

TECHNIQUES FOR DATA PATTERN SELECTION

AND ABSTRACTION

“Thesis submitted in accordance with the requirements of the University of

Liverpool for the degree of Doctor in Philosophy by Konstantinos Nikolaidis.”

September 2012

 2

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to Dr Goulermas for his invaluable and

constructive help regarding this research. His suggestions, support and more importantly

his tolerance made everything look easier and enabled me to complete this work, which

would have been impossible otherwise. After all these years I spent next to him I consider

him more a friend than a supervisor.

I would also like to thank my parents and brother for their encouragement and love

throughout my studies. Their support made everything possible. I am also grateful to my

grandmothers for their constant support. I also wish to acknowledge the help and support

of Helen.

I would also like to express my appreciation to Myrto Pavlini for her love, tolerance and

understanding.

Finally, I my special thanks are extended to the following people:

! Eduardo Rodriguez for his valuable advice on Maths and Genetic programming

as well as his assistance with the Matlab tool.

! Tingting Miu for her assistance and suggestions on my last piece of work for

Chapter 6 of this thesis.

! Elena Marchiori for providing her code of the CCIS algorithm.

! The entire staff of the Electrical and Electronics Engineering Department of

Liverpool University for their excellent disposition.

! Last but not least, Del, Gino, Biliou and Kornel for the endless hours we spent

together.

 3

ABSTRACT

This thesis concerns the problem of prototype reduction in instance-based learning. In

order to deal with problems such as storage requirements, sensitivity to noise and

computational complexity, various algorithms have been presented that condense the

number of stored prototypes, while maintaining competent classification accuracy.

Instance selection, which recovers a smaller subset of the original training set, is the most

widely used technique for instance reduction. But, prototype abstraction that generates

new prototypes to replace the initial ones has also gained a lot of interest recently. The

major contribution of this work is the proposal of four novel frameworks for performing

prototype reduction, the Class Boundary Preserving algorithm (CBP), a hybrid method

that uses both selection and generation of prototypes, Instance Seriation for Prototype

Abstraction (ISPA), which is an abstraction algorithm, and two selective techniques,

Spectral Instance Reduction (SIR) and Direct Weight Optimization (DWO).

CBP is a multi-stage method based on a simple heuristic that is very effective in

identifying samples close to class borders. Using a noise filter harmful instances are

removed, while the powerful heuristic determines the geometrical distribution of patterns

around every instance. Together with the concepts of nearest enemy pairs and mean shift

clustering this algorithm decides on the final set of retained prototypes.

DWO is a selection model whose output set of prototypes is decided by a set of binary

weights. These weights are computed according to an objective function composed of the

ratio between the nearest friend and nearest enemy of every sample. In order to obtain

good quality results DWO is optimized using a genetic algorithm.

ISPA is an abstraction technique that employs the concept of data seriation to organize

instances in an arrangement that favours merging between them. As a result, a new set of

prototypes is created.

Results show that CBP, SIR and DWO, the three major algorithms presented in this

thesis, are competent and efficient in terms of at least one of the two basic objectives,

classification accuracy and condensation ratio. The comparison against other successful

condensation algorithms illustrates the competitiveness of the proposed models.

The SIR algorithm presents a set of border discriminating features (BDFs) that depicts the

local distribution of friends and enemies of all samples. These are then used along with

spectral graph theory to partition the training set in to border and internal instances.

 4

TABLE OF CONTENTS

!"#$%&'(")*+,-*./!/*0/!!"-%*)"1"#!&,%*/%.*/2)!-/#!&,%33333333333333333333334!
/#5%,61".7"8"%!)3339!
/2)!-/#!333:!
#$/0!"-*4;*8/#$&%"*1"/-%&%7333<!
434! &%!-,.(#!&,% 333<!
439! 0/!!"-%*-"#,7%&!&,%333=!
43:! %"/-")!*%"&7$2,(-*#1/))&+&"- 33>!
43?! 0-,21"8*/%.*)#,0" 333@!
43A! 0-/#!&#/1*."B"1,08"%!3334C!
43<! 0(21&#/!&,%) 33344!
#$/0!"-*9;!&%)!/%#"*)"1"#!&,%33349!
934! &%!-,.(#!&,% 3349!
939! ".&!&%7*/%.*#,%."%)&%7*%"/-")!*%"&7$2,(-334:!
93:! %"&7$2,(-$,,.*2/)".*/00-,/#$")3334@!
93?! 7-/0$*2/)".*/00-,/#$") 33394!
93A! &%)!/%#"*6"&7$!*1"/-%&%7 339=!
93<! %"/-")!*"%"8D*2/)".*!"#$%&'(")33:C!
93=! ."%)&!D*2/)".*/00-,/#$") 33:9!
93>! 8&)#"11/%",()*/00-,/#$")333:A!
93@! #,%#1()&,%333:=!
#$/0!"-*:;*&%)!/%#"*/2)!-/#!&,% 33:>!
:34! &%!-,.(#!&,% 33:>!
:39! -(1"E2/)".*0-,!,!D0"*8"-7&%7 33:@!
:3:! 1"/-%&%7*B"#!,-*'(/%!&F/!&,% 333??!
:3?! #1()!"-&%7*/17,-&!$8) 33?=!
:3A! #,%#1()&,%333A4!
#$/0!"-*?;*/*#1/))*2,(%./-D*0-")"-B&%7*/17,-&!$8 33333333333333333333333333333333A9!
?34! &%!-,.(#!&,% 33A9!
?39! !$"*0-,0,)".*/17,-&!$8 33A:!
"#! $%&&'(")*!+,-$$!.&/)0-1"2$ ##34!
""#! 0"$'")*/"$(")*!.2'522)!.&1021!-)0!)&)6.&1021!")$'-)+2$#######################################34!
"""#! 71/)")*!.&1021!")$'-)+2$ ##38!
"9#! +,/$'21")*!)&)!.&1021!")$'-)+2$ ###3:!
?3:! "G0"-&8"%!/1*/%/1D)&)333<4!
"#!)/%21"+-,!12$/,'$ ##;4!
""#! 0"$+/$$"&) ##;<!
?3?! #,%#1()&,%) 333<@!
#$/0!"-*A;!)0"#!-/1*,-."-&%7 333=C!
A34! &%!-,.(#!&,% 33=C!
A39!)"'("%#"*./!&%7 33=4!
A3:!)"-&/!&,%*+,-*&%)!/%#"*/2)!-/#!&,%33=4!
"#! 71&7&$20!=1-%25&1>###?@!

 5

""#! 2A721"%2)'-,!-)-,B$"$###?4!
-#!)/%21"+-,!12$/,'$ ###?<!
!"! #$%&'%%$()333=?!
"""#! +&)+,/$"&)$ ###?3!
A3?!)0"#!-/1*7-/0$*,0!&8&F/!&,%33=<!
"#! .&1021!0"$+1"%")-'")*!=2-'/12$ ##?;!
""#! .&1021!-)0!)&)6.&1021!")$'-)+2!7-1'"'"&)")* ###8C!
"""#! 2A721"%2)'-,!-)-,B$"$##8D!
"9#! +&)+,/$"&)##:4!
#$/0!"-*<;*0-,!,!D0"*-".(#!&,%*2/)".*,%*.&-"#!*6"&7$!*
,0!&8&F/!&,%333@?!
<34! &%!-,.(#!&,% 33@?!
<39! !$"*0-,0,)".*/17,-&!$8 33@A!
"#! ")$'-)+2!52"*('!%&02,,")*##:3!
""#! &7'"%"$-'"&)!71&+20/12 ##:?!
"""#! 721=&1%-)+2!-++2,21-'"&)!(2/1"$'"+$ ###:?!
<3:! "G0"-&8"%!/1*/%/1D)&)333@@!
"#!)/%21"+-,!12$/,'$ ### @C4!
""#! 0"$+/$$"&) ### @C4!
<3?! #,%#1()&,%) 33 4C>!
#$/0!"-*=;*"0&1,7(" 333 44C!
=34! #,%#1()&,%) 33 44C!
=39! +(!(-"*6,-5 333 449!
-"+"-"%#") 33 44?!

 6

CHAPTER 1:

MACHINE LEARNING

The purpose of this chapter is to provide a broad overview of the field of Machine

learning. This section emphasizes on instance-based learning, and more specifically on

non-parametric methods for classification using the nearest neighbour rule. Section 1.1

briefly describes the concept of Machine learning and its applications. Section 1.2

provides a small introduction to the pattern recognition problem in machine learning.

Section 1.3 is a brief summary of the various types of classifiers that exist and introduces

the Nearest Neighbour (NN) classifier, which is used throughout this work. Finally,

section 1.4 presents the problems that arise in instance-based learning and are related with

the use of NN, and explains the rationale behind this PhD study.

1.1 Introduction

Machine learning is a scientific field that has its origins in computer science. It is a

subfield of Artificial Intelligence and it involves the development of models that can

mimic intelligent abilities of humans. These adaptive models are trained in order to

“learn”, which can be understood as the ability of a machine to automatically make

decisions. The learning process of computers is achieved by the design of algorithms and

techniques that train their parameters using past experience enabling them to adapt to the

environment. The constantly increasing amount of information available has brought a lot

of attention to information theory and data analysis, with substantial developments in the

last two decades. Machine learning has grown from really simple tasks that only

concerned the few (specialists), to more of a mainstream concerned with highly

complicated statistical and computational principles. The evolution of Machine learning

has transformed it into an interdisciplinary field that makes use of some basic tools such

 7

as statistics, probability theory, information theory, optimization and control theory, but

also it expands to other scientific areas like philosophy and archaeology [Miu08].

 Machine learning appears in many aspects of modern day life as it has a very

wide range of applications. From simple examples such as web page ranking in search

engines and automatic translations to rather complex applications such as medical

diagnosis and bio-informatics, machine learning is successfully applied. It is actively

used the last few years for security purposes, i.e. face recognition or verification,

fingerprint recognition or credit card fraud [Smo10]. Other applications that involve

machine learning are financial such as stock market analysis and direct marketing,

robotics, computer games, image processing, speech or handwriting recognition and

failure detection.

1.2 Pattern Recognition

The problem of pattern recognition has been the focus of research for many years, and

while initially it was mostly on a theoretical basis the development of machine learning

algorithms enabled the use of it on cutting edge practical applications. Bishop [Bis06]

described machine learning algorithms as a function !(x), which takes an input vector x

and generates an output vector y of the same form as the target vector. Machine learning

algorithms consist of two distinct stages, the first one being the training phase. During

this stage, the model uses the input vectors to train its parameters according to the

learning function !. The key objective of the learning process is the ability of the model

to generalize, meaning to extract general information from the inputs that enables it to

correctly treat unknown data patterns. Once the learning process ends, the model

proceeds to the testing phase. The algorithm is then tested on new unknown samples that

determine the generalization capability of the model.

 The taxonomy of machine learning problems largely varies as the

characterization of algorithms can be based on different elements. For example,

depending on the type of training data used, algorithms can be categorized to supervised

or unsupervised learning methods, the former being the one mainly addressed in this

work. Supervised learning algorithms receive as input vectors pairs of objects consisting

of the vectors and their respective target values. Unsupervised learning methods, on the

contrary, are characterized by the absence of a priori information. Other types of

algorithms include semi-supervised, active learning and reinforcement learning methods.

Another grouping can be made depending on the desired output of each model. If the

output of the model is a continuous variable it is the answer to a regression problem. On

 8

the other hand, the output of a classification problem is a class label that represents the

category of the pattern.

 More precisely, pattern classification is a formulation of supervised learning

whose goal is to accurately predict the class labels of unseen patterns. The decision

making of the model is driven by the training data supplied to the algorithm. Given a set

of n labeled training samples

!

X = x1,x2,...,xn{ }"Rd , where Rd is the d-dimensional

real feature space, and each sample is associated with a unique class label

!

" x()#L = l1,l2,...,lc{ }, with c being the number of classes, the objective of a

classification algorithm is to construct a functional mapping

!

" :Rn #L so that any

unseen sample xi is correctly assigned to a class label li. Pattern classification can be

sorted in binary and multi-class classification. Binary classification is the task of

classifying the input samples into one of two possible sets, whereas the latter can assign a

pattern to one of multiple classes. In order to simplify the multi-class problem, in some

cases, one can consider it as a series of binary problems. Although many consider them

two different tasks, no distinction between binary and multi-class classification is made in

the experiments and implementations of this study.

1.3 Nearest Neighbour Classifier

Despite the fact that pattern recognition is a relatively new science, various classifiers

have been introduced. A large group of classifiers, namely linear classifiers, are designed

to classify data regardless of the underlying distribution of the training patterns. In this

case, the decision surface is considered to be a linear function of the unknown pattern x.

Linear classifiers are known for being relatively simple and computationally inexpensive

[The99]; such models are linear discriminant functions like [Fis36], [Zha10a], which are

used in various applications [Yu08], and the perceptron algorithm [Hay99]. For more

complicated case where classes are non-linearly separable the use of non-linear classifiers

is required. Some examples of such algorithms are the multi-layered perceptron methods

[Hay99] and the radial basis function network [Hay99] or the decision trees [Sug06].

Another approach involves the classification of patterns based on the probability of it

belonging to a certain class. These classifiers depend on the probability distributions of

the training patterns; some representative algorithms are the maximum likelihood

parameter estimator [Kay93], the parzen windows approach [Bab96] and the nearest

neighbour classifier [And02].

Arguably the simplest method for pattern classification is the k-NN classifier,

which is based on the Nearest Neighbour (NN) rule, one of the better-known instance

 9

based learning algorithms to perform supervised non-parametric classification. It is

widely used in machine learning because of its simplicity and the fact that its error

probability is bounded by twice the Bayes error rate. All instances of the training set are

represented by position vectors in a multidimensional feature space, and the k-Nearest

Neighbour rule (k-NN) classifies unseen samples based on their closest k instances and

requires k being a positive integer. In its simplest form, where k=1, the output value is

simply the class of the nearest neighbour. Otherwise, the pattern is assigned to the class

of the majority of its k nearest neighbours. Hence, in order to avoid ties between classes,

k is usually chosen as an odd number. Despite the fact that k-NN is a learning method that

can be used for regression as well, it is utilized only as a non-parametric classifier in this

PhD study.

1.4 Problem and Scope

Algorithms that use the NN rule, and instance-based learning methods more generally,

suffer from two principal issues. Firstly, a major concern is storage requirement because

of the need to store the entire dataset in some type of memory. Secondly, the increased

time complexity from having to search large portions of the stored prototypes, in order to

predict new queries. The larger the dataset used the higher the response time of the

algorithm. Apart from these, a third concern is the noisy instances present in the database.

Along with the entire training set noisy instances are also stored, thus degrading accuracy

and overall performance of the algorithm.

In order to tackle these drawbacks, rapid advances have been made in the field of

data condensation, with the development of numerous methods that target in reducing the

training set size, while keeping the error rate as low as possible. Hence, the problem in

instance reduction is to determine a set of

!

m << n = X prototypes using the original

training set

!

X "Rd that can accurately describe the original distribution. Therefore, the

resultant prototype set will allow not only high classification accuracy but also minimal

cardinality, and as a result computational efficiency. So, data reduction methods seek the

minimum number of instances that can provide the maximum possible classification

accuracy, and as [Gar10] and [Tri11] explain in their review articles, can be categorized

to instance selection algorithms, which select a small representative subset of the initial

training set, and instance abstraction algorithms that generate a new set of prototypes to

replace the initial ones. The latter type of methods can often result in higher

condensation, due to the freedom of replacing instances, but this may lose track of the

contribution of the original instances. On the other hand, the former type of methods is

only allowed to select instances from the original ones, leading thus to lower

 10

condensation, in an attempt to optimise both objectives of accuracy and condensation

together. Which type is used depends on the focus of the application. If the creation of

new samples to fill regions in the domain of the problem to improve weak representative

samples in the original dataset is prioritised, the latter type is preferred. Otherwise, if the

preservation of the geometric and discriminative characteristics of the original instances

is prioritised, the former type is preferred. Also, instance selection methods are usually

much faster.

The wide range of algorithms developed to deal with the issues related to

instance-based learning show how significant the problem is. As a result, many works

including [Jan04a, Jan04b, Wil00], have analysed and compared various instance

reduction techniques. A clear distinction should be made between instance reduction,

with which this thesis is concerned, and dimensionality reduction. Considering a dataset

as a matrix, instance reduction decreases the number of the rows of the matrix

(attributes), while dimensionality reduction deals with the columns (features) of the

matrix.

The aim of this thesis is two-fold. Firstly, to solve the problem of instance-based

learning using new alternatives. This is achieved by introducing novel techniques for

instance reduction. Secondly, to contribute in the field of machine learning not only

theoretically, but also practically. In order for the developed algorithms to be successful,

they should involve innovative aspects, but they should also be effective. Therefore, the

proposed techniques should account for improvements and enhancements in terms of the

required objectives, when compared to already known methods in the literature.

In chapters 2 and 3, an investigation of previous work done on the field of

instance selection and abstraction is presented and a thorough analysis of each method is

performed. This thesis identifies the important aspects of data condensation, based on

which it proposes some novel techniques for prototype reduction. These techniques are

presented in chapters 4, 5 and 6. The epilogue recapitulates the contributions and

advantages of the proposed algorithm, while it discusses possible improvements along

with new topics for research.

1.5 Practical Development

In order to test the methods proposed in this thesis various experiments were performed

on both synthetic and real datasets. Synthetic examples used were created by Dr

Goulerma’s group in Liverpool University, while the real datasets were selected from the

UCI Machine Learning Repository [Bla98]. In order to evaluate the performance and the

capabilities of these methods, a comparison was made against other well-known instance

 11

reduction techniques. Some of these algorithms were implemented by the author of this

thesis, while their respective authors provided others. The software tool used to develop

the algorithms and obtain all experimental results was Matlab.

1.6 Publications

• Nikolaidis, K., Rodriguez, M.E., Goulermas, J.Y., and Wu, Q.H., 2010. “Instance

seriation for prototype abstraction.” In Proc. of IEEE 5th BICTA International

Conference, Liverpool, pp. 1351-1355.

• Rodriguez, M.E., Nikolaidis, K., Goulermas, J.Y., Ralph, J.F., and Miu, T., 2010.

“Collaborative projection pursuit for face recognition.” In Proc. of IEEE 5th BICTA

International Conference, Liverpool, UK.
• Nikolaidis, K., Goulermas, J.Y., and Wu, Q.H., 2011. “A class boundary preserving

algorithm for data condensation.” Pattern Recognition, vol.44, pp. 704-715.
• Nikolaidis, K., Rodriguez, M.E., Goulermas, J.Y., and Wu, Q.H., 2012. “Spectral graph

optimization for instance reduction.” IEEE Trans. Neural Networks, vol. 23, pp. 1169-

1175.
• Rodriguez, M.E., Nikolaidis, K., Miu, T., Ralph, J.F., and Goulermas, J.Y., 2012.

“Towards collaborative feature extraction for face recognition.” Natural Computing,

vol.11(3), pp. 395-404.
• Nikolaidis, K., Miu, T., and Goulermas, J.Y., 2013. “Prototype reduction based on direct

weighted pruning.” Pattern Recognition. (submitted for publication)

 12

CHAPTER 2:

INSTANCE SELECTION

The aim of this chapter is to accurately describe the field of prototype reduction, more

specifically instance selection algorithms, and provide a thorough analysis of various

existing methods in the literature. Section 2.1 briefly describes the concept of instance

selection and its processes. Section 2.2 describes instance selection algorithms that are

based on the use of the nearest neighbour concept. In section 2.3 methods that define the

relative neighbourhood of prototypes are presented. Section 2.4 is an extensive analysis

of various graph methods used for prototype reduction. In 2.5 algorithms using instance

weight learning for instance selection are described, while section 2.6 demonstrates the

developments on nearest enemy-based techniques for instances reduction. Section 2.7

investigates instance-based techniques that use density estimation as the main tool for

condensation. Finally, section 2.8 presents some novel prototype selection algorithms that

employ unusual means, such as evolutionary computation or projection of samples to new

dissimilarity spaces.

2.1 Introduction

In order to tackle all problems that arise with the use of the nearest neighbour rule in

classification, numerous methods have been developed and exist in the literature, that

intend to prune the number of prototypes and simultaneously keep the error rate as low as

possible. These data condensation methods can be categorized in to two subgroups,

instance selection algorithms, which select a small representative subset of the initial

training set, and prototype abstraction algorithms that generate a new set of prototypes to

replace the initial ones. The former type of methods has been widely used since it has

been the subject of research for nearly 50 years, since the first selective algorithms were

introduced [Har68] and [Wil72]. By simply selecting a subset of the initial training set,

selection algorithms have the advantage of maintaining the majority of the information

 13

existing in the training set. Prototype selection methods can be further subcategorized to

editing algorithms, that aim to improve classification accuracy by removing harmful

instances, condensation techniques that focus on discarding superfluous instances, and

hybrid methods, which are a combination of the other two, and demonstrate highly

competitive performances since they deal not only with noisy but redundant prototypes as

well [Gar10].

 Classification involves the use of a training set X of preclassified instances, and a

testing set of unseen samples. In instance selection algorithms, during the training

process, a small subset of X is selected and applying the k-NN classifier it is used to

predict the class labels of all samples in the testing set. As already mentioned no artificial

prototypes are generated; Hence, having an initial set

!

X = x "#d{ } of n d-dimensional

instances, where each sample is associated with a unique class label

!

" x()#L = l1,...,lc{ }, the problem in instance selection is to determine a set of m

representative prototypes from X (where m << n) that best describes the initial

distribution.

2.2 Editing and Condensing Nearest Neighbour

One of the simplest editing rules is the Editing Nearest Neighbour (ENN), proposed by

Wilson in 1972 [Wil72]. Given a set of n labeled instances, Wilson used the k nearest

neighbour rule to reach a decision for every instance and filter the original training set.

His method selects an instance xi from X and its k nearest neighbours are computed. The

class of xi is determined by the class of the majority of its k nearest neighbours, and

whenever a tie occurs, random selection is used to assign the class. In case of

misclassification, xi is removed from the original set X. Hence, ENN is an iterative

algorithm and the final subset contains only instances that are correctly classified by their

k-NN. As a result, noisy samples are removed resulting to the improvement of the

classification accuracy.

 The Condensed Nearest Neighbour (CNN) rule, introduced by Peter Hart in 1968

[Har68], is one of the first techniques of supervised instance selection. It is an additive

algorithm that concentrates on reducing a training set to the smallest possible subset S

that can classify all instances of the initial set correctly. Initially, a random instance xi of

X is selected and inserted in S. Then, another instance xj is chosen and using the NN rule

is classified according to S. In case of miss-classification it is inserted in S, thus the

additive nature of CNN. This repetitive process continues until all samples are classified

correctly. In contrast to ENN that enhances classification accuracy by discarding noise,

 14

CNN aims to preserve the classification accuracy already achieved by selecting instances

of the training set that correctly classify the rest.

 CNN has the disadvantage that much depends on random selection. Therefore,

many algorithms were prompted by it, in search of the optimum subset S. One such

algorithm is the Reduced Nearest Neighbour (RNN), which enhances data condensation

by removing redundant instances [Gat72]. After the application of CNN every prototype

xi in S is tested and if its removal results in no miss-classifications in X, xi is considered

superfluous and permanently discarded. Although RNN highly reduces the size of the

original set, it does not guarantee a minimal output set.

Another instance selection technique is the Selective Nearest Neighbour (SNN)

proposed in [Rit75], which retains instances close to the class boundaries. SNN rule states

that every instance xi of the original training set has to be closer to a same class (friend)

instance of the output subset than to any other enemy instance. In order to achieve this, a

binary n ! n matrix A is constructed, such that:

!

A ji =
1 if x j "Yi
0 if x j #Yi

$
%
&

 (2.1)

where Yi is the set of all friend instances of xi that lie closer than its nearest enemy. Some

rules for deletion of rows and columns of A are then applied to obtain the final subset.

Although this method can display competitive results, the use of A largely increases its

complexity compared to methods such as CNN and RNN.

Based on the SNN algorithm, another method was developed to decrease the

computational complexity of the nearest neighbour classification. The Modified Selective

Subset (MSS) introduced in [Bar05]. The proposed algorithm is similar to SNN with a

slight modification on the Yi set, which drives MSS to select instances that lie closer to

the class boundaries. Consequently, the main purpose of MSS is not a minimal consistent

subset like SNN, but rather a more accurate representation of the initial class borders.

In [Tom76] another extension of CNN was introduced. The rule of Ordered

CNN aims by discarding centre instances, to extract a small subset of X that has high

classification accuracy. To achieve this, OCNN randomly selects an instance xi along

with its nearest enemy xj, which by definition is going to be a boundary sample. The

nearest enemy of xj that classifies xi correctly is then computed, xk, and added to an

initially empty set S (Fig. 2.I). All patterns in the original training set are then classified

according to S and every time a misclassification occurs the same process takes place.

When all patterns are accurately classified and the algorithm terminates, the output set S

contains instances that lie close to the decision boundaries.

 15

Figure 2.I- A two class two dimensional example. For an instance xi the OCNN algorithm successively
computes its nearest enemy xj and the same-class border prototype xk.

Chidananda introduced another method for instance condensation using the

concept of mutual neighbourhood [Chi79]. The proposed technique is based on the CNN

algorithm with the major difference being its initialization. The Mutual Neighbourhood

Value (MNV) of every sample is determined, which is computed with respect to the

nearest enemy of every instance. The initial prototype that is selected and moved to an

initially empty set S is the one with the lowest MNV. Each sample remaining in the

original set is then classified according to S, and only misclassified instances are

maintained. This process, similar to CNN, ends only when the final output set can

classify all instances successfully. During the second stage of the algorithm an evaluation

of the remaining instances takes place. Hence, to deal with redundant samples, an

instance xi is eliminated from S if its removal results in no misclassifications. When all

instances are treated, the algorithm terminates and the final subset contains highly

informative samples that are close to the class boundaries.

In [Aha91] three methods for instance-based learning were introduced, the

Growth (additive) algorithm, Shrink (subtractive) algorithm and Instance Based 3

algorithm (IB3). The Growth algorithm is a very similar technique to CNN since it is

initialized with an empty set S and a randomly selected instance xi. Every instance of the

original training set is then classified with respect to S and in case of misclassification is

inserted in S. In contrast to CNN only one pass through the training set occurs; hence, the

Growth algorithm is not very efficient, nor robust to noise. On the contrary, the Shrink

algorithm is initialized with S being equal to the original training set X. Then every

 16

instance is checked and, if it can be classified correctly by the remaining prototypes of S

is discarded. According to Wilson [Wil00], this algorithm is extremely sensitive to noise

compared to RNN. From the three methods proposed, IB3, which is also an additive

algorithm, is the most effective. Only instances that can be characterized as acceptable

are moved in to S. An instance xi is retained if it is not classified correctly by its nearest

acceptable instance. The confidence interval that determines acceptability is defined as:

!

p +
z2

2r
± z

p p "1()
r

+
z2

4r2

1+
z2

r

 (2.2)

where z is the confidence factor1, r is the number of classification attempts of the given

instance of S, and p is the classification accuracy based on n. An instance is considered

acceptable and retained by IB3 if its accuracy is higher than the upper bound of the

confidence interval. While every instance that has lower acceptability than the lower limit

is removed immediately from S, if an instance is within the confidence interval it is not

discarded until the very end of the process.

Another algorithm, called Fast Condensed Nearest Neighbour, was recently

proposed in [Ang07a], which discards redundant and harmful instances to largely reduce

the size of the training set X. FCNN uses a subset S, which in the initial state holds the

centroids of the classes of X. For every instance xi of S, FCNN denotes two sets A and B,

where A contains all Voronoi neighbours of xi, i.e. instances that are closer to xi than to

any other prototype in S, while B holds the Voronoi enemies of xi. During each iteration a

representative instance from B, with respect to xi, is inserted in S and sets A and B for all

instances are updated. This procedure continues until all elements of S have no Voronoi

enemies, meaning B is empty for every xi belonging to S. In the specific work, two

different rules to update S are analysed, depending on the way of selecting the

representative sample. In the first case, FCNN1 selects the nearest neighbour of xi in B,

while in the other case the centroids of B are selected. The latter algorithm is called

FCNN2. Additionally, two rules, the triangle inequality and k-Nearest Neighbour, are

used, in order to further reduce the computation time and error rate of the algorithm

respectively. FCNN is another instance selection method that discards centre instances;

hence, S consists mainly of instances close to the decision boundary. In order to further

improve the performance of Fast Condensation Nearest Neighbour, a new method of

condensed nearest neighbour was introduced in [Ang07b], the Parallel FCNN. In this

case, the entire training set is divided in k subsets X1, X2…Xk that are then assigned to one

of k parallel nodes P1,…, Pk. Each node uses the FCNN algorithm described before to

!"0.9 is used for acceptance and 0.7 to reject."

 17

reduce the number of instances. Computational time required is then reduced as all nodes

can communicate with each other to compute the final training set S.

The modified condensed nearest neighbour (MCNN), which is also an instance

reduction method based on Hart’s algorithm, was proposed in [Sus02]. MCNN initializes

a subset S of the original set X, holding just one instance as a representative prototype for

each class. Two different cases have been proposed for selecting the initial

representatives, either by computing the sample mean of each class and then selecting the

closest prototype to the computed value or by selecting the centroids of every class (as

seen in Fig. 2.II). The entire set of instances is then classified according to the

representative prototypes and all misclassified instances are moved to another set, from

which new representative are selected using the same method as before. S is then updated

and the training set is once more evaluated in a similar manner until all samples in the

training set are classified correctly. The MCNN algorithm also includes a deletion

operator to further improve its performance. So every prototype in the final subset S is

evaluated and the ones found superfluous are discarded, leading to an even smaller output

subset.

Figure 2.II- A two class two dimensional example similar to the one used in Fig. 2.I. The representative
prototypes of the two classes are indicated by “!”.

In [Ull74] two more methods for obtaining a reduced subset S are introduced.

The first method developed is very similar to the CNN algorithm with the only difference

being the use of a ‘dead-zone’ threshold !. For an instance xi of class label !(xi) the

decision whether to insert xi to S is taken according to the following criterion:

 18

!

xi " xz +# < xi " x j (2.3)

where xz is a same class instance and xj represents instances of other classes !(xj)"!(xi).

This method is simplified to CNN if #=0, and is further enhanced in [Cho06]. The second

method described, involves a matrix manipulation similar to Gates proposal in [Gat72]

with the addition of the ‘dead-zone’ threshold.

In 2006 another data reduction method based on condensed nearest neighbour

was presented, Generalised CNN [Cho06]. GCNN aimed to select a smaller subset S of

the initial training set using an implementation very similar to the one introduced in

[Har68]. In Condensed Nearest Neighbour an instance xi is retained as long as:

!

xi " q " xi " p > 0 (2.4)

where p is the nearest same-class prototype and q is the nearest different-class prototype

of xi. In the case of GCNN the rule to retain a prototype is modified as follows:

!

xi " q " xi " p > #$n for # %[0,1) (2.5)

where !n is the minimum distance between prototypes of different classes. It is obvious

that CNN is a special case of GCNN for "=0. The algorithm randomly selects a prototype

from each class in order to initialize S, and then the process is similar to CNN as all

samples are checked individually with the misclassified ones being moved to a new set.

From this set a new prototype for each class is selected and added to S. The process, as

explained, is iterative and terminates when all prototypes of the original set are correctly

classified. It should be mentioned that the selection of the prototype to be moved in S can

be done either randomly [Cho06], or according to a specific rule (such as centroids or

mean of samples) [Sus02].

A density-based reduction algorithm for identifying and removing outliers was

proposed in [Cao08]. This method defines a score for every instance in the training set,

the density-similarity-neighbor based outlier factor (DSNOF), which is a measure of how

much an instance is considered an outlier. According to this value computed, harmful

instances are recognized and discarded. During the first step of the algorithm the k-

distance2 neighbours of every instance

!

xi " X and its density are determined.

!

D(xi) =
Nk (xi)
kd(xi)

 (2.6)

Where D is the density, kd is the k-distance of xi and

!

Nk (xi) is the size of the k distance

neighbourhood. DSNOF constructs the similar density series (SDS) of xi in a matrix that

consists of its similarity neighbours in descending order. In order to compute the DSNOF

of an instance xi, the average series cost of xi has to be calculated:

K-distance of a point

!

x " X is the distance d(x,o) between x and an instance in X such that:
1) For at least k points

!

o'" X \ x{ } it holds that

!

d(x,o') " d(x,o)
#$ For at most k-1 instances

!

o'" X \ x{ } it holds that

!

d(x,o') < d(x,o)"

 19

!

ASC(xi) =
d(aok)
kk=1

n

" (2.7)

where d(aok) is the distance between two adjacent instances in SDS. The final step is the

calculation of DSNOF, which is expressed as:

!

DSNOF(xi) =
Nk (xi) ASC(xi)

ASC(o)
o"Nk (xi)

#
 (2.8)

DSNOF is the probability of a data point being an outlier, hence, instances with high such

values, which exceed a certain threshold set by the user, are considered outliers and can

finally be removed.

2.3 Neighbourhood based Approaches

In the nearest neighbour approach only the distance between instances is taken into

consideration to define the relative neighbourhood. On the contrary, two new methods

introduced in [Cha96], the Nearest Centroid Neighbourhood (NCN) and Nearest Mean

Neighbourhood (NMN), use not only closeness but also symmetry to define the

neighbourhood of a prototype. During the first step of the process the nearest neighbour

of xi is determined, xj, and the centroids Mjk of xj and every other instance xk of the

remaining training set

!

X " xi,x j{ } are computed. The instance xz, which produces the

closest centroid to xi, in terms of Euclidean distance, is the one selected to define the

Neighbourhood. In order to resolve ties, the instance that lies the farthest from the

neighbour found previously is selected. As a result, the algorithm determines the

neighbours that lie symmetrically around an instance, and spread in all directions as

illustrated in Figure 2.III(a). In a similar manner to NCN, instead of computing the

centroids between instances, NMN chooses the median to determine the neighbourhood

of each instance in the training set.

 This neighbourhood-based technique can be efficiently employed for data reduction

as proposed in [Loz03], where the geometrical distribution of every instance is

determined by computing its Nearest Centroid Neighbourhood. The neighbourhood of

every prototype includes all instances computed by the NCN algorithm until its nearest

enemy is reached. Then for every region of same class instances, a sample

!

xi " X is

used as the representative prototype. xi has to be chosen carefully as it should cover the

largest area possible, hence, the instance with the largest number of neighbours in its

NCN is selected. Condensing then is achieved by removing the rest of the instances in

each neighbourhood, as can be observed in Fig. 2.III(b). After a group of samples is

discarded, the algorithm proceeds by checking and updating all remaining

 20

neighbourhoods, in case any of the removed instances contribute to more than one

neighbourhood. The algorithm terminates when all instances of the entire training set are

treated. But, in order to further improve the classification capability of the model and

accurately deal with the problem of border instances being removed, some additional

steps were introduced. At the end of the process the condensed training set is used to

classify the initial training set, and all misclassified instances are added to the final

subset. There is also a second variation of the described method, which instead of

selecting a representative prototype for each neighbourhood computes its centroid. As a

result, the output of this method is a reduced set of newly generated prototypes.

(a)

(b)

Figure 2.III- A two class two dimensional example. (a) NCN of a sample pattern x defined by the same-class
instances indicated by “!”. (b) Neighbourhood of instance xi after Lozano’s method has been applied.

In [Guo05] a method for prototype reduction using a global neighbourhood to

represent all instances that lie within it is introduced. The similarity matrix of the entire

training set is computed and each instance has an extra variable that can take two

different values, ‘grouped’ or ‘ungrouped’. Initially this is set to ungrouped for all

samples. The local neighbourhood of every instance xi is defined as the maximum number

of instances that belong to the same class with an additional error rate # defined by the

user. Based on the local neighbourhoods the global neighbourhood, Ni, can be

determined, along with a representative vector R that holds all the required information of

the neighbourhood; the class label of the entire region, the similarity of the furthest

instance inside the neighbourhood to the central instance xi, the number of all the covered

instances and the representative prototype xi. The variable of all samples included in Ni is

then set to ‘grouped’ and the algorithm terminates when all samples are assigned to a

neighbourhood. The resulting vectors can accurately characterize every different region

of the data space and all new instances xj are classified with respect to their similarity to

the representatives R using the following formula:

 21

!

"(xi,x j) = HVDM(xi,x j) # s(xi) (2.9)

where s(xi) is the similarity of the representative of Ni and HVDM is the Value Difference

Metric described in [Sta86], and xj is assigned to class of the representative prototype that

provides minimum score value ". So space is partitioned into neighbourhoods and search

is performed only within the representatives and not through the entire training X.

 A nearest neighbour method that computes local neighbourhoods for

classification was introduced in [Dom02]. The adaptive metric nearest neighbour

algorithm (ADAMENN) proposed a new distance metric, the Chi-squared distance,

which is capable of producing more homogeneous neighbourhoods. ADAMENN is an

adaptive algorithm for pattern classification. Similarly, another adaptive metric technique

for producing neighbourhoods was presented in [Has96]. In this case linear discriminant

analysis was used to determine the suitable metric. In general, neighbourhoods and

neighbourhood relations are very important concepts in the field of machine learning.

Initially, topological algorithms that deal with neighbourhood spaces were designed to

operate merely as classifiers, such as [Owe84] and [Sal91], or distance metrics [Wei09],

in order to exceed the performance of other local classifiers as the k-NN rule. However,

neighbourhood based techniques are now considered a very powerful tool that is widely

used in various applications of machine learning, such as instance reduction, which has

already been presented in this section, or for feature selection [Hu08].

2.4 Graph based Approaches

Analysis of the metric space can also be applied to data reduction and particularly

instance removal. In [Tou79], Toussaint used Voronoi-based condensing to reduce the

original data set. Voronoi decomposition divides the vector space into cells, with each

cell containing one instance xi and all the points that are closer to xi than to any other

instance. As a result, an instance is discarded if all of its neighbouring cells (polygons),

the ones that have a common side with the instance, belong to the same class. Therefore,

center instances are removed while class boundaries are maintained, which is the reason

why Voronoi diagrams are widely used in machine learning. Toussaint also provided a

very thorough review of graph methods and prototype reduction in [Tou80], while he also

proposed the concept of Relative Neighbourhood Graph that computes the geometrical

neighbourhood of every instance. This method has not been used directly for instance

selection but has been employed by other graph-based algorithms [Muh03] and [Jar92].

 22

Figure 2.IV- Voronoi polygons [cs.sunysb.edu]

Another method equivalent to Voronoi diagrams is Gabriel graphs, which are

formed when two Gabriel neighbours are connected with an edge. Two points xi and xj,

are Gabriel neighbours when the disk having line segment xixj as its diameter contains no

other points. This method is used in the Hybrid Gabriel-Graph algorithm introduced in

[Bha05]. In order to compute the Gabriel neighbours of the samples in the training set, a

framework called GSASH, Gabriel spatial approximation sample hierarchy, is proposed

by Bhattacharya. GSASH is a graph, at which every node corresponds to a data item and

nodes that are Gabriel neighbours are connected by an edge. The original training set is

edited in the beginning by using Gabriel neighbours, so instances that are misclassified by

their Gabriel neighbours are permanently discarded. This is a technique based on

Wilson’s editing method [Wil72]. After filtering, in order to remove redundant instances

from the training set, all samples that their Gabriel neighbours belong to the same class

are removed. During the third and final step of the algorithm, the iterative case filtering

(ICF) algorithm [Bri02] is used on the reduced training set to obtain the final output

subset. So, instead of the k-NN method GSASH uses Gabriel neighbours to classify all

new samples.

In [Muh03], the geometrical neighbourhood of every instance xi of X is

determined using the Relative Neighbourhood Graph method [Tou80] and instances

belonging to different classes are either discarded or relabeled. This editing technique is

very efficient for noise and outliers removal, because it uses cutting edge weights to

decide whether an edge between two instances should be cut or not (Fig. 2.V). For an

instance xi belonging to a class li the matching null hypothesis, which is the probability of

an instance in the neighbourhood of xi not belonging to the same class, is defined as:

!

Ho =1" p li() (2.10)

where p is the global proportion of class li in the entire training set. An absolute weight of

cutting edges is computed for every instance xi and given by:

 23

!

Ji = wijIi(j)
j=1

Ni

" (2.11)

where k is the number of instances in the neighbourhood of xi, wij is the weight of the

edge between xi and xj and I are independent and identically distributed random variables,

according to Bernouilli law [Muh03]. Based on the value of J under the null hypothesis

samples can be optimized as good, doubtful or bad and thresholds are set in order to

distinguish between them. When all instances of the training set are evaluated, bad and

doubtful ones are selected and checked individually. From these instances, the ones that

have good instances lying within their neighbourhood are optimized according to the

majority of their k-nearest neighbours, while samples with no good instances within their

k-NN are discarded. This method tries to condense the training set and simultaneously

increase class separability.

(a)

(b)

Figure 2.V- A two class two dimensional example. (a) The Relative Neighbourhood graph is depicted. The
edges between the two classes are cut off.

Another graph-based algorithm is Hit Miss Networks (HMN). These ‘networks’

are directed graphs of instances in the training set [Mar08]. For every sample, the nearest

neighbours from all classes are determined and an edge between the sample and its

neighbours is defined; a hit edge is an edge between instances of the same class, while a

miss edge is defined if instances belong to different classes. As a result, every instance of

X has a number of outgoing edges equal to the total number of classes. A hit and a miss

degree are computed for every node of the training set, as can be observed in Fig. 2.VI.

Based on the hit and miss degrees computed by the HMN algorithm, the following

deletion criterion is applied:

!

wc M(xi) +" > (1# wc)H(xi) (2.12)

where w is the weight of each class l, H and M are the hit and miss degrees respectively,

and " is the error coefficient ("<1).

 24

Figure 2.VI- Hit Miss Network of a two class two dimensional data set. The two numbers next to each
sample pattern indicate its respective hit (solid lines) and miss (dash lines) degrees.

This rule tends to discard isolated instances with zero hit degree, along with noisy

instances. HMN can lead to the removal of a very large number of instances that may

cause a drop in the classification accuracy of the algorithm. Thus, to avoid large losses of

important information, three different heuristics are employed. Firstly, a threshold is set

for the number of vectors belonging to each class. If this number falls below the threshold

set, all discarded instances of the specific class with hit degrees greater than zero are

restored. A second heuristic involves multi-class training sets (more than 3 classes). All

instances that have non-zero hit degree along with a small valued miss degree are

restored. The threshold proposed in [Mar08] is

!

L
2 . Finally, a threshold is set for every

class and instances with a greater number of hit edges than the 25% of their own class are

retained. These instances are likely very close to the class centers contributing to cluster

identification.

 Based on HMN two other algorithms, Class Conditional Instance Selection

(CCIS) [Mar10] and Laplace Instance Filtering (LIF) [Mar09] have been introduced. The

first method is an enhanced version of HMN that makes use of two directed graphs, the

within-class graph

!

Gwc = V ,Ewc() , which is for same class instances and the edge matrix

for a vertex v is defined as:

!

Ewc = u" X :# u() =# v(),u"1NN v(){ } (2.13)

and for enemy instances the between-class graph

!

Gbc = V ,Ebc() that is defined in a

similar manner with an edge matrix:

0 1

1 1

2 1
2 0

0 0

1 2

2 1
1 3

0 0

 25

!

Ebc = u" X :# u() $# v(),u"1NE v(){ } (2.14)

where NE(.) defines the nearest enemy of v. Using the Kullback-Leibler divergence

[Lin91],

!

K p1, p2() v() = p1 v() log p1 v()
1
2 p1 v() + p2 v()()

 (2.15)

where p1(.) and p2(.) are two discrete probability distributions over X. Denoting by pw(.)

and pb(.) the within and between-class degrees of a vertex divided by the total in degree

of Gwc and Gbc respectively, the final class conditional score is given by:

!

CCS v() = K pw, pb() v() "K pb, pw() v() (2.16)

So, CCIS displays negative scores for instances that contribute more to the between-class

divergence and retains the ones with higher scores. This algorithm demonstrates

considerable improvement in the condensation capability compared to its predecessor

HMN.

On the other hand, the latter algorithm, LIF, is of significant importance as it is

the first method to introduce Laplacian graphs to instance selection. So, the Laplace score

is defined as the discrete Laplace operator for the between-class graph acting on the

degree function of the within-class graph. For a vertex u in the between-class graph

connected to the set of vertices v, the Laplace score is defined as

!

L g() u() =
1
d u()

g u()
d u()

"
g v()
d v()

$
%
%

&

'
(
(

u~v
) (2.17)

where

!

d u() is the degree function in the between-class graph and is the degree of

the given vertex in the within-class graph. The above equation can be rewritten in matrix

notation as

!

L g() = LBCWWC1n"1 (2.18)

where is the normalized Laplacian matrix for the between-class graph,

!

WWC is

affinity matrix for the within-class graph, and is a column vector with all its elements

equal to one. The normalization of the Laplacian matrix is performed so that the rows of

the affinity matrix sum to one. Therefore,

!

LBC = I "DBC
"1 2WBCDBC

"1 2 =

1 if u = v
"1

d u()d v()
if u ~ v

0 otherwise

$
% %

&
%
%

 (2.19)

 26

Based on the computed score, similar to HMN, a deletion criterion is employed to make a

decision for every instance, with samples displaying negative values being removed from

the training set. The basic application of the LIF algorithm is to identify and remove

outliers since it operates as a noise filter.

A k-nearest neighbour model that uses a weighted sum of the influence of

different classes on instances is proposed in [Hua07]. This method determines the

neighbourhoods N that accurately represent the entire training set

!

X = x1,...xi,...xn{ }"Rd . After normalising all the input samples, a threshold # and a

density control value p are set, as well as a ‘0’ tag that is assigned to every instance. This

threshold represents the maximum acceptable value of noise allowed in a neighbourhood,

as can be seen in Figure 2.VII. The next step of the algorithm is the computation of the

density of every class li:

!

pi =
mi

2 n
 (2.20)

where mi is the number of instances belonging to the specific class. Choosing an instance

xi with a ‘0’ tag, the algorithm performs a search of its nearest neighbour that does not

satisfy the following condition:

!

k(li)
r

"
pi
p

 (2.21)

where k(li) is the number of instances belonging to class of xi, r is the radius from point xi

and p is the density of the region determined. The neighbourhoods N that satisfy

condition (2.22) are chosen as representative candidates, otherwise the tag of xi becomes

‘-1’.

!

1"
d xi,x j()

r

$

%
%

&

'

(
(

x j)ci *x j +Ni *x j +X
,

1"
d xi,x j()

r

$

%
%

&

'

(
(

j=1, j- i

n

,
 (2.22)

The candidates found are then scanned to determine the one with the largest number of

instances that is set as the class representative3, while all instances covered by it are

tagged as ‘1’. The algorithm terminates when all instances are treated, while new samples

are classified with respect to the computed representatives instead of the original set of

instances.

% In case of ties between candidates the one with the smaller radius r is chosen.

 27

Figure 2.VII- The different radii define different error zones. r1 indicates a zero error allowance. r2 defines
an area where a certain amount of noise is permitted.

2.5 Instance Weight Learning

Instance weight learning (IWL) is a form of lazy learning, which has been used not only

for regression, dimensionality reduction and various other applications, but also for noise

and outlier removal, as well as for prototype reduction [Atk97]. In IWL different weights

w with

!

wi "R
d , are assigned to every instance xi of the original set

!

X = x1,...xi,...xn{ }"Rd , and as explained in [Kan08] these weights show if and how

important an instance is. Although the majority of these methods employ IWL on the

distance metric in order to improve the classification error of the k-NN algorithm like

[Fer07], [Par06a], there exist some cases where IWL has been used directly for prototype

reduction. An example of such a method is the adaptive distance metric proposed in

[Ric99], where misclassified prototypes are moved towards the right class. An

asymmetric weight is assigned to each prototype of the subset and nearest neighbour

classification is applied using a local asymmetrically weighted similarity metric (LASM):

!

"(x,y) = wi(x,y) xi # y
2

i=1

d

$
%

&
'

(

)
* (2.23)

A subset of the original set is selected and two functions, reinforcement R and

punishment P, are defined. Weights are assigned and can be defined as:

!

wi(x,y) =
wi
0(x) if y " xi

wi
1(x) otherwise

$
%

 (2.24)

 28

where w is the weight, xi is the prototype and y is the query. Weights are initialized in the

beginning and a test sample y is selected. Then the nearest neighbour prototype xi of

sample y is determined and if both belong to the same class R(.) is used, otherwise P(.) is

applied. The reinforcement and punishment steps are expressed as:

!

Ri
0 w(x),x,y() =

wi
0(x) " awi

0(x) xi " y if y < xi
wi
0(x) if y # xi

$
%
&

 (2.25)

!

Ri
1 w(x),x,y() =

wi
1(x) " awi

1(x) xi " y if y # xi
wi
1(x) if y < xi

$
%
&

 (2.26)

!

Pi
0 w(x),x,y() =

wi
0(x) +

"
2
1# 2wi

0(x) #1() xi # y if y < xi
wi
0(x) if y $ xi

%
&
'

('
 (2.27)

!

Pi
1 w(x),x,y() =

wi
1(x) +

"
2
1# 2wi

1(x) #1() xi # y if y $ xi
wi
1(x) if y < xi

%
&
'

('
 (2.28)

where

!

" #[0,1] and $#[0,1] are the reinforcement and punishment rates respectively.

The algorithm terminates when all training samples are classified correctly.

On the other hand, condensation methods that employ IWL use various heuristics

to compute the different weights. As a result, the processes each algorithm employs in

order to determine which instances should be discarded and which retained vary largely.

Paredes and Vidal in [Par00b] proposed such a reduction technique that assigns weights to

prototypes and finally discards the ones displaying the highest weight values. Each

prototype xi is assigned a weight wI and the weighted prototype dissimilarity is defined as:

!

y " xi wp
= wi y " xi where wi # 0,$[] (2.29)

In the next step f and e, which are the same and different class nearest prototypes of xi,

are determined and then the ratio

!

xi " f
wp

xi " e wp

 is minimized, so that small weights are

assigned to prototypes that are close to the acceptance region of their own class.

Minimization is provided using the following update equations:

!

w f = w f "
µ x " f wp

we x " e wp

 (2.30)

!

we = we "
µwxi

x " f wp

we
2 x " e wp

 (2.31)

where µ is a user defined learning factor. The same process is repeated for all prototypes

of the training set, and editing occurs, when all prototypes are assigned a weight, by

discarding the ones that have a weight over a certain threshold. This algorithm is an

enhanced version of the original concept, which was initially analysed in [Par00a], and

 29

exhibits a great improvement in terms of the performance of the method. To conclude, the

final version of the specific condensing algorithm is a method that combines the concepts

of IWL for error minimization as proposed in [Par06a] and IWL for prototype reduction

[Par00b], which was introduced in [Par06b].

A recently proposed method for supervised instance-weight learning [Deh07]

uses a similarity metric µ(X) to obtain the optimal weights for every instance xi. This

method achieves condensing of the original training set by optimizing the weights of

misclassified instances, which are discarded at the end of the process. The similarity

metric between xi and instance xj is defined as:

!

µ x j ,xi() =
1" x j " xi

z " y
 (2.32)

where z and y are the two instances that provide the maximum possible distance that can

occur in the training set. The weights w are incorporated indirectly in the similarity metric

in the search of the nearest neighbour of every instance xi.

!

w =max µ x j ,xi()wi | i =1,...,n{ } (2.33)

In the initial state, all samples are retained, hence, all weights are set to 1, and an instance

xi belonging to a class li is randomly selected from X for removal by setting

!

wi = 0. Then,

all same class instances that are correctly classified along with enemy instances that are

misclassified are also removed. All these samples remain unaffected by the change in the

weight of xi. For every remaining instance in the reduced set a score is computed using

function (2.21) and compared to a threshold !, such that

!

x j " li iff Sc(x j) < # .

!

Sc(x j) =
max

j
µ(x j ,xk)wk k " j{ }

µ(x j ,xi)
 (2.34)

The purpose of this method is to optimize the classification accuracy by optimizing the

threshold. So the threshold that leads to the minimum misclassifications is determined

and chosen to train the algorithm. Ultimately, samples that do not contribute to the

improvement of classification accuracy are discarded since a weight of zero is assigned to

them.

 A locally adaptive nearest neighbour technique for classification was presented in

[Dom05]. Although this method is not a direct condensation method since no deletion of

instances occurs, it uses a weighting scheme to define a neighbourhood around a new

query to speed up the classification process.

 30

2.6 Nearest Enemy based Techniques

A prototype reduction technique called Minimal Consistent Set, MCS, which selects a

smaller subset of the original instances in the training set X, was introduced in [Das94].

Its basic concept is that for an instance xi to be correctly classified, an instance xj of the

same class should be closer to xi than its nearest unlike neighbour. For this condition to be

true all samples that lie within a radius of influence defined by the vector and its nearest

enemy are determined and receive a vote. So an instance xi of the training set gets a vote

from every sample it can correctly classify. MCS is a subtractive algorithm as all

instances, after the process of voting is complete, are initially included in the output set.

Therefore, samples are removed in an iterative way by discarding the voters of the most

voted instance. Votes are then updated according to the remaining samples, and the

algorithm terminates when all instances have been processed and no further removals can

occur.
The MCS algorithm is one of the first nearest enemy based techniques in

literature; hence, it presented a number of drawbacks, as noisy instances and outliers

could get few or no votes at all and, as a result, make it into the reduced set. In order to

avoid this effect that could lead to misclassifications and low accuracy, an extension was

proposed in [Zha08]. The proposed method is very similar to MCS as once more for

every instance xi its neighbours within the distance r are determined and voted for. But, in

this case the algorithm is additive since the output set is initially empty. Again the most

voted instance is selected during each iteration and added to the reduced set, while the

votes are updated. The concept behind this procedure is that the instance that guarantees

the most correct classifications is retained. The other modification of this method is the

existence of an error threshold, which when exceeded the algorithm terminates. Allowing

for an error in the training set means that not all instances will be accounted for in the

resulting subset, hence, noisy instances with few votes will not be considered at the later

stages of the algorithm. As a result the classification accuracy displayed by MCS is

improved as this algorithm deals not only with redundant instances but also with harmful

ones.

Wilson and Martinez presented a series of subtractive algorithms called

Decremental Reduction Optimization Procedure (DROP 1-5) and Decremental Encoding

Length (DEL) [Wil00]. DROP 1 is the basic reduction model, while DROP 2-5 and DEL

are expansions that enhance the performance of the algorithm via noise filters and other

extensions. These condensation procedures make use of the concept of associate

instances of a sample xi, which are instances that have xi as one of their k nearest

neighbours. Then, the deletion of a sample depends on the effect it will have on the

classification of its associates. More specifically, DROP 1 is a subtractive algorithm that

 31

discards an instance xi if the majority of its associates are classified correctly in the

absence of xi. In order to tackle some deficiencies of this method, DROP 2 was

introduced that sorts instances in descending order of distance from their nearest enemy.

This way samples near the class boundaries, which account for the most important

information of the underlying distribution, are processed last; hence, retained by the

algorithm. But, the most efficient of the algorithms is DROP 3, which best addresses the

problem of noisy instances. Compared to DROP 2 a filter is added as a preprocessing step

to remove samples that are misclassified by their k nearest neighbours. The next method,

DROP 4, extends the filtering process, so that instances are removed only if they are not

classified correctly by their k nearest neighbours and their removal does not affect

classification accuracy. This method is proposed in order to avoid the removal of a very

large number of instances that may occur by DROP 3, but as a drawback it displays

increased computational complexity. DROP 5 is another extension of DROP 2, where

instances are processed in ascending order of nearest enemy distance, in order to obtain

better filtering of noisy instances. Finally, DEL is proposed, which is a modification of

DROP 4. In this method the filtering criterion is altered and an instance is considered

noisy and discarded if it is misclassified by its k nearest neighbours and its deletion does

not lead to an increase of the encoding length cost.
A case-based algorithm that uses a deletion criterion to reduce the size of the

original set of samples is introduced in [Smy95]. For every instance xi, the Reachable set,

which contains all same class instances that lie within a hypersphere centred at xi with a

radius equal to the distance between xi and its nearest enemy sample, and the Coverage

set are computed. The coverage set contains all instances that include xi in their reachable

set. According to these sets all instances are assigned to one of the four following

categories. Pivotal cases, which are instances that can be solved only by themselves;

hence, their reachable set size is one. Pivotal instances are basically outliers. Auxiliary

cases that are surplus samples and do not affect the consistency of the algorithm. Their

coverage set is a subset of the coverage set of another instance. There are also spanning

instances, which are samples that their presence is not immediately effective. These

instances may become essential to the competence of the method if some other samples

are removed. And lastly, support cases that come in groups and solve each other. The

deletion of such instances affects the ability of the algorithm only when the whole group

is removed. So, the Footprint Deletion algorithm organizes instances according to the

effect their deletion will have on the stability of the algorithm and auxiliary cases, which

are considered redundant, are treated first; the support cases follow up, spanning cases

and then finally pivotal instances. The problem with this method is that it does not take

into consideration the performance of the algorithm as it focuses only on competence.

 32

Another enemy based technique that uses lazy learning to train the algorithm is

the Iterative Case Filtering algorithm (ICF), which was initially introduced in [Bri99] and

was optimized in [Bri02]. The main scope of ICF is to discard instances close to class

centers and retain the ones that surround the class boundaries. Similar to DROP 3, ICF

uses Wilson’s editing algorithm [Wil72] as a preprocessing step to handle noisy samples.

Based on the concepts of coverage and reachability that already have been described, ICF

removes an instance if it can be described by more samples than it can classify correctly.

This means that instances that display a larger reachable set than the size of the coverage

set are discarded. The result of this algorithm is a decline in computational complexity,

since search is performed in a very small set of training instances compared to the entire

training set T.

A very recent reduction algorithm that uses the concept of nearest enemy is

described in [Fay09]. The Template Reduction for k-NN (TRKNN) is an iterative

procedure for removing redundant samples. Using the one-against-all concept the

algorithm starts from internal samples and constructs chains of nearest enemies to

determine instances close to class boundaries. The chain is stopped when the successive

distances converge and the change is less than an error-bounded threshold.

2.7 Density based Approaches

Astrahan [Ast70] was one of the first to use a prototype reduction algorithm that used

density estimation of a point for clustering. A disc of radius r is used in order to estimate

the density around an instance and using these estimations the sample with the highest

density is selected. Another disc of different radius centered at the densest sample is then

computed and all instances that lie within it are discarded.

Based on Astrahan’s method another algorithm using density estimation for

efficient data reduction was proposed in [Mit02]. Density estimation is performed for

every instance xi of the training set

!

X = x1,x2...xi ...xn{ }"Rd :

!

ˆ f N (xi) =
k
n
"

1
Ar

 (2.35)

where Ar is the volume of the hypersphere around xi, n the size of X and k is the number

of nearest neighbours within the hypersphere, which is a user defined variable. This

estimation is then used for data reduction, as for every sample, its distance

!

xk " xi to

its kth nearest neighbour is computed and the instance that displays the lowest distance is

going to be the one with the largest density fN (Fig. 2.VIII). The selected prototype xi is

then inserted in the new reduced subset, which is initially empty, while all samples in X

 33

that lie within a radius of

!

2 xk " xi from xi are permanently removed. The proposed

algorithm is an iterative procedure and the described process is repeated until all samples

in X are processed. It should be noted that the final output of the algorithm is a subset of

the original training set, where the denser regions are represented by a larger number of

points, since the radius r that defines the hypersphere is inversely proportional to the

computed density fN.

Figure 2.VIII- A smaller radius is defined by high density instances compared to samples laying in more
sparse regions. All instances laying within the illustrated discs are discarded.

Another selection technique for removing superfluous samples from the original

training set was proposed in [Wu02]. The basic concept of this algorithm is to remove

samples from dense regions of same class instances in the feature space. Thinning of such

regions does not affect the competence of the method as long as the number of remaining

prototypes is larger than k, the number of instances used by the k-NN classifier. In order

to resolve between relevant and redundant samples, a deletion score for every instance is

computed, namely its attractive capacity, with high values of this score indicating

instances that will be discarded.

A successful density-based method for data condensation using weighting of

instances is introduced in [Gir03]. Having an initial training set

!

X "Rd , Parzen

windows is used to obtain an estimate of the density of every instance Equation (2.36)

and the maximum likelihood estimator criterion (MLE) is used to determine the

weighting coefficients according to Equation (2.37).

!

ˆ p (x;h,") = " nKh (x,xn)
n =1

N

(2.36)

 34

where h is the width of the kernel and $ a weighting coefficient.

!

ˆ " MLE = argmax
"

1
N

log " nKh (xm,xn)
n=1

N

#
m=1

N

(2.37)

Subject to two constraints

!

" n
n
=1 and " n $ 0%n . The Integrated Squared Error, which

for a density estimate with a parameter % is expressed by Equation (2.38), is then

minimized to achieve data reduction.

!

ˆ " = argmin ˆ p 2(x;")dx # 2E p(x){ ˆ p (x;")}$ (2.38)

where

!

E p(x){ ˆ p (x)} is the expectation of

!

ˆ p (x) with respect to

!

p(x) . Equation (2.31)

can be further investigated:

!

E p(x){ ˆ p (x;")} # $ i ˆ p h (xi)
i=1

N

% (2.39)

!

ˆ p 2(x;")dx =# $ i$ j Kh (x, xi)Kh (x, x j)dx#
i, j =1

N

% = $ i$ jC(xi,x j)
i, j =1

N

% (2.40)

Combining (2.38), (2.39), (2.40) and applying a Gaussian window Gh(x,xi) the argument

that has to be optimized for estimating ISE becomes:

!

argmin
"

1
2

" i" jG2h (xi,x j) # " i ˆ p h (xi)
i=1

N

$
j =1

N

$
i=1

N

$ (2.41)

As a result, the proposed algorithm, using smooth density estimation, retains only

instances of high density regions as the weights of low density samples are driven to 0

and are discarded from the training set.

 As already mentioned reduction algorithms are widely used in machine learning

to improve the performance of classifiers and tackle problems such as storage, noise and

time requirements that make the operation of classifiers inefficient. In [Ber00] a new

adaptive k-NN classifier was introduced that classifies samples based on the local kernel

estimation computed by the k-nearest neighbours of every unseen pattern. In order to

simplify the complexity of this method, and enable its use on real applications, a

reduction technique is applied as an adaptive mixture model is used instead of the local

Parzen window estimator. As a result, the computation requirements of the model are

highly reduced.

 In [Hua06] another density based algorithm with two variations was proposed

that uses entropy to determine appropriate representative prototypes from the original set

of instances in X. Initially, the algorithm randomly selects k representative samples,

where k is the desired number of prototypes in the output subset, and computes the

representative entropy or the weighted representative entropy of every instance xi in X.

The two methods are called Representative Entropy Data Reduction (REDR) and

 35

weighted representative Data Reduction (WREDR) respectively. At every iteration a

search process selects the sample that displays the minimum value of RE/WRE in order

to replace the worst representative prototype (the one with the maximum RE/WRE

value). The closest samples to the new prototype are then removed from the training set

to avoid overlapping representatives, and the method terminates when no change in

selected prototypes occurs. The proposed algorithm identifies prototypes that are

uniformly scattered in space in order to avoid the problem of overlapping, while

simultaneously describing the entire distribution as accurately as possible.

2.8 Miscellaneous Approaches

In [Pek06] various existing instance reduction algorithms, such as ModeSeek, which is a

selection algorithm and k-Centers that is an abstraction method, are discussed and

compared. The k-Centers technique is based on local neighbourhoods and selects a subset

of k instances per class that are retained. Initially k representatives for every class are

randomly selected, and inserted in a new set of representatives. For every instance xi of

the training set, its nearest neighbour xj in the representative set is determined, and xi is

added to a set Aj of instances xj can correctly solve. Finally, the center of every set Aj is

used as the representative. But, the novelty of the described algorithm is the dissimilarity

metric used, which ensures that these instances are going to be evenly scattered in the

prototype space. But the novelty of the reduction technique proposed lies in the fact that

all prototypes are initially projected to a dissimilarity space and using the new

representation condensation and classification of instances is performed. The designing of

a dissimilarity space can be very complicated as it is equivalent to designing new features

for the training set X. But as explained also in [Nik12], if the measure is efficient and well

designed it can largely improve the discriminatory capabilities of the algorithm. For

example in the new representation space weights can be optimized based on the

importance of every sample with surplus instances having small valued weights. In

overall, methods that project instances in a (dis)similarity space prior to any reduction

process can achieve better generalization. In [Pek06] it is proven that a different

representation on a new dissimilarity space can successfully capture information that

gives a more accurate description of the underlying distribution. Therefore, Bayesian

classifiers perform better. Using a representation set Z, for a simple two-class problem,

the linear decision function is defined as:

!

f D x,Z()() = D x,Z() " 1
2
m1 +m2()

$ %
&

' (

T

) C"1 m1 "m2() + log
p1
p2

 (2.42)

 36

where D(.,Z) is the dissimilarity mapping, m1 and m2 are the mean vectors of the

respective prototypes, p1 and p2 are the class prior probabilities and C the sample

covariance matrix of the dissimilarity space. Similarly, the quadratic decision surface is

given by

!

f D x,Z()() = "1()i D x,Z() "mi()T # Ci
"1 D x,Z() "mi() + 2log

p1
p2

+ log
C1
C2i=1

2

$

 (2.43)

where C1 and C2 are the estimated class covariance matrices in the representation space of

the two instances respectively. The basic concept of creating a representation space using

dissimilarity functions was a promising direction on instance selection, thus, since its

proposal by Pekalska in 2006, it has been used for learning in various other techniques

such as [Dui08] and [Pek08].

 Another such method is introduced in [Rie09] where a graph representation is

designed and different selection techniques, already introduced in literature, are employed

to determine the final reduced set of instances. So, the proposed algorithm uses the

reduction methods as a tool on the graph embedding. Initially, a graph

!

G = V ,E() is

defined, where V is the finite set of nodes and E is the set of edges. The distance metric

used in order to construct the dissimilarity graph is chosen to be the graph edit distance,

which represents the minimum cost needed to transform one graph into another. As

explained in [Zen09] graph edit distance is a widely used similarity metric, employed in

various applications such as computer vision and pattern analysis, despite its large

computational complexity. So the graph edit distance is given by

!

d g1,g2() = min
e1 ,...,ek()"Y g1 ,g2()

J ei()
i=1

k

(2.44)

where g1 and g2 are the source and target graphs respectively, J the edit cost function, e is

the edit operation and Y(.) represents the group of edit paths required to transform the

source graph g1 into the target graph g2. Using the above equation the graph embedding

proposed by this method defines the following mapping:

!

"n
P g()! d g, p1(),...,d g, pn()() (2.45)

where d(.) is the dissimilarity measure used, which is the edit graph distance in the

particular case, between the selected graph g and pj that is the j-th prototype. The above

embedding is of exponential complexity due to the computation of the graph edit

distance. Then the algorithm proceeds with the selection of prototypes employing

different reduction algorithms. Using the dissimilarities between instances as features, the

first attempt to determine a smaller subset makes use of the CNN algorithm introduced in

[Har68]. After the condensing technique, modified condensing proposed in [Sus02] is

employed. Other methods used for reduction of instances involve the reduced and

 37

selective nearest neighbours, RNN [Gat72] and SNN [Rit75] respectively, that have

already described, and Chang’s merging algorithm [Cha74]. Finally, an editing approach

is also tested [Dev80], that is a technique based on ENN and focuses on removing outliers

that are misclassified by the 3-NN classifier. As a conclusion, the major contribution of

the specific method is not the reduction process but rather the representation of instances

as graphs with each one being defined as a set of dissimilarities.

Despite the continuous advances in the field of instance-based learning, the

application of evolutionary algorithms to instance selection has only recently been

discussed. In general, evolutionary methods use chromosome modeling, where each

chromosome represents one plausible solution to the problem of instance selection, to

perform a genetic search for the best possible subset of prototypes. The major drawback

of evolutionary computation for instance reduction is the increased complexity and the

high computational requirements of large datasets. In [Can05, Can06] a model combining

the genetic algorithm CHC with a stratification strategy to tackle this problem is

introduced. Initially, n individuals are generated from a parent population. Then, these are

randomly paired to create offspring. By selecting the best chromosomes between the

parents and the offspring for further reproduction, the population gradually converges to

the better optimum.

 Another evolutionary method for instance selection has been presented in

[Ped08] and expanded in [Gar09], where a recursive divide and conquer technique is used

to reduce the computational complexity of the algorithm. The proposed method divides

the training set in subsets and the instance selection algorithm is applied on each subset

independently. The retained prototypes are then re-joined and the partitioning procedure

along with the application of the selection algorithm is repeated.

2.9 Conclusion

In this chapter, an extensive survey of instance selection algorithms has been provided,

along with their main characteristics. Experimental analysis on selection techniques has

shown that no ideal method exists, but which algorithm is used depends on the focus of

the application at hand. Instance selection algorithms display high speeds and very

competitive accuracies because they preserve the geometric and discriminative

characteristics of the original instances. On the other hand, the fact that these methods are

only allowed to select instances from the original ones, leads to relatively low

condensation. To conclude, the user has to understand the main advantages and

disadvantages of every algorithm in order to determine which one to choose.

 38

CHAPTER 3:

INSTANCE ABSTRACTION

In this chapter an overview of the abstraction algorithms that exist in the literature is

provided. The structure of this chapter is as follows. Section 3.1 presents the process of

prototype generation, which substitutes the original training set with a set of newly

generated instances. Section 3.2 thoroughly describes various prototype-condensing

methods that merge instances based on some fusion criterion. Section 3.3 is an extensive

analysis of methods that use the Learning Vector Quantization (LVQ) algorithm for

training purposes. Finally, section 3.4 is a brief description of the concept of clustering,

while existing methods employing it for prototype reduction are presented.

3.1 Introduction

As explained by Bezdek and Kuncheva in [Bez98a], prototype reduction algorithms can

be categorized according to the type of reduction into instance selection and prototype

abstraction methods. In contrast to selection algorithms that choose a smaller subset of

relevant prototypes from the original data, abstraction methods generate a new set of

vectors, which do not coincide with any of the original instances, to replace the entire

training set. Generating new prototypes can largely reduce the size of the initial training

set; and, in some cases, their performance can even surpass the performance of selection

algorithms, since prototypes can be fitted in the data space so as to address the needs of

the underlying distribution. For example, prototypes can be generated near the decision

surface to improve the separability between classes and clearly define class borders.

Hence, abstraction techniques can effectively deal with the problem of data sparsity. It is

also possible to use a combination of abstraction and selection methods in order to

achieve adequate and satisfactory results, as performed by the algorithm suggested in

chapter 4.

 39

 With the constant increase in information, prototype reduction has become an

essential preprocessing step of nearest neighbour algorithms, and instance abstraction has

developed in a very promising technique. Depending on their different properties, such as

generation mechanisms or the type of the resulting prototypes, a distinction between them

can be established. The following three categories are defined.

• Rule-based prototype merging. This group includes all algorithms that use a set

of rules to merge instances of the original training set and create a set of new

prototypes. Instances are selected, evaluated and if allowed, meaning if the

merging criterion of the algorithm is met, are replaced by a new prototype that

is defined according to some rule of the algorithm.

• Learning vector quantization methods. It is a competitive learning technique

that is widely used in prototype generation. Prototypes are moved in the data

space according to some rewarding or punishment rules, in order to fit the needs

of the underlying distribution.

• Clustering algorithms. It involves all unsupervised algorithms that separate

samples in different groups of instances that share some certain characteristic.

Each group, or cluster, is then considered a different prototype. Although this is

a field of machine learning that is differentiated from instance reduction, there is

a close relation between clustering and prototype abstraction methods.

3.2 Rule-based Prototype Merging

In [Cha74], Chang presented a method for supervised learning that generated a new set of

prototypes. The objective of this algorithm is to reduce the number of prototypes while

maintaining the highest possible accuracy. Having an initial training set X; Chang’s

algorithm combines all pairs of closest prototypes, as long as they belong to the same

class and their merging does not lead to an increase of classification error. Initially, a

sample xi is randomly selected from the training set, and during the next step of the

algorithm its nearest neighbour xj is determined. The pair is evaluated and if merging is

allowed, the resulting prototype is of the same class as the original ones and is computed

in terms of their weighted average; hence, the resulting prototype x’ is computed using

the following formula:

!

x'=
wixi + w j x j

wi + w j

 (3.1)

where wi and wj are the weights of xi and xj, respectively. The above equation is

simplified to the average vector when both weights are equal to one. Merging occurs if

and only if the new prototype does not increase the number of misclassified instances. If

 40

merging is successful the distance matrix has to be updated accordingly and the whole

process continues for the rest of the instances until no pair of nearest neighbours fulfills

the merging criterion. Being the first abstraction method proposed, Chang’s algorithm

became the foundation for a lot of future work on prototype generation.
In [Bez98b] a new approach of Chang’s method, namely Modified Chang

Algorithm, was discussed, where the data space is partitioned for more efficient search of

prototypes. The merging criterions are the same as in the original method proposed in

1974, but MCA has two main differences compared to its predecessor. The first is the

elimination of weights, as the output of the merging process between two prototypes is

only their arithmetic mean, hence, (3.1) is simplified to:

!

x'=
xi + x j

2
 (3.2)

The second aspect introduced, which largely affects the performance of the algorithm, is

the partition of the prototype space in homogeneous regions. Using the class labels of

prototypes the distance matrix is divided in homogeneous submatrices, in order to

optimize search. As a result, search for the minimum distance between two prototypes is

only performed within submatrices, so pairs of different class labels are avoided. This

process speeds up the algorithm, which, similarly to Chang’s algorithm, terminates when

no merging between the remaining prototypes is allowed.
Another prototype reduction method that separates the feature space in different

class regions, the basic event generation (BEG) algorithm, was introduced for the purpose

of classification [Ich79]. BEG generates homogeneous neighbourhoods in the form of

hyperrectangles, called events, and when allowed, merging of two events occurs,

resulting in the generation of the minimum hyperrectangle that includes both of them. It

should be mentioned that a hypperrectangle could be composed by only one instance. So

instances of the same class label, xi and xj, are merged, if the distance of the minimum

hyperrectangle containing both of them, to the nearest enemy is larger than a user defined

threshold. The main concept of this algorithm is based on the classifier proposed in

[Sto74], and because of a trade-off between the number of generated hyperrectangles and

class separability the threshold has to be optimized.

Furthermore, three conditions that manage the merging of samples of the original

training set X, so that the resulting set of prototypes is not only prototype consistent, but

also cluster consistent, as shown in (Fig. 3.I), were described in [Mol02]. Prototype

consistency is achieved when a prototype set can classify all samples in X correctly. On

the other hand, a set is cluster consistent when every sample in X is closer to its cluster

representative prototype xi than to any other enemy class prototype. Condition (1) that

guarantees cluster consistency states:

 41

!

xk " x j > 2max rk,rj()#l $ l j (3.3)

where xj is the new prototype of class lj, xk represents the closest prototype of xj and rk the

radius of cluster of prototype xk in its respective class. The second condition states:

!

xk " x j > 2max rk,rj()#xk $ A : lk % l j (3.4)

where A is the resulting set of prototypes. Finally, condition (3) states:

!

xk " x > x j " x #x in the cluster of x j

xk " y > x j " y #y in the cluster of xk

$
%
&

' &
#xk (A with lk) li (3.5)

So, using these conditions in the order presented above, the algorithm evaluates all

resulting prototypes and if at least one of them is true, merging of the two cluster

representatives is allowed.

Three additional reduction methods that involve partition of the data space,

hence, their name Reduction by Space Partition (RSP1), (RSP2) and (RSP3), were

proposed in [San04]. The first proposed technique, RSP1, computes the diameter of the

training set by calculating the distance between the two farthest points xi and xj of the

entire training set X. The training set is then divided into two parts, the first one

containing all instances that are closer to xi than to xj, while the second set includes the

rest of the samples that are closer to xj. Similar divisions of the space continue until the

number of partitions reaches a pre-specified value b that is defined by the user. Having a

total number of lc different class labels, during the next step, RSP1 identifies the different

classes that exist in each partition and computes the centroids of every class. These leads

to a maximum value of b&lc centroids, which are then, used as the representative

prototypes. It should me noted that after the partition of the space into subsets, the one

with the largest diameter will contain the largest number of instances. Therefore, it will

(a) (b)

Figure 3.I- A two-class example with three clusters. (a) Example of a cluster consistent set. (b) Example of a
prototype consistent set.

 42

be the one with the highest overlapping degree. In order to tackle this problem, RSP2,

which is an expansion of the previously described method, was suggested. A modification

in the partition criterion is added so that space is divided according to the overlapping

degree. After the first division, which is exactly the same as the first step of RSP1, every

step of RSP2 involves the division of only one of the two resulting subsets, more

specifically the one with the largest diameter. Therefore, RSP2 achieves better

classification results than RSP1. Finally, to further improve the classification

performance of this method, the third proposal, RSP3, involves the partition of every

subset until each partition contains instances from only one class; hence assuring

homogeneity. This is achieved by following the same procedure until each subset

becomes a cluster of training instances of the same class. The division criterion can be

either the one used in RSP1 or in RSP2, since the final subsets will be homogeneous, and

once again the centroids of these subsets are used as the representative prototypes.

Another instance based learning method called prototype generation and filtering

(PGF), was proposed in [Lam02a]. This technique consists of two individual components,

one that uses filtering and one that generates prototypes by merging. Considering instance

abstraction first, PGF incorporates class entropy in the distance metric in order to

maintain an acceptable level of homogeneity in the generated prototypes. So the distance

metric used is as follows:

!

x " y F = # x " y E + 1"#()E x,y() (3.6)

where the final distance between two prototypes depends on two measures, the euclidean

distance between them and the entropy E. A balancing parameter ' is used to weight the

importance of these two measures. After the computation of the distance matrix, those

instances with the shortest distance are merged. The merging process continues as long as

the number of prototypes remains bigger than the number of classes. So class information

of the propotypes is indirectly integrated in the entropy, which is defined as:

!

E xi() = " R xi,li() logR xi,li()
i=1

c

(3.7)

where R is the frequency of occurrence of class li in the prototype xi and c the total

number of classes. Small entropy is obtained when most instances of the prototype belong

to the same class, while high values of entropy mean class variability. As a result, the

distance metric used takes into consideration not only the feature vectors but also their

class and the class of the resultant prototype is the class of the majority of instances it

consists of. In order to address the problem of noisy instances and outliers, PGF employs

a filtering technique called ACC. This method classifies every instance of the training set

using the nearest neighbour rule and each time an instance is correctly classified, the

classification accuracy of its nearest neighbour is increased. When all of the training set is

 43

scanned through, only prototypes with high accuracy, over a certain threshold, are

retained. Two variations of PGF were suggested depending on the order of the two

components, as PGF1 filters instances to discard outliers and noise before the generation

of the prototype set, while PGF2, filters the generated prototypes since ACC is applied

after the merging process.

As already mentioned, border instances hold most of the information needed to

accurately describe the underlying distribution. A similarity metric that uses the same and

different class similarity between instances to efficiently determine border instances is

typicality [Zha92]. Typicality of an instance xi is defined as the ratio of the average

similarity of xi to all of its friends

!

F xi() = y " X :# y() =# xi()$ y % xi{ } over its

enemies

!

E xi() = X " F xi() " xi{ } from the entire training set X. Hence,

!

T xi() =

1"
1

#max F xi()
xi " y 2

y$F xi()
%

1" 1
#max E xi()

xi " y 2
y$E xi()
%

 (3.8)

where amax is the largest distance in the training set. Instances can be classified in three

categories depending on their typicality value. Those with typicality lower than one are

noisy instances, while values close to unity indicate border instances. Typical instances

normally display values much greater than one. Hence, border and noisy instances can be

efficiently determined. Zhang’s algorithm is an additive technique that iteratively selects

the most typical instance, displaying the largest typicality value. After every addition the

resulting set is re-evaluated and the process is repeated until no misclassifications occur.

Although this instance based method is a selective algorithm, it is described in this

section, because it is the basis of the Integrated Concept Prototype Learning (ICPL)

method, which is one of the most efficient abstraction algorithms in the literature.

 ICPL is another abstraction method proposed by Lam, which, exactly like the

PGF algorithm, consists of two individual components, a filtering and a generation one

[Lam02b]. Although no pioneering work has been proposed for the filtering component,

since methods used are introduced in [Lam02a], [Wil00] and [Wil72], the abstraction

component is novel. In contrast to PGF, ICPL uses the similarity metric typicality in

order to distinguish between vectors close to class boundaries and internal samples. All

instances of the training set X are sorted by their typicality value that is initially

computed. Thresholds are then set for each class, depending on their statistical properties,

in order to distinguish between noisy, border and non-boundary instances. During the

next step of the algorithm, the instance xi with the highest typicality value is selected and

its nearest neighbour xj is determined. As long as xj is of the same class as xi, and is not a

border instance or an instance already treated, merging of xi and xj takes place. When any

 44

of the three conditions mentioned (different class, border instance, or previously treated)

is true, merging ends. The next most typical instance is selected and the merging process

is repeated once more. The abstraction procedure terminates when all non-boundary

instances have been treated. An additional step is employed by ICPL as the output sets of

the filtered and generated prototypes from the respective components are combined and

further processed to discard redundant prototypes. Similar to PGF, variations of ICPL

have been proposed based on the order the filtering and the abstraction components are

evaluated and post-processed.

3.3 Learning Vector Quantization

A widespread competitive prototype-based technique is Learning Vector Quantization

(LVQ), which selects a reduced subset of prototype vectors from the original training set.

These vectors are then modified according to some rule (LVQ1, LVQ2, etc) in order for

the algorithm to define optimal class regions in the data space and achieve high

classification accuracy.
The Decision Surface Mapping (DSM) algorithm, a method that belongs to the

family of LVQ, was introduced in [Gev91]. Initially, a subset of instances is randomly

selected from the original training set, with the number of initial vectors representing

every class indicated by their a priori probabilities. All instances of the training set are

then passed through the algorithm and in case of correct classification the prototype set

remains intact. But, if a misclassification of an instance xi occurs, prototypes have to be

modified, so the nearest neighbour prototype is punished because it belongs to a different

class, while the nearest same class prototype is rewarded in order to move towards the

misclassified sample. Firstly, the enemy prototype is punished according to the following

rule:

!

e t +1() = e t() "# t() xi t() " e t()[] (3.9)

 where e is the enemy prototype, a the scalar gain factor and t indicates the iteration.

Secondly, the reward of the nearest friend prototype, f, is provided by the following

equation.

!

f t +1() = f t() +" t() xi t() # f t()[] (3.10)

The same procedure is repeated for all patterns in the training set until no

misclassifications occur. The gain factor is a user-defined scalar that determines the

sensitivity of the algorithm and controls the learning process. The gain factor decreases

with time and the algorithm terminates when a reaches the value of 0 (or, as mentioned

above, when all samples are correctly classified). While DSM is a classification method

 45

that only tries to minimize the error; hence changes only occur when samples are

misclassified, LVQ introduced in [Koh86] updates prototypes even after the training

sample is correctly classified. The initial steps and the reward and punishment equations

are equivalent to the ones suggested in DSM, but for the training sample xi to be

classified, the two nearest neighbour prototypes, e and f, have to form a window of width

w given by:

!

min de
d f
,
d f

de

"

$ $

%

&
' ' >

1(w
1+ w
"

$

%

&
' (3.11)

where de and df are the distances of xi from the two prototype vectors, the enemy and

friend respectively. Then, the punishment rule for e is given by Eq. (3.9), while Eq. (3.10)

defines the reward rule according to which the friend prototype f is updated.

An expansion of the Learning Vector Quantization was introduced, LVQ3 that is

used in [Kim03]. In this case, even if the two nearest prototypes belong to the same class

as xi both are updated according to a new function:

!

p t +1() = p t() +" t()# t() xi t() $ p t()[] (3.12)

where ' and # are the learning and relative learning rates respectively. Another

contribution of the particular algorithm is the fact that it is a hybrid method. LVQ3 uses

the LVQ update rule as an “extra step” of the reduction algorithm and it combines it with

SVM in order to further improve the obtained prototype set. It is proven that

hybridization can enhance the overall performance of such algorithms. The parameters of

LVQ3, including the number of prototype vectors, their initial values, and the number of

iterations, are optimized in order to determine the best possible prototype set, while the

learning rate used is computed as follows:

!

" t() = " 0() µ
t + µ

 (3.13)

where t is the discretized time index, while (is the number of the iteration. As can be

observed the learning rate decreases monotonically with time and in a linear manner

which is the trend in the majority of the LVQ algorithms.

An alternative LVQ method that employs the concept of the already defined

Nearest Centroid Neighbourhood was introduced in [San06]. Although the basic learning

rules remain the same as the ones used in the standard LVQ method, this modification on

the neighbourhood has a substantial effect on the final output of the algorithm. As a

result, for every input pattern that is processed, the adaptive model updates all prototypes

that lie around it. So prototypes are moved in order to surround the input pattern in a

small neighbourhood area. This new adaptive algorithm enhances the performance of the

LVQ model as it takes into account not only dissimilarities but also the geometrical

distributions. In this case, the learning rate is determined using the following equation:

 46

!

a t() =
a t "1()

1+ s t()a t "1()
 (3.14)

where s(.)=1 if the two prototypes share the same class label, or s(.)= -1 if they belong to

enemy classes. Again, as can be observed the learning rate decreases monotonically with

time.

Various algorithms make use of the LVQ technique in order to improve the

classification accuracy. Another such method was proposed in [Li05]. The LVQ Pruning

algorithm (LVQPRU) uses self organising map (SOM) to generate prototypes and

employs a weighted distance measure defined as:

!

d x, p() = wi xi " pk()
i=1

n

(3.15)

where pk is the generated prototype by SOM and n is the number of instances in the

training set. The above distance metric is combined with a functional link network (FLN)

classifier that minimizes the following error function,

!

E =
1
c

li j() " li' j()[]2
i=1

n

#
j=1

c

(3.16)

where c is the total number of classes, l(.) is the class label and l’(.) is the desired output

of the input instance. For an instance xi the weight that will be used in the distance metric

will be its importance u, only normalized:

!

wi =
ui

ui
i=1

n

"
 (3.17)

The importance of a sample depends on the derivative of the output class label with

respect to the relevant instance, and is given by

!

ui =
1
n

"lk j()
"xk i()j=1

c

#
k=1

n

(3.18)

The initial prototypes are randomly generated and a different SOM is trained for each

class. The pruning component of this method also involves the deletion of all empty

prototypes along with the application of the LVQ algorithm that is applied in order to

fine-tune the locations of the samples and improve the generalization of the method.

A complicated abstraction method for prototype reduction was proposed in Ruta

[Rut07]. The entire data space is considered to be an electrostatic field, whereas every

instance of the training set X acts as a charged particle, attracting and repelling other

prototypes. Using the Parzen window technique a density estimation for every instance xi

of the training set, and the total class density estimation are computed. These density

estimations act as forces on prototypes, and similar to LVQ, attract (or ‘reward’) same

class vectors and repell (or ‘punish’) enemy prototypes. All instances of the training set

 47

experience such forces that determine the movement of the data in space. Reduction is

achieved if two instances move from their original locations to a distance that is less than

a certain user-defined threshold #. These instances are then merged resulting in a new

prototype. Despite the fact that this algorithm, as can be seen in Fig. 3.II, has its

foundation in Physics, it displays a clear resemblance to the LVQ technique.

Figure 3.II-!Energy between labelled instances in the Iris dataset [Rut07]

As proven in [Cra02], the LVQ model is a special case of a maximal margin principle

approach, and despite the family of LVQ algorithms has been around for more than 20

years, new modifications and enhancements are constantly developed.

3.4 Clustering algorithms

In supervised learning, as already explained, training data consists of input instances and

their desired output, their class label. On the contrary, in unsupervised learning all input

vectors are unlabelled. Therefore, other features of the training data, such as statistical

properties or proximity with respect to a certain distance metric, are used to train the

algorithm. Data is partitioned into subsets and each one defines a cluster that is

represented by a prototype.
Algorithms based on parzen windows, or other density estimation techniques

have been previously described, but Astrahan in [Ast70] was one of the first to develop a

reduction method that employed density estimation for clustering. A hypersphere of

radius r is used in order to obtain an estimate of the density around an instance. During

the next step, the sample with the highest density is selected and a different hypersphere

centred at the chosen sample and of different radius is defined. Finally, all instances that

 48

lie within it are discarded and the same process is repeated for the rest of the training

samples.

In [Ald94] the Dog Rabbit (DR) strategy was introduced which is an

unsupervised competitive learning model, which displays relatively large condensation

since instances are clustered together. Initially, the DR algorithm generates a number m

of randomly distributed prototypes. An instance xi from the training set is then selected

and its distances from all the prototypes are computed in order to determine the nearest

one, pj. The DR algorithm then moves all prototypes towards xi according to a dynamic

update scheme:

!

pk = pk +
2 xi " pk

1+ xi " pk() fk
xi " pk() k = j (3.19)

!

pk = pk +
xi " pk

+ xi " pk

2 xi " pk
1+ xi " pk() fk

xi " pk()
k =1,...,m
k $ j

 (3.20)

where fk and $ are the fatigue and the factor determining the inhibition of non winning

prototypes, both of which are user-defined parameters. The movement of prototypes

terminates when the winning prototype pj approaches within a certain distance from xi.

The fatigue4 of the winner is then updated accordingly. The larger the fatigue of a

prototype, the lesser it can move, and when a certain threshold of fatigue is exceeded

movement is not permitted any more. Another sample of the training set follows and the

same process is repeated, until it converges, which means that the total fatigue of all

prototypes has exceeded the maximum allowed. Since its introduction in 1994, the DR

algorithm has been the focus of analysis and research [Bez98b]. Another modification of

the DR technique that is employed for image processing was suggested in [Hil05]. The

proposed method uses a pre-processing tool that maps input data onto a toroidal surface.

As a result, the negative effect of edges on the identification of clusters is addressed, and

the performance of the clustering component is improved.

Recently, a class-based algorithm that performs clustering on the training

instances and determines representatives for each cluster was introduced [Che07]. An

instance xi is selected from the original training set X and its nearest enemy instance e that

lies at a distance rij away from xi is determined. During the next step of the algorithm, all

same class instances k that lie within rij are determined, and are assigned to a cluster Ci

that consists of xi and patterns that lie within the circle o(xi,rij). A representative of the

newly generated cluster is computed using the pair of instances in Ci that display the

maximum distance. The first representative is simply their centroid. As a result, the

computed centroid becomes the centre of the cluster, while its radius di is half their

& The rationale behind fatigue is to slow down the movement of prototypes so that they remain
close to samples they have already seen.

 49

distance. The same procedure is repeated for the entire training set, but for better cluster

representation, additional instances are used as representatives. Therefore, border

instances are also taken into consideration and every cluster is denoted by three different

cases of prototypes. Firstly, the cluster centre as explained previously. Secondly, samples

whose nearest neighbours belong to a different class, hence, are border instances. Finally,

the two nearest neighbours of the two first nearest enemies of the cluster centre are

cdetermined and are also considered as cluster representatives. Hence, the algorithm

succeeds not only in largely condensing the original training set, but also in clearly

identifying class borders. In order to improve the time requirements of the proposed

method, an optimized search scheme was also presented. The search for the nearest

neighbour of a new unseen pattern xi is not performed over the entire prototype space, but

within the hypershpere centered at xi and with radius rx, defined as the sum of the radius

of the nearest cluster center, di, and the distance

!

pi " xi , where pi is the nearest cluster

centre prototype.

Figure 3.III-!Search for the nearest neighbour is performed only within the disc of radius d1+d2

As already mentioned, due to the large number of instances the majority of the

reduction algorithms, and especially abstraction methods, suffer from large computational

complexity and high response times. Therefore, Czarnowski proposed in [Cza10] the

application of distributed learning on clustering as he introduced an agent-based method

for instance reduction. Similar to the Parallel Condensed Nearest Neighbour [Ang07b],

the proposed technique shares a common memory with an initial population of

individuals that represent the samples of the training set. Starting from this population a

network of agents operates asynchronously and in parallel alternating and concluding to

Figure 0.IV- Search for the nearest neighbour is performed only within the disc of radius d1(xm, a)+d

 50

different population solutions. These agents are in communication with each other as they

constantly update the population in order to determine the optimum solution. The

improvement of every population is performed locally as every agent aims to

independently enhance an individual. The main reduction technique proposed clusters

instances according to their similarity coefficient as introduced in [Cza04]. But, the

particular agent-based algorithm is also tested with two other reduction techniques that

substitute the similarity coefficient clustering and are again locally applied. The first one

involves the use of stratification strategy as introduced in [Can06], and has already been

described in Chapter 2. This technique aims to map the original training set into disjoint

strata of equal class distribution. Compared to the initially suggested technique the

stratification strategy is quite inefficient in terms of the computation times required. The

second method employed is the K-means clustering technique, which despite its

simplicity, can also end up being rather complex in terms of time requirements.

The cluster-based prototype algorithms have been described, that are relevant

with the work done in instance reduction, but the literature in clustering is very broad

because of the extensive research on exploratory data analysis. Clustering, in general, has

been applied in various fields such as machine learning and artificial intelligence,

computer sciences and pattern recognition, medical sciences (i.e. genetics biology clinical

sciences) or even in finance. Therefore, numerous methods that partition data into

different clusters according to their separability or homogeneity have been proposed,

which can be subcategorized in more groups based on the techniques used [Xu05]. A

small outline of the most important and widely used groups will be presented, along with

some of the most successful clustering algorithms, but this thesis will not go into details,

as clustering could be a research topic by itself.

• Similarity-based clustering. The algorithms of this group adapt different distance

metrics that define the proximity between the individuals. The clusters are a

product of this linkage. Such algorithms have been suggested in [Yan04] and

[Cha06].

• Hierarchical clustering. It demonstrates similarities to the previous case, but the

closeness between clusters and not individuals is examined. Clusters are

structured hierarchically, and in most cases the result is presented in a

dendrogram. Representatives of such methods can be found in [Mur00].

• PDF estimation. Samples in the clusters are generated according to the various

probability distributions. An example of such a method is suggested in [Rub08,

Yu05].

• Vector Quantization Clustering (VQC). Based on a certain criterion samples are

assigned to clusters of relatively same number of points. No hierarchy is present

 51

and the most common VQC algorithm is the K-means method [Mac67]. Another

example of such an approach is [Lee05].

• Combinatorial-based clustering. This group involves adaptive algorithms that use

genetic programming to optimize the cluster search. Examples of models with

such optimization components include [Cow99] and [Tse01].

• Spectral Clustering. The basic concept of spectral clustering is graph theory,

which generates nonlinear hypersurfaces between different clusters and enables

their separation, similar to the technique proposed in [Ng02]. More algorithms

employing spectral theory are thoroughly examined in [Fil08].

• Kernel-based clustering. These methods perform a nonlinear data transformation

to a higher dimensional feature space that increases the linear separability of

samples. Such methods include [Gir02] and the well-known Mean-Shift

algorithm [Wu07, Che95, Com02] as well as algorithms like [Fuk75] and

[Haz07].

For further information in clustering the reader can refer to [Eve01].

3.5 Conclusion

This chapter investigates the field of instance abstraction and presents various algorithms

along with their characteristics. As already mentioned, one should decide on what

algorithm to use based on the application at hand, and on the behaviour of the method.

Instance abstraction algorithms often result in high condensation, due to the freedom of

replacing instances, but this may lose track of the contribution of the original instances.

Therefore, new prototypes are generated to fill regions in the domain of the problem to

improve weak representative samples. In general, abstraction algorithms display higher

condensation results compared to selection methods, but as a result, lack in terms of

accuracy. Also, time requirements increase due to the generation process. Finally, these

observations are illustrated in the results of the following chapters.

 52

CHAPTER 4:

A CLASS BOUNDARY PRESERVING

ALGORITHM

4.1 Introduction

In this chapter a novel approach is proposed, the Class Boundary Preserving Algorithm

(CBP) [Nik11], which is a hybrid multi-stage method for pruning the training set. CBP

aims to preserve samples close to the class boundaries, since these instances can provide

most of the required information to effectively describe the underlying distribution. In

section 4.2 the four steps of the algorithm are presented. During the first stage, cleaning

using Wilson’s editing rule [Wil72] is performed, followed by boundary identification

that is based on a simple but very effective heuristic. The third stage involves pruning of

border instances to remove redundancy using a direct graph approach, namely mutual

nearest enemies. The proposed method uses not only selection of instances but also

generation of prototypes. Hence, in 4.2.iv the abstraction component of CBP is described.

For the latter, the mean shift clustering approach [Wu07, Che95, Com02] is employed on

the non-border instances. Finally, the output set involves the combination of the selected

border instances and the newly generated prototypes. Section 4.3 presents the results on

real datasets and comparisons of the formulated method against other successful

prototype condensation algorithms, while section 4.4 concludes the chapter.

 53

4.2 The Proposed Algorithm

Having an initial set

!

X = x "#d{ } of n d-dimensional instances, where each sample is

associated with a unique class label

!

"(x)#L = l1,...,lc{ }, the problem in instance

reduction is to determine a set of m prototypes (where m << n) that best describes the

underlying distribution. Internal instances positioned away from class boundaries have

little or no effect on classification accuracy. On the contrary, samples that lie close to

class boundaries hold enough information to accurately describe the decision surface

[Bri02]. Therefore, the proposed framework discards center instances while it retains a

suitable number of border patterns. The innovation of this scheme lies in the procedure

used to divide the training set X in two subsets; XB which includes instances close to the

decision surface, and XNB which contains internal samples. Because there is a distinctive

difference in the importance of the information these two sets hold, two separate

reduction processes are applied in each one. Overall, in order to compute the reduced set

of prototypes four steps are involved in the proposed algorithm, and are described in

detail in the following sub-sections.

i. Smoothing Class Boundaries

In the first step the problem of noise is addressed. Many algorithms suffer from

the presence of noisy instances near the class boundaries that degrade classification

accuracy. In order to deal with this issue, a filtering component is employed in most

instance reduction algorithms, such as [Wil00, Bri02]. Wilson’s ENN [Wil72] is the most

commonly used noise filter because of its simplicity. CBP also employs ENN as the first

stage of the algorithm, in order to discard harmful instances misclassified by their k

nearest neighbours (with k=3). A synthetic two-dimensional three-class dataset of 250

samples per class is used to illustrate the operation of the CBP Algorithm in Fig. 4.I. The

result of the condensing rule applied is demonstrated in Fig. 4.I(b), where classes do not

overlap anymore, thus the decision boundaries have been effectively smoothed by the

filtering component.

ii. Distinguishing between Border and Non-border Instances

After boundaries have been smoothed, a novel scheme, that uses the geometric

characteristics of the underlying distribution to partition the pre-processed X into the

subsets of border XB and non-border XNB instances, is applied. The reachable set R(x) of a

pattern x, as defined in [Smy95], holds instances belonging to !(x) that lay closer to x

than its nearest enemy; that is, R(x) is a set of all vectors that can provide a correct 1-NN

classification for x. In this work, the concept of reachability to multiple levels involving

 54

more than just the nearest enemy is extended. Ri(x) is the reachable set determined by the

i-th enemy $i(x) of x defined as:

!

Ri x() = y " X : # x() =# y() $ x % y 2 & x % 'i x()
2{ } (4.1)

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.I-! (a) A synthetic three class 2-dimensional dataset. (b) Wilson’s editing rule removes noisy

instances and overlap of classes is avoided. (c) Class boundaries are determined in step 2. Border instances,

which are enclosed by circles, are identified and the decision surfaces are defined. (d) Step 3 reduces the

number of border instances that are needed to accurately define class borders. (e) Clustering of non-border

instances takes place in step 4. Cluster centers computed (marked with solid circles) and inserted in the set of

prototypes. (f) Final reduced set of prototypes consisting of cluster centers and remaining border instances.

 55

where:

!

"i x() = argmin
z#X

$ z() %$ x()
z % " j x(), j=1,...,i&1

x & z 2 (4.2)

and $1(x) is the first nearest enemy of x.

At this stage of the algorithm, the aim is to determine samples close to the

decision surface. The above multi-level reachability is used here to make the selection of

such samples more resilient to the sparsity of the data and the class boundary

irregularities. This is done as follows. Initially, for each training sample x a set I(x) is

collected that consists of kR (kR is fixed to 3 for all experiments) indices of its nearest

enemies $i(x) with

!

i" I(x) . To make these enemies define mostly non-overlapping

reachable sets, I(x) is forced to contain those nearest enemies whose line segment from x

are at angles larger than a user-defined threshold of %R (set to a fixed value of 20°) from

each other. This condition allows for a more universal view of samples around x, because

nearest enemy instances can lie very close to each other. This nearest enemy index set is

defined as:

!

I(x) = argmin
J " 1,...,n{ }
J = kR

$ i x()%x,$ j x()%x() &' R , (i, j) J , i* j

x % $i x()
2

i)J
+

 (4.3)

where &(',') returns the angle between two vectors.

Subsequently, in order to decide on whether an instance x is close to class borders

towards the enemy classes, there exist the need to determine how samples in Ri(x) are

scattered in space. The way these patterns are spread around x with respect to $i(x) can

reveal if x is close to the decision boundaries or not. To achieve this, two vectors are

defined as y-x and $i(x)-x and the cosine similarity Ci,x(y) is employed, to judge if the

friendly sample y lies near the line connecting x and its enemy $i(x):

!

Ci,x y() =
y " x, #i x() " x

y " x 2 $ #i x() " x
2

 (4.4)

This metric is invariant to rotations and dilations but not to translations. Ci,x(y) is

computed for every instance y within each Ri(x) and aggregate responses in kR sets:

!

Si x() = Ci,x y()," y #Ri x(){ } (4.5)

Finally, all Si(x) are combined for all enemies in I(x) as:

!

S x() = !
i" I x()

Si x() (4.6)

All the instances y " Ri(x) are positioned within a sphere passing through $i(x) and

centered at x. Therefore, the statistical distribution of the cosine scores in S(x) shows the

relative to the enemy scatter of the friendly instances y of x around x. If values in S(x) are

mostly positive, most instances y in Ri(x) are restricted to lie within the intersection of the

 56

reachability sphere and a cone with axis x-$i(x), apex at position x and containing $i(x)

(the width of this cone is controlled by #, below in Eq.(4.7)). This means that friendly

samples lie in between x and its nearest enemies, so x is positioned away from class

boundaries. On the other hand, large negative values in S(x) show a directed scattering of

samples y outside the cone containing $i(x). Therefore, values in S(x) give an estimate of

how uniformly patterns close to x are distributed with respect to $i(x) for various values

of i " I(x). The above considerations, lead us to the use of a very simple but robust test, to

judge whether each training instance lies close to the enemy line or not. The test involves

the calculation of the median of S(x) for every instance x, and retains x as a border

instance if this value is lower than a threshold -#. The decision criterion distinguishing

between border XB and internal XNB instances is given by:

!

XB = x " X :median S x()() < #$ % R1 x() & 2{ } (4.7)

!

XNB = X " XB (4.8)

where samples x in sparse areas with less than three friendly ones are retained

unconditionally. Fig.4.I(c) shows the behavior of this step, where instances near the

decision surface and internal samples have been successfully determined. A clarifying

illustration of the above simple mechanism is presented in Fig. 4.II, for a synthetic two-

dimensional example.

Although the above heuristic is reasonably intuitive, it can be shown that it is

effective in reducing redundant instances. This can be equivalent to showing that for any

query point

!

q"#d , then

!

ˆ " XB
q() = ˆ " X q(); here the notation

!

ˆ " X q() is used to denote

the estimated prediction label li of the 1-NN classifier for the point q, using X as the

training set. In other words, it is necessary to show that the label of the nearest point to q

will not change by removing the set

!

XNB = X " XB . This can be shown as follows.

Assume that z1 is the nearest neighbour of q within the entire dataset X, and z2 its nearest

neighbour within the border set XB (i.e., before and after removal of XNB, respectively). It

is obvious that if

!

z1" XB # X then z1 will not be removed. In this trivial case:

!

z2 " z1 # XB $ ˆ % X q() = ˆ % XB
q() =% z1() =% z2() (4.9)

which shows that removal of XNB does not affect q.

The complex case arises when

!

z1 " z2, that is when

!

z1" XNB and

!

z2 " XB .

Let’s make the assumption that

!

" z2() #" z1(). Since z2 is the new nearest neighbour of q,

then

!

z2 " q 2
> z1 " q 2 (ignoring ties), and so z2 lies outside the sphere centered at q

passing through z1. Furthermore, the fact that z1 has been removed, means that there exist

many points

!

z"R1 z1() , such that from Eqs. (4.4-4.7), on average

 57

!

z " z1, #1(z1) " z1
z " z1 2

$ #1(z1) " z1 2

% "& (for simplicity, we ignore multiple reachable sets for the

moment). Then, there exist two cases, depending on whether z2 is the nearest enemy of z1

or not.

Figure 4.II-!This example contains 45 instances of a class (marked as """). Four instances are selected
(marked as "!"); one close to the decision surface, one in the middle of the distribution, and two at borders
but away from the enemy class representative (marked by "!"). All four cases are shown in the left hand side.
The histograms of the corresponding S(x) sets are shown in the right hand side of the figure. Border instances
cause large negative values in S(x) as can be seen from the first case (top row) where the median value is m=-
0.704. Internal instances tend to have a uniform scatter, hence, the average value within S(x) is close to zero.
On the other hand, edge instances away from the enemy class (bottom two cases) exhibit high concentration
in positive values and are, therefore, not included in XB as they do not satisfy Eq. (4.7).!

If

!

z2 = "1(z1) , z2 would most likely be positioned such that z1 lies between q and

z2. In this case, all points z which cover for z1 would lie between z1 and z2, and the initial

assumption would not hold as z2 could not be the nearest neighbour of q. To show this,

one can assume a value of #=0 and high density around z1 and prove that q, z1 and z2 must

be collinear and arranged in this order, so that all

!

z"R1 z1() are not within the

aforementioned sphere around q. Since #=0, then

!

z " z1()# z2 " z1() $ 0 , or due to the

arrangement of q, z1 and z2

!

z " z1()# z1 " q() $ 0 which can be equivalently written as:

 58

!

z " q 2
2
" z1 " q 2

2
z " z1()$ z " q() = z " z1 2

2
+ z " z1()$ z1 " q()

= z " z1 2

2
+ t z " z1()$ z2 " z1()

 (4.10)

for some positive t. However, since the last term is nonnegative,

!

z " q 2 # z1 " q 2,

which shows that when z2 is located as far as possible from q on the other side of z1, all

points z are lying after z1. Furthermore,

!

z " q 2 is upper bounded by the distance

!

z2 " q 2. This is because, since by definition all z lie within

!

R1 z1() :

!

z " z1 2
z2 " z1 2

$

z " z1 + z1 " q 2
z " z1 2

+ z1 " q 2
z2 " z1 2

+ z1 " q 2
= z2 " q 2

 (4.11)

using triangular inequality and the arrangement of q, z1 and z2. This shows that

!

z " q 2 # z2 " q 2 . So far the case for

!

z2 = "1(z1) has been examined. If this is not the

case, then similar arguments to the above can hold, since the heuristic of Eqs. (4.4-4.8) is

based on multiple kR reachable sets and nearest enemies.

iii. Pruning Border Instances

Samples included in XB are near the class boundaries and, compared to internal

instances in XNB that are insignificant for 1-NN classification, they hold most of the

information needed to describe the entire structure. Nevertheless, experimentation with

different datasets showed that further condensing of XB is possible, and here a fast

heuristic is introduced to do so, using pairs of mutual nearest enemies (the concept of

“mutual neighbourhood” was firstly introduced in [Chi79]). A directed edge is defined

from every instance x in XB to its nearest enemy $(x) (ignoring subscripts) also within XB;

this results in a directed graph G=(XB,E) where the edge set is

!

E = x," x()()# XB $ XB{ } . Then, all nodes of bi-directional (mutual) enemy

preference are unconditionally retained in a temporary set:

!

" X B = x # XB : x = $ $ x()(){ } (4.12)

Subsequently, all remaining edges are sorted in ascending order of their length

!

x " # x()
2
. Then, the processing starts from the shortest one and conditionally inserts its

two participating nodes to

!

" X B if neither has been previously added:

!

if x," x(){ }# $ X B =% & $ X B := $ X B ' x," x(){ } (4.13)

Finally, the current XB is replaced by its reduced version . Fig. 4.III exemplifies

 59

some cases of mutual and non-mutual enemy pairs between two classes. The above

condensing procedure is applied with the purpose of removing redundant border

instances, while preserving the actual class boundaries by retaining only nearest enemies

with stronger preferences. Although, as discussed in the previous section, samples

included in XB are very close to the boundaries, data sparsity may cause some instances in

XB to be ineffectual to the competence of the classifier.

Figure 4.III- A two-class example of the reduction process applied to the border set XB. Nearest enemy pairs
are connected and highlighted in circles. Some have uni-directional preference where only one instance is the
nearest enemy of the other, while the mutual nearest enemies, which are given priority, have bi-directional
preference between them.

iv. Clustering Non Border Instances

In contrast to border instances, samples that lay close to centers of classes hold

hardly any information and most internal instances do not affect the accuracy of the

algorithm. But tests on various datasets showed that total exclusion of non-border vectors

can, in some cases, reduce performance due to the sparsity of the datasets. Therefore, an

unsupervised algorithm has been used that can largely reduce the number of instances

held in XNB. XNB is partitioned into clusters which are groups of high local densities that

correspond to major subclasses of the underlying distribution. To implement this, the

Mean Shift clustering (MSC) [Wu07, Che95, Com02] has been employed, which is a

non-parametric technique that uses the gradient of density estimator to determine the

stationary points. The MSC algorithm converges to points of maximum density

determining the cluster centers of the distributions.

Since XNB consists only of internal instances, clusters obtained by the MSC

algorithm will be homogeneous. The advantage of this clustering method over other ones

 60

is that it requires no information on prior knowledge of the cluster number. To set and

operate the MSC just one parameter is needed that is the bandwidth h of the kernel

!

k
x " xn
h

$
%

&

'
(. Many bandwidth selection methods have been proposed (see [Wan06]). In

this work a global bandwidth is required, thus the following formula is used that is

similar to the one employed in [Gou07]:

!

h XNB() =
a

XNB " kh
x # NN j x()

j=1

kh

$
x%XNB

$ (4.14)

where NNj(x) is the nearest neighbour of x, (is a constant and kh the number of nearest

neighbours used (set to 5 in all experiments). Bandwidth value can largely affect the

performance of the CBP algorithm. A very small bandwidth for example can result in an

excessive number of clusters, while large values can lead to inhomogeneous clusters. Eq.

(4.14) is based on average distances and a user-provided constant ((which is set to 0.1

for all experiments), and it makes MSC insensitive in setting the bandwidth.

In order to reduce the number of clusters obtained to the minimum, a merging

process is finally applied. The class labels of cluster centers computed are checked and if

nearest neighbour clusters share the same label, merging of the centers occurs. This

method condenses the set of cluster centers generated, while it ensures that overlapping of

different classes does not take place. An example of this step is in Fig. 4.I(e), where this

algorithm has generated three cluster centers for the three classes of the distribution. As

can be seen in Fig. 4.I(f), the final set of prototypes X) computed by CBP consists of the

border instances in the updated XB set along with the generated cluster centers. The

overall operations of CBP are shown in Fig. 4.IV.

 61

%Initialisation.
• Input user-defined datasets X, !(X).
• Set threshold # := 0.5
• Set XB := #

Stage 1: %Noise Filtering.

Set X := ENN(X)

Stage 2: %Distinguishing between Border and Non-border instances.

For each pattern x in X
Calculate $i(x), Ri(x), for i=1,...,kR
Calculate S(x)
if median(S(x)) < -#

Set XB := XB $ {x}
endif

endfor
Set XNB := X - XB

Stage 3: %Pruning Border Instances.

Set := Mutual_Nearest_Enemies(XB)
Set := $ Filtered_Nearest_Enemies(XB,)
Set XB :=

Stage 4: %Cluster means of Non-border instances.

Set XNB := MSC(XNB)
Set XNB := Merge(XNB)

Stage 5: %Output final set of prototypes X).

Set X) := XB $ XNB
!

Figure 4.IV-!Overall sequencing of operations in the proposed CBP algorithm.!

4.3 Experimental Analysis

The problem of the comparative evaluation of instance reduction algorithms is that their

overall performance is not characterised only by the classification accuracy they exhibit,

but also by the condensation ratio they achieve. Thus, there is an underlying multi-

objective optimisation problem in the design and training procedure of such algorithms.

These two objectives are conflicting and an improvement in one, often leads to the

deterioration of the other. Consequently, there is a trade-off between classification

accuracy and condensation ratio, in the sense that excluding noise, the larger the size of

the prototype set retained for training, the more information it will hold to describe the

underlying structure and as such, there is no solution that can maximise both objectives

simultaneously.

The advantage the proposed CBP algorithm provides, is the capability to adjust

its performance to the results required. By setting the value of threshold %, which is used

to determine class boundaries, the algorithm can force the output to vary with respect to

 62

(a)

(b)

(c)

(d)

(e)

Figure 4.V - The dataset from Fig. 1 is used in this example. The final reduced set of instances obtained by

CBP using (a) #= 0.1, (b) #= 0.5, (c) #= 0.8. (d) Accuracy decreases as the threshold increases. Fluctuations

seen can occur because of noise effects. (e) Condensation is a monotonic function of the threshold value #.

either classification accuracy or condensation ratio. An example of the effect these

variations in threshold have on the performance of this method can be seen in Fig. 4.V.

The experiment is performed on the two-dimensional three class synthetic dataset

previously used in Fig. 4.I. It can be observed in Fig. 4.V(a)-(c) the set of prototypes

obtained by CBP for threshold values ! = 0.1, 0.5 and 0.8, respectively. High reduction

 63

can be achieved but with an impact in decreased accuracy as shown in Fig. 4.V(d) and

(e). In noise free only cases better classification results are obtained as the prototypes are

reduced. According to Eq. (4.7), an increase in # allows fewer instances to be retained by

CBP, which corresponds to a higher condensation ratio. This is also shown in Fig. 4.V(e)

where one can notice that the condensation of CBP is a monotonically increasing function

of the threshold.

i. Numerical Results

To evaluate the proposed algorithm, this section provides a comparison between

CBP and eight previously proposed instance reduction algorithms. These are the ICF

[Bri02], HMN [Mar08], LIF [Mar09], CCIS [Mar10], ICPL [Lam02b], TRKNN [Fay09],

DROP3 which is the most efficient of the DROP variations introduced in [Wil00], and

the editing technique ENN [Wil72]. All algorithms have been assessed on eighteen

datasets from the UCI Machine Learning Repository [Bla98] (Table 4-I) and a

comparative evaluation in terms of classification accuracy and condensation ratio

performances is provided. Wilson’s Editing ENN rule was tested using k=3, and the same

value was also applied in all the algorithms that use it as a pre-processing step for noise

filtering. TRKNN was implemented using a threshold value of a=1.6 as suggested by the

author of [Fay09], while k=1 was selected for the CCIS algorithm. In all experiments, the

Euclidean distance was used as the distance metric. When the reduced set X) was

obtained, the 1-NN rule was used to classify the testing set because of its simplicity, and

because this is the trend in all previous works. In each experiment five random

permutations of 10-fold cross validation were used to assess the algorithm’s performance.

The dataset was divided randomly in ten partitions of which nine were used for training

the algorithm and one for testing the resulting set of prototypes. Overall, for every single

dataset 50 runs were performed and the average percentage of instances retained in the

training set, as well as the average classification accuracy over these 50 runs are

presented in Table 4-II. CBP receives three inputs, the set of instances X along with their

corresponding class labels and a user-defined threshold value #. As fine tuning # with

additional cross-validation, would require the user to define some balance or weights

between the two objectives, to make the comparison direct with other algorithms, this

threshold was fixed to a representative value of #=0.5 for all datasets.

 64

Table 4-I

Details of the 18 datasets used in the experiments, including the total number of instances (the parenthesised

summands are the instances per class), the dimensionality d and the number of classes c.

Dataset Total instances (per class) d C

Diabetes (Pima) 768 (=500+268) 8 2

Ecoli 336 (=143+77+52+35+20+5+2+2) 7 8

Glass 214 (=163+51) 9 3

Haberman 306 (=225+81) 3 2

Heart 270 (=150+120) 13 2

Ionosphere 351 (=225+126) 34 2

Iris 150 (=50+50+50) 4 3

Letter ('A' to 'H') 2400 (=300+300+300+300+300+300+300+300) 16 8

Liver 345 (=200+145) 6 2

Monk 432 (=216+216) 6 2

Musk 476 (=269+207) 167 2

Pendigits 3498 (=363+364+364+336+364+335+336+364+336+336) 16 10

Sonar 208 (=111+97) 61 2

Transfusion 748 (=590+178) 4 2

Vehicle 846 (=220+220+220+186) 18 4

Vowel 990 (=90+90+90+90+90+90+90+90+90+90+90) 10 11

Wine 178 (=71+59+48) 13 3

Yeast 1484 (=244+429+463+44+35+51+163+30+20+5) 8 10

ii. Discussion

As already mentioned, instance reduction is a two-objective optimisation problem

and a gain in one objective is accompanied by a worsening of the other. Therefore, Table

4-II presents both accuracy and condensation ratios for all competing algorithms and all

experimented datasets. From the table, it is clear that ENN, HMN and LIF, which exhibit

slightly higher average accuracies, are not very successful in optimising condensation.

Overall, all algorithms manage to have similar accuracies (later on a statistical test for

this is provided). In this multi-objective problem, one algorithm is deemed to be better

than another if it improves both objectives, or at least one without (significant, in

comparison to the objective it improves) deterioration of the other. The condensation

ratios of ENN, HMN, LIF and TRKNN are much lower than the ratios of the other

algorithms. ENN filters approximately only 20% of the original instances, HMN under

60%, while TRKNN and LIF do not manage to achieve condensation over 35%. For the

remaining algorithms, condensation averaged over all datasets is over 69%, while they

yield only a slight deterioration in classification accuracy; specifically, these are CCIS

(with 69.89%

 65

Table 4-II

Average accuracy (Acc) and condensation (Cond) percentages of the proposed CBP and 8 other compared algorithms over 18 datasets. These results are averaged over 50 runs.

 ENN TRKNN HMN LIF CCIS DROP3 ICF ICPL CBP

Datasets Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond
Diabetes 72.63 27.77 66.56 33.99 70.57 62.85 72.22 30.72 68.64 76.89 69.70 94.46 72.55 88.01 68.39 76.53 70.10 92.03
Ecoli 85.83 14.97 72.66 55.74 87.11 47.50 85.05 31.21 82.05 72.11 79.55 92.16 82.53 86.20 81.41 84.11 84.26 92.38
Glass 78.74 24.23 81.42 39.28 79.87 52.20 79.15 31.92 78.22 65.70 70.32 87.46 75.00 86.36 77.90 80.77 73.92 93.45
Haberman 74.69 25.80 64.31 44.38 70.67 61.51 73.53 30.15 64.20 87.48 66.60 80.90 72.36 92.17 67.90 75.33 74.17 91.96
Heart 66.07 33.83 58.67 26.46 65.85 71.52 66.37 38.72 63.93 72.86 63.78 88.11 65.41 82.17 60.89 69.82 65.48 89.16
Iono 83.60 17.01 84.04 67.20 89.40 56.92 86.73 9.73 86.37 79.53 82.68 55.70 81.14 96.07 88.03 86.74 83.09 95.73
Iris 96.67 3.41 93.33 45.21 95.60 43.08 95.20 13.21 95.47 81.67 95.73 71.10 95.47 60.41 93.47 90.52 94.53 94.09
Letter 93.25 6.10 94.68 16.48 91.35 48.99 87.16 48.49 92.04 54.42 84.24 82.38 89.03 75.75 91.13 87.63 85.79 89.54
Liver 66.10 33.79 60.41 23.75 63.68 69.92 66.72 38.49 64.53 72.29 64.98 66.84 61.80 84.32 60.01 70.89 63.65 88.39
Monk 77.09 13.34 77.98 1.21 71.42 82.95 75.86 41.98 71.27 81.11 73.19 80.31 79.30 48.40 71.56 64.68 79.38 57.12
Musk 79.42 16.65 84.38 27.69 83.41 54.65 83.00 23.54 80.00 66.84 71.28 78.49 77.46 78.81 84.66 83.48 79.12 89.38
Pendigit 99.02 1.04 99.30 26.35 98.65 41.88 98.39 31.18 98.94 56.68 96.54 85.18 97.38 89.72 97.93 95.92 94.48 98.38
Sonar 80.24 20.25 81.46 13.98 76.96 62.31 76.94 30.24 75.49 66.65 72.45 72.11 75.55 67.57 79.72 82.03 75.25 89.10
Transfusion 75.64 18.37 62.35 48.26 74.41 66.21 75.10 25.90 63.34 85.98 69.81 82.07 72.33 69.37 73.57 86.11 74.17 88.09
Vehicle 55.35 45.02 57.65 11.95 54.71 68.31 55.75 51.57 52.98 58.54 50.93 90.10 54.87 81.68 54.39 67.96 53.69 89.76
Vowel 92.79 4.44 98.24 9.38 91.82 45.97 70.93 67.41 91.82 46.76 90.69 65.41 90.42 43.38 93.47 82.90 88.65 83.17
Wine 94.92 3.74 94.62 26.39 95.97 48.13 96.44 25.60 95.71 67.94 92.93 74.80 91.47 87.11 93.39 89.43 95.43 95.65
Yeast 56.91 45.86 49.97 22.28 56.76 64.03 58.08 51.81 53.32 69.97 56.18 82.86 54.51 88.10 49.00 65.57 51.98 92.35
Average 79.34 20.03 77.38 30.24 78.47 57.69 77.37 31.31 77.13 69.89 75.09 79.47 77.14 78.09 77.05 80.02 77.09 88.97

!

Table 4-III

Comparison of CBP against all other algorithms, with accuracy (Acc) and condensation (Cond) shown in the rows. The PI columns correspond to the percentage improvement (positive)

or percentage deterioration (negative) score, calculated as: (CBP_score – other_score) / other_score ! 100), where the scores are taken to be the average classification or condensation

scores across all datasets (last row of Table II). The columns marked as p correspond to the p-values of the Wilcoxon sign-rank test at 0.01 significance, with the null hypothesis that the

scores distributions for all individual datasets have equal medians.

 ENN TRKNN HMN LIF CCIS DROP3 ICF ICPL

 PI(%) p PI(%) p PI(%
) p PI(%) p PI(%

) p PI(%
) p PI(%

) p PI(%
) p

Acc -2.84 0.0054
9 -0.37 0.9358

5 -1.76 0.0100
1 -0.36 0.0442

1 -0.05 0.7781
8 +2.66 0.0268

8 -0.06 0.8721
2 +0.05 0.7172

2
Con
d

+344.1
8

0.0001
3

+194.2
1

0.0001
3

+54.2
2

0.0002
9

+184.1
6

0.0001
3

+27.3
1

0.0008
4

+11.9
5

0.0043
0

+13.9
3

0.0002
1

+11.1
8

0.0006
2

 66

condensation), DROP3 (79.47%), ICF (78.09%) and ICPL (80.02%). Of the latter group,

ICPL possesses the best mix of average classification accuracy (77.05%) and

condensation (80.02%). Regarding the proposed CBP, it manages the best condensation

ratio at 89.46%, while it maintains an accuracy of 77.09% similar to other algorithms. In

fact, CBP yields the highest condensation ratio in 13 out of the 18 datasets, and all

condensation ratios (apart from the Monk dataset) are over 83%.

The above observations on the comparison of the different methods are

corroborated by Table 4-III, which presents the relative percentage improvement (or

deterioration) of CBP over each one of the competing methods for the averaged accuracy

and condensation ratios. The condensation row of the table shows the PI values are all

positive, which means that the CBP is better than all other algorithms in terms of

condensation. Specifically, it is better than the second best algorithm (ICPL) by 11.18%

and the third best (DROP3) by 11.95% and the fourth best (ICF) by 13.93%. Comparing

the accuracy of the CBP with the others, one can observe a 0.05% improvement of

accuracy compared to ICPL, along with an improvement of 2.66% percentage over

DROP3, while a 0.06% percentage worsening is observed compared to ICF.

Nevertheless, as it was stated earlier the algorithms have similar accuracy, so the

comparison relies on the condensation objective. In order to numerically quantify this,

and further test the statistical significance of these findings, a nonparametric two-sided

statistical test is used, the Wilcoxon sign-rank test conducted at a 1% significance level.

The improvement of CBP over all other algorithms in terms of condensation is

seen by the eight very small (<<0.01) p-values in the second row of Table 4-III. On the

contrary, the first row of the table shows large p-values (>0.01) which means that the null

hypotheses of the algorithms yielding similar accuracies are not rejected at the 1%

significance level (apart from ENN, which is better than CBP in accuracy by 2.56%, but

367% worse in condensation). This large values mean that the proposed algorithm is

statistically comparable to the other methods, with no significant differences. In this case,

the performance is evaluated based on the statistical significance of condensation

improvement of CBP.

CBP has the capacity of directing its performance towards either classification

accuracy or condensation ratio by choosing the threshold value ! accordingly. Another

way to view the threshold-based performance of CBP is to plot the accuracy versus

condensation curve for varying values of !. In such graphs, a condensing algorithm can

be characterised better than the rest if it lies closer to the top-right corner, which

corresponds to the ideal case of high values of both objectives. Fig. 4.VI shows the

behaviour of CBP as the ! parameter that trades accuracy for condensation varies. Four

average performing datasets (Diabetes, Heart, Iris and Liver) are examined as ! ranges

from -0.7 to 1.0 in steps of 0.1 for 50 runs. As can be seen from most CBP curve

 67

positions in the plots, there are values of ! for which it can perform mostly better than the

other algorithms depending on the objective of importance as considered by the user.

Most curve portions lie towards the top-right corner, though it is impossible for any

algorithm to outperform all others for all parameter values or achieve perfectly monotonic

and smooth balancing of the two objectives due to noise and dataset density.

(a)

(b)

(c)

(d)

Figure 4.VI- Accuracy vs. condensation graphs (y-axis scale adapted for visibility) of the performance of

other algorithms (dots) and CBP (curves) for different values of ! varying from -0.7 to 1.0 in increments of

0.1, for the datasets: (a) Diabetes, (b) Heart, (c) Iris, (d) Liver.

Examining the execution speed of CBP, shown in Table 4.IV, CBP does not seem

to be as fast as TRKNN, HMN, LIF and CCIS, but these algorithms achieve as discussed

earlier very low condensation ratios. However, CBP needs considerably lower

computation time than ICPL, the second best algorithm in terms of condensation. It is

also faster than the third and fourth best algorithms, these are DROP3 and ICF,

respectively. Because the proposed algorithm is an iterative process that involves

abstraction of instances, it displays higher time complexity than some of the compared

algorithms. CBP, DROP3 and ICF use ENN as a noise filtering stage, which is a very

computationally intensive pre-processing stage as seen in the table below.

 68

Table 4-IV

Average computation times of all algorithms (measured in seconds per run) and overall weighted average

times (computed using the number of instances of each dataset to weight the execution times of each method

and make the comparison more objective).

Dataset ENN TRKNN HMN LIF CCIS DROP3 ICF ICPL CBP

Diabetes 81.0 0.3 0.2 0.3 5.2 83.5 92.4 394.4 85.4

Ecoli 7.1 0.1 0.1 0.1 0.7 8.2 7.9 50.6 7.5

Glass 1.3 0.04 0.04 0.1 0.5 1.5 1.5 19.2 1.5

Haberman 3.6 0.1 0.1 0.1 0.8 4.1 4.4 38.9 4.2

Heart 1.9 0.1 0.04 0.1 0.8 2.2 2.1 31.7 2.2

Ionosphere 6.9 0.1 0.1 0.1 1.2 7.5 7.0 55.3 7.5

Iris 0.5 0.03 0.03 0.04 0.4 0.8 0.6 8.3 0.7

Letter 5018.9 2.5 2.5 2.6 91.0 5439.3 5712.4 9426.6 5354.9

Liver 4.4 0.1 0.1 0.1 1.0 5.0 4.9 54.0 4.6

Monk 18.4 0.1 0.1 0.1 1.6 21.2 19.4 127.2 18.8

Musk 25.1 0.4 0.2 0.4 2.5 26.5 26.1 200.0 26.2

Pendigits 11466.3 6.1 6.3 7.6 306.1 11587.3 13212.0 17721.4 11674.7

Sonar 1.2 0.1 0.04 0.1 0.6 1.3 1.3 24.3 1.4

Transfusion 102.9 0.2 0.2 0.3 5.1 108.5 114.8 329.9 111.9

Vehicle 30.1 0.3 0.2 0.2 3.7 31.5 30.4 287.4 34.3

Vowel 301.8 0.5 0.7 0.6 8.7 316.1 305.3 704.0 308.4

Wine 0.7 0.04 0.03 0.05 0.4 0.7 0.8 12.2 1.1

Yeast 426.5 0.9 1.1 1.0 22.7 483.1 469.4 1636.2 433.1

Weighted average 3805.7 2.1 2.2 2.6 96.1 4065.6 4366.9 6340.7 3917.6

The response of CBP to high dimensionalities was also tested and whether the

proposed heuristic for removal of non border instances and the other stages of the

algorithm are sensitive to large number of features. The chart in Fig. 4.VII depicts

dimensionality and accuracy ratios for all datasets. Datasets with large number of

features, such as Ionosphere, Musk and Sonar do not show particular bias in terms of

accuracy, and the pearson correlation coefficient "=-0.046 numerically verifies this

observation. The value is small, very close to zero, indicating no correlation between

classification error (accuracy) and dimensionality.

 69

Figure 4.VII- Number of features and average CBP classification errors for all datasets (each denoted by the

first two letters of the dataset name).

4.4 Conclusions

This chapter introduced a novel instance reduction method, the CBP algorithm, which

employs the technique of instance selection and a simple but powerful heuristic together

with the concepts of multi-level reachable sets and nearest enemy pairs, to determine the

geometric structure of patterns around every sample in order to proceed with the removal

of redundant instances. Its performance has been examined on eighteen datasets and

compared the obtained results to eight instance reduction algorithms that were

implemented. CBP yields the best condensation ratio for most datasets without

compromising significant accuracy, while maintaining competitive execution times.

 As already mentioned, instance selection methods display higher accuracy while

instance abstraction algorithms exhibit better condensation ratios. The CBP algorithm is a

hybrid method that employs both selection and generation of instances. As a result, it

achieves very high reduction rates, due to the abstraction component, without

compromising much accuracy. Accuracy is comparable not only to other abstraction

techniques but also to various selection methods.

 70

CHAPTER 5:

SPECTRAL ORDERING

5.1 Introduction

This chapter presents the effort to devise some sort of ordering in the training set in order

to facilitate the reduction process in instance-based learning. This chapter discusses the

concepts of Seriation and Spectral Graph Theory, which are the two techniques employed

to sort instances in such order that structural information of the underlying distributions

are unfold. Firstly, the concept of data seriation is analyzed (section 5.2) and a prototype

condensing approach Instance Seriation for Prototype Abstraction (ISPA) [Nik10] that

generates a new set of prototypes, is introduced in the following section. This method

employs seriation to order the training set, and instances are then merged to create new

prototypes based on their class labels. The results of ISPA, which is compared against

other pruning algorithms, are discussed in another subsection. Section 5.3 presents the

core contribution of this chapter. It introduces a novel framework that employs spectral

graph theory to partition the dataset to border and internal instances. The underlying

graph is based on a similarity matrix constructed by comparing characterizations of the

original instances using a set of representative features. These features are based on

concepts such as cosine score [Nik11], reachable and coverage sets [Bri02] and typicality

[Zha92]. The proposed method, Spectral Instance Reduction (SIR) [Nik12] is highly

accurate and direct, as can be seen by the experiments performed in section 5.3.ii. This

subsection includes qualitative and quantitative evaluations that show that the proposed

method is capable of effectively locating border instances, as well as a comparison of SIR

with other condensing techniques in terms of classification accuracy, data condensation

and time. Section 5.3.iii concludes the chapter.

 71

5.2 Sequence Dating

The process of ordering and ranking data according to a dissimilarity function in order to

unfold some underlying structural sequence is called sequence dating (or seriation).

Seriation was initially used in the field of archaeology in the late nineteenth century by

Petrie to date various archaeological findings. It was based on the idea of objects

changing with time. Robinson in [Rob51] introduced a method for chronologically

ordering archaeological deposits and Kendall in [Ken69] and [Ken71] recognized the

mathematical model behind “sequence dating” of patterns. He used matrices of 0’s and

1’s to solve the problem of re-arrangement.

Since these original works sequence dating has been widely researched and

evolved [Hah08, Man08]. Nowadays, sequence dating is not only used in archaeology but

has been also applied to various other science fields such as ecology, machine learning

and data mining. Bezdek introduced in 2002 a Tool for Visual Assessment of Cluster

Tendency (VAT) [Bez02] that performs data seriation to identify the different clusters in

the training set. In the VAT algorithm, the dissimilarity matrix is suitably re-ordered

according to the pair wise dissimilarity information between instances. Further extensions

of this work have been proposed in [Hub05, Bez07].

5.3 Seriation for Instance Abstraction

In this section, given an initial set of samples

!

X = x "#d{ } of n d-dimensional

instances, where each sample is associated with a unique class label

!

" x()#L = li,...,lc{ }, a simple framework is presented that addresses the problem of

instance condensation. ISPA is a prototype abstraction method that orders instances based

on the n"n dissimilarity matrix, and seeks for a highly reduced set of m new vectors (with

m << n) that can provide the lowest possible error rate.

i. Proposed Framework

In general, algorithms suffer from the presence of noisy instances. Therefore, to

make this algorithm noise tolerant Wilson’s editing rule is applied, ENN, as a

preprocessing step of ISPA. ENN filters the original training set by discarding all

instances that are misclassified by their k nearest neighbours. Hence, it affects only

instances close to class borders and retains internal samples intact. Removal of harmful

 72

samples effectively smoothes the decision boundaries between classes and ensures that

the performance of ISPA is not largely degraded by noise. ENN is widely used as a filter

in the latest condensation algorithms including Hit Miss Networks (HMN) [Mar08],

DROP [Wil00] and ICF [Bri02].

The next stage of this algorithm involves the extraction of the structural

information of the training set. The Euclidean norm is used as the dissimilarity function

in order to create an nxn dissimilarity matrix D. This matrix shows the relation of an

instance to every other one in X. In order to transform this matrix in an ordered one that

reveals a pattern the VAT algorithm is applied, which performs data seriation. A

minimum spanning tree links all vertices together by starting at the most isolated

instance. So, the pair of vectors with the highest dissimilarity is determined and one of

them is chosen as the initial one. An iterative process then takes place as instances are

sorted according to their similarity to the later one processed. Hence, no computation

takes place, but only reordering of the rows and columns of D. The new relational matrix

R is a transformation of D:

!

R = P'DP (5.1)

where P is the permutation matrix. The set of instances and the class labels are also

ordered according to P so that:

!

XR = P'X (5.2)

and

!

T = P'L (5.3)

It is obvious that the linkage between consecutive instances is very strong. Therefore, one

can assume that consecutive instances lie very close to each other on the vector space.

This procedure determines the clusters of the distribution as illustrated in Fig. 5.I(a) – (d)

for a synthetic example.
The majority of the information needed to accurately describe a set of instances is held

by samples close to the class boundaries, while internal samples hold excessive

information and can be regarded as redundant instances. Bearing this in mind, ISPA

proceeds with a merging technique that favors instances close to the decision surface. The

new relational matrix R is used to determine the nearest enemy of every sample in the

reordered set. Then, an iterative process checks for every sample xi in XR its next

consecutive sample xi+1, and as long as they share the same class label they are merged.

The resulting prototype pj is the weighted mean of its two ‘ancestors’ and belongs to the

same class. So the new prototype is generated in the following way:

!

p j =
wixi + wi+1xi+1
wi + wi+1

 (5.4)

where wi and wi+1 are the gaussian weights of xi and xi+1 respectively and are defined as:

 73

!

wi = exp
"ri

2

2#
$

%
&

'

(
) (5.5)

where r is the distance to the nearest enemy and # is the smoothing parameter. Defining a

1xn2 vector v with the ordered distances, the smoothing parameter is computed as:

!

" = vl : l = 0.5n (5.6)

From Eq. 5.5 it is obvious that the closer an instance to the opposite class is, the larger the

assigned weight will be. Hence, the effect samples near class boundaries have on the

resulting prototype is significantly higher than the one internal instances have. As a

result, p is moved towards the decision surface, which was the initial goal. The process

terminates when no more prototypes can be merged.

(a)

(b)

(c)

(d)

Figure 5.I- (a) A synthetic 2-dimensional dataset of 120 samples. (b) Image of the dissimilarity matrix D of
the randomly distributed samples. (c) Image of the reordered matrix R where the clusters are easily
detectable. (d) Class labels T of all instances of the reordered set X

ii. Experimental Analysis

The performance of an instance reduction algorithm is a two-objective

optimization problem, as it is characterized by two basic outputs, the classification

accuracy and the condensation ratio that it exhibits. In order to obtain a wide and

 74

thorough evaluation of the proposed algorithm, ISPA, a comparison with three other

pruning methods is made: ICF, which is a selective condensation algorithm, ICPL, which

like ISPA, is an abstraction algorithm and HMN that is a filtering method.

a. Numerical Results

In order to perform the comparative evaluation of the four reduction techniques,

they have been tested on 10 datasets from the UCI Machine Learning Repository [Bla98].

Wilson’s editing rule that is used as a noise filter in ICF and ISPA is applied with a value

of ke=3. In all experiments the Euclidean distance was used as the distance metric and

when the reduced vector set was obtained the 1-NN rule was applied for classification. In

the experiments 10-fold cross validation with five permutations has been used to assess

the algorithms’ performance. Hence, 50 runs for every dataset are executed. Each dataset

is randomly divided in ten partitions, nine of which are used to train the algorithm and

one to test the resulting set of prototypes. In Table 5-I the average percentage of instances

retained in the training set and the average classification accuracy over the 50 runs for

each tested algorithm are presented. It should be mentioned that the proposed model has

no variable inputs apart from the initial set of instances X and their assigned class labels.

b. Discussion

From the results in Table 5-I it is obvious that for the specific datasets the proposed

method in terms of quality and precision operates at the same high level as the rest of the

algorithms. There is a trade-off between classification accuracy and condensation ratio. In

the absence of noise, the larger the size of the final set the better it will describe the

underlying distribution. Therefore, it is expected that filtering methods that retain a large

number of instances, such as HMN, will exhibit the highest accuracies. In Table I it can

be see that although HMN achieved the best classification accuracy with an average of

approximately 81.5% it filtered only 60% of the initial training set, which is considerably

smaller than the rest of the methods. On the other hand, ICF, one of the best performing

selective algorithms, presents a largely improved condensation ratio, as the size of the

resulting instance set is nearly 23.5% of the initial one. But abstraction algorithms, ICPL

and the proposed method ISPA, present the best mix of classification accuracy and

reduction rate. Both methods clearly outperform ICF in terms of condensation with ICPL

exhibiting slightly decreased classification accuracy. The small size of the final set is a

consequence of the abstraction component of the algorithms. The new prototypes are

generated with respect to the underlying distribution, in order to describe it as accurately

as possible, so redundancy is tackled. Compared to HMN, abstraction algorithms make a

small sacrifice, as HMN performs slightly better in terms of classification accuracy, in

order to substantially reduce the size of the prototype set.

 75

Table 5-I

Average Accuracies and Average Condensation (measured in percentages (%)) of ISPA and other competing
algorithms over 10 datasets

 ISPA ICF ICPL HMN
Dataset Acc Size Acc Size Acc Size Acc Size

Diabetes 71.26 8.46 72.52 11.7 71.71 15.49 70.09 37.12

Ecoli 83.85 12.25 82.66 13.95 84.29 6.29 87.52 52.9

Glass 74.72 11.12 74.56 13.21 73.97 14.51 79.83 48.67

Heart 64.57 7.59 65.31 17.56 61.85 30.15 66.3 28.7

Ionosphere 82.74 4.92 81.57 4.16 86.51 3.42 90.21 42.96

Iris 94.89 6.54 94.89 39.82 92.67 6.37 96.22 55.98

Liver 64.79 12.99 65.16 15.09 61.32 31.87 65.33 29.95

Monk 79.23 16.38 79.79 52.93 70.68 25.94 71.31 16.77

Wine 96.27 11.29 91.83 12.67 96.67 6.13 96.23 51.31

Zoo 90.42 7.22 88.52 53.4 92.7 15.09 92.03 41.39

Average 80.27 9.88 79.68 23.45 79.24 15.53 81.51 40.58

 In Table 5-I it is obvious that ICPL and ISPA have an equivalent performance in

nearly all datasets tested. There is a significant difference, in terms of accuracy, in only

three datasets, Ionosphere, where ICPL exhibits better results than ISPA, Heart and

Monk, where ISPA is clearly outperforming ICPL. Both methods demonstrate similar

classification accuracies, but in terms of average reduction rate ISPA exhibits a

significant advantage. The proposed algorithm presents the highest storage reduction in 6

out of the 10 datasets, and demonstrates the best condensation ratio between all the tested

methods.

iii. Conclusions

In this work, the Instance Seriation for Prototype Abstraction algorithm has been

proposed, which employs the concept of seriation to organize the original training set in a

way that facilitates the generation of a new set of prototypes. ISPA is a simple instance-

based learning algorithm for prototype reduction and was designed as an attempt to create

some sort of ordering between instances to enhance their separability into beneficial and

redundant ones. ISPA served as a draft of the final ordering scheme that is thoroughly

presented in Section 5.4. But because it demonstrated competitive results only on a

number of datasets, more specifically the 10 datasets used in Table 5-I, a less detailed

evaluation and analysis has been performed, compared to the other methods proposed in

this thesis. Despite its simplicity and its narrow spectrum of applications (datasets), ISPA

displayed results worth of mentioning. Therefore, a comparative evaluation of the

 76

proposed method with three recently established reduction algorithms was performed. To

obtain a global understanding of the precision of ISPA and of its capabilities it has been

compared against a filtering technique, a condensing algorithm using selection of

instances and an abstraction method that generates new prototypes. For the reduced set of

datasets, as already mentioned, and between the four techniques used in the comparison

(HMN, ICF, ICPL and ISPA) the proposed algorithm demonstrated the highest average

storage reduction and quite competitive results in terms of classification accuracy.

5.4 Spectral Graph Optimization

In this section, a novel instance selection algorithm, SIR, has been proposed, that is based

on spectral graph theory to robustly distinguish between border and internal instances.

Firstly, a broad set of existing and new feature transformations of the data samples to

border discriminating measures has been presented. This diverse set of border

discriminating features (BDFs) that are based on concepts such as cosine score [Nik11],

reachable and coverage sets [Bri02] and typicality [Zha92, Lam02a], capture the local

friend and enemy profiles of the samples. Secondly, by relying on a graph modeling

approach and border feature similarities, the method makes use of graph-cut

approximations to efficiently search for the two partitions of border and non-border

samples. The underlying optimization is achieved through the eigendecomposition of the

corresponding Laplacian matrix. Although the graph Laplacian has been previously used

for instance reduction, it had no distinctive relation to spectral theory or graph-cut

modeling as [Mar09] used the discrete Laplace operator for the between-class graph,

acting on the degree function of the within-class graph, and thresholded the Laplacian

score to retain the instances of interest.

i. Border Discriminating Features

Initially, to tackle the effect of noisy instances, a filtering component based on

the Edited Nearest Neighbour (ENN) method [Wil72] has been pre-applied. In this way,

instances that are misclassified by their 5 Nearest Neighbours (5NNs) are removed. This

is a simple but fast modification of ENN, that performs only a single scan over the

dataset. The objective of the remaining of the first stage is the design of features that

characterize in a representative and compact manner the properties of each prototype x.

These properties capture the information needed to build the geometric and statistical

profiles of each prototype, in terms of its friend (same class) and enemy (other class)

proximal instances, which in turn determine their capacity as border or non-border

 77

samples. To achieve this, ten border discriminating features (BDFs), which are

summarized in Table 5-I have been employed. Some of these have been used before in

various instance reduction methods, but in a very different context and not as border

features within the graph embedding formulation adopted by the proposed SIR. These

features are defined and discussed as follows.
Table 5-II

The 10 Border Discriminating Features proposed along with their respective ranges
BDF formulation Range

!

f1 =
1
n

H x,y() " M x,y()
y#X

n

$
y#X " x{ }

n

$
%

&
' '

(

)
* * [-1,1)

!

f2 x() =

1"
1

#max F x()
x " y 2

y$F x()
%

1" 1
#max E x()

x " y 2
y$E x()
%

 [0,!)

!

f3 x() =
R x()
C x()

 [0,n-1]

!

f4 x() = median S x()[] [-1,1]

!

f5,...,10 x() =

1
1+ NFk x()

x " y 2
y#NFk x()
$

1
k

x " y 2 "
1

1+ NEk x()
x " y 2

y#NEk x()
$

y#kNN x()
$

 [0,!)

The first feature f1(x) is the scaled difference of hit (number of friends) and miss

(number of enemies) degrees, defined similar to [Mar08], [Mar10]. Given a sample x,

these degrees are defined using the binary functions:

!

H x,y() =
1 y " kNF x()# x " kNF y()
0 otherwise

$
%
&

 (5.7)

!

M x,y() =
1 y " kNE x()# x " kNE y()
0 otherwise

$
%
&

 (5.8)

where

!

kNF x()" X # x{ } is the set of k nearest friends of x, and

!

kNE x() the set of k

nearest enemies of x. In [Mar08] the parameter was set as k=1, while [Mar10] suggests

the use of k=1, 3 or 5. For both Eqs. (5.7-5.8) and for all experiments, a fixed value of

k=5 was empirically chosen to capture the local neighbourhood of each instance. Lower

values of k were found to be sensitive to the sparsity of the data, while higher values did

not improve the discriminatory ability of f1(x). This feature is important because high or

low values of f1(x) correspond to instances lying in a region with high concentration of

friend or enemy prototypes, respectively.

 78

Another feature is the value of typicality f2(x) [Zha92]. It uses the ratio of the

average similarity of x to all of its friends

!

F x() = y " X :# y() =# x()$ y % x{ } over its

enemies

!

E x() = X " F x() " x{ } from the entire dataset X (amax is the largest distance in

the set). Normally, low values of typicality indicate internal samples, while high values

correspond to class boundary prototypes.

The third feature f3(x) is based on the ratio of the cardinalities of two separate sets

introduced in [Bri02]. One is the reachable set given by:

!

R x() = y " X :# x() =# y()$ x % y 2 & x % e 2{ } (5.9)

where

!

e"1NE x() . That is, R(x) contains all friendly instances lying between x and its

nearest enemy e. Intuitively, this means that instances near the class borders, and hence,

in closer proximity to their enemies, display values of |R(x)| lower than internal instances.

The other set used in f3(x) is the coverage set defined as:

!

C x() = y " X : x "R y(){ } (5.10)

R(x) holds all instances that can correctly classify x, while C(x) contains all instances that

x can solve. Therefore, redundant samples that lie away from class boundaries exhibit

f3(x) values significantly larger than one, while as the values decrease the importance of

the corresponding instances increases.

The cosine score f4(x) is also employed in a similar manner as introduced in

[Nik11]. S(x) is the set of cosine distances between the vector connecting x and other

reachable friends, and the vector connecting x and the respective nearest enemy. This is

applied to the set of all friend instances formed by the third reachable set; this set is

defined as in Eq. (5.9), but with e being the third nearest enemy. Instances with a large

number of friends lying in-between their enemies, demonstrate higher f4(x) values. On the

other hand, this feature obtains strongly negative values for boundary prototypes, since

friends lie behind them with respect to their enemies.

Finally, a new feature based on the average distances of subsets of nearest friends

NFk(x) and enemies NEk(x) is introduced, and is defined as:

!

NFk x() = y " X :# y() =# x(), y " kNN x(){ } (5.11)

!

NEk x() = y " X :# y() $# x(), y " kNN x(){ } (5.12)

where

!

kNN x()" X # x{ } is the set of k nearest neighbours of x excluding itself. These

subsets allow the examination of the local friend and enemy profiles of each instance x,

since

!

NFk x()"NEk x() = kNN x() . Instances close to the class boundaries exhibit

higher values for this feature, while lower values indicate internal prototypes. Similar

concepts of homogeneous and heterogeneous neighbourhoods have also been used in

[Wan07a] for supervised learning. Six versions for this feature are employed, with the

 79

values of k=5, 10, 15, 20, 25, 30, and denote them correspondingly as f5(x), f6(x), …,

f10(x). A set of multiple values is required in order to capture the friend versus enemy

profiles at multiple gradually expanding local neighbourhoods around each instance.

Compared to a single value, multiple ones are needed because different datasets exhibit

varying data density and inter-class distance characteristics. This feature is quite robust in

terms of discriminatory power, but no single value can be perfect for all datasets. As can

be observed in Fig. 5-II, as k increases the class boundary becomes denser. For k=5, there

is clear distinction in the thin line between border and non-border instances, but there is

also some loss of border information. Larger values of k result in more instances being

identified as borders, but they do that at the detriment of over-characterizing many

instances as border ones.

(a) k=5

(b) k=10

(c) k=15

(d) k=20

(e) k=25

(f) k=30

Figure 5.II- (a)-(f) Experimental analysis of features f5- f10 on a synthetic two-dimensional example. This
dataset consists of 3 different classes with a total of 999 instances. Figures show the effect of each feature
individually.

 80

The specific values of k are used, because for values smaller and larger than 5 and 30 the

feature was experimentally determined to be ineffective or insensitive, respectively. Also,

the step of five between the different values was found reasonably robust and non-

redundant, as smaller steps did not add any discriminatory power (e.g., there was no

meaningful effect between k=10 and k=11, or between k=25 and k=27). On the other

hand, larger steps work well but not for all datasets (e.g., if only k=10, k=20, and k=30

are used, for some datasets border information at some scales will be lost). A different set

of fixed k values did not prove beneficial, and as a result the final range and step for k,

were experimentally selected to support the balance between finer and coarser

neighbourhood grid. To conclude, for the wide range of datasets used for

experimentation, the proposed method was not found to be sensitive to variations in the

range and step values of k, because multiple levels for this BDF are used. It should also

be mentioned that the above figure is not generated with SIR, but with direct thresholding

of each of the proposed features, in order to study its behavior with regard to k. This

example along with experimentation with each of the 10 features individually proves that

each of the features is worth using in the BDF set proposed. It can be noted, that instead

of using a fixed set of values for k, one could choose to adapt k using a direct formula or

heuristic, or search for an optimal value using a separate validation set. Although this can

potentially increase the performance, it can either be difficult to find a formula that works

for all datasets, or very time consuming. Although initially experiments involved BDFs

whose parameters can be adapted to a dataset’s properties using training-validation or a

cross-validation procedure, it was found to be extremely expensive and it made SIR

completely impractical.

The final step of the first stage of SIR is to map each original sample

!

x " X #$d to a ten dimensional BDF vector

!

z " z x() = f1 x(),..., f10 x()[]T #Z $%10 .

To make the newly generated features comparable, they are standardize using their means

and variances.

ii. Border and Non-border Instance Partitioning

The objective of the second stage of SIR is to use the new representation Z of the

original prototypes X, and partition them into two disjoint sets; that is, the border

instances ZB which will be retained, and non-border instances ZNB which can be

discarded, such that

!

Z = ZB " ZNB . Various algorithms can be used to achieve this

partitioning [For10]. In this work, for flexibility and efficiency, the dataset is modeled as

a graph whose vertices correspond to samples in Z, and employ a balanced graph-cut

modeling approach. This is solved using spectral theory [Spi04, Spi07] and graph

embedding methodologies, which have been widely used for dimensionality reduction,

 81

supervised learning and clustering [Yan07, Kok09, Ng02, Miu12, He04, Sau03, Row00,

Zha09, Zha10b, Xin02, Bel03, Xie11, Ngu11]. Spectral clustering in particular has

become very popular in machine learning [Sun08, Bel02, Oze08, Mei01] and a detailed

description and analysis of spectral decomposition can be found in [Lux07]. Specifically,

it is aimed to minimize the following Min-Max Cut [Din01] problem defined as:

!

Mcut ZB ,ZNB() =
cut ZB ,ZNB()
cut ZB ,ZB()

+
cut ZNB ,ZB()
cut ZNB ,ZNB()

 (5.13)

where

!

cut A,B() =
1
2

Wij
i, j()"A #B
$ is a symmetric graph cut weight score between two vertex

subsets A and B. Minimizing Eq. (5.13) locates optimal graph partitions ZB and ZNB, such

that edges within ZB and edges within ZNB have high similarities. At the same time all

edges connecting ZB and ZNB (cuts) have high dissimilarities. Each weight Wij is set to

represent the similarity between the ith and jth graph vertices, or equivalently BDF vectors.

Here, each weight is estimated using the Gaussian kernel

!

Wij = exp " zi " z j 2
2
#$

%
& '

(
) . To

automatically adapt the kernel parameter " to different datasets, the mean µ is used and

standard deviation # of all the n(n-1)/2 Euclidean distances between elements in Z, and

set it to

!

" = µ #$() 2 .

A very efficient way of minimizing the balanced graph-cut problem in Eq. (5.13),

is to use spectral relaxation procedures that approximate the original problem [Lux07].

Specifically, (5.13) can be solved by finding an optimal vector

!

q* "#n$1 from the

following optimization:

!

q* = argmin
q"# n$1

q =1

qTLq =
1
2

Wij
qi
Dii

%
q j

Djj

&

'
(
(

)

*
+
+

2

j=1

n

,
i=1

n

,
-
.
/

0 /

1
2
/

3 /
 (5.14)

The matrix L is called the normalized graph Laplacian matrix, and is defined in terms of

the n"n weight matrix W as:

!

L = D
"1
2 D "W()D

"1
2 (5.15)

where D is the n"n diagonal graph degree matrix, given by

!

Dii = Wij
j=1

n

" . The degree

values Dii and Djj, are needed to balance the error contributions of the cut. Minimizing

(5.14) produces a vector q*, whose components qi
* and qj

* will be more numerically

similar, when the original patterns xi and xj are more compatible in terms of their BDFs.

According to the Ritz-Rayleigh theorem, the optimization in (5.14) can be efficiently

solved through the eigendecomposition of the normalized Laplacian L, and taking q* to be

the eigenvector corresponding to the second smallest eigenvalue [Lux07].

 82

The proposed spectral instance reduction algorithm is based on, firstly, forming

the BDF set Z as described in Section 5.4.i. Then, the adjacency matrix W and degree

matrix D are estimated, and the Laplacian matrix is formed using (5.15). Finally, q* is

obtained from the eigendecomposition of L. The approximate solution for the partitioning

of Z in (5.12), is then found by thresholding the vector D-1/2q*. The optimal threshold

value is simply set to the element within q* that gives the smallest Min-Max Cut value

[Din01].

Because from the above two partitions are obtained without any information

about which is the border ZB and which the redundant ZNB, the following simple heuristic

is applied. The already calculated BDF values of f4(x) are re-used and collect the set

!

T = z x()"Z : f4 x() < #{ }. Then, a simple test is performed that selects ZB as the border

set if:

!

vol ZB "T()
ZB

>
vol ZNB "T()

ZNB

 (5.16)

where

!

vol A() " Diii#A
$ is the sum of all weights attached to edges connected to

vertices within some vertex subset A. Regarding the threshold value, it was

experimentally found that any approximate value for ! that specifies roughly which of the

two partitions is border and which not, is acceptable, and cannot affect the accuracy of

the proposed method. Since ! is not too sensitive to small variations, the fixed value of

!=-0.5 is used as proposed in [Nik11].

iii. Experimental Analysis

a. Synthetic Datasets
Firstly, a qualitative demonstration of the capability of the proposed BDFs succeeded by

the spectral partitioning is shown. The aim is to separate a given dataset into internal and

border instances from whom the latter ones can be retained. Experiments with three two-

dimensional synthetic datasets are shown in Fig. 5.III. All cases are relatively dense with

distinct regions of internal and border patterns. The results obtained for these examples

are based on thresholding the optimizing eigenvectors, as explained in 5.4.ii. The

histograms of these eigenvectors are shown for each individual case in Figs. 5.II(b, d, f).

The partitioning results are superimposed in Figs. 5.III(a, c, e), where boxes mark the

border patterns. For all cases, it can be seen that the located border instances form

concentrations near the actual boundaries of each distribution, neighbouring with the

enemy classes. In order to qualitatively compare the performance of this algorithm to the

other tested methods Fig. 5-IV is presented, which illustrates the results of the competing

 83

methods on the three synthetic datasets. It can be observed that the function of ENN and

LIF is to remove noisy instances, close to the decision surface. This is the reason of their

low condensation ratios (especially ENN’s which is the reason it has not been included in

Table 5-II. It should also be mentioned that although HMN displays relatively very good

results on real datasets as already mentioned in Chapter 4 and in the following section of

numerical results, it displays rather poor condensation results on these synthetic 2D

examples. On the other hand, TRKNN seems to be very efficient for these examples

despite its poor performance on real datasets. The DROP3 algorithm although it displays

efficient results on real datasets it demonstrates a very poor performance on synthetic

data as observed in the figures below, since results are bad for the 3-class example, while

borders identified for the cross example are very dense. On the contrary, the rest of the

methods, CCIS, ICF, ICPL and CBP, verify their competence with accurately

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.III- Experiments with three synthetic two-dimensional examples: (a) three-class rectangular shapes,
(c) two-class cross and (e) two-class tri-spiral. In all cases, the patterns from different classes are marked with
symbols “�”, “�”, “�”, and the retained border instances are enclosed by “"”. The second column shows the

histograms of the optimizing eigenvectors, corresponding to the examples of the first column. The border

 84

patterns were located by thresholding the scaled optimal eigenvectors, with the corresponding threshold
values of: (b) 0.6#10-3, (d) 1.5#10-4, and (f) 10-4.

distinguishing the decision surface. It should be mentioned that CCIS seems to have a

better condensation ratio on the synthetic examples compared to the real datasets used for

the numerical experiments. This different behavior for HMN, TRKNN and DROP3 in

terms of 2D and also the real high dimensional datasets arises from the fact that most of

these algorithms were designed for multiple dimensions. Also, the increased sample

density and the ratio of density over dimensionality are different for the 2D sets above

than in the real datasets.

ENN

ENN

ENN

TRKNN

TRKNN

TRKNN

HMN

HMN

HMN

LIF

LIF

LIF

 85

CCIS

CCIS

CCIS

DROP3

DROP3

DROP3

ICF

ICF

ICF

ICPL

ICPL

ICPL

CBP

CBP

CBP

Figure 5.IV- Qualitatetive comparison of all tested methods on the three 2-dimensional synthetic examples
that have been already described. Each row of the figure corresponds to one of the tested methods.

Finally, in order to further demonstrate the capability of the SIR algorithm to

address rather complicated issues another synthetic dataset example is included. As can

be observed in Fig. 5.V, where SIR is tested on a very small class surrounded by a larger

 86

one, the proposed algorithm performs quite robustly, despite how complex the problem

is.

(a)

(b)

Figure 5.V- A synthetic 2-class dataset of a large class surrounding a much smaller one.(a) SIR accurately
identifies border points. (b) A zoomed version of the same example to illustrate how robust SIR is.

b. Numerical Results

In this section, the performance of the proposed SIR algorithm is quantitatively evaluated,

and SIR is compared it in terms of classification accuracy and condensation ratio against

eight other well-known instance selection algorithms. These are the Template Reduction

for k-NN (TRKNN) [Fay09], Hit Miss Networks (HMN) [Mar08], Laplacian Instance

Filtering (LIF) [Mar09], Class Conditional Instance Selection (CCIS) [Mar10], DROP3

by Wilson [Wil00], Instance Case Filtering [Bri02], the abstraction method ICPL

[Lam02b] and the previously described CBP algorithm [Nik10], that was introduced in

chapter 4. All tests are performed over eighteen real datasets from the UCI Machine

Learning Repository [Bla98], with characteristics shown in Table 4-I.

Some of the tested algorithms require the setting of user-defined parameters.

These were set to their best performing values of !=1.6 for TRKNN, k=1 for the CCIS

algorithm and !=0.5 for CBP, and remained fixed in all experiments. For all algorithms,

the simple 1NN rule is used to measure the classification accuracy of the retained

prototypes, for reasons of simplicity and because this has been the trend in all previous

works. For distance measurements in all algorithms the Euclidean distance norm is

employed.

To perform the experiments, each dataset was randomly divided in ten folds, nine

of which were used for training each algorithm and performing the prototype reduction,

and one fold for testing the classification accuracy with the 1NN rule and the reduced

prototypes ZB from the nine folds. In total, five random permutations of a 10-fold cross-

validation were used, giving a total of fifty runs per dataset from which the final measures

of accuracy and condensation were averaged for each dataset. Numerical results for the

 87

eight competing algorithms and the proposed SIR are aggregated in Table 5-III, together

with averages across all datasets.

It should be noted, that the evaluation of performance of an instance reduction

algorithm is typically a bi-objective optimization problem, where the user must take into

account not only the classification accuracy remaining after prototype removal, but also

its condensation capability. These two objectives are conflicting, since when too many

instances are removed, the remaining prototypes are unable to sustain class boundary

definition and hence, classification accuracy drops. It can be said that one instance

reduction algorithm is better than another, when it is better in both objectives, or it is

equivalent in one objective and better in the second. But, for real-world applications, the

final judgment often relies on what the application prioritizes. If, for example,

classification accuracy is critical, then a very bad performance in condensation can be

traded off against a slightly better accuracy. [Gar10] explains that the choice for a

particular method depends on the application at hand. For example, if accuracy is more

important, then one chooses an algorithm, which is better in accuracy even if it exhibits

much worse condensation.

As can be seen in Table 5-IV, all algorithms seem to accomplish relatively

comparable accuracies, with percentages varying from the highest achieved by HMN

with 78.47% (only one surpassing 78%), to the lowest of 75.09% from DROP3. TRKNN

demonstrates the second highest accuracy with 77.38%, while LIF follows with 77.37%.

Despite the high classification accuracy managed by TRKNN, it can be seen that it is

designed to operate as a noise filter rather than a reduction technique, and thus it has a

very low condensation ratio of 30.24%. LIF also seems not to achieve high condensation

with 31.31%. HMN surpasses the other competitors in accuracy but it displays

significantly lower condensation rate reaching an average of 57.69%, when compared to

CCIS, DROP3 and ICF that demonstrate reduction rates of 69.89%, 79.47% and 78.09%,

respectively. ICPL on the other hand achieves a condensation ratio just above 80%, while

the highest one observed is CBP that significantly outperforms all other methods with an

average of 88.97%. The latter algorithms, CCIS, ICF, ICPL and CBP, manage nearly

identical average classification accuracies as their results lie in a range of 0.09%, with

values 77.13%, 77.14%, 77.05% and 77.09% respectively. As already mentioned

DROP3, despite having the third best condensation ratio, it displays considerably lower

accuracy that the rest of the tested algorithms.

The proposed SIR, with an average of 79.25%, shows to outperform all other

competitors in terms of accuracy, as can be seen in Table 5-IV. No other algorithm

exceeded the limit of 78.5% accuracy. (If SIR is to be compared with Table 4-IV, only

ENN, which is strictly an accuracy enhancing algorithm and not a condensing method,

has marginally better accuracy by 0.09%. However, ENN exhibits far lower condensation

 88

than SIR as only 20% of the initial instances are removed compared to nearly 60%

achieved by SIR). In terms of condensation, SIR significantly outperforms two

competitors TRKNN and LIF, and also outperforms the highly accurate HMN algorithm,

by 2.08%. The other competing algorithms, namely CCIS, DROP3, ICF, ICPL and CBP

display considerably larger condensation ratios than the 59.77% achieved by the proposed

method.

In Table 5-V, the statistical significance of these findings is presented, using a

non-parametric two-sided statistical test, the Wilcoxon signed-rank test. It can be seen

that SIR is statistically comparable, in terms of accuracy to HMN, LIF, DROP3, ICF and

ICPL, as indicated by the large p-values, and is better than CBP and CCIS at 2%

significance level. Also, in terms of condensation, at 1% significance level, SIR

outperforms TRKNN and LIF, since the null hypothesis that the distributions difference

has zero median is rejected, while it yields comparable results to HMN and ICF. The rest

of the tested methods (CBP, DROP3, ICPL and CCIS) are shown to be better at 1%

significance level.

The above observations on the comparison of the different methods are

corroborated by Table 5-V, which presents the relative percentage improvement (or

deterioration) of SIR over each one of the competing methods for the averaged accuracy

and condensation ratios. Comparing the condensation of SIR with the others, a significant

improvement of the reduction rate can be seen compared to TRKNN and LIF, with

97.65% and 90.9% respectively, along with an improvement of 3.61% percentage over

HMN. On the other hand, a percentage worsening is observed compared to the

condensation ratios of the rest of the algorithms. Nevertheless, the accuracy row of the

table shows the PI values are all positive, which means that SIR is better than all other

algorithms in terms of classification accuracy. More specifically, it improves the second

best algorithm (HMN) by nearly 1%, while a percentage improvement of 2.42% and

2.43% can be observed when compared to TRKNN and LIF respectively. For the rest of

the methods (namely, CCIS, DROP3, ICF, ICPL and CBP) demonstrates and even larger

improvement with values ranging from 2.74% up to a maximum of 5.54% observed for

DROP3.

Another way of comparing the previous algorithms is time complexity.

Regarding SIR, it consists of two phases. The construction of border discriminative

features with a complexity of O(n2) and the graph partition algorithm that identifies

between border and non-border instances. In the latter phase, the eigen-decomposition of

the similarity matrix, is the one that dominates the complexity of SIR; this has a measure

of O(nr), where r<2.376 is the matrix multiplication exponent as explained in [Pan99].

For the competing methods, TRKNN, LIF, HMN and CCIS have at worst case scenario

O(n2). On the other hand, ENN has complexity O(n3), and since CBP, DROP3, ICF and

 89

ICPL use ENN as a preprocessing noise filter, which is a very computationally intensive

method, their complexity is also O(n3). Additionaly, in terms of time requirements ICPL,

as experiments showed (Table 4-IV) is even more expensive than the rest of the methods.

As one can observe, SIR is a somewhat slower than four other methods, but as it is stated

in the reviewing article of [Gar10], time requirements are not too important (as for most

real applications the reduction stage is executed initially once), unless the method takes

excessive times to complete and thus becomes impractical for real applications. But it

should be mentioned that all methods but CCIS, that surpass SIR in terms of

condensation, namely, DROP3, ICF, ICPL and CBP, are all significantly slower.

In order to evaluate whether SIR is sensitive to large number of features its

response to high dimensionalities is evaluated. The chart in Fig. 5.VI depicts

dimensionality and classification error for all tested datasets. Datasets with large number

of features, such as Ionosphere, Musk and Sonar do not show particular bias in terms of

accuracy, and the pearson correlation coefficient "=-0.049 numerically verifies this

observation, as the small value indicates no correlation between classification error

(accuracy) and dimensionality.

Figure 5.VI- Number of features and average classification errors for all datasets (each denoted by the first
two letters of the dataset name) for the proposed algorithm SIR.

A final issue is the use of graph-cut modeling to partition the instances to ZB and

ZNB. In this work, a graph-cut modeling approach has been selected, which is solved with

a very fast relaxation method based on matrix decomposition. However, in the reviewing

article of [For10] there are many more methodologies for graph partitioning, such as

traditional methods (hierarchical [Dun74, Bez81], and spectral clustering [Don73,

Spi96]), divisive algorithms(such as CONGA [Gre07] and the Newman-Girvan algorithm

 90

[Gir02, New04]), modularity-based methods (fast modularity [Cla04] and MSG [Sch08]),

dynamic algorithms (like Walktrap [Lat05] and MCL [Don00]) and statistical inference

methods (variational Bayesian inference [Jor99, Bea03, Hof08]). Using the proposed

BDFs here, those methods could be potentially useful to replace the second stage (Section

5.4.ii) of SIR. Experimentation with a few different partitioning algorithms from [For10]

has taken place, namely modularity methods (fast modularity, MSG), random walk

(walktrap), variational Bayesian inference, divisive algorithms (CONGA), and clustering

(k-means). The setup (the BDF part) for these experimentations was identical to the

proposed SIR, but replaced the spectral optimisation module of SIR using eigen-

decomposition, with one of the above methods. However, it was found that most of these

methods, either did not scale well and even with moderately large datasets took excessive

times to complete, or produced unbalanced prototype reductions. More specifically, for

the CONGA algorithm a single run on a simple dataset, such as ecoli, took more than 33

hours for completion. On the other hand, k-means clustering on the BDF’s, although it

was very fast, its results were inconsistent, since every run gave totally different output,

as can be observed in Fig. 5.VII. The borders identified by the algorithm are either too

dense (a) or too sparse (b).

(a)

(b)

Figure 5.VII- The 2-dimensional 2-class cross dataset. Both figures were obtained using the same model and
the same dataset as input and despite the simplicity of the synthetic dataset, k-means clustering gave not only
inconsistent results but also bad ones.

Therefore, CONGA and k-means are excluded from Table 5-IV. For the model

assessment of the rest of the graph-cut methods (Fast-Modularity, MSG, Walktrap and

Variational Bayesian Inference) 18 real datasets and multiple cross-validation runs were

used. So, Table 5-IV presents results on accuracy, condensation and timing (average

seconds). It can be seen that all other methods do not scale well for big datasets. For at

least two datasets, each algorithm (marked by "-") either did not terminate (after a few

hours),or crashed, or the obtained partitions were unbalanced (i.e., rejected almost all

samples from a single class, thus making classification and evaluation impossible).

 91

Comparing the table with the accuracy (79.25%), condensation (59.77%) and average

time (1.63 sec) of SIR, it can be seen that SIR with eigen-decomposition is strongly

outperforming all other methods. Firstly, its timing requirements are much better that all

the other methods. It also scales far better and is much more robust than all other methods

as it produces results (as shown in Table 5-III) for all datasets. Its accuracy is also better

than all other methods, while regarding the last evaluation criterion, three of the other

methods show to produce better condensation results. To conclude, for the completed

datasets, spectral partitioning yielded better accuracies at much faster speeds (between 4

and 33 times faster), but some of those methods produced better condensation. In addition

to these methods, other ones could be used for partitioning, such as the network-based

stochastic method of [Sil12a], [Sil12b]. Also, the multilevel method of [Wan07b] could be

adapted to enhance the proposed partitioning scheme and enable SIR to cope with large

datasets.

Table 5-III

Accuracy, condensation and timing results of competing graph-cut methods. This methods are tested over 18

datasets with multiple cross-validation runs.

F-Modularity MSG Walktrap V.B. Inference
Datasets Acc Con Time Acc Con Time Acc Con Time Acc Con Time

Diabetes 68.13 88.63 68.1 73.7 63.9 18.5 48.11 86.01 11.3 73.62 62.66 32.2

Ecoli 81.78 87.74 81.8 86.2 57.54 6.3 73.73 81.7 3 82.29 55.79 10.7

Glass 54.67 95.38 54.7 77.17 61.4 1.7 74.14 75.7 0.9 66.98 63.82 5.5

Haberman - - - 74.66 63.62 2.5 64.17 89.62 1.5 - - -

Heart 58.74 93.52 58.7 66.15 66.54 1.9 57.11 76.62 1.2 67.04 66.19 5.7

Ionosphere 71.12 90.04 71.1 83.59 57.58 5.2 87.19 77.08 3.1 - - -

Iris - - - - - - - - - - - -

Letter - - - - - - - - - - - -

Liver 59.95 90.54 60 66.07 67.05 3.1 55.39 81.55 1.7 - - -

Monk 80 34.12 80 77.96 52.38 10.4 62.07 65.78 5.2 73.46 54.88 18.8

Musk 64.64 85.23 64.6 79.39 56.15 10.2 71.31 73.08 5.8 76.46 56.13 18.3

Pendigit - - - - - - - - - - - -

Sonar - - - 74.98 59.74 1.6 67.05 69.76 0.9 68.72 59.25 4.9

Transfusion 71.24 88.17 8.5 74.47 61.51 9.3 65.11 83.3 5.3 71.84 62.61 16.7

Vehicle 48.16 90.16 6.3 54.46 74.58 6.4 45.26 86.38 3.5 51.28 74.16 14.1

Vowel 63.39 85.68 51.9 87.8 52.41 54.6 76.85 71.23 35.8 84.93 39.88 89.2

Wine - - - 95.97 52.83 1.7 92.43 75.31 1 94.68 52.73 5.2

Yeast 52.59 89.22 34.3 56.65 75.74 33.6 45.98 87.54 19.4 56.72 72.4 51.7

Average 64.53 84.87 53.33 75.28 61.53 11.13 65.73 78.71 6.64 72.34 60.04 22.75

 92

Table 5-IV

Average accuracy (Acc) and condensation (Cond) percentages of the proposed SIR and 8 other compared algorithms over 18 datasets. These results are averaged over 50 runs.

 TRKNN HMN LIF CCIS DROP3 ICF ICPL CBP SIR

Datasets Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond
Diabetes 66.56 33.99 70.57 62.85 72.22 30.72 68.64 76.89 66.56 94.46 72.55 88.01 68.39 76.53 70.10 92.03 72.84 64.10
Ecoli 72.66 55.74 87.11 47.50 85.05 31.21 82.05 72.11 72.66 92.16 82.53 86.20 81.41 84.11 84.26 92.38 86.85 57.52
Glass 81.42 39.28 79.87 52.20 79.15 31.92 78.22 65.70 81.42 87.46 75.00 86.36 77.90 80.77 73.92 93.45 79.24 60.92
Haberman 64.31 44.38 70.67 61.51 73.53 30.15 64.20 87.48 64.31 80.90 72.36 92.17 67.90 75.33 74.17 91.96 76.19 63.15
Heart 58.67 26.46 65.85 71.52 66.37 38.72 63.93 72.86 58.67 88.11 65.41 82.17 60.89 69.82 65.48 89.16 66.96 66.30
Iono 84.04 67.20 89.40 56.92 86.73 9.73 86.37 79.53 84.04 55.70 81.14 96.07 88.03 86.74 83.09 95.73 85.31 57.53
Iris 93.33 45.21 95.60 43.08 95.20 13.21 95.47 81.67 93.33 71.10 95.47 60.41 93.47 90.52 94.53 94.09 96.67 51.04
Letter 94.68 16.48 91.35 48.99 87.16 48.49 92.04 54.42 94.68 82.38 89.03 75.75 91.13 87.63 85.79 89.54 90.95 53.43
Liver 60.41 23.75 63.68 69.92 66.72 38.49 64.53 72.29 60.41 66.84 61.80 84.32 60.01 70.89 63.65 88.39 64.65 66.41
Monk 77.98 1.21 71.42 82.95 75.86 41.98 71.27 81.11 77.98 80.31 79.30 48.40 71.56 64.68 79.38 57.12 77.27 52.13
Musk 84.38 27.69 83.41 54.65 83.00 23.54 80.00 66.84 84.38 78.49 77.46 78.81 84.66 83.48 79.12 89.38 81.97 56.34
Pendigit 99.30 26.35 98.65 41.88 98.39 31.18 98.94 56.68 99.30 85.18 97.38 89.72 97.93 95.92 94.48 98.38 99.06 50.58
Sonar 81.46 13.98 76.96 62.31 76.94 30.24 75.49 66.65 81.46 72.11 75.55 67.57 79.72 82.03 75.25 89.10 74.96 59.13
Transfusion 62.35 48.26 74.41 66.21 75.10 25.90 63.34 85.98 62.35 82.07 72.33 69.37 73.57 86.11 74.17 88.09 75.46 61.97
Vehicle 57.65 11.95 54.71 68.31 55.75 51.57 52.98 58.54 57.65 90.10 54.87 81.68 54.39 67.96 53.69 89.76 56.34 74.82
Vowel 98.24 9.38 91.82 45.97 70.93 67.41 91.82 46.76 98.24 65.41 90.42 43.38 93.47 82.90 88.65 83.17 90.06 53.33
Wine 94.62 26.39 95.97 48.13 96.44 25.60 95.71 67.94 94.62 74.80 91.47 87.11 93.39 89.43 95.43 95.65 95.62 51.50
Yeast 49.97 22.28 56.76 64.03 58.08 51.81 53.32 69.97 49.97 82.86 54.51 88.10 49.00 65.57 51.98 92.35 56.15 75.66
Average 77.38 30.24 78.47 57.69 77.37 31.31 77.13 69.89 75.09 79.47 77.14 78.09 77.05 80.02 77.09 88.97 79.25 59.77

!

Table 5-V

Comparison of SIR against all other algorithms, with accuracy (Acc) and condensation (Cond) shown in the rows. The PI columns correspond to the percentage improvement (positive)

or percentage deterioration (negative) score, calculated as: (SIR_score – other_score) / other_score ! 100), where the scores are taken to be the average classification or condensation

scores across all datasets (last row of Table II). The columns marked as p correspond to the p-values of the Wilcoxon sign-rank test at 0.01 significance, with the null hypothesis that the

scores distributions for all individual datasets have equal medians.

 TRKNN HMN LIF CCIS DROP3 ICF ICPL CBP
 PI(%) P PI(%) P PI(%) p PI(%) PI(%) p PI(%) P PI(%) p PI(%) PI(%) P
Acc +2.42 0.21 +0.99 0.53 +2.43 0.42 +2.75 0.01 +5.54 0.21 +2.74 0.53 +2.86 0.42 +2.8 0.01

Cond +97.65 0.0003 +3.61 0.1080 +90.90 0.0003 -14.48 0.0057 -
24.79 0.0003 -

23.46 0.1024 -
25.31 0.0003 -32.82 0.0057

 93

iv. Conclusion

The novelty of the proposed framework is noticeable on the two contributions of

this work that involve, firstly, the border discriminating features that enable for the proper

setup (ordering) of instances, and, secondly, the spectral modeling used for the graph

partitioning. So, this work has focused on the creation of a set of border discriminating

features capable of capturing different types of local geometric characteristics of the data

samples, in terms of their friend and enemy profiles. These features were employed by a

graph-cut modeling approach and processed using standard spectral graph theory, in order

to generate a partition vector that divides the instances into border and internal ones.

The main advantage of the proposed algorithm is that it manages relatively high

condensation without compromising the classification accuracy, as it demonstrated the

highest accuracy among all the tested condensation algorithms. It should also be

mentioned that it is robust to spatial arrangements of the class distributions because of the

use of a diverse set of BDFs, and it does not require any user-defined parameters. On the

other side, limitations include that, like other methods that use distances between

samples, it may fail to remove the right instances in highly dimensional spaces due to the

distance concentration effect. Despite the fact that SIR displays competent condensation

results the average reduction is not as good as some of the existing methods such as CBP

that was proposed in Chapter 4 of this work. Also, if there is high degree of noise, a more

effective filter than the employed ENN-based one may be needed to remove misclassified

samples. Finally, as SIR is designed with the 1NN rule in mind, if a different classifier is

required, removal of some non-border instances may have impact on the formation of the

decision boundaries, especially in datasets with a large number of classes.

In relation to other works in the literature, SIR displays the typical behaviour of

selection algorithms. Competent results in terms of instance removal that account for the

very high accuracy achieved by the method. Although SIR is one of the most accurate

algorithms, as experiments showed, this work did not tackle the problem of instance

selection algorithms that is the low condensation ratio compared to abstraction

techniques.

Future work could include the improvement of SIR in terms of condensation by

combining it with instance abstraction. Speeding up the method and using incremental

updates of the partitioning eigenvector for applications where new samples are frequently

generated can be useful. The design of additional BDFs better tailored to the employed

classifier can also be beneficial, together with adapting the cardinality of friends and

enemies for the different BDFs according to the characteristics of the individual datasets.

 94

CHAPTER 6:

PROTOTYPE REDUCTION BASED ON

DIRECT WEIGHT OPTIMIZATION

6.1 Introduction

This chapter presents an instance reduction technique that uses a set of binary weights to

directly control, which samples will be discarded and which retained. In order to

guarantee that every sample is correctly classified, the proposed Direct Weight

Optimisation algorithm (DWO), aims to retain the ratio of distances of its nearest friend

over its nearest enemy to a minimum. In section 6.2 the four components of the algorithm

are presented. During the first stage, analyzed in 6.2.i., the model involving instance

weight learning is presented. In section 6.2.ii., the optimisation component of DWO is

described that uses a genetic algorithm to obtain solutions in terms of the two essential

objectives, accuracy and condensation ratio. The final stage of the proposed algorithm

involves a set of heuristics that are employed in order to improve the performance of

DWO and accelerate the entire process. Similar to SIR, the proposed method uses

explicitly selection of instances as it involves no prototype generation. Section 6.3

presents the results on real datasets along with simulations on synthetic data and

comparisons of the formulated method against other successful prototype condensation

algorithms (as well as CBP and SIR described in chapters 4 and 5 respectively).

Experiments show that DWO is competent and efficient as it displays the highest

classification accuracy along with competitive condensation results. Finally, section 6.4

concludes the chapter.

 95

6.2 The Proposed Algorithm

Assuming a dataset X of n d-dimensional patterns x, each associated with a discrete label

!(x). The principal objective is to reduce X to a much smaller number of m<<n patterns,

that match the classification performance of the original X as close as possible. As it is

the norm in all previous works [Wil00, Bri02, Nik12, Mar08] for reasons of simplicity,

the 1-nearest neighbour (1NN) rule is used to measure the classification accuracy

supported by the dataset.

i. Instance Weight Modelling
The proposed model depends on a set of design parameters, which directly

control which instances are removed and which retained. These parameters are a set of n

binary weights w(x)!{0,1} each corresponding to an original pattern x!X. A sample x is

discarded or preserved when its associated w(x) has the value of zero or one, respectively.

This simple and explicit modelling enables us to optimize the entire weight vector w !

{0,1}
n
, such that the classification accuracy is compromised minimally. The overall

optimisation is bi-objective. Firstly, the condensation ratio defined as

!

n "m
n

=1"
1
n

w x()
x#X
$ (6.1)

needs to be maximized, in order to remove as many instances as possible. However,

removing too many instances will deteriorate the system’s performance. Thus, the second

objective is to simultaneously maximize the overall accuracy.

A straightforward way for measuring this accuracy using the 1NN rule is to use

the ratio of the distance of x from its nearest friend (where friends are other instances in X

from the same class) to its nearest enemy (where enemies are instances in X from other

classes than x). In the absence of noise, if this ratio is less than the unity, then the sample

x is supported by X, otherwise it is misclassified. Nevertheless, in the proposed model

nearest friends and enemies are not static, as their existence depends on the current state

of w. This is because all samples are involved in the model optimization procedure. To

incorporate the state of w into the above modelling, there exist the need to firstly express

the nearest friend and enemy of each instance x, also as a function of w, as

!

F x,w() = argmin z " x 2
z#X " x{ }
$ z()=$ x()
w z()%0

E x,w() = argmin z " x 2
z#X

$ z()%$ x()
w z()%0

 (6.2)

 96

where F(x,w) is the nearest surviving neighbour of x, and E(x,w) its nearest surviving

enemy. Then, under w, the ratio

!

" x,w() =
x # F x,w()

2

x # E x,w()
2

 (6.3)

is used to test whether x is classified correctly or not.

To keep the accuracy objective high for all patterns, it is not possible to force the

ratios for all samples x!X to have

!

" x,w()<1 as a set of hard constraints within the

optimization, due to noise, sparse sampling or the nature of the dataset. Instead, accuracy

is optimized in a soft way using penalty functions H["] that penalise cases with ratios

exceeding the unity in an aggregate way. To facilitate the optimisation a smooth penalty

function is used, which is defined as

!

H k[] =
1

1+ exp " 1# k()()
 (6.4)

where # is a fixed parameter that controls the shape of the sigmoid penalty curve, as

shown in Fig. 6.I. If # is set to a high value, the curve becomes a step function and gives

zero or one penalty values to ratios below or above the unity, respectively. However, a

smoother penalty curve allows for a better balancing of the two competitive objectives

and copes with cases of noise and sparse datasets better.

Figure 6.I- Shape of the smooth sigmoid penalty function H[k], where values of classification ratios k<1
receive less penalty.

Finally, the two maximising objectives of condensation and accuracy can be

combined to a single objective function J(w), using a weighted sum according to

 97

!

maxJ w()
w" 0,1{ }n

w x()
x"X
$ + % H & x,w()[]

x"X
$ (6.5)

with $ being a user defined parameter that balances the competition between the two

objectives during the optimisation process.

ii. Optimisation Procedure
The index J(w) of Eq.(6.5) corresponds to a binary optimisation problem, which can be

difficult to solve for large datasets in terms of efficiency and also in terms of finding an

acceptable, globally optimal solution. In this work, a genetic algorithm (GA) is used,

because GAs can in general find good quality solutions for large scale combinatorial

problems [Gou11]. Especially for problems with binary design parameters, their standard

bit-string genetic encoding naturally follows the problem formulation. Additionally, as

will be described in Section 6.2.iii, it is easy to add performance accelerating heuristics

tailored to the problem at hand. GAs have been previously used for prototype reduction in

[Kun95], [Gar08], and in machine learning works such as [Tse01, Cow99, Mau00,

Gal05].

For the current work, a standard GA with bit-string chromosome modelling is

employed, where each gene of every n-length member in each population, corresponds to

the weight w(x) of the specific sample x the gene corresponds to. The exploitation and

exploration aspects of the genetic search are supported with a standard uniform crossover,

and a bit-flip mutation. A two member elitism operator copies the best two members to

the subsequent generation. Also, to guard against invalid chromosomes, a repair

procedure has been included, which when crossover or mutation create an offspring with

all samples of some class having zero weight (i.e., no class representatives remain), one

of those discarded samples is randomly selected and reinstated in the chromosome.

iii. Performance Acceleration Heuristics
Although GAs constitute competent search strategies for large scale combinatorial

problems, performance may be slow for large dimensionalities. As metaheuristic

techniques, GAs lend themselves easily to enhancements by taking advantage of the

knowledge and structure of the problem at hand.

The first enhancement is population hybridisation. Assuming to have psize

members in the population, before genetic search is initiated a random population has to

be created. Although the standard procedure is to generate uniformly random zero/one

values for the entries of the psize"n population matrix, this is not efficient. Here two tests

are used to approximately estimate whether a sample x is a border instance of its class

distribution and can be retained. Although border instances are not the only ones that can

 98

be retained, an early flagging of such instances can speed up the recovery of useful

patterns in the dataset. The first test is based on the concept of typicality as introduced in

[Zha92], and is given by

!

T1 x() =

1"
1

dmax FR x()
x " y 2

y#FR x()
$

1" 1
dmax EN x()

x " y 2
y#EN x()
$

 (6.6)

This test evaluates the ratio of the average similarity of x to all of its friends FR(x) over

all its enemies EN(x) (dmax is the largest distance in the dataset). High values of T1(x)

indicate that x is a border instance. The second test employed is defined as

!

T2 x() = "
R x()
C x()

 (6.7)

and is based on the ratio of the cardinalities of two sets introduced in [Bri02]. One is the

reachable set given by

!

R x() = y" X :# x() =# y()$ x % y 2 & x % E x()
2{ } (6.8)

where E(x) is the nearest enemy of x. That is, R(x) contains all friendly instances lying

between x and its nearest enemy. The other set is the coverage one, defined as

!

C x() = y" X : x"R y(){ } (6.9)

Their negative ratios T2(x) obtains higher values when x is most likely a border instance.

Using these tests, each initial gene (i.e., weight) of the ith population chromosome is set as

a uniformly random zero/one value with probability 1-phyb (that is, as in a standard GA),

or it is hybridised with probability phyb as follows. A random test index k!{1,2} is chosen

and the weight is set according to the rule

!

wi
initial() x() =

0 if Tk x() " mean Tk x(){ }
x#X()

1 otherwise

$
%
&

' &
 (6.10)

In this way, any of the existing tests Tk(x) can be used to approximate whether each x is a

likely border sample and set its corresponding initial weight to one (i.e., flag it in the

population as more likely to remain). On average, phyb"psize"n of the genes are created in

this informed manner, and the remaining randomly. Of course, any inaccuracies

introduced in the population from these tests, do not constitute a burden to the

evolutionary search, as the population can gradually find the better optimum. This

procedure was found to speed up the convergence significantly.

The second heuristic, employed to accelerate the optimisation process, is a

memetic component used to enhance the condensation of the proposed algorithm, via

incorporating some local fine-tuning of existing members in the population. A fraction of

pmem members from the offspring created in each generation are checked to establish

 99

whether any of their retained instances x have reachable sets larger than the coverage

ones. If this is found to be true, the corresponding weights are set to zero. This procedure

is helpful, since for an instance x, |R(x)|> |C(x) | means that there are more friends of x

that can be used to classify x correctly, than x can [Bri02]. To avoid positional bias, the

check is performed for all weights set to one, in random order. Also, the rule is applied as

long as it does not lead to the creation of an invalid chromosome.

The last heuristic of the proposed method is based on accelerating the search by

directly reducing the dimensionality of the problem from n to n'=[pshare"n], given a user

defined parameter pshare (Section 6.3 summarises all parameters and their values). This is

achieved with weight sharing, where samples are collected in small groups that can share

the same fate of being retained or discarded. This is implemented as follows. For each x,

the values of the previous tests are used and the vectors [T1(x), T2(x)]T are formed. Then a

simple clustering algorithm is applied to these two-dimensional features, such as k-

means, and n' clusters Li, for i=1,…,n' are obtained. Finally, by using the cluster

memberships, all n patterns x are arranged into n' groups. Therefore, all patterns within

the same group share a single weight value according to

!

"i# 1,...,n'{ },"x,y#Li $ X,w x() % w y() (6.11)

The rationale behind this heuristic, is that when different samples share similar border test

profiles, they have more chances in having the same fate. This is because they can be

located in similar key or unimportant positions in terms of the class distributions and

whether they can facilitate the classification of other friends and support the separability

from the enemy classes.

6.3 Experimental Analysis

As already explained, the problem of instance reduction is a multi-objective optimisation

problem, as the overall performance of algorithms is not characterised only by the

classification accuracy they exhibit, but also by the condensation ratio they achieve. The

conflicting nature of these two objectives, since an improvement in one, often leads to the

deterioration of the other, along with other important aspects such as complexity and

robustness require an in depth analysis of the experimental results. In order to obtain the

results presented in this section, the parameters of the optimisation algorithm were set to

the values specified in Table 6-I. These values are the result of thorough analysis and

intense experimentation. But, the genetic algorithm used as the optimisation component

offers a significant advantage to DWO, since its performance can be adjusted to the

results required. So, by differentiating the values of the table below, the performance of

 100

the algorithm can vary to favour classification accuracy or condensation ratio

respectively.

Table 6-I

Parameters settings for the proposed optimisation algorithm.

Parameter Value Description

20.0 Penalty curve control
$ 3.3 Bi-objective balancing parameter
psize 100 Population size
pc 0.8 Crossover rate
pm 0.01 Gene mutation probability
phyb 0.15 Population hybridisation ratio
pmem 0.1 Memetic component frequency
pshare 0.9 Weight sharing dimensionality fraction
tmax 200 Maximum number of generations allowed

An example of the effect these variations can have on the output of DWO can be seen in

Fig. 6.II. These experiments are performed on twelve (out of the total eighteen) real

dataset used for all experiments. Because of the multiple runs necessary and the time

requirements for all these experiments, the choice of the datasets was done based on their

size. As illustrated in Fig. 6.II, the parameters of the genetic algorithm can largely affect

the performance of the proposed algorithm. In the first row of the figure, one can observe

that classification accuracy rises as the balancing parameter $ increases until it reaches a

maximum value from where decline starts. Condensation on the other hand is

monotonically decreasing (Fig. 6.II (1c)). The second row depicts the effect increasing #

has on the performance of DWO. Again, accuracy and condensation are conflicting, since

the first one is increasing, while the latter one declines. The next parameter investigated is

the size of the population. As psize rises the condensation of DWO boosts, while accuracy

shows an initial incline before it starts deteriorating. Finally, it can be seen that a bigger

number of generations leads to larger values of condensation as well as higher

classification accuracy. To further demonstrate the capabilities of the proposed DWO

algorithm Fig. 6.III is included, that illustrates the results of this algorithm on the same

three two-dimensional synthetic datasets (3-class example, cross and spiral) that are used

in previous experiments. The selection of instances from DWO is illustrated in the figures

below, and as can be observed, it demonstrates quite high reduction rate as only a small

percentage of the initial training set is retained. Although the selected instances do not lie

exactly on decision surface, they are optimized in such a way to guarantee that the nearest

neighbour of each sample is of the same class label.

 101

(1a)

(1b)

(1c)

(2a)

(2b)

(2c)

(3a)

(3b)

(3c)

(4a)

(4b)

(4c)

Figure 6.II- Effect of GA parameters on classification accuracy and condensation ratio. 1(a) Classification

accuracy of DWO as the balancing parameter $ increases. 1(b) Effect of $ on condensation ratio. 1(c)

Accuracy over condensation as the balancing parameter increases. 2(a)-(c) Changes on classification

accuracy and condensation ratio as the control parameter # of the penalty curve increases. 3(a)-(c) Effect of

the population size on the accuracy and condensation ratio of DWO. 4(a)-(c) Classification accuracy and

condensation of DWO as the number of generations is increased.

 102

(a)

(c)

(c)

Figure 6.III- Experiments with three synthetic two-dimensional examples: (a) three-class rectangular shapes,

(b) two-class cross and (c) two-class tri-spiral. In all cases, the patterns from different classes are marked

with symbols “�”, “�”, “�”, and the retained border instances are enclosed by “!”.

 103

i. Numerical Results
In this section, in order to evaluate the proposed DWO algorithm, a comparison

against eight previously proposed instance reduction algorithms is provided. These

methods include Hit Miss Networks, LIF and CCIS proposed by Marchiori [Mar08,

Mar09, Mar10], DROP3, the most efficient of the DROP algorithms introduced in

[Wil00], ICF [Bri02], ICPL [Lam02b] and two previously described algorithms, CBP and

SIR [Nik10, Nik12]. All tests are again performed over the same eighteen datasets from

the UCI Machine Learning Repository [Bla98] that are described in Table 4-I.

As explained in previous chapters, the user defined parameters required were set

to their best performing values of k=1 for the CCIS algorithm and %=0.5 for the CBP, and

remained fixed in all experiments, while DWO was used without the weight sharing

heuristic. For reasons of simplicity and because this has been the trend in all previous

works, the simple 1NN rule was used to measure the classification accuracy of the output

prototypes, while in all algorithms the Euclidean distance norm was used as the distance

metric. Finally, each dataset was randomly divided in ten folds, nine of which were used

for training each algorithm and performing the prototype reduction, and one fold for

testing the classification accuracy with the 1NN rule. In total, five random permutations

of a 10-fold cross-validation were used giving a total of fifty runs per dataset from which

the final measures of accuracy and condensation were averaged for each dataset.

Numerical results for the eight competing algorithms and the proposed DWO are

aggregated in Table 6-II, together with averages across all datasets.

!

ii. Discussion
As already mentioned, Table 6-II presents both accuracy and condensation ratios

for all competing algorithms. Since, instance reduction is a bi-objective optimisation

problem one instance reduction algorithm can be considered better than another, when it

is better in both objectives, or if it is equivalent in one objective and better in the second.

But, in reality the final decision depends on the application at hand and what the user

prioritizes. For example, if condensation is critical, an algorithm that exhibits high

reduction rate can be chosen even if it does not demonstrate the highest accuracy.

From the table below, it is clear that all competing algorithms manage to have

similar accuracies as all averages lie within a range of 4.16% from the highest one

achieved by SIR at 79.25%, which is the only one that surpasses 79%, to the lowest one

observed for DROP3 at 75.09%. The two algorithms, HMN and LIF, proposed by

Marchiori demonstrate the second and third highest accuracy at 78.47% and 77.37%,

while ICF, CCIS, CBP and ICPL follow with nearly identical classification accuracies at

77.14%, 77.13%, 77.09% and 77.05% respectively. Despite the high classification

accuracy managed by LIF, it can be seen that it is designed to operate as a noise filter

 104

rather than a reduction technique, and thus it has a very low condensation ratio of no

more than 31.31%. SIR and HMN that display the best accuracy results exhibit competent

condensation ratios, 59.77% and 57.69% respectively, but significantly lower that CBP

and ICPL that achieve the highest reduction rates at 88.97% and 80.02% respectively. It

should be noted that these two are the only ones that overcome the 80% limit in terms of

condensation, as the rest of the algorithms demonstrate considerably lower values.

DROP3 with 79.47% and ICF with 78.09% follow, while CCIS achieves a condensation

of nearly 70%. As already mentioned DROP3, despite having the third best condensation

ratio, it displays considerably lower accuracy that the rest of the tested algorithms.

As can be observed in Table 6-II, the proposed algorithm, DWO, with average

classification accuracy of 79.75% outperforms all other algorithms. No other algorithm

exceeds the limit of 79.5% accuracy, not even ENN that is strictly an accuracy-enhancing

algorithm and according to Table 4-IV exhibits an average accuracy of no more than

79.34%. SIR and HMN, which are the two methods with the highest accuracies, are

clearly outperformed by 0.5% and 1.28% respectively. So DWO is the most accurate

algorithm from all the tested methods. On the other hand, in terms of condensation,

HMN, LIF, CCIS, DROP3, ICF, ICPL and SIR display considerably lower reduction

rates than the 83.72% achieved by DWO. Hence, DWO clearly surpasses all other

algorithms but CBP. However CBP has noticeably lower accuracy than DWO.

 In Table 6-III, statistical confidence values are also included that were obtained

using the Wilcoxon signed-rank test, which is a non-parametric two-sided statistical test.

It can be seen that DWO is significantly better, in terms of accuracy, than CCIS, DROP3,

ICF, ICPL, and CBP as indicated by the small p-values, and is better than HMN at 7%

significance level. The large p-values for LIF and SIR show that it is statistically

comparable to these methods. Also, in terms of condensation, at 1% significance level,

DWO clearly outperforms four out of the eight methods (namely, HMN, LIF, CCIS and

SIR) since the null hypothesis that the distributions difference has zero median is

rejected, while it yields comparable results to DROP, ICF and ICPL (the null hypothesis

is rejected at 8% significance level). Only CBP is shown to be better than DWO at 1%

significance level.

The further demonstrate the improvement achieved by the proposed method;

Table 6-III is included with the relative percentage improvement (or deterioration) of

DWO over each one of the competing methods for the averaged accuracy and

condensation ratios. Comparing the accuracy row of the table it shows that DWO

performs better than all other algorithms in terms of classification accuracy, since all

signs are positive. The percentage improvement varies from a maximum +6.21%

observed for DROP3 to a minimum of +0.63% for the second best algorithm (SIR). An

improvement of over 1.5% is observed for all other methods. On the other hand, in terms

 105

of condensation ratio, improvement continues when DWO is compared against all other

algorithms but CBP. More specifically, it displays a worsening of 5.9% against CBP, but

it improves the third best algorithm (ICPL) by 4.62%, and the fourth best (DROP3) by

nearly 5.5%. For the rest of the methods (namely, HMN, LIF, CCIS, ICF, and SIR) DWO

demonstrates even larger improvement with values ranging from 7.21% (ICF) up to a

maximum of 167.39% observed for LIF.

Instance reduction algorithms can also be compared based on their complexity

and time requirements. The complexity of the proposed algorithm is dominated by the

optimizing component used to solve this model. Hence, the complexity of DWO is the

complexity of the genetic algorithm that in the worst case scenario, and if no early

termination occurs, has a measure of O(tmaxnpsize). Three of the methods LIF, HMN and

CCIS, which are the fastest ones, have a complexity of O(n2), while SIR, as already

mentioned, displays a complexity of O(nr), where r<2.376 is the matrix multiplication

exponent. On the other hand, CBP, DROP3, ICF and ICPL have an even higher

complexity because they use Wilson’s editing rule (ENN) of O(n3) complexity as a

preprocessing step. Therefore, their complexity is also O(n3). But, ICPL, because of the

merging component, exhibits even larger time requirements than the rest of the methods.

As one can observe, the speed of DWO depends on the parameters of the GA used. It

should be noted that the reduction of instances in real applications is performed only

once, in the beginning of the process. Therefore, time requirements are not of high

importance as long as the method does not become impractical for real applications.

A final issue of DWO is its sensitivity to datasets with a large number of features.

In order to show how the proposed method responds to high dimensionalities, Fig. 6.IV is

added that illustrates dimensionality and classification error for all tested datasets. As can

be observed for large datasets such as musk and sonar, there is no particular bias with

respect to accuracy. This case is also proven from the small value of the pearson

correlation coefficient that was measured to be &=-0.159. This indicates that DWO is

robust to high dimensionalities, since accuracy is not affected.

 106

Figure 6.IV- Number of features and average classification errors for all datasets (each denoted by the first
two letters of the dataset name) for the proposed algorithm DWO.

 107

Table 6-II

Average accuracy (Acc) and condensation (Cond) percentages of the proposed CBP and 8 other compared algorithms over 18 datasets. These results are averaged over 50 runs.

 HMN LIF CCIS DROP3 ICF ICPL CBP SIR DWO

Datasets Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond Acc Cond
Diabetes 70.57 62.85 72.22 30.72 68.64 76.89 69.70 94.46 72.55 88.01 68.39 76.53 70.10 92.03 72.84 64.10 71.55 86.38
Ecoli 87.11 47.50 85.05 31.21 82.05 72.11 79.55 92.16 82.53 86.20 81.41 84.11 84.26 92.38 86.85 57.52 84.96 90.33
Glass 79.87 52.20 79.15 31.92 78.22 65.70 70.32 87.46 75.00 86.36 77.90 80.77 73.92 93.45 79.24 60.92 80.84 82.18
Haberman 70.67 61.51 73.53 30.15 64.20 87.48 66.60 80.90 72.36 92.17 67.90 75.33 74.17 91.96 76.19 63.15 71.88 87.52
Heart 65.85 71.52 66.37 38.72 63.93 72.86 63.78 88.11 65.41 82.17 60.89 69.82 65.48 89.16 66.96 66.30 65.41 83.19
Iono 89.40 56.92 86.73 9.73 86.37 79.53 82.68 55.70 81.14 96.07 88.03 86.74 83.09 95.73 85.31 57.53 91.46 92.36
Iris 95.60 43.08 95.20 13.21 95.47 81.67 95.73 71.10 95.47 60.41 93.47 90.52 94.53 94.09 96.67 51.04 95.20 94.07
Letter 91.35 48.99 87.16 48.49 92.04 54.42 84.24 82.38 89.03 75.75 91.13 87.63 85.79 89.54 90.95 53.43 92.38 81.23
Liver 63.68 69.92 66.72 38.49 64.53 72.29 64.98 66.84 61.80 84.32 60.01 70.89 63.65 88.39 64.65 66.41 66.30 80.85
Monk 71.42 82.95 75.86 41.98 71.27 81.11 73.19 80.31 79.30 48.40 71.56 64.68 79.38 57.12 77.27 52.13 77.16 83.20
Musk 83.41 54.65 83.00 23.54 80.00 66.84 71.28 78.49 77.46 78.81 84.66 83.48 79.12 89.38 81.97 56.34 86.35 79.95
Pendigit 98.65 41.88 98.39 31.18 98.94 56.68 96.54 85.18 97.38 89.72 97.93 95.92 94.48 98.38 99.06 50.58 98.36 93.80
Sonar 76.96 62.31 76.94 30.24 75.49 66.65 72.45 72.11 75.55 67.57 79.72 82.03 75.25 89.10 74.96 59.13 79.69 75.88
Transfusion 74.41 66.21 75.10 25.90 63.34 85.98 69.81 82.07 72.33 69.37 73.57 86.11 74.17 88.09 75.46 61.97 75.30 84.15
Vehicle 54.71 68.31 55.75 51.57 52.98 58.54 50.93 90.10 54.87 81.68 54.39 67.96 53.69 89.76 56.34 74.82 55.93 76.96
Vowel 91.82 45.97 70.93 67.41 91.82 46.76 90.69 65.41 90.42 43.38 93.47 82.90 88.65 83.17 90.06 53.33 95.07 68.96
Wine 95.97 48.13 96.44 25.60 95.71 67.94 92.93 74.80 91.47 87.11 93.39 89.43 95.43 95.65 95.62 51.50 93.04 91.88
Yeast 56.76 64.03 58.08 51.81 53.32 69.97 56.18 82.86 54.51 88.10 49.00 65.57 51.98 92.35 56.15 75.66 54.55 74.05
Average 78.47 57.69 77.37 31.31 77.13 69.89 75.09 79.47 77.14 78.09 77.05 80.02 77.09 88.97 79.25 59.77 79.75 83.72

!

Table 6-III

Comparison of CBP against all other algorithms, with accuracy (Acc) and condensation (Cond) shown in the rows. The PI columns correspond to the percentage improvement (positive)

or percentage deterioration (negative) score, calculated as: (DWO_score – other_score) / other_score ! 100), where the scores are taken to be the average classification or condensation

scores across all datasets (last row of Table II). The columns marked as p correspond to the p-values of the Wilcoxon sign-rank test at 0.01 significance, with the null hypothesis that the

scores distributions for all individual datasets have equal medians.

 HMN LIF CCIS DROP3 ICF ICPL CBP SIR
 PI(%) p PI(%) p PI(%) p PI(%) p PI(%) p PI(%) p PI(%) p PI(%) p
Acc +1.63 0.07 +3.08 0.36 +3.40 0.0014 +6.21 0.0006 +3.34 0.0056 +3.50 0.0003 +3.45 0.0074 +0.63 0.7439
Con
d

+45.1
2 0.0020 +167.39 0.0020 +19.79 0.0003 +5.35 0.25 +7.21 0.1570 +4.62 0.0778 -5.90 0.0033 +40.07 0.0002

 108

6.4 Conclusions

Instance weight learning is a widely used technique in the field of machine learning

[Zuo08, Mod03, Lan09, Qu08]. In order to deal with the problems arising in instance-

based learning, a framework is proposed that employs instance-weight modelling to

determine a small subset of the original prototypes that can accurately represent the entire

dataset. The novelty of the Direct Weight Optimization algorithm lies on the binary

weights that control the preservation or removal of instances. These weights are

computed by optimizing an objective function (Eq. 6.5) that involves the ratio between

the nearest friend and the nearest enemy of every instance. An instance of the training set

is correctly classified as long as this ratio is less than one. Hence, the rationale behind the

design of DWO is to keep this ratio to a minimum, in order to guarantee that the majority

of sample patterns are not misclassified by the nearest neighbour rule. A major advantage

of the proposed method is the fact that the optimization procedure is performed by a

genetic algorithm. Not only because GAs can find good quality solutions, but also

because the various parameters of the GA offer DWO the ability to adjust its performance

according to the needs of the user and the application at hand.

As experiments showed the proposed algorithm manages very competitive results

as it yields very high reduction rate, the second best between the tested algorithms,

without compromising classification accuracy. It is the best performing method in terms

of accuracy since it surpasses even accuracy enhancing methods like ENN. It should also

be mentioned that the proposed heuristics can efficiently accelerate DWO for large

datasets, compensating for the increased complexity of the optimization component. On

the downside, although there does not seem to be correlation between classification error

and dimensionality, like other methods that use distances between samples, it may fail to

remove the right instances in highly dimensional spaces due to the distance concentration

effect. Finally, for small datasets that their size is significantly lower than tmaxxpsize

(number generations and population size), DWO is rather slow despite the accelerating

enhancements.

Unlike other methods, DWO models both objectives of classification accuracy

and data condensation explicitly in a simple but very effective manner. So this work

displays not only high accuracy results, as expected by selection techniques, but also very

good condensation results. Experiments showed that DWO deals extremely well with the

issue of condensation in selection algorithms, as the reduction rate achieved is equivalent

if not better than the ones displayed by abstraction algorithms like CBP and ICPL.

Since DWO displayed the best accuracy, future work should aim on improving

 109

its performance in terms of condensation and time requirements. The design of further

heuristics, similar to the ones already introduced, can be beneficial in terms of speeding

up the optimization process.

 110

CHAPTER 7:

EPILOGUE

7.1 Conclusions

This thesis presented a comprehensive survey on instance reduction algorithms, including

instance selection techniques as well as prototype abstraction algorithms. It also proposed

four original algorithms, namely Class Boundary Preserving algorithm, Spectral Instance

Reduction, Instance Seriation for Prototype Abstraction and Direct Weight Optimization

algorithm, which can efficiently deal with the problems instance-based learning faces.

Apart from the obvious advantages every algorithm displayed as analyzed in the

respective chapters (i.e. the accuracy of DWO, the condensation ratio of the CBP

algorithm or the overall performance of SIR that exhibited high accuracy, competent

condensation as well as very good speed) the major contribution of this thesis is the

novelty of the frameworks proposed. All methods designed offer new possibilities and

provide new insights in the field of prototype reduction.

First of all, CBP is a powerful heuristic that determines the geometric structure of

patterns around every sample, which is represented as the cosine score, in order to

determine which instances should be discarded. It aims at identifying border samples,

since the major information required to effectively describe the underlying distribution is

held by samples close to class boundaries. Qualitatively, CBP exhibits the highest

condensation ratio between all the tested algorithms, in the region of 89%, without

compromising classification accuracy that is competent at an average of 77.09%.

Compared to other algorithms, DWO outperforms all others in terms of

classification accuracy with an average of 79.75%, while it yields the second best

reduction rate (83.72%), behind only CBP. But, the most important contribution of DWO

is the instance-weight modelling proposed that employs a number of parameters (binary

weights) focusing on maintaining misclassifications to a minimum. This is achieved with

the appropriate objective function that is based on the ratio of the distances of a sample to

 111

its nearest friend over its nearest enemy instance. Another major advantage of this

algorithm is the objective function of the model, along with the parameters of the

optimizing component that can be modified to fit the needs of the application at hand.

The SIR algorithm displays relatively high accuracies, third best as only DWO

and ENN surpass its average of 79.25%, along with competent condensation results, as

nearly 60% of the original samples are removed, and very good speeds (lower complexity

than DWO and CBP). The novelty, though, of the specific framework is the totally new

insight it offers to instance reduction with two major contributions. Firstly, the border

discriminating features that capture different types of local geometric characteristics of

the data samples, in terms of their friend and enemy profiles. Secondly, the spectral graph

theory that is employed in order to partition between instances close to the decision

surface, hence, worthwhile maintaining, and internal ones that should be removed.

Essentially, samples are projected to a new space, which favors the separation between

them.

Even ISPA, which can be consider as an early draft of SIR since it was designed

in an effort to create some sort of ordering of sample patterns, has its own slight

contribution to the field of prototype reduction. Although seriation has been known for

over 50 years, it has only recently been used in machine learning and more specifically,

in pattern recognition. So, it should be mentioned that despite the lack of competent

results, as ISPA cannot be compared to the other very successful reduction algorithms

designed or implemented in this thesis, it is the first method that tried to employ seriation

on data reduction. It focused on organizing the training set in a way that favors direct

merging of prototypes.

Table 7-I

Comparison of the three proposed algorithms in terms of classification accuracy, condensation ratio and computational

complexity. Algorithms are numbered from the best performing (1) to the least (3). The complexity of DWO varies with

the parameters of the GA and has lower complexity than CBP for larger datasets and higher for small datasets.

 Accuracy Condensation Complexity

CBP 3 1 3 (2)

SIR 2 3 1

DWO 1 2 2 (3)

 112

Finally, many statistics have been introduced [Dem06, Alp99] to decide which

algorithm is better, and various methods have been proposed to determine which feature

is most important [Wit08], but every method will conclude on a different result. A simple

comparison between the three main schemes in terms of classification accuracy,

condensation and computational complexity can be seen in Table 7-I. But, as explained in

[Tri11] and [Gar10] for real-world applications, the final judgment often relies on what

the application prioritizes and on the needs of the user. For example, if high condensation

were required, setting accuracy and speed aside, the best solution would be CBP. On the

other hand, if a robust and fast method is needed, then a worse performance in

condensation can be traded off against a slightly better accuracy obtained in the lower

possible time. So, SIR would be ideal. If accuracy is critical, DWO is the obvious choice.

So, the final choice comes down to the application at hand.

 To conclude, this thesis provided a thorough analysis of instance selection and

prototype abstraction techniques and identified the advantages and disadvantages of each

group respectively. Algorithms that generate new prototypes display high condensation

ratios along with large time requirements, similar to CBP. On the other hand, selection

methods are generally faster and highly accurate, as proven by SIR and other similar

algorithms. So this work proposed novel techniques that not only improved the strong

points of each group respectively, but also introduced DWO that enhances accuracy of

already existing selection algorithms while simultaneously strengthens their weakness in

terms of reduction rate.

7.2 Future Work

In this thesis four different algorithms have been presented and as experiments showed,

all of them, apart from their advantages exhibit some limitations. In this section, possible

extensions are presented that can improve the proposed work.

First of all, CBP, as already explained, is a reduction method that consists of

multiple heuristics. Therefore, extensions on this method can be done in the form of

adding extra stages or replacing already existing ones. One of the major drawbacks of the

CBP algorithm is its high complexity that leads to large response times. One

improvement would be to substitute the initial noise filter (ENN) that is very

computationally expensive. A simpler and faster filtering process would largely benefit

CBP. Another improvement that could have a significant effect on the classification

accuracy and the condensation ratio of CBP is the use of an adaptive threshold ! instead

of the fixed one that is currently used. Although having a threshold that adjusts to the

 113

processed dataset could prove to be valuable for the overall performance, it could largely

increase the computational requirements of the method.

Regarding the ISPA algorithm proposed in chapter 5, the whole abstraction

component would have to be restructured in order to obtain competitive results. Since the

solely contribution of this algorithm is the ordering of the distance matrix, this is the only

stage of the method that is worth further investigation. On the other hand, for the SIR

algorithm that is described in the same chapter, future work could include its

improvement in terms of condensation by combining it with instance abstraction. It has

been proven that the majority of abstraction methods [Lam02a, Lam02a, Tri11] display

large reduction rates. Another enhancement would be to use incremental updates of the

partitioning eigenvector for applications where new samples are frequently generated.

This could prove to be very beneficial for the performance of SIR. Despite the successful

operation of the border discriminating features, they present an aspect of the algorithm

that can efficiently and easily be improved. One such case would be to better tailor them

to the employed classifier, or to adapt the cardinality of friends and enemies for the

different BDFs according to the characteristics of the individual datasets.

Finally, the DWO technique introduced in chapter 6 can be considered to be the

best performing algorithm from the tested ones as it displayed the best overall

performance with the highest possible accuracy while it outperformed all other methods

but CBP in terms of condensation ratio. Therefore, speeding up the process would be the

most advantageous enhancement. This could be done by improving the already proposed

accelerating heuristics or by designing new better suited ones.

All these suggestions involve the proposed algorithms and can simply enhance

their operation. There exist, though, two areas in data mining that it would be useful to

work on in the future. The first topic is the specific case of imbalanced datasets, which

has been addressed [Lau01, Cha02, Cha03, Cha05, Mal03, and Bat04] but not

investigated in depth. The second one, involves simultaneous instance as well as

dimensionality reduction. Similar to the idea analyzed in [Vil08], research should be

focused on combining the two data mining techniques in order to achieve condensation of

the original training set in both directions at the same time.

 114

REFERENCES

[Aha91] Aha, D.W., Kibler, D. and Albert, M.K., 1991. “Instance-based learning algorithms.”

Machine Learning, 6, pp. 37 – 66.

[Ald94] Alder, M., and McKenzie, P., 1994. “Unsupervised learning: The dog rabbit strategy.” In

IEEE Int. Conf. on Neural Networks.

[Alp99] Alpaydin, E., 1999. “Combined 5x2 cv F test for comparing supervised classification

learning algorithms.” Journal Neural Computation, vol. 11, pp. 1885-1892.

[And02] Andrew, R.W., 2002. Statistical Pattern Recognition. 2nd Edition. John Wiley and Sons

Ltd.

[Ang07a] Angiulli, F., 2007. “Fast nearest neighbour condensation for large data sets

classification.” IEEE Trans. Knowledge and Data Eng., vol. 19, pp.1450-64.

[Ang07b] Angiulli, F., 2007. “Distributed nearest neighbour-based condensation of very large data

sets.” IEEE Trans. Knowledge and Data Eng., vol. 19, pp. 1593-1606.

[Ast70] Astrahan, M.M., 1970. “Speech analysis by clustering, or the hyperphoneme method.”

Stanford A. I. Project Memo, Stanford University, California.

[Atk97] Atkeson, C.G., Moore, A.W., and Schaal, S., 1997. “Locally weighted learning.”

Artificial Intelligence Review, vol. 11, pp. 11-73.

[Bab96] Babich, G.A., and Camps, O.I., 1996. “Weighted parzen windows for pattern

classification.” IEEE Trans. Pat. Anal. Mach. Intel, vol.18, pp. 567-70.

[Bar05] Barandela, R., Ferri, F.J. and Sanchez, J.S., 2005. “Decision boundary preserving

prototype selection for nearest neighbour classification.” Int. Journal of Pattern

Recognition and Artificial Intelligence, vol. 19, pp. 787-806.

[Bar05] Barandela, R., Ferri, F.J., and Sanchez, S.J., 2005. “Decision boundary preserving

prototype selection for nearest neighbour classification.” Int. Journal of Pattern

Recognition and Artificial Intelligence, vol. 19, pp. 787-806.

[Bat04] Batista, G.E.A.P.A., Prati, R.C., and Monard, M.C., 2004. “A study of the behavior of

several methods for balancing machine learning training data.” ACM SIGKDD

Explorations Newsletter, vol. 6, pp. 20-29.

[Bea03] Beal, M.J., 2003. “Variational algorithms for approximate bayesian inference.” PhD

Thesis, Gatsby Computational Neuroscience Unit, University College London, UK.

 [Bel02] Belkin, M., and Niyogi, P., 2002. “Laplacian eigenmaps and spectral techniques for

embedding and Clustering.” In Advances in neural information processing systems, vol.

14, T.K. Leen, T.G. Dietterich, & V. Tresp Editions, Cambridge, MA: MIT Press.

[Bel03] Belkin, M., and Niyogi, P., 2003. “Laplacian eigenmaps for dimensionality reduction and

data representation.” Neural Computation, vol. 15, pp.1373-1396.

[Ber00] Bermejo, S. and Cabestany, J., 2000. “Adaptive soft k-nearest-neighbour classifiers.”

Pattern Recognition, vol. 33, pp. 1999-2005.

 115

[Bez02] Bezdek, J.C., and Hathaway, R.J., 2002. “VAT: A tool for visual assessment of (cluster)

tendency.” In Proc. of 2002 Int. Joint Conference on Neural Networks, vol. 1-3, pp.

2225-2230.

[Bez07] Bezdek, J.C., Hathaway, R.J., and Huband, J.M., 2007. “Visual assessment of clustering

tendency for rectangular dissimilarity matrices.” IEEE Trans. on Fuzzy Systems, vol. 15,

pp. 890-903.

[Bez81] Bezdek, J.C., 1981. Pattern recognition with fuzzy objective function algorithms. Kluwer

Academic Publishers, Norwell, USA.

[Bez98a] Bezdek, J.C., and Kuncheva, L.I., 1998. “Nearest prototype classification: clustering,

genetic algorithms, or random search?” IEEE Trans. Syst., Man., Cybern., vol.28, pp.

160-164.

[Bez98b] Bezdek, J.C., et al. 1998. “Multiple-prototype classifier design.” IEEE Trans. Syst., Man.,

Cybern., vol.28, pp. 67-79.

[Bha05] Bhattacharya, B., Mukherjee, K., and Toussaint, G., 2005. “Geometric decision rules for

instance-based learning problems.” In Proc. of 1st Int. Conf. on Pattern Recognition and

Machine Intelligence, Kolkata, India.

[Bis06] Bishop, C.M., 2006. Pattern Recognition and Machine Learning. New York: Springer

Science and Business Media, LLC.

[Bla98] Blake, M., 1998. “UCI Repository of machine learning databases.”

www.ics.uci.edu/~mlearn/, Irvine, CA, University of California, Department of

Information and Computer Science.

[Bri02] Brighton, H., and Mellish, C., 2002. “Advances in instance selection for instance-based

learning algorithms.” Data Mining and Knowledge Discovery, vol.6, pp. 153-72.

[Bri99] Brighton, H., and Mellish, C., 1999. “On the consistency of information filters for lazy

learning algorithms.” In Principles of 3rd Conference on Data Mining and Knowledge

Discovery. Prague, Czech Republic.

[Can05] Cano, J.R., Herrera, F., and Lozano, M., 2005. “Stratification for scaling up evolutionary

prototype selection.” Pattern Recognition Letters, vol. 26, pp. 953-963.

[Can06] Cano, J.R., Herrera, F., and Lozano, M., 2006. “A study on the combination of

evolutionary algorithms and stratified strategies for training set selection in data mining.”

Applied Soft Computing, vol. 6, pp. 323-332.

[Cao08] Cao, H., et al. 2008. “Enhancing effectiveness of density-based outlier mining.” In Int.

Symp. On Information Processing.

[Cha02] Chawla, N.V., Bowyer, K.W., Hall, L.O., and Kegelmeyer, W.P., 2002. “SMOTE:

Synthetic minority over-sampling technique.” Journal of Artificial Intelligence Research,

vol. 16, pp. 321-357.

[Cha03] Chawla, N.V., 2003. “C4.5 and imbalnced data sets: Investigating the effect of sampling

method, probabilistic estimate, and descision tree structure.” In Proc. of ICML Workshop

on Class Imbalances.

[Cha05] Chawla, N.V., 2005. “Data mining for imbalanced datasets: An overview.” Data Mining

and Knowledge Discovery Handbook, vol. 6, pp. 853-867.

 116

[Cha06] Chang, H., Yeung, D.Y., and Cheung, W.K., 2006. “Relaxation metric adaptation and its

application to semi-supervised clustering and content-based image retrieval.” Pattern

Recognition, vol. 39, pp. 1905-1917.

[Cha74] Chang, C., 1974. “Finding prototypes for nearest neighbour classifiers.” IEE Trans. On

Computers, vol. C-23, pp. 1179-84.

[Cha96] Chaudhuri, B.B., 1996. “A new definition of neighbourhood of a point in multi-

dimensional space.” Pattern Recognition Letters, vol. 17, pp. 11-17.

[Che07] Chen, T.S., Chiu, Y.H., and Lin, C.C., 2007. “Fast nearest neighbour classification using

class-based clustering.” In Proceedings of 6th Int. Conf. on Machine Learning and

Cybernetics.

[Che95] Cheng, Y., 1995. “Mean shift, mode seeking, and clustering.” IEEE Trans. Pattern

Analysis Machine Intelligence, vol. 17, pp. 790-799.

[Chi79] Chidananda, G.K., and Krishna, G., 1979. “The condensed nearest neighbour rule using

the concept of mutual nearest neighbourhood.” IEEE Trans. On Information Theory,

vol.25, no. 4, pp. 488–490.

[Cho06] Chou, C.H., Kuo, B. H., and Chang, F., 2006. “The generalized condensed nearest

neighbour rule as a data reduction method.” In Proceedings of 18th International

Conference on Pattern Recognition.

[Cla04] Clauset, A., Newman, M.E.J., and Moore, C., 2004. “Finding community structure in

very large networks.” Physics Rev., E70, 066111.

[Com02]Comaniciu, D., and Meer, P., 2002. “Mean shift: A robust approach toward feature space

analysis.” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5.

[Cow99] Cowgill, M., Harvey, R. and Watson, L., 1999. “A genetic algorithm approach to cluster

analysis.” Comput. Math. Appl., vol. 37, pp. 99-108.

[Cra02] Crammer, K., Bachrach, R.G., and Navot, A., 2002. “Margin analysis of the LVQ

algorithm.” Advances in Neural Information Processing Systems, pp. 462-469.

[Cza04] Czarnowski, I., Jedrzejowicz, P., 2004. “An approach to instance reduction in supervised

learning.” Research and Development in Intelligent Systems. Coenen, F., Preece, A., and

Macintosh, A., Springer Editions, vol. XX, pp. 267-282.

[Cza10] Czarnowski, I., 2010. “Prototype selection algorithms for distributed learning.” Pattern

Recognition, vol. 43, pp. 2292-2300.

[Das94] Dasarathy, B.V., 1994. “Minimal consistent set (MCS) identification for optimal nearest

neighbour decision systems design.” IEEE Trans. Syst., Man., Cybern.,vol.24, No. 3,

pp.511-517.

[Deh07] Dehzangi, O. et al., 2007. “An efficient nearest neighbour classifier using an adaptive

distance measure.” In Proceedings of 12th International Conference on Computer

Analysis of Images and Pattern, pp. 970-978.

[Dem06] Demsar, J., 2006. “Statistical comparisons of classifiers over multiple data sets.” Journal

of Machine Learning Research, vol. 7, pp. 1-30.

[Der10] Derrac, J., Garcia, S., and Herrera, F., 2010. “IFS-CoCo: Instance and feature selection

based on cooperative coevolution with nearest neighbour rule.” Pattern Recognition, vol.

43, pp. 2082-2105.

 117

[Dev80] Devijver, P.A., and Kittler, J., 1980. “On the edited nearest neighbour rule.” In Proc. of

5th Int. Conf. on Pattern Recognition, pp. 72-80.
[Din01] Ding, C.H.Q., He, X.F., Zha, H.Y., Gu, M. and Simon, H. D., 2001. “A min-max cut

algorithm for graph partitioning and data clustering.” In Proc. IEEE International

Conference on Data Mining, pp. 107-114.

[Dom02] Domeniconi, C., Peng, J., and Gunopulos, D., 2002. “Locally adaptive metric nearest

neighbour classification.” IEEE Trans. on Patt. Anal. Mach. Intell., vol. 24, pp. 1281-

1285.

[Dom05] Domeniconi, C., Gunopulos, D., and Peng, J., 2005. “Large margin nearest neighbour

classifiers.” IEEE Trans. on Neural Networks, vol. 16, pp. 899-909.

[Don00] van Dongen, S., 2000. “Graph clustering by flow simulation.” PhD Thesis, Dutch

National Research Institute for Mathematics and Computer Science, University of

Utrecht, Netherlands.

[Don73] Donath, W., and Hoffman, A., 1973. “Lower bounds for the partitioning of graphs.” IBM

Journal Res. Dev., vol. 17, pp. 420-425.

[Dud01] Duda, R.D., Hart, P.E. and Stork, D. G., 2001. Pattern Classification. 2nd Edition. New

York: John Wiley & Sons, Inc.

[Dui08] Duin, R.P.W., and Pekalska, E., 2008. “On refining dissimilarity matrices for an

improved NN learning.” In 19th Int. Conf. on Pattern Recognition (ICPR), Tampa, USA.

[Dun74] Dunn, J.C., 1974. “A fuzzy relative of the isodata process and its use in detecting

compact well-separated clusters.” Journal of Cybernetics, vol. 3, pp. 32-57.

[Eve01] Everitt, B., Landau, S., and Leese, M., 2001. Cluster Analysis. London: Arnold.

[Fay09] Fayed, H.A. and Atiya, A.F., 2009. “A novel template reduction approach for the k-

nearest neighbour method.” IEEE Trans. on Neural Networks, vol. 20, pp. 890-896.

[Fer07] Fernandez, F., and Isasi, P., 2007. “Local feature weighting in nearest prototype

classification.” IEEE Trans. Neural Networks, pp. 40-53.

[Fil08] Filippone, M., Camastra, F., Masulli, F., and Rovetta S., 2008. “A survey of kernel and

spectral methods for clustering.” Pattern Recognition, vol. 41, pp. 176-190.

[Fis36] Fisher, R.A., 1936. “The use of multiple measurements in taxonomic problems.” Annals

of Eugenics, pp. 179-188.

[For10] Fortunato, S., 2010. “Community detection in graphs.” Physics Reports, 486, pp. 75-174.

[Fuk75] Fukunaga, K., 1975. “The estimation of the gradient of a density function, with

applications in pattern recognition.” IEEE Trans. Information Theory, vol. 21, pp. 32-40.

[Gal05] Gallagher, M., and Frean, M., 2005. “Population-based continuous optimization,

probabilistic modelling and mean shift.” Journal Evolutionary Computation, vol. 13, pp.

29-42.

[Gar08] Garain, U., 2008. “Prototype reduction using an artificial immune model”. Pattern

Analysis Applications, vol. 11, pp. 353-363.

[Gar09] Garcia, A.H., and Pedrajas, N.G., 2009. “A divide-and-conquer recursive approach for

scaling up instance selection algorithms.” Data Mining and Knowledge Discovery, vol.

18, pp. 392-418.

 118

[Gar10] Garcia, S., Cano, J.R., and Herrera, F., 2008. “A memetic algorithm for evolutionary

prototype selection: A scaling up approach.” Pattern Recognition, vol. 41, 2693-2709.

[Gar10] Garcia, S., Derrac, J., Cano, J.R., and Herrera, F., 2010. “Prototype selection for nearest

neighbour classification: Taxonomy and empirical study.” IEEE Trans. Pat. Anal. Mach.

Intel. (in press).

[Gat72] Gates, G.W., 1972. “The reduced nearest neighbour rule.” IEEE Trans. On Information

Theory, pp. 431 – 433.

[Gev91] Geva, S., and Sitte, J., 1991. “Adaptive nearest neighbour pattern classification.” IEEE

Trans. On Neural Networks, vol. 2, pp. 318-22.

[Gir02] Girolami, M., 2002. “Mercer kernel-based clustering in feature space.” IEEE Trans. on

Neural Networks, vol. 13, pp. 780-784.

[Gir02] Girvan, M., and Newman, M.E.J., 2002. “Community structure in social and biological

networks.” In Proc. Natl. Acad. Sci., USA, pp. 7821-7826.

[Gir03] Girolami, M., and He, C., 2003. “Probability density estimation from optimally

condensed data samples.” IEEE Transactions on Pattern Analysis and Machine

Inteligence, vol.25, pp. 1253-1264.

[Gou07] Goulermas, J.Y. et al. 2007. “Density-driven generalized regression neural networks

(DD-GRNN) for function approximation.” IEEE Trans. on Neural Networks, vol.18,

pp.1683-1696.

[Gou11] Goulermas, J.Y., 2011. Evolutionary Optimisation, lecture notes distributed in

Computational Intelligence II ELEC475/675 at University of Liverpool, UK.

[Gre07] Gregory, S., 2007. “An algorithm to find overlapping community structure in networks.”

In Proc. 11th European Conf. on Princ. Pract. Knowl. Disc. Dat., PKDD 2007, Springer-

Verlag, Berlin, Germany.

[Guo05] Guo, G., et al., 2005. “Similarity-based data reduction and classification.” In International

Workshop on Monitoring, Security, and Rescue Techniques in Multiagent Systems, pp.

227-238.
[Hah08] Hahsler, M., Hornik, K., and Buchta, C., 2008. “Getting things in order: An introduction

to the R package seriation.” Journal of Statistical Software, vol. 25, pp. 1-34.

[Har68] Hart, P.E., 1968. “The condensed nearest neighbour rule.” IEEE Trans. On Information

Theory, pp. 515-516.

[Has96] Hastie, T., and Tibshirani, R., 1996. “Discriminant adaptive nearest neighbour

classification.” IEEE Trans. Patt. Anal. Mach. Intell., vol. 18, pp. 607-615.

[Hay99] Haykin, S.S., 1999. Neural Networks: A Comprehensive Foundation. Prentice Hall,

London, UK.

[Haz07] Hazelton, M.L., and Turlach, B.A., 2007. “Reweighted kernel density estimation.”

Computational statistics and Data Analysis, vol. 51, pp. 3057-3069.

[He02] He, X., and Niyogi, P., 2004. “Locality preserving projections.” Advances in Neural

Information Processing System, vol. 16, Cambridge, MA: MITPress.

[Hil05] Hill, E.J., Alder, M., and deSilva, C.J.S., 2005. “An improvement to the DR clustering

algorithm.” Pattern Recognition Letters, vol. 26, pp. 101-107.

 119

[Hof08] Hofman, J.M., and Wiggins, C.H., 2008. “Bayesian approach to network modularity.”

Phy. Rev. Lett., vol. 100 (25), 258701.

[Hu08] Hu, Q., Yu, D., and Xie, Z., 2008. “Neighbourhood classifiers.” Expert Systems with

Application, vol. 34, pp. 866-876.

[Hua06] Huang, D. and Chow, T.W.S., 2006. “Enhancing density-based data reduction using

entropy.” Journal of Neural Computation, vol. 18, pp.470-495.

[Hua07] Huang, X., et al. 2007. “Weighted kNN model-based data reduction and classification.”

In 4th International Conference on Fuzzy Systems and Knowledge Discovery.
[Hub05] Huband, J.M., Bezdek, J.C., and Hathaway, R.J., 2005. “bigVAT: Visual assessment of

cluster tendency for large data sets.” Pattern Recognition, 38, pp. 1875-1886.

[Ich79] Ichino, M., 1979. “A nonparametric multiclass pattern classifier.” IEEE Trans. on

Systems, Man, and Cybernetics, vol. smc-9, pp.345-352.

[Jan04a] Jankowski, N., and Grochowski, M., 2004. “Comparison of instances selection

algorithms I. Algortihms survey.” In Proc. of 7th Int. Conference on Artif. Intel. and Soft

Comp., Zakopane, Poland.
[Jan04b] Jankowski, N., and Grochowski, M., 2004. “Comparison of instances selection

algorithms II. Results and comments.” In Proc. of 7th Int. Conference on Artif. Intel. and

Soft Comp., Zakopane, Poland.
[Jar92] Jaromczyk, J.W., and Toussaint, T., 1992. “Relative neighbourhood graphs and their

relatives.” In IEEE Proceedings, vol. 80, pp. 470-479.

[Jor99] Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., and Saul, L.K., 1999. “An introduction to

variational methods for graphical models.” Machine Learning, vol. 37, pp. 183-233.

[Kan08] Kang, P. and Cho, S., 2008. “Locally linear reconstruction for instance-based learning.”

Pattern Recognition, vol. 41, pp. 3507-3518.

[Kay93] Kay, S.M., 1993. Fundamentals of Statistical Signal Processing: Estimation Theory.

Prentice Hall. Chapter 7.

[Ken69] Kendall, D.G., 1969. “Incidence matrices, interval graphs and seriation in archaeology.”

Pacific Journal of Mathematics, vol. 28, pp. 565-570.

[Ken71] Kendall, D.G., 1971. “Abundance matrices and seriation in archaeology.”

Wahrscheinlichkeitstheorie, pp. 104-112.

[Kim03] Kim, S.W., and Oommen, B.J., 2003. “Enhancing prototype reduction schemes with

LVQ3-type algorithms.” Pattern Recognition, vol. 36, pp. 1083-93.

[Koh86] Kohonen, T. 1986. “Learning vector quantization for pattern recognition.” Technical

Report, Helsinki University of Technology.

[Kok09] Kokiopoulou, E., and Saad, Y. , 2009. “Enhanced graph-based dimensionality reduction

with repulsion Laplaceans.” Pattern Recognition, vol. 42, pp. 2392–2402.

[Kun95] Kuncheva, L.I., 1995. “Editing for the k-nearest neighbours rule by a genetic algorithm.”

Pattern Recognition Letters, vol. 16, pp. 809-814.

[Lam02a]Lam, W., Keung, C.K., and Ling, C.X., 2002. “Learning good prototypes for

classification using filtering and abstraction of instances.” Pattern Recognition, vol. 35,

pp. 1491-1506.

 120

[Lam02b]Lam, W., Keung, C.K., and Liu, D., 2002. “Discovering useful concept prototypes for

classification based on filtering and abstraction.” IEEE Trans. on Pattern Analysis and

Machine Inteligence, vol.24, No 8, pp. 1075-1090.

[Lan09] Lan, M., Tan, C.L., Su, J., and Lu, Y., 2009. “Supervised and traditional term weighting

methods for automatic test categorization.” IEEE Trans. Pattern Analysis Machine

Learning, vol. 31, pp. 721-735.

[Lat05] Latapy, M., and Pons, 2005. Lecture notes on computer science, 3733, pp. 284-293.

[Lau01] Laurikkala, J., 2001. “Improving identification of difficult small classes by balancing

class distribution.” In Proc. 8th Conf. Artificial Intelligence Medicine, pp. 63-66.

[Law06] Law, M.H.C., and Jain, A.K., 2006. “Incremental nonlinear dimensionality reduction by

manifold learning.” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, pp. 377-391.

[Lee05] Lee, J., and Lee, D., 2005. “An improved cluster labelling method for support vector

clustering.” IEEE Trans. Pattern Analysis Machine Intelligence, vol. 27, pp. 461-464.

[Li05] Li, J., Manry, M.T., Yu, C., and Wilson, R.D., 2005. “Prototype classifier design with

pruning.” Int. Journal on Artificial Intelligence Tools, vol. 14, pp. 261-280.

[Lin91] Lin, J., 1991. “Divergence measures based on the Shannon entropy.” IEEE Trans. On

Information Theory, vol. 37, no 1, pp. 145-151.

[Loz03] Lozano, M.T., Sanchez, J.S., and Pla, F. 2004. “Using the geometrical distribution of

prototypes for training set condensing.” In 10th Conference of the Spanish-Association-

for-Artificial-Intelligence, pp. 618-627.
[Lux07] von Luxburg, U., 2007. “A tutorial on spectral clustering.” Statistics and Computing, vol.

17, pp. 395–416.

[Mac67] MacQueen, J., 1967. “Some methods for classification and analysis of multivariate

observations.” in Proc. 5th Berkeley Symp., vol. 1, pp. 281-297.

[Mal03] Maloof, M.A., 2003. “Learning when data sets are imbalanced and when costs are

unequal and unknown.” In Proc. of ICML Workshop on Learning from Imbalanced

datasets.

[Man08] Mannila, H., 2008. “Finding total and partial orders from data for seriation.” Lecture

Notes in Computer Science, Springer.

[Mar08] Marchiori, E., 2008. “Hit miss networks with applications to instance selection.” Journal

of Machine Learning Research, vol.9, pp. 997-1017.

[Mar09] Marchiori, E., 2009. “Graph-based discrete differential geometry for critical instance

filtering.” In Joint European Conf. on Machine Learning (ECML)/ European Conf. on

Principles and Practice of Knowledge Discovery in Databases (PKDD), Bled, Slovenia.

[Mar10] Marchiori, E., 2010. “Class conditional nearest neighbour for large margin instance

selection.” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 32, pp. 364-

370.

[Mau00] Maulik, U., and Bandyopadhyay, S., 2000. “Genetic algorithm-based clustering

technique.” Pattern Recognition, vol. 33, pp. 1455-1465.

[Mei01] Meila, M., and Shi, J., 2001. “A random walks view of sectral segmentation.” In 8th

International Workshop on Artificial Intelligence and Statistics.

 121

[Mit02] Mitra, P., Murthy, C.A., and Pal, S.K., 2002. “Density-based multiscale data

condensation.” IEEE Trans. Pat. Anal. Mach. Intel., vol. 24, pp. 734-47.

[Miu08] Miu, T., 2008. “Machine learning for pattern classification.” PhD Thesis, University of

Liverpool, Liverpool, UK.

[Miu12] Miu, T., Goulermas, J.Y., Tsujii, J., and Ananiadou, S., 2012. “Proximity-based

frameworks for generating embeddings from multi-output data.” IEEE Trans. Pattern

Anal. Mach. Intell, (in press).

[Mod03] Modha, D.S., and Spangler, W.S., 2003. “Feature weighting in k-means clustering.”

Journal of Machine Learning, vol. 52, pp. 217-237.

[Mol02] Mollineda, R.A., Ferri, F.j., and Vidal, E., 2002. “An efficient prototype merging strategy

for the condensed 1-NN rule through class-conditional hierarchical clustering.” Pattern

Recognition,vol.35, pp. 2771-2782.

[Muh03]Muhlenbach, F., et al. 2004. “Identifying and handling mislabelled instances.” Journal of

Intelligent Information Systems, vol.22, pp. 89-109.

[Mur83] Murtagh, F., 1983. “A survey of recent advances in hierarchical clustering algorithms.”

Computational Journal, vol. 26, pp. 354-359.

[New04] Newman, M.E.J., and Girvan, M., 2004. “Finding and evaluating community structure in

networks.” PhysicsRev., vol. E69, 026113.

 [Ng02] Ng, A.Y., Jordan, M.I., and Weiss, Y., 2002. “On spectral clustering: Analysis and an

algorithm.” Advances in neural information processing systems, vol. 14, pp. 849–856.

[Ngu11] Nguyen, C.H., and Mamitsuka, 2011. “Discriminative graph embedding for label

propagation.” IEEE Trans. Neural Networks, vol. 22 (9), pp. 1395-1405.

[Nik10] Nikolaidis, K., Rodriguez, M.E., Goulermas, J.Y., and Wu, Q.H., 2010. “Instance

seriation for prototype abstraction.” In Proc. of IEEE 5th BICTA International

Conference, Liverpool, pp. 1351-1355.

[Nik11] Nikolaidis, K., Goulermas, J.Y., and Wu, Q.H., 2011. “A class boundary preserving

algorithm for data condensation.” Pattern Recognition, vol.44, pp. 704-715.

[Nik12] Nikolaidis, K., Rodriguez, M.E., Goulermas, J.Y., and Wu, Q.H., 2012. “Spectral graph

optimization for instance reduction.” IEEE Trans. Neural Networks, vol. 23, pp. 1169-

1175.

[Owe84] Owen, A., 1984. “A neighbourhood-based classifier for LANDSAT data.” The Canadian

Journal of Statistics, vol. 12, pp. 191-200.

[Oze08] Ozertem, U., Erdogmus, D., and Jenssen, R., 2008. “Mean shift spectral clustering.”

Pattern Recognition, vol. 41, pp. 1924-1938.

[Pan99] Pan, V., and Chen, Z., 1999. “The complexity of the matrix eigenproblem.” In Proc. 31st

ACM Symposium on Theory of Computing, New York.

[Par00] Paredes, R., and Vidal, E., 2000. “Weighting prototypes. A new editing approach.” In

Proc. 15th International Conference on Pattern Recognition (ICPR).

 [Par06a] Paredes, R., and Vidal, E., 2006. “Learning weighted metrics to minimize nearest

neighbour classification error.” IEEE Trans. Patt. Anal. Mach. Intell., vol. 28, pp.1100-

10.

 122

[Par06b] Paredes, R., and Vidal, E., 2006. “Learning prototypes and distance: A prototype

reduction technique based on nearest neighbour error minimization.” Pattern

Recognition, vol. 39, pp. 180-188.

[Ped08] Pedrajas, N.G., Castillo, J.A.R., and Boyer, D.O., 2008. “A cooperative coevolutionary

algorithm for instance selection for instance-based learning.” Machine Learning, vol. 78,

pp. 381-420.

[Pek06] Pekalska, E., Duin, P.W. and Paclik, P., 2006. “Prototype selection for dissimilarity-

based classifiers.” Pattern Recognition, vol. 39, pp. 189-208.

[Pek08] Pekalska, E., and Duin, P.W., 2008. “Beyond traditional kernels: Classification in two

dissimilarity-based representation spaces.” IEEE Trans on Systems, Man, and

Cybernetics, vol. 38, pp.729-744.

[Qu08] Qu, C., Li, Y., Zhu, J., Huang, P., Yuan, R., and Hu, T., 2008. “Term weighting

evaluation in bipartite partitioning for text clustering.” In Proc. 4th Information Retrieval

Technology Conf., pp. 393-400, Berlin, Germany.

[Ric99] Ricci, F., and Avesani, P., 1999. “Data compression and local metrics for nearest

neighbour classification.” IEEE Trans. Pat. Anal. Mach. Intel, vol.21, pp. 380-4.

[Rie09] Riesen, K., and Bunke, H., 2009. “Dissimilarity based vector space embedding of graphs

using prototype reduction schemes.” Lecture Notes in Computer Science, vol. 5632, pp.

617-631.

[Rit75] Ritter, G.L. et al., 1975. “An algorithm for a selective nearest neighbour decision rule.”

IEEE Trans. On Information Theory, pp. 665 – 669.

[Rob51] Robinson, W.S., 1951. “A method for chronologically ordering archaeological deposits.”

American Antiquity, vol. 16, pp. 293-301.

[Rod10] Rodriguez, M.E., Nikolaidis, K., Goulermas, J.Y., Ralph, J.F., and Miu, T., 2010.

“Collaborative projection pursuit for face recognition.” In Proc. of IEEE 5th BICTA

International Conference, Liverpool, UK.

[Row00] Roweis, S.T., and Saul, L.K., 2000. “Nonlinear dimensionality reduction by locally linear

embedding.” Science, vol. 290, pp. 2323-2326.

[Rub08] Rubio, E.L., and Ortiz-de-Lazcano-Lobato, J.M., 2008. “Soft clustering for

nonparametric probability density function estimation.” Pattern Recognition Letters, vol.

29, pp. 2085-2091.

[Rut07] Ruta, D., and Gabrys, B. 2007. “Reducing spatial data complexity for classification

models.” Comp. Meth. In Science and Eng., Theory and Computation: Old Problems and

New Challenges. vol.1, pp. 603-613.

[Sal91] Salzberg, S., 1991. “A nearest hyperrectangle learning method.” Machine Learning, vol.

6, pp. 277-309.

[San04] Sanchez, J.S., 2004. “High training set size reduction by space partitioning and prototype

abstraction.” Pattern Recognition, vol. 37, pp. 1561-64.

[San06] Sanchez, J.S., and Marques, A. I., 2006. “An LVQ-based adaptive algorithm for learning

from very small codebooks.” Neurocomputing, vol. 69, pp. 922-927.

[Sau03] Saul, L.K., and Roweiss, S.T., 2003. “Think globally, fit locally: Usupervised learning of

low dimensional manifolds.” Journal Machine Learning Research, vol. 4, pp. 119-155.

 123

[Sch08] Schuetz, P., and Caflisch, A., 2008. “Efficient modularity optimization by multistep

greedy algorithm and vertex mover refinement.” Physics Rev., vol. E77, 046112.

[Sil12a] Silva, T.C., and Zhao, L., 2012. “Stochastic competitive learning in complex networks.”

IEEE Trans. Neural Networks and Learning Systems, vol. 23 (3), pp. 385-398.

[Sil12b] Silva, T.C., and Zhao, L., 2012. “Network-based stochastic semisupervised learning.”

IEEE Trans. Neural Networks and Learning Systems, vol. 23 (3), pp. 451-466.

[Smo10] Smola, A., and Vishwanathan, S.V.N., 2010. Introduction to Machine Learning,

University of Cambringe, Cambringe, UK.

[Smy95] Smyth, B., and Keane, M.T., 1995. “Remembering to forget.” In Proceeding of the 14th

International Conference on Artificial Inteligence, pp. 377 – 382.

[Son06] Son, S.H., and Kim, J.Y., 2006. “Data reduction for instance-based learning using

entropy-based partitioning.” In Proc. Inter. Conf. Computational Science and its

Applications, pp.590-599.

[Spi04] Spielman, D.A., 2007. Spectral Graph Theory and its Applications lecture notes

distributed in Applied Mathematics 500A at Yale University, USA.

[Spi07] Spielman, D.A., 2007. “Spectral Graph Theory and its Applications.” In 48th IEEE

Annual Symposium Foundations of Computer Science, pp. 29-38.

[Spi96] Spielman, D.A., and Teng, S.H., 1996. “Spectral partitioning works: Planar graphs and

finite element meshes.” In IEEE Symposium on Foundation of Computer Science, pp. 96-

105.

[Sta86] Stanfill, C. and Waltz, D., 1986. Toward Memory-Based Reasoning Communications.

New York: ACM. vol 29, pp. 1213 – 1228.

[Sto79] Stoffel, J.C., 1974. “A classifier design technique for discrete variable pattern recognition

problems.” IEEE Trans. Comput., vol. C-23, pp. 428-441.

[Sug06] Sugumaran, V., Muralidharana, V., and Ramachandrana, K.I. “Feature selection using

decision tree and classification through proximal support vector machine for fault

diagnostics of roller bearing.” Mechanical Systems and Signal Processing, 21, pp. 930-

942.

[Sun08] Sun, L., Ji, S., and Ye, J., 2008. “Hypergraph spectral learning for multi-label

classification.” In Proc. Of the 14th ACM SIGKDD International Conf. On knowledge

Discovery and Data Mining, Las Vegas, Nevada, USA, pp. 668-676.

[Sus02] Susheela Devi, V., and Narasimha, M., 2002. “An incremental prototype set building

technique.” Pattern Recognition, vol. 35, pp. 505-513.

[The99] Theodoridis, S., and Koutroumbas, K., 2006. Pattern Recognition. 3rd Edition. Academic

Press, London, UK.

[Tom76] Tomek, I., 1976. “Two modifications of CNN.” IEEE Trans. Systems, Man., and

Cybernetics, pp. 769 – 772.

[Tou79] Toussaint, G.T., and Poulsen, R.S, 1979. “Some new algorithms and software

implementation methods for pattern recognition research.” In Proc. IEEE Int. Computer

Software Applications Conf., Chicago.

[Tou80] Toussaint, G.T., 1980. “The relative neighbourhood graph of finite planar set.” Pattern

Recognition, pp 261 – 268.

 124

[Tri11] Triguero, I., Derrac, J., Garcia, S., and Herrera, F., 2011. “A taxonomy and experimental

study on prototype generation for nearest neighbour classification.” IEEE Trans. Sys.,

Man. And Cyb., part C. (Accepted for publication)

[Tse01] Tseng, L., and Yang, S., 2001. “A genetic approach to the automatic clustering problem.”

Pattern Recognition, vol. 34, pp. 415-424.

[Ull74] Ullmann, J.R., 1974. “Automatic selection of reference data for use in a nearest-

neighbour method of pattern classification.” IEEE Trans. On Information Theory, pp. 541

– 543.

[Vil08] Villegas, M., and Paredes, R., 2008. “Simultaneous learning of a discriminative

projection and prototypes for nearest-neighbour classification.” In IEEE Proc.on Conf.

Computer Visionand Pattern Recognition (CVPR), Alaska, USA.

[Wan06] Wang, H., Cao, C., and Leung, H., 2006. “An improved locally weighted regression for a

converter re-vanadium prediction modelling.” In Proceedings of 6th World Congress on

Intelligent Control and Automation, Dalian, China.

[Wan07a]Wang, F., and Zhang, C., 2007. “Feature extraction by maximizing the average

neighbourhood margin.” Comp. Vis. Patt. Rec., pp. 1-8, 17-22 June.

[Wan07b]Wang, F., and Zhang, C., 2007. “Fast multilevel transduction on graphs.” In Proc. 7th

SIAM Conf. on Data Mining(SDM), Minneapolis, USA.

[Wei09] Weinberger, J. and Saul, L.K., 2009. “Distance metric learning for large margin nearest

neighbour classification.” Journal of Machine Learning Research, vol. 10, pp. 207-244.

[Wil00] Wilson, D.R., and Martinez, T.R., 2000. “Reduction techniques for instance-based

learning algorithms.” Machine Learning, vol.38, pp. 257-286.

[Wil72] Wilson, D.L., 1972. “Asymptotic properties of nearest neighbour rules using edited data.”

IEEE Trans. Systems, Man., and Cybernetics, SMC-2(3), pp. 408-421.

[Wil97] Wilson, D., R., and Martinez, T., R., 1997. “Improved heterogeneous distance functions.”

Journal of Artificial Intelligence Research, 6, pp. 1-34.

[Wit08] Witten, D.M., and Tibshirani, R., 2008. “Testing significance of features by lassoed

principal components.” The Annals of Applied Statistics, vol. 2, pp. 986-1012.

[Wu02] Wu, Y., Ianakiev, K. and Govindaraju, V., 2002. “Improved k-nearest neighbour

classification.” Pattern Recognition, vol. 35, pp. 2312-2318.

[Wu07] Wu, K.L., and Yang, M.S., 2007. “Mean shift-based clustering.” Pattern Recognition,

vol. 40, 3035-3052.

[Xie11] Xie, B., Wang, M., and Tao, D., 2011. “Toward the optimization of normalized graph

laplacian.” IEEE Trans. Neural Networks, vol. 22 (4), pp. 660-666.

[Xin02] Xing, E.P., Ng, A.Y., Jordan, M.I., and Russell, S., 2002. “Distance metric learning, with

application to clustering with side-information.” Advances in Neural Information

Processing Systems 16 (NIPS2002), MIT Press, pp. 521-528.

[Xu05] Xu, R., Wunsch II, D, 2005. “Survey of clustering algorithms.” IEEE Trans. on Neural

Networks, vol. 16, pp. 645-678.

[Yan04] Yang, M.S., and Wu, K.L., 2004. “A similarity-based robust clustering method.” IEEE

Trans. on Pattern AnalysisMachine Intelligence, vol. 26, pp. 434-448.

 125

[Yan07] Yan, S., Xu, D., Zhang, B., Zhang, H. J., Yang, Q., and Lin, S., 2007. “Graph embedding

and extensions: A general framework for dimensionality reduction.” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 29, pp. 40-51.

[Yu 08] Yu Su, Shiguang, S., Xilin, C., and Wen, G., 2008. “Classifiability-based optimal

discriminatory projection pursuit.” In IEEE Conf. on Computer Vision and Pattern

Recognition.

[Yu05] Yu, J., 2005. “General C-Means Clustering Model.” IEEE Trans. Pattern Analysis ana

Machine Learning Intelligence, vol. 27, pp. 1197-1211.

[Zen09] Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., and Zhou, L., 2009. “Comparing stars: on

approximating grah edit distance.” In Proc. 35th International Conference on Very Large

Data Bases (VLDB), Lyon, France.

[Zha08] Zhang, N., Wang, X.Z., and Xiao, T. 2008. “An instance selection algorithm based on

contribution.” In Proceedings of 7th Int. Conf. on Machine Learning and Cybernetics.

[Zha09] Zhang, T., Tao, D., Li, X., and Yang, J., 2009. “Patch alignment for dimensionality

reduction.” IEEE Trans. On Knowledge Data Engineering, vol. 21, pp. 1299-1313.

[Zha10a] Zhang, T., Fang, B., Tang, Y.Y., Shang, Z., and Xu, B., 2010. “Generalized discriminant

analysis: A matrix exponential approach.” IEEE Trans. Sys., Man. And Cyb., vol. 40, pp.

186-197.

[Zha10b] Zhang, T., Huang, K., Li, X., Yang, J., and Tao, D., 2010. “Discriminative orthogonal

neighbourhood-preserving projections for classification.” IEEE Trans. Sys., Man. And

Cyb., vol. 40, pp. 253-263.

[Zha92] Zhang, J., 1992. “Selecting typical instances in instance-based learning.” In Proc. Int.

Conf. Machine Learning, pp. 470-479.

[Zuo08] Zuo, W., Zhang, D., and Wang, K., 2008. “On kernel difference-weighted k-nearest

neighbour classification.” Pattern Analysis Applications, vol. 11, pp. 247-257.

