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Abstract

This thesis develops and investigates the application of novel identification and structure

identification techniques for I.C. engine systems. The legislated demand for reduced vehi-

cle fuel consumption and emissions indicates that improved model-based dynamical engine

calibration and control methods are required in place of the existing static set-point based

mapping methods currently used in industry. The choice of structure of any dynamical engine

model has significant consequences for the accuracy and the calibration/optimization time of

engine systems. This thesis primarily addresses the issue of this structure selection.

Linear models are well understood and relatively easy to implement however the modern

I.C. engine is a highly nonlinear system which restricts the use of linear structures. Further

the newer technologies required to achieve demanding fuel consumption and emission targets

are increasingly more complex and nonlinear. The selection of appropriate nonlinear model

regressor terms presents a combinatorial explosion problem which must be solved for accurate

engine system modelling. In this thesis, two systematic nonlinear model structure selection

techniques, namely stepwise regression with F-statistics and orthogonal least squares method

with error reduction ratio, are accordingly investigated. SISO algebraic NARMAX engine

models are then established in simulation studies with these methods and demonstrate the

effectiveness of the approach.

The thesis also investigates the development and application of multi-modelling tech-

niques and the expansion of the model structure selection techniques to the identification of

the local models terms within the multi-model structures for the engine. Based on the en-

gine operating regions, novel multi-model networks can be established and several alternative

multi-modelling techniques, such as LOLIMOT, Neural Network, Gaussian and log-sigmoid

function weighted multi-models, for the multi-model engine system identification are explored

and compared. An experimental validation of the methods is given by a black box identifi-
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cation of SISO engine models which are developed purely from the experimental engine test

data sets. The results demonstrate that the multi-model structure selection techniques can

be successfully applied on the engine systems, and that the multi-modelling techniques give

good model accuracy and that good modelling efficiency can also be achieved.

The outcome is a set of techniques for the efficient development of accurate nonlinear

black-box models which can be acquired from experimental dynamometer test-bed data which

should assist in the dynamic control of future advanced technology engine systems.
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Chapter 1

Introduction

The modern automotive I.C. engine system requires accurate and multi-dimensional calibra-

tion in order to meet increasingly strict emission and fuel consumption regulations. The trend

of engine development is to the use of additional actuators, sensors and of more complex tech-

nologies with more prevalent transient dynamics. As a result, the number adjustable variables

in the engine operating space are increasing significantly which means that even more data

samples clustered across the larger operating space are needed to determine sufficient informa-

tion for statistically reliable engine calibration. Because the number of required data points

and corresponding optimisation effort increases exponentially with the number of adjustable

variables, this phenomena is known as ’curse of dimensionality’ [1]. Notwithstanding the sig-

nificant improvements brought by advanced numerical optimisation and design-of-experiment

(DoE) methods, due to the ’curse of dimensionality’ the cost of experimental based engine

tests to support the conventional static calibration procedures is becoming exponentially

time-consuming and costly. One potential way of addressing this issue is to capture experi-

mental data in a dynamic model during non-steady-state testing [2]. An additional advantage

of a dynamic modelling is that it may allow control of the engine dynamics which are likely to

become of increasing significance in forthcoming legislated drive cycles which have significant

engine transients and tightened emissions [3].

To capture the nonlinear dynamical behaviour of the advanced I.C. engine system how-
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CHAPTER 1. INTRODUCTION 2

ever requires an efficient and reliable way to determine model type and subsequently model

parameters in the system-identification. Dynamic black-box identified polynomial models

have been widely considered by researchers for engine management system (EMS) mappings

instead of the current steady-state static pseudo-dynamic methods [4]. Hybrid structured

multi-models have been reported as being able to provide a capability to represent complex

nonlinear characteristics with the desired simple structure, however there are many choices

for the multi-model structure, including nonlinear terms, partition size, weighting choice, lin-

ear vs nonlinear etc. [5]. Such dynamic maps have the potential to improve emissions and fuel

consumption in transient operations for reduced computational time and ease of implemen-

tation including comprehension and calibration. Accordingly, structure selection methods

are required to choose the simplest effective models. Structure identification techniques to

determine the optimal structures of black-box models are the principal subject of this thesis.

1.1 Systems identification of SISO and MIMO models

The study of Single-Input-Single-Output (SISO) systems offer a way to reveal the cause

and effect interconnection between two variables and it is the central concern of system

identification. For a newly designed system or a manufactured item, we would always ask the

question like how will all the inputs affect the system outputs or what uncertainties the system

has. SISO models can be used to relate variables of any component in the engine whether

it is a small part such as a spark plug or a larger mechanism namely a turbocharger. The

SISO models are generally identified based on input/output data and physical information

gathered from the system [6]. Three significant areas are required to be considered before

the identification:

• Prior knowledge about physical phenomena

The behavior of the systems is guided by a series of physical principles such as Newton’s

laws and energy conservative laws, therefore, some outputs of the system are fully

predictable according to the physical analysis. For example, in an engine intake system,

the air flow rate can be derived from the throttle opening angle and intake manifold area
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of the cross section. Engine speed can be derived from the brake torque and crankshaft

inertia.

• Observed data

The observed data is the key information source for a complex system because physical

analysis becomes unfeasible due to the curse of dimensionality. The input signal design

is a significant procedure to make sure the information contained in the data is rich

enough. Meanwhile, the measured data is used to compare with the model output and

thus validate the model quality. The observed data can be measured directly by the

sensors in the system or indirectly calculated by measured data.

• Accuracy requirement of the model

Most of the model structure determination process runs iteratively thus a stopping

criteria is necessary for the identification process. This means the identified models are

only acceptable when certain thresholds are satisfied. The model with high accuracy is

significant but complex model structures may cost a long time in training the data and

calculating the output. A balance must be found otherwise it would make the model

difficult to be implemented in the real-time control systems.

In this thesis, SISO identification and structure selection techniques and also Multiple-

Input-Single-Output (MISO) system identification are investigated. In a complex engine

system, the output is always affected by various inputs and their cross relations. The proposed

strategy for a MIMO identification problem is to convert the Multiple-Input-Multiple-Output

(MIMO) identification problem into a network of MISO models which can be solved separately

when the outputs of the system are relatively independent of each other. With proper data

acquisition interface, such as dSPACE A/D conversion module, the data can be captured

and processed when the target system is in operation. In this case, the time-domain MIMO

models can also be identified in real-time by recursive least-squares estimation [7].

1.2 Overview

This thesis investigates various model structure selection techniques. Novel SISO and MISO

dynamical models have been developed by using these techniques. The models acquired were
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identified and validated on both a real and virtual engine setups.

Following this introduction, Chapter 2 introduces the general procedures of system i-

dentification. Both the static and dynamic system properties are discussed. The white-box,

black-box and grey-box model categories are described, especially the linear and nonlinear

black-box models. The model-based engine calibration is discussed as well.

Chapter 3 shows the infrastructures of four different engine test beds used in studies in

this thesis and introduces the sensors and actuators mounted on them.

Chapter 4 gives a detailed study of the application of Least Squares algorithm in deter-

mining the parameters of dynamical polynomial models. A series of dynamical SISO engine

models including linear and nonlinear ABV-RPM model are established and validated.

Chapter 5 demonstrates two major model selection techniques: the stepwise regression

with F-statistic analysis and the orthogonal least squares with error reduction ratio analysis.

The ANOVA algorithm is also introduced in this chapter. The dynamic models constructed

with these techniques are currently limited to linear, square and cubic regressors terms but

can be readily extended if necessary. A novel MISO dynamical model is developed by appli-

cation of the model structure selection techniques.

Chapter 6 extends the scope of model structure selection to the multi-model identifi-

cation. A number of multi-model structures are investigated, namely the LOLIMOT, and

the Neural Network. The general procedure of multi-modelling is described in this chapter.

Several novel dynamical multi-models are developed for different types of engines.

Chapter 7 applies an multi-model identification process to produce a novel forward and

inverse multi-model. The WAVE-RT virtual engine is adopted as the experiment test bed.

The forward model gives accurate estimation of the engine torque and air/fuel ratio whilst the

inverse model is regarded as a controller by tracking the desired engine output with inverse
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identified inputs.

Chapter 8 reviews the main outcomes of this thesis and discusses the thesis contributions

together with the future possible developments of these efforts.

1.3 Contributions

The novel contributions of this thesis are as follows:

• SISO dynamical models were developed based on PFI gasoline engine in Chapter 4.

The model structure are found by Matlab identification toolbox and validated by the

measured data. The polynomial model structure was adopted, especially, the least-

squares technique is adopted to determine the parameters of the models. Finally, both

ARX and NARX models of the engine system has been obtained.

• MISO dynamical models for IC engine was developed using stepwise regression and

orthogonal least squares techniques in Chapter 5. At the same time the detailed steps

of the iterative structure selection procedure are presented.

• A LOLIMOT model and a log-sigmoid weighted multi-model was established for IC

engines. The optimal number of local models is analysed according the multi-modelling

results.

• An inverse multi-model has been identified on a state-of-the art virtual engine model.

The inverse model has been implemented to track the engine outputs of torque and

air/fuel ratio.



Chapter 2

Background

2.1 Dynamical System Identification for IC Engine

2.1.1 Static and Dynamical Modeling

A model for a system describes part or all of its characteristics depending on its application.

If we define two time points t1 and t2 with u(t1) = u(t2) as their corresponding inputs, for

the static model, the model outputs would turn out to be y(t1) = y(t2). The relationship

between inputs and outputs remained unchanged with time in a static system. However, in

a dynamical system, the relationship is constantly evolving with time. In other words, the

outputs of static system only depend on the current inputs, but the outputs of dynamical

system will be affected by both current and previous inputs along the time line. In detail,

some modeling and control strategies for dynamic systems has been researched in [8, 9, 10].

2.1.2 Dynamic Engine Identification

System identification is a fundamental problem in systems engineering applications. The

application of system identification overlaps the boundaries of engineering and physical sci-

ence. Many other fields of study, such as economics and medicine, can also benefit from the

employment of system identification technology. Generally, system identification is the de-

6
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termination of a mathematical model for a system or a process by observing its input-output

relationships [11]. In another word, a specific mathematical model which is equivalent in

input-output behaviour to a physical system can be obtained by this technology.

As the foundation of system identification, the input and output data should be col-

lected in a pre-designed experiment. Initially, the engine system is monitored by a set of

sensors and actuators according to our a priori knowledge, then a mathematical model for

the engine is developed by using structure selection and parameter estimation algorithms.

The engine model should be capable of reproducing the dynamics of the system over different

operating regimes. An accurate identified engine model is significantly beneficial for engine

calibration and control purposes. A schematic flow chart of the identification process is given

in Figure. 2.1 [12, 13, 14]

Design of Experiment

Dynamic system behaviour is represented by the current and past values of inputs and outputs

especially the transient response between the inputs and outputs. The experiment design

process applies clustering algorithm to locate a set of feasible operating points in order to

established dynamical model on a pre-defined working range with satisfying accuracy [15, 16].

To start an identification and control task, the input and output signals are to be de-

termined at the beginning. In the process of designing the experiment, a strategy of how

to efficiently and accurately acquire the information from the available experimental setup

should be established. In the case of engine test, the input and output signals are typically

transmitted into an A/D converter and processed in the computer. This means the resolution

and the sampling time of the sensor and actuator mounted on the engine must be consid-

ered in order to make sure the I/O data can be collected and managed in a sensible way.

Some prior knowledge of the system is vital because any experimental system has its operat-

ing limitations and experiment should always be conducted within the safe operating range.

Furthermore, the input and output signals need to be measurable within the experimental

budget. It is wise to avoid some parameters which are difficult to measure by indirectly mea-

suring related parameters. For instance, the throttle valve duty cycle is replaced by the Air

Bleed Valve (ABV) duty as the input signal and the Fuel Pulse Width (FPW) is measured
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Figure 2.1: The Flow Chart of System Identification
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instead of fuel injection mass. There are three major concerns in the design of the input

signals to be used for identification:

• Frequency Spectrum and Perturbation Time

The bandwidth of a dynamic system should be much wider than that of a static system.

Therefore, a proper input perturbation signal should be capable of exciting the system

across its bandwidth and revealing its nonlinearity as accurately as possible. In many

cases, step-shaped input signals, which change abruptly from one input value to another,

are preferred because they are equivalent to the superpositions of sinusoidal components

across an infinite number of frequencies. However, it is necessary to be aware that

instant change of the magnitude of input signal may result in damage to the test

equipment. The Pseudo Random Binary Sequence (PRBS) is another preferred option

in a digitally controlled experiment. The PRBS signal has the advantage of a wide

range of frequency content and a flat power spectrum density which is suitable for

dynamic identification. Other than the bandwidth of the PRBS signal which covers

a large spectrum between its lower frequency and upper frequency, the perturbation

time is also a deciding matter. The identified model of a dynamic system can only

be recognized as a good representation when the perturbation time is longer than the

delays of the system.

• Amplitude of the Signal

The amplitude of the signal does not pose any significant threat to the model accuracy

in linear identification applications because the gain of the system’s transfer function

is constant, in which case the output signal is proportional to the input. Therefore, the

PRBS signal with its two distinct levels is well accepted. For largely nonlinear systems,

the random walk signals which generated by uniformed random PRBS, a gain and an

integrator is believed to be a good choice. The variation of the signal amplitude of the

random walk signal aims to cover all the operating range of the nonlinear system and

capture the uncertainty within the nonlinear system.

• Sampling rate

The sampling rate refers to the time interval between the current and the subsequent

record of the signal generated by the sensors. The main constraint on achieving an

appropriate sampling rate is the availability of qualified instruments which are able to
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achieve the speed of sampling required. It has been recommended [14] that the sampling

rate to be 10 times that of the interested variable’s bandwidth. For best results, the

highest sampling rate is usually adopted in any engine test and the researcher will then

be able to decide the down-sampling strategy depending on the modeling requirements.

It is worth noting that the down-sampling can only be applied after any sort of digital

anti-aliasing filtering [17]. At the same time, the test input signal designer should also

keep the input signal rate lower than that of the sampling rate.

Data Processing

Due to various requirements of an identification algorithm, the experimental data collected

from an engine test should be adjusted into suitable form. The oversampling of the recorded

data, the associated sensors noise and the switching of electronic noise should all be considered

as factors in the data processing.

1. Offsets Removal and Data Detrending

In a general engine test system, the sensors for physical measurement could lead to

bias or offset. To remove the offsets such as those existing in absolute pressure or tem-

perature measurement from the data greatly improves the quality of the identification

process [18]. Therefore, the mean value of the data is eliminated from the raw data

samples respectively. Alternatively, the offset term can be deducted from the I/O sig-

nal in the identification process. Offsets can be revealed in the raw data or detected

in general trends like linear drifts or seasonal trends, and thus the best fitted trend is

subtracted from the I/O data in order to cancel these trends [17]. Usually, the sampling

rate is taken as higher than necessary in order to improve the optimizing result with the

amount of increase in rate based on the specific accuracy requirements. Since a system

with high order dynamics can have both fast and slow modes such a system may need

to be measured at high rate over a longer time requiring many more data samples than

for a system with low order dynamics. Further a high order system may require a much

faster sampling rate to capture its transient nonlinear behaviour, whereas a lower order

model containing a similar nonlinearity can be obtained with a much reduced sampling

rate.
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2. Elimination of Outlier Points

Outlier points are the non-normal data which may be caused by localized anomalous

events or measurement errors involved in the system. These data points will break the

regulation of the data and dramatically affect the accuracy of the results. Hence the

outlier points ought to be eliminated before the identification. Due to the severe cost

to the identification process, it is better to avoid it in the experiment design stage.

Otherwise, the outlier points can be recognized as lost data which can be deleted from

the raw data.

3. Pre-filtering

A frequency domain filter is designed to modify the frequency response of a system,

normally by either emphasizing or attenuating certain frequency ranges. A significan-

t regulation has been found that, for the linear system, filtering both the input and

output data by the identical filter does not impact the relationship between input and

output signals [14]. Hence the filter can be used while collecting the original data and

the type of filter is decided by the application region and the sort of the disturbance.

For the data sampling applications, an anti-aliasing filter should be utilized, with a

separate frequency in the middle position of the sampling frequency which named as

Nyquist frequency. And then the ambiguity caused by aliasing of high frequency com-

ponent at low frequency can be eliminated. However, if the noise and disturbances

is in the region of well defined frequency, then the band-stop filter can be applied for

identifying the attenuation of specific frequency bands. Moreover, a band-pass filter

can be adopted while identifying the dynamics in a particular frequency range. Since

the influence of unknown external noise sources or disturbances is always existent in

the data used for identification. It can be concluded that the choice of filtering strategy

is significant factor which concerns whether the satisfactory results can be obtained for

system identification.

2.1.3 White-box Models

A white-box model is transparent from outside viewers. It usually integrates key physical

elements and forges a clear mathematical representation that shows the transit states of
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the dynamic system. In order to develop the model, various scientific laws can be used,

including thermodynamic laws, Kirchhov’s laws, Newton’s laws and reaction kinetics [19].

An illustrative physical modelling which described a powertrain system was presented in [20].

An engine in-cylinder model based on the principles of thermodynamics are introduced in [21]

and another kinematical model is established in [22]. Therefore, the white-box model is also

recognized as phenomenological or physical model. With the confirmation of the physical

parameters in the model, the engine system dynamics can be fully understood. However, in

a complex system like a powertrain engine, the white-box models lacks the ability to make

approximations in order to simplify the identification process thus difficult to be implemented

in digital device such as Engine Control Unit (ECU) .

Figure 2.2: Black-box and White-box Models comparison

2.1.4 Black-box Models

The black-box approach of modelling relies entirely on the input/output data from the test

bed. In this sense, system identification can be seen as a behavioural approach for model

development. [13]. Since the system’s physical property is assumed to be unknown, the

model structures are mainly constructed by weighted combinations of basis functions or time

delayed regressors obtained from the real system’s I/O channels. Black-box models can be

identified as either parametric or non-parametric models. Parametric models are developed

by determining the parameters in relevant transfer functions or state-space matrices, while

non-parametric models are focused on estimating a model in frequency domain, such as

impulse responses and frequency responses. A predefined quality criterion, such as goodness

of fit or normalized mean square error (NMSE), has to be met in order to accept the black-
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box model because it is not interpretable in the physical sense. The trial and error tests are

needed as stated in [23] because the black-box models are only valid over the operating range

where the models are identified and could become unreliable elsewhere.

Linear black-box models

As demonstrated in [24], the simplest dynamical black-box model is called the Finite Impulse

Response (FIR) model. In Equation 2.1, the FIR model is represented as:

y(t) = B(q)u(t) + e(t)

= b1u(t− 1) + · · ·+ bnu(t− n) + e(t) (2.1)

where q is the shift operator and B(q) is a polynomial in q−1. Hence the predictor ŷ(t|θ) =
B(q)u(t) of this FIR model are only formed by regressors of input delays. The regressor

vector is then defined as

φ(t) = [u(t− 1), u(t− 2), · · · , u(t− n)] (2.2)

As we involve more delayed terms in the regressor vector, the model is able to reflect more

system dynamics. However, in practice, the regressors in the vector should be selected and

the noise term e(t) are assumed to be Gaussian distributed or to be modelled in different

ways.

The general structure of black-box model family is proposed in [14] as:

A(q)y(t) =
B(q)

F (q)
u(t) +

C(q)

D(q)
e(t) (2.3)

Specially, various classes of models can be derived from Equation 2.3. As shown in Figure 2.3,

the linear black-models are categorised as Prediction Error Method (PEM) model as shown in

Equation 2.3, the Box-Jenkins (BJ) model when A = 1, the ARX model when F = C = D =

1,the ARMAX model when F = D = 1, the Output-Error (OE) model when A = C = D = 1.
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The predictor of the model output can be defined as the regression form in [25]:

ŷ(t|θ) = θTφ(t, θ) (2.4)

where the parameter vector θ = [θ1, θ2, θ3, ...].

Figure 2.3: Linear black-box model classes

Nonlinear black-box models

The nonlinear black-box model estimator is able to be described as a nonlinear function g(·)
of regressor vector φ(t) and corresponding parameter vector θ as

ŷ(t|θ) = g(φ(t), θ) (2.5)

In the case of discrete system, the time shift operator q is transformed into z and

the output dynamics of the system is revealed by difference dynamics or tapped delays [6].

Figure 2.4 demonstrates the dynamical model with tapped delays. The past inputs and

outputs of the system can be restored by these delay taps and recycled into the dynamical

model when being called. When the outputs of real system or measured outputs y(t), y(t −
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1), y(t − 2)...y(t − n) are used in the feedback, the dynamical model is named as NARX

(Nonlinear AutoRegressive with eXogenous input) model. On the other hand, if the model

outputs ŷ(t), ŷ(t−1), ..., (̂y−n) are adopted as the feedback, the model should be categorised

as the NOE (Nonlinear Output Error) Model. From the prospect of model identification, it is

likely that NOE mode will offer better simulation results than that from an ARX or NARX

model which are identified using the measured data.

Figure 2.4: The identified dynamical model with a series of unit tapped delays

Here we define input and output regressor as u(t − nu),y(t − ny), the model predicted

output as ŷ(t − ny|θ). Then the simulated output ŷu(t − ny|θ) can be defined as the model

output ŷu(t|θ) at time t with all measured outputs y(t − ny) replaced by the simulated

output ŷu(t− ny)|θ) computed k-step ahead. Therefore, the model prediction error becomes

e(t−ne) = y(t−ny)−ŷ(t−ny|θ) and the simulation error is eu(t−ne) = y(t−k)−ŷu(t−ny|θ).

Based on these expressions, the corresponding nonlinear version of the model types are

defined as [26, 27]:

• NFIR models which only includes input regressors u(t− nu)

• NARX models which contain both input and output regressors u(t− nu) and y(t− ny)

• NARMARX models which consider input u(t − nu), output y(t − ny) and prediction

errors e(t− ne|θ)
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• NOE models which use u(t−nu) and ŷ(t−ny|θ) as regressors when the simulated model

output is calculated iteratively as ŷu(t)|θ)

• NBJ models which adopt u(t−nu), y(t−ny), e(t−ne|θ) and eu(t−ne|θ) as regressors.
In this model class, the simulated output ŷu is determined by using the structure of

Equation 2.5 at the same time substituting e and eu by zero vectors in the regression

vector φ(t, θ).

2.1.5 Grey-box Models

A comparison between Black-box and White-box models is shown in Fig. 2.2. The white-box

model’s high interpretability is most advantageous, but it requires exact knowledge of the

system. On the other hand, the black-box model is capable of fast simulation of the system but

not interpretable in physical sense. In reality, model identification lies in somewhere between

the two ends. These model classes can be called the Grey-box models which offers higher

flexibility in system identification process. When we has some a priori physical knowledge

about the system but are not able to solve the parameters associated with it, the data-based

black-box approach can be applied. In terms of interpretability, the physical implication of

the model parameters can be retained and assessed by the designer of the control system.

A series of grey-box models, namely neuro-fuzzy systems and semi-physical models can be

found in [28, 29].

2.1.6 Dynamic Engine Calibration

Engine calibration aims to develop the optimal engine operating scheme under varies restrain-

s, such as: emission legislation, fuel consumption and requests from the driver [30]. The best

trade-off are required to be found because these requirements contradict in the engine mech-

anism. Some of the extensive applications of engine dynamical calibration are documented

in [16]. The engine systems is conventionally calibrated by static mapping techniques which

are based on multi-dimensional tables describing the relationship among the engine inputs

and outputs. With more advanced technology being applied to the engine system, the rel-

evant variables controllable in the engine management unit (EMS) increases dramatically.
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Consequently, the calibration time of the engine will be rising enormously due to the curse of

dimensionality. A lot of researchers suggest that the dynamic models are capable to overcome

the shortcomings of the static calibration, mainly the time-consuming experiment [31, 32].

The model-based calibration is introduced to meet the challenge of more advanced en-

gine calibration. The engine properties is represented by mathematical models instead of

look-up tables. The engine control scheme is then developed based on the engine mapping

generated by engine model testing. Consequently, it is essential for the engine model to be

accurate enough to predict the engine dynamic behaviour. Various types of engine models

were investigated extensively by researchers. The examples of physical models of the air, fuel

and mechanical systems can be found in [33, 34]. The neural networks have also been applied

to engine modelling. The manifold pressure and mass flow processes were modelled in [35]

with eternal recurrent networks.

In this thesis, the engine system is recognized as a complex dynamical system which

memorizes its previous states. From this point of view, the calibration of the engine can

be based on a series of dynamic I/O models. With proper designed test cycle, namely New

European Driving Cycle or random walk signal, the engine static or dynamical model can be

developed solely from the information contained in the data set. It can be concluded that

the model-based engine calibration can significantly reduce the pre-production time thus it

is even more promising in the future industrial application.



Chapter 3

Experimental and Virtual Test Bed

Setup

This chapter describes the experimental equipment and setup used for investigation of the

identification techniques for multi-model development and local model structure identifica-

tion.

3.1 Ford Port-Fuel-Injected (PFI) Zetec Engine

The Liverpool University low inertial dynamometer system installed with Ford Zetec 1.6L PFI

4 cylinder S.I. engine is used for the experimental studies in this thesis. A schematic picture

of an engine dynamometer is represented in Figure 3.1. The engine dynamometer system

comprises a test engine and a dynamometer with a connecting transmission shaft. The engine

torque can be controlled by a combination of air, fuelling, spark angle inputs. An in-line

torque transducer is available to measure the torque, and a total reaction torque measurement

arrangement is also available. The other dynamometer parameter is the rotational speed of

the engine shaft and it is measurable by a shaft encoder. A detailed comparison between

PFI and GDI engine mechanism can be found in [36]. The direct injection techniques are

offen used to achieve better fuel dispersion and homogeneity. The control strategies of GDI

combustion is briefly introduced in [37, 38].

18



CHAPTER 3. EXPERIMENTAL AND VIRTUAL TEST BED SETUP 19

Figure 3.1: A schematic structure of the engine connecting with dynamometer

The results obtained from the engine dynamometer identification provide the data to

determine the effectiveness for any engine modelling or control strategies. Four basic control

modes may be adopted to control the dynamometer [39]:

• Independent Mode: In this mode, the dynamometer torque position is controlled open-

loop, which means the disturbances to the model state will not affect the input to the

dynamometer actuator.

• Speed: Here, the speed of the dynamometer is adjusted using closed-loop control with

dynamometer speed as the tracked variable.

• Torque: the closed loop system is adopted in this mode to track a desired shaft torque.

This mode is useful for the simulation of external loads to increment or decrement the

tracked torque and is obtained by the addition of disturbance signals to the dynamome-

ter torque actuation channel.

• Power: The engine power is determined by the product of torque and rotational speed.

Hence the engine power is controlled by adjusting both of them simultaneously.

For identification purposes, the engine system is regarded as a black box. Hence the

main objective of the experiment is to provide the information to reveal the characteristics

of the engine system dynamics. A dSPACE system, a data pre-processing device, is applied
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to collect and record the raw data from the engine test. The data thus obtained from the

experiment are inputs to the identification process to determine the mathematical model

and provide the evidence for the validation of the resulting model. The directly measured

variables include ABV (Air Bleed Valve) Duty Cycle, MAP (Manifold Air Pressure), ABV,

SA and RPM of the engine crank. Among these parameters, for modelling in this thesis, the

ABV Duty Cycle and MAP are regarded as measured input signal while the RPM and UEGO

reading λ are chosen as the measured output. The experimental set is shown in Figure 3.2.

Figure 3.2: The key control devices for the engine test

The test engine is a four cylinder engine with four strokes cycle providing four strokes

every 720◦. The number of raw data, the samples can achieve 1 million, since samples are

collected by the software each degree of crank angle. In order to simplify the input control,

the throttle switch is turned off which corresponds to a fixed throttle angle of 8◦, thus almost

all the entered air is bypassed through the ABV. In order to reduce the error, it is necessary

to collect adequate amount of data samples for data processing. Before the test is started, the

engine speed is adjusted to around the idle speed of 1000 rpm and a braking load is applied

by the dynamometer. The dSPACE system is used to collect all the signals and sample them

with the 1 degree interval.
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3.2 Variable Cam Timing(VCT) Engine

For conventional gasoline engines, the intake and exhaust valves are driven by the camshafts

and the cam timing is adjusted by a timing belt which binds the crankshaft and the camshaft.

By adjusting the phase difference between the camshaft and the crankshaft angle, the timing

belt can synchronize the valve and piston movements in a fixed timing. With optimized

timing of inlet and outlet valve opening in variable valve timing (VVT) engine, the volumetric

efficiency is boosted and the torque output can be increased in all the engine operating regions

thus the fuel economy is improved [40]. Meanwhile, the retard of exhaust valve opening will

reduce or replace the use of exhaust gas recirculation system which would generate more CO

and NOx emissions [41].

Variable Camshaft Timing (VCT) is an automotive variable valve timing technology in

current advanced engines used by many manufacturers including the Ford Motor Coperation.

The VCT technology is an innovation used to minimize the engine emissions whilst providing

also satisfactory fuel economy and driver experience. It has been proved effective and applied

extensively in the industry. This technology has offered considerable merits: it is able to

reduce emissions such as oxides of nitrogen(NOx) and unburned hydrocarbons(HC) [42],

and also to improve the full load performance of the engine [43]. The specific feature of the

VCT engine, the cam timing is precisely advanced on retarded according to the engine speed

as determined by an optimized engine mapping.

VCT offers another effective way to reduce NOx and HC emissions other than the ex-

haust gas recirculation(EGR) valve systems. However, the VCT mechanism requires more

sophisticated control schemes to achieve the emission reduction target. As shown in Fig 3.3

, the exhaust gas is sucked back in to the cylinder after TDC is reached. The gas mixture

in the cylinder is diluted by the retained exhaust gas which reduces the combustion temper-

ature. Therefore, the NOx generation is suppressed under lower temperature. Meanwhile,

the recirculated exhaust gas containing unburned HC from the cylinder or piston wall inter-

face will undergo combustion in the next engine cycle. The camshaft of the VCT engine is

actuated by a hydraulic mechanism and the valve timing is adjusted according to the engine

inlet and exhaust cycle. There are several cam timing schemes, namely Dual Variable Cam

Timing (Dual-VCT) and Twin Independent Variable Cam Timing (Ti-VCT). The cam tim-
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ing of Dual-VCT is adjusted simultaneously with the fixed phase differences. On the other

hand, the Ti-VCT adjusts the intake and exhaust camshaft separately in order to produce

higher power and torque and at the same time keep the emissions to a minimum. However,

the Ti-VCT scheme will increase the complexity of the timing actuator and the cost of the

engine.

Figure 3.3: Variable Camshaft Timing scheme

In this thesis, a VCT engine model developed by Stefanopoulou [44] is investigated by

establishing a Matlab Simulink model and simulating the dynamical properties obtained from

the empirical polynomial model given in Stefanopoulou’s work.

The calibration and control target of our study is to maintain the stoichiometric Air/Fuel

Ratio while minimizing the HC and NOx emissions. The key features of the engine, such

as the throttle angle, engine pumping rate, torque generation and NOx and HC emissions

are included as the calibration variables. In detail, the manifold air pressure is physically

determined by the mass flow rate into the throttle body and cylinder as shown in Equation-

s (3.1) (3.2).

Km =
R · T
Vm

=
287 J

Kg·K
· 288 K

0.007 m3
= 0.118 bar/g (3.1)

where R is the specific gas constant (287 J
Kg·K

), T represents the nominal temperature
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(288 K), Vm represents the manifold volume (0.007 m3), and Km is the resulting constant.

The rate of change of the manifold pressure is determined by:

d

dt
Pm = Km(ṁθ − ṁcyl) (3.2)

where ṁθ represents the mass air flow rate into the manifold and ṁcyl is the engine pumping

mass air flow rate. These two air flow rates can be calculated by Equations (3.3) and (3.4)

respectively:

ṁθ = g1(Pm) · g2(θ) (3.3)

ṁcyl = F (1, CAM,CAM2, CAM3, Pm, P 2
m, P 3

m, N,N2, N3) (3.4)

where CAM is the camshaft angle, N is the engine speed, Pm is the manifold pressure, θ

represents the throttle angle and

g1(Pm) =







1 if Pm ≤ P0/2, P0 = 1 atm

2/P0

√

PmP0 − P 2
m if Pm > P0/2







(3.5)

and

g2(θ) = F (1, θ, θ2, θ3) (3.6)

The cylinder mass air flow, torque and NOx and HC emissions are modeled by the

static algebraic functions of cylinder air charge (CAC), camshaft angle (CAM), manifold

air pressure (Pm), air/fuel ratio (A/F) and engine speed (N). The schematic output model

structure is outlined in Equation (3.4) (3.7) (3.8) and (3.9):

Tq = F (1, CAC,CAC2, CAC3, A/F,A/F 2, A/F 3, N,N2, N3) (3.7)
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NOx = F1(1, N,N2) · F2(1, CAM) · F3(1, A/F,A/F
2, A/F 3) · F4(1, Pm, P 2

m) (3.8)

HC = F1(1, N,N2) · F2(1, A/F,A/F
2, A/F 3) · (F3(1,

1

Pm
) + F4(1, CAM,

CAM

P
1
16
m

)) (3.9)

A new Simulink realization which simulates this VCT engine model is shown in Fig-

ure 3.5. The Simulink model is constructed in four subsystems which determine the four-stoke

phases: throttle and manifold intake, air/fuel compression, ignition and combustion, exhaust

generation. Each subsystem has its own physical and empirical sub-models with correspond-

ing inputs and outputs. For the intake system, air flow rate, throttle angle and manifold air

pressure are recognized as inputs. In the final stage, the brake torque is a modelled output

of the combustion system while the NOx and HC emissions are estimated outputs of the

exhaust system.

Figure 3.4: Inputs and Outputs of the VCT Engine

3.3 Diesel Engine with VGT and EGR

Diesel Engines are widely used in heavy-duty vehicles due to its higher torque output and

fuel economy. Two types of compression enhancement devices are widely used in industry:
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Figure 3.5: VCT Engine Simulation Model in Simulink

Figure 3.6: Throttle and Manifold Simulation Model
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Figure 3.7: VCT Engine Torque Model

the turbocharger and the supercharger. However, these two mechanism adopts different

working strategy. The turbochargers utilize the kinetic energy of the exhaust gas flow and

improved the energy efficiency of the engine, but it only works effectively when the engine

operates at relatively high speed. Meanwhile, the superchargers are directly connected with

the crankshaft which is driven by the engine main combustion power, therefore its response

time is shorter and working consistently during the engine operating time. Nevertheless, the

supercharger requires to keep drawing power from the engine which reduce the power and

torque output on the wheels [45].

For the purpose of minimizing the emission within the legislated limit, exhaust recir-

culation and variable-geometry turbochargers have been introduced into the Diesel engine

design. A well-established Diesel engine model which is presented in [46] was adopted as

a test template for the multi-model. This model was peer-reviewed and validated from the

industrially obtained experimental data [47] [48] [49]. As shown in Figure 3.8, eight state

variables are involved in the engine model structure: the intake manifold pressure pim, the

exhaust manifold pressure pem, the intake oxygen mass fraction XOim, the exhaust oxygen

mass fraction XOem, the turbocharger speed ωt, and three actuator state variable uδ,uegr,uvgt

where uδ is the mass of injected fuel, uegr represents the EGR valve position and the uvgt

is the VGT valve position. The valve position value varies from 0(closed) to 1(fully open).

The adjustable input variables are shown in Equation 3.10 and the model has the state space
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form of Equation 3.11:

u = (uδ uegr uvgt)
T (3.10)

where uδ is the injected fuel,uegr is the position of EGR valve, and uvgt is the actuator position

of the VGT.

The state-space model:

ẋ = F (x,u, N) (3.11)

where the function F (·) is developed by combining the dynamic physical properties of all

the key components shown in Figure 3.8 [50]. The dynamic testing of the Diesel engine

was conducted by generating randomly input sequences for u and then observing the output

states x at different engine speed(N) through the time of the test.

Figure 3.8: Inputs and Outputs of the Diesel Engine with VGT mechanism

3.4 WAVE-RT Petrol Engine Model

The model structure identification techniques is applied to a high accurate industrially pro-

duced and validated virtual engine model implemented as a WAVE-RT system. Some major
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disturbances, namely, temperature and moisture, could cause system uncertainty and com-

promise the validation results however in terms of experimental effectiveness, the computer-

aided engine simulator is able to conduct highly repeatable engine test within relative low

time and cost budget. At the same time, the engine model maintains good flexibility to

changing component units and parameters. The subject engine for WAVE-RT model is an E-

coBoost 2.0-Litre GTDI engine provided by the Ford Motor Co.. The WAVE real-time model

is built on an ISO approved software package named RICARDO WAVE platform [51, 52].

The WAVE platform contains a library of modelling components in the area of compressible-

flow fluid networks and machinery. In terms of engine modelling, it offers elements such

as piston compressor, engine cylinder, throttle, turbocharger and turbine. The time-variant

variables for the engine, including temperature, cylinder pressure and air mass flow rates, can

be measured directly in SI or Imperial units and monitored within the simulation process.

WAVE is recognized as a state-of-the-art industrial design tool and has extensive appli-

cation in engine performance assessment. From early concept studies to detailed engine pro-

duction investigations, the WAVE model can be used throughout the engine design process.

Common applications include torque response, fuel consumption, turbocharger response, E-

GR studies, valve profile design and timing optimization. As shown in Figure 3.9, for the

sake of simplicity of use, the Wave-RT model is mainly comprised of a series of connection

of physical models of engine components along with the engine breathing pipeline, including

throttle and cylinder intake mechanism. As a concept engine design tool, the wave model is

recognized by Ford engineers as a realistic alternative to the real engine for conducting initial

stages of a control scheme. The engine simulation results obtained from the WAVE model

can be plotted in various standard graphical formats and validated by different types of real

engine test data.
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Figure 3.9: WAVE model developed for GTDI engine



Chapter 4

Engine SISO Model Identification

4.1 Method of Least Squares Parameter Identification

The methods used for the data processing are the most significant factors which affect the

accuracy and reliability of the identification results. The basic algorithm for parameter

identification, the least-squares algorithm, is introduced in this chapter.

Least-squares (LS) theory was first proposed by Karl Gauss for predicting the orbit of the

planets. Since then, the LS theory has become a principle tool for parameter estimation from

experimental data. The LS method is easy to comprehend and does not require an extensive

knowledge of mathematical statistics; thus it is widely used among scientists and engineers.

Furthermore, estimates obtained by LS methods have optimal statistical properties which are

consistent, unbiased and efficient [11] . Before applying LS theory, the choice of input and

output signal of the system are required to be decided.

4.1.1 Definition of the vector norm

The concept of vector norms is described in the mathematical representation. A vector norm

on Rn is a function f : Rn → R that satisfies the following properties [53]:

f(x) ≥ 0 x ∈ Rn, (f(x) = 0 iff x = 0) (4.1)

30
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f(x+ y) ≤ f(x) + f(y) x, y ∈ Rn (4.2)

f(αx) = |α| f(x) α ∈ R, x ∈ Rn (4.3)

Such a function is denoted with a double bar notation: f(x)=‖x‖. With different sub-

scripts on the double bar, various norms can be distinguished. Then the p-norms are defined

by:

‖x‖p = (|x1|p + · · ·+ |xn|p)
1
p p ≥ 1 (4.4)

Three of these norms are the most significant:

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn| (4.5)

‖x‖2 = (|x1|2 + |x2|2 + · · ·+ |xn|2)
1
2 = (xTx)

1
2 (4.6)

‖x‖∞ = max1≤i≤n |xi| (4.7)

Note that a unit vector is a vector x which satisfies ‖x‖p=1.

4.1.2 Least-squares via the minimum error-squares

an n-tuple set X = (x1,x2, · · · ,xn) are related linearly to a variable y:

y = θ1x1 + θ2x2 + ·+ θnxn (4.8)
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where θ = (θ1, θ2, · · · , θn)T is an n-tuple constants so that y = Xθ.

Let the sum of squares of errors be determined as follows [54]:

J =
N
∑

t=1

e2(t) = eTe

= (y−Xθ)T (y−Xθ)

= yTy− θTXTy− yTXθ + θTXTXθ (4.9)

The equation to determine the stationary point for derivation of the minimum of J with

respect to θ is:

dJ

dθ
= −2XTy+ 2XTXθ = 0 (4.10)

which leads to

XTy = XTXθ (4.11)

The second derivative of J can be represented as:

d2J

dθ2
= 2XTX (4.12)

which requires XTX > 0 for a minimum and therefore the stationary point obtained from

Equation 4.11 is able to make the sum of squares J minimum. Hence the least square estimator

(LSE) for the polynomial model 4.8 is

xLS = θ̂ =
[

XTX
]−1

XTy (4.13)

4.1.3 Least-squares via QR algorithm

Let X ∈ Rm×n with m ≥ n and b ∈ Rm and suppose Q ∈ Rm×m is an orthogonal matrix

such that

QT = Q−1

QTQ = QQT = I (4.14)
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where I is the identity matrix. The QR algorithm starts from the matrix formation that

QTX = R =





R1,n×1

0(m−n)×1



 (4.15)

where the matrix X is formed as X = [x1, x2, x3..., xn]
T and if

QT b =





hn×1

g(m−n)×1



 (4.16)

In the least-squares algorithm, the aim is to determine θ̂ which is able to minimize ‖Xθ − b‖22.
Obviously, this problem is equivalent to the minimization of

∥

∥QTXθ −QT b
∥

∥

2

2
. In this case

‖Xθ − b‖22 =
∥

∥QTXθ −QT b
∥

∥

2

2
= ‖R1θ − h‖22 + ‖g‖22 (4.17)

For any x ∈ Rn, if rank(X)=rank(R1)=n, then θ̂ is defined by the upper triangular system

such that

R1θ̂ = h

θ̂ = R−1
1 h (4.18)

Based on this QR Algorithm, the coefficient vector of θ̂ can be obtained.

4.1.4 Least-squares via SVD algorithm

In linear algebra, the SVD is a vital factorization of a rectangular real or complex matrix,

with several applications in signal processing and statistics. Applications which employ the

SVD include computing the pseudo-inverse, matrix approximation, and determining the rank,

range and null space of a matrix. In the SVD factorization, suppose X ∈ Rm×n, the matrix
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Q and Z are orthogonal matrices such that

QTXZ = T =





T11 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)



 r = rank(X)

‖Xθ − b‖22 =
∥

∥(QTXZ)ZT θ −QT b
∥

∥

2

2
= ‖T11a− c‖22 + ‖d‖22 (4.19)

where in the Equation 4.19, X = [x1, x2, x3..., xn]
T ,

ZT θ =





ar×1

b(n−r)×1



 QT b =





cr×1

d(m−r)×1





If the 2-norm of x is minimum, b must be zero and a = T−1
11 c. Therefore,

xLS = θ̂ = Z





T−1
11 c

0



 (4.20)

4.1.5 Least squares via Recursive Least-Squares (RLS) algorithm

The requirement for recursive solutions arise when fresh experimental data are continuous

in supply and on-line results are required. With recursive formula, the LS estimates can be

updated at each experimental data sample. The recursive methods are often called sequential

or on-line estimation methods.

If the first m groups of data are embedded in matrix Xm and ym, then

ym = Xmθ (4.21)

Hence the least squares estimator can be written as:

θ̂(m) = (XT
mXm)−1XT

mym (4.22)

Assume a vector of new experimental data x(m+ 1) and y(m+ 1) are then obtained, where

y(m+ 1) = θ1x1(m+ 1) + θ2x2(m+ 1) + · · ·+ θnxn(m+ 1) (4.23)
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if we define

xT (m+ 1) = [x1(m+ 1), x2(m+ 1), · · · , xn(m+ 1)] (4.24)

Then the output of next time point is

y(m+ 1) = xT (m+ 1)θ (4.25)

Consequently, the new data system including the (m+ 1)th equation can be written as

ym+1 = xm+1θ (4.26)

in which

ym+1 =























y(1)

y(2)
...

y(m)

y(m+ 1)























=























ym

y(m+ 1)























(4.27)

Xm+1 =

















x1(1) · · · xn(1)
...

. . .
...

x1(m) · · · xn(m)

x1(m+ 1) · · · xn(m+ 1)

















=

















Xm

xT (m+ 1)

















(4.28)

Hence the new least-squares estimator of next iteration is

θ̂(m+ 1) = [XT
m+1Xm+1]

−1XT
m+1ym+1 (4.29)

Without matrix inversion, the new estimator θ̂(m+1) can be calculated by simply updating

the previous estimate θ̂(m). A well-known matrix inversion lemma is the key to achieve
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this. Let A, C and A+BCD be nonsingular square matrices; then the following Sherman-

Morrison-Woodbury formula holds [11]:

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 (4.30)

where A is n-by-n matrix, U is n-by-k, C is k-by-k and V is k-by-n matrix. If we define the

matrix P(m) as

P(m) = (XT
mXm)−1 (4.31)

then

P(m+ 1) = (XT
m+1Xm+1)

−1 = (XT
mXm + x(m+ 1)xT (m+ 1))−1 (4.32)

Applying the matrix inversion lemma described in Equation 4.30, let A = P(m)−1, B =

x(m+ 1), C = 1 and D = xT (m+ 1), then P(m+ 1) can be written as follows:

P(m+ 1) = [P(m)−1 + x(m+ 1)xT (m+ 1)]−1 = P(m)−

P(m)x(m+ 1)[1 + xT (m+ 1)P(m)x(m+ 1)]−1xT (m+ 1)P(m) (4.33)

From Equation 4.27 and 4.28

XT
m+1ym+1 = XT

mym + x(m+ 1)y(m+ 1) (4.34)

Substituting Equation 4.32 and 4.34 into Equation 4.29, the following relation holds:

θ̂(m+ 1) = P(m+ 1)[XT
mym + x(m+ 1)y(m+ 1)]

= (P(m)−P(m)x(m+ 1)[1 + xT (m+ 1)P(m)x(m+ 1)]−1

·xT (m+ 1)P(m))(XT
mym + x(m+ 1)y(m+ 1)) (4.35)
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The above equation can be transformed into

P(m)XT
my(m)−P(m)x(m+ 1)[1 + xT (m+ 1)P(m)x(m+ 1)−1

·xT (m+ 1)P(m)XT
mym +P(m)x(m+ 1)y(m+ 1)

−P(m)x(m+ 1)[1 + xT (m+ 1)P(m)x(m+ 1)]−1

·xT (m+ 1)P(m)x(m+ 1)y(m+ 1) (4.36)

The last two terms of Equation 4.36 can then be rearranged into the form

P(m)x(m+ 1)[1 + xT (m+ 1)P(m)x(m+ 1)]−1

·[1 + xT (m+ 1)P(m)x(m+ 1)

−xT (m+ 1)P(m)x(m+ 1)] · y(m+ 1)

= P(m)x(m+ 1)[1 + xT (m+ 1)P(m)x(m+ 1)]−1y(m+ 1) (4.37)

From Equation 4.22 and 4.31, the following relations can be obtained:

θ̂(m) = P(m)XT
mym (4.38)

Finally, the θ̂(m+ 1) can be written as

θ̂(m+ 1) = θ̂(m)−P(m)x(m+ 1)[1 + xT (m+ 1)P(m)x(m+ 1)]−1

·xT (m+ 1)P(m)XT
mym

+P(m)x(m+ 1)[1 + xT (m+ 1)P(m)x(m+ 1)]−1y(m+ 1)

= θ̂(m) +P(m)x(m+ 1)[1 + xT (m+ 1)P(m)x(m+ 1)]−1

·[y(m+ 1)− xT (m+ 1)θ̂(m)] (4.39)

The result obtained in Equation 4.39 shows that the next estimator is calculated by the

previous one plus a correction term. Therefore, the recursive least-squares estimation can be

executed by the following equations:

θ̂(m+ 1) = γ(m+ 1)P(m)x(m+ 1)[y(m+ 1)− xT (m+ 1)θ̂(m)] (4.40)
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P(m+ 1) = P(m)− γ(m+ 1)P(m)x(m+ 1)xT (m+ 1)P(m) (4.41)

where

γ(m+ 1) =
1

1 + xT (m+ 1)P(m)x(m+ 1)
(4.42)

4.2 Engine SISO Model identification using LS algorithm

In order to validate the least squares method in engine system identification, an engine test

was conducted on the 1.6L PFI gasoline engine with the objective to identify a single-input-

single output (SISO) ARX model with optimized terms and orders.

The primary parameters concerned with the experiment are the ABV duty and the

rotational speed of the engine crank. The signal of the ABV duty was taken as input and was

varied between 0.380 and 0.410, and the response of the rotational speed was determined as

output. When the number of the raw data samples is very large, it may cause low efficiency of

the computation. Hence, the raw data for the test were required to be down-sampled before

analyzing the experimental data in the Matlab. In this application, the interval between

samples is changed to 180 degrees after down sampling and around 10000 samples were

extracted from the raw data. The resulting data for identification and validation are shown

in Figure 4.1 and Figure 4.2. The validation data shown in Figure 4.2 is collected under the

same input ABV range with that of idenfication data in Figure 4.1.

In this application, two criteria have been adopted for model validation:

• Goodness of Fit using the fit ratio

fit ratio = 100%× (1− norm(ŷ− y)/norm(y− ȳ)) (4.43)

• Coefficient of Determination (R2)
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Figure 4.1: The data used for the SISO model identification

Figure 4.2: The data used for the SISO model validation
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residual = y− ŷ

R2 = 1−
∑

i(yi − ŷ)2
∑

i(yi − ȳ)2
(4.44)

where ŷ is the model estimated output and ȳ is the mean value of the measured output vector

y.

4.2.1 The coherence of the SISO input/output

The coherence function can be used to describe the linearity between the input and output

signal. It is a function of frequency with values between 0 and 1 that indicate how well the

input X corresponds to the output Y at each frequency. Figure 4.3 is obtained by using the

coherence function MSCOHERE (X, Y) in Matlab. By using Welch’s averaged periodogram

method, the magnitude-squared coherence of the system is estimated with input X and output

Y. In this test, the raw data is downsampled into 180 degree/sample while the engine speed

is around 1000 rpm, so the sampling rate is therefore 0.03 sec/sample. In the range of

normalized frequency from 0 to 0.1π rad/sample, the coherence magnitude is close to 1 hence

the ABV duty and the rotational speed are approximately linear correlated in this range.

Therefore, it is feasible to use the linear ARX model as a primary engine model.

4.2.2 The transfer function of the ARX model

For an ARX model, the optimum solution should be a compromise between minimum orders

and the highest fit quality of the model. In the Matlab system identification toolbox, several

groups of parameters of the ARX model have been tested. The structure of the transfer

function can be represented as:

G(z) =
anb−1 + anb−2z

−1 + · · ·+ a1z
2−nb + a0z

1−nb

1 + bna−1z−1 + bna−2z−2 + · · ·+ b1z1−na + b0z−na
· z−nk (4.45)
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Figure 4.3: Coherence estimate via Welch’s method

Figure 4.4: Order selection analysis
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The ARX order selection plot is represented in Figure 4.4. The x-axis shows the number

of parameters in the respective models. The y-axis shows the part of the output variance,

which is not explained by the model, that is, the ratio between the prediction error variance

and the output variance in percentage. The bar chart demonstrates that the best fit of

the ARX model is (1 − 0.316) = 0.684. Meanwhile, the bar chart also suggests that both

the Akaike Information Criteria (AIC) [55] and Rissanen’s Minimum Description Length

(MDL) [56] criteria has been adopted for the model selection and the best model fit is obtained

by the AIC criteria.

The system identification usually does not have a unique solution. It is necessary to

obtain compromises between testing effort (hours on the engine), model order and model

quality. The fact is that the fit would not get significantly better for an increase in model

order. Finally, the ARX model which implements the orders of na = 6,nb = 6,nk = 6

is adopted, since the corresponding simulated output curve has the highest fit ratio with

the measured output curve. The transfer function obtained from the identification toolbox

function [sys = arx(data, na, nb, nk)] is

G(z) =
40.98z−6 + 15.69z−7 + 23.6z−8 + 18.99z−9 + 20.27z−10 + 65.12z−11

1− 0.4303z−1 − 0.3422z−2 − 0.2126z−3 − 0.1174z−4 − 0.0136z−5 + 0.143z−6
(4.46)

As shown in Figure 4.5, the predicted output signal matches well with the real output.

According to Equation 4.43, the fit ratio of this ARX model is 75.8% which is defined by 4.43.

The least squares method is also applied to determine the transfer function. The least

squares via QR, SVD and minimum error-squares have been implemented to build the models

respectively. As shown in Figure 4.6, the transfer function developed from different least

squares methods are linked into a validation Simulink model in parallel form.

The result shows that the output curves of different linear models matches well (<0.5%

mismatch). Therefore, it can be concluded that the linear ARX model is not sensitive to the

different LS algorithms. As a result, the transfer function can be unified as the one with best

fit:

G(z) =
40.3954z−6 + 20.4388z−7 + 24.7377z−8 + 13.2827z−9 + 19.6590z−10 + 60.7806z−11

1− 0.4403z−1 − 0.3465z−2 − 0.2125z−3 − 0.1131z−4 − 0.0075z−5 + 0.1468z−6

(4.47)
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Figure 4.5: The ARX model validation

Figure 4.6: The investigation of the models obtained by different algorithms
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From the least-squares methodology, the fit ratio of the model is 73.93%, which is very

close with the model obtained from the toolbox. Meanwhile, the value of R2 is calculated

as 99.8%. Of course, the linear model is actually just a simplification of the engine system

behaviour. In practice, appropriate nonlinear factors should be incorporated into the basic

model to give more representative dynamic characteristics.

4.2.3 Nonlinear SISO model

The NARX model structure has been adopted in this application since it is known to be

able to well approximate many nonlinear dynamical systems and exhibit a wide range of

nonlinear dynamical behaviour [57]. A NARX model can be developed from a ARX model

with nonlinear regressors being added subsequently. As illustrated in Figure 4.7, in the NARX

structure the next output value is given by the past output (and input) measurements. One

of the key NARX model type is the polynomial NARX model which is developed by using

algebraic regressor terms and their corresponding parameters.

Figure 4.7: The structure of NARX model estimator

For establishing the NARX model, two key problems are required to be tackled in ad-

vance:

• Scaling

Since the ratio of the magnitude of the ABV duty (0.38 0.41) to the rotational speed

(around 1000) is approximated 1:2500, the X-matrix formed by the two groups of data

vectors may confront the problem of singularity. Hence a scaling strategy is necessary
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to be applied to the raw experimental data. The method is to make a scaling vector

which based on the mean value of each data vector respectively. Before the identifi-

cation is started, the regressors (u1, u12, y1 etc.) are normalized by multiplying the

scaling vector such that the values of the data vector are adjusted to a magnitude of

approximately 1. At the end of the procedure, the real parametric vector of theta is

required to be unscaled by dividing the scaling vector.

• Choice of Regressors

Another factor which causes the X-matrix become singular is that the regressors are

’too similar’. For preventing this problem, the solution is to add the nonlinear terms

into the X-matrix one at a time. This strategy can help to identify which regressor is

causing the problem.

Square terms are the most basic nonlinear terms in the NARX model. As part of the

trial-and-error strategy, the square terms of the output are inserted into the linear equation.

Then, the parameters of the NARX model can be determined by the Least-squares algorithm.

The proposed NARX model for test is:

y(t) = −4× 10−4y2(t− 1) + 3.5× 10−5y2(t− 2) + 2× 10−4y2(t− 3)− 7× 10−4y2(t− 4)

+1.1× 10−3y2(t− 5)− 3× 10−4y2(t− 6) + 1.199y(t− 1) + 0.2742y(t− 2)− 0.2188y(t− 3)

+1.4538y(t− 4)− 2.2375y(t− 5) + 0.3696y(t− 6) + 40.608u(t− 6)

+20.4847u(t− 7) + 22.9675u(t− 8) + 14.1312u(t− 9) + 19.6108u(t− 10)

+62.4311u(t− 11) + 23.4279

(4.48)

Based on this polynomial NARX model, a simulink block diagram for the validation of the

NARX model can be developed as represented in Figure 4.8.

The quality of the NARX model can be reflected by the residual. Figure 4.9 shows the

plot of the residual. It can be seen that the residual of the model is limited between 30 rpm

and -10 rpm. The range is around 4% of the mean value of the RPM. The residual value

peaks at low speed point of 450rpm and high speed point 1900rpm and this indicates that the

model is more accurate in the range between 600 to 1500 rpm. The average of the residual is
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Figure 4.8: The NARX model validation in Simulink

7.5848 which is a positive value. This indicates that the model has somewhat underestimated

the output of the engine system. However, it may be acceptable for controller design for the

engine system. On the other hand, the result shows that the NARX model fit is improved

by 5% compared with the linear model. As a result, it can be seen that the NARX model

can represent the engine system more accurate than the ARX model.

4.3 Conclusions

The results presented in this chapter involves linear and nonlinear SISO ABV to engine speed

model of the PFI engine. The least-squares technique is adopted to determine the parameters

of the models. Both ARX and NARX model of the engine system are obtained.

However, there is no single best model for the engine system. It can be said that the

compromise between the complexity of the model and the quality of the model fit is significant.

Generally, system identification is carried out as a priori step of controller design. Therefore,

the accuracy of the identification model corresponds to the requirements of the controller and
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Figure 4.9: The NARX model residual

control design technique.

Based on the results represented in this chapter, it can be concluded that the results of

identification of linear ARX models are not sensitive to different LS identification algorithms.

Secondly, the square terms of the output RPM have been inserted to construct the NARX

model. By adding the nonlinear terms into the ARX model equation, the fit ratio of the

model can be improved. The NARX model represented in this chapter has 5% improvement

than the ARX model.



Chapter 5

Identification of MISO Dynamic

Engine Systems

This chapter mainly introduces two model structure identification techniques including step-

wise regression with F-statistic and orthogonal least squares with error reduction ratio. For

the purpose of vehicle performance analysis, a MISO engine torque and a MISO air/fuel

dynamical model are established by using polynomial NARX model structures. The stepwise

regression and the orthogonal least squares methods are both successfully applied in searching

for the optimal model regressors.

5.1 Structure Identification Technique

5.1.1 Model Representation

Any structure identification algorithm depends on the nonlinear dynamical model class and

the experiment category performed on the unknown process. Most structure identification

methods assume that the structure of the system is given a priori. In reality, parameter

estimation algorithms and structure identification is usually performed by repeated parameter

estimation [20].

48
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In recent years, models describing the engine torque dynamics have been investigated by

several researchers: Lee [58] have applied the crankshaft position,angular speed fluctuation

and angular acceleration as the measured data to estimate engine in-cylinder pressure which

can then be used to derive the indicated torque by using the engine geometry. A schematic

single cylinder model has been derived and validated by Filipi and Assanis [59]. Connolly

and Rizzoni. [60] have investigated the theory and test results for estimating the torque

output generated from individual cylinder in order to achieve real-time estimation. They

also emphasised the importance of on-line estimation of engine performance variables for

detecting different types of malfunctions. Ingram [61] developed a torque controller based on a

steady-state torque function derived from the torque value at different engine working points.

The work of Rizzoni and Zhang [62] consists of a detailed physical model and a nonlinear

parametric model for a single cylinder IC engine. The indicated torque is determined by

minimizing the error ǫ in the estimate of the crankshaft speed.

So far, most of the researchers estimate the engine torque via an interim measured vari-

able such as cylinder pressure and crankshaft angular velocity, in which case, some of the en-

gine nonlinearity may be lost in the identification process. One of the objectives of this thesis

is to apply polynomial model structure identification methods for engine torque and air/fuel

ratio estimation. In the model structure determination process, the stepwise regression and

the orthogonal least squares techniques are employed as regressor selection approaches. The

stepwise regression method has been widely utilized in aircraft system identification and is

introduced in detail in Klein and Morelli [63] work and practical application of this approach

has been made by Cordell and Clayton [64]. In the work described in this chapter, a novel

parametric MISO model is identified directly from the measured input/output of the engine

and validated by the unseen data using both stepwise regression and orthogonal least squares

methods.

In the context of the discrete-time dynamic system, the general NARX(Nonlinear autoregres-

sive with exogenous inputs) model or NARMAX(Nonlinear auto regressive moving average

with exogenous inputs) model can be represented by the relationship between its inputs u and

outputs y with time delays as shown in Equation 5.1. It has been demonstrated that both

NARX model and NARMAX models are capable of describing a very wide form of dynamic
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nonlinear behaviour, however, they are linear-in-the-parameters models[65].

y(k) = F (y(k − 1), ..., y(k − p), u(k), ..., u(k − q), e(k − 1), ..., e(k − r)) + e(k) (5.1)

It can be seen from Equation 5.1 that the current system response y(k) is determined by its

previous inputs/output and noise level. Specifically, p,q and r are known as the order numbers

of the model which indicate the maximum number of time-shifted terms in the model. The

function F(·) represents the dynamical relationship between the inputs and outputs of the

model and can be found by several means if it has a polynomial model structure. e(k) is

defined as the noise signal which is generally assumed to be an independent and zero-mean

random variable, such as Gaussian distributed noise.

If we assume that e(k)=0, the model is only concerned with the input/output behaviour

of these models. The Equation 5.1 is then reduced to

y(k) = F (y(k − 1), ..., y(k − p), u(k), ..., u(k − q)) (5.2)

In this chapter, the algebraic polynomial NARX model structure is adopted for model de-

velopment. For linear-in-parameter nonlinear models, several ways for searching the best

structure have been introduced in [20]. The MISO modeling process for the torque model

starts from a regressor pool, which exhausts all the combinations formed by 1 output and 4

inputs. The terms considered comprises:

Linear terms:

y(k−1), ...y(k−p), u1(k), ..., u1(k−q1), u2(k), ..., u2(k−q2), u3(k), ..., u3(k−q3), u4(k), ..., u4(k−
q4)

Quadratic terms:

y2(k−1), ...y2(k−p), u21(k), ..., u
2
1(k−q1), u22(k), ..., u

2
2(k−q2), u23(k), ..., u

2
3(k−q3), u24(k), ..., u

2
4(k−

q4), y(k − 1)y(k − 2), ..., y(k − 1)y(k − p), y(k − 2)y(k − 3), ..., y(k − p + 1)y(k − p), y(k −
1)u1(k), ..., y(k − p)u1(k − q1), ..., y(k − p)u4(k − q4), ..., u1(k)u1(k − 1), ...u1(k − q1)u2(k −
q2), ..., u4(k − q4 + 1)u4(k − q4)

Cubic terms:
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y3(k−1), ...y3(k−p), u31(k), ..., u
3
1(k−q1), u32(k), ..., u

3
2(k−q2), u33(k), ..., u

3
3(k−q3), u34(k), ..., u

3
4(k−

q4), y2(k−1)y(k−2), ..., y2(k−1)y(k−p), ..., y2(k−2)y(k−3), ..., y2(k−p+1)y(k−p), ..., y2(k−
1)u1(k), ..., y

2(k− p)u1(k− q1), ..., y2(k− p)u4(k− q4), ..., u21(k)u1(k− 1), ...u21(k− q1)u2(k−
q2), ..., u24(k − q4 + 1)u4(k − q4), ..., u1(k − q1)u2(k − q2)u3(k − q3), ..., u34(k − q3)

The range of the candidate regressor terms can be extended according to estimated order of

the target system.

Figure 5.1: Pool of Regressors

Figure 5.2: Structure Selection Flow Chart

An X matrix can be formed for the selected regressors from the regressor pool, and then
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the parameter vector θ can be estimated using ordinary least squares:

θ̂ = (XT · X)−1 · X · y (5.3)

ŷ = X · θ̂ (5.4)

where X = [regressor1, regressor2, ...], θ = [θ1, θ2, ...]
′ and the regressor vectors are the

selected terms from the regressor pool.

5.1.2 Stepwise Regression with F-statistics

The whole regressor selection process runs in iterations. According to the statistical theory,

the regressor with the highest correlation factor will have the highest partial F-ratio. With

the default offset term in the model and its parameter defined as θ0, we are able to establish

the following two hypotheses:

H0 : θ1 = θ2 = ... = θn = 0 (5.5)

H1 : θj 6= 0 (5.6)

where H0 and H1 are known as null hypothesis and alternative hypothesis respectively. The

alternative hypothesis indicates that at least one j is inserted in the model.The F-statistic

analysis of these hypotheses determines whether a new jth regressor is included into the

model or not.

In order to decide which hypothesis is true, there are three important statistical quantities

which must be evaluated for F-statistic analysis:

SST =
N
∑

n=1

[y(n)− ȳ]2 = yTy−Nȳ2 (5.7)

SSR =
N
∑

n=1

[ŷ(n)− ȳ]2 (5.8)
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SSE =
N
∑

n=1

[y(n)− ŷ(n)]2 = yTy− θ̂TXTy (5.9)

where N is the number of sample points of the regressor vector and ȳ is the mean value of

the output variable. SST is known as the total sum of squares, SSR represents the regression

sum of squares and SSE is named as the residue sum of the squares. According to their

statistical definitions, the three assessments are related as:

SST = SSR + SSE (5.10)

Equation (5.10) can be substituted with the terms from Equation (5.7) (5.8) and (5.9), and

thus the following equation is derived:

SSR = θ̂XTy−Nȳ2 (5.11)

With the above statistical measurements, the model structure can be generated by iter-

ations as shown in Figure 5.3.

Correlation Analysis

At the start of each iteration, the proper regressors have to be found based on their cor-

relation with the dependent output variable z. The dependent variable zi is an iteratively

changing variable which is equal to the output variable y at the beginning of the first iter-

ation when i = 1 . The correlation factor between each regressor and the output variable

indicates how significantly the regressor can affect the output variable. It involves three key

statistical measurements which are the average value of the regressor x̄j , the covariance of

the regressor Sjj and the predicted dependent variable Szz. Consider the case when we have

M regressors in the pool, the correlation factor between the jth regressor xj and output z
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Figure 5.3: Stepwise Regression with F-statistics

can be represented by [63]:

ri,j =
N
∑

n=1

[xj(i)(n)− x̄j(i)][zi(n)− z̄i]
√

Sjj(i)Szz(i)

, j = 1, 2, 3, ...,M (5.12)

where

x̄j =
1

N

N
∑

n=1

xj(n) (5.13)

Sjj(i) =

N
∑

n=1

[xj(i)(n)− x̄j(i)]
2 (5.14)

Szz(i) =
N
∑

n=1

[zi(n)− z̄i]
2 (5.15)

Note that zi is the dependent output vector which has been modified in ith iteration and

z1 = y. x̄j is the mean value of the original regressor vector and x̄j(i) is the mean value of
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the jth regressor vector which is modified in the ith iteration. The value of ri,j lies between

-1 and 1 and it is an indicator of the degree of linear dependence between two variables. The

absolute value of ri,j is known to be closer to 1 if the variables are strongly linearly correlated

which means the corresponding term is more suitable in an affine polynomial model. Based on

these calculations, we can find the candidate regressor with the largest correlation coefficient

in this step.

Formation of Regressor Matrix

The regressor inserted into the model should be the one with the highest correlation. Initially,

the regressor matrix X1 only contains a column of 1s as the offset term:

X1 =











1
...

1











N×1

(5.16)

Then we define xj as the jth selected regressors and the regressor with the highest correlation

factor is added into the X matrix such that:

Xi+1 = [Xi, xj ] (5.17)

where i is the iteration number, xj is the jth regressor selected in the ith iteration.

Subsequently, in terms of assessing the regressors, the forward selection and backward

elimination strategies are considered in advance of adding each regressor into the model:

Forward Selection

The partial F-ratio decides the significance of the regressor. In the situation that the model

already contains m regressors, the jth regressor can be brought into the model if

F =
SSR(θ̂j | θ̂m)

s2
=

SSR(θ̂m+j)− SSR(θ̂m)

s2
> Fin (5.18)
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where

SSR(θ̂m+j) = θ̂m+j ∗XT
m+j ∗ y −N ∗ ȳ2 (5.19)

SSR(θ̂m+j) is the regression sum of squares obtained by adding the jth regressor to the o-

riginal m terms. The index m+ j means that the jth regressor is inserted into the model of

previous iteration which contains m regressors. Fin is a predefined F-distribution threshold

which is normally set as less than 4 if the confidence level of the selected term is required to

be higher than 95%.

Backward Elimination

The regressors already entered into the model are reassessed from their partial F-ratios in

each iteration, since a regressor added in the model at the early stage may become redundant

when it involves some relationship with the regressors added subsequently. With a model that

already involves p regressors, the jth regressor with the lowest partial F-ratio is eliminated if

F = min
j

SSR(θ̂p)− SSR(θ̂p−j)

s2
< Fout (5.20)

Where

SSR(θ̂p−j) = θ̂p−j ∗XT
p−j ∗ y −N ∗ ȳ2 (5.21)

SSR(θ̂p−j) is the regression sum of squares obtained by removing the jth regressor from the

p terms which are already in the model. The index p − j represents that the jth regressor

is removed from the model of previous iteration with p regressors. Fout is the F-distribution

threshold which is normally defined as equal or a little lower than Fin which indicates it is

equally hard or a little easier to eliminate a term in the model than to select one into it.
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Determination of Dependent Variables

The dependent output variable and regressors will be modified corresponding to the regressors

already in the model, i.e., in the ith iteration, the dependent variables are altered as

zi+1 = zi − θ̂ ∗Xi (5.22)

In terms of offsetting the influence of the regressors already in the model for the next

iteration, the unselected regressors in the pool are modified to

xj(i+1) = xj(i) − β̂ ∗Xi, j = 1, 2, 3... (5.23)

where

β̂ = (XT
i ∗Xi)

−1 ∗Xi ∗ xj(i), j = 1, 2, 3... (5.24)

At the end of the iteration, i increases 1 for next iteration.

The iteration from correlation analysis stage to modification of dependent variables stage

continues until no other candidate regressor in the regressor pool possesses a partial F-ratio

higher then Fin and no regressor in the model has the partial F-ratio less then Fout. Fin

and Fout are the pre-selected stopping criterion for the iteration. Essentially, at 95 percent

confidence level, we use the criterion F (0.05, 1, N −m) ≈ 4. Normally, Fin = Fout, however,

Fin>Fout indicates it’s harder to accept a regressor than delete one. As a result, all the

significant terms in the regressor pool are found and inserted into the model through the

iteration process.
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5.1.3 Regression Analysis Using Orthogonal Model Components

The forward orthogonal least squares(OLS) algorithm with the error reduction ratio(ERR)

analysis was originally introduced to determine which terms should be included in the mod-

el [66]. This approach is suitable for determining the significant terms in the linear-in-the-

parameters models. The ith error reduction ratio, ERRi, introduced by the ith orthogonal-

ized regressor, can be defined as [67]:

ERRi =
g2i < xi, xi >

< Y, Y >
=

< Y, xi >
2

< Y, Y >< xi, xi >
(5.25)

where ERRi should vary between 0 and 1, < Y, Y >= Y T · Y .

The structure detection can be executed iteratively as shown in Figure 5.4. The steps

in this algorithm are:

Step 1: all the candidate regressors are examined by the ERR criterion in this step. The

regressor which maximises the ERRi will be chosen as the optimal regressor and added into

X matrix in this iteration.

Step 2: all the remaining candidate regressors are orthogonalized by a Gram-Schmidt

transformation. According to [20], the regressor orthogonalization is determined by:

x̂j(k) = xj(k)−
j−1
∑

i=1

∑N
k=1 xj(k)x̂i(k)
∑N

k=1 x̂
2
i (k)

x̂i(k) (5.26)

where xj(k) is the jth non-orthogonal regressor and x̂i(k), i = 1, 2, ..., (j − 1) are the already

orthogonalized regressors. In this step, a predefined threshold x̂Tj x̂j >= τ should be satisfied

otherwise the candidate regressor should be deleted from the regressor pool to avoid numerical

ill conditioning. Here τ is varied from the magnitude of 10−10 to 1 according to the practical

application of the model [67].

The loop formed by ERR calculation and regressor orthogonalization will be repeated



CHAPTER 5. IDENTIFICATION OF MISO DYNAMIC ENGINE SYSTEMS 59

until the sum of the ERR of all selected regressors (devoted as SERR) meets 1−
∑Min

i=1 ERRi <

ρ where Min is the number of selected regessors and ρ represents the error tolerance limit.

The calculation of parameter vector Θ(OLS) of the X matrix is described in [67].

Figure 5.4: Orthogonal Least Squares with ERR detection

5.1.4 Analysis of Variance (ANOVA)

The Analysis of Variance (ANOVA) method is a well-known structure selection technique for

the identification of non-linear dynamical black box models. It has been a general tool for

quality control and medicine analysis. The basic principles of ANOVA are founded on the

hypothesis tests with F-distribution variables derived from the residual quadratic sum [68]. In

recent years, several novel tests of ANOVA in [69, 70] were successfully conducted on nonlinear

finite impulse response (NFIR) model types whose outputs depends solely on current and past

inputs. Further structured utilization of ANOVA was given in [71]. The ANOVA method

assumes all the sample data can be described as:

yijk = µ+ τi + βj + (τβ)ij + ǫijk (5.27)

where µ is the overall mean and ǫijk are the independent Gaussian noise with (0, σ2) distri-

bution. Based on this assumption, the sampled data and the regressors are quantised into
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influence levels. For example, τi, i = 1, ..., p is the ith influence factor for regressor φ1(t) and

βj , j = 1, ..., q is the jth influence factor for regressor φ2(t). The interaction between the

regressors are further denoted as (τβ)ij .

The assumption of two regressors can be expanded into an axis-orthogonal regressor

space. An ANOVA function expansion is proposed in [72] using piecewise constant basis

functions:

ρ(c, θ, φ) = c0θ0 +

d
∑

k=1

ck(

mk
∑

i1=1

θk;i1Ib(k,i1)(φk))

+
d−1
∑

k=1

d
∑

l=k+1

ck,l(

mk
∑

i1=1

ml
∑

i2=1

θk,l;i1,i2Ib(k,i1)(φk)Ib(l,i2)(φl))

+ · · ·+ c1,2,...,d(

m1
∑

i1=1

m2
∑

i2=1

· · ·
md
∑

id=1

θ1,2,...,d;i1,i2,...,id ×
d
∏

k=1

Ib(k,ik)
(φk)) (5.28)

In Equation 5.28, bk,i represents the ith interval linked with the regressor φk . Meanwhile,

Ib(u) = 1 if u ∈ b and Ib(u) = 0 if u /∈ b. The parameter vector c decides whether an

elemental sum is included, so it only has the value 0 or 1. The term c0θ0 is the overall mean

value which is independent of all regressors, the main effects of the regressors are the first

summation and the interaction effects are expressed in the second summation. The interaction

degree of the effect is defined as the number of regressors involved in an interaction effect.

Every effect has its own parameter in vector c but can contain multiple parameters in θ for

each basis function.

ρ(c, θ, φ(t)) can then be derived as a linear-in-parameters model, the structure selection

objective can be described as:

L(c, θ) =
N
∑

t=1

(y(t)− ρ(c, θ, φ(t)))2 (5.29)

The estimated θ̂ should minimise L(1, θ) and then be optimized by solving

mincL(c, θ̂) + J
∥

∥

∥Fc

∥

∥

∥

1
(5.30)

where c ∈ 0, 1. The penalty function J and F are calculated from L(1,θ̂) together with the
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statistical F-tables. Due to the highly over-parameterised model structure, linear constraints

are required to guarantee identifiability. These constraints can be expressed as:

Mθ = 0 (5.31)

where the detailed content of the M matrix are defined in [73].

5.2 PFI Engine Modelling

5.2.1 Experiment Data

The 1.6V Ford Zetec Engine was used for obtaining the Input/Output data. In order to build

a MISO model for the engine torque response, five I/O channels have been adopted. The

directly measured variables include ABV (Air Bleed Valve) Duty, FPW (Fuel Pulse Width),

RPM and AFR (Air/Fuel Ratio) with the output torque measured by a dynamometer coupled

directly the engine crankshaft. The delayed linear regressors are shown in Table 5.1. The

experiment data sets are shown in Figure 5.5, with an angular resolution of 360 degrees of

crank angle (2 data points per engine cycle). In Total, 2500 data samples were collected.

5.2.2 Estimation of Torque and Air/Fuel Ratio

The MISO models are identified via stepwise regression method using correlation analysis

selection(CORR) and error reduction selection(ERR) respectively. For torque model identi-

fication, the regressor selection process of the first 7 regressors is represented in Table 5.2.

The values in the table are the largest partial F-ratio for the candidate regressors in each

iteration. As shown in Table 5.2, the values in the table indicates that the partial F-ratio is

varying along with iterations. Meanwhile, the most significant regressors will maintain the

highest F-ratio in each iteration. The regressor with the highest partial F-ratio is selected

from the regressor pool in each iteration. In this application, the partial F-ratio thresholds

are defined as Fin=5.5, Fout=4. On the other hand, in order to keep the term number within

a reasonable range for pursuing the calculation of error reduction ratio, the threshold τ is
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defined as 1 , which is higher than the threshold given in [67]. After the candidate regressors

are selected, the corresponding parameters are determined using least squares estimation.

The MISO models for torque and air/fuel ratio are given in Table 5.3 and Table 5.4 respec-

tively. For a fair comparison, identical numbers of iterations are applied in the CORR and

ERR approach.

5.2.3 Model Validation

The first 1000 samples of measurement data are utilized for identifying the model structure,

while the latter 1000 samples are considered as the unseen data and prepared for cross-

validation. The results obtained from two different methods are compared in Figure 5.6

and Figure 5.7, including torque and air/fuel ratio prediction results. The model quality is

estimated by the following three criterion:

1. R2 Multiple Correlation Coefficient

R2(y, ŷ) = 1−
∑N

k=1[y(k)− ŷ(k)]2
∑N

k=1[y(k)− ȳ]2
(5.32)

The model is considered better with larger R2 (0 < R2 < 1).

2. Mallow’s Cp statistic

Cp =

∑N
k=1[y(k)− ŷ(k)]2

σ̂2
− (N − 2nθ) (5.33)

where nθ represents the degrees of freedom for the regression or the number of the

regressors and σ̂2 represents the variance of the source noise which is approximated by

σ̂ ≈ min(
1

N

N
∑

k=1

[y(k)− ŷ(k)]2) (5.34)

In terms of model analsis, the model is accepted when Cp is the closest with the number

of parameters in the model and the model with the same Cp value but least parameters

should be selected.
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3. FPE: The Prediction Error Technique [55]

FPE = N · ln[
1

N

N
∑

k=1

[y(k)− ŷ(k)]2] +N · ln[
N + nθ

N − nθ

] (5.35)

Therefore, lower FPE value indicates better model quality.

The results in Table 5.5 shows that both error reduction ratio(ERR) method and correla-

tion(CORR) analysis approach can develop the torque and air/fuel ratio model with good

prediction ability (higher R2 value), however F-statitic with CORR estimation gives better

predictive torque model. Meanwhile, the model quality of the two methods get closer when

the number of regressor increases.

Table 5.1: Input and Output Channels

Measured Variables Notation Delays

ABV u1 u1(t− 1), u1(t− 2), ..., u1(t− 9)

FPW u2 u2(t− 1), u2(t− 2), ..., u2(t− 9)

RPM u3 u3(t− 1), u3(t− 2), ..., u3(t− 9)

AFR u4 u4(t− 1), u4(t− 2), ..., u4(t− 9)

TRQ y1 y1(t− 1), y1(t− 2), ..., y1(t− 5)

Measured Variables Notation Delays

ABV u1 u1(t− 1), u1(t− 2), ..., u1(t− 9)

FPW u2 u2(t− 1), u2(t− 2), ..., u2(t− 9)

RPM u3 u3(t− 1), u3(t− 2), ..., u3(t− 9)

AFR y2 y2(t− 1), y2(t− 2), ..., y2(t− 5)

Table 5.2: Stepwise Regression Using F-statistics (Reg: Regressor number)

Iter Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 Reg7

1 379350

2 6678.7 665.0

3 6075.4 502.4 68.7

4 6047.5 491.5 75.3 30.6

5 4541.3 466.2 71.0 30.5 5.9

6 4485.5 472.1 77.3 36.2 8.8 6.3

7 5600.4 448.9 28.6 39.4 44.2 36.1 34.6
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Figure 5.6: Prediction of torque using correlation criteria and ERR criteria
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5.3 Conclusion

Due to the complexity of the engine, nonlinear models are able to predict the engine character-

istics more accurately than linear models. It can be concluded that both stepwise regression

and orthogonal least squares(OLS) techniques can be applied to the torque and air/fuel ra-

tio model identification. In terms of the time-domain discrete system identification, both

methods are able to develop parametric model structures efficiently. In practice, the directly

identified model may have the capability to bypass various engine geometry problems and

integrate the engine nonlinearities via the model regressor selection process. As shown in

the validation results, the model prediction ability of the two methods gets closer with in-

creasing model term number. Meanwhile, the programming and calculation process of the

OLS approach is less time-consuming than that of stepwise regression method and the OLS

approach can achieve better prediction performance when fewer parameters are required in

the model.
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Table 5.3: Regressers and Parameters in the Torque Model

θ(CORR) Regressor(CORR)

0.3827 constant offset

1.0711 y1(t− 1)

-0.1062 y1(t− 2)

-0.0423 u3(t− 1) ∗ u3(t− 2)2

6.0809 u3(t− 2) ∗ u1(t− 2) ∗ u1(t− 2)

-7.3791 u3(t− 3) ∗ u1(t− 1) ∗ u1(t− 1)

0.0071 u1(t− 2) ∗ u2(t− 2) ∗ u4(t− 3)

13.3492 u1(t− 1) ∗ u1(t− 2) ∗ u3(t− 3)

-5.9645 u1(t− 2) ∗ u1(t− 2) ∗ u3(t− 3)

7.4953 u1(t− 1) ∗ u1(t− 1) ∗ u3(t− 2)

-13.5404 u1(t− 2) ∗ u1(t− 1) ∗ u3(t− 2)

-0.0002 u2(t− 1) ∗ u4(t− 3)

-0.0065 u1(t− 1) ∗ u2(t− 2) ∗ u4(t− 3)

-8.1077e-05 u2(t− 6) ∗ u4(t− 2) ∗ u4(t− 3)

6.3294e-08 u2(t− 1) ∗ u3(t− 9) ∗ y1(t− 1)

-5.9159e-08 y1(t− 2) ∗ u2(t− 1) ∗ u3(t− 8)

θ(ERR) Regressor(ERR)

0.4607 constant offset

1.1762 y1(t− 1)

-0.2849 y1(t− 2)

0.9959 u1(t− 3) ∗ u1(t− 2)2

0.0419 u1(t− 1) ∗ y1(t− 1)

1.5668e-05 u3(t− 3) ∗ u4(t− 5) ∗ y1(t− 1)

0.0002 u2(t− 6)

-0.0096 u3(t− 1)

0.0094 u3(t− 2)

9.0540e-09 u2(t− 1) ∗ u3(t− 9) ∗ y1(t− 1)

-6.4347e-06 u2(t− 6) ∗ u3(t− 1)

5.4901e-06 u2(t− 6) ∗ u3(t− 2)

-1.2049e-06 u2(t− 6) ∗ u3(t− 3)

1.9621e-06 u2(t− 6) ∗ u3(t− 4)

7.1609e-06 u2(t− 5) ∗ u3(t− 1)

-7.1039e-06 u2(t− 5) ∗ u3(t− 2)
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Table 5.4: Regressers and parameters in the Air/Fuel Ratio Model

θ(CORR) Regressor(CORR)

-0.1628 constant offset

1.2792 y2(t− 1)

-4.9611e-08 u3(t− 4) ∗ u2(t− 4) ∗ y2(t− 1)

0.2408 y2(t− 2) ∗ u1(t− 1) ∗ y2(t− 3)

-0.2154 y2(t− 1) ∗ y2(t− 1)

1.6116e-08 u2(t− 2) ∗ u3(t− 9) ∗ y2(t− 5)

-1.1484e-08 y(t− 1) ∗ u2(t− 6) ∗ u3(t− 4)

1.2062e-07 u2(t− 4) ∗ u3(t− 1)

-8.1273e-08 u2(t− 2) ∗ u3(t− 4)

0.1553 u1(t− 3) ∗ y2(t− 2)

-1.7930e-07 u2(t− 4) ∗ u1(t− 1) ∗ u3(t− 2)

1.5379e-07 u1(t− 1) ∗ u2(t− 2) ∗ u3(t− 5)

θ(ERR) Regressor(ERR)

0.0249 constant offset

0.8785 y2(t− 1)

0.2033 u1(t− 1) ∗ y2(t− 1)

0.6381 u1(t− 1)3

-9.2037e-09 y2(t− 1) ∗ u2(t− 1) ∗ u3(t− 9)

-1.2922e-07 u2(t− 1) ∗ u1(t− 1) ∗ u3(t− 2)

5.7844e-08 u1(t− 1) ∗ u2(t− 1) ∗ u3(t− 4)

-9.1311e-09 u1(t− 1) ∗ u2(t− 3) ∗ u3(t− 1)

4.5637e-08 u2(t− 1) ∗ u3(t− 1)

2.9951e-08 u2(t− 8) ∗ u3(t− 1)

1.9999e-09 u2(t− 7) ∗ u3(t− 1)

-4.3731e-08 u2(t− 8) ∗ u3(t− 2)

Table 5.5: Model Prediction Quality

Torque model R2 Cp FPE

CORR 67.6 15 8750

ERR 66.8 15 8770

AFR model R2 Cp FPE

CORR 73.8 11 1361

ERR 86.5 11 696



Chapter 6

Multi-Model Identification

6.1 Introduction

Multiple models have been applied in several branches of science and engineering indepen-

dently in recent years. Multiple model methods are being investigated by several researchers

to address the increasing complexity of control and modelling problem can be caused by

advances in information technology, and increases in environmental constraints and the e-

conomical regulations [5]. For highly complex systems, precision and significance tend to

become mutually exclusive properties along with the increasing complexity [74]. Therefore,

it is a good approach to disintegrate the system into segments, which is also known as the

divide-and-conquer strategy. As shown in Figure 6.1, the multi-model structure is defined

by the local models’ structures and the weighting function which determines the relationship

among local models and the overall output. Depending on the practical objective, differen-

t multi-models have their corresponding inherit advantages. For instance, the static mean

value models possess straightforward structure and fast output response [75, 76] while the

recurrent neural network models are superior in learning and predicting the dynamic nonlin-

earity [77, 78].

The entire operating range of the system is partitioned into multiple regimes which are

attached with corresponding local models or controllers. Hence, a complex nonlinear mod-

el can be simplified and become more transparent. Figure 6.2 represents a input/output

69
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scheduling multi-model structure, each of the local model has it own weighting function to

decide its fraction of influence on the output. Meanwhile, the weighting function is deter-

mined by the operating regime partition and selected scheduling variables and algorithms.

The multi-models also reduce the computational requirement of the digital devices, since

they incorporate adapting and learning mechanisms which enable the use of prior qualitative

knowledge and keep the dimension of regime scheduling in a reasonable range if not to a mini-

mum. Various iterative multi-model approaches have been proposed by researchers, including

Piecewise models, Tagaki-Sugeno fuzzy models [79], Local linear model tree (LoLiMoT), Lo-

cal model networks, Operating regime based models etc. The neural network models of

cylinder pressure are represented in [80, 81]. In the area of gasoline engine, a series of neural

network models for air/fuel ratio were established in [82, 83, 84].

In this chapter, the procedure of the multi-model identification is discussed, including

input signal design and optimization, choice of sheduling variables, data partitioning, weight-

ing functions and local model identification. The LOLIMOT algorithm for developing the

multi-model network is investigated and an engine multi-model identified by LOLIMOT al-

gorithm is presented. Based on the procedure discussed in this chapter, an engine torque and

air/fuel ratio multi-model is developed with MIMO affine local models.

Figure 6.1: The taxonomy of multi-models
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Figure 6.2: The generic multi-model structure

6.2 General Procedure of Multi-Model Identification

6.2.1 Input Signal Design and Optimization

Input signal design is the initial essential step for model identification. For Identification of

MIMO and SISO models, the step test signal is frequently applied to perturb the inputs [85].

Good input test signals can broadly excite dynamic nonlinear behaviour of the engine and

produce accurate and reliable experimental results.

At the same time, in a multi-variable dynamic process, the input and output signals are

also required to be restrained within certain boundaries in order to keep the engine operating

smoothly and safely. As introduced by Vinson and Georgakis [86], the available input/output

space is bounded by the assigned range of input/output variables. The fundamental principles

of optimal input design and objective functions are detailed by Mehra [87] and Goodwin [88].

The main current approaches signal optimization include A-optimal [89] and G-optimal [90],

and these techniques have been successfully applied on engine dynamic models in Zaglauer

and Delflorian’s work [91]. It can be noted that the optimal signal design is always based on

the assumption that a dynamic model is available at hand ahead of the experiment design.

Consequently, an initial dynamic model of the engine is needed and this can be obtained from

data-based structure selection techniques. Usually, the various series of amplitude modulated
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pseudo-random binary signals(APRBS) are used as initial test signals because of their widely

spanned frequency spectrum which can span the expected system dynamics [92, 93]. For

APRBS signals, the input optimization process is conducted by adjusting the APRBS signals

into an optimized form which best suits the identified system.

6.2.2 Choice of Scheduling Variables

In a multi-model structure, the scheduling variables define how the data set is to be par-

titioned. If two variables are adopted to divide the data set, the scheduling space is 2-

dimensional. These variables are the key properties of the multi-model because the local

models are developed on these data segments defined by value space of the scheduling vari-

ables. Consequently, the scheduling variables should reflect the major factors affecting the

related output, such as brake torque and emissions. Both input and output variables of

the system can be used as the scheduling variables depending on the modeling priority and

accuracy.

6.2.3 Data Partitioning

Data partitioning is a significant process for determining which data segments and character-

istics are utilized at certain data site. The data set collected from the system is filtered and

sampled before entering the partitioning process. The use of data segments can be better

maintained and accessed and facilitate the efficient use of multi-modeling and improves the

quality of the local models. The overall data set can be collected through the whole operating

region and then break into segments according to a pre-defined feature or boundary, namely

the Gaussian distribution center or average value center. On the other hand, the data set

can be collected on different operating ranges and the local models are identified based on

their corresponding data sets. Moreover, the programming strategies of data partitioning are

discussed [94, 95, 96].
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6.2.4 Weighting Function

The local models identified from different data segments requires a feasible weighting function

to be integrated into a global model. The weighting function decides which local model is

activated and to what extent it will affect the global model. Therefore, the weighting functions

are also called membership functions. Generally, the following weighting function types are

applicable in multi-models:

Gaussian Function

Gaussian functions are widely used in industrial quality control and experiment design. The

Gaussian function has the form:

ρ(x) = f(x, c, σ2) =
1√
2π

e
−(x−c)2

2σ2 (6.1)

where the symmetric bell-shape function is defined by the centre c and the standard deviation

σ. As shown in Figure 6.3, the centre is decided by the middle point of the alleged data

partition and σ is either predefined or calculated via the data cluster. However, the Guassian

function is conveniently normalized by Equation 6.2 into the range of [0, 1] thus keeping the

overall sum as 1.

φ(x) =
ρi(x, c, σ

2)
∑M

j=1 ρj(x, c, σ
2)

(6.2)

Piecewise Constant Function

The piecewise function creates a unit step change at the boundary between two distinct area

thus only one local model will be activated at a time. The expression of the function is of

the form:
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Figure 6.3: Gaussian bell curves

ρ(x− β) =







0 if x− β ≤ 0

1 if x− β > 0







(6.3)

where β is the displacement from the base point. The piecewise weighting function has the

simplest structure of possible weighting functions and requires the lowest calculation time and

fully employs the individual local model. However, the piecewise weighting function ignores

the interconnection among the local models, which could cause non-smooth and inaccurate

nonlinear behaviour.

Log-sigmoid Function

An obvious disadvantage of the piecewise function is that it is non-smooth at the border

between different data regimes. To avoid this problem, the log-sigmoid function offers a

smooth transition from one partition to another. The general expression of the log-sigmoid

function is given by:
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ρ(x) = f(x;α, β) =
1

1 + e−α(x−β)
(6.4)

where α determines the steepness and β determines the displacement of the curve. As shown

in Fig 6.4, the sigmoid function has a value ranged from 0 to 1 and so is automatically

normalized.

Figure 6.4: Log-sigmoid curves

For piecewise weighting where membership function only switch between 0 and 1, the

’switch’ effect occurs at the border of neighbouring regions. however, for Gaussian and

log-sigmoid membership functions, the local models are scheduling by their corresponding

membership weighting, so in certain valid region, one or several local model output may be-

come dominant and others may fade away. Therefore, the Gaussian and log-sigmoid functions

are able to create a smooth transition region rather than a ’switch’ point.
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6.2.5 Local Models

In a multi-model structure, the local models determine the local accuracy and the computa-

tional time. Using polynomial models, the local model can use fewer terms than for a global

model because the dynamics represented by a limited data partition is much less varied than

that represented by all data. In the automotive industry, the empirical and data driven

model types are already recognized as an economically feasible and accurate approach for

producing static models. With the tightening fuel efficiency and emission legislation, nonlin-

ear dynamic models are gaining momentum in applications to model-based calibration and

optimization [97]. Structure selection techniques which can be applied in identifying both

linear and nonlinear local models are consequently of great interest for use in local model

structure identification.

ARX and NARX Models

The AutoRegressive model with eXternal inputs (ARX) and Nonlinear AutoRegressive model

(NARX) with eXternal inputs are described in [14] and [65]. Generally, the inputs and

outputs are modulated by a series of unit delays in the local subsystems. As demonstrated

in Figure 6.5, the ARX and NARX model are readily built as block diagram structures such

as in the Matlab S-function blocks.

Figure 6.5: ARX/NARX model as block diagram with tapped time delays
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LPV Models

The linear parameter varying (LPV) systems are defined as a class of linear time-varying

systems and the LPV modelling and control is a well-established technique in engineering

area. LPV approaches have been applied in various nonlinear identification. The basic

principles of LPV model are well documented in [98]. A turbo fan engine model appliation

identified by LPV technique was presented in [99].

6.3 One Dimensional Multi-modelling

In this section, a one dimensional scheduled multi-model is developed for a 4 cylinder Zetec

1.6L PFI gasoline engine. MIMO linear affine and nonlinear affine models are adopted as

local models which can be developed using multiple inputs and outputs (u1: air bleed valve

duty, u2: manifold air pressure, u3: engine speed, u4: fuel pulse width, y1: torque, y2:

air/fuel ratio). The partition of the local multi-models can be fixed a priori or estimated

along with the local models [100]. In this application, for a comparison exercise, we define

3 partitions which are centred by the local models. The local models are selected on engine

speed, centred on 4 different speed points, 1150 rpm, 1350 rpm, 1550 rpm, 1750 rpm. Two

groups of local affine models are identified by testing the whole range of the nonlinear system

using the stepwise regression and orthogonal least squares respectively. The multi-affine local

models with different number of linear regressors are analyzed. As is shown in Figure 6.6, the

model fitness decreases when over 5 regressors (20 multiplications) are added into the local

models. This phenomenon can be caused by overfitting as too many linear regressors are

involved in the model. Figure 6.7 is obtained if we consider the total multiplication numbers

of the 4 local models where each linear regressor creates 1 multiplication in each local model.

In order to improve the model quality, nonlinear regressors, which are able to track the

nonlinearity of the system to some extent, are added into the model. The structure selection

programme starts from linear terms, then goes to quadratic and cubic terms. The selection

of quadratic terms is based on the linear terms and the selection of cubic terms is based on

the previous selected linear and quadratic terms. For instance, the optimum quadratic terms
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Figure 6.6: Relations between model fitness and regressor number

Figure 6.7: Relations between model fitness and multiplication number
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are determined based on the optimum linear terms via the dependent variable (the output

variable that is modified by the regressors already in the model). So it becomes a kind of

relaxed version of structure optimization. On the other hand, the best number of linear,

quadratic and cubic terms in the model can be determined empirically by using the fitness

vs regressor or fitness vs multiplication curve located by the peak points of fitness. In the

CORR method, every added regressors (linear and nonlinear term) will then be assessed by

a partial F-ratio in the combined model which will make sure the regressor selected in each

category is also a significant term for the combined model. However, the nonlinear model

requires more multiplications which costs more computation time. As shown in Figure 6.7,

the global model’s fitness keeps on rising when the multiplication number increases to 36. It

indicates that the potential of the nonlinear multi-affine models can be developed if a good

model structure is chosen. Therefore, a compromise needs to be made between computational

cost and model quality. An example of structure identification of a local model is given by

Table 6.1 which gives the CORR and ERR values for the nonlinear structure selection process

for a torque model at 1750rpm. For overall comparison, the global models for torque and

air/fuel ratio using nonlinear affine local models are shown in Table 6.2.

Table 6.1: CORR and ERR Structure Selection Process at 1750rpm

Iter.1 2 3 4 5

CORR

0.9899 0.3377 0.3886 0.2686 0.1814

y1(t-1) u3(t-1) u3(t-2)* u1(t-1)* u4(t-1)*u3(t-1)*

u3(t-3) y1(t-3) u3(t-3)

F-ratio

48840

33555 128

36304 252 177

1629.6 321.6 232.9 77.4

1275.0 268.5 203.4 88.7 33.8

ERR

0.9994 0.0158 3.0e-4 1.55e-5 9.93e-6

y1(t-1) y1(t-3) u2(t-1)* u4(t-1)* u4(t-5)*u1(t-5)*

u4(t-1) u4(t-1) u4(t-5)

The multi-model validity region for this study is 1150-1750 rpm however the region is

extendable when more local models beyond this range are established. The weighting function
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Figure 6.8: Log-Sigmoid weighting function

is developed based on the symmetric log-sigmoid function:

ρ(x) =



















1
1+e−α(200−x) , x < 100 (right half)

1
1+e−α(x) , x ≥ 100 (left half)



















where α determines the convergence speed to 0 or 1. In the tests reported, we employ

α=0.10 and x= engine speed - central speed of the corresponding speed partition. In order

to determine the weighting factors of different local models, a uniform random speed signal is

generated to range across the validity region and applied to the multi-affine model. The form

of these weighting functions is shown in Figure 6.8. The convergence parameter α defines

the saturation speed of the log-sigmoid function. An increase in the value of α will result in

faster convergence, in which case the weighting factors in the middle of each speed regions will

be affected more by the central local model. In the application we have taken the distance

between two mid-points of the neighbouring speed regions as 200rpm. The weighting function

switches among local models whilst the sum of the weighting factors remains 1 at any point

of the valid range. The weighting function thus converts the separate local linear models into

a continuous nonlinear model. With our weightings, the nonlinear model in the speed region

is effectively determined only by its immediately adjacent local models; the output of the

model at 1250 rpm is affected by the local models at 1150 rpm and 1350 rpm.

For model validation and analysis, a neural network model is developed using the MAT-

LAB Neural Network Toolbox. The model parameters are composed from 2 input weighting
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Figure 6.9: The infrastructure of the neural network model

matrices and 2 bias vectors in the initial layer, and 1 layer for the weighting matrix in the

output layer as shown in Figure 6.9. Two inputs, the engine air bleed valve duty (ABV) and

fuel pulse width (FPW), are used to determine the weighting matrices. Finally, the outputs

of torque and air/fuel ratio are predicted separately but by the same structure of neural

network layer.

Model validation requires the application of unseen experimental data to the model.

For this validation, the engine torque and air/fuel ratio are chosen as output variables. The

estimated results from the models are ploted along with 1000 engine speed data samples shown

in Figure 6.10. Figure 6.11 and Figure 6.12 show the torque estimation results, Figure 6.13

and Figure 6.14 show the air/fuel ratio estimation results.
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Figure 6.10: The test data of engine speed
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Figure 6.11: Torque Estimation using Nonlinear Multi-Affine Model

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

20

25

Sample Number

To
rq

ue
 (N

.m
)

 

 
Predicted Torque(unscaled)
Measured Torque(unscaled)

Figure 6.12: Torque Estimation using Neural Network Model
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Figure 6.13: Air/fuel ratio Estimation using Nonlinear Multi-Affine Model
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Figure 6.14: Air/fuel ratio estimation using neural network model

6.4 LOLIMOT Identification

6.4.1 Definition of LOLIMOT algorithm

The LOLIMOT (Local Linear Model Tree) algorithm was developed by Oliver Nelles [101] to

identify a local model network which best fits an input and output data set. For nonlinear

dynamic systems with unknown properties, the LOLIMOT algorithm offers a feasible way

to cope with complex data-based identification [102]. The LOLIMOT model can also be

recognized as a fast learning neural network model and in this context has been applied

to an emission model of an internal combustion engine [103]. The LOLIMOT algorithm is

able to generate a model structure equivalent to Sugeno-Takagi fuzzy system with a local

model network, however, the LOLIMOT algorithm is easier to implement and is faster in

training [104]. As shown in Figure 6.15, at each iteration, two new local models are created

and the one with worse fitting capacity or model accuracy subjects to division in the next step.

From the point of view of engine system identification, the algorithm starts with identifying

an overall global linear model; then the data sets from the engine are split into two segments

within the engine operating range. Within respective segment, a local model is identified with

a least squares algorithm and the output of this model is properly weighted and accumulated

into the global output. This means each of the local models in the branches has a fair share

to determine the output of the global tree. In the next iteration, the model with the lowest

fitness to the data is divided into two sub-models. The process continues while the model tree

is growing and new refined model structures will be obtained until a pre-defined threshold

on fitness is reached. Finally, the overall LOLIMOT model output is the accumulation of all
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the neurons which are formed by the local model and the corresponding weighting functions

as illustrated in Figure 6.17.

The LOLIMOT algorithm can be executed iteratively as shown in Figure 6.16. However,

this flow chart also reveals that this algorithm still has its limitations. It only considers the

best choice of local model level in each iteration and the influence newly selected local models

exercise on the global model is ignored. Therefore the final result is not optimal because once

a decision is made in an iteration, it is not reversible and we have no idea if the fitness of the

global model is compromised by previous decisions. Secondly, as long as the complexity of the

local model networks is largely determined by the scheduling dimensions of the hypercuboid

space and the dividing strategy, the partitioning process of 2-D or more dimensional schedul-

ing space can be very time-consuming. To avoid the curse of dimensionality, usually the

local regimes are decided by distribution of data clusters or just by an equal-division strategy

which is called binary tree planning or dyadic partitioning. The membership function for the

LOLIMOT algorithm is derived from the n dimensional Gaussian function of the form:

µj(X) = exp(−0.5× (
(x1 − c1j)

2

σ2
1j

+
(x2 − c2j)

2

σ2
2j

+
(x3 − c3j)

2

σ2
3j

+ · · ·+ (xn − cnj)
2

σ2
nj

)) (6.5)

where µj(X) represents the membership function of the j-th local model in scheduling s-

pace X, xn represents the n-th scheduling variable of the membership function, cnj is the

expected mean value for the n-th scheduling variable of the j-th local model and σ2
nj is the

corresponding variance.

The membership function indicates the significance of a local model considering the n

dimensional space of the scheduling variables and the overall validity/weighting function for

the i-th local region is determined as:

φ(X, ci, σi) =
µi(X)

∑M
j=1 µj(X)

(6.6)

It can be seen that the weighting functions are able to emphasise different local models
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depending on the selecting criterion to reproduce nonlinear characteristics of the engine.

Figure 6.15: 2D partitioning of LOLIMOT algorithm

6.4.2 Engine MISO Identification using LOLIMOT strategy

The data sets shown in Figure 6.18 were collected from the 4 cylinder Zetec 1.6L PFI gasoline

engine in the Powertrain Control Laboratory of University of Liverpool for the purposes of

LOLIMOT identification.

Subsequently, the engine data was normalized into the range of [0, 1] by Equation 6.7 in

order to facilitate the partitioning and training process.

ynormalized =
y − ymin

ymax − ymin
(6.7)

In this application, the engine speed N and the air/fuel ratio(λ) L are selected as scheduling

variables. The model quality is calculated by the normalized mean square error (NMSE)
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Figure 6.16: Flow chart of the LOLIMOT algorithm

Figure 6.17: The LOLIMOT structure as a neural network
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Figure 6.18: Test data sets for LOLIMOT identification
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which is defined as:

NMSE(y) =
V ar(y − ŷ)

V ar(y)
(6.8)

where the variance is defined as

V ar(X) =
1

N

N
∑

i=1

(X(i)− X̄)2 (6.9)

Therefore, the 2-D partitioning process is that shown in Figure 6.19. Starting from the

first iteration, each local model has its own normalized mean square error (NMSE) and the

local model with highest NMSE will be separated into two local models in each iteration.

Figure 6.19: Data partitioning process (N: Engine speed L: Lambda)

The Gaussian curves of the weighting functions for the five local models are plotted in

Figure 6.20. It can be seen that the weighting function curves for smaller data regions are

steeper.

The overall validation of the LOLIMOT model is shown in Figure 6.21. Based on
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Figure 6.20: Weighting function curves

Figure 6.21: Validation of the LOLIMOT model
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Figure 6.22: Local model number analysis

the validation results, an analysis of the local model numbers was carried out as shown in

Figure 6.22. According to the NMSE assessment, two overall local models are found to be

the optimal number of model partitions.

6.5 Conclusion

Multi-models are being considered as an efficient and understandable modelling approach to

achieve high accuracy dynamic models and filters. Their ease of implementation makes them

highly suited to applications within ECU software. Nevertheless to ensure the full benefits of

the approach, it is necessary to ensure that partitioned domains for the different models and

thus where one model becomes more weighted relative to the others are determined properly.

This issue has received little previous attention. In this chapter, a one-dimensional scheduling

algorithm and a multi-dimensional LOLIMOT algorithm has been used for establishing a

multi-model network for a 4 cylinder 1.6L PFI Zetec engine. Structure identification methods

have been applied to develop the local models. A forward and an inverse identified multi-

model has been developed for the WAVE-RT virtual engine.

The multi-model is able to represent complex nonlinear behaviour yet retains a simple

implementable structure for EMS engine mappings. Both stepwise regression and orthogo-

nal least squares (OLS) techniques can be applied successfully to the torque and Air/Fuel
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ratio model identification. Based on the results represented in this chapter, the multi-model

structures is proposed as an alternative black box dynamic approach for the case of non-

linear engine map and a systematic method of developing engine mappings can be applied

to the engine calibration process which can save significant amount of time. The relation-

ship between model fitness and likely EMS computational overhead as measured by number

of multiplications were investigated. The results showed an appropriate trade-off relation

between the computational cost and the model quality can be established by the structure

identification techniques. In the case of the multi-models, the associated local models can

be developed from the engine experiments conveniently at different operating points and we

can apply linear identification and control techniques to the linear local models which is a

significant advantage.
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Table 6.2: Local Linear Models for Torque(y1)and Air/Fuel Ratio(y2)

local models θ(CORR) Reg(CORR) θ(ERR) Reg(ERR)

y1 -2.8677 offset -0.8392 offset

@1150rpm 0.852 y1(t-1) 1.1181 y1(t-1)

8.0822 u1(t-2) -0.2287 y1(t-3)

-0.0009 u3(t-5)y1(t-3) 6.8513 u1(t-1)u1(t-1)

0.0009 u3(t-1)y1(t-3) 2.75e-8 u4(t-1)u4(t-1)

0.0011 u4(t-1)u1(t-1) 8.8549 u1(t-3)u1(t-3)

u1(t-1) u1(t-5)

@1350rpm -3.26 offset -0.8452 offset

0.7549 y1(t-1) 1.1047 y1(t-1)

8.4551 u1(t-2) -0.2181 y1(t-3)

-0.0011 u3(t-6)y1(t-3) 5.5309 u1(t-1)u1(t-1)

0.0012 u3(t-1)y1(t-3) 3.91e-8 u4(t-1)u4(t-1)

0.0015 u4(t-1)u1(t-4) 9.038 u1(t-4)u1(t-4)

u1(t-6) u1(t-6)

@1550rpm -32.4711 offset -1.8704 offset

0.6179 y1(t-1) 0.6925 y1(t-1)

0.0274 u3(t-1) 0.1102 y1(t-2)

1.12e-5 u2(t-1)u4(t-2) 7.83e-8 u4(t-1)u4(t-1)

4.07e-3 u2(t-2)y1(t-2) 9.975 u1(t-2)u1(t-2)

-2.82e-9 u3(t-5)u3(t-4) 2.1e-7 u4(t-5)u1(t-5)

u3(t-4) u4(t-5)

@1750rpm -56.1132 offset -1.6023 offset

0.7620 y1(t-1) 0.8417 y1(t-1)

0.0579 u3(t-1) -0.0202 y1(t-3)

-1.48e-5 u3(t-2)u3(t-3) 2.15e-5 u2(t-1)u4(t-1)

0.3312 u1(t-1)y1(t-3) -1.28e-7 u4(t-1)u4(t-1)

1.15e-10 u4(t-1)u3(t-1) 1.60e-7 u4(t-5)u1(t-5)

u3(t-3) u4(t-5)

y2 0.3792 offset 0.3381 offset

@1150rpm 0.4380 y2(t-1) 0.3726 y2(t-1)

-3.74e-5 u4(t-5) 0.2074 y2(t-2)

0.5763 u1(t-6)y2(t-2) -6.69e-9 u4(t-5)u4(t-5)

0.0022 u2(t-4)y2(t-3) 0.25 u1(t-5)u1(t-5)

-2.43e-5 y2(t-1)u4(t-6) 0.6386 y2(t-3)u1(t-6)

y2(t-2) u1(t-6)

@1350rpm 0.2704 offset 0.1045 offset

0.4442 y2(t-1) 0.5236 y2(t-1)

0.1935 u1(t-5) 0.3118 y2(t-2)

-8.83e-9 u4(t-4)u4(t-6) -2.57e-9 u4(t-4)u4(t-4)

0.0024 u2(t-5)y2(t-2) 0.6419 u1(t-5)u1(t-5)

1.54e-6 y2(t-3)u2(t-4)* -4.21e-9 u4(t-6)u4(t-6)

u3(t-1) y2(t-2)

@1550rpm 0.3521 offset 0.3305 offset

0.3934 y2(t-1) 0.4290 y2(t-1)

0.1394 y2(t-2) 0.1818 y2(t-2)

-7.46e-5 u4(t-6)y2(t-3) -1.44e-8 u4(t-6)u4(t-6)

4.05e-6 y2(t-3)u2(t-6)* 4.75e-7 y2(t-3)u2(t-6)

u3(t-3) u4(t-2)

0.5795 u1(t-5)u1(t-5)

@1750rpm -0.0605 offset 0.3291 offset

0.6384 y2(t-1) 0.4094 y2(t-1)

0.1782 y2(t-2) 0.1694 y2(t-2)

-7.526e-5 u4(t-6)y2(t-1) -1.05e-8 u4(t-6)u4(t-6)

4.018e-6 u2(t-4)u3(t-1) 2.38e-5 u2(t-1)u2(t-1)

2.64e-8 y2(t-3)u3(t-1) 3.67e-5 y2(t-3)u2(t-5)

u3(t-3) u2(t-5)

u1:abv u2:map u3:rpm u4:fpw

CORR: Correlation Method ERR: Error Reduction Ratio Method



Chapter 7

Forward and Inverse IC Engine

Multi-modelling

7.1 Introduction

The engine identification process usually has various objectives which determine the approach

of multi-modelling. The forward multi-modelling aims to find a multi-model which can best

represent the dynamical behaviour of the engine branch. A novel forward multi-model for

WAVE-RT virtual engine test bed is developed and presented in this chapter. The structure

selection techniques are applied in the local model identification process at the same time. For

the subject of inverse identification, several research works have been published: a nonlinear

direct-inverted engine plant model was developed and a inverse compensated system was

then established accordingly via the nonlinear parameter uncertainty estimation in the work

of Horowitz [105]. Related mathematical inverse techniques were proposed by Petridis and

Shenton [106, 107] for the nonlinear identification of continuous time systems. In this chapter,

a novel direct inverted engine model and the resulting control test is presented.

93



CHAPTER 7. FORWARD AND INVERSE IC ENGINE MULTI-MODELLING 94

7.2 Multi-model Identification of WAVE-RT Engine

An experimental multi-modeling application was conducted on a WAVE-RT virtual engine

and the influences of the multi-model complexity was assessed based on the output-error

prediction quality of the model. The experiment was designed to establish an engine operating

trajectory in a 2-D space formed by two sheduling variables. The data set is then partitioned

and located into several local data segments. This approach of data partitioning is found to

capture more of the transient dynamics when the engine traverses operation from one regime

to another. Both the stepwise regression and the orthogonal least squares methods are used

in the structure identification process and a binary tree structure is adopted as the form of

the overall model network. As a result, the multi-models for air/fuel ratio and torque are

developed and validated separately.

TheWAVE Real-Time (RT) engine model is used to simulate the Ford EcoBoost 2.0-Litre

GTDI engine. The engine simulation software ’WAVE’ is an ISO approved 1D computer-aided

package used for creating virtual models. The WAVE-RT engine model, also known as the

virtual engine, is taken as a surrogate for the actual engine for the initial stage of engine test as

it is able to closely approximate the real engine dynamics and reduce the experimental cost. In

order to build MISO model for the engine torque and air/fuel ratio response, six I/O channels

have been adopted. The directly measured variables include Fuel-Injection (FUL/mg/stroke),

Spark-Advance angle (SA1/◦), Throttle angle (THR/◦),and Engine Speed (RPM/rpm). The

Torque (TRQ/Nm) and Air/Fuel Ratio (AFR) are estimated by MISO models and validated

by measured data. The delayed basic linear regressors are shown in Table 7.1. After data

down-sampling, 1800 data points are finally located. The data sets used for identification

are shown in Figure 7.1, and the validation data is a set of 1800 samples collected in an

independent virtual engine test.

Table 7.1: Input and Output Channels

Measured Variables Notation Delays

FUL u1 u1(t− 1), u1(t− 2), ..., u1(t− 7)

THR u2 u2(t− 1), u2(t− 2), ..., u2(t− 7)

SA u3 u3(t− 1), u3(t− 2), ..., u3(t− 7)

RPM u4 u4(t− 1), u4(t− 2), ..., u4(t− 7)

TRQ y1 y1(t− 1), y1(t− 2), y1(t− 3)

AFR y2 y2(t− 1), y2(t− 2), y2(t− 3)
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Figure 7.1: Input channels for multi-model identification
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7.2.1 Weighting Functions for Local Models

In this application, engine speed (RPM) and throttle angle (THR) are selected to form the

2D scheduling space. As shown in Figure 7.3, the spark advance (SA) and throttle angle

(THR) are chosen as the two dimensions of the scheduling operating region for air/fuel ratio

estimation. The corresponding local model is required to be activated when the engine oper-

ates in the valid local area. The multi-model is incorporated by a logistic sigmoid activation

function to avoid the side effects of normalization and the sum of weighting partitions is

guaranteed to be unity. As presented in Figure 7.3, the operating regions are partitioned

into 3 local regions for the estimation of AFR and torque. This weighting function approach

was adopted for multi-modelling of a EURO V engine in [97]. The weighting function used

is represented as:

ρ(x) =
1

1− e−α(x−β)
(7.1)

ρ
′

(x) = 1− ρ(x) (7.2)

where α is the coefficient which defines the overlaps between the neighbouring regions and β

is the border of separated operating regions (see Figure 7.2).

Figure 7.2: Sigmoid weighting functions (α=0.05,β=2000)
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Figure 7.3: 2D Scheduling for Torque and Air/Fuel Ratio
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7.2.2 The Estimation of Torque and Air/Fuel Ratio

Both the F-statistic analysis and error reduction ratio analysis were used to generate the

multi-nonlinear model of the engine torque and air/fuel ratio. The model validation results for

these two techniques are presented in Figure 7.4 and Figure 7.5 respectively. The inaccuracy

which appeared on the estimated torque graph is caused by the overfit of the model when a

sudden change occurs in the sequence of the input signal. This inaccuracy could be avoided

by using smoother input signal or reduce the engine model order. For the purposes of model

validation, the quality of the models are assessed by their R2 statistics in the form:

R2 = 1−
∑N

k=1(y(k)− ŷ(k))2
∑N

k=1(y(k)− y)2
(7.3)

As shown in Table 7.2, the model estimated by F-statistic analysis gives better torque val-

idation result, however for air/fuel ratio (λ) estimation, the error reduction ratio technique

offers better results. It is worth noting that the quality of the multi-model will be improved

with more local models until it reaches a certain bottleneck (see Figure 7.6).

Figure 7.4: Estimated vs Measured Air/Fuel Ratio by Error Reduction Ratio Analysis

Table 7.2: Model Prediction Quality

Output Channel Torque AFR

F-statistic R2 0.7899 0.8249

ERR R2 0.7045 0.9070
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Figure 7.5: Estimated vs Measured Torque Output by F-statistic Analysis

Figure 7.6: R2 vs Multi-model Number for Air/Fuel Ratio Estimation
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7.3 Inverse Multi-modelling for Throttle Angle and Spark Ad-

vance

Inverse engine identification swaps the measured input/output as the inverse model’s out-

put/input. Consequently, the inverse models are generally used as feedforward compensators

to track the desired outputs [108]. With the inverse compensators, the resulting overall

open loop system is able to greatly offset the nonlinear uncertainty and nonlinearity and the

feedback controllers can be developed using linear controller design techniques [109, 110, 23].

In this section, the multi-model identification approach is applied to a virtual engine

test-bed implemented as a WAVE-RT model, which is a state-of-the-art industrial level rep-

resentation of a Ford EcoBoost 2.0-Litre GTDI engine. The additional information about the

WAVE-RT model can be found in Chapter 3. Figure 7.7 gives the general structure of the

inverse multi-model. Three dynamic nonlinear affine component models are developed to fit

the measured spark advance and throttle angle in the corresponding partitions and the overall

output is obtained by accumulating the weighted output from each of the local models. In a

more nonlinear system more component models could be added. Figure 7.8 shows the setup

of the WAVE-RT engine and the inverse MISO multi-model. By using the inverse model as

a feedforward compensator, the Tb and λ can be controlled through the spark advance and

throttle angle by feedforward of the desired values, T
′

b and λ
′

Figure 7.7: Inverse MISO multi-model structure
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Figure 7.8: WAVE-RT engine test setup for inverse MISO multi-model

The relevant test signals are shown in Figure 7.9. Engine and desired engine brake

torque Tb, T
′

b and lambda and desired lambda λ, λ
′

are selected as inputs for the inverse

multi-model. As indicated in Figure 7.10 and Figure 7.11, the collected engine data is sepa-

rated into 3 local regions in a 2-D space with manifold air pressure (MAP) and RPM selected

as scheduling variables. The boundaries among the regions are optimized via multiple model

fitness evaluations. The weighting functions are chosen as logistic sigmoid functions to guar-

antee that the weighting factors sums to unity. The simulation results for spark advance and

throttle angle controller from the multi-models are presented in Figure 7.12 and Figure 7.13

respectively. The goodness of fit of spark advance and throttle angle are 68.6% and 63.8%

and the R2 values calculated from model outputs and measured data can achieve 90% at the

optimized combinations of scheduling variables. An open-loop test has been conducted for

the inverse controller and the filtered engine torque and Lambda output together with the

desired torque and Lambda are presented in Figure 7.14.

7.4 Conclusion

In this chapter, nonlinear forward multi-model have been developed for the purpose of sim-

ulation of the WAVE-RT engine. The engine RPM and throttle angle has been adopted to
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Figure 7.9: Data channels of the inverse multi-model

Figure 7.10: Data partitioning tree
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Figure 7.11: 2D data partitioning with MAP and RPM

Figure 7.12: The validation result of Inverse multi-model for spark advance (SA)

Figure 7.13: The validation result of Inverse multi-model for throttle angle (THR)
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Figure 7.14: A open-loop simulation of the inverse control

form the 2-D scheduling space and the local NARX model structures are selected by the F-

statistic and orthogonal least squares methods. The validation test results have shown that

the estimated engine brake torque (Tb) and air/fuel ratio (λ) fits well with the measured

data.

Secondly, a directly inverted nonlinear multi-model has been developed and an inverse

control system is then established. The inverse compensated system output is able to track

the desired engine output and thus achieve real-time control. It can be concluded that the

inverse controller can offset the nonlinear uncertainties of the engine plant thus create a unit

gain between the desired outputs and the controlled engine outputs.



Chapter 8

Conclusions and Future Work

8.1 Introduction

This thesis aims to develop dynamical nonlinear models especially nonlinear polynomial mod-

els for IC engine with various model structure selection techniques and validated by the engine

testing results.

The primary conclusion is that the dynamic model structure selection techniques based on

stepwise regression and orthogonal least squares can be applied successfully on the engine

identification process and produced both good polynomial ARX and NARX models for the

engine system. Secondly, these model structure selection technique can be used in identifying

the polynomial local models when developing global multi-models for the engine. The best

trade-off are required to be found in calibrating any engine system because contradictory

requirements exist in the engine controller optimization. The engine system is convention-

ally calibrated by static mapping techniques which are based on multi-dimensional tables

describing the relationship among the engine inputs and outputs. The model-based calibra-

tion is nowadays introduced to meet the challenge of more advanced engine calibration where

the engine properties are represented by dynamical mappings instead of the old method of

look-up tables. The engine control scheme can be developed based on the engine mapping

generated by the simulation of the engine model . Consequently, it is essential for the engine

model to have the adequate accuracy to predict the engine dynamic behaviour.
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8.2 Conclusions

• Due to the complexity of the engine, nonlinear models are able to predict the engine

characteristics more accurately than linear models. Novel SISO dynamical models were

developed based on PFI gasoline engine in Chapter 4. The model structures were found

by Matlab identification toolbox and validated by the measured data. The polynomi-

al model structure was adopted, especially, the least-squares technique is adopted to

determine the parameters of the models. Finally, both ARX and NARX models of

the engine system has been obtained. It can be concluded that both stepwise regres-

sion and orthogonal least squares(OLS) techniques can be applied to the torque and

air/fuel ratio model identification. In terms of the time-domain discrete system identi-

fication, both methods are able to develop parametric model structures efficiently. In

practice, the directly identified model may have the capability to bypass various en-

gine geometry problems and integrate the engine nonlinearities via the model regressor

selection process. As shown in the validation results, the model prediction ability of

the two methods gets closer with increasing model term number. Meanwhile, the pro-

gramming and calculation process of the OLS approach is less time-consuming than

that of stepwise regression method and the OLS approach can achieve better prediction

performance when fewer parameters are required in the model.

• A comparison between different types of least squares parameter estimation has been

made in this thesis. The results presented in chapter 4 involves linear and nonlinear

SISO ABV to engine speed model of the PFI engine. The least-squares technique is

adopted to determine the parameters of the models. Both ARX and NARX model of

the engine system are obtained. However, there is no single best model for the engine

system. It can be said that the compromise between the complexity of the model and

the quality of the model fit is significant. Generally, system identification is carried

out as a priori step of controller design. Therefore, the accuracy of the identification

model corresponds to the requirements of the controller and control design technique.

Based on the results represented in chapter 4, it can be concluded that the results

of identification of linear ARX models are not sensitive to different LS identification

algorithms. Secondly, the square terms of the output RPM have been inserted to

construct the NARX model. By adding the nonlinear terms into the ARX model
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equation, the fit ratio of the model can be improved. The NARX model represented in

this chapter has 5% improvement than the ARX model.

• Novel MISO dynamical models for IC engine was developed using stepwise regression

and orthogonal least squares techniques in Chapter 5. At the same time the detailed

steps of the iterative structure selection procedure are presented. Their ease of imple-

mentation makes them highly suited to applications within ECU software. Nevertheless

to ensure the full benefits of the approach, it is necessary to ensure that partitioned

domains for the different models and thus where one model becomes more weighted

relative to the others are properly. This issue has received little previous attention.

The multi-model is able to represent complex nonlinear behaviour yet retains a simple

implementable structure for EMS engine mappings. Both stepwise regression and or-

thogonal least squares (OLS) techniques can be applied successfully to the torque and

Air/Fuel ratio model identification.

• Based on the results represented in chapter 6, the multi-model structures is capable to

be developed as an alternative black box dynamic approach for the case of a nonlinear

engine map and a systematic method of developing engine mappings can be applied to

the engine calibration process which can save a significant amount of time. The rela-

tionship between model fitness and likely EMS computational overhead as measured

by number of multiplications have been investigated. The results show an appropriate

trade-off relation between the computational cost and the model quality can be estab-

lished by the structure identification techniques. In the case of the multi-models, the

associated local models can be conveniently developed from the engine experiments at

different operating points and we can apply linear identification and control techniques

to the linear local models which is a significant advantage.

• Multi-models are currently being considered by several automotive researchers as an

efficient and understandable modelling approach to achieve high accuracy dynamic

models and filters. The general process of the multi-modelling includes input design,

choice of scheduling variables, data partitioning, determination of weighting functions

and local model identification. In chapter 6, they are introduced and executed on the

IC engine test data. A novel LOLIMOT model and a log-sigmoid weighted multi-

model was established for IC engines. The optimal number of local models is analysed
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according the multi-modelling results.

• A novel inverse multi-model has been identified on a state-of-the art virtual engine

model. The inverse model has been used to track the engine outputs of torque and

air/fuel ratio.

8.3 The Perspective of Future Work

• It is promising to further the application of the model structure selection techniques to

other types of models. The selection techniques of model regressors can be extended

to identify other classes of dynamical models including Output Error (OE) models and

Nonlinear Output Error(NOE) models. Such a different approach is worthwhile because

these models utilize k-step prediction outputs as the regressors instead of the measured

output used to identify ARX and NARX models.

• The data partitioning strategies for the multi-models still requires extensive effort in

order to achieve a structured and effective methodology to give the optimal solution.

On the other hand, it is also important to test different partitioning strategies on the

engine and investigate their respective benefit. Therefore, the data partitioning method

is an interesting subject in the future.

• The weighting functions introduced in this thesis, including Piecewise, Gaussian and

log-sigmoid functions, are validated on separated data segments. As demonstrated in

Figure 8.1, the neighbouring Gaussian and log-sigmoid curves are overlapped at some

point with the valid curve. The influence of the weighting outside the bound will be

diminished in this case. Therefore, it is important to find how to define the the upper

bound and the lower bound of the valid curve, since they decide to what extent one local

model interrelates with the others or whether the local models are entirely independent

of each other. This area is worth looking at in the future.

• The switching mechanism between the different kinds of local models is an important

concern in the future application for multi-modelling of the engine systems. If different

classes of local models, such as an output error model and polynomial NARX model,

are to be incorporated, one or other model is required to be selected depending on



the priority of the application. Switching is also needed when the model is providing

real-time simulation because the optimal local model could be different when a new

operating range is reached.

Figure 8.1: The boundaries for the curve of the weighting function
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Appendices

.1 A. M-Function for Stepwise Regression with F-statistics

function [OptimizedReg,OptimizedX,Optimizedtheta,F partial,flag,error est,y est,reg]

=f selection(MAX CH,MAX ORDER,TITLE,DATA,ITERATION NUM)

%F selection of regressors for dynamical models

%written by Zongyan Li

%version: November, 2011

%Inputs of the function:

%TITLE=[’ C ’;’ F ’;’ Tb’;’ Pm’;’ N ’;’ Q ’;’NOx’];

%Note: TITLE string should be the same length.

%DATA=[C(I0),F(I0),T(I0),P(I0),N(I0),Q(I0),NOx(I0)];

%MAX CH=7; %experiment data channel, adjustable, Input and Output Channel

%MAX ORDER=[3;3;3;3;3;3;1];

%Two Different Search methods are used:

%1. ITERATION NUM=[9]; All-in search iterations

%2. ITERATION NUM=[2,3,3] %linear,quadratic,cubic terms are searched seperately

%Structure of F partial: [F partial of new selected reg, F partial of No.1

%reg,F partial of No.2reg,...]

%CAUTION!!output data must be in the last channel, sample numbers of all the channels

%must match

%===================Data Training===================

%Input

channel=MAX CH; %experiment data channel, adjustable

if size(DATA,1)<size(DATA,2)

disp(’the vectors in DATA matrix should be coloum vectors’)

return

end

%===============DEFINITIONS OF I/O CHANNELS=========
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u=struct(’var’,{},’order’,{},’data’,{});

for ii=1:channel

u(ii).var=TITLE(ii,:);

u(ii).order=MAX ORDER(ii,1);

u(ii).data=DATA(:,ii);

end

%====================Pool of Regressors============

N=length(u(channel).data); %sample number

reg=struct(’var’,{},’data’,{}); %Structure Definition

flag=struct(’var’,{},’data’,{}); % flag of the regressors

num(1)=0; % linear regressor number

num(2)=0; % quadratic regressor number

num(3)=0; % cubic regressor number

%====================Linear Terms===============

%reg(i,j): i=1 represents original regressors, j is the index of the regressor

for ii=1:channel %if output terms are not included, set channel-1 to represent input

channels

for jj=1:u(ii).order

num(1)=num(1)+1;

reg(1,num(1)).var=strcat(u(ii).var,’(t-’,num2str(jj),’)’);

reg(1,num(1)).data=delay(u(ii).data,jj);

flag(num(1)).var=reg(1,num(1)).var;

flag(num(1)).para=1; %set the flag

end

end

%======Quadratic Terms(Including Square and Cross product)=====

for ii=1:num(1)

for jj=ii:num(1)

num(2)=num(2)+1;

reg(1,num(1)+num(2)).var=strcat(reg(1,ii).var,’&’,reg(1,jj).var);

reg(1,num(1)+num(2)).data=reg(1,ii).data.*reg(1,jj).data;

flag(num(1)+num(2)).var=reg(1,num(1)+num(2)).var;

flag(num(1)+num(2)).para=1; %set the flag

end

end

%==============Cubic Terms(Including Square and Cross product)=====

for ii=1:num(1)
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for jj=num(1)+1:5:num(1)+num(2) %1/5 of the cubic regressors

num(3)=num(3)+1;

reg(1,sum(num)).var=strcat(reg(1,ii).var,&,reg(1,jj).var);

reg(1,sum(num)).data=reg(1,ii).data.*reg(1,jj).data;

flag(sum(num)).var=reg(1,num(1)+num(2)+num(3)).var;

flag(sum(num)).para=1; %set the flag

end

end

%==========Variable Definitions========================

a0=ones(N,1); %offset term

beta=struct(’para’,{}); %OLS estimator of dependend variable

X=struct(’var’,’ones’,’matrix’,a0); % Regression matrix

optimumreg=struct(’var’,{},’data’,{}); %optimal regressor selected in each iteration

theta=struct(’para’,{}); %OLS estimator

r=struct(’para’,{}); % Correlation Factor

z=struct(’para’,{}); %Dependent Output Vatiable

Sjj=struct(’para’,{}); %variance of regressors*N

Szz=struct(’para’,{}); %variance of (dependent z)*N

maxr=struct(’para’,{});% Recorder of the maximum correlation

SSR=struct(’para’,{}); %Regression sum of squares

F partial=struct(’para’,{});
sigmasquare=struct(’para’,{});
flagnum=0; % counter of selected regressors

z(1).para=u(channel).data; %Output data vector

% SST=z(1).para’*z(1).para-N*mean(z(1).para)ˆ 2;

F in=5; % Forward Selection Criterion

F out=4;% Backward Elimination Criterion

%structure used in backward elimination

XX=struct(’var’,{},’matrix’,{});
thetaXX=struct(’para’,{});
X nonewreg=struct(’var’,{},’matrix’,{});
theta nonewreg=struct(’para’,{});

if size(ITERATION NUM,2)==1 %all in seletion

%=================Main Iterations================

for i=1:sum(ITERATION NUM) %Iteration searching optimal regressors

%===========initial condition for each iteration=======
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Szz(i).para=sum((z(i).para-mean(z(i).para)).ˆ 2);

Sjj(i,1).para=sum((reg(i,1).data-mean(reg(i,1).data)).ˆ 2);

r(i).para(1)=sum((reg(i,1).data-mean(reg(i,1).data)).*(z(i).para-mean(z(i).para))

./(sqrt(Sjj(i,1).para*Szz(i).para)));

maxr(i).para=abs(r(i).para(1));

% Start from the first regressor

optimumreg(i).var=reg(1,1).var;

optimumreg(i).data=reg(1,1).data;

t=1; % recorder of the index

%===== Searching the term with the maximum correlation factor===========

for j=1:sum(num)

if flag(j).para =0 %skip the turn if this regressor has been picked

% (i,j): ith iteration, jth regressor

Sjj(i,j).para=sum((reg(i,j).data-mean(reg(i,j).data)).ˆ 2);

%Corelation factor r(i).para(j), Only use dependent variable in correlation calculation

r(i).para(j)=sum((reg(i,j).data-mean(reg(i,j).data)).*(z(i).para-mean(z(i).para))./

(sqrt(Sjj(i,j).para*Szz(i).para)));

if maxr(i).para<abs(r(i).para(j)) % Find the regressor with highest correlation

maxr(i).para=abs(r(i).para(j));

t=j;

end

end

end

optimumreg(i).var=reg(1,t).var; %set the regressor

optimumreg(i).data=reg(1,t).data;

flag(t).para=0; % Remove the flag of the selected regressor

flagnum=flagnum+1; % a new regressor is selected

%==========adding Regressor to X matrix============

X.matrix=[X.matrix,optimumreg(i).data];

X.var=[X.var;optimumreg(i).var];

% scale the X matrix in order to avoid singularity problem

size x = size(X.matrix);cols x = size x(2);scale x=zeros(cols x);

for w=1:cols x

scale x(w,w) = 1/norm(X.matrix(:,w));

end

X.matrix=X.matrix*scale x;

% Calculate the parameters for the new model
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theta(i).para=(X.matrix’*X.matrix)ˆ (-1)*X.matrix’*z(1).para;

%Unscaled theta and X matrix

theta(i).para=scale x * theta(i).para;

X.matrix=X.matrix/scale x;

%===============F-statistics calculation=============

loop switch=1; %swtich on the loop

while loop switch==1

column=size(X.matrix,2); % Identify current regressor number in the X matrix

%==initializing the iteration================

if i==1 %When the first regressor is just added into the X matrix

sigmasquare(1).para=1/(N-1-1)*((z(1).para-X.matrix*theta(1).para)’*(z(1).para-

X.matrix*theta(1).para));

SSR(1).para(1)=(X.matrix*theta(i).para)’*z(1).para-N*mean(z(1).para)ˆ 2;

F partial(1).para(1)=SSR(1).para(1)/sigmasquare(1).para;

% partial F ratio for the 1st new regressor in 1st iteration

else % a new regressor is added into X matrix

sigmasquare(i).para=1/(N-i-1)*((z(1).para-X.matrix*theta(i).para)’*(z(1).para-

X.matrix*theta(i).para));

SSR(i).para(1)=(X.matrix*theta(i).para)’*z(1).para-N*mean(z(1).para)ˆ 2;

%F in for new added regressor with existed regressors in X matrix

F partial(i).para(1)=(SSR(i).para(1)-SSR(i-1).para(1))/sigmasquare(i).para;

end

%==============Forward selection==================

if F partial(i).para(1)>F in

loop switch=0; %switch off the recycle if the new added regressor meets F in else

note=strcat(’No.’,num2str(i),’ new regressor does not satify F in’);

display(note);

% Recover to previous X and Return the Optimized X, regressors and

%corresponding parameters without the newly added regressor

X.matrix = X.matrix(:,1:end-1);

X.var = X.var(1:end-1,:);

theta(i).para =theta(i-1).para;

OptimizedReg = X.var;

OptimizedX = X.matrix;

Optimizedtheta =theta(i).para;

y est=OptimizedX*Optimizedtheta;

display(OptimizedReg);

display(’ ’);
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return

end

%Check the Partial F ratios of the rest of regressors after the new regressor is added

for k=2:column-1 %only works when column>=3, the first regressor column

%is defined as ones(:,1), hence at least two regressors are already in the model

%=====Construct the matrix XX without regressor======

%=======X.matrix(:,1)=a0=============

% Create matrix XX which is the X matrix without the kth regressor

% XX matrix is used for partial F-ratio calculation in order to reject

%the null hypothesis for the kth regressor

XX(i-1,k-1).matrix=[X.matrix(:,1:k-1),X.matrix(:,k+1:column)];

%reconstruct X matrix into XX(i-1,k-1) matrix

XX(i-1,k-1).var=[X.var(1:k-1,:);X.var(k+1:column,:)];

%name the regressors remain in the XX matrix

%==========Calculate theta without the kth regressor======

size x1 = size(XX(i-1,k-1).matrix); cols x1 = size x1(2); scale x1=zeros(cols x1);

%size x1 by size x1 matrix filled by zeros

for w=1:cols x1

scale x1(w,w) = 1/norm(XX(i-1,k-1).matrix(:,w)); % diagonal scale factors

end

XX(i-1,k-1).matrix=XX(i-1,k-1).matrix*scale x1;

thetaXX(i-1,k-1).para=(XX(i-1,k-1).matrix’*XX(i-1,k-1).matrix)ˆ (-1)*XX(i-1,k-1).matrix’*z(1).para;

thetaXX(i-1,k-1).para=scale x1 * thetaXX(i-1,k-1).para;

XX(i-1,k-1).matrix=XX(i-1,k-1).matrix/scale x1;

%note: In the partial F-ratio section, the regressors and dependent variable

% are in the original form

SSR(i).para(k)=(XX(i-1,k-1).matrix*thetaXX(i-1,k-1).para)’*z(1).para-N*mean(z(1).para).ˆ 2;

% The partial F ratio of the regressors already in the model excluding

%the kth regressor(k=2:column-1)

F partial(i).para(k)=(SSR(i).para(1)-SSR(i).para(k))/sigmasquare(i).para;

% SSR with all regressors minus SSR without (k-1)th regressor

end

%Update the vector of partial F ratio in case of previously eliminated

% regressors being recorded

if length(F partial(i).para)>column-1

F partial(i).para=F partial(i).para(1:column-1);

end
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%=============Backward Elimination=================

[F min, index min] = min(F partial(i).para); %identify the mininum F partial

if F min<F out

%delete the regressor already in the model until all partial F ratios of remaining

%regressor satisfies F out

if index min==1

X.matrix=X.matrix(:,1:end-1);

X.var=X.var(1:end-1,:);

else

X.matrix=[X.matrix(:,1:index min-1),X.matrix(:,index min+1:column)];

X.var=[X.var(1:index min-1,:);X.var(index min+1:column,:)];

end

%recalculate the parameters of the model after removing a regressor

size x = size(X.matrix);cols x = size x(2);scale x=zeros(cols x);

for w=1:cols x

scale x(w,w) = 1/norm(X.matrix(:,w));

end

X.matrix=X.matrix*scale x;

theta(i).para=(X.matrix’*X.matrix)ˆ (-1)*X.matrix’*z(1).para;

theta(i).para=scale x * theta(i).para;

X.matrix=X.matrix/scale x;

loop switch=1; %switch on the loop in order to refresh this cycle if a regressor is deleted

%recalculate SSR(i-1).para(1) with the new X matrix

X nonewreg(i-1).matrix=X.matrix(:,1:end-1);

size x = size(X nonewreg(i-1).matrix);cols x = size x(2);scale x=zeros(cols x);

for w=1:cols x

scale x(w,w) = 1/norm(X nonewreg(i-1).matrix(:,w));

end

X nonewreg(i-1).matrix=X nonewreg(i-1).matrix*scale x;

theta nonewreg(i-1).para=(X nonewreg(i-1).matrix’*X nonewreg(i-1).matrix)ˆ (-1)*

X nonewreg(i-1).matrix’*z(1).para;

theta nonewreg(i-1).para=scale x * theta nonewreg(i-1).para;

X nonewreg(i-1).matrix=X nonewreg(i-1).matrix/scale x;

SSR(i-1).para(1)=(X nonewreg(i-1).matrix*theta nonewreg(i-1).para)’*z(1).para-

N*mean(z(1).para)ˆ 2;

%SSR(i).para(1) will be recalculated in the beginning of next loop in

%order to recalculate the F partial ratios of all remaining regressors in X matrix
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end

end

%===Adjust all candidate regressors and dependent output variable

% with the offset parameter and previous added regressors====

%===reg(1,j)===The original regressors==================

%===reg(i,j)===The Adjusted regressors in iteration i============

%===z(i+1)====The Adjusted dependent output variable for the next iteration

for j=1:sum(num)

%express the new regressor with the previous regressors in X.matrix

size x2 = size(X.matrix);cols x2 = size x2(2);scale x2=zeros(cols x2);

for w=1:cols x2

scale x2(w,w) = 1/norm(X.matrix(:,w));

end

X.matrix=X.matrix*scale x2;

beta(i,j).para=(X.matrix’*X.matrix)ˆ (-1)*X.matrix’*reg(1,j).data;

beta(i,j).para=scale x2 * beta(i,j).para;

X.matrix=X.matrix/scale x2;

%Modifying the regressors based on beta parameters

reg(i+1,j).data=reg(1,j).data-X.matrix*beta(i,j).para;

reg(i+1,j).var=reg(1,j).var;

end

z(i+1).para=z(1).para-X.matrix*theta(i).para; %Dependent Variable

end

else % Entering second catogory method

%===========================================

if ITERATION NUM(1)>0

%==========Linear Regressors=================

%====================Main Iterations=============

for i=1:ITERATION NUM(1) %Iteration searching optimal regressors

%===========initial condition for each iteration============

Szz(i).para=sum((z(i).para-mean(z(i).para)).ˆ 2);

Sjj(i,1).para=sum((reg(i,1).data-mean(reg(i,1).data)).ˆ 2);

r(i).para(1)=sum((reg(i,1).data-mean(reg(i,1).data)).*(z(i).para-mean(z(i).para))

./(sqrt(Sjj(i,1).para*Szz(i).para)));

maxr(i).para=abs(r(i).para(1));
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% Start from the first regressor

optimumreg(i).var=reg(1,1).var;

optimumreg(i).data=reg(1,1).data;

t=1; % recorder of the index

%=================================================

% Searching the term with the maximum correlation factor

for j=1:num(1)

if flag(j).para =0 %skip the turn if this regressor has been picked

% (i,j):ith iteration, jth regressor

Sjj(i,j).para=sum((reg(i,j).data-mean(reg(i,j).data)).ˆ 2);

%Corelation factor r(i).para(j),Only use dependent variable in correlation calculation

r(i).para(j)=sum((reg(i,j).data-mean(reg(i,j).data)).*(z(i).para-mean(z(i).para))

./(sqrt(Sjj(i,j).para*Szz(i).para)));

if maxr(i).para<abs(r(i).para(j)) % Find the regressor with highest correlation

maxr(i).para=abs(r(i).para(j));

t=j;

end

end

end

optimumreg(i).var=reg(1,t).var; %set the regressor

optimumreg(i).data=reg(1,t).data;

flag(t).para=0; % Remove the flag of the selected regressor

flagnum=flagnum+1; % a new regressor is selected

%==============adding Regressor to X matrix===============

X.matrix=[X.matrix,optimumreg(i).data];

X.var=[X.var;optimumreg(i).var];

% scale the X matrix in order to avoid singularity problem

size x = size(X.matrix);cols x = size x(2);scale x=zeros(cols x);

for w=1:cols x

scale x(w,w) = 1/norm(X.matrix(:,w));

end

X.matrix=X.matrix*scale x;

% Calculate the parameters for the new model

theta(i).para=(X.matrix’*X.matrix)ˆ (-1)*X.matrix’*z(1).para;

%Unscaled theta and X matrix

theta(i).para=scale x * theta(i).para;

X.matrix=X.matrix/scale x;

%============F-statistics calculation===============
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loop switch=1; %swtich on the loop

while loop switch==1

column=size(X.matrix,2); % Identify current regressor number in the X matrix

%==initializing the iteration================

if i==1 %When the first regressor is just added into the X matrix

sigmasquare(1).para=1/(N-1-1)*((z(1).para-X.matrix*theta(1).para)’*

(z(1).para-X.matrix*theta(1).para));

SSR(1).para(1)=(X.matrix*theta(i).para)’*z(1).para-N*mean(z(1).para)ˆ 2;

F partial(1).para(1)=SSR(1).para(1)/sigmasquare(1).para;

% partial F ratio for the 1st new regressor in 1st iteration

else % a new regressor is added into X matrix

sigmasquare(i).para=1/(N-i-1)*((z(1).para-X.matrix*theta(i).para)’*(z(1).para-

X.matrix*theta(i).para));

SSR(i).para(1)=(X.matrix*theta(i).para)’*z(1).para-N*mean(z(1).para)ˆ 2;

%F in for new added regressor with existed regressors in X matrix

F partial(i).para(1)=(SSR(i).para(1)-SSR(i-1).para(1))/sigmasquare(i).para;

end

%==============Forward Selection=======================

if F partial(i).para(1)>F in

loop switch=0; %switch off the recycle if the new added regressor meets F in

else

note=strcat(’No.’,num2str(i),’ new regressor does not satify F in’);

display(note);

% Recover to previous X and Return the Optimized X, regressors and corresponding

%parameters without the newly added regressor

X.matrix = X.matrix(:,1:end-1);

X.var = X.var(1:end-1,:);

theta(i).para =theta(i-1).para;

OptimizedReg = X.var;

OptimizedX = X.matrix;

Optimizedtheta =theta(i).para;

y est=OptimizedX*Optimizedtheta;

display(OptimizedReg);

display(’ ’);

% display(’Original Model self-validation:’);

error est=gfit2(DATA(:,size(DATA,2)),y est,’all’);

% display(’ ’);

return
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end

for k=2:column-1 %only works when column>=3, the first regressor column is defined as

ones(:,1), %hence at least two regressors are already in the model

%============Construct the matrix XX without kth regressor

%=======X.matrix(:,1)=a0==================

% Create matrix XX which is the X matrix without the kth regressor

% XX matrix is used for partial F-ratio calculation in order to reject the null

hypothesis %for the kth regressor

XX(i-1,k-1).matrix=[X.matrix(:,1:k-1),X.matrix(:,k+1:column)];

%reconstruct X matrix into XX(i-1,k-1) matrix

XX(i-1,k-1).var=[X.var(1:k-1,:);X.var(k+1:column,:)];

%name the regressors remain in the XX matrix

%====Calculate theta without the kth regressor======

size x1 = size(XX(i-1,k-1).matrix); cols x1 = size x1(2); scale x1=zeros(cols x1);

%size x1 by size x1 matrix filled by zeros

for w=1:cols x1

scale x1(w,w) = 1/norm(XX(i-1,k-1).matrix(:,w)); % diagonal scale factors

end

XX(i-1,k-1).matrix=XX(i-1,k-1).matrix*scale x1;

thetaXX(i-1,k-1).para=(XX(i-1,k-1).matrix’*XX(i-1,k-1).matrix)ˆ (-1)*XX(i-1,k-1)

.matrix’*z(1).para;

thetaXX(i-1,k-1).para=scale x1 * thetaXX(i-1,k-1).para;

XX(i-1,k-1).matrix=XX(i-1,k-1).matrix/scale x1;

%NOTE: In the partial F-ratio section, the regressors and dependent variable are

%in the original form

SSR(i).para(k)=(XX(i-1,k-1).matrix*thetaXX(i-1,k-1).para)’*z(1).para

-N*mean(z(1).para).ˆ 2;

% The partial F ratio of the regressors already in the model excluding the kth

%regressor(k=2:column-1)

F partial(i).para(k)=(SSR(i).para(1)-SSR(i).para(k))/sigmasquare(i).para;

% SSR with all regressors minus SSR without (k-1)th regressor

end

%Update the vector of partial F ratio in case of previously eliminated

%regressors being recorded

if length(F partial(i).para)>column-1

F partial(i).para=F partial(i).para(1:column-1);

end

%=============Backward Elimination=============
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[F min, index min] = min(F partial(i).para);

if F min<F out

if index min==1 %delect the newly selected regressor

X.matrix=X.matrix(:,1:end-1);

X.var=X.var(1:end-1,:);

else

X.matrix=[X.matrix(:,1:index min-1),X.matrix(:,index min+1:column)];

X.var=[X.var(1:index min-1,:);X.var(index min+1:column,:)];

end

%recalculate the parameters of the model after removing a regressor

size x = size(X.matrix);cols x = size x(2);scale x=zeros(cols x);

for w=1:cols x

scale x(w,w) = 1/norm(X.matrix(:,w));

end

X.matrix=X.matrix*scale x;

theta(i).para=(X.matrix’*X.matrix)ˆ (-1)*X.matrix’*z(1).para;

theta(i).para=scale x * theta(i).para;

X.matrix=X.matrix/scale x;

loop switch=1; %switch on the loop in order to refresh this cycle if a regressor is deleted

%recalculate SSR(i-1).para(1) with the new X matrix

X nonewreg(i-1).matrix=X.matrix(:,1:end-1);

size x = size(X nonewreg(i-1).matrix);cols x = size x(2);scale x=zeros(cols x);

for w=1:cols x

scale x(w,w) = 1/norm(X nonewreg(i-1).matrix(:,w));

end

X nonewreg(i-1).matrix=X nonewreg(i-1).matrix*scale x;

theta nonewreg(i-1).para=(X nonewreg(i-1).matrix’*X nonewreg(i-1).matrix)ˆ (-1)*X nonewreg(i-

1).matrix’*z(1).para;

theta nonewreg(i-1).para=scale x * theta nonewreg(i-1).para;

X nonewreg(i-1).matrix=X nonewreg(i-1).matrix/scale x;

SSR(i-1).para(1)=(X nonewreg(i-1).matrix*theta nonewreg(i-1).para)’*z(1).para-

N*mean(z(1).para)ˆ 2;

end

end

for j=1:sum(num)

size x2 = size(X.matrix);cols x2 = size x2(2);scale x2=zeros(cols x2);

for w=1:cols x2

scale x2(w,w) = 1/norm(X.matrix(:,w));
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end

X.matrix=X.matrix*scale x2;

beta(i,j).para=(X.matrix’*X.matrix)ˆ (-1)*X.matrix’*reg(1,j).data;

beta(i,j).para=scale x2 * beta(i,j).para;

X.matrix=X.matrix/scale x2;

reg(i+1,j).data=reg(1,j).data-X.matrix*beta(i,j).para;

reg(i+1,j).var=reg(1,j).var;

end

z(i+1).para=z(1).para-X.matrix*theta(i).para;

end

end

%==========quadratic terms================

if ITERATION NUM(2)>0

%==========Main Iterations=========

for i=ITERATION NUM(1)+1:ITERATION NUM(1)+ITERATION NUM(2) %Iteration search-

ing

% optimal regressors

Szz(i).para=sum((z(i).para-mean(z(i).para)).ˆ 2);

Sjj(i,1).para=sum((reg(i,1).data-mean(reg(i,1).data)).ˆ 2);

r(i).para(1)=sum((reg(i,1).data-mean(reg(i,1).data)).*(z(i).para-mean(z(i).para))

./(sqrt(Sjj(i,1).para*Szz(i).para)));

maxr(i).para=abs(r(i).para(1));

optimumreg(i).var=reg(1,1).var;

optimumreg(i).data=reg(1,1).data;

t=1;

%===== Searching the term with the maximum correlation factor========

for j=num(1)+1:num(1)+num(2)

if flag(j).para =0

Sjj(i,j).para=sum((reg(i,j).data-mean(reg(i,j).data)).ˆ 2);

r(i).para(j)=sum((reg(i,j).data-mean(reg(i,j).data)).*(z(i).para-mean(z(i).para))

./(sqrt(Sjj(i,j).para*Szz(i).para)));

if maxr(i).para<abs(r(i).para(j))

maxr(i).para=abs(r(i).para(j));

t=j;

end

end

end

optimumreg(i).var=reg(1,t).var; %set the regressor
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optimumreg(i).data=reg(1,t).data;

flag(t).para=0; % Remove the flag of the selected regressor

flagnum=flagnum+1; % a new regressor is selected

%=======adding Regressor to X matrix=========

X.matrix=[X.matrix,optimumreg(i).data];

X.var=[X.var;optimumreg(i).var];

size x = size(X.matrix);cols x = size x(2);scale x=zeros(cols x);

for w=1:cols x

scale x(w,w) = 1/norm(X.matrix(:,w));

end

X.matrix=X.matrix*scale x;

theta(i).para=(X.matrix’*X.matrix)ˆ (-1)*X.matrix’*z(1).para;

theta(i).para=scale x * theta(i).para;

X.matrix=X.matrix/scale x;

%======F-statistics calculation==========

loop switch=1; %swtich on the loop

while loop switch==1

column=size(X.matrix,2); % Identify current regressor number in the X matrix

%==initializing the iteration================

if i==1 %When the first regressor is just added into the X matrix

sigmasquare(1).para=1/(N-1-1)*((z(1).para-X.matrix*theta(1).para)’*(z(1).para-

X.matrix*theta(1).para));

SSR(1).para(1)=(X.matrix*theta(i).para)’*z(1).para-N*mean(z(1).para)ˆ 2;

F partial(1).para(1)=SSR(1).para(1)/sigmasquare(1).para;

else

sigmasquare(i).para=1/(N-i-1)*((z(1).para-X.matrix*theta(i).para)’*(z(1).para-

X.matrix*theta(i).para));

SSR(i).para(1)=(X.matrix*theta(i).para)’*z(1).para-N*mean(z(1).para)ˆ 2;

F partial(i).para(1)=(SSR(i).para(1)-SSR(i-1).para(1))/sigmasquare(i).para;

end

%==============Forward Selection================

if F partial(i).para(1)>F in

loop switch=0;

else

note=strcat(’No.’,num2str(column-1),’ new regressor does not satify F in’);

display(note);

X.matrix = X.matrix(:,1:end-1);
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X.var = X.var(1:end-1,:);

theta(i).para =theta(i-1).para;

OptimizedReg = X.var;

OptimizedX = X.matrix;

Optimizedtheta =theta(i).para;

y est=OptimizedX*Optimizedtheta;

display(’F-statistic selection:’);

display(OptimizedReg);

return

end

for k=2:column-1

XX(i-1,k-1).matrix=[X.matrix(:,1:k-1),X.matrix(:,k+1:column)];

XX(i-1,k-1).var=[X.var(1:k-1,:);X.var(k+1:column,:)];

size x1 = size(XX(i-1,k-1).matrix); cols x1 = size x1(2); scale x1=zeros(cols x1);

%size x1 by size x1 matrix filled by zeros

for w=1:cols x1

scale x1(w,w) = 1/norm(XX(i-1,k-1).matrix(:,w));

end

XX(i-1,k-1).matrix=XX(i-1,k-1).matrix*scale x1;

thetaXX(i-1,k-1).para=(XX(i-1,k-1).matrix’*XX(i-1,k-1).matrix)ˆ (-1)*XX(i-1,k-1).matrix’*z(1).para;

thetaXX(i-1,k-1).para=scale x1 * thetaXX(i-1,k-1).para;

XX(i-1,k-1).matrix=XX(i-1,k-1).matrix/scale x1;

SSR(i).para(k)=(XX(i-1,k-1).matrix*thetaXX(i-1,k-1).para)’*z(1).para-N*mean(z(1).para).ˆ 2;

F partial(i).para(k)=(SSR(i).para(1)-SSR(i).para(k))/sigmasquare(i).para;

end

if length(F partial(i).para)>column-1

F partial(i).para=F partial(i).para(1:column-1);

end

%=============Backward Elimination========

[F min, index min] = min(F partial(i).para);

if F min<F out

if index min==1

X.matrix=X.matrix(:,1:end-1);

X.var=X.var(1:end-1,:);

else

X.matrix=[X.matrix(:,1:index min-1),X.matrix(:,index min+1:column)];

X.var=[X.var(1:index min-1,:);X.var(index min+1:column,:)];

end
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size x = size(X.matrix);cols x = size x(2);scale x=zeros(cols x);

for w=1:cols x

scale x(w,w) = 1/norm(X.matrix(:,w));

end

X.matrix=X.matrix*scale x;

theta(i).para=(X.matrix’*X.matrix)ˆ (-1)*X.matrix’*z(1).para;

theta(i).para=scale x * theta(i).para;

X.matrix=X.matrix/scale x;

loop switch=1;

X nonewreg(i-1).matrix=X.matrix(:,1:end-1);

size x = size(X nonewreg(i-1).matrix);cols x = size x(2);scale x=zeros(cols x);

for w=1:cols x

scale x(w,w) = 1/norm(X nonewreg(i-1).matrix(:,w));

end

X nonewreg(i-1).matrix=X nonewreg(i-1).matrix*scale x;

theta nonewreg(i-1).para=(X nonewreg(i-1).matrix’*X nonewreg(i-1).matrix)ˆ (-1)*X nonewreg(i-

1).matrix’*z(1).para;

theta nonewreg(i-1).para=scale x * theta nonewreg(i-1).para;

X nonewreg(i-1).matrix=X nonewreg(i-1).matrix/scale x;

SSR(i-1).para(1)=(X nonewreg(i-1).matrix*theta nonewreg(i-1).para)’*z(1).para-

N*mean(z(1).para)ˆ 2;

end

end

for j=1:sum(num) %express the new regressor with the previous regressors in X.matrix

size x2 = size(X.matrix);cols x2 = size x2(2);scale x2=zeros(cols x2);

for w=1:cols x2

scale x2(w,w) = 1/norm(X.matrix(:,w));

end

X.matrix=X.matrix*scale x2;

beta(i,j).para=(X.matrix’*X.matrix)ˆ (-1)*X.matrix’*reg(1,j).data;

beta(i,j).para=scale x2 * beta(i,j).para;

X.matrix=X.matrix/scale x2;

%Modifying the regressors based on beta parameters

reg(i+1,j).data=reg(1,j).data-X.matrix*beta(i,j).para;

reg(i+1,j).var=reg(1,j).var;

end

z(i+1).para=z(1).para-X.matrix*theta(i).para; %Dependent Variable

end
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end

%==========cubic terms===================

if ITERATION NUM(3)>0

%==============Main Iterations============

for i=ITERATION NUM(1)+ITERATION NUM(2)+1:sum(ITERATION NUM) %Iteration search-

ing optimal regressors

%===========initial condition for each iteration====

Szz(i).para=sum((z(i).para-mean(z(i).para)).ˆ 2);

Sjj(i,1).para=sum((reg(i,1).data-mean(reg(i,1).data)).ˆ 2);

r(i).para(1)=sum((reg(i,1).data-mean(reg(i,1).data)).*(z(i).para-mean(z(i).para))

./(sqrt(Sjj(i,1).para*Szz(i).para)));

maxr(i).para=abs(r(i).para(1));

optimumreg(i).var=reg(1,1).var;

optimumreg(i).data=reg(1,1).data;

t=1; % recorder of the index

%===== Searching the term with the maximum correlation factor======

for j=num(1)+num(2)+1:sum(num)

if flag(j).para =0

% (i,j):ith iteration, jth regressor Sjj(i,j).para=sum((reg(i,j).data-mean(reg(i,j).data)).ˆ 2);

r(i).para(j)=sum((reg(i,j).data-mean(reg(i,j).data)).*(z(i).para-mean(z(i).para))./

(sqrt(Sjj(i,j).para*Szz(i).para)));

if maxr(i).para<abs(r(i).para(j))

maxr(i).para=abs(r(i).para(j));

t=j;

end

end

end

optimumreg(i).var=reg(1,t).var;

optimumreg(i).data=reg(1,t).data;

flag(t).para=0;

flagnum=flagnum+1;

%======adding Regressor to X matrix=======

X.matrix=[X.matrix,optimumreg(i).data];

X.var=[X.var;optimumreg(i).var];
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% scale the X matrix in order to avoid singularity problem

size x = size(X.matrix);cols x = size x(2);scale x=zeros(cols x);

for w=1:cols x

scale x(w,w) = 1/norm(X.matrix(:,w));

end

X.matrix=X.matrix*scale x;

% Calculate the parameters for the new model

theta(i).para=(X.matrix’*X.matrix)ˆ (-1)*X.matrix’*z(1).para;

%Unscaled theta and X matrix

theta(i).para=scale x * theta(i).para;

X.matrix=X.matrix/scale x;

loop switch=1;

while loop switch==1

column=size(X.matrix,2);

%==initializing the iteration=======

if i==1

sigmasquare(1).para=1/(N-1-1)*((z(1).para-X.matrix*theta(1).para)’*(z(1).para-

X.matrix*theta(1).para));

SSR(1).para(1)=(X.matrix*theta(i).para)’*z(1).para-N*mean(z(1).para)ˆ 2;

F partial(1).para(1)=SSR(1).para(1)/sigmasquare(1).para;

else

sigmasquare(i).para=1/(N-i-1)*((z(1).para-X.matrix*theta(i).para)’*(z(1).para-

X.matrix*theta(i).para));

SSR(i).para(1)=(X.matrix*theta(i).para)’*z(1).para-N*mean(z(1).para)ˆ 2;

F partial(i).para(1)=(SSR(i).para(1)-SSR(i-1).para(1))/sigmasquare(i).para;

end

%==============Forward Selection===============

if F partial(i).para(1)>F in

loop switch=0;

else

note=strcat(’No.’,num2str(i),’ new regressor does not satify F in’);

display(note);

% Recover to previous X and Return the Optimized X, regressors and

%corresponding parameters without the newly added regressor

X.matrix = X.matrix(:,1:end-1);

X.var = X.var(1:end-1,:);

theta(i).para =theta(i-1).para;

OptimizedReg = X.var;
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OptimizedX = X.matrix;

Optimizedtheta =theta(i).para;

y est=OptimizedX*Optimizedtheta;

display(OptimizedReg);

display(’ ’);

return

end

%Check the Partial F ratios of the rest of regressors after the new regres-

sor is added========

for k=2:column-1 %only works when column>=3, the first regressor column is

%defined as ones(:,1), hence at least two regressors are already in the model

%Construct the matrix XX without regressor

%=======X.matrix(:,1)=a0==============

% Create matrix XX which is the X matrix without the kth regressor

% XX matrix is used for partial F-ratio calculation in order to reject the

%null hypothesis for the kth regressor

XX(i-1,k-1).matrix=[X.matrix(:,1:k-1),X.matrix(:,k+1:column)];

%reconstruct X matrix into XX(i-1,k-1) matrix

XX(i-1,k-1).var=[X.var(1:k-1,:);X.var(k+1:column,:)];

%name the regressors remain in the XX matrix

%=======Calculate theta without the kth regressor======

size x1 = size(XX(i-1,k-1).matrix); cols x1 = size x1(2); scale x1=zeros(cols x1);

for w=1:cols x1

scale x1(w,w) = 1/norm(XX(i-1,k-1).matrix(:,w)); % diagonal scale factors

end

XX(i-1,k-1).matrix=XX(i-1,k-1).matrix*scale x1;

thetaXX(i-1,k-1).para=(XX(i-1,k-1).matrix’*XX(i-1,k-1).matrix)ˆ (-1)

XX(i-1,k-1).matrix’*z(1).para;

thetaXX(i-1,k-1).para=scale x1 * thetaXX(i-1,k-1).para;

XX(i-1,k-1).matrix=XX(i-1,k-1).matrix/scale x1;

%Note: In the partial F-ratio section, the regressors and dependent variable

%are in the original form

SSR(i).para(k)=(XX(i-1,k-1).matrix*thetaXX(i-1,k-1).para)’*z(1).para-N*mean(z(1).para).ˆ 2;

% The partial F ratio of the regressors already in the model

%excluding the kth regressor(k=2:column-1)

F partial(i).para(k)=(SSR(i).para(1)-SSR(i).para(k))/sigmasquare(i).para;

% SSR with all regressors minus SSR without (k-1)th regressor

end
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if length(F partial(i).para)>column-1

F partial(i).para=F partial(i).para(1:column-1);

end

%=========Backward Elimination=========

[F min, index min] = min(F partial(i).para);

if F min<F out

if index min==1

X.matrix=X.matrix(:,1:end-1);

X.var=X.var(1:end-1,:);

else

X.matrix=[X.matrix(:,1:index min-1),X.matrix(:,index min+1:column)];

X.var=[X.var(1:index min-1,:);X.var(index min+1:column,:)];

end

%recalculate the parameters of the model after removing a regressor

size x = size(X.matrix);cols x = size x(2);scale x=zeros(cols x);

for w=1:cols x

scale x(w,w) = 1/norm(X.matrix(:,w));

end

X.matrix=X.matrix*scale x;

theta(i).para=(X.matrix’*X.matrix)ˆ (-1)*X.matrix’*z(1).para;

theta(i).para=scale x * theta(i).para;

X.matrix=X.matrix/scale x;

loop switch=1;

X nonewreg(i-1).matrix=X.matrix(:,1:end-1);

size x = size(X nonewreg(i-1).matrix);cols x = size x(2);scale x=zeros(cols x);

for w=1:cols x

scale x(w,w) = 1/norm(X nonewreg(i-1).matrix(:,w));

end

X nonewreg(i-1).matrix=X nonewreg(i-1).matrix*scale x;

theta nonewreg(i-1).para=(X nonewreg(i-1).matrix’*X nonewreg(i-1).matrix)ˆ (-1)*X nonewreg(i-

1).matrix’*z(1).para;

theta nonewreg(i-1).para=scale x * theta nonewreg(i-1).para;

X nonewreg(i-1).matrix=X nonewreg(i-1).matrix/scale x;

SSR(i-1).para(1)=(X nonewreg(i-1).matrix*theta nonewreg(i-1).para)’*z(1).para-

N*mean(z(1).para)ˆ 2;

end

end
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%Adjust all candidate regressors and dependent output variable

%with the offset parameter and previous added regressors

%===reg(1,j)===The original regressors=============

%===reg(i,j)===The Adjusted regressors in iteration i=========

%===z(i+1)====The Adjusted dependent output variable for the next iteration

for j=1:sum(num)

%express the new regressor with the previous regressors in X.matrix

size x2 = size(X.matrix);cols x2 = size x2(2);scale x2=zeros(cols x2);

for w=1:cols x2

scale x2(w,w) = 1/norm(X.matrix(:,w));

end

X.matrix=X.matrix*scale x2;

beta(i,j).para=(X.matrix’*X.matrix)ˆ (-1)*X.matrix’*reg(1,j).data;

beta(i,j).para=scale x2 * beta(i,j).para;

X.matrix=X.matrix/scale x2;

%Modifying the regressors based on beta parameters

reg(i+1,j).data=reg(1,j).data-X.matrix*beta(i,j).para;

reg(i+1,j).var=reg(1,j).var;

end

z(i+1).para=z(1).para-X.matrix*theta(i).para; %Dependent Variable

end

end

end

% Final step, Return the structure if all the regressor meets F in

note=strcat(’All (’,num2str(column-1),’) regressors satify F in’);

display(note);

OptimizedX = X.matrix;

OptimizedReg = X.var;

Optimizedtheta =theta(i).para;

y est=OptimizedX*Optimizedtheta;

display(OptimizedReg);

display(’ ’);

return

%=========coefficients calculation==========

Rsquare(i)=SSR(i).para(1)/SST;

Rsquare adjusted(i)=1-((1-SSR(i).para(1)/SST)*(N-1)/(N-column));

%Adjusted multiple correlation coefficient of determination

RSS(i)=sum((trq0-X.matrix*theta(i).para).ˆ 2);
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Cp(i)=RSS(i)/sigmasquare(i).para-(N-2*column); %Mallow’s Cp statistic

TSS(i)=sum((trq0-mean(trq0)).ˆ 2);

OVF(i)=(TSS-RSS)/RSS*(N-column)/(column-1);% Overall F-test

.2 B. M-Function for Orthogonal Least Squares with ERR

function [ERRReg,ERRX,ERRtheta,maxERR,flag,error est,y est,reg,w0,a,g,

orthogonal theta,orthogonal y]

=ERR selection(MAX CH,MAX ORDER,TITLE,DATA,ITERATION NUM)

%Inputs of the function:

%TITLE=[’ C ’;’ F ’;’ Tb ’;’ Pm’;’ N ’;’ Q ’;’NOx’];

%Note: TITLE string should be the same length.

%DATA=[C(I0),F(I0),T(I0),P(I0),N(I0),Q(I0),NOx(I0)];

%MAX CH=7; %experiment data channel, adjustable, Input and Output Channel

%MAX ORDER=[3;3;3;3;3;3;1];

%ITERATION NUM=[9]; All-in search iterations

%CAUTION!!output data must be in the last channel, sample numbers of all the

%channels must match

%===================Data Training==================

%Input

channel=MAX CH; %experiment data channel, adjustable

if size(DATA,1)¡size(DATA,2)

disp(’the vectors in DATA matrix should be coloum vectors’)

return

end

%=============DEFINITIONS OF I/O CHANNELS=============

u=struct(’var’,{},’order’,{},’data’,{});
for ii=1:channel

u(ii).var=TITLE(ii,:);

u(ii).order=MAX ORDER(ii,1);

u(ii).data=DATA(:,ii);

end

%================Pool of Regressors=================

N=length(u(channel).data); %sample number

reg=struct(’var’,{},’data’,{}); %Structure Definition

flag=struct(’var’,{},’para’,{}); % flag of the regressors

num(1)=0; % linear regressor number
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num(2)=0; % nonlinear regressor number

num(3)=0; % cubic regressor number

%====================Linear Terms===============

for ii=1:channel %if output terms are not included, set channel-1 to represent in-

put channels for jj=1:u(ii).order

num(1)=num(1)+1;

reg(1,num(1)).var=strcat(u(ii).var,’(t-’,num2str(jj),’)’);

reg(1,num(1)).data=delay(u(ii).data,jj);

flag(num(1)).var=reg(1,num(1)).var;

flag(num(1)).para=1; %set the flag

end

end

%=====Quadratic Terms(Including Square and Cross product)=======

for ii=1:num(1)

for jj=ii:num(1)

num(2)=num(2)+1;

reg(1,num(1)+num(2)).var=strcat(reg(1,ii).var,’&’,reg(1,jj).var);

reg(1,num(1)+num(2)).data=reg(1,ii).data.*reg(1,jj).data;

flag(num(1)+num(2)).var=reg(1,num(1)+num(2)).var;

flag(num(1)+num(2)).para=1; %set the flag

end

end

%=========Cubic Terms(Including Square and Cross product)=====

for ii=1:num(1)

for jj=num(1)+1:5:num(1)+num(2) %1/5 of the cubic regressors

num(3)=num(3)+1;

reg(1,sum(num)).var=strcat(reg(1,ii).var,’&’,reg(1,jj).var);

reg(1,sum(num)).data=reg(1,ii).data.*reg(1,jj).data;

flag(sum(num)).var=reg(1,num(1)+num(2)+num(3)).var;

flag(sum(num)).para=1; %set the flag

end

end

a0=ones(N,1); %offset term

X=struct(’var’,’ones’,’matrix’,a0);

optimumreg=struct(’var’,{},’data’,{});
ERR=struct(’para’,{}); %Error Reduction Ratio

w=struct(’para’,{}); % orthogonalized regressor

w0=struct(’para’,{}); % orthogonal basis wk
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z=struct(’data’,{}); %Dependent Output Vatiable

maxERR=struct(’para’,{});
z(1).data=u(channel).data;

M=sum(num);

if size(ITERATION NUM,2)==1 %all in seletion

%====Step 1==============

for i=1:M

w(i).para=reg(1,i).data;

ERR(1).para(i)=((z(1).data’*w(i).para)2̂)/((z(1).data’*z(1).data)*(w(i).para’*w(i).para));

a(1,1)=1;

end

[maxERR(1).para,flagnum]=max(ERR(1).para); %Find the regressor with the largest ER-

R

w0(1,1).para=reg(1,flagnum).data; %the first orthogonal basis

optimumreg(1).data=reg(1,flagnum).data; %the corresponding selected regressor

optimumreg(1).var=reg(1,flagnum).var;

g.para(1)=(z(1).data’*w0(1).para) 2̂ / (w0(1).para’*w0(1).para);

tau(1)=w0(1).para’*w0(1).para;

X.matrix=[X.matrix,optimumreg(1).data];

X.var=[X.var;optimumreg(1).var];

flag(flagnum).var=optimumreg(1).var;

flag(flagnum).para=0; %mark as selected

%=========Step 2: iter>=2================

iter=2; % iteration number

while iter<=ITERATION NUM % condition

for i=1:M

if flag(i).para==1 %only test the regressors satisfying the criterion w’*w>10e-10

%=====regressor orthogonalization for this iteration=====

sum oth=zeros(N,1);

for k=1:size(X.matrix,2)-1

sum oth= sum oth +(reg(1,i).data’*w0(1,k).para)/(w0(1,k).para’*w0(1,k).para) * w0(k).para;

end

reg(iter,i).data=reg(1,i).data-sum oth; %Orthogonalized candidate basis function

%=======Calculate the ERR in each iteration=========

ERR(iter).para(i)=(z(1).data’*reg(iter,i).data)ˆ 2 / ((z(1).data’*z(1).data)*

(reg(iter,i).data’*reg(iter,i).data));

if (reg(iter,i).data’*reg(iter,i).data)<10e-10
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flag(i).para=0; %eliminate the candidate basis function which are less than

%the threshold tau to avoid ill conditioning

ERR(iter).para(i)=0;

end

else

ERR(iter).para(i)=0;

end

end

%=====Locate the orthogonal basis function w0 with the largest ERR====

[maxERR(iter).para,flagnum]=max(ERR(iter).para); %memorize the selected regressor

optimumreg(iter).data=reg(1,flagnum).data; %selected candidate regressor

optimumreg(iter).var=reg(1,flagnum).var;

w0(1,iter).para=reg(iter,flagnum).data; % orthogonal basis function

g.para(iter)=(z(1).data’*w0(1,iter).para)ˆ 2/(w0(1,iter).para’*w0(1,iter).para);

tau(iter)=w0(iter).para’*w0(iter).para;

a(iter,iter)=1; %diagonal Element in A matrix

for k=1:size(X.matrix,2)-1

a(k,iter)=(w0(1,k).para’*reg(1,flagnum).data)/(w0(1,k).para’*w0(1,k).para);

end

%=====================================================

X.matrix=[X.matrix,optimumreg(iter).data];

X.var=[X.var;optimumreg(iter).var];

flag(flagnum).para=0; % mark as selected

iter=iter+1; %next iteration

end

orthogonal theta=a*(g.para’);

orthogonal y=X.matrix(:,2:end)*orthogonal theta;

size x = size(X.matrix);cols x = size x(2);scale x=zeros(cols x);

for w=1:cols x; scale x(w,w) = 1/norm(X.matrix(:,w));

end

X.matrix=X.matrix*scale x;

ERRtheta=(X.matrix’*X.matrix)(̂-1)*X.matrix’*z(1).data;

ERRtheta=scale x*ERRtheta;

X.matrix=X.matrix/scale x;

ERRX=X.matrix;

ERRReg=X.var;

y est=X.matrix*ERRtheta;

display(’ERR selection:’);
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display(ERRReg);

end
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