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Proteomic and transcriptomic analysis of the protozoan parasite Neospora caninum                          Sarah J Vermont 
 
 

ABSTRACT 
 

Neospora caninum is an economically significant parasitic protozoan causing the disease 

neosporosis in cattle and dogs. Although a close relative of the zoonotic apicomplexan 

Toxoplasma gondii, the two organisms exhibit differing host ranges and infection dynamics. T. 

gondii is a model organism that has been much studied, and a great deal is known about the 

genes and proteins involved when it invades a host cell. This thesis explores protein expression 

in the proliferative and invasive tachyzoite stage of N. caninum, in particular the expression of 

proteins pertaining to the apical complex of organelles; those responsible for entry and 

establishment within a host cell. Almost 20 % of the predicted proteome has been identified 

by this analysis to be expressed in the tachyzoite stage, with approximately 50 % of the 

predicted repertoire of apical proteins being detected.  

The discovery of differences between these two parasites’ highly syntenic genomes could lead 

to a better understanding of the process by which T. gondii is able to cause disease in humans, 

while N. caninum has not been observed to do so. One finding of the recent genome 

sequencing and annotation project in N. caninum was that a key T. gondii virulence 

determinant, rhoptry gene 18 (ROP18) was pseudogenised in N. caninum. This finding was 

investigated further in this thesis to demonstrate that the pseudogenisation of ROP18 was 

conserved across a range of N. caninum isolates and that in vitro, N. caninum was not able to 

subvert the murine interferon-gamma (IFN-γ) immune response using ROP18 in the way that 

virulent T. gondii tachyzoites do. 

The tissue-dwelling Coccidia have a multi-stage life cycle which includes a latent tissue cyst-

encapsulated stage called the bradyzoite. Tachyzoites convert to this more quiescent form 

when induced by cellular stress, and are able to remain as such for long periods, even years. At 

times of weakened host immunity, bradyzoites can recrudesce to produce an active infection, 

which can cross the placenta in a pregnant animal to infect the foetus. This a major route by 

which N. caninum infection is maintained within cattle herds, therefore the biology of stage 

conversion from tachyzoite to bradyzoite and vice-versa is of interest to researchers. An RNA-

Seq analysis of cultured tachyzoites and bradyzoites identified a marked reduction in rhoptry 

gene expression, and differing expression profiles of other invasion-related genes from the 

micronemes and dense granules.  

Overall, these data identify proteins released from the apical organelles in N. caninum and give 

an insight into the different repertoires expressed by the tachyzoite and bradyzoite life stages. 

Furthermore, a comparison between N. caninum and T. gondii predicted apical proteomes 

indicates that although most genes are shared in a one-to-one orthologous relationship 

between the two organisms, there are a small number of differences which may turn out to be 

important to the biology of the parasite, as in the case of ROP18.  
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 CHAPTER 1: INTRODUCTION 

 

1.1   Neospora caninum 

Neospora caninum is a parasitic protozoan which invades and replicates in mammalian host cells, 

causing the important veterinary disease neosporosis. It is a member of the eukaryotic phylum 

Apicomplexa, along with some important medical and veterinary pathogens worldwide: such 

as Plasmodium (the causative agent of malaria), Toxoplasma (toxoplasmosis), Cryptosporidium 

(cryptosporidiosis) and Eimeria (coccidiosis) among others. The Apicomplexa are named with 

reference to their specialised ‘apical complex’ – a collection of organelles with roles in the 

process of host-cell invasion (Dubremetz et al. 1998a). These parasites are obligately 

intracellular for most of their life cycle, so an understanding of the process of invasion could 

lead to the development of drugs and vaccines to interfere with this vital step. 

There are two species of Neospora: N. caninum and N. hughesi; which, alongside Toxoplasma 

gondii, two species of Hammondia and six species of Besnoitia, make up the subfamily 

Toxoplasmatinae, of the Sarcosystidae (Hemphill & Gottstein 2000; Mugridge et al. 1999; 

Tenter & Johnson 1997). N. caninum has a canid definitive host (Lindsay, Dubey & Duncan 

1999; McAllister et al. 1998) and can infect a range of mammals as intermediate hosts, 

although it has the most significant impact as a pathogen of cattle. In addition to dogs (Canis 

familiaris), several sylvatic definitive hosts may exist; coyotes (Canis latrans) and grey wolves 

(Canis lupus) (Dubey et al. 2011) have been confirmed to shed oocysts (Gondim et al. 2004), 

while foxes remain unconfirmed as definitive hosts (Almeria et al. 2002). 

1.2  Lifecycle and epidemiology 

The coccidian life cycle is complex and involves multiple life stages. The oocyst, or egg, 

sporulates and excysts as sporozoites to infect the intestinal cells.  The tachyzoite is the highly 

proliferative form that disseminates around the host. A latent phase, the bradyzoite, can sit 

quiescent, encysted in the host tissues until such time as the host’s immunity is weakened and 

the infection reactivates. Sexual recombination takes place in the gut of the definitive host, 

whilst clonal population expansion occurs in the tissues of an intermediate host. Dogs can 

become infected by a number of routes: by ingesting oocysts or tissue that contains bradyzoite 

cysts (Lindsay, Dubey & Duncan 1999; McAllister et al. 1998); probably by ingestion of 

tachyzoites (Dijkstra et al. 2001), or from transplacental transmission of tachyzoites to 
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developing foetuses (Barber & Trees 1998; Dubey et al. 1988b; Dubey, Koestner & Piper 

1990; Dubey & Lindsay 1989; Dubey, Schares & Ortega-Mora 2007). The exact process of 

sexual reproduction is not yet proven, but it is thought that oocysts are produced from 

gametogeny and syngamy in the intestinal epithelial cells (Williams et al. 2009). They are then 

shed via the faeces  into the environment (McAllister et al. 1998), where they sporulate to 

produce two sporocysts, each containing four sporozoites. When intermediate hosts ingest 

material contaminated by oocysts (horizontal transmission), the sporozoites hatch and 

differentiate into tachyzoites, which likely disseminate via the circulatory system by invading 

mononuclear phagocytic cells (Gibney et al. 2008; Williams et al. 2009). Tachyzoites can 

invade a range of cell types but appear to have a predilection for central nervous system (CNS) 

and placental tissues (Dubey 2003). They replicate within parasitophorous vacuoles (PVs) by 

endodyogeny (Dubey et al. 2004; Speer & Dubey 1989), a form of internal budding resulting 

in two daughter cells (Roberts, Schmidt & Janovy 2009). Figure 1.1 shows a representation of 

the N. caninum life cycle, in cattle, the intermediate host of major veterinary importance. 

 

 Figure 1.1: Lifecycle of Neospora caninum. Information collated from (Dubey 1999a; Dubey 1999b; Intervet 

website). An oocyst, after being shed by a canid definitive host, sporulates and is ingested by an intermediate 

host; where sporozoites are released, invade cells lining the gut and form tachyzoites which then migrate to 

tissues. Infection transmission can then occur horizontally by a definitive host ingesting infected tissue and the 

cycle proceeding through the sexual stages, or vertically via the placenta to successive generations of intermediate 

host. 
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Vertical transmission of an infection, passed down to subsequent generations via the placenta, 

can be from a newly acquired exogenous infection or recrudescence of an endogenous 

infection (Trees & Williams 2005). The relative importance of the different routes of 

transmission has been under scrutiny but it appears that both horizontal and vertical routes 

play a role in maintaining infection levels and therefore ensuring the continuation of the 

parasite population (Williams et al. 2009). Endogenous vertical transmission efficiencies in 

dairy herds have been reported to be as high as 78-95% (Davison, Otter & Trees 1999a; Pare, 

Thurmond & Hietala 1997) however and this is considered to be the principle route by which 

N. caninum transmission occurs (Dubey, Buxton & Wouda 2006; Dubey, Schares & Ortega-

Mora 2007; Williams et al. 2009). As a result, a vaccination that could prevent recrudescence 

of bradyzoites in cows and heifers would have a significant impact on the population of this 

parasite.  

1.3  Economic impact of neosporosis 

Neospora caninum causes the disease neosporosis, which manifests most significantly in cattle, 

especially from an economic perspective, but also causes pathology in dogs. 

Canine neosporosis manifests as a debilitating neuromuscular dysfunction, mainly affecting 

puppies and young dogs under six months, although clinical disease can occur in older dogs 

(Dubey 2005). The infection can be obtained from ingesting infected tissues (such as an 

intermediate host) as well as congenitally transmitted, and tissue cysts can remain even if there 

is clinical recovery (Dubey et al. 2007). 

Bovine neosporosis impacts upon both the dairy and beef industries worldwide. Neosporosis is 

the UK’s most frequently diagnosed cause of abortion in dairy cattle; estimated at 12.5 %, or 

6000 abortions per year (Davison, Otter & Trees 1999b; Davison, Otter & Trees 1999c). This 

figure will be somewhat lower than the prevalence of N. caninum as there are many cases 

where presence of the parasite does not result in abortion, or when an alternative abortifacient 

may also be identified (Hemphill & Gottstein 2000; Thurmond, Hietala & Blanchard 1997, 

1999; Wouda et al. 1997). A recent UK investigation into prevalence in cattle herds found 

that over 90 % of herds had at least one cow seropositive for N. caninum; the median 

seroprevalence in positive herds was 10%, but ranged from 0.4 - 58.8 % (Woodbine et al. 

2008). Considerable economic losses result (Trees et al. 1999) from a combination of abortion 

and stillbirths, reduced milk yield (Hobson et al. 2002), reduced weight gain (Barling et al. 

2000), reduced value of breeding stock (Trees et al. 1999) and culling (Thurmond & Hietala 



4 
 

1996, 1997). With dairy farmers under enormous strain in today’s market to make any profit 

at all, it is of the essence that a vaccine be developed to effectively control the spread of this 

disease. 

1.4  Host cell invasion and the apical complex 

The apical complex of organelles comprises the micronemes, rhoptries and dense granules 

(Figure 1.2). Rhoptries are large, club shaped secretory organelles with tapered necks which 

act as ducts to discharge their contents through (Bannister et al. 2003; Bradley et al. 2005). 

Clustered around these are the smaller, but more numerous, micronemes, which can number 

up to 150  in N. caninum (Dubey & Lindsay 1996). Dense granules can be found in the 

posterior end of the parasite as well as the apical end, and are more rounded than micronemes 

(Bannister et al. 2003; Speer et al. 1999). The conoid is a fibrous spiral-shaped structure whose 

extrusion plays a role in invasion (Del Carmen et al. 2009) and the apicoplast is a relict plastid 

unique and essential to most Apicomplexa (not present in Cryptosporidium spp (Zhu, Marchewka 

& Keithly 2000)), but with exact function unknown (Foth & McFadden 2003). Also present in 

the fully formed tachyzoite, are 22 subpellicular microtubules, a nucleus with nucleolus, 

centrioles, a polar ring, two apical rings, up to three mitochondria, ribosomes, golgi complex, 

rough and smooth endoplasmic reticulum, lipid bodies and a posterior pore, all contained 

within a pellicle comprised of a plasmalemma and a single inner membrane (Speer & Dubey 

1989). A diagram of a tachyzoite, with organelles labelled, can be seen in Figure 1.2.  
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Figure 1.2: Diagram of a Neospora caninum tachyzoite. Organelles are labelled, diagram not to scale:  a tachyzoite 

measures approximately 7.5 x 2 µm (Speer et al. 2009). 

Tachyzoite invasion into a host cell is a key stage towards implementing the pathologies 

associated with apicomplexan parasites. It is fairly well conserved within the phylum and 

consists of a complex sequence of events (Mital & Ward 2008) summarized in Figure 1.3.  

 

Figure 1.3:  Summary of the invasion process in Apicomplexa. The parasite attaches to a host cell and 

reorientates so that the apical tip is aligned with the host cell surface. Entry to the host cell is an active process 

reliant on parasite proteins. Once internalised, a parasitophorous vacuole is established within which replication 

occurs. 

To begin with, the tachyzoite moves over the surface of the cell by a process termed gliding 

motility (reviewed in (Kappe et al. 2004)) which is an active process driven by an internal 

actin-myosin motor, not dependent upon flagella or pseudopodia (Dobrowolski & Sibley 

1996). To invade, the parasite must first orientate itself so that it is perpendicular to the host 
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cell surface (Dubremetz et al. 1998b; Nichols, Chiappino & O'Connor 1983) before forming 

an intimate ‘moving junction’ with the host cell membrane, dependent upon secreted proteins 

from the micronemes and rhoptries (Besteiro et al. 2009). The whole process of invasion is 

rapid, lasting only a few seconds, but the organelles are thought to discharge their contents 

sequentially; micronemes are quickly followed by rhoptries, then dense granules, whose 

proteins are involved in establishment of the host-parasite interaction once the zoite has 

internalised within the parasitophorous vacuole (PV) (reviewed in (Dubremetz et al. 1998b)). 

The parasitophorous vacuole membrane (PVM) is comprised mostly of host cell plasmalemma 

with integrated parasite proteins (Beckers et al. 1994), host transmembrane proteins are 

excluded so that the vacuole is unable to fuse with lysosomes (Mordue et al. 1999a; Mordue et 

al. 1999b) and is hence protected from host immune defences. Host organelles, including 

mitochondria and endoplasmic reticulum, accumulate around the PV (de Melo, de Carvalho & 

de Souza 1992), with parasite PVM-host organelle interactions mediated by parasite proteins 

(Sinai & Joiner 2001). Whilst the invasion process has been well characterised in T. gondii and 

other Apicomplexa such as Plasmodium spp, less is known about whether N. caninum behaves in 

exactly the same way.  

1.4.1  Micronemes 

The micronemes release their contents upon contact with a host cell (Carruthers & Sibley 

1997), this has been shown to be controlled by intracellular calcium (Carruthers & Sibley 

1999) which is essential for host cell invasion in T. gondii (Carruthers, Giddings & Sibley 

1999). Microneme proteins in T. gondii and N. caninum are mostly known as MICs. A number 

of MICs have been implicated in the invasion process in T. gondii. Many MICs, including 

MIC1, have adhesive domains facilitating attachment to host cells (Garnett et al. 2009). MIC 1 

associates with MIC4 and MIC6 to form a complex that is critical to invasion (Reiss et al. 2001; 

Saouros et al. 2005). A subset of MICs, called MCPs (microneme adhesive repeat containing 

proteins), have been found to bind sialic acid which is a component of glycoproteins and 

glycolipids in host cell membranes, and is often a target for host cell entry by pathogens 

(Friedrich et al. 2010). Different arrangement of the MAR type I and type II domains in T. 

gondii, N. caninum and E. tenella  result in different binding affinities with a range of sialic acid 

types (Cowper, Matthews & Tomley 2012). T. gondii MIC2 is released at the junction between 

the host and the parasite, where it gets translocated along the parasite from the apical to 

posterior end, where it is then shed as the parasite internalises (Carruthers, Giddings & Sibley 

1999). MIC2 binds the MIC2-associated protein, M2AP to form a complex that is required for 
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efficient host cell entry (Jewett & Sibley 2004). The subtilisin protease T. gondii SUB1 is 

required for host cell surface processing of MICs upon their release from the micronemes and 

a deficiency in SUB1 results in poor cell attachment and gliding motility (Lagal et al. 2010). 

Cowper et al. (2012) predict that the MICs are likely to be responsible for the range of tissue 

type and host cell tropisms exhibited by different coccidian Apicomplexa and suggest that an 

HxT motif, lacking in the N. caninum orthologue of T. gondii MIC13, could potentially be a 

basis for the difference in zoonotic capability between the two organisms, as it mediates 

binding of α2,9-disialyl which has been identified on some human cells.  

1.4.2   Rhoptries 

The rhoptries are not only essential to host cell invasion but a number of rhoptry kinases have 

recently been implicated as determinants of virulence in T. gondii. Rhoptry proteins primarily 

comprise the RONs, or rhoptry neck proteins, which localise to the long neck-like part of the 

organelle under immunostaining (Bradley et al. 2005) and the ROPs, which are secreted from 

the bulbous rhoptry body. RON2, RON4, RON5 and RON8 form a complex in T. gondii with 

the microneme protein Apical membrane antigen 1 (AMA1) that localises to the moving 

junction, forming a tight contact between the parasite and host membranes (Alexander et al. 

2005; Besteiro, Dubremetz & Lebrun 2011; Besteiro et al. 2009; Tyler & Boothroyd 2011).  

The ROP proteins tend to be released, and function, slightly later in the invasion process than 

the RONs, and many possess kinase domains. ROP1 is secreted into the PV (Saffer et al. 1992) 

and ROP2 into the PVM, where it mediates attachment of host mitochondria, probably to 

enable acquisition of nutrients (Beckers et al. 1994; Sinai & Joiner 2001). ROP2 is actually 

present in triplicate in the T. gondii genome, its three paralagous genes are named ROP2a, 

ROP2b and ROP8 (Beckers, Wakefield & Joiner 1997). Pernas & Boothroyd (2010) called 

into question the role of ROP2/ROP8 in associating host mitochondria with the PVM and 

demonstrated that knock out mutants were able to retain this function. Interestingly, N. 

caninum has been observed to recruit host mitochondria to its PVM at a much lower frequency 

than T. gondii and there is uncertainty around the existence of such an event in N. caninum 

(Lindsay et al. 1993; Pernas & Boothroyd 2010; Speer et al. 1999). The role of ROP2/ROP8 

remains unclear, as the triple-knock out strains demonstrated no observable phenotype, so it 

may be that the wider ROP2 family allows for a certain level of redundancy (Pernas & 

Boothroyd 2010).  

 



8 
 

ROP5, ROP16 and ROP18 have all been shown to confer virulence in different strains of T. 

gondii: ROP5 exists in different copy numbers between different strains (Reese et al. 2011; 

Reese & Boothroyd 2011), ROP16, which traffics to the host cell nucleus, phosphorylates 

STAT6 and in this way modulates host interleukin-12, a proinflammatory cytokine (Denkers et 

al. 2012; Saeij et al. 2007). ROP18 subverts the host interferon-gamma (IFN-γ) immune 

response by phosphorylating an immunity related GTPase that would otherwise cause rupture 

of the PV. ROP38 is expressed at higher levels in less virulent T. gondii strains and down 

regulates the MAPK (Mitogen-activated protein kinase) pathway of the host cell to interfere 

with apoptosis and cell proliferation (Peixoto et al. 2010). Most of these findings have yet to 

be confirmed in N. caninum, though it is hypothesised that host cell invasion is largely 

analogous to that observed in T. gondii. An analysis of protein expression in N. caninum 

tachyzoites will aid understanding of the similarities and differences in the invasion process 

between the two organisms.  

1.4.3   Dense Granules 

The GRA family of dense granule proteins (reviewed in Nam (2009), regarding T. gondii) are 

largely secretory proteins that also contain transmembrane domains. GRA1 is secreted into the 

PV lumen (Sibley et al. 1995) while GRA2, GRA4 and GRA6 are associated with an 

intravacuolar membranous network (Labruyere et al. 1999). GRA3, GRA5 and GRA10 are 

secreted into the PVM for direct interaction with the host cytoplasm (Ahn et al. 2006). T. 

gondii GRA7 gets phosphorylated during host cell invasion and associates with ROP2 and 

ROP4, probably on the PVM (Dunn et al. 2008). These proteins, along with ROP1, GRA3 

and GRA1, form punctate strands (‘beads-on-a-string’ (Ravindran & Boothroyd 2008)) 

extending into the host cell, to and from the nascent PV, that are observed to partially overlap 

with each other by immunostaining (Dunn et al. 2008). These strands may be organised along 

microtubules and are likely to be involved in intracellular trafficking of proteins (Ravindran & 

Boothroyd 2008). The dense granule proteins are therefore involved with establishing and 

maintaining PV during and after host cell invasion and provide a mechanism for molecular 

interaction between the parasite and the host. 

1.5  Neospora and Toxoplasma – similarities and differences 

N. caninum was only differentiated from T. gondii in 1984 (Bjerkas, Mohn & Presthus), and 

described and characterised in 1988 (Dubey et al.); hence current understanding of its biology 

is somewhat behind that of T. gondii, which has been recognised as a protozoan parasite since 
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the beginning of the 20th century (Hemphill & Gottstein 2000). However, due to their close 

relatedness and the many genetic, physiological and morphological similarities, much research 

in N. caninum has benefitted from prior knowledge of T. gondii biology.  

However, despite the close synteny of their genomes (DeBarry & Kissinger 2011; Reid et al. 

2012), there are notable differences between T. gondii and N. caninum, which has led to them 

being placed in separate genera (Dubey et al. 1988a). One example is their host specificity. 

While T. gondii appears to be able to infect almost any warm blooded cell type, N. caninum 

exhibits more specificity: it has so far not been demonstrated to be zoonotic (Dubey, Schares 

& Ortega-Mora 2007; McCann et al. 2008), despite readily infecting human cells in vitro. 

Elucidating the molecular basis of this difference could be important towards discovering ways 

of preventing infection. 

Although apparently identical by light microscopy, there are ultrastructural differences 

between the two organisms (Speer & Dubey 1989; Speer et al. 1999). N. caninum tachyzoites 

are slightly larger than T. gondii; at 7.5 x 2 µm; and numbers of organelles vary between the 

two. Micronemes are more numerous in N. caninum, while dense granules are numerous in 

both (Speer et al. 1999). N. caninum possess six to sixteen rhoptries compared to four to ten in 

T. gondii (Speer et al. 1999). Compared to tachyzoites, bradyzoites of both species contain 

fewer rhoptries. Interestingly, the electron-dense rhoptries of N. caninum tachyzoites are 

similar to those of the mature bradyzoites of both species, whereas those of T. gondii are 

spongy and electron-lucent (Speer et al. 1999). T. gondii  cyst walls are smooth and less than 

0.5 µm thick: N. caninum tissue cysts have an irregular, thick cyst wall (≤ 4 µm) but are 

smaller when compared to T.gondii tissue cysts, containing 20-100 and 50-500+ bradyzoites 

respectively (Speer et al. 1999). Figure 1.4 (adapted from Dubey, Buxton & Wouda (2006) 

and Dubey, Lindsay & Speer (1998)) shows histological images of a tachyzoite and a bradyzoite 

tissue cyst of N. caninum, the latter with a thick cyst wall; and a tissue cyst of T. gondii with a 

comparatively thinner cyst wall. 

The definitive hosts of T. gondii are cats, capable of disseminating millions of oocysts in their 

faeces (Dubey & Frenkel 1972). In comparison, dogs produce relatively few oocysts of N. 

caninum (Gondim, McAllister & Gao 2005) measured a total of approximately 500 000 shed by 

a dog), which has led to speculation that there exists another, more efficient definitive host 

(Lindsay, Ritter & Brake 2001), although the dog is widely accepted as the definitive host and 
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none further than other than additional members of the Canis genus have been identified to 

date. 

 

Figure 1.4: Tachyzoites and bradyzoite tissue cysts. A) A large group of apparently intracellular N. caninum 

tachyzoites (arrow); B) A thick walled (arrow) N. caninum tissue cyst within a neuron in the spinal cord of a 3-day 

old calf; C) T. gondii tissue cyst freed from mouse brain, cyst wall (arrow) enclosing hundreds of bradyzoites. 

Haematoxylin & Eosin x 600 (A & B), unstained impression smear (C), adapted from Dubey, Buxton & Wouda 

(2006) and Dubey, Lindsay and Speer (1998).  

1.6  Host immune response and pathology 

There is a catch-22 situation in the host response to a parasitic infection, in that the host must 

produce an immune response sufficient to control the spread of a pathogen, whilst not causing 

pathology so extensive that it is of detriment to itself. N. caninum and related coccidians 

generally induce a mixed immune response involving both cellular and humoral immunity 

(Andrianarivo et al. 2001; De Marez et al. 1999; Guy et al. 2001; Innes et al. 2002; Lunden et 

al. 1998; Williams et al. 2000). However, due the intracellular nature of the infection, cell-

mediated immunity is expected to play the major role and proinflammatory cytokines such as 

interferon-gamma (IFN-γ) and interleukin-twelve (IL-12) are up regulated during an infection 

and have a controlling effect on proliferation of the parasite (Innes et al. 2002; Innes et al. 

1995; Suzuki et al. 1988; Williams et al. 2000). Neosporosis is primarily a disease causing 

reproductive pathologies in cattle. During pregnancy, the maternal immune response is 

altered to cope with the presence of a foetus: regulatory cytokines such as interleukin-10 (IL-

10) are favoured (Entrican 2002), which counteract the inflammatory cytokines such as IFN-γ, 

which may be dangerous to a pregnancy (Tangri & Raghupathy 1993). As yet, the triggers that 

allow the recrudescence of an infection, when bradyzoites reactivate to become tachyzoites 

and can cross the placenta to infect the foetus, are not well understood (Innes et al. 2007), but 

it is likely to be a result of the changes in the maternal Type I immune response during 

pregnancy (Innes et al. 2001). When a placenta becomes infected with N. caninum, there is a 
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significant increase in IFN-γ levels and the timing of this event is crucial to whether the foetus 

is aborted, born persistently infected, or born healthy (Trees & Williams 2005; Williams et al. 

2000). Bovine neosporosis differs from ovine toxoplasmosis in that while both involve 

exogenous infections acquired during pregnancy, ovine toxoplasmosis does not commonly 

involve recrudescence of endogenous infection or have an effect on successive pregnancies 

(Innes et al. 2007).  

1.7  Proteomics 

Advances in proteomic techniques in recent years have made possible the high throughput 

analysis of complex mixtures of proteins. This has enabled the move to a ‘systems biology’ 

approach to research, as opposed to the study of individual proteins in isolation. To improve 

resolution of mixtures however, it is common practice to separate proteins out prior to 

enzymatic digestion, or alternatively digest the lysate prior to separation in peptide space. 

Peptides can be identified sensitively and accurately by mass spectrometry then assigned to 

proteins by bioinformatic searching of predicted protein databases.  

1.7.1  Electrophoresis 

Complex mixtures of proteins can be separated out on a gel matrix by the application of an 

electric field. Polyacrylamide gel electrophoresis (PAGE) of proteins denatured with the 

detergent sodium dodecyl sulphate (SDS) is a widely used and well established method for 

reliable separation according to molecular weight (Shapiro, Vinuela & Maizel 1967).  

The commonly used method developed by Laemmli (1970) employs a short layer of large-

pore gel to concentrate dilute/large volume samples into a thin front; which then passes on to 

a longer, small pore-sized resolving gel where the molecules separate out, allowing for 

improved resolution of the protein mixture. This discontinuous one dimensional gel method is 

referred to as 1-DE for the remainder of this thesis.  

An additional initial step of isoelectric focusing allows protein separation on a second 

dimension, utilising a pH gradient, this type of gel-separation is known as two-dimensional 

SDS-PAGE, or 2-DE (Gorg, Weiss & Dunn 2004). 2-DE can offer improved resolution of 

proteins compared to 1-DE as proteins are spread horizontally across the gel in addition to 

vertically, and hence there are likely to be fewer protein species present in one spot than in a 

typical protein band on a 1-D gel.  
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Once separated on a gel, bands or plugs of protein can be excised and digested with 

proteolytic enzymes and the resulting peptides identified by mass spectrometry. Trypsin, a 

commonly used enzyme in proteomics (Rosenfeld et al. 1992; Shevchenko et al. 2006; 

Shevchenko et al. 1996), cleaves proteins after lysine and arginine residues, leaving a mixture 

of peptides which can be bioinformatically predicted in order to generate databases against 

which mass spectrometric data can be searched.  

1.7.2  Reverse-phase high performance liquid chromatography (LC) 

For complex mixtures of peptides, it is beneficial to introduce further stages of separation in 

order to simplify the sample and allow for better resolution of the different peptides it 

comprises. High performance liquid chromatography (HPLC) is a process whereby molecules 

contained within a liquid mobile phase are forced through a stationary phase contained within a 

closely-packed column, under pressure. In the stationary phase, compounds bind to the 

column based upon their chemical properties. For reverse phase (RP) HPLC, this means non-

polar molecules are retained while polar molecules are first to elute. The mobile phase solvent 

buffer is altered along a gradient, by gradually increasing the acetonitrile content, in order to 

elute the more polar molecules by increasing hydrophobicity (Simpson 2003).  

1.7.3 Tandem mass spectrometry (MS/MS) 

A property known as the mass to charge ratio (m/z) is utilized by mass spectrometry 

technology to differentiate peptides. Proteomic mass spectrometry requires peptides to be 

converted to the gas phase by an ionisation source. When a mass spectrometer is coupled 

downstream to an LC system, this is usually an electrospray ionisation source (ESI), as found 

on an LTQ (linear trap quadrupole) mass spectrometer (Thermo Finnigan).  Gas phase ions are 

identified by an initial survey spectrum (MS) then the three most abundant peptides 

fragmented by collision-induced dissociation (CID) before a second scan is performed to 

measure the m/z of the resulting fragments (MS/MS).  

A recent advance in LTQ technology is the release of the Orbitrap mass spectrometer; a more 

accurate instrument providing increased resolution.  Rather than ions being trapped in a 

quadrupole, they are trapped by an outer barrel-like electrode to orbit around an inner 

electrode (Makarov 2000).  
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1.7.4 Multidimensional protein identification technology (MudPIT) 

MudPIT technology utilises an additional strong cation exchange (SCX) LC column upstream 

of an RP column to provide enhanced separation of peptides. As such, prior gel separation is 

not required and proteins are digested to peptides as a complete sample. Twelve salt step 

gradients elute peptides from the SCX to the RP column, which is then coupled to a mass 

spectrometer, for example an LTQ, for analysis as described above. Bioinformatic analysis of 

the twelve resultant data files is complex, due to the fact that peptides to one protein could, in 

theory, be identified in any number of the twelve fractions. This is in contrast to techniques 

that adopt protein-space separation, where enzymatic digestion is applied to pre-simplified 

mixtures of proteins (Washburn, Wolters & Yates 2001; Wolters, Washburn & Yates 2001).  

1.7.5 Bioinformatics – peptide/protein identification 

In order to extract meaning from mass spectra, peptide identifications must be compared to an 

in silico database of all possible peptides that could be cleaved with the enzyme used (usually 

trypsin) from all the predicted proteins in genome of the organism(s) of interest. It is also 

necessary to assign a confidence score to each hit so that only confident, uniquely-identified 

peptide matches are believed. In general, the more abundant a protein is within a sample, the 

higher scoring it will be, due to the greater number of peptides that are detected from such a 

protein. One method of ascertaining which protein identifications to believe is false-discovery 

rate (FDR) scoring. This process searches peptide identifications against a nonsense database in 

addition to the genuine database, so that it can detect at what level the nonsense proteins begin 

to be identified in order to provide a cut-off point. Moreover, the different algorithms 

available for providing protein identifications from mass spectral data often produce slightly 

different results from one another. By combining more than one of these algorithms, not only 

can the number of protein hits be increased, but also the confidence levels assigned to them, 

when they are identified by more than one method. One such technique is that designed by 

Jones et al. (2009) which employs Mascot (Matrix Science), OMSSA (Geer et al. 2004) and 

X!Tandem (Craig & Beavis 2004; Fenyo & Beavis 2003) to make protein identifications and 

calculates an FDR score (based on hits to a decoy database) to assist determination of, and 

maximise, correct peptide identifications. 
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1.8  Transcriptomics 

Proteomic techniques analyse proteins, the end result of transcription and translation from 

genetic material. The field of transcriptomics is interested in the intermediate product, RNA. 

The analysis of messenger RNA (mRNA) levels within a system can provide a snapshot of a 

rapidly changing environment to give information about cellular processes earlier than would 

be possible by proteomics. Microarray has been a popular technique for studying transcription, 

it requires synthesis of thousands of complementary DNA (cDNA) probes which are attached 

to a chip, before hybridisation of cDNA reverse-transcribed from mRNA in the sample. The 

chip is then scanned to provide an expression profile. Other ways of measuring mRNA 

expression include quantitative polymerase chain reaction (qPCR), which is highly accurate 

but more suited to smaller numbers of sequences of interest, and expressed sequence tag 

(EST) profiling, which sequences short regions of expressed genes and was useful for genome 

research before being largely superseded by the advent of RNA-Seq. 

1.8.1  RNA-Seq 

Next-generation sequencing technology has opened up opportunities in genome research by 

making the technique faster, cheaper and most importantly, available to the wider scientific 

community. One method that has been developed as a result is RNA-Seq, the sequencing of 

cDNA libraries created from reverse transcribing mRNA in a sample. This technique is not 

only highly sensitive, but provides absolute quantitation, and as such has become hugely 

popular in recent years. 

Sanger capillary sequencing (Sanger, Nicklen & Coulson 1977) requires in vivo cloning of DNA 

in E. coli prior to sequencing with dye-labelled terminator dNTPs. Next generation sequencing 

has removed the need for in vivo cloning and uses either DNA synthesis (Illumina, 454) or 

ligation (SOLiD) instead.  The 454 platform is a higher throughput alternative to Sanger 

sequencing that uses emulsion PCR in place of clone libraries, to perform ‘pyrosequencing’ 

(Margulies et al. 2005). It produces similar length reads, of approximately 500 base pairs, so is 

suitable for sequencing DNA or RNA for which there is no reference sequence available, as the 

long read lengths aid bioinformatic data processing. 

During Illumina sequencing (Bennett et al. 2005; Bentley et al. 2008) a cDNA library, 

generated from an mRNA sample, is amplified by PCR reactions that form bridges between 

oligonucleotide primers on a flow cell. This generates clusters of DNA to which bases are 
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added which have a fluorescent dye attached, which acts as a reversible terminator. The flow 

cell is imaged then the dye removed (but not the base) and the next base added; and so on 

(Holt & Jones 2008), until the whole product has been sequenced. Because all bases are added 

at once, there is competition for incorporation; this increases accuracy compared to Sanger 

sequencing in which four separate reactions take place, however read lengths are much shorter 

(50-100 base pairs) so a good reference genome to align to is a requirement.  

The SOLiD platform performs sequencing by rounds of ligation of dinucleotides to adapters 

(Shendure et al. 2005).  This method is highly accurate due to the fact that each base is read 

twice (as the second nucleotide and then the first nucleotide), so genuine single nucleotide 

polymorphisms require two fluorescent colour changes. SOLiD also produces short reads, but 

sample preparation and data processing are complex compared to the Illumina platform. 

A new third-generation sequencing method: ‘single molecule sequencing’ (Harris et al. 2008) 

has recently been introduced, which requires only tiny amounts of starting material; but it is 

not yet widely available.  

1.9 Systems biology 

The study of biological events is in the process of moving on from a ‘reductionist’ approach, 

where components are examined individually, to a ‘systems biology’ approach, due to the 

advances in technology described above. The advent of the genomic era and the ability to 

analyse whole transcriptomes and proteomes has led on from hypothesis driven experiments 

focusing on single genes to hypothesis-generating studies, based on the integration of all these 

data, to provide an overview of the system as a whole (Wastling et al. 2012). This is 

particularly valuable in parasite biology due to the importance of understanding the interaction 

of the parasite with its host; and the Apicomplexa are some of the most comprehensively 

studied to date (Wastling et al. 2009). 

1.10 Current state of the N. caninum genome, proteome and transcriptome 

During the course of this study, the N. caninum genome was undergoing annotation as part of a 

collaboration between Liverpool and the Sanger Institute (Reid et al. 2012). Proteomic studies 

published prior to this had suffered from the lack of an available predicted proteome and as 

such had identified only limited numbers of proteins (Belli, Walker & Flowers 2005). These 

included a 2-DE proteome map (Lee et al. 2003) and immunoblot studies (Lee et al. 2004), 

followed by a comparative analyses of T. gondii and N. caninum 2-DE proteome maps (Kang et 
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al. 2008b; Lee et al. 2005). No RNA-Seq experiments had been published for N. caninum and 

although mRNA expression had been examined by annealing control primer-based PCR (Kang 

et al. 2008a), the transcriptome data presented in Reid et al. 2012 and the pilot study discussed 

in Chapter 6.2 were the first RNA-Seq analysis performed on N. caninum tachyzoites. In 

comparison, T. gondii, C. parvum and Plasmodium spp. have been extensively studied and large 

proportions (25 % and more) of their predicted proteomes have been identified 

experimentally (Xia et al. (2008), Sanderson et al. (2008) and multiple experiments for 

Plasmodium (Belli, Walker & Flowers 2005) hosted on PlasmoDB (Aurrecoechea et al. 2009)). 

The N. caninum genome is assembled into pseudochromosomes (Reid et al. 2012) based upon 

the fourteen published chromosomes of T. gondii (Toxo DB, Gajria et al. 2008). The analyses 

in DeBarry and Kissinger (2011) and Reid et al. (2012) found a high degree of synteny 

between the two organisms, with over 90 % of the genome comprising one-to-one 

orthologues and only 113 and 231 genes (excluding surface antigens) specific to N. caninum and 

T. gondii respectively. In addition, the G+C content was very similar (54.8 % in N. caninum 

and 52.3 % in T. gondii) as was the percentage of the genome that encoded proteins (29.7 % in 

N. caninum and 28.3 % in T. gondii, compared to 53.0 % in P. falciparum). Reid et al. (2012) 

also estimated that 32.1 % of the N. caninum/T.gondii genome consisted of eukaryotic genes, 

28.8 % of Apicomplexan genes and the remaining 39.1 % of genes were coccidian specific. 

The majority of the divergence between N. caninum and T. gondii appeared to be attributed to 

surface antigen genes and to those encoding apical proteins, which will be discussed in more 

detail in this thesis. 

A more comprehensive analysis of the N. caninum proteome and transcriptome was necessary 

to better understand the genes and proteins important to an infection; and the release of an 

annotated genome sequence made this a possibility.  

A desire to understand the genetic basis for the differences between N. caninum and T. gondii 

underpinned the comparative genome analysis performed by Reid et al. (2012). Of particular 

interest were differences in apical genes, as these are the molecular effectors of host cell 

invasion. While the majority of apical genes were found to have a one-to-one orthologous 

relationship between the two organisms, and as such are hypothesized to behave in an 

analogous way in vitro and in vivo, there were a few exceptions. One of the omissions from the 

N. caninum genome, ROP18, was noted in particular, due to the gene’s recent identification as 

a virulence determinant in T. gondii (Saeij et al. 2006; Taylor et al. 2006). 
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1.11 Aims and objectives 

The aim of this project was to advance understanding of N. caninum biology by taking a systems 

view of the genes and proteins important to this parasite. Identifying proteins expressed by the 

invasive tachyzoite life stage, in particular those released by the micronemes, rhoptries and 

dense granules, would provide an insight into the process of host cell entry, an event that 

underpins Apicomplexan parasitism.  

The recent sequencing of the N. caninum genome was a major factor in facilitating the analysis 

of the proteome and transcriptome. There had been only limited proteomic studies published 

for N. caninum, so the peptide data produced from a global analysis of the tachyzoite proteome 

was an asset to the genome annotation. The accuracy and completeness of the genome 

annotation has a direct effect on the quality of the proteomic identifications derived from 

searching against the gene models, therefore this analysis was seen as an essential prerequisite 

to the rest of the study. 

Simplifying the proteome to contain proportionally more apical proteins in comparison to 

structural and housekeeping proteins allowed a more focused analysis of these proteins of 

interest. This was achieved by a combination of two approaches: an examination of the 

excreted/secreted proteome by stimulating the parasites to discharge the contents of their 

apical organelles; and by attempting to separate the organelles into different fractions for 

analysis.   

Bioinformatic study comprised an invaluable part of the project, both in analysis of proteomic 

data and for in silico investigations into the predicted subproteomes. Various proteins are 

difficult to detect in experimental proteomics (von Hagen 2008), due to differences in 

expression levels, chemical and structural characteristics which affect solubility and differences 

in peptide flight during mass spectrometry (Bell et al. 2009), so by using bioinformatics it was 

hoped to supplement the data generated by proteomic experiments.  

By combining the results of multiple proteomic analyses with the findings of collaborators 

annotating the N. caninum genome, rhoptry gene 18 emerged as a subject to examine further. 

The confirmation of its pseudogenisation in N. caninum, and its recent emergence as a 

virulence determinant in T. gondii, led to a hypothesis that exhibiting a low-virulence 

phenotype may have aided this parasite in its strategy for exploiting vertical transmission. 



18 
 

The ability to convert to a latent bradyzoite stage and later recrudesce is an important aspect of 

N. caninum transmission, and is responsible for much of the pathology associated with 

neosporosis in dairy herds. RNA-Seq provided a high-throughput platform from which to 

analyse the process by which stage conversion occurs, and to examine the differences in 

expression of key genes between the tachyzoite and bradyzoite stages.  

Overall, it was intended that an increased knowledge of tachyzoite and bradyzoite biology 

would enable more informed vaccine development in the future. 
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CHAPTER 2: AN ANALYSIS OF THE TACHYZOITE PROTEOME 

2.1  INTRODUCTION 

The overall aim of this thesis was to improve the understanding of host cell invasion by N. 

caninum by identifying and studying the proteins involved in the process. In order to achieve 

this, and due to the fact that there had been only limited proteome data published for this 

organism to date, a global proteome analysis for the tachyzoite stage was undertaken. It was 

hoped that the data would benefit the genome sequencing project by providing peptide 

evidence to reinforce the predicted gene models. The accuracy and completeness of the 

genome annotation has a direct effect on the quality of the data derived from searching against 

the gene models. Therefore, this analysis was seen as an essential prerequisite to the rest of the 

study. 

Proteomic analyses by one and two dimensional electrophoresis (1-DE and 2-DE, 

respectively), followed by high performance liquid chromatography coupled to a tandem mass 

spectrometer (LC MS/MS), of the related organisms T. gondii and C. parvum had previously 

yielded substantial coverage of their respective predicted proteomes (Sanderson et al. 2008; 

Xia et al. 2008). These studies acquired peptide data for a wide range of protein types and 

presented a global view of protein expression for the T. gondii tachyzoite and C. parvum 

sporozoite life stages, providing an insight into which groups of proteins may be important 

during this time of rapid multiplication and invasion. These methods were therefore adopted 

for this equivalent study on the N. caninum tachyzoite, although with some slight adaptations as 

will be discussed in this chapter.  

2.1.1  Global proteomic analyses on N. caninum and related Apicomplexa 

Whilst there had been proteomic analyses carried out prior to the N. caninum sequence data 

becoming available on the genomic resource website ToxoDB (Gajria et al. 2007), these were 

able to identify only very limited numbers of proteins, due to the lack of sequence data 

available (Belli, Walker & Flowers 2005). One such study, utilising 2-DE, identified 31 spots 

corresponding to 20 different proteins, by peptide mass fingerprinting on a matrix-assisted 

laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometer (Lee et al. 2003). 

The same group then went on to use immunoblot analyses to identify immunogenic spots (Lee 

et al. 2004; Lee et al. 2003) and compare the KBA-1 and JPA2 isolates of N. caninum to each 



20 
 

other and to RH strain T. gondii. The combined number of proteins identified from these 

studies is less than 100 proteins, which, for an organism with a predicted 7082 protein coding 

genes (Reid et al. 2012), equates to < 1.5 % coverage, which is probably a result of the lack of 

sequence data available at this time. From the existing data for T. gondii and C. parvum, 

approximately 30% of the predicted proteins were detected by proteomic methods in lysates 

of tachyzoites or sporozoites (Sanderson et al. 2008; Xia et al. 2008). It is important to note 

that these analyses examine one life stage only, and that some proteins are likely to be specific 

to other life stages not analysed. 

At the time this study commenced, there were a predicted 5587 proteins for N. caninum, 

compared to 7993 for T. gondii ME49. The Xia et al. (2008) study used a combination of 1-DE 

and LC MS/MS of whole cell lysate, including separate preparations of soluble and insoluble 

fractions, 2-DE and LC MS/MS, and multi-dimensional protein identification technology 

(MudPIT) to identify a total of 2252 non-redundant proteins. When these multiple 

experiments are broken down and looked at individually, it becomes clear that the MudPIT 

platform (2121 non-redundant identifications) followed by 1-DE LC MS/MS (939) are the 

highest yielding in terms of protein identifications. A further 40 non-redundant proteins were 

identified in the 2-DE experiments (547 overall). Whilst 2-DE can achieve superior protein 

separation to 1-DE, the aim of this study was to identify as many proteins as possible, and it 

was therefore decided that 2-DE was unlikely to provide much additional benefit over 1-DE 

and MudPIT experiments.  

In comparison, Plasmodium falciparum is probably the most well characterised Apicomplexan, 

with proteomes identified over a whole range of life-stages. Total protein identifications 

number 3969 (multiple studies, data hosted on PlasmoDB) of the 5772 predicted genes 

(Aurrecoechea et al. 2009). This is an example of what can be achieved with a model organism 

for which the entire life cycle can be replicated in culture.  

2.1.2  Peptide data as an aid to genome annotation 

A bioinformatically-assembled genome annotation is a valuable resource that provides a wealth 

of information. However, protein-coding gene predictions are no substitute for empirical 

evidence that a protein exists. Not only can proteomic data be viewed alongside gene 

predictions to provide another level of information, but peptide identifications can be used to 

confirm or alter gene predictions where they are seen to agree or differ, respectively.  
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Over the duration of this study, the N. caninum genome annotation was being curated by 

collaborators at the Sanger Institute, so peptide data generated from these experiments was 

used to resolve queries about the existence of genes or their intron/exon boundaries. For 

instance, gene models for which the predictions had low confidence could be searched against 

the protein/peptide data and if present, their putative existence could be confirmed. Whilst a 

lack of proteomic detection is not sufficient evidence to deny the existence of a protein, the 

identification of even one significant uniquely matched peptide provides a reasonable level of 

confidence that a protein is present within a sample.  

2.1.3 Aims and objectives 

The aim of this chapter was to perform a global protein analysis of the tachyzoite stage of N. 

caninum, in order to better understand which proteins are important to this life stage of the 

parasite. In addition, this work was helpful in assisting the genome annotation by providing 

experimental evidence for predicted proteins. The quality and quantity of proteomic 

identifications are directly influenced by the databases which mass spectra are searched against, 

but these databases can in turn be improved by the availability of peptide data.  
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2.2  MATERIALS AND METHODS. 

2.2.1 Cell culture 

NcLiv-strain tachyzoites were passaged twice weekly onto a layer of African Green Monkey 

Kidney Fibroblasts (Vero cells) in 25 cm2 tissue culture flasks, supported by IMDM (Iscove’s 

Modified Dulbecco’s Medium, Lonza). The medium was supplemented with 10 % (v/v) foetal 

calf serum (Labtech International), 100 U/ml penicillin and 100 µg/ml streptomycin sulphate 

(Sigma-Aldrich) and filter sterilised prior to use in a 0.2 µm pore-size membrane, attached to a 

vacuum pump. Cells and parasites were maintained at 37 oC and 5 % CO2. 

2.2.1.1  Host cell passage 

Host cell passage was performed by washing the confluent cell monolayer in 5 ml 1 M HEPES 

Balanced Salt Solution  (Sigma-Aldrich) before incubating the cells for 5 minutes in 5 ml 

Trypsin-Versene (EDTA) mixture (Lonza), at 37 oC and 5 % CO2. The cell suspension was 

centrifuged for 5 minutes at 1500 x g, and then resuspended in 5 ml IMDM. A 

haemocytometer was used to count a sample of the cells, before they were seeded at a ratio of 

1 x 105 per 5 ml IMDM/25 cm2 flask.  

2.2.1.2  Parasite passage 

Approximately 24 hours post seeding, when the vero cells had reached 10-20 % confluence, 

they were infected with 4 x 105 tachyzoites, which were then allowed to grow for 3-4 days to 

coincide with egress before harvesting with a sterile cell scraper. Parasites were then either 

passaged into new cells, or isolated for use in experiments. 

2.2.1.3  Parasite isolation   

After harvesting the cells/parasites, host cell debris was removed by filtration through 47 mm 

diameter 3 µm pore-sized Nucleopore polycarbonate membranes (Whatman). Parasites were 

then washed twice in phosphate-buffered saline (PBS) pH 7.4 by centrifugation at 1500 x g, 

for 10 minutes at 4 oC. They were washed a final time by centrifugation at 13 000 x g for 5 

min, the supernatant discarded, and pellets (each containing approximately 1 x 108 

tachyzoites) were either used immediately for a downstream experiment, or stored at -20 oC 

or -80 oC until required. 
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2.2.2  Proteomic analyses 

2.2.2.1  Preparation of tachyzoite lysates 

Samples were lysed and solubilised in sample loading buffer (50 mM Tris HCL (pH 6.8), 2 % 

(w/v) sodium dodecyl sulphate (SDS), 0.2 % (w/v) bromophenol blue, 10 % (w/v) glycerol, 

100 mM dithiothrietol (DTT)) at concentration of 5 µg tachyzoite protein/µl and subjected to 

three cycles of heating to 95 oC for 3 minutes and vortexing for 3 minutes, followed by 

centrifugation at 13 000 x g for 5 minutes.  

2.2.2.2  Bradford assay 

Protein concentration was estimated by carrying out a Bradford assay (Bio-Rad Protein Assay) 

on an equivalent sample of tachyzoites, lysed and solubilised as described above in the sample 

loading buffer minus SDS and bromophenol blue, due to their incompatibility with the assay 

reagents. This assay is based on the principle of Coomassie dye binding to protein, and 

comprises a comparison to bovine serum albumin standards of known concentration as 

detailed in Bradford (1976). The samples and standards (10 µl of each, in triplicate) were 

pipetted into a 96-well plate and 200 µl dye reagent added to each well and mixed thoroughly. 

The plate was incubated at room temperature for a minimum of 5 minutes and the absorbance 

measured at 595 nm. A standard curve was produced from the absorbencies of the standards 

and the sample concentration calculated accordingly. 

2.2.2.3  One dimensional electrophoresis (1-DE) 

For 1-DE, 16 cm discontinuous gels were poured based on the Laemmli method (Laemmli 

1970), as follows: 12 % (v/v) acrylamide resolving gel contained 40 ml 

acrylamide/bisacrylamide (30 %), 25 ml 1.5 M Tris/HCl pH 8.8, 1 ml 10 % (w/v) SDS, 33.5 

ml ddH20 (ultrapure water, Milli-Q grade, resistivity 18.2 Ω.cm), 500 µl ammonium 

persulphate (APS) and 100 µl tetramethyladenamine (TEMED); the 5 % (v/v) acrylamide 

stacking gel contained 3.4 ml acrylamide/bisacrylamide (30%), 5 ml 0.5 M Tris/HCl pH 6.8, 

200 µl 10 % (w/v) SDS, 13.6 ml ddH20, 200 µl APS and 20 µl TEMED. 

A total of 200 µg tachyzoite lysate was loaded onto the gel alongside 10 µl Precision Plus 

Protein Standard (Biorad). Samples were run through the 5 % (v/v) acrylamide stacking gel in 

1 x SDS running buffer (25 mM Tris base, 192 mM glycine, 0.1 % SDS in ddH20) for 

approximately 50 minutes at 16 mA, followed by 5-6 hours at 24 mA through the resolving 

gel. 
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Gels were fixed at room temperature in fixing solution (40 % (v/v) ethanol/10 % (v/v) acetic 

acid) overnight, and then rinsed twice in ddH2O before staining with Colloidal Coomassie for 

24 hours (20 % (v/v) methanol, 0.08 % (w/v) Coomassie Brilliant Blue G250, 0.8 % (v/v) 

phosphoric acid, 8 % (w/v) ammonium sulphate). After further rinsing in ddH2O, bands were 

excised from the gel and stored individually in 1 % (v/v) acetic acid at 4 oC. 

2.2.2.4   In-gel tryptic digestion 

Gel bands were destained twice for 15 minutes at 37 oC in a solution of 50 % (v/v) 

acetonitrile/50 mM ammonium bicarbonate. Reduction of cysteines was performed by a 30 

minute incubation in 50 µl of 10 mM DTT/100 mM ammonium bicarbonate, followed by 

alkylation in 50 µl 100 mM iodoacetamide (IAA)/55 mM ammonium bicarbonate for 1 hour, 

in the dark; both at 37oC. The gel bands were then dehydrated for 15 minutes at 37 oC with 

100 % (v/v) acetonitrile, which was then left for a further 10 minutes for the solvent to 

evaporate, before rehydrating with 15-25 µl (enough to ensure the gel plug was completely 

covered) 10 ng/µl sequencing grade trypsin (Roche Diagnostics)/25 mM ammonium 

bicarbonate. After 1 hour at 37 oC, the tubes were topped up with 15-25 µl of 25 mM 

ammonium bicarbonate and returned to incubate overnight. The reaction was stopped by 

freezing the following morning, and the digested bands were stored at -20oC until required for 

mass spectrometric analysis.  

2.2.3  Reverse-phase high performance liquid chromatography and tandem 

mass spectrometry (LC MS/MS) 

LC MS/MS was carried out using an LTQ ion trap mass spectrometer (Thermo Fisher 

Scientific) with an electrospray ionisation source, coupled downstream to an online nano 

pepMap100 c18 RP column (3 µm, 100 Å, 75 µm i.d. x 15 cm) on a Dionex Ultimate 3000 

HPLC system (Dionex). A C18 trapping column (300 µm i.d. x 5 mm) desalted the peptides 

prior to their entry onto the analytical column, which was equilibrated with buffer comprising 

of water/2 % (v/v) acetonitrile/0.1 % (v/v) formic acid at a flow of 300 nl min-1. Tryptic 

peptides were eluted using a 3 hour programme. Conditions were as follows: a linear gradient 

of 0-50 % (v/v) acetonitrile/0.1 % (v/v) formic acid over 140 minutes followed by 100 % 

(v/v) acetonitrile/0.1 % formic acid for 20 minutes and a further 20 minutes of 0 % (v/v) 

acetonitrile/0.1 % (v/v) formic acid. A 500 fmol µl-1 solution of glufibrinopeptide (m/z 

785.8, [M+2H]2+) was used to tune the LTQ. The resulting MS/MS spectra (.raw files) were 

converted to .dta files using TurboSequest Bioworks version 3.1 (Thermo Fisher Scientific) 
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using the parameters: threshold cut-off 100, group scan default 100, minimum group count 1, 

minimum ion count 15, peptide tolerance +/- 1.5. These were then merged into search-

compatible .mgf files.  

2.2.4  Multidimensional Protein Identification Technology (MudPIT) 

Sample preparation and MudPIT was carried out at the Yates’ Lab, Scripps Research Institute, 

La Jolla, CA, USA, by Dr. Helena Prieto. Briefly, tachyzoite pellets (cultured as described in 

2.2.1 by Rebecca Norton, Liverpool) were resuspended to approximately 800 µg ml-1 in 100 

mM Tris/HCl pH 8.5, lysed by three freeze/thaw cycles and separated into soluble and 

insoluble fractions by centrifugation for 30 minutes at 16 000 x g. Invitrosol (Invitrogen) was 

added to the supernatant (soluble fraction) at 1 % (v/v), before it was heated for 5 minutes at 

60 oC, vortexed for 2 minutes, denatured with 2 M urea, reduced with 5 mM Tris (2-

carboxyethyl) phosphine hydrochloride and carboxyamidomethylated with 10 mM IAA. Next, 

1 mM calcium chloride and trypsin was added at a ratio of 1:100 (enzyme:protein), followed 

by incubation at 37 oC overnight. The pellet (insoluble fraction) was resuspended in 10 % 

(v/v) Invitrosol (Invitrogen), heated and vortexed as before, sonicated for 1 hour, diluted to 1 

% (v/v) Invitrosol with 8 M urea/100 mM Tris/HCL pH 8.5, reduced and alkylated as 

before, then digested with endoproteinase Lys-C for 6 hours. The solution was then further 

diluted to 4 M urea with 100 mM Tris/HCl pH 8.5 and finally digested with trypsin, as above 

(2.2.2.4).  

MudPIT analysis was performed on four soluble and three insoluble replicates, with 

modifications to the method of Link et al. (1999). Samples of approximately 100 µg protein 

were loaded onto separate microcolumns and resolved by a fully automated 12 step 

chromatography process; consisting of strong cation exchange LC upstream of reverse phase 

LC (Washburn, Wolters & Yates 2001) on a quaternary Agilent 1100 series HPLC system 

(Agilent Technologies). Tandem mass spectrometry was performed with a nano-LC 

electrospray ionisation source on an LTQ ion trap mass spectrometer (Thermo Fisher 

Scientific Inc). Protein identifications were made using the SEQUEST algorithm (Eng, 

McCormack & Yates 1994), employing the parameter of no enzyme specificity and searched 

against the ToxoDB version 5.0 N. caninum gene models.  In addition, raw data files were sent 

to Liverpool for processing using Bioworks as described in 2.2.3 and subsequent protein 

identification.  
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2.2.5  Analysis of tachyzoite lysate on an Orbitrap Velos mass spectrometer 

Two different sample preparation approaches were taken as follows: a tachyzoite lysate was 

prepared and digested ‘in-solution’ prior to analysis in a single run on an Orbitrap Velos mass 

spectrometer, and 50 µg of tachyzoite lysate was separated on a 10 cm 12 % acrylamide gel 

prior cutting into 10 bands for in-gel digestion and Orbitrap analysis. 

2.2.5.1  In-solution digestion and analysis 

A pellet of 1.43 x 108 tachyzoites was solubilised in 200 µl 50 mM ammonium bicarbonate and 

then sonicated in a sonicating waterbath at 30 % amplitude for three cycles of 10 seconds on, 

50 seconds off. An additional 100 µl was added to the sample and the sonication repeated. The 

sample was centrifuged at 13 000 x g for 10 minutes at 4 oC and the supernatant collected. A 

50 µg aliquot of the sample (as determined by Bradford assay (2.2.2.2)) was diluted in 25 mM 

ammonium bicarbonate to a volume of 160 µl, prior to the addition of 10 µl 1 % Rapigest 

(Waters) (0.05 % (w/v) final concentration). The sample was heated to 80 oC for 10 minutes, 

with a brief vortex at the half way point; 10 µl of DTT (3 mM final concentration) was added 

and the sample incubated for 10 minutes at 60 oC, before being cooled to room temperature. 

IAA was added to a final concentration of 9 mM and the sample incubated in the dark for 30 

minutes at room temperature. Trypsin was added at a 50:1 trpsin:protein ratio and the digest 

incubated overnight at 37 oC. Trifluoroacetic acid (TFA) was added to a final concentration of 

0.5 % (v/v) and the digest incubated for 45 minutes at 37 oC. Finally, the sample was 

centrifuged for 15 minutes at 13 000 x g at room temperature and the supernatant collected 

for subsequent mass spectrometric analysis.  

2.2.5.2  1-DE and in-gel digestion  

A tachyzoite lysate was prepared as in 2.2.2.1 and 50 µg was run on a 10 cm 12 % acrylamide 

gel (2.2.2.3) with limiting factors of 200 V, 70 mA and 10 W for 50 minutes. The stained gel 

was sectioned into 10 contiguous bands, which were then further halved, to enable tryptic 

digestion, which was performed as in 2.2.2.4. Tryptic digests were re-pooled to return to 10 

samples, which were purified using StageTips (Thermo Scientific) and analysed by mass 

spectrometry on an Orbitrap Velos. 
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2.2.5.3  Orbitrap Velos mass spectrometry 

Mass spectrometry was performed by Stuart Armstrong (Liverpool) as follows: peptide 

mixtures (1 µg) were analyzed by on-line nanoflow liquid chromatography using the 

nanoACQUITY-nLC system (Waters) coupled to an LTQ-Orbitrap Velos (ThermoFisher 

Scientific) mass spectrometer equipped with the manufacturer’s nanospray ion source. The 

analytical column (nanoACQUITY UPLCTM BEH130 C18 15 cm x 75 µm, 1.7 µm capillary 

column) was maintained at 35 oC and a flow-rate of 300 nl/min. The gradient consisted of 3-

40 % acetonitrile in 0.1 % formic acid for 90 minutes then a ramp of 40-85 % acetonitrile in 

0.1 % formic acid for 3 minutes. Full scan MS spectra (m/z range 300-2000) were acquired by 

the Orbitrap at a resolution of 30,000. Analysis was performed in data dependant mode. The 

top 20 most intense ions from MS1 scan (full MS) were selected for tandem MS by collision 

induced dissociation (CID) and all product spectra were acquired in the LTQ ion trap. Ion trap 

and orbitrap maximal injection times were set to 50 ms and 500 ms, respectively. 

2.2.6 Protein identification using multiple search engines 

The .mgf files resulting from mass spectrometric analysis were either submitted to Mascot 

(Matrix Science) or to a multiple search engine algorithm (Jones et al. 2009) which employs 

Mascot, OMSSA (Geer et al. 2004) and X!Tandem (Craig & Beavis 2004; Fenyo & Beavis 

2003). To make protein identifications, data was searched against a locally-mounted database 

comprising the N.caninum gene predictions (various releases (Reid et al. 2012), hosted on 

ToxoDB (Gajria et al. 2007)). Unless otherwise stated, search parameters were as follows: 

fixed carbamidomethyl modification of cysteine, variable oxidation of methionine, one missed 

trypsin cleavage, peptide tolerance ±1.5 Da, fragment ion tolerance ±0.8 Da and peptide 

charge state of +1, +2 and +3. Target protein identifications at a false discovery rate (FDR) of 

1 % were accepted as correct. For data searched using Mascot alone, a cut-off score of 50 was 

applied. 

2.2.7 Assignment of proteins to MIPS Functional Catalogue categories 

Protein identifications were manually assigned to MIPS Functional Catalogue categories 

(Ruepp et al. 2004) to determine the range of protein types identified. For each protein, the 

‘biological process’ Gene Ontology (GO) term (Ashburner et al. 2000) was downloaded from 

ToxoDB (Gajria et al. 2008), and used as a search term in the MIPS Functional Catalogue 

Database. If multiple GO biological processes were assigned, all were searched in the MIPS 
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functional catalogue and a consensus category assigned. If there was no ‘biological process’ GO 

term assigned, the ‘molecular function’, followed by ‘cellular component’ GO term was used 

instead. If there was no GO term, but the gene description on ToxoDB contained information 

alluding to the function of the protein, then literature searching was employed to qualitatively 

determine the most appropriate MIPS category. Any protein that was known to be invasion-

related was assigned to category 32: cell rescue, defence and virulence. If there was no GO 

term or other indicator of function on ToxoDB, or in the literature, a Basic Local Alignment 

Search Tool (BLAST) search (NCBI) was performed to identify possible orthologues for which 

a function was known. Any proteins for which this yielded no useful result, were assigned 

‘unclassified’. Table 2.1 shows the MIPS Functional Categories used for this analysis.  

Table 2.1: MIPS Functional Categories 

Category Description 

01 Metabolism 

02 Energy 

04 Storage protein 

10 Cell cycle and DNA processing 

11 Transcription 

12 Protein synthesis 

14 Protein fate (folding, modification, destination) 

16 Protein with binding function or cofactor requirement 

18 Regulation of metabolism and protein function 

20 Cellular transport, transport facilities and transport routes 

30 Cellular communication/signal transduction mechanism 

32 Cell rescue, defence and virulence 

34 Interaction with the environment 

40 Cell fate 

42 Biogenesis of cellular components 

70 Subcellular localisation 
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2.3  RESULTS 

2.3.1  One dimensional gel electrophoresis (1-DE) and mass spectrometry (LC 

MS/MS) analysis of whole tachyzoite lysate 

The 16 cm gel resulting from 1-DE (Figure 2.1) showed good resolution of protein bands and 

was loaded with sufficient protein to enable downstream detection of peptides. A total of 129 

contiguous bands were excised manually and taken forward for tryptic digestion. 

 

 

Figure 2.1: 1-DE gel of N. caninum whole tachyzoite lysate. Lane one: protein standards, lane 2: 200µg 

tachyzoite lysate. A total of 129 contiguous bands were excised for tryptic digestion and LC M S/MS as 

indicated at 5-band intervals in the figure. 

From the LC MS/MS analysis of the 129 bands on an LTQ mass spectrometer 5563 N. caninum 

proteins (Appendix I) were identified when employing a false discovery rate (FDR) of 1 % and 

using the ToxoDB version 5.0 genome release. When redundancy between gel bands was 

taken into account, this left 965 individual protein identifications. With the resubmission of 

the data to version 6.0 of the genome annotation, the number of identifications increased to 

975 non redundant protein hits, equating to 13.8 % genome coverage. These numbers 
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correlate very closely to those found by Xia et al. (2008) for their 1-DE analysis of T. gondii 

(939 non redundant hits, 11.7 % coverage).  

As the focus of this project was on the apical proteins, it was useful to examine whether any 

known apical proteins had been identified by this whole-tachyzoite lysate approach. Searching 

the genome annotation for rhoptry, microneme and dense granule proteins will be discussed in 

more detail in Chapter 3 and correlated with proteomic results in Chapter 4, however a brief 

initial analysis was made at this point.  

A text search of the ToxoDB version 5.0 genome annotation for the word ‘microneme’ 

yielded 15 proteins, of which only two were identified by this proteomic experiment: the Nc 

MIC11 precursor protein NC_LIV_081370 and a ‘microneme associated protein’ 

NC_LIV_113750.  

However, more success was found with dense granule proteins, of which four out of five were 

identified: two annotated as DG32 (NC_LIV_030870 and NC_LIV_031880), a DG1 

precursor (NC_LIV_082090) and a DG4 precursor (NC_LIV_131370). With the rhoptry 

proteins, peptides for all eight were identified; they comprised a rhoptry surface protein 

(NC_LIV_001550), two annotated as ‘rhoptry protein related’ (NC_LIV_040440 and 

NC_LIV_130570), RON4 (NC_LIV_100030), RON1 (NC_LIV_130800), ROP13 

(NC_LIV_132210) and two putative rhoptry antigens (NC_LIV_140500 and 

NC_LIV_140510). 

In order to assess the range of proteins identified, all version 6.0 hits were assigned functional 

annotation as described in 2.2.8. The results, seen in Figure 2.2, show that proteins over the 

whole range of categories were identified using this method, but due to a lack of available 

information in the genome annotation, the most heavily populated category was ‘unclassified’. 
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Figure 2.2: Functional classification of proteins identified in whole tachyzoite lysate analysed by 1 -DE 

and LC MS/MS. Proteins (n = 975) were identified from the N. caninum genome annotation hosted on 

ToxoDB version 6.0. Proteins were assigned to functional categories according to the MIPS Functional 

Catalogue.  

2.3.2 Multidimensional proteomic identification technology (MudPIT) analysis 

of whole tachyzoite lysate 

MudPIT data comprising soluble and insoluble fractions were collected at the Scripps Research 

Institute and processed as SEQUEST (Thermo Finnigan) search results. A total of 447 and 436 

non-redundant proteins were identified from the insoluble and soluble fractions, respectively 

(Appendix I). When combined and further redundancy was removed this resulted in 635 non-

redundant protein identifications from the MudPIT platform. This figure was far lower than 

was expected (in previous experiments (Xia et al. 2008) MudPIT had outperformed 1-DE 

two-fold in terms of non-redundant protein hits). Thus, the original .RAW files generated 

from the MS/MS were converted to .mgf files and subjected to the triple-search algorithm 

(Jones et al. 2009) used with the 1-DE data, with the aim of improving the yield of protein 

hits.  
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From the triple-search algorithm, against ToxoDB version 5.0 of the N. caninum genome 

annotation, a total of 1002 non redundant hits were identified (645 insoluble and 658 soluble 

with a 1 % FDR) of which 487 were newly identified and had not been present in the 

SEQUEST search results. Therefore, while it proved propitious to re-search the data with the 

Jones et al. (2009) algorithm against Mascot (Matrix Science), OMMSA (Geer et al. 2004) and 

X!Tandem (Fenyo & Beavis 2003) combined, the result was similar in yield to that obtained 

from 1-DE, and hence half of that anticipated (Figure 2.3).  

 

Figure 2.3: Venn diagrams showing MudPIT non-redundant protein identifications from whole tachyzoite 

lysates. A) MudPIT non-redundant identifications (n = 1122) using SEQUEST compared to 

Mascot/OMMSA/X!Tandem searching algorithm; B) Comparison of non-redundant identifications (n = 

1431) made from MudPIT and 1-DE LC MS/MS proteomic techniques. 

When the MudPIT data was combined with the ToxoDB version 5.0 1-DE data, there were a 

total of 1431 non redundant protein identifications, equating to 25.6 % coverage of the N. 

caninum predicted genome at that time (5587 gene models). Unfortunately, due to the lower 

than expected protein-hit yield of the MudPIT data and the excessive amount of server time 

that the database search required, it was decided not to resubmit the data to the ToxoDB 

version 6.0 release of the genome annotation, especially as this approach had not resulted in a 

significant increase in hits for the 1-DE data. Instead, Mascot searches alone were performed 

and submitted to the false discovery rate rescoring algorithm (Jones et al. 2009) to yield 699 

non-redundant protein identifications (1 % FDR) in the ToxoDB version 6.0 annotation, so 

that when combined with the 975 identifications from the 1-DE analysis, a total of 1267 

proteins overall form the tachyzoite stage had been detected, equivalent to 17.9 % of the 

version 6.0 total predicted proteome.  
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2.3.3 Analysis of tachyzoite lysate using an Orbitrap Velos mass spectrometer 

2.3.3.1  In-solution analysis 

From the in-solution digestion of tachyzoite lysates a total of 323 N. caninum protein 

identifications achieving a Mascot score ≥ 50 were made from a single one-hour analysis of this 

preparation on the Orbitrap Velos. These identifications are presented in Appendix I. Novel 

identifications (n = 28), those not previously identified by 1-DE LC MS/MS or MudPIT 

analyses, are displayed in Table 2.2. Of these, fifteen were designated ‘hypothetical’ and had 

no functional annotation. Over half of these proteins (15/28) achieved a Mascot score of ≤ 72 

and as such were in the lowest scoring third of the total identifications, of which the top-

hitting third of proteins scored between 1193 and 117.  

Table 2.2: Novel protein identifications from the Orbitrap Velos tachyzoite analysis (n = 28). 

Proteins were identified by searching the ToxoDB version 6.0 N. caninum genome annotation, 

and a Mascot cut-off score of ≥ 50 was employed.  

Protein I.D. Description 
Mascot 
Score 

NCLIV_006470 hypothetical protein, conserved 170 

NCLIV_000860 SPATR, related 137 

NCLIV_048550 26S proteasome non-ATPase regulatory subunit 4, putative 103 

NCLIV_062890 hypothetical protein 98 

NCLIV_067050 hypothetical protein, conserved 85 

NCLIV_004860 hypothetical protein 83 

NCLIV_013150 hypothetical protein, conserved 82 

NCLIV_043300 nucleolar phosphoprotein nucleolin, putative 82 

NCLIV_006570 serine/threonine protein phosphatase, putative 77 

NCLIV_008890 tim10/DDP zinc finger domain-containing protein, putative 77 

NCLIV_031320 hypothetical protein, conserved 74 

NCLIV_013700 CHCH domain-containing protein, putative 73 

NCLIV_013180 GM04207p, related 72 

NCLIV_043870 hypothetical protein, conserved 71 

NCLIV_017440 hypothetical protein 69 

NCLIV_031310 clathrin coat assembly protein AP50, putative 69 

NCLIV_064230 pre-mRNA-splicing factor, putative 68 

NCLIV_063760 hypothetical protein 66 

NCLIV_049140 hypothetical protein 63 

NCLIV_003100 serine proteinase inhibitor TgPI-2, putative 58 
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NCLIV_069400 hypothetical protein, conserved 57 

NCLIV_017430 hypothetical protein 55 

NCLIV_011800 hypothetical protein, conserved 54 

NCLIV_029240 

YbaK / prolyl-tRNA synthetases associated domain containing protein, 

putative 53 

NCLIV_068960 hypothetical protein 53 

NCLIV_044610 hypothetical protein, conserved 50 

NCLIV_054110 YHL017Wp-like protein, related 50 

 

2.3.3.2  1-DE separation prior to LC MS/MS 

A further experiment was designed with the intention of combining the successful 1-DE 

separation achieved in 2.3.1, with the increased resolution of the Orbitrap Velos indicated by 

the results in 2.3.3.1, where just a single run yielded 28 protein identifications not previously 

made by the extensive analyses on the LTQ. A tachyzoite lysate equivalent to that analysed in 

2.3.1 was prepared and separated on a 10 cm gel, before being excised into 10 sections for 

trypsin digestion (Figure 2.4).  Resulting digests were analysed by LC MS/MS on the Orbitrap 

Velos and a total of 765 non-redundant protein identifications were made (Mascot score ≥ 

50). The identifications, per section, are presented in Appendix I. There was redundancy 

between sections, nevertheless, overall this analysis yielded 110 novel protein identifications 

compared to the previous analyses, 59 of which were annotated as ‘hypothetical’. Hypothetical 

proteins are potentially Apicomplexan-specific, as they are often lacking in functional 

annotation due to a lack of homology to genes of known function. Proteins are often present in 

more than one area on a gel due to high abundance, post-translational modifications or 

multiple isoforms migrating at different speeds. Similar occurences were observed in the 1-DE 

gel described in 2.3.1. 
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Figure 2.4: 1-DE gel of tachyzoite lysates for Orbitrap. Samples were analysed on a 12 % (w/v) acrylamide gel 

under denaturing conditions, visualised by Colloidal Coomassie staining. Lanes are as follows, lane 1: protein 

standards, lane 2: 25 µg tachyzoite lysate, lane 3: 50 µg tachyzoite lysate. Horizontal lines indicate excision of 10 

bands from the 50 µg sample and the numbers to the right indicate the number of protein identifications made for 

each with a Mascot score ≥ 50. 

 

2.3.4 OFFGEL separation 

Appendix III contains an additional in-solution analysis of a tachyzoite lysate by OFFGEL 

separation, not analysed by LC MS/MS due to protein losses during the clean up process.   
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2.4  DISCUSSION 

The analyses presented in this chapter resulted in a combined yield of 1404 protein 

identifications made using the ToxoDB version 6.0 release of the N. caninum genome 

annotation (Reid et al. 2012). The 1-DE gel separation, analysed by LC MS/MS on an LTQ 

ion trap, produced 975 non-redundant identifications alone, which make up the bulk of the 

data. These proteins were found to be representative of a wide range of functions and 

localisations within the cell (Figure 2.2), including the known apical proteins MIC11, DG32, 

GRA1, GRA7, RON1, RON4 and ROP13. Due to a lack of genes annotated at the time as 

apical, it was not possible to detect further ROP, GRA and MIC proteins from within those 

identified. A bioinformatic analysis of the genome to identify further apical genes is presented 

in Chapter 3, and Table 4.4 summarizes all the apical protein identifications made in the 1-DE 

LC MS/MS analysis in addition to those made in Chapter 4: Proteomic analysis of the apical 

organelles. Further discussion on the biological significance of the proteomic identifications is 

made in Chapter 4. 

The number of protein identifications generated by this approach (975) compared favourably 

to that of Xia et al. (2008) who achieved a very similar number (939). Furthermore, the range 

of protein types identified and the spread of the proteins within the various categories, as seen 

in Figure 2.2, were comparable in the two studies (Figure 5b in Xia et al. 2008) with the 

categories ‘unclassified’, ‘metabolism’, ‘protein synthesis’, ‘protein fate’ and cellular 

transport’ being the most densely populated. However, there are two important differences to 

note that affect this comparison: firstly, approximately 1000 additional genes have been 

identified in the T. gondii genome compared to that of N. caninum, depending upon which 

strain is in question; and secondly, the analysis here comprised three hour mass spectrometry 

analysis runs as opposed to the one hour runs employed by Xia et al. (2008). It became 

apparent during the data analysis that the three hour chromatography resulted in a larger 

number of peptide identifications compared to the one hour gradient, but not significantly 

more protein identifications. Hence, confidence scores assigned to protein hits were higher 

than they might have been using a one hour gradient, but when this was balanced with a three-

fold increase in instrument time, the consensus for future experiments (Chapter 4) was to use 

one hour chromatography gradient. 

Furthermore, the T. gondii data were a result of one gel analogous to that analysed here for N. 

caninum, in addition to Tris-soluble and Tris-insoluble samples analysed in the same way. 
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These additional gels were not a component of the experimental design for this chapter due to 

the fact that together they identified only a further 82 proteins (Xia et al. 2008) which is not a 

good return on the amount of instrument time the analysis required. This is similar to the 

reasoning that excluded a 2-DE experiment from the N. caninum study. However, there is a 

further reason why 1-DE was selected in preference to 2-DE for the purpose of maximising 

protein identifications: a 1-DE gel can be cut into contiguous bands so that every part of the 

sample can be digested and analysed, whereas it is possible to lose material in a 2-DE gel that 

has not been sufficiently stained, as spots only are excised, not the whole gel. 2-DE has 

superior resolving power compared to 1-DE, as a result of the additional dimension, but for 

this analysis the main concern was to identify as much of the proteome as possible, regardless 

of how the proteins separated.  

The identification of peptides for ‘hypothetical’ genes confirms the existence of the proteins 

they encode. The mass spectrometry data generated in this analysis was used by researchers 

working on the N. caninum genome annotation to assess the accuracy of the annotation and 

solve queries. For example, a novel microneme protein (NCLIV_033690) was identified that 

appeared to be a duplication of MIC2, which was not present in the T. gondii genome. By 

searching the peptide data for the 1-DE LC MS/MS experiment, peptides uniquely mapping to 

both genes were identified, thereby confirming experimentally that the novel gene, MIC2B, 

did exist.  

When the data were resubmitted to the version 6.0 annotation, the expectation was that the 

number of protein identifications would increase, as the gene number had increased ~1.27 

fold from 5587 to 7082. However, this was not the case: the 965 identifications for the 1-DE 

LC MS/MS analysis increased by ten proteins to 975, which equates to a 1.01 fold increase in 

identifications. The reason for this is not known, but one speculation is that some property of 

peptides/proteins that makes them readily identified by mass spectrometry also makes the 

genes they are encoded by easier to detect by gene finding algorithms, so that most of the 

peptides identified in the analysis were attributed to genes already present in version 5.0. 

With regard to the MudPIT data, it was not possible to perform a resubmission to the new 

genome annotation, due to the disproportionate amount of server time the original .mgf files 

had taken when searched with the triple-search algorithm (Jones et al. 2009). On closer 

inspection, the spectra were found to contain non-tryptic peptides, an indication that the 

digestion had not been entirely successful. This adversely affects database searching because, 
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although it is possible to search with the parameter ‘no enzyme specificity’, the resulting 

increase in the database size dramatically reduces confidence levels assigned to peptide hits, as 

there are so many more peptides possible that the probability of hitting them uniquely is much 

lower. This is likely to be the main factor in the disappointing number of protein 

identifications made by this platform (635 non-redundant SEQUEST identifications) when 

compared to data for T. gondii (2121, (Xia et al. 2008)) and C. parvum (1672, (Sanderson et al. 

2008), which is 2.6 fold greater despite the smaller genome size of C. parvum). Nevertheless, 

these data did provide novel protein identifications not previously identified by 1-DE, which 

combined, equated to 25.6 % proteome coverage of the version 5.0 annotation, solely in the 

tachyzoite stage. It should be noted, that when making comparisons between N. caninum and T. 

gondii experimental data, both refer to the tachyzoite stage, while the C. parvum data was 

generated by analysis of sporozoites. The proteins identified by this analysis must therefore be 

assumed to be either ubiquitously expressed genes over multiple N. caninum life stages, or 

tachyzoite-specific, as any other life-stage specific genes will elude detection based on this 

experimental design. If culture methods advance or in vivo production of sexual stages 

becomes possible in the future, it would be interesting to analyse additional life stages to gain 

more perspective of the proteins important to this parasite.  

The additional mass spectrometry analyses utilizing an Orbitrap Velos mass spectrometer 

achieved an additional 138 protein identifications overall, taking the combined non redundant 

total to 1404, or 19.8 % coverage of the ToxoDB version 6.0 genome annotation. These 

analyses primarily identified the same proteins as the previous 1-DE LC MS/MS experiment 

on an LTQ: the novel identifications were lower scoring (though still confident) protein hits, 

meaning that the most abundant proteins were common to all the different analyses. One 

advantage that the Orbitrap Velos analysis had was the amount of instrument time it required: 

the whole analysis of 10 sections of a 10 cm gel took 10 hours of mass spectrometry, compared 

to 129 bands from a 16cm gel each being analysed for 3 hours on the LTQ, so while the 1-DE 

LC MS/MS experiment was most successful in identifying the largest proportion of the 

proteome, it required considerable resources and input to do so. The data generated however, 

have been useful in aiding genome annotation, confirming the presence of genes previously 

considered hypothetical, and identifying almost 20 % of the predicted proteome that is now 

known to be expressed in the tachyzoite stage. The Orbitrap Velos is a more sensitive platform 

than the LTQ used previously (Makarov 2000), which may explain why it was able to detect 
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some less-abundant proteins not identified in the previous analyses. Alternatively, their 

identification may be a result of the different sample preparation procedure employed.  

Among the proteins identified, were 22 of the 33 that have been linked to the electron 

transport chain (Liverpool Library of Apicomplexan Metabolic Pathways (LAMP) database). 

This finding, and the 21 of 31 glycolysis-related  proteins and 17 of 22 tricarboxylic acid cycle 

proteins (LAMP database) detected,  appears to be an indication of a high demand for energy 

in the tachyzoite, which fits with its rapidly invading and reproducing phenotype. In addition, 

there were a number of proteins identified which are involved with phospholipid metabolism, 

which could be related to the production of phospholipid bilayers for daughter cell 

membranes. Appendix II shows all the proteins involved in N. caninum metabolic pathways 

(downloaded from the LAMP database) and which of these were identified proteomically in 

the tachyzoite stage. 

This analysis has utilized the powerful technique of gel separation followed by liquid 

chromatography and mass spectrometry to confidently identify almost 20 % of the N. caninum 

genome. These results have been corroborated by using more than one proteomic platform, as 

the vast majority of identifications were made by multiple analyses. Among the proteins 

identified were representatives from a range of functional categories, including cell rescue, 

defence and virulence, into which the proteins involved in the host cell invasion process would 

fit. In order to find out more about these proteins, it will be necessary to investigate the 

predicted genome in more depth to identify proteins that may be apical but are not yet 

annotated as such, and then to experiment with other methods of sample preparation to 

analyse the proteins of interest. These analyses of whole tachyzoite lysates were a useful 

precursor to the work in subsequent chapters and were a timely experiment in assisting the N. 

caninum genome annotation project. 
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CHAPTER 3: BIOINFORMATIC MINING OF THE GENOME FOR 

PREDICTED APICAL PROTEINS 

3.1  INTRODUCTION 

At the beginning of this study the N. caninum genome was undergoing annotation and, as 

discussed in Chapter 2. Section 3.2, very few apical proteins were annotated in Release 5.0 of 

ToxoDB (Gajria et al. 2008; Reid et al. 2012). This chapter describes an effort to identify 

further genes encoding apical proteins, based on their similarity to known N. caninum apical 

genes and to those of T. gondii, whose genome is largely syntenic to that of N. caninum 

(DeBarry & Kissinger 2011; Reid et al. 2012).  

3.1.1  Definitions 

The following definitions describe the use of these words in the context of this thesis. 

Synteny: collinear conservation of gene order along the chromosomes of different species 

(Blood, Studdert & Gay 2007). 

Homology: the structural similarity of two genes/proteins that is a result of common descent 

(Koonin 2005). 

Orthologue: a gene/protein homologous to another, but existing within the genome of another 

species that would have arisen from a common ancestor (Koonin 2005). 

Paralogue: a homologue of another gene/protein found within the same genome, i.e. a gene 

that has been duplicated at some point (Koonin 2005). 

3.1.2  ToxoDB 

ToxoDB (Gajria et al. 2008) is an open source database that has been developed as a 

component of EuPathDB (Aurrecoechea et al. 2007); a collection of websites hosting a wealth 

of genomic information on a range of eukaryotic pathogens. ToxoDB is not only the home of 

the various T. gondii genomes that have been sequenced to date (Lis Caler at the J. Craig 

Venter Institute, hosted on ToxoDB)  but also the N. caninum genome (Reid et al. 2012), as 

there is no ‘NeosporaDB’. Figure 3.1 shows a representative screen shot of a ToxoDB gene 

page and the orthologous T. gondii genes can be seen shaded with the N. caninum gene 
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highlighted in yellow. ToxoDB provides links to an orthologue database named OrthoMCL 

(Chen et al. 2006; Li, Stoeckert & Roos 2003) where more information is available on the 

orthologue group a gene has been assigned to.  

ToxoDB also hosts data on gene expression that has been submitted by researchers around the 

world, and a number of genes are linked to comments and PubMed citations of publications in 

which they feature. Information about the gene such as coding sequence, predictions of signal 

peptides, number of orthologues and gene ontology classifications can be downloaded and as 

such this database serves as an extremely useful tool for anyone working on these organisms.  

 

Figure 3.1: Example gene page from ToxoDB for N. caninum gene NCLIV_069480 (highlighted in yellow). T. 

gondii genes are aligned below with orthology shown by shading between the genes, for this example there is a 

syntenic orthologue present in each T. gondii strain.  

3.1.3  The Basic Local Alignment Search Tool (BLAST) 

BLAST (NCBI) is a bioinformatic resource that allows comparisons of nucleotide or protein 

sequences. A BLAST alignment provides sequence identity score (%) in addition to an E-value 
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(expect value: the number of hits that are expected to be seen with that score by chance). The 

blastp algorithm performs protein-protein BLAST searches whilst the blastn algorithm uses 

nucleotide sequences. A search can be set up to analyse a database of all non-redundant 

proteins (blastp) which includes sequences from GenBank and SwissProt for all organisms (an 

example is shown in Figure 3.2). Alternatively, specific databases can be selected, or there is a 

BLAST search facility incorporated into ToxoDB for searching against T. gondii and N. caninum 

databases. BLAST is very useful for inferring orthologous relationships and for searching for 

possible functions when a gene is annotated simply as ‘hypothetical’.  

 

Figure 3.2: Example of a protein-protein BLAST alignment of NCLIV_069480 against the ‘all non redundant 

protein sequences’ database on NCBI. The top hit is to the query gene itself and has 100 % identity, as would be 

expected. T. gondii ME49 and GT1 strains have orthologues with 89 % identity and highly significant E-values (1 

x 10-64). The P. chabaudi protein is also significant to a cut off of 0.001 (E-value 0.0006) despite only having an 

identity score of 29 %. Other lower scoring hits are also to apicomplexan proteins.  
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3.1.4  Aims and objectives 

After the global analysis of the tachyzoite proteome (Chapter 2), the next step was to simplify 

the sample to an enriched preparation of apical proteins (Chapter 4). Any proteomic study is 

highly reliant on the database that the peptides are searched against, as a list of hits to proteins 

which relate to poorly annotated genes does not provide much useful information. It was 

therefore important to carry out bioinformatic and proteomic analyses side by side, so that 

ideally, they would complement one another. This was especially important because the 

proteomic techniques were unable to produce pure samples of apical proteins, so that 

contamination from other organelles and structural and host proteins were always present. 

Having a comprehensive list of predicted apical proteins was therefore necessary to enable the 

identification of the apical proteins present within the data sets generated by proteomic 

experiments (in Chapters 2 and 4).  

At the time this analysis began, when the experiments in Chapters 2 and 4 were underway, the 

available version of the N. caninum genome was ToxoDB Release 5.0, for which annotation 

was still in progress. As the genome annotation continued, and more information was made 

available, the data presented in this chapter were updated and expanded. As such, it represents 

an amalgamation of information taken from ToxoDB versions 5.0, 6.0 and 7.0, in addition to 

published literature. Moreover, the T. gondii genome (ME49 strain) was annotated to a far 

greater extent than the N. caninum genome, so there was an opportunity to exploit this 

information and seek orthologous relationships that had not already been identified in the first 

annotation (ToxoDB Release 5.0). The aim was that this work would contribute to the 

genome annotation (being carried out by the Sanger Institute) as part of a collaborative effort. 

Clearly, genome annotation is ever-evolving and there will doubtless be additional apical genes 

identified in the future, and corrections made to existing annotations.  
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3.2  MATERIALS AND METHODS 

As a component of the N. caninum genome project (Reid et al. 2012), a bioinformatic search 

was undertaken to identify genes encoding proteins that were hypothesized as apical in origin. 

The author and Adam Reid each performed bioinformatic and literature searches and the 

results of each were taken into account for the analysis in Reid et al. (2012). 

While some genes have experimental data regarding their localisation and can be confidently 

assigned to an apical organelle, others have only sequence similarity to known apical genes 

(which may include conserved domains) to suggest that they may be a member of the same 

family. The work presented in this chapter is highly qualitative and somewhat subjective, and 

has undergone constant revision as new versions of the genome annotation were released.  

3.2.1  Identification of potential apical genes 

Initially, a range of text searches were performed in ToxoDB for the phrases ‘rhoptry’, ‘rop’ 

‘ron’ ‘dense granule’ ‘gra’ ‘microneme’ ‘mic’ ‘ama’. The results of these were used as a 

starting point to build upon, by performing protein-protein BLAST searches (in ToxoDB) to 

T. gondii coding sequences and identifying potential orthologues in N. caninum. Some 

orthologous relationships were already identified by ToxoDB. Criteria for assigning an 

orthologue based on BLAST sequence similarity were as follows: BLAST identity scores ≥ 30 

%, with an E-value ≤ 0.001 and being the top hit within that organism (i.e. the N. caninum 

orthologue of a T. gondii gene had to be the top hitting N. caninum gene to that sequence). 

In cases where a T. gondii gene with an apical annotation had an N. caninum syntenic orthologue 

(identified by ToxoDB) that was only described as ‘hypothetical’, the N. caninum gene was considered 

likely to be of similar function and designated the same. Where there was an apparent 

expansion at a locus in either organism and as a result one organism had an extra copy (or 

copies) of that gene, the extra copy was labelled ‘B’ (for example MIC2, and MIC2B). When 

gene comments on ToxoDB contradicted each other, the related literature was examined to 

attempt to discern which was correct. Published literature on apical proteins was also 

consulted, but in many cases authors did not specify gene accession numbers (I.D.’s) so it was 

not always possible to determine the exact gene that they referred to. SignalP 3.0 predictions 

for signal peptides (Bendtsen et al. 2004) were downloaded from ToxoDB version 6.0.  
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3.3  RESULTS AND DISCUSSION 

The genes in Tables 3.1, 3.2 and 3.3 have been presented with their ToxoDB version 6.0 

annotations. It should be noted that this analysis has evolved over time and when it initially 

began there were only fifteen, eight and five genes identified by a text search of ‘microneme’, 

‘rhoptry’ and ‘dense granule’, respectively, on ToxoDB Release 5.0. This annotation has now 

been superseded by Release 6.0 (there have been more recent releases of ToxoDB but Release 

6.0 was the last to contain a new N. caninum annotation) and when searches were repeated in 

version 6.0 the yield of N. caninum genes was higher (twenty seven, forty-two, and eight for 

‘microneme’, ‘rhoptry’ and ‘dense granule’, respectively). This is an example of how better 

databases facilitate identification of genes. The tables also include SignalP 3.0 predictions for 

signal peptides: a number of apical proteins are predicted to have signal peptides, there are also 

many apical proteins that do not, so whether this is due to their secretion being via a non-

classical pathway (and hence not recognised by the SignalP algorithm) or whether they are 

non-secretory proteins is unknown. 

3.3.1  Microneme Genes  

The list of putative microneme genes identified is presented in Table 3.1. There were 42 

identified, including five which did not have orthologues in T. gondii (MCP 5, MCP6 and 

MCP7, MIC2B and MIC19). There were no T. gondii-specific microneme genes identified.  

MIC2B (NCLIV_033690) BLASTs to MIC2 with an E-value 2.3 x 10-153 and 45% identity and 

has been dubbed a duplication event (Reid et al. 2012); the two genes can be viewed in Figure 

3.3. MIC2B has been known by a number of aliases; it was initially named MIC2B in 

recognition of its paralogous relationship with MIC2, but then became MIC14 in the 

publication Reid et al. (2012). It is currently annotated as MIC26 in comment 105330 on 

ToxoDB, but this is possibly due to human error as ‘2b’ resembles ‘26’. MIC2B has no further 

orthologues in T. gondii other than those syntenic to MIC2. Peptides for both genes were 

identified in the tachyzoite experiment in Chapter 2 (Mass Spectrometry data in Appendix I). 

The function of MIC2B is currently unknown but would make an interesting target for 

functional analyses due to the fact that it is specific to N. caninum. MIC2 is known to be 

involved in gliding and motility during invasion (Carruthers & Sibley 1997) and the trafficking 

of MIC2-associated protein (M2AP) (Jewett & Sibley 2004); and a reduction in expression 

results in reduced virulence in T. gondii (Huynh & Carruthers 2006). 
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Table 3.1: Putative list of microneme genes (n = 42). Signal peptide predictions were downloaded from ToxoDB version 6.0 and had been made using SignalP 

3.0. The comments column contains information regarding genes which did not have a straightforward syntenic-orthologous relationship with a known T. gondii 

microneme gene; ‘-‘ denotes no gene identified/no comment. 

Protein 
Description 

I.D. ToxoDB Annotation Signal 
peptide? 

Comments T. gondii ME49 
orthologue(s) 

MIC1 NCLIV_043270 microneme protein MIC1 Yes Contains a MAR domain so is the equivalent of MCP1 TGME49_091890 

MIC2 NCLIV_022970 microneme protein 2 Yes Paralogue of  NCLIV_033690 TGME49_001780 

MIC2 paralogue NCLIV_033690 hypothetical protein  Yes 
Putatively MIC2B - duplication of MIC2 (NCLIV_022970), also 
known as 'MIC26' and ‘MIC14’ 

- 

M2AP NCLIV_051970 MIC2-associated protein M2AP Yes - TGME49_014940 

MIC3 NCLIV_010600 microneme protein MIC3 Yes - TGME49_119560 

MIC4 NCLIV_002940 microneme protein MIC4 Yes - TGME49_008030 

MIC5 NCLIV_068520 microneme TgMIC5 protein Yes - TGME49_077080 

MIC5 or MIC17 NCLIV_038120 Microneme protein 5 (Precursor), related Yes 

Paralogues: NCLIV_038100, NCLIV_068830 and NCLIV_038110 
looks like incorrect annotation as MIC5, also known as ‘MIC17A’ by 
Sohn et al. (2011) TGME49_000230

TGME49_000250
TGME49_000270
TGME49_000240 

MIC17 paralogue NCLIV_038100 hypothetical protein Yes Known as ‘MIC17C’ by Sohn et al. (2011) 

MIC17 paralogue NCLIV_038110 hypothetical protein Yes 
Known as ‘MIC17B'; confirmed by immunolocalisation (Sohn et al. 
2011) 

MIC17 paralogue NCLIV_068830 PAN domain-containing protein , related  Yes Paralogue of NCLIV_038100, NCLIV_038110 and NCLIV_038120 

MIC6 NCLIV_061760 microneme protein MIC6, putative No - TGME49_018520 

MIC7 NCLIV_025710 microneme protein 7, putative No - TGME49_061780 

MIC8 NCLIV_062770 microneme protein 8, putative No 

MIC8 and MIC9 are tandemly arranged   

TGME49_045490 

MIC8B NCLIV_062750 EGF-like domain-containing protein  No TGME49_086740 

MIC9 NCLIV_062760 hypothetical protein No TGME49_045490 

MIC10 NCLIV_066250 microneme protein 10, putative Yes - TGME49_050710 

MIC11 NCLIV_020720 microneme protein MIC11, putative Yes - TGME49_004530 
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MIC12 NCLIV_069310 microneme protein, putative No Paralogue of NCLIV_022530 

TGME49_002400
TGME49_067680 

MCP2 NCLIV_026810 NcMCP2, putative  Yes Also known as MIC13 TGME49_060190 

MCP3 NCLIV_003260 NcMCP3, putative Yes - TGME49_008740 

MCP4 NCLIV_003250 NcMCP4, putative Yes - TGME49_008730    

MCP5 NCLIV_066750 NcMCP5, putative No No N. caninum or T. gondii homologues - 

MCP6 NCLIV_054450 NcMCP6, putative Yes No T. gondii orthologues, paralogue to NcMCP7 - 

MCP7 NCLIV_054425 NcMCP7, putative  Yes No T. gondii orthologues, paralogue to NcMCP6 - 

- NCLIV_007140 microneme protein, putative No MIC22 (Reid et al. 2012) TGME49_075790 

- NCLIV_008720 microneme protein, putative Yes MIC24 (Reid et al. 2012) TGME49_054430 

- NCLIV_013920 microneme protein, putative No - TGME49_086740 

- NCLIV_015580 microneme protein, putative No MIC20 (Reid et al. 2012) TGME49_038210 

- NCLIV_015590 microneme protein, putative No MIC21 (Reid et al. 2012) TGME49_038220 

- NCLIV_018780 microneme protein, putative No MIC15 (Reid et al. 2012) TGME49_044180 

- NCLIV_058210 microneme protein, putative No MIC16 (Reid et al. 2012) TGME49_115520 

- NCLIV_058240 microneme protein, putative No MIC25 (Reid et al. 2012) TGME49_115550 

AMA1 NCLIV_028680 apical membrane antigen 1, putative No - TGME49_055260  

AMA2 NCLIV_058410 apical membrane antigen, putative No - TGME49_115730  

AMA3 NCLIV_064590 apical membrane antigen, putative Yes - TGME49_100130 

- NCLIV_038380 hypothetical protein No 
Similarity to a Plasmodium microneme protein (geneDB), but no T. 
gondii ME49 orthologue (MIC19, Reid et al. 2012) - 

- NCLIV_058230 hypothetical protein No 
Adjacent and BLASTs to putative microneme protein NCLIV_058240 
with identity of 49 % and E-value of 5.2 x10 -72 TGME49_115540 

- NCLIV_036660 hypothetical protein, conserved Yes 
BLASTs to putative microneme protein NCLIV_069310 with 33 % 
identity and E-value of 1.1 x 10-12 TGME49_069930 

- NCLIV_022530 fibrillin-2 precursor, putative  No Paralogue of putative microneme protein NCLIV_069310 

TGME49_002400
TGME49_067680 

- NCLIV_029340 EGF-like domain-containing protein, putative  Yes 
Syntenic orthologue to T. gondii VEG microneme protein 
TGVEG_078790 TGME49_055460  

SUB1 NCLIV_021050 hypothetical protein Yes Orthologue of microneme protein TgSUB1 (Miller et al. 2001) TGME49_004050 
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Figure 3.3: MIC2 gene duplication. ToxoDB screen shots of MIC2 (NCLIV_022970) and its paralogue 

NCLIV_033690.  

MIC5 and MIC17 provide another area of confusion in the genome annotation. Both 

NCLIV_068520 and NCLIV_038120 have been labelled as MIC5 (‘microneme TgMIC5 

protein, putative’ and ‘Microneme protein 5 (Precursor), related’, respectively) but 

NCLIV_068520 is likely to be the true MIC5 as it is a syntenic orthologue of T. gondii MIC5 

(TGME49_077080). Sohn et al. (2011) proposed the name MIC17B for a novel microneme 

protein (NCLIV_038110) identified in their monoclonal antibody localisation experiment. 

MIC17B is flanked by its paralogues NCLIV_038120 and NCLIV_038100, which were 

designated MIC17A and MIC17C respectively: this locus appears to have undergone gene 

duplication at some point, while the T. gondii genes appear to have behaved in a similar way 

(Figure 3.4). These three microneme genes are highly homologous and are 89 and 64 % 

identical (BLAST) to another paralogue, NCLIV_068830, (not identified by Sohn et al. 

(2011)) which is located on the ‘unknown’ chromosome of N. caninum.  
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Figure 3.4: Apparent expansion at the MIC17 locus. MIC17A, B and C are all paralogues of one another. 

The ‘microneme adhesive repeat’ (MAR) domain containing proteins (MCPs) are coccidian-

specific proteins thought to be involved in the ability of apicomplexan parasites to exhibit 

different tissue tropisms (Friedrich et al. 2010), by binding to sialic acid and other ligands on 

host cells. The fact that N. caninum possesses three more MCPs than T. gondii is very 

interesting as N. caninum is generally considered to exhibit a narrower host range than T. 

gondii, for example, N. caninum is not zoonotic, despite the fact that in vitro it is capable of 

infecting human cells. There may be other roles for MCPs that have not yet been identified, as 

suggested by Friedrich at al. (2010); due to the fact that not all MCPs identified would have 

the ability to bind host cells. Hence, the three N. caninum MCPs not shared by T. gondii would 

make interesting subjects for further investigation, as a better understanding of the differences 

in host cell recognition between the two genera could help to inform vaccine development for 

both neosporosis and toxoplasmosis. 
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3.3.2  Rhoptry Genes 

The rhoptries are the apical organelles that exhibit the greatest difference in gene/protein 

repertoire between N. caninum and T. gondii. Rhoptry proteins have been the subject of a large 

number of studies and reviews due to their importance in invasion and virulence. As such, 

many of the genes have been known by a range of different names and the different 

publications are sometimes contradictory. This analysis attempted to combine the naming 

strategies used by different researchers, but due to the changeable nature of the genome 

annotation it was at times difficult to keep up to date with current information for every 

rhoptry gene. The review by Boothroyd and Dubremetz (2008) listed T. gondii rhoptry 

proteins, but was published using ToxoDB version 4.2 gene models, as opposed to the version 

6.0 gene models in this analysis. The naming conventions used were suggested by Bradley et al. 

(2005), who also identified two distinct groups of rhoptry proteins localised to the rhoptry 

neck (RONs) and the rhoptry bulb (ROPs), respectively. Reid et al. (2012) contained an 

analysis of the rhoptry genes of N. caninum and T. gondii, and included updated annotations not 

yet available on ToxoDB, identified by gene-finding algorithms employed by A. Reid. The 

putative rhoptry genes presented here are those which were identified using the approaches 

outlined in the methods (Section 3.2) and any additional information on name allocations 

(from Reid et al. (2012)) has been inserted in the comments column of Table 3.2. 
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Table 3.2: Putative list of rhoptry genes (n = 58). Signal peptide predictions were downloaded from ToxoDB version 6.0 and had been made using SignalP 3.0. 

The comments column contains information regarding genes which did not have a straightforward syntenic-orthologous relationship with a known T. gondii 

rhoptry gene; ‘-‘ denotes no gene identified/no comment. 

Protein 
description 

I.D. ToxoDB annotation Signal 
peptide? 

Comments T. gondii ME49 
orthologue 

ROP1 NCLIV_053840 hypothetical protein Yes - TGME49_109590 

ROP2A - - - 
ROP2 not present in N. caninum 

TGME49_015780  

ROP2B - - - TGME49_075300  

ROP4  NCLIV_001970  hypothetical protein  Yes 
 Orthologue of  ROP7 (NCLIV_001950) and T. gondii ROP4 
(TGME49_095110) and ROP8 (TGME49_015770) TGME49_095110  

ROP5 NCLIV_060730 hypothetical protein Yes Paralogue of NCLIV_060740  TGME49_108080  

ROP5B NCLIV_060740 ROP 2, related Yes Paralogue of ROP5 (NCLIV_060730), incorrectly annotated as ROP2 - 

ROP6 NCLIV_027850 rhoptry protein 6, putative Yes NCLIV_027840 TGME49_058660  

ROP7 NCLIV_001950 Rhoptry protein ROP7 Yes NCLIV_001970, TGME49_015770=ROP8, Toxo ROP2A and 2B TGME49_095110  

ROP8 NCLIV_004220   Rhoptry antigen ROP8 (EC 2.7.11.26), related Yes 
Incorrect annotation, more similar to T. gondii ROP42, ROP43, ROP 
44 (all syntenic orthologues). No ROP8 exists in N. caninum  TGME49_015770  

ROP9 NCLIV_018420 p36 protein, putative Yes - TGME49_043730  

ROP10 NCLIV_058180 Rhoptry protein 10, related No - TGME49_115490  

ROP11 NCLIV_045580 hypothetical protein, conserved No - TGME49_027810  

ROP12 NCLIV_021100 hypothetical protein, conserved Yes - TGME49_003990  

ROP13 NCLIV_055850 hypothetical protein, conserved Yes - TGME49_112270  

ROP14 NCLIV_057960 hypothetical protein No - TGME49_115220  

ROP15 NCLIV_011690 ROP15 protein, related Yes - TGME49_011290  

ROP16 NCLIV_025120 Rhoptry kinase family protein ROP16, putative No - TGME49_062730  

ROP17 NCLIV_027930 Rhoptry kinase family protein ROP17, putative No - TGME49_058580  

ROP18 - - - Pseudogene in N. caninum - stop codons, see Chapter 5 TGME49_005250  

http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_095110
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ROP19 NCLIV_017440 hypothetical protein Yes 
Orthologue of  NCLIV_017410 (ROP38), NCLIV_ 017420 (Zgc), 
NCLIV_017430 (ROP29) TGME49_042240 

ROP20 NCLIV_028170 Rhoptry kinase family protein ROP20, putative No - TGME49_058230 

ROP21 NCLIV_024700 Rhoptry kinase family protein ROP21, putative Yes - TGME49_063220 

ROP22 NCLIV_002650 
Rhoptry kinase family protein ROP22 
(incomplete catalytic triad), putative No - TGME49_007700 

ROP23 NCLIV_016220 
Rhoptry kinase family protein ROP23 
(incomplete catalytic triad), putative Yes - TGME49_039600  

ROP24 NCLIV_068850 hypothetical protein Yes - TGME49_052360  

ROP25 NCLIV_022130 Rhoptry kinase family protein ROP25, putative No - TGME49_002780 

ROP26 NCLIV_011730  
Rhoptry kinase family protein ROP26 
(incomplete catalytic triad), putative No - TGME49_011260 

ROP27 NCLIV_056620 Rhoptry kinase family protein ROP27, putative Yes - TGME49_113330 

ROP28 NCLIV_028130 Rhoptry kinase family protein ROP28, putative No - TGME49_058370 

ROP29 NCLIV_017430 hypothetical protein Yes 
Orthologue of  NCLIV_017410 (ROP38), NCLIV_ 017420 (Zgc), 
NCLIV_017440 (ROP19) TGME49_042230 

ROP30 NCLIV_046000 Rhoptry kinase family protein ROP30, putative No - TGME49_027010 

ROP31 NCLIV_027710 Rhoptry kinase family protein ROP31, putative No - TGME49_058800  

ROP32 NCLIV_035860 Rhoptry kinase family protein ROP32, putative No - TGME49_070920  

ROP33 NCLIV_023260 Rhoptry kinase family protein ROP33, putative Yes - TGME49_001130 

ROP34 NCLIV_000650 Rhoptry kinase family protein ROP34, putative Yes - TGME49_040090 

ROP35 NCLIV_044410 Rhoptry kinase family protein ROP35, putative Yes - TGME49_104740 

ROP36 NCLIV_002580 
Rhoptry kinase family protein ROP36 
(incomplete catalytic triad), putative No - TGME49_007610  

ROP37 NCLIV_001460   
Rhoptry kinase family protein ROP37 
(incomplete catalytic triad), putative No - TGME49_094560 

ROP38 NCLIV_017410 hypothetical protein Yes 
Orthologue of  NCLIV_017430 (ROP29), NCLIV_ 017420 (Zgc), 
NCLIV_017440 (ROP19) TGME49_042110  

ROP40 NCLIV_012920 
Rhoptry kinase family protein ROP40 
(incomplete catalytic triad), putative No - TGME49_091960  

ROP41 NCLIV_048060  Rhoptry kinase family protein ROP41, putative No - TGME49_066100  
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ROP42 NCLIV_004230 
 
 
NCLIV_004220 

Rhoptry antigen ROP8, related 
Yes 
 
Yes 

ROP8 incorrectly annotated in N. caninum, there is no orthologue to 
T. gondii ROP8. NCLIV_004220 and NCLIV_004230 are homologous 
to T. gondii ROP42, 43 and 44 

TGME49_009980 
TGME49_010090 
TGME49_010110 

ROP43 

ROP44  

ROP45 NCLIV_023580 
Rhoptry kinase family protein ROP45 
(incomplete catalytic triad), putative Yes - 

TGME49_081670
TGME49_081790 

ROP46 NCLIV_030990 Rhoptry kinase family protein ROP46, putative No - TGME49_030470 

RON1 NCLIV_054120 sushi domain containing protein Yes - TGME49_110010  

RON2 NCLIV_064620 rhoptry neck protein 2, putative Yes - TGME49_100100  

RON2L1 NCLIV_001400 hypothetical protein, conserved Yes 
Identified from John Boothroyd comment 2009 (ToxoDB, comment 
ID 23680) TGME49_094400  

RON2L2 NCLIV_040110 hypothetical protein, conserved Yes 
Identified from John Boothroyd comment 2007 (ToxoDB, comment 
ID 19792) TGME49_065120  

RON3 NCLIV_048590 hypothetical protein, conserved Yes - TGME49_023920  

RON3L1 NCLIV_020340 Hypothetical protein No - 

TGME49_005370
TGME49_005360 

RON4 NCLIV_030050 hypothetical protein, conserved Yes - TGME49_029010  

RON4L1 NCLIV_007800 Tg65, related Yes Identified as rhoptry from Boothroyd & Dubremetz (2008) TGME49_053370  

RON5 NCLIV_055360 hypothetical protein, conserved Yes - TGME49_111470  

- NCLIV_065640 rhoptry kinase family protein Yes - TGME49_049470 

- NCLIV_057950 lipase maturation factor 2, related No Syntenic to 'rhoptry protein' in T. gondii, ROP14B in Reid et al. (2012) TGME49_115210 

- NCLIV_058560 rhoptry protein, putative No ROP48 (Reid et al. 2012) TGME49_115940 

- 
NCLIV_007770   

Rhoptry kinase family protein, truncated 
(incomplete catalytic triad), putative Yes - TGME49_053330 

- NCLIV_017420 Zgc:55863, related Yes 
Orthologue of  NCLIV_017430 (ROP29), NCLIV_ 017410 
(ROP38), NCLIV_017440 (ROP19),  ROP47 in Reid et al. (2012) TGME49_042120 

- - - - 
ROP19 in T. gondii- no apparent syntenic one to this ROP19 in N. 
caninum (2 different genes annotated as ROP19 in T. gondii) TGME49_042250 

- NCLIV_051340 toxofilin, putative Yes Toxofilin (Bradley et al. 2005) TGME49_014080  

Toxopain 1 NCLIV_069550 Cathepsin B-like protease (Precursor), related Yes 
Toxopain1, John Boothroyd comment 2007 (ToxoDB, comment ID 
19790) TGME49_049670  

- NCLIV_068890 hypothetical protein Yes ROP51 (Reid et al. 2012), no T. gondii orthologue - 

http://toxodb.org/toxo/showComment.do?projectId=ToxoDB&stableId=TGME49_049670&commentTargetId=gene#19790
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ROP2A and ROP2B, as present in T. gondii, were not identified in the N. caninum genome. 

ROP2 has been implicated in invasion and has been localised to the parsitophorous vacuole 

membrane (Sinai & Joiner 2001) but is also part of a wider family (the ‘ROP2 family’) of 

rhoptry kinases that includes the orthologues ROP4, ROP5 and ROP7. These latter rhoptry 

proteins do exist in N. caninum, in fact there is an additional ROP5 orthologue named ROP5B, 

so it may be that there is a certain amount of redundancy in this family that allows the two 

parasites (T. gondii and N. caninum) to function effectively despite differing ROP2 family 

repertoires. However, ROP5 has recently been identified as a major effector of virulence in T. 

gondii and while apparently present in the genome as one gene only (TGME49_108080) it is 

actually present in a range of copy numbers (four to ten) dependent on the T. gondii strain 

(Reese et al. 2011; Reese & Boothroyd 2011). The relationship between copy number and 

virulence is not yet clear as the intermediate-virulence type II strain ME49 has the highest copy 

number (ten) compared to the virulent RH strain (six) and the avirulent VEG strain (four).  

The N. caninum gene NCLIV_004220 appears to have been incorrectly annotated as ROP8. 

Figure 3.5 shows the NCLIV_004220 and NCLIV_004230 region: NCLIV_004220 is 

syntenically orthologous to T. gondii ROP42 (ME49_009980) and NCLIV_004230 BLASTs to 

NCLIV_004220 with 91 % identity and an E-value of 1 x 10-76 despite not being identified by 

ToxoDB as an orthologue of ROP42, ROP43 or ROP44. NCLIV_004230 has therefore been 

included in the set of rhoptry genes as an orthologue of N. caninum ROP42 (putatively 

NCLIV_004220), which could possibly represent N. caninum ROP43 or ROP44. It shares 37 

and 35 % identity with T. gondii ME49 ROP44 and ROP43 (E-values 2.8 x 10-13 and 1.5 x 10-

12) respectively.  

Reid et al. (2012) identified NCLIV_068890 as an N. caninum specific rhoptry gene and named 

it ROP51. The gene has not been assigned to a chromosome but the protein product was 

identified in the tachyzoite lysate analysed in Chapter 2 and BLASTs to a number of other N. 

caninum and T. gondii rhoptry proteins.  
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Figure 3.5: N. caninum ROP42 appears to have been incorrectly annotated as ROP8. Screen shot of ToxoDB 

gene page for NCLIV_004230. N. caninum genes are ringed in red, T. gondii ME49 genes are ringed in blue.  

 

N. caninum does not have a ROP18 gene annotated, there are stop codons present within the 

coding sequence so it has been hypothesized to be a pseudogene. This is examined in depth in 

Chapter 5.  
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3.3.3 Dense Granule Genes 

The genes identified by this analysis as putatively dense granule-associated are presented in 

Table 3.3. There were twenty two in total, incorporating orthologues of 15 of the 17 known 

T. gondii dense granule genes (GRAs 1-14 (excluding GRA13), NTPases I and II and TgPIs I 

and II), the exceptions being GRA11 and GRA12. However, there is some confusion over 

whether GRA12 in T. gondii is TGME49_088650 (GRA12 according to V. Carruthers’ 

ToxoDB comment (comment ID 102930)) or TGME49_075850 (GRA12 according to M. 

Cesbron-Delauw’s ToxoDB comment (comment I.D. 47270)). Both researchers refer to 

Michelin et al. (2009) but examination of said publication reveals that TGME49_088650 is 

GRA12, for which there is an N. caninum orthologue: NCLIV_041120. Therefore, 

NCLIV_041120 has been designated GRA12 in this analysis. A BLAST search of the 

TGME49_075850 protein sequence yields hits to 18 genes within ToxoDB, all of which are 

annotated simply as ‘hypothetical protein’ or ‘conserved hypothetical protein’. Regarding 

information presented on ToxoDB; this example goes to show that, while an immensely useful 

resource, it is sometimes necessary to delve deeper into the information provided and verify 

comments and annotation, if possible, with the literature available for the gene in question.  
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Table 3.3: Putative list of dense granule genes (n = 22). Signal peptide predictions were downloaded from ToxoDB version 6.0 and had been made using 

SignalP 3.0. The comments column contains information regarding genes which did not have a straightforward syntenic-orthologous relationship with a known 

T. gondii dense granule gene. ‘-‘ denotes no gene identified/no comment. 

Protein 
description 

I.D. ToxoDB annotation Signal 
peptide? 

Comments T. gondii ME49 
orthologue 

GRA1 NCLIV_036400 
dense granule protein 1/major antigenp24, 
putative Yes - TGME49_070250 

GRA2 NCLIV_045650 28 kDa antigen, putative Yes - TGME49_027620 

GRA3 NCLIV_045870 Putative dense granule protein 3 Yes - TGME49_027280 

GRA4 NCLIV_054830 hypothetical protein No - TGME49_110780 

GRA5 NCLIV_014150 hypothetical protein Yes 
Not designated as an orthologue of TGME49_086450 on 
ToxoDB but 36 % BLAST identity (E-value of 5.5 x 10-11) TGME49_086450 

GRA6 NCLIV_052880 granule antigen protein GRA6, putative Yes - TGME49_075440 

GRA7 NCLIV_021640 dense granule protein 7, putative Yes - TGME49_003310 

GRA8 NCLIV_008990 hypothetical protein Yes - TGME49_054720 

GRA9 NCLIV_066630 GRA9 protein, putative Yes - TGME49_051540 

GRA10  NCLIV_037450 dense granular protein GRA10, putative No - TGME49_068900 

GRA11 - - - No N. caninum orthologue for GRA11 TGME49_012410 

GRA12 NCLIV_041120 hypothetical protein, conserved Yes Confusion over GRA12, no N. caninum  orthologue exists for 
TGME49_075850, but NCLIV_041120 is an orthologue of 
TGME49_088650 

TGME49_088650 

GRA12? - - - TGME49_075850  

GRA13 - - - No GRA13 found for either organism 

 GRA14 NCLIV_016360 hypothetical protein, conserved Yes - TGME49_039740 

DG32 NCLIV_005560 dense-granule antigen DG32, putative Yes - TGME49_022170 

NTPase I NCLIV_068460 hypothetical protein No - TGME49_077240 

NTPase II NCLIV_068400 NTPase Yes - TGME49_077270 

NTPase NCLIV_067130 hypothetical protein Yes - TGME49_078880 

http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_027620
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_027280
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_110780
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_075440
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_003310
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_054720
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_051540
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_039740
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_022170
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_077270
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_078880
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Nc PI-1 NCLIV_003120 serine proteinase inhibitor, putative Yes - TGME49_008450 

Nc PI-2 NCLIV_003100 serine proteinase inhibitor TgPI-2, putative Yes - TGME49_008430 

14-3-3 NCLIV_024820 14-3-3 protein homolog No 14-3-3 proteins are tentative additions to this table, based upon 
association with dense granules observed by Assossou et al. 
(2004). 

TGME49_063090 

14-3-3 NCLIV_036630 14-3-3 protein, putative No TGME49_069960 

14-3-3 NCLIV_036930 14-3-3 protein, putative No TGME49_069590 

14-3-3 NCLIV_045450 14-3-3-like protein, related No No T. gondii ME49 orthologue 

 

http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_008450
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_008430
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_063090
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_069960
http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGME49_069590
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However, a complication that became apparent in this analysis, was that publications very 

rarely quoted gene identifiers, so when multiple genes were referred to by the same common 

name, it was often impossible to determine which one specifically was the object of an 

experiment. The example above (Michelin et al. 2009) was one of only very few publications 

found to do so, and despite the fact that the gene identifiers were of an older format (ToxoDB 

version 4.0) it was still possible to track the genes they corresponded to.  

GRA5 is present in the T. gondii ME49, GT1 and VEG genomes (TGME49_086450, 

TGGT1_037870 and TGVEG_033680 respectively) but there is no N. caninum orthologue 

listed for any of these genes on ToxoDB. The TGME49_086450 protein sequence (120 amino 

acids) has a BLAST identity score of 36 % with an E-value of 5.5 x 10-11 to NCLIV_014150, 

which is syntenic to T. gondii GRA5 and has been designated here as N. caninum GRA5.  

Assossou et al. (2004) observed an association of a secreted 14-3-3 protein with T. gondii dense 

granules, using electron microscopy and immunogold labelling. However, 14-3-3 proteins are 

expressed by all eukaryotic cells and are involved in various functions, including signal 

transduction, apoptosis and cell cycle control (reviewed in Fu, Subramanian & Masters (2000)) 

so their inclusion in this list of dense granule genes is only putative, and requires further 

experimental investigation. The 14-3-3 protein NCLIV_024820 was readily identified in the 

whole tachyzoite proteomic analysis in Chapter 1 in addition to the excretory/secretory and 

rhoptry/dense granule protein preparations in Chapter 4 (to follow) so it is likely that it is an 

abundant protein and the observation by Assossou et al. (2004) that a 14-3-3 protein seemed 

to be associated with the dense granules may be a result of the protein’s wide abundance. 

http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&project_id=ToxoDB&source_id=TGVEG_033680


60 
 

3.3.4 Bioinformatics resources  

ToxoDB was the primary resource exploited for this genome-mining study. Whilst extremely 

user friendly, and hosting a wealth of data, it is not without its problems; as may be expected 

for a database handling this amount of information. The ease with which members of the 

public can upload user comments can result in conflicting information as different researchers 

disagree on the annotation of some genes (as discussed above with regard to GRA12, Michelin 

et al. (2009), ToxoDB comment ID 102930 and comment I.D. 47270). Nevertheless, on 

balance it is a useful feature for sharing and accessing information and overall the database 

provides a ‘one-stop-shop’ for gene and protein data relating to T. gondii and N. caninum.  

Another resource available to the scientific community, though not utilised here, is ApiLoc 

(http://apiloc.biochem.unimelb.edu.au). This database is designed to host information on the 

published sub-cellular localisations of apicomplexan genes, but unfortunately it contains only 

18 entries in total for apically-located N. caninum proteins to date (correct as of August 2012, 

all of which had already been identified in this analysis using the methods described) and as 

such is not as useful as it might have been, had further entries been made. However, the 

version currently accessible online (Version 3) was only curated until May 2011 so this is likely 

to be the reason behind the limited amount of information available.  

3.3.5 Requirement for experimental validation 

The lists of proteins presented in Tables 3.1 to 3.3 represent a useful resource for the analysis 

of proteomic and transcriptomic data that will be presented in the remainder of this thesis. 

Very large datasets are typical of these platforms and pose difficulties in drawing any 

meaningful biological conclusions from the data. The ability to narrow down results to enable 

the examination of sub-sets of genes or proteins, renders the data more easily handled. 

However, it cannot be emphasized enough that a hypothetical identification as an apical gene 

by in silico methods is no substitute for experimental determination of sub-cellular localisation, 

using techniques such as immunofluorescence. Sohn et al. (2011) and a number of other 

researchers have gone some way to identifying protein sub-cellular localisations in N. caninum, 

but it is likely that the identification of further apical proteins will be ongoing over many more 

years of research.  
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CHAPTER 4: PROTEOMIC ANALYSIS OF THE APICAL 

ORGANELLES 

4.1  INTRODUCTION 

Following the analysis of whole tachyzoite lysate in Chapter 2, the aim was to achieve a 

simplified N. caninum proteome which was enriched for proteins involved in host-cell invasion. 

Hence, the objective was to prepare material from the apical organelles of the parasite and 

analyse this proteomically, using the 1-DE LC MS/MS platform discussed in Chapters 1 and 2. 

There are benefits to analysing simplified proteomes; proteins vary in abundance over a wide 

dynamic range and heavily abundant proteins can mask the detection of low-abundance 

proteins. Furthermore, large data sets can be very time consuming to analyse, so the optimal 

proteomic experiment would analyse samples which contained a high proportion of 

biologically-interesting proteins with house-keeping/structural proteins (that are not the 

target of this experiment) removed. 

There are various approaches to studying material from the apical organelles. The most 

obvious, and perhaps the gold standard, is to isolate these from the cell and obtain a purified 

sample. An alternative is possible due to the fact that these organelles are secretory: the 

parasites can be incubated in media and secreted/excreted material harvested from the 

supernatant when the parasites are removed by centrifugation. 

4.1.1 Excretory/secretory antigen (ESA) analysis 

Excretory/secretory antigenic material (ESA) has been much studied in T. gondii, where 

ethanol (EtOH) and a calcium ionophore, A23187, have been shown to stimulate the calcium 

ion (Ca2+) -triggered release of material from the micronemes (Carruthers, Moreno & Sibley 

1999; Carruthers & Sibley 1999; Zhou et al. 2005).  

A transient rise of free Ca2+ in the parasite cytoplasm has been demonstrated to trigger 

secretion of the micronemal contents through the apical tip (Carruthers & Sibley 1999). A 

signal transduction cascade leads to elevated Ca2+ in the cytoplasm which directly activates 

secretory vesicles; this can be observed in a wide variety of eukaryotic cells (Burgoyne & 

Morgan 1993). Cellular stores of calcium can be mobilized from the endoplasmic reticulum by 

the addition of a calcium ionophore into the culture medium in vitro; simulating the external 

stimulus that would induce this phenomenon in vivo (Carruthers & Sibley 1999). 

Carruthers and Sibley (1997) first observed the sequential release of micronemal, rhoptry and 

dense granule contents during host cell invasion by T. gondii, using the markers MIC2 

(microneme), ROP1 (rhoptry), GRA1 and NTPase (dense granule). They then went on to 

determine that free Ca2+ in the parasite cytoplasm acted as the trigger for micronemal 

secretion and that intracellular stores of Ca2+ were sufficient to produce this response 

(Carruthers & Sibley 1999). Ethanol stimulates release of Ca2+ and hence, micronemal 

secretion and is more effective at inducing micronemal secretion than calcium ionophore 
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A23187: increased levels of MIC2 and MIC4 were measured in the EtOH-stimulated samples 

when compared to the A23187-stimulated samples, while GRA1 was reduced (Carruthers, 

Moreno & Sibley 1999).  However, EtOH has been observed to be less effective than A23187 

at stimulating secretion in experiments with the less closely related apicomplexan 

Cryptosporidium parvum (Nadine Randle, personal communication). A study by Chen et al. 

(2004) also utilised A23187 in the presence of extracellular calcium to restore apical discharge 

to C. parvum parasites that had had their calcium stores chelated. Parasites can also be 

stimulated to secrete from their apical organelles simply by incubation in culture medium at 

37 oC (Ahn et al. 2001; Song & Nam 2003) but this method is less effective than when a 

stimulus is used (Carruthers, Moreno & Sibley 1999). Large scale techniques for the 

purification of T. gondii ESA were developed by Opitz et al. (2002) and Zhou et al. (2005) 

using incubation of tachyzoites in culture media (without bovine serum albumin) with EtOH at 

a concentration of 1 %, for 1 hour or 20 minutes respectively. 

Zhou et al. (2005) used a combination of N-terminal sequencing; two-dimensional gel 

electrophoresis (2-DE) and matrix-assisted laser desorption-ionisation (MALDI) mass 

spectrometry; and two-dimensional liquid chromatography followed by tandem mass 

spectrometry to analyse T. gondii ESA material. These approaches yielded a total of seventy six 

protein identifications, eleven of which were from the micronemes, seven the dense granules 

and one from the rhoptries. Novel identifications (‘hypothetical’ proteins) accounted for seven 

of the identifications, the remainder were proteins known to localise to other cellular locations 

such as the cytosol and endoplasmic reticulum (Zhou et al. 2005).  

 

 

4.1.2  Rhoptry/dense granule - enriched fraction analysis  

Bradley et al. (2005) undertook a comprehensive analysis of the T. gondii rhoptry proteome by 

optimising a protocol developed by Dubremetz and co-workers for fractionation using a 

Percoll gradient (Leriche & Dubremetz 1991). This enabled preparation of a fraction highly 

enriched for both rhoptries and dense granules (R/DG), which was then further purified by 

sucrose floatation, to leave a rhoptry fraction (R) with dense granules and contaminating 

mitochondria removed.  

The analysis of the R fraction identified thirty eight novel proteins, eleven of which they then 

went on to confirm as rhoptry, by immunolocalisation. The previously known rhoptry 

proteins ROP2, ROP4, ROP8 and ROP9 were identified, while Toxofilin was found to 

localise to the rhoptries. The rhoptry neck protein family were identified for the first time, 

and the name ‘RON’ proposed. The dense granule proteins GRA3, GRA7, NTPase I and 

NTPase II were also identified within the R fraction, as not all dense granule contamination 

was successfully removed during the sucrose floatation. This technique was otherwise deemed 

to have been highly successful at enriching for the rhoptries in T. gondii (Bradley et al. 2005) 

and vastly improved on the knowledge at the time of rhoptry contents.  
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4.1.3 Aims and objectives 

The aims of this chapter were two-fold: to identify N. caninum proteins from those predicted 

to be from the apical complex (Chapter 3) and to explore methods for protein preparations 

enriched in proteins from the micronemes, rhoptries and dense granules, which had been 

developed for T. gondii. This would be achieved by incubating tachyzoites to harvest their 

excretions and secretions, and by collaborating with Peter Bradley to analyse rhoptry and 

dense granule preparations.  
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4.2  MATERIALS AND METHODS 

4.2.1  Excretory/secretory antigen analysis 

As there was no published ESA preparation method for N. caninum, the approaches discussed in 

section 4.1 were taken into consideration and this final protocol, adapted from Zhou et al. 

(2005) was decided upon after a number of preliminary experiments, discussed in more detail 

in section 4.4. 

4.2.1.1   Preparation of ESA material from parasite cultures 

Tachyzoites were harvested as in Chapter 2.2.1, except that washes were performed in DO 

medium (Dulbecco's modified Eagle's medium, 2 Mm glutamine, 10 Mm HEPES) instead of 

PBS. Pellets of approximately 1 x 108 tachyzoites were immediately resuspended in 1 ml DO 

medium and supplemented with EtOH to a final concentration of 1 % and complete mini 

protease inhibitor cocktail (Roche) to a final 1x working concentration. Incubation of 

tachyzoites was performed at 37 oC with gentle agitation for a period of 20 minutes. After 

incubation, tachyzoites were pelleted at 1500 x g for 5 minutes at 4 oC and the supernatant 

collected, kept on ice for 5 minutes and then stored at -20 oC. A control sample of DO media 

was incubated without parasites. A second control consisted of a tachyzoite lysate, as described 

in Chapter 2.2.2.1 (but loading only 20 µg).  

4.2.1.2  Tricarboxylic acid (TCA) precipitation of ESA  

Prior to one dimensional gel electrophoresis (1-DE), samples were defrosted then subjected to 

trichloroacetic acid (TCA) precipitation as follows: 1 volume of 100 % (w/v) TCA was added 

to 4 volumes of sample and incubated at 4 oC for 20 minutes. Precipitates were pelleted by 

centrifuging for 5 minutes at 13 000 x g and then washed twice in 200 µl ice-cold acetone, 

before being dried in a heat block at 95 oC for 5 minutes. The precipitates were then 

solubilised in 20 µl of SDS-sample buffer (50 mM Tris HCl (pH 6.8), 2 % (w/v) SDS, 0.2 % 

(w/v) bromophenol blue, 10 % (w/v) glycerol, 100 mM dithiothrietol (DTT)) by heating to 

95 oC for 5 minutes followed by centrifugation at 13 000 x g for 5 minutes.  

4.2.1.3  One dimensional gel electrophoresis (1-DE) of ESA  

Supernatants (20 µl) were run on 10 cm 12 % acrylamide gels (Chapter 2.2.2.3) with limiting 

factors of 200 V, 70 mA and 10 W for approximately 50 minutes. Gels were fixed at room 

temperature in fixing solution (40 % (v/v) ethanol, 10 % (v/v) acetic acid) overnight, then 

rinsed twice in ddH2O before staining with Colloidal Coomassie (20 % (v/v) methanol, 0.08 

% (w/v) Coomassie Brilliant Blue G250, 0.8 % (v/v) phosphoric acid, 8 % (w/v) ammonium 

sulphate) for 24 hours. After further rinsing in ddH2O, bands were excised from the gel and 

stored individually in 1 % (v/v) acetic acid at 4 oC.  

4.2.2  Rhoptry (R) and rhoptry/dense granule (R/DG) fractions  

In collaboration with Dr. Peter Bradley, an N. caninum rhoptry fraction analogous to that 

previously produced for T. gondii (Bradley et al. 2005) was prepared for analysis by 1-DE LC 
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MS/MS. A summary of the Percoll centrifugation and sucrose floatation steps carried out by 

the Bradley group can be seen in Figure 4.1 (reproduced from Bradley et al. 2005).  

 

Figure 4.1: Schematic of the isolation of rhoptries from T. gondii. A rhoptry/dense granule (R/DG) 

preparation was isolated by Percoll gradient. The R/DG fraction was then subjected to a sucrose 

floatation gradient to isolate the purified rhoptry (R) fraction that corresponds to the top band in the 

gradient (reproduced from Bradley et al. 2005). 

Two samples were produced, R/DG refers to the fraction collected after the Percoll gradient 

step and the R fraction was that resulting from sucrose floatation.  

4.2.2.1  Preparation of rhoptry and rhoptry/dense granule fractions 

Preparations enriched for Neospora caninum rhoptries and dense granule organelles were 

prepared according to the methods detailed in Figure 4.1 and Bradley et al (2005). Briefly, 

freshly harvested tachyzoites of the N. caninum NC1 strain were suspended in R buffer (250 

mM sucrose, 10 mM MOPS, pH 7.2, 2 mM dithiothreitol, 1 mM EDTA, 1 x complete mini 

protease inhibitor cocktail (Roche) and passed through a French press in order to disrupt the 

cells. Intact parasites and large debris were removed by centrifugation at 1 300 x g for 20 

minutes, before the supernatant was subjected to further centrifugation at 25 000 x g for 25 

minutes. The resulting pellet was resuspended in R buffer containing 30 % Percoll, for a 25 

minute centrifugation at 61 500 x g after which the R/DG fraction (containing a mixed 

fraction of rhoptries, dense granules, mitochondria and apicoplasts) was collected from the 

brown band at the bottom of the gradient and repelleted to remove the Percoll at 100 000 x g 

for 90 minutes. To obtain a cleaner fraction of rhoptries, this material was resuspended in 300 

μl R buffer and mixed with 2 ml 60 % (w/v) sucrose in S buffer (10 mM MOPS, 2 mM 

dithiothreitol, 1 mM EDTA, 1 x complete mini protease inhibitor cocktail (Roche)) before 

being subjected to centrifugation for 18 hours at 150 000 x g over a sucrose gradient (48, 45, 

42, 39 and 36 %). The peak rhoptry fractions were pooled in R buffer and pelleted for 90 
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minutes at 100 000 x g. Samples were stored in R buffer at -80 oC and sent to Liverpool for 

subsequent 1-DE LC MS/MS and data analysis. 

4.2.2.2  TCA precipitation of R and R/DG fractions 

A 40 µl aliquot from each of the R and R/DG samples were precipitated with TCA as follows: 

10 µl TCA was added to the sample and the resulting solution stored overnight at -20 oC. 

These samples were then centrifuged at 13 000 x g for 25 minutes, the pellets washed in ice-

cold acetone, twice, for 25 minutes at 13 000 x g and then dried in a heat block at 95 oC for 5 

minutes. The pellets were resuspended in 40 µl 1 x sample buffer (Chapter 2.2.2.1), heated to 

95 oC for 5 minutes, vortexed briefly, heated again to 95 oC for 5 minutes and pelleted at 13 

000 x g for 5 minutes.  

4.2.2.3  1-DE of R and R/DG fractions 

The R and R/DG supernatents (40 µl) were loaded onto a 12 % gel (Chapter 2.2.2.3) and run 

as described in 4.2.1.3. Contiguous bands were excised and stored at 4 oC in 1 % (v/v) acetic 

acid prior to trypsin digestion. 

4.2.3 Trypsin digestion of samples for mass spectrometry 

ESA, R and R/DG samples were digested with sequencing grade trypsin (Roche) as described 

in Chapter 2.2.2.4. Digests were stored at -20 oC prior to LC MS/MS. 

4.2.4 Liquid chromatography and tandem mass spectrometry analysis (LC 

MS/MS) 

LC MS/MS was performed on an LTQ ion trap mass spectrometer (Thermo Fisher Scientific) 

as in Chapter 2.2.3, except that a 1 hour gradient was employed as follows: a linear gradient 

of 0-50 % (v/v) acetonitrile/0.1 % (v/v) formic acid over 30 minutes followed by 100 % 

(v/v) acetonitrile/0.1 (v/v) % formic acid for 5 minutes and a further 20 minutes of 0.1 % 

(v/v) formic acid.  

4.2.5  Bioinformatic Analyses 

4.2.5.1  Protein identification using Mascot 

Raw mass spectra were processed as described in Chapter 2.2.3. Resulting .mgf files were 

submitted to Mascot (Matrix Science) and searched against a locally-mounted database 

comprising the N. caninum gene predictions (various releases) hosted on ToxoDB (Gajria et al. 

2007). Search parameters were as follows: fixed carbamidomethyl modification of cysteine, 

variable oxidation of methionine, one missed trypsin cleavage, peptide tolerance ±1.5 Da, 

fragment ion tolerance ±0.8 Da and peptide charge state of +1, +2 and +3, with a cut-off 

Mascot score of  ≥ 50.  

4.2.5.2  Assignment of proteins to MIPS Functional Catalogue categories 

Protein identifications were manually assigned to MIPS Functional Catalogue categories (as 

described in Table 2.1) (Ruepp et al. 2004) to determine the range of protein types identified 
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and to enable comparison between the different experiments. For each protein, the ‘biological 

process’ Gene Ontology (GO) term (Ashburner et al. 2000) was downloaded from ToxoDB 

(Gajria et al. 2008), and used as a search term in the MIPS Functional Catalogue Database, 

where the top hitting suggestion for a catalogue assignment was taken. Proteins for which 

there were multiple biological process GO terms were searched using each one, and a 

consensus MIPS category used, as in most cases they yielded the same result. If there was no 

‘biological process’ GO term assigned, the ‘molecular function’, followed by ‘cellular 

component’ GO term was used instead. If there was no GO term, but the gene description on 

ToxoDB contained information alluding to the function of the protein, then literature 

searching was employed to qualitatively determine the most appropriate MIPS category. Any 

protein that was known to be invasion-related was assigned to category 32: cell rescue, 

defence and virulence. If there was no GO term or other indicator of function on ToxoDB, or 

in the literature, a Basic Local Alignment Search Tool (BLAST) search (NCBI) was performed 

to identify possible orthologues for which a function was known. Any proteins for which this 

yielded no useful result, were assigned ‘unclassified’.  

4.2.5.3  Signal peptide predictions 

Protein sequences were submitted to SignalP version 3.0 (Bendtsen et al. 2004) to obtain 

predictions as to whether they possess a processed/cleaved signal peptide, which could 

indicate that the protein is secretory. SignalP uses a hidden Markov model (HMM) to calculate 

a probability score, for which a cut off of >0.9 was employed.  
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4.3 RESULTS 

4.3.1 Analysis of excretory/secretory antigens from N. caninum 

A total of 78 non-redundant protein identifications were made from 24 bands excised from 

two 1-DE gels (Table 4.1). An ESA lysate gel is shown in Figure 4.2 with a tachyzoite lysate 

for comparison. The ESA preparation was considerably less complex than the tachyzoite lysate 

and there was sufficient protein to enable band visualisation and subsequent proteomic 

detection. A control sample of DO media (culture media without bovine serum albumin, 

which might mask proteomic detection of parasite proteins), incubated in 1 % EtOH but 

without the addition of parasites, is shown for comparison.  

 

 

Figure 4.2: 1-DE gel of excretory/secretory preparation. Samples were analysed on a 12 % (w/v) acrylamide 

gel under denaturing conditions, visualised by Colloidal Coomassie staining. Lanes are as follows, lane 1: protein 

standards, lane 2: ESA supernatent (after 20 minute incubation of tachyzoites in 1% EtOH), lane 3: control (DO 

media incubated without parasites), lane 4: 20µg whole tachyzoite lysate.  

While proteins were identified from a broad spectrum of functional classifications, such as 

‘protein synthesis’ (n = 13), ‘protein with binding function’ (n = 5) and ‘metabolism’ (n = 

6); 24 % (n = 19) were involved in ‘cell rescue, defence and virulence’ and hence likely to be 

involved in the process of the parasite invading and maintaining itself within the host cell 

(Figure 4.3). A further 13 % (n = 10) were unable to be designated a function as they were 

insufficiently annotated.  A table including all the identifications made in this analysis is 

provided in Appendix IV. Of the top fifteen protein hits, five were predicted micronemal 

(hypothetical protein (NCLIV_021050), which is the N. caninum orthologue of T. gondii SUB1, 

MIC1, M2AP, MIC4 and AMA1) and four were predicted dense granule proteins (14-3-3 

protein homologue, NTPase, hypothetical protein (NCLIV_068460), which is an NTPase 

orthologue; and GRA1). There were also four surface antigens (SRS proteins (Jung, Lee & 

Grigg 2004)), a hypothetical protein (NCLIV_050370) that is annotated as being involved 

with the biological process of glycolysis; and malate dehydrogenase, which is also part of the 

glycolysis metabolic pathway (LAMP database). Other proteins identified included MIC3, 
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MIC6, MIC10, GRA2, GRA3, GRA6, GRA7, GRA9 and ROP9. The hypothetical proteins 

NCLIV_043760, NCLIV_059430, NCLIV_031510, NCLIV_020140, NCLIV_000430, 

NCLIV_032270 and NCLIV_046030 were unable to be assigned to MIPs functional categories 

due to their lack of homology to proteins of known function, hence they are potentially novel 

apicomplexan specific proteins. While this analysis identified just one microneme protein 

(MIC3) not previously identified by the whole tachyzoite analysis (Chapter 2), it did 

proportionally increase the number of microneme and dense granule proteins within the 

preparation by almost ten-fold (22 % and 2.6 %, respectively). 

 

Figure 4.3: Functional classification of proteins identified by 1-DE analysis of the excretory/secretory 

preparation. Proteins (n = 78) were assigned to functional categories according to the MIPS Functional 

Catalogue.  

 

Protein identifications were submitted to SignalP 3.0 and 27% (n = 21) were predicted to be 

secretory. This represents enrichment with respect to both the whole predicted proteome of 

N. caninum  (Reid et al. 2012) hosted on ToxoDB (170 % more secretory proteins) and the 

whole tachyzoite lysate proteome (80 % more secretory proteins) (Figure 4.4). 
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Figure 4.4: Enrichment for proteins with predicted signal peptides by different proteomic samples. Green 

sections denote proteins predicted by SignalP 3.0 to contain a signal peptide (HMM probability score >0.9).  

     ESA preparation: 27%      Whole tachyzoite lysate: 15%    Whole predicted genome: 10% 
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4.3.2 Rhoptry and rhoptry/dense granule-enriched fraction analyses 

The rhoptry (R) and rhoptry/dense granule (R/DG) fractions were visualised on a 1-DE gel 

then analysed by LC MS/MS. The R fraction yielded 655 protein identifications with a Mascot 

score ≥ 50; 138 (21 %) of which were non-redundant (Appendix V Table V.1). The two 

fractions appeared to contain almost identical bands (Figure 4.5); when the protein 

identifications were compared, 83 proteins, including both rhoptry and dense granule 

proteins, were shared between the two preparations which equates to 60 % of the R fraction 

and 75 % of the R/DG fraction (Figure 4.6). Overall 111 non-redundant protein 

identifications were made for the R/DG fraction, of which 28 (25 %) were novel 

identifications when compared to the R fraction (Appendix V Table V.2).  

 

 

Figure 4.5: 1-DE gel of rhoptry and rhoptry/dense granule–enriched fractions. Samples were 

analysed on a 12 % (w/v) acrylamide gel under denaturing conditions, visualised by Colloidal Coomassie 

staining. Lanes are as follows, lane 1: protein standards, lane 2: 40 µl rhoptry (R) fraction, lane 3, 40 µl 

rhoptry/dense granule (R/DG) fraction, (protein concentration unknown: insufficient sample for protein assay) 

lane 4: 20 µg whole tachyzoite lysate.  
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Figure 4.6: Venn diagram illustrating redundancy between rhoptry and rhoptry/dense granule fractions. Protein 

identifications were made using Mascot with a cut off score of 50. Total non redundant identifications: n = 166. 

 
In Table V.1 (Appendix V) and Figure 4.7, six proteins have been assigned to a new category: 

‘possibly defence’ (‘?’ in Table V.1). This represents proteins identified in this experiment that 

were considered to be candidate novel rhoptry proteins. NCLIV_031550 is annotated as 

‘hypothetical’ on ToxoDB and was identified in the R fraction. It has no homologues predicted 

within the N. caninum or T. gondii genomes and when searched using BLAST (see Chapter 

3.1.4) its top hits were the rhoptry proteins ROP37, ROP28 and ROP25 (T. gondii and N. 

caninum). NCLIV_069110 is predicted to be a homologue of ROP1 and has a signal peptide 

predicted by SignalP. The protein NCLIV_067490 is annotated as ‘protein phosphatase 2c’. 

Another protein phophatase 2c is known to be of rhoptry origin (Gilbert et al. 2007), so this 

protein was selected for further attention. However, when the predicted amino acid sequence 

was subjected to BLAST, it was apparent that this is a common type of protein in Apicomplexa 

and other eukaryotes such as mammals, so there was no solid foundation for hypothesizing that 

this was a novel rhoptry protein. NCLIV_004270 is a ‘putative protein kinase’ which BLASTs 

to other protein kinases and hypothetical proteins, as well as to N. caninum ROP27 (27 % 

identity, E-value 0.0048). Predicted by SignalP to have a signal peptide, NCLIV_061160 is 

another potential ROP. It BLASTs to other apicomplexan acid and serine threonine protein 

phosphatases, but also to a glideosome protein in P. falciparum (XP_001352051, BLAST 

identity 44 %, E-value 4 x 10-108) and a secreted acid phosphatase in C. parvum (XP_628593, 

BLAST identity 27 %, E-value 1 x 10-23). Finally, the ‘hypothetical protein’ NCLIV_022270 

(predicted to have a signal peptide by SignalP) is a homologue of other ‘hypotheticals’ in T. 

gondii and BLASTs to T. gondii ROP43 (32 % identity, E-value 1.3 x 10-22) and ROP18 (30 % 

identity, E-value 2.8 x 10-22) as well as to various N. caninum and T. gondii hypothetical 

proteins. 
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Figure 4.7: Functional classification of proteins identified by 1-DE analysis of the rhoptry and rhoptry/dense 

granule-enriched fraction. Proteins (n = 166) were assigned to functional categories according to the MIPS 

Functional Catalogue.  

Overall, 32 % (n = 53) of the identifications within these two analyses combined (n = 166) 

were from the ‘cell rescue, defence and virulence’ category (Figure 4.7). Figure 4.8 shows a 

comparison between the whole tachyzoite analysis in Chapter 2, the ESA analysis and the 

combined R and R/DG fractions; this figure demonstrates the sequential increase in the 

proportion of proteins involved in defence and virulence by these approaches respectively. A 

total of 31 (53 %) of the 58 proteins putatively assigned to the rhoptries (Chapter 3) were 

identified in this analysis. The fractionation of rhoptries and dense granules did not appear to 

have been totally successful as six dense granule proteins were identified in the R fraction. 

However, as can be seen in Table 4.1, seven ROP proteins not previously identified by the 

tachyzoite and ESA analyses were identified, these were as follows: RON4, ROP43/44, 

ROP37, ROP23, ROP19, ROP12 and ROP5B in addition to the microneme protein 

MIC17B. This is in contrast to the ESA analysis, which only uniquely identified MIC3 when 

compared to the rhoptry/dense granule and tachyzoite analyses. 
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Figure 4.8: Enrichment of cell rescue, defence and virulence proteins. Arrows on pie charts show larger 

proportion of proteins in the ‘cell rescue, defence and virulence’ category of functional classification in the apical 

organelle proteome analyses (ESA, 24 %; R + R/DG, 32 %) when compared to the tachyzoite analysis (5 %). 

Proteins were assigned to functional categories according to the MIPS Functional Catalogue. 

 

Overall, Table 4.1 shows that in the tachyzoite stage, 31 % of predicted microneme proteins, 

68 % of predicted dense granule proteins and 60 % of predicted rhoptry proteins (Chapter 3) 

have been identified by the combination of whole tachyzoite and apical protein preparations 

being analysed by 1-DE and LC MS/MS. Of the remaining 48 % that have so far eluded 

detection, not all will necessarily be translated in the tachyzoite stage. Furthermore, a number 

of the proteins identified in these analyses which are currently annotated as hypothetical are 

potentially novel apical proteins, such as the six possible rhoptry proteins described above and 

NCLIV_007450, a putative rhoptry kinase (Talevich, Mirza & Kannan 2011) that was not 

identified in the analysis in Chapter 3.  
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Table 4.1: Apical proteins identified in one or more of the following: whole tachyzoite 

analysis, excretory/secretory antigen analysis and rhoptry and dense granule analyses. ‘’ 

indicates a protein for which peptides were identified with a Mascot score ≥ 50, ‘’ a protein 

for which peptides were not identified. 

 
Protein Description 

 
I.D. 

Identified in 

Tachyzoite ESA R & R/DG 

Microneme proteins  

MIC1 NCLIV_043270    

MIC2 NCLIV_022970    

MIC2 paralogue NCLIV_033690    

M2AP NCLIV_051970    

MIC3 NCLIV_010600    

MIC4 NCLIV_002940    

MIC17B NCLIV_038110    

MIC6 NCLIV_061760    

MIC8 NCLIV_062770    

MIC10 NCLIV_066250    

MIC11 NCLIV_020720    

AMA1 NCLIV_028680    

SUB1 NCLIV_021050    

Rhoptry Proteins  

ROP1 NCLIV_053840    

ROP4  NCLIV_001970    

ROP5 NCLIV_060730    

ROP5B NCLIV_060740    

ROP6 NCLIV_027850    

ROP9 NCLIV_018420    

ROP10 NCLIV_058180    

ROP11 NCLIV_045580    

ROP12 NCLIV_021100    

ROP13 NCLIV_055850    

ROP15 NCLIV_011690    

ROP17 NCLIV_027930    

ROP19 NCLIV_017440    

ROP20 NCLIV_028170    

ROP23 NCLIV_016220    

ROP24 NCLIV_068850    

ROP26 NCLIV_011730     

ROP32 NCLIV_035860    

ROP35 NCLIV_044410    

ROP37 NCLIV_001460      

ROP38 NCLIV_017410    
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ROP40 NCLIV_012920    

ROP43/44  NCLIV_004220    

RON1 NCLIV_054120    

RON2 NCLIV_064620    

RON3 NCLIV_048590    

RON4 NCLIV_030050    

RON4L1 NCLIV_007800    

RON5 NCLIV_055360    

RON8 NCLIV_070010    

lipase maturation factor 2, related NCLIV_057950    

Rhoptry kinase family protein NCLIV_007770      

Zgc:55863, related NCLIV_017420    

toxofilin, putative NCLIV_051340    

Toxopain 1 NCLIV_069550    

hypothetical protein NCLIV_068890    

Dense Granule Proteins 

GRA1 NCLIV_036400    

GRA2 NCLIV_045650    

GRA3 NCLIV_045870    

GRA4 NCLIV_054830    

GRA5 NCLIV_014150    

GRA6 NCLIV_052880    

GRA7 NCLIV_021640    

GRA8 NCLIV_008990    

GRA9 NCLIV_066630    

GRA12 NCLIV_041120    

DG32 NCLIV_005560    

NTPase I NCLIV_068460    

NTPase II NCLIV_068400    

Nc PI-1 NCLIV_003120    

14-3-3 protein homolog NCLIV_024820    
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4.4 DISCUSSION 

4.4.1 Optimization of an ESA protocol for N. caninum 

During the preliminary experiments with N. caninum both calcium ionophore- and EtOH-

stimulated secretion were adopted and various steps adjusted until the optimized protocol was 

decided upon. As with T. gondii, EtOH was observed to stimulate secretion most effectively 

and resulted in the highest enrichment of micronemal proteins in the analysis. Incidentally, 

tachyzoites incubated at 37 oC in their normal culture medium with no additives were also able 

to secrete micronemal proteins although more were seen in the EtOH stimulated samples.   

Limitations to the practicality of culturing large numbers of parasites to incubate for ESA 

preparations freshly after egress meant that the amount of material harvested was low and 

required concentration. Previous studies on T. gondii utilised 4 x 109 tachyzoites per 

preparation (Zhou et al. 2005) but here the method was successfully scaled down to use just 1 

x 108 tachyzoites per preparation which is a more achievable number. 

One step in the protocol that required care was centrifugation of tachyzoites to pellet them 

when obtaining the supernatant containing the ESA. Rapid centrifugation lysed tachyzoites and 

resulted in a preparation that resembled a whole tachyzoite lysate, with structural proteins 

identified in subsequent LC MS/MS. Eventually, the ESA protocol from Zhou et al. (2005), 

with a few small adjustments, yielded a reproducible, simplified proteome compared to the 

whole tachyzoite lysate (Figure 4.2). Incubation in DO media (0 % EtOH) also stimulated 

micronemal secretion, but this has previously been shown to be less effective than using EtOH 

to a concentration of 1 % (v/v) (Carruthers, Moreno & Sibley 1999).  

4.4.2 Enrichment for apical proteins 

The proteins identified in these two preparations showed enrichment for proteins from the 

apical organelles when compared to a lysate of tachyzoites. However, there were a number of 

other proteins (for example actin, tubulin, mitochondrial proteins and surface antigens) 

present which would be considered structural or cytosolic and therefore were unlikely to have 

originated from an apical organelle. Also, while the proportion of invasion-related genes was 

increased, relative to the rest of the sample, the total number of identifications was 

considerably less so this did not represent a major increase in apical protein identifications 

overall. The rhoptry and dense granule fraction analysis was more successful in this respect 

than the ESA analysis, identifying seven rhoptry and one microneme proteins not previously 

identified by the tachyzoite analysis, compared to just one additional microneme protein 

(MIC3) identified by the ESA analysis. 

Figure 4.4 shows the increased number of protein identifications for which SignalP predicted a 

signal peptide in the ESA analysis. This can be an indication that a protein is secretory, but the 

ESA lysate also contained proteins for which a signal peptide was not predicted. This could be 

because they are truely non-secretory, or alternatively that they are secreted by non-classical 

pathways and hence unable to be identified by the SignalP algorithm (Bendtsen et al. 2004). 
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Due to the identification of cytosolic and structural proteins in the apical preparations, these 

techniques cannot be considered to have yielded pure preparations of microneme, rhoptry and 

dense granule proteins. The benefit of being able to produce a totally pure fraction would be 

that any novel protein identified would be known to be apical and therefore warrant further 

study. However, a method to produce a totally pure preparation has not yet been developed; 

and in vivo, apical proteins are likely to be functioning amidst a mixture of proteins originating 

from other cellular locations. Furthermore, if confirmation of apical location for a protein of 

interest is required there are additional, downstream methods available, such as antibody 

labelling and immunofluorescence that can aid in determining cellular localisation, but are 

costly and time consuming hence better suited to smaller subsets of proteins. 

4.4.3 Apical proteins identified 

The proteins AMA1, RON2, RON4, RON5 and RON8 were identified in this analysis. These 

proteins form the moving junction complex in T. gondii host cell invasion (Besteiro et al. 

2009).  Besteiro, Dubremetz & Lebrun (2011) proposed a model where AMA1 in the parasite 

membrane binds to a complex of RON2 and the other associated RONs inserted into the host 

cell membrane. AMA1 likely has a further role in host cell invasion as it has been identified all 

over the parasite surface, not just localised to the moving junction (Howell et al. 2005). 

GRA proteins, most of which (10 of 13 predicted in the N. caninum genome, Chapter 3) have 

been identified by one or more of the proteomic analyses, have been shown in T. gondii to 

interact with host cell proteins such including enzymes and structural proteins (Ahn et al. 

2006). GRA 3, GRA5 and GRA6 have been hypothesized as implicated in preventing host cell 

apoptosis by interacting with a calcium modulating ligand that is present on the host 

endoplasmic reticulum (ER), and forms part of the attachment of the parasitophorous vacuole 

(PV) to the host ER (Ahn et al. 2006). GRA4 has also been linked to anti-host cell apoptosis 

mechanisms (Ahn et al. 2006). 

The detection of both ROP5 and ROP5B corroborates their identification in the genome in 

Chapter 3. ROP5B is a tandem copy of ROP5 in N. caninum, this gene exists in different copy 

numbers in T. gondii strains (Reese et al. 2011; Reese and Boothroyd 2011). Conversely, 

MIC2B, a novel MIC2 paralogue in N. caninum that is not present in T. gondii (Reid et al. 2012) 

was proteomically identified only in the tachyzoite lysate and not in either of the apical 

preparations (Table 4.1). Nevertheless, regardless of which sample the identification was made 

from, these data still confirm the protein’s existence. 

It is possible that a large proportion of the proteins described as ‘hypothetical’ are invasion-

related or at least apicomplexan-specific, which could account for why they are unannotated, 

as they may bear little homology to the sequences of well known proteins from better studied 

organisms such as humans and mice. Many of the eukaryote-wide, house-keeping genes are 

well annotated in the apicomplexan genomes as they are well conserved with other organisms. 

Of the R fraction identifications, six were noted as potential candidate rhoptry proteins. This 

was based on their similarity in name or function to known rhoptry proteins, and then further 

investigated by a combination of BLAST/homologue searching (ToxoDB and NCBI), and 

signal peptide prediction (SignalP 3.0). Of these six proteins, presented in Section 4.3.2, 
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NCLIV_031550, NCLIV_069110, NCLIV_004270 and NCLIV_022270 are the strongest 

candidates, based upon their lack of homologues in non-apicomplexans and their similarity to 

other ROP proteins. The remaining two, NCLIV_067490 and NCLIV_061160 share sequence 

similarity to a number of other eukaryotic proteins, so whilst this does not preclude them 

from being of rhoptry origin, the former are more promising candidates as rhoptry proteins. 

Whilst not within the scope of this thesis, it would be interesting to raise antibodies to these 

proteins to enable elucidation of their cellular localisation. A further ‘hypothetical’ 

identification, NCLIV_007450, was recently identified by Talevich et al. (2011) as a potential 

rhoptry kinase, it has rhoptry homologues in N. caninum and T. gondii and despite this, was not 

detected by the bioinformatics search carried out in Chapter 3: this goes to show the benefit of 

taking experimental approaches in addition to in silico ones, to discover the maximum number 

of proteins.  

The following dense granule proteins were identified within the R fraction: GRA1, GRA2, 

GRA6, GRA7, GRA12 and a 14-3-3 protein (NCLIV_024820); hence the sucrose floatation 

did not appear to have been successful at removing all of the dense granule contamination. The 

protein identifications made from the R and R/DG fractions contained a large proportion of 

redundancy between the two samples (83 proteins, Figure 4.6), which, taken together with 

the identification of GRA proteins, implicates dense granule contamination in the rhoptry 

fraction. The almost identical appearance of the gel for the two samples also supports this 

theory (Figure 4.5); the lighter staining of the R/DG fraction compared to the R fraction was 

simply a result of sample loss that occurred during loading of the gel. There was insufficient 

sample available to perform a protein assay prior to gel loading, but both samples were 

revealed to contain sufficient protein to enable visualisation by Colloidal Coomassie staining 

and subsequent detection of tryptic peptides by LC MS/MS.   

4.4.3 Coverage of the N. caninum proteome 

Overall, 13 of 42 predicted microneme proteins (31 %) were identified by one or more of the 

experiments (including the whole tachyzoite 1-DE and MudPIT analyses in Chapter 2). Of the 

22 putative dense granule proteins, only seven have eluded proteomic detection (68 % 

identified) and 35 (60 %) of 58 rhoptry proteins have been identified, in addition to the six 

candidate rhoptry proteins which need further experimental investigation to determine 

whether they are in fact of rhoptry origin. A recent sucrose fractionation analysis of the N. 

caninum rhoptries, using the ToxoDB version 5.2 annotation, identified up to thirteen possible 

rhoptry proteins (Marugan-Hernandez et al. 2011), one of which, ROP30, was not identified 

in this analysis.  

The ESA experiment yielded one additional microneme protein not identified by the 

tachyzoite or rhoptry/dense granule experiments. However, approaches taken by other 

researchers have required vast numbers of parasites (4 x 109 in Zhou et al. (2005)) and a 

pooling of results from multiple proteomic platforms, to identify eleven of the known 

microneme proteins. Zhou et al. (2005) identified the T. gondii microneme proteins MIC1, 

MIC2, MIC4, MIC5, MIC6, MIC8, MIC10, MIC11, M2AP, AMA1 and SUB1. Of these, 

MIC1, MIC4, MIC6, MIC10, M2AP, AMA1 and SUB1 were also identified in N. caninum in 
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this experiment. MIC2 (along with the N. caninum-specific MIC2B) and MIC11 were identified 

by the tachyzoite experiment and MIC3, which was not identified by Zhou et al. (2005), was 

identified by the ESA experiment. This study was successful in simplifying the preparation 

when compared to a tachyzoite lysate, and there was a proportional increase in apical proteins 

compared to the whole tachyzoite analysis (22 % and 5 %, respectively). Furthermore, the 

instrument time was significantly less for the ESA experiment: approximately 30 hours 

compared to 400 hours for the whole tachyzoite analysis.  

Proteomic detection techniques are limited in that it is not possible to extract all proteins from 

any cell type (Gygi et al. 2000; Leimgruber et al. 2002), and some protein types (for example, 

hydrophobic membrane proteins that do not solubilise well (Santoni et al. 1999)) are not 

compatible with gel electrophoresis. Furthermore, during mass spectrometry some peptides 

are more proteotypic than others and hence are more readily detectable (Craig, Cortens & 

Beavis 2005) but on the whole LC MS/MS is highly sensitive and an extremely valuable 

technology for protein identification which allows analysis of complex mixtures for a ‘systems 

biology’ approach to research. 

Overall, the data generated by these analyses open up avenues for further exploration (such as 

the potential novel rhoptry proteins discussed previously), and confirm the protein predictions 

for a number of genes currently only annotated as ‘hypothetical’. Invasion proteins are 

successively released from the micronemes, rhoptries and dense granules over the duration of 

invasion (reviewed in Dubremetz et al. (1998)), but the speed at which this process occurs 

(entry usually takes just 5-10 seconds (Dubremetz et al. 1998)) and the non-synchronicity of 

the parasite cultures used in these experiments (i.e. tachyzoites within a sample will be at 

different points in invasion/replication) should mean that this design enabled identification of 

as many of the proteins involved as possible. These experiments represent the tachyzoite stage, 

which, while likely to share some proteins with the other invasive stages (sporozoites, 

bradyzoites) may not express all the possible invasion-related proteins, as there are likely to be 

some specific to each life cycle stage. Hence, to have proteomically  identified 52 % (n = 63) 

of those predicted in the genome to be from the micronemes, rhoptries and dense granules 

(Chapter 3, n = 122) in the tachyzoite stage alone is quite considerable, and when considered 

in combination with the whole tachyzoite proteomic identifications in Chapter 2, represents a 

comprehensive analysis of the N. caninum proteome.  
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CHAPTER 5: ROP18 FUNCTIONAL ANALYSIS 

5.1 INTRODUCTION 

During annotation of the N. caninum genome, a number of pseudogenes were identified (Reid 

et al. 2012). One of these, encoding the rhoptry protein ROP18, had recently been identified 

by a number of studies as being implicated in T. gondii virulence. Therefore, the fact that it was 

apparently non-functional in the N. caninum genome was of interest and warranted further 

investigation. 

A pseudogene is described by Vanin (1985) as a sequence containing “genetic lesions that 

preclude translation of a transcript from [the sequence] into a functional polypeptide 

equivalent to the functional gene product”. An example of one of these lesions would be a stop 

codon occurring prematurely in the sequence, perhaps as a result of a nucleotide substitution, 

or alternatively there could be a deletion resulting in frame-shift.  

Adam Reid (Sanger Institute) detected a number of stop codons within the region of the N. 

caninum genome syntenic to the ROP18 gene in T. gondii. Various gene finding algorithms used 

in the genome assembly and annotation process were unable to identify an alternative location 

for the ROP18 gene in N. caninum and it was therefore hypothesized that it was a pseudogene, 

hence it would not be able to produce a functional ROP18 protein. In addition, the RNA-Seq 

experiment carried out as part of the genome annotation project (Reid et al. 2012) detected 

very low mRNA expression levels over the ROP18 region. 

5.1.1 Rhoptry gene ROP18 

ROP18, which was also previously known as ROP2L2 (Bradley et al. 2005) is a well-

characterized virulence gene in T. gondii. In their 2007 review, Sinai et al. summarized ROP18 

as a stand-out member of the ROP2 family of rhoptry kinases, as it, along with ROP16, is one 

of only two ROP proteins to have retained their kinase function (Sinai 2007). This has since 

been thrown into contention as many other rhoptry kinases, once thought to be pseudokinases, 

have now been identified as active (Peixoto et al. 2010). ROP18 is secreted to the 

parasitophorous vacuole membrane (PVM) at the time of invasion (El Hajj et al. 2007). More 

recently the Howard group from the University of Cologne have shown ROP18 to 

phosphorylate host-derived GTPases on the PVM (Steinfeldt et al. 2010) which is described in 

section 5.1.5. Whether ROP18 is involved in additional roles remains to be seen, but this is 
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likely to be the case at it has been shown to phosphorylate a parasitic substrate of 

approximately 70 kDa, that could possibly be ROP4 (El Hajj et al. 2007). 

ROP18 shares 28% homology with ROP5 (El Hajj et al. 2007) which is another T. gondii 

virulence determinant (Reese et al. 2011; Reese & Boothroyd 2011) which, although present 

in the N. caninum genome, has fewer tandem repeats (two) than T. gondii which have four or 

more, depending on the strain (Behnke et al. 2011; Reese et al. 2011). The rhoptry family 

contains a number of paralogues (ROP2/8, ROP4/7 and ROP18/5) which may be suggestive of 

the fact that the rhoptry family is under significant selection pressure and is undergoing 

evolutional change (Qiu et al. 2009), in order to cope with the demands of parasitizing a host 

who will also be evolving. Interestingly, ROP kinases are not orthologues of Plasmodium spp. 

FIKKs, although they are both families of secreted kinases involved in the invasion process and 

containing a serine/threonine domain (Qiu et al. 2009; Ward et al. 2004).  

ROP18 expression levels vary from strain to strain in T. gondii; expression is 10 000 times 

lower in type III than type II (Saeij et al. 2006). Sequencing of the entire region in type I, II and 

III genes showed a sequence insertion in the 5’ untranslated region (UTR) promoter of the 

type III ROP18 allele, this is likely to be the cause of the difference in expression (Saeij et al. 

2006). ROP18 is variable between all three T. gondii types: the type II ROP18 allele has 11 

single nucleotide polymorphisms (SNPs) relative to type I and III, but the type III allele has 

unexpectedly large number of SNPs (85, 64 of which are non-synonymous and result in amino 

acid changes) relative to types I and II (Saeij et al. 2006); it is probable that ROP18 is the 

genetic basis for the virulence QTL (quantitative trait loci) identified on chromosome VIIa  

(Taylor et al. 2006). 

Despite this substantial genetic diversity among lineages, there are three principle alleles of T. 

gondii ROP18 which account for much of the variation in acute mouse virulence among natural 

isolates (Khan et al. 2009). Behnke et al.(2011) state that ROP18 cannot account for virulence 

differences between types I and II, but Khan et al.(2009) describe three decreasing levels of 

virulence for types I, II and III respectively.  

The T. gondii ROP18 type III allele is expressed at very low levels, it is not a pseudogene and it 

contains all of the essential residues in the S/T domain necessary for kinase activity (Khan et al. 

2009). Like T. gondii ROP18 type III, the ROP18 gene in N. caninum includes an insertion in the 

5’ UTR promoter upstream of the gene that decreases expression levels, this is not present in 

the ROP18 gene of T. gondii types I and II (Khan et al. 2009; Saeij et al. 2006). Alignments 
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using Clustal revealed that N. caninum was 54% identical to type III ROP18 in this upstream 

region and 68% identical in the coding region (Khan et al. 2009). Therefore, it is interesting 

that N. caninum has gone further and has a pseudogenised ROP18, as that could indicate a 

potentially lower level of virulence than type III T. gondii and perhaps an adaptation to a 

different life-strategy.  

5.1.2 Sequencing of the ROP18 region to confirm presence of stop codons 

Firstly, it was necessary to determine whether the sequence data was correct and the gene 

contained stop codons within the coding region (Figure 5.1). Furthermore, the Liverpool 

strain of N. caninum, used for the genome study, had been maintained in cell culture for a 

number of passages and there was the possibility that the stop codons could have occurred as a 

post-isolation mutation. It was important therefore to examine the sequence of a number of N. 

caninum isolates by polymerase chain reaction (PCR) to determine whether the 

pseudogenisation of ROP18 was a feature of the species or of the isolate.  

  

Figure 5.1: Artemis genome viewer (Sanger) showing a 6 frame translation of the N. caninum ROP18 region 

(yellow indicates where the gene would be in T. gondii). The pseudogene is highlighted in pink, on the reverse 

strand. The vertical bars are the three stop codons within the would-be exon. 

5.1.3 Analysis of transcriptomic and proteomic data for evidence of ROP18 

products 

The N. caninum genome study involved a comparative RNA-Seq analysis of the transcriptome 

of N. caninum Liverpool and T. gondii VEG (Reid et al. 2012).While a pseudogene is unable to 

be translated into protein, transcription of the gene into mRNA is still a possibility. However, 

unless there is some, so far undiscovered, use for mRNA other than translation, it would not 

seem efficient for a cell to waste resources transcribing non-coding sequences into mRNA. 
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Therefore, it would make sense for there to be little or no transcription detected for the 

ROP18 region in N. caninum. Adam Reid (personal communication) confirmed this to be the 

case, ROP18 transcripts were present, but at a very low level similar to that of the avirulent 

type III T. gondii VEG isolate, shown by (Khan et al. 2009) to exhibit suppressed expression of 

this gene compared to virulent strains. Proteomically however, the hypothesis was that there 

would be no peptides synthesized for this region and it was therefore important to search the 

proteomic datasets presented in Chapters 2 and 4 to ensure that this was the case. The 

identification of ROP18 peptides would undermine the genome sequence data and therefore 

result in a revision of the proposed pseudogene hypothesis. 

5.1.4 The interferon-γ response to coccidian infection and the role of ROP18 

Interferon-gamma (IFN-γ) is known to control apicomplexan proliferation in mammalian host 

cells as a component of the cell-mediated immune response (Boysen et al. 2006; Innes et al. 

2002; Innes et al. 1995; Nishikawa et al. 2001a; Nishikawa et al. 2001b; Suzuki et al. 1988; 

Yamane et al. 2000). As part of the host cell IFN-γ response in T. gondii infections, immunity-

related GTPases (IRGs) are loaded onto the parasitophorus vacuole (PV), leading to its 

disruption and eventual parasite death (Hunn et al. 2008; Khaminets et al. 2010; Martens et al. 

2005; Zhao et al. 2009a; Zhao et al. 2009b; Zhao et al. 2009c). In retaliation, virulent strains 

of T. gondii can employ rhoptry kinase protein ROP18 to phosphorylate IRGs and render them 

inactive, whilst preventing their accumulation on the PV (Steinfeldt et al. 2010).   

IRG proteins are resistance factors that are induced by IFN-γ (Bekpen et al. 2005; Konen-

Waisman & Howard 2007; Taylor 2007). They are present in a range of chordates (Li et al. 

2009) and in their review on mammalian IRGs, Hunn et al. (2011) state that “the number, 

type and diversity of genes present differs greatly even between closely related species, 

probably reflecting intimate host pathogen co-evolution driven by an arms race between the 

IRG resistance proteins and pathogen virulence factors”. Most mammals, including cattle, the 

N. caninum preferred intermediate host, contain a set of IRG proteins, although the precise 

repertoire tends to vary between species and has been most extensively studied in mice (Hunn 

et al. 2011) and J Hunn, personal communication).  

Of the murine IRGs, some have been characterized more completely than others; IRG is the 

only one for which structural, biochemical and functional data are available (Ghosh et al. 2004; 

Martens et al. 2005; Papic et al. 2008; Steinfeldt et al. 2010; Uthaiah et al. 2003). IRG proteins 



85 
 

load onto the PV in a hierarchical manner and can be present in a variety of combinations with 

each other (Khaminets et al. 2010). IRG a6 and IRG b6 both load onto the majority of vacuoles 

during an avirulent T. gondii infection into mouse embryonic fibroblasts (MEFs); interestingly, 

a small proportion of vacuoles remain unloaded throughout an infection, even with avirulent 

parasite strains (Khaminets et al. 2010). Infections with virulent strains of T. gondii exhibit 

markedly reduced IRG PV loading (Zhao et al. 2009a) which is now known to be due to the 

ability of ROP18 to phosphorylate either of two threonines, T102 or T108, on IRG a6 

(Steinfeldt et al. 2010). These threonines are highly conserved throughout the mouse IRG 

proteins, although phosphorylation by ROP18 has so far only been examined on IRG a6 

(Steinfeldt et al. 2010), where it was determined by studying the infection of T. gondii strains 

into MEFs expressing various mutated forms of T108 and T102. In normal infection, IRG 6 

accumulates on the majority of PVs for all strains of T. gondii, but the intensity of antibody 

staining (and hence amount of IRG a6 accumulated) is much lower for virulent strains 

(Holmdahl et al. 1997; Khaminets et al. 2010). Steinfeldt et al. (2010) confirmed their findings 

by conferring the ability of type I virulent strains (to phosphorylate IRG a6) to type III 

avirulent strains by transfection of type I ROP18. They suggest that destabilisation of 

interactions between IRG molecules and/or associations between IRGs with the vacuole, is 

how the phosphorylation of T102 or T108 by ROP18 affects IRG PV loading. An additional 

study has also indicated that IRG b6 could be another target for ROP18 (Fentress et al. 2010). 

Type II T. gondii, generally considered to be of an intermediate level of virulence, are only able 

to exhibit a very low frequency of IRG a6 phosphorylation. With regard to IRG 

phosphorylation, type II T. gondii (as well as type III) exhibit what would be considered an 

avirulent phenotype (Khaminets et al. 2010; Steinfeldt et al. 2010). 

5.2 Aims and objectives 

Following on from the hypothesis that N. caninum ROP18 is pseudogenised, an experiment was 

undertaken to determine whether i) IRG proteins are loaded onto the PV in N. caninum-

infected MEFs and ii) whether we would observe IRG-phosphorylation in the (hypothesized) 

absence of ROP18. 
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5.2 MATERIALS AND METHODS 

5.2.1 ROP18 sequencing by PCR 

The ROP18 region was amplified from five N. caninum isolates (Table 5.1). For the Nc 

Liverpool strain, parasites were cultured in vero cells as described in Chapter 2.2 and DNA 

was extracted using a Qiagen DNeasy Kit, according to the manufacturer’s protocol. DNA for 

strains other than Nc Liverpool were previously extracted by Dr. Sophia Latham. 

Table 5.1: N. caninum strains analysed by PCR 

Isolate Country of 

origin 

Source  Reference 

Nc Liverpool UK Canine Barber et al. (1993) 

Nc 1 USA Canine Dubey et al. (1988) 

Nc Liverpool B1 UK Bovine Davison et al. (1997) 

Nc BPA USA Bovine Conrad et al. (1993) 

Nc JPA Japan Bovine Yamane et al. (1996) 

 

Primers were designed to amplify the ROP18 region of the N. caninum genome sequence using 

Primer3 (Rozen & Skaletsky 2000); all primers were supplied by Eurofins MWG Operon. As 

the region to be amplified was almost 2000 base pairs in length, pairs of overlapping primers 

were designed in order to amplify the region in parts: ROP18 F1+ ROP18 R3 and ROP18 F3 

+ ROP18  R1  (Table 5.2).  

Table 5.2: Primers used for ROP18 sequencing 

Primer name Sequence (5’-3’) Expected product size (bp) 

ROP18_F1 GAGTGCCACGGTCCTCTAAG 
1268 

ROP18_R3 ATTTGTCCGACGCAAAATTC 

ROP18_F3 GGCTTCTGCTCCAGTATTCG 
890 

ROP18_R1 GCCTTATAAACCACCCGTCA 

 

ROP18 F1-R3 PCR reactions were set up in a final volume of 50 µl containing the following: 

1.5 mM 10x PCR buffer containing 15mM MgCl2, an additional 2.5 mM MgCl2, 10 µl 5x Q 

solution, 0.2 mM of each dNTP (Sigma), 0.4 µM F1 primer, 0.4 µM R3 primer, 2.5 U Taq 

DNA polymerase and 2 µl DNA.  
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PCR reaction conditions for F1 and R3 primers were as follows: 94 oC for 3 minutes; 30 

cycles of 94 oC for 30 seconds, 53 oC for 30 seconds, 72 oC for 1 minute; 72 oC for 10 

minutes.   

ROP18 F3-R1 PCR reactions were set up in a final volume of 50 µl containing the following: 

1.5 mM 10 x PCR buffer containing 15 mM MgCl2, an additional 2.5 mM MgCl2, 10 µl 5x Q 

solution, 0.2 mM of each dNTP (Sigma), 0.4 µM F3 primer, 0.4 µM R1 primer, 2.5 U Taq 

DNA polymerase and 2 µl DNA. 

Conditions for F3 and R1 primers (BPA and Nc1 strains) were: 94 oC for 3 minutes; 30 cycles 

of 94 oC for 30 seconds, 58 oC for 30 seconds, 72 oC for 1 minute; 72 oC for 10 minutes. F3 

and R1 amplification of NcLiv, Nc Liv B1 and JPA were as for BPA and Nc1 but with an 

annealing temperature of 62 oC. PCRs were carried out using a DYAD Peltier Thermal Cycler 

DNA Engine (MJ Research).  

Samples were visualized on a 1.5 % agarose gel and cleaned up for sequencing using a 

QIAQuick PCR purification kit (Qiagen) according to the manufacturer’s protocol. PCR 

products were sequenced by Mandy Sanders at the Sanger Institute using BigDye® Terminator 

v3.1 Cycle Sequencing Chemistry (Applied Biosystems) and electrophoresis on a 3730xl DNA 

Analyser (Applied Biosystems).  

5.2.2 Minisatellite analysis of the five strains 

Primers and methods for amplification of the Contig16 minisatellite are described in Al-

Quassab et al. (2010). The minisatellite region was as follows:  

 

Minisatellite region Contig16: GAAGAGGAAGGGGAAGAAGAAGAGGAA  

Forward primer: CTGCTGAGGCTCTGAGGAAC  

Reverse primer: CCTCCCTTCCTCTCTGACC 

 

The PCR mixture (50 μl) contained 1× DNA polymerase reaction buffer, 0.2 mM dNTPs, 

2.0 mM MgCl2, 1.5 U Taq polymerase, 0.2 µM of each primer and 1µl template DNA. A 

negative control containing no template DNA was also included in the experimental design.  

PCR was performed in DYAD Peltier Thermal Cycler DNA Engine (MJ Research) under the 

following conditions: 95 °C for 5 minutes; 25 cycles of 94 °C for 1 minute, 61 °C for 

1 minute, 72 °C for 1 minute; followed by 1 cycle of 72 °C for 5 minutes. Samples were 

visualized on a 1.5 % agarose gel. 
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5.2.3 Examination of proteomic data for ROP18 peptides 

All LC MS/MS files generated in the whole tachyzoite 1DE analysis, the ESA analysis and the 

R/DG analysis, were resubmitted to Mascot to be searched against a new database containing 

an additional ‘gene’ comprising the ROP18 region, using parameters previously described in 

Chapter 2.2. 

5.2.4 Immunity-Related GTPase (IRG) experiments  

This work was carried out while visiting the laboratory of Professor Jonathan Howard, and 

with the assistance of Dr. Steffi Weissman. 

5.2.4.1  Cell and parasite culture 

C57BL/6 Mouse Embryonic Fibroblasts (MEFs), HS27 cells and Vero cells were cultured in 

IMDM supplemented with 10 % FCS, 100 U ml-1 penicillin and 100 mg ml-1 streptomycin. 

For IFN-γ induction, 1 day cultures of MEFs, grown on cover slips in 6-well plates, had their 

culture media replaced with media containing a final concentration of 200 U/ml IFN-γ  

(Peprotech) (otherwise same recipe as above) while non-induced MEFs simply had their media 

refreshed. This took place 24 hours before infection with parasites. N.caninum Liverpool 

isolate tachyzoites were passaged in Vero cells as described in Chapter 2.2 and T.gondii RH and 

ME49 isolates were kindly provided by S. Könen-Waisman from HS27 cell passage as 

described in Martens et al. (2005). They were then used for infection of untreated and IFN-γ -

induced MEFs at a multiplicity of infection (m.o.i.) from 5 to 10, before being replaced in the 

incubator at 37 oC. At 2 hours post-infection, cells were washed three times with 2 ml PBS 

(phosphate-buffered saline) then fixed in PBS/3 % paraformaldehyde for 20 minutes at room 

temperature. After a further three washes in 2 ml PBS, cells were covered with parafilm and 

stored at 4 oC ready for permeabilisation and immunostaining.  

5.2.4.2  Immunological reagents and immunofluorescence analysis 

Cells fixed as above (5.2.4.1) were permeabilised in 2 ml 0.1 % saponin/PBS for 10 minutes 

at room temperature, then blocked with 2 ml 3 % bovine serum albumin (BSA)/0.1 % 

saponin/PBS for 1 hour at room temperature or 4oC overnight, except for slides stained with 

T102-555 which were permeabilised in ice cold methanol for 20 minutes and blocked in 1 % 

BSA/PBS for 30 minutes.  
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Table 5.3: Primary antibodies used and their dilutions. Secondary antibodies were all diluted 

1:1000. Antibodies were all kindly provided by J. Howard with the exception of 20B5D5 

which was provided by P. Bradley. 

Primary Antibody Dilution Secondary Antibody Reference if applicable 

rabbit anti- b1-b2 C15A 1:5000 
Alexa 488 labelled donkey 

anti- rabbit sera 
 

rabbit anti-Irga6 antiserum 165 1:8000 
Alexa 488 labelled donkey 

anti- rabbit sera 
(Martens et al. 2005) 

mouse anti-Irga6 mAb10E7 1:500 
Alexa 488-labelled donkey 

anti-mouse sera 
(Papic et al. 2008) 

anti Irga6 phosphopeptide Ab 

T102-555 
1:5000 

Alexa 555-labelled donkey 

anti- rabbit sera 
 (Steinfeldt et al. 2010) 

goat anti-Irgb6 antiserum A20 1:100 
Alexa 488-labelled donkey 

anti-goat sera 
 

rabbit anti-Irgb6 antiserum 

141/1 
1:4000 

Alexa 488 labelled donkey 

anti- rabbit sera 
 N. Pawlowski, unpublished data 

rabbit anti-Irgm2 antiserum 

H53/3 
1:500 

Alexa 488 labelled donkey 

anti- rabbit sera 

 (Martens et al. 2004; Martens et 

al. 2005) 

rabbit anti-Irgb10 antiserum 1:2000 
Alexa 488 labelled donkey 

anti- rabbit sera 
(Coers et al. 2008) 

mouse anti-ROP2 family mAb 

20B5D5 
1:2000 

Alexa 555-labelled donkey 

anti-mouse sera 
(Sohn et al. 2011) 

4′,6-Diamidine-2′-phenylindole 

dihydrochloride (DAPI) 

1:1000 

 

 
 

 

Antibodies (Table 5.3) were diluted in 3 % BSA/0.1 % saponin/PBS and cover slips were 

incubated in 100 µl of the appropriate antibody solution for 1 hour at room temperature or 4 

oC overnight. After three washes in 0.1 % saponin/PBS, cover slips were incubated for 30 

minutes at room temperature, in the dark, in 100µl of the secondary antibody solution. A 

further three washes in 0.1 % saponin/PBS were carried out before the cover slips were 

mounted onto slides with 18 µl Prolong Gold Antifade Reagent (Invitrogen) and left to harden 

in the dark for a minimum of 2 hours. Slides were stored ready for microscopy at 4 oC in the 

dark.  

Images were taken with an Axioplan II fluorescence microscope and AxioCam MRm camera 

and processed by Axiovision 4.7 (all Zeiss). Intracellular parasites were identified by observing 

the vacuolar localization of the N.caninum ROP2 family member protein or T. gondii protein 

GRA7 and by distinct pathogen appearance in phase contrast. 
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5.3 RESULTS 

5.3.1 Examination of proteomic data for ROP18 peptides 

No peptides corresponding to the ROP18 region of the N. caninum genome, nor T. gondii 

ROP18; were identified in tachyzoite, excretory/secretory or rhoptry/dense granule N. 

caninum lysates. This is supportive of the pseudogene hypothesis but is not conclusive. 

5.3.2 PCR sequencing of the ROP18 region 

All five strains of N. caninum analysed exhibited the three stop codons identified in N. caninum 

Nc Liverpool within their ROP18 regions. The conservation of these stop codons can be seen in 

Figure 5.2, these are TAA, the ochre stop codon, twice; and TGA, the opal or umbre stop 

codon. As the presence of just one stop codon is sufficient to render a gene pseudogenised, it 

is safe to conclude that the pseudogenisation of this gene is conserved across the isolates and 

ROP18 protein would not be produced for any of these strains. Furthermore, the strains were 

selected based upon their dissimilarity to each other in geographical location and had been 

isolated from both cattle and dogs, so should be representative of the N. caninum population as 

a whole, rather than a subset of closely related strains.  

           

Figure 5.2: Truncated ROP18 region of five strains of N. caninum amplified by PCR and aligned to the reference 

genome using BioEdit version 7.0.5.3. Stop codons are identified by purple boxes. This region is displayed in the 

5’ to 3’ orientation, transcribed from the antisense strand of chromosome VIIIa. No SNPs were identified in any 

of the isolates analysed. The whole ROP18 region is shown in Appendix VI. 

Because the region analysed showed no single nucleotide polymorphisms (SNPs) between 

strains, it was decided to carry out a minisatellite PCR analysis to ensure that the DNA being 

amplified was indeed different for the five strains and not simply a contamination with Nc 

Liverpool. The contig16 minisatellite (Al-Qassab et al. 2009) enabled distinction between the 

strains and the resulting PCR gel can be seen in Figure 5.3, where the different sizes of the 

products from different N. caninum strains are apparent. While BPA did not amplify, it is clear 
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that the remaining strains exhibit a range of product sizes within the expected range of 854-

965 base pairs and hence these results confirm that the DNA used for the ROP18 PCRs did 

show variation. This result confirms that the lack of SNPs seen in the different ROP18 PCR 

products was not attributable to contamination. This is also supported by a number of reports 

reviewed by (Al-Qassab, Reichel & Ellis 2010) all of which found no nucleotide differences in 

various protein-coding genes between N. caninum isolates.  

 

Figure 5.3: Minisatellite analysis of the five N. caninum strains to confirm amplification of DNA from different 

strains. Lane 1 = 1000bp ladder, lane 2 = negative control, lanes 3-8 = N. caninum isolates.  

 

5.3.3 Immunofluorescence analyses 

Immunity-related GTPase (IRG) protein rings (staining the parasitophorus vacuole (PV)) were 

observed in N. caninum infected IFN-γ stimulated MEFs, stained with antibodies against IRG 

a6, IRG b1-b2, IRG b6, IRG m2 and IRG b10 (Figure 5.4). PVs were approximately 60% and 

45% positive for IRG a6 and IRG b1-b2, respectively (two replicates of 100 PVs (Figures 5.5 -

5.6), identified by phase contrast by systematic movement over the slide). Some cross 

reactivity of the antibody with the parasite was observed for the other IRG proteins (b6, m2 

and b10) so that it was not possible to determine the frequency of IRG-positive PVs. 

However, vacuoles were sufficiently visible by phase contrast that it was clear that IRG loading 

on the PV was occurring in the IFN-γ stimulated cells and not in the non-stimulated negative 

controls, where just the parasite, and not the vacuole, exhibited staining (data not shown). 

5.3.3.1  IRG a6 

Rings were observed in N. caninum infected, IFN-γ stimulated cells at a frequency of ~60 % of 

PVs, this indicated that IRG a6 was loaded onto the vacuoles during N. caninum infections. 

Non-stimulated controls were negative for IRG a6 staining, as were extracellular parasites. 

Figures 5.4 and 5.5 illustrate the very visible a6 staining on the PV of two intracellular 
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tachyzoites, in contrast to a non-IRG-loaded PV of another parasite. The vacuole is just visible 

around this parasite and hence confirms that it is intracellular. 

 

 

Figure 5.4:  N. caninum parasitophorus vacuole IRG loading.  Examples for each antibody tested (left hand labels) 

showing from left to right: phase contrast, localisation of tachyzoites (rhoptries) labelled with the anti-ROP2 

family member antibody 20B5D5, PVs stained with the anti-IRG antibody and finally a merged picture including 

DAPI staining for nuclei. 
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Figure 5.5: N. caninum parasitophorus vacuole IRG a6 loading. A) Localisation of tachyzoites (rhoptries) 

labelled with the anti-ROP2 family member antibody 20B5D5 (red), PVs stained with anti-IRG a6 (green) 

and nuclei with DAPI. Open arrows indicate PVs positive for IRG a6, closed arrow negative. B) Percentage 

of N. caninum parasitophorous vacuoles loaded with IRG a6, 200 PVs identified by phase contrast in two 

separate counts of 100 PVs. 

 
 
 

 

     

 

 

 

 

5.3.2.2  IRG b1-b2 

Rings were observed in N. caninum infected, IFN-γ stimulated cells at a frequency of ~55 % of 

PVs, indicating that IRG b1-b2 was loaded onto the PVM during N. caninum infections. As for 

IRG a6, non-stimulated controls and extracellular parasites were all negative for b1-b2 

staining (Figures 5.4 and 5.6).  

    

Figure 5.6: N. caninum parasitophorus vacuole IRG b1-b2 loading. A) Localisation of tachyzoites (rhoptries) 

labelled with the anti-ROP2 family member antibody 20B5D5 (red), PVs stained with anti-IRG b1-b2 (green) 

and nuclei with DAPI. Open arrow indicates PV positive for IRG a6, closed arrow negative. B) Percentage of N. 

caninum parasitophorous vacuoles loaded with IRG b1-b2, 200 PVs identified by phase contrast in two separate 

counts of 100 PVs 
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5.3.3.3  IRG b6, IRG m2 and IRG b10 

Cross reactivity of the anti-IRG antibodies to the parasite meant that quantification of IRG-of 

loading was not possible. However, qualitatively, it was possible to see the characteristic rings 

IRG-loaded vacuoles in a number of cases; examples of these IRG-positive PVs  (rows 3, 4 and 

5 showing IRG b6, m2 and b10 respectively) are presented along with further a6 and b1-b2 

examples (rows 1 and 2; IRG a6 and b1-b2)  in Figure 5.4.   

5.3.3.4  IRG a6 phosphorylation 

Phosphorylation of IRG a6 was visualized by staining of the T102 a6 residue (Steinfeldt et al. 

2010); slides were co-stained with anti-a6 (10E7 antibody) to identify a6-positive vacuoles 

(Figure 5.7). Whilst > 90 % of a6-positive vacuoles were phosphorylated in T. gondii RH 

infected MEFs (concurrent with findings in Steinfeldt et al. (2010)), no anti-T102 

phosphorylated PVs were observed in N. caninum infected MEFs. Frequency of 

phosphorylation was estimated by two replicates of 100 PVs identified in the red (a6 10E7) 

channel by systematic movement over the slide (Figure 5.8). 

There was some cross reactivity of the anti-IRG a6 antibody with the T.gondii RH parasites, 

but it was clearly distinguishable as to whether the staining pertained to the vacuole or just to 

the parasite (Figure 5.9). The third row in Figure 5.9 shows an a6-ringed RH parasite that was 

negative for phosphorylation – there is green staining but this is only on the parasite itself, not 

the vacuole – the red does not co-localise with the green. This is in contrast to the first row, 

where the IRG a6 staining (green) is staining the vacuole as can be seen clearly in the merged 

image. This cross reactivity was not observed with N. caninum or T. gondii type II ME49. A 

small number of phosphorylated IRG a6 rings were observed in ME49- infected MEFs, but 

staining was weak.  
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Figure 5.7:  Phosphorylation of IRG a6- T102 was observed in T. gondii infected MEFs but not in N. caninum-

infected MEFs, despite loading of IRG a6 onto the PV.  From left to right: phase contrast, anti-a6 staining by 

10E7, phosphorylated T102 residues of IRG-a6 stained by the T102-555 antibody and a merged image with 

DAPI. The first row shows MEFs infected with T. gondii RH and the second with N. caninum Liverpool.  

 

 

Figure 5.8: IRG a6 phosphorylation as a percentage of IRG a6 positive parasitophorous vacuoles for A) T. gondii 

and B) N. caninum. Counts were performed as two replicates of 100 a6-positive PVs. 
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Figure 5.9: Phosphorylation of IRG-a6 in T. gondii type I (RH) and type II (ME49) isolates. From left to right: 

phase contrast, anti-a6 staining by 10E7, phosphorylated T102 residues of IRG-a6 stained by the T102-555 

antibody and a merged image with DAPI. The first row shows positive (phosphorylated) a6-ringed vacuoles. The 

second row is the same phenomenon in type II ME49. The third row shows an a6-ringed RH parasite that was 

negative for phosphorylation. This is an example of the cross-reactivity observed on the RH slides, which was not 

seen for ME49 or N. caninum Liverpool.  
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5.4 DISCUSSION 

It is not a simple procedure to search for ROP18, or other pseudogenes, in the N. caninum 

genome database (Gajria et al. 2008; Reid et al. 2012) due to the fact that they have no gene 

identifier. Proteomic and transcriptomic data tend to be presented as a list of gene identifiers 

followed by expression levels and/or peptides identified. However, in order to determine 

whether any ROP18 peptides had been identified in the proteomics experiments in chapters 2 

and 4, an alternative protein database was created containing an additional FASTA sequence of 

the amino acids that would result if the ROP18 region was translated. All LC MS/MS files 

generated in the whole tachyzoite 1DE analysis, the ESA analysis and the Rhoptry/Dense 

Granule analysis, were resubmitted to Mascot (Matrix Science) to be searched against the new 

database and no ROP18 peptides were identified. Whilst a lack of proteomic evidence can 

never be sufficient to suggest a protein does not exist, when this information is taken into 

consideration alongside the sequence data, it supports the ROP18 pseudogene hypothesis. 

Moreover, ROP18 peptides are readily detectable in equivalent T. gondii proteomic 

experiments (Gajria et al. 2008; Xia et al. 2008), hence it is unlikely that the lack of detection 

in the N. caninum proteomic experiments is due to characteristics of the protein making it 

unsuitable for proteomic detection. 

The above results have shown loading of IRG-proteins by IFN-γ stimulated MEF host cells 

onto the PV of intracellular N. caninum. Due to N. caninum’s close relationship to T. gondii and 

their parallel phenotypes in host cell-invasion and parasitophorous vacuole formation, the 

hypothesis was that MEFs would respond to N. caninum infection in a similar way to T. gondii 

infection, by loading IRG proteins onto the PV, as seems to be the case.  

Different frequencies of IRG-loading were observed for different strains of T. gondii, with 

virulent type I strains exhibiting fewer and/or less intensely loaded vacuoles than type II or III 

avirulent strains (Khaminets et al. 2010). The observation that approximately 60 % of N. 

caninum PVs load with IRG-a6 is consistent with previously reported findings for T. gondii 

Type II ME49 (Khaminets et al. 2010). Although the present study did not measure the 

intensities of staining on the vacuoles, it was apparent that heterogeneity existed. Whether this 

is related to non-synchronicity of invasion, or individual differences between parasites, is 

unclear; however, previous studies have observed this phenomenon even in synchronised T. 

gondii infections (Khaminets et al. 2010). 
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Of those parasitophorous vacuoles loaded with IRG-a6, 0 % and > 90 % exhibited 

phosphorylation in N. caninum and T. gondii infections respectively. Phosphorylation of the 

T102 residue of IRG-a6 has been shown by Steinfeldt et al. (2010) to be carried out by type I 

T. gondii ROP18 and confirmed by creating type III T. gondii  CTG parasites transgenic for 

type I ROP18, which exhibit a type I phosphorylation phenotype. Thus, it was hypothesized 

that, if the presence of additional stop codons in N. caninum ROP18 prevented translation of the 

protein, N. caninum would be unlikely to phosphorylate IRG-a6 and would be susceptible to 

the IFN-γ response. This is consistent with numerous previous publications that used a range 

of approaches to show control of N. caninum by IFN-γ (Boysen et al. 2006; Nishikawa et al. 

2001a; Nishikawa et al. 2001b; Suzuki et al. 1988; Yamane et al. 2000). In vivo, the type I 

immune response is upregulated in infected tissue, (such as a bovine placenta) producing 

inflammatory cytokines including IFN-γ. This can be both beneficial to the host, by helping to 

control proliferation of the parasite, and detrimental due to the pathology it initiates (Innes 

2007).  

Taken together with the genome sequencing (stop codons), RNA-Seq (very low transcription 

level) and PCR (confirmation of stop codons across strains) analyses, in addition to a complete 

lack of peptide evidence for this gene from multiple proteomics experiments, these results 

give weight to ROP18’s pseudogenisation in N. caninum. 

The loss of function of ROP18 is not the only reduced-virulence phenotype seen in N. caninum. The rhoptries alone account for 

a number of other factors that suggest avirulence. ROP16 exhibits decreased mRNA expression in N. caninum 

(Reid et al. 2012) and has been associated with virulence differences in T. gondii strain types 

(Saeij et al. 2007; Taylor et al. 2006). This gene is involved with modulation of the 

proinflammatory host cytokine IL-12 (Butcher et al. 2011; Ong, Reese & Boothroyd 2010) by 

phosphorylation of STAT6 and has been shown to be highly expressed in all virulence-types of 

T. gondii (Bahl et al. 2003) despite also causing virulence differences. The N. caninum genome 

also contains a lower number of tandem repeats of ROP5 (two compared to between four and 

ten in T. gondii, (Reid et al. 2012). ROP5 has been found to be accountable for inherited 

variation in virulence between T. gondii types, albeit with an as yet unclear relationship 

between copy number and virulence (Behnke et al. 2011; Reese & Boothroyd 2011). It is 

possible that the loss of these virulence traits enabled N. caninum to specialize in the vertical 

transmission route in cattle. T. gondii is thought to involve horizontal transmission from 

mouse-cat very heavily in its population strategy (Boothroyd 2009; Dabritz et al. 2007; 
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Davison, Otter & Trees 1999) whereas it has been suggested for N. caninum that horizontal 

transmission may be of lesser importance to the population and that vertical transmission is the 

major route (Davison, Otter & Trees 1999; Pare, Thurmond & Hietala 1997). A less virulent 

parasite would be more likely to escape the host immune response sufficiently long to enable 

the host to reproduce, when the parasite can then take advantage of the host’s pregnancy-

induced immunosuppression to cross the placenta and infect the foetus. This allows 

progression onto a new host, either through the dam giving birth to a live, persistently infected 

offspring or through ingestion of the aborted foetus by some other potential intermediate or 

even definitive host. This is in agreement with in vivo studies by (Wiengcharoen et al. 2011) 

who found that T. gondii infection in a pregnant cow was more likely to result in abortion than 

infection by N. caninum. Experimental studies in viruses have shown that the evolution of 

vertical transmission can be associated with reduced virulence phenotypes, as demonstrated 

for Barley Stripe Mosaic Virus (Stewart, Logsdon & Kelley 2005) and similar strategies are 

apparent in sexually transmitted diseases which also benefit from extended periods of latency 

(Ewald 1993). Further work would be required to elucidate the precise mechanisms at play 

and whether these proposed hypotheses were true. IRG proteins exist in the cow but the 

repertoire is slightly different from those of the mouse, so this in itself could be a factor. The 

mouse is clearly a host of major importance to T. gondii, while it appears it may be less so to N. 

caninum. It may be that functional ROP18 is not required for successful parasitism of N. 

caninum’s preferred intermediate hosts and hence its loss of function was not disadvantageous. 

It would have been interesting to carry out a similar experiment in a bovine cell line, but 

unfortunately, antibodies to bovine IRGs were not available and their development were 

outside the scope of this thesis.  

The fact that T. gondii ROP18 has been shown to bind a parasite derived substrate (El Hajj et al. 

2007) and can cause virulence differences that distinguish between all three types of T. gondii 

(Khan et al. 2009), rather than just those that can and cannot phosphorylate IRGs indicates that 

it functions in additional ways not yet identified. It is not simply a matter of expression-level 

differences as there are a number of SNPs present between T. gondii strains too (Saeij et al. 

2006). This is in contrast to the PCR results of this analysis of N. caninum strains, where no 

SNPs were identified throughout the whole ROP18 region. However, the T. gondii SNPs were 

identified between strains known to exhibit different virulence types (I, II and III) which are 

not currently though to be a feature of N. caninum population biology (Al-Quassab, Reichel & 

Ellis 2010). While virulence differences are exhibited by different N. caninum isolates; when 
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compared to T. gondii it is likely that they would all resemble type II or III strains in terms of 

virulence. This potentially less divergent population stratification in N. caninum may be one 

explanation for the lack of SNPs, or there may be other roles for transcripts as yet unidentified 

that have led to the conservation of this region, despite the stop codons. The fact that N. 

caninum has an expression-suppressing 5’UTR promoter shared with type III T. gondii, in 

addition to a pseudogenised gene, implies that there are other stakes at play and the mutation 

must have been advantageous to the N. caninum in some way for it to have been maintained in 

the population. The phosphorylation of IRG proteins is probably only one of a number of roles 

and the elucidation of further targets will improve our understanding of the differences in host 

cell infection capabilities and preferences between N. caninum and T. gondii.  
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CHAPTER 6: DIFFERENTIAL ANALYSIS OF GENE EXPRESSION 

DURING TACHYZOITE TO BRADYZOITE CONVERSION 

6.1 INTRODUCTION 

The N. caninum life cycle comprises a number of stages (Chapter 1, Figure 1.1) in addition to 

the tachyzoite that has been analysed so far in this thesis. Bradyzoites are a morphologically 

similar form of the parasite to the tachyzoite (Dubey, Lindsay & Speer 1998), they are able to 

infect host cells (Dubey, Lindsay & Speer 1998; Tunev et al. 2002) but they exhibit slower 

growth and different cyst formation, often in response to some form of stress. Safe within 

their thick-walled cysts, bradyzoites are able to sit quiescent, avoiding the immune system of 

the host, until possible recrudescence under more favourable circumstances (Buxton, 

McAllister & Dubey 2002; Hemphill et al. 2004; Innes et al. 2002; Tunev et al. 2002). This 

recrudescence is the key to endogenous vertical transmission. 

6.1.1 Bradyzoites and recrudescence of infection 

This reactivation of an infection by mobilisation of bradyzoites from their cysts to the 

bloodstream, where they can cross the placenta in a pregnant animal, is thought to be the 

major route of transmission of neosporosis in cattle (Anderson et al. 1997; Bjorkman et al. 

1996; Guy et al. 2001; Innes et al. 2005; Schares et al. 1998; Trees & Williams 2005; Williams 

et al. 2009), with reported efficiencies of 78-95% (Davison, Otter & Trees 1999; Pare, 

Thurmond & Hietala 1997). Exogenous transplacental transmission, where the cow first 

acquires an infection during pregnancy, also adds to the overall spread of the parasite to 

successive generations (Innes 2007; Trees & Williams 2005; Williams et al. 2009).  

After recrudescence of neosporosis, the circulating parasites are thought to be tachyzoites; 

having reverted back to this more proliferative life stage (Trees & Williams 2005; Williams et 

al. 2009). Tachyzoites are easily maintained in cell culture and as such are readily available for 

study. This, coupled with their major role in dissemination through the host during an 

infection, makes them an ideal life-stage for experimentation. Whilst sporozoites would make 

interesting subjects for study, they are produced by the definitive host in such low numbers 

(Gondim, Gao & McAllister 2002; McAllister et al. 1998) that they are unobtainable for most 

researchers and tend to be used mainly for in vivo studies with cattle, where relatively few 
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sporozoites (typically hundreds) are required to initiate an infection (Gondim, Gao & 

McAllister 2002), compared to the many millions that would be required for proteomic and 

transcriptomic analysis (Methods (Chapters 2.2 and  6.2)). Bradyzoites offer an opportunity to 

analyze an additional life stage that, whilst not easy to grow in large numbers or at 100% 

conversion rate, can be maintained in cell culture. The Hemphill group in Bern have worked 

on optimizing their production and have developed a method using sodium nitroprusside 

induction to trigger stage conversion ((Vonlaufen et al. 2004; Vonlaufen et al. 2002) and 

personal communication with A. Hemphill and T. Monney). By elucidating the differences and 

similarities in gene expression between bradyzoites and tachyzoites it may eventually be 

possible to identify crucial genes involved in stage conversion. This in turn would allow drug 

and vaccine developers to target either tachyzoites preparing to encyst as bradyzoites, or 

bradyzoites recrudescing and reverting to tachyzoites, and potentially enable arrest of these 

processes so imperative to the epidemiology of the disease. 

6.1.2 RNA-Seq 

High-throughput ‘next generation’ sequencing has developed rapidly over recent years and as 

such, platforms are now available from a number of manufacturers and open to commercial 

use by sequencing centres around the world. Early studies used this technology to analyse 

human, yeast and Arabidopsis mRNA (messengerRNA) (Kim et al. 2007; Lister et al. 2008; 

Nagalakshmi et al. 2008; Sultan et al. 2008; Wilhelm et al. 2008) but since then studies in a 

wide array of other organisms, including Apicomplexa, have been published ((Mader et al. 

2011; Otto et al. 2010; Sorber, Dimon & DeRisi 2011; Wang, Gerstein & Snyder 2009) and 

many more).  

Compared to microarray or complementary DNA (cDNA)/expressed sequence tag (EST) 

sequencing, RNA-Seq is cheaper, requires less mRNA and has a high dynamic range for 

effective quantitation of transcripts, with little background noise (Wang, Gerstein & Snyder 

2009).  Illumina sequencing, which produces 50-100 base pair reads, is ideal for situations 

where there is a good quality reference genome available to align the reads to. Firstly, a cDNA 

library is generated from the mRNA. A flow cell is then used for ‘bridge’ PCR reactions 

(between oligos on the flow cell) to generate clusters of DNA; bases are added with 

fluorescent dye (which is a reversible terminator) to distinguish them from one another and 

the flow cell is imaged. The dye is then removed (but not the base) and the next base added; 

and so on (Holt & Jones 2008). The competition for incorporation of bases means high 
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accuracy as all bases are added at once. Illumina flow cells have now been adapted to enable 

paired-end sequencing, which aids the bioinformatic challenge of aligning reads to the correct 

position on the genome (Holt & Jones 2008; Roach et al. 1995). Further detail on the different 

sequencing methods for RNA-Seq is in Chapter 1.8.1.  

To date, there has not been extensive research published of N. caninum mRNA expression. 

One study, performed before the advent of RNA-Seq technology or the publication of the N. 

caninum genome sequence, identified eighty-five differentially expressed amplicons (by 

annealing control primer-based PCR) between tachyzoite and bradyzoite stages (Kang et al. 

2008a). However, due to the lack of availability of gene and protein function information for 

N. caninum, they were only able to identify putative biological functions for six of these genes 

based on homology to known genes: GRA2, ribosomal protein S8, a possible apicomplexan 

specific gene, a putative sporulation protein R gene and cytochromes c and b. Of these, GRA2 

and the apicomplexan specific gene were up regulated in tachyzoites with respect to 

bradyzoites, while for the sporulation gene and cytochromes c and b, the reverse was true. 

Confusingly, while included in a table of differentially expressed genes, the transcription level 

for the apicomplexan specific gene was described as “not changed during conversion from 

tachyzoites to bradyzoites” (Kang et al. 2008). More recently, the Wastling group, in 

collaboration with the Sanger Institute, performed an RNA-Seq analysis of N. caninum 

discussed in more detail in Section 6.2.  

6.2  PILOT STUDY OF THE N. CANINUM TRANSCRIPTOME 

The Neospora caninum genome sequencing and analysis project (Reid et al. 2012) involved an 

RNA-Seq analysis of the transcriptomes of N. caninum parasites from cultures of 2, 3, 4 and 6 

days post infection. This pilot study informed the design of the experiment presented in this 

chapter. Day 3 or 4 tachyzoites in vero cell culture are usually at the stage where they egress 

from the host cells and as such are at an optimal stage for harvesting for subsequent 

experimentation. Consequently, Day 6 parasites had been subjected to deteriorating cell 

culture conditions where a lack of fresh host cells to invade meant that the parasites were 

under stress, and it was hypothesized that they may be in the early stages of conversion to 

bradyzoites. Sequencing was performed by the Sanger Institute, Cambridge on parasites 

cultured by Rebecca Norton, Wastling group, Liverpool, as described in Reid et al. (2012). 

The analysis presented here was performed by Sarah Vermont on data provided by Adam 

Reid. 
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6.2.1  Analysis of the pilot data 

An analysis of the mRNA expression data revealed interesting trends in expression, especially 

relating to apical genes. At the time this analysis was carried out (2009), there were very few 

published RNA-Seq studies and little was known about the nature of the relationship between 

proteome and transcriptome. Whilst quantitative proteomic data for N. caninum was not 

available, the spectrum-count data for the MudPIT experiment in Chapter 2 was used to 

enable a cursory examination of this relationship and revealed some interesting phenomena. 

Firstly, both the proteome and the transcriptome exhibited a characteristic curve on a graph of 

genes ordered by expression level on the x axis plotted against expression level on the y axis; 

the vast majority of genes were expressed at a baseline level with only a small few responsible 

for the bulk of the transcripts or peptides (Figure 6.1). This may help to explain why < 30 % 

of the proteome has so far been identified experimentally (Chapter 2): if the majority of genes 

are expressed at very low levels only. Many of the highly expressed genes were those with 

apical-secretory products, such as GRA1, GRA2, MIC2 and MIC10. 

  

Figure 6.1: Normalised expression levels for all genes (x axis) for which some expression was detected, 

transcriptomically (A) by RNA-Seq or proteomically (B) by MudPIT analysis (Chapter 2). It is clear that a few 

genes exhibit extremely high expression relative to the rest of the genome or proteome (transcriptome data, 

Liverpool/Sanger; proteome data, Liverpool/UCLA; analysis, S. Vermont). 

Secondly, a number of proteins were identified in the LC MS/MS experiments that were not 

detected by RNA-Seq (Figure 6.2). This was also seen when proteomic data for T. gondii (Xia 

et al. 2008) was compared with the T. gondii transcripts, with three proteins common to both 

proteomes but absent from the transcriptomes (NC_LIV_040580/52.m01559 alpha 

glucosidase II, putative; NC_LIV_041100/52.m01619 Delta-aminolevulinic acid dehydrate, 

isoform 3; NC_LIV_105020/59.m03479 Insulysin, putative).  
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Figure 6.2: Venn diagram showing gene expression detected in the transcriptome and the proteome. Peptides 

were identified for 26 genes that were not detected by RNA-Seq (transcriptome data, Liverpool/Sanger; 

proteome data, Liverpool/UCLA; analysis, S. Vermont). 

 

 

Figure 6.3: Comparison of Day 3 cultures to Day 4 and Day 6. Very little difference was observed between Day 

3 and 4 tachyzoites, as would be expected, but by Day 6 a number of genes were up or down regulated as 

identified by DESeq analysis (DESeq analysis, A. Reid; data analysis, S. Vermont).  

Figure 6.3 shows that there was minimal difference in expression (n=7) between Day 3 and 

Day 4 parasites (tachyzoites at optimal time for egress) but by Day 6 (stressed tachyzoites, 

possibly beginning stage conversion) many more genes were differentially expressed (n=626). 

The changes in expression of rhoptry, dense granule and micronemal genes, in Day 3 cultures 

compared to Day 6, can be seen in Figure 6.4. Most striking is the reduction in expression 

levels of rhoptry genes, suggesting that rhoptries may play a lesser role in bradyzoites than 

tachyzoites. This would support the notion that bradyzoites are less primed for invasion than 

tachyzoites and that their specialism lies in different areas. However, as the Day 6 cultures 

cannot be considered true bradyzoites, this is purely speculation, and RNA-Seq analysis of 
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improved bradyzoite cultures would enable further investigation of these hypotheses (Section 

6.2.2). As might be expected, surface antigen expression levels indicated that a different 

repertoire were expressed by the Day 6 parasites than the Day 3/4 and among those identified 

as being up-regulated by Day 6 was the bradyzoite antigen SAG4 (Odberg-Ferragut et al. 1996; 

Weiss & Kim 2000).   

 

Figure 6.4: Changes in mRNA expression of key genes when comparing Day 6 N. caninum cultures to Day 3. 

Most notably, 23 rhoptry genes were down regulated in the putatively bradyzoite-like Day 6 cultures. 

Differential expression analysis was performed using DESeq (Transcriptome data Liverpool/Sanger; DESeq 

analysis A. Reid; data analysis S. Vermont).  

6.2.2  Objectives for the bradyzoite/tachyzoite RNA-Seq analysis 

The aim of this experiment was to understand the genes involved in tachyzoite to bradyzoite 

stage conversion. It was hypothesized that the two life stages would have different protein (and 

hence mRNA) requirements due to their different phenotypes. A particular area of interest 

was the apical genes known to be involved in the invasion process, as the hypothesis was that 

the bradyzoite stage parasites would be less specialized for host cell invasion than the 

tachyzoite stage.  The data from the pilot RNA-Seq experiment suggested that this was the 

case, and so led to the design of a comprehensive RNA-Seq experiment analysing sodium 

nitroprusside-induced bradyzoites in addition to tachyzoites. This was achieved by an 

investigation of mRNA expression-level changes between tachyzoite and bradyzoite cultures, 

using Illumina Hi-Seq2000 next-generation sequencing technology, in collaboration with the 

Hemphill group, Bern. 
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6.3 MATERIALS AND METHODS 

6.3.1   Sample collection 

Cell culture was carried out with Nc Liverpool tachyzoites in vero cells by the Hemphill 

group, University of Bern (Vonlaufen et al. 2004). Stage conversion was induced by the 

addition of sodium nitroprusside to the cultures at a final concentration of 50 µM on Day 0. 

Samples were then collected as detailed in Table 6.1: two biological repeats of each sample 

were prepared in order to enable statistical analysis of expression level.  

Table 6.1: Tachyzoite/bradyzoite RNA-Seq samples. Day 0 refers the time at which the 

tachyzoites were exposed to sodium nitroprusside. 

Sample Description Biological Repeats 

Day 0 (a and b) Tachyzoites, no sodium nitroprusside induction 2 

Day 1 (a and b) 
Tachyzoites after 1 day sodium nitroprusside (may be 
preparing to stage convert) 

2 

Day 3 (a and b) 
Tachyzoites after 3 days sodium nitroprusside (may 
be preparing to stage convert) 

2 

Day 6 (a and b) 
Tachyzoites/bradyzoites after 6 days sodium 
nitroprusside 

2 

 

Parasites were purified on PD-10 columns (Sigma-Aldrich) on ice and counted using a 

Neubauer chamber. Trizol reagent (Invitrogen) was immediately added to the parasite 

suspensions to 0.5-1.0 x 107 parasites/ml and the lysates were frozen at -80°C and shipped to 

Liverpool for subsequent procedures. Extraction of total RNA, isolation of mRNA, and 

quantitation by Qubit Assay (Invitrogen) were carried out by the author as were the eventual 

transcriptomic data analyses.  

6.3.2 Total RNA extraction by hybrid chloroform/RNeasy method 

Total RNA was isolated from tachyzoite/bradyzoite Trizol suspensions by a hybrid protocol 

which comprised incubation of the parasite/Trizol homogenate with 0.2 ml chloroform per 1 

ml for 2-3 minutes (vigorously shaken for the first 15 seconds) followed by centrifugation at 

12 000 x g for 15 minutes at 4 oC. The aqueous phase was then carefully transferred to a new 

microcentrifuge tube and an equal volume of 70 % (v/v) EtOH added (this was in the region 

of 500-700 µl per 1 ml starting material). Subsequent steps were taken from the Qiagen 

RNeasy protocol as follows: the samples were loaded onto an RNeasy column and centrifuged 

at 8000 x g for 30 seconds. The flow-through was discarded, and the column was washed in 
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buffers RW1 (700 µl, 30 second centrifugation at 8 000 x g) and RPE (500µl, 30 second 

centrifugation at 8000 x g) before being subjected to a 2 minute centrifugation at 8000 x g in a 

new collection tube to remove any remaining buffer. Finally, the column was transferred to 

another collection tube and the RNA eluted in 30 µl RNase-free water, by incubation at room 

temperature for 1 minute followed by centrifugation at 8000 x g for 1 minute. Samples were 

then stored at -80 oC for subsequent isolation of Poly(A) RNA and quality control (Section 

6.3.4) 

6.3.3 Isolation of mRNA by Poly(A) selection 

Total RNA samples were diluted to 250 µl with RNase-free water for mRNA selection by a 

microPoly(A) purist kit (Invitrogen). All subsequent steps are taken from the kit protocol: 

Samples were mixed with an equal volume of 2x binding solution, bound to oligo(dT) 

cellulose, heated to 70 oC and then incubated  (with rocking) for 1 hour at room temperature. 

The oligo(dT) cellulose was pelleted at 4 000 x g for 3 minutes at room temperature, washed 

twice with each of wash solutions 1 and 2, then the mRNA eluted in 200 µl RNA storage 

solution preheated to  70 oC, by centrifugation at 5 000 x g for 2 minutes. The eluted poly(A) 

RNA was precipitated overnight at -20oC  by addition of 20 µl 5 M ammonium acetate, 1 µl 

glycogen and 550 µl 100 % (v/v) EtOH. It was recovered by 30 minutes of centrifugation at 

12 000 x g at 4 oC and resuspended in RNA storage solution (included in the kit) before being 

quantitated on a Qubit Fluorometer (Invitrogen) and stored at -80 oC.  

6.3.4 Quality Control  

Samples were submitted to the Centre for Genomic Research (CGR), Liverpool for 

assessment on a Bioanalyzer chip (Agilent). Total RNA traces were examined to determine the 

intactness of RNA and Poly(A) RNA was evaluated to ensure that sufficient depletion of 

ribosomal RNA had occurred so as not to hinder analysis of mRNA. An example of a 

satisfactory total RNA (A) and Poly(A)-selected RNA (B) sample can be seen in Figure 6.5. 
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A   B  

Figure 6.5: Bioanalyzer traces of representative samples which passed quality control. A shows total RNA, with 

ribosomal peaks clearly visible (between 1 000 and 4 000 nt); while B shows RNA after Poly(A) selection, 

ribosomal peaks can still be detected but they have been sufficiently depleted so as not to mask mRNA. 

Nucleotides are on the x axis with fluorescence units on the y axis. Assessment of traces for quality control was 

based purely upon the appearance of the curve, quantitation of RNA was measured separately by Qubit Assay 

(Invitrogen).  

6.3.5 Sequencing 

Library construction, amplification and sequencing took place at the Liverpool Centre for 

Genomic Research. Strand-specific RNA Seq libraries were prepared from eight enriched 

PolyA-RNA samples, then were sequenced on the Illumina HiSeq2000 platform in one lane 

aiming to generate in excess of 20 million paired-end reads per sample. Mapping was 

performed to keep only the uniquely mapped reads, this is so that a read aligning to more than 

one location, due to similarity of the sequences would be discarded. Therefore, RNA 

belonging to gene families would potentially have been excluded from the analysis, but 

expression spikes resulting from such a situation would have been avoided. The mapping was 

performed using TopHat 1.3.2 which also gave FPKM (fragments per kilobase of exon per 

million fragments mapped) values as an output using Cufflinks; and the raw counts were 

generated using htseq-count script (Python). 

6.3.6 Data analyses 

In order to assess the similarity of biological repeats, a Spearman’s Rank Correlation was 

carried out. This test is suitable for non-parametric data and is the equivalent of the Pearson 

Correlation Coefficient, but carried out on ranked data (Myers & Well 2003). A Correlation 

Coefficient of 1 indicates perfect positive correlation while a coefficient of -1 indicates perfect 

negative correlation (Dytham 2003).  

Raw count values were analysed in a pair wise fashion using DESeq  in R. DESeq allows the 

identification of differentially expressed genes using a method based upon the negative 

binomial distribution (Anders & Huber 2010). It generates ‘padj’ p-values which have been 

subjected to the Benjamini Hochberg-correction for multiple testing.  
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The software package GProX (Rigbolt, Vanselow & Blagoev 2011) was used to generate 

cluster analyses, using a fuzzification value of 2 for 100 iterations. Apical genes were identified 

as detailed in Chapter 3, bradyzoite-associated genes were identified by literature searching, 

and by text-mining ToxoDB (Gajria et al. 2008). 

Genes involved in N. caninum metabolic pathways were downloaded from the Liverpool 

Library of Apicomplexan Metabolic Pathways (LAMP) (Achuchuthan Shanmugasundram et al. 

unpublished) and searched against differential expression data generated by the DESeq 

analysis.  
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6.4 RESULTS 

6.4.1 Sample preparation and sequencing 

All samples submitted for sequencing achieved the quality control checks made by CGR and 

yielded reads as can be seen in Table 6.2. The percentage of reads mapped to the N. caninum 

genome is in the range 27-54 %: the remaining reads are likely to be contamination from vero 

cells. Nevertheless, over 90 % of all N. caninum genes exhibited a detectable level of mRNA 

expression across all eight samples, so there appeared to have been a sufficient depth of 

coverage of the genome. The ability to map reads specifically to a reference genome meant 

that host cell contamination was not a problem, as vero cell reads did not map and were 

therefore not included in the expression analysis. Conversion to bradyzoites in the cultures 

used to generate the RNA was progressive over the time course from 0 to approximately 50 

%, as estimated by expression of the bradyzoite antigen BAG1 (Hemphill group, personal 

communication). 

Table 6.2: Summary of reads and mapping to the Neospora caninum genome. Day 0 (D0) refers 

to samples collected prior to sodium nitroprusside induction (tachyzoites), Day 1 and D3 (D1, 

D3) to parasites after one/three day(s) of sodium nitroprusside induction, respectively, and 

Day 6 (D6) to bradyzoite-like parasites after six days of sodium nitroprusside induction. 

Sample Number of N. 
caninum genes  

Number of 
transcripts mapped 
to genome 

% of transcripts 
mapped to genome 

D0a  7227  7098   98.22  

D0b  7227  7076   97.91  

D1a  7227  6615  91.53  

D1b  7227   6527   90.31  

D3a  7227  6536  90.44  

D3b  7227  6621  91.61  

D6a  7227  6608   91.43  

D6b  7227  6701  92.72  

 

6.4.2 Spearman’s Rank correlation of biological replicates 

All samples were highly positively correlated with their pair for that time point, so for further 

analyses (such as clustering), a mean of the each two biological repeats was used to represent 
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the time point, as the biological repeats appear to be sufficiently similar to one another to 

allow this. The coefficients and p-values are displayed in Table 6.3.  

Table 6.3: Spearman’s Rank correlation of biological repeats 

Samples Spearman’s Rank Correlation Coefficient p-value 

Day 0a and Day 0b 0.968 < 0.000 

Day 1a and Day 1b 0.922 < 0.000 

Day 3a and Day 3b 0.847 < 0.000 

Day 6a and Day 6b 0.908 < 0.000 

 

6.4.3 Differential expression 

The data were analyzed using DESeq (Anders & Huber 2010) to identify significantly 

differently expressed genes, in  a pair-wise fashion between the time points. A summary of the 

results, paying particular attention to apical and bradyzoite genes, can be seen in Table 6.4. 

Both up and down regulation of genes were identified between most samples.  

As would be expected, the largest difference was apparent between Day 0 and Day 6 (99 genes 

differentially expressed, which corresponded to 1.4 % of the genome). The time points 

between which most of the differences occur coincided with when sodium nitroprusside was 

added to the culture (to induce stress and as such stage-conversion to bradyzoites), between 

Day 0 and Day 1. Pair wise comparisons which did not include the non-sodium nitroprusside-

induced time point, Day 0, have noticeably fewer differentially expressed genes: there were 

72 (1 % of the genome) significantly differentially expressed genes between day 0 and day 1 

samples, compared to only 5 (0.7 %), 1 (0.01 %) and 11 (0.15 %) between day 1/day3, day 

3/day6 and day 1/day 6 respectively. 

Both of the differentially expressed genes which have been linked to the bradyzoite life cycle 

stage (bradyzoite surface antigen (NCLIV_019580) and Hypothetical/DnaK-TPR 

(NCLIV_022840)), were up regulated in the later time points when compared to earlier time 

points (within the pair wise comparisons). No dense granule genes were significantly 

differentially expressed, while microneme genes were both up and down regulated over the 

time course. 

The trend for rhoptry gene expression to decrease as the parasites prepare to stage convert 

agreed with data from the previous Reid et al. (2012) transcriptomics experiment; ROP40 
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(NCLIV_012920), ROP14 (NCLIV_057960) and Toxofilin (NCLIV_051340) were down 

regulated in both experiments. Furthermore, the bradyzoite surface antigen NCLIV_019580 

was identified in both experiments as down regulated in later time points also. 
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Table 6.4:  Summary of differential expression from DESeq analysis. P-value ≤ 0.01 (padJ corrected P-value). Samples were analysed in a pair wise manner 

(Day x vs. Day y) where up regulation (green text) refers to higher expression in Day y when compared to Day x and down regulation the reverse (red text).  

 Day 0 vs. Day 1 Day 0 vs. Day 3 Day 0 vs. Day 6 Day 1 vs. Day 3 Day 1 vs. Day 6 Day 3 vs. Day 6 
No. genes differentially expressed 72 88 99 5 11 1 

No. up regulated 1 

 
31 43 67 5 11 1 

No. down regulated 2 
 

41 45 32 0 0 0 

D.E. (differentially expressed) 
rhoptry genes 

 

ROP40 
(NCLIV_012920); 

ROP37 
(NCLIV_001460); 
Lipase maturation 

factor2 
(NCLIV_057950); 

Hypothetical/ROP14 
(NCLIV_057960); 

Toxofilin 
(NCLIV_051340) 

Zgc:55863 
(NCLIV_017420); 

Toxofilin 
(NCLIV_051340); 

ROP40 
(NCLIV_012920) 

 

ROP40 
(NCLIV_012920) 

 

0 0 0 

D.E. dense granule genes 0 0 0 0 0 0 

D.E. microneme genes NcMCP7 
(NCLIV_054425) 

 

MIC3 
(NCLIV_010600); 

Pan domain containing 
protein 

(NCLIV_068830) 

 

MIC3 
(NCLIV_010600); 

MIC4 
(NCLIV_002940); 

Pan domain containing 
protein 

(NCLIV_068830); 
NcMCP3 

(NCLIV_003260); 
NcMCP4 

(NCLIV_003250) 

 

NcMCP3 
(NCLIV_003260); 

 

NcMCP3 
(NCLIV_003260); 

NcMCP4 
(NCLIV_003250) 

 

0 

D.E. bradyzoite genes bradyzoite surface 
(NCLIV_019580) 

 

bradyzoite surface 
(NCLIV_019580) 

 

bradyzoite surface 
(NCLIV_019580); 

Hypothetical/DnaK-
TPR (NCLIV_022840) 

Hypothetical/DnaK-
TPR (NCLIV_022840) 

0 0 

1 positive log2 fold change;    2 negative log2 fold change



115 
 

6.4.4 Cluster Analyses 

Cluster analyses were performed on fragments per kilobase of exon per million fragments 

mapped (FPKMs) values using GProX (Rigbolt, Vanselow & Blagoev 2011). A fragment refers 

to a pair of reads, as generated by paired-end sequencing. Clustering RNA-Seq data is a 

complicated area that needs further development within the bioinformatic community. So, 

while the following figures can be helpful to view the general trends in the data, they should be 

used with caution as the algorithms have not yet been designed with analysing time-course 

RNA-Seq data in mind. As such, only sub sets of genes from the apical organelles (n = 22, 58 

and 42 for dense granules, rhoptries and micronemes respectively) and those relating to 

bradyzoites (n = 28) have been clustered, simply to enable a visualisation of the way in which 

expression levels are changing over the time course, as opposed to the pair-wise manner of the 

DESeq analysis.  

It is important to note that changes in expression apparent in the cluster analysis may not have 

been identified as significant differences in expression in the DESeq analysis, but rather all 

genes over the range of expression levels have been included.  
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Figure 6.6: Bradyzoite-associated genes clustered over the time course. Biological repeats were averaged to 

produce a mean FPKM for each time point. N = 28, time points were as follows: 1=Day 0, 2=Day 1, 3=Day 3, 

4=Day 6.  

Figure 6.6 and Table 6.5 show that the majority of bradyzoite-associated genes identified in 

the analysis showed an upward trend in expression over the time course (clusters 2, 3 and 5), 

which supports the conversion procedure carried out at Bern. There were genes in clusters 4 

and 6 which appear to decrease in expression, but these were not identified as significantly 

differently expressed in the DESeq analysis. An FPKM expression level which constitutes a 

biologically relevant cut-off point for ‘real’ expression of genes is unknown and as such it is 

difficult to discern how much variation in expression would be required to impact on the 

biology of the organism. Cluster 1 shows three genes for which no transcripts were detected at 

any time point. 
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Table 6.5: Membership of bradyzoite-associated gene clusters, with mean FPKM values for 

the two biological replicates. Green text indicates an upward overall trend in expression for 

that cluster over the time course. 

I.D. Description FPKM 
Day 0 

FPKM 
Day 1 

FPKM 
Day 3 

FPKM 
Day 6 

Cluster 

NCLIV_067920 SRS domain-containing protein 0.0 0.0 0.0 0.0 1 

NCLIV_067930 SRS domain-containing protein 0.0 0.0 0.0 0.0 1 

NCLIV_067940 SRS domain-containing protein 0.0 0.0 0.0 0.0 1 

NCLIV_007770 

Rhoptry kinase family protein, 
truncated (incomplete catalytic 
triad), putative 22.3 16.1 42.8 65.6 2 

NCLIV_019580 

SRS domain-containing 
protein,bradyzoite surface 
antigen, putative 0.5 5.3 11.6 26.2 2 

NCLIV_036410 cyst matrix protein, putative 75.4 121.1 237.1 364.6 2 

NCLIV_056110 
small heat shock protein 21, 
putative 40.0 25.1 41.3 56.2 2 

NCLIV_010810 
deoxyribose-phosphate aldolase, 
putative 0.1 0.0 0.1 1.9 3 

NCLIV_022240 ATPase, related 2.1 1.4 2.8 7.1 3 

NCLIV_022840 hypothetical protein, conserved 0.1 0.1 0.7 3.6 3 

NCLIV_027470 bradyzoite antigen, putative 0.0 0.0 4.9 34.0 3 

NCLIV_037490 Enolase (EC 4.2.1.11), related 6.3 1.2 4.2 19.2 3 

NCLIV_042910 
Malate dehydrogenase (EC 
1.1.1.37), related 0.3 0.2 1.9 11.0 3 

NCLIV_012510 hypothetical protein 150.3 144.8 106.0 112.7 4 

NCLIV_032780 
small heat shock protein 20, 
putative 465.1 490.2 361.1 277.2 4 

NCLIV_067960 SRS domain-containing protein 0.1 0.2 0.0 0.0 4 

NCLIV_011120 
Malate dehydrogenase (EC 
1.1.1.37), related 38.8 56.7 53.6 52.0 5 

NCLIV_019110 HSP90-like protein, related 105.2 120.0 187.4 142.5 5 

NCLIV_032330 

Malate dehydrogenase (NAD) 
(EC 1.1.1.37) (Precursor), 
related 61.0 66.2 87.2 68.6 5 

NCLIV_037500 Enolase (EC 4.2.1.11), related 5.5 16.5 17.5 18.5 5 

NCLIV_040880 HSP90, related 178.1 243.0 348.7 264.1 5 

NCLIV_009990 SRS domain-containing protein 0.0 0.0 0.0 0.0 6 

NCLIV_010030 

SRS domain-containing 
protein,Bradyzoite surface 
protein BSR4 0.4 0.0 0.2 0.3 6 

NCLIV_010060 SRS domain-containing protein 0.1 0.0 0.0 0.0 6 

NCLIV_067890 SRS domain-containing protein 0.2 0.0 0.0 0.0 6 

NCLIV_067900 SRS domain-containing protein 0.0 0.0 0.0 0.0 6 

NCLIV_067910 SRS domain-containing protein 0.2 0.0 0.0 0.0 6 

NCLIV_067950 SRS domain-containing protein 0.3 0.0 0.0 0.1 6 
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Figure 6.7: Dense granule-associated genes clustered over the time course. Biological repeats were averaged to 

produce a mean FPKM for each time point. N = 22, time points were as follows: 1=Day 0, 2=Day 1, 3=Day 3, 

4=Day 6.  

In Figure 6.7 and Table 6.6, dense granule genes in clusters 1 and 2 appear to decrease in 

expression over time, while cluster 3 contains some genes which increase as well as those 

which do not appear to change their expression levels. No dense granule genes were identified 

as having significantly different expression in the DESeq analysis, but the slight downward 

trend in expression seen in clusters 1 and 2 could support the hypothesis that invasion-related 

organelles play less of a role in bradyzoites than tachyzoites. 
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Table 6.6: Membership of dense granule-associated gene clusters, with mean FPKM values 

for the two biological replicates. Red text indicates an overall downward trend in expression 

for that cluster over the time course. 

I.D. Description FPKM 
Day 0 

FPKM 
Day 1 

FPKM 
Day 3 

FPKM 
Day 6 

Cluster 

NCLIV_068460 hypothetical protein 270.5 171.9 193.1 187.3 1 

NCLIV_021640 dense granule protein 7, putative 996.6 415.5 344.5 260.1 1 

NCLIV_036400 
dense granule protein 1 / major 
antigenp24, putative 8284.5 4002.4 5286.7 4279.1 1 

NCLIV_045650 28 kDa antigen, putative 5418.8 2397.9 2968.7 2088.2 1 

NCLIV_045870 Putative dense granule protein 3 367.4 197.5 204.3 141.2 1 

NCLIV_052880 
granule antigen protein GRA6, 
putative 1035.4 384.2 468.7 437.3 1 

NCLIV_068400 NTPase 2.1 1.2 0.9 0.3 1 

NCLIV_003100 
serine proteinase inhibitor TgPI-2, 
putative 81.6 80.1 63.3 68.9 2 

NCLIV_003120 serine proteinase inhibitor, putative 118.0 137.2 68.0 66.9 2 

NCLIV_005560 
dense-granule antigen DG32, 
putative 78.8 60.0 54.3 55.0 2 

NCLIV_008990 hypothetical protein 75.5 72.0 57.3 47.4 2 

NCLIV_067130 hypothetical protein 2.6 3.6 1.8 1.6 2 

NCLIV_036630 14-3-3 protein, putative 5.2 4.8 4.2 3.3 2 

NCLIV_014150 hypothetical protein 56.8 65.1 68.0 65.0 3 

NCLIV_016360 hypothetical protein, conserved 8.4 5.7 8.3 7.5 3 

NCLIV_024820 14-3-3 protein homolog 137.0 189.1 191.6 178.5 3 

NCLIV_036930 14-3-3 protein, putative 0.0 0.0 0.2 0.2 3 

NCLIV_037450 
dense granular protein GRA10, 
putative 0.5 0.2 0.8 0.5 3 

NCLIV_041120 hypothetical protein, conserved 137.7 131.2 160.9 130.7 3 

NCLIV_045450 14-3-3-like protein, related 5.9 3.8 4.2 5.5 3 

NCLIV_054830 hypothetical protein 30.8 27.2 42.3 35.6 3 

NCLIV_066630 GRA9 protein, putative 32.5 27.0 37.2 27.8 3 
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Figure 6.8: Rhoptry-associated genes clustered over the time course. Biological repeats were averaged to 

produce a mean FPKM for each time point. N = 58, time points were as follows: 1=Day 0, 2=Day 1, 3=Day 3, 

4=Day 6.  

In Figure 6.8 and Table 6.7, cluster 1 shows rhoptry genes which appear to increase in 

expression between day 0 and day 1, but then decrease. Clusters 2 and 4 show a decrease in 

expression over time; while cluster 3 shows six genes whose expression is highest at the most 

bradyzoite-like time point, day 6. The vast majority of rhoptry genes, 45 out of 58, belong to 

clusters 2 and 4, suggesting that in general rhoptry gene expression decreases as the parasites 

stage-convert to the bradyzoite form. This is in agreement with the DESeq analysis above. 
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Table 6.7: Membership of rhoptry-associated gene clusters, with mean FPKM values for the 

two biological replicates. Red text indicates an overall downward trend in expression for that 

cluster over the time course, green an increase and blue text indicates an increase in 

expression from Day 0 to Day 1 followed by a decrease over the remainder of the time course.  

I.D. Description FPKM 
Day 0 

FPKM 
Day 1 

FPKM 
Day 3 

FPKM 
Day 6 

Cluster 

NCLIV_022130 
Rhoptry kinase family protein ROP25, 
putative 0.4 0.7 0.5 0.7 1 

NCLIV_023260 
Rhoptry kinase family protein ROP33, 
putative 2.0 4.9 2.9 2.1 1 

NCLIV_023580 
Rhoptry kinase family protein ROP45 
(incomplete catalytic triad), putative 0.0 0.1 0.1 0.0 1 

NCLIV_024700 
Rhoptry kinase family protein ROP21, 
putative 1.9 2.5 2.4 2.4 1 

NCLIV_025120 
Rhoptry kinase family protein ROP16, 
putative 0.4 1.1 0.4 0.4 1 

NCLIV_056620 
Rhoptry kinase family protein ROP27, 
putative 3.7 5.6 4.2 5.4 1 

NCLIV_069550 
Cathepsin B-like protease (Precursor), 
related 3.0 7.3 6.4 5.6 1 

NCLIV_001460 
Rhoptry kinase family protein ROP37 
(incomplete catalytic triad), putative 5.1 0.0 0.3 0.4 2 

NCLIV_002580 
Rhoptry kinase family protein ROP36 
(incomplete catalytic triad), putative 0.2 0.0 0.0 0.0 2 

NCLIV_004220 
Rhoptry antigen ROP8 (EC 2.7.11.26), 
related 0.3 0.0 0.0 0.0 2 

NCLIV_004230 hypothetical protein 0.0 0.0 0.0 0.0 2 

NCLIV_012920 
Rhoptry kinase family protein ROP40 
(incomplete catalytic triad), putative 20.8 1.2 1.7 3.2 2 

NCLIV_017410 hypothetical protein 0.0 0.0 0.0 0.0 2 

NCLIV_017420 Zgc:55863, related 1.4 0.0 0.3 0.3 2 

NCLIV_017430 hypothetical protein 0.0 0.0 0.0 0.0 2 

NCLIV_017440 hypothetical protein 1.1 0.1 0.2 0.3 2 

NCLIV_027710 
Rhoptry kinase family protein ROP31, 
putative 0.0 0.0 0.0 0.0 2 

NCLIV_030990 
Rhoptry kinase family protein ROP46, 
putative 0.8 0.0 0.1 0.0 2 

NCLIV_040110 hypothetical protein, conserved 0.1 0.0 0.0 0.0 2 

NCLIV_045580 hypothetical protein, conserved 12.9 4.5 2.4 2.8 2 

NCLIV_048060 
Rhoptry kinase family protein ROP41, 
putative 5.5 2.4 0.9 1.6 2 

NCLIV_051340 toxofilin, putative 260.6 33.6 44.8 49.9 2 

NCLIV_057960 hypothetical protein 17.4 2.9 5.2 4.1 2 

NCLIV_060730 hypothetical protein 11.5 2.1 2.4 2.0 2 

NCLIV_060740 ROP 2, related 5.2 0.5 0.3 0.5 2 

NCLIV_068850 hypothetical protein 43.5 8.4 12.7 11.8 2 

NCLIV_068890 hypothetical protein 5.8 0.9 1.5 1.7 2 

NCLIV_001950 
Rhoptry protein ROP7 (EC 2.7.11.12), 
related 0.6 0.4 1.4 2.0 3 

NCLIV_002650 
Rhoptry kinase family protein ROP22 
(incomplete catalytic triad), putative 0.4 0.4 0.3 1.0 3 

NCLIV_007770 
Rhoptry kinase family protein, truncated 
(incomplete catalytic triad), putative 22.3 16.1 42.8 65.6 3 

NCLIV_011690 ROP15 protein, related 18.6 13.9 17.9 20.7 3 

NCLIV_058560 rhoptry protein, putative 0.8 0.6 0.8 1.0 3 
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NCLIV_065640 
Rhoptry kinase family protein, truncated 
(incomplete catalytic triad), putative 37.4 30.1 39.4 39.2 3 

NCLIV_000650 
Rhoptry kinase family protein ROP34, 
putative 2.9 2.3 2.2 1.4 4 

NCLIV_001400 hypothetical protein, conserved 1.2 0.4 0.4 0.5 4 

NCLIV_001970 hypothetical protein 158.4 33.8 52.4 56.1 4 

NCLIV_007800 Tg65, related 10.1 4.0 4.7 4.9 4 

NCLIV_011730 
Rhoptry kinase family protein ROP26 
(incomplete catalytic triad), putative 20.3 5.6 9.8 8.8 4 

NCLIV_016220 
Rhoptry kinase family protein ROP23 
(incomplete catalytic triad), putative 5.8 3.2 3.0 3.6 4 

NCLIV_018420 p36 protein, putative 164.2 58.9 62.2 66.7 4 

NCLIV_020320 Proteophosphoglycan ppg4, related 0.2 0.1 0.1 0.0 4 

NCLIV_021100 hypothetical protein, conserved 29.8 11.6 12.9 16.9 4 

NCLIV_027850 rhoptry protein 6, putative 79.8 22.0 32.9 32.5 4 

NCLIV_027930 
Rhoptry kinase family protein ROP17, 
putative 12.0 3.4 5.3 4.5 4 

NCLIV_028130 
Rhoptry kinase family protein ROP28, 
putative 1.2 0.8 0.9 0.4 4 

NCLIV_028170 
Rhoptry kinase family protein ROP20, 
putative 17.6 3.6 7.2 5.2 4 

NCLIV_030050 hypothetical protein, conserved 31.6 11.6 15.9 16.4 4 

NCLIV_035860 
Rhoptry kinase family protein ROP32, 
putative 7.3 4.7 2.1 2.5 4 

NCLIV_044410 
Rhoptry kinase family protein ROP35, 
putative 26.9 22.2 19.4 17.2 4 

NCLIV_046000 
Rhoptry kinase family protein ROP30, 
putative 0.6 0.5 0.3 0.2 4 

NCLIV_048590 hypothetical protein, conserved 20.9 6.3 10.9 10.1 4 

NCLIV_053840 hypothetical protein 204.6 45.4 83.8 78.2 4 

NCLIV_054120 
sushi domain-containing protein / SCR 
repeat- containing protein, putative 18.9 4.5 7.1 6.1 4 

NCLIV_055360 hypothetical protein, conserved 108.2 28.0 41.3 44.9 4 

NCLIV_055850 hypothetical protein, conserved 6.1 3.0 3.3 3.2 4 

NCLIV_057950 Lipase maturation factor 2, related 33.7 6.3 8.3 13.4 4 

NCLIV_058180 Rhoptry protein 10, related 19.2 4.9 7.6 13.4 4 

NCLIV_064620 rhoptry neck protein 2, putative 32.9 9.3 13.8 13.7 4 

 

 



123 
 

 

Figure 6.9: Microneme-associated genes clustered over the time course. Biological repeats were averaged to 

produce a mean FPKM for each time point. N = 42, time points were as follows: 1=Day 0, 2=Day 1, 3=Day 3, 

4=Day 6.  

There would appear to be different subsets of microneme genes which behave differently in 

their expression over time (Figure 6.9 and Table 6.8). Genes whose expression decreases over 

the time course belong to clusters 3 and 6. Cluster 4, similarly to rhoptry cluster 1, contains 

genes whose expression peaks at Day 1 after sodium nitroprusside induction; while cluster 5 

genes are expressed at Day 0, show a decrease in expression at Days 1 and 3 and then increase 

again by Day 6. Those in cluster 1 appear to maintain expression throughout, so are perhaps 

important to both the tachyzoite and bradyzoite forms. Distribution of genes over the 6 

clusters in Figure 6.9 is fairly uniform, suggesting that microneme genes fit into a range of 

different expression profiles. 
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Table 6.8: Membership of microneme-associated gene clusters, with mean FPKM values for 

the two biological replicates. Red text indicates an overall downward trend in expression for 

that cluster over the time course, green an increase and blue text indicates an increase in 

expression from Day 0 to Day 1 followed by a decrease over the remainder of the time course.  

I.D. Description FPKM 
Day 0 

FPKM 
Day 1 

FPKM 
Day 3 

FPKM 
Day 6 

Cluster 

NCLIV_025710 microneme protein 7, putative 147.5 132.2 164.2 135.5 1 

NCLIV_036660 hypothetical protein, conserved 1.6 1.3 1.4 1.9 1 

NCLIV_050140 subtilisin-like protease, putative 0.2 0.1 0.3 0.2 1 

NCLIV_062760 hypothetical protein 1.1 1.5 0.9 1.0 1 

NCLIV_068520 
microneme TgMIC5 protein, 
putative 393.2 313.6 242.0 316.1 1 

NCLIV_003250 NcMCP4, putative 2.7 2.3 9.9 37.0 2 

NCLIV_003260 
NcMCP3, putative,microneme 
protein, putative 0.6 0.6 4.0 19.3 2 

NCLIV_007140 microneme protein, putative 0.0 0.0 0.0 0.0 2 

NCLIV_015590 microneme protein, putative 0.0 0.0 0.0 0.0 2 

NCLIV_022530 fibrillin-2 precursor, putative 0.2 0.3 0.3 0.6 2 

NCLIV_038120 
Microneme protein 5 (Precursor), 
related 0.2 0.0 0.1 0.3 2 

NCLIV_058240 microneme protein, putative 0.2 0.0 0.2 0.9 2 

NCLIV_058410 apical membrane antigen, putative 0.0 0.0 0.0 0.1 2 

NCLIV_068830 
PAN domain-containing protein 
(EC 3.4.21.27), related 0.3 0.3 0.2 0.7 2 

NCLIV_002940 microneme protein MIC4, putative 233.0 66.2 48.4 35.7 3 

NCLIV_010600 microneme protein MIC3, putative 963.7 267.2 134.2 114.7 3 

NCLIV_015580 microneme protein, putative 0.1 0.0 0.0 0.0 3 

NCLIV_026810 
NcMCP2, putative,microneme 
protein, putative 0.7 0.3 0.0 0.1 3 

NCLIV_033690 hypothetical protein 185.4 100.6 55.9 38.5 3 

NCLIV_043270 microneme protein MIC1, putative 427.1 174.4 178.7 126.0 3 

NCLIV_061760 microneme protein MIC6, putative 344.9 128.8 104.8 85.4 3 

NCLIV_062750 
EGF-like domain-containing 
protein (EC 3.4.21.21), related 0.1 0.0 0.1 0.0 3 

NCLIV_062770 microneme protein 8, putative 132.3 49.9 47.4 42.9 3 

NCLIV_066250 microneme protein 10, putative 8872.3 2199.7 2608.2 1512.9 3 

NCLIV_066750 NcMCP5, putative 0.1 0.0 0.0 0.0 3 

NCLIV_029340 
EGF-like domain-containing 
protein, putative 0.2 0.3 0.3 0.1 4 

NCLIV_038100 hypothetical protein 0.1 0.6 0.7 0.6 4 

NCLIV_038110 hypothetical protein 0.6 3.3 6.6 4.0 4 

NCLIV_058210 microneme protein, putative 0.0 0.3 0.2 0.2 4 

NCLIV_064590 apical membrane antigen, putative 0.2 1.9 0.8 0.8 4 

NCLIV_069310 microneme protein, putative 0.4 0.9 0.7 0.6 4 

NCLIV_008720 microneme protein, putative 0.3 0.0 0.0 0.0 5 

NCLIV_013920 microneme protein, putative 0.3 0.1 0.0 0.1 5 

NCLIV_054425 NcMCP7, putative 3.2 0.6 0.5 1.6 5 

NCLIV_054450 NcMCP6, putative 0.2 0.0 0.0 0.1 5 

NCLIV_058230 hypothetical protein 0.3 0.0 0.0 0.1 5 

NCLIV_018780 microneme protein, putative 0.2 0.1 0.1 0.0 6 

NCLIV_020720 
microneme protein MIC11, 
putative 715.3 475.6 360.4 333.4 6 

NCLIV_022970 microneme protein 2, putative 162.8 91.5 79.2 54.7 6 

NCLIV_028680 apical membrane antigen 1, 349.4 255.5 238.2 153.0 6 
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putative 

NCLIV_038380 hypothetical protein 0.8 0.7 0.4 0.2 6 

NCLIV_051970 
MIC2-associated protein M2AP, 
putative 189.1 197.2 119.4 96.4 6 

 

 

6.4.5 Highly expressed genes 

The data in Table 6.9 show that microneme and dense granule genes were among those most 

highly expressed across the whole time course. MIC10, GRA1 and GRA2 featured within the 

top ten most highly expressed genes at all four time points. In addition, there were large 

amounts of ribosomal transcripts being produced; all of the genes encoding  ‘hypothetical’ 

proteins but one (NCLIV_065870) in this table are either orthologues of T. gondii ribosomal 

genes or align to other apicomplexan ribosomal genes when subjected to BLAST (Basic Local 

Alignment Search Tool, NCBI). The other ‘hypothetical’, NCLIV_065870 (in red), is more 

interesting as the predicted protein sequence BLASTs only to other ‘hypothetical’ proteins of 

apicomplexa. It would therefore warrant further investigation as it could prove to be a novel 

apicomplexan-specific gene, which, given its high mRNA expression levels, likely plays a 

major cellular role.  
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Table 6.9: Ten most highly expressed genes for each time point, by FPKM (fragments per 

kilobase of exon per million fragments mapped). Red text denotes a hypothetical gene that is 

potentially apicomplexan-specific.  

Day 0 Day 1 Day 3 Day 6 

Gene 
description 

FPK
M 

Gene 
description 

FPKM Gene 
description 

FPKM Gene 
description 

FPKM 

microneme 
protein 10, 
putative 

8872.3 dense granule 
protein 1 / 
major 
antigenp24, 
putative 

4002.4 dense granule 
protein 1 / 
major 
antigenp24, 
putative 

5286.7 dense granule 
protein 1 / 
major 
antigenp24, 
putative 

4279.1 

dense granule 
protein 1 / 
major 
antigenp24, 
putative 

8284.5 hypothetical 
protein 
NCLIV_069470 

3821.8 hypothetical 
protein 
NCLIV_069470 

3694.1 hypothetical 
protein 
NCLIV_069470 

4256.8 

28 kDa antigen 
(GRA2) 

5418.8 28 kDa antigen 
(GRA2) 

2397.9 28 kDa antigen 
(GRA2) 

2968.7 28 kDa antigen 
(GRA2) 

2088.2 

Cytochrome c 
oxidase subunit 
1 related 

2320.2 Ribosomal 
protein L37a, 
related 

2224.5 microneme 
protein 10, 
putative 

2608.1 Ribosomal 
protein L37a, 
related 

2052.2 

hypothetical 
protein 

2070.8 microneme 
protein 10, 
putative 

2199.7 Ribosomal 
protein L37a, 
related 

2030.7 40S ribosomal 
protein S29, 
putative 

1815.9 

Cytochrome c 
oxidase subunit 
1 related 

1728.3 40S ribosomal 
protein S29, 
putative 

2037.7 40S ribosomal 
protein S29, 
putative 

1889.8 microneme 
protein 10, 
putative 

1512.9 

hypothetical 
protein 

1613.7 Cytochrome c 
oxidase subunit 
1, related 

1604.8 hypothetical 
protein 
NCLIV_062890 

1528.2 Cytochrome c 
oxidase subunit 
1, related 

1395.7 

hypothetical 
protein, 
conserved 

1307.5 hypothetical 
protein 
NCLIV_062890 

1251.6 Cytochrome c 
oxidase subunit , 
related 

1439.2 hypothetical 
protein 
NCLIV_069470 

1203.2 

granule antigen 
protein GRA6, 
putative 

1035.4 hypothetical 
protein 
NCLIV_032660 

1185.5 hypothetical 
protein 
NCLIV_069470 

1276.6 hypothetical 
protein 
NCLIV_062890 

1198.1 

dense granule 
protein 7, 
putative 

996.6 hypothetical 
protein 
NCLIV_065870 

1167.37 hypothetical 
protein 
NCLIV_045010 

1252.54 hypothetical 
protein 
NCLIV_045010 

1139.39 

 

6.4.6 Differential expression of genes involved in metabolism 

Genes involved in a number of metabolic pathways were identified as differentially expressed 

by DESeq analysis. These are shown in Table 6.10 with the metabolic pathway to which they 

belong. Both up and down regulation of metabolic genes was detected between Day 0 and Day 

1; Day 0 and Day 3; and Day 0 and Day 6. One gene was up regulated from Day 1 to Day 6 

and there was no significant (P ≤ 0.01) differential expression of metabolism genes between 

Day 1 and Day 3 or Day 3 and Day 6. Differential expression was identified within the 

following metabolic pathways: purine and pyrimidine metabolism, the electron transport chain 

and the tricarboxylic acid (TCA) cycle, and phosphatidylcholine metabolism. 
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Table 6.10: Differential expression of genes involved in metabolic pathways. Differential 

expression was identified using DESeq, to a cut-off P-value (PadJ adjusted P-value) of ≤ 0.01. 

Red text indicates down regulation in the latter time point with respect to the earlier, green 

up regulation. Fragments per kilobase of exon per million fragments mapped (FPKMs) are 

stated for each time point, pair wise DESeq analyses were carried out on raw expression data.  

Gene I.D. 
Day 0 
FPKM 

Day 1 
FPKM 

Day 3 
FPKM 

Day 6 
FPKM 

Differential 
Expression 
P-value 

Metabolic pathway (according 
to LAMP database) 

Genes differentially expressed from Day 0 to Day 1                                                                                                         n = 5 

NCLIV_000800 3.77 0.18 0.19 0.15 1.87E-09 Phosphatidylcholine metabolism 

NCLIV_032860 0.32 0.02 0.11 0.22 1.08E-07 Purine metabolism 

NCLIV_017300 5.59 0.52 0.59 1.53 0.000175 Purine metabolism 

NCLIV_052500 22.03 205.35 189.55 148.82 0.000572 
Electron transport chain 

Tricarboxylic acid (TCA) cycle 

NCLIV_019490 0.35 1.97 1.03 1.62 0.003911 Lysine degradation 

Genes differentially expressed from Day 0 to Day 3                                                                                                         n = 5 

NCLIV_000800 3.77 0.18 0.19 0.15 6.66E-07 Phosphatidylcholine metabolism 

NCLIV_052500 22.03 205.35 189.55 148.82 8.79E-05 
Electron transport chain 

Tricarboxylic acid (TCA) cycle 

NCLIV_017300 5.59 0.52 0.59 1.53 0.000297 Purine metabolism 

NCLIV_047410 39.07 7.05 8.25 11.85 0.002903 Purine metabolism 

NCLIV_032860 0.32 0.02 0.11 0.22 0.00323 Purine metabolism 

Genes differentially expressed from Day 0 to Day 6                                                                                                          n =5 

NCLIV_000800 3.77 0.18 0.19 0.15 4.84E-06 Phosphatidylcholine metabolism 

NCLIV_052500 22.03 205.35 189.55 148.82 0.002232 
Electron transport chain 

Tricarboxylic acid (TCA) cycle 

NCLIV_028420 0.24 0.86 1.50 2.03 0.003677 Purine metabolism 

NCLIV_037320 0.08 1.34 1.34 2.45 0.006358 
Purine metabolism  

Pyrimidine metabolism 

NCLIV_028410 0.12 0.67 1.08 0.68 0.009614 Purine metabolism 

Genes differentially expressed from Day 1 to Day 3                                                                                                         n = 0 

Genes differentially expressed from Day 1 to Day 6                                                                                                         n = 1 

NCLIV_032860 0.32 0.02 0.11 0.22 0.000116 Purine metabolism 

Genes differentially expressed from Day 3 to Day 6                                                                                                         n = 0 

 

NCLIV_052500 is a flavoprotein subunit of succinate dehydrogenase and is a component of the 

electron transport chain which produces energy for the cell in the form of ATP (LAMP 

database). It was found to be most highly expressed at Day 1, but Days 1, 3 and 6 were all 

significantly higher than Day 0 (before sodium nitroprusside induction).  There is another 

flavoprotein subunit in the N. caninum genome (NCLIV_068970) which was not identified as 

differentially expressed, but which also exhibited a peak in expression at Day 1.  

http://toxodb.org/toxo/showRecord.do?name=GeneRecordClasses.GeneRecordClass&source_id=NCLIV_068970&project_id=ToxoDB
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Phosphoethanolamine N-methyltransferase (NCLIV_000800) is involved in the metabolism of 

phosphatidylcholine (LAMP database), an abundant phospholipid in T. gondii parasites (Gupta 

et al. 2005) that is required for synthesis of cell membranes. This gene was found to reduce 

expression after sodium nitroprusside induction from an FPKM of 3.77 to 0.18.   

A number of genes involved in purine metabolism (NCLIV_028410, NCLIV_028420, 

NCLIV_032860, NCLIV_017300 and NCLIV_047410) and one involved in both purine and 

pyrimidine metabolism (NCLIV_037320), were also identified by this analysis. The 3',5'-

cyclic-nucleotide phosphodiesterases (NCLIV_028410 and NCLIV_028420) were expressed 

more highly by the bradyzoites (Day 6) than the tachyzoites (Day 0), but these genes have a 

high amount of redundancy with twenty identified in the N. caninum genome (LAMP 

database), two more of which (NCLIV_017300 and NCLIV_032860) were expressed more 

highly by the Day 0 tachyzoite stage parasites. Nucleoside-diphosphate kinase 

(NCLIV_037320) was up regulated by Day 6 also. NCLIV_047410 (ecto-nucleoside 

triphosphate diphosphohydrolase) was expressed most highly by the tachyzoite stage parasites 

at Day 0, but, again, there are a number of other ecto-nucleoside triphosphate 

diphosphohydrolases present in the genome (LAMP database).  

The lysine decarboxylase NCLIV_019490 increased in expression from Day 0 to Day 1. This 

gene encodes an enzyme involved in the degradation of lysine; there are however two 

additional shorter lysine decarboxylase domain-containing proteins (LAMP database) which 

are not differentially expressed.  
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6.5 DISCUSSION 

The aim of this experiment was to determine whether there were changes in mRNA 

expression during stage conversion of N. caninum tachyzoites to bradyzoites. This was seen to 

be the case, and when subgroups of genes were examined in more detail, it became apparent 

that genes involved with invasion were some of those that exhibit differential expression. 

Differences were also identified within metabolic pathways, namely purine and pyramidine 

metabolism, the electron transport chain and the TCA cycle, and phosphatidylcholine 

metabolism; these differentially expressed genes (Table 6.10) could be examples of stage-

specific gene expression. Phosphoethanolamine N-methyltransferase (NCLIV_000800) is an 

enzyme which catalyses three reaction steps in the phosphatidylcholine metabolic pathway, and 

produces choline phosphate (LAMP database). It exhibited reduced expression after sodium 

nitroprusside induction at Day 0, which could potentially be an early event signalling a 

reduction in the requirement for cell membrane synthesis in the less rapidly dividing 

bradyzoite stage. Behnke et al. (2010) analysed mRNA expression of synchronised T. gondii 

tachyzoites at different phases of the cell cycle, by microarray,  and identified two distinct 

‘subtranscriptomes’ where mRNA expression changes occurred in a cyclical manner. The 

parasites in this experiment, which was designed to identify differences between life stages 

rather than cell cycle stages, differ in that the parasite cultures were unsynchronised, so the 

results represent an average of the different phases of the cell cycle for each time point.  

The three different types of analysis carried out in this chapter can be taken together to show 

that overall, the genes responsible for apical proteins are some of the most transcribed of the 

whole genome of over 7000 genes, for the tachyzoite and bradyzoite life cycle stages. 

Considering that as yet, only around 120 apical organelle-related genes have been putatively 

identified (Chapters 3 and 4), this is quite remarkable.  

The differential expression data show that as the parasite responds to the stress of sodium 

nitroprusside treatment, a number of bradyzoite genes are up regulated. Vonlaufen et al. 

(2004) developed the sodium nitroprusside method of inducing stage differentiation and these 

results support their methods, especially as no tachyzoite markers were significantly up-

regulated. Bradyzoites produced in this way are likely to be different again from bradyzoites in 

vivo as they have only converted in the previous days or hours, and as such are maybe more 

accurately considered to be in the process of stage conversion. Tissue cysts of bradyzoites 

removed from intermediate hosts may, in comparison, have been growing over anything from 
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a number of days to years (Buxton, McAllister & Dubey 2002; Tunev et al. 2002) and their 

analysis would be the gold standard. However, they are very difficult to isolate (A. Hemphill 

and Intervet, personal communication, (Hemphill et al. 2004)) and as this effectively renders 

them unavailable, the approach taken here serves as a promising model.  

These results give an indication that rhoptry genes become less important in the bradyzoite 

stage than the tachyzoite stage, and this has been seen previously in the RNA-Seq data from 

Reid et al. (2012). Bradyzoites are able to invade cells (Dubey, Lindsay & Speer 1998; Tunev 

et al. 2002), but probably have less cause to do so: it is thought that a parasite which invades a 

cell when it is already committed to stage convert will then reproduce inside a vacuole to 

produce a tissue cyst of bradyzoites (Tunev et al. 2002). ROP40 was down regulated between 

Days 0 and 6. This rhoptry kinase has not yet been well characterized but is a member of the 

ROP2 family and localises to the rhoptries and PV (Peixoto et al. 2010). It has also been 

suggested that it may be under evolutionary pressure in T. gondii as it shows a high ratio of 

nonsynonymous to synonymous polymorphisms, which is a common occurrence for the 

rhoptry kinase (ROPK) family as a whole (Peixoto et al. 2010). Many of the ROPKs have been 

implicated in virulence differences between T. gondii strains, such as ROP5, ROP16 and ROP18 

and play roles in the host cell invasion process  (see Chapter 5, (El Hajj et al. 2006; El Hajj et 

al. 2007; Reese et al. 2011; Saeij et al. 2006; Saeij et al. 2007)). Another rhoptry gene that was 

identified as down regulated was Toxofilin, which in T. gondii is known to be distributed 

throughout the tachyzoite cytoplasm during gliding and invasion (Poupel et al. 2000) but 

confined to the rhoptries in intracellular parasites (Bradley et al. 2005). Toxofilin binds actin 

to facilitate movement over and entry into the host cell (Delorme et al. 2003; Jan et al. 2007) 

so it’s reduced expression in the more bradyzoite-like parasites could suggest a reduced 

requirement for gliding motility.  

This reduction in rhoptry gene expression is the major finding of this experiment and it would 

seem intuitive that the tachyzoite, fully primed for invasion, would be producing more rhoptry 

products than the quiescent bradyzoite stage, as it has been well established that the major 

roles of rhoptry proteins are in host cell invasion, virulence and establishment of the parasite 

within the parasitophorous vacuole (PV) (Boothroyd & Dubremetz 2008; Peixoto et al. 2010). 

However, when differential expression data of microneme and dense granule genes are 

examined, the picture is not so clear. Dense granule genes showed no significant differential 

expression at all (despite a slight trend for decreased expression in some clusters of genes) and 



131 
 

featured as some of the most highly abundant transcripts of all, over the whole time course. 

This could indicate an important role for dense granule proteins in the bradyzoite, which, 

given they are known to function generally later on in invasion than rhoptry and microneme 

proteins, in maintenance and establishment of the PV (Dubremetz et al. 1998; Nam 2009), 

would make sense; as bradyzoites and tachyzoites both grow in parasitophorous vacuoles 

(Tunev et al. 2002). Alternatively, it may simply be that these transcripts are remarkably 

robust and do not degrade as quickly as rhoptry ones, or have some other controlling element 

arresting their translation: this highlights that it is important to study proteomes as well as 

transcriptomes and genomes in order to better understand the system as a whole. GRA1 and 

GRA2 both appeared in the top ten highly expressed genes at each time point (Table 6.9), with 

GRA6 and GRA7 also in the top ten for Day 0 (tachyzoites). T. gondii GRA1 protein has been 

identified previously in both tachyzoites and bradyzoites (Cebron-Delauw et al 1989) and is 

secreted into the PV (Nam 2009). In this experiment GRA1 was one of the highest-expressed 

transcripts across all time points and it has also been identified proteomically in 

excretory/secretory material and rhoptry/dense granule preparations from tachyzoites 

(Chapter 4). Taken together these results indicate that GRA1 is highly abundant in both the 

transcript and protein forms; it is likely to be an important component of the invasion process, 

specifically involved with the membranous tubular network (Sibley et al. 1995). T. gondii 

GRA2 and GRA6 have been found to interact, together with GRA4, to form a complex that 

may be involved with nutrient or protein transport around the vacuole (Labruyere et al. 1999) 

while T. gondii GRA7 has been identified in extensions protruding from the PV into the host 

cell cytoplasm (Bonhomme et al. 1998), perhaps suggesting an involvement with the 

acquisition of nutrients from the host cell.  

There was significant differential expression of microneme genes in both an up regulatory and 

down regulatory sense, with respect to earlier time points; while other microneme genes 

remained highly expressed throughout (e.g. MIC10). Interestingly, MIC10 belongs to a group 

of microneme proteins that do not exhibit the classical adhesive domains that are associated 

with attachment to and invasion of the host cell (Hoff et al. 2001), its function remains 

unknown but it has been shown to exhibit varying circulation levels during infection with 

different T. gondii strains (Dautu et al. 2008).  

Interestingly, MIC3 and MIC8, who are known to form a complex involved with invasion in T. 

gondii (Cerede et al. 2005) both had their transcripts designated to cluster 3 (Figure 6.9), along 

with MIC1, MIC4 and MIC6, which in T. gondii form the MIC1-4-6 complex (Meissner et al. 
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2002; Reiss et al. 2001). While MIC3 was the only one to exhibit significantly decreased 

expression over the time course, all did show a downward trend in expression as the parasites 

became more bradyzoite like. Buchholz et al. (2011) also identified down regulation of MIC3 

and MIC4 in a microarray analysis of T. gondii bradyzoites. Similarly to the data presented in 

the cluster analyses (Figures 6.7 - 6.9), Buchholz et al. (2011) also observed an overall 

decrease in invasion-related gene expression in bradyzoites relative to tachyzoites. Another 

finding common to both studies was the down regulation of ROP40, whilst Toxofilin was 

observed to be up regulated by microarray in T.gondii bradyzoites (Buchholz et al. 2011) but 

down regulated after sodium nitroprusside stimulation in N. caninum by RNA-Seq. A valuable 

element of the experimental design in Buchholz et al. (2011) was the comparison of in vivo and 

in vitro T. gondii tissue cysts; whilst this is not currently possible in N. caninum due to the lack 

of a suitable model intermediate host, it was interesting to note that they obtained similar and 

comparable results from both analyses. 

 

The microneme adhesive repeat (MAR) domain containing proteins, or MCPs, were also 

among those transcripts identified as differentially expressed (Table 6.5). MCP3 and MCP4 

were both increased in expression in the Day 6 parasites while MCP7 decreased between Day 0 

and Day 1 (immediately after sodium nitroprusside stimulation). Sialic acid is a component of 

glycoproteins and glycolipids found on host cell surfaces, and is often a target for host cell 

entry by pathogens. Friedrich et al. (2010) speculate that these MCPs may form a molecular 

basis for the coccidian parasites’ ability to infect a wide range of host cells and demonstrate the 

MAR domain’s sialic-acid dependent binding and involvement in the invasion process. They 

suggest that MCPs may be involved in different coccidian’s tissue tropisms as they exhibit 

distinct binding specificities to different sialyl probes. Taken together with the results from 

this experiment: that MCPs 3, 4 and 7 show differential expression between tachyzoite and 

bradyzoite-like forms of the parasite; it could be speculated that the MCPs are involved in the 

different tissue tropisms of tachyzoites and bradyzoites.  

 

Overall, these observations suggest that microneme genes may be equally important to the 

bradyzoite life stage as the tachyzoite, but that some microneme genes may be more stage-

specific than others, with different sub groups of microneme genes playing a greater role in 

tachyzoite and bradyzoite biology respectively. Perhaps certain microneme genes are life-stage 

specific while others, such as those in Figure 6.9: cluster 1, which maintain expression 

throughout, are important to both the tachyzoite and bradyzoite forms. Distribution of genes 
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over the six clusters in figure 5 is fairly uniform, suggesting that microneme genes fit into a 

range of different expression profiles. 

Many of the most highly expressed genes across all timepoints are apical genes, the products of 

which are involved in invasion (MIC10, GRA1, GRA2, GRA6 and GRA7 are all in the top 10 

in Table 6.9). This gives a new angle to the earlier suggestion, from the DESeq analysis, that 

invasion genes show a general trend to decrease in expression level over the time course as the 

parasites become more bradyzoite-like: while that may be, it is also true that in many cases 

their expression level remains high nonetheless, when compared to the rest of the genome. 

It is hoped that improvements in clustering algorithms and implementation will allow further 

analysis of this data in the future and enable statistical significance to be attributed to genes that 

cluster together so that genes statistically similar/different in expression over the whole time 

course can be identified. If more sophisticated clustering analysis tools were available, it would 

be interesting to mine the data for genes which show similar trends in expression to known 

bradyzoite markers as this could be a way to identify novel ones. This approach could also be 

used to identify further apical genes for example, but would likely generate a large proportion 

of false-positives, as similar expression profiles may be characteristic of wide ranging groups of 

genes.  Nevertheless, taken together with additional bioinformatic tools such as BLAST 

(NCBI) and Pfam (Sanger Institute), among others, it could be a useful way to aid further 

annotation of the genome. As can be seen from these results  and the proteomic data presented 

in earlier chapters, a huge proportion of the genome is still annotated as ‘hypothetical’ with no 

prediction of function or localisation available. A combination of bioinformatic and 

experimental approaches will be required to address this and the features of ToxoDB (Gajria et 

al. 2008) that allow the incorporation of experimental data from researchers around world 

will no doubt accelerate the process by enabling new functional information on genes to be 

shared with the community as a whole, often before it is published. 

An interesting biological relationship that is as yet poorly understood is that between the 

proteome and transcriptome. In the pilot study, many of the highly proteomically and 

transcriptomically expressed tachyzoite genes and proteins were those with apical-secretory 

products, such as GRA1, GRA2, MIC2 and MIC10; for which it would make sense to be 

produced on a large scale for secretion during invasion: they are being released so not all will 

necessarily reach their target – it is likely that a considerable amount of redundancy and waste 

is accounted for. These results were echoed in the tachyzoite to bradyzoite mRNA expression 
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data. Despite initial hopes to perform a parallel quantitative proteomic analysis of the same 

samples, problems during culture and then difficulty obtaining high yields of mRNA from the 

parasites made this unfeasible. There is therefore scope for further study to compare the 

tachyzoite and bradyzoite proteomes, and compare and contrast them to the transcriptome 

analysed here. 
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CHAPTER 7: DISCUSSION 
 

This work presented in this thesis comprises a global analysis of gene and protein expression in 

Neospora caninum. Most of the work has focused on the tachyzoite stage, which is highly 

invasive and causes much of the pathology associated with neosporosis.  The proteins identified 

by the various experiments include many known to be associated with the process of host 

invasion in Apicomplexa; and, when compared to published works, represent the most 

comprehensive analysis of the N. caninum proteome to date. Until 1984 (Bjerkas, Mohn & 

Presthus), N. caninum had been mistaken for T. gondii due to its similar histological appearance. 

It is interesting to compare and contrast these two organisms, due to the fact that they exhibit 

highly syntenic genome structure (DeBarry & Kissinger 2011; Reid et al. 2012), yet display 

important phenotypic differences in their host range and pathology. 

7.1 Apical proteins and the potential for further study 

Over 50 % of the predicted proteome putatively assigned to the apical organelles has been 

identified by the proteomic analyses in this thesis. While there has been much research carried 

out to ascertain the function of these proteins in T. gondii, less so has taken place with N. 

caninum, and the data produced here could be used to narrow down the choice of proteins to 

take forward for more in depth research. Not only are the proteins that are specific to N. 

caninum when compared to T. gondii interesting, such as MIC2B, MCP5, MCP6, MCP7, and 

NCLIV_038380 from the micronemes and ROP5B and NCLIV_068890 from the rhoptries; 

but all expressed invasion-related genes are worth investigating further in case their function in 

N. caninum turns out to be different from that observed previously in other Apicomplexa.  

A particular method that could aid in elucidating the roles of these proteins would be to raise 

antibodies to proteins confirmed by proteomics, using the predicted sequences, and study 

their behaviour through live cell imaging. To gain an appreciation of where the apical proteins 

localise (for example, moving junction (MJ)/parasitophorous vacuole (PV)) and how long they 

are detectable for, throughout the process of invasion, would substantially improve current 

understanding in this field. Furthermore, this approach could help to identify any complexes 

formed and interactions between the different proteins. Many of these occurrences can be 

observed by classical techniques such as immunofluorescence microscopy of fixed slides at 

different points in the invasion process, and immunoprecipitation, but live cell imaging would 

provide an overall view of the process from start to finish. Furthermore, if this technique were 
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combined with bradyzoite-induction, it would be possible to confirm whether the reduction in 

rhoptry expression indicated by the transcriptomic study in Chapter 6, was recapitulated by 

rhoptry proteins in vitro.  

Another potentially fruitful approach, that has been used successfully to study invasion in T. 

gondii and other Apicomplexa, would be to knock out genes of interest, or use interference 

RNA (RNAi) to block the expression of genes. Again, live cell imaging could provide a way to 

assess the effect of the knock out, not only during invasion but also afterwards, as the infection 

progressed and the tachyzoites replicated to produce cysts. It can, however, be difficult to be 

certain that the gene of interest is causing the effects observed, and it is usually necessary to 

perform a complementation experiment by knocking the gene back in to restore function.  

The moving junction complex was one for which all five proteins, known to be involved in the 

T. gondii MJ, were identified proteomically. These were AMA1, RON2, RON4, RON5 and 

RON8: the RON protein complex gets inserted into the host cell membrane, connected to 

AMA1 in the parasite membrane, to enable the parasite to move into the host cell and create a 

parasitophorous vacuole (Besteiro, Dubremetz & Lebrun 2011). The identification of these 

proteins, together with the observation that they are not present in the genome with much 

redundancy (Boothroyd (2009) and no paralogues in ToxoDB), leads to the conclusion that the 

molecular structure of the N. caninum moving junction is likely to be analogous to that of T. 

gondii. 

Another protein identified proteomically, in both the tachyzoite lysate and the rhoptry/dense 

granule preparation, was N. caninum ROP38. T. gondii ROP38 has recently been implicated in 

the down regulation of the host MAPK (mitogen-activated protein kinase) pathway which 

controls apoptosis and cell proliferation (Peixoto et al. 2010). ROP38 is typically expressed at 

a greater level in avirulent T. gondii than in virulent strains (Peixoto et al. 2010), and is likely 

to be fairly abundant in N. caninum as it was readily proteomically detected across multiple 

bands of a gel, suggesting a lower-virulence phenotype for N. caninum.  

7.2 Important apical proteins not identified in the tachyzoite 

Not only is there a possibility that some of the proteins not identified by these analyses are 

specific to life stages not examined, but their expression could also be affected  by the host 

within which the parasite is infecting. All parasites studied in this thesis were cultured in Vero 

cells, which is a commonly used host cell for these organisms and one that the parasite grows 
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successfully in. However, there is now opportunity for a move toward culturing in cell 

systems that better replicate the situation in vivo, such as cell lines originating from a more 

likely natural host (bovine or canine, for example), or three-dimensional cell culture systems 

(Abbott 2003). There is also a risk that parasites which have become cell-culture adapted 

display a different phenotype to their wild relatives (Pelleau et al. 2011), but the use of 

parasites of the lowest possible passage number can minimise this. By studying parasites raised 

in (or ideally, in vivo isolated from-) a range of different host cells, it may be possible to 

establish whether slightly different repertoires of apical proteins are expressed depending upon 

the host cell being invaded. However,  a T. gondii review by Boothroyd (2009) surmised that 

this was unlikely to be the case, as the proteins involved with the moving junction, for 

example, are highly conserved between strains of T. gondii and not encoded for by genes from 

large gene families, despite T. gondii’s remarkable host range.  

ROP16 was one protein known to be important in T. gondii virulence that was not 

proteomically identified; and in the transcriptome analysis, N. caninum ROP16 mRNA was 

measured at basal levels only for all time points. This is an important finding, and in agreement 

with the transcriptome analysis in Reid et al. (2012), where ROP16 was expressed highly by T. 

gondii parasites but not by N. caninum. ROP16 is polymorphic in T. gondii (Saeij et al. 2006) 

and acts as a kinase that activates STAT3 and STAT6 signalling pathways in type I and III 

parasites (Denkers et al. 2012; Saeij et al. 2007). This leads to reduced induction of the 

proinflammatory cytokine interleukin-12 (IL-12) by the host cell and illustrates modification 

of the host immune response by the parasite. The biology of ROP16 is complex and not yet 

fully understood, but enhanced growth of T. gondii ROP16 knockouts has been observed and 

linked to arginine metabolism (Butcher et al. 2011).  

7.3 ROP18 pseudogenisation and what it might mean from a population 

perspective 

A desire to understand the genetic basis for the differences between N. caninum and T. gondii 

underpinned the comparative genome analysis performed by Reid et al. (2012). Of particular 

interest were differences in apical genes, as these are the molecular effectors of host cell 

invasion. While the majority of apical genes were found to have a one-to-one orthologous 

relationship between the two organisms and as such are hypothesized to behave in an 

analogous way in vitro and in vivo (subject to experimental validation), there were a few 

exceptions. One of the omissions from the N. caninum genome, ROP18, was noted in 
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particular, due to the recent identification of this gene as a virulence determinant in T. gondii 

(Saeij et al. 2006; Taylor et al. 2006). 

As a result of its importance in T. gondii virulence, the ROP18 (pseudo)gene was selected for a 

more in depth analysis as part of this thesis. This involved confirmation of the inclusion of stop 

codons in the coding sequence, not only in the reference strain of N. caninum, Nc Liverpool, 

but also in a variety of other isolates from canine and bovine hosts and a range of geographical 

locations. Research in T. gondii had established that ROP18 phosphorylated an immunity-

related GTPase (IRG) called IRG a6, which was loaded onto the parasitophorous vacuole (PV) 

by the host cell during infection (Steinfeldt et al. 2010). Unphosphorylated IRG proteins result 

in PV disruption and parasite death (Hunn et al. 2008; Khaminets et al. 2010; Martens et al. 

2005; Zhao et al. 2009a; Zhao et al. 2009b; Zhao et al. 2009c) and their loading onto the PV is 

an immune response by the host cell controlled by interferon-gamma (IFN-γ), experimentally 

determined in vitro in  murine cells. The discovery of ROP18’s pseudogenisation in N. caninum 

led to the hypothesis that N. caninum would not be able to phosphorylate IRG a6 and as such its 

vacuoles would be susceptible the IFN- γ immune response and become loaded with IRG 

proteins. This is similar to observations in avirulent strains of T. gondii, which express ROP18 

only at very low levels (Khaminets et al. 2010; Steinfeldt et al. 2010). As presented in Chapter 

5, for the first time IRG proteins were observed being loaded onto N. caninum PVs, and no 

phosphorylation of IRG a6 was detected, compared to 90 % of IRG a6–loaded vacuoles being 

phosphorylated in T. gondii type I controls. Overall, these data supported the theory that 

ROP18 had been pseudogenised in N. caninum since its divergence from T. gondii, estimated to 

have occurred around 28 million years ago (Reid et al. 2012). It is intriguing that despite 

pseudogenisation, no single nucleotide polymorphisms (SNPs) were detected in this region 

between any of the N. caninum isolates analysed. In a study on sequence variation in introns of 

P. falciparum, few SNPs were identified but 71 microsatellite repeats were identified across 25 

introns, which are considered along with pseudogenes to be rapidly evolving sequences 

(Volkman et al. 2001). The lack of ROP18 sequence divergence between N. caninum isolates 

may be a result of the highly clonal population structure (Perez-Zaballos et al. 2005), which is 

in contrast to Plasmodium’s usual method of transmission involving sexual stages in a mosquito. 

Previous studies on N. caninum have also detected little variation between isolates (Holmdahl et 

al. 1997; Innes et al. 2000; Schock et al. 2001) and the parasite is not thought to exhibit the 

differences in virulence that manifest in the three lineage ‘types’ of T. gondii: I (virulent), II 

(intermediate) and III (avirulent) (Howe & Sibley 1995; Sibley & Boothroyd 1992). 
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The relative importance of vertical and horizontal transmission between N. caninum and T. 

gondii is another, related area of interest. Vertical transmission of N. caninum from cow to calf 

is reported to have an efficiency of between 78 and 95% (Davison, Otter & Trees 1999; Pare, 

Thurmond & Hietala 1997), with most seropositive cows being thought to have themselves 

been infected congenitally rather than exogenously (Pare, Thurmond & Hietala 1996, 1997). 

It was previously suggested that dogs may not be the optimum definitive host of N. caninum 

due to the low numbers of oocysts excreted (Lindsay, Ritter & Brake 2001) but Gondim et al. 

(2002) demonstrated improved production of oocysts (a mean of 160 700 total oocyst 

production from days 4-30 post infection) when dogs were fed infected calf tissues rather than 

infected mice. Gondim et al. (2005) then measured approximately 500 000 total oocysts shed 

by a dog after exposure to infected calf tissue. This number is still somewhat lower, however, 

than what is readily observed in cats shedding T. gondii, which is in the region of 20 million 

oocysts from days 4-13 post infection (Dubey 1995) and up to 1 billion (Dubey & Frenkel 

1972). This could be an indication of a more dominant role for the sexual cycle (cat-rodent-cat 

transmission) in T. gondii population biology (which was recently found to exhibit a higher 

level of genetic variation than previously thought (Dubey & Su 2009)), when compared to N. 

caninum population biology, which is thought to rely heavily on vertical transmission (Dubey, 

Schares & Ortega-Mora 2007; Williams et al. 2009).  The finding that N. caninum exhibits a 

low-virulence phenotype in the absence of ROP18 supports this hypothesis in that it could be 

an adaptation for more successful vertical transmission. Highly virulent pathogens that cause 

severe pathology in their host are unlikely to allow the host to survive long enough for it to 

reproduce, or may provoke such a strong immune response that the infection is cleared. By 

existing in a latent form (the bradyzoite), N. caninum is able to survive within the host until 

such time as the infection reactivates to spread to the developing foetus. Virulent T. gondii 

infecting a mouse, need only survive long enough in the mouse for it to be caught and eaten by 

a cat. The presence of an infection may perhaps even render the mouse less fit and make it 

more prone to predation. Vertical transmission does occur in T. gondii but ovine toxoplasmosis 

is thought to primarily occur in sheep infected exogenously during pregnancy, as opposed to 

endogenously (Innes et al. 2007; Rodger et al. 2006).  

Another interesting observation regarding an additional role of ROP18 is that the T. gondii 

proteins ROP2 and ROP8, both of which have no orthologue identified in the N. caninum 

genome (Reid et al. 2012), were found by Qiu et al. (2009) to be phosphorylation substrates 

for ROP18. So, it appears that N. caninum is lacking in all three of these interacting proteins, 
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which perform an as yet uncharacterised function in T. gondii. Intriguingly, humans are the 

only mammals so far identified as lacking in an IRG-protein repertoire (Bekpen et al. 2005; 

Zhao et al. 2009). This makes it unlikely that ROP18 pseudogenisation is the cause of the 

difference in zoonotic capability between N. caninum and T. gondii, but this finding is still very 

interesting with respect to the effect it has on virulence, and requires further investigation in 

bovine and canine host systems. 

7.4 Potential directions for analysis of additional life stages 

An obvious next stage in proteomic and transcriptomic expression research for N. caninum 

would be to analyse other life stages, such as the oocyst. While the sexual stages are unlikely to 

become available by in vivo or in vitro culture methods in the next few years, the continual 

improvements in the sensitivity of transcriptomic and proteomic platforms should make the 

analysis of oocysts a possibility, as less material will be required than currently. For example, 

single-molecule RNA sequencing should provide opportunities to study not only oocysts, but 

perhaps bradyzoites isolated from in vivo tissue cysts, and tachyzoites that have recrudesced 

from a latent infection (for example, isolated from a placenta), to determine whether the 

findings identified by the analysis of in vitro cultivated parasites, as presented here, are a 

realistic representation of what occurs in vivo.  

A group of surface antigens (SAGs) known as SRS (SAG-1 related sequence) proteins were 

found by Reid et al. (2012) to be extremely divergent and, in contrast to what was expected 

(based on the narrower host range of N. caninum), approximately two-fold more abundant in 

the N. caninum than the T. gondii genome. The finding in Reid et al. (2012), that a greater 

number of SRS genes were expressed by the Day 6 (early bradyzoite-like) parasites than the 

Day 3 tachyzoites, was not repeated by the transcriptomic analysis in Chapter 6 (data not 

shown). This could be a reflection of the different bradyzoite preparation techniques between 

the two studies, the latter using the classical sodium nitroprusside-induction method of 

bradyzoite culture, rather than simply extending the culture period. The question of SRS 

expression is one that could be investigated further by analyses of gene and protein expression 

in additional life-stages of N. caninum and T. gondii. It would be interesting to determine 

whether more of the predicted N. caninum SRS repertoire is expressed by another stage, and 

whether the expression of a greater number of SRSs by T. gondii, despite the smaller number 

encoded for in the genome, is replicated by the other life stages. Another group of proteins 

thought to be involved in host cell recognition and preference are the MAR-domain containing 
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proteins (MCPs), which unexpectedly, and similarly to the SRS proteins, are present in a 

greater number in the N. caninum than the T. gondii genome (Friedrich et al. 2010; Cowper et 

al. 2012). More work on gene expression in other life stages may help unravel this paradox 

further. 

7.5 Concluding remarks 

This thesis has provided an overall view of the tachyzoite global proteome and in particular, 

identified more than half of the apical proteins predicted by the genome, including the N. 

caninum orthologues of all those involved in the T. gondii moving junction. The work has 

contributed to the annotation of the N. caninum genome, an important resource to the wider 

apicomplexan research community. In addition, the comparative analysis of the tachyzoite and 

bradyzoite transcriptomes identified a key difference in that rhoptry genes show a marked 

decrease in mRNA expression in the bradyzoite stage, likely to be a result of the decreased 

requirement for invasion by the bradyzoite.  

N. caninum has long been thought to be a less virulent cousin of T. gondii and the confirmation 

of the pseudogenisation of ROP18 has led to speculation on the role of virulence in the 

population biology of this parasite, and how a lower virulence phenotype may have aided the 

evolution of an organism specialised in vertical transmission. Additional findings supporting 

the low-virulence hypothesis are the low expression level of ROP16 in the transcriptome, and 

the detection of ROP38 in the proteome.  

Overall, these findings provide opportunities for further research into the invasion processes 

carried out by N. caninum, in the hope that it will someday lead to the discovery of vaccine 

candidates to prevent and control neosporosis.  
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APPENDIX III: OFFGEL SEPARATION OF A  

TACHYZOITE LYSATE 
 

Introduction 

An additional tachyzoite lysate to those presented in Chapter 2 was analysed by the OFFGEL 

technique (Agilent). The OFFGEL fractionation system enables separation of protein or 

peptide mixtures over a pH gradient by isoelectric focusing, as with 2-DE, but in solution. 

This means that fractions are able to be digested for mass spectrometry, without the need to 

extract from a gel. However, the lysis buffer required contains glycerol, ampholytes, urea and 

thiourea, which must be precipitated out prior to mass spectrometry, therefore sufficient 

sample to allow for losses during precipitation must be loaded. Also, in order to focus 

effectively, the sample must not contain salt, so for cell preparations washed in PBS it is 

important to remove it prior to solubilisation. 

Methods  

Fractionation 

A pellet of 1.6 x 108 tachyzoites was lysed in 360 µl OFFGEL buffer (8 M urea, 2.4 M 

thiourea, 0.2 % (v/v) ampholytes, 10 % (v/v) glycerol) over three cycles of vortexing for 3 

minutes and heating to 37 oC for 3 minutes, followed by centrifugation at 13 000 x g for 10 

minutes at room temperature. The sample was stored at -20 oC overnight then added to a 

further 1.44 ml OFFGEL buffer. A 13 cm pH 3-10 non linear IPG strip was placed into the 

OFFGEL tray and an 11-well frame applied. Rehydration buffer comprising 0.56 ml OFFGEL 

buffer and 0.14 ml ddH20 was pipetted into each well (40 µl per well). After 15 minutes, 

approximately 40 µg sample in 150 µl was loaded into each well and fractionation was 

performed for 23 hours, with parameters as follows: 20.758 kVh, 544 V, 6.5 mW and 12 µA. 

Each of the 11 fractions was removed and the wells washed (twice) in a further 150 µl ddH20, 

that was then added to the appropriate fraction, so that final sample volumes were 450 µl.  

Acetone precipitation 

An acetone precipitation was performed as follows:  2.25 ml ice cold acetone was added to 

each fraction prior to incubation at -20 oC overnight. The samples were then centrifuged at 



 

1500 x g for 20 minutes at 4 oC, each pellet washed in acetone and resuspended in 50 µl 25 

mM ammonium bicarbonate.  

1-DE of OFFGEL fractions 

Samples were visualized on a 10 cm 12 % acrylamide gel (2.2.2.2) with limiting factors of 200 

V, 70 mA and 10 W for 50 minutes. The gel was fixed at room temperature in a 40 % (v/v) 

ethanol, 10 % (v/v) acetic acid solution overnight, then rinsed twice in ddH2O before staining 

with Colloidal Coomassie (20 % (v/v) methanol, 0.08 % (w/v) Coomassie Brilliant Blue 

G250, 0.8 % (v/v) phosphoric acid, 8 % (w/v) ammonium sulphate) for 24 hours.  

Results and Discussion 

An OFFGEL fractionation was carried out for two reasons. Firstly, it enabled pre-fractionation 

of a tachyzoite lysate prior to trypsin digestion, so as not to separate peptides originating from 

the same protein (as occurs during MudPIT) to ease downstream bioinformatic searching. 

Secondly, it removed the requirement for gel separation, which can affect resolution of some 

peptides that solubilise less well, and can cause problems for more sensitive HPLC columns 

due to carry-over of detergent. Figure 2.4 shows the gel resulting from a tachyzoite lysate 

OFFGEL-fractionation in protein space.  

 

Figure V.1: 1-DE gel of tachyzoite OFFGEL fractions. Samples were analysed on a 12 % (w/v) acrylamide gel 

under denaturing conditions, visualised by Colloidal Coomassie staining. Lanes are as follows, lane 1: protein 

standards, lanes 2-12: 20 µl aliquots of fractions, as labelled. 



 

Fractions 1-5 exhibited differential staining of protein bands, indicating successful fractionation 

of proteins, however fractions 6-11 appeared to contain many of the same bands due tosub-

optimal separation. Furthermore, other researchers were reporting difficulties with the sample 

clean-up procedure prior to mass-spectrometry. Another complication included significant 

sample losses during fractionation and clean-up, which meant that the requirement for loading 

of initial parasite material was higher than for other methods (≥ 1 mg). As such, it was decided 

not to continue further with OFFGEL fractionation in this analysis.  

 

  



 

APPENDIX IV: EXCRETORY/SECRETORY  

PROTEOMIC IDENTIFICATIONS 
 

Table IV.1: Protein identifications for excretory/secretory preparations in Chapter 4 (n = 

78). Proteins were identified using Mascot and a cut off score of 50 was employed, proteins 

are presented in decreasing order of Mascot score. Apical proteins have been coloured 

according to their identification in Chapter 3: yellow indicates microneme protein; blue, 

dense granule and purple, rhoptry. Signal peptide predictions from SignalP 3.0 were 

downloaded from ToxoDB (cut off p-value ≥ 0.9). MIPs functional category assignments are 

abbreviated as follows: M = metabolism, E = energy, STP = storage protein, C/DNA = cell 

cycle and DNA processing, T = transcription, PS = protein synthesis, PF = protein fate. PB = 

protein with binding function or cofactor requirement, R = regulation of metabolism and 

protein function, CT = cellular transport, transport facilities and transport routes, CC = 

cellular communication/signal transduction mechanism, CRDV = cell rescue, defence and 

virulence, IE = interaction with the environment, CF = cell fate, BG = biogenesis of cellular 

components and SL = subcellular localisation. 

Protein I.D. Description 

Signal 
peptide 

predicted? 
Mascot 
score 

MIPs 
category 

assignment 

NCLIV_021050 hypothetical protein Yes 801 CRDV 

NCLIV_033250 SRS domain-containing protein No 672 IE 

NCLIV_043270 microneme protein MIC1, putative Yes 592 CRDV 

NCLIV_024820 14-3-3 protein homolog No 543 CRDV 

NCLIV_033230 
SRS domain-containing protein,SRS29B, 
putative Yes 513 IE 

NCLIV_051970 MIC2-associated protein M2AP, putative Yes 433 CRDV 

NCLIV_032330 
Malate dehydrogenase (NAD) 
(Precursor), related No 335 E 

NCLIV_010720 SRS domain-containing protein Yes 325 IE 

NCLIV_068400 NTPase Yes 277 CRDV 

NCLIV_050370 hypothetical protein No 266 E 

NCLIV_068460 hypothetical protein No 253 CRDV 

NCLIV_002940 microneme protein MIC4, putative Yes 242 CRDV 

NCLIV_028680 apical membrane antigen 1, putative No 234 CRDV 

NCLIV_068920 SRS domain-containing protein Yes 228 IE 

NCLIV_036400 
dense granule protein 1 / major 
antigenp24, putative Yes 204 CRDV 

NCLIV_010730 SRS domain-containing protein Yes 199 IE 

NCLIV_010600 microneme protein MIC3, putative Yes 195 CRDV 

NCLIV_047630 40S ribosomal protein S18, putative No 184 PS 

NCLIV_061760 microneme protein MIC6, putative No 184 CRDV 

NCLIV_045650 28 kDa antigen, putative Yes 174 CRDV 

NCLIV_000610 profilin family protein, putative No 170 CT 



 

NCLIV_035310 
inhibitor-1 of protein phosphatase type 
2A, putative No 168 R 

NCLIV_011270 hypothetical protein No 156 E 

NCLIV_062630 
Thioredoxin-dependent peroxide 
reductase, mitochondrial, related No 155 IE 

NCLIV_043760 hypothetical protein, conserved Yes 153 unclassified 

NCLIV_033950 Heat shock protein 70, related No 152 CRDV 

NCLIV_009670 
Cold-shock protein, DNA-binding, 
related No 145 T 

NCLIV_059430 hypothetical protein No 141 unclassified 

NCLIV_052880 granule antigen protein GRA6, putative No 135 CRDV 

NCLIV_066250 microneme protein 10, putative Yes 133 CRDV 

NCLIV_018530 hypothetical protein, conserved Yes 130 PS 

NCLIV_066870 hypothetical protein No 127 T 

NCLIV_029860 hypothetical protein No 120 PS 

NCLIV_031860 
serine-threonine phosophatase 2C, 
putative No 119 R 

NCLIV_013780 hypothetical protein No 106 PF 

NCLIV_031510 hypothetical protein No 100 unclassified 

NCLIV_055710 60S ribosomal protein L23, putative No 100 PS 

NCLIV_000710 hypothetical protein, conserved Yes 99 SL 

NCLIV_002390 Nucleoside diphosphate kinase, related No 95 M 

NCLIV_021640 dense granule protein 7, putative Yes 92 CRDV 

NCLIV_050380 Fructose-bisphosphate aldolase, related No 87 E 

NCLIV_001300 calmodulin, putative No 86 PB 

NCLIV_032220 50S ribosomal protein L30e, related No 85 PS 

NCLIV_024870 hypothetical protein No 84 PS 

NCLIV_038780 60S ribosomal protein L32, related No 82 PS 

NCLIV_052380 hypothetical protein No 82 PS 

NCLIV_066310 
DEAD-box ATP-dependent RNA helicase 
34, related No 81 T 

NCLIV_066630 GRA9 protein, putative Yes 81 CRDV 

NCLIV_012510 hypothetical protein No 80 PB 

NCLIV_032620 Cs1 protein, related No 79 unclassified 

NCLIV_048880 Proteasome subunit beta type-7, related No 76 PF 

NCLIV_020140 hypothetical protein No 73 unclassified 

NCLIV_022140 GA11385, related No 72 PB 

NCLIV_026140 Histone H2A, related No 71 BG 

NCLIV_037500 Enolase, related No 70 E 

NCLIV_001670 Elongation factor 1-alpha, related No 69 PS 

NCLIV_003440 Actin, related No 69 CT 

NCLIV_000430 hypothetical protein, conserved No 68 unclassified 

NCLIV_038400 Methionine aminopeptidase, related No 68 unclassified 

NCLIV_054700 uridine phosphorylase, putative No 68 M 

NCLIV_018420 p36 protein, putative (ROP9) Yes 67 CRDV 

NCLIV_019770 hypothetical protein No 66 M 

NCLIV_045870 Putative dense granule protein 3 Yes 66 CRDV 



 

NCLIV_025240 Gbp1p protein, putative No 65 PB 

NCLIV_018300 HIT family protein, related No 63 unclassified 

NCLIV_006070 30S ribosomal protein S10P, related No 61 PS 

NCLIV_001070 Histone H2B, related No 60 BG 

NCLIV_030290 transaldolase, putative No 60 M 

NCLIV_015880 hypothetical protein No 59 PS 

NCLIV_026150 Histone H3, related No 56 BG 

NCLIV_018290 Ribosomal protein S26E, related No 55 PS 

NCLIV_032270 hypothetical protein, conserved No 55 unclassified 

NCLIV_046030 hypothetical protein No 55 unclassified 

NCLIV_061560 hypothetical protein, conserved No 55 PB 

NCLIV_036280 
30S ribosomal protein S15P/S13e, 
related No 54 PS 

NCLIV_000740 Class I chitinase, related Yes 52 M 

NCLIV_053640 peroxidoxin 2, putative No 52 IE 

NCLIV_041940 
Glyceraldehyde 3-phosphate 
dehydrogenase, related No 50 M 

 

 

  



 

APPENDIX V: RHOPTRY/DENSE GRANULE  

PROTEOMIC IDENTIFICATIONS 

 

Table V.1: Protein identifications for the rhoptry (R) preparation (n = 138). Proteins were 

identified using Mascot and a cut off score of 50 was employed, proteins are presented in 

decreasing order of Mascot score. Apical proteins have been highlighted according to their 

identification in Chapter 3: yellow indicates microneme protein; blue, dense granule and 

purple, rhoptry. Signal peptides were predicted by SignalP 3.0 and downloaded from ToxoDB 

(cut off p-value ≥ 0.9). MIPs functional category assignments are abbreviated as follows: M = 

metabolism, E = energy, STP = storage protein, C/DNA = cell cycle and DNA processing, T 

= transcription, PS = protein synthesis, PF = protein fate. PB = protein with binding function 

or cofactor requirement, R = regulation of metabolism and protein function, CT = cellular 

transport, transport facilities and transport routes, CC = cellular communication/signal 

transduction mechanism, CRDV = cell rescue, defence and virulence, IE = interaction with 

the environment, CF = cell fate, BG = biogenesis of cellular components, SL = subcellular 

localisation and ? = potential ROP proteins. 

Protein I.D. Description 

Signal 
peptide 

predicted? 
Mascot 
score 

MIPs 
category 

assignment 

NCLIV_001970 hypothetical protein Yes 2346 CRDV 

NCLIV_060730 hypothetical protein Yes 1104 CRDV 

NCLIV_055360 hypothetical protein, conserved Yes 1002 CRDV 

NCLIV_053840 hypothetical protein Yes 932 CRDV 

NCLIV_031550 hypothetical protein No 920 ? 

NCLIV_051340 toxofilin, putative Yes 761 CRDV 

NCLIV_018420 p36 protein, putative (ROP9) Yes 568 CRDV 

NCLIV_036700 M16 family peptidase, putative Yes 561 PF 

NCLIV_068850 hypothetical protein Yes 552 CRDV 

NCLIV_018830 hypothetical protein, conserved No 496 CRDV 

NCLIV_007770 
Rhoptry kinase family protein, truncated, 
putative Yes 487 CRDV 

NCLIV_011700 hypothetical protein Yes 486 unclassified 

NCLIV_064620 rhoptry neck protein 2, putative Yes 478 CRDV 

NCLIV_033230 
SRS domain-containing protein,SRS29B, 
putative Yes 461 IE 

NCLIV_006180 duplicated carbonic anhydrase, putative No  455 unclassified 

NCLIV_069590 hypothetical protein Yes 453 CRDV 

NCLIV_058180 Rhoptry protein 10, related No 431 CRDV 

NCLIV_047500 Trichohyalin, putative Yes 423 unclassified 

NCLIV_065090 hypothetical protein, conserved No  411 PF 

NCLIV_018120 hypothetical protein, conserved No 394 unclassified 

NCLIV_001660 hypothetical protein, conserved Yes 393 unclassified 



 

NCLIV_055850 hypothetical protein, conserved Yes 389 CRDV 

NCLIV_055760 hypothetical protein, conserved Yes 373 unclassified 

NCLIV_060740 ROP 2, related Yes 361 CRDV 

NCLIV_068890 hypothetical protein Yes 349 CRDV 

NCLIV_011730 
Rhoptry kinase family protein ROP26, 
putative No 344 CRDV 

NCLIV_056300 hypothetical protein, conserved Yes 336 unclassified 

NCLIV_069110 hypothetical protein Yes 329 ? 

NCLIV_027930 
Rhoptry kinase family protein ROP17, 
putative No 314 CRDV 

NCLIV_005500 hypothetical protein, conserved No  308 unclassified 

NCLIV_048590 hypothetical protein, conserved No  307 CRDV 

NCLIV_021050 hypothetical protein Yes 291 CRDV 

NCLIV_038360 
TSP1 domain-containing protein TSP12 
(Precursor), related No 285 IE 

NCLIV_070010 hypothetical protein, conserved No  285 unclassified 

NCLIV_030050 hypothetical protein, conserved Yes 278 CRDV 

NCLIV_027850 rhoptry protein 6, putative No  268 CRDV 

NCLIV_017420 Zgc:55863, related Yes 260 CRDV 

NCLIV_068230 nucleoside-triphosphatase, putative Yes 260 M 

NCLIV_062520 
3-ketoacyl-(Acyl-carrier-protein) 
reductase , related Yes 259 M 

NCLIV_054120 
sushi domain-containing protein/SCR 
repeat- containing protein (RON1) Yes 249 CRDV 

NCLIV_006850 Hornerin, related No 243 M 

NCLIV_067490 protein phosphatase 2C, putative No 230 ? 

NCLIV_047390 hypothetical protein, conserved Yes 226 unclassified 

NCLIV_037190 
glyceraldehyde-3-phosphate 
dehydrogenase, putative No 214 M 

NCLIV_035910 hypothetical protein No 212 unclassified 

NCLIV_007450 hypothetical protein No 196 CRDV 

NCLIV_003440 Actin, related No 191 CT 

NCLIV_025670 ATP synthase subunit beta, related No 184 E 

NCLIV_035590 hypothetical protein, conserved No 182 unclassified 

NCLIV_017410 hypothetical protein Yes 179 CRDV 

NCLIV_022690 hypothetical protein, conserved No 175 unclassified 

NCLIV_047600 hypothetical protein Yes 170 unclassified 

NCLIV_034460 hypothetical protein No 161 PB 

NCLIV_020340 hypothetical protein No 159 CRDV 

NCLIV_009150 alpha-galactosidase A, putative Yes 156 M 

NCLIV_011690 ROP15 protein, related Yes 156 CRDV 

NCLIV_021100 hypothetical protein, conserved Yes 153 CRDV 

NCLIV_046310 hypothetical protein No 152 unclassified 

NCLIV_033250 SRS domain-containing protein No  150 IE 

NCLIV_045580 hypothetical protein, conserved No 146 CRDV 

NCLIV_066020 hypothetical protein No 145 CT 

NCLIV_036400 
dense granule protein 1 / major 
antigenp24, putative Yes 143 CRDV 



 

NCLIV_037590 hypothetical protein, conserved No 143 unclassified 

NCLIV_043870 hypothetical protein, conserved No 143 unclassified 

NCLIV_010730 SRS domain-containing protein Yes 136 IE 

NCLIV_014020 Peroxiredoxin-2E-1, related Yes 127 IE 

NCLIV_028170 
Rhoptry kinase family protein ROP20, 
putative No 125 CRDV 

NCLIV_032330 
Malate dehydrogenase (NAD) 
(Precursor), related No 113 E 

NCLIV_047530 hypothetical protein, conserved Yes 113 unclassified 

NCLIV_063340 hypothetical protein Yes 112 PF 

NCLIV_011410 protein disulfide isomerase Yes 110 IE 

NCLIV_009440 hypothetical protein No 108 CT 

NCLIV_000710 hypothetical protein, conserved Yes 107 SL 

NCLIV_024630 porin, putative No 107 CT 

NCLIV_004270 protein kinase, putative No 106 ? 

NCLIV_025730 hypothetical protein, conserved Yes 106 unclassified 

NCLIV_026070 
armadillo/beta-catenin-like repeat-
containing protein, putative No 103 PB 

NCLIV_039500 hypothetical protein No 98 unclassified 

NCLIV_066840 hypothetical protein No  98 CRDV 

NCLIV_024820 14-3-3 protein homolog No 95 CRDV 

NCLIV_055490 
Heat shock protein 70 (Precursor), 
related Yes 95 CRDV 

NCLIV_067010 
Mitochondrial phosphate carrier protein, 
related Yes 94 CT 

NCLIV_046970 hypothetical protein, conserved No 92 unclassified 

NCLIV_033860 hypothetical protein, conserved No 89 unclassified 

NCLIV_013260 hypothetical protein, conserved Yes 86 unclassified 

NCLIV_033270 hypothetical protein Yes 85 M 

NCLIV_061160 acid phosphatase, putative Yes 84 ? 

NCLIV_046830 ATP synthase, putative No  83 CT 

NCLIV_041120 hypothetical protein, conserved No  82 CRDV 

NCLIV_062720 hypothetical protein No 82 PS 

NCLIV_001300 calmodulin, putative No 81 PB 

NCLIV_025000 hypothetical protein Yes 81 PB 

NCLIV_032390 hypothetical protein, conserved No 81 unclassified 

NCLIV_056910 hypothetical protein, conserved No  81 unclassified 

NCLIV_045430 DNA-binding protein HU, putative No 80 PB 

NCLIV_031920 ATP synthase gamma chain, putative No  79 E 

NCLIV_052880 granule antigen protein GRA6, putative No  77 CRDV 

NCLIV_002020 hypothetical protein No 76 unclassified 

NCLIV_003580 hypothetical protein, conserved No 76 unclassified 

NCLIV_056480 hypothetical protein No  76 E 

NCLIV_007800 Tg65, related Yes 73 CRDV 

NCLIV_034990 
Transketolase, pyridine binding domain 
protein, related Yes 72 M 

NCLIV_047810 hypothetical protein No 70 M 



 

NCLIV_052190 hypothetical protein, conserved No  70 unclassified 

NCLIV_005150 hypothetical protein No 69 CT 

NCLIV_022270 hypothetical protein, conserved Yes 69 ? 

NCLIV_023790 hypothetical protein, conserved No 68 unclassified 

NCLIV_028140 hypothetical protein, conserved Yes 68 unclassified 

NCLIV_043270 microneme protein MIC1, putative Yes 67 CRDV 

NCLIV_043880 hypothetical protein No 65 CT 

NCLIV_000940 
Glucose-6-phosphate dehydrogenase, 
putative Yes 64 E 

NCLIV_062290 hypothetical protein, conserved Yes 64 unclassified 

NCLIV_007010 cathepsin C2 (TgCPC2), putative Yes 63 PB 

NCLIV_018390 hypothetical protein, conserved No 63 unclassified 

NCLIV_021640 dense granule protein 7, putative Yes 63 CRDV 

NCLIV_051970 MIC2-associated protein M2AP, putative Yes 63 CRDV 

NCLIV_043760 hypothetical protein, conserved Yes 62 unclassified 

NCLIV_046260 
Iron regulatory protein-like protein, 
related No 62 M 

NCLIV_060700 SRS domain-containing protein No 62 IE 

NCLIV_004220 Rhoptry antigen ROP8, related Yes 61 CRDV 

NCLIV_036410 cyst matrix protein, putative Yes 59 IE 

NCLIV_042510 hypothetical protein, conserved Yes 59 unclassified 

NCLIV_002540 GTP-binding protein, putative No 57 CT 

NCLIV_028240 
Ras family domain-containing protein, 
putative No 57 CC 

NCLIV_030620 hypothetical protein, conserved No 57 unclassified 

NCLIV_033950 Heat shock protein 70, related No 57 CRDV 

NCLIV_041930 GE25707, related No 57 CC 

NCLIV_044690 hypothetical protein, conserved Yes 57 unclassified 

NCLIV_060660 
SRS domain-containing protein,SRS57, 
putative No  57 IE 

NCLIV_001460 
Rhoptry kinase family protein ROP37 
(incomplete catalytic triad), putative No 56 CRDV 

NCLIV_022950 RNA-binding protein, putative No 56 IE 

NCLIV_033680 

Solute carrier family 25 (Mitochondrial 
carrier, dicarboxylate transporter), 
member 10, related No 56 CT 

NCLIV_057460 Transketolase central region, related Yes 54 M 

NCLIV_026140 Histone H2A, related No 52 BG 

NCLIV_004190 thioredoxin, putative Yes 51 IE 

NCLIV_040550 hypothetical protein, conserved No 51 unclassified 

NCLIV_045650 28 kDa antigen, putative Yes 51 CRDV 

NCLIV_034470 hypothetical protein No 50 PB 

 

  



 

Table V.2: Additional protein identifications for the rhoptry/dense granule (R/DG) 

preparation (n = 28). Proteins were identified using Mascot and a cut off score of 50 was 

employed, proteins are presented in decreasing order of Mascot score. Apical proteins have 

been highlighted according to their identification in Chapter 3: yellow indicates microneme 

protein; blue, dense granule and purple, rhoptry. Signal peptides were predicted by SignalP 

3.0 and downloaded from ToxoDB (cut off p-value ≥ 0.9). MIPs functional category 

assignments are abbreviated as follows: M = metabolism, E = energy, STP = storage protein, 

C/DNA = cell cycle and DNA processing, T = transcription, PS = protein synthesis, PF = 

protein fate. PB = protein with binding function or cofactor requirement, R = regulation of 

metabolism and protein function, CT = cellular transport, transport facilities and transport 

routes, CC = cellular communication/signal transduction mechanism, CRDV = cell rescue, 

defence and virulence, IE = interaction with the environment, CF = cell fate, BG = 

biogenesis of cellular components, SL = subcellular localisation and ? = potential ROP 

proteins. 

Protein I.D. Description 

Signal 
peptide 

predicted? 
Mascot 
score 

MIPs 
category 

assignment 

NCLIV_039100 hypothetical protein No 200 CT 

NCLIV_012920 
Rhoptry kinase family protein ROP40, 
putative No 188 CRDV 

NCLIV_049900 hypothetical protein No 165 PB 

NCLIV_068400 NTPase Yes 148 CRDV 

NCLIV_029420 myosin light chain TgMLC1, putative No 142 CT 

NCLIV_031770 
membrane skeletal protein IMC1, 
putative No 111 BG 

NCLIV_041940 
Glyceraldehyde 3-phosphate 
dehydrogenase, related No 97 M 

NCLIV_028540 hypothetical protein, conserved No 88 unclassified 

NCLIV_032270 hypothetical protein, conserved No 88 unclassified 

NCLIV_060140 Inner membrane complex IMC3 No 86 BG 

NCLIV_002940 microneme protein MIC4, putative Yes 84 CRDV 

NCLIV_017440 hypothetical protein Yes 84 CRDV 

NCLIV_032780 small heat shock protein 20, putative No 80 CRDV 

NCLIV_019770 hypothetical protein No 79 M 

NCLIV_042000 
ubiquitin / ribosomal protein CEP52 
fusion protein, putative No 75 PS 

NCLIV_050370 hypothetical protein No 72 E 

NCLIV_016800 
TCP-1/cpn60 chaperonin family protein, 
putative No 71 PF 

NCLIV_052350 hypothetical protein, conserved No  66 unclassified 

NCLIV_058890 tubulin alpha chain No 64 CT 

NCLIV_015920 Histone H4, related No 59 BG 

NCLIV_026340 hypothetical protein No 58 unclassified 

NCLIV_027160 hypothetical protein, conserved No 57 unclassified 

NCLIV_016220 
Rhoptry kinase family protein ROP23, 
putative Yes 55 CRDV 

NCLIV_019970 
Peptidyl-prolyl cis-trans isomerase A, 
related No 55 PF 



 

NCLIV_061830 60S acidic ribosomal protein P0 No 55 PS 

NCLIV_045870 Putative dense granule protein 3 Yes 53 CRDV 

NCLIV_008990 hypothetical protein Yes 50 CRDV 

NCLIV_038110 hypothetical protein Yes 50 CRDV 

 



 

APPENDIX VI: ROP18 region in full, showing stop codons

 



 

 



 

 



 

 



 

 

 



 

 

Figure 5.2: The ROP18 region of five strains of N. caninum amplified by PCR and aligned to the reference genome using BioEdit version 7.0.5.3. Stop codons are 

identified by purple boxes. This region is displayed in the 5’ to 3’ orientation, transcribed from the antisense strand of chromosome VIIIa. No SNPs were identified in 

any of the isolates analysed 



 

REFERENCES 

Abbott, A. (2003) 'Cell culture: biology's new dimension', Nature, vol. 424, no. 6951, pp. 870-872. 
 
Ahn, H.J., Kim, S., Kim, H.E. & Nam, H.W. (2006) 'Interactions between secreted GRA proteins 
and host cell proteins across the paratitophorous vacuolar membrane in the parasitism of Toxoplasma 
gondii', Korean J Parasitol, vol. 44, no. 4, pp. 303-312. 
 
Ahn, H.J., Song, K.J., Son, E.S., Shin, J.C. & Nam, H.W. (2001) 'Protease activity and host cell 
binding of the 42-kDa rhoptry protein from Toxoplasma gondii after secretion', Biochem Biophys Res 
Commun, vol. 287, no. 3, pp. 630-635. 
 
Alexander, D.L., Mital, J., Ward, G.E., Bradley, P. & Boothroyd, J.C. (2005) 'Identification of the 
moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles', 
PLoS Pathog, vol. 1, no. 2, p. e17. 

Almeria, S., Ferrer, D., Pabon, M., Castella, J. & Manas, S. (2002) 'Red foxes (Vulpes vulpes) are a 
natural intermediate host of Neospora caninum', Vet Parasitol, vol. 107, no. 4, pp. 287-294. 

Al-Qassab, S., Reichel, M.P. & Ellis, J. (2010) 'A second generation multiplex PCR for typing strains 
of Neospora caninum using six DNA targets', Mol Cell Probes, vol. 24, no. 1, pp. 20-26. 
 
Al-Qassab, S., Reichel, M.P., Ivens, A. & Ellis, J.T. (2009) 'Genetic diversity amongst isolates of 
Neospora caninum, and the development of a multiplex assay for the detection of distinct strains', Mol 
Cell Probes, vol. 23, no. 3-4, pp. 132-139. 

Al-Quassab, S., Reichel, M.P. & Ellis, J.T. (2010) 'On the Biological and Genetic Diversity in 
Neospora caninum', Diversity, vol. 2010, no. 2, pp. 411-438. 

Anders, S. & Huber, W. (2010) 'Differential expression analysis for sequence count data', Genome Biol, 
vol. 11, no. 10, p. R106. 
 
Anderson, M.L., Reynolds, J.P., Rowe, J.D., Sverlow, K.W., Packham, A.E., Barr, B.C. & Conrad, 
P.A. (1997) 'Evidence of vertical transmission of Neospora sp infection in dairy cattle', J Am Vet Med 
Assoc, vol. 210, no. 8, pp. 1169-1172. 
 
Andrianarivo, A.G., Barr, B.C., Anderson, M.L., Rowe, J.D., Packham, A.E., Sverlow, K.W. & 
Conrad, P.A. (2001) 'Immune responses in pregnant cattle and bovine fetuses following experimental 
infection with Neospora caninum', Parasitol Res, vol. 87, no. 10, pp. 817-825. 
 
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, 
K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., 
Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M. & Sherlock, G. (2000) 'Gene ontology: 
tool for the unification of biology. The Gene Ontology Consortium', Nat Genet, vol. 25, no. 1, pp. 25-
29. 
 
Assossou, O., Besson, F., Rouault, J.P., Persat, F., Ferrandiz, J., Mayencon, M., Peyron, F. & Picot, 
S. (2004) 'Characterization of an excreted/secreted antigen form of 14-3-3 protein in Toxoplasma 
gondii tachyzoites', FEMS Microbiol Lett, vol. 234, no. 1, pp. 19-25. 



 

Aurrecoechea, C., Brestelli, J., Brunk, B.P., Dommer, J., Fischer, S., Gajria, B., Gao, X., Gingle, A., 
Grant, G., Harb, O.S., Heiges, M., Innamorato, F., Iodice, J., Kissinger, J.C., Kraemer, E., Li, W., 
Miller, J.A., Nayak, V., Pennington, C., Pinney, D.F., Roos, D.S., Ross, C., Stoeckert, C.J., Jr., 
Treatman, C. & Wang, H. (2009) 'PlasmoDB: a functional genomic database for malaria parasites', 
Nucleic Acids Res, vol. 37, no. Database issue, pp. D539-543. 
 
Aurrecoechea, C., Heiges, M., Wang, H., Wang, Z., Fischer, S., Rhodes, P., Miller, J., Kraemer, E., 
Stoeckert, C.J., Jr., Roos, D.S. & Kissinger, J.C. (2007) 'ApiDB: integrated resources for the 
apicomplexan bioinformatics resource center', Nucleic Acids Res, vol. 35, no. Database issue, pp. D427-
430. 
 
Bahl, A., Brunk, B., Crabtree, J., Fraunholz, M.J., Gajria, B., Grant, G.R., Ginsburg, H., Gupta, D., 
Kissinger, J.C., Labo, P., Li, L., Mailman, M.D., Milgram, A.J., Pearson, D.S., Roos, D.S., Schug, 
J., Stoeckert, C.J., Jr. & Whetzel, P. (2003) 'PlasmoDB: the Plasmodium genome resource. A 
database integrating experimental and computational data', Nucleic Acids Res, vol. 31, no. 1, pp. 212-
215. 
 
Bannister, L.H., Hopkins, J.M., Dluzewski, A.R., Margos, G., Williams, I.T., Blackman, M.J., 
Kocken, C.H., Thomas, A.W. & Mitchell, G.H. (2003) 'Plasmodium falciparum apical membrane 
antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during 
merozoite development', J Cell Sci, vol. 116, no. Pt 18, pp. 3825-3834. 

Barber, J., Trees, A.J., Owen, M. & Tennant, B. (1993) 'Isolation of Neospora caninum from a British 
dog', Vet Rec, vol. 133, no. 21, pp. 531-532. 

Barber, J.S. & Trees, A.J. (1998) 'Naturally occuring vertical transmission of Neospora caninum in dogs', 
International Journal for Parasitology, vol. 28, pp. 57-64. 
 
Barling, K.S., McNeill, J.W., Thompson, J.A., Paschal, J.C., McCollum, F.T., 3rd, Craig, T.M. & 
Adams, L.G. (2000) 'Association of serologic status for Neospora caninum with postweaning weight 
gain and carcass measurements in beef calves', J Am Vet Med Assoc, vol. 217, no. 9, pp. 1356-1360. 
 
Beckers, C.J., Dubremetz, J.F., Mercereau-Puijalon, O. & Joiner, K.A. (1994) 'The Toxoplasma 
gondii rhoptry protein ROP 2 is inserted into the parasitophorous vacuole membrane, surrounding the 
intracellular parasite, and is exposed to the host cell cytoplasm', J Cell Biol, vol. 127, no. 4, pp. 947-
961. 
 
Beckers, C.J., Wakefield, T. & Joiner, K.A. (1997) 'The expression of Toxoplasma proteins in 
Neospora caninum and the identification of a gene encoding a novel rhoptry protein', Mol Biochem 
Parasitol, vol. 89, no. 2, pp. 209-223. 
 
Behnke, M.S., Khan, A., Wootton, J.C., Dubey, J.P., Tang, K. & Sibley, L.D. (2011) 'Virulence 
differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases', Proc 
Natl Acad Sci U S A, vol. 108, no. 23, pp. 9631-9636. 
 
Behnke, M.S., Wootton, J.C., Lehmann, M.M., Radke, J.B., Lucas, O., Nawas, J., Sibley, L.D. & 
White, M.W. (2010) 'Coordinated progression through two subtranscriptomes underlies the 
tachyzoite cycle of Toxoplasma gondii', PLoS One, vol. 5, no. 8, p. e12354. 
 
Bekpen, C., Hunn, J.P., Rohde, C., Parvanova, I., Guethlein, L., Dunn, D.M., Glowalla, E., Leptin, 
M. & Howard, J.C. (2005) 'The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell 
autonomous resistance mechanism in the human lineage', Genome Biol, vol. 6, no. 11, p. R92. 



 

Bell, A.W., Deutsch, E.W., Au, C.E., Kearney, R.E., Beavis, R., Sechi, S., Nilsson, T., Bergeron, 
J.J.M. & Group, H.T.S.W. (2009) 'A HUPO test sample study reveals common problems in mass 
spectrometry-based proteomics', Nature Methods. 

Belli, S.I., Walker, R.A. & Flowers, S.A. (2005) 'Global protein expression analysis in apicomplexan 
parasites: current status', Proteomics, vol. 5, no. 4, pp. 918-924. 

Bendtsen, J.D., Nielsen, H., von Heijne, G. & Brunak, S. (2004) 'Improved prediction of signal 
peptides: SignalP 3.0', J Mol Biol, vol. 340, no. 4, pp. 783-795. 

Bennett, S.T., Barnes, C., Cox, A., Davies, L. & Brown, C. (2005) 'Toward the 1,000 dollars human 
genome', Pharmacogenomics, vol. 6, no. 4, pp. 373-382. 
 
Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., Smith, G.P., Milton, J., Brown, C.G., Hall, 
K.P., Evers, D.J., Barnes, C.L., Bignell, H.R., Boutell, J.M., Bryant, J., Carter, R.J., Keira 
Cheetham, R., Cox, A.J., Ellis, D.J., Flatbush, M.R., Gormley, N.A., Humphray, S.J., Irving, L.J., 
Karbelashvili, M.S., Kirk, S.M., Li, H., Liu, X., Maisinger, K.S., Murray, L.J., Obradovic, B., Ost, 
T., Parkinson, M.L., Pratt, M.R., Rasolonjatovo, I.M., Reed, M.T., Rigatti, R., Rodighiero, C., 
Ross, M.T., Sabot, A., Sankar, S.V., Scally, A., Schroth, G.P., Smith, M.E., Smith, V.P., Spiridou, 
A., Torrance, P.E., Tzonev, S.S., Vermaas, E.H., Walter, K., Wu, X., Zhang, L., Alam, M.D., 
Anastasi, C., Aniebo, I.C., Bailey, D.M., Bancarz, I.R., Banerjee, S., Barbour, S.G., Baybayan, P.A., 
Benoit, V.A., Benson, K.F., Bevis, C., Black, P.J., Boodhun, A., Brennan, J.S., Bridgham, J.A., 
Brown, R.C., Brown, A.A., Buermann, D.H., Bundu, A.A., Burrows, J.C., Carter, N.P., Castillo, 
N., Chiara, E.C.M., Chang, S., Neil Cooley, R., Crake, N.R., Dada, O.O., Diakoumakos, K.D., 
Dominguez-Fernandez, B., Earnshaw, D.J., Egbujor, U.C., Elmore, D.W., Etchin, S.S., Ewan, M.R., 
Fedurco, M., Fraser, L.J., Fuentes Fajardo, K.V., Scott Furey, W., George, D., Gietzen, K.J., 
Goddard, C.P., Golda, G.S., Granieri, P.A., Green, D.E., Gustafson, D.L., Hansen, N.F., Harnish, 
K., Haudenschild, C.D., Heyer, N.I., Hims, M.M., Ho, J.T., Horgan, A.M., Hoschler, K., Hurwitz, 
S., Ivanov, D.V., Johnson, M.Q., James, T., Huw Jones, T.A., Kang, G.D., Kerelska, T.H., Kersey, 
A.D., Khrebtukova, I., Kindwall, A.P., Kingsbury, Z., Kokko-Gonzales, P.I., Kumar, A., Laurent, 
M.A., Lawley, C.T., Lee, S.E., Lee, X., Liao, A.K., Loch, J.A., Lok, M., Luo, S., Mammen, R.M., 
Martin, J.W., McCauley, P.G., McNitt, P., Mehta, P., Moon, K.W., Mullens, J.W., Newington, T., 
Ning, Z., Ling Ng, B., Novo, S.M., O'Neill, M.J., Osborne, M.A., Osnowski, A., Ostadan, O., 
Paraschos, L.L., Pickering, L., Pike, A.C., Chris Pinkard, D., Pliskin, D.P., Podhasky, J., Quijano, 
V.J., Raczy, C., Rae, V.H., Rawlings, S.R., Chiva Rodriguez, A., Roe, P.M., Rogers, J., Rogert 
Bacigalupo, M.C., Romanov, N., Romieu, A., Roth, R.K., Rourke, N.J., Ruediger, S.T., Rusman, 
E., Sanches-Kuiper, R.M., Schenker, M.R., Seoane, J.M., Shaw, R.J., Shiver, M.K., Short, S.W., 
Sizto, N.L., Sluis, J.P., Smith, M.A., Ernest Sohna Sohna, J., Spence, E.J., Stevens, K., Sutton, N., 
Szajkowski, L., Tregidgo, C.L., Turcatti, G., Vandevondele, S., Verhovsky, Y., Virk, S.M., Wakelin, 
S., Walcott, G.C., Wang, J., Worsley, G.J., Yan, J., Yau, L., Zuerlein, M., Mullikin, J.C., Hurles, 
M.E., McCooke, N.J., West, J.S., Oaks, F.L., Lundberg, P.L., Klenerman, D., Durbin, R. & Smith, 
A.J. (2008) 'Accurate whole human genome sequencing using reversible terminator chemistry', Nature, 
vol. 456, no. 7218, pp. 53-59. 

Besteiro, S., Dubremetz, J.F. & Lebrun, M. (2011) 'The moving junction of apicomplexan parasites: a 
key structure for invasion', Cell Microbiol, vol. 13, no. 6, pp. 797-805. 
 
Besteiro, S., Michelin, A., Poncet, J., Dubremetz, J.F. & Lebrun, M. (2009) 'Export of a Toxoplasma 
gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during 
invasion', PLoS Pathog, vol. 5, no. 2, p. e1000309. 



 

Bjerkas, I., Mohn, S.F. & Presthus, J. (1984) 'Unidentified cyst-forming sporozoon causing 
encephalomyelitis and myositis in dogs', Z Parasitenkd, vol. 70, no. 2, pp. 271-274. 

Bjorkman, C., Johansson, O., Stenlund, S., Holmdahl, O.J. & Uggla, A. (1996) 'Neospora species 
infection in a herd of dairy cattle', J Am Vet Med Assoc, vol. 208, no. 9, pp. 1441-1444. 

Blood, D.C., Studdert, V.P. & Gay, C.C. (2007) Saunders Comprehensive Veterinary Dictionary, 3 ed., 
Elsevier, Inc. 
 
Bonhomme, A., Maine, G.T., Beorchia, A., Burlet, H., Aubert, D., Villena, I., Hunt, J., Chovan, L., 
Howard, L., Brojanac, S., Sheu, M., Tyner, J., Pluot, M. & Pinon, J.M. (1998) 'Quantitative 
immunolocalization of a P29 protein (GRA7), a new antigen of toxoplasma gondii', J Histochem 
Cytochem, vol. 46, no. 12, pp. 1411-1422. 

Boothroyd, J.C. & Dubremetz, J.F. (2008) 'Kiss and spit: the dual roles of Toxoplasma rhoptries', Nature 
Reviews | Microbiology, vol. 6, pp. 79-88. 

Boothroyd, J.C. (2009) 'Expansion of host range as a driving force in the evolution of Toxoplasma', 
Mem Inst Oswaldo Cruz, vol. 104, no. 2, pp. 179-184. 
 
Boysen, P., Klevar, S., Olsen, I. & Storset, A.K. (2006) 'The protozoan Neospora caninum directly 
triggers bovine NK cells to produce gamma interferon and to kill infected fibroblasts', Infect Immun, vol. 
74, no. 2, pp. 953-960. 

Bradford, M.M. (1976) 'A Rapid and Sensitive Method for the Quantitation of Microgram Quantities 
of Protein Utilizing the Principle of Protein-Dye Binding', Analytical Biochemistry, vol. 72, pp. 248-254. 
 
Bradley, P.J., Ward, C., Cheng, S.J., Alexander, D.L., Coller, S., Coombs, G.H., Dunn, J.D., 
Ferguson, D.J., Sanderson, S.J., Wastling, J.M. & Boothroyd, J.C. (2005) 'Proteomic analysis of 
rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii', 
J Biol Chem, vol. 280, no. 40, pp. 34245-34258. 
 
Buchholz, K.R., Fritz, H.M., Chen, X., Durbin-Johnson, B., Rocke, D.M., Ferguson, D.J., Conrad, 
P.A. & Boothroyd, J.C. (2011) ‘Identification of tissue Cyst Wall Components by Transcriptome 
Analysis of In Vivo and In Vitro Toxoplasma gondii Bradyzoites’ Eukaryotic Cell, vol. 10, no.12, pp.1637-
1647. 

Burgoyne, R.D. & Morgan, A. (1993) 'Regulated exocytosis', Biochem J, vol. 293 ( Pt 2), pp. 305-316. 
 
Butcher, B.A., Fox, B.A., Rommereim, L.M., Kim, S.G., Maurer, K.J., Yarovinsky, F., Herbert, 
D.R., Bzik, D.J. & Denkers, E.Y. (2011) 'Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 
and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control', PLoS Pathog, vol. 
7, no. 9, p. e1002236. 

Buxton, D., McAllister, M.M. & Dubey, J.P. (2002) 'The comparative pathogenesis of neosporosis', 
Trends in Parasitology, vol. 18, no. 12, pp. 546-552. 
 
Carruthers, V.B. & Sibley, L.D. (1997) 'Sequential protein secretion from three distinct organelles of 
Toxoplasma gondii accompanies invasion of human fibroblasts', Eur J Cell Biol, vol. 73, no. 2, pp. 114-
123. 



 

Carruthers, V.B. & Sibley, L.D. (1999) 'Mobilization of intracellular calcium stimulates microneme 
discharge in Toxoplasma gondii', Mol Microbiol, vol. 31, no. 2, pp. 421-428. 

Carruthers, V.B., Giddings, O.K. & Sibley, L.D. (1999) 'Secretion of micronemal proteins is 
associated with toxoplasma invasion of host cells', Cell Microbiol, vol. 1, no. 3, pp. 225-235. 
 
Carruthers, V.B., Moreno, N.J. & Sibley, L.D. (1999) 'Ethanol and acetaldehyde elevate intracellular 
[Ca2+] and stimulate microneme discharge in Toxoplasma gondii', Biochemical Journal, vol. 342, pp. 379-
386. 
 
Cerede, O., Dubremetz, J.F., Soete, M., Deslee, D., Vial, H., Bout, D. & Lebrun, M. (2005) 
'Synergistic role of micronemal proteins in Toxoplasma gondii virulence', J Exp Med, vol. 201, no. 3, 
pp. 453-463. 
 
Chen, F., Mackey, A.J., Stoeckert, C.J., Jr. & Roos, D.S. (2006) 'OrthoMCL-DB: querying a 
comprehensive multi-species collection of ortholog groups', Nucleic Acids Res, vol. 34, no. Database 
issue, pp. D363-368. 
 
Chen, X.M., O'Hara, S.P., Huang, B.Q., Nelson, J.B., Lin, J.J., Zhu, G., Ward, H.D. & LaRusso, 
N.F. (2004) 'Apical organelle discharge by Cryptosporidium parvum is temperature, cytoskeleton, and 
intracellular calcium dependent and required for host cell invasion', Infect Immun, vol. 72, no. 12, pp. 
6806-6816. 
 
Coers, J., Bernstein-Hanley, I., Grotsky, D., Parvanova, I., Howard, J.C., Taylor, G.A., Dietrich, 
W.F. & Starnbach, M.N. (2008) 'Chlamydia muridarum evades growth restriction by the IFN-gamma-
inducible host resistance factor Irgb10', J Immunol, vol. 180, no. 9, pp. 6237-6245. 
 
Conrad, P.A., Barr, B.C., Sverlow, K.W., Anderson, M., Daft, B., Kinde, H., Dubey, J.P., Munson, 
L. & Ardans, A. (1993) 'In vitro isolation and characterization of a Neospora sp. from aborted bovine 
foetuses', Parasitology, vol. 106 ( Pt 3), pp. 239-249. 

Cowper, B., Matthews, S. & Tomley, F. (2012) 'The molecular basis for the distinct host and tissue 
tropisms of coccidian parasites', Mol Biochem Parasitol. 

Craig, R. & Beavis, R.C. (2004) 'TANDEM: matching proteins with tandem mass spectra', 
Bioinformatics, vol. 20, no. 9, pp. 1466-1467. 

Craig, R., Cortens, J.P. & Beavis, R.C. (2005) 'The use of proteotypic peptide libraries for protein 
identification', Rapid Commun Mass Spectrom, vol. 19, no. 13, pp. 1844-1850. 
 
Dabritz, H.A., Miller, M.A., Atwill, E.R., Gardner, I.A., Leutenegger, C.M., Melli, A.C. & Conrad, 
P.A. (2007) 'Detection of Toxoplasma gondii-like oocysts in cat feces and estimates of the 
environmental oocyst burden', J Am Vet Med Assoc, vol. 231, no. 11, pp. 1676-1684. 
 
Dautu, G., Ueno, A., Munyaka, B., Carmen, G., Makino, S., Kobayashi, Y. & Igarashi, M. (2008) 
'Molecular and biochemical characterization of Toxoplasma gondii beta-hydroxyacyl-acyl carrier 
protein dehydratase (FABZ)', Parasitol Res, vol. 102, no. 6, pp. 1301-1309. 
 
Davison, H.C., Otter, A. & Trees, A.J. (1999) 'Estimation of vertical and horizontal transmission 
parameters of Neospora caninum infections in dairy cattle', Int J Parasitol, vol. 29, no. 10, pp. 1683-
1689. 



 

 

Davison, H.C., Otter, A. & Trees, A.J. (1999b) 'Significance of Neospora caninum in British dairy 
cattle determined by estimation of seroprevalence in normally calving cattle and aborting cattle', Int J 
Parasitol, vol. 29, no. 8, pp. 1189-1194. 

Davison, H.C., Trees, A.J., Guy, F., Otter, A., Holt, J.J., Simpson, V.R. & Jeffrey, M. (1997) 
'Isolation of bovine Neospora in Britain', Vet Rec, vol. 141, no. 23, p. 607. 
 
De Marez, T., Liddell, S., Dubey, J.P., Jenkins, M.C. & Gasbarre, L. (1999) 'Oral infection of calves 
with Neospora caninum oocysts from dogs: humoral and cellular immune responses', Int J Parasitol, vol. 
29, no. 10, pp. 1647-1657. 
 
de Melo, E.J., de Carvalho, T.U. & de Souza, W. (1992) 'Penetration of Toxoplasma gondii into host 
cells induces changes in the distribution of the mitochondria and the endoplasmic reticulum', Cell Struct 
Funct, vol. 17, no. 5, pp. 311-317. 

DeBarry, J.D. & Kissinger, J.C. (2011) 'Jumbled genomes: missing Apicomplexan synteny', Mol Biol 
Evol, vol. 28, no. 10, pp. 2855-2871. 

Del Carmen, M.G., Mondragon, M., Gonzalez, S. & Mondragon, R. (2009) 'Induction and regulation 
of conoid extrusion in Toxoplasma gondii', Cell Microbiol, vol. 11, no. 6, pp. 967-982. 
 
Delorme, V., Cayla, X., Faure, G., Garcia, A. & Tardieux, I. (2003) 'Actin dynamics is controlled by a 
casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin', Mol Biol Cell, vol. 14, 
no. 5, pp. 1900-1912. 
 
Denkers, E.Y., Bzik, D.J., Fox, B.A. & Butcher, B.A. (2012) 'An inside job: hacking into Janus 
kinase/signal transducer and activator of transcription signaling cascades by the intracellular protozoan 
Toxoplasma gondii', Infect Immun, vol. 80, no. 2, pp. 476-482. 
 
Dijkstra, T., Eysker, M., Schares, G., Conraths, F.J., Wouda, W. & Barkema, H.W. (2001) 'Dogs 
shed Neospora caninum oocysts after ingestion of naturally infected bovine placenta but not after 
ingestion of colostrum spiked with Neospora caninum tachyzoites', Int J Parasitol, vol. 31, no. 8, pp. 
747-752. 

Dobrowolski, J.M. & Sibley, L.D. (1996) 'Toxoplasma invasion of mammalian cells is powered by the 
actin cytoskeleton of the parasite', Cell, vol. 84, no. 6, pp. 933-939. 

Dubey, J.P. (1999a) 'Neosporosis - the first decade of research', International Journal for Parasitology, 
vol. 29, pp. 1485-1488. 

 
Dubey, J.P. (1999b) 'Recent advances in Neospora and neosporosis', Vet Parasitol, vol. 84, no. 3-4, pp. 
349-367. 

Dubey, J.P. & Frenkel, J.K. (1972) 'Cyst-induced toxoplasmosis in cats', J Protozool, vol. 19, no. 1, pp. 
155-177. 

Dubey, J.P. & Lindsay, D.S. (1996) 'A review of Neospora caninum and neosporosis', Vet Parasitol, vol. 
67, no. 1-2, pp. 1-59. 



 

Dubey, J.P. & Su, C. (2009) 'Population biology of Toxoplasma gondii: what's out and where did they 
come from', Mem Inst Oswaldo Cruz, vol. 104, no. 2, pp. 190-195. 

Dubey, J.P. (1995) 'Duration of immunity to shedding of Toxoplasma gondii oocysts by cats', J 
Parasitol, vol. 81, no. 3, pp. 410-415. 

Dubey, J.P. (2003) 'Review of Neospora caninum and neosporosis in animals', Korean J Parasitol, vol. 
41, no. 1, pp. 1-16. 

Dubey, J.P. (2005) Neosporosis in Dogs, 30th World Congress of the WSAVA, Mexico City, Mexico. 

Dubey, J.P., Buxton, D. & Wouda, W. (2006) 'Pathogenesis of bovine neosporosis', J Comp Pathol, 
vol. 134, no. 4, pp. 267-289. 

Dubey, J.P., Carpenter, J.L., Speer, C.A., Topper, M.J. & Uggla, A. (1988a) 'Newly recognized fatal 
protozoan disease of dogs', J Am Vet Med Assoc, vol. 192, no. 9, pp. 1269-1285. 
 
Dubey, J.P., Hattel, A.L., Lindsay, D.S. & Topper, M.J. (1988) 'Neonatal Neospora caninum 
infection in dogs: isolation of the causative agent and experimental transmission', J Am Vet Med Assoc, 
vol. 193, no. 10, pp. 1259-1263. 
 
Dubey, J.P., Hattel, A.L., Lindsay, D.S. & Topper, M.J. (1988b) 'Neonatal Neospora caninum 
infection in dogs: isolation of the causative agent and experimental transmission', J Am Vet Med Assoc, 
vol. 193, no. 10, pp. 1259-1263. 
 
Dubey, J.P., Jenkins, M.C., Rajendran, C., Miska, K., Ferreira, L.R., Martins, J., Kwok, O.C. & 
Choudhary, S. (2011) 'Gray wolf (Canis lupus) is a natural definitive host for Neospora caninum', Vet 
Parasitol, vol. 181, no. 2-4, pp. 382-387. 

Dubey, J.P., Koestner, A. & Piper, R.C. (1990) 'Repeated transplacental transmission of Neospora 
caninum in dogs', J Am Vet Med Assoc, vol. 197, no. 7, pp. 857-860. 
 
Dubey, J.P., Lindsay, D.S. & Speer, C.A. (1998) 'Structures of Toxoplasma gondii tachyzoites, 
bradyzoites, and sporozoites and biology and development of tissue cysts', Clin Microbiol Rev, vol. 11, 
no. 2, pp. 267-299. 

Dubey, J.P., Schares, G. & Ortega-Mora, L.M. (2007) 'Epidemiology and Control of Neosporosis and 
Neospora caninum', Clinical Microbiology Reviews, vol. 20, no. 2, pp. 323-367. 
 
Dubey, J.P., Sreekumar, C., Knickman, E., Miska, K.B., Vianna, M.C.B., Kwok, O.C.H., Hill, D.E., 
Jenkins, M.C., Lindsay, D.S. & Greene, C.E. (2004) 'Biologic, morphologic, and molecular 
characterisation of Neospora caninum isolates from littermate dogs', International Journal for Parasitology, 
vol. 34, pp. 1157-1167. 
 
Dubey, J.P., Vianna, M.C., Kwok, O.C., Hill, D.E., Miska, K.B., Tuo, W., Velmurugan, G.V., 
Conors, M. & Jenkins, M.C. (2007) 'Neosporosis in Beagle dogs: clinical signs, diagnosis, treatment, 
isolation and genetic characterization of Neospora caninum', Vet Parasitol, vol. 149, no. 3-4, pp. 158-
166. 
 



 

Dubremetz, J.F., Garcia-Reguet, N., Conseil, V. & Fourmaux, M.N. (1998) 'Apical organelles and 
host-cell invasion by Apicomplexa', Int J Parasitol, vol. 28, no. 7, pp. 1007-1013. 
 

Dunn, J.D., Ravindran, S., Kim, S.K. & Boothroyd, J.C. (2008) 'The Toxoplasma gondii dense 
granule protein GRA7 is phosphorylated upon invasion and forms an unexpected association with the 
rhoptry proteins ROP2 and ROP4', Infect Immun, vol. 76, no. 12, pp. 5853-5861. 

Dytham, C. (2003) Choosing and using statistics-A biologist’s guide’ second edition, Blackwell Science  
 
El Hajj, H., Demey, E., Poncet, J., Lebrun, M., Wu, B., Galeotti, N., Fourmaux, M.N., Mercereau-
Puijalon, O., Vial, H., Labesse, G. & Dubremetz, J.F. (2006) 'The ROP2 family of Toxoplasma gondii 
rhoptry proteins: proteomic and genomic characterization and molecular modeling', Proteomics, vol. 6, 
no. 21, pp. 5773-5784. 
 
El Hajj, H., Lebrun, M., Arold, S.T., Vial, H., Labesse, G. & Dubremetz, J.F. (2007) 'ROP18 is a 
rhoptry kinase controlling the intracellular proliferation of Toxoplasma gondii', PLoS Pathog, vol. 3, no. 
2, p. e14. 
 
Eng, J.K., McCormack, A.L. & Yates, J.R. (1994) 'An approach to correlate tandem mass-spectral 
data of peptides with amino-acid-sequences in a protein database', Journal of the American Society for Mass 
Spectrometry, vol. 5, pp. 976-989. 

Entrican, G. (2002) 'Immune regulation during pregnancy and host-pathogen interactions in infectious 
abortion', J Comp Pathol, vol. 126, no. 2-3, pp. 79-94. 
 
Ewald, P.W. (1993) 'The evolution of virulence', Sci Am, vol. 268, no. 4, pp. 86-93. 
 
Fentress, S.J., Behnke, M.S., Dunay, I.R., Mashayekhi, M., Rommereim, L.M., Fox, B.A., Bzik, 
D.J., Taylor, G.A., Turk, B.E., Lichti, C.F., Townsend, R.R., Qiu, W., Hui, R., Beatty, W.L. &  
 
Sibley, L.D. (2010) 'Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted 
kinase promotes macrophage survival and virulence', Cell Host Microbe, vol. 8, no. 6, pp. 484-495. 
 
Fenyo, D. & Beavis, R.C. (2003) 'A method for assessing the statistical significance of mass 
spectrometry-based protein identifications using general scoring schemes', Analytical Chemistry, vol. 75, 
no. 4, pp. 768-774. 

Foth, B.J. & McFadden, G.I. (2003) 'The apicoplast: a plastid in Plasmodium falciparum and other 
Apicomplexan parasites', Int Rev Cytol, vol. 224, pp. 57-110. 
 
Friedrich, N., Santos, J.M., Liu, Y., Palma, A.S., Leon, E., Saouros, S., Kiso, M., Blackman, M.J., 
Matthews, S., Feizi, T. & Soldati-Favre, D. (2010) 'Members of a novel protein family containing 
microneme adhesive repeat domains act as sialic acid-binding lectins during host cell invasion by 
apicomplexan parasites', J Biol Chem, vol. 285, no. 3, pp. 2064-2076. 

Fu, H., Subramanian, R.R. & Masters, S.C. (2000) '14-3-3 proteins: structure, function, and 
regulation', Annu Rev Pharmacol Toxicol, vol. 40, pp. 617-647. 
 
Gajria, B., Bahl, A., Brestelli, J., Dommer, J., Fischer, S., Gao, X., Heiges, M., Iodice, J., Kissinger, 
J.C., Mackey, A.J., Pinney, D.F., Roos, D.S., Stoeckert, C.J., Jr., Wang, H. & Brunk, B.P. (2008) 
'ToxoDB: an integrated Toxoplasma gondii database resource', Nucleic Acids Res, vol. 36, no. Database 
issue, pp. D553-556. 



 

 
Garnett, J.A., Liu, Y., Leon, E., Allman, S.A., Friedrich, N., Saouros, S., Curry, S., Soldati-Favre, 
D., Davis, B.G., Feizi, T. & Matthews, S. (2009) 'Detailed insights from microarray and 
crystallographic studies into carbohydrate recognition by microneme protein 1 (MIC1) of Toxoplasma 
gondii', Protein Sci, vol. 18, no. 9, pp. 1935-1947. 
 
Geer, L.Y., Markey, S.P., Kowalak, J.A., Wagner, L., Xu, M., Maynard, D.M., Yang, X., Shi, W. & 
Bryant, S.H. (2004) 'Open mass spectrometry search algorithm', J Proteome Res, vol. 3, no. 5, pp. 958-
964. 

Ghosh, A., Uthaiah, R., Howard, J., Herrmann, C. & Wolf, E. (2004) 'Crystal structure of IIGP1: a 
paradigm for interferon-inducible p47 resistance GTPases', Mol Cell, vol. 15, no. 5, pp. 727-739. 
 
Gibney, E.H., Kipar, A., Rosbottom, A., Guy, C.S., Smith, R.F., Hetzel, U., Trees, A.J. & Williams, 
D.J.L. (2008) 'The extent of parasite-associated necrosis in the placenta and foetal tissues of cattle 
following Neospora caninum infection in early and late gestation correlates with foetal death', 
International Journal for Parasitology, vol. 38, pp. 579-588. 
 
Gilbert, L.A., Ravindran, S., Turetzky, J.M., Boothroyd, J.C. & Bradley, P.J. (2007) 'Toxoplasma 
gondii targets a protein phosphatase 2C to the nuclei of infected host cells', Eukaryot Cell, vol. 6, no. 1, 
pp. 73-83. 
 
Gondim, L.F., Gao, L. & McAllister, M.M. (2002) 'Improved production of Neospora caninum 
oocysts, cyclical oral transmission between dogs and cattle, and in vitro isolation from oocysts', J 
Parasitol, vol. 88, no. 6, pp. 1159-1163. 

Gondim, L.F., McAllister, M.M. & Gao, L. (2005) 'Effects of host maturity and prior exposure history 
on the production of Neospora caninum oocysts by dogs', Vet Parasitol, vol. 134, no. 1-2, pp. 33-39. 

Gondim, L.F., McAllister, M.M., Pitt, W.C. & Zemlicka, D.E. (2004) 'Coyotes (Canis latrans) are 
definitive hosts of Neospora caninum', Int J Parasitol, vol. 34, no. 2, pp. 159-161. 

Gorg, A., Weiss, W. & Dunn, M.J. (2004) 'Current two-dimensional electrophoresis technology for 
proteomics', Proteomics, vol. 4, no. 12, pp. 3665-3685. 
 
Gupta, N., Zahn, M.M., Coppens, I., Joiner, K.A. & Voelker, D.R. (2005) 'Selective disruption of 
phosphatidylcholine metabolism of the intracellular parasite Toxoplasma gondii arrests its growth', J 
Biol Chem, vol. 280, no. 16, pp. 16345-16353. 
 
Guy, C.S., Williams, D.J.L., Kelly, D.F., McGarry, J.W., Guy, F., Bjorkman, C., Smith, R.F. & 
Trees, A.J. (2001) 'Neospora caninum in persistently infected, pregnant cows: spontaneous 
transplacental infection is associated with an acute increase in maternal antibody', Vet Rec, vol. 149, no. 
15, pp. 443-449. 
 
Gygi, S.P., Corthals, G.L., Zhang, Y., Rochon, Y. & Aebersold, R. (2000) 'Evaluation of two-
dimensional gel electrophoresis-based proteome analysis technology', Proc Natl Acad Sci U S A, vol. 97, 
no. 17, pp. 9390-9395. 
 
Harris, T.D., Buzby, P.R., Babcock, H., Beer, E., Bowers, J., Braslavsky, I., Causey, M., Colonell, 
J., Dimeo, J., Efcavitch, J.W., Giladi, E., Gill, J., Healy, J., Jarosz, M., Lapen, D., Moulton, K., 
Quake, S.R., Steinmann, K., Thayer, E., Tyurina, A., Ward, R., Weiss, H. & Xie, Z. (2008) 'Single-
molecule DNA sequencing of a viral genome', Science, vol. 320, no. 5872, pp. 106-109. 



 

Hemphill, A. & Gottstein, B. (2000) 'A European perspective on Neospora caninum', Int J Parasitol, 
vol. 30, no. 8, pp. 877-924. 
 
Hemphill, A., Vonlaufen, N., Naguleswaran, A., Keller, N., Riesen, M., Guetg, N., Srinivasan, S. & 
Alaeddine, F. (2004) 'Tissue culture and explant approaches to studying and visualizing Neospora 
caninum and its interactions with the host cell', Microsc Microanal, vol. 10, no. 5, pp. 602-620. 
 
Hobson, J.C., Duffield, T.F., Kelton, D., Lissemore, K., Hietala, S.K., Leslie, K.E., McEwen, B., 
Cramer, G. & Peregrine, A.S. (2002) 'Neospora caninum serostatus and milk production of Holstein 
cattle', J Am Vet Med Assoc, vol. 221, no. 8, pp. 1160-1164. 
 
Hoff, E.F., Cook, S.H., Sherman, G.D., Harper, J.M., Ferguson, D.J., Dubremetz, J.F. & 
Carruthers, V.B. (2001) 'Toxoplasma gondii: molecular cloning and characterization of a novel 18-kDa 
secretory antigen, TgMIC10', Exp Parasitol, vol. 97, no. 2, pp. 77-88. 

Holmdahl, J., Bjorkman, C., Stenlund, S., Uggla, A. & Dubey, J.P. (1997) 'Bovine Neospora and 
Neospora caninum: One and the same', Parasitol Today, vol. 13, no. 1, pp. 40-41. 

Holt, R.A. & Jones, S.J. (2008) 'The new paradigm of flow cell sequencing', Genome Res, vol. 18, no. 
6, pp. 839-846. 

Howe, D.K. & Sibley, L.D. (1995) 'Toxoplasma gondii comprises three clonal lineages: correlation of 
parasite genotype with human disease', J Infect Dis, vol. 172, no. 6, pp. 1561-1566. 
 
Howell, S.A., Hackett, F., Jongco, A.M., Withers-Martinez, C., Kim, K., Carruthers, V.B. & 
Blackman, M.J. (2005) 'Distinct mechanisms govern proteolytic shedding of a key invasion protein in 
apicomplexan pathogens', Mol Microbiol, vol. 57, no. 5, pp. 1342-1356. 
 
Hunn, J.P., Feng, C.G., Sher, A. & Howard, J.C. (2011) 'The immunity-related GTPases in 
mammals: a fast-evolving cell-autonomous resistance system against intracellular pathogens', Mamm 
Genome, vol. 22, no. 1-2, pp. 43-54. 
 
Hunn, J.P., Koenen-Waisman, S., Papic, N., Schroeder, N., Pawlowski, N., Lange, R., Kaiser, F., 
Zerrahn, J., Martens, S. & Howard, J.C. (2008) 'Regulatory interactions between IRG resistance 
GTPases in the cellular response to Toxoplasma gondii', EMBO J, vol. 27, no. 19, pp. 2495-2509. 

Huynh, M.H. & Carruthers, V.B. (2006) 'Toxoplasma MIC2 is a major determinant of invasion and 
virulence', PLoS Pathog, vol. 2, no. 8, p. e84. 

Innes, E.A. (2007) 'The host-parasite relationship in pregnant cattle infected with Neospora caninum', 
Parasitology, vol. 134, no. Pt 13, pp. 1903-1910. 
 
Innes, E.A., Andrianarivo, A.G., Bjorkman, C., Williams, D.J. & Conrad, P.A. (2002) 'Immune 
responses to Neospora caninum and prospects for vaccination', Trends Parasitol, vol. 18, no. 11, pp. 
497-504. 
 
Innes, E.A., Bartley, P.M., Maley, S.W., Wright, S.E. & Buxton, D. (2007) 'Comparative host-
parasite relationships in ovine toxoplasmosis and bovine neosporosis and strategies for vaccination', 
Vaccine, vol. 25, no. 30, pp. 5495-5503. 



 

 
Innes, E.A., Buxton, D., Maley, S., Wright, S., Marks, J., Esteban, I., Rae, A., Schock, A. & 
Wastling, J. (2000) 'Neosporosis. Aspects of epidemiology and host immune response', Ann N Y Acad 
Sci, vol. 916, pp. 93-101. 
 
Innes, E.A., Panton, W.R.M., Marks, J., Trees, A.J., Holmdahl, J. & Buxton, D. (1995) 'Interferon-
Gamma Inhibits the Intracellular Multiplication of Neospora-Caninum, as Shown by Incorporation of 
H-3 Uracil', Journal of Comparative Pathology, vol. 113, no. 1, pp. 95-100. 
 
Innes, E.A., Wright, S., Bartley, P., Maley, S., Macaldowie, C., Esteban-Redondo, I. & Buxton, D. 
(2005) 'The host-parasite relationship in bovine neosporosis', Vet Immunol Immunopathol, vol. 108, no. 
1-2, pp. 29-36. 
 
Innes, E.A., Wright, S.E., Maley, S., Rae, A., Schock, A., Kirvar, E., Bartley, P., Hamilton, C., 
Carey, I.M. & Buxton, D. (2001) 'Protection against vertical transmission in bovine neosporosis', 
International Journal for Parasitology, vol. 31, pp. 1523-1534. 
 
Jan, G., Delorme, V., David, V., Revenu, C., Rebollo, A., Cayla, X. & Tardieux, I. (2007) 'The 
toxofilin-actin-PP2C complex of Toxoplasma: identification of interacting domains', Biochem J, vol. 
401, no. 3, pp. 711-719. 

Jewett, T.J. & Sibley, L.D. (2004) 'The toxoplasma proteins MIC2 and M2AP form a hexameric 
complex necessary for intracellular survival', J Biol Chem, vol. 279, no. 10, pp. 9362-9369. 
 
Jones, A.R., Siepen, J.A., Hubbard, S.J. & Paton, N.W. (2009) 'Improving sensitivity in proteome 
studies by analysis of false discovery rates for multiple search engines', Proteomics, vol. 9, pp. 1220-
1229. 

Jung, C., Lee, C.Y. & Grigg, M.E. (2004) 'The SRS superfamily of Toxoplasma surface proteins', Int J 
Parasitol, vol. 34, no. 3, pp. 285-296. 
 
Kang, S.W., Kweon, C.H., Lee, E.H., Choe, S.E., Jung, S.C. & Quyen, D.V. (2008) 'The 
differentiation of transcription between tachyzoites and bradyzoites of in vitro cultured Neospora 
caninum', Parasitol Res, vol. 103, no. 5, pp. 1011-1018. 
 
Kang, S.W., Lee, E.H., Jean, Y.H., Choe, S.E., Van Quyen, D. & Lee, M.S. (2008b) 'The differential 
protein expression profiles and immunogenicity of tachyzoites and bradyzoites of in vitro cultured 
Neospora caninum', Parasitol Res, vol. 103, no. 4, pp. 905-913. 
 
Kappe, S.H., Buscaglia, C.A., Bergman, L.W., Coppens, I. & Nussenzweig, V. (2004) 'Apicomplexan 
gliding motility and host cell invasion: overhauling the motor model', Trends Parasitol, vol. 20, no. 1, 
pp. 13-16. 
 
Khaminets, A., Hunn, J.P., Konen-Waisman, S., Zhao, Y.O., Preukschat, D., Coers, J., Boyle, J.P., 
Ong, Y.C., Boothroyd, J.C., Reichmann, G. & Howard, J.C. (2010) 'Coordinated Loading of IRG 
Resistance GTPases on to the Toxoplasma gondii Parasitophorous Vacuole', Cell Microbiol. 
 
Khan, A., Taylor, S., Ajioka, J.W., Rosenthal, B.M. & Sibley, L.D. (2009) 'Selection at a single locus 
leads to widespread expansion of Toxoplasma gondii lineages that are virulent in mice', PLoS Genet, vol. 
5, no. 3, p. e1000404. 

 
Kim, J.B., Porreca, G.J., Song, L., Greenway, S.C., Gorham, J.M., Church, G.M., Seidman, C.E. & 
Seidman, J.G. (2007) 'Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic 



 

cardiomyopathy', Science, vol. 316, no. 5830, pp. 1481-1484. 

Konen-Waisman, S. & Howard, J.C. (2007) 'Cell-autonomous immunity to Toxoplasma gondii in 
mouse and man', Microbes Infect, vol. 9, no. 14-15, pp. 1652-1661. 

Koonin, E.V. (2005) 'Orthologs, paralogs, and evolutionary genomics', Annu Rev Genet, vol. 39, pp. 
309-338. 
 
Labruyere, E., Lingnau, M., Mercier, C. & Sibley, L.D. (1999) 'Differential membrane targeting of 
the secretory proteins GRA4 and GRA6 within the parasitophorous vacuole formed by Toxoplasma 
gondii', Mol Biochem Parasitol, vol. 102, no. 2, pp. 311-324. 

Laemmli, U.K. (1970) 'Cleavage of Structural Proteins during the Assembly of the Head of 
Bacteriophage T4', Nature, vol. 227, pp. 680-685. 
 
Lagal, V., Binder, E.M., Huynh, M.H., Kafsack, B.F., Harris, P.K., Diez, R., Chen, D., Cole, R.N., 
Carruthers, V.B. & Kim, K. (2010) 'Toxoplasma gondii protease TgSUB1 is required for cell surface 
processing of micronemal adhesive complexes and efficient adhesion of tachyzoites', Cell Microbiol, vol. 
12, no. 12, pp. 1792-1808. 
 
Lee, E.G., Kim, J.H., Shin, Y.S., Shin, G.W., Kim, Y.H., Kim, G.S., Kim, D.Y., Jung, T.S. & Suh, 
M.D. (2004) 'Two-dimensional gel electrophoresis and immunoblot analysis of Neospora caninum 
tachyzoites', J Vet Sci, vol. 5, no. 2, pp. 139-145. 
 
Lee, E.G., Kim, J.H., Shin, Y.S., Shin, G.W., Kim, Y.R., Palaksha, K.J., Kim, D.Y., Yamane, I., 
Kim, Y.H., Kim, G.S., Suh, M.D. & Jung, T.S. (2005) 'Application of proteomics for comparison of 
proteome of Neospora caninum and Toxoplasma gondii tachyzoites', J Chromatogr B Analyt Technol 
Biomed Life Sci, vol. 815, no. 1-2, pp. 305-314. 
 
Lee, E.G., Kim, J.H., Shin, Y.S., Shin, G.W., Suh, M.D., Kim, D.Y., Kim, Y.H., Kim, G.S. & Jung, 
T.S. (2003) 'Establishment of a two-dimensional electrophoresis map for Neospora caninum 
tachyzoites by proteomics', Proteomics, vol. 3, no. 12, pp. 2339-2350. 
 
Leimgruber, R.M., Malone, J.P., Radabaugh, M.R., LaPorte, M.L., Violand, B.N. & Monahan, J.B. 
(2002) 'Development of improved cell lysis, solubilization and imaging approaches for proteomic 
analyses', Proteomics, vol. 2, no. 2, pp. 135-144. 
 
Leriche, M.A. & Dubremetz, J.F. (1991) 'Characterization of the Protein Contents of Rhoptries and 
Dense Granules of Toxoplasma-Gondii Tachyzoites by Subcellular Fractionation and Monoclonal-
Antibodies', Molecular and Biochemical Parasitology, vol. 45, no. 2, pp. 249-260. 
 
Li, G., Zhang, J., Sun, Y., Wang, H. & Wang, Y. (2009) 'The evolutionarily dynamic IFN-inducible 
GTPase proteins play conserved immune functions in vertebrates and cephalochordates', Mol Biol Evol, 
vol. 26, no. 7, pp. 1619-1630. 

Li, L., Stoeckert, C.J., Jr. & Roos, D.S. (2003) 'OrthoMCL: identification of ortholog groups for 
eukaryotic genomes', Genome Res, vol. 13, no. 9, pp. 2178-2189. 

Lindsay, D.S., Dubey, J.P. & Duncan, R.B. (1999) 'Confirmation that the dog is a definitive host for 
Neospora caninum', Vet Parasitol, vol. 82, no. 4, pp. 327-333. 



 

 
Lindsay, D.S., Mitschler, R.R., Toivio-Kinnucan, M.A., Upton, S.J., Dubey, J.P. & Blagburn, B.L. 
(1993) 'Association of host cell mitochondria with developing Toxoplasma gondii tissue cysts', Am J Vet 
Res, vol. 54, no. 10, pp. 1663-1667. 

Lindsay, D.S., Ritter, D.M. & Brake, D. (2001) 'Oocyst excretion in dogs fed mouse brains containing 
tissue cysts of a cloned line of Neospora caninum', J Parasitol, vol. 87, no. 4, pp. 909-911. 
 
Link, A.J., Eng, J., Schieltz, D.M., Carmack, E., Mize, G.J., Morris, D.R., Garvik, B.M. & Yates, 
J.R. (1999) 'Direct analysis of protein complexes using mass spectrometry', Nature Biotechnology, vol. 
17, pp. 676-682. 
 
Lister, R., O'Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H. & Ecker, 
J.R. (2008) 'Highly integrated single-base resolution maps of the epigenome in Arabidopsis', Cell, vol. 
133, no. 3, pp. 523-536. 

Lunden, A., Marks, J., Maley, S.W. & Innes, E.A. (1998) 'Cellular immune responses in cattle 
experimentally infected with Neospora caninum', Parasite Immunol, vol. 20, no. 11, pp. 519-526. 
 
Mader, U., Nicolas, P., Richard, H., Bessieres, P. & Aymerich, S. (2011) 'Comprehensive 
identification and quantification of microbial transcriptomes by genome-wide unbiased methods', Curr 
Opin Biotechnol, vol. 22, no. 1, pp. 32-41. 

Makarov, A. (2000) 'Electrostatic axially harmonic orbital trapping: a high-performance technique of 
mass analysis', Anal Chem, vol. 72, no. 6, pp. 1156-1162. 
 
Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., 
Braverman, M.S., Chen, Y.J., Chen, Z., Dewell, S.B., Du, L., Fierro, J.M., Gomes, X.V., Godwin, 
B.C., He, W., Helgesen, S., Ho, C.H., Irzyk, G.P., Jando, S.C., Alenquer, M.L., Jarvie, T.P., Jirage, 
K.B., Kim, J.B., Knight, J.R., Lanza, J.R., Leamon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman, 
K.L., Lu, H., Makhijani, V.B., McDade, K.E., McKenna, M.P., Myers, E.W., Nickerson, E., Nobile, 
J.R., Plant, R., Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons, J.F., Simpson, J.W., 
Srinivasan, M., Tartaro, K.R., Tomasz, A., Vogt, K.A., Volkmer, G.A., Wang, S.H., Wang, Y., 
Weiner, M.P., Yu, P., Begley, R.F. & Rothberg, J.M. (2005) 'Genome sequencing in microfabricated 
high-density picolitre reactors', Nature, vol. 437, no. 7057, pp. 376-380. 
 
Martens, S., Parvanova, I., Zerrahn, J., Griffiths, G., Schell, G., Reichmann, G. & Howard, J.C. 
(2005) 'Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance 
GTPases', PLoS Pathog, vol. 1, no. 3, p. e24. 
 
Marugan-Hernandez, V., Alvarez-Garcia, G., Tomley, F., Hemphill, A., Regidor-Cerrillo, J. & 
Ortega-Mora, L.M. (2011) 'Identification of novel rhoptry proteins in Neospora caninum by LC/MS-
MS analysis of subcellular fractions', J Proteomics, vol. 74, no. 5, pp. 629-642. 

McAllister, M.M., Dubey, J.P., Lindsay, D.S., Jolley, W.R., Wills, R.A. & McGuire, A.M. (1998) 
'Dogs are definitive hosts of Neospora caninum', International Journal for Parasitology, vol. 28, pp. 1473-
1478. 
 
McCann, C.M., Vyse, A.J., Salmon, R.L., Thomas, D., Williams, D.J., McGarry, J.W., Pebody, R. 
& Trees, A.J. (2008) 'Lack of serologic evidence of Neospora caninum in humans, England', Emerg 
Infect Dis, vol. 14, no. 6, pp. 978-980. 



 

 
Meissner, M., Reiss, M., Viebig, N., Carruthers, V.B., Toursel, C., Tomavo, S., Ajioka, J.W. & 
Soldati, D. (2002) 'A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF-
like domains and function as escorters', Journal of Cell Science, vol. 11`5, pp. 563-574. 
 
Michelin, A., Bittame, A., Bordat, Y., Travier, L., Mercier, C., Dubremetz, J.F. & Lebrun, M. 
(2009) 'GRA12, a Toxoplasma dense granule protein associated with the intravacuolar membranous 
nanotubular network', International Journal for Parasitology, vol. 39, pp. 299-306. 
 
Miller, S.A., Binder, E.M., Blackman, M.J., Carruthers, V.B. & Kim, K. (2001) 'A conserved 
subtilisin-like protein TgSUB1 in microneme organelles of Toxoplasma gondii', J Biol Chem, vol. 276, 
no. 48, pp. 45341-45348. 

Mital, J. & Ward, G.E. (2008) 'Current and emerging approaches to studying invasion in apicomplexan 
parasites', Subcell Biochem, vol. 47, pp. 1-32. 
 
Mordue, D.G., Desai, N., Dustin, M. & Sibley, L.D. (1999a) 'Invasion by Toxoplasma gondii 
establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis 
of their membrane anchoring', J Exp Med, vol. 190, no. 12, pp. 1783-1792. 
 
Mordue, D.G., Hakansson, S., Niesman, I. & Sibley, L.D. (1999b) 'Toxoplasma gondii resides in a 
vacuole that avoids fusion with host cell endocytic and exocytic vesicular trafficking pathways', Exp 
Parasitol, vol. 92, no. 2, pp. 87-99. 
 
Mugridge, N.B., Morrison, D.A., Heckeroth, A.R., Johnson, A.M. & Tenter, A.M. (1999) 
'Phylogenetic analysis based on full-length large subunit ribosomal RNA gene sequence comparison 
reveals that Neospora caninum is more closely related to Hammondia heydorni than to Toxoplasma 
gondii', Int J Parasitol, vol. 29, no. 10, pp. 1545-1556. 

Myers, J.L. & Well, A.D. (2003) Research Design and Statistical Analysis (2nd ed.), Lawrence Erlbaum. 
 
Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M. & Snyder, M. (2008) 'The 
transcriptional landscape of the yeast genome defined by RNA sequencing', Science, vol. 320, no. 5881, 
pp. 1344-1349. 

Nam, H.W. (2009) 'GRA proteins of Toxoplasma gondii: maintenance of host-parasite interactions 
across the parasitophorous vacuolar membrane', Korean J Parasitol, vol. 47 Suppl, pp. S29-37. 

Nichols, B.A., Chiappino, M.L. & O'Connor, G.R. (1983) 'Secretion from the rhoptries of 
Toxoplasma gondii during host-cell invasion', J Ultrastruct Res, vol. 83, no. 1, pp. 85-98. 
 
Nishikawa, Y., Iwata, A., Nagasawa, H., Fujisaki, K., Otsuka, H. & Mikami, T. (2001a) 'Comparison 
of the growth inhibitory effects of canine IFN-alpha, -beta and -gamma on canine cells infected with 
Neospora caninum tachyzoites', J Vet Med Sci, vol. 63, no. 4, pp. 445-448. 
 
Nishikawa, Y., Mishima, M., Nagasawa, H., Igarashi, I., Fujisaki, K., Otsuka, H. & Mikami, T. 
(2001b) 'Interferon-gamma-induced apoptosis in host cells infected with Neospora caninum', 
Parasitology, vol. 123, no. Pt 1, pp. 25-31. 
 
Odberg-Ferragut, C., Soete, M., Engels, A., Samyn, B., Loyens, A., Van Beeumen, J., Camus, D. & 
Dubremetz, J.F. (1996) 'Molecular cloning of the Toxoplasma gondii sag4 gene encoding an 18 kDa 
bradyzoite specific surface protein', Mol Biochem Parasitol, vol. 82, no. 2, pp. 237-244. 



 

 
Ong, Y.C., Reese, M.L. & Boothroyd, J.C. (2010) 'Toxoplasma rhoptry protein 16 (ROP16) subverts 
host function by direct tyrosine phosphorylation of STAT6', J Biol Chem, vol. 285, no. 37, pp. 28731-
28740. 
 
Opitz, C., Di Cristina, M., Reiss, M., Ruppert, T., Crisanti, A. & Soldati, D. (2002) 'Intramembrane 
cleavage of microneme proteins at the surface of the apicomplexan parasite Toxoplasma gondii', EMBO 
J, vol. 21, no. 7, pp. 1577-1585. 
 
Otto, T.D., Wilinski, D., Assefa, S., Keane, T.M., Sarry, L.R., Bohme, U., Lemieux, J., Barrell, B., 
Pain, A., Berriman, M., Newbold, C. & Llinas, M. (2010) 'New insights into the blood-stage 
transcriptome of Plasmodium falciparum using RNA-Seq', Mol Microbiol, vol. 76, no. 1, pp. 12-24. 
 
Papic, N., Hunn, J.P., Pawlowski, N., Zerrahn, J. & Howard, J.C. (2008) 'Inactive and active states of 
the interferon-inducible resistance GTPase, Irga6, in vivo', J Biol Chem, vol. 283, no. 46, pp. 32143-
32151. 

Pare, J., Thurmond, M.C. & Hietala, S.K. (1996) 'Congenital Neospora caninum infection in dairy 
cattle and associated calfhood mortality', Can J Vet Res, vol. 60, no. 2, pp. 133-139. 

Pare, J., Thurmond, M.C. & Hietala, S.K. (1997) 'Neospora caninum antibodies in cows during 
pregnancy as a predictor of congenital infection and abortion', J Parasitol, vol. 83, no. 1, pp. 82-87. 
 
Peixoto, L., Chen, F., Harb, O.S., Davis, P.H., Beiting, D.P., Brownback, C.S., Ouloguem, D. & 
Roos, D.S. (2010) 'Integrative genomic approaches highlight a family of parasite-specific kinases that 
regulate host responses', Cell Host Microbe, vol. 8, no. 2, pp. 208-218. 
 
Pelleau, S., Bertaux, L., Briolant, S., Ferdig, M.T., Sinou, V., Pradines, B., Parzy, D. & Jambou, R. 
(2011) 'Differential association of Plasmodium falciparum Na+/H+ exchanger polymorphism and 
quinine responses in field- and culture-adapted isolates of Plasmodium falciparum', Antimicrob Agents 
Chemother, vol. 55, no. 12, pp. 5834-5841. 
 
Perez-Zaballos, F.J., Ortega-Mora, L.M., Alvarez-Garcia, G., Collantes-Fernandez, E., Navarro-
Lozano, V., Garcia-Villada, L. & Costas, E. (2005) 'Adaptation of Neospora caninum isolates to cell-
culture changes: an argument in favor of its clonal population structure', J Parasitol, vol. 91, no. 3, pp. 
507-510. 
 
Pernas, L. & Boothroyd, J.C. (2010) 'Association of host mitochondria with the parasitophorous 
vacuole during Toxoplasma infection is not dependent on rhoptry proteins ROP2/8', Int J Parasitol, 
vol. 40, no. 12, pp. 1367-1371. 
 
Poupel, O., Boleti, H., Axisa, S., Couture-Tosi, E. & Tardieux, I. (2000) 'Toxofilin, a novel actin-
binding protein from Toxoplasma gondii, sequesters actin monomers and caps actin filaments', Mol Biol 
Cell, vol. 11, no. 1, pp. 355-368. 
 
Qiu, W., Wernimont, A., Tang, K., Taylor, S., Lunin, V., Schapira, M., Fentress, S., Hui, R. & 
Sibley, L.D. (2009) 'Novel structural and regulatory features of rhoptry secretory kinases in 
Toxoplasma gondii', EMBO J, vol. 28, no. 7, pp. 969-979. 

Ravindran, S. & Boothroyd, J.C. (2008) 'Secretion of proteins into host cells by Apicomplexan 
parasites', Traffic, vol. 9, no. 5, pp. 647-656. 
 
Reese, M.L. & Boothroyd, J.C. (2011) 'A conserved non-canonical motif in the pseudoactive site of the 



 

ROP5 pseudokinase domain mediates its effect on Toxoplasma virulence', J Biol Chem, vol. 286, no. 
33, pp. 29366-29375. 

 
Reese, Zeiner, Saeij, Boothroyd, a. & Boyle (2011) 'Polymorphic family of injected pseudokinases is 
paramount in Toxoplasma virulence', Proceedings of the National Academy of Sciences of the USA. 
 
Reid, A.J., Vermont, S.J., Cotton, J.A., Harris, D., Hill-Cawthorne, G.A., Konen-Waisman, S., 
Latham, S.M., Mourier, T., Norton, R., Quail, M.A., Sanders, M., Shanmugam, D., Sohal, A., 
Wasmuth, J.D., Brunk, B., Grigg, M.E., Howard, J.C., Parkinson, J., Roos, D.S., Trees, A.J., 
Berriman, M., Pain, A. & Wastling, J.M. (2012) 'Comparative Genomics of the Apicomplexan 
Parasites Toxoplasma gondii and Neospora caninum: Coccidia Differing in Host Range and 
Transmission Strategy', PLoS Pathog, vol. 8, no. 3, p. e1002567. 
 
Reiss, M., Viebig, N., Brecht, S., Fourmaux, M.N., Soete, M., Di Cristina, M., Dubremetz, J.F. & 
Soldati, D. (2001) 'Identification and characterization of an escorter for two secretory adhesins in 
Toxoplasma gondii', J Cell Biol, vol. 152, no. 3, pp. 563-578. 
 
Rigbolt, K.T., Vanselow, J.T. & Blagoev, B. (2011) 'GProX, a user-friendly platform for 
bioinformatics analysis and visualization of quantitative proteomics data', Mol Cell Proteomics, vol. 10, 
no. 8, p. O110 007450. 

Roach, J.C., Boysen, C., Wang, K. & Hood, L. (1995) 'Pairwise end sequencing: a unified approach to 
genomic mapping and sequencing', Genomics, vol. 26, no. 2, pp. 345-353. 

Roberts, L.S., Schmidt, G.D. & Janovy, J. (2009) Gerald D. Schmidt & Larry S. Roberts' foundations of 
parasitology, 8th edn, McGraw-Hill Higher Education, Boston. 
 
Rodger, S.M., Maley, S.W., Wright, S.E., MacKellar, A., Wesley, F., Sales, J. & Buxton, D. (2006) 
'Role of endogenous transplacental transmission in toxoplasmosis in sheep', Veterinary Record, vol. 159, 
no. 23, pp. 768-772. 
 
Rosenfeld, J., Capdevielle, J., Guillemot, J.C. & Ferrara, P. (1992) 'In-gel digestion of proteins for 
internal sequence analysis after one- or two-dimensional gel electrophoresis', Anal Biochem, vol. 203, 
no. 1, pp. 173-179. 

Rozen, S. & Skaletsky, H. (2000) 'Primer3 on the WWW for general users and for biologist 
programmers', Methods Mol Biol, vol. 132, pp. 365-386. 
 
Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., Tetko, I., Guldener, U., 
Mannhaupt, G., Munsterkotter, M. & Mewes, H.W. (2004) 'The FunCat, a functional annotation 
scheme for systematic classification of proteins from whole genomes', Nucleic Acids Res, vol. 32, no. 18, 
pp. 5539-5545. 
 
Saeij, J.P., Boyle, J.P., Coller, S., Taylor, S., Sibley, L.D., Brooke-Powell, E.T., Ajioka, J.W. & 
Boothroyd, J.C. (2006) 'Polymorphic secreted kinases are key virulence factors in toxoplasmosis', 
Science, vol. 314, no. 5806, pp. 1780-1783. 
 
Saeij, J.P., Coller, S., Boyle, J.P., Jerome, M.E., White, M.W. & Boothroyd, J.C. (2007) 
'Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue', Nature, 
vol. 445, no. 7125, pp. 324-327. 



 

 
Saffer, L.D., Mercereau-Puijalon, O., Dubremetz, J.F. & Schwartzman, J.D. (1992) 'Localization of a 
Toxoplasma gondii rhoptry protein by immunoelectron microscopy during and after host cell 
penetration', J Protozool, vol. 39, no. 4, pp. 526-530. 
 
Sanderson, S.J., Xia, D., Prieto, H., Yates, J., Heiges, M., Kissinger, J.C., Bromley, E., Lal, K., 
Sinden, R.E., Tomley, F. & Wastling, J.M. (2008) 'Determining the protein repertoire of 
Cryptosporidium parvum sporozoites', Proteomics, vol. 8, no. 7, pp. 1398-1414. 

Sanger, F., Nicklen, S. & Coulson, A.R. (1977) 'DNA sequencing with chain-terminating inhibitors', 
Proc Natl Acad Sci U S A, vol. 74, no. 12, pp. 5463-5467. 
 
Santoni, V., Rabilloud, T., Doumas, P., Rouquie, D., Mansion, M., Kieffer, S., Garin, J. & Rossignol, 
M. (1999) 'Towards the recovery of hydrophobic proteins on two-dimensional electrophoresis gels', 
Electrophoresis, vol. 20, no. 4-5, pp. 705-711. 
 
Saouros, S., Edwards-Jones, B., Reiss, M., Sawmynaden, K., Cota, E., Simpson, P., Dowse, T.J., 
Jakle, U., Ramboarina, S., Shivarattan, T., Matthews, S. & Soldati-Favre, D. (2005) 'A novel galectin-
like domain from Toxoplasma gondii micronemal protein 1 assists the folding, assembly, and transport 
of a cell adhesion complex', J Biol Chem, vol. 280, no. 46, pp. 38583-38591. 
 
Schares, G., Peters, M., Wurm, R., Barwald, A. & Conraths, F.J. (1998) 'The efficiency of vertical 
transmission of Neospora caninum in dairy cattle analysed by serological techniques', Vet Parasitol, vol. 
80, no. 2, pp. 87-98. 

Schock, A., Innes, E.A., Yamane, I., Latham, S.M. & Wastling, J.M. (2001) 'Genetic and biological 
diversity among isolates of Neospora caninum', Parasitology, vol. 123, no. Pt 1, pp. 13-23. 

Shanmugasundram, A. (unpublished) LAMP database: Liverpool Library for Apicomplexan Metabolic 
Pathways, http://www.llamp.net/ 
 
Shapiro, A.L., Vinuela, E. & Maizel, J.V., Jr. (1967) 'Molecular weight estimation of polypeptide 
chains by electrophoresis in SDS-polyacrylamide gels', Biochem Biophys Res Commun, vol. 28, no. 5, pp. 
815-820. 
 
Shendure, J., Porreca, G.J., Reppas, N.B., Lin, X., McCutcheon, J.P., Rosenbaum, A.M., Wang, 
M.D., Zhang, K., Mitra, R.D. & Church, G.M. (2005) 'Accurate multiplex polony sequencing of an 
evolved bacterial genome', Science, vol. 309, no. 5741, pp. 1728-1732. 

Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. (2006) 'In-gel digestion for mass 
spectrometric characterization of proteins and proteomes', Nat Protoc, vol. 1, no. 6, pp. 2856-2860. 

Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. (1996) 'Mass spectrometric sequencing of proteins 
silver-stained polyacrylamide gels', Anal Chem, vol. 68, no. 5, pp. 850-858. 

 
Sibley, L.D. & Boothroyd, J.C. (1992) 'Virulent strains of Toxoplasma gondii comprise a single clonal 
lineage', Nature, vol. 359, no. 6390, pp. 82-85. 
 
Sibley, L.D., Niesman, I.R., Parmley, S.F. & Cesbron-Delauw, M.F. (1995) 'Regulated secretion of 
multi-lamellar vesicles leads to formation of a tubulo-vesicular network in host-cell vacuoles occupied 
by Toxoplasma gondii', J Cell Sci, vol. 108 ( Pt 4), pp. 1669-1677. 



 

Simpson, R.J. (ed.) (2003) Proteins and Proteomics, Cold Spring Harbour Laboratory Press, New York. 

Sinai, A.P. & Joiner, K.A. (2001) 'The Toxoplasma gondii protein ROP2 mediates host organelle 
association with the parasitophorous vacuole membrane', J Cell Biol, vol. 154, no. 1, pp. 95-108. 

Sinai, A.P. (2007) 'The toxoplasma kinase ROP18: an active member of a degenerate family', PLoS 
Pathog, vol. 3, no. 2, p. e16. 
 
Sohn, C.S., Cheng, T.T., Drummond, M.L., Peng, E.D., Vermont, S.J., Xia, D., Cheng, S.J., 
Wastling, J.M. & Bradley, P.J. (2011) 'Identification of novel proteins in Neospora caninum using an 
organelle purification and monoclonal antibody approach', PLoS One, vol. 6, no. 4, p. e18383. 

Song, K.J. & Nam, H.W. (2003) 'Protease activity of 80 kDa protein secreted from the apicomplexan 
parasite Toxoplasma gondii', Korean J Parasitol, vol. 41, no. 3, pp. 165-169. 
 
Sorber, K., Dimon, M.T. & DeRisi, J.L. (2011) 'RNA-Seq analysis of splicing in Plasmodium 
falciparum uncovers new splice junctions, alternative splicing and splicing of antisense transcripts', 
Nucleic Acids Res, vol. 39, no. 9, pp. 3820-3835. 
 
Speer, C.A. & Dubey, J.P. (1989) 'Ultrastructure of tachyzoites, bradyzoites and tissue cysts of 
Neospora caninum', J Protozool, vol. 36, no. 5, pp. 458-463. 
 
Speer, C.A., Dubey, J.P., McAllister, M.M. & Blixt, J.A. (1999) 'Comparative ultrastructure of 
tachyzoites, bradyzoites, and tissue cysts of Neospora caninum and Toxoplasma gondii', Int J Parasitol, 
vol. 29, no. 10, pp. 1509-1519. 
 
Steinfeldt, T., Konen-Waisman, S., Tong, L., Pawlowski, N., Lamkemeyer, T., Sibley, L.D., Hunn, 
J.P. & Howard, J.C. (2010) 'Phosphorylation of mouse immunity-related GTPase (IRG) resistance 
proteins is an evasion strategy for virulent Toxoplasma gondii', PLoS Biol, vol. 8, no. 12, p. e1000576. 

Stewart, A.D., Logsdon, J.M., Jr. & Kelley, S.E. (2005) 'An empirical study of the evolution of 
virulence under both horizontal and vertical transmission', Evolution, vol. 59, no. 4, pp. 730-739. 
 
Sultan, M., Schulz, M.H., Richard, H., Magen, A., Klingenhoff, A., Scherf, M., Seifert, M., Borodina, 
T., Soldatov, A., Parkhomchuk, D., Schmidt, D., O'Keefe, S., Haas, S., Vingron, M., Lehrach, H. & 
Yaspo, M.L. (2008) 'A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of 
the Human Transcriptome', Science, vol. 321, pp. 956-960. 

Suzuki, Y., Orellana, M.A., Schreiber, R.D. & Remington, J.S. (1988) 'Interferon-gamma: the major 
mediator of resistance against Toxoplasma gondii', Science, vol. 240, no. 4851, pp. 516-518. 

Talevich, E., Mirza, A. & Kannan, N. (2011) 'Structural and evolutionary divergence of eukaryotic 
protein kinases in Apicomplexa', BMC Evol Biol, vol. 11, p. 321. 

Tangri, S. & Raghupathy, R. (1993) 'Expression of cytokines in placentas of mice undergoing 
immunologically mediated spontaneous fetal resorptions', Biol Reprod, vol. 49, no. 4, pp. 850-856. 

Taylor, G.A. (2007) 'IRG proteins: key mediators of interferon-regulated host resistance to 
intracellular pathogens', Cell Microbiol, vol. 9, no. 5, pp. 1099-1107. 
 



 

Taylor, S., Barragan, A., Su, C., Fux, B., Fentress, S.J., Tang, K., Beatty, W.L., Hajj, H.E., Jerome, 
M., Behnke, M.S., White, M., Wootton, J.C. & Sibley, L.D. (2006) 'A secreted serine-threonine 
kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii', Science, vol. 314, no. 
5806, pp. 1776-1780. 

Tenter, A.M. & Johnson, A.M. (1997) 'Phylogeny of the tissue cyst-forming coccidia', Adv Parasitol, 
vol. 39, pp. 69-139. 

Thurmond, M.C. & Hietala, S.K. (1996) 'Culling associated with Neospora caninum infection in dairy 
cows', Am J Vet Res, vol. 57, no. 11, pp. 1559-1562. 
 
Thurmond, M.C. & Hietala, S.K. (1997) 'Effect of congenitally acquired Neospora caninum infection 
on risk of abortion and subsequent abortions in dairy cattle', Am J Vet Res, vol. 58, no. 12, pp. 1381-
1385. 
 
Thurmond, M.C., Hietala, S.K. & Blanchard, P.C. (1997) 'Herd-based diagnosis of Neospora 
caninum-induced endemic and epidemic abortion in cows and evidence for congenital and postnatal 
transmission', J Vet Diagn Invest, vol. 9, no. 1, pp. 44-49. 
 
Thurmond, M.C., Hietala, S.K. & Blanchard, P.C. (1999) 'Predictive values of fetal histopathology and 
immunoperoxidase staining in diagnosing bovine abortion caused by Neospora caninum in a dairy herd', 
J Vet Diagn Invest, vol. 11, no. 1, pp. 90-94. 

Trees, A.J. & Williams, D.J. (2005) 'Endogenous and exogenous transplacental infection in Neospora 
caninum and Toxoplasma gondii', Trends Parasitol, vol. 21, no. 12, pp. 558-561. 

Trees, A.J., Davison, H.C., Innes, E.A. & Wastling, J.M. (1999) 'Towards evaluating the economic 
impact of bovine neosporosis', Int J Parasitol, vol. 29, no. 8, pp. 1195-1200. 
 
Tunev, S.S., McAllister, M.M., Anderson-Sprecher, R.C. & Weiss, L.M. (2002) 'Neospora caninum 
in vitro: evidence that the destiny of a parasitophorous vacuole depends on the phenotype of the 
progenitor zoite', J Parasitol, vol. 88, no. 6, pp. 1095-1099. 

Tyler, J.S. & Boothroyd, J.C. (2011) 'The C-terminus of Toxoplasma RON2 provides the crucial link 
between AMA1 and the host-associated invasion complex', PLoS Pathog, vol. 7, no. 2, p. e1001282. 
 
Uthaiah, R.C., Praefcke, G.J., Howard, J.C. & Herrmann, C. (2003) 'IIGP1, an interferon-gamma-
inducible 47-kDa GTPase of the mouse, showing cooperative enzymatic activity and GTP-dependent 
multimerization', J Biol Chem, vol. 278, no. 31, pp. 29336-29343. 

Vanin, E.F. (1985) 'Processed pseudogenes: characteristics and evolution', Annu Rev Genet, vol. 19, pp. 
253-272. 
 
Volkman, S.K., Barry, A.E., Lyons, E.J., Nielsen, K.M., Thomas, S.M., Choi, M., Thakore, S.S., 
Day, K.P., Wirth, D.F. & Hartl, D.L. (2001) 'Recent origin of Plasmodium falciparum from a single  
progenitor', Science, vol. 293, no. 5529, pp. 482-484. 

von Hagen, J. (ed.) (2008) Proteomics Sample Preparation, Wiley-VCH, Weinheim, Germany. 
 
Vonlaufen, N., Guetg, N., Naguleswaran, A., Muller, N., Bjorkman, C., Schares, G., von 
Blumroeder, D., Ellis, J. & Hemphill, A. (2004) 'In vitro induction of Neospora caninum bradyzoites 
in vero cells reveals differential antigen expression, localization, and host-cell recognition of tachyzoites 



 

and bradyzoites', Infect Immun, vol. 72, no. 1, pp. 576-583. 

 
Vonlaufen, N., Muller, N., Keller, N., Naguleswaran, A., Bohne, W., McAllister, M.M., Bjorkman, 
C., Muller, E., Caldelari, R. & Hemphill, A. (2002) 'Exogenous nitric oxide triggers Neospora 
caninum tachyzoite-to-bradyzoite stage conversion in murine epidermal keratinocyte cell cultures', Int J 
Parasitol, vol. 32, no. 10, pp. 1253-1265. 

Wang, Z., Gerstein, M. & Snyder, M. (2009) 'RNA-Seq: a revolutionary tool for transcriptomics', 
Nature Reviews | Genetics, vol. 10, pp. 57-63. 

Ward, P., Equinet, L., Packer, J. & Doerig, C. (2004) 'Protein kinases of the human malaria parasite 
Plasmodium falciparum: the kinome of a divergent eukaryote', BMC Genomics, vol. 5, no. 1, p. 79. 

Washburn, M.P., Wolters, D. & Yates, J.R., 3rd (2001) 'Large-scale analysis of the yeast proteome by 
multidimensional protein identification technology', Nat Biotechnol, vol. 19, no. 3, pp. 242-247. 

Wastling, J.M., Armstrong, S.D., Krishna, R. & Xia, D. (2012) 'Parasites, proteomes and systems: has 
Descartes' clock run out of time?', Parasitology, vol. 139, no. 9, pp. 1103-1118. 

Wastling, J.M., Xia, D., Sohal, A., Chaussepied, M., Pain, A. & Langsley, G. (2009) 'Proteomes and 
transcriptomes of the Apicomplexa--where's the message?', Int J Parasitol, vol. 39, no. 2, pp. 135-143. 

Weiss, L.M. & Kim, K. (2000) 'The development and biology of bradyzoites of Toxoplasma gondii', 
Front Biosci, vol. 5, pp. D391-405. 
 
Wiengcharoen, J., Thompson, R.C., Nakthong, C., Rattanakorn, P. & Sukthana, Y. (2011) 
'Transplacental transmission in cattle: is Toxoplasma gondii less potent than Neospora caninum?', 
Parasitol Res, vol. 108, no. 5, pp. 1235-1241. 
 
Wilhelm, B.T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C.J., 
Rogers, J. & Bahler, J. (2008) 'Dynamic repertoire of a eukaryotic transcriptome surveyed at single-
nucleotide resolution', Nature, vol. 453, no. 7199, pp. 1239-1243. 
 
Williams, D.J., Guy, C.S., McGarry, J.W., Guy, F., Tasker, L., Smith, R.F., MacEachern, K., 
Cripps, P.J., Kelly, D.F. & Trees, A.J. (2000) 'Neospora caninum-associated abortion in cattle: the 
time of experimentally-induced parasitaemia during gestation determines foetal survival', Parasitology, 
vol. 121 ( Pt 4), pp. 347-358. 
 
Williams, D.J., Hartley, C.S., Bjorkman, C. & Trees, A.J. (2009) 'Endogenous and exogenous 
transplacental transmission of Neospora caninum - how the route of transmission impacts on 
epidemiology and control of disease', Parasitology, pp. 1-6. 

Wolters, D.A., Washburn, M.P. & Yates, J.R., 3rd (2001) 'An automated multidimensional protein 
identification technology for shotgun proteomics', Anal Chem, vol. 73, no. 23, pp. 5683-5690. 
 
Woodbine, K.A., Medley, G.F., Moore, S.J., Ramirez-Villaescusa, A., Mason, S. & Green, L.E. 
(2008) 'A four year longitudinal sero-epidemiology study of Neospora caninum in adult cattle from 114 
cattle herds in south west England: associations with age, herd and dam-offspring pairs', BMC Vet Res, 
vol. 4, p. 35. 



 

 
Wouda, W., Moen, A.R., Visser, I.J. & van Knapen, F. (1997) 'Bovine fetal neosporosis: a comparison 
of epizootic and sporadic abortion cases and different age classes with regard to lesion severity and 
immunohistochemical identification of organisms in brain, heart, and liver', J Vet Diagn Invest, vol. 9, 
no. 2, pp. 180-185. 
 
Xia, D., Sanderson, S.J., Jones, A.R., Prieto, J.H., Yates, J.R., Bromley, E., Tomley, F.M., Lal, K., 
Sinden, R.E., Brunk, B.P., Roos, D.S. & Wastling, J.M. (2008) 'The proteome of Toxoplasma gondii: 
integration with the genome provides novel insights into gene expression and annotation', Genome Biol, 
vol. 9, no. 7, p. R116. 
 
Yamane, I., Kitani, H., Kokuho, T., Shibahara, T., Haritani, M., Hamaoka, T., Shimizu, S., Koiwai, 
M., Shimura, K. & Yokomizo, Y. (2000) 'The inhibitory effect of interferon gamma and tumor 
necrosis factor alpha on intracellular multiplication of Neospora caninum in primary bovine brain cells', 
J Vet Med Sci, vol. 62, no. 3, pp. 347-351. 

Yamane, I., Kokuho, T., Shimura, K., Eto, M., Haritani, M., Ouchi, Y., Sverlow, K.W. & Conrad, 
P.A. (1996) 'In vitro isolation of a bovine Neospora in Japan', Vet Rec, vol. 138, no. 26, p. 652. 
 
Zhao, Y., Ferguson, D.J., Wilson, D.C., Howard, J.C., Sibley, L.D. & Yap, G.S. (2009a) 'Virulent 
Toxoplasma gondii evade immunity-related GTPase-mediated parasite vacuole disruption within 
primed macrophages', J Immunol, vol. 182, no. 6, pp. 3775-3781. 
 
Zhao, Y.O., Khaminets, A., Hunn, J.P. & Howard, J.C. (2009b) 'Disruption of the Toxoplasma gondii 
parasitophorous vacuole by IFNgamma-inducible immunity-related GTPases (IRG proteins) triggers 
necrotic cell death', PLoS Pathog, vol. 5, no. 2, p. e1000288. 
 
Zhao, Y.O., Rohde, C., Lilue, J.T., Konen-Waisman, S., Khaminets, A., Hunn, J.P. & Howard, J.C. 
(2009) 'Toxoplasma gondii and the Immunity-Related GTPase (IRG) resistance system in mice: a 
review', Mem Inst Oswaldo Cruz, vol. 104, no. 2, pp. 234-240. 
 
Zhou, X.W., Kafsack, B.F., Cole, R.N., Beckett, P., Shen, R.F. & Carruthers, V.B. (2005) 'The 
opportunistic pathogen Toxoplasma gondii deploys a diverse legion of invasion and survival proteins', J 
Biol Chem, vol. 280, no. 40, pp. 34233-34244. 

Zhu, G., Marchewka, M.J. & Keithly, J.S. (2000) 'Cryptosporidium parvum appears to lack a plastid 
genome', Microbiology, vol. 146 ( Pt 2), pp. 315-321. 
 


