of 0.5M GdnHCl 

on a Vivaspin 2 10kDa MWCO filter. Tryptic digestion (overnight at 37oC) was 

undertaken with the addition of 2μg trypsin (Sigma-Aldrich, Dorset, UK) with a top-

up of a further 2μg after 3h. The filtrate of tryptic peptides was obtained following 

centrifugation for 15min at 13000g. 100mM AMBIC was added to the top of the 

spin column and a further spin for 15min at 13000g undertaken. These fractions 

were pooled and acidified with trifluoroacetic acid (TFA) to 0.1% (v/v).  

1-D SDS PAGE separation and in-gel trypsin digestion 

Cartilage guanidine soluble extracts were analyzed by one dimensional sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to assess 

intersample consistency and quantitative/qualitative differences between normal 

and osteoarthritic cartilage. Samples were loaded according to equal volumes 

following acetone precipitation and resolubilsation in buffer containing 8M urea, 

2% (w/v) CHAPS, 0.0002% (v/v) bromophenol blue, plus 0.2% (v/w) DTT.   

Aliquots were heated in Laemmli buffer containing 50mM DTT for 5min at 95°C and 

resolved through 4–12% acrylamide Bis-Tris NuPAGE gels (Invitrogen, Paisley, UK), 

and proteins were visualized by Coomassie Brilliant Blue. In-gel tryptic digestion of 

dominant bands was undertaken as previously described (Deckelbaum et al., 1982). 
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Protein identification of bands using MALDI-TOF 

Matrix-assisted laser desorption ionisation time of flight time of flight (MALDI-TOF) 

analysis of protein bands was undertaken as described in manuscript 3. Data was 

searched against the Equus caballus database using the Mascot search engine. 

Parameters were set to accept one miscleavage, a fixed modification of 

carbamidomethly cysteine and a variable oxidation of methionine. The peptide 

mass tolerance for this instrument was set at 0.2Da.  

Monitoring proteolysis of analyte proteins and sample ranging experiments using 

label-free quantification  

Prior to SRM samples were analysed using label-free quantification on the Synapt 

G1 Q-TOF instrument, in order to enable a suitable amount of sample to be loaded 

and to monitor proteolysis of the analyte samples. The peptides were resolved 

using a NanoAcuity LC system and instrument methods have been previously 

described (Brownridge and Beynon, 2011). In brief a final on column load of 50fmol 

of pre-digested protein standard (rabbit muscle glycogen phosphorylase, UniProt 

Accession number P00489) (Waters, UK) was added to the tryptic peptide 

preparation (500ng load on column) in order to enable “Hi3,” methodology where 

the intensities of the three most intense unique peptides per protein are compared 

with those of the protein standard (Ingvarsson et al., 2000). Acquisition was with 

the instrument in V mode using MSE data-independent acquisition at a resolution of 

20,000. 

Data were processed using ProteinLynx Global Server (version 2.4) (PLGS) software 

(Waters, UK) against a user created database including the pre-digested standard, 

the QconCAT recombinant protein sequence, and Equus caballus databases using an 

ion accounting algorithm. Peptide and fragment mass tolerance were set to 10ppm 

and 15ppm respectively. The minimum fragment ion matches per peptide and 

protein was three and seven respectively, the minimum peptide matches per 

protein was one. A fixed modification of carbamidomethly cysteine and a variable 

oxidation of methionine were used. One tryptic miscleavage was specified and the 

FDR was set at 4%.  
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QconCAT digestion 

QconCAT was detergent treated with 1% (w/v) Rapigest (Waters, Manchester, UK) 

for 10min at 80oC in 25mM ammonium bicarbonate. Sequential reduction and 

alkylation in 3mM DTT (60oC for 10 minutes) and then 9mM IAA (30min in the dark 

at room temperature) was followed by trypsin addition at a ratio of 1:50 protein: 

trypsin ratio overnight at 37oC. Detergent inactivation was then assumed by 

incubating for 45min at 37oC with trifluoroacetic acid (VWR International) to a final 

concentration of 0.5% (v/v). Following centrifugation for ten minutes at 15000g the 

soluble phase was retrieved and used for LC-MS/MS. Complete proteolysis was 

monitored on a Synapt G1 Q-TOF by resolving 100fmol on a NanoAcuity LC system 

using methods previously above. Data was processed as described earlier except 

with static/fixed modifications carbamidomethyl (C), and variable modifications; 

oxidation (M), label ([13C6] Lys)/label ([13C6] Arg).  

 

Selected reaction monitoring optimisation 

SRM assay conditions were optimised using a XEVO TQ (Waters, Manchester) as 

described in manuscript 3. Trypsin digestion of QconCAT was carried out as 

described previously (Rivers et al., 2007). SRM experiments were conducted with 

1:20 dilution of tryptic analyte peptides as determined by ranging experiments, 

spiked in with 10fmol previously digested heavy QconCAT, loaded onto column. MS 

analysis was commenced using methods, parameters and gradients described in 

manuscript 3.  

Western blotting   

Western blots from spin column supernatants and the protein wash flow through 

were probed with COMP and MMP-3 antibodies in order to ensure no undigested 

protein remained and tryptic digestion was complete. Additionally to correlate 

absolute quantification data with an independent method of protein measurement 

COMP and MMP- 3 in cartilage extracts was also detected with fluorescence 

immunoblotting. Following acetone precipitation and resolubilsation in buffer 

containing 8M urea, 2% (w/v) CHAPS, 0.0002% (v/v) bromophenol blue, plus 0.2% 
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(v/w) DTT, samples from selected normal and OA donors were heated to 80oC for 

10min in NuPAGE® LDS sample buffer (Invitrogen, Paisley, UK) and electrophoresed 

for 1h at 200V under reducing conditions on Novex 4-12% SDS-PAGE gels 

(Invitrogen, Paisley, UK). Protein transfer to nitrocellulose was performed using the 

Invitrogen X Cell Sure Lock apparatus according to standard protocol. Membranes 

were blocked with TBS (pH 7.4) containing 0.1% Tween-20 (Invitrogen, Paisley, UK) 

(TBST) and 5% dried skimmed milk for 1 h at room temperature.  The specificity and 

cross-reactivity of the non-equine primary antibodies for MMP-3 were confirmed 

by analysis of Il-1β stimulated equine cartilage explant media (Manuscript 1). The 

peptide sequences used for GAPDH and β-actin were checked using the NCBI Basic 

Local Alignment Search Tool; 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). 

Using previously described protocols (Buckland, 2012a) membranes were probed 

with primary antibodies against the following; rabbit polyclonal to equine COMP 

(1:1000; a kind gift from Jay Dudhia, RVC, London, UK) (Han et al., 1996) and goat 

polyclonal to human MMP-3 (1:1000 dilution, # 18898 Abcam, Cambridge, UK), anti 

GAPDH-horseradish peroxidase (HRP) conjugate (used at 1:10,000; Sigma, Dorset 

,UK) and monoclonal mouse anti-β actin (1:1000; Sigma, Dorset, UK). Appropriate 

secondary antibodies conjugated to horseradish peroxidise (HRP); polyclonal rabbit 

anti-mouse IgG HRP, polyclonal goat anti-rabbit IgG HRP and polyclonal goat anti 

mouse HRP (all Sigma, Dorset, UK) at 1:2000 were used. All antibodies were diluted 

with TBST containing 5% dried skimmed milk.  Chemiluminescence was used to 

detect the protein bands using Western Lightning™ and Western Lightning Plus 

Chemiluminescence reagents (Perkin Elmer, Beaconsfield, USA). ImageJ software 

(http://rsbweb.nih.gov/ij/) was used to quantify bands using densitometry.  

RNA Extraction and Reverse Transcription 

Cartilage pieces from donors were dismembranted following freezing in liquid 

nitrogen, and stored in Tri-reagent (Ambion, Warrington, UK). For RNA extraction 

the Guanidium-thiocyanate-phenol-chloroform technique, with ethanol extraction 

was used, followed by the RNeasy (Qiagen, Crawley, UK) column technique 

incorporating a DNase treatment step. RNA was quantified using a Nanodrop ND-

http://rsbweb.nih.gov/ij/
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100 spectrophotometer (Labtech, East Sussex, UK). 16μl RNA was used as the 

template for reverse transcription. M-MLV reverse transcriptase and random 

hexamer oligonucleotides (both from Promega, Southampton, UK) were used to 

synthesize cDNA in a 25μl reaction.  

  

Quantitative reverse transcriptase PCR design  

Equine specific primers were used that had been described previously (Chen et al., 

2010; Radinsky et al., 1990) (Richter and Hormann, 1982). All primers were exon-

spanning to allow discrimination of genomic DNA and cDNA. The primers used for 

target and housekeeping genes are in Table 3. 

Quantitative Real-Time Polymerase Chain Reaction  

Quantitative real-time polymerase chain reaction (RT-PCR) was performed in SYBR® 

Green PCR master mix (Applied Biosystems, Warrington, UK) in a 25μl reaction with 

300nM primer concentration and processed by a 7300 Real Time PCR system 

(Applied Biosytems, Warrington, UK) using standard amplification conditions. Data 

was analysed using SDS software system (Applied Biosytems, Warrington, UK). PCR 

products were measured and  relative expression levels  normalized to GAPDH and 

calculated using the 2-Ct method (Livak and Schmittgen, 2001). 

 

Statistical analysis 

Statistically significant differences between absolutely quantified matrix proteins 

and gene expression values of normal and osteoarthritic cartilage were analysed 

using mixed effects linear regression to allow for donors with significant biological 

variation. Correlation between protein abundance and gene expression was tested 

using the Pearson’s correlation coefficient. The analyses were undertaken using 

SPLUS 6.1, Minitab 15 and Excel software. 

 

 

 

 



114 
 

Gene Primer Sequence Accession Code 

GAPDH F: GCATCGTGGAGGGACTCA AF157626 
  R: GCCACATCTTCCCAGAGG   

ADAMTS4 F: CAGCCTGGCTCCTTCAAAAA NM_001111299 
  R: CCGCAGGAATAGTGACCACAT   

ADAMTS5 F: ACCGATCCTGCAGTGTCACA EU025851 
  R: CTGCTCATGGCGAAAAGATTT   

Collagen I α1 F: GACTGGCAACCTCAAGAAGG O46388 
  R: CAATATCCAAGGGAGCCACA   
Collagen II 
α1 F: TCAAGTCCCTCAACAACCAGAT NM_001081764 
  R: GTCAATCCAGTAGTCTCCGCTCTT   

MMP1 F: GGTGAAGGAAGGTCAAGTTCTGAT  NM_001081847 

  
R: 
AGTCTTCTACTTTGGAAAAGAGCTTCTCT    

MMP3 F: TCTTGCCGGTCAGCTTCATATAT  NM_001082495 
  R: CCTATGGAAGGTGACTCCATGTG    

MMP13 F: CTGGAGCTGGGCACCTACTG  NM_001081804 
  R: ATTTGCCTGAGTCATTATGAACAAGAT    

Aggrecan F: GAGGAGCAGGAGTTTGTCAACA XM_001499504 
  R: CCCTTCGATGGTCCTGTCAT   

Biglycan F: TCACCTTCCAGCCCCTAGAGT  NM_001081839 
  R: AGAAGCAGCCCCTCCTCAA    

Decorin F: CATCCAGGTTGTCTACCTTCATAACA NM_001081925 
  R: CCAGGTGGGCAGAAGTCATT   

Fibromodulin F: CTTGGCTCCAGACCCTGAAA NM_001081777 

  R: TGCCCCTCGCGTCAGA   

COMP F: GGTGCGGCTGCTATGGAA AF325902 

  R: CCAGCTCAGGGCCCTCAT   

TIMP 3 F: CTGCAACTTCGTGGAGAGGT NM_001081870 

  R: ACTCGTTCTTGGAGGTCACG   

Table 3. Primers used for quantitative real-time PCR. F= Forward primer, R= 
Reverse primer. 

 

Results 

Macroscopic grading and histological assessment of samples 
 
Macroscopic grading and a semi-quantitative histological assessment using a 

modified Mankin scoring system of the metacarpal joint were undertaken. The 

macroscopic score was used to allocate samples into normal or OA groups, a score 

of greater than 0 were assigned OA. The average and SEM for the age and Mankin’s 

http://www.ncbi.nlm.nih.gov/nuccore/126352681
http://www.ncbi.nlm.nih.gov/nuccore/12584923
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score of normal and OA samples were 8.3 ±1.54 years, 3.2±0.73 and 11.2±1.21 

years, 4.8±2.14 respectively.  

 

Comparative analysis of proteins in normal and OA cartilage  

Soluble cartilage protein extracts from normal and OA cartilage analysed by SDS-

PAGE revealed no qualitative or quantitative differences using densitometry (data 

not shown). The major bands were cut from the gel, digested with trypsin and the 

proteins identified using peptide mass fingerprinting MALDI-TOF (Figure 3). The 

preliminary protein in the major bands had a Mascot score >62 and a confidence 

interval of 95%.  

QconCAT protein design, expression and validation  

Bioinformatics screening of aggrecan and collagen-II cleavage sites identified that 

the QconCAT strategy previously described could not be used at any of the major 

cleavage sites by using trypsin digestion. This was due to either post-translational 

modifications such as N-linked glycosylations, (aggrecan) (Figure 4) and 

hydroxyproline (collagen) around the protein digestion protease sites or problems 

with amino acids produced at the carboxyl or amino terminals of potential q-

peptides for instance glutamic acid residues at the terminals will increase the 

propensity for miscleavage (Siepen et al., 2007) (Table 4). 
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Figure 3.   No qualitative or quantitative differences were evident when 1D SDS-
PAGE was used to compare protein components of normal and OA soluble 
cartilage extracts.  Two normal and three OA samples representative of all samples 
are shown. Soluble cartilage extract proteins (20μg) from normal and OA donors 
were resolved by SDS-PAGE and the bands were visualized by Coomassie Brilliant 
Blue staining. Each lane contains the same proportion of total protein yield in 
indicate changes in relative amounts. Major bands were excised and analyzed by 
MALDI-TOF MS after proteolysis. 
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       1 mttlllafvt lrvitaaisv dvsdpdnsls vsipepsplr vllgtsltip cyfihpthpv 

       61 ttapstapla prikwsrisk ekevvllvat egqvrvnsay qdrvslpnyp aiptdatlel 

      121 qnlrsndsgi yrcevmhgie dseatlevvv kgivfhyrai strytldfdr aqraclqnsa 

      181 iiatpeqlqa ayedgfhqcd agwladqtvr ypihlpregc ygdkdefpgv rtygirdtne 

      241 tydvycfaee megevfyats pekftfheaa necrrlgarl attgqlylaw qsgmdmcsag 

      301 wladrsvryp iskarpncgg nllgvrtvyl hanqtgypdp ssrydaicyt gedfvdipen 

      361 ffavsgeedi tiqtvtwpdv emplpqnite geargnvilt vkpifgvspt ilepgepfts 

      421 vpgvgttafp eaenetgaat rpwgipeest pglgpitaft sedlvvqvtt apevpgqprl 

      481 pggvvfhyrp gsdrysltfe eaqqaclqtg aviaspeqlq aayeagyeqc dagwlsdqtv 

      541 rypivsprtp cvgdmdsspg vrtygvrpss etydvycyvd rlegevffat rleqftfrea 

      601 lefcgshnat lattgqlyaa wsrgldkcya gwladgslry pivtprpacg gdkpgvrtvy 

      661 lypnqtglpd plsrhhafcf rgvsvapspg eeeagtptlp sgvedwlvtq vapgvaavpl 

      721 geettaipaf tvepenqtew epaytplaas plpgipptwp ptsaateest egpwatevps 

      781 asekpspsee pstlsapvpi etelpspgep sgvpevsgdf tgsgevsghl dfrgqpsegs 

      841 vsglpsgdld ssglisavgs glhvgsglas gdedrirwst tpavgwlpsg segpeptasg 

      901 aedlsglpsg gevhleptas gvedlsglps ggeihlepta sgvedlgelp sggeihlept 

      961 asgvedlgel psggevhvep tasgvedisg fpsggevhve ptasgvedls glpsggeihl 

     1021 eptasgvedl gglpsgeeih leptasgved isgfpsgeev hleptapgie dlsglpsgge 

     1081 ihveptasgv edisgfpsge evhleptasg vedlgglpsg geihleptas gvedlgglps 

     1141 ggeihlepta sgvedlgglp sgeihlepta sgvedlgglp sggeihlett psgvedlsgl 

     1201 psggeihlep tasgvedlgg lpsggeihle ptasgvedlg glpsggeihl eptasgvedl 

     1261 gglpsggeih lettpsgaed lgglpsggei hleptasgve dlgglpsgge ihleptapgv 

     1321 edlgglpsgg eihleptasg vedlgglpsg geihleptas gvedisglps ggeihlettp 

     1381 sgaedlgelp sggevhlept asgiedlggl psggeihlep tasgvedlgg lpsggevhle 

     1441 ptasgvedls glpsgmegle tsasgaedls glpsgredlf gsasgaldfg ripsgsgqap 

     1501 easglpsgfs geysgvdlgs gpssglpdfs glpsgfptvs lvdttlvevv tattagqleg 

     1561 rgtigisgag etsglplsel disggasglp sgaelsgqas gspdisgets glfgvsgqps 

     1621 gfpdisggts glfevsgqps gfsgetsgvt efsglssgqp dvsgeasgvl fgsgqpfgit 

     1681 dlsggasgvh dlsgqpsglp gfsgttsgih dlvssamsgs gepsgitfvd tslvevtptp 

     1741 fkeeeglgsv elsglpsgda dlsgtsgrad vsgqssgapd ssgltsqppe lsglpsgvae 

     1801 vsgessgaet gsslpsgayd gsglpsglpt vslvdrtlve svtqaptaqe agegpsgile 

     1861 lsgahsgapa vsgdhsgfsd lsglpsglve psgepsstph fsgdfsgtid vsgassaats 

     1921 tsgeasglpe itlitsefve gvteptvsqe lgqrppvtft pqlvessgea sasgeaggat 

     1981 pgfpgagvea ssvpesghet saypeagvva saapeasgga sgspdlsaat sasreadldg 

     2041 gsglgvsgst spfhegpreg saspeasgvs tttyhvgtea sgwpsaapaa srdrtdssgd 

     2101 psghtsgpdv vlstslpese wtpqmqrpae alleiesssp lysgeetpta etavspteas 

     2161 ipaspggpgv setavtglrg cavpqavtss lslgsgapqg lcqepcgagt cqeteghvmy 

     2221 lcppgrtgqh cdidqelcen gwtkfqghcy ryfpdretwv daesrcreqq shlssivtpe 

     2281 eqefvnnnaq dyqwiglndr tiegdfrwsd ghslqfenwr pnqpdnffta gedcvvmiwh 

     2341 ekgewndvpc nyqlpftckk gtvacgdppv vehartfgrk karyeinslv ryqctegfvq 

     2401 rhvptircqp sgqweeprit ctdpasykrr lqkrssrapr rsrpstah 
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Figure 4. For aggrecan the abundance of post translational modifications (PTM) 
surrounding both the tryptic and known cleavage sites meant these sites could 
not be targeted for q-peptide selection. Colour coding is as follows; turquoise 
marked amino acids represent potential chondroitin sulphate attachments, blue 
marks probable O-linked keratin sulphate glycosylations sites, yellow marks 
potential N-linked glycosylations, purple represents  tryptic cleavage sites which are 
at the carboxyl side of the amino acids lysine or arginine. Red letters represent the 
amino acids surrounding the principle aggrecanase and metalloproteinase cleavage 
sites, green letters are the amino acids between which hydrolysis occurs.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Carboxyl
http://en.wikipedia.org/wiki/Amino_acids
http://en.wikipedia.org/wiki/Lysine
http://en.wikipedia.org/wiki/Arginine
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Cleavage site Enzyme   Spanning sequence (NCS) SPANNING QconCAT design issue PTM Potential 
DIPEN 

Trypsin Carboxyl side of arginine and 
lysine residues 

>50 amino acids long 
X     X 

NITGE X     X 
ATTAGGLE X     X 
PTPFKEEE EEEGLGSVELSGLPSGDADLSGTSGR √ EE; two glutamic acids* SG X 
TQAPTAQE >50 amino acids long X     X 
TEPTVSQE X     X 
DIPEN 

Chymotrypsin 
Carboxyl side of tyrosine, 

phenylalanine, tryptophan and 
leucine 

VDIPENFF √     √ 
NITGE >30 amino acids long X     X 
ATTAGGLE >30 amino acids long X     X 
PTPFKEEE KEEEGLG √ EE; two glutamic acids*   X 
TQAPTAQE VESVTQAPTAQEAGEGPSGILE √   SG X 
TEPTVSQE VEGVTEPTVSQEL √     √ 
DIPEN 

Glu-C Carboxyl side of glutamate or 
glutamate 

NFFAVSGEE √   SG X 
NITGE 

too short 

X     X 
ATTAGGLE X     X 
PTPFKEEE X     X 
TQAPTAQE X     X 
TEPTVSQE X     X 
DIPEN 

Asp-N Amino side of aspartate residues 

DIPENFFAVSGEED √ EE; two glutamic acids* SG X 
NITGE >60 amino acids long X     X 
ATTAGGLE >40 amino acids long X   SG X 
PTPFKEEE >30 amino acids long X EE; two glutamic acids* SG X 
TQAPTAQE >40 amino acids long X   SG X 
TEPTVSQE >100 amino acids long X     X 
DIPEN 

Elastase Carboxyl side of glycine, alanine, 
proline 

PENFFAV √     √ 
NITGE too short  X     X 
ATTAGGLE EGRGTI √     X 
PTPFKEEE PFKEEEGLG √ EE; two glutamic acids*   X 
TQAPTAQE too short  X     X 
TEPTVSQE X     X 

 

Table 4. The major aggrecan cleavage sites were inappropriate for designing NCS q-peptides. The amino acid sequences around of 
the major cleavage sites for aggrecan were assessed for the potential to produce quantotypic q-peptides for QconCAT design. The size 
and amino acid composition of the NCS sequences was assessed for suitability and at this point potential sites were nominated in the 
‘spanning’ column. Further analysis of post-translational modifications (PTM) was undertaken; SG denotes probable N-linked 
glycosylations in the peptides. The final column identified possible cleavage sites for a given protease for QconCAT design.



120 
 

 

 

 
Figure 5. Electrophoretic profile of the QconCAT at induction and purification. 
Whole cell lysate of E.coli BL21DE3 before and after induction of expression of the 
QconCAT gene supplied in pET21b plasmid. Inclusion bodies were solubilised and 
purified by nickel affinity chromatography.  Following His-tag purification of the 
QconCAT imidazole-eluted fraction is evident at 45kDa. Black lanes mark none 
adjacent lanes from the same gel. 
 

The in-gel tryptic digest of this band was analysed with MALDI-TOF mass 

spectrometry and identified 16 out of 28 peptides from the product ion spectra 

(Figure 6) in addition to N-terminal fibrinopeptide and C-terminal glufibrinopeptide 

indicating full length expression of the QconCAT. No miscleaved peptides were 

identified using label-free quantification indicating complete QconCAT proteolysis.  
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Figure 6. Validation of the equine degradome QconCAT. (A) In-gel tryptic digestion of the 13C6 lys/ 13C6 arg labelled QconCAT was 
analysed with MALDI-TOF to give a peptide mass fingerprint of derived peptides. The some peptides are indicated as ringed with their 
respective peptide number. (B) A schematic representation of the disposition of each peptide, those identified (blue) within the 
QconCAT construct using MALDI-TOF and the respective single charge m/z.
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Peptide choice and detectability 

The selection of suitable peptides for quantification was critical. Where possible at 

least two peptides per protein where chosen in an attempt to reduce the 

probability of poor peptide ionisation or detectability by the mass spectrometer 

which would prevent quantification. For proteins we wished to quantify in cartilage 

utilizing an SRM platform experiment using QconCAT, a simple classification at 

10fmol QconCAT spiked into the analyte was applied to peptides as described by 

Brownridge et al. 2011 (Brownridge and Beynon, 2011) and  in manuscript 3 (Table 

5). This loading was chosen as it was used as the QconCAT loading in quantification 

experiments. ‘Type A’ quantifications are defined as were both QconCAT and native 

peptides are observed. For ‘type B’ quantifications the peptide is detected in the 

QconCAT but not in the native peptide, and for these peptides sample protein 

abundance sets the limit on detection.  Neither QconCAT nor native peptides are 

detected in ‘type C’ quantification, typically due to poor peptide fragmentation or 

chromatographic behaviour. Of the 28 peptides composite of the QconCAT we 

wished to use 26 peptides in order to quantify their constituent proteins within the 

cartilage soluble extraction; 14 were type A, 6 were type B and 6 were type C. This 

enabled the quantification of six proteins in normal and OA equine cartilage soluble 

extracts using the criterion that at least one q-peptide per protein was detected in 

all samples. Type A peptides were deemed suitable for quantification of the soluble 

extract of cartilage using an SRM approach in cartilage.  

 

The agreement in quantification between different peptides targeting the same 

protein was assessed following the quantification of cartilage proteins using SRM.  

The quantification determined by selected peptides was plotted against each other 

(Figure 7).  There was considerable scatter around the equality line. Quantification 

with the aggrecan G1 peptide YPIVSPR consistently gave a greater value than the 

G3 peptides (3.4 fold differences compared to TIEGDFR); which gave similar results. 

For COMP quantification one of the peptides NTVMECDACGMQPAR gave an 8.2 

fold difference in quantification compared to SSTGPGEQLR.  
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Figure 7. The agreement in quantification between different sibling peptides 
targeting the same protein. The quantitation of intact cartilage proteins 
determined by each peptide is plotted against each other (siblings). Plots indicate 
mean ±SEM for each peptide pair (n=20).  Quantification values should align on the 
equality diagonal line (marked in red).  Proteins with peptides that vary by two-fold 
are marked by a blue box. As aggrecan was determined by 4 peptides we compared 
2 sets of peptides; peptides the aggrecan G3 peptides YEINSLVR and YQCTEGFVQR 
(Aggrecan 1) and the G1 peptide; YPIVSPR and remaining G3 peptide; TIEGDFR 
(Aggrecan 2). For COMP the peptides DTDLDGFPDEK and SSTGPGEQLR were 
compared. The peptides GVFSGLR and VPAGLPDK were compared for biglycan and 
the peptides GPEGAQGPR and TGPAGAAGAR for type II collagen. 
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Q-peptide  Protein  
Evident 

QconCAT  

Evident 

analyte  

Peptide 

type  
Comment  

YPIVSPR  Aggrecan 

  

  

   

    A  
 

TIEGDFR      A     

YEINSLVR      A     

YQCTEGFVQR      A     

GVFSGLR  

Biglycan  

    A     

VPAGLPDLK      A     

GLQHLYALVLVNNK  X  X  C  
poor fragmentation, broad 

elution profile  

LAIQFGNYK    X  B   C-terminal peptide  

NHLVEIPPNLPSSLVELR  X  X  C  
 poor fragmentation, 

broad elution  profile  

NMNCIEMGGNPLENSGFQPGAFDGLK  X  X  C  
split signal; dissimilar 

oxidation patterns analyte 

and QconCAT  

SSTGPGEQLR  
   

COMP  

    A     

DTDLDGFPDEK      A  
 

NTVMECDACGMQPAR     A     

VDAASLR  
   

   

Decorin  

    A     

VHENEITK      A  
 

VPGGLADHK X  X  C  
elution profile, poor 

fragmentation  

IPPVNTNLENLYLQGNR  Fibromodulin      A     

TGPAGAAGAR  
Collagen Type 

II  

    A  
 

GPEGAQGPR      A  
 

SLNNQIESIR    X  B  
 

CGVPDVGHFTTFPGMPK  

MMP-3  

X  X  C  
split signal; dissimilar 

oxidation patterns analyte 

and QconCAT  

EHGDGDFFPFGPGK  X  X  C  poor fragmentation  

GEILFFK    X  B  
 

ISELGFPK  

MMP-13  

  X  B  
 

CGVPDVGEYNVFPR    X  B  
 

GETMVFK    X  B  
 

 
Table 5. Application of peptide types as determined by SRM experiments. Q-
peptides are classified for quantification purposes as A, B, C. ‘Type A’ analyte (light) 
and QconCAT (heavy) peptides (at 10fmol load on column) are detected using a 
XEVO TQ ‘type B’ are peptides detected for the QconCAT but not in analyte and 
when neither QconCAT nor analyte peptides are detected a ‘type C’ classification is 
given. Comments relate to possible reasons for non-detection of peptide. 
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Q-peptide screening using bioinformatics tools 

A retrospective screening of the q-peptides for peptide detectability and prediction 

of miscleavage are illustrated in Table 6. 

 

Quantification of proteins using SRM 

Samples were first analysed using MSE in order to identify the dilution required of 

the digest for compatibility with SRM methodologies. This determined that a 

dilution of 1:20 of the final digest was optimal for all samples. Additionally 

miscleaves in the target protein were identified consistently for the COMP peptide 

DTDLGFPDEK at the C terminal as DTDLGFPDEKLR. No other miscleaves in analyte 

samples were evident.  

Where possible, three transitions per peptide were used for quantification. 

Transitions were defined using Skyline software (O'Connor et al., 1998) and 

selected after monitoring for the greatest intensity fragments using 50fmol 

QconCAT digest on the XEVO TQ. y-ions were selected in order to differentiate 

labelled and unlabelled peptide as the C-terminal residue contained the isotope-

labelled amino acid.  In addition where possible we selected transitions whose m/z 

was greater than the parent ion m/z to maximise specificity (Table 7). Some 

peptides contained methionines that were subject to variable oxidation, for these 

transitions of each state of oxidation were utilised and summed. Poor 

fragmentation of VPGGLADHK and GLQHLYALVLVNNK meant that only a single 

transition was identified and this was not measurable at a 10fmol load of QconCAT.  

The linearity of the response for the QconCAT peptides was established prior to 

further analyses using a six point standard curve from 0.1fmol to 80fmol load on 

column labelled QconCAT in an SRM experiment using the XEVO TQ. Data was 

analysed using a Pearson’s correlation coefficient (r). Values of r were between 0.95 

and 1.0 which was statistically significant at p<0.01 for all peptides.   
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Analyte 
 context QconCAT context CONSeQuence 

Protein Q- peptide 
N-Terminal 

Score 
C-Terminal 

Score 
N-Terminal 

Score 
C-Terminal 

Score Score Rank 

Aggrecan 

TIEGDFR 0.49 0.47 0.41 0.42 0.267 43/59 
YEINSLVR 0.48  0.39 0.42 0.41 0.425 22/59 
YPIVSPR 0.42 0.44 0.4 0.44 0.263 44/59 
YQCTEGFVQR 0.39 0.39 0.42 0.42 0.458 17/59 

Biglycan 

GLQHLYALVLVNNK 0.52 0.47 0.36 0.5 0.499 10/20 
GVFSGLR 0.51 0.43 0.36 0.49 0.323 17/20 
LAIQFGNYK 0.52 1 0.4 0.44 0.404 13/20 
NHLVEIPPNLPSSLVELR 0.4 0.41 0.4 0.47 0.727 2/20 
NMNCIEMGGNPLENSGFQPGAFDGLK 0.43 0.43 0.44 0.39 0.548 6/20 
VPAGLPDLK 0.66 0.37 0.47 0.43 0.365 15/20 

COMP 
DTDLDGFPDEK 0.5 0.43 0.67 0.42 0.4 20/37 
NTVMECDACGMQPAR 0.42 0.55 0.43 0.44 0.479 14/37 
SSTGPGEQLR 0.49 0.43 0.42 0.67 0.359 24/37 

Type II Collagen 
GPEGAQGPR 0.45 0.47 0.49 0.4 0.309 54/87 

SLNNQIESIR 0.35 0.52 0.39 0.46 0.481 44/87 
TGPAGAAGAR 0.68 0.44 0.4 0.42 0.303 56/87 

Decorin 
VDAASLR 0.68 0.46 0.58 0.44 0.239 18/21 
VHENEITK 0.43 0.5 0.44 0.41 0.265 17/21 
VPGGLADHK 0.64 0.41 0.5 0.58 0.325 15/21 

Fibromodulin IPPVNTNLENLYLQGNR 0.43 0.44 0.5 0.44 0.851 1/18 

MMP-3 
CGVPDVGHFTTFPGMPK 0.68 0.45 0.44 0.36 0.738 2/28 
EHGDFFPFDGPGK 0.46 0.42 0.44 0.72 0.71 3/28 
GEILFFK 0.5 0.47 0.48 0.4 0.338 16/28 

MMP-13 
CGVPDVGEYNVFPR 0.78 0.49 0.44 0.48 0.719 6/30 
GETMVFK 0.56 0.49 0.72 0.4 0.22 27/30 
ISELGFPK 0.44 0.7 0.42 0.36 0.322 23/30 

 

Table 6. Prediction of missed cleavages and peptide detectability. A prediction tool was used to assess the probability of peptide 
missed cleavages at N- and C-terminals in analyte and QconCAT context.  Using the output score from 0-1, the probability of missed 
cleavages results in a higher score. For peptide detectability a CONSeQuence score closest to 1 implies good detectability. Each 
peptide CONSeQuence score is ranked out of the total number of tryptic peptides from its parent protein.
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Thus for the quantification of six matrix proteins  in our samples the average of  

three peptides for G3 domain of  aggrecan, two peptides for biglycan, two peptides 

for collagen II, three peptides for COMP and  two peptides for decorin, were used. A 

single peptide was used to quantify fibromodulin and G1 domain of aggrecan.  The 

matrix metalloproteinases MMP-3 and MMP-13 were quantified with one and 

three peptides respectively. 
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Protein  Q-peptide sequence  Precursor 
m/z  

Product 
m/z  

Ion 
Type  

Aggrecan  TIEGDFR  422.20  500.24  y4  
Aggrecan  TIEGDFR  422.20  629.28  y5  
Aggrecan  TIEGDFR  422.20  742.36  y6  
Aggrecan  YEINSLVR  500.20  707.43  y6  
Aggrecan  YEINSLVR  500.20  594.35  y5  
Aggrecan  YEINSLVR  500.20  836.47  y7  
Aggrecan  YPIVSPR  419.23  577.36  y5  
Aggrecan  YPIVSPR  419.23  365.20  y3  
Aggrecan  YPIVSPR  419.23  464.27  y4  
Aggrecan  YQCTEGFVQR  647.29  1002.46  y8  
Aggrecan  YQCTEGFVQR  647.29  842.43  y7  
Aggrecan  YQCTEGFVQR  647.29  408.25  y3  
Biglycan  GLQHLYALVLVNNK[+6.0].3  529.98  593.37  y5  
Biglycan  GVFSGLR  371.21  585.32  y5  
Biglycan  GVFSGLR  371.21  438.26  y4  
Biglycan  LAIQFGNYK[+6.0].2  530.30  875.47  y7  
Biglycan  LAIQFGNYK[+6.0].2  530.30  762.39  y6  
Biglycan  LAIQFGNYK[+6.0].2  530.30  634.33  y5  
Biglycan  NHLVEIPPNLPSSLVELR[+6.0].3  678.39  906.54  y8  
Biglycan  NHLVEIPPNLPSSLVELR[+6.0].3  678.39  809.48  y7  
Biglycan  NHLVEIPPNLPSSLVELR[+6.0].3  678.39  722.45  y6  
Biglycan  NM[+16.0]NC[+57.0]IEM[+16.0]GGNPLENSGFQPGAFDGLK[+6.0].3  945.75  1229.63  y12  
Biglycan  NM[+16.0]NC[+57.0]IEM[+16.0]GGNPLENSGFQPGAFDGLK[+6.0].3  945.75  1142.59  y11  
Biglycan  NM[+16.0]NC[+57.0]IEM[+16.0]GGNPLENSGFQPGAFDGLK[+6.0].3  945.75  1085.57  y10  
Biglycan  NM[+16.0]NC[+57.0]IEMGGNPLENSGFQPGAFDGLK[+6.0].3  940.42  1229.63  y12  
Biglycan  NM[+16.0]NC[+57.0]IEMGGNPLENSGFQPGAFDGLK[+6.0].3  940.42  1142.59  y11  
Biglycan  NM[+16.0]NC[+57.0]IEMGGNPLENSGFQPGAFDGLK[+6.0].3  940.42  1085.57  y10  
Biglycan  NMNC[+57.0]IEMGGNPLENSGFQPGAFDGLK[+6.0].3  935.09  1142.59  y11  
Biglycan  NMNC[+57.0]IEMGGNPLENSGFQPGAFDGLK[+6.0].3  935.09  1085.57  y10  
Biglycan  NMNC[+57.0]IEMGGNPLENSGFQPGAFDGLK[+6.0].3  935.09  810.45  y8  
Biglycan  VPAGLPDLK  458.28  408.75  y8  
Biglycan  VPAGLPDLK  458.28  719.44  y7  
Biglycan  VPAGLPDLK  458.28  816.49  y8  
Collagen II  GPEGAQGPR  437.72  591.33  y6  
Collagen II  GPEGAQGPR  437.72  335.21  y3  
Collagen II  GPEGAQGPR  437.72  463.27  y4  
Collagen II  TGPAGAAGAR  417.72  508.27  y6  
Collagen II  TGPAGAAGAR  417.72  676.36  y8  
Collagen II  TGPAGAAGAR  417.72  579.31  y7  
PIICP  SLNNQIESIR  590.31  510.28  y4  
PIICP  SLNNQIESIR  590.31  623.36  y5  
PIICP  SLNNQIESIR  590.31  979.51  y8  
COMP  DTDLDGFPDEK  629.27  813.35  y7  
COMP  DTDLDGFPDEK  629.27  698.32  y6  
COMP  DTDLDGFPDEK  629.27  1041.46  y9  
COMP  NTVM[+16.0]EC[+57.0]DAC[+57.0]GMQPAR[+6.0].3  587.91  665.35  y6  
COMP  NTVMEC[+57.0]DAC[+57.0]GM[+16.0]QPAR[+6.0].3  587.91  681.34  y6  
COMP  NTVMEC[+57.0]DAC[+57.0]GM[+16.0]QPAR[+6.0]_both.3  587.91  349.23  y3  
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Protein  Q-peptide sequence  Precursor 
m/z  

Product 
m/z  

Ion 
Type  

COMP  NTVMEC[+57.0]DAC[+57.0]GMQPAR[+6.0].3  582.58  825.38  y7  
COMP  NTVMEC[+57.0]DAC[+57.0]GMQPAR[+6.0].3  582.58  665.35  y6  
COMP  SSTGPGEQLR  519.26  705.38  y6  
COMP  SSTGPGEQLR  519.26  762.40  y7  
COMP  SSTGPGEQLR  519.26  863.45  y8  
Decorin  VDAASLR  369.21  523.33  y5  
Decorin  VDAASLR  369.21  381.26  y3  
Decorin  VDAASLR  369.21  638.36  y6  
Decorin  VHENEITK  488.26  438.73  y7  
Decorin  VHENEITK  488.26  739.39  y6  
Decorin  VHENEITK  488.26  610.35  y5  
Decorin  VPGGLADHK[+6.0].2  450.26  800.44  y8  
Fibromodulin  IPPVNTNLENLYLQGNR  654.35  756.39  y6  
MMP-13  CGVPDVGEYNVFPR  807.89  1298.65  y11  
MMP-13  CGVPDVGEYNVFPR  807.89  649.83  y11  
MMP-13  CGVPDVGEYNVFPR  807.89  987.50  y8  
MMP-13  GETM[+16.0]VFK[+6.0].2  417.21  647.35  y5  
MMP-13  GETMVFK[+6.0].2  409.21  760.40  y6  
MMP-13  GETMVFK[+6.0].2  409.21  631.36  y5  
MMP-13  GETMVFK[+6.0].2  409.21  530.31  y4  
MMP-13  ISELGFPK  448.76  696.40  y6  
MMP-13  ISELGFPK  448.76  783.43  y7  
MMP-13  ISELGFPK  448.76  567.36  y5  
MMP-3  C[+57.0]GVPDVGHFTTFPGM[+16.0]PK[+6.0].3  623.63  698.36  y6  
MMP-3  C[+57.0]GVPDVGHFTTFPGM[+16.0]PK[+6.0].3  623.63  551.30  y5  
MMP-3  C[+57.0]GVPDVGHFTTFPGMPK[+6.0].3  618.30  884.46  y8  
MMP-3  C[+57.0]GVPDVGHFTTFPGMPK[+6.0].3  618.30  783.42  y7  
MMP-3  C[+57.0]GVPDVGHFTTFPGMPK[+6.0].3  618.30  535.30  y5  
MMP-3  EHGDFFPFDGPGK[+6.0].3  485.89  723.38  y7  
MMP-3  EHGDFFPFDGPGK[+6.0].3  485.89  626.32  y6  
MMP-3  GEILFFK  430.25  673.44  y5  
MMP-3  GEILFFK  430.25  560.35  y4  
MMP-3  GEILFFK  430.25  447.27  y3  

 

Table 7. Parameters used in SRM assays. The parent and fragment ion m/z and 
fragment type for all unique peptides. Peptides and transitions used to quantify the 
soluble cartilage extract in normal and OA cartilages are coloured blue. 

 

For all donors, extracted ion chromatograms were performed for each peptide and 

the total ion count used to determine the ratio of light peak area/ heavy peak area 

with 10fmol QconCAT loading.  When multiple peptides were employed for 

quantification the average of these peptides was used for intact quantification. 
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Results were normalised to dry weight of explants. It was identified that disease 

status had no significant effect on the concentration of G1 or G3 aggrecan, biglycan, 

COMP, collagen II, decorin or fibromodulin in cartilage when the either the 

quantification was compared between mean values of all peptides or by comparing 

NCC peptides only. However there was a significant reduction in the quantification 

of the biglycan NCS peptide GVFSGLR between normal (12.8±1.5 pmol/mg and OA 

cartilage (4.5±1.3pmol/mg) (p=0.01) (Figure 8).  We were unable to identify and 

therefore quantify analyte peptides from cartilage extracts for MMP-3 or MMP-13 

using QconCAT. However the MMP-3 q-peptide GEILFFK was quantified in the 

equine secretome (see appendix to manuscript 2).  

Although there was no difference using in G1/G3 ratio of concentration between 

normal and OA cartilage, SRM data indicated that the mean concentration of G3 

aggrecan peptides significantly decreased with age relative to the G1 (YPIVSPR) 

domain with a significant Pearson’s correlation coefficient of 0.79  p<0.05 (Figure 

9).  

We were unable to quantify the extent of hydrolysis of targeted matrix proteins 

due to the variability in peptide abundance between cleaved (NCS) and non-cleaved 

peptides (NCC). This was because for biglycan, COMP and decorin the concentration 

of the NCS peptides were greater than the concentration of the NCC peptides 

(Figure 8). 
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Figure 8. Quantification of cartilage matrix proteins. Graph represents individual 
and mean concentration of peptides ±SEM measured in normal (n=11) and OA 
(n=9) equine cartilage using QconCAT. Non cleaved spanning peptides are indicted 
by red boxes. Data was evaluated using mixed effect linear regression. * denotes 
statistical significance p=0.01. 
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Figure 9. Relationship of G1 and G3 domains with age in normal equine cartilage. 
The scatter plot represents the concentration ratio of G1/G3 determined using SRM 
analysis plotted against age of horse. 

  

Validation of SRM data and spin column methodology using immunoblotting  

Immunoblotting revealed a lack of MMP-3 and COMP in the spin column 

supernatant and protein wash flow through (data not shown). Quantitative 

immunoblotting was used to confirm the results for the peptides MMP-3 and COMP 

in normal and OA cartilage. Equal amounts of protein samples were analysed by 

Western blotting. There was a lack of MMP-3 (data not shown) in the soluble 

cartilage extract of normal and OA cartilage which agreed with our SRM data.  In 

addition there was no significant alteration in COMP expression between normal 

and OA cartilage (Figure 10). Despite BLAST predictions neither anti-GAPDH-

horseradish peroxidase nor anti-β-actin antibodies worked. 
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Figure 10. Effect of disease state on COMP protein levels in equine cartilage. 
Western blot analysis, using COMP antibodies of normal and OA soluble cartilage 
extracts. Densitometry confirmed no significant difference between band intensity 
between samples (data not shown).  

 

Gene expression of matrix proteins and proteases in normal and OA cartilage 
 
To investigate potential patterns of correlation between protein and transcriptional 

regulation and to determine differential expression of further proteases pertinent 

to OA pathogenesis comparative gene expression profiles of matrix proteins and 

proteases were generated for all samples.  Significant increase in the expression of 

MMP-1, MMP-3 and ADAMTS-5 were identified in OA compared to normal cartilage 

(Figure 11). For matched donors there was only a significant positive correlation of 

Collagen II gene expression and protein concentration of normal equine cartilage 

(r=0.63, p<0.02).  
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` 

 

Figure 11.  Mean relative change in gene expression of each gene evaluated in 
normal (n=11) and OA (n=19) cartilage for A. Matrix genes and B. Proteases. 
Statistical significance differences from normal tested using mixed effects linear 
regression is defined as *(p<0.05) **, (p<0.01). q1 and q3 (blue triangle and blue 
cross), minimum and maximum values (red square and purple cross), median (green 
triangle), interquartile range (box) and 95% confidence intervals (whiskers) are 
shown.  
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Discussion 

A prominent feature of OA is the catabolism of the ECM. Many of the proteins as 

well as the sites and types of proteases involved in cleavage are known. Currently 

cleavage is identified for some of these sites by neoepitope antibodies. Whilst 

immunoblotting is sensitive it is poorly quantitative. In this study we wished to 

develop a novel technique to quantify in absolute terms some sites of cartilage 

degradation as well as amounts of intact matrix proteins using parallel 

measurement with QconCAT. We attempted to quantify matrix proteins, the extent 

of matrix degradation and some of the effectors in normal and OA cartilage using 

QconCAT.   

 

The lack of published absolute data for intact and hydrolysed matrix proteins is a 

result of two issues. Firstly the inherent nature of the structure and composition of 

cartilage, means it is difficult to produce reliable and reproducible data for 

cartilage. Secondly until relatively recently there has been a lack of a suitable 

sensitive high throughput proteomic platform. Here we developed a relatively 

simple technique to safely extract soluble cartilage proteins and in addition the 

unique capability of triple quadrupole (TQ) mass spectrometry allowed the most 

sensitive MS platform to be utilised.  

 

Characterisation of samples into normal or OA groups was based on macroscopic 

grading  of the distal condyles of MCIII using the Kawcak et al. method (McIlwraith 

et al., 2010). Some donors that appeared macroscopically normal had histological 

changes associated with mild OA.  Other gross scoring methods containing 

additional features involving the entire joint (Pritzker et al., 2006) may be better at 

identifying mild OA, subsequently identified on histological evaluation.  Indeed 

previous studies elucidated microscopic changes in cartilage demonstrating a lack 

of macroscopic changes (Acebes et al., 2009). Interestingly it has been documented 

that microscopic changes in the joint, such as  in subchondral bone, can precede 

macroscopic  changes associated with OA (Wang et al., 2013). Conversely some 

samples which on macroscopic examination were classified as OA, on histological 

assessment produced a relatively low Mankin’s score. This was probably due to the 
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limitations of the microscopic area retrieved, an important consideration given the 

highly heterogeneous and regional variability in lesions.  

 

As the proteome is complex there is no one method for preparing protein samples 

for MS. A prerequisite to absolutely quantifying ECM proteins from cartilage is their 

complete extraction and digestion from the native tissue. It was also necessary to 

discard, following guanidine extraction, the insoluble collagens and 

glycosaminoglycans (GAGs) which may interfere with tryptic digestion and can be 

catastrophic to the fragile capillary chromatography column in the liquid 

chromatography (LC) system used to resolve the protein digest. Furthermore their 

abundance can cause dynamic range problems.  The insoluble collagen rich fraction 

was first separated from the soluble guanidine extract. Then we used molecular 

weight‐based fractionation to enable sample clean-up, remove most remaining 

collagens and GAGs and enable efficient in-solution protein digestion. A MWCO size 

was chosen for this specific experiment both to prevent the displacement of small 

intact proteins through the membrane during protein clean-up and to keep high 

MW GAGs in the final supernatant. The insoluble fraction following tryptic digest 

was collected and frozen for further analysis. As both biglycan (Schonherr et al., 

1995) and decorin (Brown and Vogel, 1989) are known to interact with collagen, 

analysis of this fraction would be useful to assess the amount of retained proteins 

in the insoluble fraction. 

 

Complete proteolysis was paramount for the absolute quantification workflow as 

analyte is compared to standard (QconCAT) at the peptide level.  For native 

proteins a primary factor in the rate and extent of proteolysis is the higher-order 

structure (Jakoby et al., 2012). Therefore we instigated steps that removed 

potential impediments for digestion by the reduction of disulphide bonds and the 

prevention of reformation and by the presence of small amounts of guanidine 

during tryptic digestion. 

 

The 1-D SDS-PAGE gels of normal and OA cartilage soluble fractions were as 

predicted, identical in agreement with studies in man (Wu et al., 2007) and mice 
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(Wilson et al., 2008). Although digested excised bands contained peptides from 

multiple proteins, as expected the predominant matrix proteins biglycan, COMP 

and fibromodulin were the abundant identifications. Aggrecan with its high MW 

was not identified as a major band as its molecular weight is >2500kDa (aggrecan 

core is 250kDa if all GAG chains are removed). 

 

In this study we adopted SRM of multiple product ions (transitions) for 

quantification as it currently provides the most sensitive method for protein 

quantification using MS. The lower detection limit for peptides is enhanced by up to 

100 fold compared to full scan MS/MS analysis (Keshishian et al., 2007). The 

platform was chosen to reduce costs which would have been incurred by running 

samples on multiple instruments. For instance high abundance intact matrix 

proteins could have been quantified using accurate mass retention time on a 

different instrument but this would have doubled instrument time.  

The initial goal of this study was to quantify aggrecan cleavage using QconCAT. 

However this was not possible due to the amino-acid sequence context and 

positioning of PTMs. The proteolytic enzyme of choice in MS studies trypsin targets 

the carboxyl-side of arginine and lysine for hydrolysis. Unfortunately these were 

scarce around the main aggrecan cleavage sites (Madsen et al., 2010). 

Chymotrypsin would have been the proteolytic enzyme of choice as digestion in-

silico identified two potential NCS peptides for inclusion into the QconCAT. Indeed 

recently an assay for detection of two specific cleavage sites on aggrecan used 

chymotrypsin together with an immunoaffinity based LC-MS/MS method to detect 

cleavage at the ARG374 site and the AGEG1820 site (Dufield et al., 2010b). 

Unfortunately when other proteins of interest for inclusion in the QconCAT were 

assessed for potential chymotrypsin derived peptides few were identified as 

suitable. Thus a number of NCS peptides containing cleavage sites of other matrix 

proteins were included in order to test proof of concept of our approach.  

 From the initial pool of 26 unique peptides 14 gave reliable signal in analyte and 

standard and were quantified. For all proteins except fibromodulin we used at least 

two peptides to quantify intact proteins in the samples. This was owing to either an 



138 
 

inability to detect peptides in both light and heavy forms (‘type C’ peptides) or an 

inability to detect analyte peptides. These latter ‘type B’ peptides (primarily MMPs) 

may be a result of the presence of analyte peptides below the limits of MS 

detection or because they were not present in the sample. Using immunoblotting 

we were unable to identify the presence of MMP-3 in the soluble extraction 

fraction of normal and OA cartilage in agreement with the SRM data. Previous 

studies on normal and OA human cartilage using guanidine extraction followed by 

metalloproteinase assays revealed the presence of acidic and neutral MMPs with 

elevated levels in OA cartilage (Dean et al., 1989). Therefore we are uncertain why 

MMP-3 was not identified in our soluble extract. Using immunoblotting with 

antibodies for MMP-3 (which binds both active and inactive forms) of the spin 

column supernatant and protein wash flow through also failed to identify the 

protein.  As the majority of MMP-3 present in cartilage is in the proenzyme form 

(Lombard et al., 2005) it was thought that immunoblotting would identify it, if it 

was indeed present in the sample.  The size exclusion of the membrane within the 

spin column was selected at 10kDa in order to retain smaller proteins (such as 

MMP-3 with a MW of 50kDa) we wished to quantify above the membrane prior to 

digestion.  There are possibly two explanations for the failure to identify MMPs in 

the samples. It is possible that even though the manufacturers try to reduce non-

specific protein binding to the membrane (through its composition), that this is 

occurring and evident only for low abundance proteins such as MMPs. However it 

was thought that even if this occurred following tryptic digestion the small peptides 

would be released and so identified in downstream analysis. Alternatively MMPs 

could be binding to the insoluble collagen fraction. Collagen binding by MMP-1 is 

known to occur (Tam et al., 2002) but there is no evidence that this occurs in MMP-

3 or MMP-13.   

 

A further ‘type B’ peptide we were unable to detect here was the PIICP peptide. 

This low abundance peptide may not have been detected due to sample 

preparation or concentrations present below the limits of MS detection, despite 

scheduling of transitions to improve detection rate (Picotti et al., 2008). Further 

work using immunocapture followed by LC-MS/MS, similar to methods used to 
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detect aggrecan fragments (Dufield et al.), may enable analysis of cartilage 

synthesis with this peptide.  

 

For the majority of proteins at least two peptides were selected for intact protein 

quantification to account for redundancy following validation of the peptides in the 

quantification strategy. Inferring protein abundance from peptide abundance is 

difficult since peptides for the same protein can disagree. When possible we used 

proteotypic tryptic peptides identified in our previous studies. Even with this 

approach, some peptides were still ‘type C’ and thus redundant for our 

quantification.  There are a number of possible reasons for this. In order to quantify 

specific areas of a protein, for instance a cleavage site or propeptide junction, it was 

necessary to use amino acid sequences that would usually be avoided for instance 

in the peptide CGVPDVGHFTTFPGMPK, a spanning peptide over the 

propeptide/peptide junction of MMP-3. Although the presence of cysteine (C) is 

ideally avoided, the reduction and alkylation steps in the methods means inclusion 

is not problematic (Simpson and Beynon, 2012). This peptide also contains 

methionine which may present variable oxidation, (a satellite peptide of +16Da). 

Our study aimed to sum the intensities of all oxidation states in order to quantify 

this peptide. However only at greater than 100 fmol loading QconCAT on the TQ did 

we identify predetermined transitions from this peptide possibly due to the split 

signal and low signal to noise ratio which made it more difficult to distinguish.  An 

additional problem was that for some peptides, including CGVPDVGHFTTFPGMPK, 

the oxidized form in the QconCAT was much less than for the corresponding analyte 

peptide making it difficult to produce an adequate transition list for all oxidized 

forms. Although an attempt was made to force oxidation of the QconCAT using 

hydrogen peroxide (Corless and Cramer, 2003) this was unsuccessful (data not 

shown). A further reason for poorly performing peptides is poor fragmentation; 

leading to a lack of sensitivity in SRM assays. For example the  MMP-3 q-peptide 

EHGDFFPFDGPGK was identified in our previous studies (manuscript 1) in both MS 

and MS/MS data but when a transition list was produced for this peptide only a 

single suitable transition was found and this was unusable due to counts in the 

hundreds at even 100fmol loading. The peptide would have been in greater 
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abundance in the secretome samples loaded onto the LC in discovery experiments, 

as well as being in a more ‘simple’ proteome and for these reasons it was evident in 

tandem MS but not SRM studies, the latter being undertaken in much diluted 

samples. This is interesting because CONSeQuence predicted that this MMP-3 

peptide was 3/28 in the rankings of MS detectability. Other peptides had poor 

chromatographic behavior such as GLQHLYALVLVNNK which had a broad elution 

profile of greater than the retention time window applied in to SRM methods, thus 

reducing sensitivity. 

 

 Subsequent to the design of the QconCAT a new prediction tool for reference 

peptide selection was released called CONSeQuence (consensus predictor for 

quantotypic peptide sequence) which predicts peptide detectability with 75% cross-

validated accuracy by electrospray ionization MS (Eyers et al., 2011). Interestingly 

when applied to our QconCAT some ‘type C’ peptides such as 

CGVPDVGHFTTFPGMPK, EHGDFFPFDGPGK and NHLVEIPPNLPSSLVELR had a high 

score indicating detectability, whilst some ‘type A’ peptides such as YPIVSPR and 

TIEGDFR had a low score indicating poor detectability. This highlights that a reliance 

on a single bioinformatics tool is not sufficient for selecting q-peptides.  

 

In order to quantify protein hydrolysis we attempted to develop a technique which 

quantified a number of NCC sites within the protein and use this, with 

quantification at a known cleavage site (NCS) to determine the amount of cleavage 

present. Thus we were assuming that if hydrolysis had occurred at a given site there 

would be a reduction in quantification of the NCS compared to the NCC peptide for 

that protein. This approach relied on a good correlation between NCC sibling 

peptides which are quantified independently. However not only were we unable to 

use all the chosen NCC peptides for each protein (due to the classification of a 

number of ‘type C’ peptides), but following data analysis using the remaining 

peptides it became evident that inconsistency in peptide quantification would not 

enable hydrolysis to be quantified with our method. However by analysis of NCS 

peptides it may be possible to determine the amount of cleavage occurring for at 

some sites under different conditions. The NCS peptide GVFSGLR which contains an 
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MMP-13 cleavage site 181G182V in biglycan (Monfort et al., 2006) was quantified as 

being significantly lower in OA compared to normal samples. MMP-13 can degrade 

all small leucine-rich repeat proteoglycans (SLRPs) but biglycan and fibromodulin 

are cleaved preferentially (Monfort et al., 2006). SLRPs interact with collagen 

influencing fibril formation and interaction (Tchetina et al., 2005). Defective linkage 

of collagen with subsequent network instability occurs following degradation of the 

SLRPs. In OA their breakdown may occur prior to major collagen destruction and 

thus contribute to the process (Heathfield et al., 2004). The biglycan NCS peptide 

GVFSGLR may provide a useful marker of cartilage degradation as it could be used 

to determine the role of biglycan breakdown in OA progression.  

 

Quantification performance can be measured by plotting values from sibling 

peptides against each other. In this study G3 aggrecan and one COMP sibling pair 

together with type II collagen aligned close to the equality diagonal. Disparity 

between peptides can be attributed to a number of issues. Interfering signals 

resulting in low signal to noise will make reliable quantification difficult due to a 

reduction in the quality of the peak.  A reduction in signal can occur due 

unanticipated post-translational modification (PTM) or to miscleave in the analyte 

or QconCAT. In addition although protease inhibitors were used in the workflow 

there is still a possibility of exopeptidases removing terminal amino acids. This 

would reduce the m/z and not allow identification or quantification. Our QconCAT 

design rejected peptides with known PTMs which would interfere with 

quantification through signal splitting between modified and unmodified forms.  

However it may be that although database searching of experimental data was not 

suggestive of PTMs there were unidentified PTMs, thus underestimating protein 

quantification.  

 

Reduced quantification values are evident when there is miscleavage in the analyte. 

Attempts made to identify potential miscleaves using label-free quantification 

consistently identified a single miscleave related to this study in the analyte as 

DTDLGFPDEKLR. Indeed compared to one of the other NCC peptides SSTGPGEQLR, 

there was a reduction in quantification using this peptide. The other NCC peptide; 
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NTVMECDACGMQPAR produced a much greater quantification than either 

DTDLGFPDEKLR or SSTGPGEQLR. A higher quantification can be due to QconCAT 

miscleavage. This is easier to identify than analyte miscleaves as increased column 

loadings can be achieved in order to recognize low intensity miscleaves. Not only 

can MS detectors be saturated with more abundant peptides at higher loading, but 

the LC columns can collapse with protein overloading. As no detection of 

miscleavage in the QconCAT digest was detected, even at high column loading, this 

is unlikely to be the reason for NTVMECDACGMQPAR giving a higher quantification 

of COMP. Previous authors have stated that when miscleaves at high loadings of 

QconCAT are not identified, the disparity can assumed to be the analyte and so the 

higher quantification should be used (Simpson and Beynon, 2012). In this study 

however, when we were unable to identify the cause of the discrepancy we used 

the mean of all NCC peptides quantified to give an absolute value for intact 

proteins. For example for intact COMP the mean of all three peptides was utilized.  

It might be expected that disparity occurs between NCC and NCS peptides where 

hydrolysis has occurred. For both biglycan (GVFSGLR (NCS) and VPAGLPDLK (NCC)) 

and decorin (VDAASLR (NCS) and VHENEITK (NCC)) the mean of both peptides were 

used in quantification. VPAGLPDLK was identified retrospectively as having a high 

probability of N terminal miscleavage possibly due to a proline residue as the 

second amino acid (Siepen et al., 2007). Although we were unable to substantiate 

this, the resulting quantifications with this peptide were lower than with GVFSGLR. 

However, VDAASLR also identified as having a high probability of N terminal 

miscleavage using the bioinformatics tools (due to an acidic residue two positions 

from the cleavage site) but not label-free, produced a quantification value greater 

than VHENEITK. This is not suggestive of a missed cleavage for VDAASLR in the 

analyte. Thus peptide disparities meant that the remaining NCS peptides 

quantifications; GVFSGLR and VDAASLR conferred greater values than the NCC in 

both normal and OA cartilage. As a result hydrolysis could not be measured using 

this QconCAT and so we elected to employ the peptides in the quantification of the 

intact proteins. 
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The G1 aggrecan peptide; YPIVSPR was more abundant in cartilage than the three 

G3 aggrecan peptides. Two processes arise in cartilage to explain the differential 

expression of G1 and G3 in cartilage. Firstly soon after cartilage aggrecan synthesis 

there is a small loss of G3 (Paulsson et al., 1987).  Secondly normal turnover 

produces a steady decline of G3 (Ratcliffe et al., 1986). This is from cleavages in the 

chondroitin sulphate (CS) region (Caterson et al., 2000), so that the average size of 

aggrecan decreases with its age (Dudhia et al., 1996) and  hence a large proportion 

of aggrecan lacks a G3 domain (Paulsson et al., 1987). The QconCAT provides a 

useful tool to monitor changes in the different regions of aggrecan in cartilage.  

 

Although data did not identify any significant differences in intact matrix proteins 

between normal and OA cartilage we were able to provide base-line levels for some 

intact matrix proteins. Our data indicated that of the matrix proteins quantified 

COMP was the most abundant.  Interestingly the concentrations of the small 

leucine rich proteoglycans (SLRP) were similar to aggrecan. Indeed although in 

cartilage aggrecan accounts for the greatest proportion of the proteins present by 

volume (Hardingham et al., 1986) (due to the size of aggrecan and the number of 

side chains) our results are in agreement with others who hypothesized that  SLRPs 

were present in similar amounts to aggrecan (Hardingham and Bayliss, 1990).  

Furthermore it has been previously stated of the dermatan sulphate proteoglycans 

whose members are biglycan and decorin, that decorin is the predominant species 

in adult human cartilage. This observation was following preliminary 35S sulphate 

labelling studies on a limited number of specimens (Melching and Roughley, 1989). 

However, the study stated that they could not exclude the possibility that biglycan 

remained within the cartilage residue following extraction. Although further 

literature was sought to identify which is the predominant of the two, references 

were only found that referenced this original paper. This study would suggest that 

biglycan is the predominant species in normal adult cartilage. However in OA 

cartilage decorin becomes the predominant. 

Quantitative changes in gene expression between normal and OA cartilage were 

studied to establish whether there was a correlation between protein and 

transcriptional abundance. In order to understand what is occurring in OA, both 
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mRNA and protein levels of cartilage are necessary. In cartilage the majority of the 

protein is within the ECM whilst the mRNA is sourced from chondrocytes. Whilst 

knowledge of mRNA expression is useful, results are only correlative, rather than 

causative. As proteins are the molecules that produce events in a cell their 

quantities need to be studied in association with gene expression. Without collagen 

Type II we did not identify any correlation. This latter finding should be scrutinised 

with prudence as collagen II was only quantified in the soluble fraction of the 

cartilage extract as carryover and does not account for total protein expression. It is 

not surprising that there was a lack of  correlation between mRNA and protein as 

previously the relationship has been demonstrated to vary in all directions, thus 

simple deduction of protein from mRNA is insufficient (Greenbaum et al., 2003; 

Gygi et al., 1999b). There a number of possible reasons for poor correlation. These 

include post-translational regulation effecting degree of translation, decay 

differences in mRNA and proteins, and locations or molecular associations of 

proteins expressed by genes. Our study measured specific proteins in cartilage, 

which is primarily derived from ECM as cells account for barely 1% of the total 

volume. Little is known about protein decay of the major ECM proteins, whilst our 

understanding of mRNA decay is expanding (Tew and Clegg, 2010). More work 

needs to be undertaken to assess protein turnover in the cartilage ECM in health 

and disease in order to elucidate what relationship there is between mRNA and 

protein. 

 

We were interested in gene expression changes between normal and OA cartilage. 

In the present study despite a large variability in expression levels between donors 

there was a significant increase in the expression of proteolytic enzymes (MMP-1, 

MMP-3, and ADAMTS-5) in OA cartilage.  These results were consistent with others 

indicating an increase in catabolic pathways in OA of the metacarpus of the horse 

(Smith et al., 2006). The role of ADAMTS-5 in OA is controversial (Bondeson et al., 

2008). In equine carpi cartilage a recent study revealed a significant increase in 

ADAMTS-5 in synovial tissue from OA joints, whilst OA cartilage demonstrated a 

significant increase in ADAMTS-4, (Kamm et al., 2010). It may be that underlying 

aetiology of OA in the two joints differs.  Although there was no significant 
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difference in MMP-13 expression here, there was an increase in the variability of 

MMP-13 expression in OA samples with those having a higher Mankin’s score 

having a higher expression of MMP-13 (data not shown). This is in agreement with 

other work that suggests MMP-13 is detectable in later stage OA (Aigner et al., 

2001).  

 

The gene expression of matrix macromolecules was unaltered in this study. Others 

demonstrate variable results from gene expression analysis of ECM genes in OA; 

with some indicating differential expression (Brew et al., 2008; Smith et al., 2006) 

whilst others have not (Martin et al., 2001).  We conclude that expression profiles 

of some genes correlate to OA.  However further work using normal and OA 

cartilage from the same donors but distinct matched joints would be beneficial the 

further understanding of gene expression changes in OA.  

 

Conclusion 

The aim of this study was to develop a sensitive, specific and inexpensive assay to 

quantify ECM proteins and cartilage degradation using QconCAT together with SRM 

methodology. The study enabled the absolute quantification of matrix proteins for 

the first time as well as providing a potential tool to measure cartilage degradation 

at specific sites. This QconCAT will support future studies particularly in measuring 

the absolute protein abundance in cartilage explant studies.   
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APPENDIX TO MANUSCRIPT 2 

Interrogation of an IL-1β stimulated explant secretome with QconCAT 

Introduction 

A QconCAT was developed for quantification of matrix proteins in whole cartilage 

extracts. However the QconCAT also has applications for absolutely quantifying 

these proteins in other equine samples. As manuscript 1 had indicated differential 

expression of MMP-3 protein in the IL-1β stimulated explant secretome by label-

free MS and western blotting this model was used to test our QconCAT, particularly 

in quantifying MMP-3 in a less complex proteome. 

The QconCAT was used to absolutely quantify aggrecan, type II collagen, biglycan, 

decorin and MMP-3.  COMP and fibromodulin were not quantified as this had 

already been previously undertaken in the appendix to manuscript 1. 

Materials and methods  

Cartilage isolation and explant culture  

An IL-1β stimulated 96h equine cartilage explant model of early OA was used in the 

study (n=3). All donor specifications and methods have been previously described in 

the manuscript; Proteomic characterisation and quantification of an in-vitro early 

equine inflammatory model. Donors used were different to those used in previous 

studies but were also collected from the entire surfaces of the 

metacarpophalangeal joints of grossly normal skeletally mature horses aged 

between 9 and 12 years.  

Protein digestion for absolute quantification 

100μg protein for each sample of explant supernatant was detergent-treated, 

reduced, alkylated and trypsin digested as described in the Manuscript 2. Previously 

trypsin digested QconCAT was spiked into the diluted samples at 10fmol load on 

column following analyte ranging experiments using label-free quantification on the 

Synapt G1 Q-TOF instrument. The peptides were resolved using a NanoAcuity LC 
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system and Xevo TQ instrument methods have been previously described 

(Brownridge and Beynon, 2011) and manuscript 2. Samples were run in duplicate 

technical replicates.  

 

LC-SRM/MS quantification and data analysis  

Transitions and data analysis for SRM studies have been previously described in the 

manuscript 2. Results were normalised to wet weight of explants as the explants 

were to be used in further studies post culture. 

 

Statistical analysis 

Statistically significant differences in the absolute quantification of cartilage 

secretomes between control and treated cultures were analysed using mixed 

effects linear regression to allow for donors with significant biological variation. 

Statistical analyses were undertaken using S-Plus and Excel software. 

 

Results 

Two q-peptides were used to quantify each protein except for MMP-3 when only 

GEILFFK was used as the other q-peptides were ‘type C’ (not evident in heavy or 

light channels using SRM). The classification of each q-peptide in terms of non-

cleaved spanning (NCC) and non-cleaved control (NCS) classification used in 

quantification is demonstrated in Table 1.  IL-1β stimulation of equine cartilage 

explants cultures for 4 days significantly increased aggrecan, type II collagen, 

decorin and MMP-3 in supernatant media (Figure 1). Although quantification values 

using two q-peptides for the same protein varied, the percentage increase in each 

when compared to control were not significantly different (Table 1).  
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pmol/mg wet 

weight   

Protein 

Peptide 
amino acid 
sequence 

Peptide 
type 

Mean 
concentration 

control 

Mean 
concentration 

treatment 

% 
increase 

aggrecan 
YEINSLVR NCC 4.47 20.90 368.00 

YQCTEGFVQR NCC 8.16 29.87 265.87 

biglycan 
GVFSGLR NCS 29.22 34.38 17.65 

VPAGLPDLK NCC 2.54 3.18 25.14 

Type II 
collagen 

GPEGAQGPR NCC 51.66 78.94 52.79 

TGPAGAAGAR NCC 35.65 55.69 56.21 

decorin 
VDAASLR NCS 18.07 37.96 110.08 

VHENEITK NCC 17.72 43.46 145.28 

MMP3 GEILFFK NCC 0.00 11.84 Infinite  

 

Table 1. IL-1β treatment of normal equine cartilage explants increased the 
expression of matrix proteins and MMP-3. The proteins quantified in the study are 
shown along with the q-peptides used in quantification and their classification 
(NCC; non-cleaved control, NCS; non-cleaved spanning). Both aggrecan q-peptides 
were from the G3 domain. Results were normalised to wet weight of cartilage 
explants. % increase refers to the increase in protein in treated supernatant media 
compared to control. 
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Figure 1. Quantification of the equine cartilage secretome revealed a significant 
increase in expression of type II collagen (Col2A1), aggrecan, biglycan, decorin and 
MMP-3 using QconCAT.  Where two q-peptides were used the mean values from all 
q-peptide were used for final results. Data are represented as pmol/g wet weight. 
Histograms represent means + SEM. Data was evaluated using mixed effects linear 
regression and * indicates significant difference relative to control. Statistical 
significance is defined for this study as * P<0.05 (n=3). 

 

Discussion 

Even in the early stages of disease, the development and progression of OA are 

thought to involve inflammation. Secreted factors such as proinflammatory 

cytokines are critical mediators of the imbalance between anabolism and 

catabolism of the joint tissue involved in OA. IL-1β suppresses type II collagen 

(Chadjichristos et al., 2002) and aggrecan gene expression (Stove et al., 2000) and 

stimulates the release of MMP-1, MMP-3 and MMP-13 (Lefebvre et al., 1990). 

Therefore in the current work the IL-1β stimulated explant culture provides a 

means of studying early OA changes in-vitro. 

 

The QconCAT enabled quantification of aggrecan, type II collagen, decorin, biglycan 

and MMP-3 in the IL-1β stimulated explant secretome. As demonstrated and 
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discussed in manuscript 1 the values given by peptides from the same protein 

varied. Interestingly when NCC and NCS peptides were used to quantify biglycan 

and decorin there was no apparent change in the percentage increase in the NCS 

compared to the NCC, following Il-1β stimulation. However there was an reduction 

in the increase in the amount of the NCC peptides compared to the NCS peptides. 

This could be due to an IL-1β mediated increase in MMPs resulting in increased 

degradation of the  biglycan peptide GVFSGLR by MMP-3 (Monfort et al., 2006) and 

decorin VDAASLR by MMP-13 (Imai et al., 1997) as these peptides span the 

respective cleavage sites.  

 In manuscript 2 MMP-3 was not quantified. In this experiment undertaken using 

whole cartilage extract the q-peptide GEILFFK was a ‘type B’ peptide; signal in the 

heavy channel (QconCAT) but not the light channel (analyte). Furthermore it was 

not identified by western blotting either. However, when explant media was 

probed with anti-MMP-3 antibodies in the manuscript 2 (Figure 1), in agreement 

with the QconCAT results, it was also demonstrated to have increased expression 

following IL-1β treatment.  

 

Interestingly this western blot also demonstrated the presence of MMP-3 in the 

control media. Western blotting is sensitive and highly specific when antibodies are 

available, and therefore it is excellent for detecting a given protein. In this 

experiment it highlights that the antibodies used were more sensitive than the SRM 

approach for the q-peptide used. The SRM experiment did not detect MMP-3 in the 

control media as levels were apparently below the limits of detection for the assay 

for this particular q-peptide. Antibodies have limitations concerning reproducibility 

and dynamic range when it comes to quantification and when it is necessary to 

determine the concentration of multiple proteins at the same time. In this respect 

the QconCAT is a useful tool for quantification. 

 

From the matrix proteins quantified the largest change in expression was for 

aggrecan. This is not surprising as it is one of the first matrix proteins targeted for 

degradation following cytokine stimulation and in early OA (Fosang et al., 1991; 
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Madsen et al., 2010). One important finding from this study was the ability to 

detect type II collagen breakdown early as demonstrated by an increase in Type II 

collagen in the media after only 4 days. Previous cytokine stimulated explant 

studies employing an enzyme-linked immunosorbent assay using mouse IgG 

monoclonal antibody to denatured type II collagen found there was no release of 

collagen into culture media until 14 days after explant culture. By which time most 

of the proteoglycans had been lost from the explants. In addition Price et.al 1999 

(Price et al., 1999) measured collagen degradation following cartilage explant 

stimulation with retinoic acid using release of epitope CB11B and found it negligible 

until 14 days of culture. A further study stimulated equine cartilage explants 

stimulated with different combinations of IL-1, serine protease activated protein C 

(APC), TNFα and oncostatin M (OSM) for 96 hours. Collagen release from explants 

was measured with hydroxyproline assay. There was no significant release of 

collagen following IL1, TNFα, OSM or APC alone however when IL-1 or TNFα were 

combined with APC at concentrations greater than 5μg/ml there was a significant 

increase in collagen release into the media but this required a 60% loss of 

glycosaminoglycans (Garvican et al., 2010). Hydroxyproline assays are used to 

quantify collagens given that 14% of amino acids in collagen are hydroxyproline 

(Weiss and Klein, 1969). The lowest hydroxyproline standard used to make a 

standard curve is 2μg/ml. Given the average mass of a collagen type II 

(hypothesised as the predominant collagen released by cartilage explants) is 

190kDa then the sensitivity of the lowest standard equates to 1.4μmol/μl. In the 

SRM assay used the sensitivity was 10fmol/μl. This gives an increase in sensitivity of 

the SRM to greater than 7 orders of magnitude. Therefore our method may be a 

useful sensitive tool to monitor early degradation of Type II collagen.  Furthermore, 

whilst the enzymatic pathways of collagen degradation are complex, it is likely that 

the numerous enzymes involved are activated at varying times and under different 

circumstances. The numerous pathways leading to OA may therefore result in the 

formation of differing amounts of the collagen cleavage products, depending on the 

stage and type of arthritis (Poole et al., 2003). This may explains why significant 

differential release of type II collagen is evident in this study. 
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Conclusion 

Whilst antibody-based studies have enabled some questions to be addressed about 

the sequence of events in cartilage degradation the equine degradome QconCAT 

could enable further elucidation of mechanisms of cartilage proteolysis as it is a 

valid method to enables both proteases and matrix proteins to be investigated in a 

single experiment. 
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Protein Signatures of the Human Osteoarthritic Secretome 

 

Abstract 

Osteoarthritis (OA) is characterized by a loss of extracellular matrix (ECM) which is 

driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome 

allows the global study of secreted proteins. These are an important class of active 

molecules with roles in numerous pathological mechanisms. Although cartilage 

studies have identified profiles of secreted proteins, limited quantitative 

proteomics techniques have been implemented which would enable further 

biological questions to be addressed. To overcome this limitation we used the 

secretome from human OA cartilage explants stimulated with IL-1 β and compared 

proteins released into the media using a label-free LC-MS/MS-based strategy. We 

then employed QconCAT technology to quantify specific proteins using selected 

reaction monitoring (SRM). A total of 242 proteins were identified 9 of which 

identified were differentially expressed by IL-1 β stimulation. Selected protein 

candidates were quantified in absolute amounts using QconCAT. These findings 

confirmed a significant reduction in TIMP-1 in the secretome following IL-1β 

stimulation. Label-free and QconCAT analysis produced equivocal results indicting 

no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein 

(COMP), fibromodulin, matrix metalloproteinases 1 and 3 and plasminogen release. 

Taken together our proteomics approaches to OA research allows comparative 

protein profiling and absolute quantification affording tools for the detection and 

quantification of proteins in molecular pathways pertinent to understanding the 

pathogenesis of OA. 

 

Introduction 

Articular cartilage, an avascular connective tissue provides a nearly frictionless 

bearing surface for transmitting and distributing mechanical loads between the 

bones of the skeleton (Mow et al., 1992). The chondrocyte, the sole cell type 

(Archer and Francis-West, 2003), is embedded within an ECM whose unique load 
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bearing properties  are dependent upon its structural composition and 

organisation, particularly the interactions between collagens and proteoglycans 

(Poole et al., 2001). Progressive articular cartilage loss leads to joint pain and 

dysfunction that is clinically identified as OA. In OA the normal equilibrium between 

matrix deposition and degradation is disrupted resulting in progressive loss of 

important ECM components, especially aggrecan and collagens.  

Mass spectrometry (MS) has emerged as an important analytical tool for protein 

analysis with MS-based proteomics enabling proteins within a sample to be 

identified and quantified. Cartilage proteomic studies have permitted the 

investigation of cartilage proteins in both the intact cartilage tissue (Iliopoulos et 

al., 2010; Wilson et al., 2009) and the cartilage secretome (Catterall et al., 2006; 

Stevens et al., 2008), with a number of studies reporting IL-1 driven protein 

secretion from cartilage ECM (Ruiz-Romero and Blanco, 2010). The cartilage 

secretome  defined as the proteins identified in the media surrounding the 

chondrocyte or explants, includes proteins secreted or shed from the cell surface, 

plus intracellular proteins released into the supernatant due to cell lysis, apoptosis 

or necrosis (Hathout, 2007). In cartilage explant studies proteins released into 

media, by chondrocytes and ECM may be similar to proteins released in-vivo in 

cartilage degradation (Wilson et al., 2009) and data from these studies has enabled 

improved understanding of OA pathogenesis (Iliopoulos et al., 2010). The 

secretome may be altered by addition of pro-inflammatory cytokines to explants, 

an accepted method of studying matrix metabolism in experimental investigations 

of OA in-vitro (Arner et al., 1998; Goldring and Goldring, 2004). Indeed cytokine 

stimulation of normal and OA cartilage explants has been used in numerous studies 

to initiate a catabolic response (Ismaiel et al., 1992; Song et al., 2007) and assess 

different facets of the degradative process. 

 

The two types of protein quantification are absolute quantification which 

determines real amounts of a protein in terms of concentrations for example as 

copies per cell, and normally uses external or internal standards and relative 

quantification. The latter determines relative differences in protein abundance. 
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Within cartilage research there is a need for absolutely quantitative MS in order to 

define proteins in tangible amounts. This will aid the understanding of and define 

how protein content of chondrocytes ECM alters in both ageing and disease.   

Moreover such data will provide necessary information for mathematical modelling 

of biological systems. Although relative quantification of the cartilage secretome 

has been undertaken in numerous studies (De Ceuninck et al., 2005; Haglund et al., 

2008; Hermansson et al., 2007), these experiments focus on ‘discovery’ proteomics 

and the detection of differentially expressed proteins; few studies have attempted 

to quantify the cartilage secretome in exact amounts.  Whist this work has enabled 

biomarker discovery to progress (Haglund et al., 2008)  a more detailed knowledge 

of the quantities, interactions and  dynamics of matrix components and the 

protease enzymes involved in degradation will increase our understanding of the as 

yet undefined mechanisms involved in ECM destruction typical of OA. For example 

a knowledge of the exact nature of protease/ tissue inhibitors of metalloproteinase 

(TIMP) will further our comprehension of OA pathogenesis which could aid in the 

discovery of treatments.  Metabolic isotope labelling in culture using stable isotope 

labelling of amino acids in cell culture (SILAC) has been employed in comparative 

cartilage studies (Polacek et al., 2010a). Whilst SILAC is suitable for the 

quantification of the same protein under different conditions, it is not suitable for 

quantification of different proteins under any conditions. Furthermore data is 

dimensionless leading to difficulties in interpretation. 

The two current approaches to absolute quantification are label-free and label-

mediated quantification. Label-free methods are based on the direct measurement 

of the MS acquired signal. Here it is taken  that when constituent peptides 

produced following protein digestion are converted into ions the most abundant 

proteins will produce the most ions and thus the greatest signal intensities (Zhu et 

al., 2010). This method provides  acceptable quantification for the high abundance 

components of a sample, but suffers at the low abundance range due to technical 

variance . Stable isotope labelled quantification includes the use of chemically 

synthesized peptide standards known as  AQUA peptides (Gerber et al., 2003) and 

QconCAT (Beynon et al., 2005). Both rely on the MS quantification of a known 
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amount of isotope–labelled peptide standard relative to the otherwise identical 

non-labelled within an analyte peptide. This approach benefits from a high level of 

sensitivity with quantification possible to the atomole level. 

 

In addition entire proteins can be used as standards; protein standard absolute 

quantification (PSAQ). Here a full-length protein with homologous biochemical 

properties of the target protein are spiked in at the start of the analytical process 

(Dupuis et al., 2008). 

 

In this study we have used label-free data to give a preliminary assessment of the 

OA secretome protein profile and protein abundance. Then we used absolute 

quantification by MS,  based on the well established principle of stable isotope 

dilution, using QconCAT as a multiplexed standard (Beynon et al., 2005) to validate 

and give absolute baseline values for  a number of key matrix proteins. QconCAT 

are  artificial proteins that permit highly accurate parallel absolute quantification of 

large sets of analyte proteins (Beynon et al., 2005). These constructs of a set of 

mass-tagged internal standard peptides (q-peptides) contain sequences unique to 

the proteins of interest. The QconCAT approach uses an artificial gene, cloned into 

a vector and expressed in bacterial culture containing stable heavy isotope labelled 

arginine and lysine to produce stable isotope labelled standards.  The gene encodes 

a single ORF consisting of a series of linked peptides, usually tryptic, which each act 

as individual internal standards for a given protein (Meistermann et al., 2006; Pratt 

et al., 2006; Rivers et al., 2007). Then either a known amount of QconCAT protein is 

co-dig ested with analyte proteins or a tryptic digest of the QconCAT is spiked into 

the analyte tryptic digest at a known amount. MS analysis subsequently allows the 

quantification of each peptide present in the sample. Relative abundance as well as 

absolute amount (from known amount of Q-peptide added) of analyte peptide can 

be measured. A number of papers have used QconCAT technology to quantify 

multiple proteins including muscle development proteins (Rivers et al., 2007), 

glycolytic proteins in yeast (Carroll et al., 2011), surface proteins in Schistosoma 

mansoni blood fluke (Castro-Borges et al., 2011), host response to bovine mastitis 

pathogens (Bislev et al., 2012) and cohesion interactions in human cell lines (Ding et 
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al., 2011). The advantages of QconCAT include the ability to quantify a large 

number of proteins simultaneously from a sample, a relatively low cost per peptide, 

and the ability to synthesize problematic peptides. QconCAT methodology also has 

its shortcomings. These include the poor solubility of some QconCATs, variable 

expression, incomplete digestion and  post translational modifications during 

digestion (Aebersold and Mann, 2003). 

 

We hypothesize that there are measurable changes in protein abundance in the 

human OA secretome following cytokine stimulation which can be absolutely 

quantified using QconCAT. The aim of this study was to develop and test a targeted 

quantification method for the multiplexed analysis of proteins involved in the 

pathogenesis of OA. Here we report the development of a QconCAT in order to 

quantify the cartilage secretome. A human secretome QconCAT was designed, 

expressed, validated and then used to quantify cartilage matrix components and 

proteases in an IL-1β stimulated OA cartilage explant model. 

 

Materials and Methods 

Peptide selection, preparation and purification of QconCAT 
 
We selected 20 proteins of interest in cartilage degradation. Two proteotypic 

tryptic peptides per protein were selected from the Global Proteome Machine 

database (www.thegpm.org) and the Human PeptideAtlas (www.peptideatlas.org) 

based on criteria described by Pratt et al. (Pratt et al., 2006) including their 

suitability score, physicochemical properties deemed to promote MS detectability,  

and uniqueness to a given protein. In addition amino acids that were prone to 

oxidation and miscleavage were avoided and all peptides were either lysine or 

arginine terminated (Table 1). Peptides were arranged in sequence context were 

possible. In the native protein the amino acid sequence prior to the q-peptide were 

noted and the peptides in the QconCAT ordered where possible to mimic this in 

order to optimise digestibility. The transformation, expression and purification of 

QconCAT has been previously described in detail (Rivers et al., 2007). Briefly, 

following synthesis of the gene by PolyQuant GmBH (Entelechon, Germany) the 

http://www.thegpm.org/
http://www.peptideatlas.org/
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QconCAT was ligated into the expression vector pET-21a  and expressed in 

Escherichia coli (E.coli) cultured in minimal media ( 1xM9 salts , 1mM MgSO4, 

0.1mM CaCl2, 0.00005% (w/v) thiamine, 0.2% (w/v) glucose, unlabeled amino acids 

at 0.1mg/ml or 0.2mg/ml histidine, tyrosine, phenylalanine, proline and tryptophan 

all Sigma-Aldrich) supplemented with 13C6 analogues of arginine and lysine 

containing stable isotope labelled amino acids. Once cells achieved mid log phase 

(OD660nm 0.6-0.8) expression was induced by addition of 1mM IPTG Isopropyl β-D-1-

thiogalactopyranoside (Sigma-Aldrich). After 5h of induction cells were harvested 

by centrifugation at 1400g at 4oC for 15min. Cell lysis was undertaken using 

BugBuster Protein Extraction Reagent (Merck Chemicals, Nottingham, UK). 

 

Inclusion bodies were first re-dissolved in 20mM phosphate buffer, 6M guanidine 

chloride, 0.5M NaCl, 20mM imidazole, pH 7.4. They were then solubilised using 

sonication, followed by purification using immobilised metal affinity columns; Ni-

MAC (Novagen, Darmstadt, Germany). The purified QconCAT protein was desalted 

three times by dialysing against 100 volumes 10mM ammonium bicarbonate, pH 

8.5, 1mM dithiothreitol (DTT) for 2h changing the buffer each time.  

 

Characterisation of QconCAT 

The homogeneity of the QconCAT was determined by the in-gel digestion of a 

protein band corresponding to the expected molecular mass for the QconCAT of 

58KDa. Briefly a 5μg aliquot of purified QconCAT protein was run on a 12% SDS-

PAGE gel after a 50 min run at 200V, fixed with 40% methanol and 10% acetic acid 

then stained with Coomassie blue.  

 

In-gel digestion was undertaken as previously described (McIlwraith et al., 2010). 

1μl of the digest was mixed with 1μl of α-cyano- 4-hydroxycinamic acid (CHCA; 

Sigma, Poole, UK) in 50% (v:v) acetonitrile (ACN)/0.1% (v:v) trifluoroacetic acid  
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Peptide 
Order 

Protein Protein Accession 

Native N-
terminal 
flanking 
peptides 

Q-peptide amino acid 
sequence 

Native C-
terminal 
flanking 
peptides 

1 MMP16 ENSP00000286611 VWK GIPESPQGAFVHK ENG 

2 MMP16 ENSP00000286611 RVK EGHSPPDDVDIVIK LDN 

3 CathepsinD ENSP00000236671 QQK LVDQNIFSFYLSR DPD 

4 COMP ENSP00000222271 CGR DTDLDGFPDEK LRC 

5 Col11a2 ENSP00000372565 KGK LGVPGLPGYPGR QGP 

6 Fibromodulin ENSP00000347041 LQK IPPVNTNLEN LYLQGNR INE 

7 MMP3 ENSP00000299855 TYR IVNYTPDLPK DAV 

8 ADAMTS1 ENSP00000284984 SDR DAEHYDTAILFTR QDL 

9 ADAMTS4 ENSP00000356975 LSR FVETLVVADDK MAA 

10 CathepsinD ENSP00000236671 VSK YSQAVPAVTEGPIPEVLK NYM 

11 Link protein ENSP00000274341 FLK GGSDSDASLVITDLTLEDYGR YKC 

12 MMP3 ENSP00000299855 VQK YLENYYDLK KDV 

13 ADAMTS5 ENSP00000284987 RSK GLVQNIDQLYSGGGK VGY 

14 TIMP3 ENSP00000266085 VER WDQLTLSQR GLN 

15 TIMP4 ENSP00000287814 WYR GHLPLR KEF 

16 CathepsinK ENSP00000271651 HSR SNDTLYIPEWEGR APD 

17 Link Protein ENSP00000274341 NGR FYYLIHPTK LTY 

18 COMP ENSP00000222271 AVK SSTGPGEQLR NAL 

19 Plasminogen ENSP00000308938 PHR HSIFTPETNPR AGL 

20 MMP13 ENSP00000260302 FWR LHPQQVDAELFLTK SFW 

21 MMP13 ENSP00000260302 YLR SYYHPTNLAGILK ENA 

22 Plasminogen ENSP00000308938 LLK EAQLPVIENK VCN 

23 Col9a1 ENSP00000349790 IQK VVGSATLQVAYK LGN 

24 TIMP4 ENSP00000287814 GVK LEANSQK QYL 

25 MMP1 ENSP00000322788 FMK DGFFYFFHGTR QYK 

26 ADAMTS1 ENSP00000284984 EQK GPEVTSNAALTLR NFC 

27 ADAMTS4 ENSP00000356975 SIR NPVSLVVTR LVI 

28 Aggrecan ENSP00000268134 VDR LEGEVFFATR LEQ 

29 Fibromodulin ENSP00000347041 LER LYLDHNNLTR MPG 

30 TIMP1 ENSP00000218388 MYK GFQALGDAADIR FVT 

31 TIMP1 ENSP00000218388 RAK FVGTPEVNQTTLYQR YEI 

32 TIMP3 ENSP00000266085 VNK YQYLLTGR VYD 

33 Col11a2 ENSP00000372565 AYR VARPAQLSAPTR QLF 

34 ADAMTS5 ENSP00000284987 AFR LPLAAVGPAATPAQDK AGQ 

35 Aggrecan ENSP00000268134 KEK EVVLLVATEGR VRV 

36 CathepsinK ENSP00000271651 VAR VGPVSVAIDASLTSFQFYSK GVY 

37 Col2a1 ENSP00000338213 GAR GAQGPPGATGFPGAAGR VGP 

38 Col2a1 ENSP00000338213 GPK GPPGPQGAR GDR 

39 Col9a1 ENSP00000349790 GPR GVQGEQGATGLPGVQGPPGR APT 

40 MMP1 ENSP00000322788 YGR SQNPVQPIGPQTPK ACD 
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Table 1 Human cartilage QconCAT signature peptides in QconCAT context order. 
The three amino acids found adjacent to the N and C termini of the q-peptide 
within the native protein are indicated (Matrix metalloproteinase (MMP), collagen 
(Col), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), 
tissue inhibitor of metalloproteinase (TIMP)). 

 

(TFA) and 1μl spotted on a MALDI plate. Positive-ion MALDI mass spectra (MS) were 

obtained using an Ultraflex (Bruker, Brenin, Germany) in reflector mode over m/z 

range 900-4500. Monoisotopic masses were collected from centroids of raw 

unsmoothed data. 

 
Cartilage isolation and explant culture 

Human articular cartilage (HAC) was obtained following total knee arthroplasty due 

to OA with informed consent and ethical approval. Full thickness cartilage that 

appeared macroscopically intact and normal was harvested from the entire 

surfaces of three male donors aged between 69 and 84 years.  

Cartilage was diced into explants of approximately 2mm, mixed and  placed in 

complete medium [Dulbecco’s modified Eagle’s medium (DMEM), supplemented 

with foetal calf serum (10% v/v), 100U/ml penicillin, 100U/ml streptomycin 

(Invitrogen, Paisley, UK) 500ng/ml amphotericin B (BioWhittaker, Lonza, USA). 

Explants were washed twice with serum-free DMEM (to deplete serum and synovial 

proteins) and allowed to equilibrate in complete medium for 24h at 37oC in 5% CO2 

in 12 well plates (2ml/well). Media was then replaced with serum-free DMEM prior 

to incubation, supplemented with or without human recombinant IL-1β (10ng/ml; 

R&D Systems) in dimethyl sulfoxide (DMSO) diluent. After 48h, media was removed, 

centrifuged to remove debris and protease inhibitors (Complete protease 

Inhibitors, EDTA-free, Roche, Lewes, UK) added. Samples were stored at -80oC prior 

to downstream analysis. Protein concentrations of supernatants were estimated by 

Bradford assay (Thermo Scientific, Rockford, USA). Cartilage explants were 

lyophilized to obtain a dry weight for normalisation.  
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1-D SDS-PAGE separation and in-gel trypsin digestion 

Cartilage extract secretomes of control and treatment condition for all donors were 

analyzed by one dimensional sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (1-D SDS-PAGE) to assess quantitative/qualitative differences in 

protein profiles. 20μg protein was loaded for each lane. In-gel tryptic digests of 

bands of interest from the 1-D SDS-PAGE was undertaken as previously described 

(McClean et al., 2007). ImageJ software (http://rsbweb.nih.gov/ij/) was used to 

quantify bands using densitometry.  

 

Protein identification of in-gel digests by linear ion trap quadruple (LTQ) Velos 

mass spectrometry  

Digested samples were analysed by LC-MS/MS using an UltiMate® 3000 Rapid 

Separation LC (RSLC, Dionex Corporation, Sunnyvale, CA) coupled to a LTQ Velos Pro 

(Thermo Fisher Scientific, Waltham, MA) mass spectrometer. Peptides were 

concentrated on a pre-column (20mm x 180μm i.d, Waters, Manchester, UK).  The 

peptides were then separated using a gradient from 99% A (0.1% formic acid (FA) in 

water) and 1% B (0.1% FA in ACN) to 25% B, in 45min at 200nL min-1, using a 75mm 

x 250μm i.d. 1.7μM BEH C18, analytical column (Waters, Manchester, UK).  Peptides 

were selected for fragmentation automatically by data dependant analysis. 

Raw spectra were converted to Mascot generated files (mgf) using Proteome 

Discoverer software (Thermo, Hemel Hempstead, UK). The resulting mgf files were 

searched against the Human IPI database sequence databases using an in-house 

Mascot  server (Matrix Science, London, UK). Search parameters used were; 

peptide mass tolerances 10ppm, fragment mass tolerance of 0.6Da, 1+, 2+ and 3+ 

ions, missed cleavages; 1, and instrument type ESI-TRAP. Modifications included 

were; fixed; carbamidomethyl cysteine and variable; oxidation of methionine. Data 

produced were searched using Mascot (Matrix Science UK), against the Human IPI 

database with taxonomy of Homo sapiens selected.  Data were validated using 

Scaffold (Proteome Software, Portland, USA).   

 

http://rsbweb.nih.gov/ij/
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In-solution tryptic digestion and mass spectrometry using linear ion-trap Orbitrap 

mass spectrometer (LTQ-Orbitrap Velos) 

Cartilage supernatant fractions or QconCAT were detergent treated with 1% (w/v) 

Rapigest (Waters, Manchester, UK) for 10min at 80oC in 25mM ammonium 

bicarbonate. In-solution tryptic digestion of protein samples was carried out 

following sequential reduction and alkylation in 3mM DTT (60oC for 10min) and 

then 9mM iodoacetamide (30min in the dark at room temperature) with trypsin at 

a ratio of 1:50 protein: trypsin ratio overnight at 37oC. Detergent inactivation was 

then assumed by incubating for 45min at 37oC with trifluoroacetic acid (VWR 

International) to a final concentration of 0.5% (v/v). Following centrifugation for ten 

minutes at 15000g the soluble phase was retrieved and used for LC-MS/MS. 

 

LC-MS/MS analysis was performed using nanoAcquityTM ultraperformance LC 

(Waters, Manchester, UK) on line to an LTQ-Orbitrap Velos (Thermo-Fisher 

Scientific, Hemel Hempstead) via a ESI ion source containing a 10um coated Pico-tip 

emitter (Presearch LTD, Basingstoke, UK). Aliquots of tryptic peptides equivalent to 

250ng of cartilage secretome protein or 100fmol of QconCAT (for QconCAT 

verification and validation) were loaded onto a 180μm x 20mm C18 trap column 

(Waters, Manchester, UK) at 5μl/min in 99% solvent A (water plus 0.1 % FA) and 1% 

solvent B (acetonitrile plus 1% FA for 5 min and subsequently back-flushed onto a 

C18  pre-equilibrated analytical column (75μm x 15mm Waters, Manchester, UK) 

using a flow rate of  0.3μl/min. Xcalibur 2.0  software (Thermo -Electron ,Hemel 

Hempstead, UK) was used to operate the LTQ-Orbitrap Velos in data-dependant 

acquisition mode. The survey scan was acquired in the Orbitrap with a resolving 

power set to 30,000 (at 400 m/z). MS/MS spectra were concurrently acquired on 

the 20 most intense ions from the high resolution survey scan in the LTQ. Charge 

state filtering >1 was used, where unassigned precursor ions were not selected for 

fragmentation. Fragmentation parameters in the LTQ were: normalized collision 

energy; 30, activation; 0.250, activation time; 10ms and minimum signal threshold 

500 counts with isolation width 2m/z.  
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Peptide Identification 

Raw spectra were converted to Mascot generated files (mgf) using Proteome 

Discoverer software (Thermo, Hemel Hempstead, UK). The resulting mgf files were 

searched against either the Human IPI database, taxonomy; mammalian or 

QconCAT sequence databases using an in-house Mascot (Yan et al., 2006) server 

(Matrix Science, London, UK). Search parameters used were; peptide mass 

tolerances 10ppm, fragment mass tolerance of 0.6Da, 1+, 2+ and 3+ ions, missed 

cleavages; 1, and instrument type ESI-TRAP. Modifications included were; fixed; 

carbamidomethyl cysteine and variable; oxidation of methionine. 

 

Selected reaction monitoring optimisation 

The selected reaction monitoring (SRM) assay conditions were optimised using a 

XEVO TQ (Waters, Manchester). Trypsin digestion of QconCAT was carried out as 

described previously (Rivers et al., 2007). The peptides were diluted with 97:3:0.1 

ACN: water: FA and 100 fmol of peptides were loaded on column. Optimisation was 

performed on a XEVO TQ operated with MassLynx 2.4 (Waters, Manchester) 

coupled to a NanoAcquityTM UPLC (Waters, Manchester, UK). Peptides were loaded 

using partial loop injection, for three minutes at a flow rate of 5μL/min with 0.1% 

(v/v) formic acid onto a trapping column (Waters, C18, 180μm x 20mm).  Samples 

were separated by a  30min gradient of 97% A (0.1% (v/v) formic acid), 3% B (99.9% 

acetonitrile 0.1% (v/v) formic acid) to 60% A 40% B at a flow rate of 300nL/min on a 

C18 analytical column (Waters, NanoAcuity UPLC™ BEH C18 75µm x 150mm 1.7µm 

column). All transitions were acquired with the following parameters; 3kV ion spray 

voltage, an 80oC interface heater temperature, Q1 and Q3 operating at unit 

resolution. Cone voltages and collision energies were optimised for each peptide. 

Dwell times for transitions were determined automatically based on the number of 

co-eluting peptides but a minimum dwell time of 50msec was maintained. 
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Protein digestion and quantification  

10μg protein for each sample was detergent treated, reduced, alkylated and trypsin 

digested as described above.  For SRM experiments, previously trypsin digested 

QconCAT was spiked into the samples.  

SRM experiments were conducted with 500ng of tryptic analyte peptides spiked in 

with either 10fmol, 1fmol or 0.1fmol heavy QconCAT, loaded onto column. MS 

analysis was commenced using methods, parameters and gradients described here 

previously. The ranging ensured that analyte: signal to noise were between 1:10 

and 10:1 ratio of a QconCAT loading. MassLynx 2.4 (Waters, Manchester) software 

was used to produce extracted ion chromatograms of the peptide transitions in 

order to compare the ratio of analyte to standard. Ratios were converted to fmol 

and then normalised to dry weight of cartilage explant. 

 

Label-free peptide quantification 

The Thermo raw files of the acquired spectra were analysed by the Progenesis™ LC-

MS software (version 4, Nonlinear Dynamics) for label-free quantification. 

Progenesis™ LC-MS takes profile data of the MS scans and transforms them to peak 

lists. One sample was selected as a reference after checking the 2-D mapping (m/z 

versus retention time), and the retention times of the other samples within the 

experiment were aligned. This was undertaken by studying the chromatogram and 

aligning on the major peaks. Features without the 1+, 2+, 3+ and 4+ charge and 

isotope peaks of ≤2 were masked and excluded from further analysis. Samples were 

then divided into the appropriate groups using between subject design (between 

donor variation, between control and IL-1β treatment variation and between 

technical replicate variations). Raw abundances of all features were normalised 

which corrects for factors due to experimental variation (such a sample load). 

Following feature picking we picked the top three spectra for each feature; these 

were exported from Progenesis™- LC-MS and utilized for peptide identification with 

a locally implemented Mascot server; Mascot (version 2.3.01) in the Unihuman 

database. Search parameters used were: 10ppm peptide mass tolerance and 0.6Da 
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fragment mass tolerance, one missed cleavage allowed, fixed modification; 

carbamidomethylation, variable modifications; methionine oxidation. Mascot 

determined peptides with ion scores of 33 and above and only proteins with at 

least one unique peptide ranked as top candidate were considered and re-imported 

into Progenesis™ software. Following the import of the Mascot results for 

quantification, statistical analysis was performed on all detected features using 

transformed normalized abundances for one-way analysis of variance (ANOVA). The 

total cumulative abundance was calculated by summing the abundances of all 

peptides allocated to the respective protein. All peptides (with Mascot score >33 

and p<0.05) of an identified protein were included and the protein p value (one-

way ANOVA) were then performed on the sum of the normalized abundances for all 

runs. ANOVA values of p<0.05 and additionally regulation of >2-fold or < 0.5-fold 

were regarded as significant. 

Gene Ontology 

Using DAVID gene ontology (GO) analysis all genes identified were loaded into the 

functional annotation chart.   

Statistical analysis 

Statistical analysis for absolutely quantified peptides was undertaken using mixed 

effects linear regression to allow for donors with significant biological variation with 

SPLUS 6.1 software. 

 

Results 

 

Comparative analysis by mass spectrometry  

All cartilage was graded as severe OA using a modified Mankin scoring (Bulstra et 

al., 1989) (original score proposed by  Mankin et al 1970) (Mankin and Lippiello, 

1970) with scores of between 9 and 13 out of 14. 1D-SDS-PAGE of the cartilage OA 

secretomes (Figure 1a) demonstrated no significant difference in the profiles of the 

control and IL-1β treatment using densitometry (data not shown).  
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The repertoire of proteins secreted by explants was then analysed by MS (Figure 

1B). Proteins included in the results had a Mascot score >40 with 2 or more 

identifying peptides, and a confidence interval of 95%. The cartilage explant 

secretomes contained a number of cartilage matrix proteins as expected, plus 

proteins associated with catabolic aspects of cartilage matrix turnover such as 

MMP-3.  

 

 

Figure 1. 1D-SDS-PAGE of the cartilage OA secretomes demonstrated little 
difference in the profiles following IL-1β treatment. A. OA human articular 
cartilage explants (n=3) were cultured in media supplemented with 10ng/ml IL-1β 
(T) or un-supplemented media (control- C). Culture media were collected at 2 days 
for further analysis by SDS-PAGE and staining with Coomassie Brilliant Blue. Equal 
protein loading of 20μg of protein per well allowed a qualitative comparison of the 
secretomes. B, the most abundant proteins in the media marked at the positions of 
the bands were excised from the gel, trypsin digested, and the protein content of 
each single band was analysed using peptides identified using LC-MS/MS. Proteins 
indicated on the gel correlate to the size and are the primary  protein identified in 
that gel analysis. 
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Figure 2 Comaprison of differential protein abundance presented as a volcano 
plot. (log2 fold change, x axis; log10 p value ANOVA, y axis) from control versus 
treatment quantified with two or more peptides. Horizontal line indicates p<0.05 
and vertical lines indicate 2 fold and 0.5 fold abundance changes. p-values of 0.000 
were set to 0.0005 in order to limit scaling. Red diamonds indicate significant 
differentially expressed proteins.  

 

Explant experiments were undertaken in duplicate and in-solution tryptic digestion 

of media was then performed in duplicate. This gave a total of four secretome 

replicates per donor per condition.   We processed these samples for mass 

spectrometry as described and performed quantitative analysis with Progenesis™ 

LC-MS software. All identified features in the 2-D maps were aligned between 

samples, subsequently normalised and assigned to control or IL-1β treatment 

groups. ANOVA was then performed on normalised peptide intensities. Mascot was 

then used to identify all features with MS/MS data against the UNIHUMAN 
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database with search results implemented into the experiment file. Peptide 

identifications were merged into non redundant protein identifications.  

Label-free protein profiling of the OA secretome  

A total of 278 proteins were identified including aggrecan, fibromodulin, cartilage 

oligomeric matrix protein, fibromodulin, matrix metalloproteinase 1 and 3, link 

protein and plasminogen. Gene ontology determined that 53% of genes were 

identified as ‘secreted’ and 18% were identified as belonging to ECM. Of these 242 

were identified with ≥2 unique peptides (Figure 2).  

Nine proteins were differentially expressed between control and IL-1β stimulation 

(p<0.05 and more than 2-fold regulated) (Table 2). Four of these were up regulated 

following IL-1β stimulation (Figure 3) and five were down regulated (Figure 4). The 

functions of the proteins along with their cellular location and potential role in OA 

are indicated in Table 3. 

 

 

Table 2. A number of differentially expressed proteins were identified by 
Progenesis™ LC-MS software. Proteins shown were identified with ≥2 unique 
peptides and with a >2 fold change in normalised abundance. 
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Figure 3 Expression profile view of proteins significantly higher in IL-1β treated 
samples produced by Progenesis™ LC-MS. All proteins were identified by 2 or more 
peptides with greater than 2-fold abundance change and p<0.01. Plots display the 
mean arcsinh transformed normalised volume for each group. Error bars 
demonstrate 3 standard errors within groups.  
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Figure 4 Expression profile view of proteins significantly reduced in IL-1β treated 
samples produced by Progenesis™ LC-MS. All proteins were identified by 2 or more 
peptides with greater than 2-fold abundance change and p<0.01. Plots display the 
mean arcsinh transformed normalised volume for each group. Error bars 
demonstrate 3 standard errors within groups. 
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Description  Location  Role in arthritis  Function (UNIPROT)  
Growth-regulated alpha protein  secreted  elevated in RA inflammation  
Stromelysin-1 secreted cleaves collagen cleaves collagens of types I, II,  III, 

VII and X 
LYR motif-containing protein 5 nucleus, 

mitochondria 
unknown protein biosynthesis 

Ig alpha-1 chain C region  secreted  form complexes in RA immunoglobulin  
Chitinase-3-like protein 1  secreted  increase in OA  tissue remodelling   
Monocyte differentiation antigen CD14  cell membrane  in synovial fluid early OA  innate immune response  
Decay-accelerating factor splicing 
variant 1  

cell membrane protect synovial membrane from complement-
mediated injury in inflammation  

inhibitor of complement pathway 
activation  

TIMP metallopeptidase inhibitor 1  secreted  control MMPs in cartilage degradation  inactivates MMPs  
Cystatin-C  secreted  mice lacking cystatin C develop OA earlier  inhibitor of cysteine proteinases  
 

Table 3. Functions of the differentially expressed proteins along with their cellular location and potential role in arthritis. The first 
four proteins represented those with higher expression in Il-1β and the subsequent section those with higher expression in control 
conditions.  (RA; rheumatoid arthritis).
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In order to both quantify proteins of interest and validate findings of some of the 

secreted proteins in our study we employed QconCAT technology. 

QconCAT protein design, expression and validation 

The QconCAT containing proteins of interest to our research studies was designed 

with two peptides per protein. The QconCAT had an average mass of 58.8kDa which 

included the N-terminal fibrinopeptide and C-terminal glufibrinopeptide (to allow 

quantification of the QconCAT) together with a hexahistidine tag for purification. 

The proteins selected with their respective accession numbers, peptide sequences, 

m/z values of the protonated molecules are presented in Table 1. Following gene 

synthesis into pET21a vector successful transformation into E.coli, induction of 

expression and purification led to a recombinant protein band which migrated on 

SDS-PAGE with mobility consistent with an approximate mass of 58kDa implying the 

QconCAT had been expressed correctly (Figure 5).  

 

 

Figure 5. Purification of the human secretome QconCAT. The QconCAT was 
expressed in inclusion bodies which were recovered by centrifugation. Inclusion 
bodies were dissolved in binding buffer, solubilised using sonication, and then 
purified using immobilised metal affinity columns. Lanes S and FT, correspond to 
sequential starting material, flow through fractions. The arrow indicates the 
QconCAT at approximately 58kDa.  
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The putative QconCAT protein band from the gel following purification was trypsin 

digested and analysed with MALDI-TOF mass spectrometry and identified 27 out of 

40 peptides from the product ion spectra commensurate with those predicted were 

observed (Figure 6a and b). Although the peptides were equimolar in proportions 

within the QconCAT the MALDI spectra demonstrated the expected variability of 

ionisation between individual peptides. Furthermore the peptides glufibrinopeptide 

and fibrinopeptide were identified indicating full length expression of the QconCAT, 

as these peptides are positioned at the beginning and end of the sequence cassette.  

In order to validate the QconCAT further we identified q-peptides using LC-MS/MS 

on the LTQ-Orbitrap Velos from an in-solution tryptic digestion, with 100fmol on 

column QconCAT. Mascot identified 91% sequence coverage of the QconCAT (data 

not shown). DGFFYFFHGTR and VARPAQLASPTR demonstrated weak fragmentation 

patterns during the identification and assembly of peptide transitions lists for SRM 

experiments. No miscleaves were identified indicating complete QconCAT 

proteolysis. 

 

A 200ml bacterial culture, grown to a cell density of ODA600 0.6–0.8, yielded 33μg of 

the QconCAT. The identity and chromatographic retention time of the Q-peptides 

from the unlabeled and labelled QconCAT recombinant proteins were established 

by preliminary tandem MS analyses of pure QconCATs. The labelling efficiency was 

high, and the QconCAT peptides were labelled to 98.7%, reflecting the quality of 

the starting isotopes [13C6]Arg and [13C6]Lys (Figure 6).  

 

The linearity of the response for the QconCAT peptides was established prior to 

these analyses using labelled and unlabeled QconCAT mixed at different ratios 

using 50fmol QconCAT loaded on column in an SRM experiment using the XEVO TQ 

(Figure 7). 
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Figure 5. Validation of the human secretome QconCAT. (A) In-gel tryptic digestion of the 13C6 lys/ 13C6 arg labelled QconCAT was 
analysed with MALDI to give a peptide mass fingerprint of derived peptides. The most intense peptides are indicated as ringed with 
their respective peptide number. A number of peaks in the lower mass range were identified as matrix peaks. (B) Electrophorectic 
profile of a 5μg aliquot of purified QconCAT. (C) Schematic representation of the organisation of peptides identified (blue) within the 
QconCAT.



176 
 

 

 

Figure 6. The labelling efficiency of the QconCAT was high. An extracted ion 
chromatogram (EIC) of the q-peptide m/z 738.86 ([M+2H]2+) was undertaken and 
the intensity of the minor peak to the left of the major peak was used to calculate 
the labelling efficiency.  
 

 
Figure 7. Linearity of response of using SRM quantification. Known ratios of heavy 
and light QconCAT proteins were mixed prior to proteolysis. The digests were then 
resolved by reversed phase LC-MS and the intensities of the ions corresponding to 
multiple peptides were measured. Data for three selected peptides, representative 
of all the peptides are included here. 
 



177 
 

Peptide choice and detectability 

The QconCAT was devised to be used in a number of different experiments 

including the quantification of post translational modifications (PTMs). Thus when 

designing the QconCAT some peptides were chosen equivalent to were analyte 

peptides would potentially contain PTM in-situ (Huang et al., 1998). Other peptides 

were chosen from the propeptide sequence of enzymes in order to provide tools 

for quantifying enzyme activity. 

 

The selection of suitable peptides for quantification was critical. For some proteins 

we were limited by sequence choices, for example in aggrecan, where the majority 

of the core protein is heavily modified.  Thus we chose two peptides per protein in 

an attempt to circumvent possible problems such as poor peptide ionisation or 

detectability by the mass spectrometer which would prevent quantification. For 

proteins we wished to quantify in the cartilage secretome with a SRM experiment 

using the QconCAT a simple classification was applied to peptides as described by 

Brownridge et al. (Brownridge et al., 2011). Peptides are classified for quantification 

purposes as A, B, C for a particular protein loading. ‘Type A’ quantifications are 

defined as were both QconCAT and native peptides are observed. For ‘type B’ 

quantifications the peptide is detected in the QconCAT but not in the native 

peptide, and for these peptides sample protein abundance sets the limit on 

detection.  Neither QconCAT nor native peptides are detected in ‘type C’ 

quantification, typically due to poor peptide fragmentation or chromatographic 

behaviour (Table 7). Of the 40 peptides composite of the QconCAT we wished to 

use 30 peptides in order to quantify their constituent proteins within the cartilage 

secretome; 12 were type A, 10 were type B, and 8 were type C. This enabled the 

quantification of seven proteins in our human OA secretome using the criterion 

that at least one q-peptide per protein was detected in all samples.  
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Protein Q-peptide amino acid 
sequence 

Peptide 
classification 

Aggrecan EVVLLVATEGR A 
Cartilage oligomeric matrix protein DTDLDGFPDEK A 
Cartilage oligomeric matrix protein SSTGPGEQLR A 
Fibromodulin IPPVNTNLENLYLQGNR A 
Matrix metalloproteinase-1 SQNPVQPIGPQTPK A 
Matrix metalloproteinase-3 IVNYTPDLPK A 
Metalloproteinase inhibitor 1 GFQALGDAADIR A 
Plasminogen EAQLPVIENK A 

ADAMTS1 DAEHYDTAILFTR B 
ADAMTS1 GPEVTSNAALTLR B 
ADAMTS4 FVETLVVADDK B 
ADAMTS4 NPVSLVVTR B 
ADAMTS5 LPLAAVGPAATPAQDK B 
ADAMTS5 GLVQNIDQLYSGGGK B 
Aggrecan LEGEVFFATR B 

Cathepsin D LVDQNIFSFYLSR B 
Cathepsin D YSQAVPAVTEGPIPEVLK B 
Cathepsin K SNDTLYIPEWEGR B 

Link protein GGSDSDASLVITDLTLEDYGR B 
Metalloproteinase inhibitor 1 FVGTPEVNQTTLYQR B 
Metalloproteinase inhibitor 3 WDQLTLSQR B 
Metalloproteinase inhibitor 4 GHLPLR B 
Cathepsin K VGPVSVAIDASLTSFQFYSK C 
Fibromodulin LYLDHNNLTR C 
Link Protein FYYLIHPTK C 
Matrix metalloproteinase-1 DGFFYFFHGTR C 
Matrix metalloproteinase-13 LHPQQVDAELFLTK C 
Metalloproteinase inhibitor 3 YQYLLTGR C 

Metalloproteinase inhibitor 4 LEANSQK C 

Plasminogen HSIFTPETNPR C 

 

Table 7A. Table represents peptide types as determined by SRM experiments. Q-
peptides are classified for quantification purposes as A, B, C. ‘Type A’ native and 
QconCAT peptides are detected.  ‘Type B’ are peptides detected for the QconCAT 
but not in native form and when neither QconCAT nor native peptides are detected 
a ‘type C’ classification is given (ADAMTS; A disintegrin and metalloproteinase with 
thrombospondin motifs). 
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Identification of HAC secretome proteins 

Prior to SRM experiments tryptic digests of all the secretome media samples were 

analysed using LC-MS/MS on the LTQ-Orbitrap Velos in order to identify the 

presence of proteins to be quantified within the QconCAT. When these proteins 

were identified using Mascot we undertook extracted ion chromatograms for the q-

peptide m/z of the selected QconCAT peptide for confirmation (Table 7b).  

 

Protein Peptide 

Peptides identified with 
LC-MS/MS 

Peptides quantified with 
SRM 

control treatment control treatment 

1 2 3 1 2 3 1 2 3 1 2 3 

Aggrecan EVVLLVATEGR   

Aggrecan LEGEVFFATR    x x x x  x 

COMP DTDLDGFPDEK   

COMP SSTGPGEQLR   

Fibromodulin IPPVNTNLENLYLQGNR   

Link protein 
GGSDSDASLVITDLTLE
DYGR    x x x x x x 

Link Protein FYYLIHPTK    x x x x x x 

MMP-1 SQNPVQPIGPQTPK   

MMP-3 IVNYTPDLPK   

TIMP-1 GFQALGDAADIR   

Plasminogen EAQLPVIENK x x x x x x 

 

Table 7B. Table indicating q-peptides identified from LC-MS/MS studies in human 
secretome media with and without IL-1β stimulation using UNIHUMAN database 
with Mascot. Peptides identified with Mascot were confirmed using extracted ion 
chromatograms. 

 

Quantification of proteins using SRM 

SRM of multiple product ions (transitions) were used for quantification as it 

provided a sensitive method for targeted analyte identification and quantitation. 

Operating at the MS/MS level, selectivity is provided by incorporating an extra 

isolation step; monitoring the product ions from a specific set of precursor ions.  

Where possible, two transitions per peptide were used for quantification. 

Transitions were defined using Skyline software (O'Connor et al., 1998) and 

selected after monitoring for the greatest intensity fragments using 50fmol 
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QconCAT digest on the XEVO TQ. Fragmented y-ions were selected in order to 

differentiate labelled and unlabelled peptide as the C-terminal residue contained 

the isotope-labelled amino acid.  In addition where possible we selected transitions 

whose m/z was greater than the parent ion m/z to maximise specificity (Table 7c). 

We were unable to identify any adequate transitions for quantification purposes for 

two peptides; VGPVSVAIDASLTSFQFYSK (cathepsin K) and DGFFYFFHGTR (MMP-1), 

emphasizing the need to include at least two peptides within a QconCAT to quantify 

a protein. 

 

Protein Peptide 
Precursor m/z Transition m/z 

Fragment 
type 

Aggrecan  EVVLLVATEGR 593.3468 632.3362  y6 
Aggrecan  EVVLLVATEGR 593.3468 745.4176  y7 

COMP  DTDLDGFPDEK 626.2723 807.3456  y7 
COMP  DTDLDGFPDEK 626.2723 488.2318  y4 

COMP  SSTGPGEQLR 516.2594 699.376  y6 

COMP  SSTGPGEQLR 516.2594 756.3991  y7 

Fibromodulin IPPVNTNLENLYLQGNR 652.353 750.3869  y6 

MMP-1  SQNPVQPIGPQTPK 745.9028 837.4781  y8 
MMP-1  SQNPVQPIGPQTPK 745.9037 1161.6524  y11 

MMP-3  IVNYTPDLPK 580.3217 947.475  y8 
MMP-3  IVNYTPDLPK 580.3217 569.3254  y5 

Plasminogen  EAQLPVIENK 570.8157 699.3985  y6 
Plasminogen  EAQLPVIENK 570.8168 812.4864  y7 

TIMP-1  GFQALGDAADIR 617.3124 717.3489  y7 

TIMP-1  GFQALGDAADIR 617.3124 901.4698  y9 

 

Table 7C. Parameters used in SRM assays. The parent and fragment ion m/z and 
fragment type for peptides used to quantify the human OA secretome. 

 

The seven proteins quantified using an SRM approach were aggrecan, COMP, 

fibromodulin, MMP-1, MMP-3, plasminogen and TIMP-1 (Figure 8a).  For COMP we 

were able to quantify using both peptides; SSTGPGEQLR and DTDLDGFPDEK. 

DTDLDGFPDEK consistently producing a lower ratio of light peak area/heavy peak 

area compared to SSTGPGEQLR (Figure 8b). Analysis of Mascot data of analyte 

digests discovered that occasional miscleavage of DTDLDGFPDEK was evident; this 
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resulted in an underestimation of protein abundance when this peptide was used 

for absolute quantification. Therefore we used SSTGPGEQLR for quantification of 

COMP. Following IL-1β treatment there was an apparent increase in aggrecan, 

COMP, fibromodulin, MMP-1, MMP-3 and plasminogen and a reduction in TIMP-1. 

The only protein which achieved statistical significance was TIMP-1, with a 

reduction in IL-1β treated samples (p=0.0017) although MMP-3 exhibited a trend 

(p=0.06). 

 

 

Figure 8A. Proteins measured in human secretome media using QconCAT. 
Extracted ion chromatograms were performed for each peptide and the total ion 
count used to determine the ratio of light peak area/ heavy peak area at a given 
QconCAT loading. The protein abundance in the media was then calculated based 
on the amount of total protein in the media sample. This was then normalised to 
the dry weight of explants. Mean concentrations and ±SEM (n=3) are indicated. 
Data were evaluated using mixed effect linear regression and ** indicates 
significant difference relative to control at the p<0.01 level, # indicates p=0.06. 
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Figure 8B. Ratios of EIC for peak area light/ peak area heavy peptide for the two 
q- peptides from the QconCAT used to quantify COMP. Data shows control and IL-
1β treatment values for each of the three human explant donors. 

 

Discussion  

Cartilage proteomics is developing from simple protein identification through to 

quantitation. For OA research absolute quantitative proteomics will enable further 

biological questions to be addressed, by facilitating the experimenter in 

determining protein abundance in terms of tangible amounts. However, there have 

been few studies able to absolutely quantify cartilage secreted proteins and 

experiments have employed relative quantification approaches using platforms 

including 2-D gel approaches (Catterall et al., 2006; Hermansson et al., 2004), SILAC 

studies (Polacek et al., 2010b), isobaric tags for relative and absolute quantitation 

(iTRAQ) (Stevens et al., 2009), and quantitative western blotting (Pullig et al., 

2002b). Absolute quantification techniques and its variations have been utilized to 

measure absolute amounts of a given peptide, allowing quantitative comparisons of 

different proteins. Whilst AQUA peptides provide synthetic isotope labelled 
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peptides they remain costly, and usually only allow single proteins to be quantified 

at a time. In contrast QconCAT technology allows the cost efficient production of 

heavy isotope labelled standards. The aim of devising this human cartilage QconCAT 

was to provide an accurate, low cost method able to support large scale protein 

quantification in cartilage studies.  

 

This study tested the hypothesis that there were measurable changes in protein 

abundance in the human OA secretome following cytokine stimulation and these 

could be absolutely quantified using a QconCAT. First the study implemented a 

comparative proteomic analysis using a label-free LC-MS/MS-based strategy. 

Specific proteins were then quantified using QconCAT to validate both label-free 

results and the QconCAT technology itself in the study OA. The model used to 

assess these methodologies was the human OA cartilage explant secretome 

following cytokine stimulation. This enabled the absolute quantification of the 

human cartilage secretome for the first time.  

 

The established cartilage explant model mimics the catabolic events that occur in 

OA (Ismaiel et al., 1992; MacDonald et al., 1992)  . The explants were washed and 

rested overnight as it has been previously identified that dissection and culture 

alone activates c-Jun N-terminal kinase (Hermansson et al., 2004). Thus the 

expression patterns of proteins synthesised by the explants may differ from in-vivo. 

Although the cartilage was already diseased, there is precedence in using such 

samples as pathological human cartilage has been utilized to examine the role of 

cytokines and the targeted analysis of protein expression alterations in OA 

(Goldring et al., 2011). Cartilage explants enables chondrocytes to be retained 

within their ECM allowing them to retain their phenotypic stability. The ECM also 

provides native substrates for proteolysis and protein release, equivalent to the 

shedding the proteins into the synovial fluid (and beyond) during cartilage 

degeneration. Such explant studies may contribute further understanding of the 

pathogenesis of OA. Although for this study we were unable to obtain normal 

mature human articular cartilage this would be beneficial for further interpretation 
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of our findings and indeed the QconCAT described here could be utilized to this 

end. 

 

Using 1-D SDS-PAGE we were able to use a qualitative proteomics approach in 

order to identify the predominate proteins in the HAC OA secretome. These 

included MMP-3 and COMP. Interestingly, although explants were washed 

copiously prior to entry to the study serum albumin was identified as a 

predominant protein in the samples. This may be due to uptake by the cartilage of 

serum albumin and release into the matrix during the experiment but also highlight 

the need for proficient explant preparation in proteomic studies as the dominance 

of a single protein may ‘mask’ the identity of other less abundant proteins using 

mass spectrometry. Densitometry of the gel did not identify differential protein 

expression following 48h stimulation with IL-1β and this may be due to insufficient 

exposure time to the cytokine or previous findings by others that responsiveness to 

IL-1  is reduced in late stage OA chondrocytes (Forsyth et al., 2005). Indeed other 

studies using human OA explants determined that at least 14 days of cytokine 

stimulation was required to identify a significant loss in glycosaminoglycans (GAG) 

the primary component of which is aggrecan (Ismaiel et al., 1992). This finding is in 

contrast to our previous work were IL-1β stimulation of normal equine cartilage for 

5 days produced a differential expression of  cartilage matrix proteins using 1D-SDS-

PAGE  (manuscript 1). Furthermore, results from the label-free study indicated very 

few differentially regulated proteins in our model (nine out of 278 proteins 

identified) in comparison to our other studies in normal equine cartilage stimulated 

with IL-1β which demonstrated over 100 differentially expressed proteins (Peffers 

et al., 2012). 

 

High-throughput proteomic technologies created large data sets posing challenges 

in interpretation. Therefore a proteomics tool called Progenesis™ LC-MS (Zhang et 

al., 2010) was utilized, enabling the analysis and comparison (in terms of relative 

quantification) of proteins in our experiment. Following Progenesis™ LC-MS analysis 

we applied insightful data mining using bioinformatics tool DAVID (Huang et al., 

2008) in order to interpret the data in relationship to protein location and function. 
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As predicted a large number (53%) of proteins identified by GO, which uses 

statistical analysis to validate results, were secreted.  Whilst the dataset of 

differentially expressed proteins identified by Progenesis™ was small it was 

interesting that a number of them were involved in inflammation and the innate 

immune response. Inflammation plays an important role in the pathogenesis of OA 

(Buckland, 2012b) and following proinflammatory cytokine stimulation of already 

diseased cartilage it was not surprising that proteins, implicated in pathways 

associated with rheumatoid arthritis and OA, were identified. It is hypothesised that 

inflammation might actually be driven by the fragments such as fibronectin (Ding et 

al., 2009) that are released by cartilage degradation, through activation of the 

innate immune responses.  More recently it has been identified that  inflammatory 

complement cascade has a key role in the pathogenesis of OA (Fernandes et al., 

2002). Through proteomic and transcriptomic analyses of synovial fluids and 

membranes from OA patients, the expression and activation of complement was 

found to be abnormally high in human OA joints. One interesting finding was the 

down regulation of decay accelerating factor splice variant (DAF) in IL-1β stimulated 

explant media. DAF belongs to the complement system and protects cells from 

complement mediated lysis. Immunohistochemistry studies identified an increased 

in OA cartilage compared to normal (Davies et al., 1994) and there was an increase 

in transcript in macroscopically affected OA joint cartilage compared to intact 

cartilage in the same joint (Geyer et al., 2009). It is possible that aberrant regulation 

of DAF is occurring due to IL-1β stimulation of already diseased cartilage. Further 

work into the role of this protein is warranted. Finally as inflammation is an early 

and persistent event the involvement of joint tissues in OA could be monitored by 

quantifying levels of a panel of markers such as the inflammatory factors identified 

as differentially expressed in this study; DAF, growth-regulated alpha protein and IG 

alpha-1 chain C region.   

 

Many ECM proteins and proteases were identified in the secretome using LC-

MS/MS. However some interesting proteins, particularly proteases were not 

identified such as MMP-1, ADAMTS-4, ADAMTS-1 and the cathepsins. We 

wondered if a more targeted approach, such as SRM which increases sensitivity 
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(Hossain et al., 2011), would enable the identification and subsequent 

quantification of further proteins. Therefore a human cartilage QconCAT was 

designed. This approach identified and quantified aggrecan, COMP, fibromodulin, 

link protein, MMP-1, MMP-3 and TIMP-1 from within the secretome. 

 

Peptide repositories available to us on-line together with discovery data were used 

in the QconCAT design. These data sets include those providing a compendium of 

targeted proteomics assays (from complex proteome digests) of peptides isolated 

on a triple quadrupole mass spectrometer as a resource for SRM workflows. The 

study exemplified the need to use all methods available to select ‘proteotypic’ 

peptides prior to inclusion within a QconCAT, although optimal selection of 

peptides can still have inconsistent success. Once a short list of peptides was 

highlighted we used a standard QconCAT nomination strategy based on the 

probability of efficient cleavage and propensity to generate a good MS signal 

(Brownridge et al., 2012). In addition, we chose peptides both including and 

without known post-translational modifications (PTMs). Since this study was 

implemented further informatics tools have become available that may help in the 

choice of peptides and so increase the likelihood of selecting a detectable peptide. 

One such tool is CONSeQuence which predicts the probability of a peptide being 

detected by electrospray ionisation (Eyers et al., 2011). 

 

A strategy was used where two peptides were included per protein in the QconCAT 

to allow quantification with at least one peptide should one fail. For the seven 

proteins identified in MS/MS data and then quantified with SRM we were reduced 

to a single peptide for quantification for all peptides except COMP; for this protein 

a single peptide was nominated for quantification purposes.  The main reason for 

redundant q-peptides was poor peptide selection, resulting in ‘type C’ peptides 

within our QconCAT. The primary reason for type C peptides was poor 

fragmentation of the parent peptide resulting in inadequate transitions for 

quantification using an SRM approach. Interestingly both link protein peptides were 

identified in the label-free experiments (where both MS and MS/MS are used in 

protein identification), but we were unable to quantify either peptide. One q-
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peptide; FYYLIHPTK was identified as a ‘type C’ peptide. The other peptide; 

GGSDSDASLVITDLTLEDYGR was readily detected down to 0.1fmol in the standard 

but was not detected in analyte. It is possible that there may be a previously 

unidentified PTM on this peptide. In addition this peptide displayed a poor 

fragmentation pattern as demonstrated by the identification of only a single 

transition for SRM experiments.  

 

MMP-3 was quantified with a single peptide as the other peptide for this protein 

was in the pro-peptide region. The nominated q-peptide for the MMP-3 propeptide 

(‘q-propeptide’); WDQLTLSQR was identified as a ‘type B’ indicating that although 

the QconCAT heavy peptide was identified the analyte peptide was not.  MMP-3 is 

secreted from chondrocytes as zymogens, which become activated in the 

extracellular space, a critical level of enzymatic control. Since the propeptide is 

released on activation it would have been interesting to measure the ratio of q-

propeptide to q-peptide in order to gauge MMP activity. Therefore in the design of 

the QconCAT q-propeptides for MMP-3, -13 and ADAMTS5 were included. 

Unfortunately apart from the MMP-3 q-propeptide the others were ‘type C’.   There 

are a number of possibilities as to why the MMP-3 q-propeptide was not identified 

in the secretome. It may have been present in lower concentrations than the limits 

of detection of the SRM experiment. Furthermore whilst final processing to the 

mature form of the active MMP (where the  entire propeptide is removed)  requires 

intermolecular, autoproteolytic cleavage by the target MMP, physiologic activation 

of MMPs is probably initiated by proteases that cleave specific sites within the 

propeptide, (Morgunova et al., 1999). Therefore another possibility for not 

identifying the q-propeptide could be that one of the initial cleavages was within 

this q-propeptide site.   

 

For aggrecan EVVLLVATEGR was used in quantification experiments as the other 

peptide LEGEVFFATR was not detected in all samples. The tryptic cleavage site at 

the N-terminal of this peptide was close to an aspartic acid possibly leading to 

miscleaves, although no evidence was found for this in MS/MS data. While for 

COMP we were able to quantify using both peptides, DTDLDGFPDEK consistently 
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producing a lower ratio of light peak area/heavy peak area possibly resulting from 

miscleavage occurring due to the  acidic residue; aspartic acid adjacent to the 

cleavage site in the analyte (Liu et al., 1998). Thus SSTGPGEQLR was utilized in the 

quantification of COMP.  For the proteins fibromodulin, MMP-1, TIMP-1 and 

plasminogen, one peptide per protein was a type ’C’ peptide, resulting in a single 

peptide being used for quantification by SRM.  

 

Il-1β is one of the most significant cytokines in OA (Tetlow et al., 2001) and is 

assumed to cause damage to OA cartilage through both the induction of protease 

expression, resulting in cartilage matrix degradation (Arner et al., 1998; Goldring 

and Goldring, 2004) and reduction in the expression of anabolic genes such as 

aggrecan and COL2A1 (Aigner et al., 2006). This results in the anabolic-catabolic 

discrepancy characteristic of OA. Here we examined OA cartilage degeneration in 

culture using secretome protein identification and both relative and absolute 

quantification. Relative quantification identified the induction of MMP-3 protein 

expression following IL-1β stimulation. The absolute quantification also revealed an 

increase in MMP-3 in all donors in each replicate. However although p<0.06 this did 

not reach statistically significance. Whilst others identified an induction of MMP 

protein expression along with degradation of matrix constituents in OA HAC 

explants  (Burrage et al., 2006)the induction of MMP-3 demonstrated in this study 

is not accompanied by an increase in ECM proteins within the secretome media 

following IL-1β stimulation which might be expected following ECM degradation. 

This could be due to the short time scale of the experiment or that there is a 

reduced responsiveness to IL-1β in late stage OA chondrocytes. Statistical 

significance for MMP-3 may be reached by increasing the power of the significance 

test (the ability to detect an alternative hypothesis). One way to do this is by 

increasing the sample size. This provides more information about the mean and 

offers an improved chance of distinguishing the mean percentage change.  

 

The study quantified the concentration of COMP, fibromodulin  and aggrecan, 

matrix components that have previously been identified in explant secretomes in 

humans (Wu et al., 2007), mouse (Wilson et al., 2008) and horse (Irving et al., 1990) 
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with an apparent, though not statistically significant increase in aggrecan, COMP 

and fibromodulin. One of the most abundant proteins quantified here was COMP, a 

non-collagenous matrix protein. Its presence in the secretome corresponded to 

previous studies of cartilage explants (Irving et al., 1990; Wilson et al., 2008; Wu et 

al., 2007). COMP organises ECM assembly (Halasz et al., 2007) and attaches the 

chondrocyte to the ECM (Chen et al., 2005). Considered as a marker of cartilage 

breakdown it has been studied as a biological marker (Hoch et al., 2011; Zhang et 

al., 2006b). Measurement of intact COMP and fragments thereof in synovial fluid or 

serum have been shown to correlate to cartilage destruction in OA patient studies 

(Saxne and Heinegard, 1992) and so it is no surprise that it is abundant in the 

secretome. It is possible that in the future a QconCAT approach could be used to 

measure COMP in different tissues and biological fluids. 

 

Fibromodulin, a collagen-binding protein (Heathfield et al., 2004) was also 

quantified. This protein protects the surface of collagen type I and II fibrils from 

proteolysis by MMPs (Geng et al., 2006) . Cleavage products of fibromodulin have 

been identified during IL-1 stimulation of cartilage explant studies in-vitro 

(Heathfield et al., 2004; Monfort et al., 2006) and as such cleavage of fibromodulin 

may represent an important initial episode that interrupts the collagen fibrillar 

network leading to more sites for proteases to cleave collagen further. Furthermore 

it has been suggested that some ECM proteins including fibromodulin become 

endogenous catabolic factors during joint damage and stimulates innate immune 

pathways via complement activation (Sofat, 2009). Thus the presence of 

fibromodulin in relative abundance within the OA secretome presents a means by 

which ongoing joint damage may be further precipitated. 

 

Plasminogen, a serine protease and important activator of pro-MMPs, has been 

demonstrated to induce cartilage degradation (Oleksyszyn and Augustine, 1996).  

Its production is stimulated by Il-1β in cartilage (Collier and Ghosh, 1988). Although 

it was not evident in initial MS/MS experiments it was quantified using SRM. SRM 

experiments are unique in their ability for reliable quantification of analyte of low 

abundance in complex mixtures (Lange et al., 2008). This demonstrates the 
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advantage of our QconCAT approach to proteomics experiments in the study of low 

abundance proteins such as plasminogen involved in OA.  

 

MMP activity is regulated by a family of tissue-specific inhibitors including TIMP-1 

(English et al., 2006). Presently it is believed that the local balance of MMPs and 

TIMP activities is crucial for cartilage homeostasis, with disturbances producing 

higher levels of MMPs over TIMPs resulting in cartilage pathology such as OA. TIMP 

concentrations generally far exceed the concentration of MMPs in tissue and 

extracellular fluids, thereby limiting their proteolytic activity to focal pericellular 

sites by binding to the MMP active sites (Gomez et al., 1997). TIMPs also inhibit 

cleavage of proteoglycans by aggrecanases (Grad et al., 2006). TIMP-1 specifically 

has been demonstrated to have inhibitory activity against ADAMTS-4 (Tortorella et 

al., 1999). In the IL-1β stimulated secretome MMP-3 concentrations exceeded 

TIMP-1 concentrations as identified using relative and absolute quantification 

which was probably due to the late stage OA nature of the cartilage explants. 

Interestingly in the QconCAT study TIMP-1 was the only protein significantly 

affected by cytokine stimulation agreeing with the label-free study. TIMP-1 mRNA 

has been previously identified in OA (Kane et al., 2004) and rheumatoid arthritis 

(Martel-Pelletier et al., 1994). Our results agree with other studies demonstrating 

that IL-1β stimulation has a marked inhibitory effect on TIMP-1 expression by 

chondrocytes (Sadowski and Steinmeyer, 2001).  

 

Bringing the results of the different quantification methodologies together it would 

seem that there is good agreement with the findings from the two studies when 

proteins were identified as significantly differentially expressed in the secretome. 

MMP-3 was increased significantly in the label-free study and increased to near 

significance in the QconCAT study. TIMP-1 expression was identified as significantly 

reduced using both methodologies. The ECM proteins aggrecan, fibromodulin and 

COMP were not differentially expressed in the study using either method.  
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Conclusions 

 

This study is the first to combine relative and absolute protein quantification in the 

analysis of the human OA secretome. It enabled the identification of a cohort of 

proteins expressed by osteoarthritic cartilage with possible roles in its 

pathogenesis. A human cartilage QconCAT was designed expressed and validated 

which enabled absolute levels of important proteins in the study of OA to be 

quantified, demonstrating the usefulness of QconCAT technology in OA research. 

This is especially useful in quantifying low abundance proteins. Not surprisingly, 

several of the peptides in this QconCAT did not provide quantotypic performance. 

However by including two peptides per protein the QconCAT was still robust 

enough to allow absolute quantification of the majority of proteins and provides a 

tool for the precise definition of some matrix proteins and proteases within the 

pathogenesis of OA.  
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Characterisation of Neopeptides in Equine Articular Cartilage 

 

Abstract 

Osteoarthritis (OA) is characterized by a loss of extracellular matrix (ECM) which 

leads to cartilage degradation and joint space narrowing. Specific proteases 

including the aggrecanases ADAMTS-4 and matrix metalloproteinase 3 (MMP-3) are 

important in initiating and promoting cartilage degradation in OA. This study 

investigated protease specific and disease specific cleavage patterns of some ECM 

proteins by comparing new peptide fragments; neopeptides, in specific exogenous 

protease driven digestion of a cartilage extract with an in-vitro model of early OA. A 

proteoglycan-rich extract was purified from equine articular cartilage, and then 

digested by the addition of exogenous ADAMTS-4 or MMP-3. In a further 

experiment equine cartilage explants were treated for 96 hours with interleukin-1 

(IL-1β) and the media collected. Proteolysed products following trypsin digestion 

from all samples were then identified using mass spectrometry. Complete 

sequences of peptides proteolysed were determined for the major cartilage 

proteoglycans aggrecan, biglycan, decorin, fibromodulin plus cartilage oligomeric 

matrix protein (COMP). The generation of peptides varied with enzyme specificity; 

however some peptides were common to all samples. Specific known cleavage sites 

were evident for aggrecan, biglycan and COMP as well as a catalogue of potential 

novel sites following proteolysis. The use of an in-vitro model of early OA employing 

cytokine treated explants enabled novel cleavage sites to be identified under more 

pathologically relevant conditions. The identification of novel ‘neo-terminal’ 

fragments provides a platform for the development of antibodies which could assist 

in the identification of biomarkers for OA, as well as identifying basic biochemical 

processes underlying OA.  

 

Introduction 

The unique load bearing properties of articular cartilage are dependent upon its 

structural composition and organisation, particularly the interactions between 

collagens and proteoglycans of the ECM (Poole et al., 2001). In normal physiology 
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these matrix macromolecules are turned over by chondrocytes embedded within 

the cartilage. 

 

Progressive degeneration of articular cartilage, including proteolysis driven 

degradation leads to joint pain and dysfunction that is clinically identified as OA. 

Under normal circumstances, there is equilibrium between matrix deposition and 

degradation; however this equilibrium is disrupted in OA leading to the excessive 

degradation of matrix and progressive loss of important matrix components such as 

collagens and proteoglycans (Martel-Pelletier et al., 1994; Theodoropoulos et al., 

2009). Furthermore intact and fragmented ECM peptides, produced following 

degradation, effect chondrocyte function through integrin receptor signalling 

(Loeser, 2002).  

 

Studies of the fragmentation of the ECM constituents have elucidated a series of 

cartilage protein degradations (Fosang et al., 1996a; Milner et al., 2010). In-vivo a 

number of specific proteinases which originate from the chondrocyte or the cells 

infiltrating inflamed synovium induce cartilage breakdown (Malemud et al., 2003), 

whilst in cytokine stimulated models of OA the breakdown of cartilage is also by 

stimulated by a series of proteolytic enzymes through the up regulation of 

metalloproteinase (Shohani et al., 2010). Initially aggrecan is fragmented and 

released from cartilage followed by other molecules such as COMP, fibromodulin 

and collagens. 

The two primary enzyme families important in cartilage matrix degradation in OA 

are the metalloproteinases (MMPs), including matrix metalloproteinase 3 (MMP-3) 

and the  disintegrin with metalloproteinase and thrombospondin motif family 

(ADAMTS) including ADAMTS-4 (Nagase and Kashiwagi, 2003).  MMP-3 is one of the 

most highly expressed proteases in cartilage capable of degrading proteoglycans 

including aggrecan (Zhen et al., 2008) as well as activating procollagenases. 

ADAMTS-4 is an important enzyme in the pathogenesis of OA as demonstrated by 

its high aggrecanase activity in OA cartilage, and localised expression in areas of 

aggrecan degradation (Fosang et al., 2008; Tortorella et al., 2000a). It cleaves 
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aggrecan at five known sites resulting in a loss of the chondroitin sulphate rich 

regions from cartilage, and thus to a reduction in the ability of cartilage to 

withstand compressive forces (Struglics et al., 2006).  Furthermore it is an 

important mediator of cytokine stimulated aggrecan loss in normal cartilage 

(Majumdar et al., 2007).  Both these classes of proteases are also involved in the 

cleavage of other ECM proteins including biglycan and decorin (Monfort et al., 

2006), fibromodulin (Kashiwagi et al., 2004) and COMP (Dickinson et al., 2003).  

The degradation products of the small leucine-rich repeat protein family of 

proteoglycans (SLRP) which include fibromodulin, decorin and biglycan have been 

documented. ADAMTS-4 has been identified as having activity against fibromodulin 

at the same site of cleavage as MMP-13 (Kashiwagi et al., 2004). Work by Melching 

et al. 2006 (Melching et al., 2006) determined that biglycan was a substrate for 

ADAMTS-4 and -5 at a site within the fifth leucine-rich region at an asparginine-

cysteine bond. In addition biglycan is also susceptible to cleavage by MMP-13 at 

Gly177/Val178 (Monfort et al., 2006).  Decorin degradation following MMP induced 

proteolysis has also identified cleavage sites in cartilage (Monfort et al., 2006) . An 

important approach to monitoring arthritis is by measuring biological markers of 

cartilage degradation and repair which reflect changes in joint remodelling. COMP 

is considered a marker of cartilage breakdown, and has been studied as a biological 

marker (Mundermann et al., 2005).  Measurement of intact COMP and fragments 

thereof in synovial fluid or serum correlates to cartilage destruction in RA and OA 

patient studies (Mansson et al., 1995; Saxne and Heinegard, 1992). Numerous sites 

of degradation in COMP have been postulated for MMPs and aggrecanases 

(Dickinson et al., 2003). 

 

The progression of OA has been evaluated until recently using imaging techniques 

such as radiography (Blackburn et al., 1996) and magnetic resonance imaging 

(Conaghan et al., 2006)  or invasive techniques such as arthroscopy to assess gross 

changes in the joint.  However the advent of advanced proteomic techniques has 

enabled the identification and use of protein biomarkers to become established 
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(Rousseau and Delmas, 2007) which may aid in not only the monitoring of OA 

progression but also examine the effects of potential treatments for OA.  

 

A number of peptides derived from cartilage degradation are used as biomarkers of 

OA. These include markers derived from, bone, cartilage and synovium. Some 

collagen biomarkers are already utilised in established assays such as the α1 chain 

of human  type II collagen  (the HELIX-II neoepitope )(Charni-Ben Tabassi et al., 

2008; Eyre and Weis, 2009), Coll 2-1 and Coll 2-1 NO2 (Everts et al., 2003) and type 

II collagen C-telopeptide fragments (CTX-II) (Christgau et al., 2001). Non-

collagenous biomarkers that have been described include COMP (Tseng et al., 2009) 

and aggrecan (Dufield et al., 2010a) and immunoassays for MMPs are also available 

(Lohmander et al., 2005).  

 

A number of different approaches have been developed to identify protease 

substrates in biological samples. These include specific N-terminal tagging of 

proteins with affinity enrichment and LC liquid chromatography (LC) tandem mass 

spectrometry (MS/MS) detection (Timmer et al., 2007) an amine-targeted iTRAQ 

approach (Dean and Overall, 2007), engineered enzymes to selectively biotinylate 

free protein N-termini for positive enrichment of corresponding N-terminal 

peptides (Mahrus et al., 2008) and selective recovery of N-terminal peptides 

(McDonald et al., 2005). Gevaert et al. 2003 (Gevaert et al., 2003) developed a 

peptide isolation procedure based on diagonal electrophoresis and diagonal 

chromatography;  combined fractional diagonal chromatography (COFRADIC) where 

free amino groups in proteins were first blocked by acetylation and then digested 

with trypsin. Whilst the  process of Edman degradation and sequencing has 

traditionally been utilised to validate these methods (Edman and Begg, 1967) more 

recent developments which overcome problems of sequencing multiple closely 

spaced cleavage fragments on SDS-PAGE using amino-terminal oriented mass 

spectrometry of substrates (ATOMS) for the N-terminal identification of protein 

cleavage fragments in solution. In this study we used a novel, simplistic approach 

employing a number of software tools to mine MS derived data for potential 

cleavage sites, in order to establish ‘proof of concept’ for our methodologies. In this 
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study we define neopeptides as peptides identified by MS which have at least one 

non-tryptic cleavage site, that is the peptide has been identified without an arginine 

or lysine fragmented site. We hypothesise that such sites would have been formed 

by a protease other than trypsin. 

 

Fragmentation patterns of cartilage ECM components were first investigated by 

western blotting (Fosang et al., 1995) and subsequently by mass spectrometry 

(Rousseau and Delmas, 2007). Mass spectrometry based proteomic approaches 

applied to the investigation of human articular cartilage have demonstrated novel 

potential substrates and cleavage sites for specific enzymes (Rousseau and Delmas, 

2007) which may be helpful in the development of biomarkers and clarifying the 

biology of OA. Peptide ion identification has been significantly enhanced by both 

improvements in the quality of data acquired, through the use of mass 

spectrometers with high resolution and high mass/charge (m/z) accuracy, and in 

the data processing, through the use of probabilistic search algorithms such as 

Mascot. Here identifications are derived from a database search which queries a 

specific sequence database for the best peptide in order to explain the peaks in the 

MS/MS spectrum. However recent software developments such as PEAKS® now 

enable significantly improved sensitivity and accuracy in comparison to existing 

database searches alone through algorithms which enable sequencing de novo 

(Zhang et al., 2012a). These algorithms derive the peptide sequence directly from 

the MS/MS spectrum (Ma et al., 2003). Thus a workflow based on LC-MS/MS, de 

novo sequencing and database searching provides an accurate and convenient 

method to identify peptide products released by either specific proteases or 

following cytokine stimulation of equine articular cartilage.  

In this study a proteomic analysis of MMP-3 or ADAMTS-4 driven hydrolysis of a 

crude proteoglycan extract was used to identify neopeptides from aggrecan, 

biglycan, decorin, fibromodulin plus COMP in equine articular cartilage. In addition 

we compared these results to IL-1β stimulated equine cartilage extract 

supernatants in order to identify common neopeptides. This analysis was 

performed to increase the knowledge of molecular events associated with cartilage 
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degradation characteristic of OA, identify peptides that may be useful as 

biomarkers of cartilage disease, as well as to identify novel neopeptides that could 

be further validated in targeted future studies. A series of conventional and novel 

proteolytic events have been identified as a result of either specific proteases or 

the effect of IL-1β. Improved knowledge of specific peptide fragments and the 

pathways generating these fragments will aid in the identification of markers of 

joint diseases such as OA.  

 

Methods 

Articular cartilage isolation and explant culture 

Full thickness equine articular cartilage from grossly normal metacarpophalangeal 

joints of three horses was obtained from the abattoir. Cartilage was diced into 

explants approximately 2mm x 2mm following sterile dissection, mixed and washed 

twice with serum-free Dulbeco’s Modified Eagles Medium (DMEM) (to deplete 

serum and synovial proteins). Explants were allowed to equilibrate in complete 

medium for 24h at 37oC in 5% CO2 in 12 well plates (2ml/well). 

Normal equine cartilage IL-1β treated explant studies 

After overnight incubation as described explants were washed with serum-free 

DMEM and the media was then replaced with serum-free DMEM ‘complete’, 

supplemented were applicable with either human recombinant IL-1β (10ng/ml; 

R&D Systems) to induce cartilage degradation or DMSO (Il-1β diluent) as a control. 

The media (with and without IL-1β) was exchanged 48h after initiation of 

treatment, and cultures harvested after 96h. The 48h and 96h supernatant samples 

were pooled, following the addition of protease inhibitors (Complete protease 

Inhibitors, EDTA-free, Roche, Lewes, UK)   and stored at -80oC prior to downstream 

analysis, thus representing the total secretome over 96h.  

Proteoglycan-enriched fraction isolation from cartilage  

Equine articular cartilage from the grossly normal metacarpophalangeal joint of 

three horses obtained from an abattoir was pooled and pulverised with a 
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dismembranator (Miko, S-Braun, USA). Proteins were extracted with cartilage 

extraction buffer containing 4M guanidinium chloride, 50mM sodium acetate and 

proteinase inhibitors (Complete Protease Inhibitors, EDTA-free, Roche, Lewes, UK), 

pH 6.0 using end-over-end mixing for 20h at 4oC. After extraction the soluble 

fraction (proteoglycan-enriched) was removed following centrifugation for 15min at 

13000g at 4oC. Following dialysis in a 14,000-kD cut-off membrane (Spectrapor, 

Breda, NL) for 24h at 4oC against 0.1M sodium acetate, pH 6.0 in the presence of 

proteinase inhibitors, the extract was clarified using centrifugation for 15min at 

13000g at 4oC. A crude proteoglycan-enriched extract was isolated by associative 

caesium chloride density gradient centrifugation (Lark et al., 1997), also in the 

presence of the proteinase inhibitors.  The supernatant was fractionated in an 

associative caesium chloride (CsCl) density gradient (starting density 1.5g/ml) for 

60h at 100,000g in an ultracentrifuge (Beckman 50Ti, Gallway, Ireland). The tube 

was fractionated into quarters; A1-A4 (A1-A2 fraction, identified in previous studies 

(Heinegard, 1977) as being enriched for aggrecan and small leucine rich 

proteoglycans was retained for protease digestion and the A1-A2 fraction dialyzed 

first against 0.1M sodium acetate for 48h at 4oC and then against ultrapure water 

for 36h at 4oC, both in the presence of proteinase inhibitors. The samples were then 

lyophilised. An aliquot of each fraction was assessed for protein content by 

measuring the protein absorbance at an optical density (OD) of 280nm using a 

Nanodrop ND-100 spectrophotometer (Labtech, East Sussex, UK). The density of 

each fraction of the gradient was measured by weighing an aliquot (xml) using a 

balance. To validate the A1-A2 fractions were enriched for proteoglycans  

glycosaminoglycan (GAG) analysis of the A1 to A4 fractions was undertaken using a  

1,9-dimethyl-methylene blue (DMMB) dye binding microwell spectrophotometric 

assay. Samples were incubated in 250μl DMMB (16μg/ml 1,9-dimethyl-methylene 

blue, 2mg/ml sodium formate and 0.2% v/v formic acid pH 3.5)   Shark chondroitin 

sulphate C was used to construct a standard curve (0 to 70μg/ml) and readings 

were taken at 570nm on a Multiskan EX photometric multiplate absorbance reader 

(Thermo Electron Corp, Vantaa, Finland). GAG was expressed as μg GAG/ ml crude 

proteoglycan extract. 
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Proteinase digestion of proteoglycan-enriched fraction in-vitro 
 
Following initial trial experiments using between 2h and 20h proteinase incubation 

periods and assessing resultant aggrecan fragments with immunoblotting, the 

optimum incubations were as stated. Aliquots of  A1-A2 extract were digested in 

proteinase digestion buffer (50mM Tris HCl, 100mM NaCl, 10mM CaCl2, pH 7.5) 

with either 0.05nmol  human recombinant MMP-3 catalytic domain (Calbiochem, La 

Jolla, USA) for 20h at 37oC or with 0.014nmol truncated human recombinant 

ADAMTS-4 (Calbiochem, La Jolla, USA) for 7h at 37oC. Controls for each protease 

were incubated under the same conditions in the presence of the corresponding 

recombinant protein formulation buffer.  The enzymatic digestion reactions (1ml) 

were stopped by addition of EDTA (18.3nmol). Molar calculations undertaken to 

calculate the amount of protease (MMP-3 or ADAMTS-4) to apply were based on a 

dry molecular mass for equine aggrecan assuming 1000kDa, for MMP-3 the 

molecular weight (MW) was 22kDa and for ADAMTS-4 was 42kDa.  

 
Validation of the use of human recombinant proteinases for equine cartilage 
proteoglycan-enriched fraction digestion 
 
For MMP-3 and ADAMTS-4 the recombinant human sequence was checked for 

sequence homology against the equivalent equine protein using NCBI Basic Local 

Alignment Search Tool; (Protein BLAST; 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). Furthermore, the sequence 

homology of the human peptides used to generate the neoepitope antibodies to 

known aggrecan cleavage sites, used in this experiment, were also verified against 

the equine sequence. 

 

Deglycosylation of proteoglycan-enriched fraction 

A1-A2 extracts before and after proteinase digestion were digested in 

deglycosylation buffer (50mM Tris-acetate, 50mM Na-acetate, 10mM EDTA, pH 7.6) 

for 2h at 37oC with chondroitinase AC (0.01U/10μg glycosaminoglycan (GAG)), 

keratanase I (Seikagaku, Tokyo, Japan) (0.01U/10μg GAG) and keratanase II 

(Seikagaku, Tokyo, Japan) (0.0001U/10μg GAG). Chondroitinase AC digestion was 
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verified by measuring the UV absorbance at 232nm using a Nanodrop ND-100 

spectrophotometer (Labtech, East Sussex, UK).  

 

Slot-blot analysis 

Deglycosylated samples of the proteoglycan-enriched fraction, equivalent to 5μg 

GAG were applied to the nitrocellulose membrane using vacuum manifold device. 

The membrane was then reduced in 6M guanidinium chloride reduction buffer pH 8 

containing 10mM dithiothreitol (DTT) for 15min at room temperature.  Following 

washing twice with 20mM Tris-buffered saline, 0.1% Tween-20, pH 7.5 (TBS-T) the 

membranes were blocked with 5% milk powder in TBS-T for 1h at room 

temperature. The membrane was probed overnight at 4oC with the following 

antibodies in TBS-T containing 5% milk; mouse monoclonal to aggrecan ARGxx (BC-

3) (Abcam, Cambridge, UK) (1:100 dilution), mouse monoclonal to aggrecan DIPEN 

(MD Bioproducts, Minneapolis, USA) (1:100 dilution) and rabbit polyclonal to 

aggrecan (Abcam, Cambridge, UK) (1:1000). The following secondary peroxidise 

conjugated antibodies were used; goat anti-mouse IgG and goat anti-rabbit IgG 

both at 1:1000 dilution.  

 

In-solution tryptic digestion 

 

Samples of cartilage supernatant from the explant experiments and crude 

proteoglycan extract from the protease digestion experiments were detergent 

treated with 1% (w/v) Rapigest (Waters, Manchester, UK) for 10min at 80oC in 

25mM ammonium bicarbonate. In-solution tryptic digestion of protein samples was 

carried out following sequential reduction and alkylation in 3mM DTT (60oC for 

10min) and then 9mM iodoacetamide (30min in the dark at room temperature) 

with trypsin at a ratio of 1:50 trypsin: protein ratio overnight at 37oC. Crude 

proteoglycan extract samples were desalted and purified using C18 resin in the form 

of a ZipTip® (Merck Millipore, USA). Detergent inactivation was then assumed by 

incubating for 45min at 37oC with trifluoroacetic acid (VWR International) to a final 

concentration of 0.5% (v/v). Following centrifugation for ten minutes at 15000g the 

soluble phase was retrieved and used for LC-MS/MS. 
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LC-MS/MS analysis of IL-1β treated cartilage explant media and proteinase 

digested cartilage proteoglycan-enriched fraction  

LC-MS/MS analysis was performed using NanoAcquityTM Ultraperformance LC 

(Waters, Manchester, UK) on line to an LTQ-Orbitrap Velos (Thermo-Fisher 

Scientific, Hemel Hempstead) via a ESI ion source containing a 10m coated Pico-tip 

emitter (Presearch LTD, Basingstoke, UK). Aliquots of tryptic peptides equivalent to 

250ng of protein were loaded onto a 180μm x 20mm C18 trap column (Waters, 

Manchester, UK) at 5μl/min in 99% solvent A (water plus 0.1 % formic acid) and 1% 

solvent B (acetonitrile plus 1% formic acid for 5min and subsequently back-flushed 

onto a C18  pre-equilibrated analytical column (75μm x 15mm Waters, Manchester, 

UK) using a flow rate of  0.3μl/min. Xcalibur 2.0  software (Thermo -Electron, Hemel 

Hempstead, UK) was used to operate the LTQ-Orbitrap Velos in data-dependant 

acquisition mode. The survey scan was acquired in the Orbitrap with a resolving 

power set to 30,000 (at 400 m/z). MS/MS spectra were concurrently acquired on 

the 20 most intense ions from the high resolution survey scan in the LTQ. Charge 

state filtering >1 was used, where unassigned precursor ions were not selected for 

fragmentation. Fragmentation parameters in the LTQ were: normalized collision 

energy; 30 volts, activation; 0.250, activation time; 10ms and minimum signal 

threshold 500 counts with isolation width 2m/z.  

 

Data analysis 

For neopeptide identification raw spectra were converted to Mascot generated files 

(mgf) using Proteome Discoverer software (Thermo, Hemel Hempstead, UK). The 

resulting mgf files were searched against the Unihorse database using an in-house 

Mascot (Perkins et al., 1999) server (Matrix Science, London, UK). Search 

parameters used were; enzyme; none, peptide mass tolerances 10ppm, fragment 

mass tolerance of 0.6Da, 1+, 2+ and 3+ ions, missed cleavages; 1, and instrument 

type ESI-TRAP. Modifications included were; fixed; carbamidomethyl cysteine and 

variable; oxidation of methionine. 
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For the proteins aggrecan, biglycan, cartilage oligomeric matrix protein, decorin and 

fibromodulin neopeptides that were present in treated samples exclusively were 

identified. The probability that a match was correct (p<0.05) was determined using 

the Mascot derived ion score where p was the probability that the observed match 

was a random event.  

 

In addition raw data files were loaded into PEAKS® Studio 6.0 (Bioinformatics 

Solutions Inc., Waterloo, Canada) and de novo sequencing and protein 

identification performed. PEAKS® software employs multiple analytical algorithms 

and is able to identify the majority of peptides in the data, and can validate 

database searches using de novo sequencing results. Furthermore it achieves 

significantly better false discovery rate (FDR) curves than other database software 

(Zhang et al., 2012a). This means that more peptides can be identified with a lower 

or equivalent FDR. Estimate FDR function was used in order to create a ‘decoy 

fusion’ database based on the Ensembl database for horse (Equus caballus; 

EquCab2.56.pep, (ftp://ftp.ensembl.org/pub/current_fasta/equus_caballus/pep/). 

Data prerefinement was done by choosing peak centroiding, charge deconvolution, 

and deisotope options. The quality value was set greater than 0.65. The search 

parameters for the PEAKS® software included the parent peptide mass accuracy set 

at 20ppm and the MS/MS fragments 0.6Da mass tolerance. Oxidation was allowed 

as a variable modification of methionine, carbamidomethylation as a fixed 

modification of cysteine, and the enzyme specificity was none. The Unihorse 

database was searched. Results generated using PEAKS® Studio was manually 

curated against the Mascot search engine results. A 10lgP score of >20 was 

considered as significant (the score is -10 times the common log of the p value) 

(Zhang et al., 2012a). 

 

 

 

 

 

 

ftp://ftp.ensembl.org/pub/current_fasta/equus_caballus/pep/
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Results 

Production of a proteoglycan-enriched fraction by caesium chloride density 
gradient-ultracentrifugation  
 
In this study we were interested in identifying potential cleavage sites in cartilage 

proteoglycans and COMP. Therefore a proteoglycan-enriched fraction, which was 

also found to be abundant in COMP, was extracted using the chaotropic agent 

guanidinium chloride and purified using caesium chloride density gradient 

centrifugation. Proteoglycans were found, as validated by the GAG assay results at 

the expected density of 1.3-1.5g/ml (Figure 1). Proteins were predominantly in the 

A4 fraction as determined by protein absorbance. The proteoglycan-rich A1-A2 

fractions were then pooled for further work. 

 

 

Figure 1.Guanidinium chloride extraction and CsCl centrifugation produced a 
proteoglycan-enriched fraction of three pooled samples of equine cartilage. Solid 
CsCl was added to extracted soluble cartilage proteins at a starting density of 
1.5g/ml. After centrifugation the tubes were fractionated into 4 equal fractions and 
the density of each fraction measured. Fractions were then measured for A. protein 
absorbance at 280nm, and assayed to determine B. GAG concentrations of each 
fraction. Fractions A1 and A2 were then pooled for further work.   
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Human recombinant proteinases were validated for the use in equine cartilage 
proteoglycan-enriched fraction digestion 
 
As equine recombinant proteins relevant to this study were not freely available 

human recombinant proteins were used. This approach was first validated by 

sequence homology studies.  The BLAST tool predicted 89% sequence homology 

between equine and human for the catalytic domain of MMP-3 and 99.6% 

homology for ADAMTS-4 truncated recombinant protein. Subsequently 

immunoblotting was used to further confirm our approach. Proteoglycan-enriched 

fractions extracted from equine cartilage were analysed before and after MMP-3 or 

ADAMTS-4 digestion.  Immunoblotting using anti-ARGxx antibody (ADAMTS-4 

derived neoepitope), anti-DIPEN antibody (MMP-3 derived neoepitope) and anti-

aggrecan revealed intact aggrecan as well as degradation products consistent with 

the activity of human recombinant proteinases on equine aggrecan (Figure 2). 

ADAMTS-4 proteolysis produced a product identified by the aggrecanase derived 

antibody ARGxx (Figure 2a) and MMP-3 digestion produced a product identified by 

the DIPEN antibody (Figure 2b).  

 

Identification of neopeptides formed following MMP-3 or ADAMTS-4 driven 
cartilage proteoglycan-enriched fraction degradation  
 
The A1-A2 proteoglycan-enriched fractions from a pool of three individual donors 

of normal equine articular cartilage were digested by MMP-3 and ADAMTS-4. Data 

analysis following LC-MS/MS analysis was undertaken initially using a Mascot-

driven search of the Equus caballus database to identify newly released peptides. 

Then the raw data files were submitted to PEAKS® software to perform sequencing 

de novo. This was undertaken in order to confirm the correctness (defined as the 

probability that an amino-acid sequence derived from the analysis is correct) of the 

neopeptide identifications as it improves database search performance by 

combining de novo sequencing and database search peptides (Ma et al., 2003). 

Searching with the Mascot search engine against the Equus caballus database using 

a ‘no enzyme’ search identified 87 and 84 proteins with more than one unique 

peptide and a FDR of 1.4% and 1.5% for the ADAMTS-4 and MMP-3 digests 
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respectively. The major proteins identified in the proteoglycan-enriched extracts 

were primarily ECM proteins (Table 1).  

 

 

Figure 2. A slotblot of MMP-3 and ADAMTS-4 digests of cartilage proteoglycan-

enriched extracts using anti-neoepitope antibodies reveals human recombinant 

proteins are active against equine aggrecan. Proteoglycan-enriched fractions were 

extracted from pooled equine cartilage of three donors and analyzed both before 

and after aggrecanase (ADAMTS-4) and MMP-3 digestion using the following 

antibodies; a. anti-ARGxx, b. anti-DIPEN and c. Anti-aggrecan. Prior to ADAMTS-4/ 

MMP-3 digestion, only bands identifying intact aggrecan were seen. Following 

ADAMTS-4 digestion at all incubation times ADAMTS-4 derived degradation 

products were evident.  Similar results were identified following MMP-3 digestion. 

 
 

The numbers of neopeptides that were generated and positively identified in both 

protease digests for aggrecan, COMP and fibromodulin but not biglycan or decorin 

were increased over the levels in control crude proteoglycan extracts incubated 

under identical conditions, but with the absence of either MMP-3 or ADAMTS-4 

(Figure 3). A number of peptides were identified in both protease digested samples 

and controls Table 2.   
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Table 1. Major cartilage proteins were identified in crude proteoglycan extract 

using LC-MS/MS. The table lists the 14 most prominent proteins identified in this 

study, based on the emPAI (exponentially modified protein abundance index) 

(Ishihama et al., 2005) which approximates label-free relative quantification of 

proteins in a mixture based on protein coverage by peptide matches.  Significant 

peptide matches and sequences are based on Mascot probability based scoring that 

a match is random set at p<0.05 

 

Neopeptides were identified from aggrecan, biglycan, COMP and decorin, and 

equated to previously identified cleavage sites or novel ones for each protein 

investigated (appendix to manuscript 4). Results were from the pooled 

proteoglycan-rich extract from three donors analysed on the instrument in 

singlicate. Peptides included in the histogram were exclusively identified in the 

samples assigned and identified using Mascot. The control contained digestion 

buffer but no exogenous protease.  

 

The number of unique neopeptides identified from each protein following protease 

digestion was based on ‘no enzyme’ Mascot searches. Table 3 indicates the number 

of unique peptides discovered with each protease digestion. In addition PEAKS® 

was used to interrogate this list of peptides in order to gain confidence in the 

peptide identifications by demonstrating the peptide-spectrum matching score; 
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Figure 3. Digestion of crude equine cartilage proteoglycan with MMP-3 or 
ADAMTS-4 produced a number of neopeptides. 
 

 

Protein Control ADAMTS-
4 

MMP-3  Control + 
ADAMTS-
4 

Control  
+ MMP-
3 

Aggrecan 8 15 20 1 2 

Biglycan 20 11 13 4 3 

COMP 6 7 18 5 4 

Decorin 17 5 3 5 4 

Fibromodulin 5 6 18 10 8 

 

Table 2. A number of unique neopeptides were identified following LC-MS/MS. A 
number of neopeptides were identified using Mascot following protease digestion 
with either ADAMTS-4 or MMP-3 or in control conditions of crude equine 
proteoglycan. In addition some peptides were identified in both the protease 
digested sample and under control conditions. The number of peptides in these 
classes is denoted by the columns named ‘control +ADAMTS-4’ or ‘control+ MMP-
3’.  
 

PEAKS® Database -10lgP score. The most abundant released neopeptides were 

derived from aggrecan. Whilst proteases cleaved proteoglycans and COMP, 

ADAMTS-4 and MMP-3 had various preferences for ECM proteins; ADAMTS-4 
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generated the most numerous neopeptides from proteolysis of aggrecan and 

biglycan, whilst except for decorin MMP-3 produced similar numbers of 

neopeptides for all proteoglycans and COMP.  

 

Although many peptides were generated in the crude proteoglycan digests 

exclusively by ADAMTS-4 or MMP-3, some neopeptides were generated in both 

ADAMTS-4 and MMP-3 digestion of crude aggrecan (Table 4a and 4b). The number 

of times each neopeptide was identified varied from once (for 76% and 74% in 

ADAMTS-4 and MMP-3 digestion respectively) to 33 times within a single 

experiment for the biglycan neopeptide 152NHLVEIPPNLPSS164 following MMP-3 

digestion.  Selected release of some known aggrecan, biglycan and COMP epitopes 

as peptides was evident.  
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  Treatment 

  ADAMTS-4 MMP-3 IL-1β 

Protein 
Total No.  

peptides 

#Significant 

peptides 

p<0.05 

Significant 

10lgP 

Total No.  

peptides 

#Significant 

peptides 

p<0.05 

Significant 

10lgP 

Total No.  

peptides 

#Significant 

peptides 

p<0.05 

Significant 

10lgP 

Aggrecan 15 1 5 20 5 12 2 0 0 

Biglycan 11 4 8 13 3 10 4 1 1 

COMP 7 5 5 18 7 12 52 42 45 

Decorin 5 1 3 3 1 3 3 1 1 

Fibromodulin 6 1 6 18 5 12 3 1 3 

 

Table 3. Degradation derived potential neopeptides were identified in crude proteoglycan extract and cytokine driven cartilage 
degradation using LC-MS/MS. Table indicates unique peptides identified following either crude proteoglycan digestion using MMP-3 
or ADAMTS-4 or IL-1β stimulation of cartilage explants. #Significant peptides were identified by Mascot with the probability that a 
match was correct (p<0.05) derived from the ion score. Significant peptides from PEAKS® analysis had a 10lgP of greater than 20. This 
equated to a p value of 0.01. For IL-1β stimulated samples the neopeptides were only counted once if identified in multiple samples.
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Table 4. A number of neopeptides unique to either to A. ADAMTS-4 and B. MMP-3 
digestion of crude proteoglycan were identified with LC-MS/MS using Mascot. In 
the peptide sequence column* denotes neopeptides produced at known cleavages 

sites to specific proteases
 
and 

# denotes neopeptide which have been identified 

following protease digestion with both ADAMTS-4 and MMP-3. ‘No’ in the ‘PEAKS® 
derived 10lgP’ column reflects peptides that were not identified following PEAKS® 
DB analysis.  
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Following ADAMTS-4 digestion of crude proteoglycan, the previously identified 

ADAMTS-4 cleavage site in biglycan 190N/191C (Melching et al., 2006) was evident by 

the presence of the neopeptide 191CIEMGGNPLENSGFQPGAFDGLK identified 

following MS/MS analysis (Figure 4). Furthermore many novel neopeptides were 

also identified (Table 4a) with a significant probability that the peptide match was 

correct as determined by Mascot or/and PEAKS®. 

 

In the MMP-3 digest a number of neopeptides representing both novel and known 

cleavage sites were identified with a significant probability that the peptide match 

was correct as determined by Mascot or/and PEAKS® including the aggrecan 

derived semi-tryptic neopeptide 344YDAICYTGEDFVDIPEN (Table 4B). This correlates 

to the MMP-derived DIPEN341 neoepitope (Lark et al., 1995) (Figure 5). A further 

semi-tryptic neopeptide  at a previously identified cleavage site (the protease that 

causes this cleavage is unknown (Holden, 2012)) in COMP 650NALWHTGDTAS was 

evident. 

 

Interestingly for both these neopeptides PEAKS® analysis significantly identified this 

peptide whilst, although the Mascot algorithm identified the peptides, the ion 

scores were not significant. Finally following the identification of the sequence 

context of all neopeptides within its parent protein the COMP neopeptides 

produced in both ADAMTS-4 and MMP-3 digests R.AFQTVVLDPEGDAQIDPN.W and 

N.WVVLNQGMEIVQTM.A were adjacent to each other indicating that both peptides 

for a cleavage between Asn548 – 549Trp were identified in this study. 
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Figure 4. Ion maps for the known ADAMTS-4 derived biglycan cleavage site 191CIEMG as demonstrated by A. PEAKS® and B. Mascot 
identify a series of b and y-ions. These charts illustrate the fragment ion sets used in identification using A.  sequencing de novo and 
B. spectral library matching.  Top panel for each figure demonstrates the ion chart with intensity of the ions on the y-axis. In the 
PEAKS® ion match table blue indicates significant b-ions and red significant y-ions. Red signifies significant b and y ions in the Mascot 
derived ion match table. 
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Figure 5. Ion maps for the MMP derived aggrecan cleavage site DIPEN341 as demonstrated by A. PEAKS® and B. Mascot identify a 
series of b and y-ions. These charts illustrate the fragment ion sets used for identification of this peptide.  Top panel for each figure 
demonstrates the ion chart with intensity of the ions on the y-axis. In the PEAKS® ion match table blue indicates significant b-ions and 
red significant y-ions. Red signifies significant b and y ions in the Mascot derived ion match table. 
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Identification of neopeptides following IL-1β stimulation of articular cartilage 

explants 

In order to identify neopeptides produced in more pathologically relevant 

conditions media was collected from three donors following IL-1β stimulation of 

normal cartilage explants. Each donor was analysed separately. The peptides were 

identified using LC-MS/MS methods. A no enzyme search with the Mascot search 

engine against the Unihorse database identified between 210 and 245 proteins and 

had a FDR of between 1.4% and 1.9%. Table 5 lists the top 20 major proteins 

identified in the media following IL-1β stimulation of cartilage explants based on 

protein score and emPAI generated from three donors in individual experiments. 

The ECM proteins COMP, decorin and fibromodulin were in the top 20. The proteins 

aggrecan and biglycan were also identified in all samples.   

 

 

Table 5. Predominant proteins identified in the media of cartilage explants 
treated with IL-1β. The list of the top 20 proteins identified in the media of three 
cartilage explant donors following treatment with IL-1β based on the mean protein 
score and mean emPAI. 
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Next a number of unique neopeptides from each protein of interest, generated 

following IL-1β explant treatment were identified (Table 6). The most abundant 

number of neopeptides was derived from COMP.  

 

Table 6. The number of unique neopeptides derived from each donor for each 
protein of interest varied.  

Neopeptides derived from the fragmentation of aggrecan, biglycan, COMP, decorin 

and fibromodulin were identified. Table 7 indicates neopeptides that were 

identified in at least two samples.  
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Table 7. The neopeptides released from cartilage explants following IL-1β 
treatment. Table indicates neopeptides identified in at least 2 donor samples. 
Neopeptides also evident in the ADAMTS-4 and MMP-3 experiments are also 

indicated with a tick. * 
indicates neopeptides produced at known cleavages sites to 

specific proteases.  Peptides with a significant (p<0.05) match that the sequence 
was correct based on Mascot ion scores are indicated with a black asterisk. ‘No’ in 
the ‘PEAKS® derived 10lgP’ column reflects peptides that were not identified 
following PEAKS® DB analysis.  
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Discussion 

 
In OA, the degradation of cartilage is characterised by a loss of ECM caused by 

secreted proteases; principally matrix metalloproteases (MMPs) (Rivers et al., 

2011). The relative over expression of these MMPs in OA appears to be due to a 

number of factors including mechanical loading (Lucchinetti et al., 2002) and 

inflammatory cytokines (Martel-Pelletier, 2004). This study was instigated to 

characterise the peptide products after proteolysis of aggrecan, biglycan, COMP, 

decorin and fibromodulin using a crude proteoglycan extract following the addition 

of exogenous MMPs recognised as being upregulated in OA disease progression. 

These peptides were then compared to those produced by a recognised in-vitro 

model of early OA, using cultured cartilage explants driven by the cytokine IL-1β. 

This allowed cleavage sites produced under more pathologically relevant conditions 

to be established and compared with proteoglycan or COMP digests. The 

proteomics methods utilized in this study enabled 34 aggrecan, 23 biglycan, 23 

COMP, 8 decorin and 24 fibromodulin potential novel cleavage sites to be 

determined from the crude proteoglycan extract by the generation of 

‘neopeptides’, which are non tryptic peptide products produced from either specific 

MMPs. In addition one aggrecan, one biglycan and two COMP known cleavage sites 

were identified. Finally a comparison was made between these results and the 

effect of a cytokine driven production of a cascade of many MMPs on cartilage 

explants.  

 

The study was interested primarily in identifying peptide products from the major 

proteoglycans in cartilage. Therefore rather than digesting whole cartilage, a crude 

proteoglycan extract was prepared. Classic methodologies, previously used to 

identify cartilage fragments in aggrecan (Lark et al., 1997)  were used in order to 

remove the majority of collagens (as type II collagen is the most abundant protein 

in cartilage) and other proteins, thus reducing sample complexity for up-stream 

proteomics workflows. The CsCl A1-A2 fractions containing proteoglycans, including 

aggrecan as determined by immunoblotting, were then retained for proteoglycan 

digestion studies. Subsequent proteomics studies demonstrated that the abundant 
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proteins in the crude proteoglycan extract were the ECM proteins in which we were 

interested; aggrecan, biglycan, decorin, fibromodulin plus COMP an important non-

collagenous ECM protein. Three of these; COMP, decorin and fibromodulin were 

the most abundant proteins as demonstrated by emPAI after digestion. This was 

expected as emPAI determines relative abundance of proteins based on the 

number of peptides identified per protein (Ishihama et al., 2005). The number of 

unique peptides identified in a protein will depend on factors which can be placed 

broadly in two categories; whether the peptide is detected and whether the 

peptide is identified. The latter will be dependent on the database used to search 

and the fragmentation of the peptide as these spectra are used for searching the 

spectral libraries. Furthermore within a search peptide identification depends on 

which PTMs are put in the database search terms. Peptide ‘detectability is 

dependent on amino acid composition and associated physicochemical properties 

in addition to the separation method in the upstream LC, ionisation and the 

instrument used for ion detection (Li et al., 2010).  Aggrecan was identified as only 

the eleventh most abundant protein but this is probably due to it being heavily 

glycosylated resulting in fewer non-modified peptides for identification by mass 

spectrometry (MS). Post translational (PTM) modifications such as GAGs alter the 

ion masses used in database searches for peptide identification. Even following 

treatment with specific enzymes such as chondroitinase ABC to remove specific 

sugar side chains, short sugar stubs remain attached making identification of the 

peptide backbone challenging. Though the globular domains contain far fewer 

PTMs, and therefore peptides which are more likely to be identified in this region, 

this is a small proportion of the whole protein and the large size of the aggrecan 

would lead to a low emPAI score.  

 The use of equine samples in this study were instituted as the horse is an athletic 

animal and is considered an excellent animal model for human joint diseases, as it 

enables one to overcome the limitations in joint size and workload that are typical 

of other small animal models. The activity of the human recombinant proteases 

against equine tissue was assessed using immunoblotting with neoepitope 

antibodies of previously identified cleavage sites. When the crude proteoglycan was 
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digested with ADAMTS-4 ARGXX cleavage sites were evident but no DIPEN 

cleavages sites (which are derived from MMP activity). In contrast when digestion 

was undertaken with MMP-3 DIPEN but not ARGXX cleavage sites were seen. It 

appeared that the human recombinant enzymes were active in equine cartilage 

digestion. 

The concentrations of MMPs used here were derived from previous studies (Zhen 

et al., 2008) and were used in order to provide adequate peptide generation in the 

timeframe of the experiment. The time frame of the final study was determined 

following preliminary work which indicated maximal digestion, as measured by 

immunoblotting with aggrecan neoepitope antibodies, as 7h and 20h for ADAMTS-4 

and MMP-3 respectively. For the IL-1β treated cartilage explant study the 

concentration of IL-1β was based on many previous works (Chevalier et al., 1996; Ju 

et al., 2010).  Media was collected after 96h based on our previous work on the 

equine cartilage secretome (manuscript 1).  

The proteomics method employed in this study relied upon the search engine 

Mascot to identify peptides following a no enzyme search. Each peptide is given an 

ion score and based on a threshold, Mascot then determines how likely it is that the 

sequence given is true. This is accomplished by the number of fragment ions, both b 

and y, matched to the given peptide.  Subsequently we used a software package; 

PEAK S® which contains  algorithms enabling a number of features, including de 

novo sequencing and PTM identification, following tandem MS (Ma et al., 2003). 

The de novo sequencing feature improves the database search based peptide 

identifications made by correlating the sequencing de novo sequence and the 

database sequence, confirming the ‘correctness’ of neopeptide identifications 

(were a peptide is defined as ’correct’ when it was the best match to the database 

out of all possible peptides). Peptide identification performance is influenced by 

accuracy; which can be measured by FDR and sensitivity; measured by the number 

of peptide spectrum matches and hence peptides.  As the  aim of our approach was 

to provide a ‘first pass’ list of peptides for further investigation cleaved by the 

ADAMTS-4, MMP-3 or induced following IL-1β stimulation, it was important that 

peptide identification results were statistically validated to avoid false positives. 
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Therefore, in the PEAKS® analysis, we employed the decoy-fusion method which 

joins the decoy and target sequences of the same protein together as a ‘fused’ 

sequence (Zhang et al., 2012a). This recently published validation method, 

overcomes problems previously recognised such as over-confidence, in order to 

more accurately separate true and false identifications (Brosch et al., 2009).  

Interestingly the analysis with PEAKS® provided more neopeptides with significant 

scores than the Mascot driven database search as the similarity between the de 

novo sequences identified in PEAKS® and the database peptide is used in PEAKS® 

DB’s scoring function. A recent study using two data sets to evaluate MASCOT and 

PEAKS® DB demonstrated the number of peptide spectrum matches identified by 

PEAKS® DB and Mascot at 1% FDR increased by 42% (Zhang et al., 2012a).  

Although protease inhibitors were present throughout the study it is possible and 

probable that some of the peptides identified were cleaved by endogenous 

proteases. This is especially probable where peptides are seen with successive 

amino acids removed such as the exoproteolytic fraying of ITCTDPASY to ITCTDPAS 

produced following ADAMTS-4 digestion of aggrecan. Most peptides produced by 

endogenous proteases were eliminated from the data analysis as peptides 

identified in both control and protease treated conditions were automatically 

removed. The credibility of our approach was established by a three findings. Firstly 

the neopeptide DIPEN cleavage site was identified with immunoblotting and a 

corresponding neopeptide 344YDAICYTGEDFVDIPEN was demonstrated using LC-

MS/MS.  Secondly a number of previously identified cleavage sites were evident in 

our data; two for MMP-3 treatment and three following ADAMTS-4 treatment 

including the ADAMTS-4 cleavage in biglycan at Asp190-191Cys (Melching et al., 2006) 

as suggested by the presence of the neopeptide 191CIEMGGNPLENSGFQPGAFDGLK 

in ADAMTS-4 digestion of crude proteoglycan. Finally for COMP following both 

ADAMTS-4 and MMP-3 digestion we were able to identify peptides on each side of 

a cleavage site at Asn548-549Try. It is highly improbable that this would have 

occurred had there not been a cleavage between these amino acids. In addition 

these peptides were not evident in control digests. These points would suggest that 

our approach is valid. Interestingly a previously identified cleavage site in COMP at 
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Arg649-650Asp (Holden, 2012) was identified in the study. However it cannot be 

stated for certain that this peptide was due to cleavage of the ‘unknown protease’ 

since this neopeptide could also have been produced by tryptic cleavage alone 

since trypsin also cleaves following arginine.  

 

The profile of neopeptides produced was greatest in the media of IL-1β stimulated 

explants. This may be due to the simpler digest obtained from a media compared to 

a proteoglycan digest, thus reducing sample complexity and increasing the number 

of peptides identified, especially medium to low abundance ones. It could also be 

due to the non-specific nature of the MMPs up-regulated following Il-1β stimulation 

(Shinmei et al., 1991). Of the two protease digestions MMP-3 was the most active 

in generating neopeptides from cartilage in agreement with other studies (Zhen et 

al., 2008). Interestingly both proteases cleaved each proteoglycan assessed within 

the extracts again in agreement with a study identifying MMP cleavage products in 

human articular cartilage (Zhen et al., 2008). Of the proteins investigated COMP 

had the most neopeptides identified following Il-1β stimulation of cartilage 

explants. This could be due to a number of factors. COMP, a pentomeric protein 

(each pentomer is 757 amino acids in length) has a relatively even distribution of 

arginines and lysines within its sequence making it an ideal for tryptic digestion 

producing tryptic (or semi-tryptic in the case of neopeptides) masses of optimum 

mass range for detection. In addition it has only two N-linked glycosylations as PTM. 

From previous studies (manuscript 2) in molar concentration terms it is the most 

abundant protein. Finally COMP has been investigated as a biomarker of OA in 

many studies due to its presence in serum and urine (Tseng et al., 2009) and it is 

hypothesised that in arthritis it must be subject to extensive degradation by 

proteases thus accounting for the large number of neopeptides in this study. 

 

As a no enzyme search was undertaken on the data this allows tryptic, semi-tryptic 

and none-tryptic peptides to be identified. The level of confidence in peptide 

identifications was then tested by Mascot and PEAKS® giving a significance value. 

The neopeptides that were identified pertaining to known cleavages were all semi-

tryptic peptides. That is, they were fragmented by trypsin at only one end of the 



224 
 

peptide.  Trypsin is used in MS experiments as it cleaves C-terminal to arginine and 

lysine resulting in peptides in the preferred mass range for successful 

fragmentation by tandem MS (MS/MS). In addition it places a highly basic residue 

at the C-termini and thus is eminently suitable for positive ionisation mass 

spectrometric analysis. These characteristics aid ‘flyability’ (how easy it is to 

observe a peptide) in MS experiments, resulting in informative high mass y-ion 

series making MS/MS spectra easier to interpret. It is most likely that cleavages in 

proteins would produce semi-tryptic neopeptides, and these would more easily be 

identified using MS than none tryptic peptides.  

 

Neopeptides were given significance scores which gives a probability that the 

sequence established by Mascot or PEAKS® DB was correct and the peptide mass 

and subsequent fragmentation pattern were not due to another peptide; however 

this is only a probability and so some neopeptides with a non-significant score could 

be a true peptide and vice versa.  

 

Significantly more neopeptides were identified in aggrecan than in similar studies 

(Zhen et al., 2008). Aggrecan is the first matrix component to undergo measurable 

loss in the progression of OA (Arner et al., 1999), which is  principally attributed to 

ADAMTS-4 and ADAMTS-5 cleavage (Tortorella and Malfait, 2008). In this study only 

a minority of aggrecan neopeptides were identified in the extended G2 to G3 

domain which contains the region for GAG attachments.  The reasons for this are 

two-fold. The extensive PTMs in this region from glycosylations pose a number of 

challenges to the traditional database search approach. The Mascot algorithm uses 

a limited number of available PTMs in its searches. Furthermore even in the 

extensive PTM list in the PEAKS® software GAGs do not feature. Secondly there is a 

scarcity of arginine and lysine residues in the interglobular domain leading to large 

tryptic peptides whose masses even without PTMs are often too large to allow 

identification. Tryptic digestion would produce peptides whose charged forms, 

especially the lower charged ones, may not be within the mass range of the mass 

analyzer.   Hence it is difficult to identify tryptic peptides in this region.  
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The DIPEN341 cleavage was demonstrated using both neoepitope antibodies and MS 

following MMP-3 digestion. The other previously identified major aggrecanase 

derived cleavage sites in equine aggrecan (Fosang et al., 1995; Hughes et al., 1995; 

Hughes et al., 1992); PQNITEGE373 374ARGNVILT, ATTAGQL1558 1559EGRGTIGIS, 

PTPFKEEE1745 1746GLGSVELSG, TQAPTAQE1850 1851AGEGPSGI, TEPTVSQE1950 

1951LGQRPPVT were not identified. This could be due to the size of the semi-tryptic 

fragments produced being outside the mass range. For instance cleavage at 

PTPFKEEE1745 1746GLGSVELSG would produce a small peptide that was less than 

mass range identifiable; K.EEE and GLGSVELSGLPSGDADLSGTSGR whose mass 

would be too great.  Using in-silico digests of aggrecan with chymotrypsin, Glu-C, 

Asp-N and elastase it was determined that these proteases, commonly used in in-

solution digests to produce peptides of a size detectable by MS, did not produce a 

mass range of peptides any more detectable for aggrecan. Interestingly, apart from 

decorin, where neopeptides identified were equally distributed throughout the 

protein, neopeptides generated from COMP, biglycan and fibromodulin were 

primarily from the C-terminal region. This has previously been described for COMP 

by Zhen et al. 2008 (Zhen et al., 2008).  

 

Many of the neopeptides generated were evident in both MMP-3 and ADAMTS-4 

digests and thus generated by multiple proteases, however some unique 

neopeptides were generated for specific protease digests. Some of these could 

provide useful pharmacodynamic biomarkers of specific protease activity in 

articular cartilage. For example for fibromodulin digestion with MMP-3 alone 

produced the neopeptide 325INEFSISSFCTVVDVMN341, which was identified a 

number of times and also identified in the in-vitro explant culture. This neopeptide 

and others may function as useful biomarkers of cartilage degradation in articular 

cartilage. Until recently the progression of OA has been measured almost 

exclusively by radiography of the joint to assess space narrowing. There is a need to 

progress to translatable biomarkers that are able to monitor protease activity and 

OA disease. The peptide fragments demonstrated in this study provide a starting 

point for further investigations in order to serve as early indicators of cartilage 

turnover similar those already studied in  COMP (Neidhart et al., 1997) and 
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aggrecan (Dufield et al., 2010a). Indeed COMP has been demonstrated to increase 

in serum of patients with OA (Clark et al., 1999; Misumi et al., 2001). In this study 

neopeptides of COMP, a collagen binding thrombospondin matricellular protein 

family member, were amongst the most numerous identified especially in the in-

vitro study.  

 

This study has also provided new insights into the possible role of multiple 

proteases in degrading proteins at the same cleavage sites. Until recently no 

cleavage site had been identified and attributed to the action of a single specific 

enzyme for COMP. However ADAMTS-5 cleavage of COMP at P75/76A has now been 

demonstrated and validated (Holden, 2012). Here the presence of 

63NTVMECDACGMQP75 in both ADAMTS-4 digests of crude proteoglycan and 

following IL-1β stimulation of cartilage explants suggests that ADAMTS-4 is also 

capable of cleaving COMP at the ADAMTS-5 specific site. Further work is required, 

for instance by developing neoepitope antibodies that recognizes the cleaved 

fragment of COMP, to validate this.  

 

Conclusion 

The study identified many MMP cleavage products of equine cartilage. The 

catalogue of neopeptides produced provides information about the major 

proteoglycans susceptible to specific protease activity. In addition the use of an IL-

1β stimulated model of early OA enabled a subset of common neopeptides 

produced by ADAMTS-4 and MMP-3 to be identified, as well as additional 

neopeptides produced by other MMPs. Several of the neopeptides identified are 

potential biomarkers of ADAMTS-4, and MMP-3 activity as well as arthritis. An 

approach has been highlighted to develop a list of potential biomarkers which could 

be applied to other tissues or diseases of interest.  
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APPENDIX TO MANUSCRIPT 4 

Diagrams depicting neopeptide locations in aggrecan, biglycan, COMP, decorin 

and fibromodulin 

Equine aggrecan (O18832) 

 

 

Diagram A. Schematic representation of the domain organisation and structure of 
equine aggrecan along with the depiction of the MMP driven cleavage site at 341N-
342F.  Black lines represent the location of ADAMTS4 digestion derived neopeptides, 
green lines MMP-3 digestion derived neopeptides and red represents those 
identified in both ADMTS4 and MMP3 digestions. All marked neopeptide sequences 
were significantly identified by Mascot (p<0.05)and/or PEAKS® (equivalent p<0.01). 
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Equine biglycan (O46403) 
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Equine COMP (Q9BG80) 
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Equine decorin (O46542) 
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Equine fibromodulin (A2Q126) 

 

Diagrams B, C, D, E. Equine biglycan, COMP, decorin and fibromodulin amino acid 
sequences and significant neopeptide locations. Each protein name is followed by 
the Uniprot protein accession number the sequence was taken from. For COMP the 
sequence has been truncated between amino acids 240 and 480. Black lines 
represent the location of ADAMTS4 digestion derived neopeptides, green lines 
MMP-3 digestion derived neopeptides and red represents those identified in both 
ADMTS4 and MMP3 digestions. All marked neopeptide sequences were 
significantly identified by MASCOT (p<0.05) and/or PEAKS® (equivalent p<0.01).the 
location of known protease cleavage sites for ADAMTS4, ADAMTS5, MMP-3 are 
marked on the relevant protein sequence. In addition two previously identified 
cleavage sites in COMP are marked (the enzyme responsible for these are not 
known). 
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MALDI Imaging Mass Spectrometry Identified Markers of Ageing and 

Osteoarthritic Cartilage 

 

Abstract 

Cartilage protein distribution and the changes that occur in cartilage ageing and 

disease are essential in understanding the process of cartilage ageing and age 

related diseases such as osteoarthritis (OA).  This study utilised matrix assisted laser 

desorption ionization imaging mass spectrometry (MALDI-IMS) to investigate the 

spatial distribution of different components in ageing and osteoarthritic cartilage 

sections. The distribution of peptides in young, old and osteoarthritic equine 

cartilage was compared following tryptic digestion of cartilage slices and MALDI-

IMS undertaken with a MALDI SYNAPT™ HDMS system. Following multivariate 

analysis protein identification was undertaken using database searches. Peptide 

intensity differences between young, ageing and OA cartilage were imaged with 

Biomap software. Proteins including aggrecan core protein, fibromodulin, and 

cartilage oligomeric matrix protein were identified and localised. A number of 

tentative markers were identified for OA and ageing. In addition a number of 

potential peptides targeted for degradation in OA were detected. MALDI-IMS 

provided a novel platform to study cartilage ageing and disease enabling age and 

disease specific peptides in cartilage to be elucidated and spatially resolved. 

 

Introduction 

Osteoarthritis (OA) is an age related joint disease characterized by a loss of cartilage 

extracellular matrix (ECM) (Goldring, 2000). Progressive destruction of articular 

cartilage is a hallmark of OA, leading to chronic pain and lameness. Whilst this 

heterogeneous condition  occurs as a consequence of numerous overlapping 

independent factors including gender (van Saase et al., 1989), genetics (Spector et 

al., 1996), and obesity (Carman et al., 1994) age is the most common risk factor for 

its initiation and progression, with symptomatic OA affecting 10–20% of people 

aged over 50 years (Lawrence et al., 2008). The explanation for this is an 

accumulation of ‘wear and tear’ injuries due to mechanical loading over many 

years.  
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Although much work has been undertaken investigating the pathogenesis of OA the 

molecular mechanisms involved are not fully understood, with few validated 

markers for disease diagnosis and progression being available. Treatment of OA is 

limited to pain relief or joint replacement with few disease-modifying therapeutics 

coming to fruition. Hence methodologies which permit the study in detail of ageing 

and OA cartilage organisation could improve the knowledge of how ageing 

increases the risk of OA. 

Measurement tools enabling the capture of the dynamic and complex interplay 

between proteins, lipids, DNA and other molecules are necessary. This interplay 

involves the appearance, interaction and disappearance of many species on varying 

time scales. Capturing this spatial and temporal information will help in the quest to 

understand the pathogenesis of OA and ultimately provide disease modifying 

treatments.  

Mass spectrometry (MS) is an analytical tool that enables the accurate 

measurement of both mass and charge of molecules. Matrix assisted laser 

desorption/ionization imaging mass spectrometry (MALDI-IMS) of tissue samples is 

a powerful technique that allows for spatially resolved, comprehensive and specific 

characterization of hundreds of unknown molecular species (proteins, peptides, 

lipids or metabolites)  in-situ in a single molecular imaging experiment (Seeley and 

Caprioli, 2008). Furthermore it can spatially resolve  below 50μm and it is not 

necessary to use any kind of labelling (Amstalden van Hove et al., 2010). IMS has 

been used to identify the molecular distribution of peptides in many diseased 

tissues including brain (Taban et al., 2007), liver (Lee et al., 2011) and kidney 

(Meistermann et al., 2006). Additional molecules including lipids (Hankin et al., 

2011) and small molecules (Blatherwick et al., 2011) have been localised in 

numerous tissues. Moreover, specific protein patterns revealed by IMS have been 

demonstrated as prognostic (Balluff et al., 2011) and diagnostic indicators 

(Gustafsson et al., 2011). MALDI-IMS techniques have only recently been 

implemented in cartilage research. One study employed a time of flight secondary 

ion mass spectrometry (TOF-SIMS) workflow in order to acquire molecular-specific 

spatial distribution of lipids in normal and OA cartilage (Cillero-Pastor et al., 2012b). 



235 
 

The study revealed a mixture of organic and inorganic distributions that 

distinguished human normal from OA cartilage. A further study used MALDI-IMS to 

identify and localise OA specific peptides and proteins in cartilage (Cillero-Pastor et 

al., 2012a)  

The aim of this study was to establish peptide profiles in young, ageing and OA 

horse cartilage with a high spatial distribution in order to determine changing 

molecular events distinct between ageing and disease.  

Methods  

Sample collection, preparation and processing 

Full thickness equine cartilage slices were removed from the mid condyle region of 

metacarpophalangeal joints collected from an abattoir and snap frozen in liquid 

nitrogen. All samples were scored macroscopically using Kawcak scoring for 

pathological grading of the distal condyles of metacarpophalageal III (Kawcak et al., 

2008). For age-related studies samples were taken from skeletally mature young (4 

years old, n=3) and old (greater than 15 years old, n=3) horses. Equine tissue was 

readily obtained enabling collection of cartilage samples from macroscopically 

normal, skeletally mature young and aged horses as well as osteoarthritic cartilage. 

For young horses, one year is equivalent to about 3.5 years of a human. Hence 

horses of greater than 15 years old, used in this study equates to humans of older 

than 52 years. Furthermore, racehorses develop OA at an earlier age due to their 

strenuous physical activity in a similar way to professional and recreational athletes 

(Golightly et al., 2009; Neundorf et al., 2010). For OA studies skeletally mature 

donors greater than 15 years were chosen with mild macroscopic OA changes. 

Samples were stored at -80oC and shipped overnight on dry-ice to the Biomolecular 

Imaging Mass Spectrometry (BIMS) Molecular Nanophotonics Department, FOM 

Institute-AMOLF, Amsterdam for experimental analysis.  

 

Cartilage was sectioned at 12μm thicknesses on a cryostat Microm HM 525 

(Microm International, Walldorf, Germany) and thaw mounted on glass slides. All 

samples were dried in a vacuum desiccator for 10min prior to further processing. 
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Tissue digestion and matrix deposition for MALDI-IMS  

Young and old cartilage were studied in duplicate whilst normal and OA cartilage 

were examined in triplicate and then compared by MALDI-IMS. The sections were 

washed in 70% ethanol and chloroform for 30s each. Trypsin (Sigma-Alrich, Dorset, 

UK) at 0.05μg/μL was applied using a high-accuracy chemical inkjet printer (CHIP-

1000; Shimadzu Biotech, Kyoto, Japan). Each tissue section was spotted with 5nL 

trypsin (0.05μg/μl) per position in a 150μm spacing raster scheme using cycles of 

250pL per droplet. The samples were incubated overnight at 37oC. Using a 

vibrational sprayer (ImagePrep; Bruker, Bremen, Germany) the matrix solution; α-

Cyano-4-hydroxycinnamic acid (HCCA) (10mg/mL) in 50% acetonitrile, 50% 

trifluoroacetic acid (TFA) 0.1%, was applied on top of the tissue section. 

 

MALDI–IMS  

Tissue sections were optically scanned prior to MALDI–IMS experiments using a 

2400 dpi desktop scanner. The resulting images were imported into the MALDI 

Imaging Pattern Creator software (Waters Corporation, Manchester, UK). A MALDI 

SYNAPT™HDMS system (Waters Corporation) instrument was calibrated using a 

standard calibration mixture of polyethylene glycol with a molecular weight of 100-

3000 (Sigma-Aldrich). The instrument was operated with a 200 Hz Nd:YAG laser and 

was configured to acquire data in the positive V-reflectron mode. Data were 

acquired at a lateral resolution ～ 90μm and at a raster size of 150μm.  

 

Multivariate analysis and data interpretation following MALDI-IMS 

 

Within the data analysis workflow a number of AMOLF in-house build MATLAB (The 

MathWorks, Natick, MA, USA) software tools (Synapt2Tricks, ChemomeTricks, 

CombiTricks, PEAPI, Synapt_PL) were utilised (Figure 1). Synapt RAW format files 

were converted to NetCDF format using the DataBridge utility in MassLynx v4.1. 

The NetCDF files were converted to MATLAB Tricks format using Synapt2Tricks. 

Selection of the regions of interest (ROIs) to separate on-tissue signal from off-

tissue sample was performed using ChemomeTricks. For each ROI an average 
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spectrum was calculated and these average ROI spectra were combined in one 

dataset using CombiTricks. Peakpicking was performed on the combined ROI 

averages dataset using PEAPI. The resulting peaklist was used to integrate the 

signals of all full ROI files. The integrated full ROI files were combined using 

CombiTricks. Principal component analysis (PCA) and discriminant analysis (DA) 

were performed on the resulting file using ChemomeTricks. PCA was used as a data 

pre-treatment step before DA. This data pre-treatment is necessary to prevent 

noise related features from being introduced into the DA calculation. The first 20 

principal components were used as input for DA to probe spectral similarities and 

differences between young and old, old normal and old OA or young, old and old 

OA samples. Some of the resulting discriminant function loadings were used to 

provide peaks for MS/MS targeting.  

 

Biomap 3.7.5.5 software (Novartis Pharma AG, Basel, Sweden) was used to 

generate ion images.  Normalisation of the intensity of all m/z channels was 

performed using the intensity of the m/z 190 matrix peak. P values for statistical 

differences found in MALDI-IMS experiments were calculate with one-way ANOVA 

with a Bonferroni ad-hoc test using SPSS (IBM, Hampshire, UK) following normality 

testing. Differences were considered to be statistically significant at p≤0.05. The 

data were expressed as mean intensity ± standard error mean (SEM). 
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Figure 1. A number of AMOLF developed software tools were used in the data 

analysis of MALDI-IMS data.   

 

Histological staining and analysis 

Following IMS the tissue sections were washed in 70% ethanol for 5min to remove 

matrix.  The slides were immersed in Harris hematoxylin solution (Sigma-Aldrich) 

for 1min. After washing with water for 15min, they were rinsed in 95% ethanol and 

counterstained in an eosin solution for 30s. Digital images were acquired with the 
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Mirax system (Carl Zeiss, Siledrecht, The Netherlands) after dehydrating steps. A 

modified Mankin scoring system was used for semi-quantitative histological 

assessment of all equine cartilage samples (McIlwraith et al., 2010). 

 

Tissue digestion and matrix deposition for profiling experiments  

Protein identification was undertaken with profiling experiments directly from each 

donor tissue by applying 10μL of trypsin 0.05μg/μL directly and incubating 

overnight at 37oC. HCAA matrix was applied as previously described. Data 

dependent analysis (DDA) of tryptic peptides was performed with the MALDI 

SYNAPT™HDMS system. Every MS survey scan was followed by collisional 

fragmentation of the most intense ions with subsequent collection of MS/MS 

spectra. Direct MS/MS fragmentations were performed directly from the tissue on 

the peptides that differentiate either young and old or old normal and old OA 

tissue. These target peptides were found following Discriminant Analysis (DA). In 

addition fragmentation was also undertaken on a peptide list generated from 

bibliographical analysis of previous MALDI-IMS studies in cartilage (Cillero-Pastor et 

al., 2012c).  The resulting data files were submitted to an in-house Mascot (Perkins 

et al., 1999) server (Matrix Sciences, London, UK) and searched against Unihorse 

and Swissprot databases. Search parameters used were; peptide mass tolerances 

50ppm, fragment mass tolerance of 0.5Da, 1+ ions, missed cleavages; 3, and 

instrument type MALDI-Q-TOF. Modifications used were variable oxidation of 

methionine. 

 

Results 

Macroscopic grading and morphological evaluation of cartilage samples 

Macroscopic grading and a semi-quantitative histological assessment using a 

modified Mankin’s scoring system of the samples were undertaken. The 

macroscopic score was used to allocate samples into old normal or old OA groups, a 

score of greater than 0 were assigned OA. Only macroscopically normal cartilage 

was used for age related studies. All samples for age related studies had a modified 

Mankin’s grade of 0 (data not shown). The macroscopic grading and Mankin’s score 
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for each sample used in the old normal versus old  OA studies are demonstrated in 

Tables 1A and 1B.  

 

Table 1. Modified Mankin’s grading (A) and macroscopic evaluation (B) and of 
normal and OA cartilage samples. Numbers in parenthesis relate to the maximum 
score for that characteristic with higher scores equating to more severe changes.  
 

MALDI-IMS of equine cartilage samples 

a. Multivariate analysis  

i. Young, old and OA cartilage 

After imaging experiments, data from young, old and OA cartilage groups was 

analysed together.  The spectra of each group revealed different profiles. A 
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combined spectrum of representative digested equine young, old and OA samples 

are demonstrated in Figure 2, with peptides specific to each category already 

evident (Table 2 and 3).  

 

 

 

Figure 2. Combined spectrum of representative digested equine young, old and 
OA samples reveal different profiles. A representative spectrum form each group is 
shown. Examples of peptides specific to each condition are seen in the combined 
spectra and marked in red boxes.  
 

MALDI-IMS was used for the study of differential peptide distributions in young, old 

and OA cartilages.  PCA analysis, which is unsupervised, revealed differences 

between each sample type (Figure 3). The first two functions accounted for 13% of 

the variance. 
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Figure 3. A PCA scatter plot revealed separation when the first 20 principal 
components only were taken into account.  Rings denote the different categories; 
young; 1, old; 2 or OA; 3.  
 

DA was also performed on the first 20 principal components in the dataset in order 

to remove noise and provide a conservative approach to data analysis.  

 

Following DA the resulting discriminant functions (DFs) classified the data in three 

groups; young, old and OA. However the first function separated mainly OA from 

the young samples. Interestingly there was a big contribution of the old samples to 

the negative part of DF1 indicating that peptides within old samples were also 

present in OA samples but there were also a contribution of the old samples to the 

positive part (Figure 4A).   
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Figure 4. Young, old and OA samples after MALDI-IMS experiments were analyzed 
by PCA and DA to classify peptides specific to each group. A) Data is representative 
of DF1. The positive part of the graph corresponds mainly to young (and partially 
old) and the negative to OA and partially to old samples. B) Scaled loading plot of 
DF1 representing the peptides specific primarily to young and old/OA detected by 
the MALDI-IMS approach.  
 

Following DA a number of peaks were detected/ identified as specific for young 

(including 2415.9), old or OA. When the raw data was examined, similar patterns 

were evident. For instance, using a hierarchical clustering approach to classify the 

raw spectra we observed differences at 2415.9 m/z peak. The intensity of this and 

other related masses grouped in the same cluster, demonstrated spectral 

differences even prior to PCA and DA (Figure 5). This peak was also demonstrated 

to have high loading in young cartilage (Figure 6b). A peptide with mass 2414.9 was 

subsequently identified as collectin-43 using fragmentation targeting of this mass. It 

is highly probable that this represents an isotope of 2415.9. The 2415.9 peak has 

two different distributions in old samples which may be correlated to different 

areas in a tissue with varying degrees of damage (Figure 5c). This verifies that 

MALDI-IMS can reveal a peptide distribution profile that could predict and define 

the type of sample analysed. 
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Figure 5. Analysis of 2415.9 m/z cluster, illustrates differences between young, old 
and OA spectra. Hierarchical clustering dendrogram (A) showed those peaks that 
can be correlated and differently distributed among the groups (B). A cluster score 
histogram (C) demonstrated separation for the 2415.9 m/z cluster between 
category 1 (young), 2 (old) and 3 (OA), with greatest separation between young and 
OA.  
 

In addition comparisons were also made using PCA and DA between young and old 

and old normal and old OA groups separately.  

 

ii. Young and old cartilage 

Differential peptide distributions between young and old cartilage was assessed by 

MALDI-IMS using three donors for each condition in duplicate. Different spectral 

profiles of young and old cartilage were evident (Figure 6A and B). Peak picking 

from within the tissue only was required to reduce the dataset size in order to allow 

further analysis. The resulting DF1 classified the data into young and old (Figure 

6A). The DF1 spectra (Figure 6B) identified the peaks of the positive part of the DF1 

were primarily specific from young cartilage samples such as 2415.9 and the peaks 

of negative part were more abundant in cartilage from old donors. 
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Figure 6. PCA and DA separated the dataset on age of the sample. A) The spectra 
of all the young and old samples after MALDI-IMS experiments were analyzed by 
PCA and DA to classify peptides specific of each age using a 1 D plot. B) Loading plot 
of DF1 representing the peptides specific to age of cartilage given by MALDI-IMS. 
The young specific peaks 2414.9 and 2415.9 are ringed. 

 

iii. Old Normal and old OA cartilage 

Finally normal and OA cartilage from three donors greater than 15 years old in 

duplicate were assessed for differential peptide distributions using MALDI-IMS. 

After PCA and DA the resulting DF1 classified the data into normal and OA (Figure 

7A). The DF1 spectra (Figure 7B) identified the peaks of the positive part of the DF1 

were specific from OA cartilage samples such as 1366.5 (also imaged in Figure 10) 

and the peaks of negative part were richer in cartilage from normal donors. 

 

A B 



246 
 

 

Figure 7. PCA and DA of old normal and old OA cartilage. A) The spectra of all the 
normal and OA samples after MALDI-IMS experiments were analyzed by PCA and 
DA to classify peptides specific of each category using a 1 D plot. B) Loading plot of 
DF1 representing the peptides specific to OA given by MALDI-IMS. The OA specific 
peak 1366.5 is ringed. 
 

b. Profiling studies of cartilage 

 

MS/MS profiling experiments on cartilage slices were undertaken in order to 

determine proteins that could be identified directly from the tissue (Table 2). 

Tryptic peptides of COMP and fibromodulin were common to all groups.  

 

c. Peptide identification through targeted fragmentation studies  

 

Following PCA and DA of each group; young, old and OA; young and old; old normal 

and old OA,  the peaks with the highest absolute loadings in the DF1 spectra, were 

targeted directly from tissue slices for MS fragmentation and database searching in 

order to identify the protein it pertained to. In addition of list of masses were also 

selected that had been previously identified in human cartilage MALDI-IMS studies 

(Cillero-Pastor et al., 2012a). For some masses although a good fragmentation 

spectra was obtained we were unable to identify them (Figure 6).  

 



247 
 

 

Table 2. Proteins identified from MS/MS profiling experiments of cartilage. The 
proteins identified following profiling experiments from cartilage are represented. 
The table identifies the Swissprot accession number, abbreviation of the protein 
name, experimental molecular weight of the matched peptides, the score given by 
the Mascot algorithm, and the sequence of the matched peptides. All Mascot 
scores were significant (p<0.05). All peptide sequences were checked against the 
equine sequence and were homologous.  
 

 

 

 

Figure 6. Database searching of the fragment spectra produced following 
targeting of the peak 2705.3 was unable to make an identification. The figure 
shows an example, representative of a number of peaks targeted for 
fragmentation, that produced a good series of fragment ions but for which we were 
unable to obtain a significant match. The spectrum after background subtraction 
and peak detection illustrates a series of ions which were used to perform a Mascot 
search against the Swissprot and Unihorse databases. No significant identification 
was made. 
 

Results from peak lists taken from the DF1 spectra of each comparison targeted 

identified m/z 2414.9 (collectin-43), with a significant Mascot score (p<0.05) alone. 
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Results for targeted fragmentation experiments using masses previously identified 

in human studies are shown in Table 3. 

 

 

Table 3. A number of ECM peptides were identified following targeted MS studies 
on cartilage slices. Subsequent to MS targeted fragmentation studies and database 
searching implemented by Mascot using the Unihorse database, the peptides 
included in this table were identified. All Mascot scores were significant (p<0.05). 
The amino acid sequence of each peptide is included.  

 

d. Semi quantitative analysis 

The peak distribution intensity differences in young, old and OA cartilage of the 

identified peptides  were semi-quantified using images produced by Biomap 

software. Whilst there was no difference in the distribution of the majority of the 

peptides between groups including collagen type II, a significantly different 

distribution of peptides for COMP; m/z 2256.1 and biglycan 2027.2 was observed 

(Figure 7). As the intensity of the COMP peptide FYEGELVADSNVVLDTTMR was 

increased in old cartilage it could be a tentative marker of cartilage ageing. 

Furthermore some of the peaks identified and then imaged with Biomap were 

demonstrated by DA, to be expressed in the same manner, even at low loadings, for 

example, the COMP peptide m/z 2256.1; FYEGELVADSNVVLDTTMR between old 

(mean intensity 0.05±0.001) and OA (mean intensity 0.02±0.0002), and old and 

young (mean intensity 0.03±0.001) plus the biglycan peptide m/z 1312.7; 

IQAIELEDLLR between   old (mean intensity 0.075±0.002) and OA (mean intensity 

0.038±0.001).   
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Figure 7. Significant differential imaging of some ECM peptides.  Biomap was used to quantify the differences in the peptide peak 
intensity of m/z 1679.8, m/z 2256.1 and m/z 2027.2 between young, old and OA cartilages. Samples representative of each group are 
illustrated here. Scale bar shows normalised intensities to 190 m/z matrix peak. In the scale bar red represents the highest signal.  
Histograms shows the mean peak intensities ±SEM, n=3 for each peptide. There was no change in the distribution of the type II 
collagen peak m/z 1679.8. However a significant difference was evident for the COMP peptide m/z 2256.1 (p=0.03 young versus old 
and old versus OA) and the biglycan peptide m/z 2027.2 (p=0.02, young versus OA and old versus OA). 
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Further analysis was undertaken comparing the results in this study to those 

previously undertaken in human cartilage  (Cillero-Pastor et al., 2012a). 

Interestingly distinctive intensity differences were observed for the previously 

identified fibromodulin peptide ELHLDHNQISR; m/z 1361.7 in man (Cillero-Pastor et 

al., 2012a). This peptide is homologous to the horse and was significantly reduced 

in OA equine cartilage (Figure 8). However there were no significant differences for 

the other fibromodulin peptides identified in profiling experiments with m/z 1557.0 

or 1955.2 between categories identified by either DA or following peak intensity 

analysis and statistical testing (data not shown). 

 

 

 
Figure 8. A significant reduction in peak intensity of peptide m/z 1361.7 in OA 
cartilage was demonstrated a) Biomap was used to quantify the differences in the 
peptide peak intensity of m/z 1361.7 between A; young, B; old and C; OA cartilages. 
Two donors representative of each group are illustrated here. Scale bar shows 
normalised intensities to 190 m/z matrix peak. b) Histogram shows the mean peak 
intensities ±SEM, n=3. * represents p<0.001, young versus OA, old versus OA and 
old versus OA.   

 

First the differences found in the distribution of a human OA marker (Cillero-Pastor 

et al., 2012a); with an m/z 1349.6, identified previously as a fibronectin peptide and 

homologous to the horse sequence was visualised. The highest intensity differences 

were between young (mean intensity 0.11±0.009) and OA (mean intensity 

0.36±0.12) samples (p=0.018, young versus OA). However the intensity difference 

between old (0.12±0.007) and OA was also significantly different (Figure 9a and b).  
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Interestingly a peptide m/z 1401.7 identified as fibronectin and previously 

nominated as a human OA marker (Cillero-Pastor et al., 2012a) was visualised in 

young, old, and OA samples.  The highest intensity differences were between young 

(mean intensity 0.08±0.009) and OA (mean intensity 0.17±0.11) samples (p=0.02, 

young versus OA) (Figure 9c and d). 

 

 

Figure 9. Significant differential imaging m/z 1349.6 and m/z 1401.7 in cartilage.  
a) Biomap was used to quantify the differences in the peptide peak intensity of a) 
m/z 1349.6 and c) m/z 1401.7 between A; young, B; old and C; OA cartilages. 
Samples representative of each group are illustrated here. Scale bar shows 
normalised intensities to 190 m/z matrix peak. b) Histogram shows the mean peak 
intensities ±SEM, n=3 for b) m/z 1349.6 and d) m/z 1401.7 * represents p<0.05; m/z 
1349.6 young versus OA and old versus OA and m/z 1401.7 young versus OA.   
 

 

Furthermore the peptides with m/z 1366.5, 1693.0, 1905.8 were demonstrated by 

DA as being at greater levels in OA. Of these the peptide m/z 1366.5 was found to 

be significantly imaged at greater intensities in all OA samples (mean intensity 

1.00±0.03, p<0.001, young or old versus OA). Mean intensity for young was 

0.05±0.003 and old 0.05±0.04 (Figure 10). The mean intensity values for each group 
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are shown in Figure 10b.  In addition the peaks m/z 2415.9 and 2414.9 (identified as 

collectin-43 in fragmentation studies) were differentially expressed in all young 

samples.  

 

 

Figure 10. Distribution and intensity of the tentative OA marker peptide m/z 
1366.5. a) The different intensities and distributions of m/z 1366.5 peptides in 
representative samples of A; young, B; old and C; OA samples after MALDI-IMS 
experiments (n=3). Scale bar shows normalized intensities. Saturation of the images 
in panel C; OA samples was evident in order to visualise the intensity in young and 
old samples. Background was evident in panel B but the intensity values calculated 
were measured creating ROI in order to avoid measurement of other molecules 
with the same mass that were outside the tissue. b) Histogram represents the mean 
peak intensities ±SEM, n=3. * represents p<0.001, young versus OA and old versus 
OA.  

 

Finally we measured the intensity of the distribution of peptides in different areas 

of the cartilage in young, old and OA cartilage in order to assess if the distributions 

were homogenous. There was an absence of heterogeneity of peptide distribution 

in all samples.  

 

 

 

 



253 
 

Discussion 

 

MALDI-IMS is a powerful tool to study molecular distributions at tissue surfaces. In 

this study we utilised recently implemented novel techniques to identify and 

spatially resolve peptides in ageing and OA cartilage. This technique offers the 

ability to distinguish peptide patterns within specific locals in cartilage, for instance 

between the superficial and deep layers (Cillero-Pastor et al., 2012c). The technique 

has been used to localise molecules such as peptides and lipids in diseases such as 

cancer (Rauser et al., 2010) in order to provide biomarkers (Stauber et al., 2008) 

and treatment targets. Whilst a recent study investigated the peptide (Cillero-

Pastor et al., 2012a) and lipid (Cillero-Pastor et al., 2012b) distribution in normal 

and OA cartilage in this study we wished to elucidate whether changes in spatial 

distribution and presence of peptides occurred in ageing and between ageing and 

OA. 

 

The samples used in this study were semi-quantitatively assessed macroscopically 

and microscopically and the OA samples presented with mild arthritic changes 

associated with early OA as demonstrated by the relatively low Mankin’s scores. 

This was noted as previous studies in human OA cartilage used samples from total 

knee arthroplasty which would represent severe, late stage OA changes. Despite 

this, there was a marked difference between the peptides identified in old versus 

OA group as well as young versus old groups.  

 

Following DA it was demonstrated that the peptide profile of young, old and OA 

horse cartilages could be distinguished. Interestingly when DA was applied to all 

three groups (young, old, OA) together there was a large contribution of the old 

samples to the negative part of DF1 indicating that peptides within old samples 

were also present in OA samples. This would suggest age-related changes in 

peptides occur which do not contribute to disease related changes.  

Initial profiling experiments were undertaken to determine which proteins could be 

identified directly from the cartilage. A limited number of identifications were made 
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when compared to proteomics studies undertaken on equine cartilage extracts or 

cartilage explant media (Peffers et al., 2012). There were a number of reasons for 

this. First there was no prior extraction using a chaotropic agent such as 

guanidinium chloride. Chaotropes disrupt water interactions, promote hydrophobic 

protein and peptide solubilisation and breakdown the higher order protein 

structure all of which enable peptide to be more readily analyzed.  Separation, 

depletion, partitioning or enrichment techniques were not used before analysis as 

this is not practical when MALDI-IMS is used to localize proteins in the tissue. 

Finally, as cartilage consists primarily of a small number of ECM proteins these can 

mask the mass spectrum of lower abundance proteins.  

Following profiling experiments both Swissprot mammalian and the Unihorse 

databases were searched using Mascot using peptide mass fingerprints obtained. It 

was found that the Swissprot database gave the best cross-species matches in 

terms of scores and number of significant peptides identified, even though these 

were identified from other mammalian species. When the sequence homology for 

each peptide was checked with the equine sequence they were found to be the 

same for all the peptides logged in this study. This is because the peptides have an 

othologous sequence; their homologous sequences arose from a common ancestral 

gene during speciation. The equine database is not as well annotated as some 

others, for instance the human and mouse, and this may account for these 

differences. Interestingly following targeted fragmentation when the resulting files 

were searched using Mascot both databases gave similar results. This was probably 

due to the MS acquisition method differences producing different data, so that 

subsequent to a targeted fragmentation approach the sequences derived could be 

matched more definitively to the horse database.  

 

The distribution of peptides in young, old and OA cartilage was examined for the 

first time. Of the proteins identified in cartilage there were unique peptides 

representing extracellular matrix proteins such as, COMP, matrilin-3, type II 

collagen, biglycan and fibromodulin.  
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The three major findings in this study were the identification of potential 

degradation sites in OA cartilage in COMP, biglycan and fibromodulin together with 

a number of potential markers of both age-related and disease-associated changes 

in cartilage.  COMP is a major ECM protein with a role in cartilage structural 

integrity through its collagen I, II, IX and chondrocyte binding capacity, interaction 

with other ECM proteins including matrilin-3 (Mann et al., 2004)  and role in 

fibrillogenesis (Halasz et al., 2007).  It has been proposed as a biomarker for 

arthritis (Tseng et al., 2009). Interestingly the peptides identified were from the 

collagen binding C-terminal of COMP which others have demonstrated is important 

in intra and extra cellular processes (Briggs and Chapman, 2002). Indeed mutations 

in the genes encoding COMP and matrilin-3 result in multiple epiphyseal dysplasias 

(Briggs and Chapman, 2002; Chapman et al., 2001).   Measurement of intact COMP 

and fragments thereof in synovial fluid or serum correlates to cartilage destruction 

in rheumatoid arthritis (RA) and OA patient studies (Saxne and Heinegard, 1992). 

Whilst interestingly studies in rats have found the plasma levels of COMP were age 

dependant (Wester et al., 2003). Using Biomap to determine the peak intensities 

between different groups there were differences in the distribution of the COMP 

peptide FYEGELVADSNVVLDTTMR. Its presence exhibited a pronounced decrease in 

both young and OA compared to old cartilage. This peptide is located in the C-

terminal end of COMP which binds collagen I, IX and II, and regulates fibril 

formation (Halasz et al., 2007). In our previous studies following interleukin -1 

stimulation of mature equine cartilage explants we identified a neopeptide which 

indicated possible degradation of this peptide at Asn712 – 713Thr (manuscript 4). This 

would seem to suggest that in OA there is degradation within this peptide resulting 

in the reduced expression demonstrated when OA cartilage was imaged. Whilst in 

young cartilage it may represent reduced synthesis or cartilage remodelling. The 

peptide represents a possible marker of age but not disease related changes in 

cartilage ECM.  

 

The study also demonstrated a reduction in some peptides for biglycan and 

fibromodulin, members of the small leucine rich repeat proteoglycan family with 

important collagen binding properties (Hedbom and Heinegard, 1989; Wiberg et al., 
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2003). Structural changes related to ageing are evident in biglycan, were there 

appears to be a cleavage in the amino terminal domain resulting in a ‘no-glycan’ 

biglycan as the terminal peptide containing the glycosaminoglycan chain separates 

from the protein core (Roughley et al., 1993). Results indicate a reduction in the 

presence of the mid region biglycan peptide NHLVEIPPNLPSSLVELR in OA cartilage. 

This either represents a reduction in the synthesis or degradation from disease. 

However as the other peptide identified in biglycan IQAIELEDLLR (also mid-region) 

does not reveal reduced intensity in OA it is more likely that it is lost following 

degradation. Interestingly our previous MS studies (manuscript 4) have identified a 

potential matrix metalloproteinase 3 (MMP-3) and a disintegrin and 

metalloproteinase with thrombospondin motifs 4 (ADAMTS-4) driven cleavage site 

within this peptide at Ser164- 165 Leu. It is hypothesised that in OA there is cleavage 

at this site by MMPs resulting in a loss of this mass and so a reduction in peak 

intensity. Fibromodulin peptides were identified and their distribution imaged. One 

of a number of peptides, identified in MALDI-IMS studies of human cartilage 

(Cillero-Pastor et al., 2012a), and with the same mass in the horse investigated was 

the fibromodulin peptide ELHLDHNQISR.  This was significantly reduced in OA 

samples despite the distribution of other fibromodulin peptides identified being 

unchanged. This would indicate that there is possibly degradation of this peptide as 

opposed to a reduction in synthesis of fibromodulin. Interestingly again our 

previous studies (manuscript 4) have identified a potential ADAMTS-4 cleavage site 

in this peptide at Asn167–Gln168. ADAMTS-4 is a pertinent enzyme in the 

pathogenesis of OA and although fibromodulin has been previously identified as a 

substrate for ADAMTS-4 (Gendron et al., 2007), this was at the Tyr 44–Ala45 bond 

(Fushimi et al., 2008).  Degraded fragments of the core fibromodulin protein have 

been observed in OA cartilage (Roughley et al., 1996) and with age (Cs-Szabo et al., 

1995). Removal of this portion of fibromodulin would result in weaker interactions 

of collagen fibres to surrounding structures. This illustrates the potential usefulness 

of MALDI-IMS in identifying and spatially resolving novel cleavage sites with 

pathological relevance. Indeed this study would indicate that cleavage of the 

fibromodulin peptide ELHLDHNQISR and the biglycan peptide NHLVEIPPNLPSSLVELR 
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is disease and not age related. Insights such as this may aid in the understanding of 

the age-related but not age-distinct disease OA.  

 

A number of tentative OA markers were detected. By means of Biomap software 

we quantified the intensity of the differences in abundance of peptides with m/z 

1366.5 and 1349.6 in healthy young, old and OA samples and found their 

abundance increased in OA as determined by peak imaging.  The m/z 1349.6 had 

been identified from human studies (Cillero-Pastor et al., 2012a) as being derived 

from fibronectin and its sequence homolog confirmed between the horse and man. 

Furthermore we identified the fibronectin peptide m/z 1401.7 as being more 

abundant in OA cartilage in agreement with others (Cillero-Pastor et al., 2012a).  

Fibronectin, a ECM glycoprotein, and fibronectin fragments have been associated 

with enhanced levels of catabolic cytokines and up regulation of MMPs involved in 

both normal homeostasis and arthritic diseases (Homandberg, 1999). Fibronectin 

fragments and fibronectin-aggrecan complexes have previously been suggested as 

biomarkers of OA (Scuderi et al., 2011; Zack et al., 2006). Therefore these peptides 

may provide promising biomarkers of OA as they are not affected by age-related 

changes.  Fibronectin may provide a key species for potential diagnostic and drug 

targets. The increase in some fibronectin peptides identified in OA cartilage is most 

likely to be due to an increase in synthesis. This is because not only are these 

peptides found along the whole fibronectin sequence but others have 

demonstrated, in human OA cartilage similar findings which were validated using 

immunohistochemistry (Cillero-Pastor et al., 2012a).  

 

Whilst a number of studies have interrogated ageing cartilage in order to elucidate 

the underlying mechanisms in its ageing and how it may contribute to OA none 

have used MALDI-IMS.  In this study we were able to identify peptides and peaks 

with the potential to differentiate between ageing and OA related changes such as 

the COMP peptide FYEGPELVADSNVVLDTTMR imaged predominantly in old 

cartilage and the marker of young cartilage, peak 2414.9 identified as collectin-43. 

Collectin-43 is a C-type serum lectin with collagenous regions and a member of the 

collectin family of soluble proteins that are effector molecules in innate immunity 
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(Holmskov et al., 1994). Biglycan and decorin have been identified as binding 

collectin-43 and may have an important role in the resolution of C1q-mediated 

inflammatory processes in cartilage. Biglycan and decorin may down-regulate 

proinflammatory effects mediated by the collectins (Groeneveld et al., 2005). The 

identification of this protein in young cartilage is interesting as although there is 

evidence for ECM components such as fibronectin and hyaluronan to act as toll-like 

receptors in the innate immune response there was no evidence of disease from 

histology. It would be interesting to validate this and other findings with 

immunohistochemistry studies. The presence of collectin-43 requires further 

investigation to determine what other roles it may perform in normal cartilage 

physiology.  

 

The protein melanoma inhibitory activity protein 3 (MIA3) was also identified for 

the first time in MALDI-IMS studies of cartilage. This is a secreted protein expressed 

by chondrocytes with a fundamental role in the maintaining the chondrocyte 

phenotype (Bosserhoff et al., 1997). A similar distribution of a peptide with the 

same mass as MIA3; m/z 1186.74 in young, old and OA tissue was evident (data not 

shown) which was not surprising as even mature chondrocytes secrete MIA3 

(Lougheed et al., 2001).  

 

Specific peaks identified from DA loading plots in young, old and OA cartilage slices 

were targeted for fragmentation in order to obtain the sequence and hence 

identification of the most differentially expressed peptides between each group. DA 

loading plots demonstrate a combination of peaks, showing the specific peak 

profile for each condition. Not all peaks produced fragmentation profiles sufficient 

for identification with the Mascot algorithm. In some cases this was because parent 

ion intensities were not very strong. However others peptides produced good 

fragmentation but were not identified. Therefore we undertook ion mobility studies 

in an attempt to determine whether when we targeted specific masses for 

fragmentation we were undertaking tandem MS on more than one peak. Ion 

mobility MS uses  the ion’s mass, charge, size and shape (the ion mobility), to 

determine the migration time to the detector leading to the ability to distinguish 
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different analyte species (Kanu et al., 2008).  The analysis of the ion mobility study 

data found that for peak 1366 we were indeed targeting a single peak and 

therefore although we had good MS/MS spectra for many peaks we assume the 

fragments produced did not correspond to a unique peptide (data not shown). 

Further studies in the future either using emerging techniques such as desorption 

electrospray ionization (Wiseman et al., 2006) or  laser ablation inductively coupled 

plasma mass spectrometry  (Becker et al., 2010), higher resolution MS instruments 

or combining separation  methodologies prior to MS may help in the identification 

of these peaks.  

 

There were a couple of key differences between this study and a previous MALDI-

IMS study in end stage OA human cartilage (Cillero-Pastor et al., 2012a). Although 

previous studies enabled differential peptide resolution between superficial and 

deep layers of cartilage to be identified, using equine cartilage from the metacarpal 

joint this was not possible. This was due to the thickness of the equine cartilage 

from the metacarpophalangeal III bone measuring 760±131μm (Brommer et al., 

2005), considerably thinner than the human cartilage used (1.7-2.5mm (Shepherd 

and Seedhom, 1999)). Thus the ～90μm pixel size used meant that the equine 

cartilage was only about 6-9 pixels thick. The cartilage from  the stifle joint of the 

horse varies in thickness from 1760-2215μm (Frisbie et al., 2006) may provide an 

alternative source of cartilage for studies attempting to resolve changes in 

superficial and deep layers of equine cartilage. Secondly, there was no evidence for 

heterogeneity of peptide distribution that had been previously identified in OA 

cartilage. This was probably because the former study used severe OA cartilage 

whilst here only mild histological changes were evident. 

 

With resolving power of MALDI-IMS certain to increase in the future and improved 

methods to identify peptides  in-situ further MALDI-IMS studies using a greater age 

range of cartilage perhaps including foetal, juvenile together with a series of mature 

ages may help in understanding why ageing cartilage is more prone to OA. 
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Conclusions 

IMS is becoming an established tool for imaging complex biological samples such as 

cartilage. The ex-vivo imaging of aged and diseased cartilage provided ’label-free’ 

and stain-free information about its biomolecular composition. MALDI-IMS on 

cartilage sections provides a valuable approach for the proteomic investigations of 

ageing and diseased cartilage. 
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Transcriptomic Signatures in Cartilage Ageing 

 

Abstract 

Age is an important factor in the development of osteoarthritis. Whilst some 

insights into cartilage ageing have been discovered from microarray studies these 

were not able to elucidate the full range of transcriptomic phenotype of 

chondrocytes. RNA-Seq is a powerful technique for the interrogation of large 

numbers of transcripts including non-protein coding RNAs. The aim of the study 

was to characterise molecular mechanisms associated with age-related changes in 

gene signatures. RNA sequence libraries were prepared from young and old equine 

cartilage following ribosomal RNA depletion.  Ingenuity Pathway Analysis enabled 

networks, functional analyses and canonical pathways from differentially expressed 

genes to be determined. There were 396 genes differentially expressed with the 

criteria p<0.05 and ±1.4 log2 fold change; 93 were at higher levels in the older 

cartilage and 303 were at lower levels in the older cartilage. These represented 

mRNAs, small non-coding RNAs, pseudogenes, and microRNAs. An over-

representation of genes with reduced expression relating to extracellular matrix, 

degradative proteases, matrix synthetic enzymes, cytokines and growth factors 

were identified in cartilage derived from older donors compared to young. This 

points to an age-related failure of matrix, anabolic and catabolic cartilage factors. In 

addition there was a reduction in Wnt signalling in ageing cartilage. The study has 

increased our knowledge of transcriptional networks in cartilage ageing by 

providing a global view of the transcriptome. 

 

Introduction 

Ageing presents huge challenges for society because whilst life span increases, the 

quality of life faced by individuals in old age is often poor (Beard et al., 2011). The 

musculoskeletal system in particular is severely affected by the ageing process, with 

many tissues undergoing changes that lead to loss of function and frailty. Articular 
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cartilage is susceptible to age related diseases, such as osteoarthritis (OA), although 

it is not an inevitable result of ageing and is a consequence of a complex inter-

relationship between age and further predisposing factors such as obesity (Cooper 

et al., 2000), injury (Samilson and Prieto, 1983), genetics (Ma et al., 2011) and 

anatomical configuration (Felson, 2004).   

A number of studies have interrogated ageing cartilage in order to elucidate the 

underlying mechanisms in its ageing and how it may contribute to OA. An age-

related reduction in response to insulin-like growth factor in rats resulted in a 

decline in synthetic activity (Martin et al., 1997). Furthermore, using whole mouse 

joints, Loeser et al.  (Loeser et al., 2012) demonstrated that there was a reduction 

in extracellular matrix gene expression in older sham-operated mice following 

surgical destabilization of the medial meniscus. A characteristic of ageing articular 

cartilage is the reduction in the number of chondrocytes within the tissue (Adams 

and Horton, 1998; Aigner et al., 2004a) and there is evidence of chondrocyte 

senescence (Lombardi et al., 2005). It is believed that chondrocyte senescence is 

one of the causes of a decline in the ability of chondrocytes to respond to growth 

factors; resulting in the anabolic/catabolic imbalance evident in OA (Mueller and 

Tuan, 2011). One of the consequences of cell senescence is an alteration in cell 

phenotype (Campisi, 2005) characterised by increased production of cytokines and 

growth factors. The increase in ageing chondrocytes expressing this phenotype has 

been proposed to contribute to cartilage ageing and, given the rise in cytokine 

production in OA, could directly connect ageing to OA development (Loeser, 2010). 

Furthermore there is evidence for the role of oxidative damage in cartilage ageing 

from reactive oxygen species (ROS) (Jallali et al., 2005; Loeser et al., 2002), which 

can result in damage to cartilage DNA (Chen et al., 2008), whilst a link between ROS 

and development of OA has also been established (Kurz et al., 2002). Hence the 

outcome of ageing on chondrocyte function is an inability to maintain homeostasis 

when stressed.  

 

Whilst some insights into cartilage ageing have been learnt from transcriptome 

profiling studies in ageing joints using microarrays (Loeser et al., 2012), this data did 
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not identify a specific chondrocyte phenotype associated with ageing alone. In 

addition microarrays suffer from limitations in coverage and sensitivity meaning 

that currently a significant part of the chondrocyte ageing transcriptomic 

phenotype is poorly defined. There is a need to examine and understand the 

processes and mechanisms involved specifically in cartilage ageing. We were 

interested in whether age affected gene expression in cartilage. Advances in high-

throughput sequencing methodologies are allowing a new approach to studying  

transcriptomes: massively parallel sequencing of short reads derived from mRNAs; 

RNA-Seq (Wang et al., 2009). Compared with microarray technologies, RNA-Seq is 

demonstrated to enable more accurate quantification of gene expression levels 

(Matkovich et al., 2010). Furthermore RNA-Seq it is an effective approach for gene 

expression profiling in ageing tissues with a greater dynamic range and the ability to 

detect non-coding RNAs (de Magalhaes et al., 2010). Therefore we undertook an 

RNA sequencing experiment on young and old cartilage to characterize molecular 

mechanisms associated with age-related changes in gene signatures. 

 

Methods 

Sample collection and preparation 

Full thickness equine cartilage from the entire surface of macroscopically normal 

metacarpophalangeal joints was collected from an abattoir. All samples were 

scored macroscopically to determine any pathological abnormalities of the distal 

condyles of the distal third metacarpus (Kawcak et al., 2008). For subsequent RNA-

Seq experiments normal cartilage samples from four young horses; aged four years 

old and four old horses; greater than 15 years old were obtained.  

RNA extraction 

Cartilage was prepared by pulverising into a powder with a dismembranator (Miko, 

S-Braun, USA) following freezing in liquid nitrogen prior to addition of Tri Reagent 

(Ambion, Warrington, UK). For RNA extraction the Guanidium-thiocyanate-phenol-

chloroform technique, with ethanol extraction was used (Chomczynski and Sacchi, 

1987), followed by purification using the RNeasy (Qiagen, Crawley, UK) column 
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technique incorporating a DNase treatment step (Ambion, Warrington, UK) 

according to the manufacturer’s instructions. RNA was quantified using a Nanodrop 

ND-100 spectrophotometer (Labtech, East Sussex, UK) and assessed for purity by 

UV absorbance measurements at 260 and 280nm.  

 

RNA-Seq analysis- cDNA library preparation and sequencing 

Total RNA was analysed by the Centre for Genomic Research, University of 

Liverpool, for RNA-Seq library preparation and sequencing using the Illumina HiSeq 

2000 platform. Total RNA integrity was confirmed using an Agilent 2100 Bioanalyzer 

(Agilent Technologies, Santa Clara, CA, USA. Ribosomal RNA (rRNA) was depleted 

from 8 total RNA samples using the Ribo-Zero™ rRNA Removal Kit 

(Human/Mouse/Rat EpiCentre, Madison, USA) following the manufacturer’s 

instructions. cDNA libraries were prepared with the ScriptSeq v2 RNA-Seq library 

preparation kit (Epicentre, Madison, USA) using 50ng rRNA depleted RNA as 

starting material and following the manufacturer’s protocols. Briefly, rRNA-

depleted sample was fragmented using an RNA fragmentation solution prior to 

cDNA synthesis. Fragment size of the final libraries and pooled libraries was 

confirmed using the Agilent 2100 Bioanalyzer software in smear analysis function. 

Fragmented RNA was reverse transcribed using random-sequence primers 

containing a tagging sequence at their 5’ ends. 3’ tagging was accomplished using 

the Terminal-Tagging Oligo (TTO) which features a random nucleotide sequence at 

its 3’ end, a tagging sequence at its 5’ end and a 3’-blocking group on the 3’terminal 

nucleotide. The TTO randomly annealed to the cDNA, including to the 3’ end of the 

cDNA. Purification of the di-tagged cDNA was undertaken with AMPure™ XP 

(Agencourt, Beckmann-Coulter, USA). The di-tagged cDNA underwent 15 cycles of 

amplification using PCR primer pairs that annealed to the tagging sequences of the 

di-tagged cDNA. Excess nucleotides and PCR primers were removed from the library 

using AMPure™ XP (Agencourt, Beckmann-Coulter, USA). The final pooled library 

was diluted to 8pmol before hybridisation. The dilute library (120μl) was hybridised 

on each of 3 HiSeq lanes.  
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Data processing  

 

The 100bp paired-end reads obtained by RNA-Seq were compiled using 

manufacturer-provided pipeline software CASAVA 1.8.2. Reads were then aligned 

onto the equine chromosomes with TOPHAT 1.3.2 using default settings. Only 

uniquely mapped reads retained with less than two mismatches were used for 

analysis. Quality control of the reads in each lane was undertaken using FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc).  

The R (version 2.15.1) Bioconductor package edgeR (version 2.13.0) (Robinson et 

al., 2010)  was used to identify differentially expressed genes. EdgeR models data as 

a negative binomial distribution to account for biological and technical variation 

using a generalisation of the Poisson distribution model. Prior to assessing 

differential expression, data were normalised across libraries using the trimmed 

mean of M-values normalisation method (Robinson and Oshlack, 2010). Genes 

were deemed differentially expressed with a Benjamini-Hochberg false discovery 

rate (FDR)-corrected P-value < 0.05 and a fold change ≥ 1.4 (Benjamini and 

Hochberg, 1995) using a  generalised linear model (GLM) likelihood ratio test. 

Statistical analysis on mapped reads was undertaken with a custom Perl script. All 

sequence data produced in this study has been submitted to NCBI GEO under Array 

Express accession number E-MTAB-1386. 

 

Go ontology and Ingenuity Pathway Analysis (IPA) 

 Due to the minimum amount of annotation for the equine genome, equine genes 

were converted to their human Ensembl orthologs prior to bioinformatics analysis. 

Functional analysis of age-related differentially expressed genes was undertaken in 

order to evaluate the differences in gene expression due to age. The functional 

analysis and clustering tool from the Database for Annotation, Visualisation, and 

Integrated Discovery (DAVID) (DAVID bioinformatics resources6.7) (Huang da et al., 

2009) was used.  

Networks, functional analyses, and canonical pathways were generated through the 

use of IPA (Ingenuity Systems, www.ingenuity.com) to the list of differentially 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.ingenuity.com/
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expressed genes with values adjusted p<0.05 and 1.4 log2 fold regulation. Gene 

symbols were used as identifiers and the Ingenuity Knowledge Base gene was used 

as a reference for pathway analysis. For network generation a data set containing 

gene identifiers and corresponding expression values was uploaded into in the 

application. Default settings were used to identify molecules whose expression was 

significantly differentially regulated. These molecules were overlaid onto a global 

molecular network contained in the Ingenuity Knowledge Base. Networks of 

‘Network Eligible Molecules’ were then algorithmically generated based on their 

connectivity. The functional analysis identified the biological functions and diseases 

that were most significant to the data set. Right‐tailed Fisher’s exact test was used 

to calculate a p‐values.   Canonical pathways analysis identified the pathways from 

the IPA library of canonical pathways that were most significant to the data set.  

 

Real-time polymerase chain reaction (RT-PCR) 

Samples of RNA from the same pools used for the RNA-Seq analysis were used for 

RT-PCR. M-MLV reverse transcriptase and random hexamer oligonucleotides were 

used to synthesize cDNA from 1μg RNA (both from Promega, Southampton, UK) in a 

25μl reaction. PCR was performed on 1μl 10x diluted cDNA, employing a final 

concentration of 3μm of each primer in 20ml reaction volumes on an ABI 7700 

Sequence Detector using a SYBR Green PCR mastermix (Applied Biosystems, 

Warrington, UK). Exon-spanning primer sequences were used that had been 

validated in previous publications (Peffers et al., 2010; Radinsky et al., 1990; Taylor 

et al., 2009) or were designed for this study using Primer-Blast; National Centre for 

Biotechnology Information (NCBI) http://www.ncbi.nlm.nih.gov/tools/primer-

blast/. BLAST searches were performed for all sequences to confirm gene 

specificity. Oligonucleotide primers were supplied by Eurogentec (Seraing, 

Belgium). Assays for four genes; glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), TATA box binding protein (TBP), beta-actin (ACTB) and 18 ribosomal RNS 

(18S) were selected as potential reference genes as their expression was unaltered 

in the RNA-Seq analysis. GAPDH was selected as the reference genes from the panel 

of reference genes by applying a gene stability algorithm (Vandesompele et al., 

2002) using genormPLUS (Biogazelle, Zwijnaarde, Belgium) (Hellemans et al., 2007). 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Relative expression levels were normalised to GAPDH and calculated using the 2-∆Ct 

method (Livak and Schmittgen, 2001). Standard curves were generated from five 

serial dilutions for each assay to confirm that all efficiencies were acceptable; 

within 5% of GAPDH and R2 >0.98. Primers pairs used in this study are listed (Table 

1). RT-PCR analysis data was log10 transformed to ensure normal distribution and 

then analysed using Student’s T –test. 

 

Statistical Analysis 

The analyses were undertaken using S-Plus, SPSS and Excel software. 
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Table 1. Gene primer sequences used in RNA-Seq validation. *Denotes primer 
pairs previously published (Taylor et al., 2009) and # denotes primer pairs previously 
published (Barr, 2011).  
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Results 

Preliminary analysis of RNA-Seq data  

Eight libraries representing four animals from two groups; young and old (n=4 

young and n=4 old) were prepared from cartilage mRNA. For all cartilage samples 

we performed RNA-Seq using 100bp paired-end sequencing on the Illumina HiSeq 

2000 platform and approximately 116-235 million reads were obtained per sample. 

From these reads low quality reads were eliminated resulting in 7-58 million 

mapped reads (equal to 6.5-35% of the total reads). In total 3-49 million uniquely 

mapped read pairs were obtained per sample and aligned to the reference 

sequence of the equine genome (Equus caballus; EquCab2.56.pep, from 

ftp://ftp.ensembl.org/pub/current_fasta/equus_caballus/pep/). 

 

Identical reads mapped to the same genomic position were retained as duplicates 

as these were potential real reads. The number of genes per read were normalised 

to ‘reads per kilo base of exon model per million mappable reads’ (RPKM); 

therefore the values were considered the final expression level for each gene 

(Mortazavi et al., 2008). Using the Equus caballus database, analysis demonstrated 

in total 16,635 genes (from a total of 25,180 genes) were expressed in cartilage, 

which represented 66% of the equine genome. This data was used for subsequent 

analysis and is comparable to other recent RNA-Seq studies (O'Loughlin et al., 

2012).  

 

Age-related differential gene expression in cartilage 

A multidimensional scaling plot (MDS) (Figure 1) revealed data was clustered tightly 

in two groups; one for ‘older’ donors and for ‘younger’ donors.  

 

ftp://ftp.ensembl.org/pub/current_fasta/equus_caballus/pep/
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Figure 1. Principal component analysis reveals the greatest variability in RNA-Seq 
data is due to age of the donor.   

 

Alterations in gene expression between young and old cartilage demonstrated 

significant age-related changes. There were 396 genes differentially expressed with 

the criteria p<0.05 and ±1.4 log2 fold change (Figure 2); 93 were at higher levels in 

the older cartilage and 303 were at lower levels in the older cartilage. Table 1 

represents the top 10 genes most differentially expressed up and down in the 

young compared to the older horses.  

1a 
10a 
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Figure 2.  A set of differentially expressed genes between young and old cartilage 
were discovered. Using the common dispersion in edgeR 396 differentially 
expressed genes were identified with p<0.05 (marked in red). In order to enable the 
expression of all genes to be visualised simultaneously a smear plot was produced. 
The smear at the left-most edge allows visualisation of genes with zero counts in 
one of the groups. This was undertaken as if the total counts in one group are zero, 
the log-fold change is technically infinite, and the log-concentration is negative 
infinity. 
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Table 1. Genes with the highest and lowest log2 fold change when comparing RNA 
from young and old cartilage. Log2 fold change and adjusted p-values were 
determined in edgeR. The genes demonstrated are the 10 genes with highest and 
lowest expression in old compared to young cartilage samples. 

 

The top 25 differentially expressed genes are represented in Figure 3.   NCBI GEO 

under accession number E-MTAB-1386 contains a complete list of all genes 

mapped. Of the subset of 93 genes that were significantly higher in older donors 9 

were small nuclear/nucleolar RNAs, 12 pseudogenes, 11 genes which were not 

identified and a single microRNA (miRNA); miRNA21. Thus 60 known protein coding 

genes were differentially expressed as higher in the older cartilage. Within the 

group where gene expression was lower in old compared to young cartilage seven 

were small nuclear/nucleolar RNAs, one was a pseudogenes and three were not 

identified. Small nuclear/nucleolar RNAs differentially expressed are featured in 

Table 2. Thus 352 were used in downstream DAVID and IPA analysis.  
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Table 2. A number of small nucleolar (SNORD) and small nuclear (SNORA and 
splicesomal RNA) RNAs were identified as being differentially expressed (DGE) in 
ageing cartilage. The class action and target of these RNAs are shown with higher 
DGE in young or old cartilage. U6 splicesomal RNA was identified in the data with 
two separate accession numbers.  

 

Age-related changes in important cartilage genes 

There was a reduction in the expression of 42 genes relating to ECM, degradative 

proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage 

derived from older donors compared to young. In comparison there was an 

increase in only three ECM genes; COL10A1, COL25A1 and lubricin together with a 

single growth factor; fibroblast growth factor 9 in older donors (Table 3). 

 



275 
 

 

Figure 3. Most differentially expressed genes in cartilage ageing. The heat map 
illustrates the 25 most highly regulated up and down genes in cartilage. The counts 
represent raw counts for each donor. Significance was set at p<0.05 and ± 1.4 log2 
fold change in gene expression based on mapped reads following normalisation and 
statistical testing in edgeR. Orange represents less counts and white represents a 
greater number of counts.  
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Table 3. Older cartilage demonstrates more quiescent gene expression 
compared to young cartilage. The table illustrates significant differential gene 
expression (DGE) in young and old cartilage of important cartilage extracellular 
matrix (ECM), cytokines and growth factors (GFs), proteases (causing cartilage 
degradation) and matrix enzymes (involved in matrix synthesis) (significance was 
set at p<0.05 and ± 1.4 log2 fold change in gene expression based on mapped 
reads following normalisation and statistical testing in edgeR). There was a 
considerable reduction in all these classes of cartilage genes in old compared to 
young donors.  
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Gene ontology analysis of differentially expressed genes to characterise 
transcriptomic signatures in cartilage ageing 

DAVID analysis of all differentially expressed genes (DGEs) included annotations for 

cell adhesion and extracellular matrix (Supplementary table 1 on CD). The genes 

most differentially expressed, with reduced expression in cartilage from older 

donors included two involved in Wnt signalling; CPZ (carboxypeptidase Z); and 

C18orf8 (chromosome 8 open reading frame 4). Furthermore other genes involved 

in Wnt signalling; secreted frizzled-related protein 2 (SFRP,) Wnt 11 and the Wnt 

inhibitory factor-1 (WIF1) were also reduced.  

Interestingly of the 93 genes expressed in higher levels in older cartilage one of the 

most highly regulated was a regulator of Wnt signalling; DKK1 (dickkopf homolog 1). 

DAVID analysis of this group revealed annotations for skeletal and cartilage 

development, and immune response.  

Differential expressed genes and network analysis 

Both sets of differentially expressed genes associated with ageing were analysed 

together in IPA with the following criteria; p<0.05 and log2 fold change ± 1.4. 

Network eligible molecules were overlaid onto molecular networks based on 

information from the IP knowledge database. Networks were then generated based 

on connectivity. Supplementary table 2 provided on the CD contains all identified 

networks and their respective molecules. Interesting age related features were 

determined from gene networks inferred.  According to the top scoring network the 

differentially expressed genes were from connective tissue disorders, such as 

collagens; COL12A1, COL16A1, COL1A1, COL25A1 plus leucine rich repeat and Ig 

domain containing 1 (LINGO), transforming growth factor β-induced 68kDa and 

coclin (COCH) (Figure 4A).  
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Figure 4. Top-scoring networks derived from the 352 genes differentially 
expressed in ageing. IPA identified connective tissue disorders as the principle 
associated network functions with scores of 43. The figure is a graphical 
representation between molecules identified in our data.  The green nodes 
represent up-regulated and red nodes down regulated gene expression in older 
cartilage.  Intensity of colour is related to higher fold change. Legend provides a key 
to the main features in the network 
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Figure 5. IPA identified the second top-scoring network derived from the 
differentially expressed in ageing as a further connective tissue disorder with 
scores of 35. The green nodes represent up-regulated and red nodes down 
regulated gene expression in older cartilage.  Intensity of colour is related to higher 
fold change. Legend provides a key to the main features in the network. 
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Figure 6. IPA identified ageing significantly affects the connective tissue 
development and function network in ageing cartilage. The green nodes represent 
up-regulated and red nodes down regulated gene expression in older cartilage.  
Intensity of colour is related to higher fold change. Legend provides a key to the 
main features in the network.  
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Other networks significantly enriched also related to a further network in 

connective tissue disorders which contained genes including collagens; COL10A1, 

COL11A1, COL2A1 plus a disintegrin and metalloproteinase with thrombospondin 

motifs-2 (ADAMTS-2) and fibulin-1 (FBLN1) (Figure 4B). Additionally a connective 

tissue development network was also significantly affected. The genes most 

affected in this network included acly-synthetase long chain family member 5 

(ACSL5), phosphate-regulating neutral endopeptidase (PHEX) and dickkopf homolog 

1 (DKK1) (Figure 4C). 

Significant IPA canonical pathways are demonstrated in Table 4 and the associated 

molecules of the top canonical pathways identified are in Supplementary table 3 

provided on CD. These include atherosclerosis signalling, prothrombin activation 

and rheumatoid arthritis. 

 

Name of canonical pathway  p-value Ratio 

Atherosclerosis signalling 3.80E-09 15/136 (0.11) 

Role of osteoblasts, osteoclasts and 

chondrocytes in rheumatoid arthritis 3.41E-06 

16/238 

(0.067) 

Intrinsic prothrombin activation 9.82E-06 6/35 (0.171) 

Hepatic fibrosis and stellate cell activation 

9.92E-06 

12/146 

(0.082) 

Role of macrophages, fibroblasts and 

endothelial cells in rheumatoid arthritis 1.73E-04 

16/333 

(0.048) 

 

Table 4. A number of IPA canonical pathways were significantly affected in ageing 
cartilage. The significance of the association between the data set and the 
canonical pathway was measured using a  ratio of the number of molecules from 
the data set that mapped to the pathway divided by the total number of molecules 
that map to the canonical pathway is displayed. In addition a Fisher’s exact test was 
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used to calculate a p‐value determining the probability that the association 
between the genes in our dataset and the canonical pathway was explained by 
chance alone.  
 

Confirmation of DGE using real time PCR measurements of selected genes 

In order to validate the RNA-Seq technology 14 genes were selected to measure 

using reverse transcription and real time PCR based on differences noted in the 

arrays and/or their potential importance in the OA process. This was performed on 

the original RNA from all donors used to perform the RNA-Seq experiment (Table  
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Table 5. Real-time PCR analysis of 14 selected genes reveals good correlation with 
RNA-Seq results.  Values are the mean ± SD of relative expression levels normalized 
to expression of GAPDH. DKK1 = dickkopf homolog 1; COL10 = collagen type X ; 
RUNX2 = Runt-related transcription factor 2; SRPX = Sushi repeat-containing 
protein; ACSL5 = acyl-CoA synthetase long-chain family member 5; IL7R= interleukin 
7 receptor; COL2A1 = collagen type II, alpha 1; COL1A1 = collagen type I, alpha I; 
MMP1= matrix metalloproteinase 1; MMP-13 = matrix metalloproteinase 1;, 
ADAMTS4 = a disintegrin and metalloproteinase with thrombospondin motifs 4; IL-
1β = interleukin 1β; TNFα = tumor necrosis factor alpha; TGFβ = transforming 
growth factor β.  

5). Genes were selected based on differences noted in the RNA-Seq results. All 

genes were found to have comparable results with RNA-Seq data for instance genes 

identified as having an  increase in expression  in older samples in the RNA-Seq 

experiment also gave increased expression relative to GAPDH following real time 

PCR. Statistical significance was reached for 66% of genes tested using Student’s T 

test. Two genes, whose expressions were not significantly altered in RNA-Seq 

results; tumor necrosis factor alpha (TNFα) and transforming growth factor β 

(TGFβ) were also unaltered when assessed with real time PCR.  

 

Discussion 

Ageing has an important role in the development of OA by making the joint more 

susceptible to other OA risk factors. In order to provide interventions to prevent 

age-related changes and reduce the risk of developing OA the underlying 

mechanisms involved in age-related changes of cartilage require elucidation. Whilst 

characterising both young and old cartilage at the molecular and systemic levels is 

essential for identifying the critical signalling pathways. In the present study, we 

used RNA-Seq technique to undertake deep transcriptome profiling of young and 

old cartilage for the first time. Furthermore validation studies using real-time PCR 

demonstrated high correlation between methodologies.  This is the first time to our 

knowledge that this technique has been used to interrogate transcriptional changes 

in cartilage ageing.  

This study built on previous findings that demonstrated that joint ageing causes a 

reduction in matrix gene expression (Loeser et al., 2012). We took a single tissue, 



284 
 

articular cartilage and undertook RNA-Seq in order to interrogate a greater range of 

genes for differential expression. Not surprisingly our experiments identified that 

age of donor accounted for the principal variability in the data. However novel 

findings of this study included: (1) The age-related gene expression changes 

identified, were most notably involving reduced DGE in older cartilage; 3.3 fold.  (2) 

An over-representation of genes with reduced expression relating to ECM, 

degradative proteases, matrix synthetic enzymes, cytokines and growth factors 

were identified in cartilage derived from older donors compared to young. (3) 

Cartilage ageing caused a decrease in important Wnt signalling genes. (4) According 

to IPA pathway analysis the top scoring network for differentially expressed genes 

were from connective tissue disorders and connective tissue development. (5) IPA 

also demonstrated significant canonical pathways for atherosclerosis signalling, 

prothrombin activation and rheumatoid arthritis. (6) There was differential 

expression of pseudogenes and non-coding RNAs in cartilage ageing; with increased 

expression of 12 pseudogenes and 10 non-coding RNAs in older and one 

pseudogene and seven non-coding RNAs in younger cartilage. 

Equine tissue was readily obtained enabling collection of cartilage samples from 

macroscopically normal, skeletally mature and aged horses. Importantly the horse 

suffers clinical joint diseases similar to man, and the articular cartilage thickness is 

comparable (Brommer et al., 2005). For young horses one year is equivalent to 

about 3.5 years of a human (icerydernet/agerelationship, 2011). Hence horses of 

greater than 15 years old, used in this study equates to humans of older than 52 

years. As the cellularity of cartilage is low and a considerable amount of high quality 

RNA is required for RNA-Seq studies we utilized the entire articular surface of distal 

metacarpal III bone. Thus load bearing and non-weight bearing cartilage was used. 

An assessment of macroscopic changes was made, and all samples scored, but a 

lack of tissue meant microscopic analysis of the samples could not be undertaken. 

Nevertheless our previous studies indicated a high correlation between gross 

scoring and Mankin’s grading in normal ageing equine cartilage (Manuscript 2).  

Annotations of genes at reduced levels in older samples included many relating to 

ECM, degradative proteases, matrix synthetic enzymes, cytokines and growth 
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factors. In contrast, within these annotations those at higher levels in older were 

very small; collagen X, XXV, lubricin and fibroblast growth factor 9. It appears there 

is an age-related failure of matrix, anabolic and catabolic cartilage factors. Whole 

mouse joints have demonstrated a reduction in matrix genes with age (Loeser et al., 

2012) whilst another study found an age-related decline in matrix production when 

equine chondrocytes were stimulated with TGFβ1 (Iqbal et al., 2000). Others have 

provided evidence for a chondrocyte senescence secretory phenotype in ageing, 

demonstrated by an  increase in cytokines (Forsyth et al., 2005; Long et al., 2008)  

along with MMP production as well as a reduction in growth factors response 

(Blaney Davidson et al., 2005; Chubinskaya et al., 2002). Here we did not find 

evidence for an age-related increase in inflammatory environment.   Indeed one of 

the previous studies cited here demonstrated an increase in IL-7 in ageing 

chondrocytes and in response to fibronectin fragments or IL-1 (Long et al., 2008). 

Although our experiment did not identify IL-7, interestingly one of the most down 

regulated genes identified in this study was IL-7 receptor. It has been previously 

demonstrated that a reduction in IL-7 receptor signalling in ageing β-progenitor 

cells resulted in ageing-like gene expression profiles (Curtis et al., 2012). Also, 

whereas others have demonstrated an increase in IL-1 (Forsyth et al., 2005) (where 

an increase in IL-1 protein was seen in older cultured human chondrocytes) and 

MMP-13 (Forsyth et al., 2005; Wu et al., 2002) with age in human cartilage, this 

study identified an age-related decline in their message. In contrast, one MMP-13 

study looked at catabolic responsiveness with age whilst another used 

immunolocalisation of MMP-13 to identify protein. The two are not always related 

(Greenbaum et al., 2003)  for instance reduction of mRNA concurrent with 

increased protein expression can occur when a protein half-life is increased due to 

stabilisation components involved in protein  turnover. Differences could also be 

attributed to our age classification of young and old and species distinctions. 

Alternatively increased matrix enzymes (MMP-1,-13) and cytokines such as IL-1,-8,-

11 identified in younger cartilage could be due to increased turnover of cartilage in 

young. Interestingly a recent study identified low innate capacity to produce IL-1β 

and IL-6 was associated with the absence of OA in old age (Goekoop et al., 2010). 



286 
 

The reduction in Il-1β evident in older cartilage may represent a protective 

mechanism against OA. 

 

One of the many novel findings in this study was that in cartilage derived from old 

donors there was a reduction in the expression of some key Wnt signalling genes in 

addition to an increase in the Wnt antagonist DKK1 and RunX2, a downstream 

target of Wnt. Wnt signalling is active in adult cartilage with deregulation being 

detrimental resulting in age-associated joint pathologies  due to excessive 

remodelling and degradation (Yates et al., 2005). This signalling pathway has also 

been found to regulate both matrix synthesis in chondrocyte cell lines (Zhu et al., 

2008) and stimulate catabolic genes such as MMP-13 and ADAMTS-4 in 

chondrocytes (Yuasa et al., 2008). A recent study demonstrated that the  activation 

of the Wnt pathway inhibited IL-1-mediated MMP-13 expression in human 

chondrocytes (Ma et al., 2012b) which was  mediated through a direct interaction 

between NF-κB and β-catenin, identifying a potential protective function of Wnt in 

aging and OA.  One study has linked Wnt signalling with chondrocyte hypertrophy 

through RunX2 activation (Dong et al., 2006). Whilst elsewhere it was shown that 

DKK1 is a major player in the cessation of  hypertrophic differentiation which can 

contribute to OA (Buckland, 2012c). Interestingly COL10A1, a marker of 

chondrocyte hypertrophy was increased in old cartilage. A recent study in 

mesenchymal stems cells derived from OA patients found that COL10A1 

downregulation played a role in the establishment of a defective cartilage matrix in 

OA (Lamas et al., 2010).  It would seem that this increased expression with ageing is 

not through the Wnt signalling interaction with subsequent RunX2 activation as 

previously described (Dong et al., 2006). Further credence is given to this 

hypothesis by our findings that alkaline phosphatase expression, also regulated 

through, RunX2 was down regulated in old cartilage. Overall Wnt signalling is 

involved in maintenance of cartilage and the disregulation event here in ageing may 

be an important event. Interfering with the pathway may contribute to 

improvements in cartilage regeneration. 
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Using IPA this study identified age-related changes in pathways and processes 

including connective tissue disorders and development in which a significant 

number of genes, regulated both strongly and subtly were enriched. This is not 

remarkable given the number of matrix genes differentially identified in the study. 

Whilst some canonical pathways identified as significantly affected by ageing were 

not surprising either such as the role of osteoblasts and osteoclasts in rheumatoid 

arthritis, others for instance the pathways for atherosclerosis signalling were. This is 

a chronic inflammatory process and the DGE of a mixture of proteases along with 

lipoproteins accounts for this finding. In ageing cartilage further studies to 

investigate these processes and canonical pathways as well as the molecules 

involved are clearly required.  

 

One advantage of the use of RNA-Seq to undertake DGE studies is that other sets of 

RNA molecules from the transcriptome can be identified, such as non-protein 

coding RNAs ( for example microRNAs (miRNA) and small nucleolar RNA (snoRNA)), 

a significant part of the transcriptome (Kapranov et al., 2007) and pseudogenes. For 

example a recent RNA-Seq experiment was conducted in order to identify 

ribosomal protein pseudogenes (Tonner et al., 2012).  

 

Pseudogenes provide a novel tier of gene regulation through the generation of 

endogenous silencing (siRNA) or miRNA binding sites which act as decoys for 

miRNAs (Salmena et al., 2011). Indeed some miRNAs have been demonstrated to 

target them (Poliseno et al., 2010). It is hypothesised that they act as post-

transcriptional regulators of the corresponding parental gene (Muro et al., 2011). 

Whilst possessing very similar sequences to their counterpart coding genes they are 

unable to be transcribed due to mutation/ deletion or insertion of nucleotides. A 

key challenge in RNA-Seq data analysis is to discern reads among multiple potential 

sources with similar sequences. A recent study provided a specialised pipeline for 

pseudogene transcription discovery in RNA-Seq (Tonner et al., 2012), which could 

prove useful in future studies. Transcription of pseudogenes has tissue specificity 

and can be activated or reduced in disease indicating a possible functional role in 

cells (Zheng et al., 2007). Some pseudogenes have been identified as increasing 
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with age, such as pseudogene cyclin D2 in the ovary (Choi et al., 2001). Whilst this 

study identified the differential expression of pseudogenes in cartilage ageing, it is 

not known if these are functional or their relevance to cartilage ageing. Recent 

work by the Encyclopaedia of DNA Elements (ENCODE) Consortium identified that 

about 8% of the pseudogenes in the human genome are functional (Pei et al., 

2012). With the recent publication of GENCODE a reference human genome 

annotation for The ENCODE Project (Harrow et al., 2012) more light may be shed 

relating to the role of pseudogenes in cartilage ageing in the near future. 

Pseudogenes present an interesting area for future research in cartilage ageing and 

disease.  

A single miRNA was identified as differentially expressed in the study. The 

methodology used here does not enrich for miRNAs. In order to increase the 

identifications of small miRNAs using RNA-Seq techniques are used to enrich for 

small RNAs in conjunction with  additional miRNA abundance quantification 

algorithms (Berninger et al., 2008). A single miRNA; miR21 was identified as 

increased in ageing cartilage. MicroRNAs are short non-coding RNAs which regulate 

the translation and/or degradation of target message (Ambros, 2004). miR21 has 

been implicated in inflammation (Sonkoly and Pivarcsi, 2009), cancers including 

osteosarcomas (Ziyan et al., 2011), and hypomethylation (Pan et al., 2010). Its role 

in cartilage is not fully elucidated though a study in rats found that miR-21 

promoted increased proliferation and matrix synthesis in chondrocytes embedded 

in atelocollagen gel (Kongcharoensombat et al., 2010). Indeed  the finding is 

interesting as epigenetic changes such as hypomethylation occur with ageing and 

this is a risk factor contributing to several age-related pathologies (Fraga and 

Esteller, 2007).  

A further set of small RNAs; snoRNAs, a class of small guide RNAs found in the 

nucleolus were also identified in the study. They direct chemical modification of 

other RNAs, and like miRNAs are emerging as important regulators of cellular 

function and disease development. There are two classes including C/D box 

snoRNAs (SNORDs) and H/ACA box snoRNAs (SNORAs) which are associated with 
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methylation and pseudouridylation of ribosomal and other RNAs. It has been 

suggested that snoRNAs fine-tune the ribosome to accommodate changing 

requirements for protein production during development, normal function and 

disease (Montanaro et al., 2008). Indeed control of snoRNA expression may play a 

pivotal role in the regulation of high protein producing cells such as chondrocytes as 

demonstrated by the phenotypes of ribosomopathies (Narla and Ebert, 2010). 

There are very few studies into the significance of snoRNAS in cartilage ageing or 

disease except for a recent study which proposed the use of serum snoRNA U38 

and U48 as biomarkers of early cartilage damage. In the study an increase in these 

snoRNAs was detected in serum following anterior cruciate ligament injury, but was 

not associated with normal ageing (Zhang et al., 2012b). The snoRNA transcriptome 

signatures derived from this study in ageing cartilage provides an interesting set of 

genes for further studies in order to determine if they play a role in ageing.  

 

Conclusions 

A major strength of this study is that it represents the first application of RNA-Seq 

technology for transcriptomic studies in cartilage ageing. The study has increased 

our knowledge of transcriptional networks by providing a global view of the 

transcriptome. The molecular signatures derived here-of reflect a combination of 

degenerative processes but also transcriptional responses to the process of ageing. 

Next generation sequencing provided an ideal quantitative framework to study 

pathways and networks as an integrated system in order to understand the 

complex processes of cartilage ageing.  
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General Discussion 

The work in this thesis supports the hypothesis that there are distinct mechanisms 

involved in cartilage ageing which differ from those in cartilage diseases such as 

arthritis. A number of distinct alterations in the ageing transcriptome were 

characterised most importantly reduced expression of extracellular matrix proteins, 

degradative proteases, matrix synthetic enzymes, cytokines and growth factors as 

well as alterations in Wnt signalling in old cartilage. This points to an age-related 

failure of matrix, anabolic and catabolic cartilage factors. Aberrant Wnt signalling 

may contribute to these changes. By comparison an early OA in-vitro model of 

cartilage degradation determined that although there was an overall reduction in 

the ECM proteins released into the media following IL-1β treatment there was also 

an increase in degradative proteases. The thesis achieved its second objective by 

establishing innovative techniques to identify novel cleavage sites in matrix proteins 

by using mass spectrometry methodologies LC-MS/MS with insightful data mining 

and MALDI-IMS. The design and development of cartilage QconCATs enabled 

absolute quantification of matrix proteins for the first time.  Finally the third aim of 

the thesis was achieved as key proteinases and their inhibitors involved in the 

pathogenesis of OA were quantified in IL-1β stimulated cartilage explant cultures. 

Proteins are the key molecules in a living organism. Proteomics enables the study of 

the true ‘actors’ in pathways leading to physiological and pathological changes. 

Whilst genomics technologies have recently advanced exponentially to enable the 

transcriptome to be measured in detail this does not always relate directly to what 

is happening at the protein level and what the ‘actors’ are doing. More transcripts 

do not automatically mean more protein as downstream controls on translation, 

protein folding, and degradation can effect transcription. Indeed a recent study in 

yeast explored the relationship between transcripts and corresponding protein 

level variation and the group concluded that underlying transcript levels cannot 

account for the majority of variation observed in the corresponding protein levels 

between yeast strains (Foss et al., 2011). Therefore it is important to study both 

transcript and protein when investigating a tissue or disease. This was the basis for 

the use of next-generation sequencing technologies and proteomics in the 
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experimental methodologies used here. Mass spectrometry based proteomics 

(Aebersold and Mann, 2003) has changed the way in which biological systems are 

interrogated because it can measure thousands of proteins and PTMs in parallel. It 

was for this reason that a heavy bias to these techniques was used in this thesis. 

 

Proteomic technologies have been successfully used to understand molecular and 

cellular mechanisms that contribute to arthritis and its progression as well as 

identifying potential biomarkers (Ruiz-Romero and Blanco, 2009). However, due to 

the technical challenges related to their biochemical properties including low 

cellularity and the ECM composition being abundant in highly anionic 

macromolecules that interfere with isoelectrofocusing in 2-DE (Wilson et al., 2008), 

progress has been slow. In order to avoid these problems the majority of cartilage 

proteomics studies being undertaken in chondrocyte or explant culture (Iliopoulos 

et al., 2010). In this thesis initial studies undertaken using cartilage explant culture 

studies in human and horse were utilised to measure and quantify changing protein 

expression following IL-1β stimulation. This required limited purification or 

separation techniques which can lead to reduced reproducibility and enabled the 

differential expression of many proteins to be identified with MS as the analyte was 

relatively simple. Thus problems produced by the presence of small numbers of 

high abundance proteins masking the identification of less abundant proteins were 

avoided. Explants cultures were chosen over monolayer cultures as isolated 

chondrocytes dedifferentiate in culture leading to a change in phenotypic 

expression (Holtzer et al., 1960). Additionally the ECM provides native substrates 

for proteolysis and protein release, equivalent to the shedding of the proteins into 

the synovial fluid during cartilage degeneration. HAC studies were undertaken in 

end-stage OA cartilage removed from joints following total knee arthroplasty. 

Whilst it would have been beneficial to undertake our IL-1β studies in normal 

human cartilage we were unable to obtain the tissue required. Therefore we chose 

equine cartilage as an alternative model to study cartilage ageing and arthritis. The 

horse is a good model as it provides a consistently predictable model of OA that has 

previously been used to study early pathological events and the horse has been 

extensively studied with respect to clinical OA (McIlwraith, 2012). In addition a 
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range of ages of normal cartilage are readily available. The cytokine IL-1β was used 

as it has been identified as the key cytokine in human OA (Berenbaum, 2007) and 

levels remain high throughout all stages of OA (Toncheva et al., 2009). The time 

course used for human OA explant studies was 48 hours whilst that for equine 

studies was 96 hours. Results from the former study identified few differentially 

regulated proteins following the shorter time scale of IL-1β stimulation. As 

previously mentioned this could be due to the time-scale of the study or a lack of 

responsiveness of end-stage OA cartilage to cytokine stimulation. Further studies 

using a longer stimulation period would be useful in determining which the case is. 

In contrast a large number of proteins were identified as differentially regulated in 

the equine explant model. This model has been described as a model of early OA 

(Peffers et al., 2012) and was used as such in this thesis. However others may argue 

that it is more an inflammatory model of cartilage degradation. It is well defined 

that there is an inflammatory component to OA (Buckland, 2012b; Toncheva et al., 

2009). It may be better to describe the model as an explant model of articular 

cartilage inflammation.  

 

There has been a great improvement in sensitivity and data acquisition speed with 

the advent of new mass spectrometers based on the triple-quadrupole, quadrupole 

time-of-flight and Orbitrap technology. These have enabled the identification and 

subsequent quantification of thousands of proteins in a proteome (Beck et al., 

2011) and the development of software tools for identification and quantification. 

Therefore in our ‘discovery’ experiments we used an Orbitrap instrument with 

these capabilities followed by data analysis using a relative quantification software 

tool. This approach enables the maximum identification of proteins in terms of both   

numbers of proteins and dynamic expression range.  Using this workflow the 

explant secretome experiments were able to identify both potential pathways 

involved in the pathogenesis of early cartilage inflammation such as altered 

glycolysis and cytoskeletal modelling and novel proteins such as clathrin light chain 

whose role is yet to be determined. This latter class of molecules represent 

potential diagnostic biomarkers of early cartilage inflammation since there 

increased expression following IL-1β stimulation represents a response to cytokine 
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stimulation. These molecules represent interesting molecules for further 

investigations.  In protein biomarker discovery, LC-MS methods are challenging 

traditional assays (for example ELISAs) because the ability of the mass spectrometer 

to identify and quantify a protein unambiguously and accurately directly or 

following enrichment using straightforward-to generate peptide antibodies 

(Whiteaker et al., 2011). The equine secretome manuscript demonstrated that 

clathrin light chain was the most significantly elevated protein.  Clathrin-coated 

vesicles (CCVs) form at the plasma membrane where they select protein and lipid 

cargo for endocytic entry into cells. In addition CCVs form at the trans-Golgi 

network, where they function in protein transport from the secretory pathway to 

the endosomal/lysosomal system. This finding raises a number of possible 

scenarios. It may be that due to cytokine stimulated cartilage degradation there is 

increased intracellular trafficking leading to an up-regulation of clathrin. Although 

cell death could be producing the finding there was no obvious cell death 

demonstrated from trypan blue studies. As there was no increase in clathrin heavy 

chain in the OA secretome it could be that clathrin light chain is acting 

independently of the heavy chain. A further alternative hypothesis is that there is a 

secretory pathway stimulated by IL-1β that has not yet been identified. Further 

experiments to determine which of these hypothesises are correct would require 

the use of  in-vitro models of OA and the identification of patterns of clathrin heavy 

and light chain gene and protein  expression. 

 

The relative quantification experiment data was analysed using a software tool 

called Progenesis™ which enables label-free quantification. The software outputs a 

list of proteins identified, together with their fold change compared to a control, a 

p-value and a q-value (p-value adjusted to FDR). In addition, the number of 

peptides used in this quantification is identified. During interpretation of the data it 

is necessary for the experimenter to determine a ‘cut-off’ within for example q-

values, in order to take significant data through for inclusion in results and further 

bioinformatics analysis. A standard approach, which was used in these studies, 

would be a fold change of two, q-value of <0.05 and greater than one peptide for 

identification. It is possible that a single peptide will identify a protein correctly, 
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although identical sequences could be duplicated in closely related proteins, 

therefore matching multiple peptide sequences provides greater statistical 

confidence. In theory some differentially expressed proteins could have been 

missed. Furthermore some interesting proteins could be missed from the dataset if 

the fold change was less than two. Therefore it is advisable to look at near 

significant proteins in the interpretation of the dataset as a whole. 

 

The initial approach to the discovery phase in this thesis combined high 

performance MS instruments in terms of sensitivity, speed, mass accuracy, and 

resolution for identification and then relative quantification. The main approaches 

to protein and peptide  quantification using MS from LC-MS data involve either 

obtaining intensities of peptide precursor ions in a DDA experiment in which 

peptide precursors are fragmented as they are eluted from the LC system,  or 

measuring peptide fragment ion intensities of peptides, either from DDA 

experiments, or SRM assays. In the latter a predefined list is used thus rendering 

the method more sensitive (less noise), and with a greater dynamic range but this, 

unlike the first method is therefore hypothesis driven. Using SRM assays it is 

possible to obtain absolute values in terms of protein quantification as copies per 

cell or normalised to, for example dry weight.  Developments in absolute 

quantification, such as the advent of QconCAT, have been driven by the discipline of 

systems biology, one goal of which is to delineate protein interaction networks and 

to measure protein movement within networks. By modelling pathways within 

protein networks the predicted outcomes of system perturbation can be tested 

experimentally. Absolute quantification provides these data enabling model 

parameterisation.   

 

In order to quantify in absolute terms important matrix proteins and proteases in 

the HAC secretome using SRM assays a QconCAT was designed.  This approach was 

used as a QconCAT is relatively simple to design, allows parallel quantification of 

tens of proteins in a single experiment, and  is extremely cost-effective as once the 

gene has been manufactured (expressed in heavy labelled media and validated) 

there is enough for hundreds of experiments. This is because the artificial gene can 
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be freshly expressed for subsequent studies. In comparison another stable isotope-

labelling approach; AQUA peptides (Gygi et al., 1999a) are purchased as a finite 

amount of a single labelled peptide (cost approximately £1000 per peptide) which 

once used requires the purchase of more AQUA peptide. Furthermore following 

identification of sequence homology of the q-peptides the human cartilage 

QconCAT was also used to quantify some equine cartilage peptides. This 

demonstrates the flexibility of the QconCAT in quantifying proteins from other 

species. Further sequence homology identification against mouse for peptides from 

identical proteins identified 40% of q-peptides were homologous between human 

and mouse (data not shown).  Subsequently an equine cartilage QconCAT was 

designed in order to provide a tool for measuring matrix proteins, proteases and 

cartilage degradation at known cleavage sites.  

 

There were differences in the expression of the two QconCATs. The human 

QconCAT was expressed poorly whilst the equine QconCAT demonstrated good 

expression. Some QconCATs express better than others, indeed there can be 

different levels of expression of the same QconCAT from different cultures. 

Although the reasons for this have not been fully elucidated a number of factors are 

thought to be important including the sterility of media and culture (due to 

competition for resources), quantity of E.Coli in the culture when the expression is 

induced and the time the culture is left to grow following induction. In addition 

level of expression can be increased through increasing the concentration of 

Isopropyl β-D-1-thiogalactopyranoside, the trigger for transcription (Harman, 2012). 

Others have used benzyl alcohol in the culture media to slow down the rate of 

expression and allow the protein time to fold (Jariyachawalid et al., 2012). However 

as QconCATs do not have secondary structure, methods that claims to help 

expression through improved folding will not aid QconCAT expression.   

 

Whilst proteins were quantified in the human secretome, equine secretome and 

equine cartilage extract using QconCAT the QconCAT-LC/SRM approach was not 

able to quantify all peptides and therefore proteins targeted. In the QconCAT 

experiments all peptide-levels were classified as type A (good standard and analyte 



296 
 

signals), type B (good standard, missing analyte signal), or type C (neither standard 

nor analyte signal) for specific loadings on column. Type A quantifications produce 

actual values; type B quantifications define the upper limit of analyte abundance, 

type C peptides could not be quantified. In order to quantify the maximum number 

of peptides in parallel in a single experiment a set loading of QconCAT determined 

by previous ‘ranging’ experiments was used. In theory some of the type B peptides 

could have been quantified by loading more analyte onto the column. 

Unfortunately this was not possible as column overloading would damage the high 

pressure liquid chromatography system. However, type B peptides can be used to 

quantify different analyte samples when the analyte peptide is above the limits of 

detection with success, as demonstrated by the quantification of MMP-3 in equine 

secretome media following Il-1β stimulation but not cartilage extract. The 

importance of using two or more q-peptides to identify a protein is highlighted in 

this study. A number of peptides were type C and so redundant for quantification. 

Possible reasons for type C peptides include poor peptide fragmentation (normally 

determined by a lack of measureable transitions). In addition peptide size, charge, 

hydrophobicity, and peptide secondary structure, an important factor in 

determining ‘detectability’ by electrospray ionisation MS (Eyers et al., 2011) are 

also important. Whilst the latter could cause a type B peptide it should not produce 

a type C as there is no secondary structure associated with QconCAT. Furthermore 

chemical protocols were used to break and prevent reformation of disulphide 

bonds in the workflows should the QconCAT contain cysteine residues.  

 

An average protein will generate 30-50 tryptic peptides. However some will not be 

observed in a MS study (Aebersold and Mann, 2003) and not all candidates are 

suitable for inclusion in a QconCAT. Whilst hydrophilic peptides will not bind to the 

reversed-phase column used for LC prior to MS analysis very hydrophobic peptides 

are less likely to elute from the column. The peptides chosen for inclusion in the 

QconCATs were based on proteotypic peptide databases Global Proteome Machine 

Database (GPMDB) (Craig et al., 2004) and Peptide Atlas (Desiere et al., 2005) for 

the human QconCAT and on prior observation in MS/MS studies for the equine 

QconCAT. These approaches produced 20% and 26% redundancy respectively 
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indicating no difference in the level of redundant peptides with each approach. 

Interestingly peptides are included in databases such as GPMDB on the frequency 

of observation in MS and MS/MS studies and not because they are quantitatively 

representative of the parent protein. Furthermore in the selection of quantotypic 

peptides there is no resource to demonstrate completeness of proteolysis, the lack 

of post-translational modification or uniqueness of the peptide and freedom from 

isobaric and isomeric peptides derived from other proteins (Simpson and Beynon, 

2012). There are useful tools that became available subsequent to the design of the 

QconCATs in this thesis. One uses four algorithms to assess peptide ‘detectability’ in 

an electro-spray ionisation instrument (CONSeQuence) (Eyers et al., 2011). In a 

yeast test set it improved suitable candidate q-peptide selection. CONSeQuence 

was used to assess the q-peptides in the equine QconCAT post-design. In theory 

results should improve the selection of q-peptides by identifying the peptides most 

likely to be detected, thus reducing type C peptides. Interestingly six type C 

peptides were identified in the equine QconCAT. Of this half were demonstrated by 

CONSeQuence to be in the top 10% most detectable peptides whilst some type A 

peptides were deemed in the bottom 10% (most likely not to be detected). This 

demonstrates that there are other important factors in determining what makes a 

good q-peptide. In this QconCAT the major reasons for redundancy were poor 

fragmentation patterns producing inadequate transitions for detection and broad 

elution profiles. The latter is a problem as for some of these peptides the elution 

time was greater than a minute which constituted most of the dwell time for the 

method (the time the specific transition is searched for by the third quadrupole in 

the triple quadrupole). For quantification narrow sharp peaks are optimal.  

 

In the quantification experiments there was disparity between some peptides used 

to quantify the same protein for example in the equine QconCAT the GVFSGLR and 

VPAGLPDK for biglycan. It has been demonstrated that when this occurs the most 

common reason is incomplete digestion of the standard or analyte or a failure to 

detect the analyte due to an unanticipated PTM. A tool is now available that can aid 

in the identification of possible miscleavages between amino acids (Siepen et al., 

2007). When this was used to interrogate the peptides in the analyte and QconCAT 
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there was a high probability for a miscleave at the N-terminal of analyte peptide 

VPAGLPDK. This lead to a lower quantification of the protein using this peptide as 

less completely proteolysed analyte peptide was present for quantification. Indeed 

VPAGLPDK gave the lower quantification value compared to GVFSGLR. It is difficult 

to identify miscleaves in MS data of analyte, for example in discovery LC-MS/MS as 

they are in low amounts and would only be identified if larger amounts of protein 

were loaded on column. This would be detrimental to the LC as increased total 

protein would need to be loaded. It is easier to identify miscleaves in QconCAT as 

the standard is simpler, containing few peptides and so increased loadings (which 

are less of a problem to the LC) may identify missed cleaves. The potential for 

previously unidentified PTMs in q-peptides was assessed through data mining of 

MS/MS data using PEAKS software (data not shown). This program includes 

advanced PEAKS PTM algorithm (Han et al., 2011) to identify 650 possible PTMs and 

mutations since traditional database search software can only specify a limited 

number of possible variable PTMs. There were no possible PTMs identified in the 

data searched for any of the q-peptides included in the QconCATs. All these points 

are important for the future development and utilization of QconCAT/ SRM 

technology in the field of cartilage research.  

 

The equine QconCAT contained a number of tryptic cleavage-site spanning peptides 

(NCS) in an attempt to quantify cartilage degradation at specific sites using SRM 

assays. The hypothesis was that non-cleaved tryptic peptides (NCC) would give 

greater quantification values than NCS peptides if degradation had occurred at the 

cleavage site. However for most of the quantifications the NCS peptides gave 

greater values than the NCC peptides. This was probably due to ‘normal’ variability 

in quantification between peptides (which has been identified by others as 20% 

variation being acceptable (Chen et al., 2012)) rather than unidentified sites of 

degradation in the NCC peptides. Whilst this cannot be ruled out completely data 

analysis of both IL-1 stimulated equine explant culture media and crude 

proteoglycan extract hydrolysed with MMP-3 or ADAMTS-4 (manuscript 4) did not 

identify potential cleavage sites in any of the NCC peptides used in quantification. 

Interestingly the NCS biglycan peptide GVFSGLR was significantly reduced in 
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cartilage from OA compared to normal samples indicating degradation at the MMP-

13 cleavage site 181G182V in biglycan. Unfortunately there are no commercial anti-

epitope antibodies to this site which could be used to validate this result.  

 

The QconCATs were used successfully to measure levels of key proteases and their 

inhibitors in human and equine cartilage secretomes. The equine QconCAT and 

human QconCAT offer useful analytical tools for cartilage studies. They could be 

used in future work to identify and characterize cartilage matrix fragments and 

proteases in explant degradation studies as an alternative to western blotting. 

Media samples taken at various time points following IL-1 stimulation for instance 

could identify the time course of molecular events for the degradation of ECM 

proteins included in the QconCATs. In addition the QconCATs could be used in 

different species and tissues. 

 

The knowledge of protease cleavage sites is important for a number of reasons. In 

numerous cases in-vivo cleavage events that are catalyzed by a particular protease 

reflect its in-vitro specificity. Therefore knowledge of in-vitro specificity 

corroborates in-vivo cleavage events. Furthermore the position of protease 

cleavage can influence the biological consequences, especially in cases where 

several potential cleavage sites are closely related. Finally determination of 

preferred cleavage sites in known substrates enables protease activity prediction 

directed toward novel substrates. The thesis developed novel techniques which 

were tested and validated for the identification of known and novel cleavage sites 

in matrix proteins by using mass spectrometry methodologies LC-MS/MS or MALDI-

IMS. A relatively simple peptide-centric approach technique was developed to 

identify potential cleavage sites in cartilage ECM proteins. Following extraction of 

the soluble cartilage components a crude proteoglycan extract was used as a 

substrate for two important proteases MMP-3 and ADAMTS-4. The use of this 

analyte and not whole cartilage was for a number of reasons. Firstly we wanted 

start with a simpler proteome. For downstream MS/MS analysis a more complex 

mixture will deliver more peptides to the mass spectrometer than can be analysed 

as the liquid stream flows through the electrospray source. Additionally the data 
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system would direct MS analysis to more abundant peptides, therefore limiting 

dynamic range. This is especially important when attempting to identify low 

abundance peptides such as those produced by degradation. There are a number of 

published protocols for identifying protease cleavage sites using peptide-centric 

approach (reviewed by Tholey and Bart 2012 (van den Berg and Tholey, 2012)). 

These methods are only able to experimentally confirm the internal N-terminal. 

Many of these methods protect the N-termini by chemical modification (McDonald 

and Beynon, 2006; Schilling and Overall, 2008). The N-termini formed by proteolysis 

with the protease are therefore blocked from further proteolysis. These methods 

require multiple steps and some specialised equipment. The successful approach in 

this thesis provided a simple method using global MS methodology to produce a 

library of potential cleavage sites for others to interrogate further. This approach 

could be applied to other tissues and use other  proteases as there is evidence for a 

role of other classes of enzymes in the cartilage degradation for instance serine 

proteases, that can directly degrade the ECM or could be involved in the activation 

of proMMPs (Milner et al., 2001). Further evaluation of many of the neopeptides 

identified in this thesis as potential biomarkers would be achieved by quantitation 

in synovial fluid, blood, or urine.  

 

A number of peptides containing potential MMP-3, ADAMTS-4 or IL-1β –driven 

novel cleavage sites identified in this study were also imaged in MALDI-IMS studies 

with reduced expression in OA cartilage compared to normal. The intensity of the 

COMP peptide FYEGELVADSNVVLDTTMR was reduced in OA compared to normal 

cartilage using MALDI-IMS. In manuscript 4 a potential cleavage at the Asp706- 707 

Tyr was demonstrated in the media following IL-1β stimulation of cartilage 

explants. The biglycan peptide NHLVEIPPNLPSSLVELR intensity was reduced in OA 

cartilage using MALDI-IMS. Manuscript 4 identified potential cleavage sites at 

Ser164-165Ser following MMP-3 or ADAMTS-4 treatment and Ser165-166Leu following 

MMP-3 treatment. Interestingly the full length tryptic peptide 

NHLVEIPPNLPSSLVELR was used as a NCC peptide in the equine QconCAT but was 

not used in quantification due to classification as a type C peptide. This was 

because it had a broad elution profile and poor fragmentation resulting in an 
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inability to identify robust transitions for the SRM assays.  The peptide was 

identified by MASCOT with a high score (MASCOT identifies using spectral libraries 

and not through specific fragments). The differences in peptide detectability are 

due to the different techniques used. MALDI is laser desorption method which 

effectively ionises the peptide which is singly charged. ESI used in discovery 

experiments is a different ionisation technique. It is more challenging to ionise this 

particular peptide using ESI and in addition to fragment it. A further peptide for 

fibromodulin ELHLDHNQISR, with a potential cleavage site at Asn186-187Glu was 

imaged with reduced intensity in OA cartilage. Taken together findings from these 

two studies place more confidence in the conclusions that disease-related 

degradation can be identified using MS techniques and demonstrate that the two 

techniques can be used complimentarily to identify sites of cleavage.  

The MALDI-IMS technique has advantages over extraction and digestion of cartilage 

to identify proteins as fundamentally it allows the site of the proteins within the 

cartilage structure to be identified. As previously discussed the cartilage used in this 

study was too thin to enable differences in peptide distribution to be visualised in 

the superficial and deep layers of cartilage unlike those demonstrated in human 

cartilage (Cillero-Pastor et al., 2012a). Interestingly TOF-SIMS of cartilage was able 

to resolve the two layers and differences in the the molecular distribution of ions 

and lipids were demonstrated. This is accounted for by the greater spatial 

resolution of TOF-SIMS (to the cellular level) compared to MALDI-IMS. The MALDI-

IMS technique could be used on thicker equine cartilage such as that from the 

femerotibial joint as well as in other musculoskeletal tissues such as tendon and 

ligament as it is an excellent method to identify and localise disease specific 

peptides and protein. Furthermore it would be interesting to repeat the TOF-SIMS 

experiments with some methodology modifications to aid the adherence of 

cartilage to ITO slides.  A further modification of the MALDI-IMS technique used in 

this thesis could be beneficial in further increasing our knowledge of cartilage 

degradation in ageing and disease. It should be possible to digest the cartilage slices 

directly with a given protease (such as MMP-3) followed by tryptic digestion in 

order to discover if different areas of the cartilage are more susceptible to 
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degradation than others and the nature the degradation takes in terms of peptide 

cleavage sites. 

 

One of the aims of this thesis was to understand age-related changes in cartilage, 

the role of these changes in causing OA (since age is the greatest risk factor in OA 

pathogenesis (Hugle et al., 2012)) and the differences in expression of proteins and 

transcript between ageing and OA. An attempt was made to characterise age-

related changes in cartilage protein signatures using MS of cartilage. The number of 

samples used (too few; 9 normal in the absolute quantification of equine cartilage 

ECM) from normal cartilage and the age spread (too few donors over the age range; 

2-20 years) of the donors was not compatible with determining this. It would have 

been better to use larger groups of horses of similar ages (for example a group of 4 

year olds and a group of 15 year olds) rather than a large variation in ages as for 

regression modelling purposes the sample size was too small. Alternatively more 

donors were required for recruitment into the study in order to determine if age 

related changes in matrix composition and their levels existed. However the data 

provides important preliminary results for designing future studies with optimal 

power and appropriate study design. MALDI-IMS was used to visualise the age-

related and disease related changes in peptides and their localisation within 

cartilage. PCA identified changes in the peptides between young, old and OA 

samples; peptides in young cartilage were distinct from OA cartilage whilst many 

peptides were shared between old and OA cartilage. Whilst many of these peptides 

were not identified the rapid advances in MALDI-IMS (Heeren, 2012) means that in 

the near future these will be identified enabling pathways distinct between ageing 

and disease to be elucidated. Furthermore an in-vitro model of early OA was used 

to determine differential expression of proteins in the secretome.  IL-1β stimulation 

caused changes in the ECM dynamics with an overall reduction in ECM proteins 

released into the media but an increase in the proteases MMP-1, MMP-3 and 

MMP-13. It would be interesting to repeat the experiments and in young and old 

cartilage to determine age-related effects as donors used in this study were 

‘middle-aged’. In contrast the RNA-Seq experiments identified an age-related 
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failure of matrix, anabolic and catabolic cartilage factors and aberrant Wnt 

signalling.  

The RNA-Seq results demonstrated clear age-related transcriptional differences. In 

ageing and joint disease there is a disruption in the cartilage equilibrium and the 

synthesis of new matrix components being exceeded by the loss of collagens and 

proteoglycans (Goldring and Marcu, 2009). The imbalances between anabolic and 

catabolic processes results in progressive cartilage degeneration. In cartilage ageing 

there is evidence of senescence resulting in the inability of chondrocytes to 

maintain matrix turnover (Aigner et al., 2004a). Others have pointed to a ‘senescent 

secretory phenotype’ in ageing cells (Campisi, 2005). These cells secrete increased 

amounts of MMPs and cytokines. Chondrocytes exhibit many changes typical of a 

senescent cell (Loeser, 2009). Some groups have demonstrated the increased 

production of MMPs (Forsyth et al., 2005) and cytokine (Long et al., 2008) in older 

chondrocytes. Both these studies were undertaken in isolated human articular 

chondrocytes and measured protein levels. This thesis used RNA extracted from 

chondrocytes in-situ and measured gene transcripts. Results demonstrated a 

reduction in not only matrix proteins (as predicted from previous literature) but 

MMPs and cytokines (not previously identified to our knowledge). Thus at a 

transcript level the chondrocytes do not conform to all the characteristics of a 

‘senescent secretory phenotype’. In order to evaluate these interesting results 

further studies should be undertaken to measure the protein in ageing 

chondrocytes to determine if protein for MMPs and cytokines is related to the 

changes identified in this thesis in transcript. As previously discussed transcript and 

protein do not always correlate. One way to do this would be to take freshly 

isolated chondrocytes from cartilage of young and old donors and analys,e using 

mass spectrometry, the protein expression following cell lysis, trypsin digestion and 

LC-MS/MS coupled with data analysis using Progenesis™ software.  

A further interesting feature of the RNA-Seq results was the disregulation of Wnt 

signalling and in particular the reduction in WIF and increase in DKK1 identified in 

cartilage from older donors. WIF promotes chondrocyte differentiation. DKK1 

promotes GAG synthesis, SOX9 and type II collagen expression (Shimazaki et al., 
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2006) and inhibits chondrocyte hypertrophy (Leijten et al., 2012). It is decreased in 

OA (Ma et al., 2012a). Furthermore its overexpression leads to amelioration of 

cartilage destruction in animal models chondrocytes attempt results in this thesis 

demonstrate a possible mechanism by which the ageing chondrocytes attempt to 

increase matrix production though unsuccessfully.  

 

For direct comparison of the transcriptome data to disease related changes 

additional samples from OA equine cartilage would need to be used in similar deep 

sequencing experiments. Taken together these results indicate different underlying 

mechanisms involved in cartilage ageing and disease which require further 

elucidation. 

This thesis developed novel proteomic based methodologies which identified and 

quantified important distinct differences between cartilage ageing and disease. 

Several proteins not previously described in cartilage were identified. In addition 

many novel cartilage degradation products were identified and age-related 

peptides were visualised in cartilage for the first time.  
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