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Structural and functional brain alterations in 

fibromyalgia syndrome patients 

Nicholas Fallon 

Abstract 

Fibromyalgia syndrome (FMS) is a widespread chronic pain disorder 

affecting 2−5% of the general population and particularly women of middle age 

(McBeth and Mulvey, 2012). The syndrome is frequently comorbid with a variety of 

clinical, functional and psychological disorders (Weir et al., 2006) and associated 

with a large socio-economic burden (Lachaine et al., 2010). In spite of significant 

previous research, the underlying aetiology and pathophysiology of FMS is not fully 

understood (Schmidt-Wilcke and Clauw, 2011). However, aberrant structural and 

functional brain alterations have been proposed as a casual or maintaining factor of 

the disorder (Schweinhardt et al., 2008). This thesis utilised functional and structural 

imaging methods and novel experimental paradigms to explore brain alterations in 

FMS patients. A comprehensive review of previous experimental findings was 

performed to identify novel research questions. EEG and MRI data for 5 unique 

studies was collected over two sessions.  

In the first study dynamic mechanical stimulation was applied to the forearm 

of FMS patients and healthy participants, and an ERD analysis of corresponding 

EEG data was performed. The results revealed that FMS patients exhibited 

alterations to cortical excitability during brushing stimuli which correlated with 

clinical measures. These findings indicate that abnormal processing of innocuous 

somatosensory stimulation may contribute to the pathophysiology and clinical 

symptom severity of FMS. Secondly, an ERP analysis of EEG data from the 
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observation of pain and non-pain pictures was performed. FMS patients exhibited 

differences in ERP components and source activation patterns during observation of 

pain pictures relative to healthy people. Alterations to processing of observed pain 

occurred in parahippocampal gyrus and may relate to clinical and psychological 

aspects of FMS, this finding could be utilised to further understand the heterogeneity 

of psychological profiles of FMS patients in order to better target therapeutic 

interventions. 

 The third study of the thesis describes a novel comparison of functional 

connectivity with resting-state network structures utilising fMRI recordings. 

Functional connectivity with default mode network structures was shown to be 

altered in FMS. This finding may reflect an ongoing time-dependent reorganisation 

of resting-state networks due to ongoing chronic pain. In the fourth study, a 

morphological analysis of subcortical structures was performed using high-

resolution T1-weighted MR images. FMS patients demonstrated alterations to the 

morphology of the brainstem, an important structure in descending nociceptive 

control. Volumetric alterations in this structure correlated with clinical measures of 

symptom severity suggesting an important role for brainstem alterations in FMS pain 

symptoms. In the final study the microstructural integrity of white matter was 

compared between FMS patients and healthy participants. Although no significant 

differences were identified the findings indicate that FMS is not likely to be related 

to abnormal development of white matter tracts. Therefore structural alterations 

associated with FMS are likely to occur only in the grey matter.  
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Chapter One 

General introduction 

1.1 Fibromyalgia syndrome: A brief overview 

Fibromyalgia syndrome (FMS) is a chronic pain disorder characterised by 

widespread pain and tenderness, morning stiffness, sleep disturbance, fatigue, 

psychological disturbance and cognitive dysfunction (Wolfe et al., 1990; Bennett et 

al., 2007). The principal characteristic of FMS was first explicitly defined in the 

1970s as widespread pain in deep tissues and muscles (Smythe, 1975), and this 

explanation expanded to include accompanying symptoms such as fatigue and 

morning stiffness (Smythe and Moldofsky, 1977). Since then the number of 

recognised symptoms in FMS has steadily increased and a wide range of frequent 

comorbidities have also been acknowledged (Weir et al., 2006). FMS is now 

considered to be a heterogeneous and complex disorder and patients are likely to be 

affected by varying symptoms and related conditions over the course of their lifetime 

(Clauw, 2009). 

Previously investigations of FMS patients have demonstrated genetic and 

environmental causal factors, as well as various pathophysiological mechanisms 

which may contribute to the pathogenesis and maintenance of FMS symptoms. 

However, the exact aetiology and pathophysiology of this complex syndrome is still 

not adequately understood (Schmidt-Wilcke and Clauw, 2011). 
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1.1.1. Diagnostic criteria for FMS 

Several diagnostic criteria for FMS were suggested in the 1980s (Yunus et 

al., 1981; Wolfe and Cathey, 1983), although these tended to be based on small 

study samples and often encompassed arbitrary numbers and locations of tender 

points (McBeth and Mulvey, 2012). In 1990 the American College of Rheumatology 

(ACR) criteria (Wolfe et al., 1990) was established using a controlled study with a 

larger sample population and age-matched control group. The criteria requires pain 

affecting all 4 quadrants of the body for a period of at least three months, and 

patients should report pain upon manual palpation examination of no fewer than 11 

of 18 designated tender points (Fig.1.1). These criteria were shown to have 

sensitivity and specificity exceeding 80% (Wolfe et al., 1990). The 1990 ACR 

criteria were criticised for their use of tender points, which were deemed unsuitable 

for clinical environments. However, this review also acknowledged their legitimacy 

for research purposes (Okifuji et al., 1997). The establishment of the ACR criteria 

proved particularly valuable in allowing standardised study of the disorder; leading 

to a sharp rise in research of FMS populations (Wolfe and Hauser, 2011; McBeth 

and Mulvey, 2012). However, clinical diagnosis of FMS is complex and requires 

comprehension of the wide range of symptoms of the disorder as well the varying 

comorbidities, rather than sole reliance on the basic ACR premise (Schweinhardt et 

al., 2008; Clauw, 2009). Recently, new ACR criteria were developed which do not 

require physical examination and instead classify FMS patients as scoring a 

widespread pain index score of greater than 7, and a symptom severity score of 

greater than 5 Points (widespread pain index score of between 3-6 is acceptable if 

symptom severity score is greater than 9; Wolfe et al., 2010) 
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Fig.1.1 Diagram of locations for palpation during the manual tender point scale test  

 

1.2. Epidemiology of FMS 

1.2.1. Prevalence of FMS 

FMS is one of the most common conditions seen in rheumatology practice 

(Goldenberg, 1987), exceeded only by osteoarthritis and rheumatoid arthritis (Wolfe 

and Cathey, 1983). Epidemiological studies have estimated the prevalence of FMS in 

the general population as high as 11% in Norway (Forseth and Gran, 1992). 

However, prevalence ranging between 2−5% has been reported in the USA (Wolfe et 

al., 1995; Burckhardt, 2005; Lawrence et al., 2008), 3.3% in Canada (White et al., 

1999), and around 0.7% in Sweden and Finland (Mäkelä and Heliövaara, 1991; 

Prescott et al., 1993).  

Studies consistently indicate a strong female bias in FMS; a meta-analysis of 

studies revealed that female adult prevalence in western countries ranged between 
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1−4.9% compared to 0−1.6% in males (Gran, 2003). Similarly, an epidemiological 

study demonstrated that females are up to 7 times more likely to develop FMS than 

males (Weir et al., 2006). A pattern of age-related prevalence is also seen in several 

epidemiological studies of FMS, with increasing likelihood found in the population 

up until the sixth decade, and decreasing thereafter (Mäkelä and Heliövaara, 1991; 

Wolfe et al., 1995; White and Harth, 2001). However, some studies indicate that 

FMS prevalence continues to increase up until the eighth decade (Lawrence et al., 

1998; Branco et al., 2010). To summarise, FMS is reported at a prevalence of 

between 1−11% in general populations although figures of between 2−5% are most 

common (McBeth and Mulvey, 2012). The syndrome shows a strong female bias 

(Gran, 2003), and is more common in middle age (McBeth and Mulvey, 2012). 

Table 1.1 surmises the data from several epidemiological studies of FMS which 

utilised the 1990 ACR criteria to evaluate prevalence in the general population. 
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Table 1.1 Epidemiological studies of FMS prevalence in general populations. 

Study Cohort size Country 

Reported 

prevalence 

(%) 

Forseth & Gran (1992)  2,038 Norway 10.5 

Lydell (1992)  1,102 South Africa 3.2 

Prescott et al. (1993)  1,219 Denmark 0.66 

Buskila et al. (1993)  338 U.S.A 6.2 

Wolfe et al. (1995)  3,006 U.S.A 2.0 

Clark et al. (1998)  548 Mexico 1.2 

White et al. (1999) 3,395 Canada 3.3 

Santos et al. (2010) 361 Brazil 5.5 

 

1.2.2. Socio-economic impact  

The expense of treatment interventions along with significant indirect costs 

and reduced patient productivity has led to a recent emphasis on the large socio-

economic burden associated with FMS (Lachaine et al., 2010). As a chronic and 

complex condition, FMS is associated with high healthcare costs (Hughes et al., 

2006; White et al., 2008). Retrospective studies of health insurance claims in the 

United States estimate that FMS patients average between 12−20 doctors visits per 

year, and directly associated medical costs were evaluated at up to $10,000 USD per 

annum (Robinson et al., 2003; Berger et al., 2007; White et al., 2008).  
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However, direct medical costs only account for a proportion of the economic 

burden associated with FMS (Lachaine et al., 2010). Patients report significant 

limitations in physical function affecting multiple aspects of daily life (Bennett et al., 

2007; Schaefer et al., 2011), which also relate to compromised productivity when in 

work, increased absenteeism, unemployment and disability (White et al., 2008). 

Patients may also require additional help and resources such as unpaid assistance 

from family members for daily living (Boonen et al., 2005; Schaefer et al., 2011). A 

study found that more than three-quarters of total fibromyalgia-related costs are 

attributable to lost productivity, disability and indirect costs in Europe (Winkelmann 

et al., 2011). A similar proportion was also recently reported in the United States 

(Chandran et al., 2012). The increased use of health services by FMS patients is 

associated with clinical, psychological and social factors (Bernatsky et al., 2005). 

Symptom severity and disability have been shown to predict increased medical visits 

and costs (Walen et al., 2001), as well as psychosocial variables such as substance 

abuse or psychological distress (Kersh et al., 2001). Studies indicate that additional 

clinical or psychological comorbidities are amongst the principal determinants of the 

socio-economic burden of FMS (Walen et al., 2001; Penrod et al., 2004; Bernatsky 

et al., 2005). 

1.2.3. Common comorbidities associated with FMS 

FMS is often comorbid with other disorders which can be grouped into 

clinical, psychological and functional categories. Clinical comorbidities such as 

osteoarthritis or rheumatoid arthritis are commonplace and may act as confounding 

or aggravating factors in FMS pain (Atzeni et al., 2011). Although these disorders 

demonstrate obvious peripheral mechanisms (degeneration or inflammation of the 
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joints respectively), it was recently conjectured that they may also share central 

pathophysiological mechanisms with non-inflammatory pain syndromes such as 

FMS (Lee et al., 2011). Functional regional pain syndromes such as irritable bowel 

syndrome, interstitial cystitis, temporomandibular disorder, tension-type headache, 

migraine, and vulvodynia are also commonly associated with FMS (Clauw, 2009), 

and these disorders may also share pathophysiology with the syndrome (Ablin and 

Clauw, 2009; Williams and Clauw, 2009).  

Psychological disturbance is often associated with FMS, and mood or anxiety 

disorders may precede or accompany its development (Arnold and Clauw, 2010). 

Studies estimate the lifetime prevalence of anxiety disorder in FMS between 

35−62%, and major depressive disorder between 58− 86% of patients (Thieme et al., 

2004; Arnold et al., 2006). In contrast, lifetime prevalence of major depressive 

disorder in the adult general population was estimated at 8.6% in the United States, 

and prevalence of any mood disorder at just 11.5% (Jonas et al., 2003). It was 

proposed that the high prevalence of psychological disturbance in FMS may be due 

to common pathophysiological mechanisms, rather than arising as a result of FMS 

pain or vice versa (Hudson and Pope, 1996). Separate interventions are 

recommended for comorbid psychological disturbances in FMS rather than treating 

them as part of the same disorder (Thieme et al., 2004). Treatments aimed entirely at 

relieving psychological disturbance may result in poor therapeutic outcomes for the 

management of FMS (Williams and Clauw, 2009). 

Epidemiological research has indicated that FMS patients are up to 7 times 

more likely to demonstrate a common comorbid condition than the general 

population (Weir et al., 2006), and a study showed that up to 90% of FMS patients 
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report at least 1 associated comorbid condition (Bernatsky et al., 2005). The most 

frequent clinical comorbidity identified was osteoarthritis which affected 40% of 

patients; depression was the most common psychological distress, affecting 5% of 

patients (although lifetime prevalence was not accounted for); the most common 

functional disorder was irritable bowel syndrome, affecting 36% of patients 

(Bernatsky et al., 2005).  

1.2.4. Risk factors pertaining to FMS 

The lack of a peripheral nociceptive cause for FMS pain, coupled with the 

high prevalence of affective and psychological disturbance led some researchers to 

construe that FMS may be a psychogenic disorder (Netter and Hennig, 1998). 

Advances in genetic research, experimental pain testing and neuroimaging have led 

to advances in our understanding of the aetiology of FMS, although further research 

is still necessary (Schmidt-Wilcke and Clauw, 2011). 

1.2.4.1. Genetic risk factors 

Studies have indicated a strong familial component in FMS, it was previously 

shown that first degree relatives of patients exhibit an 8 times greater risk of 

developing the disorder than relatives of rheumatoid arthritis patients who were 

evaluated as a control group (Arnold et al., 2004). There is also evidence of an 

increased familial risk of common comorbid disorders such as affective disturbance 

(Hudson et al., 1985; Buskila et al., 1996). Polymorphisms in genes involved in 

serotonergic, dopaminergic and catecholaminergic systems have been proposed to 

play a role in the aetiology of FMS (Bondy et al., 1999; Offenbaecher et al., 1999; 

Buskila, 2009). It is likely that, as a complex and heterogeneous syndrome, a wide  
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range of genetic factors will be involved in FMS (Bradley, 2009). Due to a 

small number of studies, relatively small sample sizes and diverse heterogeneity in 

sample populations, the scientific understanding of the genetic component of FMS 

aetiology is still at a relatively early stage (Holliday and McBeth, 2011). 

1.2.4.2. Social, psychological and environmental risk factors 

As well as a probable genetic component, environmental factors are likely to 

play a role in triggering the onset of FMS. Myofascial pain syndrome (Cakit et al., 

2010), physical trauma (particularly to the trunk of the body), acute illness and 

emotional or psychological distress (Mease et al., 2005) have all been linked with the 

onset of FMS, however the syndrome will only develop in 5−10% of individuals 

undergoing such trauma (Bennett et al., 2007). In women, physical abuse has been 

suggested as a common triggering factor (Ruiz-Perez et al., 2009), and obesity is also 

often seen in female sufferers (Mork et al., 2010). Psychosocial factors may also play 

an important role in the development and maintenance of FMS; workplace stress 

appears to be a frequent cause (Harkness et al., 2004), and life-changing events or 

family problems have also been proposed as potential triggering factors (Mease et 

al., 2005). Recent theories have postulated that abnormalities of the human stress 

response, resulting in exaggerated physiological reactions to stress, could also be a 

possible cause of FMS (Clauw, 2009). 

1.3. Aetiology of FMS 

Although the exact aetiology of FMS is still debated, it has been suggested 

that alterations to processes in the central nervous system may be causal or 

maintaining factors in the disorder (Yunus, 1992; Clauw and Chrousos, 1997), and 

such factors have become a primary focus of neuroimaging research. 
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1.3.1 Central sensitisation hypothesis for FMS 

Sensory thresholds are lowered in FMS, and this may be associated with 

neuroplastic alterations which relate to the development of symptoms in FMS (Staud 

and Spaeth, 2008). Specifically, a dysfunctional hyperexcitability of pain processing 

pathways is purported to be responsible for the pain experienced in FMS (Perrot et 

al., 2008; Petersel et al., 2011). A wealth of psychophysical evidence exists 

demonstrating reduced pain thresholds in response to pressure, thermal, cold, 

electrical and laser stimuli in FMS patients (Kosek et al., 1996; Lorenz et al., 1996; 

Petzke et al., 2003). Cross modal correlations between mechanical and thermal 

hyperalgesia (Petzke et al., 2003) and enhanced wind-up of repetitive stimuli in FMS 

patients (Staud et al., 2001; Banic et al., 2004) also suggest that sensory alterations 

are widespread, indicating central aetiology. An abnormal central pain processing 

aetiology is also supported by structural and functional neuroimaging studies (for a 

review see; Jones et al., 2012). EEG studies utilising noxious laser stimuli with FMS 

patients revealed that reduced pain thresholds correlated with enhanced cortical laser 

evoked potentials (Gibson et al., 1994; Sorensen et al., 1995; Lorenz et al., 1996; de 

Tommaso et al., 2011). Functional MRI studies investigating hyperalgesia in FMS 

also showed augmented cortical activations and subjective pain in patients during 

noxious stimuli such as mechanical pressure, cold and thermal stimuli (Gracely et 

al., 2002; Cook et al., 2004; Staud et al., 2008).  

Centrally acting pharmacotherapies such as pregabalin, gabapentin, 

milnacipran and duloxetine are the most commonly prescribed treatments for FMS 

(Woolf, 2011). The various pharmacological mechanisms of such drugs suggests 

multiple central pathophysiological mechanisms for FMS symptoms (Petersel et al., 
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2011). Pathophysiological explanations for central sensitisation include facilitation 

of ascending pathways, exaggerated dorsal horn responses to afferent peripheral 

impulses, dysfunction of descending inhibitory pathways, or neurotransmitter 

imbalances, all of which may contribute to the clinical symptoms seen in FMS 

(Graven-Nielsen and Arendt-Nielsen, 2010; Ge et al., 2011; Petersel et al., 2011). 

The mechanisms underlying central sensitisation are difficult to define and 

disruption to one (or many) of the complex mechanisms mediating central 

processing of pain could feasibly cause FMS symptoms. To further complicate 

matters, it has also been postulated that psychological factors could (at least in part) 

contribute to central sensitisation (Sarzi-Puttini et al., 2011).  

The continuing recognition and support for the central sensitisation 

hypothesis of FMS has recently led to the suggestion that other, local pain 

syndromes such as IBS or tension-type headache may also share pathophysiological 

central sensitisation mechanisms with FMS. It was postulated that such an overlap in 

pathophysiology may go some way to explain the overlap in symptoms as well as the 

common comorbidity of these types of disorders (Ablin and Clauw, 2009; Williams 

and Clauw, 2009; Phillips and Clauw, 2011).  

1.3.2. Altered central processing of somatosensory stimuli in FMS 

Abnormal processing of peripheral somatosensory input is also likely to 

contribute to central sensitisation mechanisms in FMS (Petersel et al., 2011). 

Ongoing peripheral afferent input is known to maintain central sensitisation and has 

been shown to play an active role in the generation of spontaneous pain, hyperalgesia 

and allodynia (Staud et al., 2009; Staud, 2010). Persistent peripheral nociceptive 

activity can lead to chronic pain, particularly if processes such as temporal 
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summation are facilitated in a state of central sensitisation (Graven-Nielsen and 

Arendt-Nielsen, 2010). Experimental evidence from neuropathic (Price et al., 1989; 

Gracely et al., 1992), chronic regional pain syndrome (Price et al., 1998) and irritable 

bowel syndrome (Verne et al., 2003) patients has shown that peripherally acting 

analgesics can provide relief in disorders with a strong central sensitisation 

component. Recent evidence also suggests that peripherally acting analgesics can 

reduce FMS pain (Staud et al., 2009). Dysfunctional processing of innocuous 

somatosensory stimuli may result in subjective pain, indicating central amplification 

of peripheral afferents and such alterations to processing can be observed using 

objective biomarkers and neuroimaging techniques (Woolf, 2011). It is reasonable to 

postulate that peripheral input, is required to achieve and maintain central 

sensitisation, and may be important in the development of disorders such as FMS. 

The argument for a peripheral contribution to FMS pain was recently bolstered by 

microneurographic findings suggesting that peripheral small fibre neuropathy may 

be common in a significant subgroup of FMS patients (Serra, 2012). 

1.3.2.1. Allodynia and hyperalgesia  

Pain processing can be divided into two categories: nociceptive processing, 

involving detection of painful stimuli which prevents harm and tissue damage; and 

pathological pain processing, which serves no advantage and often results in severe 

distress (Woolf and Mannion, 1999). Allodynia is a pathological pain processing 

condition whereby innocuous stimuli cause a pain sensation. Hyperalgesia is 

excessive pain sensation resulting from a painful stimuli. Both are symptoms 

commonly seen in FMS (Sarzi-Puttini et al., 2011).  
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Aberrant brain activations have been consistently identified during allodynia 

using a variety of brain imaging techniques in neuropathic pain populations (for a 

review see; Jones and Watson, 2007; Moisset and Bouhassira, 2007). Activations in 

frontal cortices during allodynia pain have been linked to the emotional burden of 

ongoing pain or an exaggerated cognitive evaluative response (Witting et al., 2006). 

Activations seen in pain and somatosensory processing structures may represent a 

more sensory aspect of allodynia pain processing (Maihöfner et al., 2006). However, 

previous findings would suggest that an ‘allodynia matrix’ specifically accounting 

for pathological processing during allodynia pain is unlikely (Moisset and 

Bouhassira, 2007). Augmented activations and increased subjective pain ratings have 

been demonstrated in fMRI studies of FMS patients during hyperalgesia (Gracely et 

al., 2002; Cook et al., 2004; Staud et al., 2008). However, no data exists regarding 

brain activations in FMS patients during allodynia pain resulting from innocuous 

stimuli. Further investigation of the central mechanisms underlying these processes 

could advance treatment and understanding of FMS. 

Previously, fMRI studies have investigated hyperalgesia during mechanical 

pressure in FMS patients, showing augmented cortical activations and subjective 

pain during stimulation that was non-noxious in healthy people (Gracely et al., 

2002). Dynamic mechanical stimulation, such as brushing, was previously utilised to 

demonstrate augmented activations in cortical regions associated with somatosensory 

processing such as bilateral primary somatosensory (SI); secondary somatosensory 

(SII) and thalamus in neuropathic pain patients (Petrovic et al., 1999; Peyron et al., 

2004; Witting et al., 2006), and complex regional pain syndrome patients 

(Mailhöfner et al., 2006). FMS is associated with allodynia to light pressure and 

severe cases may exhibit allodynia to light touch (Jones and Watson, 2007); patients 
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also exhibit alterations to central processing of mechanical stimuli (Gracely et al., 

2002). Pain resulting from innocuous mechanical stimuli, such as brushing could 

prove to be an important pathophysiological component of fibromyalgia 

symptomatology. Despite the previous findings no study has yet investigated 

somatosensory processing of non-noxious stimuli, such as mechanical brushing, in 

FMS patients to specifically investigate the mechanisms of allodynia pain in FMS. 

1.3.2.2. Dysfunctional endogenous pain modulation and FMS 

The duration, quality and intensity of nociceptive input are all highly relevant 

to pain processing. However, these afferent impulses are also subject to subsequent 

modulation occurring in the peripheral and central nervous system, which can reduce 

or augment the intensity of pain sensations (Staud, 2012). Functional imaging studies 

show that pain modulation within the central nervous system encompasses a network 

of brain structures including frontal cortices, rostral anterior cingulate cortex 

(rACC), periaqueductal gray and rostral ventromedial medulla (Mason, 2005; Bingel 

et al., 2006; Kong et al., 2006; Eippert et al., 2009). It was proposed that pain 

modulation serves an evolutionary protective function (Dubner and Ren, 1999), for 

instance by enabling pain reduction in a ‘fight or flight’ scenario (Ren and Dubner, 

2002). 

Central sensitisation may result from an imbalance between descending 

inhibition and ascending facilitation of pain pathways (Graven-Nielsen and Arendt-

Nielsen, 2010). This can be assessed experimentally, and dysfunctional endogenous 

pain modulation has already been demonstrated in various chronic pain conditions, 

such as temporomandibular disorder (King et al., 2009), osteoarthritis (Kosek and 

Ordeberg, 2000), chronic tension-type headache (Sandrini et al., 2006) and FMS 
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itself (Kosek and Hansson, 1997; Lautenbacher and Rollman, 1997; Vierck et al., 

2001; Julien et al., 2005). Functional imaging of FMS patients during experimental 

pain shows reduced activations in regions associated with endogenous pain 

modulation (Jensen et al., 2009), and reduced connectivity between the brainstem 

and pain modulatory structures (Jensen et al., 2012). Functional imaging of the 

brainstem and spinal cord during innocuous and painful touch suggests that 

dysfunctional descending pain modulation may be important in the experience of 

allodynia pain (Ghazni et al., 2010). It has also been suggested that dysfunctional 

descending pain modulation may facilitate the development of chronic pain in FMS 

and other chronic pain disorders (Arendt-Nielsen and Yarnitsky, 2009; Staud, 2011a; 

Jones et al., 2012), and it is also likely to be influenced by psychological factors (van 

Wijk and Veldhuijzen, 2010). 

1.4.Pathophysiology of FMS 

1.4.1. Tonic ongoing pain in FMS 

Chronic pain patients experience an unrelenting pain percept (Foss et al., 

2006), and tonic ongoing pain originating from peripheral sources has been proposed 

as an important component in the development and maintenance of FMS (Staud, 

2010, 2011b). It was previously suggested that cortical re-organisation of neural 

networks may occur as tonic pain persists in FMS (Staud, 2011b), and, due to its 

ongoing nature, chronic pain may particularly affect resting-state networks (Baliki et 

al., 2008).  
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1.4.1.1. Resting-state network abnormalities 

The term ‘default mode’ was initially suggested to describe the increased 

levels of activation seen in various brain structures during rest (Raichle et al., 2001). 

Experimental findings have shown that levels of activity in a specific subset of brain 

regions, referred to as the default mode network (DMN), appear to decrease when 

switching from a resting-state, such as passive visual fixation or resting with eyes 

closed, to a goal directed task (Shulman et al., 1997). These findings were 

consistently repeated and confirmed by meta-analyses (Binder et al., 1999). Regions 

involved in the DMN include posterior cingulate, precuneus, left and right inferior 

parietal and medial pre-frontal cortices (Fox et al., 2005; Raichle and Snyder, 2007; 

Laird et al., 2009).  

Studies of clinical populations have previously demonstrated abnormalities in 

DMN activations in clinical populations. Alzheimer’s disease patients show 

significant reductions, relative to healthy volunteers, in DMN activations (Greicius et 

al., 2004). In chronic back pain patients the magnitude of deactivation in DMN 

structures when switching from default mode to a task state was strongly attenuated 

(Baliki et al., 2008). The extent of dysfunction in the DMN also correlated 

significantly with the duration of chronic pain, which the authors attributed to re-

organisation of DMN as a result of ongoing chronic pain (Baliki et al., 2008). 

Although DMN activation differences have not been identified in FMS there are 

alternative ways to analyse resting-state networks in terms of connectivity between 

structures which have proved to be more successful in FMS research. 
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1.4.1.2. Functional connectivity alterations  

It is possible to investigate functional connectivity between structures using 

fMRI scans and evaluating blood oxygen level dependent (BOLD) signal changes 

throughout the brain in order to identify regions with correlated (or anti-correlated) 

activation patterns (Krienen and Buckner, 2009). These techniques have been 

employed to further enhance our understanding of resting-state networks such as the 

DMN. In healthy populations BOLD signal correlations were used to demonstrate 

significant functional connectivity between the regions commonly identified as the 

DMN (Greicius et al., 2003). The degree of connectivity between DMN structures 

may be altered in clinical pathologies (Whitfield-Gabrieli and Ford, 2012). 

Functional connectivity within the DMN was previously found to be significantly 

increased in depressed patients relative to healthy people and the length of 

depressive episode correlated with the degree of augmented connectivity (Greicius et 

al., 2007).  

Altered connectivity between DMN structures has been demonstrated in 

chronic pain patients (Malinen et al., 2010). A study of DMN connectivity in FMS 

patients showed augmented connections between DMN structures and insula cortex 

which was linked to ongoing spontaneous pain (Napadow et al., 2010). Furthermore, 

this augmented DMN–insula connectivity normalised following successful 

therapeutic intervention and was associated with a reduction in spontaneous pain 

(Napadow et al., 2012). Similar abnormal connectivity between DMN and insula was 

also seen in temporomandibular disorder patients (Ichesco et al., 2012), raising the 

possibility that this abnormal connectivity may not be specific to FMS, but could be 

linked to comorbid disorders. Reduced functional connectivity was also previously 
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identified between the brainstem and rACC in FMS patients during experimental 

pain, which was attributed to dysfunctional endogenous pain inhibition (Jensen et al., 

2012).  

Studies have also demonstrated resting-state alterations to functional 

connectivity between acknowledged pain processing structures in FMS patients 

(Cifre et al., 2012). Augmented connectivity was seen between anterior cingulate 

cortex (ACC) and insula cortices, which was attributed to processing of tonic pain, 

whereas reduced connectivity between thalamus, periaqueductal grey and insula 

cortices was conjectured to be an indicator of dysfunctional endogenous pain 

modulation (Cifre et al., 2012). However, the previous studies showing DMN 

functional connectivity abnormalities in FMS patients exhibit some methodological 

limitations. Patients aged up to 75 years were utilised in the first study to employ this 

method in FMS (Napadow et al., 2010). This is problematic as resting-state 

functional connectivity is known to show age-related alterations in older people 

(Whitfield-Gabrieli and Ford, 2012). Therefore, a younger sample may be more 

suitable for analysis. Similarly, the previous investigation of functional connectivity 

between pain processing structures in FMS used patients of both sexes and a total of 

only 9 patients (Cifre et al., 2012). No investigations of FMS patients have 

previously utilised functional connectivity analyses of DMN and pain processing 

regions identified using recent meta-analyses.  

1.4.2. Morphological alterations and FMS 

Voxel-based morphometry (VBM) is an analysis technique which employs 

statistical parametric mapping to analyse anatomical MR images in order to 

investigate macroscopic alterations in the grey and white matter of the brain 
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(Ashburner and Friston, 2000). VBM studies in FMS patients have shown a range of 

regional grey matter differences relative to healthy control subjects, encompassing a 

wide variety of structures (Kuchinad et al., 2007; Schmidt-Wilcke et al., 2007; 

Luerding et al., 2008; Lutz et al., 2008; Burgmer et al., 2009; Valet et al., 2009; 

Robinson et al., 2011). FMS patients have demonstrated local grey matter density 

reductions in cingulate, insular cortices, medial frontal cortices, parahippocampal 

gyri (Kuchinad et al., 2007), and in the superior temporal gyrus and left posterior 

thalamus (Schmidt-Wilcke et al., 2007). Grey matter density increases were found in 

the left orbitofrontal cortex, cerebellum and bilateral striatum (Schmidt-Wilcke et al., 

2007). Analyses excluding age and depression identified reduced grey matter 

volumes in prefrontal, cingulate and insular cortices of FMS patients (Valet et al., 

2009). Conversely an alternative study suggests that grey matter alterations were 

negated when implementing depression as a covariant (Hsu et al., 2009). VBM 

analyses of pre-defined regions of interest of FMS patients have shown reduced grey 

matter volumes in the cingulate, prefrontal and insular cortices, hippocampi and 

amygdala (Lutz et al., 2008; Burgmer et al., 2009; Robinson et al., 2011).  

 It was previously suggested that the lack of consistency in the findings may 

be due to the wide variability in age across studies and/or the relative proportions of 

different symptoms contributing to FMS diagnosis in a heterogeneous population 

(May, 2011). VBM has also been used to identify structural differences in irritable 

bowel syndrome (Seminowicz et al., 2010), tension type headache (Schmidt-Wilcke 

et al., 2005), chronic fatigue syndrome (de Lange et al., 2005) and post-traumatic 

stress disorder (Villarreal et al., 2002; Chen et al., 2006) patients. FMS is often 

comorbid with these disorders, and the overlap of symptoms has led some 

researchers to propose that similar neurophysiological mechanisms may be involved 
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(Ablin and Clauw, 2009; Williams and Clauw, 2009; Phillips and Clauw, 2011). It is 

possible that a particularly high prevalence of a specific comorbidity in a 

heterogeneous FMS population could drive regional grey matter changes identified 

using VBM and explain the wide variety in the data. 

The cross-sectional nature of structural imaging studies dictates that it is 

impossible to infer whether structural alterations pre-exist, and increase the 

probability of spontaneous or environmentally triggered FMS, or occur as a result of 

prolonged chronic pain symptoms (Schmidt-Wilcke and Clauw, 2011). However, it 

is postulated that dynamic, reversible neuroplastic alterations are likely in chronic 

pain disorders (Seifert and Maihöfner, 2011), and a longitudinal study of chronic 

pain patients with severe osteoarthritis undergoing hip arthroplasty has shown that 

grey matter alterations normalise post-operatively with pain reduction (Gwilym et 

al., 2010). Morphological alterations have implications for functional abnormalities, 

and in the past, grey matter atrophy was purportedly related to dysfunctional 

endogenous pain inhibition and deficits in cognitive processing in chronic pain 

populations (Park et al., 2001; Luerding et al., 2008).  

Previous morphological findings in FMS patients utilising VBM analyses 

show a range of discrepancies. The majority of previous studies employed patient 

cohorts with a mean age of over 50 years (Kuchinad et al., 2007; Schmidt-Wilcke et 

al., 2007; Luerding et al., 2008; Lutz et al., 2008; Burgmer et al., 2009; Valet et al., 

2009). This is problematic as it was previously shown that various brain structures 

are susceptible to age-related decreases in grey matter volumes (Ziegler et al., 2012). 

It would therefore be preferable to implement VBM analysis in a younger FMS 

patient cohort. In order to increase homogeneity within the patient group (and reduce 
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spurious findings which may be indicative of comorbidities), a strict medication and 

comorbidity criteria should be employed and patients with past history of major 

disease, head injury or substance abuse should be excluded.  

1.4.2.1. White matter tissue abnormalities and FMS 

VBM analyses are only suitable for observing macroscopic changes in 

morphology, and are predominantly used to investigate regional grey matter 

alterations. However, diffusion-weighted MR imaging (which is used to assess the 

directional movement of water through brain tissue), and specifically diffusion 

tensor imaging (DTI, see chapter two) analysis can be used to assess the complexity 

of brain microstructure in the white matter of the brain (Sundgren et al., 2004). It has 

also been hypothesised that DTI analysis may possess improved sensitivity to 

morphological changes in FMS compared to VBM and other structural analysis 

methods (Lutz et al., 2008).  

Using DTI analysis, white matter alterations have previously been identified 

in irritable bowel syndrome (Chen et al., 2011), chronic regional pain syndrome 

(Geha et al., 2008) and neuropathic pain patients (Gustin et al., 2010). The method 

has also been used to evaluate deterioration of white matter microstructure 

associated with ageing (Pfefferbaum et al., 2000). In FMS patients, reduced 

fractional anisotropy (FA) values were observed in the right thalamus, particularly in 

patients exhibiting greater clinical pain; these changes were attributed to neuronal 

disorganisation rather than to ongoing axonal degeneration (Sundgren et al., 2007). 

Similarly, bilateral thalami, insulae and thalamocortical tracts showed significant 

decreases in FA values relative to healthy people, indicating degeneration or 
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disorganisation of white matter. Several FA alterations demonstrated correlations 

with clinical measures of symptom severity (Lutz et al., 2008).  

 Despite the apparent white matter findings, these studies also raise 

methodological concerns. No DTI studies of FMS patients report alterations to FA 

values at a voxelwise corrected level. Also, previous studies have utilised techniques 

such as VBM to analyse FA data. This method has been criticised due to apparent 

registration and alignment issues which threaten the validity of interpretations drawn 

from voxelwise analyses (Ashburner and Friston, 2001). Similarly, the spatial 

smoothing required by VBM can jeopardise results, and the arbitrary decisions on 

the degree of smoothing can also influence findings (Jones et al., 2005). Using a 

recently developed technique, tract-based spatial statistics, it is possible to compare 

FA throughout the whole brain without the need for smoothing or uncorrected 

thresholded analyses to identify alterations (Smith et al., 2006). As described earlier, 

pathophysiological mechanisms including abnormal processing of somatosensory 

stimuli or alterations to endogenous pain modulation may be involved in the 

pathogenesis or maintenance of FMS. White matter tract integrity is required for 

efficient connectivity between brain structures (Stein et al., 2012), and aberrant 

processing in FMS could arise due to dysfunction of the white matter tracts 

connecting relevant cortical structures. Despite this no previous study has applied 

novel techniques such as probabilistic tractography to investigate the degree of white 

matter connectivity between structures of interest in an FMS population. 

1.4.2.2. Pain processing structure abnormalities 

Neural processing of pain is complex and encompasses sensory, affective, 

cognitive, motor and autonomic components (Seifert et al., 2008). Advances in gy 
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neural imaging techniques have been employed to investigate the brain 

structures involved in the processing of painful stimuli, including bilateral thalami, 

SI and SII, insular, cingulate and prefrontal cortices (Iadarola and Coghill, 1999; 

Peyron et al., 1999; Treede et al., 1999; Apkarian et al., 2005; Maihöfner and 

Handwerker, 2005; Seifert et al., 2008; Duerden and Albanese, 2011). Regional grey 

matter reductions have been seen in a variety of pain processing structures in chronic 

pain disorders including FMS (Jones et al., 2012). Recently, neuroimaging research 

has investigated whether central nervous system abnormalities in structures 

responsible for defective pain processing could be the underlying cause of FMS 

symptoms (Schweinhardt et al., 2008). Regional decreases in grey matter densities in 

FMS patients relative to healthy people were previously identified in brain areas 

associated with pain processing such as cingulate, insular, middle frontal cortices, 

parahippocampal gyri, thalami and superior temporal gyrus (Kuchinad et al., 2007; 

Schmidt-Wilcke et al., 2007). Similarly, VBM analyses of a priori selected regions 

of interest in pain processing structures show reduced grey matter volumes in the 

cingulate, prefrontal and insular cortices, hippocampi and amygdala in FMS patients 

relative to healthy people (Lutz et al., 2008; Burgmer et al., 2009; Robinson et al., 

2011).  

White matter alterations have also been demonstrated in pain processing 

structures such as the thalami and insulae of FMS patients (Sundgren et al., 2007; 

Lutz et al., 2008). Reviewers have hypothesised that white matter alterations in the 

thalami may be linked to functional changes and increased sensory input to primary 

somatosensory cortices in FMS patients (Gracely and Ambrose, 2011), which may in 

turn relate to the hyperalgesia, allodynia or abnormal processing of peripheral 

afferents which contribute to FMS pain (Staud et al., 2009). Although reduced 
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functional connectivity has been demonstrated between structures involved in 

endogenous pain modulation in FMS using fMRI studies (Jensen et al., 2012), no 

studies have investigated white matter connectivity between such regions in FMS. 

The wealth of anatomical evidence indicates that structural alterations in pain 

processing structures of FMS patients are likely, but unfortunately, perhaps as a 

result of heterogeneity in the patient population, the previous findings demonstrate a 

lack of consistency and replication. 

1.4.2.3. Subcortical alterations and FMS 

Morphological alterations in subcortical structures may relate to abnormal 

processing of peripheral input in FMS (Staud, 2010), and this may relate to 

dysfunctional endogenous pain modulation (Staud, 2011a). VBM studies have 

previously reported regional grey matter reductions in subcortical structures such as 

hippocampi (Lutz et al., 2008), brainstem (May, 2009) and thalami (Schmidt-Wilcke 

et al., 2007). DTI investigations also indicate morphological alterations in the 

thalami of FMS patients (Sundgren et al., 2007; Lutz et al., 2008). Reduced resting 

cerebral blood flow in the thalamus and basal ganglia structures is the most common 

functional finding using PET with FMS patients (Jones et al., 2012). Recently, a 

novel method of subcortical shape analysis of structural MRI scans has been 

established which can identify complex morphological and volumetric alterations to 

subcortical structures more precisely than VBM (Patenaude et al., 2011). 

This method was recently used to elucidate subcortical abnormalities in long 

term abstinent alcoholics (Sameti et al., 2011), patients with Alzheimer’s disease 

(Zarei et al., 2010) and age-related changes in healthy populations (Goodro et al., 

2012). Despite the previous evidence indicative of structural alterations to 
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subcortical structures in chronic pain disorders including FMS (May, 2009), no 

previous anatomical studies of FMS patients have applied analysis methods which 

prioritise the investigation of subcortical structural alterations. Furthermore, in spite 

of the accepted relevance of subcortical structures in pain processing and particularly 

endogenous pain modulation, this recently developed, novel technique of subcortical 

shape analysis is yet to be utilised in any chronic pain population.  

1.4.2.4. Arnold Chiari Syndrome 

Chiari I malformation (CIM) is a hindbrain malformation where the 

cerebellar tonsils extend below the foramen magnum, which may develop due to a 

small posterior fossa (Watson et al., 2011). Studies report that FMS is over 10 times 

more likely to occur following a neck injury than injury to lower extremities 

(Buskila and Neumann, 1997; Buskila et al., 1997; Heffez et al., 2004), which 

suggests an important cervico-spinal aspect of FMS pathophysiology. Furthermore, 

chronic pain syndromes such as FMS, complex regional pain syndrome and 

temporomandibular disorder are common among CIM patients (Thimineur et al., 

2002), and CIM symptoms show considerable overlap with those seen in FMS 

(Holman, 2008). These links have led to some FMS patients being surgically treated 

for presumed CIM pathology, which was shown to be effective in relieving pain and 

fatigue in suitable FMS patients (Heffez et al., 2004; Heffez et al., 2007). However, 

the prospect of a surgical treatment for FMS raises economic and efficacy issues, 

(Wilke, 2001), particularly as these non-randomised studies recruit volunteer FMS 

patients whose desire for a definitive cure may compromise the validity of the 

findings (Watson et al., 2011). Previous studies suggesting a link between FMS and 

CIM are uncontrolled (Heffez et al., 2004; Holman, 2008), and often present a 
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retrospective analysis of existing MR data (Thimineur et al., 2002). Therefore, it was 

recently postulated that if CIM was to contribute to FMS it would be likely to only 

affect a small subset of the heterogeneous population (Watson et al., 2011). 

1.5. Psychological aspects of FMS 

Fibromyalgia is associated with psychological disturbance such as depression 

and anxiety (Wolfe et al., 1990; Raphael et al., 2006; Bennett et al., 2007; Fietta and 

Manganelli, 2007). Depression in FMS patients has been shown to correspond with 

reduced pain thresholds (Chiu et al., 2005), deficits in endogenous pain inhibition 

(de Souza et al., 2009), and augmented experimental and clinical pain in patients 

(Staud et al., 2003; van Middendorp et al., 2010b). FMS patients are also 

significantly more likely to exhibit general anxiety disorders, post-traumatic stress 

disorder, obsessive compulsive disorder and social phobias than healthy people 

(Arnold et al., 2006). FMS may share pathophysiological mechanisms with anxiety 

disorders (Pae et al., 2009), and familial studies have indicated potential shared 

genetic loading for FMS and psychological disturbance (Hudson et al., 1985). 

Similarly to depression, anxiety disorders may be related to increased severity of 

symptoms and reduced coping capabilities in FMS (Thieme et al., 2004). The 

prevalence of psychological disturbance coupled with the lack of an apparent 

physiological explanation led some researchers to categorise FMS as a somatic 

component of depression (Meyer-Lindenberg and Gallhofer, 1998). However, 

research has demonstrated that pain in FMS patients appears to be independent of 

psychological factors (Kurtze et al., 1998; Kurtze and Svebak, 2001).  

FMS is associated with emotional disturbances such as increased levels of 

negative affect, reduced positive affect and altered emotional regulation strategies 
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relative to healthy people and other chronic pain populations (Zautra et al., 2005; van 

Middendorp et al., 2008). Increased negative affect and dysfunctional affective 

processing in FMS patients has been linked to clinical symptom severity (Bartley et 

al., 2009; van Middendorp et al., 2010a; van Middendorp et al., 2010b). Patients also 

report cognitive deficits commonly known as ‘fibro fog’ (Baumstark et al., 1993) 

which can affect aspects of attention and working memory (Park et al., 2001; Leavitt 

and Katz, 2006; Dick et al., 2008). It was previously suggested that much of the 

cognitive impairment seen in FMS can be accounted for by variables such as 

depression and fatigue (Sephton et al., 2003; Suhr, 2003). However, research has 

shown that cognitive deficits in FMS are related to, but not dependent on such 

extraneous factors (Park et al., 2001; Dick et al., 2008). 

Researchers have previously utilised the psychological components of 

fibromyalgia to categorise subgroups within the heterogeneous FMS population. 

Turk et al. (1996a) categorised patients according to their West-Haven 

Multidimensional Pain Inventory scores (Kerns et al., 1985), or depending on 

whether or not their fibromyalgia was judged to be idiopathic or a post-traumatic 

reaction (Turk et al., 1996b). Subgroups of FMS patients have been shown to display 

distinct illness behaviours. Specific emotional or affective disorders are more 

prevalent in specific subgroups, and different subgroups respond to different 

treatment plans (Thieme et al., 2004). Abnormal levels of stress related 

adrenocorticotrophic hormone have also been utilised to differentiate between 

subgroups identified in FMS patients and results indicate that lifestyle stress could 

be an important factor in psychological pathology associated with FMS (Thieme et 

al., 2005). 
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1.5.1. Psychological constructs and FMS 

Cognitive-affective factors are also relevant to our understanding of FMS. 

Patients demonstrate increased vigilance to pain compared with other chronic pain 

patients (Crombez et al., 2004), which may represent scanning of the body for 

somatic information due to constant pain (Eccleston and Crombez, 1999), or 

difficulty in disengaging from pain cues (Van Damme et al., 2002). FMS patients 

also report increases in helplessness (Palomino et al., 2007) and fear of pain (Turk et 

al., 2004). Patients also exhibit altered neural processing during anticipation of pain, 

and this dysfunction is related to psychological and clinical factors (Jones et al., 

2012). It is likely that cognitive factors and attentional processes play a significant 

role in the augmentation of pain in FMS and the subjective experience of the 

disorder (Crombez et al., 2004). Furthermore, abnormal psychological constructs 

may interact and influence the development and maintenance of FMS symptoms, as 

proposed in the fear-avoidance model (Vlaeyen and Linton, 2000), which postulates 

that chronic pain may develop as a result of avoiding movements or actions due to 

fear of pain.  

Pain catastrophising, an exaggerated negative mindset affecting the 

anticipation of pain and subjective pain experience (Sullivan et al., 2001), is the 

psychological construct which has undergone most research in FMS patients. Pain 

catastrophising is evaluated using the Pain Catastrophising Scale (PCS, Sullivan et 

al., 1995), and PCS scores have been shown to be directly associated with the degree 

of disability and functional impairment in FMS patients (Nicassio et al., 1995). 

Increased PCS scores were previously identified in FMS patients compared with 

controls (Martin et al., 1996) and other chronic pain patients (Crombez et al., 2004). 
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Neuroimaging studies using fMRI have shown that increased pain catastrophising in 

FMS patients correlates with augmented pain activations in brain structures 

associated with attentional and emotional aspects of pain (Gracely et al., 2004). PCS 

scores can be used to target specific subgroups with either cognitive behavioural 

therapy, which demonstrated improved efficacy with high pain catastrophisers, or 

operant conditioning therapy, which was better suited to low pain catastrophisers 

(Thieme and Gracely, 2009).  

An augmented pain catastrophising trait was also previously linked to 

exaggerated intensity of pain perceived in others in healthy people (Sullivan et al., 

2006). Observing pain in others requires complex affective processing to empathise 

with the physical and emotional experience of another person (Preston and de Waal, 

2002). Functional MRI Studies show that structures commonly activated during pain 

processing, such as anterior cingulate cortex, bilateral insulae and thalami, are also 

active when observing pain pictures (Singer et al., 2004; Jackson et al., 2005; 

Jackson et al., 2006; Singer et al., 2006; Cheng et al., 2007; Gu and Han, 2007; 

Akitsuki and Decety, 2009; Lamm et al., 2011). This evidence supports the 

perception-action model of empathy (Preston and de Waal, 2002), which asserts that 

the perception of another in a particular state leads to the activation of the same state 

in the observer (Decety and Lamm, 2006; Lang et al., 2011). 

In spite of the relevance of psychological constructs such as pain 

catastrophising to clinical symptoms of FMS, and also to the processing of perceived 

pain, no studies have yet investigated the neural correlates of observed pain in FMS 

patients. Alterations to the cortical activations associated with observing pain in 
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FMS patients could relate to abnormal psychological constructs such as 

hypervigilance to pain cues, pain catastrophising and empathy.  

1.5.Summary  

FMS is a prevalent chronic pain syndrome, affecting between 2−5% of the 

general population and it is more common in women and in middle age (McBeth and 

Mulvey, 2012). FMS shows frequent comorbidity with various clinical, functional 

and psychological disorders (Weir et al., 2006), and it is associated with a large 

socio-economic burden incurring substantial direct costs for medical treatment as 

well as indirect costs due to reduced productivity and disability (Lachaine et al., 

2010). Research has employed psychophysical and psychological testing, functional 

and anatomical neuroimaging techniques, but the underlying aetiology and 

pathophysiology of the disorder is still not fully understood (Schmidt-Wilcke and 

Clauw, 2011). 

The data from functional and anatomical studies investigating 

pathophysiological mechanisms of FMS would appear to support a role of central 

sensitisation in the genesis and maintenance of FMS symptoms, and this is reflected 

in the (relative) success of centrally acting pharmacotherapies (Woolf, 2011). 

However, the mechanisms by which such sensitisation may occur in FMS are not yet 

fully elucidated (Petersel et al., 2011). Experimental evidence exists to support the 

possibility of reduced endogenous pain modulation in FMS (Julien et al., 2005; 

Jensen et al., 2009; Jensen et al., 2012), although it is also important not to overlook 

the peripheral mechanisms which may contribute to central sensitisation and FMS 

pain (Staud, 2010). Current data suggests a wide range of functional and structural 

alterations relevant to FMS aetiology and pathophysiology. However, the current 
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knowledge of alterations to somatosensory processing during innocuous stimuli in 

FMS is limited, and the diverse findings of morphological alterations in FMS 

patients raise more questions than they answer. Further structural and functional 

imaging research is required to successfully integrate the current knowledge into a 

model of susceptibility and mechanisms underlying the disorder (Clauw, 2009).  

Psychological disturbances are commonly associated with FMS (Bennett et 

al., 2007) and it has been shown that psychological disturbance can influence pain 

symptom severity (Staud et al., 2003). However, FMS pain is not dependent on 

psychological comorbidities and therefore should not be considered as a somatic 

representation of psychological disturbance (Kurtze et al., 1998). Complex 

psychological constructs such as hypervigilance to pain and pain catastrophising can 

also affect the symptoms experienced by FMS patients (Crombez et al., 2004), and it 

was previously proposed that psychological constructs may mediate comorbidity 

with psychological disturbance in patients (Thieme et al., 2004). However, the exact 

role of psychological constructs in FMS is not yet fully understood, and new aspects 

such as the role of specific personality traits (Martinez et al., 2011) are under review. 

Despite the findings of hypervigilance to pain cues in FMS patients (Crombez et al., 

2004), little is known about neural activations associated with observed pain in FMS. 

Understanding the psychological components of FMS, and particularly those related 

to pain, may prove vital to furthering our knowledge of the disorder. Specifically, 

this approach could lead to improved understanding of the heterogeneity seen in the 

population, and discerning of more suitable therapeutic interventions (Thieme and 

Gracely, 2009). Further research is needed to elaborate on the interactions between 

psychological and pathophysiological aspects of the disorder to improve diagnoses 

and the efficacy of psychological clinical interventions. 
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Chapter Two 

Theoretical basis of methods 

2. Principles of electroencephalography  

2.1. Physiological basis of the EEG signal 

Neurons in the brain communicate via action potentials, discrete spikes in 

voltage generated in the cell body of axons which propagate along the axon fibre to 

excitatory or inhibitory terminals known as dendrites. Action potentials occur in 

milliseconds, and are generally not synchronous, therefore any voltage generated is 

normally cancelled out and undetectable at scalp electrodes (Speckmann and Elger, 

2005). Instead, the basic mechanisms underlying the potentials seen using EEG 

occur in extracellular space, and are referred to as field potentials (Speckmann et al., 

1979).When an action potential travels along an axon fibre ending in an excitatory or 

inhibitory synapse, a post-synaptic potential occurs, neurotransmitters bind with the 

postsynaptic cell membrane causing ion channels to open and a potential develops 

between intracellular and extracellular space (Speckmann and Elger, 2005). Unlike 

action potentials, postsynaptic potentials can last for hundreds of milliseconds. 

During a coherent response, thousands may occur in a similar location and 

orientation due to the macroscopic organisation of dendrites (Fisch, 1999). This 

allows their effects to summate so that they may be detected as a voltage difference 

on the scalp using EEG (Nunez and Silberstein, 2000; Lopes da Silva and Van 

Rotterdam, 2005).  
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2.1.1. EEG rhythms and generators 

EEG activity is often described in terms of rhythmic activity. Oscillations of 

a voltage potential of a regular shape and duration are commonly seen at scalp 

electrodes and can be described according to their oscillatory frequency (Steriade, 

2005). Previously it was proposed that networks of discrete cortical structures 

generated frequency specific rhythmic activity seen at the scalp (Andersen and 

Andersson, 1968; Speckmann et al., 1979). However, it has since been postulated 

that the complex wave sequences seen in EEG are more likely to originate from 

interactions between multiple source generators and modulating structures (Steriade, 

2001). For example, it was proposed that the thalamus and cortex may interact as 

oscillatory generators under influence of structures such as brainstem (Steriade, 

2005).  

The oscillatory activity in the EEG signal can be split into bands based upon 

the frequency of oscillations. The normal amplitude of frequency band oscillations 

ranges between 10 and 50 µV, with lower frequencies generally exhibiting larger 

synchronous amplitudes than higher frequencies (Niedermeyer, 2005). Using EEG, it 

is possible to investigate amplitude increases and decreases in specific frequency 

bands in response to experimental paradigms. Research studies have previously 

dedicated particular attention to alpha (8−13 Hz) and beta (16−30 Hz) band 

oscillations. Increases in amplitude of a specific frequency band associated with a 

specific event are referred to as event-related synchronisation (ERS), whereas 

decreases are described as event-related desynchronisation (ERD) (Pfurtscheller and 

Aranibar, 1977; Pfurtscheller and Lopes da Silva, 1999).  
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2.1.1.1 Alpha and beta-band oscillatory changes associated with somatosensory 

stimuli 

Alpha rhythm, or alpha-band describes EEG frequencies occurring in the 

8−13 Hz range (Niedermeyer, 2005). Alpha-band oscillations exhibit a typical 

amplitude of up to 50 µV and show their greatest amplitude over occipital, parietal 

and posterior temporal regions of the scalp, they are most commonly seen during rest 

with eyes closed (Niedermeyer, 2005). Rolandic-mu rhythm occurs at a similar 

frequency to alpha-band rhythm, but differs in its principle topography (occurring 

mainly over central regions) and physiological interpretation (Niedermeyer, 2005). 

Beta-band oscillations occur within the 16−30 Hz frequency range (Miller, 2007), 

generally displaying amplitudes not exceeding 30 µV in adults and typically 

presenting over much of the scalp (Niedermeyer, 2005). 

Historical studies identified rhythmic activity in central scalp regions which 

was attenuated during tactile stimulation (Jasper and Andrews, 1938; Gastaut, 1952). 

ERD method analysis (Pfurtscheller and Aranibar, 1977; Pfurtscheller and Lopes da 

Silva, 1999, Chapter 2.3.1) identified short lasting amplitude decreases of 10 and 20 

Hz cortical oscillations occurring during somatosensory stimulation (Chatrian et al., 

1959; Pfurtscheller, 1981; Salenius et al., 1997; Cheyne et al., 2003; Stancak et al., 

2003) including brushing (Cheyne et al., 2003; Gaetz and Cheyne, 2006). 

Desynchronisation of the 10 Hz oscillations during sensorimotor tasks refers to 

attenuation of central rolandic-mu rhythm rather than posterior alpha (Salenius et al., 

1997). Somatosensory stimuli are also followed by increases in specific cortical 

oscillations known as ERS (Pfurtscheller, 1981, 1992).  
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Generally, ERD associated with somatosensory stimulation is localised to 

foci overlying somatosensory cortices (Pfurtscheller, 1992; Neuper and Pfurtscheller, 

2001; Cheyne et al., 2003; Stancak et al., 2003; Gaetz and Cheyne, 2006), and ERD 

overlying somatosensory cortices contralateral to the stimuli is generally stronger 

than that located over ipsilateral hemisphere (Stancak, 2006). It was previously 

demonstrated that patterns of somatosensory ERD/ERS resemble the somatotopic 

organisation of the sensorimotor cortex (Gaetz and Cheyne, 2006) and source 

localisation methods were used to locate the source generators of 10 and 20 Hz 

oscillatory changes, associated with sensorimotor stimulation, to primary 

somatosensory and motor cortices (Salmelin and Hari, 1994).  

The amplitude changes of different frequency bands are independent. 

Therefore, ERD accompanying sensorimotor tasks can be complemented by 

concurrent ERS in the same cortical region in an alternative frequency band 

(Stancak, 2006). To further complicate matters ERD foci may be surrounded by 

ERS, a phenomenon referred to focal ERD/surround ERS (Suffczynski et al., 2001) 

which may reflect activity of specific cortical region whilst surrounding areas are 

inactive (Lopes da Silva, 2006). Amplitude reductions of cortical oscillations in the 

8−13 Hz and 16−30 Hz bands, localised to specific cortical regions, can be 

physiologically interpreted as a correlate of cortical activation (Pfurtscheller and 

Lopes da Silva, 1999). This is supported by multi-modal findings which show that 

the amplitude of oscillatory field potentials correlate with hemodynamic measures of 

brain activation (Logothetis et al., 2001), and ERD was shown to co-occur with 

increases in BOLD-fMRI signal (Singh et al., 2002; Babiloni et al., 2005; Mantini et 

al., 2007; Formaggio et al., 2008). The physiological relevance of ERD and ERS 

accompanying tasks such as experimental somatosensory stimuli suggest that it is 
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particularly suited to investigations of somatosensory processing. It has not yet been 

utilised profoundly in clinical populations although previous studies demonstrated 

reduced amplitudes of beta-band ERS following somatosensory stimuli in chronic 

region pain syndrome patients (Juottonen et al., 2002) and altered ERD patterns in 

chronic lower back pain patients during somatomotor stimulation (Jacobs et al., 

2010). 

2.2. EEG signal acquisition and processing 

 In the most basic terms, an EEG recording encompasses the measurement 

and amplification of fluctuating electrical field potentials across time (Kamp et al., 

2005). EEG recordings are well established in terms of clinical use, and EEG is 

currently utilised as a diagnostic and monitoring tool for epilepsy (Thompson and 

Ebersole, 1999) and sleep disorders (Freedman, 1986). Recent developments suggest 

that clinical use could eventually extend to include diagnosis of autism (Murias et 

al., 2007).  

During a conventional EEG, electrodes are positioned on the scalp and a 

suitable conducting gel, paste or liquid is used to apply electrodes. The location of 

electrodes commonly corresponds to (a contemporary derivative of) the Standardised 

International 10–20 system, which is based upon relative distance measurements 

using internationally recognised anatomical landmarks on the skull (Jasper, 1958; 

Klem et al., 1999). This standardisation means that the names and corresponding 

locations of electrodes are consistent across various countries and laboratories. A 

typical adult scalp EEG signal ranges between approximately 10 and 100 µV in 

amplitude (Aurlien et al., 2004), and needs to be considerably amplified before it can 

be accurately measured (Luck, 2005). The resulting amplified voltage fluctuations 

http://en.wikipedia.org/wiki/10-20_system_(EEG)
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are digitised, and the digital recording is used for display and analysis purposes. 

Each individual electrode signal represents the voltage difference between a specific 

electrode and a reference electrode signal (Luck, 2005). There are numerous 

methods used to provide the reference value; such as the mean recordings from 

electrodes positioned over bilateral mastoid processes, a common average reference 

which represents the mean signal of all EEG channels or Laplacian data which is a 

comparison between each electrode and the weighted average of the immediately 

surrounding electrodes (Nunez et al., 1997). 

2.2.1. Volume conduction problem 

 The voltage difference detected by scalp EEG electrodes relates to the 

location, size and orientation of the dipole caused by cortical activity. However, it 

also depends on the conductivity and resistance of the brain, fluid and skull tissues, 

referred to as volume conductivity (Lopes da Silva and Van Rotterdam, 2005). 

Mathematical rules can be applied to understand how conductivity influences the 

measurements from the scalp. For example, as voltage fields reduce by the square of 

distance, deeper sources are more difficult to detect than those near the scalp (Klein 

and Thorne, 2007). Algorithms designed to explain, eliminate or reduce the 

attenuating effects of volume conductivity are continually being developed and 

improved. A classical model using 3 concentric spheres with various conductivities 

was developed in the 1960’s (Geddes and Baker, 1967), and iterative improvements, 

such as more realistic head models with more accurate conductivities (Goncalves et 

al., 2000) are continually being developed.  

 



38 
 

2.2.1.1. Advantages and limitations of EEG recordings 

EEG has superb temporal resolution and can detect electrical changes over 

the course of milliseconds (Schneider and Strüder, 2012). This allows for a more 

direct understanding of the processing of stimuli, and experimental manipulations 

can be used to investigate specific aspects of sensory or cognitive processing which 

can be more accurate and revealing than behavioural measures such as reaction times 

(Luck et al., 2000). EEG also provides a comparatively direct measurement of 

neuronal activity as opposed to indirect hemodynamic responses measured in fMRI 

or positron emission tomography (PET) (Hari et al., 2010). There are also 

considerable practical advantages to EEG recordings. Some EEG systems, such as 

the Biosemi Ag-AgCl active-two electrode system (Biosemi B.V, Amsterdam, 

Netherlands), are mobile and can be transported to appropriate locations for the 

study of clinical populations. Furthermore, this particular system does not require 

electrical field shielding and minimises electrode impedance outputs by integrating 

the first stage of amplification in the electrode itself (Metting van Rijn et al., 1990). 

Another important practical consideration relates to the fact that EEG research is 

comparably inexpensive compared to fMRI, magnetoencephalography or PET 

(Schneider and Strüder, 2012).  

The major limitation of EEG investigation, in comparison to functional 

methods such as fMRI for instance, is reduced spatial resolution. As mentioned 

earlier, because EEG is recorded via electrodes located on the scalp the electrical 

signal is attenuated by the tissues it has to pass through, such as the meninges, 

cerebrospinal fluid and skull (Nunez et al., 1997). Definitive identification of the 

source of the electrical activity is impossible, commonly known as the inverse 



39 
 

problem. Complex analysis methods allow for the implementation of mathematical 

algorithms which may be used to reconstruct intracranial sources for a given EEG 

signal, but these are limited by the accuracy of conductivity models and brain 

templates utilised to subjective data (Schneider and Strüder, 2012).  

2.2.1.2. Artifact rejection in EEG analysis 

EEG electrodes are also sensitive to artifacts, electrical signals which do not 

originate from within the brain. There are physiological causes of artifacts, such as 

electrical activity in muscles associated with eye blinks (electrooculagraphic activity, 

EOG), heart beats (electrocardiographic activity, ECG), muscle movements and 

respiration. Other artifacts can originate from electrode problems, or electrical noise 

from alternating current electrical appliances (causing a 50 Hz wavelength artifact in 

the recording). Such issues can be corrected manually by disregarding trials 

containing artifacts following a visual inspection. Alternatively, independent 

component analysis techniques (Jung et al., 2000) can be employed. These utilise 

mathematical algorithms to isolate the average EEG signal component responsible 

for a specific artifact, e.g. EOG or ECG artifacts. This component is then subtracted 

from the EEG signal to leave behind ‘clean’ data (Luck, 2005).  

2.3. Quantitative Analyses  

2.3.1. Event-related potential analysis 

The term ‘event-related potential’ (ERP) refers to the time-locked EEG 

changes seen at electrodes in relation to the onset of a stimulus such as a visual, 

somatosensory or auditory presentation (Lopes da Silva, 2005). ERPs are utilised for 

quantitative analyses of EEG to compare neurophysiological responses to specific 

http://en.wikipedia.org/wiki/Somatosensory
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stimuli or events between groups or conditions (Lopes da Silva, 2005). In the past, 

ERP analysis has been utilised to assess clinical disorders and to infer the nature of 

neurophysiological dysfunction (Duncan et al., 2009).  

A relatively large number of ERP responses are required for successful 

analysis (Lopes da Silva, 2005). However, as ERPs represent time-locked responses, 

sufficient ERP waveforms can be time-averaged to generate a robust mean 

waveform with positive and negative voltage deflections which are referred to as 

components (Luck, 2005). ERP components can be quantitatively investigated in 

terms of latency or amplitude and this is done extensively in cognitive neuroscience 

and psychophysiological research (Luck, 2005). Deviations in component amplitudes 

and/or latencies can be used to make neurophysiological inferences about a process 

or population (Duncan et al., 2009). Using source localisation methods, it is also 

possible to infer the cortical regions responsible for deviations in ERP components 

(Lopes da Silva, 2005). The advantages of ERP analysis overlap with those of EEG 

itself. ERP method benefits from excellent temporal resolution; it is a direct measure 

neuronal activity and is relative low in cost compared to fMRI. The obvious 

disadvantage of ERP method is the large number of trials required for quantitative 

assessment. It is also important that trials do not coincide with ongoing spontaneous 

activity which could be misinterpreted as event-related data (Lopes da Silva, 2005). 

2.3.2. Event-related synchronisation/desynchronisation analysis 

Even during periods of relative inactivity, spontaneous, ongoing brain 

activity occurs and features as rhythmic activity in EEG recordings (Niedermeyer, 

2005). Short lasting amplitude increases or decreases of these spontaneous cortical 

rhythms, known as event-related synchronisation/desynchronisation (ERS/ERD) 

http://en.wikipedia.org/wiki/Cognitive_science
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(Pfurtscheller and Aranibar, 1977; Pfurtscheller and Lopes da Silva, 1999) may 

accompany events such as sensory stimuli or cognitive processes. These changes in 

oscillatory patterns can be quantified by comparing oscillatory power during an 

event or task related period to a reference interval using the following equation:  

       
    

 
      

where j is the band power time series sample, Pj is the power at the jth sample and R 

is the average power in the reference interval (Pfurtscheller and Aranibar, 1977).  

Increases and decreases in amplitude of frequency band oscillations 

accompany events such as somatosensory stimulation (Chatrian et al., 1959; 

Pfurtscheller, 1981; Stancak et al., 2003) or motor movements (Pfurtscheller et al., 

1993; Stancak and Pfurtscheller, 1996, 1997; Neuper and Pfurtscheller, 2001). 

ERD/ERS analysis method is used to quantitatively compare event-related amplitude 

increases or decreases between groups or across various experimental conditions. 

Amplitude reductions of alpha and beta-bands oscillations can be physiologically 

interpreted as a correlate of underlying cortical activation (Pfurtscheller and Lopes 

da Silva, 1999), which accords with hemodynamic findings which demonstrate that 

BOLD-fMRI signal increases correlate with oscillatory field potential amplitude 

changes (Singh et al., 2002; Babiloni et al., 2005; Mantini et al., 2007; Formaggio et 

al., 2008). ERD method was previously utilised for clinical research, aberrant 

responses were seen in Parkinson’s disease patients during motor movements (Labyt 

et al., 2003) and the technique was also used to predict recovery in patients following 

a cerebrovascular accident (Platz et al., 2002). This methodology has also been used 

to study oscillatory amplitude decreases associated with painful stimuli (Ploner et al., 

2006; Stancak et al., 2012b).  
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2.4 Principles of magnetic resonance imaging 

2.4.1 Introduction and physics of MRI 

Magnetic resonance imaging (MRI) is a safe and non-invasive technique used 

to generate images of internal body structures for clinical and research purposes 

(Mandeville and Rosen, 2002). The principles underlying this process depend 

primarily on the measurement of the activity of protons, most commonly found in 

the form of H
+
 hydrogen ions, because they have a large magnetic moment (they 

spin at an angle which causes a magnetic field). H
+
 hydrogen ions are abundant in 

living tissues, with two occurring in every water molecule (Narashiman and Jacobs, 

2002). When a participant is placed in a strong, static magnetic field the protons 

align with the direction of the magnetic field (longitudinal magnetisation, LM) 

(Hendee and Morgan, 1984). During an MRI scan a radio frequency (RF) pulse is 

delivered at a specific frequency, known as the larmor frequency, selected to yield 

energy only to
 
the appropriate nuclei (H

+ 
ions), a phenomenon known as resonance. 

This energy causes the protons to fall out of the state of alignment and their spin axis 

to tilt (or precess, a state known as transverse magnetisation, TM). Following the 

offset of the RF pulse the precessional protons immediately begin to re-align with 

the static magnetic field (longitudinal relaxation). This relaxation generates a radio 

frequency which causes a small current in a receiver coil located inside the scanner 

(Hendee and Morgan, 1984). The time taken for the precessing nuclei to return to a 

longitudinal magnetic state is known as T1 (Hendee and Morgan, 1984). 

Conversely, the RF pulse will also cause the TM nuclei to precess in phase, 

but as soon as the pulse is switched off this state relaxes and the time taken for all of 

the ions to move out of phase is known as T2 (transverse relaxation) (Narashiman 
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and Jacobs, 2002). Longitudinal relaxation and transverse relaxation are independent 

processes but T2 can never exceed T1 (Hendee and Morgan, 1984). Different tissues 

possess differing T1 and T2 latencies; water has a long T1 and T2 whereas lipids 

have short T1 and T2 (Hendee and Morgan, 1984; Mandeville and Rosen, 2002). 

Depending on the parameters used the image can be manipulated to enhance the 

contrast between specific tissues or tissue properties. By altering time to repeat (the 

time between RF pulses, TR), or time to echo (time between RF pulse and reception 

of the signal, TE) it is possible to enhance the contrast of the image to focus on 

particular tissues. Short TR and TE will cause a T1-weighted image, substances with 

a short T1, such as lipids will exude a stronger signal intensity, appearing brighter. 

Alternatively, long TR and TE produces a T2 weighted scan, where long T2 

substances (water) will appear brighter (Mandeville and Rosen, 2002). 

Spatial information to identify the origin of the MR signal is acquired by 

applying further magnetic fields, known as gradients (Narashiman and Jacobs, 

2002). This causes a distribution of resonance frequencies throughout the scan image 

with spatial information mapped onto the frequency scale, known as frequency 

encoding. The gradient field also causes spins to dephase and further spatial 

information is acquired by considering the duration and magnitude of gradient fields 

and measuring phasing/dephasing of spins (phase encoding). By tailoring the RF 

frequency used to target nuclei, the gradient duration and magnitude, and combining 

frequency and phase encoding, pulse sequences are designed to focus on specific 

aspects for the image (Narashiman and Jacobs, 2002). The process of image 

reconstruction is similar to that used in computerised tomography. Complex 

algorithms such as fast Fourier transforms are applied to phase and frequency 

encoded data, although the exact nature of mathematical transformation depends on 
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the pulse sequence and selected acquisition method (Hendee and Morgan, 1984; 

Narashiman and Jacobs, 2002). Eventually, by considering the intensity and location 

of signal, an image can be computed. 

2.4.2. Functional MRI 

MRI is unable to directly measure neuronal activity (Mandeville and Rosen, 

2002), but with manipulation of parameters it can be used to image brain function 

indirectly. Long TR and TE parameters may be used to generate a T2 weighted 

image, which weights the scan in favour of imaging water. As water molecules 

behave differently in the vicinity of paramagnetic fields, contrast agents with 

paramagnetic properties in the blood can be used to evaluate blood flow or volume 

changes (Narashiman and Jacobs, 2002). The first functional recording of brain 

activation in humans using MRI utilised a contrast agent to identify regional blood 

volume increases during a visual stimulus (Belliveau et al., 1991), and water 

diffusion was also used to image for blood flow abnormalities as an early detection 

tool for ischemia (Moseley et al., 1990a). In order to suitably link blood flow to 

neuronal activation, an appropriate contrast agent is necessary. Exogenous contrasts 

agents were initially utilised but they are associated with the same drawbacks as 

contrasts agents in PET and suffered from poor temporal resolution (Mandeville and 

Rosen, 2002). Instead, a safe endogenous contrast agent would be preferable, and 

this is what is commonly used in fMRI today.  

2.4.2.1. The BOLD Signal 

Deoxyhemoglobin in deoxygenated blood possesses paramagnetic properties 

and attenuates MR signal more than oxyhemoglobin which is diamagnetic, this 

difference causes T2 signal intensity changes (Thulborn et al., 1982). During 
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localised cortical activation of brain structures increases in regional CBF exceed the 

cerebral metabolic oxygen utilisation rate in the region resulting in a surplus of 

oxygenated blood (Fox and Raichle, 1986). T2 signal loss around veins was shown 

to vary depending on blood oxygenation levels (Ogawa et al., 1990b) and the blood 

oxygen level dependent (BOLD) signal was proposed as a naturally occurring 

contrast agent to infer hemodynamic responses (Ogawa et al., 1990a; Ogawa et al., 

1990b). BOLD signal intensity reflects the surplus of oxygenated blood in a region 

and thus regional activation (Kim and Ogawa, 2012). A study utilised simultaneous 

fMRI and EEG recordings to show that the BOLD signal correlates more with local 

field potentials than with individual neuronal activity (Logothetis et al., 2001). 

However, it should be noted that the exact nature of the relationship between BOLD 

signal and neuronal activation is complex and still debated (Ekstrom, 2010).  

BOLD was previously purported to be superior to exogenous contrast agents 

in terms of safety and temporal resolution (Ogawa et al., 1990a). BOLD signal 

acquisition has since been refined in terms of hardware, analysis methods and 

experimental design parameters and is considered one of the most important 

functional measures of neuroimaging (Kim and Ogawa, 2012). In a typical fMRI 

scan the brain is scanned at a low spatial resolution to allow for a rapid rate of image 

acquisition, and the scans are T2 weighted to detect the alteration caused by 

deoxygenation. As deoxyhemoglobin attenuates the MR signal, a regional 

hemodynamic response associated with a surplus of oxygenated blood results in a 

greater signal intensity (Mandeville and Rosen, 2002). 
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2.4.3. High-resolution T1-weighted structural images  

 Anatomical T1-weighted MRI scans utilise superior spatial resolution than 

functional data and are routinely acquired in neuroimaging studies (Howarth et al., 

2006). Employing short TR and TE times results in a T1-weighted scan, and 

substances with a short T1 (such as lipids) generate a greater signal intensity than 

those with a long T1 (water). As white matter axons in the brain are surrounded by a 

fatty myelin sheath, T1-weighted images result in an excellent contrast between grey 

and white matter (Narashiman and Jacobs, 2002). These images can be used to 

accurately co-register findings from functional scans, or for clinical evaluation. 

Researchers can employ voxel-based morphometry analysis of high-resolution T1-

weighted images to assess regional variations in macroscopic grey and white matter 

(Ashburner and Friston, 2000), or to assess subcortical alterations to geometric shape 

(Patenaude et al., 2011). Scanning parameters can be specifically tailored to 

prioritise resolution and contrast for the research of specific structures or tissues 

(Thomas et al., 2005), and images can be pre-processed prior to analyses to further 

improve tissue classification for research purposes (Ashburner and Friston, 2005). 

2.4.4. Diffusion tensor imaging (DTI)  

 As detection of the MR signal relies on H
+
 nuclei (protons) which are 

primarily present in water molecules, movement of water can affect MR spins-

relaxation times and therefore signal (Mori and Zhang, 2006). Diffusion-weighted 

imaging employs complex pulse sequences with multiple stimulating echo pulses to 

allow for sensitivity to water diffusion effects. Multiple gradient fields are also 

utilised to infer the location, direction and degree of diffusion of water molecules 

(Narashiman and Jacobs, 2002). The direction of water diffusion is sensitive to the 
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direction or axis of the gradient from which it is measured; therefore, to effectively 

assign the direction of diffusion in each voxel it would be necessary to measure 

diffusion along an infinite number of axes. To combat this problem, the concept of 

the diffusion-tensor was introduced in the early 1990’s (Basser et al., 1994). 

 Diffusion-tensor imaging (DTI) is an MRI method which measures the 

directional diffusion of water molecules throughout each voxel in the brain. DTI 

scans employ multidimensional vector algorithms and utilise at least six diffusion 

gradients. This is the minimum number of gradients required to elucidate the 

characteristics of a diffusion ellipsoid which is used to represent the directional water 

diffusion in each voxel and to generate a directional tensor for each voxel (Mori and 

Zhang, 2006). Water in the white matter of the brain diffuses more rapidly in the 

direction analogous with the structure of the axon than in any other directions 

(Stejskal, 1965). Therefore, when anisotropic (directional) diffusion is mapped 

throughout the brain it can be used to provide an alternative form of image contrast 

which is indicative of aligned anisotropic structures (Chenevert et al., 1990; Moseley 

et al., 1990b; Turner et al., 1990). The resolution of a DTI scan means that, although 

the movement of water molecules is identified at the molecular level, the actual data 

represents the average of anisotropic movement evident within the resolution of a 

single voxel. Therefore, diffusion data is used to infer bundles of fibers or tracts in 

white matter rather than individual axons (Beaulieu, 2002). 

 After the diffusion ellipsoid and tensor is determined, the vector of the 

longest axis (eigenvector v1) can be calculated to elucidate the fiber orientation 

(Mori and Zhang, 2006). The data from the diffusion-tensor of each voxel can be 

used to calculate fractional anisotropy (Pierpaoli and Basser, 1996), the relative 
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degree of directional diffusion, which can be utilised in quantitative analyses of 

white-matter tracts throughout the brain. The principle fibre direction for each voxel 

can also be utilised to trace white matter pathways using methods such as 

probabilistic tractography (Mori and Zhang, 2006). For visualisation purposes, DTI 

data is usually displayed using a colour-coded orientation map to indicate the 

direction of movement, as well as the degree of diffusion (Makris et al., 1997; 

Pajevic and Pierpaoli, 1999).  

2.4.4.1. Fractional anisotropy 

 Water molecules in the brain are constantly in motion. Anisotropy is the term 

used to describe the directional properties of a process such as the diffusion of water 

molecules. Fractional anisotropy (FA, Pierpaoli and Basser, 1996) refers to a value, 

between zero and one, which is used to quantify relative directional properties of the 

diffusion process to describe the relative degree of anisotropic to isotropic diffusion. 

A higher fractional anisotropic value would indicate an ellipsoid that was ‘cigar 

shaped’, and indicative of a strong, linear directional diffusion (Westin et al., 2002). 

The actual FA value is calculated by using mathematical operators to divide the 

difference in diffusivity between the longest axis and the average of the two shorter 

axes of the voxel ellipsoid, by the mean diffusivity of all axes. The resulting value is 

then normalised to achieve a relative FA value of between 0−1 (0 = purely random 

diffusion, 1 = purely anisotropic diffusion = 1) (Westin et al., 2002).  

2.5. Summary 

 To summarise, EEG and MRI may both provide rich datasets which can be 

analysed using a wide variety of procedures. Each method brings its own particular 

strengths and weaknesses, with the excellent temporal resolution of EEG comparable 
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to the superior spatial resolution of MRI. The present thesis employs multi-modal 

imaging of FMS patients and a healthy control group to investigate a variety of 

research questions. EEG and MRI data are analysed to evaluate structural and 

functional abnormalities evident in FMS patients relative to healthy people. EEG 

analysis methods range from classical ERP analysis of a novel paradigm, to ERD 

analysis, which has scarcely been utilised with chronic pain patients. MR analysis 

methods include novel approaches to functional and structural imaging analysis 

including recently developed techniques such as probabilistic tractography of DTI 

data and subcortical shape analysis of T1-weighted anatomical images.
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Chapter Three 

Problems and hypotheses 

3. FMS: The problem 

Fibromyalgia may be caused by structural and functional alterations to 

central processing (Woolf, 2011). However, the specific mechanisms by which such 

abnormal processing could arise and be maintained in FMS are not yet fully 

understood (Schmidt-Wilcke and Clauw, 2011). Evidence suggests that a complex 

array of morphological, neurophysiological and psychological alterations could be 

responsible for FMS symptoms (Petersel et al., 2011). However, the present 

understanding of complex pathophysiology of FMS has resulted in a wide-range of 

treatment plans which usually exhibit relatively low efficacy, and often leave 

patients unsatisfied (Schmidt-Wilcke and Clauw, 2011).  

The study of a complex clinical syndrome such as FMS for eventual 

dissemination as a thesis brings about a unique set of challenges. The study of 

National Health Service (NHS) patients in the United Kingdom requires that 

experimenters undergo appropriate clinical training and successfully apply for either 

a research passport or honorary contract with the NHS. A further requirement asserts 

that research sessions can only be performed on suitable NHS premises. However, 

the primary concern regarding research of this nature relates to required ethical 

approval application procedures. In order to commence the study of NHS patients, 

ethical approval is required from the National Research Ethics Committee (see 

appendix). This encompasses a thorough, time-consuming and demanding process, 
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and approval is required for each specific study design. Within the time-constraints 

of a standard research degree, it is not plausible to collect and analyse data in order 

to design subsequent studies based on the findings. This eliminates the option to 

submit sequential approval applications for the study of an NHS patient population. 

To circumvent this problem it was decided to design all studies simultaneously. The 

current literature pertaining to structural and functional brain imaging of FMS 

patients was evaluated in detail, and research questions that have not been 

adequately addressed in previous studies were identified.  

All data was acquired in a minimal number of sessions to reduce participant 

drop-out rate. Two data collection sessions were utilised, the first using EEG 

recordings and the second encompassing multi-modal MRI scanning. This resulted 

in the collection of a novel data set in an FMS patient population. Innovative EEG 

paradigms and various MRI acquisition methods were selected, which require 

multiple analysis techniques. This method of data collection has unique advantages 

compared to sequential studies. Each individual study was driven by a relevant 

research question that was not satisfactorily covered in the existing FMS literature, 

rather than all studies being driven by a single initial research question. It is an 

approach which fundamentally requires that the thesis encompasses several 

recording and analysis methods. The result is a comprehensive account of novel 

studies utilising multi-modal brain imaging techniques. 

In this thesis, functional brain imaging techniques have been employed to 

evaluate central processing during rest and in the presence of somatosensory and 

psychological challenges. Structural neuroimaging methods were also used to assess 

alterations to cortical grey and white matter and subcortical structures. By utilising 
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newly developed imaging analysis methods and novel experimental paradigms it is 

hoped that it will be possible to elaborate on the functional and anatomical 

alterations seen in the central nervous system of FMS patients in previous studies. 

Further understanding of the central mechanisms involved in FMS is necessary if we 

are to improve treatment plans in future.  

3.1. Brain responses during somatosensory stimulation in FMS patients  

FMS patients frequently demonstrate allodynia (Bennett et al., 2007, Chapter 

1.3.2.1) and alterations to processing of somatosensory stimuli (Gracely et al., 2002, 

Chapter 1.3.2), and pain resulting from innocuous stimuli may be an important 

pathophysiological component of FMS. Dynamic mechanical stimulation, such as 

brushing, can be utilised to investigate brain activation changes during allodynia. 

Using this method, abnormal brush-evoked activations were previously seen in 

neuropathic pain patients (Petrovic et al., 1999; Peyron et al., 2004; Witting et al., 

2006) and complex regional pain syndrome patients (Mailhöfner et al., 2006). 

As described in Chapter 2, ERD method is suitable for investigations of brain 

responses to somatosensory stimulation (Stancak, 2006). Alpha and beta-band ERD 

are linked to underlying cortical excitability (Pfurtscheller and Lopes da Silva, 

1999), and this method was previously utilised to investigate brain activations during 

brushing stimulation in healthy people (Cheyne et al., 2003; Gaetz and Cheyne, 

2006). Altered patterns of ERD during somatosensory stimulation infer alterations in 

cortical excitability, and could result from structural and functional brain alterations. 

ERD analysis was previously used to investigate cortical activation differences in 

chronic lower back pain patients, relative to a group of healthy control subjects, 

during somatomotor stimulation (Jacobs et al., 2010).  
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No study has yet employed ERD technique during innocuous somatosensory 

stimulation of FMS patients. Little is known about the mechanisms underlying 

processing of innocuous somatosensory stimuli in FMS, and improved 

understanding of this process may reveal more about the central mechanisms 

underlying the syndrome such as central sensitisation.  

 Research question 1: Is the central processing of somatosensory afferents 

affected in FMS? 

Abnormal processing of somatosensory input, such as allodynia, has been 

linked to the development and maintenance of central sensitisation in FMS (Staud, 

2010, 2011b). Despite this, little is known about the central processing alterations 

that may accompany allodynia in FMS, and further understanding of this aspect of 

the disorder could reveal more of its underlying pathophysiology. This thesis utilised 

EEG recordings and ERD methodology to investigate cortical oscillatory changes 

and corresponding pain during innocuous dynamic mechanical somatosensory 

stimulation (brushing) in FMS patients to investigate the following hypothesis: 

 FMS patients will report subjective pain during innocuous somatosensory 

stimulation and exhibit alterations to cortical oscillatory amplitude changes, 

relative to healthy controls.  

3.2. Cortical activations in FMS patients during observation of pain pictures 

Chapter 1.5.2 examines the evidence of alterations to psychological 

constructs and their relationship to pain processing in FMS patients. Hypervigilance 

to pain cues and increased pain catastrophising trait were previously identified in 

FMS patients (Crombez et al., 2004). It was also shown that psychological factors 

can affect the symptoms experienced in FMS (Zautra et al., 2005; van Middendorp et 
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al., 2008; Bartley et al., 2009). ERP technique has been shown to be effective for 

evaluating neurophysiological responses to emotional stimuli (Lopes da Silva, 2005), 

and ERP findings can infer neurophysiological dysfunction in clinical disorders 

(Duncan et al., 2009). ERP technique was previously employed to examine 

responses to visual pain stimuli in healthy people (Fan and Han, 2008; Han et al., 

2008; Proverbio et al., 2009; Decety et al., 2010; Li and Han, 2010; Ibáñez et al., 

2011). Early ERP components (110−180 ms post-stimuli) were shown to be 

modulated when observing pain pictures, and the degree of modulation was 

associated with the subjective intensity and unpleasantness of perceived pain in 

healthy subjects (Fan and Han, 2008; Han et al., 2008; Proverbio et al., 2009; Li and 

Han, 2010). Later components around 300 ms post-stimuli were also shown to be 

stronger during viewing of pain pictures, and also in females, relative to males. This 

finding was attributed to a stronger empathic response in females (Proverbio et al., 

2009).  

Compared to healthy people, FMS patients demonstrate increased subjective 

displeasure (Bartley et al., 2009), and alterations to somatosensory-evoked potentials 

(Montoya et al., 2005) when viewing negative affective images. However, it is not 

known whether the cortical processes associated with observing pain could be 

affected in FMS. ERP alterations when observing pain pictures may relate to 

structural or functional brain alterations which could impact upon the symptoms of 

FMS. Improved understanding of the cortical processes associated with alterations to 

psychological factors of FMS would enhance the awareness of psychological 

disturbance in FMS and could lead to more targeted therapies.  
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 Research question 2: Are the cortical processes associated with observation 

of pain affected in FMS? 

In this thesis an ERP analyses of EEG data was performed to investigate 

whether cortical activations during observation of pain pictures were altered in FMS 

patients relative to healthy volunteers. The following hypothesis was investigated: 

 FMS patients, relative to healthy control subjects, will attribute stronger pain 

ratings to pain pictures and manifest alterations to ERP components. 

3.3. Resting-state functional connectivity alterations in FMS patients 

Ongoing tonic pain is an important symptom of FMS and may contribute to 

the pathogenesis and maintenance of central processing alterations in the syndrome 

(Staud, 2010, 2011b). It was previously shown that chronic pain can cause a time-

dependent re-organisation of the DMN in chronic back pain patients (Baliki et al., 

2008). Resting-state fMRI can be analysed using seed-correlation analysis to 

evaluate functional connectivity between specific cortical structures (Biswal et al., 

1995; Fox et al., 2005; Whitfield-Gabrieli and Nieto-Castanon, 2012). Functional 

connectivity between structures can be altered as a result of clinical and 

psychological pathology, and changes may indicate the pathological mechanisms of 

disorders (Whitfield-Gabrieli and Ford, 2012). Few studies have previously 

demonstrated alterations to functional connectivity with DMN or pain processing 

cortical structures in FMS patients (Napadow et al., 2010; Cifre et al., 2012). 

However, as pointed out in Chapter 1.4.1.2, these few existing studies exhibit some 

methodological weaknesses which could be improved by incorporating more 
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stringent exclusion criteria during patient selection, and by utilising novel and 

recently developed analysis techniques.  

In order to expand and elaborate upon previous findings, a younger, 

homogenous FMS patient population should be utilised as well as the most recently 

available functional connectivity analysis techniques and appropriate seed regions of 

interest such as those from large scale meta-analyses.  

 Research question 3: Does ongoing pain in FMS affect resting-state 

functional networks? 

Using a novel functional connectivity analysis technique (Whitfield-Gabrieli 

and Nieto-Castanon, 2012), this thesis aims to investigate whether FMS patients 

demonstrate alterations to functional connectivity between DMN and pain 

processing structures at rest to investigate the following hypothesis:  

 Functional connectivity with default mode network and pain processing 

structures will be altered in FMS patients relative to healthy people. 

3.4. Morphological alterations to cortical and subcortical structures in FMS patients 

Chapter 1.4.2 describes the wide-range of morphological findings previously 

identified in FMS patients. Macroscopic methods such as VBM have failed to 

achieve consensus or consistency in results and the wide range of variability could 

be due to the age of the patients studied in different investigations, or heterogeneity 

of comorbidities and symptom profiles in experimental populations (May, 2011). 

Methodological issues surrounding tissue classification or arbitrary smoothing could 

also affect the validity of VBM findings (Jones et al., 2005; Smith et al., 2006; 

Patenaude et al., 2011), and it is not suited for the study of deeper regions such as 

basal ganglia structures. Alternative methods, such as geometric shape analysis of 
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subcortical structures may be preferable to VBM for identification of subtle 

morphological alterations (Patenaude et al., 2011). This method can identify the 

location and direction of complex morphological alterations through direct 

measurement of geometric shape more precisely than VBM (Patenaude et al., 2011).  

Due to the wide range of variability in previous VBM findings, a study is 

needed to utilise alternative techniques which may be more sensitive to alterations in 

FMS. Similarly, care should be taken to maximise the heterogeneity within the 

patient population and reduce the effects of external factors which may affect brain 

morphology such as old age. This thesis attempts to investigate whether FMS 

patients exhibit central morphological alterations compared to healthy people, 

particularly in subcortical structures.  

 Research question 4: Is the morphology of subcortical structures of the brain 

affected in FMS? 

The study described in this thesis utilised a novel technique of geometric 

shape analysis of subcortical structures (which was never previously employed in a 

chronic pain patient sample) using high-resolution T1-weighted anatomical MR 

scans. The following hypothesis was considered:  

 FMS patients will demonstrate abnormalities to the shape and volume of 

subcortical structures relative to healthy people. 

3.5. Microstructural alterations to white matter structures in FMS patients 

As described in Chapter 1.4.2.1, studies of various chronic pain populations 

have revealed white matter alterations in various pain processing structures (Geha et 

al., 2008; Gustin et al., 2010; Chen et al., 2011). However, few studies have 

investigated white matter anatomical alterations in FMS patients. The previous 
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findings suggest that pain processing structures may demonstrate alterations in the 

microstructural integrity of white matter in FMS patients (Sundgren et al., 2007; 

Lutz et al., 2008). White matter alterations in FMS patients could relate to functional 

abnormalities such as altered functional connectivity between structures, or aberrant 

processing of somatosensory afferents. Such dysfunction could feasibly cause the 

symptoms seen in FMS. A previous study reported links between specific white 

matter abnormalities and symptoms such as fatgue, stress and ongoing pain in FMS 

patients (Lutz et al., 2008). However, it was recently acknowledged that further 

understanding is needed to elucidate the underlying pathophysiological relationship 

between white matter alterations and FMS (Gracely and Ambrose, 2011).  

Existing DTI investigations of FMS patients employed techniques such as 

VBM comparisons of FA values elucidated from DTI images. This method of 

voxelwise analyses was previously criticised due to methodological issues which 

threaten the interpretation of results (Ashburner and Friston, 2001). Tract-based 

spatial statistics (TBSS, Chapter 4.2.6.1) represents a recent advance in statistical 

comparison of DTI scans which can be used to examine FA values across the whole 

brain whilst accounting for anatomical variation in white matter tracts without the 

need for data smoothing (Smith et al., 2006). However, TBSS analysis has never 

been employed to investigate white matter alterations in FMS patients.  

Previously, functional alterations to processing of mechanical stimuli 

(Gracely et al., 2002), and endogenous pain modulation (Jensen et al., 2009; Jensen 

et al., 2012) were shown in FMS patients. However, it is not known whether white 

matter connectivity between the structures involved in processing of somatosensory 

afferents or endogenous pain modulation could be responsible for such alterations. 

Novel techniques such as probabilistic tractography, which can be utilised to 
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investigate white matter connectivity alterations between relevant regions of interest, 

have not yet been utilised in FMS patients. 

 Research question 5: Is the integrity of white matter microstructure altered in 

FMS patients? 

In the present study, DTI scans were analysed to investigate the 

microstructural integrity of white matter anatomy throughout the entire brain of FMS 

patients using TBSS analysis in order to evaluate white matter alterations that may 

relate to FMS symptoms. To further expand upon previous findings probabilistic 

tractography was performed to investigate white matter connectivity between 

structures of interest located in regions associated with endogenous pain modulation 

and somatosensory processing, these specific systems were seleted due to their 

relevance for FMS based upon the central sensitisation hypothesis. The following 

hypothesis was investigated: 

 FMS patients will show reduced white matter integrity in structures of the 

brain associated with pain processing, as well as alterations to the 

connectivity of tracts between structures involved in endogenous pain 

modulation and somatosensory processing. 

3.6. Summary 

 In order to expand upon the existing knowledge of structural and functional 

brain alterations associated with FMS, this thesis utilised 5 studies encompassing a 

variety of EEG and MR analysis techniques. For the EEG data, novel paradigms 

were employed to investigate phenomenon that were never previously examined in 

FMS patients. ERD analysis was also utilised for the first time in an FMS patient 
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group. MR data was analysed using new and novel techniques to enhance the 

understanding of structural alterations in FMS. Morphological alterations in 

subcortical structures were investigated for the first time in FMS patients, and 

contemporary methods were utilised to investigate white matter alterations in 

specific tracts of high relevance to FMS symptoms. An improved method of 

functional connectivity analysis was also employed to analyse resting-state fMRI as 

well as seed locations from recent meta-analyses to build upon the findings of 

previous investigations. 
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Chapter 4 

Methods, Procedures & Materials 

4.1 EEG studies  

4.1.1. Patients 

Nineteen female patients (age 40.01 ± 7.95 years, mean ± SD) diagnosed 

with fibromyalgia syndrome took part in the study. Patients were recruited from 

outpatient fibromyalgia clinics at two regional NHS Foundation Trust hospitals; the 

Walton Centre, Liverpool, United Kingdom, and Wirral University Teaching 

Hospital, Wirral, United Kingdom. Informed consent was obtained from all 

participants in accordance with the Declaration of Helsinki. The study was approved 

by the National Research Ethics Committee of the United Kingdom and the Research 

Governance Committees of both NHS Foundation Trust hospitals.  

All patients fulfilled ACR criteria for diagnosis with fibromyalgia on the day 

of recording (Wolfe et al., 1990). Patients with additional disease or disorders such 

as hypertension, diabetes, previous brain trauma or neurological disorders were 

excluded.  Patients with disorders commonly comorbid with FMS such as arthritis, 

or functional syndromes such as irritable bowel syndrome, interstitial cystitis, 

temporomandibular disorder or migraine were not excluded provided that the patient 

categorised FMS as their primary diagnosis, and declared no transient symptoms 

from other disorders on the day of testing. Patients aged between 22–52 years were 

considered for participation. This age criterion is stringent by comparison to previous 
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studies, and was selected to minimise age-related structural and functional brain 

alterations in the sample. Mean duration of symptoms was 9.62 ± 6.97 years (mean ± 

SD), and mean time since diagnosis was 2.62 ± 1.45 years (mean ± SD).  

As some of drugs used to alleviate pain can modulate the brain activity, 

withdrawal of some of pain medication was required for 3 to 5 days before sessions. 

Patients using medications with central nervous system effects, who were not 

deemed suitable for withdrawal by the clinical team, were excluded. Common 

medications at stable low doses such as pregabalin (up to 75 mg twice a day), 

gabapentin (up to 300 mg twice a day) and amitriptyline (up to 10 mg at night), were 

considered acceptable for the criteria of minimal central nervous effects as 

designated by the clinical team. Analgesics (such as co-codamol) were withdrawn 

prior to the recording sessions. For example, a patient taking 6 to 8 tablets of mild 

co-codamol (8/500mg) a day was asked to discontinue use for 3 days prior to testing, 

a patient using up to 8 tablets of strong cocodamol (30/500mg), or high doses of 

dihydrocodeine, was asked to taper the dose over a period of 2 days before 

discontinuing use for 3 days prior to testing; withdrawal was managed by the clinical 

team during consultation. Analgesic medications with minimal central nervous 

system effects such as paracetomol were permitted.  

At their request, 4 patients on low dose anti-depressant medication (e.g. 10 

mg citalopram per day) were permitted to take part after undergoing withdrawal for 

at least 5 days prior to recordings, 6 patients were using no medications for 

management of their FMS. The remaining patients were either using permissible 

doses of common medications with minimal central nervous efficacy and/or 

withdrew from non-permitted medications, such as co-codamol, for at least 3 days 

prior to recordings. For further information regarding the precise medication 



63 
 

withdrawal procedures for all common FMS medications, and exclusion criteria 

concerning specific comorbidities see the relevant sections in the original ethics 

application  (Appendix.1).  

Table 4.1 shows the epidemiological data for all FMS patients participating 

in the EEG session as well as various clinical and psychological scale scores. All 

participants completed a series of questionnaires incorporating the Beck Depression 

Inventory (BDI, Beck et al., 1961) and State and Trait Anxiety Index (STAI, 

Spielberger et al., 1970) to evaluate mood disorder, Pain Catastrophising Scale (PCS, 

Sullivan et al., 1995) to measure psychological contructs specific to pain, and the 

Fibromyalgia Impact Questionnaire (FIQ, Burckhardt et al., 1991) to evaluate the 

impact of the disorder on quality of life. 

4.1.3. Controls 

Eighteen, age matched, female controls (age 39.23 ± 7.99 years, mean ± SD) 

were recruited through internet and campus advertisement. Volunteers aged between 

22–52 years were considered and age matched to recruited FMS patients. Volunteers 

taking regular medication and/or currently diagnosed with any disease or disorder 

were excluded. All patients and volunteers were compensated for time and travel 

expenses. Table 4.2 shows the epidemiological data for all healthy control subjects 

participating in the EEG session as well as various clinical and psychological scale 

scores. 

4.1.4. EEG recordings 

Participants were accompanied to the Sensory-Motor Laboratory of Liverpool 

Pain Research Institute, a dedicated pain measurement laboratory facility, where they 

underwent electrode preparation. EEG data was recorded using the 64 channel 
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Biosemi Ag-ACl active-two electrode system (Biosemi B.V, Amsterdam, 

Netherlands). Electrodes positions were allocated according to the extended 10–20 

system with respect to three anatomical landmarks; two pre-auricular points and the 

nasion. Two bipolar, flat Ag-ACl external reference electrodes were attached to the 

mastoid process behind each ear. Vertical electro-oculograms were recorded using 

bipolar electrodes positioned above and below the right eye. The recording bandpass 

filter was 0.16−100 Hz, and the sampling rate was 512 Hz. 
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Table 4.1 FMS patient characteristics and clinical data. 

Ppt Code Age Years Symptoms Years diagnosis Hand Brush MTPS EEG MTPS MRI STAI-S STAI-T FIQ BDI PCS 

FM01 40 12.00 1.50 R 1 6.00 5.50 35.00 52.00 64.70 16.00 16.00 

FM02 42 5.00 1.50 R 3 4.61  37.00 41.00 59.02 20.00 21.00 

FM03 39 3.00 2.50 R 1 5.83 5.83 41.00 51.00 71.99 21.00 20.00 

FM04 22 6.00 0.50 R 1 3.44 3.44 46.00 54.00 68.32 22.00 10.00 

FM05 43 4.50 3.00 R 0 6.33 5.83 63.00 62.00 77.75 31.00 14.00 

FM06 44 15.00 5.00 R 2 2.28 1.93 41.00 37.00 61.92 8.00 1.00 

FM07 33 7.00 3.00 R 1 4.89 4.89 33.00 41.00 55.55 17.00 16.00 

FM08 43 4.00 3.00 R 1 4.39 3.72 38.00 54.00 72.15 21.00 12.00 

FM09 41 18.00 1.00 R 2 3.56  25.00 44.00 19.11 5.00 14.00 

FM10 48 6.00 6.00 R 0 1.61 1.94 28.00 36.00 39.22 14.00 3.00 

FM11 37 3.50 3.50 L 2 7.67 7.67 41.00 32.00 56.40 6.00 0.00 

FM12 49 3.00 2.00 L 0 2.22 2.44 24.00 22.00 25.36 5.00 2.00 

FM13 52 10.00 2.00 R 0 4.94 3.50 35.00 42.00 48.96 14.00 19.00 

FM14 46 2.00 1.00 R 2 7.78  57.00 53.00 75.37 20.00 25.00 

FM15 45 18.00 3.00 R 0 4.78 3.28 21.00 24.00 48.42 6.00 5.00 

FM16 30 4.00 2.00 R 2 8.17 7.89 54.00 71.00 82.56 41.00 28.00 

FM17 26 6.00 3.00 L 1 6.44 6.33 39.00 60.00 74.74 20.00 5.00 

FM18 32 16.00 4.00 L 0 6.56 6.67 38.00 55.00 69.67 33.00 33.00 

FM19 37 4.50 2.00 R 1 4.61 3.89 53.00 70.00 80.23 37.00 31.00 

R=Right; L=Left; MTPS = manual tender point scale; STAI-S =state anxiety; STAI-T = trait anxiety; FIQ = Firomyalgia Impact 

Questionairre; BDI = BeckDepression Inventory; PCS = Pain Catastrophising Scale; Shading = excluded from MRI session  

 

6
5 
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Table 4.2 Healthy control group characteristics and clinical data. 

 

 

R=Right; L=Left; MTPS = manual tender point scale; STAI-S =state anxiety; STAI-T = trait anxiety; FIQ = Firomyalgia Impact 

Questionairre; BDI = BeckDepression Inventory; PCS = Pain Catastrophising Scale; Shading = excluded from MRI session  

PPT Code Group Age Hand Brush  MTPS EEG STAI-S STAI-T FIQ BDI PCS 

FM21 HC 32 R 0 0.78 39.00 45.00 14.36 2.00 4.00 

FM22 HC 40 R 0 0.00 20.00 20.00 1.91 0.00 0.00 

FM23 HC 30 R 0 0.00 24.00 21.00 0.00 2.00 0.00 

FM24 HC 41 R 0 1.17 26.00 34.00 7.00 6.00 9.00 

FM25 HC 38 R 0 0.22 32.00 51.00 10.50 6.00 14.00 

FM26 HC 51 R 0 0.22 20.00 24.00 0.00 0.00 5.00 

FM27 HC 46 R 0 0.00 32.00 38.00 1.00 0.00 5.00 

FM28 HC 47 R 0 0.50 23.00 25.00 0.00 2.00 2.00 

FM29 HC 37 R 0 0.28 20.00 38.00 4.00 4.00 0.00 

FM30 HC 37 R 0 0.44 31.00 31.00 1.43 2.00 11.00 

FM31 HC 37 R 0 0.00 20.00 25.00 0.00 2.00 0.00 

FM32 HC 48 R 0 0.17 23.00 43.00 11.00 8.00 1.00 

FM33 HC 40 R 0 0.00 26.00 40.00 19.36 15.00 16.00 

FM34 HC 22 R 0 0.00 28.00 36.00 14.50 0.00 1.00 

FM35 HC 27 R 0 0.22 37.00 36.00 8.86 4.00 4.00 

FM36 HC 48 R 0 0.17 27.00 34.00 1.43 11.00 4.00 

FM37 HC 31 R 0 0.00 25.00 43.00 11.00 2.00 19.00 

FM38 HC 45 R 0 0.00 21.00 28.00 0.00 0.00 0.00 

6
6 
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4.1.5 Brain responses in FMS patients during somatosensory stimulation: procedure 

During the experiment participants were seated in a comfortable chair with 

eyes closed. Their right forearm rested on a supporting plinth, angled parallel to the 

floor and with the height adjusted to the participant’s comfort preference. The 

experiment consisted of 2 blocks, each consisting of 20 cycles of 4 s of rest followed 

by 4 s of mechanical brush stimulation. The experimenter was positioned to the right 

of the participant and a monitor located in front of the experimenter displayed a 

visual indicator of brushing and resting periods matched to EEG triggers. During 

brush periods the experimenter commenced brushing of the participant’s right 

forearm. Brush strokes consisted of one continuous motion from the tip of the right 

elbow anterior in direction for a distance of approximately 4–5 cm at a rate of 2–3 

cm/s for 2 s. Without removing the brush the experimenter reversed direction before 

returning the brush at a similar speed and pressure to the tip of the elbow. This 

region of the forearm was selected to encompass an FMS tender point (lateral 

epicondyle), which also refers to a succinct region of the somatosensory cortex 

homunculus (Nakamura et al., 1998). The brush was removed for the duration of the 

rest period. The brush used was a standard soft bristled paintbrush; bristles were 6 

cm in length, 4 cm wide and 2 cm deep.  

Prior to the experiment participants were informed of the procedure and the 

brushing action was demonstrated by the experimenter. Participants were instructed 

that the experiment was only investigating pain evoked by the brushing action and 

not ‘ongoing aches and pains’. After each block participants were asked “Did you 

feel any pain specifically during brushing?” If they answered affirmatively, 

participants were asked “Would you describe the pain as slight, moderate or severe?” 
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Responses were scored on a 4-point Likert scale as follows; 0 for ‘no pain reported’, 

1 for ‘slight pain’, 2 for ‘moderate pain’ and 3 for ‘severe pain’. 

4.1.6 Cortical activations in FMS patients during observation of pain pictures: 

procedure  

To investigate cortical activations during observation of pain pictures, 

participants remained seated in the same comfortable armchair and viewed a 19 inch 

computer monitor positioned 1.0 m in front of them. Their right forearm rested on a 

table, with the height adjusted to the participant’s comfort preference, a computer 

mouse was place in their right hand with the right forefinger positioned over the left 

mouse button. The experiment consisted of a single recording encompassing viewing 

of 100 trials and lasting 20 minutes. Each trial began with 3 s resting interval during 

which subjects viewed a black fixation cross on a grey background, a colour 

photographic image was then presented on the grey background for 3 s followed by a 

second resting interval of 2 s and a 4 s response epoch (Fig. 4.1). During the 

response epoch a seven-point rating scale with anchors ‘no pain at all’ (1) and ‘worst 

possible pain’ (7) was presented in the form of seven horizontally aligned dark grey 

rectangles appearing on a light grey background. Participants were required to 

repeatedly click the left mouse button with their right forefinger to increment the 

scale, highlighting subsequent rectangles in yellow, to attribute the amount of pain 

they considered to be evident in the scene. 
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Fig. 4.1 Flowchart of the observation of pain pictures experiment. The figure illustrates one 

trial of the experiment, beginning with a rest interval (3 s), visual presentation of a pain or 

non-pain image (3 s), followed by a second rest interval (2 s), and a response period (4 s). 

During the response period subjects used repeated mouse clicks to increment a scale and 

attribute the amount of pain they considered to be evident in the image. 

 

The images employed were similar to those used in previous studies (Jackson 

et al., 2005; Jackson et al., 2006; Gu and Han, 2007; Lamm et al., 2007; Akitsuki 

and Decety, 2009), 50 images displayed hands or feet in situations containing pain, 

such as a knife cutting bread in a manner which would endanger the hand, or a foot 

standing on a shard of glass (Fig.4.1). A further 50 non-pain images which were 

graphically matched to pain scenes, such as a knife safely cutting bread, were also 

displayed. Following the experiment, participants rated each photograph in terms of 

emotional valence and arousal using 9-point Self Assessment Manikin scales 

(Bradley and Lang, 1994).  

At the end of the EEG recording session participants underwent a clinical 

MTPS examination (Wolfe et al., 1990). Eighteen anatomically standard FMS tender 
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points were palpated for 4 s using the thumb pad of the dominant hand. Pressure 

began at 1 kg force and was incremented by 1 kg per second until a maximum 

pressure of 4 kg is achieved. Following examination of each point patients reported 

whether they felt any pain during palpation and rated the pain verbally on a scale of 

0 for ‘no pain’, to 10 for ‘worst pain ever experienced’. Participants also completed a 

series of questionnaires (described earlier in section 4.11) incorporating the BDI, 

STAI PCS and FIQ.  

4.1.5 Brain responses in FMS patients during somatosensory stimulation: analyses 

 EEG data from the brushing investigation was analysed using FieldTrip 

(Oostenveld et al., 2011) and EEGlab (Delorme and Makeig, 2004) toolboxes in 

Matlab v.7.8 (The Mathworks Inc, USA). For each participant 40 paired rest-brush 

EEG epochs of 8 s duration (4 s rest and 4 s brushing) were visually inspected for 

artifacts. Epochs containing motion, electrode or muscle artifacts were rejected. 

Monopolar EEG data was spatially transformed using the Laplacian operator method 

(Thickbroom et al., 1984) to transform EEG data into reference-free data. This 

method improves the spatial resolution of EEG amplitude distributions by both 

reducing volume conduction effects and removing reference electrode effects. 

Laplacian filtered data was previously shown to be suitable for source distribution 

analysis of different frequency bands (Srinivasan et al., 2006). A further visual 

inspection of the spatially filtered data was performed and epochs containing 

artifacts were rejected. The average number of epochs remaining after both rounds of 

artifact correction was 28.1 ± 8.6 (mean ± SD) and 28.5 ± 6.7 in patient and healthy 

control groups respectively. 
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4.1.7.1 ERD analysis 

Power spectral densities were computed by averaging Fast Fourier Transform 

power spectra in a 512 sample (1s) data window identically aligned relative to the 

onset of brushing. Blackman window data smoothing was applied prior to Fast 

Fourier Transform. This spectral window was shifted in 0.0625 s intervals (32 

samples) to yield a power time series of 112 points representing the interval from      

-3.5 to 3.5 s relative to onset of brushing. Frequency components showing the largest 

amplitude decreases during brushing were identified in both alpha (8–13 Hz) and 

beta (16–30 Hz) bands for each participant by analysing amplitude changes in 6 

electrodes overlying the contralateral somatomotor cortices. The frequency 

component showing the largest amplitude decrease was used as an anchor to define a 

3 Hz (alpha) and 5 Hz (beta) window centred on the select frequency for each 

participant. Absolute band power for optimal alpha and beta frequencies was 

computed in resting and brushing intervals by squaring EEG signal amplitudes in the 

pre-identified participant select frequency bands, and averaging over all trials for 

each participant (Pfurtscheller and Lopes da Silva, 1999). As brushing stimuli were 

manually applied by the experimenter, and to prevent overlapping of brush/rest 

oscillatory changes between epochs, a 2 s window for rest (-3 s to -1 s relative to 

onset of brushing) and brush (1 s to 3 s relative to onset of brushing) epochs were 

exported for ERD analysis. ERD related to brushing was calculated for each 

participant according to the formula established by Pfurtscheller and Aranibar 

(1977). Finally, individual frequency specific brush ERD data were averaged for 

both patient and healthy control groups in optimal alpha and optimal beta-bands. In 

order to ascertain the quality of EEG recordings, power spectral densities were 

computed for each subject in two electrodes located over contralateral and ipsilateral 
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central-parietal sites (CP3 and CP4 respectively) across all frequency components in 

rest and brush epochs.  

4.1.7.2 Statistical analysis 

To evaluate differences in mean ERD during brushing between FMS patients 

and healthy controls a Student’s independent t-test was computed for each electrode 

in each optimal frequency band using Matlab v.7.8. Electrodes showing statistically 

significant differences between groups were combined into clusters and averaged. A 

95% confidence level was employed and permutation analysis technique (Maris and 

Oostenveld, 2007) was used to correct for false positive results due to the 

performance of multiple tests over 64 electrodes and multiple frequency bands. 

Clusters of electrodes demonstrating differences in mean ERD between groups were 

checked for outliers (outside 1.5*interquartile range) and mean differences re-

computed to reveal the most robust differences. Mean individual ERD in each cluster 

was calculated for each participant. In order to investigate potential correlations 

between oscillatory changes during brushing and clinical or psychological data 

Pearson’s correlation analysis was performed within the patient group for clinical 

and psychological variables and ERD in each significant cluster of electrodes. 

Spearman’s correlation analysis was performed for brush pain ratings and the 

various measures to investigate potential psychological causes of subjective pain 

during brushing.  

To control for the possibility of resting-state spectral power affecting 

subsequent brush-related ERD values, mean resting-state power spectral densities 

were analysed in alpha and beta-bands from 2 electrodes located over contralateral 

and ipsilateral central-parietal sites (CP3 and CP4 respectively). A 2×2 mixed 
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ANOVA was performed to compare resting spectral power between groups and 

hemispheres in alpha and beta-bands. All statistical analyses were carried out in 

SPSS v.17 (SPSS Inc, Chicago, USA).  

4.1.7.3 Beamformer analysis 

In order to localise the cortical sources accounting for surface ERD changes 

during brushing, EEG data were analysed using dynamic imaging of coherent 

sources (DICS) method (Gross et al., 2001) in BESA v5.2 (MEGIS, Germany). This 

technique applies a spatial filtering technique known as beamformer analysis to 

localise coherent sources of brain oscillatory changes in a desired frequency band 

(Gross et al., 2001). Beamformer analysis (VanVeen et al., 1997) is a distributed 

source modelling technique which utilises spatial filtering to extract components of a 

signal with specific spatial characteristic, such as those originating at a 

predetermined voxel. Sequential implementations of this analysis can be used to 

create a statistical volumetric map of source frequency amplitude changes 

throughout the entire brain volume (Brookes et al., 2008). The time course of activity 

is then computed and the resulting time series can be considered as an estimate of the 

oscillatory source activity in the desired frequency range throughout the entire brain 

volume (Gross et al., 2001).  

In the present study, beamformer analysis was employed to evaluate source 

activity using a grid of approximately 4600 voxels sized 7 × 7 × 7 mm
3
. Resulting 

volumetric maps were exported to SPM8 (Welcome Trust Centre for Neuroimaging, 

University College London, United Kingdom), spatially normalised to Montreal 

Neurological Institute (MNI) space and resampled to 1 × 1 × 1 mm
3
 voxels. 

Univariate Student’s t-test analyses were performed using the resulting statistical 
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volumetric maps for patient and healthy control groups to evaluate sources of 

frequency specific amplitude changes during brushing. Regions of interest (ROIs) 

were selected for each group by identifying clusters of voxels showing the most 

significant source amplitude changes (corrected P < 0.001) during brushing 

stimulation. MNI co-ordinates for the exact locations of t-maxima within each 

cluster were identified and clusters of frequency specific source amplitude decreases, 

significant in the patient group- but not control subjects during brushing, were 

selected for ROI analysis. A spherical ROI, 8 mm in diameter and centred on the 

patient group t-maxima for each source, was assigned using MarsBaR toolbox (MRC 

Cognition and Brain Sciences Unit, Cambridge, United Kingdom) in SPM8 and 

mean frequency amplitude changes extracted for each participant in each ROI. A 

two-way ANOVA showed a significant group effect on source activation values 

(F(1,35) = 4.82, P = 0.035), and a significant effect or source (F(4,35) = 14.94, P < 

0.001). A two-way ANOVA for repeated measures (group × source) analysis was 

performed in SPSS v.17, to compare variance between groups in source amplitude 

changes associated with brushing for each ROI. Exploratory one-way ANOVA 

analysis was utilised to investigate the specific sources driving any main effects or 

interactions. 

4.1.8 Cortical activations in FMS patients during observation of pain pictures: 

analyses 

EEG data from observing pictures was processed using BESA v. 5.2 

(MEGIS, Germany). Data was first spatially transformed into reference-free data 

using common average reference method (Lehmann, 1987). The oculographic and, 

when necessary, electrocardiographic artifacts were removed by principal 
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component analysis (Berg and Scherg, 1994). Data was visually inspected for 

presence of any movement or muscle artifacts, and epochs contaminated with 

artifacts were excluded. The mean number of trials remaining after artifact correction 

was 42.6 ± 5.3 (mean ± SD) and 42.6 ± 5.0 in patient and healthy control groups for 

pain pictures and 43.5 ± 4.5 and 42.3 ± 6.1 for non-pain pictures. A Student’s 

independent t-test indicated no difference between groups in the mean number of 

trials for either picture type (P > 0.05).  

ERPs associated with the onset of viewing photographs were computed 

separately for FMS patients and healthy control subject responses to pain- and non-

pain pictures by averaging the respective epochs in the intervals ranging from 200 

ms before stimulus onset to 1200 ms after stimulus onset (717 time points) in each 

surface electrode. The baseline period ranged from −200 ms to 0 ms relative to the 

onset of visual stimulus. ERP signals were bandpass-filtered from 0.5 to 40 Hz and 

the data for each subject, condition and electrode was extracted using Matlab v.7.13 

(The Mathworks Inc, USA).  

Global field power (GFP) can be used to identify temporal “events” which show 

consistent topography across trials (Koenig and Melie-Garcia, 2010; Tzovara et al., 

2012). Grand averaged GFP encompassing all groups and conditions as well as 

individual GFP for each group and condition and butterfly plots of all electrode 

responses were computed using Matlab. Peaks in grand averaged GFP and butterfly 

plots were used to define the centre of 15 ms epochs of interest in which to perform 

statistical comparisons between groups and conditions. In each time epoch of interest 

up to four electrodes overlying topographic peaks of positive or negative voltage 

deflections were selected for statistical analysis on the basis of observed effects from 
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surface isopotential maps (Ibáñez et al., 2011). Mean amplitudes for each electrode 

of interest in each time epoch were exported to SPSS 19.0 (SPSS Inc., New York, 

USA). 

Three-way analysis of variance (ANOVA) for repeated measures with one 

between subjects factor (group) and two within subject factors (picture type and 

electrode) was performed in each time epoch of interest to investigate main effects of 

group, picture type, electrode and interactions. In the event of a significant main 

effect or interaction, an exploratory two-way ANOVA for repeated measures (group 

× picture type) was computed for each electrode to identify specific electrodes 

showing significant main effects or interactions in each time epoch. Post-hoc 

Student’s independent samples t-tests were performed to investigate significant 

interaction effects from ANOVA analyses. All P values from ANOVA analyses were 

adjusted with Greenhouse-Geisser correction to account for violation of the 

assumption of sphericity. This sequential use of ANOVA is common practice in 

EEG studies analysing multiple electrode sites and is referred to as ‘the standard 

approach’ (Luck, 2005). 

4.1.8.1 Source analysis 

Source analysis was carried out in BESA v. 5.2 using local autoregressive 

average (LAURA) distributed source localisation method (Grave de Peralta 

Menendez et al., 2001; Grave de Peralta Menendez and Gonzalez Andino, 2002; 

Grave de Peralta Menendez et al., 2004). LAURA source localisation is an inverse 

solution which incorporates the minimum norm algorithm (Hämäläinen and 

Ilmoniemi, 1994) with additional biophysical constraints (Menendez et al., 2001). 

The minimum norm algorithm selects the inverse solution with lowest overall 
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intensity to elucidate a unique explanation for surface data, then biophysical 

constraints are applied to account for interfering factors such as the volume 

conduction of the head. This method uses a local auto-regressive average operator, 

with coefficients dependent on the distances between solution points and relating to 

electromagnetic and biophysical laws that state that the strength of the source will 

decline with distance and also that the source activity at one point is related to the 

activity at neighbouring points (Grave de Peralta Menendez and Gonzalez Andino, 

2002). Simulation studies show that LAURA can accurately resolve multiple, 

simultaneous sources (Grave de Peralta Menendez et al., 2001) and performs better 

than alternative methods such as LORETA (Menendez et al., 2001). In this study, 

LAURA maps were exported to ANALYZE format with 7×7×7 mm
3
 voxels for 

every subject and condition across all 717 time points and mean LAURA source data 

for the 15 ms time epochs of interest were exported using Matlab v.7.13.  

 For each time epoch, a univariate Student’s t-test was performed using the 

average of all subjects and conditions to identify the strongest sources of activation. 

Peak_nii (http://www.martinos.org/~mclaren /ftp/Utilities_DGM) was used to 

identify up to 10 peak voxels in each univariate t-map, images were thresholded at t 

> 10 and peaks that were less than 2.5cm apart were collapsed whilst maintaining the 

location of t-maxima. Finally, spherical ROIs, 10 mm in diameter and centred on the 

t-maxima of the sources identified by Peak_nii program, were generated using 

MarsBaR toolbox in SPM8. Mean source activations were extracted from ROIs in 

the LAURA volumes for each time epoch of interest in each participant and 

condition.  
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A three-way ANOVA for repeated measures with one between subject factor 

(group) and two within subject factors (picture type, source activation) was 

computed in each time epoch of interest to investigate main effects of group, picture 

type, source location and interactions. Exploratory two-way ANOVA for repeated 

measures (group × picture type) were performed to identify specific sources showing 

significant main effects or interactions in each time epoch. Post-hoc Student’s 

independent samples t-tests were performed to investigate the specific effects driving 

significant interactions. Two way (group × picture type) analysis of covariance 

(ANCOVA) for repeated measures was computed for LAURA source activations 

demonstrating significant main effects or interactions. PCS, BDI and FIQ scores 

were employed as covariates to investigate whether these measures were responsible 

for the main effects or interactions seen in source activation patterns. All P values 

from ANOVA analyses were adjusted with Greenhouse-Geisser correction to 

account for violation of the assumption of sphericity. 

4.1.8.2 Behavioural statistical analysis 

Subjective ratings of pain, valence, and arousal attributed to images were 

analysed using a two-way (group × picture type) ANOVA for repeated measures in 

SPSS v19.0. To investigate the role of subjective measures of pain, valence and 

arousal for each type of image on source activations a two-way (group × picture 

type) ANCOVA for repeated measures was computed in BMDP2V program 

(Statistical Solutions Ltd, Cork, Ireland). This program allows assessment of whether 

changes in a dependent measure, e.g., source activation, are associated with a 

specific change of a covariate across the different levels of a within subject factor, 

such as the picture type. A 95% confidence level was employed throughout.  
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4.2 MRI studies 

4.2.1 Patients 

Sixteen female patients (age 38.5 ± 8.45 years, mean ± SD) who had attended 

the EEG session were selected for MRI recordings; three of the original patient 

group were excluded due to internal metal or claustrophobia. Mean duration of 

symptoms in the MRI patient group was 9.13 ± 6.80 years, and mean time since 

diagnosis was 2.88 ± 1.34 years (mean ± SD). All patients fulfilled ACR criteria for 

diagnosis with fibromyalgia on the day of scanning (Wolfe et al., 1990). Patients 

with additional disease or disorders (not commonly comorbid with FMS such as 

diabetes or hypertension) were excluded, as were patients with a past history of 

major disease, alcohol/drug abuse or serious head or brain injury. Table 4.1 shows 

the epidemiological data for all FMS patients participating in the MRI recording 

session as well as various clinical and psychological scale scores. 

4.2.2 Controls 

Fifteen age-matched female controls (age 39.40 ± 8.65 years, mean ± SD) 

took part in the MRI recording session, three of the original healthy group were 

excluded due to internal metal or claustrophobia. Volunteers taking regular 

medication, currently diagnosed with any disease or disorder or demonstrating a 

history of major disease, alcohol/drug abuse or serious head or brain injury were 

excluded. Table 4.2 shows the epidemiological data for all healthy control 

participants participating in the MRI recording session as well as various clinical and 

psychological scale scores. 
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4.2.3 MRI data acquisition  

Participants attended the Magnetic Resonance and Image Analysis Research 

Centre (MARIARC) at the University of Liverpool. All participants underwent 

safety screening, performed by a senior radiologist to confirm their suitability for the 

session. Magnetic resonance images were acquired using a whole-body 3 tesla 

Siemens Trio MRI imaging system (Siemens, Magnetom, Erlangen, Germany) and 

an 8-channel head coil. As required by MARIARC safety protocol, a clinical T2-

weighted anatomical scan was acquired. This scan was not used for research 

purposes, but was evaluated by a qualified clinician for medical anomalies or 

incidental findings that would require further investigation. Following the clinical 

scan, a high-resolution 3-dimensional T1-weighted image was acquired using a 

modified driven equilibrium Fourier transform (MDEFT) sequence (TR = 7.92 ms, 

TE = 2.48 ms, flip angle = 16°, 176 sagittal slices, slice thickness 1mm, matrix 256 × 

256, in-plane voxel size 1 mm × 1 mm, total acquisition time 12:51 mins). Diffusion-

weighted images were then recorded using a spin echo echo-planar imaging 

sequence (SE-EPI, TE = 93 ms, TR = 6800 ms, 54 axial slices, isotropic resolution 

2.5 mm
3
) comprising 7 images with no diffusion weighting (b = 0) and 60 images 

with isotropically distributed diffusion-sensitising gradients (b = 1000 s/mm
2
).  

At this stage participants were briefly removed from the scanner so that MR 

compatible headphones could be fitted appropriately. The subjects were then re-

localised before the final functional scan. Resting-state fMRI data was acquired 

using a T2-weighted sequence (32 axial slices, 0.7mm spacing, TR = 2.0 s, TE = 30 

ms, flip angle = 90°, field of view = 192mm, voxel size = 3× 3 ×3.5 mm). During the 

20 minute resting-state fMRI acquisition period (600 scans), subjects were asked to 

remain awake with their eyes closed. Fifteen auditory stimuli (a one second beep 
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tone) were delivered via headphones at pseudorandom intervals (every 60−90 s, 

mean onset 75 s). Participants were instructed to respond to the auditory stimulus by 

pressing a button on a button box placed in their right hand. Stimulus-response 

epochs were later excluded as confounds. This method was previously shown to 

provide appropriate data for resting-state network analysis (Fair et al., 2007).  

Following completion of all MRI recordings all patients were again required 

to undergo a clinical MTPS examination (Wolfe et al., 1990). They also completed 

the FIQ (Burckhardt et al., 1991) to evaluate the impact of FMS symptoms on their 

quality of life in the week preceding the scanning session. 

4.2.4 Resting-state functional alterations in FMS patients 

Spatial pre-processing of functional resting-state data was performed in 

SPM8 running in Matlab v.7.13. Functional volumes underwent realignment, slice-

timing correction, normalisation to MNI space using the normalised EPI template 

image in SPM and spatial smoothing (8mm full width half maximum Gaussian 

kernel filter). Noise correction was performed using the anatomical component-

based noise correction (aCompCor) method (Behzadi et al., 2007) implemented in 

the Functional Connectivity Toolbox (CONN, Whitfield-Gabrieli and Nieto-

Castanon, 2012) in SPM8. During pre-processing in CONN, the high-resolution T1-

weighted anatomical volumes were automatically segmented into grey matter, white 

matter and cerebrospinal fluid and normalised to MNI space. The BOLD time series 

from subject-specific white matter and cerebro-spinal fluid, and the temporal time 

series associated with the motion correction parameters applied during functional 

pre-processing steps, were employed as confounds and removed from BOLD data 

using linear regression. The residual BOLD data was previously shown to benefit 
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from improved specificity, sensitivity and validity for subsequent functional 

connectivity analyses (Shehzad et al., 2009; Whitfield-Gabrieli and Nieto-Castanon, 

2012). Sound conditions, representing the 15 second period beginning 1 second 

before onset of a sound stimuli and 14 seconds post stimuli, were defined and 

included as confounds so as to only investigate the remaining resting-state data (Fair 

et al., 2007). Finally, BOLD data was bandpass filtered (0.008-0.09 Hz) to reduce 

low-frequency drift and noise effects. 

4.2.4.1 Seed regions of interest 

ROI seeds consisting of 10 mm diameter spheres centred on co-ordinates for 

DMN structures from a recent meta-analysis of DMN studies (Laird et al., 2009), 

were defined using MarsBaR software in SPM8. Table 4.3 shows the hemisphere, 

anatomical location, Brodmann area (if applicable) and MNI co-ordinates of the 

DMN seeds. Similarly, 21 identical ROIs were centred on co-ordinates of regions 

associated with activations during noxious muscle pain according to a recent meta-

analysis of functional neuroimaging studies of experimental pain (Duerden and 

Albanese, 2011). Table 4.4 shows the hemisphere, anatomical location, Brodmann 

area and MNI co-ordinates of the pain processing ROIs. 
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TABLE 4.3 Seed regions of interest selected for the default mode network 

Hemisphere Region BA x y z 

Left Precuneus (pC) 7 −4 −58 44 

Left Posterior Cingulate (PCC) 31 −4 −52 22 

Right Ventral Anterior Cingulate (vACC) 32 2 32 −8 

Right  Inferior Parietal Lobule (RIPL) 40 52 −28 24 

Left Medial Prefrontal Cortex (MPFC) 9 −2 50 18 

Right Middle Temporal Gyrus (RMTG) 39 46 −66 16 

Left Middle Frontal Gyrus (LMFG) 8 −26 16 44 

Left Inferior Parietal Lobule (LIPL) 40 −56 −36 28 

Left Middle Temporal Gyrus (LMTG) 39 −42 −66 18 

 x, y, z = MNI co-ordinates (mm), BA = Brodmann area 
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TABLE 4.4 Seed ROIs selected associated with activation during noxious muscular 

pain. 

Hemisphere Region BA x y z 

Right Anterior insula   36 14 10 

Left Thalamus   −12 −16 8 

Left Cingulate gyrus 24 0 16 24 

Left Mid-insula   −34 2 20 

Left Posterior insula   −36 −22 12 

Right Posterior parietal cortex 40 64 −22 22 

Right Middle frontal gyrus 10 32 42 16 

Left Precentral 6 −56 −2 8 

Left Inferior parietal lobule   −58 −38 28 

Left 
Secondary somatosensory 

cortex 
41 −58 −18 14 

Left Posterior cingulate gyrus 23 −4 −26 28 

Left Cingulate gyrus 32 −8 30 24 

Left Posterior insula   −38 −18 −6 

Right Cingulate gyrus 32 8 10 38 

Left Superior temporal gyrus 22 −50 6 −6 

Left Precuneus 7 −8 −70 36 

Left Cerebellum   −2 −26 −14 

Right Cerebellum   24 −62 −18 

Left Cerebellum   −38 −54 −36 

Left Middle frontal gyrus 9 −30 40 28 

Left Anterior insula   −28 16 2 

x, y, z = MNI co-ordinates (mm), BA = Brodmann area 
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4.2.4.2 Seed-to-voxel analysis 

Individual correlation maps were generated by extracting the residual BOLD 

time course from each seed ROI and calculating Pearson's correlation coefficients 

with the BOLD time course of each voxel throughout the whole brain. The resulting 

coefficients were converted to normally distributed scores using Fisher's 

transformation and entered into general linear model (GLM) analysis to generate 

statistical parametric maps of voxelwise functional connectivity for each seed ROI. 

The value of each voxel represents the relative degree of functional connectivity with 

each seed (Whitfield-Gabrieli et al., 2011). Second-level GLM analysis of relative 

functional connectivity values was performed using a two-sided independent t-test, 

implemented in the CONN toolbox, to investigate differences in seed-to-voxel 

connectivity between groups. As in previous studies (Woodward et al., 2011; Ichesco 

et al., 2012) voxel level statistics throughout the whole brain were performed at 

uncorrected level (P < 0.001) before false discovery rate (FDR) (Benjamini and 

Hochberg, 1995) correction was applied at the cluster level (P < 0.05).  

4.2.4.3 ROI-ROI analysis  

To further examine whether functional connectivity between DMN and pain 

processing structures differs in FMS, the BOLD time series extracted from each seed 

ROI was correlated with the extracted time-series from all other seeds in the 

corresponding network. These values were entered into second-level GLM analysis, 

implemented in the CONN toolbox, and a two-sided independent samples t-test was 

performed to evaluate between-group differences in ROI-ROI connectivity for each 

seed region. Results were thresholded at P < 0.05 and FDR correction was applied to 

correct for multiple tests required. 
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4.2.4.4 Correlations between relative functional connectivity and clinical measures 

For each cluster of voxels showing a significant group difference in connectivity 

with DMN or pain processing structures in seed-to-voxel analyses, the Fischer 

transformed correlation coefficients were extracted for each subject. These values 

indicate the relative connectivity strength with network seed ROIs for each 

individual subject. Pearson’s correlation analysis was performed within the patient 

group to investigate the relationship between relative functional connectivity with 

seed ROIs and clinical measures including duration of symptoms and MTPS scores 

(Wolfe et al., 1990). 

4.2.5 Morphological alterations to subcortical and cortical structures in FMS 

 In order to analyse T1-weighted scans, subcortical geometric shape analysis 

and voxel based morphometry analysis was utilised. 

4.2.5.1 Subcortical shape and volumetric analysis 

Fifteen subcortical structures (brainstem, bilateral thalami, hippocampi, 

amygdalae, putamen, caudate nucleus, accumbens nucleus and pallidum) were 

segmented from each subject's high-resolution T1-weighted structural scan using the 

Oxford Centre for Functional MRI of the Brain’s (FMRIB) integrated registration 

and segmentation tool (FIRST) toolbox (Patenaude et al., 2011) in FMRIBs software 

library (FSL, http://www.fmrib.ox.ac.uk/fsl, Smith et al., 2004). This method 

implements a probabilistic adaptation of the active appearance model using a large, 

manually labelled data set as a training template wherein the subcortical structures 

are parameterised as surface meshes with established vertices. In an automated 

process, the images are linearly registered (12 degrees of freedom) to the training 
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template and subsequently to a standard MNI space subcortical mask template in 

FSL. Finally, shape and intensity variations in the images are used to automatically 

segment subcortical structures. This method of shape analysis was recently validated 

and shown to be consistent over a variety of magnetic field strengths and acquisition 

systems (Goodro et al., 2012).  

To evaluate group differences in the shape of subcortical structures vertex 

analysis was performed. A multivariate Gaussian model of vertex location and 

intensity variation was used to generate a surface mesh for each structure in each 

subject. The number and correspondence of mesh vertices is constant across subjects 

to allow for point-to-point comparisons such as group differences in mean vertex 

positions. Corresponding vertices of surface meshes for each individual subject were 

compared in standard MNI space using the multivariate GLM with Pillai’s trace as 

the test statistic. This generates a multivariate F-statistic for each vertex which is 

sensitive to between group differences in geometric vertex co-ordinates in any 

direction (Patenaude et al., 2011). Individual vertex results were corrected for 

multiple comparisons (across vertices) using FDR method (Benjamini and 

Hochberg, 1995), P < 0.05 was considered significant. Bonferroni-Šidák correction 

was also employed to account for the multiple comparisons required across 15 

structures. For any structures demonstrating a significant shape alteration in FMS 

patients relative to healthy participants, correlation analysis was implemented in 

FIRST in the FMS patient group only. MTPS, FIQ and BDI scores were 

independently implemented as correlates in the design and vertex analysis was 

performed to evaluate whether these measures correlated with vertex positions. FDR 

correction was applied to correct for multiple tests across vertices. 
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As recent studies point to an association between Chiari I malformation and 

FMS (Thimineur et al., 2002; Heffez, 2011; Watson et al., 2011) each brain was 

assessed for Chiari I malformation by measuring the distance from the inferior tip of 

the cerebellar tonsils to the line connecting basion and opisthion (Watson et al., 

2011). This measure was of importance for evaluation of potential shape or volume 

differences in brainstem because increased pressure of cerebrovascular fluid below 

foramen magnum in Chiari I malformation may affect this structure.  

The surface meshes generated for each subject were then transformed back 

into native space using the inverse transformation of the earlier registration, and 

boundary corrected. The volume (mm
3
) of each subcortical structure was calculated. 

For each subcortical structure demonstrating a significant difference in shape 

analysis, volumetric data was exported for each individual participant. Mean values 

for FMS patient group and healthy control groups were compared using Student’s 

independent sample t-tests. Individual values in the FMS patient group were also 

utilised for Pearson’s correlation analyses with clinical measures (MTPS scores) in 

SPSS v.19. 

4.2.5.2 Voxel based morphometry analysis 

VBM pre-processing and analysis was performed using the VBM8 toolbox 

(http://dbm.neuro.uni-jena.de/vbm) in SPM8 running in Matlab v.7.8. VBM consists 

of several steps including spatial normalisation of images, segmentation of grey 

matter and other tissues before analysis of global and local differences in voxel 

intensities. Images were registered to MNI space and an optimized method of VBM 

using the VBM8 toolbox was implemented for segmentation of grey and white 

matter, default settings were used unless otherwise indicated. A hidden Markov 
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random field model is applied as part of this procedure to reduce noise effects. As 

spatial normalisation causes expansion or contraction of some brain regions, 

segmented images were scaled by the degree of contraction (modulated), so that the 

total volume of gray or white matter in the images remains the same as in the 

original images. Images were smoothed using an isotropic Gaussian kernel of 10 mm 

full width at half maximum. A data quality check based on inhomogeneity measures 

of the sample, as implemented in VBM8 toolbox, was used to check for anomalous 

data (outside 2 standard deviations) which was visually inspected and subsequently 

excluded if necessary. Using these criteria no data required exclusion from the 

sample.  

A voxel-wise comparison was performed between the FMS patient and 

healthy control groups using the GLM implemented in VBM8. As in previous 

clinical studies (Schmidt-Wilcke et al., 2006; Buckalew et al., 2008), pain-related 

grey matter alterations may be small, and so whole brain differences in voxel 

intensities were initially evaluated using threshold of P < 0.001 (uncorrected). A 

threshold was also applied to only consider spatially extended clusters encompassing 

at least 30 voxels. Subsequently, clusters of voxels demonstrating grey matter 

volume differences at the uncorrected level were compared using a statistical 

threshold corrected for FWE at cluster level (P < 0.05 corrected). 

4.2.5.3 Total intracranial volumes and correlations with clinical measures 

Total volumes of grey matter, white matter and total intracranial volumes for 

each participant were exported and mean values for FMS patient group and healthy 

control groups were compared using Student’s independent sample t-tests. Pearson’s 

correlation analysis was performed to evaluate possible correlations between total 
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grey matter volumes in the patient group and clinical measures of symptom severity 

(MTPS and FIQ score). All statistical comparisons were performed in SPSS v.19. 

4.2.6 Microstructural alterations to white matter structures in FMS patients 

 Diffusion-weighted MR images were analysed to investigate white matter 

integrity throughout the entire brain in FMS and healthy control groups. FA values, 

indicating the relative degree of directional water diffusion in the brain, can be used 

to quantify the local integrity of white matter microstructure throughout each voxel 

of the brain in each subject (Smith et al., 2006). Also, the probabilistic anatomical 

connectivity between ROIs involved in somatosensory processing and endogenous 

pain modulation was compared using probabilistic tractography. 

4.2.6.1 Tract-based spatial statistics 

 In this study, diffusion-weighted data was analysed using the FMRIB 

diffusion toolbox (FDT, Behrens et al., 2003; Behrens et al., 2007; Jbabdi et al., 

2012) in FSL (Smith et al., 2004; Jenkinson et al., 2012). In an automated process, 

DTI images were first skull-stripped using the FSL brain extraction tool (Smith, 

2002) and volumes were corrected for motion and eddy-current artifacts by affine-

nonlinear registration of each diffusion-weighted image to the baseline (b = 0) 

image. Using the FDT toolbox, a diffusion tensor model was applied to each voxel in 

the brain in order to generate a voxelwise map of FA values for each individual 

subject. Individual FA maps were then projected onto a 1×1×1 mm standard MNI 

FA template using linear affine registration in FMRIBs linear integration registration 

toolbox (Jenkinson and Smith, 2001) in FSL. The transfer of individual FA values to 

the template is configured to account for individual residual variation in the locations 

of tracts. Individual MNI-registered FA maps were averaged to generate a study 
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specific template, which is ‘thinned’ using non-maximum-suppression perpendicular 

to the anatomical tract structure in order to generate a white matter skeleton 

representing the white mater tracts that are most common across all participants. 

This template was then thresholded to include only voxels with FA values of greater 

than 0.2, so as to only incorporate voxels indicative of white matter (Smith et al., 

2006). Individual FA images were projected onto the mean FA skeleton so that each 

voxel takes the FA value from the nearest locally relevant tract. This process solves 

the alignment problems evident in previous analysis methods.  

 Voxelwise statistics were performed to test for group comparisons using 

tract-based spatial statistics (TBSS). TBSS is a novel, fully automated method which 

investigates data throughout the entire brain volume. As all subjects FA images are 

aligned to a common registration target template this method does not necessitate 

smoothing of the data (Smith et al., 2006). To account for multiple tests across 

voxels, permutation analysis with 5000 permutations was employed using the 

randomise tool in FSL. A statistical threshold of P < 0.05 was required for 

significance. Threshold-free cluster enhancement (Smith and Nichols, 2009) was 

utilised to enhance clusters showing differences. This technique eliminates the need 

for an initial uncorrected cluster-forming threshold or data smoothing (Smith and 

Nichols, 2009). Finally, mean FA values throughout the entire study-specific white 

matter template were extracted for each individual subject and mean FA across the 

whole of the white matter was compared between groups using a Student’s 

independent samples t-test in SPSS v.19. 
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4.2.6.2 Regions of interest utilised for probabilistic tractography  

In order to investigate the degree of white matter connectivity between 

structures associated with endogenous pain modulation and somatosensory 

processing, ROIs were defined in structures based on previous research and DTI 

investigations. ROIs were selected in the rACC and the brainstem for their relevance 

to endogenous pain modulation based on previous functional imaging studies 

(Bingel et al., 2006; Eippert et al., 2009). Seed (rACC), target (brainstem), and 

waypoint masks (left/right anterior thalami) were defined using the Harvard-Oxford 

atlas in FSL. Suitable anatomical waypoint masks are used to restrict analyses to the 

specific direct connectivity between seed and target structures (Stein et al., 2012). 

For each ROI a binary mask image was first generated in MNI space and affine 

registered to subject’s native image space using the inverse transform of the 

registration employed in TBSS analyses. The rACC was defined by combining the 

ACC and subcallosal cortex masks from the Harvard-Oxford atlas before manually 

removing voxels with MNI co-ordinates above z= 7 mm (Hadjipavlou et al., 2006; 

Stein et al., 2012). The brainstem mask and anterior thalami waypoint masks were 

defined using the Harvard-Oxford subcortical atlas in FSL. Similar ROIs were 

previously employed to investigate connectivity between endogenous pain 

modulation structures during experimental pain in healthy people (Hadjipavlou et al., 

2006; Stein et al., 2012). Fig.4.2A shows the locations of ROIs utilised for 

investigation of endogenous pain modulation in transverse, axial and sagittal views, 

as well as a 3-dimensional representation of the ROI masks in a normalised MNI 

template brain.  

To investigate anatomical connectivity between somatosensory processing 

structures, seed ROIs in the thalamus and target ROIs in the primary somatosensory 



  
 

93 
 

cortices were defined in each hemisphere using Harvard-Oxford subcortical and 

cortical atlases in FSL. A waypoint mask encompassing the spino-thalamic tract in 

each hemisphere was defined using the Johns-Hopkins University white mater atlas 

(Wakana et al., 2007; Hua et al., 2008). These ROIs were selected based on previous 

DTI research of thalamocortical connectivity with somatosensory cortices 

(Sudhyadhom et al., 2012). Fig.4.2B shows the locations of ROIs utilised for 

investigation of somatosensory processing. 

 

 

Fig.4.2 Locations of ROIs utilised for probabilistic tractography. A ROIs employed for 

analysis of endogenous pain modulation in transverse, axial and sagittal views. A 3-

dimensional representation of the ROI masks is also displayed in a normalised MNI template 

brain. B ROIs utilised to investigate somatosensory processing structures. 
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4.2.6.3, Probabilistic tractography 

In order to analyse relative connectivity in specific tracts of interest in FMS, 

fiber tracking was performed using a probabilistic tractography method in the FDT 

toolbox in FSL. Default parameters (5000 streamline samples, 0.5 mm step lengths, 

curvature thresholds = 0.2) were utilised as in previous seminal studies (Behrens et 

al., 2003; Behrens et al., 2007). Probabilistic tractography uses a probabilistic 

diffusion model to estimate the fibre distribution in each voxel. This model allows 

for multiple fibre orientations in each voxel and calculates the probability of each 

orientation. In the present thesis, probabilistic tractography was employed to perform 

seed-target classification analysis in the left and right hemisphere to investigate the 

white matter connectivity between seed and target ROIs. 5000 streamlines were 

traced from each seed ROI voxel. Each streamline follows a random path depending 

on the probabilities of the local fibre distributions at each voxel. Iterative analysis 

with a large number of streamlines yields the most common pathways which accord 

to local fibre orientations demonstrating the highest probability. Connectivity scores 

between seed and target ROIs were calculated by evaluating the proportion of 

streamlines which reach the target ROI after accounting for exclusions due to 

waypoint masking.  

 To control for the effect of spurious connections whilst maintaining 

sensitivity to weaker pathways, results were thresholded to exclude pathways with 

less that 10 streamlines (0.2 %) passing through them (Moayedi et al., 2012). The 

number of samples reaching the target ROIs was exported for each subject and the 

values were normalised to account for individual differences by dividing by the total 

number of samples (following exclusions due to waypoint masking) in each subject. 
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The normalised values range between 0−1, and are an indicator of relative 

connectivity strength between the structures of interest in each individual participant 

(Forstmann et al., 2010; Coxon et al., 2012).  

To visualise connectivity between the structures, the pathways from 

individual participants (thresholded at 0.2% streamlines) were binarised and 

combined for each group. Images which indicate the relative frequency of pathways 

in each voxel in FMS patient and healthy control groups were generated. These 

binary images were thresholded to display only pathways that were evident in at 

least 50% of subjects in each group (Hadjipavlou et al., 2006). 

4.2.6.4 Statistical analysis 

Normalised connectivity values for rACC seed to brainstem tracts via the 

anterior thalamic waypoints, and from thalamus to SI via the spino-thalamic tract 

waypoints in each hemisphere were extracted and entered into 2 × 2 mixed ANOVA 

analysis (between groups factor; group, within groups factor; hemisphere). All 

statistical analyses were carried out in SPSS v.19 and results of P < 0.05 were 

considered significant. 
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Chapter Five 

Results 

 

5.1 Brain responses in FMS patients during somatosensory stimulation 

FMS patients demonstrate hyperalgesia and allodynia (Bennett et al., 2007; 

Clauw, 2009) and pain resulting from innocuous stimuli is likely to be an important 

pathophysiological component of FMS symptoms. Currently no data is available 

regarding the spatio-temporal patterns of ERD during mechanical stimulation in 

FMS patients, nor is it clear whether such changes would be associated with clinical 

measures or the psychological profile of patients with FMS. This study investigated 

the cortical oscillatory changes associated with mechanical brushing stimulation in 

FMS patients. It was hypothesised that FMS patients would report subjective pain 

during brushing and show alterations in alpha and beta-band ERD amplitudes 

indicative of altered cortical excitability.  

5.1.1. Clinical and psychological characteristics and analysis of subjective pain 

during brushing  

Thirteen out of 19 patients reported pain during brushing, the mean pain 

rating in patients (1.05 ± 0.91, mean ± SD) indicates a pain sensation approximate to 

‘slight pain’ on the Likert scale ranging from ‘no pain’ (0) to ‘severe pain’ (3). As all 

healthy subjects rated brushing pain as ‘0’, a one-sample t-test was performed. The 

results revealed a significant difference between the mean pain ratings for patients 

(1.05 ± 0.91) and controls (0.00) ; t (35) = 3.91, P < 0.001.  
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A discriminant analysis was performed with brushing pain ratings, MTPS, 

STAI, BDI, FIQ and PCS scores as predictor variables to investigate differences in 

variance between groups for each variable, as well as the relative strength of each 

variable in predicting group membership. Univariate ANOVA revealed that the 

variance in patient and healthy control groups differed significantly for all variables 

(Table 5.1). A single discriminant function was calculated to demonstrate the 

effectiveness of all predictors, this function was significant for distinguishing patient 

and healthy groups (
2
 = 68.9, df = 8, P < 0.001). The correlation coefficients 

between various predictor variables and the discriminant function (Table 5.1) signify 

the relative strength of each variable in successfully identifying FMS and healthy 

group membership. These values suggest that FIQ and MTPS scores were the 

strongest predictors of fibromyalgia group membership in the population. BDI score 

was the next best predictor followed by brush pain ratings, STAI and PCS scores 

(Table 5.1).  

5.1.2 Event-related desynchronisation of alpha and beta-band rhythms 

Fig. 5.1A shows mean amplitude changes for one patient in 8–13 Hz and 16–

24 Hz bands and time-frequency plots during rest and brushing in electrodes CP3 

(left panel) and CP4 (right panel). Strong beta-band ERD was seen in both illustrated 

electrodes during brush periods. Topographic maps in Fig. 5.1A illustrate the 

patient’s mean amplitude changes across the whole head surface in 8–13 Hz and 16–

24 Hz bands from rest (-1.0 to -3.0 s) to brush periods (1.0 to 3.0 s relative to onset 

of brushing) as well as locations of the electrodes illustrated in time-frequency plots 

(white circles). Amplitudes of beta-band frequency components decreased bilaterally 

during brushing, whereas amplitude decreases of alpha-band power were only found 

in contralateral electrodes. Fig.5.1B shows the amplitude changes in one healthy 
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control participant matched for scale, electrodes, frequency bands and time course. 

Note the absence of ipsilateral beta desynchronisation in the band power, time-

frequency and topographic representations.  
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Table 5.1 Clinical and psychological characteristics of the research sample. The mean scores and standard deviations for each psychological or 

clinical test in patient and control groups. F and P values from ANOVA illustrate significant differences in variance between groups for each 

variable. The correlation coefficient refers to each variable’s correlation with the discriminant function; values indicate the relative contribution 

of each variable to the discrimination of FMS patient or healthy control group membership. 

 

Variable 
Patients 

Mean ± SD 

Controls 

Mean ± SD 
F P 

Correlation 

coefficient 

Fibromyalgia Impact 60.60 17.88 5.91 6.27 150.72 <0.001 0.72 

Manual Tender Point 4.95 1.91 0.23 0.32 107.37 <0.001 0.61 

Beck Depression 18.79 10.75 3.67 4.17 31.12 <0.001 0.33 

Pain Rating 1.05 0.91 0.00 0.00 22.97 <0.001 0.28 

State Anxiety 39.42 11.35 26.33 5.85 19.10 <0.001 0.26 

Pain Catastrophising 14.47 10.25 4.67 5.97 12.45 0.001 0.21 

Trait Anxiety 47.42 13.83 34.00 8.81 12.24 0.001 0.21 

 

 

9
9 
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Fig. 5.1 Event-related desynchronisation analysis of oscillatory changes associated with brushing.        

A Alpha-band (8−13 Hz) and beta-band (16−24 Hz) amplitude changes and time-frequency 

spectrograms averaged over rest-brushing time course for one patient corresponding to electrode CP3 

(left panel) and CP4 (right panel), overlying contralateral and ipsilateral central-parietal regions 

respectively. Three dimensional topographic maps (centre panel) illustrate (with white circles) the 

locations of electrodes CP3 and CP4 from two angles and alpha and beta-band relative band power 

changes during brushing across all scalp electrodes. B Alpha-band and beta-band amplitude changes 

and time-frequency spectrograms averaged over rest-brushing time course for one healthy control 

participant corresponding to electrode CP3 (left panel) and CP4 (right panel). Three dimensional 

topographic maps illustrate electrode locations and alpha and beta relative band power changes during 

brushing across all electrodes. C Topographic maps representing mean optimal alpha-band relative 

band power changes during brushing for patient and healthy control groups. The left panel image 

shows relative band power changes in patient group, centre; in healthy controls, right panel; a t-test 

contrast map thresholded to illustrate group differences in relative band power changes during 

brushing that achieve the level of statistical significance (corrected P < 0.05). D Topographic maps 

representing mean optimal beta relative band power changes during brushing for patient and healthy 

control groups. 
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Fig. 5.2 shows the grand average log-transformed power spectral densities 

computed for healthy control group and FMS group in electrode CP3 (contralateral 

central-parietal) and CP4 (ipsilateral central-parietal) in rest and brush epochs. In this 

analysis the presence of ERD during brushing in beta-band in ipsilateral hemisphere 

in patient group (upper-right panel) but not in control participants is again clear. A 

2×2 mixed ANOVA was performed to compare resting spectral power between 

groups and hemispheres in alpha and beta-bands. No significant differences in 

variance were found in either frequency band for main effects or interactions (P > 

0.05). 

 

Fig. 5.2, Power spectral densities during resting and brushing EEG epochs. A The grand 

average log-transformed power spectral densities in electrode CP3 (contralateral central-

parietal region) for rest (bold line) and brush (thin line) epochs in FMS patient group. B 

Electrode CP4 (ipsilateral central-parietal region) in FMS patient group. C Electrode CP3 in 

healthy control group, D Electrode CP4 in healthy control group. 

 

The frequency component manifesting the strongest amplitude decreases in 

alpha and beta-bands during brushing was evaluated for each subject and condition. 

The mean peak alpha ERD frequency in patient group was 10.97 ± 1.58 Hz (mean ± 



  
 

102 
 

SD), and 10.44 ± 1.51 Hz in healthy control participants. Peak beta ERD frequency 

was 20.74 ± 2.81 Hz (mean ± SD) for patients and 20.73 ± 2.45 Hz for healthy 

control participants. A Student’s independent t-test found no difference between 

groups for mean peak frequencies (P > 0.05). Mean optimal alpha and beta ERD 

during brushing was calculated for patients and healthy control subjects using 

subject specific alpha and beta frequencies to quantify individual ERD values before 

averaging for each group. The group averaged topographic maps, shown in Fig. 5.1C 

reveal a strong alpha-band ERD during brushing in contralateral electrodes in both 

patient and healthy control groups. An independent Student’s t-test comparison of 

alpha-band ERD in each electrode (corrected for number of tests using permutation 

analysis) found no significant difference between groups; this is illustrated in the 

form of the difference t-map in Fig. 5.1C (upper panel, right image) which is 

trimmed to show only differences exceeding the 95% confidence level (P < 0.05). In 

the optimal beta-band, patient group topographic maps (Fig. 5.1D, left panel) show 

ERD in bilateral central-parietal electrodes. In the healthy control group, beta-band 

ERD was only present in contralateral central-parietal electrodes. Slight amplitude 

increase of beta-band power (ERS) was apparent in frontal and occipital electrodes. 

The topography of the contralateral ERD in patient group was more widespread than 

in healthy control subjects, extending down to electrodes located over the temporal 

lobe, indicating a more complex array of contralateral source activations in patients 

as well as the clear addition of ipsilateral activations. An independent Student’s t-test 

comparison of optimal beta-band changes revealed three significant clusters of 

electrodes exhibiting greater ERD in patient group- compared to healthy controls 

(corrected for number of tests using permutation analysis). The clusters were located 
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in electrodes over ipsilateral frontal, ipsilateral central-parietal and medial occipital 

cortices (Fig. 5.1D, right panel).  

Mean ERD was calculated in each cluster of electrodes for each participant, 

and averaged for patient and healthy control groups. Boxplots of optimal beta-band 

ERD/ERS changes for each cluster and group following the removal of outliers are 

shown in Fig. 5.3A. In the healthy control group weak ERS is evident in all three 

clusters. In patients a weak ERD was seen in ipsilateral frontal and medial occipital 

clusters and a moderate ERD in ipsilateral central-parietal cluster. After controlling 

for outliers only the ipsilateral central-parietal cluster demonstrated a robust ERD 

difference, statistically significant between patient and control groups. Patients 

exhibited a moderate-strong mean ERD (16.9%) in these electrodes compared to 

weak ERS in healthy controls (-5.9%), Student’s independent t-test, t (35) = 2.93 (P 

< 0.001). 

5.1.3 Correlations between beta-band ERD, brush pain ratings and 

clinical/psychological measures 

Pearson’s correlation analysis was performed to investigate relationships 

between beta-band ERD in patients and age, MTPS, STAI, BDI, FIQ and PCS 

scores. There was a significant correlation between the MTPS score and the size of 

ipsilateral central-parietal ERD in the patient group (r = 0.459, P = 0.048). Fig. 5.3B 

shows the data distributed along the regression line in a linear relationship. 

Spearman’s correlation analysis was performed to investigate relationships between 

patient brush pain ratings and beta-band ERD, MTPS, STAI, BDI, FIQ and PCS 

scores. No significant correlations were found between subjective pain ratings and 

clinical or psychological measures (P > 0.05).The lack of a relationship between 
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experimental pain and psychological/clinical measures may be due to the relatively 

small number of participants in the patient group or the range of pain scores 

attributed during brushing. In future a scale with enhanced sensitivity (e.g. a 10 point 

visual analogue scale) could enhance the findings.   

5.1.4 Beamformer analysis of band power changes during brushing 

Beamformer analysis of optimal beta-band frequency amplitude changes 

during brushing in patients and healthy control participants revealed bilateral sources 

of activation in 15 of 19 patients, and 4 of 18 healthy control subjects. Univariate 

Student’s t-test analysis of each group’s individual volumetric beamformer maps was 

performed in SPM8. FMS patients demonstrated a widespread and complex array of 

beta-band power decreases analogous to the scalp ERD maps (Fig. 5.1D). Peak t 

values, indicating strongest sources of activation, were located in sources in 

contralateral primary somatosensory cortex (SI), contralateral parietal cortex 

(Brodmann Area, BA 40), bilateral insula cortices, ipsilateral secondary 

somatosensory cortex (SII), ipsilateral primary somatosensory cortex (SI) and 

occipital cortex (BA 18). Table 5.2A shows anatomical locations, MNI co-ordinates, 

t-maxima and z-maxima for the strongest source beta-band amplitude changes in 

patients. Fig. 5.4A illustrates the mean source amplitude changes in the patient group 

surpassing a corrected threshold of P < 0.001 (t  > 7.07) in glass brains (upper panel) 

and MNI standardised anatomical brains.  
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Fig. 5.3 Beta-band ERD: correlations with clinical measures and beamformer source 

analysis. A Boxplots indicating the distribution of mean optimal beta ERD/ERS in medial 

occipital, ipsilateral frontal and ipsilateral central-parietal clusters for patient (P) and healthy 

control (C) groups following removal of outliers. Each box plot represents the mean ERD 

halfway between upper and lower interquartile range, median values are indicated by the 

bold horizontal line. Significant differences between groups (P < 0.05) are indicated by an 

asterisk (*). B The scatter plot of patient group manual tender point examination scores and 

mean ERD associated with brushing in the ipsilateral central-parietal cluster of electrodes. 

The linear regression line is also shown. C  Bar chart illustrating the mean ERD and 

standard error bars for each group in 8 mm sphere regions of interest evident in the source 

activations of FMS patient group but not in control subjects. Regions of interest included 

ipsilateral SI (SIi), ipsilateral SII (SIIi), ipsilateral insula (INSi), contralateral insula (INSc) and 

occipital cortex (occ). Significant differences between groups (P < 0.05) are indicated by an 

asterisk (*). 
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Table 5.2 Univariate analysis of source activation clusters associated with brushing. 

Peak source activation clusters from univariate Student’s t-test analyses for patient 

(A) and healthy control group (B). All clusters surpass the threshold outlined in 

methods (corrected P < 0.001). Anatomical locations, MNI co-ordinates, 

hemisphere, t-maxima, z-maxima and (when appropriate) Brodmann areas are also 

given.  

A Fibromyalgia syndrome patients 

Anatomical location 
MNI 

x,    y,   z 
Hemisphere T Z 

Brodmann 

 area 

SI  -47, -18, 54 Left                                               7.47 4.98 3 

Inferior parietal lobule -47, -57, 35 Left 8.98 5.47 40 

Insula -48, -16, 7 Left 7.63 5.11 - 

Cuneus -18, -80, 26 Left 8.21 5.23 18 

Insula 47, -12, 5 Right 7.75 5.08 - 

SII 45, -22, 18 Right 7.22 4.89 - 

SI 62, -18, 26 Right 7.10 4.84 1 

 

B  Healthy control subjects 

Anatomical location 
MNI 

x,    y,   z 
Hemisphere T Z 

Brodmann  

area 

SI -43, -20, 56 Left 10.90 5.87 3 

Superior parietal lobule -45, -40, 52 Left 10.82 5.85 7 

Pre-central gyrus -21, 30, 52 Left 10.63 5.81 4 
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Fig. 5.4 Univariate analysis of source activation clusters from beamformer analyses.            

A Univariate Student’s t-test source activation clusters for the averaged patient group 

beamformer analyses surpassing a corrected threshold of P < 0.001 (t > 7.07). Clusters are 

displayed in glass brains (upper panel) and MNI standardised anatomical brains (lower 

panel). B Univariate t-test source activation clusters for the healthy control group averaged 

beamformer analyses surpassing a threshold of P < 0.001 (t > 7.05).  

 

In healthy control participants, univariate Student’s t-test analysis revealed a 

unilateral array of beta-band power decreases with the strongest changes localised to 

contralateral SI cortices (BA 9). Table 5.2B shows anatomical locations, MNI co-

ordinates, t-maxima and z-maxima for the strongest source beta-band amplitude 

changes in healthy subjects. Fig. 5.4B shows source amplitude changes in the 

healthy control group surpassing a threshold of corrected P < 0.001 (t > 7.05). Five 

cortical sources of beta-band ERD were evident in the patient group but not in the 
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control group. These sources were located in bilateral insulae, ipsilateral SII, 

ipsilateral SI, and occipital cortex. The t-maximum was identified for each cluster 

and the MNI co-ordinates used to align a spherical ROI 8 mm in diameter. Fig. 5.3C 

shows the mean source amplitude changes for each ROI in patient and healthy 

control groups. A two-way ANOVA for repeated measures (group × source) showed 

a significant group effect on source activation values (F(1,35) = 4.82, P = 0.035), and 

a significant effect for source (F(4,35) = 14.94, P < 0.001). Exploratory one-way 

ANOVA analysis to identify the sources responsible for the group effect revealed 

significant differences in variance between groups in ipsilateral SI (F(1,35) = 6.75, P 

= 0.014), SII (F(1,35) = 7.36, P = 0.01) and insula (F(1,35) = 7.04, P = 0.012). ROI 

located in medial occipital lobe and contralateral insula were not found to differ 

significantly in variance between groups (P > 0.05). 
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5.2 Cortical activations in FMS patients during observation of pain pictures  

FMS patients demonstrate increased subjective displeasure and autonomic 

arousal (Bartley et al., 2009), and alterations to somatosensory-evoked potentials 

(Montoya et al., 2005) when viewing negative affective images. However, the 

cortical activations associated with observing pain have never been researched in 

FMS patients. To analyse whether neurophysiological processing is altered when 

observing pain pictures, ERP data associated with viewing of pain and non-pain 

pictures was analysed. Distributed source analysis was performed to investigate the 

source activations in time intervals with ERP components showing significant 

effects. It was hypothesised that FMS patients would attribute stronger pain to pain 

pictures relative to healthy control subjects. ERP analysis was conducted to 

understand the potential alterations to central processing during viewing of pain 

pictures in FMS patients.  

5.2.1 Behavioural analysis of subjective picture ratings  

Table 5.3 shows the mean pain ratings attributed to photographs during 

recordings, as well as the post-recording mean values for affective valence, and 

arousal for each type of photograph in FMS patient and healthy control groups. A 

two-way ANOVA for repeated measures revealed a significant main effect of picture 

type on the amount of pain participants attributed to images. Greater pain was 

attributed to pain pictures than to non-pain pictures (F(1,35) = 361.19, P < 0.001). A 

significant effect of group (F(1,35) = 4.6, P = 0.039) was evident and the group × 

picture type interaction effect was also significant (F(1,35) = 4.52, P = 0.041). Post-

hoc Student’s independent t-test analysis revealed a significant difference between 

the mean subjective pain ratings for pain pictures in patients (4.93 ± 1.25, mean ± 
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SD) and controls (4.12 ± 0.91) (t (35) = 2.26, P = 0.03). However, no difference was 

seen between the mean pain ratings of non-pain pictures in patients (1.50 ± 0.47) 

compared with healthy control subjects (1.37 ± 0.34), t (35) = 0.92, P = 0.36.  FMS 

patients attribute significantly stronger pain to pain photographs than healthy 

controls but not to non-pain pictures. 

Subjective ratings of affective valence of each image showed a main effect of 

picture type (F(1,35) = 79.98, P < 0.001) with stronger valence attributed to pain 

pictures. No main effect of group was found (F(1,35) = 2.17, P = 0.15) but a 

significant group × picture type interaction effect was evident (F(1,35) = 5.82, P = 

0.021). Post-hoc Student’s t-test comparison of mean valence ratings of pain pictures 

in FMS patient group (4.36 ± 2.03) and healthy control group (3.17 ± 1.67) 

approached, but did not achieve significance, t (35) = 1.95, P = 0.059. There was no 

difference found between mean valence ratings of non-pain pictures in FMS patient 

(1.29 ± 0.40) and healthy control group (1.40 ± 0.78), t (35) = -0.55, P = 0.587. In 

order to confirm the existence and direction of the interaction effect a post-hoc 

Student’s independent t-test of group differences in mean simple effects scores 

(subjective pain rating scores for pain pictures − non-pain pictures) was performed. 

Mean simple effects scores for FMS patients (3.08 ± 1.85) were significantly greater 

than in healthy group (1.77 ± 1.40), t (35) = 2.41, P = 0.021. The direction of t 

indicates that FMS patients attribute stronger valence to pain photographs than 

healthy controls, but not to non-pain photographs.  

For subjective ratings of arousal in each picture, a main effect of picture type 

was found (F (1,35) = 77.55, P < 0.001), with pain pictures eliciting a stronger 

response than non-pain pictures, but no group effect was evident (F(1,35) = 1.18, P > 
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0.05). However, the group × picture type interaction effect was significant (F(1,35) = 

4.42, P = 0.043). Post-hoc t-test comparisons of mean arousal ratings of pain 

pictures in FMS patient group (4.13 ± 2.02) and healthy control group (3.18 ± 1.59) 

was not significant (t (35) = 1.58, P = 0.122) and similarly no difference was found 

between mean arousal ratings of non-pain pictures in FMS patient (1.30 ± 0.56) and 

healthy control group (1.44 ± 0.81), t (35) = -0.61, P = 0.547. Mean simple effects 

scores for patients (2.83 ± 1.80) were significantly greater than for healthy controls 

(1.74 ± 1.31) t (35) = 2.10, P = 0.043. The direction reveals that FMS patients 

attribute stronger arousal to pain photographs, but not to non-pain photographs than 

healthy controls. 

Table 5.3 Subjective ratings of pain, valence and arousal for observed pictures. 

Mean scores (± SD) for pain, valence and arousal attributed to pain and non-pain 

pictures in FMS patients and healthy control groups. 

 FMS  Healthy 

 Pain  Non-pain  Pain  Non-pain  

Pain 4.9 ±  1.2 1.5 ± 0.5 4.1 ± 1.2 1.4 ± 0.3 

Valence 4.4 ± 2.0 1.3 ± 0.4 3.2 ± 1.7 1.4 ± 0.8 

Arousal 4.1 ± 2.0 1.3 ± 0.6 3.2 ± 1.6 1.4 ± 0.8 

 

5.2.2 ERP analysis 

Fig. 5.5A shows the butterfly plot representing the mean visual evoked 

potential across all 717 time points, for all subjects and both types of photograph in 

64 electrodes. Grand averaged GFP for all groups and conditions (Fig. 5.5B) and 
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GFP for each individual group and condition (Fig. 5.5C) are also illustrated. The 

black triangles indicate peaks in GFP which were used as the centre of 15 ms time 

windows for ERP amplitude and source analyses. In each time epoch up to 4 

electrodes overlying each positive or negative deflection were exported for statistical 

analysis (Ibáñez et al., 2011).  

 

Fig. 5.5 Global field power of ERPs during observation of pictures. A The butterfly plot 

showing mean amplitudes for each electrode in all subjects and both types of photograph. B 

Grand-averaged global field power, black triangles indicate peak times used to centre 15 ms 

time window s of interest. C The global field power for each group and condition. 

 

Two epochs indicated by peaks in global field power (412−427 ms and 

732−747 ms) showed no significant effects using three-way ANOVA for repeated 
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measures analysis (group × picture type × electrode). In time epochs demonstrating 

significant effects, exploratory two-way ANOVA for repeated measures was 

performed in each electrode. Table 5.4 shows the individual electrodes showing 

significant main effect of group, picture type or interaction with amplitudes (mean ± 

SD), F statistics and significance values.
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Table 5.4 Electrodes showing significant ANOVA effects for ERP components during observation of pictures. ERP amplitudes (mean ± SD) 

for pain and non-pain pictures are shown along with F statistics and significance values. 

Time 

Epoch 

FMS  Healthy  Electrode ANOVA Effect F Sig 

 Pain  Non-pain Pain Non-pain     

135 −150 2.37 ± 3.19 2.44 ± 2.85 2.80 ± 1.20 1.69 ± 1.72 PO7 Picture 4.79 .035 

135 −150 - - - - PO7 Group × picture 6.19 .018 

290−305 4.00 ± 2.81 4.23 ± 2.59 2.53 ± 2.17 2.44 ± 2.29 Oz Group 4.5 .041 

490−505 -4.10± 2.12 -3.26± 2.29 -2.00± 3.0 -2.08± 3.12 F5 Group 4.28 .046 

565−580 -5.03± 2.95 -3.53± 2.79 -3.71± 3.42 -3.07± 3.64 F7 Picture 8.58 .006 

 

1
14
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In the early time epoch (135−150 ms) the three-way ANOVA for repeated 

measures revealed a significant group × picture type × electrode interaction effect 

(F(1,33) = 2.93, P = 0.048). Exploratory two-way ANOVA for repeated measures to 

investigate the specific electrodes responsible for the effect, showed that electrode 

PO7 (located over the left occipital lobe) demonstrated a significant effect of picture 

type (F(1,35) = 4.79, P = 0.035) and a significant group × picture type interaction 

effect (F(1,35) = 6.19, P = 0.018). Fig. 5.6A shows the isopotential maps 

representing the mean topography of ERP components for each group in each 

condition. The white circles indicate electrodes demonstrating significant ANOVA 

effects. Fig. 5.6B shows the mean ERP curves for each group and condition from 

significant electrodes.  

Post-hoc Student’s independent t-test analysis was performed to better 

understand the group × picture type interaction effect seen in electrode PO7. There 

was no significant group difference between mean amplitudes of the ERP component 

in the 135−150 ms time epoch in patients (2.37 ± 3.19) and controls (2.80 ± 1.20) 

when observing pain pictures (t (35) = -0.55, P = 0.579) or between patients (2.44 ± 

2.85) and control subjects (1.69 ± 1.72) when viewing non-pain pictures (t (35) = 

0.26, P = 0.342). However, independent t-test analysis of mean simple effects scores 

(pain image amplitude – non-pain image) for FMS (-0.07 ± 1.34) and healthy group 

(1.12 ± 1.57) confirmed the significant interaction effect (t (35) = -2.491, P = 0.018). 

The direction shows that the mean ERP amplitudes in this electrode and time epoch 

are greater for pain photographs than non-pain photographs in healthy control group 

but are similar across both types of picture in FMS patients. 
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In the 290−305 ms window a three-way ANOVA for repeated measures of 

ERP data revealed a significant effect of electrode (F(5,35) = 43.43, P < 0.001) and a 

group × electrode interaction effect (F(1,35) = 4.59, P = 0.039). Exploratory mixed 

two-way ANOVA for repeated measures showed that electrode Oz, located over the 

occipital lobe on the midline, showed a group difference in amplitude (F(1,35) = 

4.501, P = 0.041). FMS patient group showed a larger mean positivity in this 

electrode compared to healthy control subjects during viewing of both types of 

image (Table 5.4, Fig.5.6A-B).  

In the time epoch ranging from 490−505 ms, three-way ANOVA for repeated 

measures revealed a significant effect of electrode (F(5,35) = 7.23, P <0.001) and a 

group × picture type interaction effect (F(1,35) = 3.99, P = 0.050). Exploratory two-

way ANOVA for repeated measures showed that electrode F5 demonstrated a main 

effect of group on ERP amplitudes (F(1,35) = 4.283, P = 0.046). Patients showed a 

stronger negativity in this electrode compared to healthy controls for both types of 

image (Table 5.4, Fig.5.6A-B). In the 565−580 ms time window the three-way 

ANOVA for repeated measures of ERP amplitudes revealed a significant main effect 

of electrode (F(3,35) = 13.89, P < 0.001) and a significant effect of picture type 

(F(1,35) = 6.56, P = 0.015). Exploratory two-way ANOVA showed that electrode F7 

demonstrated a strong effect of picture type (F(1,35) = 8.576, P = 0.006). Pain 

photographs were associated with a larger negativity seen in this electrode and time 

epoch for both groups (Table 5.4, Fig.5.6A-B).  
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Fig. 5.6 Topography of ERP components and statistically significant electrode effects during 

observation of pictures. A The average isopotential maps for each group are shown for time 

points indicated by peaks in GFP. White circles indicate electrodes demonstrating significant 

difference in amplitude in the 15 ms time epochs centred on the peaks in GFP.  B The 

averaged event-related potential curves for each group and condition are shown at select 

electrodes, indicated by white circles on the topographic head maps. HC = healthy control 

subjects. Red colour denotes FMS patients observing pain photographs, blue=FMS-non-

pain, green= HC-pain photographs, black=HC-non-pain. Grey shaded areas signify the time 

epoch showing a significant ANOVA effect of ERP amplitude between groups, conditions or 

an interaction. 
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5.2.3 Source analysis 

In time epochs showing significant effects in ERP data, source activations 

identified by univariate analysis of LAURA volumes were entered into a three-way 

ANOVA for repeated measures. Fig. 5.7A-D shows the results of univariate analyses 

of LAURA activations (thresholded at t > 10), and locations of t-maxima used for 

source analyses in time epochs showing significant ERP effects. Table 5.5 shows the 

LAURA source activations (mean ± SD) for each source demonstrating significant 

ANOVA effects as well as t-maxima, F values and significance. Locations of sources 

demonstrating effects are also indicated on Fig.5.7A-D by blue circles.  

Mean LAURA source activations demonstrating strongest activations during 

the early time epoch (135−150 ms) were exported for each subject in each condition. 

A three-way ANOVA for repeated measures revealed a significant main effect of 

picture type (F(1,35) = 14.11, P = 0.001) and a significant photograph × source 

interaction effect (F(4,35) = 16.58, P < 0.001). Exploratory mixed two-way ANOVA 

to investigate specific sources responsible for these effects showed that the source 

located in the left occipital lobe, corresponding to Brodmann area 19, demonstrated a 

significant group × picture type interaction effect (F(1,35) = 5.231, P = 0.027). Post-

hoc Student’s independent t-test analysis was performed to investigate this 

interaction, no significant difference was seen between the mean source activation in 

this occipital source in patients (0.09 ± 0.06) and controls (0.10 ± 0.04) during pain 

pictures (t (35) = -0.45, P = 0.656), or between the activation during non-pain 

pictures in patients (0.11 ± 0.06) and controls (0.07 ± 0.03), t (35) = 1.47, P = 0.149. 

However, student’s t-test analysis of mean simple effects scores (pain image source 

activation – non-pain image) for FMS (-0.01 ± 0.05) and healthy group (0.02 ± 0.04) 
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confirmed the significant interaction effect (t (35) = -2.30, P = 0.027), the direction 

demonstrates that pain photographs caused stronger activation in this source in the 

healthy group but not in FMS group (Table 5.5, Fig. 5.7A).  

The three-way ANOVA for repeated measures analysis of LAURA source 

activations in the 290−305 ms time epoch revealed a significant group × source 

interaction effect (F(5,35) = 3.241, P = 0.028). Exploratory ANOVA analysis 

showed that the source located in the left hippocampal formation exhibited a 

significant group effect (F(1,35) = 5.35, P = 0.027). Mean activation in this source in 

FMS patient group when observing pain pictures (0.34 ± 0.21) and non-pain pictures 

(0.33 ± 0.15) was stronger than mean activation in healthy control subjects observing 

pain pictures (0.22 ± 0.10) or non-pain pictures (0.23 ± 0.10). Therefore, FMS 

patients demonstrate stronger left parahippocampal source activations during 

viewing of both types of images relative to healthy control subjects in this time 

epoch (Fig. 5.7B). In the 490−505 ms time window ANOVA analysis of LAURA 

source activations exports did not reveal a significant main effect for group, picture 

type or interaction (Fig. 5.7C). The three-way ANOVA for repeated measures of 

LAURA source activations in the 565−580 ms time epoch showed a main effect of 

picture type (F(1,35) = 5.26, P = 0.028) and main effect of source (F(1,35) = 44.34, P 

< 0.001). Post-hoc Student’s independent t-test analysis indicated that a strong main 

effect of type of photograph was evident in mean source activation located in the left 

precentral gyrus (F(1,35) = 7.96, P = 0.008) with pain photographs eliciting a 

stronger activation in both groups (Table 5.5, Fig. 5.7D).  
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5.2.4 Covariate analysis of source activations with clinical measures and subjective 

picture ratings 

ANCOVA analysis for repeated measures was performed in SPSS v.19 to 

test whether source group effects would be explained by BDI, FIQ, PCS scores or 

subjective pain score covariates. In the 290–305 ms epoch, the group main effect in 

the left parahippocampal source showed a significant covariance with FIQ scores 

(F(1,32) = 5.22, P = 0.029) and BDI scores (F(1,32) = 5.88, P = 0.021). To analyse 

whether self-report measures of perceived pain in images, image valence and arousal 

would covary with the source activation sources derived from LAURA maps, one-

way ANCOVA for repeated measures were computed using BMDP2V program. A 

statistically significant covariate effect of pain ratings (F(1,31) = 4.86, P = 0.035) 

was found in the source activation located in the left parahippocampal gyrus in the 

time interval from 290–305 ms.  
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Fig. 5.7 Univariate analyses of LAURA source activations during observation of pictures.       

A Univariate t-test results showing LAURA source activations associated with viewing both 

types of photograph in the 135−150 ms time epoch, the threshold is set at t > 10. Peak 

activation source locations, exported for statistical analyses, are highlighted in red. Locations 

of source activations demonstrating main effects are indicated by blue circles. Right panel, 

bar charts demonstrating mean source activation values and error bars for each group and 

condition in each source showing a significant ANOVA effect in each time epoch of interest. 

B 290−305 ms, C 490 505 ms, D 565−580 ms. 
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Table 5.5 Source activations showing significant ANOVA effects during observation of pictures. Source activation values (mean ± SD), F 

statistics and significance values are shown. 

Time 

Epoch 

FMS Healthy MNI [mm]     

 
Pain  Non-pain Pain Non-pain x y z Location ANOVA Effect F Sig 

135−150 2.37 ± 3.19 2.44 ± 2.85 2.80 ± 1.20 1.69 ± 1.72 -38.5 -70 38.5 L.BA19 Group × Image 5.31 .027 

290−305 0.34 ± 0.21 0.33 ± 0.15 0.22 ± 0.10 0.23 ± 0.10 -22.5 -24.5 -28.5 L.PHG Group 5.35 .027 

565−580 0.14 ± 0.01 0.09 ± 0.04 0.16 ± 0.10 0.11 ± 0.04 -55 -10.5 55 L.Precentral Image 7.96 .008 

L, left; R, right; BA, Brodmann area; PHG, parahippocampal gyrus

1
22
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5.3 Resting-state functional connectivity alterations in FMS patients 

Ongoing chronic pain may cause a time-dependent reorganisation of resting-

state networks such as the DMN (Baliki et al., 2008), and previous studies indicate 

potential resting-state networks alterations in FMS patients (Napadow et al., 2010; 

Cifre et al., 2012). In order to expand on recent findings, a novel method of 

functional connectivity analysis (Whitfield-Gabrieli and Nieto-Castanon, 2012) was 

used to analyse resting-state fMRI data in FMS patients. Seed regions of interest 

(ROIs) were located in DMN and pain processing structures using co-ordinates 

identified by recent meta-analyses (Laird et al., 2009; Duerden and Albanese, 2011), 

and stringent exclusion criteria were employed to reduce sample heterogeneity. The 

functional connectivity method utilised allows for voxelwise analysis of connectivity 

between seed ROIs and voxels throughout the whole brain, as well as specific 

comparisons of connectivity between the selected ROIs. It was hypothesised that 

DMN and pain matrix functional connectivity would show alterations in FMS 

patients relative to healthy control subjects and that such abnormal connectivity 

would correlate with clinical measures of symptom severity.  

5.3.1 Seed-to-voxel analysis  

FMS patients, relative to healthy control participants, demonstrated 

significant connectivity differences between DMN seeds located in posterior 

cingulate cortex (PCC), left medial frontal gyrus (LMFG) and right inferior parietal 

lobule (RIPL) and a variety of cortical structures. Table 5.6 shows the t-maxima, 

MNI co-ordinates of the clusters showing altered connectivity with DMN structures, 

the number of voxels, and cluster-extent FDR corrected P values.  
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FMS patients exhibited reduced functional connectivity, relative to healthy 

controls, between the PCC seed in the DMN and the right parahippocampal gyrus (t 

(29) = -7.8, P = 0.011), and right inferior temporal gyrus (t (29) = −5.6, P = 0.011). 

FMS patient group also demonstrated enhanced connectivity, compared to healthy 

participants, between the right IPL seed and right hippocampus, (t (29) = 6.91, P = 

0.034), the left MFG and left posterior parietal cortex (t (29) = 4.92, P = 0.024), and 

between the PCC seed and the left dorsolateral anterior cingulate cortex (t (29) = 

6.18, P = 0.034). Seed-to-voxel analyses revealed no significant connectivity 

differences between FMS patients and healthy control subjects utilising pain 

processing structures as seeds. Results indicate that patients show abnormal 

connectivity between DMN seeds and structures located outside the DMN. Fig.5.8 

shows the locations of DMN seeds (Fig.5.8 A), as well as the locations of clusters of 

voxels demonstrating altered functional connectivity to DMN seeds in the FMS 

patient group relative to healthy control group, and bar charts showing the relative 

functional connectivity strengths between seed regions and the clusters (Fig.5.8 B-

D). 
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Fig.5.8 Functional connectivity alterations with default mode network structures. A The 

locations of all 9 DMN seeds as specified by Laird et al. (2009), the red sphere indicates the 

location of the PCC seed, green = left MFG and blue = right IPL seed, which showed 

significant group differences in functional connectivity with extrinsic structures. B Functional 

connectivity with the PCC seed. Red-yellow colour indicates a cluster showing increased 

connectivity with PCC in FMS patients relative to healthy controls, blue-light blue colour 

indicates clusters demonstrating reduced connectivity. Top right panel; bar chart of mean 

Fischer transformed correlation coefficients indicating relative functional connectivity with 

PCC seed for each significant cluster in FMS and healthy control groups. C Functional 

connectivity with the left MFG seed. Red-yellow colour indicates a cluster showing increased 

connectivity in FMS patients. Middle right panel; bar chart of mean Fischer transformed 

correlation coefficients indicating relative connectivity between left MFG seed and significant 

clusters in FMS and healthy control groups. D Functional connectivity with the right IPL 

seed. Bottom right panel; bar chart of mean Fischer transformed correlation coefficients 

indicating relative connectivity between right IPL seed and significant clusters in FMS and 

healthy control groups. ITG=inferior temporal gyrus; PHG=parahippocampal gyrus; 

ACC=anterior cingulate cortex; LPs=superior parietal lobule; Hi=hippocampal formation. 
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5.3.2 ROI-to-ROI analysis 

ROI-ROI functional connectivity was compared between FMS patients and 

healthy control group using two-sided independent t-test analysis implemented in the 

CONN toolbox. There were no group differences in connectivity evident between 

any of the allocated DMN or pain processing seed ROIs (P > 0.05). This result is 

consistent with the seed-to-voxel analyses which only showed abnormal DMN seed 

connections with regions outside the accepted network which were not included in 

ROI-ROI analysis.  

5.3.3 Correlations between functional connectivity parameters and clinical measures 

Fisher-transformed correlation coefficients were extracted for each cluster of 

voxels showing significant group differences in functional connectivity between 

FMS patients and healthy control group. Pearson’s correlation analysis was 

performed between functional connectivity coefficients and clinical measures 

including MTPS scores and symptom duration (years) in the FMS patient group. The 

correlation coefficients for functional connectivity between the cluster located in the 

right parahippocampal gyrus and the PCC seed, which demonstrated reduced 

connectivity in FMS patients relative to healthy control group, negatively correlated 

with the duration of symptoms in FMS patients (r = −0.50, p = 0.049). The degree of 

disruption to functional connectivity between PCC and parahippocampal gyrus was 

associated with longer symptom duration. Fig. 5.9 shows the scatterplot of 

correlation coefficients representing relative functional connectivity between PCC 

and parahippocampal gyrus and duration of symptoms in the FMS patient group.  
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Fig. 5.9 Correlation between duration of symptoms and functional connectivity parameters. 

 Scatter plot showing duration of symptoms (in years), and Fischer transformed connectivity 

correlation coefficients representing relative functional connectivity between precuneus and 

right parahippocampal gyrus in FMS patient group. The linear regression line is also shown.  

 

TABLE 5.6 Seed-to-voxel analysis of resting-state functional connectivity 

alterations in FMS patients. Brain regions showing abnormal functional connectivity 

with DMN seed ROIs in FMS patients, relative to healthy control subjects, are 

shown with Cluster location, MNI co-ordinates (x,y,z) and t-maxima (cluster-level 

FDR corrected). 

Seed Contrast Cluster MNI [mm] k T Clus P-FDR 

PCC HC>FMS ITG 60 -30 -12 283 -7.8 0.011 

 

HC>FMS PHG 14, -12 -24 264 -5.6 0.011 

 

FMS>HC ACC -18,  18 , 24 157 6.18 0.034 

RIPL FMS>HC Hi 26 -14 -14 335 6.91 0.034 

LMFG FMS>HC LPs  -32 -62 50 294 4.92 0.024 

k = number of contiguous voxels; BA = Brodmann area; PCC =posterior cingulate 

cortex; MPFG= medial prefrontal gyrus; RIPL= right inferior parietal lobule; 

GTi=inferior temporal gyrus; PHG=parahippocampal gyrus; ACC=anterior cingulate 

cortex; Hi=hippocampal formation; LPs=superior parietal lobule. 



  
 

128 
 

5.4 Morphological alterations to subcortical and cortical structures in FMS patients 

In the past, several studies have utilised voxel based morphometry analysis to 

investigate structural grey matter differences in FMS patients relative to healthy 

control subjects (Kuchinad et al., 2007; Schmidt-Wilcke et al., 2007; Luerding et al., 

2008; Lutz et al., 2008; Burgmer et al., 2009; Valet et al., 2009; Robinson et al., 

2011). However, there is little consistency in the VBM findings in FMS patients. To 

further investigate morphological alterations in FMS, a novel method of shape 

analysis of fifteen subcortical regions was carried out in a homogenous sample of 

FMS patients and healthy, age-matched controls subjects. In order to compare results 

with shape analyses, concurrent global and local grey matter alterations throughout 

the whole brain of FMS patients were also investigated using VBM. It was 

hypothesised that FMS patients would show subcortical abnormalities in shape and 

volume. 

5.4.1 Subcortical shape analysis  

Vertex analysis was performed to evaluate the shape and volume of 15 sub-

cortical structures in FMS and healthy control groups. The brainstem showed a 

localised shape difference, which was significant following FDR correction for the 

number of vertices tested and Bonferroni-Šidák correction for multiple comparisons 

across 15 structures (P = 0.01corr). In the FMS patient group the brainstem 

demonstrated an inward movement of vertices compared to healthy control 

participants on the left lateral medullary funiculus extending from the inferior tip of 

the brainstem to the level of the inferior olivary body (Naidich and Duvernoy, 2009) 

suggesting a volume reduction in this region. A slight outward movement of vertices 

just above this area in the left medulla at the level of the inferior olivary body was 
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also apparent. Fig. 5.9 shows the locations, directions and F-statistics of shape 

change of brainstem vertices in the FMS group relative to healthy control group. A 

correlation analysis was also performed in the FMS patient group to distinguish 

whether MTPS, FIQ and BDI scores were related to the alterations seen in FMS 

patient’s brainstem shape. No correlations were identified between brainstem 

vertices positions and clinical or psychological measures in the FMS patient group 

(P > 0.05). 

 

Fig. 5.10 Vertex analysis of brainstem shape alterations in the brainstem of the FMS patient 

group in comparison to healthy control participants. Upper panel shows the anatomical 

location of the brainstem and the local area exhibiting shape change in FMS patient group. 

Lower left panel indicates shape change in FMS patient group compared to healthy control 

group at an uncorrected level, this semi-transparent image shows direction of vectors, 

inward direction represents relative inward positions of vertices (in FMS subjects compared 

with healthy control subjects) indicative of volume reduction. Outward direction of vectors 

indicates relative shape increases in FMS patient group. Arrow colour and surface colour 

indicate the F-statistic of the change in the specific vertices (see colour bar). Lower centre 

panel shows the location of the difference in patient group following FDR correction, red 

colour indicates areas which did not differ significantly following FDR correction. Lower right 

panel shows a semi-transparent image following FDR correction indicating the direction of 

significant vectors showing alterations in the FMS group in comparison to healthy control 

participants.  
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A Student’s independent t-test was performed to compare mean brainstem 

volumes (calculated during FIRST analysis) in FMS patient and healthy control 

groups. The mean total volume of the brainstem in FMS patient group was shown to 

be significantly reduced in comparison to healthy control participants (t (29) = 2.56, 

P = 0.016). Fig. 5.10A shows the bar charts and error bars for mean brainstem 

volumes in both groups. Pearson’s correlation analysis was performed to evaluate the 

relationship between the reduction of brainstem volume and MTPS scores in the 

FMS patient group. A significant one-tailed correlation (r = -0.45, P = 0.039) was 

evident, indicating that patients exhibiting greater reductions in volume of the 

brainstem reported higher scores on the MTPS evaluation. Fig. 5.10B shows the 

scatterplot of individual brainstem volume and MTPS score data for the FMS patient 

group distributed along the regression line. 
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Fig. 5.11 Brainstem volume reductions and correlations with clinical measures. A  Bar chart 

illustrating the mean total volume of the brainstem in FMS patient group and healthy control 

participants and error bars. B Scatter plot showing manual tender point scale (MTPS) scores 

and total volume of the brainstem (mm
3
) as calculated during FIRST analyses. The linear 

regression line is also shown.  

 

As Chiari I malformation may have contributed to the shape and volume 

changes in the brainstem, the distance between the basion-opisthion line and lower 

tip of cerebellar tonsils. Two FMS patients and one control subject showed a 

tonsillar position >5mm below the basion-opisthion line which meets the diagnostic 

criterion of Chiari I malformation (Watson et al., 2011). The mean distance between 

the basion-opisthion line to the tip of cerebellar tonsils was 0.58 ± 3.33 mm (mean ± 
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SD) in FMS group and −0.12 ± 2.23 mm (mean ± SD) in control subjects (t (29) = 

−0.68, P = 0.50). Positive values denote measurements inferior to the basion-

opisthion line and negative values indicate a measurement superior to the line. The 

individual measurements for each participant were entered as a covariate in 

MANCOVA design vertex analysis in FIRST. However, the cluster differentiating 

FMS and controls in the lower brainstem (Fig. 5.9A) was unchanged after entering 

cerebellar tonsils measurement as a covariate. Thus, it is unlikely that Chiari I 

malformation would account for the brainstem alterations seen in FMS patients. 

5.4.2 Regional grey matter volume changes in FMS patients 

Voxelwise comparison of local grey matter volumes across the whole brain 

revealed that FMS patients, relative to healthy control participants, exhibited two 

significant clusters of grey matter volume reduction located in the brainstem in the 

left ventral aspect of the basilar pons (in the pontine nuclei), and in the left precuneus 

(cluster extent P < 0.05 FWE-corrected). FMS patients also exhibited two clusters of 

grey matter volume increases located in bilateral primary somatosensory cortices. 

Fig. 5.11 shows the locations of clusters of voxels demonstrating grey matter 

alterations in FMS patient group relative to healthy control subjects displayed in 

glass brains and MNI standardised anatomical brains. Table 5.7 shows the MNI co-

ordinates of clusters demonstrating grey matter volume decreases, table 5.8 shows 

increases in FMS patients relative to healthy control subjects. The anatomical 

locations of t-maxima as defined by the Harvard-Oxford atlas in FSL, peak T and Z 

values, number of voxels (k) and the cluster-level FWE corrected significance values 

are also shown. Pearson’s correlation analysis was used to investigate potential linear 

relationships between regional grey matter volume changes and BDI, MTPS and FIQ 



  
 

133 
 

scores within the FMS patient group. Grey matter volume data was extracted for all 

clusters demonstrating increases or decreases for each patient in the FMS group and 

correlations with BDI, MTPS, FIQ score, age and duration of symptoms were 

calculated, no significant correlations were found. 

 

Fig. 5.12 Local grey matter volume alterations in FMS patients. A Local grey matter volume 

idereases as indicated by clusters representing spatially extended groups of voxels which 

differed significantly in grey matter volume at the uncorrected level (P < 0.001) in whole 

brain analysis and corrected level (P < 0.05) in cluster level analysis. Clusters are displayed 

in glass brains (upper panel) and MNI standardised anatomical brains (lower panel) x, y and 

z co-ordinates indicate slice dimensions in MNI space. B Local grey matter volume 

increases at the same significance level. Clusters are displayed in glass brains (upper panel) 

and MNI standardised anatomical brains (lower panel).  
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Table 5.7 Local grey matter volume decreases in FMS patient group relative to 

healthy control group.  

Structure MNI [mm] k Z T Sig. 

 x y z     

Brainstem -14 -21 -38 35 3.41 3.82 0.008 

Precuneus -23 -51 12 40 3.37 3.77 0.008 

      

 

Table 5.8 Local grey matter density volume increases in FMS patient group relative 

to healthy control group.  

Structure MNI [mm] k Z T Sig. 

 x y z     

Left SI -36 -47 69 39 3.41 3.83 0.005 

Right SI 39 -39 59 35 3.37 3.76 0.005 

      

Anatomical structure location as defined by the Harvard-Oxford atlas. t-maxima 

locations according with MNI x, y, z co-ordinates in millimetres. L, left; R, right; k, 

number of voxels; T, peak t values; Z, peak z values;  Sig., cluster-level FWE 

corrected P values; SI, primary somatosensory cortex. 

 

5.4.3 Total intracranial volume statistics and correlations with clinical measures 

A Student’s independent samples t-test indicated no significant differences in 

mean total grey matter volume for FMS patients compared to healthy control 

subjects (P > 0.05). However, Pearson’s correlation analysis showed a significant 
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correlation between total grey matter volume and MTPS scores in the FMS patient 

group (r = −0.63, P = 0.009). Patients with lower total grey matter volumes scored 

higher on the MTPS examination. Fig. 5.12 shows the data distributed along the 

regression line in a linear relationship.  

 

Fig. 5.12 Correlations between total grey matter volume and MTPS scores. Scatter plot of 

MTPS scores and total grey matter volume (voxels, cm
3
) as indicated by VBM8 analyses in 

the FMS patient group. The linear regression line is also shown.  
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5.5 Microstructural alterations to white matter in FMS patients 

Studies of various chronic pain populations have revealed white matter 

alterations evident in pain processing structures (Geha et al., 2008; Gustin et al., 

2010; Chen et al., 2011). Altered FA values were previously seen in structures such 

as the thalami of FMS patients (Sundgren et al., 2007; Lutz et al., 2008). This study 

investigated variations in the white matter integrity of FMS patients relative to 

healthy control subjects. DTI scans were quantitatively analysed by measuring 

fractional anisotropy (FA) to compare the integrity of white matter microstructure 

throughout the entire brain of FMS patients, relative to healthy control subjects. In 

addition, a priori regions of interest were identified in endogenous pain modulation 

and somatosensory processing systems and local directional diffusion information 

was used to probabilistically trace white matter pathways connecting the structures. 

It was hypothesised that alterations to FA values would occur within pain processing 

regions in FMS, and alterations to white matter connectivity would be evident 

between the structures associated with somatosensory processing and descending 

pain modulation. 

5.5.1 Tract-based spatial statistics  

TBSS was utilised to perform a voxelwise group comparison of FA values 

between FMS patients and healthy control subjects. Permutation analysis method 

was employed to account for multiple tests and TFCE was used to highlight clusters 

demonstrating significant differences without the need for a cluster forming 

threshold. Results revealed no significant clusters of voxels showing altered FA 

values in FMS patients relative to healthy controls. (P > 0.05). Mean FA values for 

the whole white matter skeleton for each subject were extracted using the study 
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specific FA mask. A Student’s independent samples t-test indicated no significant 

difference in mean FA values throughout the white matter skeleton of FMS patients 

(0.37 ± 0.01), relative to healthy control group (0.38 ± 0.01), t (29) = -1.09, P = 

0.282. 

5.5.2, Probabilistic tractography analysis 

Probabilistic tractography was performed to investigate potential connectivity 

alterations in specific tracts connecting a priori selected networks of particular 

interest in FMS. Table 5.10 shows the mean connectivity values and standard 

deviations between seed and target ROIs for FMS group and healthy control group. 

As functional alterations to processing of tactile stimuli (Gracely et al., 2002; Fallon 

et al., 2013) and endogenous pain modulation (Jensen et al., 2009; Jensen et al., 

2012) were previously seen in FMS patients, cortical structures associated with 

somatosensory processing and endogenous pain modulation were selected for 

probabilistic tractography analysis based on previous studies (for a complete 

description of structure locations and basis for selection see Chapter 4.2.6.2). 

 Probabilistic tractography was performed using the rACC as a seed mask to 

investigate white matter connectivity to a target mask located in the brainstem, via 

two waypoint masks encompassing anterior thalami in each hemisphere. After 

exporting connectivity values and normalising by dividing by the waytotal a mixed 

two-way ANOVA for repeated measures (group × hemisphere) was performed. The 

results indicated a significant effect of hemisphere, (F(1,29) = 9.38, P = 0.005). 

Mean connectivity values between these structures in the right hemisphere of FMS 

patients (0.07 ± 0.03, mean ± SD) and healthy control subjects (0.10 ± 0.07) exceed 

connectivity between these structures in the left hemisphere in FMS patients (0.04 ± 
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0.03) and healthy controls (0.06 ± 0.05). The effect of group was not significant and 

neither was the group × hemisphere interaction effect (P > 0.05). Connectivity 

between somatosensory processing structures encompassing bilateral thalamus seed 

masks, a waypoint mask of the left and right thalamocortical tract, and target masks 

in bilateral SI cortices was also investigated. A two-way ANOVA for repeated 

measures revealed no significant effect of group, hemisphere or interaction for mean 

connectivity values (Table 5.9) between these structures (P > 0.05).  

A concise summary of the main findings of each study in the thesis can be seen in 

Chapter 7.1. 
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Fig. 5.13, Probabilistic tractography in somatosensory and endogenous pain modulatory 

structures of FMS patients. A Binarised tracts showing connectivity between rACC and 

brainstem, via anterior thalami, in FMS patients. Image is thresholded to show tracts evident 

in at least 50% of group members (>8 for FMS patient group, > 7 for healthy control group).   

B Connectivity between rACC and brainstem, via anterior thalami, in healthy control 

participants.  C Binarised tracts showing connectivity between bilateral thalami and SI in 

FMS patients. D Binarised tracts showing connectivity between bilateral thalami and SI in 

healthy control participants. 
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Table 5.9 Relative connectivity between somatosensory and endogenous pain 

modulation structures identified using probabilistic tractography. Mean Fischer 

transformed connectivity coefficient values between seed and target ROIs in FMS 

Patients and Healthy Control Groups. 

 FMS Patients Healthy Control 

 Right Left Right Left 

rACC – brainstem 0.07 ± 0.03 0.04 ± 0.03 0.10 ± 0.07 0.06 ± 0.05 

Thalamus-SI 0.12 ± 0.05 0.13 ± 0.06 0.11 ± 0.05 0.13 ± 0.05 

rACC = rostral anterior cingulate cortex; SI = primary somatosensory cortex. 
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Chapter Six 

Study discussions 

 

6.1 Brain responses in FMS patients during somatosensory stimulations 

 The novel finding of the study of cortical oscillatory changes during brushing 

was the presence of beta-band ERD in the ipsilateral central-parietal region during 

brushing in FMS patients, but not in healthy control subjects. Larger beta-band 

ERD in FMS patients compared to control subjects co-occurred with greater pain 

scores during brushing period, although these two measures were not correlated (P 

> 0.05). However, the strength of ipsilateral beta-band ERD correlated with the 

patients MTPS scores suggesting that abnormal functioning during the processing 

of innocuous somatosensory stimulation could be significant in relation to clinical 

severity of FMS. Furthermore, the study pointed to insula and SII as cortical 

regions manifesting a stronger suppression of beta-band oscillations during 

brushing in FMS patients than in healthy participants.  

Healthy control subjects demonstrated a contralateral beta-band ERD in 

central-parietal electrodes during brushing with the strongest source activation 

cluster localised by beamformer analysis to contralateral primary somatosensory 

cortex, confirming previous findings in healthy subjects (Cheyne et al., 2003). In 

contrast to healthy participants, FMS patients showed a more widespread beta-band 

ERD in contralateral electrodes and additional foci of beta-band ERD over ipsilateral 
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central-parietal electrodes. Beta-band ERD overlying somatosensory cortices 

accompanies tactile stimuli (Cheyne et al., 2003; Stancak et al., 2003; Gaetz and 

Cheyne, 2006) and is generally stronger overlying the contralateral hemisphere 

(Stancak, 2006). Further, beta-band ERD is indicative of activation in underlying 

cortical structures (Pfurtscheller and Lopes da Silva, 1999). The augmented pattern 

of beta-band ERD seen in FMS patients was modelled by distributed clusters of 

source activity in bilateral insular, SII and SI cortices. Ipsilateral cortical activations, 

occurring in SII and insula and corresponding to brush evoked allodynia, were 

demonstrated in neuropathic pain patients using fMRI (Peyron et al., 2004) and PET 

studies (Witting et al., 2006), and in fMRI studies of chronic regional pain syndrome 

patients (Mailhöfner et al., 2006). Thus, ERD topographic maps and source 

activations in the present study accord with previous imaging studies of chronic pain 

conditions.  

Bilateral insula and somatosensory activations were previously demonstrated 

in fMRI studies of FMS patients using noxious mechanical pressure, cold and 

thermal stimuli (Gracely et al., 2002; Cook et al., 2004; Staud et al., 2008). This 

thesis demonstrates for the first time the presence of ipsilateral insula and SII 

activations in FMS patients during mechanic-tactile stimulation using 

electrophysiological measures of cortical activation. The activations in ipsilateral 

insula cortex during brushing may be particularly relevant to the clinical 

symptomatology of FMS. Augmented functional connectivity was previously shown 

between DMN structures and insula cortex in FMS patients at rest (Napadow et al., 

2010). Magnetic resonance spectroscopy was used to demonstrate enhanced levels of 

glutamate in insula cortices in FMS patients, and glutamate levels also correlated 

with experimental pain reports (Harris et al., 2009). Decreased levels of gamma-



  
 

143 
 

aminobutyric acid (GABA) have also been demonstrated in right anterior insula of 

FMS patients suggesting reduced inhibitory neurotransmission in this structure 

(Foerster et al., 2011). Neurotransmitter alterations may relate to the additional 

insula activation found during brushing in the current study. The insula cortex has 

been frequently reported as an important functional region in processing of clinical 

and experimental pain (Apkarian et al., 2005). Contralateral posterior insula has 

previously been identified as a structure which is particularly important in sensory-

discriminative processing of pain and it is also highly interconnected with SI and SII 

cortices (Peltz et al., 2011). Inappropriate activation of insula cortices (particularly 

ipsilateral insula cortices) during innocuous stimulation may play a role in allodynia 

occurring in response to dynamic tactile stimulation in FMS patients. 

Results allude to enhanced propagation of somatosensory afferent impulses 

into ipsilateral cortical structures in FMS patients which are not seen in healthy 

participants. However, it is not possible to infer whether ipsilateral cortical activation 

during tactile stimulation in FMS patients would be related to an increased 

excitability of the somatosensory cortices that may have been primed by long periods 

of muscle and joint pain, or to altered wiring of neuronal circuits such as thalamo-

cortical or callosal neurons. The present finding corresponds with a previous 

functional imaging study of FMS patients in which innocuous pressure stimulation 

elicited allodynia and bilateral SII activations (Gracely et al., 2002). It was 

previously proposed that ipsilateral somatosensory and insula cortex activations 

during brushing may result from neuroplasticity alterations (Peyron et al., 2004). 

Prolonged nociceptive input in chronic pain disorders can lead to maladaptive 

neuroplasticity changes to nociceptive, motor and somatosensory systems (Seifert 

and Maihöfner, 2011). Pre-existing neuroanatomical pathways may become 
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potentiated or disinhibited as a result of severe injury or chronic pain (Kaas et al., 

1999), and such neuroplasticity changes can cause abnormal activation patterns in 

functional imaging studies. However, when considering the evidence for central 

processing abnormalities in FMS, the possibility of altered functioning in the 

peripheral nervous system contributing to findings should not be overlooked 

(Petersel et al., 2011). 

Ipsilateral activations in SI, SII and insular cortices and allodynia pain have 

previously been demonstrated during brushing of the paretic limb of 

hemispherectomised patients (Olausson et al., 2001) suggesting that neuroplasticity 

changes can lead to ipsilateral pain matrix activations during brush evoked allodynia. 

FMS patients may undergo re-organisation of spino-thalamo-cortical projections to 

ipsilateral somatosensory and insular cortices. Such neuroplasticity changes in FMS 

could occur as a result of prolonged afferent nociceptive input which then 

exacerbates the experience of chronic pain. Alternatively, a predisposition to develop 

the specific structural brain changes seen in structural neuroimaging studies may 

constitute the primary pathophysiology of FMS (Schmidt-Wilcke and Clauw, 2011). 

However, the present use of a cross-sectional study design means it is difficult to 

infer any progressive aspect of  alterations and this limitation should be considered 

when interpreting the findings. 

 In conclusion, the findings of the first study show that FMS patients 

demonstrate functional alterations to processing of innocuous somatosensory 

stimulation such as brushing. The degree of ipsilateral beta-band ERD at central-

parietal electrodes in FMS patients correlated with clinical MTPS scores indicating 

that functional alterations to the processing of innocuous somatosensory stimulation 

in FMS patients may contribute to clinical symptom severity. It appears that 
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ipsilateral activations in FMS relate to the clinical manifestations of FMS rather than 

the presence of disorder alone. Augmented ipsilateral ERD may represent a 

physiological correlate of central sensitisation in FMS patients, possibly as a result 

of potentiation or disinhibition of subcortico-cortical projections to ipsilateral 

cortical regions such as insula, SI and SII. Such functional alterations could be a 

result of the stream of afferent somatosensory information manifesting in FMS 

chronic pain, or, alternatively, may exist as a predisposing factor to the development 

of FMS. This finding is particularly promising and highlights the potential for 

utilisation of ERD method in conjunction with, for example, standardised pressure 

stimulation as a research tool to investigate clinical aspects of FMS such as ongoing 

symptom progress or the effectiveness of therapeutic interventions. Further research 

should also elaborate on the specific pathophysiological causes of functional 

alterations in FMS in response to innocuous somatosensory stimulation.  

6.2 Cortical activations in FMS patients during observation of pain pictures 

Behavioural results from the analysis of observation of pictures revealed that 

FMS patients attribute greater pain, valence and arousal to pain pictures, but not to 

non-pain pictures, relative to healthy control participants. This finding accords with a 

previous study which showed that FMS patients exhibit increased aversion to 

negative affective photographs (Bartley et al., 2009). FMS patients also 

demonstrated alterations to ERP components during observation of pain pictures and 

source activations located in occipital cortex and parahippocampal gyrus displayed 

abnormal activation patterns when observing pain pictures. The parahippocampal 

source activation difference in FMS patients covaried with psychological and clinical 

measures. 
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In the healthy control group, pain pictures- relative to non-pain pictures- were 

associated with increased amplitude of the positive component overlying occipital 

electrodes 135−150 ms after stimulus onset; this was not found in FMS patient 

group. Analysis of LAURA distributed source localisation volumes revealed a 

source activation located in the occipital lobe (BA19), which similarly demonstrated 

augmented source activation during pain pictures in healthy control subjects but not 

in FMS patients. Enhanced short latency components (110−180 ms post-stimulus) 

were previously observed in occipital electrodes during observation of pain pictures 

relative to non-pain pictures (Proverbio et al., 2009), and augmented occipital 

activations were also seen during viewing of pain scenes in fMRI studies (Lamm et 

al., 2007; Akitsuki and Decety, 2009). It was previously proposed that occipital lobe 

structures play an active role in early discrimination of pain and non-pain scenes 

(Fan and Han, 2008). The data suggests that these early cortical processes, localised 

in occipital cortices, may be compromised in FMS patients when observing pain 

pictures. It is also noteworthy that other factors, such as visual attention, may effect 

subjective ratings and neural responses to pain perceived in others (Gu and Han, 

2007). It is also feasible that the alterations seen in early ERP components in FMS 

patients may also relate to enhanced visual attention to perceived pain stimuli.   

In the time period 290−305 ms after stimulus onset, FMS patients exhibited 

an augmented positive component over occipital regions relative to healthy 

volunteers when observing pain pictures. LAURA source analysis in this time 

window also revealed stronger source activations in the left parahippocampal gyrus 

of FMS patients when observing pain pictures. A significant covariation effect was 

found between source activation differences in the parahippocampal gyrus and 

clinical symptom severity (FIQ scores), depression (BDI scores) and the amount of 
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pain attributed to pain pictures. Parahippocampal activations were previously shown 

to play a role in emotional modulation of experimental pain (Ploghaus et al., 2001; 

Stancak et al., 2012a) and source activations in this region were augmented in 

females, relative to males, when observing pain pictures, which was purportedly 

linked to increased empathic response to perceived pain in females (Proverbio et al., 

2009). The hippocampal formation also forms part of a network underlying memory 

function, and is vital for the appropriate formation of pain memories (Buckner et al., 

2008; Spreng et al., 2009). Painful stimuli are encoded as pain memories in order to 

adapt future behaviour to prevent painful outcomes (Vogt, 2005), and this process of 

learning may be dysfunctional in chronic pain states (Albanese et al., 2007). 

Covariance analyses indicate that augmented parahippocampal gyrus source 

activation may relate to enhanced pain scores attributed to pain pictures by FMS 

patients as well as clinical symptom severity and negative affective disturbance. 

Therefore, this region may play an important functional role in the interaction 

between psychological disturbance and clinical symptoms in FMS.  

FMS patients demonstrated an enhanced negative component over left frontal 

electrodes in the 490−505 ms window. However, LAURA source analyses indicated 

no sources demonstrating an effect in this time epoch. Pain pictures were associated 

with an augmented negative component over left frontal scalp electrodes in the 

565−580 ms window and LAURA analysis revealed a source in the left precentral 

gyrus demonstrating an effect of picture type. As the picture effect on activation in 

this source was similar in both groups, it is unlikely to be affected in FMS. 

Components in similar time epochs were previously shown to differentiate between 

pain and non-pain pictures (Han et al., 2008). An fMRI study also identified stronger 

precentral gyri activations during viewing of pain relative to non-pain scenes which 
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was inferred as relating to enhanced motor-readiness during viewing of pain 

(Akitsuki and Decety, 2009). Thus, FMS appears to affect discriminatory and 

psychological aspects of processing observation of pain pictures, but not perception-

action response mechanisms.  

To conclude, FMS patients attribute more pain to pain scenes, and rate them 

as more unpleasant and arousing compared to healthy people. FMS patients also 

show alterations to ERP components and distributed source localisation activations 

when observing pain pictures. Reduced early occipital component amplitudes and 

sources activations localised to BA19 may indicate dysfunction to early 

discriminatory processing of pain pictures in FMS patients. Later occipital 

component amplitudes and augmented source activations in the parahippocampal 

gyrus of FMS patients relative to healthy control subjects may infer exaggerated 

processing during viewing of pain in FMS patients which could relate to the 

attribution of enhanced pain in pain pictures, as well as psychological and clinical 

factors.  

6.3 Resting-state functional connectivity alterations in FMS patients 

 Functional connectivity analysis of resting-state fMRI data revealed that 

FMS patients exhibit alterations to connectivity between DMN structures and 

various cortical regions located outside the network. No connectivity differences 

were identified between DMN structures in the FMS group. Correlation analysis 

showed that DMN connectivity reductions with right parahippocampal formation in 

FMS patients were associated with longer duration of symptoms. Analysis of seed 

ROIs in pain processing structures revealed no significant functional connectivity 
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differences between the ROIs or with external structures in FMS patients relative to 

healthy people.  

FMS patients exhibited reduced functional connectivity, relative to the 

healthy control group, between the PCC seed in the DMN and a cluster located in the 

right parahippocampal gyrus. The PCC is often activated during experimental pain 

stimuli and is considered part of the ‘pain matrix’ (Apkarian et al., 2005). This 

region has been shown to be important in multiple aspects of pain processing such as 

anticipation of pain (Watson et al., 2009), or the encoding of pain memories to 

prevent future inappropriate behaviour which will lead to painful outcomes (Vogt et 

al., 1996; Vogt, 2005).These aspects of pain processing may be affected as part of 

the complex psychological profile of FMS. The disruption to connectivity between 

PCC and parahippocampal gyrus correlated with the duration of symptoms in FMS 

patients, which may indicate a time-dependent alteration although this cannot be 

specifically attributed to FMS pain. The right IPL structure in the DMN 

demonstrated increased connectivity with the right hippocampal formation in FMS 

patients relative to control group. Connectivity between DMN structures and 

hippocampal formation, including entorhinal cortex and parahippocampal gyri is 

regularly seen in functional imaging studies, and the region was previously proposed 

as a structure of the DMN (Greicius et al., 2004; Buckner et al., 2008). Similarly, 

functional connectivity analysis utilising a seed located in hippocampal formation 

was shown to demonstrate functional correlations with regions which closely mimic 

DMN activations (Vincent et al., 2006). 

The overlap between DMN and hippocampal activation led to the proposal 

that DMN activity may be related to networks underlying memory function (Buckner 

et al., 2008; Spreng et al., 2009). This theory is supported by evidence that resting-
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state functional connectivity between PCC and hippocampal formation predicts 

performance on a memory task in healthy people (Wang et al., 2010), and reductions 

in connectivity between PCC and hippocampal formation were previously identified 

in patients with Alzheimer’s disease (Kenna et al., 2012; Schwindt et al., 2012). 

Grey matter reductions were seen in the hippocampal formation (including 

parahippocampal gyri) of FMS patients (Kuchinad et al., 2007; Wood et al., 2009), 

and it was previously postulated that morphological abnormalities in this region in 

FMS patients may contribute to cognitive and perceptual deficits in the disorder 

(Wood et al., 2009). Reduced functional connectivity between PCC in the DMN and 

parahippocampal gyri may be related to the cognitive dysfunction seen in FMS.  

The PCC in the DMN also showed reduced connectivity with right inferior 

temporal gyrus in FMS patients. Reduced connectivity between the DMN and 

inferior temporal gyrus was previously identified in chronic pain patients with 

diabetic neuropathy, and this was attributed to a reorganisation of resting brain 

networks which may contribute to spontaneous pain (Cauda et al., 2009). FMS 

patients also demonstrated increased functional connectivity between the left middle 

frontal gyrus in the DMN and the left superior parietal lobule. As this cluster is 

adjacent to the left inferior parietal lobule DMN seed, the augmented connectivity is 

likely to reflect an expansion of the DMN into this region in FMS patient group. 

This finding accords with hyperperfusion in the left superior parietal lobule that was 

previously seen in FMS patients during rest (Usui et al., 2010), and which the 

investigators attributed to reorganisation of the DMN. 

FMS patients also demonstrated increased functional connectivity between 

posterior and anterior cingulate cortex. Similar increases in connectivity between 

DMN and ACC were previously seen in chronic back pain patients, which was 
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conjectured to represent dysfunction of the endogenous pain modulatory system in 

chronic pain (Loggia et al., 2012). The ACC plays an important role in endogenous 

pain modulation (Bingel et al., 2006), and is also a structure of the DMN (Fox et al., 

2005; Laird et al., 2009; Whitfield-Gabrieli and Ford, 2012). Therefore, the 

augmented connectivity evident between PCC and ACC may relate to dysfunctional 

endogenous pain modulation in FMS patients due to tonic ongoing pain when at rest.  

No connectivity differences were found between pain processing structures in 

FMS patients relative to healthy control participants. Although one previous study 

identified aberrant functional connectivity between pain processing regions (Cifre et 

al., 2012) it should be noted that this analysis only utilised 9 FMS patients, and also 

used patients of both sexes. In the present study a superior sample size was 

employed. DMN seed connectivity did show connectivity differences with pain 

processing structures such as ACC and inferior temporal gyrus, which may relate to 

aberrant processing of tonic pain in FMS. However, no abnormal connectivity was 

identified between DMN structures and anterior insula cortex as seen in previous 

studies (Napadow et al., 2010; Napadow et al., 2012). These previous findings 

originate from the same research group, and heterogeneity of the FMS patient 

sample available to this group may explain the results. A similar finding was recently 

highlighted in temporomandibular disorder patients by the same research group 

(Ichesco et al., 2012).  

The DMN can be disrupted by chronic pain (Baliki et al., 2008), and our 

findings suggest that FMS alters DMN functional connectivity with brain regions 

such as parahippocampal gyrus, ACC and inferior temporal gyrus. Connectivity 

alterations may reflect ongoing time-dependent reorganisation of resting-state 

networks, and could also have implications for cognitive dysfunction, spontaneous 
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pain processing and dysfunctional endogenous pain modulation in FMS. However, 

the failure to reproduce some of the previous findings in FMS patients highlights the 

difficulties of performing functional connectivity analysis in a complex disorder. 

FMS shares a complex epidemiological profile with several other somatoform 

disorders and FMS patient groups routinely demonstrate a wide-range of 

heterogeneity. As a result of this complexity it may not be possible to identify 

specific functional connectivity alterations that specifically relate to FMS 

pathophysiology, especially when analysing a relatively small sample. However, 

larger sample sizes, which would enable utilisation of sub-grouping based on 

heterogeneity in the population, could eventually lead to improved understanding of 

functional connectivity alterations in FMS. 

6.4 Morphological alterations to cortical and subcortical structures in FMS patients 

Morphological analysis of subcortical structures revealed significant shape 

alterations and volume reduction in the brainstem of FMS patients. VBM analysis 

also demonstrated local grey matter reductions in the brainstem as well as in the left 

precuneus of FMS patients. The volume reduction of the brainstem of FMS patients 

showed a significant correlation with MTPS scores, indicating that alterations to this 

structure may play an important role in the pathogenesis or maintenance of FMS 

symptoms. In addition, total grey matter volume in FMS patients also demonstrated 

a negative correlation with MTPS scores which further suggests that grey matter 

reduction in FMS is relevant to symptom severity. 

In the FMS patient group a reduction or ‘sucking in’ of shape was evident, 

located in the left lateral medullary funiculus extending from the inferior tip of the 

brainstem (as defined by FIRST segmentation) to the level of the inferior olivary 
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body. Patients also exhibited significant reduction in mean total volume of this 

structure. The inward shape alterations evident on the surface of the medulla in FMS 

patients indicate volume reduction in the nuclei underlying this region. Specifically, 

a reduction in the reticular formation nuclei could lead to the shape alterations seen 

on the brainstem surface. Reticular formation nuclei are involved in many systems 

relevant to fibromyalgia syndrome such as homeostatic regulation, postural 

maintenance, and sleep cycle control (Naidich and Duvernoy, 2009). This formation 

also contains the rostral ventromedial medulla which is the major relay point 

between periaqueductal grey and dorsal horn neurons. Together these structures 

constitute the primary descending pain modulation pathway in the brain (Lovick, 

2008; Naidich and Duvernoy, 2009).  

Behavioural and psychophysical studies have demonstrated that descending 

pain modulation is impaired in FMS (Kosek and Hansson, 1997; Julien et al., 2005). 

Functional MRI studies of FMS patients undergoing noxious stimulation indicate 

reduced activity in regions of the brainstem associated with descending pain 

inhibitory mechanisms (Jensen et al., 2009), and reduced connectivity between the 

brainstem and pain processing regions (Jensen et al., 2012). A VBM study also 

recently reported grey matter reductions in the brainstem of FMS patients (May, 

2009). Functional imaging of the brainstem and spinal cord during innocuous and 

painful touch suggests that dysfunctional descending pain modulation may explain 

allodynia pain (Ghazni et al., 2010), and such dysfunction may facilitate the 

development of chronic pain in FMS and other chronic pain disorders (Staud, 

2011a). Shape alterations and volumetric reductions may relate to dysfunctional pain 

modulation in FMS but it should also be noted that a recent VBM study of chronic 

fatigue syndrome, a disorder closely related to FMS (Barnden et al., 2011), also 
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suggests structural grey matter reductions in the brainstem (although these changes 

appear to involve different sub-regions of brainstem). In a complex syndrome such 

as FMS it is difficult to infer specific clinical implications of local abnormalities in a 

cross sectional study.  

Reduction of the lower brainstem in FMS patients, seen in shape analysis, 

cannot be attributed to Chiari I malformation which has been suggested to be 

associated with FMS syndrome (Thimineur et al., 2002; Heffez, 2011; Watson et al., 

2011). However, it was reported that symptoms seen in FMS, such as widespread 

muscle tenderness, occur in 21.6% of patients after a neck injury compared to only 

1.7% patients with injuries to the lower extremities (Buskila et al., 1997). A 

combination of multiple anatomical factors in the cervico-spinal region might have 

contributed to the shape change in lower brainstem in FMS patients seen in the 

study.  

VBM analysis identified decreased local grey matter volumes in the 

brainstem and left precuneus of FMS patients compared to healthy controls. 

Brainstem reductions in patients were localised to the left ventral aspect of the 

basilar pons, indicating a region containing the pontine nuclei (Naidich and 

Duvernoy, 2009). This group of nuclei are involved in regulation of motor activity 

and the relaying of information between the motor cortices and the cerebellum. 

Lesions in this region cause motor deficiencies, such as complete or partial 

hemiplegia (paralysis) and dysarthria (clumsiness) (Schmahmann et al., 2004). FMS 

affects dynamic balance control and is associated with clumsiness and a high 

prevalence of falls which may result from alterations to somato-motor inputs to the 

CNS (Jones et al., 2011). Postural correction requires fast subconscious correction of 
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muscle movements, peripheral input is relayed, via the brainstem, to the cerebellum 

where efferent corrections are generated (Peterka and Loughlin, 2004; Horak, 2006). 

Therefore, grey matter reductions in pontine nuclei, may relate to the postural 

deficits in FMS and this should be addressed in future studies.  

The left precuneus also demonstrated grey matter reductions in FMS patients 

relative to healthy control subjects. Precuneus is important in endogenous pain 

modulation and shares connectivity with periaqueductal grey and posterior cingulate 

cortex during experimental pain relief (Zyloney et al., 2010). Enhanced resting 

cerebral blood flow has been demonstrated in the precuneus of FMS patients and this 

hyperperfusion predicted the success of gabapentin treatment (Usui et al., 2010). The 

precuneus is also a structure of the DMN (Greicius et al., 2003). DMN connectivity 

can be disrupted by long term chronic pain (Baliki et al., 2008). As described earlier 

(Chapter 5.3, 6.3), FMS patients exhibit functional connectivity alterations between 

DMN structures and extrinsic structures such as parahippocampal gyrus. Previous 

studies have also identified abnormal connectivity with DMN structures in FMS 

(Napadow et al., 2010). Thus, grey matter reductions in the precuneus of FMS 

patients may contribute to dysfunctional descending pain modulation generated in 

the posteromedial cortex and/or disrupted DMN connectivity.  

FMS patients exhibited bilateral increases in grey matter in somatosensory 

cortices. Primary somatosensory cortices are important in the discriminative aspects 

of pain processing (Lee et al., 2008). FMS patients have demonstrated increased 

activity in somatosensory cortices, compared to healthy controls, during noxious 

mechanical pressure (Gracely et al., 2002), and a VBM study in healthy people 

reported increased grey matter in somatosensory cortices following daily 
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experimental pain stimulation (Teutsch et al., 2008). However, grey matter 

reductions appear to be more relevant to the symptoms of FMS. The total grey 

matter volume in FMS patients correlated negatively with MTPS scores, indicating 

that patients with greater global grey matter volume reduction exhibited increased 

clinical symptom severity. 

Subcortical morphological alterations in FMS patients are pertinent to the 

disorders pathophysiology and merit further investigation. The novel technique of 

shape analysis used in the present study indicates morphological abnormalities in 

structures relevant to endogenous pain modulation and other aspects of FMS. Future 

studies could prioritise scan parameters and analysis techniques to further elucidate 

subcortical alterations in FMS, and also to investigate whether such alterations could 

correlate with functional abnormalities such as decreased functioning of descending 

nociceptive control system during experimental pain, dysfunctional postural control 

or sleep disturbance. Possible structural and functional alterations to the pain 

modulatory system in FMS may also be affected by current treatments (such as 

pharmacological interventions, self-management programs, or non-invasive brain 

stimulation techniques), and a longitudinal investigation could improve 

understanding of both the pathophysiology of FMS and the mechanisms of such 

interventions. 

6.5 Microstructural alterations to white matter in FMS patients 

 Analysis of DTI data revealed no significant white matter alterations in FMS 

patients in either voxelwise comparisons of FA values or probabilistic tractography 

comparison of connectivity between specific ROIs. These negative findings are still 

important as they indicate that structural and anatomical abnormalities evident in 
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FMS are unlikely to occur in white matter. Therefore, grey matter structural 

alterations are the more probable explanation for any evident morphological changes 

such as the brainstem alterations described in the previous study. DTI method is 

suitable for assessing the effects of clinical pathologies which challenge the integrity 

of white matter such as multiple sclerosis (Iwasawa et al., 1997). It was previously 

proposed that this DTI analysis may possess improved sensitivity to subtle 

morphological changes in FMS patients (Lutz et al., 2008). It is known that the 

majority of white matter developmental changes occur in the first few years of life 

(Hermoye et al., 2006; Huang et al., 2006), although certain white matter pathways, 

particularly in prefrontal cortices, can continue development into adolescence or 

early adulthood (Giorgio et al., 2008).However, the lack of findings in FMS patients 

using DTI methods suggests that the syndrome does not affect the development or 

integrity of white matter microstructure in the brain. 

As described in Chapter 1.2.3, FMS is a heterogeneous syndrome, and patient 

samples may show varying proportions of comorbidities such as depression or 

anxiety (Thieme et al., 2004), irritable bowel syndrome, post-traumatic stress 

disorder and temporomandibular disorder (Clauw, 2009). This wide heterogeneity 

means that the structural alterations found in anatomical imaging studies are difficult 

to interpret. A previous study identified multiple FA changes in FMS patients (Lutz 

et al., 2008). However, the authors also identified a high frequency of post-traumatic 

stress disorder and anxiety in their patient population, and this was proposed as a 

potentially confounding factor in white matter findings (Lutz et al., 2008). White 

matter abnormalities were previously associated with several disorders often 

comorbid with FMS such as post-traumatic stress (Abe et al., 2006), anxiety (Ayling 

et al., 2012), and temporomandibular disorder (Moayedi et al., 2012). Therefore, a 
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high frequency of any of these disorders in an FMS sample could illicit white matter 

findings that are not actually specific to FMS. 

A previous DTI study of FMS patients found reduced FA in the right 

thalamus in FMS patients relative to a healthy group (Sundgren et al., 2007). 

However, the same study reported no differences in the apparent diffusion 

coefficient (indicating that the total amount of water diffusion in the region was 

normal). These results have been interpreted to suggest that FA differences in the 

thalami of FMS may be caused by neuronal reorganisation rather than axonal 

degeneration (Gracely and Ambrose, 2011). Disorganisation of white matter may be 

better investigated utilising probabilistic tractography to investigate the connections 

between appropriate structures that are relevant to the symptoms seen in FMS. In this 

study probabilistic tractography was utilised to investigate specific alterations to 

connectivity between structures in the somatosensory processing (including the 

thalami) and pain modulatory systems. This method was previously used to assess 

white matter tract connectivity associated with endogenous pain modulation during 

experimental placebo analgesia (Stein et al., 2012). However, despite utilising ROIs 

similar to those in previous successful investigations, no connectivity probability 

differences were found between FMS patients and healthy control group in either 

system. This would indicate that, although dysfunction in either of these systems 

could contribute to FMS symptoms, any problem is unlikely to be a result of 

alterations to white matter tract structure or connectivity. Therefore neuronal re-

organisation is unlikely to account for the functional ERD alterations previously 

shown during processing of innocuous somatosensory stimuli in FMS patients 

(Chapter 5.1, 6.1). 
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In conclusion, it would appear that white matter microstructure and integrity 

in FMS patients is comparable to normal populations. Although previous studies 

have identified white matter alterations in FMS, it is important to appreciate no 

differences in FA have ever been reported at a corrected voxelwise level (Sundgren 

et al., 2007; Lutz et al., 2008). The present findings highlight the relative importance 

of grey matter alterations to morphological abnormalities associated with FMS, and 

also suggest that the development of white matter pathways is unaffected by FMS. 

Probabilistic tractography results show that abnormal white matter connectivity 

alterations are unlikely to contribute to somatosensory processing or endogenous 

pain modulation dysfunction in FMS.  
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Chapter Seven 

General discussion 

 

7.1. Summary of findings 

The first study of this thesis investigated whether allodynia pain caused by 

innocuous somatosensory stimuli in FMS patients was associated with cortical 

excitability alterations. It was hypothesised that FMS patients would report 

subjective pain as a result of brushing stimuli, and exhibit alterations in alpha and 

beta band power changes, relative to healthy control subjects. Mean subjective pain 

ratings reported during brushing were significantly higher in FMS patients than in 

the healthy control group. An independent t-test comparison of ERD during brushing 

revealed a cluster of electrodes over ipsilateral (right) central-parietal region which 

demonstrated beta-band ERD in the patient group only. It was shown that beta-band 

ERD in this cluster of electrodes correlated with clinical MTPS scores, indicating 

that functional alterations in the processing of innocuous somatosensory stimulation 

in FMS patients may contribute to clinical symptom severity. Using beamformer 

analysis, the beta-band ERD in FMS patients was modelled by clusters of source 

activity in bilateral insular, SII and SI cortices compared to contralateral sources in 

healthy control group.  

The second study utilised ERP analysis of EEG data recorded during viewing 

of pictures depicting pain in others or graphically similar images not containing pain. 

The aim of this investigation was to evaluate potential changes to cortical processes 
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underlying the observation of pain in FMS patients, and to elucidate how alterations 

could relate to FMS symptoms. It was hypothesised that FMS patients, relative to 

healthy control subjects, would attribute stronger pain ratings to pain pictures and 

manifest alterations in ERP components, which could be localised to pain or 

emotional processing structures. Results showed that FMS patients subjectively rated 

pain pictures as containing greater pain, and also rated them as more unpleasant and 

arousing than healthy people. The FMS patient group exhibited alterations in early 

occipital component amplitudes and source activations localised to BA19 compared 

to healthy control subjects. This finding may relate to dysfunctional early processing 

of pain pictures in FMS patients. Later occipital component amplitudes and source 

activations in the parahippocampal gyrus were augmented in FMS patients compared 

to controls during observation of pain pictures. The degree of augmentation covaried 

with the amount of pain attributed to pain pictures, and psychological and clinical 

factors.  

Using resting-state fMRI scans, the third study investigated functional 

connectivity between the brain structures involved in pain processing and the DMN 

in FMS patients. It was hypothesised that FMS patients would show altered 

functional connectivity between DMN and pain processing structures, and also with 

structures extrinsic to these networks. FMS patients, relative to healthy control 

participants, exhibited functional connectivity alterations between DMN structures 

and various brain regions outside the network such as the hippocampal formation 

(including parahippocampal gyrus), anterior cingulate cortex, superior parietal lobule 

and inferior temporal gyrus. No abnormal functional connectivity was identified with 

pain processing structures. Correlation analysis revealed that reduced functional 

connectivity between the PCC in the DMN and the right parahippocampal gyrus in 
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FMS patients was associated with longer duration of symptoms. The present findings 

suggest that FMS alters DMN connectivity with brain regions such as the 

hippocampal formation, and particularly the parahippocampal gyrus. Although no 

alterations in functional connectivity between DMN structures were identified, 

altered DMN connectivity with parahippocampal gyrus is particularly interesting as 

it was previously considered as a structure of the DMN (Greicius et al., 2004; 

Buckner et al., 2008). Disrupted functional connectivity between PCC and 

parahippocampal gyrus was associated with a longer duration of symptoms, which 

may reflect ongoing time-dependent reorganisation of resting-state networks in FMS.  

The fourth study employed a novel method of geometric shape analysis of 

subcortical structures and VBM analysis to evaluate morphological alterations to 

subcortical structures and cortical grey matter in FMS patients. High-resolution T1-

weighted anatomical scans were analysed, and it was hypothesised that FMS patients 

would show subcortical shape and volume abnormalities relative to healthy people. 

FMS patients demonstrated shape alterations to the left lateral aspect of the medulla 

in the brainstem and the mean total volume of the brainstem was found to be 

significantly reduced in the patient group. The degree of volume reduction in this 

structure correlated with clinical MTPS scores, which infers that morphological 

alterations in this region are related to clinical symptom severity. This finding may 

be indicative of deficiencies in underlying nuclei or structures involved in 

descending nociceptive control in FMS patients, which would explain the 

relationship with sensitivity to mechanical pressure. VBM analyses also revealed 

that patients exhibited local grey matter volume reductions in the brainstem (pons), 

as well as left precuneus. Increases in grey matter volumes were seen in bilateral 

primary somatosensory cortices of FMS patients.  
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The final study of the thesis investigated whether FMS patients demonstrate 

alterations to white matter anatomy using analysis of DTI scans. FA values 

throughout the whole brain were compared using TBSS analysis, and probabilistic 

tractography analysis was performed to investigate alterations to specific tracts 

connecting structures involved in somatosensory processing and endogenous pain 

modulation. It was hypothesised that patients would show reduced white matter 

integrity in pain processing structures in the brain, as well as alterations to the tracts 

connecting structures involved in endogenous pain modulation and somatosensory 

processing. Neither analysis method yielded significant results. It would therefore 

appear that white matter microstructure and integrity in FMS patients is comparable 

to normal populations. This negative finding highlights the relative importance of 

grey matter alterations to pathophysiology and morphological alterations associated 

with FMS. Results could also enhance our understanding of the manner and 

timeframe for development of FMS, as it appears unlikely to affect white matter 

pathway development during formative years. 

7.2. Themes 

The investigation of ERD changes associated with brushing described in this 

thesis was the first study to publish electrophysiological data regarding abnormal 

cortical processes during innocuous somatosensory stimuli in FMS patients (Fallon 

et al., 2013). Recently, this finding was followed by a study utilising MEG and 

innocuous somatosensory stimulation, which demonstrated abnormal event-related 

field potentials overlying somatosensory processing regions of FMS patients 

(Maestu et al., 2013). These studies show that FMS patients demonstrate alterations 

to processing of innocuous somatosensory stimuli, which may provide further insight 

into central sensitisation in FMS. Investigations of somatosensory processing may 
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eventually help to elucidate the mechanisms of allodynia pain in FMS. Prior to this 

thesis, psychophysical studies have primarily focused on abnormal processing of 

painful stimuli in FMS (Gracely et al., 2002; Cook et al., 2004; Staud et al., 2008). 

However, the role of somatosensory processing should not be underestimated in the 

disorder. Allodynia pain is particularly problematic in FMS and relates to other 

symptoms such as sleep disturbance (Chiu et al., 2005). It was previously proposed 

that pain and abnormal processing of somatosensory stimuli may relate to the 

pathophysiological mechanisms underlying the development of the syndrome (Staud 

et al., 2009; Staud, 2010). The findings of this thesis suggest that, rather than merely 

considering FMS as a dysfunction of pain processing, it is also important to consider 

the dysfunctional processing of somatosensory afferents to fully understand the 

mechanisms involved in FMS pain. This notion is further supported by recent 

findings which suggest peripheral pathophysiological causes such as small fibre 

neuropathy may contribute to FMS pain (Serra, 2012). 

Event-related potential analysis of EEG data recorded during viewing of pain 

photographs revealed augmented source activations in FMS patients which were 

localised to the left parahippocampal gyrus. The enhanced source activation also 

covaried with the amount of pain attributed to images and measures of clinical and 

psychological disturbance. Alternatively, the resting-state functional connectivity 

analysis revealed reduced functional connectivity between the PCC in the DMN and 

the right parahippocampal gyrus. The degree of this disruption may relate to ongoing 

symptoms of FMS, as indicated by a significant correlation with years of symptom 

duration. Taken together, these findings appear to indicate that functional alterations 

localised to the parahippocampal gyri may be important to various clinical and 

psychological aspects of FMS.  
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The parahippocampal gyrus makes up part of the hippocampal formation 

(Insausti and Amaral, 2004), and it is functionally important in episodic and 

semantic memory retrieval (Binder et al., 2009; Langston et al., 2010). Cognitive 

function is impaired in FMS, and patients exhibit deficits in attention and working 

memory (Park et al., 2001; Leavitt and Katz, 2006; Dick et al., 2008). Dysfunction of 

the parahippocampal gyri in FMS may relate to such cognitive deficits. Although it 

is not considered to be a region of the ‘pain matrix’ (Apkarian et al., 2005), 

parahippocampal activations are commonly seen during experimental pain (Bingel et 

al., 2002; Veldhuijzen et al., 2009; Villemure and Bushnell, 2009; Berna et al., 

2010), and activations in this region may encode emotional context during 

experimental pain (Ploghaus et al., 2001; Stancak et al., 2012a). Therefore, the 

parahippocampal gyrus may be functionally relevant to both memory and the 

emotional aspects of pain processing in FMS. Abnormal functioning of the 

parahippocampal gyri could relate to psychological aspects of pain in FMS such as 

empathic processing during observation of pain. Alternatively, such dysfunction may 

relate to abnormal resting-state connectivity with the structure, which appears to 

deteriorate over time and could relate to cognitive disturbance in FMS. 

This thesis identified morphological alterations in the grey matter and 

subcortical structures of FMS patients relative to a healthy control group, but no 

alterations in white matter microstructure. Previously, a wide-range of cortical grey 

matter changes in FMS were identified using VBM methods (Kuchinad et al., 2007; 

Schmidt-Wilcke et al., 2007; Luerding et al., 2008; Lutz et al., 2008; Burgmer et al., 

2009; Valet et al., 2009; Robinson et al., 2011), with little consistency or replication 

of findings. Therefore, the subcortical shape and volume alterations seen in the 

brainstem, identified using a novel shape analysis technique, may prove to be a 
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particularly relevant finding in FMS. Brainstem morphological alterations were 

previously shown in chronic pain patients, including those with FMS (May, 2009). 

The brainstem contains nuclei which underlie a wide range of processes such as 

homeostatic regulation, postural maintenance, and sleep cycle control (Naidich and 

Duvernoy, 2009), as well as structures which are vital for endogenous pain 

modulation (Lovick, 2008; Naidich and Duvernoy, 2009). Brainstem malformations 

could therefore be related to the symptoms seen in FMS. Morphological alterations 

to the brainstem could also be a causal factor in the various cortical alterations seen 

in previous VBM studies. Underlying subcortical alterations could interact with 

comorbidities and environmental factors to bring about the variety of cortical grey 

matter alterations seen in previous studies. FMS symptoms also show similarities 

with those seen in Chiari I malformation (Holman, 2008), and the syndrome is more 

than 10 times more likely to occur following a neck injury than after trauma to lower 

extremities (Buskila et al., 1997). The current findings accord with a potential 

cervico-spinal aspect of FMS pathophysiology. Whilst it would be inaccurate to 

suggest that FMS patients simply suffer from Chiari I malformation, it is possible 

that brainstem malformation, or abnormal pressure on the brainstem, could affect at 

least a proportion of patients.  

White matter findings from previous studies in FMS patients are sparse and 

the findings of the final study of the thesis revealed no white matter anatomical 

alterations in FMS patients. However, this negative finding is still important as it 

suggests that the pathogenesis of FMS is unlikely to relate to abnormal development 

of white matter pathways, which primarily occurs during infancy and childhood 

(Hermoye et al., 2006; Huang et al., 2006). Therefore, grey matter and subcortical 
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alterations are more likely to contribute to any morphological pathophysiology of 

FMS. 

7.3. Clinical applications of the findings    

The finding of abnormal ERD in FMS patients during somatosensory 

stimulation highlights the potential for ERD method to be utilised as a research tool 

to investigate clinical aspects of FMS. Longitudinal paradigms could utilise ERD 

method to evaluate ongoing progression of symptoms or the effectiveness of 

therapeutic interventions in FMS. Recently ERD method was proposed as a potential 

diagnostic tool for autism (Bernier et al., 2007). It is not unfeasible to consider that, 

given an appropriate database of ERD findings in FMS patients, such a method 

could be used to contribute to diagnoses of a complex syndrome such as FMS. 

Previously, it was proposed that different emotional and affective disorders are more 

prevalent in specific subgroups of FMS patients, resulting in heterogeneous patient 

groups which may respond better to various psychological treatments (Thieme et al., 

2004). In the past, psychological constructs such as pain catastrophising scores were 

utilised to target specific subgroups of FMS patients with individual psychological 

therapies, and this resulted in improved treatment efficacy (Thieme and Gracely, 

2009). Hypervigilance to pain is also evident in FMS (Crombez et al., 2004), and 

patients exhibit augmented aversion when observing pain in others (Bartley et al., 

2009). This thesis demonstrated that cortical activations associated with the 

observation of pain are altered in FMS patients. This finding suggests that empathy 

for observed pain is a psychological construct that could be assessed to improve 

sensitivity to psychological heterogeneity in FMS patients in order to better target 

psychological therapeutic interventions. 



  
 

168 
 

The morphological findings in the current thesis revealed brainstem 

abnormalities in FMS patients relative to healthy people. This result accords with 

previous data which suggests a potential relationship between FMS and cervico-

spinal pathology such as Chiari I malformation (Holman, 2008). At least a subgroup 

of FMS patients may be affected by cervico-spinal morphological alterations and this 

could be important for future diagnosis and treatment methods. If it was possible to 

identify FMS patients with potential brainstem alterations, they would likely require 

an individual targeted treatment plan, for example, it was previously shown that 

some FMS patients exhibit reductions in symptoms following surgical treatments 

usually utilised for Chiari I type malformation patients (Heffez et al., 2004; Heffez et 

al., 2007). The structural alterations seen in the brainstem may be affected by 

specific current therapeutic interventions. A longitudinal investigation of brainstem 

morphology could improve understanding of the pathophysiology of FMS, or the 

mechanisms of suitable interventions. 

7.4. Limitations 

The primary limitation of the thesis pertains to the relatively small sample 

size. Nineteen FMS patients (total of 37 subjects) took part in EEG studies, and 16 

patients (total of 31 subjects) in MRI studies. The sample size reflects the practical 

difficulties associated with recruiting FMS patients who met the strict age and 

medication criteria in the time period required to complete the thesis. Less stringent 

inclusion and exclusion criteria may have allowed for a larger sample. However, 

increasing the heterogeneity of the sample could also adversely affect results (May, 

2011). The sample sizes utilised are comparable to those employed in previous MR 

and EEG studies of FMS patients (Kuchinad et al., 2007; Sundgren et al., 2007; 
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Napadow et al., 2010; de Tommaso et al., 2011). However, it should be noted that 

comparisons of samples of this size may not possess the statistical power to elucidate 

weak, subtle effects using neuroimaging methods.  

 Due to the relatively small sample size, it was not possible to cluster the FMS 

patient group to investigate whether specific brain alterations would pertain more to 

a particular sub-group, who exhibit a specific symptom profile or comorbidity. This 

could be improved upon in future studies provided that the timeframe and budget 

allowed for the recruitment of a larger FMS sample. Clustering based on 

psychological and clinical symptoms, or frequent comorbidities, could utilise the 

heterogeneity in FMS as a constructive (rather than destructive) factor. Such an 

approach could help to elucidate the various pathophysiological mechanisms that 

may drive the wide range of symptoms in FMS. A final limitation that should be 

considered is the cross-sectional nature of each study. It would be particularly 

interesting to evaluate whether the observed brain alterations remain stable over 

time, fluctuate with symptom severity, or deteriorate in a time-dependent manner. 

Unfortunately, repeated scanning of the patient sample was again not realistically 

possible for practical reasons. Longitudinal studies would have required a larger 

budget for MR scanning, and would have proven more susceptible to a higher drop-

out rate. It was also considered that such study designs were not viable in the 

timeframe of a 3-year funded research degree. 

7.5. Future research 

Alterations to the processing of innocuous somatosensory afferents appear to 

manifest in FMS. This finding should be further researched to fully elucidate the 

functional alterations to somatosensory processing, and to improve the 
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understanding of how such alterations could contribute to the pathogenesis or 

maintenance of FMS symptoms. The implementation of ERD technique in FMS 

patients is a novel step forward, and opens the door for studies utilising ERD with a 

variety of innocuous stimuli, or varying intensities of stimuli. The technique could 

also be used in a longitudinal, within-subjects design to test the efficacy of 

therapeutic interventions. 

FMS patients demonstrated augmented aversion and arousal, and attributed 

more pain when observing pain pictures relative to healthy control subjects. This 

finding was accompanied with alterations in ERP components and source activation 

patterns. The results enhance the current understanding of the psychological aspects 

of FMS, and particularly the structures which may exhibit altered functioning in 

FMS patients during observation of pain cues. The role of the parahippocampal 

gyrus in alterations to emotional modulation and ongoing tonic pain in FMS is 

particularly interesting. Functional alterations in this structure appear to relate to 

both psychological disturbance and clinical symptoms in FMS. Future research is 

required to further elucidate the causes of increased aversion to observed pain stimuli 

in FMS. The original paradigm could be expanded to include aversive stimuli 

without pain relevance, in order to investigate whether pain-specific cues cause the 

abnormal activations seen in the findings. Alternatively, to further investigate the 

emotional modulation of pain in FMS, it would be useful perform to ERP analysis of 

EEG data recorded whilst manipulating affective stimuli and applying experimental 

pain stimuli to FMS patients. 

With regards to the structural findings of this thesis, future functional and 

anatomical imaging research should prioritise brainstem alterations in FMS. For 

example, functional cervico-spinal MRI analysis could be performed to evaluate 
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potential anatomical differences in FMS patients specifically in the brainstem and 

spinal-cord. Future anatomical studies should also investigate whether subcortical 

alterations in the brainstem may correlate with relative functional abnormalities such 

as decreased descending nociceptive control or deteriorate in a time dependent 

fashion. 

The current findings indicate that there were no white matter anatomical 

alterations in the FMS patient group relative to healthy people. This can be 

considered as one of the more important findings of the thesis, as the results suggest 

that less focus should be applied to this area in the future, at least until new 

techniques which may offer a different perspective or improved sensitivity are 

developed.  

7.6. Concluding comments 

 To conclude, this thesis employed new methods and experimental paradigms 

to bring a fresh approach to brain imaging of FMS patients. Novel findings of the 

thesis include the presence of abnormal somatosensory processing during innocuous 

stimuli, alterations to processing of pain viewed in others, changes to resting-state 

functional networks and morphological abnormalities in FMS patients. The thesis 

expands upon previous neuroimaging findings in FMS patients and advocates new 

areas for further research such as the abnormal processing of innocuous 

somatosensory afferents, the functional role of specific brain structures such as 

parahippocampal gyri, and the pathophysiological importance of morphological 

alterations in the brainstem. The findings of this thesis offer new insight into 

structural and functional alterations in this complex syndrome. It is hoped that future 
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research will continue to enhance the comprehension of FMS, and eventually lead to 

improved therapeutic interventions and a superior quality of life for patients.  
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North West 4 Research Ethics Committee Liverpool North 
Victoria Building 

Bishops Goss Complex 
Rose Place 

Liverpool 
L3 3AN 

 
 Telephone: 0151 330 2052  

Facsimile: 0151 330 2075 

14 January 2010 
 

Dr. Andrej Stancak 
senior lecturer 
University of Liverpool 
Eleanor Rathbone Building 
Bedford Street South 
L69 7ZA 
 
 
Dear Dr. Stancak 
 
Study Title: Brain-autonomic interactions in fibromyalgia syndrome 

patients 
REC reference number: 09/H1001/92 
Protocol number: 1.0 
 

Thank you for your letter of 17th December 2008, responding to the Committee’s 
request for further information on the above research and submitting revised 
documentation. 
 

The further information was considered by the Chair.  

 
Confirmation of ethical opinion 
 
On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for 
the above research on the basis described in the application form, protocol and 
supporting documentation as revised, subject to the conditions specified below. 
 

Ethical review of research sites 
 
The favourable opinion applies to all NHS sites taking part in the study, subject to 
management permission being obtained from the NHS/HSC R&D office prior to the 
start of the study (see “Conditions of the favourable opinion” below). 
 
Conditions of the favourable opinion 
 
The favourable opinion is subject to the following conditions being met prior to the 
start of the study. 
 
Management permission or approval must be obtained from each host organisation 
prior to the start of the study at the site concerned. 
 
For NHS research sites only, management permission for research (“R&D 
approval”) should be obtained from the relevant care organisation(s) in accordance 
with NHS research governance arrangements.  Guidance on applying for NHS 
permission for research is available in the Integrated Research Application System 
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or at http://www.rdforum.nhs.uk.  Where the only involvement of the NHS 
organisation is as a Participant Identification Centre, management permission for 
research is not required but the R&D office should be notified of the study. 
Guidance should be sought from the R&D office where necessary. 
 
Sponsors are not required to notify the Committee of approvals from host 
organisations. 
 
It is the responsibility of the sponsor to ensure that all the conditions are 
complied with before the start of the study or its initiation at a particular site 
(as applicable). 
 

Approved documents 
 
The final list of documents reviewed and approved by the Committee is as follows: 
  

Document    Version    Date    
  

Covering Letter    12 October 2009    

REC application  2.3       

Protocol  1.0  28 August 2009    

Investigator CV  Dr Andrej 
Stancak  

28 August 2009    

Participant Information Sheet  1.0  20 August 2009    

Participant Consent Form  1  16 September 2009    

Letter from Sponsor    25 September 2009    

Questionnaire         

Questionnaire: illness Attitude Scale         

Questionnaire: Sleep Disorders Questinnaire         

Questionnaire: Pain catastrophizing Scale         

Questionnaire: The FIQ Directions and Questions         

C.V. - Yee Ho Chiu         

C.V. - turo Juhani Nurmikko    24 September 2009    

Letter from Funder    17 May 2009    

Questionnaire: BDI II         

Covering Letter  2  17 December 2009    

Participant Information Sheet  2       

Participant Information Sheet  2       

http://www.rdforum.nhs.uk/
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Participant Consent Form  2       

Participant Consent Form  2       

Response to Request for Further Information         

 
Statement of compliance 
 
The Committee is constituted in accordance with the Governance Arrangements for 
Research Ethics Committees (July 2001) and complies fully with the Standard 
Operating Procedures for Research Ethics Committees in the UK. 
 
After ethical review 
 

Now that you have completed the application process please visit the National 
Research Ethics Service website > After Review 
 
You are invited to give your view of the service that you have received from the 
National Research Ethics Service and the application procedure.  If you wish to 
make your views known please use the feedback form available on the website. 
 
The attached document “After ethical review – guidance for researchers” gives 
detailed guidance on reporting requirements for studies with a favourable opinion, 
including: 
 

 Notifying substantial amendments 

 Adding new sites and investigators 

 Progress and safety reports 

 Notifying the end of the study 
 
The NRES website also provides guidance on these topics, which is updated in the 
light of changes in reporting requirements or procedures. 
 
We would also like to inform you that we consult regularly with stakeholders to 
improve our service. If you would like to join our Reference Group please email 
referencegroup@nres.npsa.nhs.uk.  
 

09/H1001/92 Please quote this number on all correspondence 

 
Yours sincerely 
 
 

 

 

Dr Peter Owen 
Chair 
 

Email: sue.culshaw@liverpoolpct.nhs.uk 
 

Enclosures:  “After ethical review – guidance for researchers”  
 

Copy to: Mrs. Sarah Fletcher 
R&D office  

mailto:referencegroup@nres.npsa.nhs.uk


  
 

229 
 

 
North West 4 Research Ethics Committee Liverpool North 
LIST OF SITES WITH A FAVOURABLE ETHICAL OPINION 

For all studies requiring site-specific assessment, this form is issued by the main REC to the Chief Investigator and sponsor with the favourable opinion letter and 
following subsequent notifications from site assessors.  For issue 2 onwards, all sites with a favourable opinion are listed, adding the new sites approved. 

 
REC reference number: 

 

 
09/H1001/92 

 
Issue number: 

 
1 

 
Date of issue: 

 
14 January 2010 

 
Chief Investigator: 
 

 
Dr. Andrej Stancak 

 
Full title of study: 
 

 
Brain-autonomic interactions in fibromyalgia syndrome patients 

 
This study was given a favourable ethical opinion by North West 4 Research Ethics Committee  Liverpool North on 25 November 2009. The favourable opinion is 
extended to each of the sites listed below.  The research may commence at each NHS site when management approval from the relevant NHS care organisation 
has been confirmed. 

 
Principal Investigator 

 
Post 

 
Research site 

 
Site assessor 

 
Date of favourable 
opinion for this site 

 

 
Notes 

(1) 

Dr Andej Stancak  .University of Liverpool 
 

North West 4 Research 
Ethics Committee  
Liverpool North 

14/01/2010  

Approved by the Chair on behalf of the REC: 
 
.……………………………………………… (Signature of Chair/Co-ordinator)  
(delete as applicable) 
 
………………………………………………. (Name) 

 
(1) The notes column may be used by the main REC to record the early closure or withdrawal of a site (where notified by the Chief Investigator or 

sponsor), the suspension of termination of the favourable opinion for an individual site, or any other relevant development.  The date should be 
recorded 

2
29
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Volunteer Identification Number:      

    

         

 
 

 

 

 

Investigators: Prof. A Stancak, Prof. T. Nurmikko, Dr. Y. Chiu 

          Please tick each box 

 

1. I confirm that I have read and understood the Participant Information Sheet for 

the above study and have had the opportunity to ask questions. 

 

2. I understand that if an incidental abnormality is picked up on my scan I agree 

to the procedure as set out in the information sheet. 

 

3. I give permission for the researchers to routinely contact my GP during the 

course of the research 
 

4. I understand that my participation is voluntary and that I am free to withdraw 

at any time without giving any reason, without my medical care or legal rights 

being affected. 
 

5. I agree that personal data relating to myself (as defined by the Data Protection 

Act, 1998), being used for research purposes only. I understand that my 

personal information will be kept for up to five years and then will be 

destroyed.  
 

6. I understand that relevant sections of my medical notes and data collected 

during the study may be looked at by individuals from the University of 

Liverpool, from regulatory authorities or from the NHS trust, where it is 

relevant to my taking part in this research. I give permission for these 

individuals to have access to my records.  
 

7. I agree to take part in the above study. 

 

_______________________________ ______________ _____________________ 

Name of Volunteer   Date   Signature 

 

_______________________________ ______________ _____________________ 

Name of person taking consent  Date   Signature  

  

(if different from researcher) 

 

_______________________________ ______________ _____________________ 

Name of Researcher   Date   Signature 

PARTICIPANT CONSENT FORM  

Study: Brain-autonomic interactions in fibromyalgia syndrome patients 

 

Dr. A. Stancak 

School of Psychology 

Liverpool   

L69 7ZA 

Tel :0151 794 6951 

email: a.stancak@liv.ac.uk 
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Professor Andrej Stancak 

School of Psychology 

Eleanor Rathbone 

Building, 

Bedford Street South, 

Liverpool. 

L69 7ZA. 

Tel: 0151-794-2961 

 

 

 Participant Information Leaflet 

 
Brain-autonomic interactions in fibromyalgia syndrome patients 

 
You are being invited to take part in a research study. Before you decide whether to 

take part, it is important to understand why the research is being done and what it 

will involve. Please take some time to read the following information carefully and 

feel free to discuss it with others if you wish. Ask the researcher if there is anything 

that is not clear or if you would like more information. Take your time to decide 

whether or not you wish to take part. 

 

What is the purpose of the study? 

The study aims to investigate differences in brain activity and structure in people 

with fibromyalgia and healthy volunteer subjects. 

 

Why have I been chosen to take part? 
We have chosen you to take part in the study because you have been diagnosed with 

fibromyalgia and are otherwise healthy, or because you are a suitable healthy 

volunteer.  

 

Do I have to take part? 
Your participation in this study is completely voluntary, and you are free to refuse to 

take part or withdraw from the study at any time. 

 

What will happen to me if I take part?  

 

You will be invited for three sessions that will take place approximately two weeks 

apart. Sessions one and two can be completed on the same day for your convenience. 

 

Will my GP be informed? 

 

Your GP will be notified of your participation in the study and any relevant 

information may be shared with your GP during the course of the research. 

 

Version 2.0 

16/12/2009 
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Session 1:  

 

The purpose of Session 1 is to collect information about your mood and 

psychological traits as well as any pain symptoms you may have. You will be asked 

to fill in a number of questionnaires, including: Sleep Problem Questionnaire, Pain 

Catastrophising Scale, State and Trait Anxiety Scale, Beck Depression Inventory, 

Illness Attitude Scale, and Fibromyalgia Impact Questionnaire.  

 At the end of Session 1, we will examine the level of tenderness in 18 

preselected points in your body (neck, shoulders, elbows, wrists, back, hips, knees 

and ankles) by exerting mild-to-moderate pressure on them. This mimics the clinical 

examination made by a doctor to diagnose a chronic pain condition known as 

fibromyalgia. The exam uses a simple hand-held device to deliver a standard 

pressure on these points. You will be asked to indicate on a scale from 0 to 4 any 

pain felt during each pressure stimulus. 

 Session 1 will last about 45 minutes and it will take place in the Sensory-

Motor Laboratory, a dedicated pain measurement laboratory facility, in the Pain 

Relief Foundation, Clinical Sciences Centre, University Hospital Aintree, Lower 

Lane, L9 7AL. 

 

 

Session 2: 

 

The purpose of Session 2 is to collect data attributed to electrical activity in the brain 

and other physiological data, using methods similar to those found in common 

medical tests, to better understand how the brain reacts to various challenges. 

Electroencephalography (EEG) is a standard method for recording electrical currents 

of the brain. We will use a system that enables us to adapt 64 electrodes onto your 

head quickly (10 min) through a cap which you will wear. At the same time, heart 

rate (EEG), respiratory movements and activity of the sweat glands on your fingers 

will be recorded. Throughout these tests you will sit in a comfortable chair and view 

a computer screen. 

 

There will be four experimental conditions in Session 2: 

 

1. Resting recording: you will rest with eyes closed for about 10 min. Before 

and after the recording, you will indicate your mood by attributing a number 

from 0 to 4 to various moods such as “joy” or “sadness”. 

2. Cardiac awareness test. You will be asked to estimate the number of your 

heart beats occurring during a defined period of time. Your estimate should 

not be based, however, on counting your heart beats e.g. on your wrist. This 

condition will last about 4 minutes. 

3. Viewing 50 photographs containing pain scenes and 50 photographs with a 

similar content and setup, but not containing pain. The photographs will be 

presented in random order with 15 second intervals. Each photograph will be 

displayed for 4 seconds. You will also be asked to rate the intensity of pain 

you would associate with each photograph on a computerised scale ranging 

from 0 (no pain) to 7 (worst possible pain). 

4. Periods of brushing and rest. The researcher will brush your right elbow for 

the period of 4 seconds and wait for another 4 seconds (rest). There will be 

20 brushing-rest cycles. 
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Sesssion 2 will last about 1 hour and also take place in the Sensory-Motor 

Laboratory, Pain Relief Foundation, University Hospital Aintree, Lower Lane, L9 

7AL. 

 

Session 3:  

 

The purpose of Session 3 is to use an fMRI (functional magnetic resonance imaging) 

scan to analyse the structure and function of the brain. You will first be interviewed 

by Mrs. Valerie Adams in MARIARC to be sure that magnetic resonance scanning is 

feasible. You will change into a hospital gown, and be asked to lie down on a 

scanner table. The MR session consists of four scans: 

1. One anatomical scan (2 min) will be taken for diagnostic purposes.  

2. One functional scan (20 min) will be acquired to analyse the dynamics of brain 

activity at rest. During functional scanning, you will rest with eyes closed and press a 

button with your right hand whenever you hear a beep. 

3. One anatomical scan (10 min) for fine structural analysis of the brain’s cortical 

matter. 

4. One anatomical scan (7 min) to image the structure of the brain white matter. 

 

The total imaging time will be 39 minutes, and the whole session with assessment 

and instructions will not last longer than 1 hour. Session 3 will take place in the brain 

imaging centre of University of Liverpool, MARIARC, Pembroke Place, L69 3GE. 

 

 

Will I have to withdraw medication? 

 

 As some of drugs used to alleviate pain can modulate the brain activity, we may 

suggest withdrawal of some of your pain medication for 3 to 5 days before Session 2 

and Session 3. You are allowed to continue to use paracetamol as recommended by 

our doctor. If you use a medication that contains paracetamol on an opioid-based 

drug (co-codamol, co-dydramol, co-proxamol) or an opioid medication without 

paracetamol (e.g., dihydrocodeine, tramadol) the withdrawal will depend on the 

average daily dose you are taking. For example, if you usually use 6 to 8 tablets of 

mild co-codamol (8/500) a day only, you will be asked to stop it 3 days before the 

test. If, by contrast, you are taking up to 8 tablets of a strong co-codamol (30/500) or 

high doses of dihydrocodeine, you will be asked to taper the dose over  a period of 5 

days. We will try to arrange tests on consecutive or nearly consecutive days so that 

the drug withdrawal will only happen once during your participation.  

 

The exact information about when and what drug should be withdrawn will be 

provided in written form by the clinical team (Prof. Nurmikko or Dr. Chiu) and will 

be made in complete agreement with you. You will be able to resume medication 

immediately after the experiments. 

 

Medications that have no or minimal central nervous system effect will not be 

withdrawn.This includes paracetamol which you may take up to 4000 mg/day (8 

tablets containing 500 mg). If you are on another stable, regular medication for 

fibromyalgia it may be continued, depending on the dose. An example of an 

acceptable dose would be pregabalin 75 mg twice a day, gabapentin 300 mg twice a 
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day or amitriptyline 10 mg at night. Prof. Nurmikko and Dr. Chiu will advice you on 

this regard.  You will not be asked to change any of the medication you may be on 

that has been prescribed for other medical conditions than fibromyalgia. 

 

What are the possible disadvantages and risks of taking part? 

  

The fMRI scan is very noisy but otherwise it causes no harm or long-term effects. 

High quality disposable earplugs will be provided to protect against the possibility of 

hearing loss. Some people may experience a feeling of claustrophobia in the scanner. 

If you do feel uncomfortable while being scanned you will be able to notify us 

immediately by pressing an alarm button and we will remove you from the scanner 

without delay. 

 

There are no known risks from properly conducted magnetic resonance scanning. As 

it involves a strong magnetic field, certain standard precautions must be observed. 

Most importantly, we will NOT study you if you are fitted with a heart pacemaker, 

mini-defbrillator or a neurostimulator; if you have surgical clips in your head; if you 

have suffered injuries which may have left metal particles in your eye or head, or 

elsewhere in your body; or if you have an artificial heart valve. We will also ask 

about other kinds of surgery and metal implants which might affect your suitability. 

Some people find the scanner a claustrophobic or uncomfortable environment, and 

we will ask you about this. 

 

Occasionally research studies using magnetic resonance imaging reveal significant 

unexpected abnormalities which require medical follow-up, either for further 

investigation or (more rarely) treatment. The scans we do are for research purposes, 

but we review them carefully to avoid missing such an abnormality. We will spend a 

few extra minutes taking high-quality images which we will routinely have reviewed 

by a consultant radiologist. If any significant abnormality is found, we will send the 

report to your GP, who will be able to take it further with you. Please note that this is 

not a substitute for a ‘medical’ magnetic resonance scan that a doctor might order to 

make a diagnosis. It should therefore not be seen as a ‘health check’. 

 
Will information about me be kept confidential? 

All information that is collected about you during the course of the research will be 

kept strictly confidential by the researchers. Your data related to the MR study will 

be treated in an anonymous way. Your personal information that is collected on the 

safety screening form, will be kept for up to 15 years, and then confidentially 

destroyed. You have a legal right to view your personal information stored with us. 

If you wish to view your personal information, please write to the University of 

Liverpool Data Protection Officer, Computing Services Department, University of 

Liverpool. 

 

 

Will my taking part be covered by an insurance scheme?  

 

This research is sponsored by the University of Liverpool, and therefore the 

insurance cover is provided by the University of Liverpool. 

 



  
 

235 
 

If you have concerns about any aspect of this study, you should ask to speak with the 

researchers who will do their best to answer your questions. 

 

Please contact Dr Andrej Stancak on: (0151) 794 6951. 

 

If you remain unhappy and wish to complain formally, you can do this through the 

NHS Complaints Procedure (Details can be obtained from the PALS team, Ground 

Floor, University Hospital Aintree, phone: (0151) 5293287) or you can use the 

complaints procedure at the University of Liverpool, addressed to the Research 

Governance Officer in Legal Services (ethics@liv.ac.uk, 0151 794 8920).  

 

The study does not involve any therapeutic interventions or potentially hazardous 

procedures. In the unlikely event that you become ill or suffer any injury as a direct 

result of a procedure of the study, the study doctor will arrange for the correct 

treatment. In the event that something does go wrong and you are harmed during the 

research and this is due to someone’s negligence then you may have grounds for a 

legal action for compensation against University of Liverpool but you may have to 

pay your legal costs.  

 
What will happen to the results of the study? 

Once analysed, the results of the research study will be presented at research 

meetings and published in scientific literature, so that other researchers can benefit 

from the sharing of information. The study will take at least three months to conduct 

and the results longer to analyse fully, but we would be happy to supply you with our 

final results after this time. 

 
What will happen if I want to stop taking part? 

During the course of the study, you are able to withdraw at any time without 

explanation. Your results up to the period of withdrawal may be used, if you are 

happy for this to be done. Otherwise you may request that they are destroyed and no 

further use is made of them. 

 

What if I am unhappy or if there is a problem? 

If you are unhappy, or if there is a problem, please feel free to let us know by 

contacting Prof Andrej Stancak on 0151-794-2961, and we will try to help.  If you 

remain unhappy or have a complaint which you feel you cannot come to us with then 

you should contact the Research Governance Officer on 0151-794-8290 

(ethics@liv.ac.uk).  When contacting the Research Governance Officer, please 

provide details of the name or description of the study (so that it can be identified), 

the researcher(s) involved, and the details of the complaint you wish to make. 

Thank you for taking time to read this information. 

 


