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Abstract 

The highly regenerative nature of the human endometrium has caused much 

speculation over the existence of resident stem/progenitor cells (SPCs) within this 

tissue. Endometrial SPCs may be associated with a variety of gynaecological 

pathologies such as endometriosis. Although common, little is known about the 

pathogenesis of this condition and the lack of defining markers of putative 

endometrial SPCs makes the isolation and analysis of these cells difficult. The well 

characterised endometrial stromal stem cells are only able to regenerate a stromal 

cell population of the endometrium in 3D in vitro or animal xenograft models. This 

suggests that there is a separate endometrial epithelial SPC that gives rise to the 

endometrial epithelial cells, including the glands and the surface epithelium. SSEA-

1, a surface glycolipid expressed by embryonic stem cells (ESCs), has recently been 

identified as a possible endometrial epithelial progenitor cell marker by our lab. 

However, the gene expression profile of the SSEA-1
+
 endometrial epithelial cells has 

yet to be assessed. With the use of qPCR, we aimed to further characterise the SSEA-

1
+
 endometrial epithelial cell population by assessing their gene expression profile 

for common markers of stemness and an undifferentiated state when grown in both 

2D and 3D culture. As abnormal endometrial SPCs are speculated to be involved in 

the pathogenesis of endometriosis, we further investigated the gene profile of SSEA-

1 expressing endometrial epithelial cells in this condition. Within the normal 

endometrium, we found no differences between the levels of stem cell markers 

expressed by the SSEA-1
+
 and SSEA-1

-
 epithelial cell populations grown in 2D 

culture. Significant up-regulation of markers of differentiation, ERα and PR, within 

the SSEA-1
- 
cells confirmed the existence of a more differentiated cell state within 

this population. SSEA-1
+
 epithelial cells grown in 2D culture exhibited significantly 
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higher levels of stem cell marker expression in patients with endometriosis than 

those with a normal endometrium, confirming their association with this disease. 

When grown in 3D culture endometrial epithelial cells form gland-like structures 

also called spheroids/organoids, similar to those seen within the endometrium. 3D 

Matrigel culture mimics the endometrium and the stem cell niche in vivo and 

therefore acts as a better culture system to preserve stemness and accurately reflects 

in vivo physiology. Unlike the 2D culture, SSEA-1
+
 epithelial cells grown in 3D 

culture exhibited a clear up-regulation of markers of stemness when compared to the 

SSEA-1
-
 cell population, in both normal and endometriosis tissue. This difference 

was more pronounced in cells taken from women with endometriosis, again 

indicating its link with this condition. High levels of ERα and stable levels of PR 

expression indicated elements of oestrogen responsiveness and progesterone 

resistance within the 3D cultured SSEA-1
+
 epithelial cells taken from women with 

endometriosis, and are known features of endometriosis. These findings provide 

further evidence to suggest that endometrial epithelial SPCs are contained within the 

SSEA-1
+
 cell population displaying greater stem cell activity than the SSEA-1

- 

population, but only when grown in 3D culture which mimicks their in vivo 

environment. This highlighted the significance of the surrounding stem cell niche in 

preserving stemness and preventing differentiation. Furthermore, our study 

demonstrats that this sub-population of SSEA-1
+
 epithelial SPCs are in some way 

involved in the pathogenesis of endometriosis. 
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Chapter 1: Introduction 

The human endometrium is a highly dynamic tissue, undergoing over 400 cycles of 

shedding and regeneration throughout a female’s reproductive years. Due to its 

immense regenerative capacity, it has long been proposed that a putative adult stem 

cell (ASC) population must be driving its re-growth, yet it is only over the last 8 years 

since the first evidence emerged that research has been dedicated to the identification 

of such cells. The use of endometrial ASCs in regenerative medicine is an exciting 

prospect, acting as an easily accessible and renewable source. Endometrial ASCs are 

also said to be associated with the pathogenesis of a variety of gynaecological 

conditions such as endometriosis, about which little is known and treatment is still 

limited. As a result of previous studies, it is now established that two distinct stem cell 

populations give rise to the two main cell types of the endometrium, the stroma and the 

epithelium. To date, most research has focused on the stromal stem cell due to their 

ease of culture, yet very little is known about the epithelial cell population. It is 

therefore the main focus of this study, to help identify and characterise a putative 

epithelial stem/progenitor cell (SPC) within the endometrium. Before beginning this 

study, a thorough literature review of the scientific advances within this field had to be 

conducted. 

 

1.1 Structure of the Human Uterus and Endometrium 

The female reproductive system can be divided into two sections: the lower and the 

upper genital tracts. The lower genital tract consists of the vagina and vulva, whereas 

the upper portion is made up of the anatomical structures known as the uterus and 

cervix, along with the attached fallopian tubes and ovaries. The uterus is a thick, 
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muscular organ situated in the midline of the pelvic cavity between the urinary bladder 

and rectum (Sandring, 2008). It acts as the body of the genital tract, and is vital for 

hosting a pregnancy following the fertilisation of an ovum after its release from the 

ovaries and migration through the fallopian tubes. (Aplin, 2008). The uterus measures 

7.5 cm in length and sits in an anterior-posterior position with its apex directed 

downwards and backward (Gray’s 

Anatomy of the Human Body, 2012). 

The uterine body forms the upper 

two-thirds and tapers down to form a 

narrow neck known as the cervix, 

which in turn sits at the superior part 

of the vagina. The uppermost part of 

the body is named the fundus. Although the morphology of the uterus varies amongst 

females of different species, its basic structure is common to all mammals (Aplin, 

2008). The structure of the uterus is illustrated in the diagram shown (figure 

1.1)(NUFF, 2012).  

 

    

The uterine mucosa, also known as the endometrium, is the innermost layer lining the 

uterine cavity and plays an essential role in fetal development (Aplin, 2008). It is a 

highly dynamic and regenerative tissue found on the thick smooth muscle of the 

myometrium. These two tissue types meet at the irregular endometrial-myometrial 

junction with no submucosal tissue to separate them. Embryologically the 

endometrium and subendometrium are said to originate from the two paramesonephric 

ducts known as the Műllerian ducts, unlike the outer myometrium which later develops 
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during fetal life (Gargett, 2007). Microscopically the human endometrium is composed 

of two main cell types: the epithelial cells which line the lumen and glands, and the 

supporting stromal or mesenchymal cells. Other cell types found within the 

endometrium include endothelial cells and leukocytes. The endometrium is divided 

into two separate layers, the functionalis and the basalis, based on their structural and 

functional differences. The functionalis layer, the upper two-thirds of the 

endometrium, is composed of dense glandular tissue surrounded by a loose connective 

stroma (Figueria et al, 2011). Its role is to accommodate 

an implanting blastocyst, and also to provide the 

maternal element of the placenta (Aplin, 2008). It is this 

layer which is lost during menses. On the contrary, the 

lower basalis is maintained following each menstrual 

cycle, and is known to contain the gland bases, dense 

stroma and large vessels. It is therefore thought that this 

basalis layer is responsible for the generation of a new 

functionalis each month and is where the endometrial 

SPCs must reside (Figueria et al, 2011). The histology 

of the human endometrium is shown in figure 1.2 

(Gargett, 2007). 

 

1.2 The Human Menstrual and Ovarian Cycles 

The uterus and its endometrial lining play an essential role in the key events of primate 

reproduction, implantation and when in the absence of pregnancy, menstruation 

(Critchley et al, 2006). During a woman’s reproductive years, the endometrium 
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undergoes over 400 cycles of monthly regeneration, differentiation and shedding in 

response to hormonal changes that occur within the body (Gargett et al, 2010). This 

dynamic remodelling and cyclical change ultimately occurs to provide the optimal 

environment for embryo implantation and is tightly controlled by endocrine, autocrine 

and paracrine factors that not only influence the endometrium, but follicle maturation 

and ovulation also. The transformation of the endometrium throughout the cycle comes 

with classical morphological and histological changes, which allow for dating the 

cycle with the use of endometrial biopsies. It is important to note that whilst many of 

the fundamental reproductive processes are common between different mammalian 

species, the mechanism for implantation varies widely and therefore to complement 

this endometrial preparation and remodelling differ also (Aplin, 2008; Mihm et al, 

2011). 

 

1.2.1 The Human Menstrual Cycle 

Women first start menstruating during the final stage of puberty, also known as 

menarche, commonly between the ages of 8.5 to 13 years. A woman’s reproductive 

years span around 36 years, ending when she reaches the menopause around the age of 

51 (Mihm, 2011). For most women, the standard cycle length is 28 days, although this 

commonly fluctuates between 26 to 32 days. The new cycle begins with the first day of 

menstrual bleeding, with ovulation occurring mid-cycle around day 14.The menstrual 

cycle in all women can be described by dividing it into three phases; menstrual, 

proliferative (or follicular) and secretory (or luteal). Broadly speaking, menses 

encompasses the breakdown of the functional endometrium, although simultaneous re-

epithelialisation is also initiated during this phase. Following this, there is rapid 
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cellular proliferation and generation of a new extracellular matrix (ECM) in response 

to the secretion of oestrogen; hence this phase is named the proliferative phase (Aplin, 

2008). During the process of endometrial regeneration, the mucosal tissue can grow up 

to 8mm in thickness (Kyo et al, 2011). Following ovulation, within the secretory phase 

of the cycle progesterone stimulates functional differentiation of the endometrium in 

preparation for implantation. Endometrial glands become increasingly active and more 

tortuous and following day 22 stromal differentiation and endometrial dicidualisation 

favour successful implantation and placentation. This short period of heightened 

uterine receptivity towards embryo implantation within this phase is named the 

‘window of implantation’. If fertilisation does not occur, hormone levels subsequently 

fall, the endometrium begins to regress and the cycle starts over again (Aplin, 2008; 

Buffet et al, 1998). A schematic of the human menstrual cycle is illustrated in figure 

1.3 (Gargett et al, 2008).  
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Menses 

If implantation and pregnancy do not occur, a demise of the corpus luteum leads to the 

rapid drop in levels of the ovarian steroid hormones, progesterone and oestrogen, and 

initiates endometrial breakdown between days 1 to 4 of the cycle. Spiral arteries within 

the functionalis undergo repetitive constriction and relaxation, eventually leading to a 

loss of vascular integrity. Bleeding into the stromal compartment of the endometrium 

causes cleavage between the basal and functional layers, the latter of which is 

completely lost during menstruation. This eventually leads to tissue apoptosis and 

necrosis, a loss of cellular adhesion and cell membrane actin, and the breakdown of the 

glandular epithelium. In addition, endothelial injury promotes the release of 

inflammatory mediators such as prostaglandin F2α and E2, platelet aggregation and the 

formation of thrombin within the basal layer. Rising levels of prostaglandins in turn 

stimulate myometrial contractility and vasoconstriction of the spiral arteries. Local 

responses are mediated by leucocytes which secrete matrix metalloproteases (MMPs). 

These MMPs cause direct destruction of the cellular membranes and a loss of the 

ECM. Towards the end of menses, on day 3, haemostasis occurs within the basal layer 

and surface re-epithelialisation and regeneration occurs under the control of oestradiol, 

originating from the glandular stumps.  Menstrual bleeding is an external manifestation 

of the internal physiological processes which occur during menses, with the heaviest 

flow usually noticed at day 2 (Aplin, 2008; Mihm et al, 2011).   

 

Proliferative Phase 

The proliferative phase occurs between days 5 to 14, up to the time of ovulation. Under 

the influence of oestrogen, throughout this phase there is extensive growth and re-
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epithelialisation of the endometrium and it increases in thickness from 1mm up to 3-

4mm. Early repair of the endometrium occurs whilst oestrogen levels are low and 

epithelial cells do not express oestrogen receptor α (ERα). During this stage, oestrogen 

levels rise and both the epithelial and stromal cells gain the surface receptors ERα and 

progesterone receptor (PR). Under the control of these hormones, throughout days 5-7 

(early proliferative phase) the functionalis is regenerated and there is vast proliferation 

of the glandular epithelium and to a lesser degree, the stroma. Histologically the 

cellular morphology changes throughout the proliferative phase. Within the early 

proliferative phase (days 5-7), endometrial glands are undifferentiated and straight in 

appearance. Under cross section the glands look circular and are seen to be lined with 

columnar epithelial cells containing nuclei near the basal surfaces. The glandular 

epithelium stays relatively constant in size throughout this period, and occasionally 

cells can be seen undergoing mitosis.  Stromal cells appear spindle-like in shape and 

contain large nuclei. As this phase progresses to between days 8 and 10 (mid-

proliferative phase), the endometrial glands appear taller and more tortuous. Towards 

days 11 to 14 (late proliferative phase), the glands becomes increasingly 

pseudostratified and tortuous in morphology. Mitotic figures become more pronounced 

and stromal oedema becomes apparent (Aplin, 2008; Gargett et al, 2008).  

 

Secretory Phase 

After ovulation at day 14, the secretory phase begins and extends up to day 28. This 

part of the menstrual cycle is commonly separated in to three parts: the early, mid and 

late secretory phases. It is during this phase that all endometrial cell types undergo 

function differentiation, priming the endometrium for the implantation of an embryo. 
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Proliferation is suppressed and under the influence of progesterone produced by the 

corpus luteum, differentiation begins. As the name suggests, the endometrium 

produces large amounts of secretions during this phase, named histotroph. Although 

the exact composition of these secretions is still unknown, it is said to contain transport 

proteins, glucose, hormones, growth factors and enzymes in addition to other 

substances. In order to prepare for blastocyst implantation, the glandular epithelia 

begin to secrete large amounts of glycogen and histotrophic secretory products under 

the influence of progesterone. Progesterone also triggers the influx of specialised 

uterine natural killer (uNK) cells as a response to the release of local chemokines. uNK 

cells are an important source of both growth and angiogenic factors, and they enable 

spiral artery remodelling required in preparation for a pregnancy. During the majority 

of the menstrual cycle, the endometrium is named as either ‘hostile’ or ‘non-receptive’ 

to an incoming blastocyst, except for a short period during the mid-secretory phase 

named the ‘window of receptivity/implantation’. Progesterone inhibits the action of 

ERα and epithelial PR within the functionalis, although they remain functional within 

the basalis. Within the stromal compartment of the functional layer, PR remains active 

and these cells differentiate and undergo pre-decidual changes. In response to this 

postovulatory increase in progesterone, endometrial stromal cells are seen to change 

greatly in morphology, forming secretory epithelioid-like decidual cells (Aplin, 2008; 

Gargett et al, 2008; Gellerson et al, 2007).  

 

1.2.2 The Ovarian Cycle 

Synchronised with the cyclical changes of the endometrium, the ovaries go through 

their own physiological changes. Analogous to the male testes, the ovaries are the 
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reproductive organs within females and act as both gonads and endocrine glands. 

Under the influence of the hypothalamo-pituitary-ovarian (HPO) axis, the ovaries 

control follicular maturation in the aim to produce one mature oocyte each month. 

Gonadotrophin-releasing hormone (GnRH) is released from the hypothalamus in a 

pulsatile manner which in turn stimulates the pituitary gland to secrete luteinising 

hormone (LH) and follicle-stimulating hormone (FSH). The ovaries respond to the 

release of FSH and LH in a cyclical manner called the ovarian cycle and in turn secrete 

the ovarian hormones oestrogen and progesterone (Buffet et al, 1998; Sadler et al, 

2006). Primordial germ cells (PGSs) are diploid precursors of female and male 

gametes. In order to develop into an egg ready for ovulation, it must pass through 

several stages of maturation through a process called oogenesis. PGSs arise in a 

developing embryo at around 3 weeks post-fertilisation. These exist only transiently 

during which they multiply and migrate to the genital ridge, where they are then named 

oogonia. The population of oogonia continue to proliferate and expand via mitosis 

until they stop and enter meiosis. At this point they are now called primary oocytes. 

Primary oocytes remain arrested in prophase I of meiosis until the female reaches 

sexual maturity during puberty. The ovaries of a female embryo contain 7 million 

oocytes in utero. Of these, only around 400 ovulate and the remainder undergo atresia. 

The next stage in oocyte development continues when meiosis is resumed in 

preparation for ovulation. It then forms a secondary oocyte and in addition releases the 

first polar body. The secondary oocyte is arrested at meiosis II until fertilisation occurs 

and a haploid gamete is produced.  
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Primordial follicles are the basic functional units of the ovary and contain the 

developing oocyte. Like the ooctye, an ovarian follicle must also grow and mature 

before ovulation can occur, in a process called folliculogenesis. Entry of the oogonia 

into meiosis I initiates the development of the primordial follicle. As this primordial 

follicle grows it must pass through a series of stages through which it becomes a 

primary follicle, a secondary follicle and finally a tertiary or pre-ovulatory follicle. A 

primordial follicle is made up of a primary oocyte surrounded by a layer of flattened 

granulosa cells. During the development of primary follicles into tertiary follicles, the 

granulosa cells proliferate and undergo changes from a flattened to a cuboidal 

epithelial morphology. Eventually this process gives rise to a follicle with multiple 

granulosa cell layers surrounded by an outer layer consisting of thecal cells and a 

basement membrane (Smitz et al, 2002; Mtango et al, 2008). 

 

Like the menstrual cycle, the ovarian cycle too lasts 28 days. It is split into two phases, 

the follicular and luteal phase, each lasting 14 days (Buffet et al, 1998).  

 

Follicular Phase 

At puberty, the levels of circulating FSH rise and a cohort of mature follicles are 

selected for initial recruitment. From these, a single dominant follicle is chosen. It 

takes 150 days for a primordial follicle to mature into a primary follicle and a further 

120 days to develop into a secondary follicle. This means that it takes the equivalent of 

9 menstrual cycles until a follicle can become part of a selectable cohort. The 15 days 

following this is the time taken for a selected follicle to become a dominant and 

equates to the period of the follicular phase. Nearing the end of the menstrual cycle, if 
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a pregnancy is not achieved, the corpus luteum starts to regress and the levels of 

oestrogen and progesterone begin to fall. These decreasing hormone levels stimulate 

the anterior pituitary gland to increase the secretion of FSH, which in turn stimulates a 

cohort of follicles to grow. Of these, one follicle will grow at the faster rate than the 

others and will secrete higher levels of oestradiol (E2) and inibin-B. These hormones, 

produced by the dominant follicle, have a negative effect on the pituitary and cause 

suppression of FSH secretion around the mid-follicular phase.  This withdrawal of 

FSH results in apoptosis of the remaining non-dominant follicles. FSH activates LH 

receptors within the theca cells of the dominant follicle and in turn stimulates its 

production of E2. E2 has a stimulatory effect on FSH and LH which surge around day 

14 and result in the meiotic maturation of the oocyte and follicular rupture to release 

the ovum in a process known as ovulation. The tissue that remains behind forms a 

body known as the corpus luteum (Tulsiani, 2003).  

 

Luteal Phase 

The surge of LH around the time of ovulation causes the corpus luteum to become 

leutinised and synthesise oestrogen and more importantly progesterone. The corpus 

luteum stays functional for a period of 14 days, under the control of LH. In the absence 

of a pregnancy, the corpus luteum begins to degenerate and is replaced by connective 

tissue termed the corpus albicans. In the event that fertilisation does occur, the 

developing blastocyst secretes human chorionic gonadotrophin (hCG) which prevents 

breakdown of the corpus luteum. During the final 4-5 days of the cycle plasma levels 

of oestrogen and progesterone decline rapidly, previous suppression of GnRH and FSH 

is removed and the cycle repeats itself (Tulsiani, 2003).  
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1.3 Stem Cells 

1.3.1 Definition of Stem Cells 

Stem cell biology and its application in future regenerative medicine, is currently one 

of the most exciting and continually expanding areas of biomedical research (Sylvester 

et al, 2004). The concept of a stem cell is difficult to define and has been the cause of 

much controversy over the years. Their lack of morphological features makes them 

difficult to identify and locate within tissues, and so alternatively they are described by 

their characteristic functional properties (Potten et al, 1990; McCullock et al, 2005). 

Within the literature, stem cells are commonly defined as a rare population of 

undifferentiated cells which are able to divide in order to maintain their pool within the 

tissue and also to give rise to specialised tissue-specific cells with defined functions. In 

order for a cell to possess the characteristics of a stem cell, it must possess three 

functional properties: a high proliferation potential, the ability to self renew and the 

capacity to differentiate (Gargett, 2007). The proliferation potential of a cell is 

determined by calculating the number of times a cell population doubles from the 

existence of a single cell until senescence (Gargett, 2007; Cervello et al, 2011). Self 

renewal is known as the ability of a cell to divide producing an identical daughter cell, 

ultimately allowing it to retain its population within the tissue (Bach et al, 2000). 

Differentiation on the other hand is defined as the change of cell phenotype based on 

gene expression associated with cell function rather than cell division (Figueira et al, 

2011).  
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1.3.2 Stem Cell Hierarchy 

Stem cells display a varying ability to differentiate, depending on their position within 

the hierarchy of stem cells. This is illustrated in figure 1.4 (Kyo et al, 2011).  

 
 
‘Totipotent’ stem cells, such as the zygote, are fully undifferentiated cells positioned at 

the top of this hierarchy. These have the ability to produce cells of all three embryonic 

germ layers (endoderm, mesoderm and ectoderm), in addition to cells derived from 

extra-embryonic tissues (these being the trophoblast, placenta and extra-embryonic 

membranes) (Figueira et al, 2011). Next in line are embryonic stem cells (ESCs), 

derived from the inner cell mass of the blastocyst. These are named ‘pluripotent’ as 

they can give rise to an embryo, and were first isolated in mice in the year 1981 and in 

humans in the late 1990s. They are not able to produce extra-embryonic tissues (Kyo et 

al, 2011; Eckfeldt et al, 2005). As embryonic development continues, the 

differentiation potential of these cells becomes ever more restricted. ASCs, also 

referred to as somatic stem cells (SSCs), arise from these and are found in most adult 
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tissues. They can be classified as either ‘multipotent’ or ‘unipotent’, dependent on 

whether they can produce multiple cell types in a germ cell lineage or into only one 

cell type within that lineage respectively (Figueira et al, 2011; Kyo et al, 2011; Aplin, 

2008).  

 

ASCs in different tissues, such as haematopoietic, neural, epidermal and even 

gastrointestinal stem cells, have now been identified. They act to maintain tissue 

homeostasis by generating and regenerating adult tissue during the processes of normal 

physiological cell turnover and in the event that tissue damage may occur. However 

they exhibit a much lower self-renewal capacity when compared to that of ESCs 

(Eckfeldt et al, 2005; Gargett et al, 2010). To date, the best described ASCs are those 

derived from the bone marrow, including haematopoietic and mesenchymal (or 

stromal) stem cells (MSCs) (Cervello et al, 2011). The particular topic surrounding 

ASC plasticity and therefore the fate of ASCs, has caused much controversy within the 

literature. Contrary to common belief, it is now suggested that ASC can undergo 

transdifferentiation or plasticity, in which the cells can be converted from one cell 

lineage to another as a result of a change in the extracellular environment. This 

property has been described within the stem cells of the bone marrow. They are seen to 

travel within the blood stream and are eventually incorporated for use in the 

regeneration of damaged tissues such as muscle, the brain, heart or the liver. The 

implications of such research findings are important as it may imply that ASCs are 

more similar to ESCs than originally thought, and could have alternative therapeutic 

uses. Due to the rarity of stem cell plasticity however, this concept if often rejected and 

alternative explanations given (Gargett, 2007; Wagers et al, 2004). 
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1.3.3 Stem Cell Division 

Stem cells demonstrate two different 

mechanisms of cellular division which 

enable the stem cell pool to be 

maintained. These are named 

asymmetric and symmetric cell division. 

Asymmetric division (shown in figure 

1.5 (Gargett, 2007)) is demonstrated 

when a stem cell produces an identical 

daughter cell, thereby exhibiting the property of self-renewal. Simultaneously a more 

differentiated cell, also known as a progenitor cell is produced (Aplin, 2008). 

Progenitor cells are tissue-specific cells which are set on a particular path of 

differentiation and therefore only have a limited ability to self-renewal. These 

progenitor cells in turn give rise to transient amplifying (TA) cells, which have 

properties mid-way between stem cells and fully differentiated mature cells. TA cells 

proliferate rapidly, progressively gaining in differentiation markers and eventually 

produce terminally differentiated cells (Gargett, 2007; Kyo et al, 2011). In contrast, a 

stem cell may alternatively choose to undergo symmetric cell division, producing 

either two daughter stem cells, or two TA progenitor cells (Aplin, 2008).  

 

1.3.4 The Stem Cell Niche 

Stem cells reside within and are regulated by a special physiological microenvironment 

that is tailored to its needs, as first described by Schofield in 1978. This is commonly 

referred to as the stem cell niche (Schofield, 1978). The structure and location of the 
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stem cell niche is variable depending on the resident tissue. Much of what is known 

about the stem cell niche has been discovered due to the work on other organisms, 

such as the Drosophila melanogastor and Caenorhabditis elegans gonads. Although 

less is known in comparison about the more complex mammalian stem cell niches, 

similarities can be drawn between the two (Ohlstein et al, 2004). ASCs are found to 

have a precise location within the niche, and are surrounded by mature, fully 

differentiated cells in an ECM. Adhesion molecules, such as cadherins and integrins, 

and the surrounding niche cells aid in anchoring the ASCs during periods of inactivity 

and manage the controlled release of daughter cells from this micro-environment 

following asymmetrical cell division. The essential function of this niche is to regulate 

signals controlling the balance between ASC self renewal for tissue replacement and 

cell differentiation, thereby preserving homeostasis within the tissue (Gargett, 2007; 

Cervello et al, 2011; Li et al, 2005). 

 

1.4 Stem Cells and the Endometrium 

As previously discussed, the endometrium is a highly dynamic and regenerative tissue 

undergoing monthly cycles of shedding and regeneration throughout a woman’s 

reproductive years. In addition to this cyclical renewal, physiological regeneration is 

observed within the endometrium following childbirth, post-ablative therapy, post-

curettage and also within postmenopausal women given oestrogen replacement therapy 

(Gargett CE, 2008). This high cellular turnover is comparative with other organs in 

which a high turnover rate is also required, including the haematopoietic system, the 

epidermis and the intestinal epithelium in which stem cells have also been located 

(Cervello et al, 2011; Aplin, 2008). It is this combination of reasons that has caused 
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many to believe that stem cells may be responsible for endometrial regeneration. It was 

first postulated in 1978 by Prianishnikov and later by Padykula in 1984, that stem cells 

located within the basalis may be the drive behind the endometrium’s impressive 

regenerative capacity (Prianishnikov, 1978; Padykula et al, 1984).  

 

1.4.1 Human Endometrial Stem/Progenitor Cells: The Evidence 

Indirect Evidence 

Indirect evidence for the presence of endometrial ASCs has gathered over the years. 

Early kinetic studies investigating endometrial cell proliferation showed zonal 

differences determining the orderly replacement of the endometrial epithelial and 

stromal cells from rarely proliferating SPCs within the basalis (Ferenczy et al, 1979; 

Conti et al, 1984; Padykula et al, 1989). Later in 2003, Brenner et al observed a 

difference in the proliferative index between the glands of the functionalis and basalis 

layers, across both the proliferative and secretory stages of the menstrual cycle 

(Brenner et al, 2003). In 2005 endometrial epithelial stem cell kinetics were explored, 

by investigating epigenetic errors that had been encoded into particular methylation 

patterns of individual endometrial glands. The purpose was to determine the total 

number of stem cell divisions by calculating the number of somatic errors that would 

accumulate within a gland. An age-related increase in methylation was found up until 

the menopause, when methylation became constant, and therefore was seen as a 

reflection of stem cell mitosis (Kim et al, 2005). More recently, evidence emerged 

reporting the monoclonality of the endometrial glands, as proof that they arise from a 

single SPC. Within the normal proliferative endometrium, a rare population of glands 
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found unable to express phosphatase and tensin (PTEN null glands), are seen to 

regenerate their mutant glands with each cycle (Mutter et al, 2000).  

 

These indirect findings have also been supported by various clinical observations 

suggesting further evidence to pursue the stem cell hypothesis. Complete endometrial 

regeneration which is able to support a pregnancy following almost complete resection 

by curettage, has been seen in the clinical setting and also in primate studies (Hartman, 

1993; Wood et al,1993). In addition, this regeneration can be seen within the 

endometrium of women treated for menorrhagia with electrosurgical ablative therapy 

(Tresserra et al, 1999). The endometrium’s incredible ability to undergo ossification 

following trauma, such as a termination of a pregnancy, is said to be due to the 

incorporation of MSCs into the regenerating tissue (Biervliet et al, 2004; van Os et al, 

2004). Other tissue types such as smooth muscle, bone and cartilage have also been 

found in the uterine lining and suggest an ability to differentiate (Bird et al, 1965; Roth 

et al, 1966; Mazur et al, 1980).  

 

Evidence from Human Studies 

Although many had suspected the existence of resident SPCs within the endometrium 

for some time, it was only until much more recently that direct evidence based on 

functional assays was published.  In 2004, Chan et al used the concept of cell cloning 

to demonstrate the presence of separate epithelial and stromal stem cells in the human 

endometrium. Following single cell suspensions, 0.22 ± 0.07% and 1.25 ± 0.18% of 

epithelial and stromal cells formed individual colonies after 15 days, with large and 

small colonies formed from both cell types. Chan et al postulated that the large 
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colonies were formed from the resident SPCs with a greater ability to self-renew, 

whereas the small colonies were probably initiated by TA cells (Chan et al, 2004). In 

2005, Schwab et al provided further evidence that the proportions of clonogenic 

epithelial and stromal cells do not change across the stages of the menstrual cycle or in 

the inactive endometrium, supporting the hypothesis that putative endometrial SPCs 

must be located within the basalis (Schwab et al, 2005) (see figure 1.6 (Gargett, 

2007)).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stem cell subpopulations have been identified and analysed within previous studies 

using the ‘side-population’ approach, which is universally recognised as a marker of 

ASC activity (Challen et al, 2006). Side population (SP) cells, are a small number of 

cells which have the ability to efflux the fluorescent DNA-binding dye Hoechst 33342 

more rapidly, when compared to other cell populations. This occurs because SP cells 

are said to have an increased level of ABCG2/Bcrp I expression, an ATP-binding 

plasma membrane transporter protein, allowing the characteristic SP phenotype to be 

detected using flow cytometry (FC) (Kyo et al, 2011; Gargett et al, 2007). Several 

studies have all demonstrated the presence of SP cells within freshly isolated and also 
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short term cultures of human endometrial cells (Tsuji et al, 2008; Cervello et al, 2009; 

Masuda et al, 2010; Kato et al, 2007). Kato et al found that the percentage of SP cells 

varied greatly between subjects, from 0 to 5.11%. SP cells have been found in highest 

proportion within the proliferative and menstrual stages on the menstrual cycle (Kato 

et al, 2007; Tsuji et al, 2008). The majority of the SP cells sorted from short-term 

cultures were found to be negative for both endometrial epithelial (CD9) and stromal 

(CD13) cell differentiation markers, however in long term Matrigel culture the 

aggregates demonstrated the capacity to form CD9
+
E-cadherin

+
 gland like-structures 

and also CD13
+
 stromal-like clusters (Kato et al, 2007). SP cells cultured on feeder 

cells, showed slow proliferation and a colony forming ability comparable with the 

characteristics of SPCs, and were kept alive for over 9 months. This contrasts with the 

non-SP cells which became senescent following only 3 months (Masuda et al, 2010). 

 

Studies exploring the important functional stem cell property of differentiation and 

multi-potency have emerged recently within the human endometrium, however so far 

this has only been investigated within the endometrial stromal cell population. It has 

been documented that a subset of these stromal cells, taken from women within their 

reproductive years, could differentiate into adipogenic, osteogenic, myogenic and 

chondrogenic mesodermal cell lineages when cultured in the appropriate induction 

media (Schwab et al, 2007; Gargett et al, 2009; Dimitrov et al, 2008). Wolf et al 

demonstrated that amongst tissue biopsies taken from the endometrium, myometrium, 

fallopian tubes and uterosacral ligament, only cells taken from the endometrium were 

able to undergo chondrogenic differentiation following 21 days of culture (Wolf et al, 

2010). In the same study that proved epithelial cell clonogenicity, Gargett et al 
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continued to demonstrate that these same cells form spheroid structures positive for the 

epithelial marker cytokeratin in 3D Matrigel culture (Gargett et al, 2009). Kato et al 

also confirmed these findings by showing that epithelial SP cells aggregate into gland-

like structures in  Matrigel, expressing the epithelial markers CD9 and E-cadherin 

following 5 months of culture. Stromal SP cells did not behave in the same way (Kato 

et al, 2007).  

 

Although evidence is available to propose the differentiation ability of the 

endometrium, in vivo studies by Masuda et al and Cervello et al suggest otherwise. If 

an ASC is multi-potent and therefore has the ability to differentiate, in theory it should 

be able to adapt when placed in a different environment, giving rise to cells of the new 

tissue type (provided that the tissue has the same embryological origin). The kidney, 

like the endometrium originates from the intermediate mesoderm. However, when 

transplanted under the kidney capsule of immunocompromised mice, endometrial SP 

cells (epithelial and stromal mix) and pure stromal SP cells gave rise to endometrial 

tissue containing glandular and stromal structures at the site of transplantation. This 

raises some question as to the endometriums ability to differentiate (Masuda et al, 

2010; Cervello et al, 2010).  

 

Evidence from Mouse Studies 

The label-retaining cell (LRC) technique, like the SP phenotype, is another method 

used to identify and locate adult endometrial stem cells within the niche (Chan et al, 

2006; Cervello et al, 2007; Szotek et al, 2007; Kaitu’u-Lino et al, 2010). Unfortunately 

due to the nature of this technique however, LRCs cannot be used in humans. 
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Although mice do not menstruate, but rather undergo cycles of proliferation and 

apoptosis, the mouse is still a well established animal model used to investigate the 

human endometrium due to its structural similarity (Aplin, 2008). The LRC approach 

uses the thymidine analogue, 5-bromo-2-deoxyuridine (BrdU), which once 

administered is taken up by the DNA of growing cells and therefore is commonly used 

for cell proliferation assays. Once labelled and the cells begin to divide, the label gets 

diluted and over time is eventually lost. Based on the principle that SPCs are slowly 

dividing and quiescent in nature, they retain the BrdU label over a long period of time 

and therefore can be detected even following many cell divisions (Kyo et al, 2011; 

Gargett CE et al, 2007). 6-9% of stromal cells, mainly located next to blood vessels 

near the endometrial-myometrial junction, were found to be LRCs. This corresponds to 

the hypothesised basal location of the SPCs within the endometrium (Chan et al, 2006; 

Cervello et al, 2007). Epithelial LRCs were found in 3% of the mouse endometrial 

epithelial cell population, and were seen within the luminal epithelium rather than the 

basal glands. This could be explained by the fact that unlike humans, mouse 

endometrium is not lost through menstruation, and so may in fact be where the SPCs 

reside in mice (Chan et al, 2006). Another study by Kaitu’u-Lino et al used the LRC 

technique on a mouse model mimicking the events of the human menstrual cycle. They 

identified that glandular epithelial cells were highly proliferative during the period of 

endometrial repair, but not before breakdown, as opposed to luminal epithelial cells 

which proliferated throughout both. The majority of the glandular epithelial LRCs 

were also found to be ERα positive during the time of repair. These findings suggest 

that only the glandular epithelium selectively proliferates during endometrial repair, in 

response to oestrogen. In addition, 7% of glandular epithelial LRCs were ERα negative 
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even throughout repair, and so may have located SPCs based on the theory that stem 

cells should remain in an undifferentiated state and therefore would be ERα negative 

(Kyo et al, 2011; Kaitu’u-Lino et al, 2010). 

 

1.4.2 The Origin of Endometrial Stem/Progenitor Cells 

Initially it was first postulated that foetal epithelial and MSCs persist in the adult uterus 

following embryonic development, and are responsible for the replenishment of the 

functional layer of the endometrium during each menstrual cycle (Snyder et al, 2005). 

Studies have now shown however, that there may also be an additional bone marrow-

derived element. It is possible that bone marrow-derived stem cells (BMDCs), which 

have the capability of differentiating into both haematopoietic and MSCs, may migrate 

to damaged tissues such as the endometrium. They may transdifferentiate into cells of 

the damaged tissue and may also contribute to angiogenesis, allowing repair (Figueira 

et al, 2011). In 2004, Taylor et al performed reverse transcriptase-polymerase chain 

reaction (RT-PCR) and immunohistochemistry (IHC) on the endometrial biopsies of 

four women who received HLA-mistmatched bone marrow transplants from other 

female donors. The results showed 0.2-48% of chimerism in the epithelial cells and 

0.3-52% in the stroma across the transplant recipients, indicating that BMDCs must 

have been involved in the re-growth of the endometrium. The extent of chimerism 

seemed to correlate with the length of time elapsed since the time of transplantation 

(Figueira et al, 2011; Kyo et al, 2011; Taylor, 2004). As further evidence, a follow-up 

study was conducted in mice, in which female recipients received bone marrow cells 

from male donors. 0.02% of endometrial glands and 0.03% of stromal cells were 

shown to be Y chromosome-positive with fluorescence in situ hybridisation (FISH) 
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analysis (Du et al, 2007). A similar human study by Ikoma et al using sex-mismatched 

donors, revealed that 0.6-48% of glandular epithelial cells and 8.2-9.8% of stromal 

cells were Y chromosome-positive on FISH analysis (Ikoma et al, 2009).  

 

Although this evidence suggests that there must be a BMDC component to the 

regeneration of the endometrium, many unanswered questions still remain. More 

research needs to be undertaken to explore whether BMDCs normally migrate to the 

endometrium with each cycle, or whether this only occurs during transplantation. In 

addition, further research needs to investigate which type of BMDC is responsible for 

this (Gargett, 2007; Kyo et al, 2011).  

  

1.5 The Identification and Characterisation of Endometrial SPCs 

1.5.1 Stem Cell Markers 

Due to the lack of specific surface markers and the general scarcity of ASCs within 

tissues, the identification and characterisation of these SPCs is often found difficult. 

Instead ASCs have been investigated in the literature by using stem cell assays, to 

explore the aforementioned key functional properties that a stem cell should possess. 

Haematopoeitic stem cells (HSCs) are the best characterised ASCs. In comparison to 

other ASCs, HSCs are relatively easy to analyse due to their non-adherent and isolated 

existence within the bloodstream. Therefore it is not surprising that these cells initially 

served as a model for stem-cell biology and that it was on these cells that in vitro and 

in vivo functional assays were first developed. Although many have adapted these 

surrogate assays to investigate stem cells within other tissues, it is proving difficult 

when attempting to apply them to adherent cells that are likely to behave differently 
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when taken out of their natural microenvironment, in this case the endometrium. A lot 

of research has been devoted to the identification of stem cell markers within somatic 

tissue. The detection of such markers would allow the prospective isolation of stem 

cells in order to enable further characterisation, localisation within the tissue and also 

their use within medical therapies. Studies evaluating potential markers need to ensure 

that these marker expressing cells also display the functional properties of SPCs, as 

many markers currently used are also found on mature cells and therefore their 

expression does not necessarily imply stem cell activity. CD34 for example is classed 

as a HSC marker, however it is also found of the surface of mature endothelial cells. 

Another difficulty with surface markers, is that cells change their phenotype in culture 

and therefore the marker expression profile in vitro may not represent the markers 

expressed when in vivo (Aplin, 2008).  

 

1.5.2 Stem Cell Markers and the Endometrium 

There are currently no specific surface markers for endometrial epithelial SPCs that 

allow them to be distinguished from their mature progeny, and therefore would enable 

their prospective isolation for further characterisation (Aplin, 2008). The discovery of 

a specific endometrial epithelial and stromal SPC marker has been the target of many 

studies, as this is fundamental for the characterisation of undifferentiated stem cells. 

Although certain markers have been shown to be expressed within the endometrium, 

none have been proven to be cellular specific to the epithelial stem cell population 

(Oliveiria et al, 2012).  
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Endometrial stromal stem cells have recently been characterised by the co-expression 

of two peri-vascular markers, CD146 and PDGF-receptor-β (PDGF-Rβ) and also the 

novel single marker W5C5 (Gargett CE, 2009; Masuda H, 2012). The CD146
+
PDGF-

Rβ
+
 sorted stromal cells were found to be enriched 8 fold for colony forming units 

(CFU) when compared to the unsorted stromal population. This sorted subpopulation 

also proved to exhibit multi-potency when cultured under the correct induction 

conditions. (Gargett et al, 2009; Schwab et al, 2007; Cervello et al, 2011). W5C5
+ 

endometrial stromal cells make up 4.2 ± 0.6% of the total population of stromal cells 

within the tissue, and have also exhibited a significant clonogenetic and multi-lineage 

differentiation ability when compared to their W5C5
- 

counterpart.  W5C5
+ 

sorted 

stromal cells have also shown to give rise to stromal-like tissue in vivo (Masuda et al, 

2012).    

 

A number of other markers that have also been associated with the endometrium. 

Some of these studies have been summarised in table 1.1 (Oliveiria et al, 2012). The 

expression of the survival marker bcl-2, and the haematopoietic markers c-kit (CD117) 

and CD34 have been identified in the endometrium of hysterectomy tissues (Cho et al, 

2004). Their importance as stem cell markers is questionable however, as they are seen 

to be expressed by a wide number of endometrial cells other than the clonogenic or SP 

endometrial cells identified in functional studies (Chan et al, 2004; Kato et al, 2007). 

 

 

 

 

 

 

 



29 

 

Table 1 Summary of stem cell markers in the human eutopic endometrium and in 

endometriotic lesions (Oliveiria et al, 2012)  

 

 

Musashi-1, an RNA-binding protein in neural stem cells and epithelial progenitor cells 

that controls signalling pathways involved in self-renewal, is one such marker that has 

been studied within the endometrium. Musashi-1 expression was found to be present 

within epithelial cells of the endometrial glands and also within the stroma, and was 

seen to co-localise with its molecular target Notch-1 and telomerase.  The cells positive 

for Musashi-1 were seen to be located more abundantly within the basalis when 

compared to the functionalis layer, and were significantly increased in number during 

the proliferative stage of the menstrual cycle over the secretory phase. High levels of 

Musashi-1 expression were also seen within tissue specimens taken from women with 

endometriosis and endometrial cancer (Gotte et al, 2008). A wide range of other 

commonly known stem cell markers including OCT4, NANOG, KLF-4,BMI-1, SOX15, 

SALL4, UTF1 and in some of the literature SOX2, have all shown to be expressed 

within the endometrium (Bentz et al, 2010; Forte et al, 2009; Zhou et al, 2011; Gotte 

et al, 2011). 
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1.5.3 Specific Markers 

OCT4, NANOG, SOX2 

POU class 5 homeobox 1 (OCT4), Nanog homeobox (NANOG) and sex determining 

region Y-box 2 (SOX2) are all core regulators of human and mouse ESC pluripotency. 

They code for transcription factors for genes that control and preserve pluripotency 

within stem cells. Although broadly speaking all of these genes have a similar 

function, strictly speaking are each a little different. Levels of OCT4 must be carefully 

balanced in order to maintain pluripotency, as low levels of expression are seen to 

induce trophectoderm differentiation, whereas over-expression triggers both endoderm 

and mesoderm differentiation.  NANOG has been reported to repress embryonic 

ectoderm differentiation, but does not have any influence over other embryonic 

lineages. In contrast, SOX2 is required for epiblast maintenance. Together these 

transcription factors form a network that regulates self renewal and pluripotency within 

stem cells (Wang et al, 2012; Forte et al, 2009).  

 

The expression of OCT4 has been identified within the endometrium of around 44% of 

women (Matthai et al, 2006). It has been shown not to vary with changes in the 

menstrual cycle and has been found mainly within the stromal cells of the endometrial 

and endometriotic samples with IHC (Bentz et al, 2010; Forte et al, 2009). NANOG 

has also been found within the endometrium and endometriotic tissue, although to a 

lesser extent than OCT4. It is also expressed in human endometrial adenocarcinoma 

(Forte et al, 2009; Zhou et al, 2011; Gotte et al, 2011). Gotte et al provided research 

which found SOX2 expression within the endometrium at a 60-fold lower level than 

OCT4 and NANOG. Gotte et al found that SOX2
+
 stromal cells were significantly 
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raised within the proliferative phase, and found immunoflourescent co-localisation 

with telomerase, a stem cell marker associated with immortality (Gotte et al, 2011). In 

contrast, Forte et al did not find SOX2 anywhere in the normal endometrium or 

endometriotic tissue (Forte et al, 2009).   

 

 CD133 

CD133 is a 5-transmembrane glycoprotein that makes up a part of the prominin family 

of pentaspan membrane proteins. Its expression has been associated with HSCs within 

adult blood, the bone marrow and umbilical cord blood also. In addition, CD133 has 

been found on endothelial, neural and epithelial cells (Rutella et al, 2009). Recently, 

the expression of CD133 has been linked to malignancies of the prostate (Collins et al, 

2005), lung (Eramo et al, 2008), brain (Singh et al, 2003) and ovaries (Ferrandina et al, 

2008). Within childhood it has also been associated with acute lymphoblastic leukemia 

(Cox et al, 2009). CD133
+
 cells taken from human colon cancer, have been shown to 

have the potential to give rise to tumours (Ricci-Vitiani et al, 2007). Following the 

emergence of evidence supporting the existence of cancer stem cells (CSCs) also 

referred to as tumour-initiating cells (TICs), CD133 is now widely considered as a 

marker for such cells, and has been used to isolate TICs in many solid tumours arising 

from different tissues (Rutella et al, 2009). 

 

CD133 has been found within both the glandular and luminal epithelial cells of the 

normal endometrium using the monoclonal antibody AC141, which recognises the 

CD133 epitope (Schwab et al, 2008). CD133 expression has also identified within 

primary human endometrial tumours. CD133
+
 cells possessed the ability to self-renew, 
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formed sphere-like structures in the correct culture environment and gave rise to 

tumours in vivo within immunocompromised mice. CD133
+
 cells have an increased 

proliferative potential and tumourigenicity when compared to CD133
-
 cells and 

showed apparent resistance to commonly used chemotherapy agents (Rutella et al, 

2009; Nakamura et al, 2010).   

 

PODXL 

Podocalyxin (PODXL) is a type I transmembrane protein. It belongs to a large family 

of cell surface protein called sialomucins, and is closely related to the HSC marker 

CD34, and endoglycan. PODXL was first identified on normal kidney glomeruli, on 

the apical surfaces of glomerular epithelial cells called podocytes. Within the kidney, 

PODXL has been found to be important for kidney development, and is seen to control 

podocyte morphology and structural integrity (Nielsen et al, 2009; Doyonnas et al, 

2005). Subsequently, it has been linked to haematopoietic progenitor cells, vascular 

endothelia and also a subset of neurones (Nielsen et al, 2009; Doyonnas et al, 2005). 

PODXL dysregulation has been implicated within a wide range of malignancies 

including breast (Somasiri et al, 2004), testicular (Schopperle et al, 2003), prostate 

(Casey et al, 2006), pancreatic (Ney et al, 2007) and hepatocellular carcinoma (Chen 

et al, 2004). PODXL has been identified as a marker for testicular malignancy within 

the human embryonic carcinoma cell line (Cheung et al, 2011) and has also found 

within all three germ layers during embryogenesis (Nielsen et al, 2009).  

 

Although a recognised stem cell marker, PODXL has still not been linked to the 

endometrium within the literature. Recently within our lab, IHC has confirmed the 
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presence of PODXL within the vascular endothelium and the glandular secretions on 

the apical surfaces of glandular epithelial cells, within the normal endometrium. 

Staining intensity showed that PODXL expression was significantly higher within the 

proliferative phase compared to other phases of the menstrual cycle (unpublished 

data).  

 

hTERT 

Telomerase is a specialised ribonucleoprotein polymerase that catalyses the extension 

of telomeric DNA sequences at the chromosomal ends. By elongating the telomeres, 

telomerase activation provides cellular immortality and is thought to be an essential 

component of oncogenesis and the malignant transformation of most tissue types. The 

functional telomerase enzyme is composed of three major subunits; human telomerase 

RNA (hTR), telomerase protein 1 (TP1) and human telomerase reverse transcriptase 

(hTERT). It is the hTERT subunit which controls telomerase activity, and its mRNA 

expression is reported to correlate to telomerase activity levels as assessed using a 

telomere repeat amplification protocol (TRAP) assay (Paul-Samojedny et al, 2005; 

Kim et al, 2007). In most normal somatic cells, telomerase is usually inactive. 

However in cells which have a high regenerative capacity such as haematopoietic cells, 

cervical epithelial cells and normal endometrial cells, telomerase expression has been 

identified (Paul-Samojedny et al, 2005).  

 

Within the endometrium, the level of telomerase activity has been found to be 

menstrual phase-dependent; highest within the proliferative phase and significantly 

suppressed within the secretory phase (Kyo et al, 1999). This telomerase activity has 
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been localised specifically to the glandular epithelial component of the endometrium 

(Tanaka et al,1998). hTERT mRNA levels are also found to be significantly higher 

within endometrial cancer when compared to levels in the normal endometrium 

(Lehner et al, 2002). More recently, it was shown that hTERT expression is 

significantly increased within patients with endometriosis, and is further evidence to 

support that this benign condition resembles neoplastic disease (Kim et al, 2007). Due 

to its association with limitless replication potential, high telomerase activity is 

detected not only in cancer cells, but within stem cells also. In human keratinocytes, 

stem cells have been shown to be the main source of telomerase activity (Kyo et al, 

1999).  

 

LGR5 

The leucine-rich repeat containing G protein-coupled receptor 5, LGR5 (also known as 

Gpr49), belongs to a family of receptors which are recognised by their seven-

transmembrane-helical topology, including their extracellular N-terminus and 

intracellular C-terminus. These receptors have an important role in forming a 

connection between extracellular information and intracellular signal transduction 

pathways (Krusche et al, 2007). LGR5 is now recognised as a marker for actively 

cycling stem cells in the small intestine, colon and hair follicle (Barker et al, 2007; 

Jaks et al, 2008). Intestinal epithelial LGR5
+
 cells, located at +4 position immediately 

above the Paneth cells in the crypt bases, have now been established as genuine 

intestinal stem cells. With a turnover time of 5 days, the intestinal epithelium is 

recognised as the fastest self-renewing tissue in mammals (Schepers et al, 2011). 

Independent LGR5 knock-in mouse models also demonstrated the highly restricted 
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expression of this gene within a variety of adult tissues, such as the gastric and 

mammary glands, suggesting that it may also be a more general marker of ASCs 

(Barker et al, 2007; Barker et al, 2010). The human endometrium resembles the 

gastrointestinal system with its rapid turnover time, highly regenerative capacity and 

glandular components. Its LGR5 mRNA has been found in the endometrium 

throughout the menstrual cycle and within cultured endometrial epithelial cells 

(Krusche et al, 2007).  

 

ERα, ERβ and PR  

The ovarian hormones, oestrogen and progesterone, are key ingredients for the 

physiological processes that occur within the endometrium. These work by binding to 

and activating the receptors, ER and PR. For many years it was believed that only 

single receptors for ER and PR existed. However, recently evidence has emerged for 

two major isoforms for both ER (α and β) and PR (A and B) exist (Mylonas et al, 

2007).  

 

Oestrogen controls many fundamental processes that occur within the endometrium 

including proliferation and vascularisation, and also up-regulates various genes 

including PR, vascular endothelial growth factor (VEGF) and lactoferrin. ERα and 

ERβ are highly homologous, apart from the C-terminal ligand binding domain and N-

terminal transactivation domain (AF-1) which differ. Both isoforms bind to E2 with 

high affinity. ERα expression rises within the glandular and stromal cells of the 

proliferative functionalis layer, and drops during the secretory phase. The expression 

of ERα is not seen to fluctuate throughout the menstrual cycle within the basalis. 
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Although the role of ERβ within the endometrium is still unclear, unlike ERα, it is 

detected in and therefore associated with the endometrial vascular endothelial cells 

(Critchley et al, 2006; Brosens et al, 2004; Critchley et al, 2009).  

 

PR expression is induced during the proliferative phase of the cycle, driven by 

oestrogen. PR-A is the shorter of the two isoforms and is homologous with PR-B 

except for that it is missing the last 164 amino acids that are present at the end of the B 

subtype. The expression of both PR isoforms is significantly higher within the 

endometrial glands of the functional layer during the proliferative phase of the cycle, 

compared with the secretory phase. However, PR expression is seen to persist within 

the stroma of the functional layer, especially in the cells located closely to the uterine 

vasculature, with PR-A acting as the dominant receptor within these cells. The cells 

within the basalis appear to be controlled differently as PR expression does not 

fluctuate within the glands and stroma of this layer. PR expression also varies between 

the epithelial and stromal cell types. For example within the secretory phase, both 

isoforms of PR are reduced within the epithelial cells of the functional layer, however 

only PR-B declines within the stroma of the same layer (Critchley et al, 2006; 

Critchley et al, 2009).  

 

Regeneration of the endometrium is controlled by the ovarian hormones mentioned 

above and is said to stem from SPCs within the basal layer. Prianishnikov in 1978, 

suggested a theory that still stands today. He claimed that the proliferation of 

endometrial stem cells occurs independently of hormones, which lack the ovarian 

hormone receptors. Daughter cells that arise from these become hormone-sensitive in 
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the presence of oestrogens and acquire ERs enabling them to respond to oestrogen. 

With further replication, these cells later acquire PRs and become sensitive to both 

hormones.  With time, as the cells mature further and move into the secretory phase of 

the menstrual cycle, they become unresponsive to oestrogen but retain their PRs, 

become more differentiated and exhibit secretory changes. According to this proposed 

model, ER and PR are therefore both markers of more differentiated endometrial cells, 

with PR acting as a marker of greater differentiation than ER (Prianishnikov, 1978).  

 

CD9 

Another marker that is important within the endometrium is CD9. CD9 is a 24-27 kD 

glycoprotein that was discovered by Park et al to be strongly expressed within the 

glandular and luminal epithelial cell population of the endometrium equally throughout 

all phases of the menstrual cycle. Stromal cells were seen negative for CD9. CD9 is 

closely linked to integrins and is important for cell adhesion and motility, and therefore 

may have a role in blastocyst implantation and trophoblast invasion. Since this 

discovery was made, CD9 has been adopted by many endometrial studies as a main 

stream surface marker for the identification of endometrial epithelial cells. CD13, also 

known as aminopeptidase N, has also been established as the equivalent surface 

marker for the endometrial stromal population (Park et al, 2000; Kato et al, 2007).  

 

1.6 Stage Specific Embryonic Antigen-1 (SSEA-1) and the 

Endometrium 

As previously described, much work has been dedicated to the identification of 

markers which characterise the stromal stem cell. As yet however, no such markers 
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have been identified for endometrial epithelial SPC population. Our lab has invested 

time and resources into the research and identification of such markers. In recent 

unpublished data, our lab has identified a significant and exciting link between these 

cells and the surface marker, stage specific embryonic antigen-1 (SSEA-1) (Valentijn 

et al, 2013).  

 

SSEA-1, also referred to as Lewis-X (LeX) and CD15, is a carbohydrate moiety 

located on the cell surface. It is expressed by the pluripotent mouse blastocyst, ESCs 

and primordial germ cells (Capela et al, 2006). Within mice, SSEA-1 is present in 

embryonic cancer cells (ECCs) and within late 8-cell embryos. In mice ESCs its 

expression is weak within the early stages and becomes more prominent later on. In 

contrast, SSEA-1 is not expressed within human ESCs or ECCs, but instead they 

express the carbohydrate antigens SSEA-3 and SSEA-4. Hence within humans, SSEA-

1 is described as an ESC early differentiation marker (Muramatsu et al, 2004; Scaffidi 

et al, 2011).  In addition, SSEA-1 expression has been linked to progenitor and stem 

cells in a range of different adult tissues, including the central nervous system, 

cardiovascular system and ciliary epithelium of the eye (Capela et al, 2006; Blin et al, 

2010; Koso et al, 2006). SSEA-1 is also recognised as a marker for tumour-initiating 

cells within studies and has been identified as a marker for cancer stem cells within the 

brain (Son et al, 2009; Scaffidi et al, 2011). Within these tissues the function of SSEA-

1 has been linked to processes including blastomere adhesion, cell-cell interaction and 

growth factor binding (Muramatsu et al, 2004; Capela et al, 2006). As SSEA-1 is a 

fucose-containing trisaccharide, it is must be glycosylated by a group of enzymes 

called fucosyltransferases (FucTs). The role of FucT enzymes is to transfer fucose in 
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α1, 2, α1,3/4 and α1,6 linkages on to a number of glycans and is crucial for the 

production of Lewis systems.  Fucosyltransferase 4 (FUT4) is one of these enzymes 

that regulates carbohydrate antigen expression and whose function has been linked to 

blastocyst attachment. Also linked to leukocyte adhesion, FUT4 was the first 

leukocyte-associated enzyme that was associated with the synthesis of ligands 

including LeY and LeX, or SSEA-1. Investigations into FUT4 within the endometrium 

have shown distinct cyclical changes and hormonal regulation of FUT4 mRNA to 

support that it is up-regulated during the period of implantation and is regulated by 

progesterone. These findings strongly suggest that FUT4 is responsible for the final 

catalysing step in the production of SSEA-1 (Ponnampalam et al, 2008). Within the 

nomenclature, FUT4 is even provided as an alternative name for SSEA-1.  

 

Carbohydrate antigens on the surface of stem cells are useful to enable the isolation 

and identification of such cells, and act as excellent biomarkers. To date, SSEA-1 has 

never been linked to the endometrium and its exact function within the endometrium is 

still unknown. Within our lab, research has shown that SSEA-1
+ 

epithelial cells within 

the endometrium, exhibit many characteristics of SPCs. IHC of full thickness 

endometrium taken from healthy women, shows positive staining for SSEA-1 

exclusively within the glandular and luminal epithelium, but not within the stromal 

compartment. Staining shows the presence of SSEA-1 strongest within the basal 

glands of pre-menopausal women, where endometrial SPCs are thought to arise, and 

has proven to be menstrual-phase dependent with more intense basal staining 

correlating with the early proliferative phase of the cycle. Strong staining is also 

evident within the endometrium of post-menopausal women, in whom only the basalis 
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layer of the endometrium remains. Not only is SSEA-1 present within the correct 

location for epithelial SPCs within the normal endometrium, but SSEA-1 also stains 

positively within eutopic and ectopic endometriotic tissue and within endometrial 

cancer cells, the pathogeneses of which are related to abnormal stem cells. See figures 

1.7 and 1.8 below (Valentijn et al, 2013). 
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Endometrial epithelial SSEA-1
+
 cells also exhibit high proliferation potential as shown 

by significant expression of the proliferation marker Ki67 and the mitotic marker 

phosphohistone H3. Investigation using the TRAP assay revealed that SSEA-1
+ 

epithelial cells demonstrate significantly higher telomerase activity and telomere 

lengths over their SSEA-1
-
 epithelial counterparts, both features of activated stem 

cells. See figure 1.9 below (Valentijn et al, 2013).  

 

Within 3D culture, which recapitulates the stem cell niche and favours stemness, 

human endometrial epithelial cells have been observed to form hollow gland-like 

structures like those seen within the normal endometrium. Stromal cells are not seen to 

form these spheroid structures in culture. SSEA-1
+
 endometrial epithelial cells show a 

significantly increased tendency to produce a higher number of spheroids than the 

SSEA-1
-
 epithelial cells. They retain SSEA-1

+
 expression until they mature and 

differentiate when expression is restricted to only a few cells. See figure 2.0 below 

(Valentijn et al, 2013). 
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This evidence suggests that that SSEA-1 may be a potential marker for enriching 

endometrial epithelial SPCs in humans and that a subpopulation of SSEA-1
+
 may 

contain epithelial SPCs. As previously discussed, in order to establish a SPC 

population, other functional properties including self-renewal, differentiation and in 

vivo behaviour must be evaluated on the SSEA-1
+
 epithelial cell population. In 

addition, to further characterise these cells, their gene expression profile must be 

evaluated to assess whether they possess markers of stemness which would suggest 

stem cell-like behaviour. Gene expression analysis on these cells is therefore the focus 

of this study, and may provide further evidence to suggest that SSEA-1 marks an 

epithelial SPC population within the endometrium.  
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1.7 Clinical Implications and Endometriosis 

The identification, isolation and characterisation of endometrial SPCs have many 

important clinical implications. Stem cell therapy, as already mentioned, is seen as one 

of the most promising techniques for the future of medicine and regenerative therapy. 

Cell therapy can be used to target a wide range of diseases which may affect any part 

of the human body. The endometrium may act as an easily accessible and renewable 

source of such cells. In addition, abnormal endometrial stem cells are postulated to be 

involved in the pathogenesis of gynaecological diseases such as endometriosis, 

endometrial hyperplasia, endometrial cancer and adenomyosis, in association with 

abnormal endometrial proliferation. Therefore the identification of endometrial SPCs 

may not only be used to treat other medical conditions, but will increase our 

understanding of the aetiology of gynaecological conditions such as endometriosis and 

hence their treatment also (Aplin, 2008).  

 

1.7.1 Endometriosis 

Endometriosis is a benign chronic gynaecological condition, defined by the existence 

of endometrial glands and stroma outside of the uterine cavity. It is one of the most 

common conditions seen within gynaecology. It is a common disorder affecting 6-10% 

of all reproductive-aged women, and 35-50% of women who present with the classical 

symptoms of pelvic pain and infertility. There are no differences in the incidence of 

this disease across different races, although Japanese women have been observed to 

have twice the incidence of Caucasian women. The clinical presentations of 

endometriosis may vary from patient to patient however, with some experiencing 

severe symptoms such as dysmenorrhea and dyspareunia, while others remain 
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asymptomatic. Ectopic endometrial tissue is most commonly found on the pelvic 

peritoneum and ovaries, as well as within other pelvic structures such as the fallopian 

tubes, bladder, colon, rectovaginal septum and sacrouterine ligaments. Implants have 

additionally been located at more distant sites such as the pericardium, pleura, lung 

parenchyma and even the brain. Although not life threatening, endometriosis has a 

major economic and social impact. Population-based studies have also discovered that 

women suffering from endometriosis are at an increased risk of developing ovarian 

cancer (Sasson et al, 2008; Overto et al, 2007). 

 

Pathogenesis of Endometriosis 

Despite its common occurrence, the pathogenesis of endometriosis remains unknown 

and has been under extensive investigation for a long time. A number of hypotheses 

exist regarding its aetiology, the most common and widely accepted of these being 

Sampson’s theory of retrograde menstruation.  Sampson postulated that ectopic 

implants arise due to menstrual debris migrating through the fallopian tubes and into 

the peritoneal cavity where they adhere to and invade the peritoneal mesothelium, 

establishing endometriotic lesions. On the other hand, it is thought that 90% of 

menstruating women contain this debris within their peritoneal cavities and therefore it 

is likely that only some of these cells are capable of giving rise to endometriosis in 

certain women. An altered peritoneal environment along with abnormalities in genetic, 

immunologic and environmental factors may also have an influence on their survival 

and proliferative capacity. Strong links between endometriosis and multiple gene loci, 

immune deficiency and also various environmental factors have now been established 

(Figueira et al, 2011; Sasson et al, 2008; Aplin et al, 2008). 
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Other theories include the embryonic rest theory, the lymphovasular metastasis theory 

and the coelomic metaplasia theory. The embryonic rest theory suggests that 

endometriosis is developed from scattered embryonic rests of műllerian origin, which 

when subjected to the correct stimuli, can form endometrial tissue. Alternatively, the 

lymphovascular metastasis theory claims that endometriosis occurs due to the 

lymphovascular spread of menstrual tissue, accounting for the occurrence of 

endometriosis in distant sites such as the lungs and brain. Finally, the colomic 

metaplasia theory suggests that it is the spontaneous metaplasia of the pleural and 

peritoneal mesothelial cells that leads to endometriosis. Although evidence exists for 

each of these theories, it is probably linked to a combination of abnormal biological 

process (Figueira et al, 2011; Sasson et al, 2008).  

 

Diagnosis of Endometriosis 

Being an oestrogen dependent disorder, endometriosis usually affects women during 

their reproductive years when the lesions are stimulated by the ovarian hormones. 

Symptoms are usually the strongest pre-menstrually and are relieved following 

menstruation. Patients may complain with a variety of symptoms, the most common of 

which being pelvic pain. Other symptoms include back pain, dyspareunia, dyschezia 

and pain with micturition. For some, the only presenting complaint may be a history of 

infertility. A family history of endometriosis in a first degree relative may also give 

some indication as to the diagnosis. A thorough patient history can indicate 

endometriosis as a differential but not a definitive diagnosis. It is often misdiagnosed 

as irritable bowel syndrome. On physical examination, signs may be absent, or might 
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present as tender nodules in the posterior fornix or adenexa, cervical motion tenderness 

or even a fixed retroverted uterus (Mounsey et al, 2006). 

 

The gold standard method of making a diagnosis of endometriosis is by direct 

visualisation of the ectopic lesions, usually via laparoscopy. This is commonly 

followed by histological confirmation, in which at least two features are present. These 

features include hemosiderin-laden macrophages, endometrial epithelium or stroma. 

Histologically, these lesions are similar to the eutopic endometrium. Transvaginal 

ultrasonography is used as a valuable investigation to locate retroperitoneal and 

uterosacral lesions, however unfortunately it does not accurately identify peritoneal 

lesions or small endometriomas. Two other tests, including serum cancer antigen 125 

(CA 125) and magnetic resonance imaging (MRI), have both been studied for their use 

in endometriosis, however neither has shown diagnostic accuracy. It is important that 

non-gynaecological causes of pelvic pain are also excluded (Mounsey et al, 2006; 

Bergqvist et al, 1984).  

 

When diagnosing a patient with endometriosis, a clinical staging system is required in 

order to allow clinicians to communicate effectively with one another regarding the 

severity and management. Such a system was revised by the American Society for 

Reproductive Medicine (ASRM) in 1996 and is the most widely accepted system, 

although it does not act as a sensitive predictor for pregnancy following treatment and 

does not link the level of pain with the staging severity (see table 2) (The Practice 

Committee of the ASRM, 2006; ASRM, 1997). 
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Table 2 Revised ASRM classification for endometriosis, 1996 (ASRM, 1997) 

Stage Description 

I  Minimal: Superficial lesions only and may have few adhesions 

II Mild: Stage I and some deep lesions within the cul-de-sac 

III Moderate: Stage II, identification of ovarian endometriomas and increased adhesions  

IV Severe: Stage III, larger endometriomas and extensive adhesions 

 

Treatment of Endometriosis 

The treatments for endometriosis encompass both medical and surgical techniques, and 

focus on relieving pain, preventing disease progression and promoting fertility. The 

choice of management must be made according to a patient’s individual needs, taking 

into consideration the severity of their symptoms, their age and their desire for a 

family. The management available for endometriosis is not curable. In many women, 

the menopause can naturally treat the disease. Several pharmacological options are 

available and are aimed at managing symptoms of pain, and cyclical dysfunction. Non-

steroidal ant-inflammatory drugs (NSAIDs) provide pain relief, whilst the oral 

contraceptive pill (OCP), androgenic agents (e.g. danazol), progestogens and GnRH 

analogues all manage pain whilst simultaneously inducing amenorrheoa. Medical 

management is limited with its use due to their long term side effects and reccurrence 

of endometriosis is common following their discontinuation. Surgical interventions 

provide an alternative, including laparoscopic resection/ablation, which have shown to 

help increase a woman’s fertility. However the effects of surgery may be short lived, as 

within 12 months symptoms of pain reoccur in almost 50% of women and further 

medical treatment is required. More definitively a hysterectomy and bilateral 

salpingoophorectomy can remove symptoms, although this may not be an option for 
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women who still want a family (Mounsey et al, 2006; Overto et al, 2007; The Practice 

Committee of the ASRM, 2006). 

 

1.8 Research Aims and Objectives 

1.8.1 Research Aims 

There are still many unanswered questions about the aetiology surrounding 

endometriosis, and the treatments available are far from ideal. One hypothesis 

regarding the pathogenesis of endometriosis claims that endometrial SPCs are 

abnormally shed into a woman’s peritoneal cavity during menstruation, where they 

adhere and proliferate forming ectopic lesions. An alternative thought is that 

endometrial SPCs may be intrinsically abnormal in women with endometriosis, giving 

them a greater ability to implant and form lesions (Gargett et al, 2010). As yet, unlike 

the stromal population, no markers have been established for endometrial epithelial 

SPCs which would allow their identification and location within the tissue, and would 

enable their isolation and further study.  Prospective isolation of endometrial SPCs 

may provide exciting possibilities for the future of medicine, allowing for their use in 

regenerative medicine throughout the body and an increase in our understanding of 

gynaecological disorders hence improving their treatment.  

 

In our lab, SSEA-1 has been identified as one potential marker located on endometrial 

epithelial SPCs, as these cells seem to possess many qualities that SPCs should have. 

Further evidence is required into the study of the SSEA-1
+
 endometrial epithelial cell 

population in order to definitively conclude that it is an epithelial SPC marker. One 

important area which will allow the further characterisation of these cells and has yet 
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to be defined, is their transcriptional profile for common endometrial markers and 

markers of stemness which control stem cell properties such as self-renewal and the 

maintenance of an undifferentiated state. This may or may not provide further evidence 

for their SPC-like qualities, and therefore is the main focus of this study. 

 

1.8.2 Objectives 

In order to achieve this broad research aim, several specific objectives have been 

identified below to be achieved throughout the course of the study.  

 

Assess the gene expression profile for SSEA-1
+
 epithelial cells versus SSEA-1

-
 

epithelial cells within the normal endometrium, cultured in a normal 2D system.   

In order to do this, quantitative PCR (qPCR) was performed on both cell populations 

to compare mRNA expression of the commonly recognised stem cell markers OCT4, 

NANOG, SOX2, PODXL, hTERT, CD133 and LGR5, and of the endometrial 

differentiation markers ERα, ERβ and PR. Additional markers CD9, as an epithelial 

cell marker, and FUT4, as a marker for SSEA-1, have also been included within this 

study for extra value. 

 

Assess the gene expression profile for SSEA-1
+
 epithelial cells versus SSEA-1

-
 

epithelial cells within the normal endometrium, cultured in a 3D Matrigel 

system.  

SSEA-1 sorted endometrial epithelial cells form gland-like structures in 3D Matrigel, 

similar to the glands seen within the normal endometrium. This 3D culture system is 

said to mimic the endometrial stem cell niche and therefore may favour stemness and 
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prevent differentiation. It is therefore important to assess the gene expression profile, 

looking at the same genes, on SSEA-1
+
 and SSEA-1

-
 cells grown in 3D culture to 

assess if there are any differences with 2D culture. 

 

Compare the gene expression profile for SSEA-1
+
 epithelial cells taken from 

women with a normal endometrium to those with endometriosis.  

As endometriosis is said to have a link with abnormal endometrial SPCs, it is 

important to evaluate whether cells, which express our proposed SPC marker SSEA-

1, show any differences in their gene expression within patients suffering from 

endometriosis. The same genes as previously mentioned was evaluated in both the 

2D and 3D culture systems on these patients
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Chapter 2: Materials and Methods 

All equipment and reagents have been highlighted as ‘bold’ within the text. The 

specifications including the company name and catalogue number of each item can be 

found listed in alphabetical order in appendix II.  

 

2.1 Ethics Approval 

All patients included in the study had given informed written consent prior to 

collection. Ethical approval for the study was granted by the Liverpool (Adult) 

Research Ethics Committee (LREC) (reference 09/H1005/55 and 04/Q1505/112). This 

approval allowed the collection of human endometrial tissue samples from all suitable 

patients, including healthy fertile women and women with endometriosis, who were 

attending the Liverpool Women’s Hospital (see appendix III). 

 

2.2 Patient Recruitment and Sample Collection 

2.2.1 Patient Identification and Recruitment 

Suitable patients undergoing gynaecological surgery were identified following review 

of the planned theatre lists. Once these patients were highlighted, their paper-based 

hospital notes were cross-referenced in order to ensure that they met the correct 

inclusion criteria (see table 3). Suitable patients were provided with a detailed 

description of the purpose of the study and the procedure itself, including any potential 

risks or benefits to the patient. To guarantee informed valid consent, this information 

was provided by staff who were trained in Good Clinical Practice (GCP) and were able 

to consent and recruit the patients for this study. All patients were made aware that 

they had the right to refuse participation within the study and were ensured that this 
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would not affect their treatment. In addition, patients were also provided with an 

information leaflet to read in their own time (appendix IV) and were given the 

opportunity to ask any questions they may have. Once verbal consent was given, staff 

could then proceed to gain written consent (appendix V). The following demographic 

details were collected for each patient:

participant age, weight (kg), height (cm), body mass index (BMI), 

smoking history, parity, history of miscarriage or termination of pregnancy, the date of 

last menstrual period (LMP), cycle length and the number of days of menstruation, and  

their past medical history (see appendix VI). 

 

2.2.2 Inclusion/Exclusion Criteria 

The study included two groups of patients. The inclusion and exclusion criteria 

specified below were employed in order to select and recruit patients into the study 

(tables 3 and 4). 

Table 3 Control Group Inclusion/Exclusion criteria 

Control Group: Fertile women within reproductive age (n=14)

Inclusion Criteria Exclusion Criteria 

 Women of reproductive age 

 Women undergoing surgery 

for benign gynaecological 

conditions (e.g. laparoscopic 

sterilisation or uterine 

fibroids) 

 Postmenopausal women 

 Women on hormonal therapy 

within the last 3 months 

 Pregnant or breastfeeding 

women 

 History of infertility 

 History of endometriosis or 

gynaecological malignancy  
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Table 4 Endometriosis Group Inclusion/Exclusion criteria 

Endometriosis Group: Women with active endometriosis (n=8) 

Inclusion Criteria Exclusion Criteria 

 Women of reproductive age  

 Women with a surgical 

diagnosis of active eutopic or 

ectopic endometriosis at the 

time of sample collection  

 Women on hormonal therapy 

within the last 3 months 

 Pregnant or breastfeeding 

women 

 

2.2.3 Endometrial Biopsy Collection 

Endometrial biopsies were collected by trained professionals who have been trained in 

the correct method of sample collection from theatre. Depending on the type of the 

surgical procedure planned for the individual, we employed one of two following 

methods to attain an endometrial biopsy. 

 

1. Full Thickness Sampling: 

Full thickness endometrial samples 

were collected from women 

undergoing a hysterectomy. Following 

surgical removal of the uterus, a single 

vertical midline incision was made on 

the posterior surface of the uterus 

from the fundus down to the cervical 

canal (excluding the cervix) using a size 22 carbon steel surgical blade 

(indicated in figure 2.1). This exposed the inner uterine cavity and the 

endometrium. A lateral incision (approximately 25mm wide and 10mm deep) 
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was then made into the uterine wall allowing a full thickness sample to be 

obtained which comprised of the endometrial lining, the endometrial-

myometrial junction and part of the myometrium.  

 

2. Pipelle Sampling:  

For women who were not having a hysterectomy, we collected a pipelle endometrial 

biopsy under anaesthetic before their planned operation had begun. This is a common 

and relatively non-invasive method of endometrial sampling, which is commonly used 

in the outpatient clinic setting. A pipelle is a flexible, blunt plastic tube which collects 

endometrial tissue through suction. Once on the operating table, patients were placed 

in the lithotomy position and a sterile aqueous solution containing chlorhexidine 

gluconate 0.05% was used in order to clean the perineal area externally and the vagina 

and the cervix internally as a part of routine gynaecological surgical preparation. 

Following this, a Sims speculum was inserted into the vagina in order to visualise the 

cervix (this was routinely required as part of the gynaecological surgical procedure 

regardless of whether the patient was in our study, therefore was not over and above 

what was clinically needed for her). Then, a pair of Teales Vulsellum uterine forceps 

was used to hold the anterior lip of the cervix and a pipelle was inserted in through the 

external and internal cervical os towards the fundus of the uterine cavity.  Superficial 

endometrial tissue was collected by the use of rotation and backwards and forwards 

movements of the pipelle, and creating suction by drawing the plunger.  Once the 

necessary amount of endometrial tissue was withdrawn, the pipelle was removed 

completely from the uterine cavity.  
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These tissue collection methods ensured safe, sterile conditions and caused minimal 

discomfort to the patient and therefore in our opinion was ethically acceptable. 

 

2.2.4 Sample Processing 

Once fresh tissue samples had been collected, they were divided into smaller fragments 

for transfer into multiple storage containers in preparation for subsequent laboratory 

experiments. For our study it was essential to collect primary human endometrial tissue 

(without the underlying myometrium) within collection media. For cell culturing, 

biopsies were collected in to Dulbecco’s Modified Eagle Medium/F12 

(DMEM/F12), 1% Fetal Bovine Serum (FBS) and 0.2% Primocin (collection 

medium). This was kept at 4
o
C until ready for subsequent cell culture.  

 

2.3 Isolation of SSEA-1 Enriched and Depleted Populations  

2.3.1 Endometrial Epithelial Cell Isolation 

Biopsy tissue that had been placed in collection media was transferred to a 100mm 

Petri dish along with 1ml of DMEM/F12 to maintain tissue moisture. A surgical blade 

was used to chop up the endometrial tissue into a fine mince consistency. Following 

this, the tissue was transferred into a 30ml universal tube using a 1ml pastette and 

the Petri dish was rinsed with DMEM/F12 to ensure that all remaining tissue was 

collected. The tube was centrifuged at 500g for 5 minutes to collect the cells in pellet 

form. The cell pellet was then resuspended in 4ml DMEM/F12, 500μl 1x collagenase 

(20mg/ml), 100μl 1x dispase (10mg/ml), 100μl 1x DNase (4mg/ml) and 50μl 100mM 

MgCl2.The suspension was incubated for 90 minutes in a shaking water bath at 37
o
C 

to allow digestion into single cells. During this time period, the digest was triturated 

periodically to dissociate digested tissue.   Following this the digest was filtered 
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through a 40μm cell strainer into a 50ml universal tube, and the filter was washed 

thoroughly with around 30-40ml DMEM/F12. The epithelial glands which were too 

big to pass through were retained at the base of the filer, and were named the 

‘retentate’. The stromal cells and contaminating red blood cells which were passed 

through the filter were named the ‘flow through’. The retentate was then back-washed 

using 30-40ml of DMEM/F12 into a 50ml tube, by inverting the cell strainer. Both 

fractions were then centrifuged at 500g for 5 minutes to pellet cells.  

 

For the stromal cell fraction: 

The stromal cell pellet was then resuspended in 4ml DMEM/F12 and layered on to 4-

5ml of Ficoll in a 15ml centrifuge tube. This was subsequently centrifuged at 400g 

for 10 minutes to pellet the contaminating red blood cells. Following this, the stromal 

cells appeared as a single layer at the interface between the Ficoll and the media and 

these were transferred carefully into a 30ml universal tube. The stromal cells were then 

washed with 15ml 1x DMEM/F12 and centrifuged at 500g for 5 minutes. The stromal 

cells were then left on ice. 

 

For the epithelial cell fraction:  

The epithelial cell pellet was resuspended in 1ml DMEM/F12, 1ml 0.25% 

trypsin/EDTA solution (0.125% final concentration), 100μl 1x DNase (4mg/ml) and 

50μl 100mM MgCl2 in a 15ml centrifuge tube. This was incubated at 37
o
C for 20 

minutes and triturated in order to break apart the epithelial glands and liberate the 

single epithelial cells. 1ml of culture medium was then added to inactivate the trypsin. 

The epithelial cell fraction was centrifuged at 500g for 5 minutes and then washed in 

x1 DMEM/F12 in a 30ml universal tube.  
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For both stromal and epithelial cell fractions, the cell pellets were resuspended in 10ml 

of culture (or complete) medium (defined as DMEM/F12, 10% FBS and 50ng/ml 

epithelial growth factor(EGF)) and were plated in either tissue cultureT75cm
2
 

flasks or 100mm Petri dishes, depending on the cell yield obtained. This was incubated 

for 20-30 minutes at 37
o
C. Selective adherence was used to further enrich the epithelial 

and stromal fractions. Unlike epithelial cells which take longer to attach, stromal cells 

attach quickly and readily and therefore adhesion can be monitored with the use of an 

inverted microscope. Non-adherent epithelial cells were transferred to a new culture 

vessel. Selective adherence was repeated if necessary to achieve optimal enrichment. 

Cells were cultivated for up to 3 days, depending on the confluency. The morphology 

of the final cell fractions are shown below in figure 2.2. 

 

 

 

 

 

 

 

 

 

 

The purity of the epithelial cell fraction could be assessed morphologically as 

described above, but also with the use of FC and immunofluorescence (IF) for the 

epithelial marker CD9. The following FC data demonstrates that on days 3-5 of 

culture, greater than 80% of the cells were epithelial in origin (CD9
+
) with less than 

20% stromal cell contamination (CD13
+
) (figure 2.3). 
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FC analysis also confirmed that other cell types including endothelial cells (CD31
+
), 

haematopoietic stem cells (CD34
+
) and leukocytes (CD45

+
) were also present in 

extremely low numbers (less than 3%) (figure 2.4). 

 

2.3.2 Cell Sorting  

Magnetic-Activated Cell Sorting (MACS)  

Following epithelial cell enrichment, anti-SSEA-1(CD15) MicroBeads were used to 

sort the epithelial cell population on the cell surface marker, SSEA-1. The MACS 

sorting of these epithelial cells into SSEA-1
+
 depleted and enriched cell fractions was 
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performed according to manufacturer’s instructions. Cell culture medium was first 

aspirated and the 100mm Petri dish was washed with phosphate buffered saline 

(PBS). Subsequently the cells were trypsinised by using 1ml of 0.05% trypsin/ EDTA 

solution and incubated at 37
o
C for 5 minutes. Following this, 2ml of culture/complete 

medium (containing FBS) was added to stop the reaction and inactivate the trypsin. To 

break apart any cellular aggregates and form a single-cell suspension, the solution was 

triturated before transfer through a 40μm cell strainer which had been placed over a 

50ml Falcon tube. To recover the cell pellet, the cell suspension was then centrifuged 

at 500g for 5 minutes at 4
o
C. Ideally up to 10

7
 cells were recovered at this point. The 

cell pellet was then resuspended in 1ml MACS buffer (composed of PBS, 0.5% bovine 

serum albumin (BSA) and 1mmol ethylenediaminetetraacetic acid (EDTA) and 

was transferred to a pre-chilled 1.5ml microcentrifuge tube. This step washed the 

cells and exposed them to the same conditions as used later for antibody binding, 

before further centrifugation at 700g for 3 minutes. The supernatant was removed and 

the cell pellet gently resuspended in 80μl of buffer and 20μl of anti-SSEA-1(CD15) 

MicroBeads. This was mixed well and incubated at 4
o
C for 20 minutes in a refrigerator 

to allow magnetic labelling of the cells. The microcentrifuge tube was flicked 

periodically to ensure that any settled cells were resuspended. This cell suspension was 

washed in 1ml of Miltenyi buffer and centrifuged at 700g for 3 minutes as before. This 

step was then repeated for a second time following aspiration of the supernatant. In 

order to magnetically separate the labelled cells, a MACS separation column was 

placed in a magnetic field using a MACS separator. The separation column was 

prepared by adding a 30μl yellow pre-filter and pre-wetting it with 500μl of buffer.  

500μl of this buffer was also added to the cell pellet following aspiration of the 

supernatant, before loading the cell suspension onto the column. The cell suspension 
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was washed through the column with 500μl of buffer twice, and this ‘flow through’ 

was collected into a 1.5ml microcentrifuge tube  containing the unlabelled SSEA-1
+
 

depleted cells. The column was subsequently washed for a third time with 500μl of 

buffer, however this ‘waste’ solution was discarded into a separate tube. The column 

was then removed from the magnetic cell separator and placed on a third tube before 

washing it with 1.5ml of buffer to collect the ‘eluate’ containing the magnetically 

labelled SSEA-1
+
 enriched cells. Care was taken to only remove the magnetic field 

once the column was carefully placed over the collection tube. Finally, in order to 

recover the cell pellets from the ‘eluate’ and ‘flow through’ cell suspensions, both 

fractions were centrifuged at 700g for 8-10 minutes to collect as many cells as 

possible.  

 

 

  

 

 

 

 

 

 

 

Western blotting confirmed that the SSEA-1
+ 

fraction was indeed enriched for SSEA-1 

(figure 2.6). With the use of FC analysis, expression of SSEA-1 was routinely seen 

within 20-30% of the cultured epithelial cells. Stromal cells did not appear to express 

SSEA-1, as evidence by IHC.  
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Fluorescence-Activated Cell Sorting (FACS) 

With the use of cytocentrifugation and IF, our lab has seen that the cell purity and 

efficiency obtained by MACS for SSEA-1, is around 70% (figure 2.7) compared to 

FACS which has an efficiency of greater than 90%. For this reason, some samples 

were sorted on SSEA-1 and the epithelial marker CD9 using FACS, in order to verify 

the results obtained with MACS sorted samples. A limited number of samples could be 

sorted using FACS throughout the project due to the inaccessibility of the FACS 

instrument and the need for a high number of cells.  

 

FACS instruments consist of a flow cytometer with the additional ability to sort cells 

according to their fluorescent signal. Fluorescently labelled single-cell suspensions 

flow past an excitation source (usually a laser light) of a single wavelength, in a liquid 

phase. The stream of cells is broken into individual droplets containing single cells. As 

they pass through the beam they cause the light to scatter, and this is analysed by 

detectors which can assess the cell structure (FC). In addition to this cell analysis, they 

can also be sorted with the use of electrostatic deflection which diverts cells into 

containers based upon their charge.  
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For FC, monolayer cultures of epithelial cells were trypsinised in to single cell 

suspensions as described for MACS (see section previous). Cells were labelled in 

FACS buffer (containing 0.5% bovine serum albumin (BSA) and 1mM EDTANa2 in 

PBS) with either AlexaFluor 488-CD9, PE-SSEA-1 or both according to the 

manufacturer’s instructions.  Unlabelled cells and cells labelled with isotype matched 

antibodies served as controls. Cells were prepared and labelled by Anthony Valentijn 

and analysed and sorted by Stuart Marshall-Clarke or analysed alone by Sandra Rak-

Razewska. 

 

As with MACS, cultured epithelial cells which had been grown in monolayer were 

trypsinised in a 100mm culture dish by adding1ml 0.05% trypsin/EDTA solution and 

incubating at 37
o
C for 5 minutes. 2ml of culture media containing FBS were then 

added to inhibit the trypsin. To break apart cell aggregates the solution was triturated 

and transferred through a 40μm cell strainer placed over a 50ml Falcon tube. Once 

centrifuged at 500g for 5 minutes at 4
o
C the cell pellet was recovered. For FACS, at 

least 10
7
-10

8
 cells were required per test. Controls included unlabelled cells and cells 

which had been labelled with isotype controls for the fluorochromes which were used. 

The cell pellet was then resuspended in 100μl FACS buffer and between 0.5-1μg 

(dependent on the formulation of the manufacturer) of unlabelled or fluorescently 

labelled primary antibody for SSEA-1 and CD9, labelled with either Fluorescein 

(FITC)/AlexaFluorR 488 or Phycoerythrin (PE) as recommended by the 

manufacturers. This was then incubated in a dark fridge for 20-30 minutes. Following 

this, 1ml of FACS buffer was added and the tube was centrifuged at 700g for 3minutes 

at 4
o
C. The supernatant was aspirated and the cell pellet was again resuspended in 1ml 
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of buffer before being centrifuged as before. In the case of the unlabelled primary 

antibody, the cell pellet was resuspended in 100μl FACS buffer and 0.5-1μg of the 

labelled secondary antibody was mixed in. This was incubated for 20-30 minutes at 

4
o
C and washed twice with 1ml of buffer.  The unlabelled cells were then treated in the 

same way as cells mixed with the labelled antibody in the following step. If the 

labelled primary antibody was used, the cells were instead resuspended in 500μl FACS 

buffer and analysed as quickly as possible or fixed with neutral buffered formalin 

(NBF)/PBS and stored at 4
o
C for up to one week.  

 

Once the cells had been prepared as described above, they were analysed using the 

FACSCalibur cytometer along with Cell Quest Acquisition and Analysis software 

(CellQuestPro version). Cell sorting was performed using a FACS Ariall cell sorter 

and the data was finally analysed with FACSDiva software (version 6.1.3), BD 

Biosciences.  

 

2.4 Organoid Culture 

Mimicking the in vivo environment of the endometrial stem cell niche, endometrial 

epithelial cells were also cultured in 3D Matrigel, as well as the 2D culture previously 

described. Basement membranes are thin extracellular matrices that in vivo underlie 

cells. BD Matrigel
TM 

represents a solubilised form of basement membrane. Cells from 

MACS purification representing SSEA-1 enriched and depleted fractions were 

reuspended in Matrigel at an initial density of ~100,000 cells/100μl. This was 

subsequently diluted serially two-fold from ~100,000 cells/100μl to ~3000 cells 

/100μl. 50μl cells was plated in duplicate in wells of a 24-well tissue culture and the 

Matrigel allowed to gel at 37
o
C for 30 min prior to adding 1.0ml DMEM/F12 
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supplemented with 1x insulin-transferrin-selenium and 50 ng/ml EGF. The medium 

was replaced every 3 days and the culture was monitored over a 10-12 day period. In 

3D culture endometrial epithelial cells formed gland-like structures also referred to as 

organoids/spheroids similar to the glands seen in the endometrium. This mainly arose 

from the SSEA-1
+
 cell population (figure 2.8).  

 

 

2.5 RNA Extraction  

2.5.1 RNA Extraction  

In order to extract total RNA from SSEA-1 sorted cells and organoids, the TRIzol® 

reagent method was implemented according to the manufacturer’s instructions. 

Initially, 1ml of TRIzol® reagent was added to the cell pellets in order to lyse the 

cells. In the case of positive controls and organoids which had been obtained from a 

b c 
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culture dish, culture medium was first aspirated and 1ml of TRIzol® reagent was then 

added directly to the dish. This was pipetted thoroughly to obtain a homogenous 

suspension before being transferred to a 1.5ml microcentrifuge tube.  In order to ensure 

that the maximum numbers of cells were introduced into the TRIzol® suspension, 

cells were gently pipetted to ensure that the cells had visually disintegrated. In the 

instance that RNA had to be isolated from tissue samples, a hand-held homogeniser 

was used instead. Next, 200µl of chloroform (or 1/5
th
 of the initial volume of 

TRIzol®) was added to the solution. These microcentifuge tubes were then shaken for 

15 seconds and centrifuged at 12,000g for 15 minutes at 4
o
C.  At the end of this step, 

three phases could be distinguished. These included a clear upper aqueous layer which 

contained the RNA, a white interphase containing proteins which had not been fully 

denatured and a lower red organic phase made up of DNA and other proteins. The 

RNA or aqueous phase was then transferred into fresh 1.5ml tubes, ensuring that a 

clear margin was left above the interphase in order to minimise the risk of any 

contamination from DNA or protein. In cases where RNA was extracted from a small 

number of cells, the aqueous phase was added to separate tubes containing 1µg/µl of 

glycogen. The glycogen acts as a carrier and is useful when small amounts of RNA are 

extracted. The remaining microcentifuge tubes containing the lower two phases were 

discarded at this point into ‘TRIzol waste’. In order to precipitate the RNAs, 500µl of 

2-propanol (50% of the original volume of TRIzol® used) was added and the 

solution mixed by inverting the tubes 6 times. These were then left to incubate for 10 

minutes at room temperature. Subsequent to incubation, the tubes were centrifuged at 

12,000g for 10 minutes at 4
o
C to produce visible RNA pellets at the bottom of the 

tubes. The supernatant was removed and the remaining pellet was washed with 1ml 

of 75% ethanol and was centrifuged at 7,500g for 5 minutes at 4
o
C. The ethanol was 
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then discarded, and the RNA pellets left to dry for a few minutes at room 

temperature. As the RNA was then used immediately for cDNA synthesis, the pellets 

were dissolved in 15-25µl nuclease free water depending on their size.  

 

2.5.2 Verification of RNA Integrity by Gel Electrophoresis 

 RNA integrity was verified with the 

use of electrophoresis on a 1% agarose 

gel (made in 1x tris–acetate–

ethylenediamine tetraacetic acid 

(TAE)). This was achieved by initially 

dissolving 2g of agarose power in 

200ml of 1x TAE buffer (recipe in table 

3). This suspension was heated to boiling point in a microwave before allowing it to 

cool to 60C. 4μl of ethidium bromide (2µl per 100ml; 0.5μl/ml) was then added and 

mixed into the molten agarose before pouring it into a plastic electrophoresis case of 

the appropriate size. Ethidium bromide staining is used to enable visualisation of the 

28S and 18S ribosomal RNA bands. The gel was then left to set for around 30 minutes 

at room temperature. Samples to be loaded were prepared during this time included 1μl 

of RNA, 2μl of 5x DNA loading buffer and 7μl of nuclease-free water, making a final 

volume of 10μl. The 5x loading buffer allowed visual control of the electrophoresis 

and provided density to the samples. It was added to each sample to a 1x final 

concentration. The gel was then immersed in the 1x TAE buffer and a 100V electrical 

current was applied. RNA of good quality appeared as two clear rRNA bands (28S and 

18S) and in most cases samples showed a third band nearer the end of the gel 

representing 5S. Degraded RNA appeared on the gel as a smear. Bands were observed 

Recipe for 10x TAE 

NaCl 48.4g 

Glacial Acetic Acid 

(17.M) 

11.4ml 

EDTA 3.7g 

Distilled H2O Up to 1L 

Table 5: Recipe for 10x TAE 
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under a UV light in a Molecular Imager® Gel DocTM XR from Bio-Rad. 

Representative RNA Bands for SSEA-1 sorted samples are shown below (figure 2.8): 

Normal Endometrial Samples (labelled ‘N’): 

1. MACS Sorted 

 

 

 

 

 

 

 

 

 

2. FACS Sorted 
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Endometriosis Samples (MACS only) (labelled ‘E’):      

 

Organoids (MACS only): 

 

 

 

 

 

2.5.3 RNA Quantification: NanoDrop 

In order to determine the RNA concentration within each sample, RNA samples were 

loaded onto a NanoDrop
TM

 1000 Spectrophotometer following the manufacturer’s 

guidelines. Firstly, the Nanodrop 2000 software was loaded and the machine was 

verified with the arm of the Nanodrop facing downwards. 1μl nuclease-free water was 

then loaded to blank the machine. This nuclease-free water should be the same as that 

used to dissolve the initial RNA pellet.  Following this, 1µl of the RNA samples were 

loaded in succession and the RNA concentrations measured. The 260/280nm 

absorbance ratio, reflecting the purity of the RNA, was also measured. Pure samples 

have values between 1.8 and 2. Quantification of the RNA at this stage allowed 

equalisation of the RNA input within the next stage of DNase treatment. On 
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completion of use, the NanoDrop was cleaned with 1μl nuclease-free water (see 

appendix VII for nanodrop values).  

 

2.6  cDNA Synthesis 

2.6.1 DNase Treatment  

In order to remove any contaminating genomic DNA from the RNA samples, the RNA 

was subsequently treated with deoxyribonuclease (DNase) enzyme. Dependent on 

previous Nanodrop readings, the volume of RNA was altered accordingly in order to 

equalise the RNA concentrations which were input into the DNase treatment step. For 

each sample a maximum of 8μl of RNA (typically a total of approximately 1000-

1500ng), 1μl RQ1 DNase Buffer and 1μl RQ1 DNaseI (1000U/ml) were placed into 

a 0.2ml PCR tube and incubated for 30 minutes at 37
o
C.  Following this, 1μl of RQ1 

DNase Stop Solution was added and incubated for a further 15 minutes at the higher 

temperature of 60
o
C in order to completely inactivate the DNase. The DNase-treated 

RNA was then used immediately for cDNA synthesis and the remaining volume was 

stored at -20
o
C until it was next required. 

2.6.2 cDNA Synthesis 

For cDNA synthesis, 4μl of the DNase-treated RNA, 2μl of random hexamers 

(100ng/μl), 1μl of dNTP mix and 7μl of nuclease-free water were added into a fresh 

0.2ml tube.  This was incubated at 65
o
C for 5 minutes and then placed on ice for 1 

minute. Next, 4μl of 5x 1
st
 strand buffer, 1μl of dithiothreitol (DTT) (0.1M) and 1μl 

of the reverse transcriptase enzyme SuperScript III (200U/μl) were added to the tube, 

mixed gently and left to stand at room temperature for 5 minutes. Finally this was 

incubated for 60 minutes at 50
o
C followed by a further 15 minutes at 70

o
C in order to 
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inactivate the enzyme.  The cDNA was diluted 1:3 (v/v) with nuclease-free water 

before being stored at -20
o
C until further use.  

 

2.7 Real-Time Polymerase Chain Reaction  

2.7.1 Primers 

All of the primers used within this study were purchased from Sigma-Aldrich in 

lyophilised form. The primers were dissolved in 1ml of nuclease-free water to make 

a concentrated stock, which was then diluted to make working stocks of 6.25pmol/μl 

concentration. Primers which were designed in house were sequenced by the 

Sequencing Service, University Dundee, UK. Details about the primers used within 

this study are included in table 6. 

Table 6 Human specific primer pairs 

Gene Sequence Product 

Size  

(bp) 

Annealing 

Temperature 

(
o
C)  

Source 

OCT4 F: 5’AGAACCGAGTGAGAGGCAA3’ 

R: 5’CTCTCGTTGTGCATAGTCGC3’ 

176 56 In house 

NANOG F: 5’CGGAGACTGTCTCTCCTCTT3’ 

R: 5’GTTCTTGCATCTGCTGGAGG3’ 

240 56 In house 

SOX2 F: 5’CGAGATAAACATGGCAATCAAAAT3’ 

R: 5’AATTCAGCAAGAAGCCTCTCCTT3’ 

85 56 Wong et al, 

2010 

PODXL F: 5’CCATCGTCTGCATGGCATCA3’ 

R: 5’CTGTCTGCAGCTCCTCTGTT3’ 

114 56 In house 

CD133 F: 5’TGCAACAGCATCAGATTGTC3’ 

R: 5’TACCTGCTACGACAGTCGTG3’ 

199 56 In house 

CD9 F: 5’GACACCTACAACAAGCTGAA3’ 

R: 5’ACAGGACTTCACGGTGAAGG3’ 

165 56 In house 

ERα F: 5’TGATTGGTCTCGTCTGGCG3’ 

R: 5’CATGCCCTCTACACATTTTCCC3’ 

101 56 Henderson, et 

al 2003 

PR F: 5’CAGTGGGCGTTCCAAATGA3’ 

R: 5’TGGTGGAATCAACTGTATGTCTTGA3’ 

83 56 Henderson et 

al. 2003 

FUT4 F: 5’CAGCTGGTTCGAGCGGTGAAGCCGCGCT3’ 

R: 5’CAGAAAAACGTGAATCGGGAACAGTTGTGT3’ 

435 60 Ponnampalam 

et al, 

2008  

ACTB F: 5’AGTGTGACGTGGACATCCGCA3’ 

R: 5’GCCAGGGCAGTGATCTCCTTCT3’ 

112 56 Marullo et al, 

2010 

GAPDH F: 5’GTGGTCTCCTCTGACTTCAA3’ 

R: 5’TCTCTTCCTCTTGTGCTCTT3’ 

212 56 In house 

YWHAZ F: 5’CGTTACTTGGCTGAGGTTGCC3’ 

R: 5’GTATGCTTGTTGTGACTGATCGAC3’ 

69 56 Marullo et al, 

2010 
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2.7.2 Real-Time/Quantitative PCR (qPCR) 

In order to quantify the level of mRNA expression for the specific genes identified in 

the table above, real-time qPCR was performed using SYBR green in a 20µl PCR 

reaction: 10µl KAPA SYBR FAST qPCR Mix Master (2x), 1µl forward primer 

(6.25pmol/µl or 0.3125μM), 1µl reverse primer (6.25pmol/µl or 0.3125μM), 1µl 

cDNA template and 7µl nuclease-free water. qPCR allows both the detection and 

quantification of the amount of amplified double stranded DNA by measuring the level 

of fluorescence. SYBR green is a non-specific fluorescent dye which intercalates with 

double-stranded DNA only, emitting a fluorescent signal of a specific wavelength on 

binding. The intensity of the signal is therefore relative to the number of copies 

amplified, and increases with increasing cycle number. To minimise the variations 

made when pipetting, general primer and template master mixes were prepared before 

making up the 20μl PCR reactions. For each PCR reaction, 11μl of the template master 

mix (containing the KAPA SYBR FAST qPCR Mix Master (2x) and template) and 9μl 

of the primer master mix (containing the specific forward and reverse primers and 

nuclease-free water) were mixed in a 0.2ml PCR tube, to make a final volume of 20μl. 

qPCR reactions were performed in triplicate for each template using the Corbett 

Rotor-Gene 3000 centrifugal real-time cycler (36 well rotor) along with Rotor Gene 

Software (Version 6) according to the following cycling conditions: 95
o
C for 10 

minutes to activate the DNA polymerase, followed by 35-40 cycles of denaturation at 

95
o
C for 6 seconds, annealing at 55-60

o
C for 20 seconds and elongation at 72

o
C for 30 

seconds. For generation of a melt curve within the final stage of each run, the 

temperature would ramp from 72
o
C up to 95

o
C, rising by 1

o
C with each step. ‘No 

template’ reactions were included with each PCR run as a negative control, in order to 
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identify the presence of any contamination. Positive controls were also included to 

ensure that the specificity of the primers (listed in table 7). 

Table 7 Primer positive controls 

Positive Control Primers 

Full thickness endometrium 

(Proliferative phase) 

ERα, PR, PODXL, CD9, GAPDH, ACTB, 

YWHAZ 

  

Human ESCs: Hues 7, passage 28 OCT4, NANOG, SOX2 

  

HT29 CD133, 

  

Secretory Phase Endometrium FUT4 

 

The amplification products were initially verified using gel electrophoresis to confirm 

the correct band sizes and hence the correct amplicon. For further experiments, the 

melt curve generated by the software with each run, gave sufficient evidence of the 

correct product and also additional information of any non-specific amplification or 

primer dimers. In order to calculate relative mRNA expression, all genes were 

compared to the reference gene YWHAZ (Marullo et al, 2010), which was included 

within each run.  

 
 

2.7.3 Verification of cDNA Synthesis 

In order to verify that the cDNA synthesis protocol worked correctly, the template 

was tested using one qPCR experiment. The templates used in this run were RNA, 
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DNase treated RNA and cDNA for a particular sample, in addition to the no-template 

control (NTC). For this run only, PCR reactions were not performed in triplicate but 

as single reactions using the primers for the reference gene alone. If the DNase 

treatment is successful, RNA should show some amplification due to contaminating 

genomic DNA; however, this should be eliminated following DNase treatment. High 

amounts of amplification should be evident when using cDNA as template.   

 

Quantification Analysis 

 

 
 

Melt Curve Analysis: 
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2.7.4 Efficiency of Primers 

In order to calculate the relative gene expression, the efficiency of each primer set 

had to be determined using standard curves to assess the linearity of DNA 

amplification. To achieve this, serial dilutions of cDNA template from a positive 

control were used to perform a qPCR run for each primer set. Serial dilutions of the 

cDNA diluted in nuclease-free water were made up according to the following 

diagram (figure 3.6). 

 

Note that the ‘undiluted cDNA’ was diluted 1:3 (v/v) with nuclease free water (as 

described within the cDNA synthesis section 2.6), and this was considered to be the 

1x sample. The remaining dilutions were made up by diluting 1:5 (v/v) from the 

previous dilution. qPCR reactions were set up as described previously using three 

technical replicates. This generated a standard curve for each primer set which 

reported their efficiency. The efficiency of a primer is dependent on the amount of 

specific PCR product which is yielded at the end of each cycle. Ideally a primer 

which is 100% efficient should produce a 2-fold increase in PCR product with each 

cycle. This is denoted as an efficiency of 1 on the Rotor-Gene 6 software. A 

representative standard curve for NANOG has been shown below (see appendix VIII 

for all standard curves).  

Undiluted 
cDNA 1x Undiluted 

cDNA  
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2.7.5 Calculating Relative Expression 

For each standard curve, sample dilutions were given arbitrary numbers of copies 

ranging from 0.32 up to 1000, as shown in table 8 below. 
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Table 8 Theoretical concentrations for serial dilutions 

Template Dilution Given Concentration 

(copies/μl) 

1x 1,000.00 

1/5x 200.00 

1/25x 40.00 

1/125x 8.00 

1/625x 1.60 

1/3125x 0.32 

 

 

Following each qPCR run, thresholds were set at the exponential phase of the 

amplification profile. Ideally this would be set where the regression correlation 

coefficient (R
2
) is optimal, however to allow comparison between all genes and the 

standard curves across all samples, the threshold was set to a fixed value of 0.07. 

Using this threshold, the cycle number (Ct) values, indicating the number of thermal 

cycles needed for the fluorescent signal in a given sample to reach the threshold, 

could be deduced. Using the standard curves, the reaction efficiency based on the 

efficiency of the primer pairs could be calculated using the formula Efficiency*=10
(-

1/m) 
– 1, where m represents the gradient of the regression line. The 

theoretical/arbitrary copy numbers allocated to the varying dilutions was plotted 

against the Ct values to form a standard curve for each primer pair. The equations of 

these curves were used within qPCR mRNA analysis on the target samples, in order 

to calculate the relative number of copies of mRNA within them (see table 9).   
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Table 9 Standard curve concentration equations 

Primer 

Set 

Melting 

Point (
o
C) 

Efficiency Standard Curve 

Concentration Equation 

(Conc=) 

OCT4 87.8 0.95 10^(-0.289*Ct + 10.868) 

NANOG 84.3 0.91 10^(-0.282*Ct + 8.505) 

SOX2 77.5 0.73 10^(-0.245*Ct + 9.238) 

PODXL 87.3 1.02 10^(-0.306*Ct + 11.058) 

CD133 83.8 1.01 10^(-0.303*Ct + 9.615) 

FUT4 85.8 0.74 10^(-0.240*Ct + 9.989) 

PR  80.7 1.08 10^(-0.318*Ct + 11.543) 

ERα 83.5 1.01 10^(-0.304*Ct + 11.066) 

CD9 85.7 1.26 10^(-0.356*Ct + 12.876) 

ACTB 86.7 0.86 10^(-0.269*Ct + 8.418) 

YWHAZ 81.0 1.14 10^(-0.303*Ct +9.615) 

 

2.7.6 Gel Electrophoresis: FlashGel System 

In order to confirm that the primer sets were amplifying 

the specific PCR products, gel electrophoresis was used in 

order to check that these products were of the correct band 

sizes (as mentioned in section 2.7.2). Unlike the system 

used to check RNA bands with self-made agarose gels 

(section 2.5.2), the PCR products were verified using the 

FlashGel system from Lonza. This system is the fastest 

way to separate DNA using disposable, pre-cast and pre-

stained agarose gel cassettes whilst allowing real time 

monitoring of DNA migration. The FlashGel system is not 

only advantageous in terms of time; however it is also a more sensitive and safer 

method, eliminating exposure to dangerous chemicals such as ethidium bromide and 
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also UV illumination. As special RNA cassettes were needed, this system was not 

ideal for visualising RNA bands which appear as a smear on the DNA cassettes. 

Therefore the previously described method of gel electrophoresis was used for this. 

The Flashgel system was used according to the manufacturer’s instructions. Samples 

to be loaded were first prepared on parafilm, including 1μl of PCR product, 1μl 1x 

FlashGel™ Loading Dye (5x) and 3μl nuclease-free water to make up a maximum 

final sample volume of 5μl per well. Next, the white well seal was removed from 

either the two-tier 16+1 2.2% agarose cassette whilst taking care not to remove the 

clear side vents. Sample wells were then flooded with distilled water and by tilting 

the cassette, excess fluid which had moved to the edge of the cassette could be 

blotted away using tissue paper. The wells were not blotted directly. Following this, 

the cassette was placed into the FlashGel dock and the samples were loaded, 

avoiding the first well. The first well was loaded with 3μl of the FlashGel
®
 DNA 

Marker 100bp-4kb or the FlashGel
®
 Quantladder (100bp-1.5kb). Next, the 

voltage leads were assembled and the power supply and light were both turned on. 

The voltage was set to 270V and the gel was left to run for between 2-5 minutes until 

the desired separation had been achieved. When completed, the power was then 

switch off and the leads disconnected. The bands were then recorded and an image 

captured using the FlashGel™ Camera. 

 

2.8 Immunofluorescence  

IF works by using the specificity of antibodies to detect target antigens within a cell. 

This binding can by visualised with the use of fluorescent dyes which emit light of 

different wavelengths following the absorption of excitation light. There are two 

main methods of IF labelling; direct and indirect labelling. For the purpose of this 
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study, indirect labelling was used 

involving an unlabelled primary 

antibody which was specific to the 

molecule of interest. A secondary 

antibody, tagged with a fluorescent 

dye, was then targeted towards the 

constant portion of the first antibody (figure 4.1). Unlike IHC, in our study IF 

allowed dual labelling of the protein of interest and cytokeratin (CK), a membrane 

protein found within the cytoskeleton of epithelial cells. This allowed the exclusion 

of any staining that may have arisen from other contaminating cell types. 

 

Due to time restraints, this was performed on one sample taken from a healthy 

female of reproductive age with no gynaecological pathology. Following MACS 

sorting (described in section 2.3.2), the endometrial SSEA-1
+
 and SSEA-1

-
 epithelial 

cells were plated onto two separate 8-well chamber slides at a seeding density of 

approximately 5x10
3 
cells/well (dependant on the yield of SSEA-1

+
 cells). Following 

this the cells were left to adhere and proliferate within the wells for approximately 2 

days before fixing. In order to fix the cells, they were washed twice with 1x PBS. 

Each was done for 5 minutes at room temperature. 10% NBF was then added for 10 

minutes at room temperature and the chambers were subsequently washed three 

times with 1x PBS before proceeding onto the staining protocol. 

 

In order to permeabilise the cell membranes, the PBS was aspirated and the wells 

were covered 0.2% triton/EDTA and incubated for 5 minutes at room temperature. 

Following this the wells were washed once with PBS and incubated with blocking 
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serum for one hour at room temperature in order to block non-specific sites. The 

block/diluent was prepared with1% BSA, 10% normal goat serum (NGS), 0.05% 

tween and PBS within a 100ml universal tube. Within this time appropriate 

dilutions of the primary antibodies and CK (for dual labelling) were prepared 

according to the concentrations indicated in the table and the plan of the 8-well 

chamber slides below. These were diluted with the diluent previously prepared (table 

10). Following the blocking stage, 200μl of each the appropriate antibody was 

applied to each well and incubated at 4
o
C overnight. Note that block was left on one 

well per chamber which served as a negative control with no primary antibody (see 

figure 4.2). 

Table 10 Detailed specifications of primary antibodies 

Primary 

Antibody 

Supplier Catalogue 

Number 

Clone Concentration Polymer Mono/ 

polyclonal 

OCT4A Cell 

Signalling 

Technology 

C30A3 C30A3 1:50 Rabbit 

(Rb) 

Monoclonal 

NANOG Cell 

Signalling 

Technology 

D7364 D73G4 1:100 Rabbit 

(Rb) 

Monoclonal 

PODXL R&D 

Systems 

MAB1658 222328 1:100 Mouse 

(Ms) 

Monoclonal 

Telomerase Abcam ab27573  1:500 Rabbit 

(Rb) 

Polyclonal 

ERα Epitomics S1353  1:100 Rabbit 

(Rb) 

Polyclonal 

ERβ Serotec MCA1974

5 

PPG5/10 1:50 Mouse 

(Ms) 

Monoclonal 

PR Dako M3569 PgR636 1:200 Mouse 

(Ms) 

Monoclonal 

CK18 Dako M7010 DC10 1:200 Mouse 

(Ms) 

Monoclonal 

CK7 Cell 

Signalling 

Technology 

4898S R458 1:200 Rabbit 

(Rb)  

Polyclonal 
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Following overnight incubation, the wells were washed three times with PBS and 

200μl of the secondary antibody was added to each well. The secondary antibodies 

were diluted to a final concentration of 1:1000. These antibodies were chosen to 

ensure that all CK was stained green and that the target protein was stained red. The 

top four wells of each chamber was incubated with anti-rabbit Alexa Fluor
®
 555 

(red) and anti-mouse Alexa Fluor
®
 488 (green), and the bottom four wells were 

stained with anti-rabbit Alexa Fluor
®
 488 Conjugate (green) and anti-mouse Alexa 

Fluor
®
 555 (red) (as indicated in figure 4.2). 

 

Table 11 Detailed specifications of secondary antibodies 

 

 

Details of the secondary antibodies can be seen in the table 11 above. The chambers 

were then left to incubate at room temperature in a dark cupboard for 45 minutes, 

Secondary 

Antibody 

Supplier Catalogue 

Number 

Concentration Species Polymer 

Alexa Fluor® 488 

Conjugate (green) 

Cell Signalling 4408 1:1000 Goat Anti-

mouse 

Alexa Fluor® 555 

Conjugate (red) 

Cell Signalling 4409 1:1000 Goat Anti-

mouse 

Alexa Fluor® 488 

Conjugate (green) 

Cell Signalling 4412 1:1000 Goat Anti-

rabbit 

Alexa Fluor® 555 

Conjugate (red) 

Cell Signalling 4413 1:1000 Goat Anti-

rabbit 
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allowing time for the secondary antibodies to bind. The chambers were subsequently 

washed with PBS three times and using the special removal tool the glass chamber 

was separated from the slide below. The slides were quickly dipped into water to 

maintain moisture before adding one drop of mounting medium with DAPI onto 

each well. The DAPI allowed visualisation of cell nuclei with blue staining.  

Carefully, one rectangular 22x40mm coverslip was placed on each slide so that all 

wells would be covered and any bubbles were removed. The slides were then 

visualised using a fluorescence microscope and images captured using NIS 

Elements-F software. MacBiophotonics ImageJ software was used to overlay the 

images taken of the different fluorophores.  IF staining of passage 28 Hues7 humam 

embryonic stem cells (provided by Virginie Mournetal, Liverpool Stem Cell Group) 

were also included as a positive control in order to verify the staining shown by the 

OCT4A and NANOG antibodies.  

 

2.9 Statistical Analysis 

Data was considered to be non-normally distributed as recommended by a 

professional statistician and confirmed by SPSS normality testing using the Shapiro-

Wilk’s test (p-value less than α=0.05), therefore non-parametric methods of data 

analysis were used. Statistical analysis was performed using the non-parametric 

paired Wilcoxon signed-rank test (WSR test), in order to compare the differences in 

gene expression between the SSEA-1
+
 and SSEA-1

-
 fractions, and also across the 

normal and endometriosis groups. The Mann-Whitney U-test (MWU test) for 

nonparametric independent groups was used to check for baseline differences in 

patient demographics between the normal and endometriosis groups. Summary 

measures in the form of medians and interquartile ranges (IQRs) were also used for 
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the analysis of non-parametric data. The software package GraphPad Prism 5 was 

used aid with data analysis. P<0.05 was considered as a statistically significant 

result.  
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Epithelial cell separation and enrichment 
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2D cell culture  

Up to 3 days of cell cultivation 

 

(Healthy endometrium n=7; 
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qPCR 
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Statistical analysis 
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Figure 4.2 Flowchart to summarise the materials and methods 

RNA extraction and cDNA 

synthesis 

FACS Sorting 
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Chapter 3: Validation of Primers for use in qPCR 

3.1 Validating the Reference Gene 

Within each well, a single qPCR experiment measures the intensity of Sybr green 

fluorescence, which is proportionate to the amount of PCR product, and thus indicates 

gene expression levels within a certain sample, under specific experimental conditions. 

In order to increase the reliability of any relative qPCR experiment, an important step 

in gene expression analysis is the normalisation of the data to a reference gene. 

Normalisation helps to correct for any technical variation which may occur due to 

pipetting differences and also corrects for sample to sample variation in qPCR 

efficiency. The most frequently used approach is to normalise the mRNA level to an 

internal standard, also referred to as a reference or housekeeping gene which is 

assumed to display an equal level of expression in all cells within the control or 

experimental conditions under investigation. To achieve accurate quantification of 

mRNA levels, a suitable reference gene must be chosen which does not vary between 

the control and experimental conditions.  

 

Along with beta actin (ACTB) and 18s ribosomal RNA (18s rRNA), glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) is conventionally used and widely accepted as a 

housekeeping gene. Its role is vital within carbohydrate metabolism as this gene codes 

for the enzyme required to catalyse the sixth step of glycolysis (Selwood T, 2012). 

GAPDH is commonly used without validation of its suitability as a reference, and 

therefore it was for this reason that GAPDH was initially used whilst optimising the 

qPCR experiments within this study. With time, as the number of qPCR experiments 

that were being performed within this study increased, contamination within the 

GAPDH NTC appeared and gradually increased. Although individual components of 
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the qPCR experiment such as the nuclease-free water, the Taq polymerase and the 

GAPDH primer stock were changed, the contamination could not be eliminated, 

making the results unacceptable. This meant that an alternative reference gene had to 

be located before progressing to assess gene expression within the target samples.  

 

On exploration of the literature it was quickly discovered that although commonly 

used, GAPDH is no longer regarded as the most stable housekeeping gene and has 

been shown to vary considerably between different samples and tissue types (de 

Leeuw et al, 1989). It is likely that the changing physiological processes that occur 

throughout the menstrual cycle and the altered tissue environments within different 

gynaecological pathologies such as endometrial cancer or endometriosis, also have an 

effect on the expression levels of the housekeeping genes. Studies investigating 

placental gene expression at various stages of pregnancy have shown variable 

expression of the reference genes GAPDH and ACTB (Patel et al, 2002; Meller et al, 

2005). In addition, 18s and ACTB have been shown to display significant variation 

throughout the menstrual cycle (Sahlin, 1995; Ejskjaer et al, 2009). These studies led 

to further investigation and comparison of the stability of a range of housekeeping 

genes within the endometrium using GeNorm, a system used to select the best 

candidate reference gene. Sadek et al compared the stability of these genes within 

healthy endometrial tissue and tissue from women suffering from polycystic ovarian 

syndrome (PCOS) and found that out of nine reference genes, only YWHAZ, CYC1 and 

ACTB were stable within the experimental conditions. GAPDH was ranked as the 

worst housekeeping gene (Sadek et al, 2012). Vestergaard et al also explored the 

stability of housekeeping genes within eutopic and ectopic endometrium collected 

from women with endometriosis and healthy women. It was found that out of seven 

http://www.ncbi.nlm.nih.gov/pubmed?term=Ejskjaer%20K%5BAuthor%5D&cauthor=true&cauthor_uid=18987482
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reference genes, TBP and YWHAZ were ranked the best pair using GeNorm analysis 

and that YWHAZ was the single most stable gene using NormFinder analysis 

(Vestergaard et al, 2011). It was following this literature search that YWHAZ was 

considered as a suitable housekeeping gene to explore and test under our experimental 

conditions. Tyrosine 3-monooxygenase also known as YWHAZ, is a gene which 

belongs to the 14-3-3 family of proteins and acts to mediate cell-cell signal 

transduction by binding to phosphoserine-containing proteins (NCBI, 2012).  

 

In order to confirm that YWHAZ would be a reliable housekeeping gene, its variability 

was compared to the more widely accepted and accredited ACTB on some of the 

normal endometrial samples which were collected for this project. Its stability was also 

investigated on endometrial tissue collected from a female with endometriosis to assess 

whether it was stable within the target pathology within this study. The histogram in 

figure 4.3 shows the cycle differences or ∆Ct values between YWHAZ and ACTB when 

their gene expression was measured within the normal SSEA-1 MACS sorted 

endometrial samples, collected for the purpose of this study. It can be seen here that 

there was minimal variation in the ∆Ct values between ACTB and YWHAZ (average 

∆Ct value of 4.34), proving the stability of YWHAZ amongst the study samples (figure 

4.3).  
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The following quantification curve illustrates that YWHAZ does not vary in patients 

with endometriosis also when compared to ACTB (figure 4.4).  

 

 

 

 

 

 

 

 

 

The cycle difference between YWHAZ and ACTB was found to be 4.18 cycles within 

full thickness normal endometrial tissue (represented by the red arrow) at a threshold 

of 0.07. Within eutopic endometrial tissue taken from a patient with endometriosis the 

cycle difference between ACTB and YWHAZ was found to be 3.92 cycles at the same 

threshold. These results prove that there was around a 4 cycle difference in gene 

expression between the two reference genes, and this did not vary within 

endometriosis. It could therefore be concluded that the expression of YWHAZ is stable 

within endometriosis. 
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3.2 Validation of Specific Primers 

3.2.1 human telomerase reverse transcriptase (hTERT) 

hTERT was initially included as one of the target genes to study within the SSEA-1 

sorted cells. However, it quickly became evident that hTERT mRNA was present at 

very low levels within the sorted cells and generating quantifiable results via qPCR 

proved extremely difficult. Three different primer sequences for human specific TERT 

were already available within the lab. The sequences for these are shown below (table 

12): 

Table 12 hTERT primer pair sequences (Pairs 1-3) 

Gene Sequence Product 

Size 

Reference 

TERT 1 F: 5’CCGCCTGAGCTGTACTTTGT3’ 

R: 5’CAGGTGAGCCACGAACTGT3’ 

234 Rahmati-

Yamchi M, 

2011 

TERT 2 F: 5’AGGGGCAAGTCCTACGTCCAGT3’ 

R:5’CACCAACAAGAAATCATCCACC3’ 

159 Meeran 

SM, 2010 

TERT 3 F: 5’CGTACAGGTTTCACGCATGTG3’ 

R: 5’ATGACGCGCAGGAAAAATG3’ 

82 Lehner R, 

2002 

 

To select the best primer pair, qPCR was performed using all three primer sets on a 

range of different positive control templates, including endometrial cancer, Hues7 

ESCs and full thickness endometrium taken during the proliferative phase. The 

amplification products were run on an agarose gel and the following results were 

generated (figure 4.5). 
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It can be seen from the gel above that TERT 1 gave rise to multiple product bands 

within endometrial cancer 14 tissue. TERT 1 and TERT 2 both failed to detect 

expression within the Hues7 ESCs. TERT3 showed a consistent single band within all 

three sample types and therefore it was concluded that this was the best primer pair to 

use. TERT 3 had also been used successfully by Dean Hallam, in our partner lab within 

Newcastle, who had optimised this primer on corneal tissue at an annealing 

temperature of 55
o
C. This annealing temperature was therefore adopted for the 

endometrial samples within this study, but quantifiable results could not be achieved 

due to low expression levels within these samples. Although an attempt to optimise the 

TERT 3 primer set was made, this failed to provide quantifiable qPCR results. A 

literature search was performed and a fourth primer set, TERT 4, was discovered which 

had been used by Kim CM et al for qPCR on endometrial tissue taken from normal 

healthy women, and women with endometriosis (table 13) (Kim et al, 2007). As this 

primer set had proven successful on the same tissue used in our study, it was decided 

to run this under the same conditions on serial dilutions of a HeLa cell positive control, 

in order to construct a standard curve (figure 4.5). 

 

Table 13 hTERT primer pair sequences (Pair 4) 

Gene Sequence Product 

Size 

Reference 

TERT 4 F: 5’TGACACCTCACCTCACCCAC3’ 

R: 5’CACTGTCTTCCGCAAGTTCAC3’ 

95 Kim CM, 

2007 
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Following this, the primer set was run on the sorted samples. Unfortunately 

quantifiable results again could not be achieved via qPCR when using this primer set. 

Instead, qualitative analysis was performed by running the PCR products on an 

agarose gel. The gel showed the expression of hTERT in both the SSEA-1
+
 and SSEA-

1
-
 fractions. Comparing the intensity of the hTERT bands to YWHAZ, there appeared to 

be equal levels of hTERT in both cell populations in the majority of samples (samples 

1, 4, 5 and 6). Samples 2 and 3 both seemed to express hTERT within the SSEA-1
-
 

cells only, whereas sample 7 looked to have more hTERT within the SSEA-1
+
 

population (see figure 4.7 below).  

 

hTERT was ultimately excluded from any further qPCR experiments on additional 

samples, all of which had relatively low quantities of RNA. 
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It has been reported within the literature that techniques such as microdissection and 

immunomagnetic bead separation, used to enrich for a target cell population,  make the 

detection of hTERT mRNA difficult (Lehner M, 2002). Methods of detection of 

hTERT transcripts within these samples are still not well established. The hTERT 

transcript has at least six alternative splice variants, including four insertions and two 

deletions (Lehner et al, 2002). The four insertion variants and the β-deletion variant all 

result in the premature termination of the translation of hTERT (Lehner et al, 2002). 

On the other hand, the α-deletion variant is a powerful inhibitor of telomerase 

expression and activity (Lehner et al, 2002). As telomerase protein is observed by IHC 

and telomerase activity is detected within the endometrial epithelium and SSEA-1 

sorted cells, it seems that it was purely the low concentrations of hTERT mRNA rather 

than alternative splicing which made qPCR on these samples difficult and imprecise 

(Hapangama et al, 2008; Hapangama et al, 2009; Tanaka et al, 1998; Hapangama et al, 

unpublished results). It is also possible that in some samples, the low levels of hTERT 

may have been due to mRNA degradation. For accurate quantification of samples 

containing lower concentrations, the use of digital PCR may be considered, or the 

mRNA could be amplified prior to reverse transcriptase (Bustin et al, 2009). 

 

3.2.2 leucine-rich repeat containing G protein-coupled receptor 5 (LGR5) 

The human endometrium resembles the gastrointestinal system with its rapid turnover 

time, highly regenerative capacity and glandular components. It was for these reasons 

that LGR5 was initially included in the preliminary investigations of this study, to 

establish whether it also expressed in endometrial epithelial cells. The LGR5 qPCR 

primer sequences which had been selected from a previous publication were already 
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found available within the lab when starting this project. The sequence has been 

indicated in the following table (table 14). 

 

Table 14 LGR5 primer pair sequences 

Gene Sequence Product 

Size 

Reference 

LGR5 F: 5’CTTCCAACCTCAGCGTCTTC3’ 

R: 5’TTTCCCGCAAGACGTAACTC3’ 

118 Walker et 

al, 2011 

 

This primer was initially tested on the human colon adenocarcinoma cell line HT29, as 

a positive control, and the following standard curve was generated (figures 4.8 and 

4.9).  
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It is evident from the graphs above that these primers gave rise to a large amount of 

unspecific primer-dimer product. When testing this primer set on the full thickness 

endometrium, very low levels of specific product were detected. Increasing the 

annealing temperature from 55
o
C to 60

o
C did not help to improve the specificity or 

efficiency of these primers (figure 5.0). 

 

When proceeding to test the primer set on sorted stomal and epithelial endometrial 

cells, it became evident that LGR5 was only expressed by the stromal cell population 

and not by endometrial epithelial cells (figure 5.1). As this study focuses on 

endometrial epithelial cells alone, LGR5 was excluded from the study and its 

expression was not investigated within the SSEA-1 sorted epithelial cells. 
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3.2.3 Oestrogen receptor beta (ERβ) 

The action of oestrogen is modulated by two subtypes of oestrogen receptor, known as 

oestrogen receptor alpha (ERα) and oestrogen receptor beta (ERβ). Therefore it was 

initially planned that the expression of both of these receptors would be investigated 

within the SSEA-1 sorted endometrial epithelial cells. An ERβ primer set suitable for 

qPCR was selected from within the literature and has been identified within the table 

below (table 15). The authors of this paper are established experts in the study of ERβ.  

 

Table 15 ERβ1 primer pair sequences 

Gene Sequence Product 

Size 

Reference 

ERβ1 F: 5’CCTGGCTAACCTCCTGATGCT3’ 

R: 5’ CCACATTTTTGCACTTCATGTTG 3’ 

92 Critchley 

et al, 2009 

 

Critchley et al and others have reported that the level of ERβ mRNA is low within the 

endometrium (Critchley et al, 2009). Brandenberger et al established that ERα is 15 

times more abundant that ERβ within normal endometrial stromal cells (Brandenberger 

et al, 1999). ERβ mRNA is expressed at significantly higher levels within the late 

secretory phase compared to any other time in the cycle. Studies by Critchley et al 

however have shown that the mRNA and protein levels for ERβ within the 

endometrium do not necessarily correlate. They found significant amounts of this 

nuclear protein within the tissue but low levels of mRNA, which was found to be in 

keeping with our findings (Critchley et al, 2009).  

 

When testing the primers mentioned above on serial dilutions of a full thickness 

endometrial sample taken from the secretory phase, the following standard curve was 

generated (figures 5.2 and 5.3).  
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qPCR on the secretory phase endometrium (positive control) proved that ERβ mRNA 

is present at a very low level within the endometrium. For this reason, ERβ qPCR was 

not pursued on the sorted samples as concentrations would be significantly lower than 

the whole tissue samples. In contrast to the low mRNA levels, the following IHC 

images of the normal endometrium show that the ERβ protein is present in abundance 

(figure 5.4). This is consistent with the findings of previous studies (Critchley et al, 

2009). 
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Chapter 4: Results 

4.1 Patient Demographics 

 
This study took place over a 12 month period, from the beginning of September 2011 

until the end of August 2012. Over the entire duration of the study, samples collected 

from a total of 23 participants who were recruited for the study (reference 

09/H1005/55 and 04/Q1505/112) were analysed. This included 14 normal fertile 

women who served as controls and 9 women with endometriosis. Of these, 2 control 

patients were excluded from the data analysis due to the exceedingly low and degraded 

RNA yields making them not suitable for analysis.  

 

Patient Demographics: 

Note that the 2 patients who were excluded from the data analyses have not been 

included in the table below. 

 

Table 16 Demographic data for all patients included in the study 

 
 Control Group 

(n=12) 

Endometriosis Group 

(n=8) 

Sample Type 

(no. patients) 

Pipelle: 7 

Full thickness: 5 

Pipelle: 5 

Full thickness: 3 

Age (years) Median: 40.5 

Range: 30-49 

Median: 39 

Range:27-48 

Weight (kg) Median: 76 

Range: 56-111 

Median: 70 

Range: 52-103 

Height (m) Median: 1.605 

Range: 1.51-1.84 

Median: 1.635 

Range: 1.55-1.71 

BMI Median: 29.55 

Range: 24.5-39.8 

Median: 25.25 
Range: 20.5-37.8 

Parity Median: 2 

Range: 0-4 

Median: 1 

Range: 0-4 

Gravidity Median: 2 

Range: 0-4 

Median: 1 

Range: 0-4 

Cycle Stage 

(no. patients) 

Proliferative:4         Secretory:5 

(Missing data) 

Mid-cycle:3              Secretory:5 

Endometriosis 

Stage (no. 

patients) 

Not Applicable Stage 1: 2                Stage 3: 0 

Stage 2: 1                  Stage 4: 4 

(Missing data) 
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A couple of patient demographic details were missing from this data set and are 

currently being located (missing data indicated in the table above). In order to assess 

whether there were any statistical differences in patient demographics at baseline 

between the control group (with normal endometrial tissue) and patients with 

endometriosis, statistical analysis has been conducted. This is important as if baseline 

differences between patient groups are not accounted and adjusted for, direct 

comparison between the two groups may be invalid. Due to the low number of patients 

within each group, non-parametric statistical tests were used to analyse our data 

throughout this study.  Using the MWU test for nonparametric independent groups, it 

was confirmed that there were no statistical differences (p > 0.05) between any of the 

demographic variables documented in the table above. Direct comparison between the 

control and pathological groups was therefore valid and no adjustments were needed at 

baseline. 

Table 17: P-values for demographic variables between groups; MWU test  

Demographic Variable P-value 

Age 0.9692 

Weight 0.1888 

Height 0.7669 

BMI 0.0698 

Parity 0.1752 

Gravidity 0.113 

 

From one patient who was recruited into the study, multiple samples could be taken for 

use in several lab experiments and techniques. From the 21 patients mentioned 

previously, 14 samples were MACS sorted (7 normal endometrium, 7 endometriosis), 

3 were FACS sorted (all normal endometrium), 6 were grown into organoids in 3D 

culture (3 normal endometrium, 3 endometriosis) and 1 was used for IF staining 

(normal endometrium).  
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4.2 mRNA Data: SSEA-1
+
 versus SSEA-1

-
 Endometrial Epithelial 

Cell Population  

qPCR was used to compare the mRNA levels of the stem cell markers OCT4, NANOG, 

SOX2, CD133 and PODXL within the SSEA-1 sorted epithelial cells taken from the 

normal endometrium. The expression of markers of differentiation, PR and ERα, and 

the epithelial cell marker, CD9, were also analysed within these samples. FUT4 was 

included in the gene expression profile of these samples as its function is said to 

include the fucosylation of the carbohydrate structure SSEA-1 (Ponnampalam et al, 

2008) hence may be a surrogate marker for SSEA-1. As SSEA-1 is a carbohydrate, it 

could not be looked at directly using qPCR. 

 

4.2.1 MACS Sorted Normal Endometrium (n=7) 

 

Seven samples were MACS sorted to generate an SSEA-1
+
 and an SSEA-1

-
 epithelial 

cell population for each sample. The presence of all genes was confirmed within both 

SSEA-1 MACS sorted fractions for all samples, excluding SOX2 (figure 5.5). SOX2 

was found to be absent across all samples. This was consistent with IHC analysis of 

full thickness endometrial tissue sections performed at Liverpool Women’s Hospital 

laboratory, which did not find the SOX2 protein anywhere within the normal full 

thickness endometrium (figure 5.6). The absence of SOX2 within the endometrium was 

also supported by the negative qPCR results on non-sorted normal full thickness 

endometrium. 
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When comparing quantitative data for the genes expressed above in the normal 

endometrium, no significant differences were seen between the expression levels of the 

stem cell markers OCT4, NANOG, PODXL and CD133 in the SSEA-1
+
 and the SSEA-

1
-
 epithelial cell fractions.  Of these stem cell markers, PODXL mRNA was most 

highly expressed by the sorted samples with a median relative expression level of 0.26 

and 0.4 (WSR test; p=0.8125) in the SSEA-1
+
 and SSEA-1

-
 fractions respectively. 
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OCT4 mRNA was also highly expressed by both fractions with median relative 

expression levels of 0.2 within both populations (WSR test; p=0.2188). Comparably, 

CD133 and NANOG were both expressed to a lower degree by both fractions with 

median relative expression levels of 0.01-0.02 (WSR test; p=0.8125) and 1.0x10
-4

 

(WSR test; p=0.2188) respectively (see results in figure 5.7). 
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For markers of differentiation, the expression of ERα and PR mRNA were both 

significantly greater within the SSEA-1
-
 epithelial fraction (WSR test; p=0.0156). For 

ERα and PR, expression was approximately 3-fold and 5-fold greater respectively 

within the SSEA-1
-
 population (see results in figure 5.8). 

 

 
 

For other markers, CD9 and FUT4, no significant differences in expression levels were 

noted between the SSEA-1 sorted populations (WSR test; p=0.9375) (see results in 

figure 5.9). 
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4.2.2 MACS Sorted Endometriosis Samples (n=7) 

 

qPCR on seven MACS sorted samples taken from women with endometriosis showed 

similar mRNA results between the SSEA-1
+
 and SSEA-1

- 
epithelial cell populations as 

seen in the normal endometrium. All samples expressed all genes except for SOX2, 

which again was absent within the pathological endometrium. For stem markers 

OCT4, NANOG, CD133 and PODXL, again there were no significant differences in 

expression between the SSEA-1 MACS sorted populations. Median relative expression 

of PODXL was the highest, with levels of 0.59 and 0.73 within the SSEA-1
+
 and 

SSEA-1
-
 populations respectively (WSR test; p=0.4688). OCT4 expression was also 

relatively high at median levels of 0.42 and 0.75 within the SSEA-1
+ 

and SSEA-1
-
 

populations respectively (WSR test; p=2969). For CD133 and NANOG relative 

expression was again seen at lower levels (see results in figure 6.0). 
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For markers of differentiation, PR showed similar results to those found in the normal 

endometrium. A statistically significant 2-fold increase (WSR test; p=0.0156) in PR 

mRNA expression was found within the SSEA-1
-
 epithelial cell population when 
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compared to the SSEA-1
+
 population. Unlike the normal endometrium however, no 

significant difference in ERα expression was noted between the sorted populations 

although expression was still 1.7-fold higher in the SSEA-1
-
 population (see figure 

6.1). 

 

 

Similar to the results found within the normal fertile endometrium, CD9 and FUT4, 

were both expressed at equal levels within endometrial epithelial cells sorted according 

to the expression of SSEA-1 taken from women with endometriosis. FUT4 showed a 

median expression level of 0.18 in both sorted fractions (WSR test; p=0.4688) (see 

figure 6.2). 
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4.2.3 FACS Sorted Normal Endometrium (n=3) 

  

As MACS sorting only achieves up to 70-75% enrichment of SSEA-1 in the SSEA-1
+
 

fraction, the accuracy of the qPCR results may have been affected by contaminating 

SSEA-1+ cells and stromal cells which may have remained within the SSEA-1
 

depleted cell fraction. This may have had a significant effect on the results, especially 

if the contaminating cells were stromal stem cells or SSEA-1
+ 

epithelial cells. It was 

therefore important to verify whether any true differences in gene expression seen 

between pure SSEA-1
+
 and SSEA-1

-
 cell populations had been masked/exaggerated in 

the previous results by repeating the qPCR experiments on FACS sorted normal 

endometrial samples. FACS sorting for both SSEA-1+ and the epithelial marker 

CD9+, is over 90% efficient in picking up cells that express both SSEA-1 and CD9 

therefore are more likely to be epithelial cells that express SSEA-1. We believe, 

therefore qPCR results achieved from these samples are a more accurate 
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representation.  Unfortunately only a limited number of normal endometrial samples 

could be sorted using FACS throughout the duration of this project due to technical 

difficulties (the inaccessibility of the FACS machine) and the requirement for a high 

cell yield. A representative FACS profile of the sorted epithelial cells is shown in 

figure 6.3 below. 

 
 

 

Gene expression analysis on three FACS sorted normal endometrial samples 

confirmed that there were no differences in the mRNA levels of OCT4, NANOG, 

PODXL, CD133, CD9 and FUT4 between the SSEA-1
+
/CD9+ and SSEA-1

-
/CD9- cell 

populations. Although statistical significance was not achieved, potentially due to the 

low number of samples/cells, unlike the results obtained with MACS, a 2-fold greater 

level of NANOG mRNA expression was seen within the FACS-sorted SSEA-1
+
/CD9+ 

population compared to the SSEA-1
-
/CD9-  population. Contrary to the previous 

results, data also showed that there were no differences in the expression levels of the 

differentiation markers ERα and PR, although there was still a 3.7 and 2-fold greater 
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expression of these genes respectively within the SSEA-1
-
 fraction (see figures 6.4 and 

6.4 continued). 
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4.3 mRNA Data: Comparison of Gene Expression within SSEA-1
+ 

Endometrial Epithelial Cells taken from Healthy Women and 

Women with Endometriosis  

As it is postulated that the epithelial SPC resides within the SSEA-1
+
 epithelial cell 

fraction, and that abnormal stem cells are implicated in the pathogenesis of 

endometriosis, we progressed to compare the SSEA-1
+
 populations between normal 

and pathological samples.  

 

Direct comparisons between the mRNA levels for the particular genes under 

investigation within this study indicated an increase in expression of the stem cell 

markers OCT4, NANOG and PODXL within the eutopic endometriosis samples 

compared to those taken from healthy, fertile patients. This reached significance for 

markers OCT4 (WSR test; p=0.0469) and NANOG (WSR test; p=0.0313) with a 2 and 

3.4-fold increase respectively in mRNA levels within the endometriosis samples. 

PODXL showed a 2.3 fold increase within the endometriosis samples, although not 

significant. CD133 levels show no difference between the two groups (see figure 6.5). 
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Markers of differentiation showed no significant differences between the expression of 

ERα and PR mRNA within endometriosis or normal endometrial tissue (see figure 

6.6). 

 

 

 

A significant (WSR test; p=0.0469) 2.6-fold increase in FUT4 expression was seen 

within endometriosis samples compared to the normal samples. CD9 mRNA 

expression was only slightly increased in endometriosis samples (see figure 6.7). 
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4.4 mRNA Data: Normal and endometriosis SSEA-1 sorted epithelial 

cells grown in 3D culture (organoids) 
 

SSEA-1 sorted epithelial cells have been shown to form gland-like structures (which 

we called as spheroids/organoids) in 3D culture, and they have structural similarities to 

the endometrial glands seen in vivo. These organoids arise primarily from the MACS 

sorted SSEA-1
+
 epithelial fraction, with significantly fewer and smaller organoids 

being formed by the SSEA-1
- 
cell population. 2D culture has many limitations when 

studying endometrial cells, and the morphology of the cells seems to be very different 

to those seen in vivo. The Matrigel acts as an ECM which imitates the architecture of 

the normal human endometrium, and may help to preserve the stemness of any SPCs 

which may be contained within the cell population on the one hand; and also may 

allow differentiation of the cells to create an endometrium like environment hence 

provide a stem cell niche to contain a stem cell (Zhu et al, 2012).  
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Organoids, made up of clusters of a small number of cells, gave rise to low RNA 

yields. This made the accurate study of genes that do not show high mRNA expression 

levels, such as stem cell markers, via qPCR very difficult. For this reason, organoids 

grown from SSEA-1 sorted cells were pooled from three patients to achieve a higher 

RNA concentration. Unfortunately, this meant that statistical analysis of this data was 

not possible. qPCR was performed on the  gene panel previously mentioned on two 

SSEA-1 sorted samples, one pooled from three patients with a normal endometrium 

and the second  pooled from three patients with endometriosis. 

 

The qPCR results obtained from these samples were different from those obtained 

from the 2D-cultured samples. In 3D-culture, the stem cell markers OCT4, NANOG, 

PODXL and CD133, were seen to be raised within the SSEA-1
+
 organoids when 

compared to the SSEA-1
-
 organoids. The difference between the sorted populations 

was even more pronounced within women with endometriosis, with expression greatly 

increased for most of these genes within the SSEA-1
+
 organoids (see figure 6.8).  
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Equal levels of ERα mRNA expression were measured in the SSEA-1
+
 and SSEA-1

-
 

organoids grown from normal endometrium. However, when organoids were grown 

from cells taken from women with endometriosis, a large increase in ERα expression 

was clearly seen within the SSEA-1
+ 

organoids. Similar differences in PR expression 

was seen between SSEA-1
+
 and SSEA-1

-
 organoids grown from the normal and 

endometriosis endometrium. When comparing the SSEA-1
+
 cells to SSEA-1

- 

population, the cells did not show a difference in PR mRNA expression after growth in 
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3D culture. This was in contrast to the significant up-regulation previously seen in the 

SSEA-1
-
 fraction when grown in 2D culture (see figure 6.9).  

 

 

 

Like the stem cell markers, the expression of FUT4 was seen to increase in the SSEA-

1
+
 cells taken from the endometriosis patients in comparison to the SSEA-1

+
 cells 

grown from normal women in 3D culture.  The difference between the expression of 

CD9 in the SSEA-1
+
 and SSEA-1

-
 cells grown in 3D culture appeared to be more 

pronounced in the endometriosis group, but there was no obvious difference between 

the SSEA-1
+ 

organoids between healthy and endometriosis groups in CD9 expression. 

The difference in the expression of FUT4 between the SSEA-1
+
 and SSEA-1

-
 

organoids was also more pronounced in endometriosis (see figure 7.0). 
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4.5 Protein Analysis: Immunofluorescence (IF) 
 

In order to see if an increase/decrease in mRNA levels of a particular target gene led 

to a noticeable increase/decrease in protein expression, IF staining was performed on 

the SSEA-1 MACS sorted normal epithelial cells plated onto 8-well chamber slides. 

However, the level of mRNA and the level of protein do not necessarily correlate 

(Gygi et al, 1999; Anderson et al, 1997). The images shown below represent IF 

staining for SSEA-1 within the MACS sorted SSEA-1
-
 and SSEA-1

+
 epithelial cell 

populations, and verify that there is depletion and enrichment for SSEA-1 in the 

respective fractions (figure 7.1). 
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One normal endometrial sample was mechanically and enzymatically digested, 

crudely sorted in to epithelial and stromal cells, and the epithelial fraction was grown 

in 2D culture for 5 days. The cells were then trypsinised, singly dispersed and MACS 

sorted on the expression of SSEA-1 in to SSEA-1
+ 

or SSEA-1
-
 cells and both were 

plated on chamber slides for staining. Dual labelling was used to stain for cytokeratin 

(green fluorescence) and the protein of interest (red fluorescence). As DAPI was also 

used to stain the nuclei blue, any target nuclear proteins that were present were seen 

in pink due to the co-localisation of colours.  

 

The protein for OCT4 and NANOG was seen within both SSEA-1 populations, 

although the OCT4 protein was seen at extremely low levels in only a few cells. This 

conflicted with qPCR data as unlike the protein, NANOG mRNA was consistently 

seen at a much lower level than OCT4. However, caution should be taken when 

comparing the expression levels of different genes with qPCR, as any differences in 

Ct values may be due to variations in primer efficiency rather than differences in 

gene transcription. In addition, nuclear staining patterns for these transcription 

factors appeared different to those seen in the human ESC positive controls, staining 

only part of the nucleus within the sorted cells rather than throughout the nucleus like 
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the ESCs. Surprisingly PR and PODXL proteins were not found at all in either the 

SSEA-1 MACS sorted populations. The telomerase protein, unlike the hTERT 

mRNA, was present in many cells within both SSEA-1 sorted populations. This 

result correlates with previous telomerase activity data on these cells, and may 

highlight the difficulties of hTERT qPCR (Valentijn et al, 2013). The results 

confirmed the presence of ERα and ERβ protein in abundance in both SSEA-1 

populations. This was in agreement with previous literature which has stated that 

although the ERβ protein is commonly seen, the mRNA is lowly expressed and does 

not correlate to the protein (Critchley et al, 2009) (see figures 7.2, 7.3, 7.4 and 7.4 

continued below). 
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As the CD133 antibody that had previously been optimised within our laboratory had 

been discontinued, no CD133 antibody was available within our laboratory to test on 

the SSEA-1 sorted cells within the time available. An image of IHC staining for 

CD133 using the previous antibody has been included below to show the presence of 

this protein within endometrial cancer tissue (see figure 7.5). 
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Discussion 
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Chapter 5: Discussion 

This was primarily a study examining the transcriptional profile of a selected set of 

genes in a sorted and isolated sub population of endometrial epithelial cells. The 

primary endometrial epithelial cells sorted on the expression of SSEA-1 are expected 

to contain a SPC population;
 
therefore we evaluate the expression of genes that are 

associated with stem cell activity and an undifferentiated state. In order to further 

confirm that the SSEA-1
+ 

endometrial epithelial cells indeed have specific SPC 

activity, their gene expression profile for the same genes was compared to that of the 

SSEA-1
-
 endometrial epithelial population, which represented more 

differentiated/mature epithelial cells from the endometrium. We studied the cells, 

cultured in both 2D and 3D culture systems to identify whether either of those 

conditions would favour the maintenance of an undifferentiated status. The gene 

expression profile of SSEA-1
+
 cells was also compared in the cells derived from the 

endometrium of women with and without endometriosis to assess whether we could 

identify if they might play a role in the pathogenesis of this disease. IF staining of 

MACS sorted SSEA-1 epithelial cells was also used to see if any differences in gene 

expression also correlated with similar differences in the protein levels.   

 

5.1 Normal Control Group 

Our results confirmed the expression of human genes OCT4, NANOG, PODXL, 

CD133, ERα, ERβ, PR, CD9 and FUT4 across all samples included in our study, both 

SSEA-1
+
 and SSEA-1

- 
cell fractions. These results confirm that there is stem cell 

activity within the endometrial epithelial cell population, and supports the hypothesis 

that there may be cells with SPC activity in both epithelial and stromal fractions of the 

endometrium. SOX2 mRNA was not detected within the full thickness endometrium or 
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either SSEA-1 epithelial cell fraction within any of the samples. Agreeing with this 

observation, the protein was also not visualised within the full thickness endometrium 

using IHC. This is consistent with the previous findings of Forte et al who analysed the 

expression profile of 13 genes, including SOX2, on non-sorted normal endometrial and 

endometriotic tissue using reverse transcription PCR. He found that SOX2 expression 

was absent across all 14 endometrial tissue and 12 endometriotic tissues, within all 

phases of the menstrual cycle and all stages of endometriosis. The lack of SOX2 may 

not be surprising, as although it may be needed for pluripotency in human ESCs, this is 

not an essential feature of ASCs and is unlikely to be necessary for the endometrial 

SPC (Forte et al, 2009). Unlike in the mouse ESCs, the key function of SOX2 in 

human ESC has been described within the literature as largely dispensable compared 

to the other primitive pluripotency genes OCT4 and NANOG, which are essential for 

the maintenance of human ESC self-renewal. Furthermore, evidence from induced 

pluripotent stem (iPS) cells suggest that the function of all these embryonic markers 

are rather different in human cells when compared to the mouse cells, and propose that 

the three pluripotency genes work independently to prevent differentiation along a 

specific lineage (Wang et al, 2012). SOX2 and SOX3 both repress mesendodermal 

differentiation, but the knock-down of SOX2 within human ESCs does not seem to 

alter the pluripotent profile. This may be due to the compensatory action of SOX3 

which is up-regulated when SOX2 levels are low, maintaining pluripotency within 

human ESCs (Wang et al, 2012).   

 

Within the normal MACS sorted SSEA-1
+
 cells grown in 2D culture, no significant 

differences in stem cell gene expression was seen between the SSEA-1
+
 or SSEA-1

-
 

cells. This was evident in both MACS and FACS sorted samples, suggesting that both 
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populations possess cells expressing stem cell-specific genes. There are a number of 

possibilities which may account for these results.  As MACS and FACS sorting are not 

100% pure, any true differences in expression may have been masked by 

contamination of stromal stem cells or SSEA-1
+
 epithelial cells within the SSEA-1

- 
cell 

population. However, as FACS sorting has greater than 90% efficiency and the results 

from these samples support those seen from the MACS sorted samples, it is more 

likely that these results are a true reflection of gene expression profile within the 

populations studied. If SSEA-1
+
 cells are largely a progenitor cell population, it is 

possible that a very small, more primitive stem cell sub-population is included within 

both SSEA-1
+/-

 fractions. 

  

In mouse ESCs, OCT4, NANOG and SOX2 genes play a core regulatory function in 

maintaining pluripotency, however in human ESC, they may play a different role 

depending on their levels and the presence of other factors. For example, at high levels 

OCT4 facilitates self-renewal only when BMP4 is absent but specify mesendoderm in 

the presence of BMP4. Conversely, low levels of OCT4 induce embryonic ectoderm 

differentiation in the absence of BMP4 but specify extraembryonic lineages in the 

presence of BMP4. NANOG represses embryonic ectoderm differentiation but has little 

effect on other lineages, whereas SOX2 and SOX3 are redundant and repress 

mesendoderm differentiation. We have not studied the existence of BMP4 in our cells. 

There are no conclusive reports on the BMP4 expression in SSEA-1 expressing human 

endometrial glandular epithelium, and the existing single paper on BMP4 expression in 

human endometrium only shows that in the secretory phase, endometrial epithelium 

does not express BMP4 but stromal cells do (Wang et al, 2012; Stoikos et al, 2008). 

Therefore, we are unable to comment on the particular function of the expression of 
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these transcription factors in our cells. However, we can suggest that at the low levels 

of OCT4 expression observed in endometrial epithelial cells in vitro, merely suggest 

epithelial differentiation of these cells.  Another explanation may be the 2D culture 

system in which the sorted epithelial cells were grown, does not favour stemness but 

drives cells towards differentiation. Whilst traditional 2D culture may be sufficient to 

study the biological functions of endometrial cells, it has many limitations. When 

grown in 2D culture, endometrial cells lose their typical epithelial 

architectural/structural characteristics and their morphology from what is seen in vivo, 

and they no longer maintain their columnar shape and intercellular junctions, but 

become flat and lose their polarity. This may mean that the transcriptional stem cell 

profiles studied on the MACS and FACS sorted cells grown in 2D culture, may not be 

a true representation of the expression levels seen in vivo (Hai-yan et al, 2012). 

 

We aimed to overcome this problem with the use of a 3D culture model; a system 

which is well recognised as the optimal method of studying endometrial epithelial 

cells in vitro (Hai-yan et al, 2012; Eritja et al, 2010; Bläuer et al, 2008). Matrigel is a 

gelatinous protein mixture urea extract derived from the basal lamina-rich mouse 

Engelbreth-Holm-Swarm (EHS) tumour. It is an ideal substrate for functional cells in 

in vitro as it reconstitutes the natural basal lamina and mimics the ECM within tissues 

in vivo (Hai-yan et al, 2012). 3D culture models using epithelial cells were first 

established using collagen-based matrices. However more recently, developments 

using breast epithelial cell lines have shown that cultures derived from EHS tumours 

are first choice for the growth of glandular epithelial tissues. This model retains 

structural polarity, epithelial cell morphology and is essential to imitate the 

architecture of the normal human endometrium in vivo. Nevertheless, although 

Matrigel is necessary for cellular polarity and glandular formation, it does not 
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support glandular growth and proliferation. Additional supplements including 

epithelial EGF and ITS are required for the development of glandular structures, and 

therefore these were used within this study (Hai-yan et al, 2012; Eritja et al, 2010). 

Our data on gene expression from SSEA-1 sorted epithelial cells growth in 3D 

culture (or organoids), showed a clear difference from those grown on a 2D culture 

system, with an obvious up-regulation of all stem cell markers within the SSEA-1
+
 

organoids compared to the SSEA-1
-
 organoids taken from the normal endometrium. 

This provides further evidence to support that the 3D culture system may be 

recapitulating the natural stem cell niche within the endometrium in vivo, hence 

preserving stemness of an endometrial stem cells and preventing differentiation of 

the SSEA-1
+ 

population. It is therefore more likely that the gene expression profile 

obtained from these gland-like structures is a more accurate representation of the 

levels that would be expressed from these cells within their natural 

microenvironment.  

 

Expression levels of OCT4 and FUT4 mRNA were the highest of all genes 

throughout the study. OCT4 consistently showed a level of expression considerably 

higher (approximately 1000 times higher) than that of its fellow transcription factor, 

NANOG. If the function of these markers is self-renewal and pluripotency as seen in 

ESCs, and with a similar function to NANOG, it was not anticipated that the signal 

level of OCT4 would be so high in comparison within our adult tissue. Many papers 

are now being published stating that results of OCT4 expression need to be 

interpreted with caution and much controversy has arisen over its existence within 

somatic cells (Lengner et al, 2008; Liedtke et al, 2008; Zangrossi et al, 2007; Seo et 

al, 2009). Although further evidence is now emerging to describe potential problems 
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when dealing with OCT4, many authors still have no knowledge of the recent 

discovery that two main variants of OCT4 exist as a consequence of alternate 

splicing; OCT4A and OCT4B (also to referred to as splice variants 1 and 2. On a 

nucleotide level, both isoforms are identical from exon 2 through to exon 5. The 

genetic difference between the two variants arises from exon 1, which is missing 

from the OCT4B transcript and instead is replaced by 202 bps from the intron 1-2 

region. Although similar in structure, the two variants have very different functions 

(Liedtke S, 2008). Unlike OCT4A, OCT4B has no function in regulating self renewal 

and cannot sustain stem cell properties (Seo et al, 2009). With IHC, OCT4B gives 

rise to staining within the cytoplasmic compartment, unlike OCT4A which is nuclear, 

raising question as to if OCT4B has any function as a transcription factor (Liedtke et 

al, 2008). In addition to these splice variants, at least 6 pseudogenes and other OCT4-

like sequences, which are highly homologous for OCT4A exist. These account for yet 

more sources of potential difficulties in interpretation of the results. It is therefore 

crucial to verify that a primer set is OCT4A specific and discriminates this variant 

from other splice variants and pseudogenes to provide reliable mRNA data (Liedtke 

et al, 2008; Zangrossi et al, 2007). When entering our OCT4 primer sequences into 

the Basic Local Alignment Search Tool (BLAST), it became evident that our primers 

are homologous with multiple splice variants and OCT4-like sequences (in addition 

to variants 1 and 2) and also  pseudogenes 3 and 4. This may account for the high 

expression levels of OCT4 seen within this study and so results should be interpreted 

with caution. Nevertheless, although not all of the OCT4 signal may represent 

pluripotency or self-renewal, lower levels of OCT4A are still expressed by both 

SSEA-1 populations. Our OCT4 primers were verified using Hues7 ESCs which 

displayed the same melting point and product size following qPCR and gel 
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electrophoresis as those seen within our sorted epithelial samples. In addition, IF 

staining using an OCT4A specific antibody showed positive staining in part of the 

nucleus, although at much low level and in far fewer cells when compared to the 

positive control of ESCs. This verifies that some of the SSEA-1 expressing epithelial 

cells do express OCT4 and those cells may have SPC activity.  

 

As SSEA-1 is a carbohydrate and therefore cannot be investigated directly using 

qPCR, FUT4 was included within this study as the enzyme that catalyses its 

synthesis. It was therefore expected that the mRNA levels of FUT4 would be 

significantly higher within the SSEA-1
+
 endometrial epithelial cell fraction. Our 

results were somewhat surprising, showing that there was no difference in expression 

between the SSEA-1
+
 and SSEA-1

-
 fractions taken from the MACS sorted normal 

endometrial samples or endometriosis samples grown in 2D.  In addition, FACS 

sorted samples taken from the normal endometrium showed a 2.5 fold up-regulation 

of FUT4 within the SSEA-1
-
 population when compared to the SSEA-1

-
 cells. This 

could be explained by the fact that the cultured cells had changed their phenotype 

within 2D culture, and therefore expression levels of FUT4 did not represent the true 

levels in vivo. When analysing the results collected from the sorted cells grown in 3D 

culture, which mimics their in vivo microenvironment, we can see that the expression 

levels reverse and FUT4 levels are increased 1.7 fold in the SSEA-1
+
 cells over the 

SSEA-1
-
 cell fraction. Nevertheless, high FUT4 expression within SSEA-1

- 
epithelial 

cells suggests that this gene may have additional or alternative functions. On 

searching the publications, it has been suggested that other FucT genes may be 

involved in the synthesis of SSEA-1 also. Whilst the alternative name given to 

SSEA-1 by the National Center for Biotechnology Information (NCBI, 2012) is 

FUT4, there are a number of publications that suggest that FUT9 is the more 
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dominant enzyme responsible for its synthesis (Nishihara et al, 2003; Nakayama et 

al, 2001). SSEA-1 is regulated throughout brain development and acts as a cell-cell 

recognition molecule within the central nervous system. Nishihara et al compared the 

transcript levels of both FUT9 and FUT4 within developing brain, and found 15-100 

times more FUT9 transcript compared to FUT4. The synthesis of SSEA-1 throughout 

brain development was well correlated with that of FUT9 (Nishihara et al, 2003). 

Nakayama et al also demonstrated that FUT9 has 20-fold stronger activity for the 

synthesis of SSEA-1 over FUT4 within mature granulocytes (Nakayama et al, 2001). 

Sialylated SSEA-1 or Le
x
 (sLe

x
) is a fucosylated structure related to SSEA-1. 

Various studies have shown that multiple FucTs including FUT3, FUT5, FUT6 and 

FUT7 may all be involved in its synthesis (Liu et al, 2008; Nordén et al, 2009). This 

evidence suggests that there may be other important factors in addition to FUT4 

which control the synthesis of SSEA-1. Furthermore, the FUT4 expression in the 

normal endometrium is maximum in the functionalis during the secretory phase of 

the cycle where SSEA-1+ epithelial cells are not present (Ponnanpalam et al, 2008; 

Valentijn et al, 2013), suggesting that FUT4 is not co-expressed with SSEA-1 in 

endometrial epithelial cells. 

 

The results obtained from ERα and PR transcripts between MACS and FACS SSEA-

1 sorted normal endometrial cells, showed obvious differences between the 

expression levels in the two populations, with a clear up-regulation within the SSEA-

1
-
 cells. The expression of these cells are likely to be present in terminally 

differentiated endometrial epithelial cells and more primitive, undifferentiated 

epithelial cells are unlikely to be either steroid hormone responsive and may not 

express the receptors for them. This reached significance for both ERα and PR (WSR 
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test; p=0.0156) within the MACS sorted cells, and indicates a more differentiated 

cell population within the SSEA-1
-
 fraction. This may not have reached the level of 

significance within the FACS sorted samples due to the small number of samples 

used in comparison (n=3), or because contaminating stromal cells within the SSEA-

1
-
 MACS sorted samples were expressing these genes also. Within 3D culture, the 

difference in PR levels was more pronounced, with a 6.7 fold up-regulation of PR 

within the SSEA-1
-
 fraction. Although this was not the case with ERα which 

displayed very similar levels of expression within both fractions grown in 3D culture, 

we know that PR is a marker of a more terminally differentiated cell state than ERα 

and therefore still supports the previous findings (Prianishnikov et al, 1978).   

 

IF staining was used to verify the presence of the protein translated from each of 

these transcripts, within SSEA-1 MACS sorted cells taken from one patient with a 

normal endometrium. The transcription factors OCT4A and NANOG showed nuclear 

staining within a selected number of cells within both SSEA-1
+
 and SSEA-1

- 
cells, 

the correct location for both proteins. More cells stained positively for NANOG than 

OCT4A, which acts as more evidence to suggest that the OCT4 primer pair did not 

exclusively amplify OCT4A mRNA. Interestingly, the OCT4 and NANOG positively 

stained cells showed a different expression pattern to the ESC positive control. 

Within the ESCs, staining for both proteins were seen throughout the nuclei, 

however only part of the nuclei were stained for these proteins within the sorted 

endometrial epithelial cells. ERα, ERβ and telomerase showed nuclear staining in a 

high proportion of cells in both of the sorted populations. For ERβ and telomerase, 

this contradicted what was detected via qPCR, as mRNA levels for both these genes 

were below the level of detection. These results support the claims made by Lehner 

et al and Critchley et al as described previously in chapter 3 (Lehner et al, 2002; 
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Critchley et al, 2002). In contrast, PR and PODXL which were both highly amplified 

using qPCR, showed negative staining for protein across all sorted cells using IF. 

Although it is generally assumed that mRNA and protein levels for a particular gene 

should correlate, analyses in yeast and mammalian cells have shown that this is not 

necessarily the case (Gygi et al, 1999; Anderson et al, 1997). In fact, studies have 

now proven that mRNA levels alone act as unreliable predictors for corresponding 

protein. Protein levels are dependent on a number of factors other than the rate of 

transcription, including nuclear export of the transcript, mRNA localisation, 

transcript stability, translational regulation and protein degradation or in vivo half 

life. Once translated, proteins may also go through post-translational modifications, 

for example glycosylation or phosphorylation, or may undergo proteolytic cleavage 

(Greenbaum et al, 2003; Pradet-Balade et al, 2001). These processes are still not 

sufficiently defined and may account for the discrepancies between the mRNA and 

protein abundances seen within our study. For example, if PR and PODXL proteins 

have short half lives, transcription may occur at high rates due the high demand and 

fast turnover. On the other hand, ERα and telomerase may be stable proteins 

requiring much lower rates of transcription (Greenbaum et al, 2003; Pradet-Balade et 

al, 2001).  

 

5.2 Endometriosis Group 

As endometrial SPCs are thought to be involved in the pathogenesis of 

endometriosis, patients suffering with this disease were also included in our study. 

Similar to the results obtained from the control patients, no significant differences in 

OCT4, NANOG, PODXL and CD133 mRNA levels were found between the two 

human epithelial cell populations MACS sorted on SSEA-1 and grown in 2D, taken 

from endometriosis patients. When placed in 3D culture representing their in vivo 
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environment however, similar to the normal endometrium, these genes were clearly 

up-regulated within the SSEA-1
+
 population when compared to the SSEA-1

-
 cells. In 

addition, these differences in expression appeared to be more exaggerated in those 

with endometriosis than those with normal endometrium, suggesting more stem cell 

activity within these cells from the pathological endometrium. When comparing the 

MACS sorted SSEA-1
+ 

epithelial cell populations directly between the normal and 

endometriosis patients, statistical differences were seen with significant up-

regulation of OCT4 and NANOG within patients with endometriosis. All of these 

results suggest that the SSEA-1
+
 population have heightened stem cell-like activity in 

endometriosis and that they may be involved in the pathogenesis of this condition. If 

a subpopulation of the SSEA-1
+
 epithelial cells are SPCs, then these results would 

support the widely accepted theory that endometrial SPCs are involved in the 

aetiology of this condition (Figueira et al, 2011; Gargett et al, 2010).  

 

In the patients suffering from endometriosis, ERα showed a 1.7 fold higher level of 

expression in the SSEA-1
-
 fraction compared to the SSEA-1

+
 cells. Unlike the 

significant up-regulation of ERα seen previously within the normal SSEA-1
-
 cells, 

this level of expression was not significant for those with endometriosis. In addition, 

when growing these sorted cells in 3D culture that mimics their natural environment, 

an apparent up-regulation of ERα was seen within the SSEA-1
+
 cells taken from 

patients with endometriosis compared to the paired SSEA-1
-
 cells grown in 3D 

culture and to the SSEA-1
+
 cells from the normal healthy endometrium. Collectively 

these results may be explained by the increase of local oestrogen levels seen within 

patients with endometriosis (Gurates et al, 2003). Endometriosis is recognised as an 

‘oestrogen responsive disorder’, and the growth and maintenance of ectopic 
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endometriotic lesions is dependent on the action of oestrogen. In the endometrium, 

oestrogen acts as a potent mitogen and it is the increased levels of cellular aromatase 

expression in these patients with endometriosis and that leads to greater local 

oestrogen production compared to healthy individuals (Gurates et al, 2003). SSEA-

1
+
 cells are evidently more sensitive and responsive to ERα within patients with 

endometriosis, again substantiating their role in the pathogenesis of endometriosis 

and their existence as endometrial SPCs.  

 

PR showed a significant up-regulation in mRNA levels within the SSEA-1
-
 

population compared to the SSEA-1
+
 cells within patients with endometriosis. This is 

similar to the results obtained from sorted cells taken from the normal endometrium 

grown in both 2D and 3D culture systems, and again seems to indicate that a more 

differentiated cell type may lie within the negative fraction. Although the SSEA-1
+
 

population grown in 3D culture showed higher levels of PR in the endometriosis 

samples compared to the control samples, this level of expression was no different to 

that seen within their SSEA-1
-
 counterpart. In the literature, it is now widely 

accepted that endometriosis is physiologically associated with an element of 

‘progesterone resistance’ and lower overall levels of total PRs, therefore explaining 

the equal levels of expression seen in our results. This phenomenon most probably 

occurs to counteract the anti-proliferative and differentiative effects that progesterone 

has on endometrial cells, thereby contributing to the maintenance of the disease. 

Several mechanisms have been suggested to explain why this resistance process 

occurs. Some claim that there is altered expression of both isoforms of PR (with a 

complete lack of PR-B), their chaperone proteins such as FKBP52 and co-regulators 

including HIC-5/ARA55. Other theories suggest that there is activation of pro-
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inflammatory transcription factors which compete with PR over limited co-

regulators, and also that an increase in free radical production and oxidative stress 

signals may lead to post-translational alteration of PRs (Attia et al, 2000; Brosens et 

al, 2012; Bulun et al, 2006).  

 

Another interesting finding in our study was related to the endometrial epithelial cell 

marker CD9. As a widely accepted marker for endometrial epithelial cells, it was 

expected that the levels of expression for CD9 would be equal in both of the SSEA-1 

sorted populations. This was the case within all samples grown in the 2D culture 

system, as no significant differences in expression levels were found between the two 

populations in the control of endometriosis patients. However, when placed in 3D 

culture, up-regulation of CD9 was evident within the SSEA-1
+
 population compared 

to the SSEA-1
-
 cells; with a 1.5 fold increase within the normal samples and 2.8 fold 

within the patients with endometriosis. CD9 is found to be highly expressed in 

murine and human ESCs and is decreased shortly following differentiation. It is 

likely that CD9 may be under the regulation of the LIF/STAT3 mouse ESC pathway, 

which is required for the self-renewal of undifferentiated mouse ESCs. CD9 is also 

expressed in some ASC populations including HSCs where it is found to be 

important for maintenance of the population and colony formation (Oka et al, 2002; 

Akutsu et al, 2009; Aoyama et al, 1999). If this is the case, then CD9 may have a 

role in maintaining stemness within the endometrium also. This would account for 

the up-regulation seen in the normal SSEA-1
+
 population when grown in an 

environment that represents the stem cell niche, and would account for the greater 

difference seen within patients with endometrioisis which is associated with 

abnormal stem cels. Also this may simply mean greater survival of the epithelial 
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cells in the SSEA-1
+
 population grown in 3D, and it may be possible that the SSEA-

1
-
 epithelial cells do not survive as much in 3D culture. If more stromal cells are 

present in the SSEA-1
- 
population after 2 weeks in 3D, there will be a reduction in 

CD9. We have not tested this theory by also looking at the changes in a gene specific 

to stromal cells such as CD10/CD13 in our study, which may have helped us to 

confirm the reasons for the observed results.  

 

As previously mentioned, in the 2D culture samples, no differences in FUT4 

expression was seen between the SSEA-1
+
 and SSEA-1

-
 populations taken from 

normal or endometriosis patients. It is highly possible that other FucT enzymes may 

be responsible in the synthesis of SSEA-1 also. However, when comparing FUT4 

expression between the SSEA-1
+
 populations isolated from normal and 

endometriosis patients, a significant increase in expression was seen in the cells from 

women with endometriosis. In addition, when placed in 3D culture, expression of 

FUT4 was greater in the SSEA-1
+
 cells of the normal samples and even more so in 

the endometriosis samples when compared to the paired SSEA-1
-
 fraction. This 

provides further evidence to suggest that FUT4 is at least partly associated with the 

synthesis of SSEA-1, and therefore transcript levels were raised within the SSEA-1
+
 

cells grown in 3D culture, where cell proliferation was stimulated. Transcript levels 

were significantly higher in SSEA-1
+
 cells taken from endometriosis patients, 

supporting the hypothesis that SSEA-1
+
 cells are activated in endometriosis and are 

involved in its aetiology. 
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5.3 Limitations of the Study 

Throughout the course of this study, a number of limitations were encountered which 

needed to be considered and acknowledged when interpretations are made for our data. 

One of these limitations was the difficulty of obtaining samples with a good RNA 

quality and yield for use within qPCR. Due to large variations between samples, not all 

biopsies collected would give rise to a good epithelial cell yield suitable for 

MACS/FACS sorting. In addition, cells grown in 3D culture gave rise to small clusters 

of cells producing very little RNA and therefore these samples had to be pooled. This 

is not the ideal sample for study in one hand, but may provide some information that 

can be related to the population of patients included in general. Due to the limited 

number of suitable samples and also the inaccessibility of the FACS machine, the 

number of samples which could be studied within the time available was also limited. 

Ideally, larger sample sizes (especially for FACS and 3D culture analysis) would have 

provided more robust and reliable data. 

 

Another limitation that must be considered is variation between the samples 

themselves. Two different techniques of sample collection, pipelle and full thickness, 

were implemented to collect endometrial biopsies within this study according to the 

patient availability and the kind of surgical procedures they were undergoing. It is 

commonly accepted that pipelle sampling only extracts the cells which are located 

within the functional layer and not those within the basalis, although cells from the 

basal layer may still be taken up through this gentle method of suction.  As it is 

hypothesised that endometrial SPCs are found primarily within the basal layer of the 

endometrium, this raises the question as to whether the results obtained from pipelle 

samples were an accurate representation of the SPC population. Due to the difficulty in 
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obtaining samples however, this could not be avoided but must be considered when 

interpreting the results, especially if the number of pipelle/full thickness samples were 

unevenly distributed between the groups.  

 

Due to the difficulties encountered when trying to obtain suitable samples, biopsies 

were taken from women within all stages of the menstrual cycle. Different cycle stages 

may be associated with different levels of SPC activity, for example an increase in the 

proliferative phase. An uneven distribution of samples taken from different stages of 

the cycle between the normal and endometriosis groups may therefore raise question as 

to the comparability of the results between the groups. Nevertheless, due to the limited 

number of samples, the individual groups could not be subdivided further and analysed 

according to cycle phase. Although it could be argued that as all cells were cultured in 

same in vitro conditions prior to gene analysis, their phenotype would no longer reflect 

their original cycle stage. On the other hand since they do express some ovarian steroid 

receptors, they are likely to have some responsiveness to these hormones in vivo, so 

samples from different stages of the cycle may have SPCs with different activation 

status.  

 

5.4 Future Directions 

In order to encourage scientific advances and improvement within this field, 

suggestions should be made for future work. The obvious need is to increase in the 

number of patients and samples included in this study to confirm the results and 

improve the robustness and reliability of them. Specifically, the study of more FACS 

sorted samples for both normal end endometriosis would fully validate our results, as 

FACS produces more pure populations of cells than MACS. Our study specifically 



143 

 

lacked a good number of samples to be grown in 3D Matrigel to provide statistically 

robust data. With more samples, this would have been possible. Ideally, these gland-

like structures too should be grown from FACS sorted cells. This has been attempted 

within our lab but FACS sorting affects the function and viability of these primary 

epithelial cells to a greater degree than MACS sorting, therefore the cells do not seem 

to grow following the FACS sorting. It may be speculated that the FACS sorting 

process damages the cells, for example due to the exposure to high pressures or a 

prolonged time in suspension, therefore affecting their growth and viability. Although 

less efficient, MACS sorting is far gentler and growth of the cells post-sort is not 

affected. With an increase in the sample size included within this study, patients could 

also be subdivided based on the phase of their menstrual cycle, and results could be 

compared according to cycle phase and endometriosis stage to assess whether there 

may be any other correlations. 

 

As previously mentioned, one important property of stem cells which must be 

investigated is their potency. The differentiation capacity of the SSEA-1 sorted 

epithelial cells should be assessed for multi-lineage differentiation potential when 

cultured under the correct conditions, including osteogenic, adipogenic and 

chondrogenic differentiation. Studies to explore in vivo tissue reconstitution of the 

SSEA-1
+ 

population and the responsiveness of the gland-like structures to ovarian 

hormones, progesterone and oestrogen, will provide more evidence to suggest their 

behaviour as endometrial SPCs and further our understanding about this population 

of cells. Once SSEA-1 is firmly established as a marker that selects for a population 

containing the endometrial epithelial SPC population, research needs to be invested 

into identifying a secondary surface marker that co-localises with SSEA-1. It is 
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unlikely that all epithelial cells that express SSEA-1 are SPCS and therefore a 

secondary marker would further select for the subpopulation within the SSEA-1
+
 cells 

of specific endometrial epithelial SPCs.   

 

5.5 Conclusion 

In conclusion, this study has provided data on specific gene expression profile of an 

endometrial epithelial sub-population characterised on the expression of the surface 

marker SSEA-1. The genes that were expressed in this population when compared to 

the SSEA-1
- 

cells have provided evidence to suggest that SSEA-1
+ 

population may 

have a subset of cells with SPCs activity in the human endometrium. Results have 

shown that genes associated with increased stem cell activity and a more 

undifferentiated cell state are  expressed in the SSEA-1
+ 

endometrial epithelial cell 

population when compared to its paired SSEA-1
-
 counterpart, but only when placed in 

the correct conditions that mimic their in vivo micro-environment. This study has 

demonstrated the importance of epithelial cells in particular to be grown in 3D culture 

and the importance of the stem cell niche as a functional unit. We have also shown that 

a subset of these SSEA-1
+
 endometrial epithelial cells may be involved in the 

pathogenesis of endometriosis, observing pronounced expression of genes that may 

induce stem cell activity, oestrogen responsiveness and progesterone resistance in this 

condition. Thus our study provides further evidence to suggest that endometrial SPCs 

are involved in the aetiology of endometriosis.  

 

As not all SSEA-1
+
 endometrial epithelial cells but only a small subset within the 

SSEA-1+ population will be SPCs, it is important to find another surface marker to 

select a pure subpopulation of SPCs to assess whether they possess all known 

functional SPC activity in functional assays such as self-renewal, clonogenicity, 
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differentiation potential and in vivo tissue reconstitution potential. These experiments 

needed to be performed on these cells before any conclusions are made, however, 

growth of primary endometrial epithelial cells are reputed to be challenging and 

usually they do not withstand separation in to single cells. Therefore it will be a 

challenging task to perform these assays in the future studies. Also additional 

investigations to evaluate the responsiveness of these cells to steroid hormones will 

also provide valuable information of the in vivo endometrial regeneration which is 

regulated by these hormones.  
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Appendix II: Specification List for Reagents and Equipment  

Table 18 List of reagent specifications 

 
Reagents Company, City, Country Catalogue Number 

2-propanol Sigma-Aldrich, Dorset, UK I9516 

5x 1st strand buffer Invitrogen, Paisley, UK P/N y02321 

5x DNA loading buffer Bioline, London, UK BIO-37045 

Agarose, Molecular grade Bioline, London, UK BIO-41025 

Anti-SSEA-1(CD15) MicroBeads Miltenyi Biotec, Surrey, UK # 130-090-101 

BD MatrigelTM BD Biosciences, Oxford, UK #354234 

Bovine Serum Albumin (BSA) Sigma-Aldrich, Dorset, UK A9418 

Chlorhexidine gluconate 0.05% (Sterets 

Unisept) 

Medlock Medical Ltd, Oldham, UK AA161/01701 

Chloroform Sigma-Aldrich,  Dorset, UK C2432 

Collegenase  Invitrogen, Paisley, UK #17018029 

Dispase  Invitrogen,  Paisley, UK #17105041 

Dithiothreitol (DTT) (0.1M) Invitrogen, Paisley, UK P/N y00147 

DMEM/F12 Sigma-Aldrich, Dorset, UK D6421 

DNase  Roche, Germany #11284932001 

dNTP Set Bioline, London, UK BIO-39025 

Epithelial growth factor Sigma-Aldrich, Dorset, UK E9644 

Ethanol Sigma-Aldrich, Dorset, UK E7023 

Ethidium bromide Molecular Sigma Biology, Dorset, UK E-7637 

Ethylenediaminetetraacetic acid 

(EDTA) 

Sigma-Aldrich, Dorset, UK 

 

E-5134 

Fetal Bovine Serum (FBS) Biosera, East Sussex, UK FB-1370/100 

Ficoll GE Life sciences,  Little Chalfont, UK 17-1440-02 

FlashGel® DNA Marker (100bp-4kb) Lonza, Slough, UK 50472 

FlashGel
®
 Quantladder (100bp-1.5kb) Lonza, Slough, UK 50475 

FlashGel™ Loading Dye (5x) Lonza, Slough, UK 50463 

Glacial Acetic Acid (17.M) BDH, London & Bristol, UK UN2789 

Glycogen Invitrogen, Paisley, UK 10814-010 

Insulin-transferrin-selenite (ITS) Invitrogen, Paisley, UK #41400-045 

KAPA SYBR FAST qPCR Master Mix 

(2x) 

Kapa BioSystems, Boston, US KK4602 

MgCl2 100mM BDH, Leicestershire, UK  

Mounting Medium for Fluorescence 

with DAPI  

Vector Laboratories, Peterbrough, UK H-1200 

NaCl Sigma-Aldrich, Dorset, UK S5886-500G 

http://en.wikipedia.org/wiki/Little_Chalfont
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Table 18 continued List of reagent specifications 

 
Reagents Company, City, Country Catalogue Number 

Neutral Buffered Formalin 

(NBF) 10% 

Sigma-Aldrich, Dorset, UK HT501320-95L 

Normal goat serum (NGS) Biosera, East Sussex, UK GO-605 

Nuclease free water Sigma-Aldrich, Dorset, UK P4417-100TA 

Phosphate Buffered Saline 

(PBS) 

Sigma-Aldrich, Dorset, UK W4502 

Primocin Invitrogen, Paisley, UK P4417-100TA 

Random Hexamers (100ng/μl) Qiagen, West Sussex, UK #ant-pm-2 

RQ1 DNase Buffer Promega, USA AM7020 

RQ1 DNase Stop Soln Promega, USA M198A 

RQ1 DNaseI Promega, USA M1994 

SuperScript III (200U/μl) Invitrogen, Paisley, UK M610A 

Triton 0.2% BDH, Leicestershire, UK 18080-044 

TRIzol® reagent Invitrogen, Paisley, UK 9002-93-1 

Trypsin/EDTA solution Sigma-Aldrich, Dorset, UK 15596-026 

Tween  BDH, Leicestershire, UK #T4049 

 

 

Table 19 List of equipment specifications 

 
Equipment Company, City, Country Catalogue Number 

Carbon steel surgical blade, size 

22 

Swann-Morton, Sheffield, UK 0205 

FACSAriall cell sorter BD Biosciences, Oxford, UK  

FACSCalibur cytometer BD Biosciences, Oxford, UK 342975 

FlashGel dock Lonza, Slough, UK 57025 

Flashgel System Lonza, Slough, UK 57067 

FlashGel™ Camera Lonza, Slough, UK 57040 

Hand-held homogenisor Qiagen, West Sussex, UK 9001272 

Molecular Imager® Gel DocTM 

XR 

Bio-Rad, Hertfordshire, UK #170- 8270 

Nanodrop software NanoDrop Technologies, 

Wilmington, USA 

ND-8000 

NanoDropTM 1000 

Spectrophotometer 

NanoDrop Technologies, 

Wilmington, USA 

ND-1000 

Rotor-Gene 3000 centrifugal 

real-time cycler 

Corbett Research, Sydney, 

Australia  

 

Teales Vulsellum uterine forceps Phoenix Surgical Instruments 

Ltd, Hertfordshire, UK 

PH725903 

http://www.bdbiosciences.com/ptProduct.jsp?prodId=200978&key=BD+FACSCalibur+flow+cytometer&param=search&mterms=true&from=dTable
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Table 20 List of consumable product specifications 

 
Equipment Company, City, Country Catalogue Number 

8-well chamber slides BDH Chemicals, Leicestershire, 

UK 

734-2050 

22x40mm coverslip WBFM, London, UK GP1001125004 

24-well tissue culture plate Biowhittaker, Suffolk, UK DMEM-F12 

Cell strainer, 40μm Miltenyi Biotec, Surrey, UK # 130-090-101 

Centrifuge tube, 15ml Appleton Woods, Birmingham, 

UK 

SC060 

Chamber removal tool BDH chemicals, Leicestershire, 

UK 

734-0089 

Falcon tube, 50ml BD Biosciences, Oxford, UK 358206 

MACS separation column Miltenyi Biotec, Surrey, UK MS columns, #130-042-201 

Microcentrifuge tube, 1.5ml Sarstedt Ltd, Leicester, UK 72699 

Parafilm Pechiney Plastic Packaging, 

Menasha 

WI 54952 

Pastette, 1ml StarLab, Milton Keynes, UK #E1414-0110 

PCR tube, 0.2ml (flat cap) StarLab, Milton Keynes, UK I1402-8100 

Petri dish, 100mm BDH chemical, Leicestershire, 

UK 

734-2321 

Tissue cultureT75cm2 flasks BD Biosciences, 

Oxford/Swindon/Plymouth, UK 

137787 

Two-tier 16+1 2.2% agarose 

cassette 

Lonza, Slough, UK 57032 

Universal tube, 100ml Sarstedt Ltd, Leicester, UK  

Universal tube, 30ml Sarstedt Ltd, Leicester, UK  

Universal tube, 50ml Sarstedt Ltd, Leicester, UK  

Yellow pre-filter, 30μl Miltenyi Biotec, Surrey, UK #130-041-407 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.bdbiosciences.com/ptProduct.jsp?prodId=579698&catyId=745410&page=product
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Appendix III: LREC Approval 
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Appendix IV: Patient Information Leaflets 
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Appendix V: Patient Consent Form 

 



176 

 

Appendix VI: Patient Details Form 
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Appendix VII: Nanodrop Results 

Table 21 Nanodrop results for normal endometrial samples 

 

 ng/μl 260/280 

N51 + 117.5 1.69 

N51 - 939.3 1.89 

N54 + 214.1 1.74 

N54 - 580.9 1.81 

N58 + 64.9 1.66 

N58 - 746.1 1.85 

N52 + 53.2 1.5 

N52 - 715.8 1.82 

N53 + 66.7 1.8 

N53 - 1089.8 1.94 

N55 + 126.8 1.66 

N55 - 744.2 1.92 

N49 + 124.6 1.7 

N49 - 407.0 1.91 

N59 + 276.4 1.79 

N59 - 758.4 1.85 

N77 + 54.5 1.77 

N77 - 107.8 1.76 

N85 +  7.4 1.62 

N85 - 119.3 1.82 

N86 + 21.1 1.77 

N86 - 62.0  1.90  

N95+ 31.7 2.45 

N95 - 217.6 1.91 
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Table 22 Nanodrop results for endometriosis endometrial samples 

 

 

 ng/μl 260/280 

E36 + 157.4 1.79 

E36 - 602.4 1.81 

E40 + 45.3 1.80 

E40 - 352.6 1.90 

E41 + 249.6 1.77 

E41 - 652.5 1.90 

E42 + 86.3 1.78 

E42 - 412.1 1.91 

E43 + 403.0 1.87 

E43 - 469.5 1.82 

E44 + 6.6 1.68 

E44 - 4000.4 1.95 

E46 + 618.8 1.90 

E46 - 50.2 1.82 

E48 + 291.0 1.80 

E48 - 736.2 1.90 
 

 

 

Table 23 Nanodrop results for organoid samples 

 

 

 ng/μl 260/280 

Pooled N54, N55, N57 + 339.5 1.86 

Pooled N54, N55, N57 - 196.2 1.84 

Pooled E42, E43, E44 + 778.5 1.89 

Pooled E42, E43, E44 - 362.9 1.85 
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Appendix VIII: Standard Curves 

For all qPCR serial dilution experiments: 1x = red, 1/5x= blue, 1/25x= purple, 1/125x= 

orange, 1/625x=green, 1/3125x= yellow, NTC= pink.  

 

Threshold for all qPCR graphs set at 0.07. 

 

 

FUT4 Standard Curve 

 
Quantification Analysis:  

 

 
 

Melt Analysis:  
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Primer efficiency =0.74 

 

 
 

OCT4 Standard Curve 

 
Quantification Analysis:  

 

 
 

Melt Analysis:  
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Primer efficiency =0.95 

 

 
 

SOX2 Standard Curve 

 
Quantification Analysis:  

 

 
 
Melt Analysis:  
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Primer Efficiency= 0.76 

 

 
 

CD9 Standard Curve 

 
Quantification Analysis:  

 

 
 

Melt Analysis:  
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Primer Efficiency= 1.26 

 

 
 

YWHAZ Standard Curve 

 
Quantification Analysis:  

 

 
 
Melt Analysis:  
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Primer Efficiency= 1.14 

 

 
 

YWHAZ Standard Curve 

 
Quantification Analysis:  

 
 

Melt Analysis:  
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Primer Efficiency= 0.86 

 

 
 

CD133 Standard Curve 

 
Quantification Analysis:  

 
 

Melt Analysis:  
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Primer Efficiency= 1.01  

 

 
 

 

ERα Standard Curve 

 
Quantification Analysis: 

 
 

Melt Analysis: 
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Primer Efficiency= 1.01 

 

 
 

ERα Standard Curve 

 
Quantification Analysis: 

 
 

Melt Analysis: 
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Primer Efficiency= 1.08 

 

 
 

ERα Standard Curve 

 
Quantification Analysis: 

 
 

Melt Analysis: 
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Primer Efficiency= 1.02 
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