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IN VITRO AND IN VIVO INVESTIGATIONS INTO THE INTERACTIONS BETWEEN THE 

ACYL GLUCURONIDE METABOLITE OF DICLOFENAC AND SERUM ALBUMIN 

 
Thomas Hammond 
Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, 
University of Liverpool, UK 
 
Adverse drug reactions represent a major challenge to clinicians, healthcare systems, 
pharmaceutical companies and academia.  With carboxylic acid drugs accounting for 
the most common class of drugs withdrawn from the market, the carboxylate 
pharmacophore has received much attention as a potential toxicophore.  Direct 
glucuronidation of the carboxylate group, producing chemically unstable and protein 
reactive acyl glucuronide (AG) metabolites has received much attention as a 
bioactivation pathway responsible for generation of these off-target hypersensitivity 
and hepatotoxicity.  It is the chemical instability and protein reactivity of AG 
metabolites that has led to their hypothesised ability to covalently modify proteins in 
vivo and subsequently stimulate inappropriate immune responses in susceptible 
patients.  Despite this, whilst the reactivity of AGs has been shown in vitro, their 
reactivity has never been confirmed in any in vivo system, meaning their association 
with toxicity may be unjustified.  The focus of this thesis was to investigate whether 
acyl glucuronides could identify covalent adducts to protein in vivo.   
 
To address this aim, the thesis first investigates the chemistry of interaction between 
acyl glucuronides and protein during in vitro investigation.  2mM 1-β diclofenac-AG 
was found to degrade spontaneously via acyl migration following incubation with 0.1M 
phosphate buffer pH 7.4 at 37°C with a degradation half-life of 0.78 hours, confirming 
diclofenac as amongst the most reactive AGs.  Further incubations confirmed the 
action of human serum albumin (HSA) as a mild esterase, and the presence of plasma 
esterases acting to hydrolyse AGs.  The covalent binding of diclofenac-AG to HSA was 
confirmed using both an alkaline hydrolysis as well as direct mass-spectrometric 
analyses of modified proteins.  Covalent modification of lysine residues was specifically 
identified, and was found to be concentration and time dependent.  Further in vitro 
incubation experiments revealed for the first time that the 1-β isomer of AGs is 
responsible for the formation of transacylation adducts, and confirmed previous 
suggestion that acyl migration is required for the extensive glycation of HSA.   
 
Following characterisation of the interaction of diclofenac-AG with HSA, investigations 
were undertaken in the rat to identify interactions of AGs with circulating rat serum 
albumin in vivo.  In vitro incubations of diclofenac-AG revealed RSA contained fewer 
binding sites when compared to HSA.  Further to this no covalent modification of RSA 
could be detected in vivo following intravenous administration of 60mg/kg diclofenac-
AG.  The rapid plasma clearance of diclofenac-AG (67.81 ± 12.83 ml min-1 kg-1) in the 
rat was shown to be 600 fold faster than that of diclofenac (12.00 ± 2.98 ml min-1 kg-1) 
following bolus intravenous administration.  Use of a continuous intravenous infusion 
drug delivery system revealed an adaptive change in rats upon continuous infusion of 
diclofenac, resulting in enhanced plasma elimination of the drug, and induction of the 
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ROS scavenging enzymes catalase and superoxide dismutase-2, without detection of 
hepatotoxicity.  
 
The final experiments in the thesis revealed for the first time the detection of glycation 
adducts to HSA extracted from volunteer patients receiving chronic diclofenac therapy. 
These were shown through the detection of glycation adducts in three out of six 
patients tested.  Between 1 and 4 lysine residues were identified in patients, with 
modifications towards one or all of lysine residues 195, 199, 432 and 525.  
Transacylation adducts were detected towards lysine residues in all six patient samples 
analysed.  Whilst identification of transacylation adducts reveals bioactivation of the 
carboxylic acid functional group, it is the identification of glycation adducts to albumin 
isolated from three of the six patients which reveals, for the first time, definitive 
evidence for AG reactivity in vivo.  This reinforces concerns over the potential of AGs to 
act as haptens, and re-affirms the carboxylic acid structure as a site of bioactivation 
forming reactive metabolites. 
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1.1 ADVERSE DRUG REACTIONS 

1.1.1 Introduction to adverse drug reactions 

Adverse drug reactions (ADR) have been defined by Edwards and Aronson as: ‘an 

appreciably harmful or unpleasant reaction, resulting from an intervention related to 

the use of a medicinal product, which predicts hazard from future administration and 

warrants prevention or specific treatment, or alteration of the dosage regimen, or 

withdrawal of the product’ (Edwards and Aronson, 2000).   

Approximately 6.5% of hospital admissions in the U.K. have been attributed to ADRs, 

incurring an estimated cost of approximately £500 million for the NHS (Pirmohamed et 

al., 2004).  In addition, drug withdrawals or restrictions on drug usage impose a major 

financial burden on pharmaceutical companies.  Therefore ADRs represent a major 

challenge for clinicians, regulatory authorities and the pharmaceutical industry.   

A huge financial investment is required to assess the value of a candidate drug in 

clinical trials.  Currently the second most frequent cause of attrition of novel 

compounds following their administration to man is concerns with respect to drug 

safety (Kola and Landis, 2004).  Consequently, early identification of properties of 

novel compounds that correlate with a high risk of toxicity is required.  If this can be 

achieved, it may be possible to select lead compounds for development that  have low 

toxicity risk for development, so that large investments can be targeted towards 

molecules that have the greatest chance of success.   
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1.1.2 On-target adverse drug reactions 

On-target ADRs (also known as Type A) usually present as an exacerbation of the 

known primary or secondary pharmacological response of the drug target.  As a 

consequence of this, they usually show a clear dose-response relationship (Rawlins and 

Thompson, 1977), meaning that they are often simply managed clinically through a 

reduction of dose or through administration of combinational pharmacological 

intervention.   

A classic example of an on-target ADR is bleeding associated with warfarin therapy.  

Warfarin inhibits the vitamin K cycle, reducing the carboxylation, and consequently the 

biological activity, of pro-coagulation factors including factors VII, IX and X.  This 

reduces the risk of embolism, and has been shown to reduce risk of stroke in atrial 

fibrillation patients by 70% (Hart et al., 2003).  However, a major limitation to warfarin 

therapy is the risk of serious haemorrhage, occurring with an incidence of between 1.3 

to 4.2 per 100 patient years of drug exposure (1994; 1996; Aithal et al., 1999).  Serious 

haemorrhage is encountered as a consequence of the exacerbation of the drug’s 

pharmacological action, resulting from above desired inhibition of the vitamin K cycle.  

Warfarin is known to have a notably small therapeutic window, where the doses 

required for pharmacological effect and generation of haemorrhage are not markedly 

different.  Extensive inter-individual variation in response to warfarin, partly due to 

differences in vitamin K dietary intake, makes haemorrhage not uncommon (Aithal et 

al., 1999). 

Whilst undesirable, on-target adverse drug reactions are usually simply managed, 

often without the necessity of drug withdrawal.  Frequently, dose reduction with close 
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monitoring of the patient is sufficient for reduction of toxicological risk, whilst 

maintaining drug therapy. 

1.1.3 Off target ADRs 

Unlike on-target ADRs, off target ADRs (also known as Type B) do not show a clear 

dose-response relationship, cannot be predicted from the known primary or secondary 

pharmacology of the compound, cannot be predicted using known animal models and 

are only apparent in a small subset of the population (Rawlins and Thompson, 1977; 

Kalgutkar and Soglia, 2005).  Essentially they are unexpected reactions with signs and 

symptoms inconsistent with the known toxicity of the drug.  Consequently, accurate 

associations between drugs and off-target ADRs cannot be made until sufficiently large 

populations are exposed (Park et al., 2000), often during late-stage clinical trials or 

following drug release to the market.  Once a drug has reached these stages in its 

development massive financial investments in the compound have already been made. 

Clinically, off-target ADRs range from mild to severe, and may occasionally be life-

threatening.  However, it is their unpredictable nature that makes management of off-

target ADRs difficult (Park et al., 2000).  Often, upon detection of the reaction, 

withdrawal of the otherwise effective drug from the patient is required, especially for 

off-target ADRs with suspected immunological pathogenesis.    

A good drug example of off-target ADRs is represented by hepatotoxicity associated 

with ximelagatran.  Ximelagatran was the first of the direct thrombin inhibitor 

anticoagulants, providing a wider therapeutic window than the coumarins, reducing 

the risk of bleeding and consequently eliminating the necessity for tight patient 

monitoring (Mattsson et al., 2005).  Its efficacy was proven in man and a good safety 

profile was observed in pre-clinical and short term clinical trials.  Longer clinical trials 
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(>35 days), however revealed the potential of the molecule to elicit hepatotoxicity in a 

low frequency of individuals (Petersen et al., 2003).  Plasma alanine transaminase (ALT) 

activities were raised to above 3x the upper limit of normal (ULN) in 11 patients at 3 

weeks following cessation of drug exposure, while one patient was hospitalised due to 

plasma ALT activities up to 27x ULN (Agnelli et al., 2009).  Subsequently, ximelagatran’s 

development was ceased and the drug was withdrawn from all markets (Keisu and 

Andersson, 2010). 

As with other off-target ADRs, no clear relationship between ximelagatran dose and 

incidence of toxicity could be elucidated following retrospective analysis of clinical 

trials (Keisu and Andersson, 2010).  Despite re-analysis of pre-clinical safety testing, 

and retrospective analysis, to date, hepatotoxicity has not been established in any 

animal model, meaning mechanisms for its pathogenesis in man have not been 

established.   

Until mechanisms of off-target ADRs are understood, which integrate the biochemistry 

of the compound with the intrinsic variation in biology or environment of the patient, 

early prediction of off-target ADRs administration to large numbers of humans will not 

be possible. 
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1.2 XENOBIOTIC METABOLISM 

Humans are continually exposed to a wide range of xenobiotics, either via the diet, 

non-dietary environmental exposure or pharmaceutical treatment.  Many xenobiotics 

have the potential to be harmful. Consequently, xenobiotic deactivation and 

subsequent clearance from both the cell and organism is important to avoid potential 

toxicological consequences (Park et al., 2005).  One of the key mechanisms in 

xenobiotic deactivation and clearance is metabolism.  The overall chemical 

modifications of a compound usually enhance its hydrophilicity and its affinity for 

export transporters, resulting in enhanced clearance (Meyer, 1996).  Xenobiotic 

metabolism has been usefully categorised into two biochemical phases.  Phase I 

metabolism frequently enhances the electrophilicity of a molecule through insertion of 

polar functional groups via one of several metabolic pathways.  Molecules with 

enhanced electrophilicity are often more susceptible to conjugative (Phase II) 

metabolic reactions than parent molecules.  In Phase II reactions, molecules are 

conjugated with polar residues, resulting in complexes that possess sufficient 

hydrophilicity to enable their rapid excretion (Gibson and Skett, 2001).  

1.2.1 Phase I metabolism 

The apparent biochemical purpose of Phase I metabolism is to enhance a molecule’s 

electrophilicity, usually through the provision of functional groups susceptible to Phase 

II conjugation, and consequently the excretion of the molecule.  In some cases, 

however, Phase I metabolites may have sufficient polarity for direct elimination 

without the necessity for conjugation. 

 Phase I metabolism involves several different metabolic reactions, including oxidation, 

reduction, hydrolysis, hydration and isomerisation, with the reactions almost invariably 
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requiring enzymatic catalysis by enzymes including cytochrome P450s, monoamine 

oxidases and esterases.  Being collectively the most abundantly and widely expressed, 

and responsible for the metabolism of an enormous range of substrates, the isoforms 

of the cytochrome P450 superfamily are the most important Phase I metabolising 

enzymes (Gibson and Skett, 2001; Guengerich, 2001).   

1.2.2 Phase II metabolism 

Phase II metabolism involves the conjugation of endogenous moieties to both 

xenobiotics and other endogenous metabolism products (Caldwell, 1982).  This 

frequently results in the conjugate’s increased hydrophilicity and affinity for export 

transporters, enhancing renal and biliary elimination.  Several different conjugation 

reactions are considered in Phase II metabolism, including glucuronidation, sulfation, 

methylation, acetylation, as well as the conjugation of glutathione and amino acids 

(Gibson and Skett, 2001).  These conjugations are site specific, targeted to electrophilic 

sites of molecules.  Occasionally these sites may possess intrinsic chemical reactivity, 

which, if not deactivated may have harmful consequences, as is found in the quinone-

imine metabolite of paracetamol.  Consequently, conjugation at these sites has 

historically thought to abate a potential toxicological risk (Caldwell, 1982).  This 

traditional view of phase II metabolites as metabolic end products lacking 

pharmacological activity, however, has been challenged in recent years, with 

pharmacological activity reported for the glucuronide metabolites of morphine-6β-

glucuronide (Paul et al., 1989), codeine-6-glucuronide (Vree et al., 2000) and 

dabigatran-AG (Stangier et al., 2007). 
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1.2.3 Glucuronidation 

Phase II metabolism by glucuronidation is the conjugation of glucuronic acid to 

xenobiotics or endogenous molecules, catalysed by UDP-glucuronosyltransferase 

(UGT) enzymes of the endoplasmic reticulum, usually targeted to hydroxyl (alcohol and 

phenol), carboxyl, sulphhydryl and amine groups of xenobiotics (Caldwell, 1982; Tukey 

and Strassburg, 2000).  Expression of 19 human UGT isoforms belonging to two distinct 

families (UGT1 and UGT2) (Ritter, 2000; Tukey and Strassburg, 2000; Mackenzie et al., 

2005) is thought to allow the accommodation of this wide range of substrates.  Like 

P450s, mammalian UGTs display somewhat broad and often overlapping substrate 

specificities (Picard et al., 2005; Alonen et al., 2008), stereoselectivity (Mano et al., 

2007a) and genetic polymorphisms (Daly et al., 2007).  

Conjugation of substrates by glucuronidation is usually considered to be a low affinity, 

high capacity, reaction. Due to the abundance of glucuronic acid, this pathway plays a 

major role in drug metabolism, with glucuronidation a listed metabolic pathway of 8% 

of the top 200 prescribed drugs in the US in 2002 (Williams et al., 2004).  

Glucuronidation is also estimated to account for approximately 10% of the major drug 

elimination pathways (Gardiner and Begg, 2006).  Products of glucuronidation are 

conventionally categorised into four broad types dependent on the atom to which the 

glucuronic acid is linked, namely O-glucuronides, C-glucuronides, N-glucuronides and 

S-glucuronides (Figure 1. 1).  Of these conjugation reactions, O-glucuronidation is most 

frequently encountered. 
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Figure 1. 1:  Representative subtypes of glucuronides.  O-glucuronides include 
alcohol, phenol, carboxyl and N-carbamoyl conjugates.  Certain drug substrates can 
form more than one subtype of glucuronide in a mammalian species, e.g. an acyl 
glucuronide and either a phenolic glucuronide (Dickinson et al., 1993; Picard et al., 
2005) or an N-glucuronide (Alonen et al., 2008).  A glucuronide can itself be a substrate 
for glucuronidation, sulphonation or oxidation by 450s (Kumar et al., 2002).  
 

The principal site of glucuronidation is the liver.  However, expression of UGTs has also 

been reported in the kidney, GI tract and lung, as well as in the mammary gland and 

prostate, where glucuronidation of steroids is important (Ohno and Nakajin, 2009).  

UGTs are usually found expressed as membrane bound enzymes, located in the 

endoplasmic reticulum (Tukey and Strassburg, 2000).   
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1.3 ROLE OF DRUG BIOACTIVATION IN ADVERSE DRUG REACTIONS 

The usual consequence of drug metabolism – with the important exception of pro-drug 

activation - is the conversion of active substrates into pharmacologically inactive 

products, primed for rapid elimination from biological systems (Park et al., 2005).  

Occasionally, however, metabolism may lead to the formation of intermediates or end 

products with intrinsic chemical reactivity, instability, or activity at secondary 

pharmacological targets. 

1.3.1 Bioactivation of xenobiotics to chemically reactive metabolites 

(chemical activation) 

Bioactivation through metabolism may also result in the formation of compounds with 

intrinsic chemical reactivity.  Usually these chemically reactive metabolites (CRMs) are 

rapidly bio-inactivated, generally through phase II metabolism.  Occasionally, however, 

exposure or intrinsic reactivity of CRMs may overwhelm detoxification pathways.  In 

this situation CRMs may elicit a toxicological effect (Park et al., 2005).  This may be 

either through covalent binding to endogenous macromolecules, possibly resulting in 

cell death, immune sensitisation or carcinogenesis.  Alternatively, the chemical 

instability of CRMs may result in their redox cycling, resulting in cellular stress through 

oxidative stress. 

1.3.2 Potential of CRMs to elicit intrinsic cellular stress through covalent 

modification of endogenous macromolecules 

Strong associations have been drawn between the formation of CRMs, their covalent 

modification of endogenous macromolecules, and subsequent potential for toxicity 

and cell death (Brodie et al., 1971; Gillette et al., 1974; Park et al., 2005; Zhou et al., 

2005).  This relationship, however, is somewhat complex, with covalent modification of 
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macromolecules not universally resulting in toxicological output (Evans et al., 2004).  

An example of this is comparison of the model hepatotoxin acetaminophen (APAP) 

with its isomer N-acetyl-m-aminophenol (AMAP).  Both molecules are metabolised to 

reactive benzoquinone and benzoquinoneimine intermediates in vivo, and have been 

shown to form covalent adducts to hepatic proteins in mice to a similar extent (Rashed 

and Nelson, 1989; Rashed et al., 1990).   However, whilst APAP was found to elicit 

hepatotoxicity in mouse models, AMAP did not (Nelson, 1980).  Perturbation of 

function of macromolecules involved in molecular pathways critical for cellular survival 

through covalent adduct formation is thought to have a role in the mechanism and 

aetiology of some ADRs (Kalgutkar and Soglia, 2005; Park et al., 2005), as shown by 

Figure 1. 2.  Examples of this are highlighted by Table 1. 1, including APAP’s 

modification of mitochondrial proteins (Nazareth et al., 1991; Landin et al., 1996) and 

covalent modification of DNA by polycylclic aromatic hydrocarbons (PAH) resulting in 

carcinogenesis (Brookes and Lawley, 1964; Mastrangelo et al., 1996).  Alternatively, 

whilst not perturbing cellular function, modification of endogenous macromolecules is 

thought to have a key role in the generation of several drug allergies including 

halothane (Kenna et al., 1988a; Kenna et al., 1988b; Kenna et al., 1992) and penicillins 

(Brander et al., 1995; Padovan et al., 1997).  Consequently, identification of drugs 

capable of forming covalent adducts in vivo leads to anxiety as to their management, 

and future progression in development (Park et al., 1994; Evans et al., 2004; Kalgutkar 

and Soglia, 2005).  
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Figure 1. 2:  Physiological consequences of drug bioactivation.  Adapted from (Park et al., 2005) 
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Table 1. 1:  Drugs associated with eliciting toxicity through their metabolism into chemically reactive metabolites, and their associated 
protein targets 

Drug 
Bioactivating 

enzyme 
Chemically reactive metabolite Protein target if identified 

Toxicity 
associated 

References 

Paracetamol 
CYP1A2, 
CYP2E1, 
CYP3A4 

N-acetyl-p-benzoquinone imine 

Microsomal glutatmine synthetase, 
Nuclear lamin A, Selenium-binding 

protein, N-10-
formyltetrahydrofolate 

dehydrogenase, Mitochondrial 
glutamate dehydrogenase, 

Mitochondrial aldehyde 
dehydrogenase 

Hepatotoxicity 

(Nazareth et al., 1991; 
Bartolone et al., 1992; 

Pumford et al., 1992; Patten et 
al., 1993; Bulera et al., 1995; 

Landin et al., 1996; Pumford et 
al., 1997a; Pumford et al., 

1997b) 

Halothane CYP2E1 Trifluoroacetyl chloride 

Glutathione-S-transferase b, 
CYP2E1, CYP2B, Protein disulphide 

isomerase, UDP-glucose 
glycoprotein glucosyltransferase, 

Carboxylesterase, Erp72, 
BiP/GRP78, Erp99. 

Hepatitis 

(Kenna et al., 1988b; Satoh et 
al., 1989; Martin et al., 1993; 

Pumford et al., 1993a; Eliasson 
and Kenna, 1996; Amouzadeh 

et al., 1997; Pumford et al., 
1997a) 

Diclofenac 

UGT 2B7 
CYP2C8 
CYP3A4 
CYP2C9 

Acyl Glucuronide 
1’, 4’-Quinoneimine 
2’, 5’-Quinoneimine 

Coenzyme A thioester 

Dipeptidyl peptidase IV Hepatotoxicity 

(Stierlin and Faigle, 1979; 
Hargus et al., 1995; Shen et al., 
1999; Poon et al., 2001; Kenny 

et al., 2004) 

Tienilic Acid CYP2C9 Thiophene-S-oxide CYP2C9 Hepatotoxicity 
(Zimmerman et al., 1984; 

Koenigs et al., 1999) 

Troglitazone CYP3A4 
p-benzoquinoneimine 

quinone-epoxide 
Microsomal proteins 

BSEP 
Hepatotoxicity 

(Kawai et al., 1997; Watkins 
and Whitcomb, 1998; Funk et 

al., 2001; Kassahun et al., 
2001; Yamamoto et al., 2002; 

He et al., 2004) 



Chapter 1 – General Introduction 

Page 24 
 

1.4 CARBOXYLIC ACID FUNCTIONAL GROUPS IN PHARMACEUTICAL DRUGS 

Carboxylic acid groups are important molecular tools for medicinal chemists, 

incorporated into pharmaceutical agents for improved metabolism and disposition 

profiles for lead compounds.  Most carboxylic acid drugs are monocarboxylates but 

there are examples of dicarboxylates (MacFadyen et al., 1993; Wen et al., 2007).  In 

addition to being unmasked by facile hydrolysis of ester moieties (MacFadyen et al., 

1993), carboxyl groups can be formed on carboxylate (Sumner et al., 1975; Balani et 

al., 1997; Hermening et al., 2000) and non-carboxylate (Dalgaard and Larsen, 1999; 

Paulson et al., 2000a; Paulson et al., 2000b; Paulson et al., 2000c; Mutlib et al., 2002) 

drugs by oxidative metabolism, lactone hydrolysis (Prueksaritanont et al., 2002; 

Ramadan et al., 2006) or a combination of oxidative and hydrolytic reactions (Pekol et 

al., 2005).  In certain cases the pathways of formation are complex and unexpected 

(Umehara et al., 2004), exacerbating the difficulties of assessing the overall biological 

impacts of pharmaceutical carboxylates.  For a number of classes of drugs, including 

classes currently in development, the carboxylic acid group may be the 

pharmacophore, or a component of the pharmacophore, having a direct role in the 

mechanism of action of the compound (Istvan and Deisenhofer, 2001; Rowlinson et al., 

2003).  Consequently, over 450 pharmaceuticals marketed worldwide contain a 

carboxylic acid functional group (Smith, 2010). 

For some compounds, the carboxylic acid group may have a direct role in the 

mechanism of action of the compound.  In the simplest cases, carboxylic acid drugs 

and/or their metabolites match the functional group chemistry of natural substrates or 

ligands.  A prime example of this is in the carboxylic non-steroidal anti-inflammatory 

drugs (NSAIDs), where the carboxylic acid structure is important for the mimicking of 
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the arachidonic acid metabolite (Rowlinson et al., 2003); resulting in the competitive 

antagonism of arachidonic acid binding to cyclooxygenase (COX-2 and/or COX-1) 

isozymes (Rowlinson et al., 2003; Khairullina et al., 2007), inhibition of prostaglandin 

synthesis, and consequently, anti-inflammatory effects (Waterbury et al., 2006).  The 

propensity of carboxylic acids to form hydrogen bonds with polypeptide side chains 

and the ability of carboxylate anions to engage in electrostatic interactions (ion 

pairing) are also important in forming non-covalent interactions with target receptors 

and active sites of enzymes (Istvan and Deisenhofer, 2001). 

Carboxylate groups are also commonly incorporated into medicinal compounds as a 

method to provide improved aqueous solubility. Good aqueous solubility is often a 

desired property for a pharmaceutical compound, as this enhances a molecules passive 

absorption from the GI tract to the bloodstream, without requiring affinity for 

transporters. However, if the carboxylic acid is matched with a complementary basic 

centre in the molecule, and the resulting isoelectric point is close to pH 7.4, the 

compound’s zwitterion species will have increased membrane penetration at 

physiological pH and potentially increased bioavailability (Cavet et al., 1997).  Due to 

their polar nature, represented by their ionisation in aqueous conditions and ability to 

form hydrogen bonds with water through the (=O) acting as a hydrogen bond acceptor 

and the (-OH) acting as a hydrogen bond donor, carboxylic acid structures are often 

desired to enhance hydrophilicity of lead compounds.  Alternatively, due to the their 

polarity and electronegativity, carboxylic acid groups may be inserted into aromatic 

ring side-chains to protect against P450 metabolism, pulling electrons away from sites 

of susceptible oxidation (Smith, 2010). 
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However, the increased polarity and resulting hydrophilicity introduced to compounds 

through carboxylic acids can also result in their notoriously poor ability to passively 

diffuse across plasma membranes, particularly when it is in negatively charged states 

(Austin et al., 1995).  Consequently, without the action of uptake transporters, 

distribution of carboxylate compounds to intracellular targets is poor.  This poor 

diffusion across plasma membranes represents a particular challenge for drugs 

targeted towards the central nervous system (CNS) where passive absorption across 

the blood brain barrier is required for efficacy (Pajouhesh and Lenz, 2005).  This 

resulting low volume of distribution (VDss) of carboxylic acid drugs (Smith and Obach, 

2005; Smith, 2010) is further reduced through their extensive non-covalent binding to 

plasma proteins (often >99% fraction bound) (Kratochwil et al., 2002).   In order to 

overcome these problems with distribution, carboxylic acid drugs are frequently 

administered at high daily doses in order to allow drug disposition to its mechanistic 

site of action at concentrations sufficient to elicit pharmacological effect, meaning that 

circulating doses of the drug generally are high.  With carboxylate drugs associated 

with liability towards generating off-target liabilities as a consequence of bioactivation 

at this site (see sections 1.4.1, 1.4.3, 1.6 and 1.8.1) this is a situation which is desirably 

avoided (Sakatis et al., 2012).   

1.4.1 Association of carboxylic acid drugs with ADRs 

Clinically, patients are exposed to a wide range of carboxylic acids, for varying 

therapeutic indications, including NSAIDs, fibrates, loop diuretics, iron chelators, 

antiasthmatics, antibiotics, anticonvulsants, antiretrovirals, angiotensin II receptor 

antagonist, thromboxane synthase inhibitors, direct thrombin inhibitors and PPARα/β 

agonists.  The most important of which are NSAIDs, of which 6% of the adult 
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population in the US reported using a prescription NSAID in a month, and 24% using 

non-prescription ibuprofen (Paulose-Ram et al., 2003).  This large range of important 

therapeutic drug classes means large numbers of the population are exposed to 

carboxylic acid pharmaceuticals.  The majority of patients receive effective therapy, 

with few safety concerns. 

Despite the majority of carboxylic acids acting as safe therapeutics to the majority of 

patients who are exposed to them, on rare occasions, carboxylic acids individually, or 

as a sub-class, such as the carboxylic NSAIDs, have been associated with eliciting 

immune mediated hepatotoxic and hypersensitivity adverse drug reactions.   This 

association led to 17 out of 121 (14%) drugs withdrawn between 1960-1999 containing 

a carboxylic acid functional group (Fung et al., 2001).  Further to this, some older 

carboxylic acid drugs remaining on the market, such as diclofenac, do so with black box 

warnings or reported cases of eliciting these ADRs (Skonberg et al., 2008). 

1.4.2 Immediate hypersensitivity reactions 

NSAIDs have been associated with a wide range of differing hypersensitivity adverse 

drug reactions.  These ADRs may be immediate, with disease pathogenesis occurring 

within 1-7 hours of first administration of the compound.  Immediate hypersensitivity 

reactions are generally less serious than delayed hypersensitivity reactions, although 

occasionally these immediate ADRs may progress into more serious generalised 

anaphylactic reactions (Stevenson et al., 2001; Berkes, 2003).  Therefore it is 

generation of delayed hypersensitivity adverse drug reactions that is the most 

common cause for carboxylic acid drug withdrawal. 
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1.4.3 Delayed hypersensitivity reactions 

Delayed hypersensitivity ADRs are generally classified as developing over 24 hours 

following drug exposure, but usually develop between 1-8 weeks following initiation of 

drug therapy (Gunawan and Kaplowitz, 2004; Kaplowitz, 2001).  The most common 

delayed ADRs associated with carboxylic acid drugs are cutaneous (including severe 

bullous cutaneous reactions, fixed drug eruptions and maculopapular drug eruptions).  

These ADRs led to the withdrawal of zomepirac (Levy and Vasilomanolakis, 1984).  

Further to this, several carboxylic acid drugs were also associated with the generation 

of tissue specific hypersensitivity reactions including hepatotoxicity, leading to the 

withdrawal of drugs including benoxaprofen, bromfenac and fenclozic acid, although 

these reactions were less common (Bakke et al., 1995; Fung et al., 2001; Sanchez-

Borges et al., 2005). 

Drug induced delayed hypersensitivity ADRs are off-target, and consequently only 

affect a small fraction of the population (Strom et al., 1987; Banks et al., 1995), with 

confident prediction of ‘at-risk’ individuals not currently possible.  Adaptive immune 

responses are thought to play a key role in the pathogenesis of these ADRs (Posadas 

and Pichler, 2007).  Evidence for this is strengthened with observations that following 

withdrawal of the compound to alleviate ADRs, re-exposure may lead to rapid re-

stimulation of the ADR (Helfgott et al., 1990).  The short timeframe between re-

exposure and redevelopment provides further suggestion of adaptive immune 

involvement, with reactions suspected to be cytotoxic T-cell mediated (Posadas and 

Pichler, 2007).  
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1.5 ROLE OF ANTIGEN PRESENTATION IN DELAYED HYPERSENSITIVITY 

REACTIONS 

1.5.1 Pro-hapten and hapten hypotheses 

Most pharmaceutical compounds on the market are small molecules.  Consequently, 

they are assumed to be of insufficient size to be recognised as foreign and presented 

to the immune system.  It has been hypothesised that parent compounds or their 

CRMs must be presented to the immune system in an altered state with higher 

molecular weight for recognition as foreign entities (Padovan et al., 1997). 

The hapten concept describes how low molecular weight organic compounds (<1000 

Da), undetectable by the immune system due to their size, may be presented through 

the formation of covalent adducts with endogenous macromolecules (Park et al., 1987; 

Padovan et al., 1997; Park et al., 2001; Posadas and Pichler, 2007).  This suggests that 

parent molecules must have protein reactivity.  Most pharmaceuticals, however, are 

devoid of chemical reactivity but their bioactivation into CRMs capable of forming 

covalent adducts with endogenous macromolecules may lead to their presentation 

(Kenna et al., 1988b; Park et al., 2001; Naisbitt et al., 2002; Aithal et al., 2004; Posadas 

and Pichler, 2007).  Molecules able to directly modify endogenous macromolecules 

without processing are known as haptens, whereas molecules requiring bioactivation 

into CRMs are known as pro-haptens.   

Haptenation may occur on autologous proteins, or alternatively, may occur directly 

onto the major histocompatibility complex (MHC) of T-cells.  Those antigens formed on 

endogenous macromolecules, either intracellularly or to extracellular cell surfaces, 

may require processing by antigen presenting cells before presentation to T-cells for 

stimulation of sensitization and immune responses (Posadas and Pichler, 2007). 
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1.5.2 Antigen presentation as a response to the cellular site of endogenous 

modification 

Following adduct formation with endogenous protein, the resulting drug-protein 

complex may either activate MHC molecules directly or require processing for this.   

Antigen presenting cells cleave the hapten-protein adduct into peptide fragments, 

onto some of which the hapten may be bound.  The haptenated peptide is able to bind 

weakly to the MHC in the cell (Naisbitt et al., 2007).  Where the haptenated peptide 

locates in the cell has an effect on which class of MHC molecule it is presented by.  

Haptens which bind to extracellular proteins usually require capture in the endosome, 

followed by subsequent lysozyme degradation, and are usually presented by MHC class 

II molecules, leading to CD4+ T-cell responses.  Intracellular haptens, on the other 

hand, appear to be presented specifically by MHC class I molecules.  Following 

processing of the protein adducts, the antigen presenting cell locates to the lymphatic 

organs, where antigens are then presented to the T-cells through the MHC molecules, 

resulting in CD8+ T-cell responses (Pichler, 2003).  

1.5.3 Pharmacological interaction (PI) hypothesis 

Whilst immune stimulation through the covalent binding of drug species to 

endogenous macromolecules is assumed to play a large role in a wide range of ADRs, 

Pichler (Pichler, 2002) has proposed that in some cases of drug hypersensitivity 

covalent binding may not be critical.  Instead, compounds form weak, reversible, non-

covalent interactions with MHCs and T-cell receptors.  Interaction with the MHC may 

result in antigen presentation to T-cells expressing appropriate T-cell receptors, 

subsequently resulting in the initiation of immune stimulation. 
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1.5.4 Danger hypothesis 

To elicit an efficient immune response, the innate immune system needs to be 

activated.  The innate immune response provides defence against a wide range of 

pathogens but its defence is non-specific.  However, the innate immune system 

includes the antigen presenting cells, which, as described above, present hapten-

peptide adducts to T-cells, initiating the more specific adaptive immune response 

(Medzhitov and Janeway, 2000).  The activation of the antigen presenting cells has also 

been postulated to cause the expression of co-stimulatory molecules, which aid in 

activating resting T-cells (Kamradt and Mitchison, 2001).  It is also likely that an 

underlying infection may result in the activation of the innate immune system as 

described above, resulting in cytokine and co-stimulatory molecule release.  This 

effect, when occurring concomitantly with the administration of an immunogenic drug, 

may also result in increased T-cell activation, producing an immune response to the 

drug which otherwise might not have been initiated (Heller, 2000).  This may help to 

explain why individuals suffering with an underlying infection often show an increased 

risk of developing immune mediated adverse drug reactions (Pichler, 2003). 

Another factor which is thought to be involved in drug hypersensitivity reactions is 

Matzinger’s danger hypothesis.  The danger hypothesis proposes that an inflammatory 

response is not initiated through just the recognition of a non-self antigen, but that 

other signals are required to indicate that the foreign antigen is dangerous (Matzinger, 

1994a).  Curtsinger (Curtsinger et al., 1999a) has subsequently hypothesised that three 

signals are required for the eliciting of an immune response.  The first signal is the 

presentation of the antigen to the T-cell through the MHC complex of an antigen 

presenting cell.  The second signal is from co-stimulatory molecules and pro-
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inflammatory cytokines, which cause antigen-presenting cells to release other 

stimulatory molecules.  The third signal is from polarising cytokines, which act on T-

cells and lead to immune responses.  Whilst signal 1 is the recognition of the foreign 

antigen, receipt of only this signal results in tolerance to the antigen (Matzinger, 

1994b), further receipt of signal 2 results in T-cell activation and signal 3 acts as an 

adjuvant, resulting in the propagation in the immune response (Cai et al., 1996; 

Curtsinger et al., 1999b; Pirmohamed et al., 2002) (Figure 1. 3). 

 

Figure 1. 3:  Potential mechanism for carboxylic acid drugs to elicit inappropriate 
immune responses according to the hapten and danger hypotheses.  
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1.6 DRUG METABOLISM TO ACYL GLUCURONIDE METABOLITES  

Direct glucuronidation, resulting in the formation of AG metabolites is quantitatively 

the most important route of biotransformation for carboxylic acid drugs (Skonberg et 

al., 2008).  Acyl glucuronidation of both mono- and di- carboxylic acids have been 

reported (Wen et al., 2007), with di- carboxylic acids capable of forming either two 

distinct mono-AG (Devissaguet et al., 1990; Wen et al., 2006), as well as di-AG 

conjugates (Wen et al., 2006).   

In addition to acyl glucuronidation, many carboxylic acid drugs also undergo oxidative 

(Stierlin and Faigle, 1979; Balani et al., 1997; Hermening et al., 2000; Wang et al., 2006; 

Albrecht et al., 2008), and other conjugative metabolism (Dickinson et al., 1993; Sun et 

al., 1996; Dahms et al., 1997; Picard et al., 2005; Alonen et al., 2008).  Further to this, 

oxidative metabolites of carboxylate pharmaceuticals may also undergo acyl 

glucuronidation (Hermening et al., 2000; Zhou et al., 2001; Kenny et al., 2004; Wang et 

al., 2006; Albrecht et al., 2008).  Oxidative metabolism of non-carboxylate drugs may 

also reveal carboxylic acid functional groups, which may subsequently be 

glucuronidated into AG metabolites as is shown for celecoxib (Paulson et al., 2000a; 

Paulson et al., 2000b; Paulson et al., 2000c). 

Direct glucuronidation of carboxylic acids, forming AG metabolites can represent a 

large fraction of their metabolic clearance (Zhou et al., 2001; Wang et al., 2006), with 

the dicarboxylic acid fibrate gemcabene cleared almost exclusively by acyl 

glucuronidation followed by renal elimination (Yuan et al., 2009).  In rare instances, 

acyl glucuronidation may represent the sole pathway of biotransformation of a 

carboxylic acid, as appears to be the case for telmisartan (Stangier et al., 2000) and 

ifetroban (Dockens et al., 2000), although glucuronidation is not a universal metabolic 
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pathway of carboxylate drugs, as shown by the lack of a glucuronide metabolite for 

captopril, and identification of the acyl glucuronidation of two of four structurally 

similar di-acid ACE inhibitors (Devissaguet et al., 1990; Drummer et al., 1990; Tan et al., 

2009). 

Glucuronidation of numerous pharmaceuticals is catalysed by the UGT isoform 

UGT2B7, including carboxylic acids such as diclofenac (King et al., 2001), gemfibrozil 

(Mano et al., 2007b) and mycophenolic acid (Picard et al., 2005), for all of which it is 

the predominant catalyst.  However, other human UGT isoforms contribute to the 

clearance of carboxylic acid drugs and carboxylate metabolites, with UGT2B7 not 

always the major catalyst (Wen et al., 2007; Alonen et al., 2008), as exemplified by the 

glucuronidation of bilirubin in man catalysed by the UGT1A1 isoform (Kadakol et al., 

2000).  Turnover of various carboxylic acids to their acyl glucuronides is exemplified by 

Table 1. 2. 
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Table 1. 2:  Carboxylic acid drugs that undergo glucuronidation in human liver 
microsomes or following clinical administration of the parent drug (Regan et al., 
2010) 

Drug Drug class 
Fraction 

glucuronidated 

Zomepirac NSAID 90 
Isoxepac NSAID 90 

Ketoprofen NSAID 74 
Carprofen NSAID 75 
Diclofenac NSAID 75 
Keterloac NSAID 73 
Suprofen NSAID 62 

Clofibric Acid Fibrate 61 
S-Naproxen NSAID 57 
Aclofenac NSAID 56 

Nalidixic Acid Antibacterial 54 
Tiaprofenic 

Acid 
NSAID 51 

Fenoprofen NSAID 49 
Benoxaprofen NSAID 47 

Pirprofen NSAID 45 

Probenacid 
Uricosuric 

agent 
44 

Diflusinal NSAID 40 
Fenofibric 

Acid 
Fibrate 39 

Oxaprozin NSAID 39 
Valproic Acid Anticonvulsant 33 

Tocainide Antiarrhythmic 31 
Etodolac NSAID 25 

Salicylic Acid 
Keratolytic 

agent 
10 

Lumiracoxib NSAID 2.5 

 

Generally AGs and other glucuronides are eliminated in urine and bile.  For example 

the acyl and phenolic glucuronides of the NSAID diflunisal are both excreted in urine 

and bile in both humans (Verbeeck et al., 1988) and rats (Brunelle and Verbeeck, 

1997).  Biliary excretion of AGs in humans has only been investigated on few occasions 

but it is clearly a highly variable process, representing a minor route of elimination for 
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certain AGs (Verbeeck et al., 1988; Balani et al., 1997) and a major route for others 

(Hofmann et al., 2005; Wang et al., 2006).  

1.6.1 Toxicological concerns regarding acyl glucuronide formation 

Phase II conjugative metabolism is usually seen as a detoxification process.  This is 

through the pharmacological deactivation of the drug, and increased rate of clearance 

via enhanced hydrophilicity of the molecule and increased affinity for export 

transporters (Caldwell, 1982; Miners and Mackenzie, 1991; Mulder, 1992; Spahn-

Langguth and Benet, 1992).  AG metabolites, however, have been shown to be 

chemically unstable and protein reactive in vitro  (Munafo et al., 1990; Volland et al., 

1991; Spahn-Langguth and Benet, 1992; Ding et al., 1993; Ding et al., 1995; Qiu et al., 

1998; Ebner et al., 1999; Iwaki et al., 1999; Mortensen et al., 2001; Walker et al., 

2007), resulting in much interest in these metabolites as a potential toxicological 

concern (Faed, 1984; Spahn-Langguth and Benet, 1992; Shipkova et al., 2003).  The 

protein reactivity of AG metabolites has led to suggestion of their ability to act as 

CRMs capable of forming haptens in vivo, and consequently having a mechanistic role 

in the pathogenesis of idiosyncratic delayed hypersensitivity reactions associated with 

their parent drugs (Spahn-Langguth and Benet, 1992).  These general assumptions 

have been incorporated in the Food and Drug Administration’s Metabolites In Safety 

Testing (MIST) guidance, which states: 

 “Phase II conjugation reactions generally render a compound more water soluble and 

pharmacologically inactive, thereby eliminating the need for further elimination.  

However, if the compound forms a toxic conjugate such as an acyl glucuronide, 

additional safety assessment may be required (Faed, 1984)” (FDA, 2008).   



Chapter 1 – General Introduction 

Page 37 
 

This assertive labelling of AG metabolites as toxic, however, is controversial.  Whilst 

their reactivity in vitro is well defined, when compared with other CRMs, reactivity of 

AG metabolites is low.  This low reactivity of AGs does allow them to be widely 

distributed through the blood stream (Volland et al., 1990; Benet et al., 1993; Mayer et 

al., 1993; Zia-Amirhosseini et al., 1994; Stangier et al., 2000; Zhou et al., 2001; Wang et 

al., 2006), and transported into tissues (Shackleford et al., 2006), but despite this wide 

distribution, no definitive identification of AG metabolites reactivity towards 

endogenous macromolecules has ever been shown using in vivo models or in man.  

The only reported chemical reaction of drug AG administered intravenously to 

experimental animals is rapid and extensive hydrolysis (Watt et al., 1991; Iwaki et al., 

1995).  Consequently, evidence associating AG metabolites with toxicity may not be 

justified.  Nonetheless, the speculative association of AG formation and clinical toxicity 

has resulted in persistent concern in the pharmaceutical industry regarding 

management of compounds forming reactive AG metabolites, even when the 

glucuronide is a minor product (Lundahl et al., 2009).   

1.6.2 Acyl glucuronide chemical instability and protein reactivity  

Chemical instability of AGs following in vitro incubation under aqueous conditions is 

almost a universal chemical characteristic of these phase II metabolites.  The actual 

chemical instability of AG metabolites is greatly variable, with the degradation half-life 

for the disappearance of the 1-beta isomer ranging from 0.26 hours for tolmetin-AG to 

79 hours for valproic acid-AG (Ebner et al., 1999).  This marked variation of the intrinsic 

reactivity of differing acyl glucuronides has been attributed to the electronic and steric 

properties of the aglycones (Benet et al., 1993).  Currently, research is being 

undertaken into assessing structure activity relationships of aglycone structure to 
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allow understanding of the attributes of chemical structure attributing to this variation 

in acyl glucuronide reactivity.  The general rate of acyl glucuronide reactivity is 

understood to be acetic acid > proponoic acid > benzoic acid derivatives (Benet et al., 

1993; Wang et al., 2004).  This order is thought to be attributable to the level of 

substitution of the carbon alpha to the carboxylic acid in the aglycone structure.  With 

good correlations (r2 = 0.995) being drawn between the intrinsic chemical instability of 

AG metabolites and their reactivity towards protein following in vitro incubation 

(Benet et al., 1993), compounds extensively metabolised to reactive AGs have been 

suggested to provide greater risk for generation of ADRs.  Comparisons of AG 

instability with the risk of ADR generation and fate of both previously and currently 

marketed carboxylic acid drugs, however, are not always clear.    
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1.7 ACYL GLUCURONIDE REACTIVITY WITH PROTEINS IN VIVO 

1.7.1 Evidence from studies in humans 

Circumstantial evidence for the ability of AG metabolites to act as haptens in vivo has 

been provided through the identification of modification of plasma proteins in patients 

administered either zomepirac, ibuprofen or tolmetin, as measured using an alkaline 

hydrolysis technique, correlating with plasma exposure (AUC) of the AG metabolite 

(Smith et al., 1986; Hyneck et al., 1988; Castillo et al., 1995).  Further identification that 

AG metabolites are responsible for these covalent adducts was obtained through the 

co-administration of probenecid and zomepirac to volunteers.  Probenecid increased 

plasma zomepirac-AG exposure by competing for renal clearance, consequently 

increasing zomepirac’s modification of plasma protein (Smith et al., 1986). 

1.7.2 Animal models 

Further indications that the protein reactivity of AG metabolites is operative in vivo 

have been achieved through investigations using rats and guinea pigs as model 

species. 

As with studies in humans, covalent modifications of plasma proteins following 

administration of several carboxylic acid drugs were detected, with binding correlating 

with AG exposure (Sallustio and Foster, 1995; Liu et al., 1996; Dong et al., 2005).  

Further suggestion for the role of AG metabolites to covalently bind with endogenous 

macromolecules was achieved through the detection of increased covalent binding 

through disruption of chemical and surgical disruption of elimination pathways, with 

chemical induction of renal failure in rats through the administration of uranyl nitrate 

enhancing plasma AG exposure following administration of salicylic acid, along with 

subsequent enhanced irreversible modification of plasma proteins (Liu et al., 1996).  
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Interruption of biliary excretion through surgical ligation of the bile duct in rats was 

also shown to increase the plasma exposure of zomepirac-AG, causing enhanced 

modification of plasma proteins (Wang and Dickinson, 2000).  Chemical inhibition of 

plasma esterases (using phenylmethylsulfonylfluoride PMSF) has also been used to 

increase plasma AG exposure, through reduction of AG hydrolysis in vivo.  In guinea 

pigs, bile duct ligation was required in order to produce detectable levels of 

zomepirac-AG in the plasma.  Concomitant administration of PMSF to guinea pigs 

administered an intravenous dose of zomepirac resulted in enhanced plasma AG 

exposure.  This further increase in AG plasma exposure was again found to again show 

good correlation with irreversible binding, and to date is the most convincing in vivo 

evidence of the ability of AG metabolites to covalently modify plasma proteins (Smith 

et al., 1990).   

(Bailey and Dickinson, 1996), using four test carboxylate drugs (zomepirac, diflunisal, 

clofibric acid and valproic acid) in rats, observed a generally rationalizable relationship 

between the intrinsic chemical reactivity of the drug’s acyl glucuronides in vitro and 

the extent of protein adduction in liver and plasma.  However, there was an important 

exception: the protein adduction by valproic acid in the liver was disproportionately 

high.  This enhanced covalent binding was attributed to the localised reactions of acyl 

CoA (thioester) conjugates, in addition to that from AGs.  Western blot analysis with 

anti-drug antibodies was used for partial identification of hepatic protein adducts, but 

this only allowed estimation of the molecular weights of proteins that were modified. 
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1.7.3 Detection of hepatic adducts in experimental animal models 

Whilst some carboxylic acid drugs are associated with generalised delayed 

hypersensitivity reactions, others, including benoxaprofen, diclofenac and ibufenac are 

more frequently associated with delayed off-target hepatotoxicity reactions (Driver et 

al., 1982; Rake and Jacobs, 1983; Banks et al., 1995; Fung et al., 2001; Boelsterli, 

2002a; Goldkind and Laine, 2006).  Strong suggestions of immune involvement in the 

pathogenesis of these ADRs have also led to the investigation of hepatic protein 

adducts in animal models. 

Administration of diclofenac, zomepirac, ibuprofen and diclofenac to the rat or mouse 

has revealed selective modification of hepatic proteins.  Hepatic proteins modified 

were found to have molecular weights including 110, 140 and 200 kDa (Bailey and 

Dickinson, 1996; Wade et al., 1997).  Work by (Hargus et al., 1995) went on to identify 

the 110 kDa protein using sequence analysis and immunoblotting as the enzyme 

dipeptidylpeptidase IV (DPPIV and also known as CD26) following diclofenac 

administration.  Work with zomepirac also identified DPPIV as a protein target (Wang 

et al., 2001; Wang et al., 2002).  Further adducts of 50 and 70 kDa were identified by 

(Pumford et al., 1993b; Wade et al., 1997). 

Immunohistochemical analysis has allowed sub-cellular location of hepatic protein 

modification by carboxylic acid drugs in rats.  Covalent adducts in the rat were found 

localised to the canalicular membrane (Hargus et al., 1994; Seitz et al., 1998; Aithal et 

al., 2004).  TR- rats, which do not express functioning MRP2 export proteins on the 

canalicular membrane, show minimal biliary excretion of diclofenac-AG and do not 

show canalicular protein adducts following treatment with diclofenac (Seitz et al., 

1998).  Due to the extensive biliary export of acyl glucuronides, in part due to the 
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abundance of export transporters (Sallustio et al., 1996; Sallustio et al., 2000), 

exposures of proteins along the canalicular membrane to AGs are likely to be high.  

This association has also resulted in further implication of acyl glucuronide metabolites 

in eliciting these canalicular localised adducts. 
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1.8 OTHER FACTORS INFLUENCING TOXICOLOGICAL RISK POSED BY ACYL 

GLUCURONIDES IN HUMANS 

The implication of acyl glucuronidation as a potential toxicological process is centred 

on the potential of AGs to act as haptens, forming covalent protein adducts.  This has 

been well defined and characterised following in vitro incubation (Benet et al., 1993; 

Ding et al., 1993; Ding et al., 1995; Qiu et al., 1998), and is the basis of much of the 

concern within the pharmaceutical industry as to the management of novel 

compounds extensively metabolised to reactive acyl glucuronides.  Despite this 

persistent concern, no evidence as yet has definitively shown AG metabolites of drugs 

are directly responsible for covalent adduct formation in vivo.  Potentially this may 

mean the anxiety over AGs, at least in the respect of direct protein adduction, may be 

unjustified.  Further to this, many AG-forming drugs remain on the market providing 

safe and effective therapy for patients, as well as considerable profit for the 

pharmaceutical industry (Paulose-Ram et al., 2003; Barton et al., 2006).   

1.8.1 Metabolism of carboxylic acid drugs to CRMs other than acyl 

glucuronides 

Commonly, xenobiotic carboxylic acids, including drugs, may also undergo conjugation 

reactions catalysed by acyl-Coenzyme A synthetases forming acyl-Coenzyme A 

thioesters (Olsen et al., 2002; Grillo et al., 2003; Olsen et al., 2005; Olsen et al., 2007).  

Formation of coenzyme A thioesters is thought to represent a low abundance 

metabolic pathway, however, the resulting metabolites are considered as highly 

reactive.  This is in comparison to AG metabolites, which are considered to represent 

high exposure but lower reactivity (Boelsterli, 2002b).  The synthetic coenzyme A 

thioester of 2-phenylpropionic acid has been shown to undergo a transacylation 
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reaction with glutathione, and to react with serum albumin in vitro (Li et al., 2002).  

Naproxen coenzyme A thioester acylates several amino acid side chains of HSA in vitro 

(Olsen et al., 2003b).  Whilst coenzyme A thioesters are becoming an area of interest 

as a potential toxicological concern, this interest has only begun relatively recently 

(Boelsterli, 2002b).  However, whereas drug AGs are frequently found in plasma, 

coenzyme A conjugates are thought to be confined to their cellular site of formation.  

Thus the existence of coenzyme A conjugates of xenobiotics in vivo is known only from 

the presence of stable metabolic derivatives (Olsen et al., 2003a; Grillo and Hua, 2008; 

Grillo et al., 2008). 

Further to reactive biosynthetic esters, individual carboxylate compounds may have 

sites of reactivity generated through oxidative metabolism.  An example of this 

mechanism is the formation of a quinone-imine structure following oxidative 

metabolism of diclofenac to the 5-hydroxy metabolite (Poon et al., 2001).  These 

reactive metabolites also have the ability to form covalent adducts with proteins (Shen 

et al., 1999), as is the case with NAPQI.  Therefore a drug might be metabolised to 

several chemically reactive and potentially toxic intermediates, with an AG being just 

one of them. 

1.8.2 Limitations of alkaline hydrolysis as a method to investigate acyl 

glucuronide reactivity in vivo 

Alkaline hydrolysis with subsequent HPLC analysis (Hyneck et al., 1988; Smith et al., 

1990; Benet et al., 1993; Munafo et al., 1993; Bischer et al., 1995) and antibody 

techniques (Hargus et al., 1994; Bailey and Dickinson, 1996; Aithal et al., 2004) have 

been the usual techniques for the identification of carboxylic acid compound 

modification of proteins in vivo.  A major limitation of this approach, however, is that 
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these techniques are unable to identify or differentiate between the reactive 

metabolites responsible for the modifications detected.  Consequently, with carboxylic 

acids potentially metabolised to several different products with the potential for 

covalent modification of macromolecules in vivo (Li et al., 2002; Olsen et al., 2002; 

Kenny et al., 2004; Sidenius et al., 2004), adducts detected may not necessarily be AG-

metabolite mediated.   

Whilst covalent modifications to plasma proteins in rodent and human studies 

correlate to plasma AG exposure (Hyneck et al., 1988; Benet et al., 1993; Castillo et al., 

1995; Liu et al., 1996), it is also possible that metabolism into other metabolites not 

tested may also show equal or improved correlation.  Consequently, until the 

identification of glycation adducts of proteins in samples taken in vivo is achieved using 

MS/MS techniques, questions will remain as to the true potential of AG metabolites to 

act as haptens. 
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1.9 DICLOFENAC AS A TEST CARBOXYLATE DRUG 

Diclofenac, a phenylacetic acid NSAID, is currently used principally in the treatment of 

rheumatoid arthritis (Boelsterli, 2003).  The mechanism of action in vivo is expected to 

be through non-selective inhibition of the cyclooxygenase (COX-1 and COX-2) 

isoenzymes, inhibiting the metabolism of arachidonic acid to prostaglandins 

(Waterbury et al., 2006).  Approximately 15% of patients taking repeated doses of 

diclofenac develop raised liver enzyme activity, with a threefold rise in transaminase 

levels reported in 5% (Banks et al., 1995).  Usually these minor rises are not a clinical 

cause for concern, and treatment may be continued with monitoring of the patient.  

Diclofenac has also been associated with more serious off-target hepatotoxic 

reactions, with 6.3 out of 100,000 diclofenac users requiring hospitalisation (de Abajo 

et al., 2004).  These off-target ADRs usually manifest with either a hepatocellular or 

cholestatic pattern (Banks et al., 1995; Aithal and Day, 2007; Aithal, 2011).  Further to 

this, diclofenac has also been associated with case reports of generalised 

hypersensitivity ADRs (Alkhawajah et al., 1993; Romano et al., 1998).  

In humans, diclofenac is metabolised to several metabolites (Stierlin and Faigle, 1979).  

Diclofenac is oxidised by CYP2C9 to the 4’-OH metabolite, and by CYP2C8, 3A4 or 2C19 

to the 5’-OH metabolite (Tang et al., 1999a; Tang et al., 1999b).  Spontaneous 

oxidation of the 5’-OH metabolite yields a chemically reactive quinone-imine (Shen et 

al., 1999; Sparidans et al., 2008).  Both 4’OH-diclofenac and 5’OH-diclofenac yield 

electrophilic quinone-imine derivatives that react with GSH in vivo (Poon et al., 2001; 

Kenny et al., 2004).  Additionally, diclofenac may be conjugated with coenzyme A, 

resulting in the formation of a reactive CoA thioester conjugate (Grillo et al., 2003), as 

well as directly glucuronidated to an acyl glucuronide metabolite (Stierlin and Faigle, 
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1979).  The S-acyl glutathione adduct of diclofenac produced in human hepatocytes 

might be formed via transacylation of GSH by a CoA thioester intermediate and/or the 

known AG conjugate (Grillo et al., 2003). 

Figure 1. 4:  Metabolism of diclofenac to its acyl glucuronide metabolite in human 
liver.  Diclofenac is glucuronidated principally by UGT2B7, to a lesser extent by 
UGT1A9, and to minor extents UGT1A6 and UGT2B15 (King et al., 2001). 
 

Hepatic microsomal metabolism experiments estimated acyl glucuronidation of 

diclofenac to be approximately 75% of the drug’s clearance in man (Kumar et al., 

2002).  In phosphate buffer, pH7.4, the acyl glucuronide of diclofenac is chemically 

unstable, with a half-life of 0.51 hours (Ebner et al., 1999).  Nevertheless, it has been 

detected in the plasma of mice administered diclofenac (Sparidans et al., 2008).  

Diclofenac-AG has been shown to form covalent adducts with HSA in vitro (Kenny et 

al., 2004) and with protein in rat liver microsomes (Kretz-Rommel and Boelsterli, 

1994).  Identification of antibodies to diclofenac metabolite-modified liver protein 

adducts in the sera of 7/7 patients diagnosed with diclofenac-induced hepatotoxicity, 

and 12 out of 20 without hepatotoxicity and none of four healthy controls (Aithal et 

al., 2004) provides evidence that reactive diclofenac metabolites form covalent 

adducts in man.  However, as with all other AG-forming compounds, no definitive 

evidence of AG metabolites being responsible for these adducts has ever been shown.  

Due to these properties, diclofenac represents a suitable model compound for 

investigating idiosyncratic reactions to carboxylic acid drugs, and more specifically the 
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potential of AG reactive metabolites to form covalent adducts with proteins in vivo 

(Boelsterli, 2003; Aithal, 2004). 
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1.10  AIMS OF THE THESIS 

AG drug metabolites remain a major challenge for the pharmaceutical industry as to 

their management.  Extensive metabolism of a novel chemical entity into a carboxylic 

acid drug results in much anxiety as to its management and future progression.  The 

reason for this is the assumed potential of these reactive metabolites to form haptens 

capable of eliciting inappropriate autoimmune responses historically associated with 

carboxylic acid drugs.  Whilst the protein reactivity of AG metabolites has been shown 

following in vitro incubation, and associations have been drawn from in vivo studies, 

direct and definitive associations for carboxylic acid drugs to form covalent adducts in 

vivo or in patients have never been reported.  Consequently the anxiety of AG 

metabolites to act as haptens, and have a causal role in eliciting the inappropriate 

immune responses which are characteristic in the pathogenesis of carboxylic acid 

mediated hypersensitivity and hepatotoxicity may be unjustified.  Until the 

mechanisms of carboxylic acid drug induced delayed hypersensitivity reactions are 

fully elucidated, and metabolites responsible are identified, prediction of the risk of 

novel chemical entities will remain challenging, and potentially inaccurate.  The work 

undertaken in this thesis is designed to provide a further insight into the potential of 

AG metabolites to act as haptens through the attempt to define their ability to form 

covalent adducts in man, using the AG metabolite of diclofenac as a test compound.  

This will be undertaken through the following experimental aims. 
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a. To define the chemical instability and protein reactivity of diclofenac-AG as 

well as the chemistry of interaction between the AG metabolite and protein 

through analysis of their protein binding and stabilities in phosphate buffer, 

HSA solution and plasma solutions.  Acyl glucuronides have been shown to be 

chemically unstable and protein reactive molecules, subsequently leading to 

their association with idiosyncratic ADRs.  Chemical instability of AGs in 

aqueous conditions has been associated with their rate of covalent adduct 

formation, subsequently leading to the current working hypothesis within drug 

development that generation of a chemically unstable acyl glucuronide 

metabolite is a toxicological concern.  Through this chapter, the in vitro 

chemical instability and protein reactivity of the acyl glucuronide of the model 

drug diclofenac will be explored.  Diclofenac-AG will be incubated in phosphate 

buffer to assess its chemical instability.  Incubations with HSA solution will 

investigate its protein reactivity.  Degradation studies will be used to provide 

increased information on the chemical interactions between AG metabolites 

and protein. 

b. Investigate the plasma clearance of diclofenac-AG from the rat following 

intravenous administration.  The physiological role of glucuronidation of 

carboxylic acids is to i) deactivate the pharmacophore ii) increase rate of 

clearance, through enhancing polarity (and therefore hydrophilicity) and 

affinity for export transporters.  Despite AGs being protein reactive in vitro, 

their potential rapid clearance in vivo may prevent any accumulation of 

metabolite concentrations sufficient to form detectable adducts.  To 
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investigate this, the rate of clearance of diclofenac-AG following intravenous 

administration to the rat was measured and compared to that of the aglycone 

c. Investigate the use of continuous infusion to enhance plasma diclofenac-AG 

exposure to detectable levels, and as a method to investigate potential 

mechanisms for diclofenac-induced production of danger signals.  Clinically, 

diclofenac may be administered chronically for many years.  Subsequently 

acute exposure in vivo experiments may not be adequate in replicating the 

clinical situation.  Further to this, rats are known to exhibit higher rates of 

xenobiotic clearance than man.  Continuous infusion technologies, resulting in 

higher drug exposure may better represent the clinical situation.  Plasma 

pharmacokinetics of diclofenac were measured.  Investigation into potential 

hepatotoxicity of the drug was also undertaken, to investigate whether 

continuous drug exposure may elicit cell death, potentially revealing a 

mechanism for production of danger signals. 

d. Investigate if diclofenac is metabolised into its AG metabolite in patients 

receiving therapeutic doses, and if detectable serum albumin proteins can be 

detected in these patients using tandem mass spectrometry.  AG metabolites 

have been associated with forming covalent adducts to endogenous protein 

resulting in initiation of inappropriate immune responses in susceptible 

individuals.  Despite this hypothesis, no definitive identification of AG 

metabolite adduct formation has ever been definitively shown in vivo.  Through 

these experiments, using plasma samples isolated from patients receiving 

therapeutic doses of the drug will be assessed for covalent adducts using the 
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most sensitive mass spectrometry equipment available, in an attempt to reveal 

whether AG metabolites actually can form covalent adducts in vivo. 
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2.1 INTRODUCTION 

Chemical instability and protein reactivity of AGs are well-established characteristics of 

these metabolites from in vitro incubation experiments (Stachulski et al., 2006; Regan 

et al., 2010).  The perceived potential of AGs to manifest the same chemistry in vivo, 

and consequently form potentially immunogenic covalent adducts with endogenous 

proteins is central to the anxiety that AG metabolites of carboxylate drugs will elicit 

ADRs (Williams et al., 1992; Worrall and Dickinson, 1995; Bailey and Dickinson, 2003).   

Spontaneous chemical instability of AGs in aqueous solution at pHs > 7 is almost a 

universal characteristic of these Phase II metabolites.  As summarised by Table 2. 1, AG 

metabolites of drugs exhibit extensive variation in their chemical stabilities, with t½ of 

degradation at pH 7.4 and 37°C ranging from 0.26 hours for tolmetin-AG to 79 hours 

for the AG of valproate.  Strong correlations have been drawn between the chemical 

instability of AGs and their protein reactivity (r2 = 0.995 for nine AGs of carboxylate 

NSAIDs) (Benet et al., 1993).  These observations and associations between the 

chemical instability of AGs in phosphate buffer and toxicological risk of the parent 

carboxylate drug (Sawamura et al., 2010) have resulted in much interest in structural 

factors affecting the chemical stability of AGs (Nicholls et al., 1996; Johnson et al., 

2007; Johnson et al., 2010), and incorporation of AG stability studies into pre-clinical 

development of carboxylate drugs (Ebner et al., 1999; Wang et al., 2004; Walker et al., 

2007; Potter et al., 2011). 

The intrinsic chemical reactivity of an AG derives fundamentally from the 

electrophilicity of the ester carbonyl carbon (Baba and Yoshioka, 2009).  Consequently, 

these compounds degrade spontaneously under aqueous conditions and more rapidly 

when in the presence of simple nucleophiles, such as the hydroxide ion and short-
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chain alcohols (Dickinson and King, 1991; Silvestro et al., 2011), by two distinct 

chemical pathways, namely hydrolysis or acyl migration (Stachulski et al., 2006).  The 

relative rates of these pathways can vary considerably between AGs, as determined by 

the structure, including the stereochemistry of the aglycone (Johnson et al., 2007) and 

nature of the matrix (Johnson et al., 2010).  

The ester carbonyl carbon of the AG can undergo nucleophilic attack by -OH ions in 

biological media (Hyneck et al., 1988a), or be targeted by intracellular and extracellular 

enzymatic (hydrolase) attack (Smith et al., 1990b; Dubois-Presle et al., 1995; Bailey and 

Dickinson, 2003; Kenny et al., 2005; Iwamura et al., 2012).  This results in displacement 

of glucuronic acid and regeneration of the parent aglycone, and in vivo is responsible 

for conjugation-deconjugation cycles of AG metabolites (Brunelle and Verbeeck, 1997).   

Degradation of 1-β AG metabolites by intramolecular acyl migration is a consequence 

of nucleophilic attack on the carbonyl group by the adjacent hydroxyl group.  This 

causes electron displacement, resulting in the formation of an ortho-acid ester 

intermediate, before stabilisation with the aglycone moiety moved along the sugar ring 

as outlined by Figure 2.1.  Subsequently, this pathway allows the aglycone to move 

around the sugar ring from the C-1 position to the C2, 3 and 4 positions.  Following 

initial migration from the C-1 position, migration between the C2, 3 and 4 positions is 

reversible, however direct back migration to the C-1 position is not thought to be 

possible.  When the acyl residue is at C2, 3 and 4 positions, the hydroxyl group on C-1 

may reversibly move from the β to α orientation after a transient open ring 

intermediate is formed.  When the 1-β AG has rearranged to the 2α isomer, back acyl 

migration to the C-1 position is possible, forming the highly unstable 1α AG isomer 

(Corcoran et al., 2001; Baba and Yoshioka, 2009).  The α-1-O-acyl isomer in turn 
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undergoes acyl migration to a mixture of α/β-2-O-acyl isomers. Consequently, through 

acyl migration and epimerisation, the 1β AG metabolite can degrade into eight isomers 

in vitro, and through hydrolysis, may revert to the parent aglycone as outlined by 

Figure 2.1, Figure 2.2 and (Bailey and Dickinson, 2003; Stachulski et al., 2006). 

 

Figure 2. 1:  Positional isomers of acyl glucuronides and the electronic mechanism of 
acyl migration via ortho-ester transition states (Berry et al., 2009; Regan et al., 2010) 
 
Covalent modification of protein during in vitro incubation is essentially a generic 

reaction of AGs (Benet et al., 1993).  The rate and extent that AGs modify protein is 

likely to be distinct to each AG.  Factors influencing AG modification of protein include 

the chemistry of the aglycone, pH of the incubation mixture, concentration of protein 

and AG and the time course of incubation (Spahn-Langguth and Benet, 1992) 

The chemistry of the covalent interactions between AG metabolites and protein has 

been ascertained in part through the use of chemical modifications of the protein (site 

blocking) and its adducts (imine stabilisation) (Wells et al., 1987; Smith et al., 1990a) 

and radiochemical analysis of modified proteins following in vitro incubation with AGs 

(Ruelius et al., 1986).  This work has underpinned the identification of two pathways of 

AG adduct formation, namely acylation (intermolecular transacylation) and glycation 

(Ruelius et al., 1986; Wells et al., 1987; Smith et al., 1990a; Williams et al., 1992; Kretz-
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Rommel and Boelsterli, 1994; Williams and Dickinson, 1994; Iwaki et al., 1999).  

However, it was not until the use of tandem mass spectrometric analysis that the 

covalent binding of AG to HSA was fully characterised (Ding et al., 1993; Ding et al., 

1995; Qiu et al., 1998).  Chemical pathways of adduct formation map closely to 

degradation pathways of the AG molecule, apparently forming covalent adducts only 

by these two pathways.  

As with the degradation of AGs by hydrolysis, AGs are also susceptible to nucleophilic 

attack by amino, guanidine, and hydroxyl groups found on proteins, resulting in the 

displacement of glucuronic acid.  This results in the acyl residue of the aglycone being 

covalently bound to the protein via amide and ester linkages (Ding et al., 1995; Qiu et 

al., 1998).  Formation of glycation adducts, however, from first principles of 

hemiacetal/aldehyde (pyranose/aldose) chemistry (Zhu et al., 2001; Brown et al., 

2011) requires prior migration of the acyl group to the 2, 3 and 4 ring positions (Smith 

et al., 1990a).  Following this rearrangement, a transient opening of the sugar 

(pyranose) ring can occur at C-1, during which the positional isomers can move 

between the β and α conformations.  The aldehyde function of the opened sugar ring 

(acyclic aldose structure) is susceptible to nucleophilic attack by amino groups found 

on proteins.  This aldehyde condenses with these groups, resulting in the reversible 

formation of imine adducts (Schiff bases) (Smith et al., 1990a).  The covalent reactions 

of aldohexoses and other sugars with proteins, at least in vitro, are governed generally 

by the proportion of the molecule present in its acyclic form (Syrovy, 1994).  However, 

this molecular parameter is apparently less influential in the reactions of AG with 

protein than the reversible non-covalent interactions preceding adduction (Smith and 

Wang, 1992).  The C-3 and C-4 Schiff bases may subsequently be stabilised through an 
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Amadori rearrangement, yielding 1-amino-keto adducts (Acharya and Sussman, 1984; 

Neglia et al., 1985; Smith et al., 1990a).  Based upon the rearrangements of simple 

sugar adducts of lysine residues, the rate of the hydroxyimine-ketoamine 

tautomerization can vary considerably between molecular sites; probably depending 

upon the proximity of nucleophilic amino acid side-chains that facilitate the 

isomerization (Acharya et al., 1991; Nacharaju and Acharya, 1992).  The formation of 

certain ketoamine (Amadori) adducts, such as those of glucose on N-terminal amino 

acids (Neglia et al., 1985), is nearly irreversible.  Adducts on -amino groups of lysines 

appear to be somewhat labile (Acharya and Sussman, 1984).  Buffer conditions 

considerably influence this reversibility in vitro: it is significantly higher in a TRIS buffer, 

pH 7.5, than in a phosphate buffer of the same pH (TRIS can act as a nitrogen 

nucleophile via its amino group and as an oxygen nucleophile via its hydroxyl groups). 

It has been suggested that under physiological conditions ketoamine adducts on  

-amino side-chains are in equilibrium with the imine tautomer, the equilibrium being 

biased toward the ketoamine (Acharya and Sussman, 1984).  Importantly, the 

phosphate buffer used for the present incubations of diclofenac-AG and HSA will have 

favoured retention of the Amadori rearrangement products.  The distinguishing 

feature of these glycation adducts is that the glucuronic acid moiety is retained in the 

covalent adduct (Figure 2. 2).  
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Figure 2. 2: Chemical pathways of formation of protein adducts from an acyl 
glucuronide, adapted from (Bailey and Dickinson, 2003).  In principle, all the open-
chain forms of C-2, C-3 and C-4 positional isomers of an AG can undergo glycation 
reactions with proteins. All the ring-open structures undergo mutarotation, giving α-
anomers at C1 on the sugar ring which themselves might undergo reactions with 

proteins. Within the constraints of steric hindrance, C2C3 and C3C4 acyl 
migrations, and even back migrations, might occur after formation of the Schiff base 
(imine) adducts. Therefore, potentially, the haptens formed by glycation are both 
highly heterogeneous and dynamic. However, only Schiff bases of the O-3 and O-4 
esters can undergo the Amadori rearrangement 
 
AGs have been shown to modify HSA in a time-dependent manner through the use of 

alkaline hydrolysis to liberate bound drug from the protein adducts, and subsequent 

LC-UV quantification of the drug.  Generally, modification occurs to a point where 

Cmax is reached.  Once this point is reached, covalent binding subsequently plateaus 

or slowly decreases. The latter observation suggests that AG adduction of protein may 

not be fully irreversible, and subsequently, AG and aglycone residues may be 

spontaneously hydrolysed away from albumin.  This pattern has been shown for the 

AGs of oxaprozin (Wells et al., 1987), zomepirac (Smith et al., 1986), tolmetin (Munafo 
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et al., 1990), diflunisal (Watt and Dickinson, 1990), ketoprofen (Presle et al., 1996) and 

ibuprofen (Castillo et al., 1995).   

Alkaline and mild-acid hydrolysis of AGs and HSA (Smith et al., 1990a) combined with 

selective inhibitors of reversible protein binding allowed some early suggestions as to 

the sites on the HSA molecule covalently modified by AGs (Williams and Dickinson, 

1994).  Whilst not yet allowing quantitative assessment of the covalent protein 

binding, MS/MS allows identification of the chemical route of modification and 

identification of the amino acids modified.  Consequently, whilst AGs had previously 

been suggested to form glycation adducts (Smith et al., 1990a), it was not until tandem 

mass spectrometric identification that these adducts were confirmed (Ding et al., 

1993).  Subsequently tandem mass spectrometric analyses of HSA adducts of the AGs 

of benoxaprofen and tolmetin (Ding et al., 1993; Ding et al., 1995; Qiu et al., 1998) and 

synthetic activated esters of tolmetin and zomepirac (Zia-Amirhosseini et al., 1995) 

have been reported.   

HSA is a protein containing three homologous helical domains (named I, II and III), each 

divided into subdomains (A and B) (Ghuman et al., 2005).  Within these binding 

domains, as a consequence of the protein’s folding in its tertiary structure, sites of the 

protein have been identified as binding pocket, largely located in hydrophobic pockets 

the first of which (the first named Sudlow Site I or warfarin binding site and the second 

as Sudlow Site II, benzodiazepine or diazepine binding site) (Sudlow et al., 1975; 

Sudlow et al., 1976). 

Covalent adducts formed by AGs were formed preferentially in these binding pockets 

of the HSA molecule, at the Sudlow I and II sites (located on HSA subdomains IIA and 

IIIA, respectively) (Sudlow et al., 1975; Sudlow et al., 1976; Ghuman et al., 2005).  
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Modifications were found to several amino acids, including Lys-199, Lys-195 and Lys-

525 through the glycation pathway, as well as Lys-199, Ser-312 and Arg-521 through 

the transacylation pathway (Ding et al., 1995; Zia-Amirhosseini et al., 1995; Qiu et al., 

1998). 

The principle aim of this in vitro work was to validate diclofenac-AG as a suitable tool 

to test the ability of AGs to form covalent adducts with HSA in vivo.  Due to the 

extensive literature of the interaction of AGs with HSA (Smith et al., 1986; Munafo et 

al., 1990; Watt and Dickinson, 1990; Ding et al., 1993; Mayer et al., 1993; Dubois et al., 

1994; Castillo et al., 1995; Ding et al., 1995; McGurk et al., 1996; Sallustio et al., 1997; 

Qiu et al., 1998) allowing comparison to our data, and its high concentration in human 

plasma (Anderson and Anderson, 2002) from which it can be readily extracted 

(Greenough et al., 2004; Jenkins et al., 2009) resulting in its applicability to in vivo 

assessment of covalent modification to be undertaken in later chapters, HSA was seen 

as a good model to investigate the interactions of diclofenac-AG with protein. 

For diclofenac-AG to represent a suitable tool for the investigation of the AG to form 

covalent adducts in vivo, it should be chemically unstable in solution at physiological 

pH, ideally, like the AGs of R-benoxaprofen and tolmetin with a degradation t½ of ≤ 

2hrs (Table 2. 1), and it should also form persistent covalent adducts with the protein.  

If a novel chemical entity was extensively metabolised to an unstable and protein-

reactive AG, anxiety would arise over its progression.  Further aims of this work were 

to obtain additional insights into the chemistry of the interactions between AGs and 

protein, and specifically to obtain reference data that would indicate how the AG 

might react in vivo.  
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Table 2. 1:  Clinical doses of selected carboxylic acid drugs and the degradation half-
lives of their AG metabolites in phosphate buffer, pH 7.4, at 37°C.  Table adapted 
from (Regan et al., 2010).  aTaken from (Ebner et al., 1999).  Note, only the protein 
(HSA) adducts of benoxaprofen AG (Qiu et al., 1998) and tolmetin AG (Ding et al., 1993; 
Ding et al., 1995) had been fully characterised (in vitro) before the present 
investigations.   

Drug Clinical dose 
AG Degradation Rate t1/2 

(h) 

Tolmetin 1.2g-1.8g daily 0.26 

Probenecid Up to 4g daily 0.3 

Zomepirac (ZP) 100mg 0.45 

Diclofenac (DCF) 75–150mg daily 
0.51a or 

0.79 (see Table 2. 4) 

Naproxen 0.5-1.25g daily 
R-Naproxen 0.92 

S-Naproxen 1.8 

Ibufenac  1.1 

Indomethacin 
50–200 mg daily in divided 

doses 
1.4 

Benoxaprofen 600mg/dose 
R-Benoxaprofen 2.0 

S-Benoxaprofen 4.1 

Ibuprofen 900mg – 2.4g daily 3.3 

Bilirubin n/a 4.4 

Furosemide 20-120mg daily 5.3 

Clofibrate 2g daily 7.3 

Mefenamic  acid 1.5g daily 16.5 

Telmisartin 20-80mg daily 26 

Gemfibrozil 0.9-1.2g daily 44 

Valproic Acid 1.5g-2.250g daily 79 
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2.2 MATERIALS AND METHODS 

2.2.1 Materials 

Acetonitrile (LC-MS grade), ammonium acetate (LC-MS grade), concentrated 

phosphoric acid (99%), diethyl ether (HPLC grade), ethanol (LC-MS grade), ethyl 

acetate (HPLC grade), isopropanol (LC-MS grade), methanol (LC-MS grade) and 

trifluoroacetic acid (LC-MS grade) were purchased from Fisher Scientific, 

Leicestershire.  Bio Rad Bradford reagent was purchased from Bio Rad, Hertfordshire, 

UK.  Modified trypsin was purchased from Promega, Hampshire, UK.  Acetic acid  

(LC-MS grade), ammonium hydrogen carbonate, diclofenac sodium salt, dithiothreitol, 

formic acid (LC-MS grade), , HSA (approx. 99% pure, essentially globin free and fatty 

acid free) iodoacetamide, potassium hydroxide pellets and zomepirac sodium salt were 

purchased from Sigma-Aldrich, Dorset, UK.   

0.1M phosphate buffer pH 7.4 was made using 0.3117% monosodium phosphate 

monohydrate, 2.0747% disodium phosphate, heptahydrate w/v in distilled water.  

All other reagents were purchased from Sigma-Aldrich (Dorset, UK) unless otherwise 

stated.  

2.2.2 Chemical synthesis of 1-β diclofenac acyl glucuronide 

Synthetic 1-β diclofenac-AG was synthesised in a three stage process and characterised 

as described by (Bowkett et al., 2007).  This synthesis was kindly performed by Xiaoli 

Meng at the University of Liverpool and Stuart Bennet at AstraZeneca, Alderley Park, 

UK and is described in Supplementary section 1.1.  Purity of synthetic 1-β diclofenac-

AG was assessed using a combination of LC-UV and tandem mass-spectrometric 

assessment.  For acceptable use in experiments, purity was above 98%.  LC-UV 

conditions as described in section 2.2.4 were used to assess diclofenac purity.    
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2.2.3 Degradation of synthetic 1β-diclofenac acyl glucuronide in phosphate 

buffer, human serum albumin solution and isolated human plasma 

Chemically synthesised 1-β diclofenac-AG at a concentration of either 400µM or 2mM 

was incubated in triplicate for 16 hours in either 0.1M phosphate buffer, pH7.4, HSA 

solution (40µM in phosphate buffer) or isolated plasma pooled from three healthy 

male volunteers of ages between 21 and 25 years at 37°C.  The phosphate buffer, HSA 

solutions and plasma were incubated at 37°C for 20 minutes prior to addition of 

diclofenac-AG. 

For phosphate buffer incubations, at desired time points, 99µl of the incubation 

mixture were removed and immediately acidified through the addition of 1µl of 

concentrated phosphoric acid.  Acidified solutions were then immediately analysed by 

HPLC-UV (Kenny et al., 2004).   

For incubations with HSA and human plasma, 100µl of the incubation mixture were 

removed.  Degradation of the AG was stopped and protein was precipitated through 

the immediate sequential addition of two volumes of ice-cold acetonitrile containing 

2% acetic acid (v/v) and one volume of ice-cold ethanol.  Samples were vortex mixed, 

and protein immediately separated by centrifugation at 14,000rpm at 4°C.  The 

supernatant was removed, evaporated to dryness under a constant stream of nitrogen 

at 37°C, reconstituted in 100µl of 0.1M phosphate buffer containing 1% phosphoric 

acid (v/v), and immediately analysed by HPLC-UV.  
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2.2.4 HPLC-UV analysis of diclofenac acyl glucuronide degradation 

1-β diclofenac-AG, its α-anomer, its 2-, 3- and 4- positional isomers and the parent 

aglycone (Figure 2. 3) were chromatographically resolved using a Zorbax Eclipse XDB-

C8 column (150 x 4.6mm, 5µm; Agilent Technologies, Santa Clara, California, USA) 

fitted with a SecurityGuard guard column (Phenomenex, Macclesfield, Cheshire, UK).  

The Dionex Summit HPLC system comprised of an ASI-100 automated sample injector, 

a P580 pump and a UVD170S UV detector (Dionex Ltd., Macclesfield, Cheshire, UK) 

operated using Chromeleon software (Dionex Ltd). 

Analytes in aliquots of the incubation solutions after processing (20µl for phosphate 

buffer incubations, and 40µl for incubations in HSA solution and human plasma) were 

eluted at room temperature with a linear gradient of methanol containing 10% 

acetonitrile (v/v) in 10mM ammonium acetate, pH 4.5: 15-67.5% over 75minutes.  

Following this, the column was purged with methanol-acetonitrile (9:1, v/v) for 5 

minutes, and then re-equilibrated for a further 10 minutes.  The eluent flow rate was 

maintained at 0.9ml/minute.  Absorbance of eluted compounds was monitored at 254 

nm.  Analyte peak areas were calculated using Chromeleon, and represented as a 

percentage with respect to the combined peak areas of the AG isomers and aglycone.  

No peaks were detected on the UV chromatogram of blank HSA or human plasma 

samples which would have interfered with AG or aglycone analyte peaks.  Peaks with a 

signal-to-noise ratio of less than three were considered below the limit of detection 

and discounted from analysis. 

Samples containing AG and aglycone were assayed at 254nM, the standard wavelength 

for detection of aromatic systems, as glucuronic acid is not reported to have any 

absorbance at this wavelength (Shirao et al., 1994).  Although O-glucuronidation can 
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alter the absorbance of some phenolic compounds (Singh et al., 2010), the isomolar 

absorbency of the aglycone and AGs of the NSAIDs diflusinal (Dickinson and King, 

1991) and ketoprofen (Terrier et al., 1999) has been reported previously.  To confirm 

this observation applies to diclofenac, 100 µl aliquots of the 2 mM solution of the 1-β 

AG isomer and a 90 minute degraded sample, both spiked with 10µl of 10 mM 

zomepirac, were assayed at 254nm using the same HPLC-UV conditions outlined 

above.  Less than 5% variance in the peak area ratio of analyte and internal standard 

were detected between the 1-β diclofenac-AG and its degradation products, 

confirming isomolar absorbance of the AG isomers and diclofenac at 254nM. 

The identities of the chromatographic peaks of the 1-β diclofenac-AG isomer and the 

parent aglycone were confirmed using synthetic standards run on the assay.  Retention 

times of 1-β diclofenac-AG and diclofenac were confirmed using LC-MS.  The four 

resolved AG isomers showed qualitatively identical positive-ion electrospray mass 

spectra which were all indistinguishable from the 1-β AG’s spectrum.  AG spectra were 

all dominated by neutral loss of dehydroglucuronic acid.   

Following identification of the 1-β diclofenac-AG and diclofenac peaks, the remaining 

positional isomers were assigned from their chronological appearance during 

incubation in phosphate buffer, pH 7.4, at 37°C (Figure 2. 6A).  This method has been 

employed in previous studies of AG rearrangement (Watt and Dickinson, 1990).  The 

observed order of isomer elution (4-, 1-α, 1-β, 3-, 2-O-AG) is the most frequently 

reported order for AG isomer elution from reversed phase columns when the isomers 

have been defined by NMR spectroscopy (Corcoran et al., 2001; Akira et al., 2002; 

Stachulski et al., 2006). Whilst complete or near-complete separation of the 2-, 3-, and 

4- isomers was achieved, separation of anomers was only achieved for the 1-α and 1-β 
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anomers.  The minor chromatographic peak directly in front of the 1-β anomer was 

designated the 1-α anomer in conformity with the standard verified order of elution of 

these epimers (Corcoran et al., 2001; Akira et al., 2002).  Chromatographic separation 

of the 1-β and 1-α anomers is not invariably achieved (Ebner et al., 1999).  No attempt 

was made to achieve chromatographic separation between the anomers of the 2-, 3- 

or 4- isomers.  Anomeric separation of these isomers is usually incomplete, and is 

associated with distorted peak shapes due to rapid inter-conversion of the anomers 

(Stachulski et al., 2006). 

 

Figure 2. 3:  Representative LC-UV trace showing chromatographic separation of 1-β 
diclofenac-AG, its α anomer, the 2-, 3- and 4- positional isomers and its parent 
aglycone at 254nm.  The mixture was produced by incubating 1-β diclofenac-AG in 
40µM HSA solution, pH 7.4, at 37°C for 90 min. The AG positional isomers were 
identified from their chronological appearance during the incubation. The α-anomer 
was identified from its chromatographic position, by comparison with isomer/anomer 
sets of other AG that have been characterised ab initio by NMR spectroscopy 
(Corcoran et al., 2001; Akira et al., 2002). 
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2.2.5 Covalent binding of 1-β diclofenac acyl glucuronide to human serum 

albumin determined using an alkaline hydrolysis technique 

750 µM and 150 µM concentrations of diclofenac-AG were incubated with a 15 µM 

HSA solution in phosphate buffer, pH 7.4, in triplicate at 37°C.  Covalent binding was 

assessed using an alkaline hydrolysis technique based upon published methods (Zia-

Amirhosseini et al., 1994; Zia-Amirhosseini et al., 1995).  Aliquots (500µl) were 

removed at intervals between 5min and 16 hours.  The protein was precipitated 

through the sequential addition of 1.5ml of ice-cold acetonitrile followed by 500µl ice-

cold isopropanol.  The protein solution was separated by centrifugation at 2500 rpm.  

Following protein precipitation, non-covalently bound drug was washed from the 

protein pellet through vortex-mixing with seven 5 ml aliquots of methanol-diethyl 

ether (3:1, v/v).  The 6th and 7th organic extracts were retained, evaporated to dryness 

under a constant stream of nitrogen at 37°C and reconstituted in 250µl of 75% 500mM 

ammonium acetate pH 4.5, 25% acetonitrile (v/v) for LC-MS/MS analysis.  No drug was 

detected in these wash extracts by LC-MS/MS analysis.  The fully extracted protein 

pellet was dried under a constant stream of nitrogen at 37°C.  1 ml of 0.25M potassium 

hydroxide was added to the protein pellet, and subsequently incubated at 80°C in a 

water bath for 90 minutes to liberate covalently bound diclofenac.  An aliquot of the 

solution (20µl) was then removed for protein assay (Bradford, 1976), giving a recovery 

of 63.29 ± 10.14%.  The remaining alkaline hydrolysate was neutralised through 

addition of 45µl of 43% phosphoric acid (v/v in aqueous solution).  55µl of 100 µM 

zomepirac (in 50% acetonitrile) was added to the neutralised hydrolysate as an 

internal standard before addition of 5ml ethyl acetate.  Following mixing and 

centrifugation at 2500 rpm for 5 minutes, the upper phase was removed and 
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evaporated to dryness under a constant stream of nitrogen at 37°C.  The hydrolysate 

was reconstituted in 250µl of 35% 8.5mM ammonium acetate containing 0.0075% 

formic acid (v/v), 65% methanol (v/v), for LC-MS/MS quantification of liberated 

diclofenac. 

2.2.6 LC-MS/MS assay of diclofenac liberated from HSA adducts of 

diclofenac acyl glucuronide using an alkaline hydrolysis technique 

25µl of reconstituted sample following hydrolysis was injected onto the HPLC column.  

Analyte separation was performed at room temperature using a Zorbax Eclipse XDB-C8 

column (150 x 4.6mm, 5µm; Agilent Technologies, Santa Clara, Calafornia) fitted with a 

SecurityGuard guard column (Phenomenex, Macclesfield, Cheshire, UK), connected to 

a PerkinElmer series 200 HPLC system (PerkinElmer, Norwalk, Connecticut, USA) and 

an API 2000 triple quadrupole mass spectrometer (AB Sciex, Warrington, UK).  Analytes 

were eluted at room temperature with a linear gradient of methanol in 8.5mM 

ammonium acetate containing 0.0075% formic acid (v/v), 65-85% over 7 minutes.  

Following this, the column was purged with methanol for 1 minute before re-

equilibration for 3 minutes.  The eluent flow rate was maintained at 1ml/minute, 

achieving separation of diclofenac and zomepirac as represented by Figure 2.4.  MS 

operating parameters for the multiple reaction monitoring (MRM) assay of diclofenac 

with zomepirac as internal standard are shown in Table 2. 2.  The lower limit of 

detection of diclofenac spiked into buffered HSA solution before alkaline hydrolysis, as 

defined by a signal-to-noise ratio >3, was 100µM.  The corresponding lower limit of 

quantification, as defined by accuracy of between 80-120%, and precision (coefficient 

of variation) < 20%, was 100µM (accuracy 90.7% and precision of 17.3%).  
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Figure 2. 4:  Total ion current chromatogram representing chromatographic 
separation of diclofenac and zomepirac (internal standard) in the alkaline hydrolysis 
assay of covalent binding of diclofenac-AG to HSA in vitro.  The compounds were 
analysed by LC-MS/MS 
 
Table 2. 2: API 2000 operating parameters for the MRM assay of diclofenac with 
zomepirac as an internal standard. 

Parameters Diclofenac Zomepirac 

Fragmentation transition 296.066→214.9 292.038→139.000 

Declustering potential (V) 11.00 16.00 

Focussing Potential (V) 360.00 360.00 

Entrance Potential (V) 6.00 10.50 

Collision energy (eV) 25.000 27.00 

Collision cell entrance 
potential (V) 

12.000 12.000 

Collision cell exit potential 
(V) 

10.00 6.00 

Dwell time (ms) 150 150 

 

  



Chapter 2 – Chemical Assessment of the Interactions between Acyl Glucuronide Drug 
Metabolites and Protein using HSA as a Model Protein 

Page 87 
 

2.2.7 Covalent modification of human serum albumin by diclofenac acyl 

glucuronide during in vitro incubation 

Concentration-dependent modification of HSA by diclofenac-AG was investigated in 

vitro.  Increasing concentrations of 1-β diclofenac-AG (400nM, 4µM, 40µM, 400µM 

and 2mM) were incubated with 40µM HSA in 0.1M phosphate buffer, pH 7.4, at 37°C 

for 16 hours.  To investigate time-dependent modifications of HSA, 2mM diclofenac-

AG was incubated with 40µM HSA for time points between 30 minutes to 16 hours.  To 

investigate the role of the 1-β isomer in the chemical pathways of AG covalent binding, 

a final concentration-effect experiment was performed.  Diclofenac-AG was pre-

degraded for 3 hours in 0.1M phosphate buffer, pH 7.4, at 37°C.  Separate experiments 

have shown that this incubation results in degradation of the 1-β isomer to 5.52 (± 

1.37)% presence in the incubation mixture, with acyl migration to the 2-, 3- and 4- 

isomers and minimal hydrolysis to parent diclofenac  (Figure 2. 6A).  Degraded 

diclofenac-AG was incubated with 40µM HSA at a final concentration of 2mM for 16 

hours.  A solution of 2mM undegraded 1-β diclofenac-AG was incubated with 40µM 

HSA alongside the degraded AG incubation for 16 hours for direct comparison. 

At desired time points 100 µl aliquots of the reaction mixture were removed.  The 

reaction was stopped and protein precipitated through immediate vortex mixing with 

900µl ice-cold methanol and subsequent centrifugation at 24,000g at 4°C for 15 

minutes.  The supernatant was removed, and the pellet washed three times with 60µl 

ice-cold methanol.  The precipitated protein was dissolved in 50µl of 0.1M phosphate 

buffer pH 7.4, reduced with dithiothreitol (10mM) for 15 minutes at room temperature 

and alkylated with iodoacetamide (55mM) for a further 15 minutes at room 

temperature to cap cysteine residues, preventing the formation of disulphide bridges 
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of peptides before mass spectrometric analysis.  The protein was then precipitated and 

washed with ice-cold methanol.  The protein pellet was re-dissolved in ammonium 

hydrogencarbonate solution (50µM, 30µl), assayed for protein content using the 

Bradford assay (Bradford, 1976), and 30µl aliquots of 3.2mg/ml protein solution were 

digested with 5µg trypsin overnight.  The digests were desalted using 0.6 µl bed C18 -

Zip-Tip pipette tips (Millipore, Cork, Republic of Ireland) as per the manufacturer’s 

instructions, eluted with 10µl 50% acetonitrile, 0.1% trifluoroacetic acid in deionised 

water and dried by centrifugation under vacuum (SpeedVac, Eppendorf UK Ltd, 

Cambridge) prior to LC-MS/MS analysis.  

2.2.8 Mass-spectrometric analysis of diclofenac acyl glucuronide modified 

tryptic peptides of human serum albumin 

Modified tryptic peptides were detected on a 5500 QTRAP hybrid triple-

quadrupole/linear ion trap instrument fitted with a Nanospray II source (AB Sciex, 

Foster City, California, USA).  MRM transitions specific for peptides modified by 

diclofenac-AG by either the transacylation or glycation pathway were selected as 

follows: the m/z values of all singly charged HSA peptides with a missed trypsin 

cleavage at the modified lysine residue and mass additions of either 277 amu (for the 

transacylated peptide) or 453 amu (for the glycated peptide) were calculated.  These 

m/z values were paired with the m/z values of the dominant fragment ions of 

diclofenac, namely m/z 215 and m/z 250 (Figure 2. 5) to complete the MRM 

transitions.  HSA peptides identified as modified following incubation with diclofenac-

AG (2mM diclofenac-AG, 40µM HSA) following exhaustive analysis using a QStar i 

hybrid mass spectrometer (Applied Biosystems, Warrington UK) (see chapter 3) were 

selected for MRM transitions, combined with other peptides identified as modified by 
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a range of drugs in our laboratory.  Transitions for which modified HSA peptides were 

detected following in vitro incubation are outlined in Supplementary Table 1 and 2.  

Relative MRM peak heights for each of the modified peptides were computed by 

MultiQuant software version 2.0 (AB Sciex) to produce an ‘epitope profile’ that is 

characteristic of each type of modifying species, i.e. transacylating and glycating.  

However, due to the unavailability of standards of the modified peptides allowing 

relative ionisation efficiencies of modified peptides to be ascertained, these ratios 

must be regarded as approximations.  

 

Figure 2. 5:  Mass-spectrometric fragmentations of diclofenac and diclofenac-AG 
residues when covalently bound to protein.  (A) represents transacylation adducts 
(B) represents glycation adducts. (The 2-ketoamine form of the 3-O-ester conjugate is 
shown; see Figure 2. 2). Mass values corresponding to the 12C35Cl2 isobars of adduct 
fragments are shown. See (Galmier et al., 2005) for the product-ion spectrum of 
diclofenac obtained by electrospray ionisation.  
 

The total ion count for each sample of tryptic peptides was normalised to that of the 

HSA conjugate produced by incubation of 2mM diclofenac-AG with 40µM HSA for 16 

hours.  This allows the magnitudes of MRM signal to be adjusted for differences 

between amounts of sample loaded on to the LC column. 

Aliquots of the modified tryptic peptides were injected onto a C18 PepMap column 

(75µm x 15 cm; Dionex) fitted with a 5 mm C18 nano-precolumn using an Ultimate 
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3000 HPLC system.  A gradient of 2% acetonitrile, 0.1% formic acid (v/v), to 50% 

acetonitrile, 0.1% formic acid (v/v), over 60 minutes at a flow rate of 300 nl/minute 

was used to separate the peptides, and they were delivered to the mass spectrometer 

through a 10 µm i.d. PicoTip ionspray emitter (New Objective, Woburn, MA).  The 

ionspray potential was set to 2200-3500 V, the nebuliser gas to 19 and the interface 

heater to 150°C.  MRM transitions were acquired at unit resolution in both Q1 and Q3 

to maximise specificity.  Collision energies were optimised for each MRM and dwell 

times were 20ms.  MRM survey scans were used to trigger up to three enhanced 

product-ion scans of modified peptides according to the multiple reaction monitoring-

initiated detection and sequencing (MIDAS) technique (Unwin et al., 2005; Unwin et 

al., 2009), with Q1 set to unit resolution and with dynamic fill of the trap.  The 

complete or partial amino acid sequence of the peptide and the location of the adduct 

were deduced from these product-ion spectra. 
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2.3 RESULTS 

2.3.1 Investigations into the chemical instability of synthetic 1β diclofenac 

acyl glucuronide in 0.1M phosphate buffer pH7.4, human serum 

albumin solution and isolated human plasma at 37°C 

Synthetic 1-β diclofenac-AG was found to degrade spontaneously in 0.1M phosphate 

buffer, pH7.4, and it also degraded in 40 µM HSA solution and human plasma at 37°C 

(Figure 2. 6).  Degradation of the 1-β isomer appeared to follow first-order kinetics.  

This allowed the rate of degradation to be analysed using non-linear regression 

analysis.  A curve was fitted to the lines following the equation C=C0exp(-kdeg)(time), 

where C represents the peak area ratio of the 1-β isomer in the degradation mixture 

and kdeg represents the degradation rate constant (Figure 2. 7), allowing the half-life of 

degradation (t½) to be calculated.  All regression analyses were fitted to an r2 value of 

above 0.99 (Table 2. 4). 

During incubation in 0.1M phosphate buffer, pH 7.4, a 2 mM solution of 1-β diclofenac-

AG was found to degrade with a half-life of 0.78 hours (Figure 2. 6A).  Degradation was 

primarily through the acyl migration pathway, resulting in sequential appearance of 

the 2-, 3- and 4- positional isomers.  The time taken for maximal appearance of these 

isomers was 100 (± 17.32), 260 (± 34.6) and 960 (± 0) minutes, respectively.  Together, 

over the 16 hour time course, these three positional isomers accounted for 87.75 (± 

2.1) % of combined AG and aglycone exposure.  Little back migration to the 1-α isomer 

or hydrolysis to the parent aglycone was detected throughout the experiment, 

accounting for only 2.21 (± 0.39) and 1.65 (± 0.28)% exposure in the incubation 

mixture over the 16 hour incubation respectively. 
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Little change in the kinetic profile of the degradation of 2 mM diclofenac-AG was seen 

when HSA was added to the incubation mixture at 40µM (Figure 2. 6B).  A slight 

increase (21.8%) in the degradation t½ of the 1-β isomer was observed, however, this 

is likely to be attributable to assay variation rather than a real difference.  Only a minor 

change in the % exposure of the degradation products was observed throughout the 

time course for any of the AG isomers or the parent aglycone, with less than 2% 

variation seen for the 1-α, 1-β, 3- isomers or diclofenac, and less than 5% variation for 

the 2- and 4- isomers.   

A five-fold reduction in the concentration of 1-β diclofenac-AG incubated with 40 µM 

HSA to 400µM, however, caused an increased level of hydrolysis (Figure 2. 6C).  This 

effect resulted in the % exposure of diclofenac over the 16 hour time course to 

increase from 2.33 (± 0.61)% for the 2 mM incubation to 24.23 (± 1.28)%.  

Accompanying the increased extent of hydrolysis, acyl migration was reduced, 

resulting in a combined reduction in exposure to the 2-, 3- and 4- isomers by 19.1%.  

Little change in the maximal presence of the 2-isomer in the incubation mixture was 

seen, but the shorter time to reach this concentration (by 60 minutes when compared 

to the 2 mM AG incubation in HSA solution) suggested the rate of acyl migration from 

C-1 to C-2 may also be enhanced.  However, evidence for an increased rate of further 

acyl migration to the 3- and 4- isomers is not clear.  The rate of appearance of 

diclofenac shows a similar profile to the loss of the 1-β isomer, where little further 

appearance of the aglycone was detected after 180-300 minutes, when exposure to 

the 1-β isomer is reduced to below 10% presence in the incubation mixture.  With 

exposure to the other positional isomers remaining considerable following this 
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timepoint, this observation may suggest that hydrolysis catalysed, or at least 

accelerated by HSA is selective to the 1-β isomer.   

Incubation of 2 mM 1-β diclofenac-AG with human plasma resulted in a faster rate of 

degradation of the conjugate, with its degradation t½ reduced to 7 minutes.  In human 

plasma, the principal mechanism of 1-β diclofenac-AG degradation was through 

hydrolysis, with exposure to diclofenac accounting for 54.56 (± 8.59) % of combined 

AG and aglycone exposure over the 16 hour time course of the assay.  A reduction in 

the time taken for maximal exposure of the 2- isomer to 15 minutes, 85, 105 and 45 

minutes shorter than incubation in phosphate buffer, or incubation in HSA solution at 

2mM or 400µM, respectively, combined with a 57% increase in the maximal 

concentration of this isomer, suggests an increased rate of acyl migration from C-1 to 

C-2.  The continuing rise of exposure to diclofenac following loss of the 1-β AG suggests 

in human plasma AG hydrolysis is not selective to that isomer. 

Reducing the concentration of the 1-β AG isomer in the incubation mixture with 

human plasma to 400µM resulted in a further shortening of the degradation t½ of the 

conjugate to 5.41 minutes.  Hydrolysis was further enhanced, with 82.24 (± 1.26) % of 

AG/aglycone exposure during the 16 hour time course attributable to diclofenac.  

Reduction of the concentration of diclofenac-AG also appeared to further increase the 

rate of acyl migration, as maximal concentrations of the 2- and 3- isomers remained 

similar to those in the other incubations, but the time taken to reach these 

concentrations was shortened to 10 and 30 minutes, respectively.  The % exposure of 

the combined 2-, 3- and 4- positional isomers was reduced to 16.68 (± 2.14) % 

exposure over the 16 hour incubation.  From the incubation at 400µM, it is clear that 

hydrolysis of diclofenac-AG is not isomer specific, as the concentration of diclofenac 
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increased consistently throughout the incubation until almost all the AG (98.21 ± 

0.28%) was hydrolysed by the end of the experiment. 
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Figure 2. 6:  Degradation of 1-β diclofenac-AG to its positional isomers, α anomer and 
parent aglycone during incubation in 0.1M phosphate buffer, pH 7.4, HSA solution or 
human plasma at 37°C.  Synthetic 1-β diclofenac-AG was incubated for 16 hours in 
0.1M phosphate buffer, at pH 7.4, 2mM (A), in buffered 40 µM HSA solution at 2 mM 
(B) or 400 µM (C), or pooled human plasma at 2 mM (D) or 400 µM (E).  Incubations 
were run in triplicate.  Data are presented as means (± standard deviation; n=3).  
Diclofenac-AG isomers are represented as follows, 1-α is represented by filled circles, 
1-β is represented by open circles, 2- is represented by filled triangles, 3- is 
represented by open triangles, 4- is represented by filled squares and diclofenac is 
represented by open squares. 
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Table 2. 3:  Representation of % exposure of AG isomers and aglycone following 
incubation of the 1-β isomer in 0.1M phosphate buffer (pH 7.4), buffered HSA 
solution or pooled human plasma at 37°C over the 16 hour time course, calculated 
from AUCs (Figure 2. 6).  Data presented as mean (± standard deviation; n=3). 

 1-alpha 1-beta 2 3 4 Diclofenac 

2mM DAG 
in 

phosphate 
buffer 

2.21  
(± 0.39) 

8.39  
(± 1.02) 

32.07 
(± 1.30) 

33.64 
(± 0.37) 

22.04 
(± 0.43) 

1.65 
(± 0.28) 

2mM DAG 
in 40µM 

HSA 

1.60 
(± 0.09) 

9.08 
(± 0.89) 

36.03 
(± 0.28) 

32.46 
(± 1.04) 

18.50 
(± 1.00) 

2.33 
(± 0.61) 

400µM 
DAG in 

40µM HSA 

1.38 
(± 0.11) 

5.74 
(± 0.59) 

27.47 
(± 0.38) 

25.13 
(± 0.51) 

16.05 
(± 0.69) 

24.23  
(± 1.28) 

2mM DAG 
in human 

plasma 

0.65 
(± 0.10) 

1.75  
(± 0.34) 

15.14 
(± 1.83) 

14.55 
(± 1.22) 

13.34 
(± 5.91) 

54.56  
(± 8.59) 

400µM 
DAG in 
human 
plasma 

0.23 
(± 0.01) 

0.86 
(± 0.19) 

6.38 
(± 0.45) 

7.16 
(± 1.26) 

3.14 
(± 0.43) 

82.24 
(± 1.26) 
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Figure 2. 7:  1st order regression curves fitted to the degradation of diclofenac-AG 
during in vitro incubations.  1st order regression curves fitted to mean 1-β diclofenac-
AG degradation during incubation at 37°C in 0.1M phosphate buffer, pH 7.4, at 2mM 
(A), in 40 µM buffered HSA solution at 2mM (B) or 400µM (C), or in isolated human 
plasma at a concentration of 2mM (D) or 400µM (E).  Regression curves are fitted to 
the equation C = C0exp(-kdeg)(time).  Mean 1-β diclofenac-AG degradation data are 
represented by black circles.  Fitted regression curves are represented by the black 
line.  Degradation rate constants are recorded in Table 2. 4. 
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Table 2. 4: Half-lives of degradation and parameters for the fitted degradation curves 
shown in Figure 2. 7.  Data fitted to the first-order degradation rate equation  
C=C0exp(-kdeg)(time). 

 t ½ (hour) t ½ (min) Kdegradation R2 

Phosphate 
buffer 

0.78 46.52 0.0149 0.9953 

2mM DAG 
in 40µM 

HSA 
0.95 56.82 0.0122 0.9987 

400µM 
DAG in 

40µM HSA 
0.53 31.94 0.0217 0.9994 

2mM DAG 
in human 

plasma 
0.12 7.02 0.0987 0.9933 

400µM 
DAG in 
human 
plasma 

0.09 5.41 0.1282 0.9953 

   

2.3.2 Assessment of the covalent modification of human serum albumin by 

diclofenac acyl glucuronide during in vitro incubation using an alkaline 

hydrolysis method 

Historically, alkaline hydrolysis has been the most commonly used technique in the 

analysis of acyl glucuronide modification of proteins (Smith et al., 1986; Hyneck et al., 

1988b; Munafo et al., 1990; Dubois et al., 1993b; Presle et al., 1996).  Consequently it 

was decided to apply this technique in the assessment of the covalent modification of 

HSA by diclofenac-AG. 

To assess diclofenac-AG modification of HSA, a 750 µM and a 150 µM solution of 

synthetic diclofenac-AG was incubated with a 15 µM solution of HSA at pH 7.4.  The 

molar ratios of AG : HSA were maintained consistent with the experiments 

investigating AG degradation in HSA solutions at 50 : 1 and 10 : 1. 

Both the 750 µM and 150 µM incubations showed similar profiles for covalent 

modification of HSA during in vitro incubation at 37°C (Figure 2. 8).  Over the first 6 
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hours of incubation, an increase in modification of HSA was detected.  Following this 6 

hour time point, due to the variation in the assay, it is unclear whether additional 

bound diclofenac-AG and/or the aglycone is liberated from the adduct, or if binding 

has simply ceased, and no change in AG covalent binding between the 6 and 16 hour 

time points is evident.  

To provide an assessment of the maximum % of diclofenac-AG in the incubation 

mixture covalently bound to HSA, the Cmax of binding for each concentration (data not 

shown) was taken, and normalised to the amount of protein in the incubation mixture 

for both the 750 µM and 150 µM incubations (Table 2. 5).  Total binding over the time 

course was represented by the area under the binding curve (AUC), and is recorded in 

Table 2. 5. 
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Figure 2. 8:  Time course of the covalent modification of HSA during incubation with 
1-β diclofenac-AG analysed by alkaline hydrolysis.  A 750 µM (A) or 150 µM (B) 
concentration of diclofenac-AG was incubated with 15 µM HSA at pH7.4 and 37°C for 
16 hours.  Covalent binding was analysed using an alkaline hydrolysis method.  Data 
presented as mean (± standard deviation; n=3). 
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Table 2. 5:  Area-under-the-curve data of diclofenac-AG modification of HSA and 
maximum % of diclofenac-AG covalently bound to HSA during incubation of a 750 
µM of 150 µM concentration of diclofenac-AG for 16 hours at 37°C.  Data presented 
as mean (± standard deviation; n=3) 

Concentration of 
diclofenac-AG 

incubated with 15µM 
HSA 

AUC (ng hr ml-1) 

Maximum % of 
diclofenac-AG 

covalently bound to 
HSA 

750 µM 238373.37 (± 17430.2) 0.62 (± 0.10) 

150µM 
124130.37  

(± 15621.62) 
1.78 (± 0.28) 

 

2.3.3 Concentration-dependent modification of HSA during incubation with 

diclofenac acyl glucuronide  

To investigate the covalent modification of HSA by diclofenac-AG, a concentration-

effect experiment was used; incubating diclofenac-AG with 40 µM HSA at 

concentrations ranging from 400nM to 2mM for 16 hours at pH 7.4 and 37°C.  

Normalised ion count data allowed some suggestions as to routes of adduct formation.  

Examples of mass spectra showing modification through the transacylation and 

glycation chemical pathway are shown in Figure 2. 9. 

Detection of glycation adducts and absence of transacylation adducts at lower 400nM 

and 4µM concentrations suggested that glycation was the preferential chemical 

pathway of adduct formation over 16 hour incubations (Table 2. 6).  

Modification of HSA by diclofenac-AG was found to be lysine specific (Table 2. 6).  This 

is as would be expected, as most of the MRM transitions used for analysis were 

directed towards modification of lysine residues.  Modification of only K190 by the 

glycation pathway was detected following incubation of diclofenac-AG at the lowest 

incubation concentration of 400nM.  Incubation of diclofenac-AG at concentrations 

above 400nM resulted in the detected modification of several other lysine residues, 
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and identification of transacylation adducts at concentrations above 40µM.  At all of 

these concentrations, greater normalised ion counts are detected for modification of 

K190 than other amino acid, excepting for the detection of glycation adducts following 

incubation of diclofenac-AG at 40µM.  At this concentration, normalised ion counts for 

modified K199 were greater.  Nevertheless, as described above, care does have to be 

taken in the interpretation of normalised ion count. 

A ribbon model of HSA was used to map the sites of covalent modification following 

incubation with 2mM diclofenac-AG (Figure 2. 10).  The greatest number of modified 

lysine residues following incubation with 2mM diclofenac-AG – five of the 8 residues – 

were found on subdomains IIA and IIIA, and the cleft linking the two subdomains Table 

2. 6.  These subdomains contain hydrophobic pockets, Sudlow sites I and II, where 

compounds, including NSAIDs and their AGs (Iwakawa et al., 1990; Williams and 

Dickinson, 1994; Mizuma et al., 1999), often have strong non-covalent interactions 

(Ghuman et al., 2005).  Only one site of AG modification was on subdomain IIIB, 

namely K525.  A single modification was found on subdomain IIB at K137. 
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Figure 2. 9:  Representative MS/MS spectra showing modification of the HSA tryptic 
peptide 198LKCASLQK205 at K199 by diclofenac-AG through transacylation (A) or 
glycation (B).  A tryptic digest of modified, reduced and alkylated HSA was analysed by 
LC-MS/MS using a QTRAP 5500. Ions derived from the fragmentation of the hapten 
itself are circled (see Figure 2. 5). C+iodo= cysteine residue alkylated with 
iodoacetamide. Note, the modified and unmodified peptides were not resolved 
completely by LC.  b ions are derived from the amino terminus of the peptide, and y 
ions are derived from the C-terminus. 
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Table 2. 6:  Identification of lysine residues modified by diclofenac-AG and the 
chemical pathways of modification following incubation of the AG with HSA for 16 
hours at 37°C.  40 µM HSA solution was incubated with 1-β diclofenac-AG at pH 7.4.  
The amino acids modified and the chemical pathways of modification were identified 
by tandem mass spectrometry (Figure 2. 5 and Figure 2. 9).  The adducted amino acid 
is marked with an asterisk.  Glycation adducts are represented as G, transacylation 
adducts are represented as T. 

Lysine 
Tryptic peptide 

sequence 

Concentration diclofenac-AG in 

incubation mixture 

400nM 4µM 40µM 400µM 2mM 

K137 K*YLEIAR    GT GT 

K190 LDELRDEGK*ASSAK G G GT GT GT 

K195 ASSAK*QR   GT GT GT 

K199 LK*CASLQK  G GT GT GT 

K351 LAK*TYETTLEK   G G G 

K432 NLGK*VGSK  G G GT GT 

K525 K*QTALVELVK   G GT GT 

K541 ATK*EQLK   GT GT GT 
 

 

Figure 2. 10:  A ribbon-model representation of the sites of modification of HSA 
during incubation with 2 mM diclofenac-AG.  The eight lysine residues of HSA 
modified by 1-β diclofenac-AG were identified by tandem mass-spectrometric analysis 
of tryptic peptides (see Table 2. 6).  The 51 unmodified lysine residues are represented 
by purple sticks, lysine residues modified by both transacylation and glycation 
pathways are represented by green spheres (see Figure 2. 2).  K351 was modified by 
only the glycation pathway and is represented by red spheres.  No lysine residues were 
modified by only the transacylation pathway.  Image was produced using PyMol 
Molecular Graphics System (www.pymol.org) 
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2.3.4 Time-course of modification of HSA during incubation with diclofenac 

acyl glucuronide.  

To allow further insight into the covalent interactions between diclofenac-AG and HSA 

a time-course experiment was run, incubating 2mM diclofenac-AG with 40µM HSA.  

Tryptic peptides were again analysed using mass spectrometry, allowing the earliest 

time point of detectable modification of each peptide to be estimated and the 

chemical route of formation to be ascertained.  Normalised ion counts allowed semi-

quantitative analysis of modification of the chemical pathways of adduct formation at 

individual lysine residues. 

Following incubation with 2mM diclofenac-AG, all amino acids identified as modified at 

16 hours were modified at the first 0.5 hour time point.  Again, modification was found 

to be lysine selective.  Normalised ion count data were used to provide a semi-

quantitative analysis of the chemical route of modification of individual lysine residues.  

Over the first two hours, normalised ion counts of transacylation adducts were higher 

than those of glycation adducts for six of the eight modified lysine residues (HSA 

contains 59 lysine residues).  Following this 2 hour time point, little further increase in 

transacylation adducts was detected, whereas ion counts for glycation adducts were 

greatly enhanced.  These trends are illustrated by Figure 2. 11, showing normalised ion 

counts for two representative modified amino acid residues, namely K190 and K525.  

Whilst the time courses of modification of K199 and K351 did not follow the same 

profile, they differed substantially only in the fact that counts for transacylation 

adducts were higher than those of glycation adducts of K525 during the first three 

hours.  Again, little increase in the detection of transacylation adducts was observed 

following two hours, whereas the intensity of glycation adducts increased. 
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Figure 2. 11:  Time courses of modification of K190 (A + B) and K525 (C + D) during 
incubation of HSA (40 µM) with diclofenac-AG (2 mM) at pH 7.4 and 37°C.  
Incubations over 16 hours (A + C) and the same incubations over the first 4 hours (B+D) 
are depicted.  The total ion count for each sample of tryptic peptides analysed by LC-
MS/MS was normalised to that of the HSA conjugate produced by incubation of 2 mM 
diclofenac-AG with 40µM HSA or 16 hours.  Hollow circles represent glycation adducts, 
filled circles represent transacylation adducts and filled triangles represent the sum of 
transacylation and glycation adducts. 
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2.3.5 Covalent modification of HSA during incubation with 1-β diclofenac 

acyl glucuronide or a mixture of diclofenac acyl glucuronide isomers 

produced through pre-degradation of 1-β diclofenac acyl glucuronide 

Following on from the observation that formation of covalent HSA adducts by the 

transacylation pathway did not increase after the first two hours of incubation with 1-β 

diclofenac-AG, with glycation apparently predominant thereafter, it was hypothesised 

that the transacylation adducts were formed preferentially by the 1-β diclofenac-AG 

isomer, whilst the esters generated by acyl migration were less productive.  The reason 

for this is that at the two hour time point, following incubation of the same 2 mM 

concentration of diclofenac-AG with HSA, the 1-β isomer had degraded to only 21.2 

(±2.53)% abundance, with abundance of the 2-, 3- and 4- isomers representing 50.59 

(± 0.63), 19.69 (± 1.20), 4.56 (± 0.58)%, respectively. 

To test this hypothesis, 1-β diclofenac-AG was pre-incubated at 37°C in phosphate 

buffer, pH 7.4, for three hours before incubation with 40µM HSA for 16 hours at 

increasing concentrations of diclofenac-AG to HSA.  Previous experiments showed pre-

incubation of diclofenac-AG in phosphate buffer for three hours would degrade the 1-β 

AG isomer to approximately 9.07 ± 1.39 % presence in the incubation mixture, with 

resulting formation of the 2-, 3- and 4- isomers to the extents of 48.6 (± 0.85),   

29.4 (± 1.28) and 9.57 (± 0.85)% respectively.  In this incubation only negligible 

degradation of the AG to the aglycone was detected, and the same observation was 

made when the 1-β AG was incubated at 2mM with HSA (Figure 2. 6).   Also, no back 

migration to the 1-β isomer, requiring improbable sequential βα anomerization, 

C2C1 migration and αβ anomerization (Corcoran et al., 2001), was detected.  
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Analysis of modification at individual lysine residues using normalised ion counts 

revealed evidence of the loss of transacylation adducts following removal of the 1-β 

isomer from the reaction mixture (Figure 2. 12).  Complete loss of transacylation 

adducts was detected at K195 and 199 following incubation with 40µM pre-degraded 

AG.  Further to this, following incubation at 400µM, loss of the 1-β isomer resulted in 

complete absence of transacylation adducts at K199, a 27.9% reduction at K195 and a 

reduction of between 53.6 and 62.1 % at other modified lysines.  This trend continued 

at the 2mM AG concentration, with a complete loss in transacylation adducts at K199, 

a 30.2% loss at K195 and between a 63.1 and 81.5% loss of transacylation adducts at 

other modified peptides.  Whilst differential ionisation of peptides means that 

normalised ion counts should be analysed sceptically, this comparison of the loss of 

transacylation adducts at amino acid  residues negates the concern over differential 

ionisation, as it is a direct comparison of the same peptide, resulting in equal 

ionisation. 

Removal of the 1-β AG isomer, as would be expected from the first principles of AG 

chemistry (Figure 2. 2), and in the absence of substantial AG hydrolysis (Figure 2. 6), 

had little effect on the abundance of glycation adducts detected.  
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Figure 2. 12:  Effect of removing the 1-β diclofenac-AG by pre-incubation on the 
modification of individual HSA lysine residues.  Light bars represent incubation with 1-
β diclofenac-AG.  Dark bars represent incubation with diclofenac-AG pre-degraded in 
phosphate buffer, pH 7.4, at 37°C for three hours to remove the 1β isomer from the 
incubation mixture.   (A+B) 4µM, (C+D) 40 µM, (E+F) 400 µM, (G+H) 2mM.  (A+C+E+G) 
HSA modified by transacylation; (B+D+F+H) HSA modified by glycation.  All the 
incubations with HSA (40µM) were performed at pH 7.4 and 37 OC for 16 hours. The 
total ion count for each sample of tryptic peptides analysed by LC-MS/MS was 
normalised to that of the HSA conjugate produced by incubation of 2mM diclofenac-
AG with 40µM HSA for 16 hours.  
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2.4 DISCUSSION 

The broad aims of this work were to define the chemical stability and protein reactivity 

of diclofenac-AG, and specifically the chemistry of its instability in different 

biochemical and biological matrices and its covalent interaction with protein, using 

HSA as a representative, well characterised, soluble protein that has numerous 

nucleophilic side chains (Kristiansson et al., 2003).  Anticipating related studies in 

diclofenac patients (Chapter 5), HSA has the practical merits of being accessible and 

abundant (Johannesson et al., 2001; Jenkins et al., 2009; Meng et al., 2011; Whitaker 

et al., 2011) and is a physiologically relevant target for covalent modification because 

drug AGs frequently circulate in blood plasma (Volland et al., 1990; Benet et al., 1993; 

Mayer et al., 1993; Zia-Amirhosseini et al., 1994; Stangier et al., 2000; Zhou et al., 

2001; Wang et al., 2006). 

The degradation half-life of the 1-β AG isomer in phosphate buffer, pH 7.4, has been 

shown to be a good identifier for the protein reactivity of the molecule (Spahn-

Langguth and Benet, 1992; Benet et al., 1993), as well as a useful marker of potential 

clinical toxicity of the parent drug (Sawamura et al., 2010).   The degradation half-life 

of diclofenac-AG estimated in current investigations of 0.78 hours, shows the molecule 

to be amongst the most unstable AG metabolites studied (Table 2. 1), consequently 

suggesting that, if developed as a new chemical entity today, diclofenac might be 

considered to be at risk for generation of idiosyncratic reactions in man. 

This degradation half-life of 1-β diclofenac-AG in phosphate buffer is slightly longer 

than the previously reported value of 0.51 hours (Ebner et al., 1999), but similar to 

that reported by Sawamura et al of 0.7 hours (Sawamura et al., 2010).  Due to this 

expected rapid degradation of diclofenac-AG at pH 7.4, a greater number of sampling 
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time points (10 time points) were included over the first two hours of incubation, 

allowing more accurate tracking of the disappearance of the 1-β isomer from the 

degradation mixture (rather than the four sampling points used by (Ebner et al., 

1999)).  In addition to allowing better tracking of the loss of the 1-β isomer from the 

degradation mixture, may allow increased accuracy in fitting of regression curves to 

the data, resulting in improved precision in estimations of rate-constants of 

degradation and degradation half-lives. 

Acyl migration was revealed to be the predominant pathway of diclofenac-AG 

degradation during incubation in 0.1M phosphate buffer, pH 7.4.  Most AGs undergo 

preferential acyl migration, rather than hydrolysis, under these conditions (Watt and 

Dickinson, 1990; Iwaki et al., 1999; Corcoran et al., 2001; Akira et al., 2002; Berry et al., 

2009; Johnson et al., 2010; Karlsson et al., 2010).  Following the loss of the 1-β isomer 

from the incubation mixture, a sequential appearance of the positional isomers was 

detected chromatographically.  The concentrations of these positional isomers 

appeared to reach consistent values towards the later time points of the incubation.  

This step-wise pattern of acyl migration has been reported for several other AGs 

(Spahn-Langguth and Benet, 1992; Ebner et al., 1999; Iwaki et al., 1999).  It is generally 

accepted that the reason for this pattern of acyl migration is that the aglycone is only 

able to move around the ring one carbon at a time via ortho-ester transition states  

(Figure 2. 1) (Bradow et al., 1989; Berry et al., 2009).  All of these intramolecular 

migrations are considered to be reversible, though the C2C1 back migration is 

thought to require a preliminary βα anomerization (Corcoran et al., 2001). 

Little hydrolysis of the AG occurred during incubation in phosphate buffer.  This 

conflicts with the previous report of the kinetics of degradation of diclofenac-AG in 
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phosphate buffer, where, following 8 hours incubation, 20% of diclofenac-AG had 

hydrolysed to its parent aglycone (Ebner et al., 1999).  Reasons for this discrepancy 

between these data are unclear.  Whilst pH and temperature are well established to 

influence the rate of AG degradation (Spahn-Langguth and Benet, 1992; Stachulski et 

al., 2006), both experiments ensured these factors remained constant.  Whilst the 

concentration of diclofenac-AG was greater in the experiment presented here (2 mM), 

rather than the 300 µM incubations used by (Ebner et al., 1999), AG concentration is 

not known to influence the rate of degradation significantly (Watt and Dickinson, 1990; 

Berry et al., 2009); in conformity with the predominant degradation pathway being an 

intramolecular rearrangement.  Differences in the source of conjugate used here and 

by (Ebner et al., 1999) may provide an explanation as the diclofenac-AG used by Ebner 

was isolated from bile of rats administered diclofenac, where slight contamination by 

biliary proteins or lipids undetected through their LC-MS analysis might have reduced 

the AG’s stability. 

Addition of 40µM HSA solution to the incubation of 2mM diclofenac-AG in 0.1M 

phosphate buffer, pH 7.4 had little effect on the kinetics of the AG’s degradation.  A 

slight increase in the half-life of degradation was observed, however this was only by 

10 minutes, and variation in the precision of the assay cannot be discounted as a 

reason for this increased half-life.   It has been suggested that HSA can retard acyl 

migration in vitro, at least beyond the C-2 isomer in the case of naproxen-AG (Iwaki et 

al., 1999).  Serum albumin (human or rat) stabilises, additionally, the AG metabolites of 

diflunisal (Watt and Dickinson, 1990), tolmetin (Munafo et al., 1990), salicylic acid 

(Dickinson et al., 1994) and furosemide (Mizuma et al., 1999).  Reduction of conjugate 

degradation in these experiments was far more profound than any effect of HSA on 
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the rearrangement of 2mM diclofenac-AG.  Also, HSA seems to accelerate both the 

intramolecular rearrangement and hydrolysis of 1-β gemfibrozil-AG (Sallustio et al., 

1997).  With the concentration of AG in this experiment also far exceeding the 

maximum exposure of AG relative to HSA in any of the earlier experiments, it is 

possible that sites on HSA responsible for hydrolysing the AG may be saturated; 

resulting in diclofenac-AG degradation remaining principally a consequence of acyl 

migration.  Drug AGs are highly reversibly bound by HSA (Dubois et al., 1994; Williams 

and Dickinson, 1994; Sallustio et al., 1997; Mizuma et al., 1999), principally because of 

strong interactions between the aglycone residue and the protein (Dubois et al., 1994); 

generally, the glucuronic acid residue lowers the drug’s binding affinity (Iwakawa et al., 

1990). 

Hydrolysis remained a minor pathway of diclofenac-AG degradation when the 

conjugate was incubated at 2mM with HSA.  Only on incubation of a lower 

concentration of diclofenac-AG (400µM) was pronounced hydrolysis of the AG 

metabolite observed.  The esterase-like activity of HSA (Ma et al., 2005), accelerating 

hydrolysis of AG in vitro is well known, with greater hydrolysis of the AGs of 

furosemide (Mizuma et al., 1999), naproxen (Iwaki et al., 1999), probenecid (Akira et 

al., 2002), gemfibrozil (Sallustio et al., 1997), and diflunisal (Watt and Dickinson, 1990) 

in HSA solution than in phosphate buffer alone.  This hydrolytic activity of HSA, 

appropriately for an enzymic activity, can be highly dependent on the AG’s structure, 

with variations in the esterase-like activity of HSA between the R- and S- enantiomers 

of carprofen (Georges et al., 2000) and ketoprofen (Dubois et al., 1994).   

Few experiments have looked in depth at the effect of AG concentration on the 

esterase-like hydrolytic action of HSA.  Concentration-activity studies using 
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ketoprofen-AG reported the action of HSA follows Michaelis-Menton kinetics, and 

consequently in accordance with this, increased AG concentration should result in 

increased rate of hydrolysis (Dubois et al., 1994).  Conversely to this, little difference 

was observed between the hydrolysis of diflunisal-AG during incubation with HSA at 

117µM and 23µM (Watt and Dickinson, 1990).  Only on incubation at the lower 

concentration of 400µM was hydrolysis of diclofenac-AG evident, with only negligible 

hydrolysis detected at 2mM.  Potentially, incubation of 5-fold the molar concentration 

of diclofenac-AG compared to HSA is likely to result in saturation of active sites of the 

HSA molecule, and consequently most of the AG metabolite is free to degrade 

following kinetics similar to incubation in the absence of HSA.  Reducing the 

concentration of diclofenac-AG five-fold means a greater proportion is able to bind to 

hydrolytic sites of HSA, and less AG is free to degrade by acyl migration, resulting in a 

greater proportion of the AG hydrolysed at this concentration (Dubois-Presle et al., 

1995). Hydrolysis is increased if HSA is both globulin- and fatty acid-free rather than 

just fatty-acid free (Watt and Dickinson, 1990).  This is thought to be a consequence of 

globulin’s hindrance of AG access to sites of the HSA molecule capable of hydrolysing 

the metabolite.  It should be noted that even commercially produced HSA preparations 

contain very large numbers of minor/trace co-purified peptides and full-length 

proteins, and some of the proteins are associated with, or have an affinity for, HSA 

(Gay et al., 2010). 

The hydrolysis of diclofenac-AG during incubation with HSA follows similar kinetics to 

those described for several other AGs (Watt and Dickinson, 1990; Dickinson and King, 

1991; Dubois et al., 1994).  Following an initial rise in liberated aglycone, rate of 

hydrolysis slows and often eventually stops before the end of the incubation, resulting 
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in a plateau in the concentration of liberated aglycone.  Careful investigation of the 

diclofenac-AG degradation data reveals that little further AG hydrolysis occurs 

following the three hour time point.  At this time point, the concentration of the 1-β 

isomer in the incubation mixture is negligible.  The 2-, 3- and 4- diclofenac-AG 

positional isomers remaining at relatively high exposure for the remaining 13 hours of 

the experiment with little further hydrolysis suggests that esterase-like action of HSA 

towards diclofenac-AG may be selective to the 1-β isomer.  Selective hydrolysis of the 

1-β isomer of AGs is well documented for the specialist ester hydrolase β-

glucuronidase (Dickinson, 2011), and the incubation of isolated 1- and 2- isomers of 

naproxen-AG with HSA revealed a near doubling of the hydrolysis rate constant of the 

1- isomer when compared to the 2- isomer (Iwaki et al., 1999).  Other published 

studies showing a similar pattern of attenuated hydrolysis following loss of the 1-β 

isomer have not been found.  It must not be ruled out that covalent modification of 

HSA may result in inhibition of the protein’s esterase-like activity (Lockridge et al., 

2008). 

Further increased hydrolysis of diclofenac-AG was evident following incubation in 

pooled human plasma.  This resulted in complete hydrolysis over the 16 hour time 

course at both 400µM and 2mM diclofenac-AG.  Extensive hydrolysis of AG 

metabolites ex vivo by unidentified hydrolases/esterases has been reported for several 

conjugates (Ruelius et al., 1986; Volland et al., 1991; Williams et al., 1992; Akira et al., 

2002; Shipkova et al., 2003; Karlsson et al., 2010), and has been hypothesised as a 

potential de-toxification pathway of AG metabolites (Mizuma et al., 1999; Zhang et al., 

2011).  The relative contributions of tissue and plasma hydrolases/esterases to the 

clearance of drug AG from the plasma and recycling of parent compound are still 
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largely unknown but the plasma concentration of valproic acid is determined 

substantially by the glucuronidase activity of a hepatic hydrolase (Nakajima et al., 

2004; Suzuki et al., 2010).  Human plasma contains three esterases in high enough 

concentrations to significantly contribute to ester hydrolysis: butyrylcholinesterase, 

paraoxonase and albumin (Li et al., 2005).  However the relative contributions of these 

enzymes and of plasma β-glucuronidase (Soltaninejad et al., 2007) to the hydrolysis of 

drug AG are somewhat obscure.  Additionally, there are substantial species differences 

between esterase expression and hydrolase activity in mammalian plasma (Bahar et 

al., 2012).  This uncertainty over the influences of β-glucuronidase and esterases on 

the pharmacokinetics of AGs has led to the development of animal models where non-

specific esterase inhibitors have been used to perturb the disposition of AGs (Smith et 

al., 1990b).  Although treatment of guinea pigs with phenylmethylsulphonyl fluoride 

(PMSF) increased the plasma exposure of zomepirac-AG, this effect might have 

resulted principally from inhibition of tissue esterases and other intracellular 

hydrolases rather than the inhibition of plasma enzymes.  These esterases and 

hydrolases, and not β-glucuronidase, are known to play a dominant role in the 

intracellular hydrolysis of certain drug AG in humans (Suzuki et al., 2010; Iwamura et 

al., 2012).  The β-glucuronidase in a solid tissue can have an appreciable influence on 

aglycone exposure/elimination (Whiting et al., 1993; Tobin et al., 2006) but overall 

remarkably little is known about the enzymology, regulation and physiological effects 

of AG hydrolysis (Fukami and Yokoi, 2012). 

It was observed that on reduction of the concentration of diclofenac-AG incubated 

with human plasma from 2mM to 400µM an increased rate of hydrolysis was again 

obtained.  This may be through the same mechanism of enzyme saturation suggested 
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for HSA incubations.  The esterase activity of human plasma was clearly not specific to 

the 1-β isomer, as following loss of the 1-β isomer, hydrolysis of the positional isomers 

continued.  An apparent parallel decline of the 2-, 3- and 4- isomer exposure 

emphasises this susceptibility, as no isomer appears to be resistant to hydrolysis. 

Incubation of diclofenac-AG in human plasma also appeared to enhance the rate of 

acyl migration.  This was revealed by maximal exposure of the 2-, 3- and 4- isomers 

remaining either similar to or above those measured in either phosphate buffer or HSA 

solution, whereas the time taken to reach those concentrations was reduced.  This 

phenomenon has also been seen for incubation of oxaprozin-AG and fenprofen-AG 

(Ruelius et al., 1986; Volland et al., 1991).   

Following in vitro incubation of diclofenac-AG with HSA, an alkaline hydrolysis 

technique was used to assess covalent binding of the AG.  This technique allows 

quantitative assessment of AG-mediated protein modification through measurement 

of liberated aglycone, and thereby assays acetylation and glycation adducts collectively 

(Smith et al., 1990a).  It has been used in numerous in vitro and in vivo studies (Smith 

et al., 1986; Hyneck et al., 1988b; Munafo et al., 1990; Dubois et al., 1993b; Mayer et 

al., 1993; Castillo et al., 1995; McGurk et al., 1996; Presle et al., 1996; Sallustio et al., 

1997) but invariably yields only approximate values because the fractional recovery of 

covalently bound carboxylic acid is unknown.  Both the 150 and 750 µM incubations 

followed a similar kinetic pattern, whereby a rise in covalent modification of HSA was 

observed over early time points of the incubation.  However, between the 6 and 16 

hour time points, it is clear that this rise in modification had ceased.  It is, however, 

unclear whether following the six hour time point there is no change in modification, 

or if this is decreased.  This trend follows the kinetics of several other in vitro 
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incubations of differing AGs with HSA (Smith et al., 1986; Munafo et al., 1990; Watt 

and Dickinson, 1990; Mayer et al., 1993; Dubois et al., 1994; Castillo et al., 1995; 

McGurk et al., 1996; Sallustio et al., 1997).  Despite these incubations being run for 24-

70 hours, few of them appear to clearly show a definitive drop in the amount of 

covalent binding over the time course.  Only the incubation with the AG of mefenamic 

acid showed evidence of definitive reduction in covalent binding over its 24 hour 

course (McGurk et al., 1996), with a suggestion of a reduction from the incubation with 

ketoprofen-AG (Presle et al., 1996).  It is difficult to determine whether a decrease in 

binding is observed between the later time points because of the imprecision in the 

assay.  Changing the concentration of AG in the incubation mixture did not appear to 

elicit a change in the profile of adduct formation, as was previously seen with 

ketoprofen-AG (Dubois et al., 1994; Presle et al., 1996). 

It is clear, however, that the rate of covalent modification of HSA by diclofenac-AG 

does slow at later time points.  Slowing of modification is at a lower level of 

modification for the 150 µM than the 750 µM incubation.  This suggests a factor other 

than saturation of binding sites is responsible.   

The maximum % of AG covalently bound following incubation with HSA under standard 

conditions has been suggested as a quantity for ranking the protein reactivity of AG 

metabolites in vitro (Castillo et al., 1995).  The published values are 1.5% for ibuprofen 

(Castillo et al., 1995), 2.3% for zomepirac (Smith et al., 1990a), 3.2% for ketoprofen 

(Dubois et al., 1993b) and 3.3% for etodolac (Smith et al., 1992).  The calculated values 

for diclofenac of 1.78 (± 0.28)% in the 150 µM HSA incubation and 0.62 (± 0.10)% in 

the 750 µM incubation (Table 2. 5) place diclofenac-AG as the least reactive AG on this 

list.  Having a shorter half-life of degradation than ibuprofen-AG, it would be expected 
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that diclofenac-AG would be more protein reactive (Benet et al., 1993; Ebner et al., 

1999; Stachulski et al., 2006).  With different % binding found following incubation 

with the two concentrations of diclofenac-AG, as has also been seen with studies with 

ketoprofen-AG (Dubois et al., 1993a), this is evidently not a sound method for 

assessing protein reactivity, as the result depends heavily on the concentration of AG 

metabolite rather than just the intrinsic reactivity of the metabolite.  Confirmation of 

this method’s severe limitations is provided by the in vitro screening model of (Bolze et 

al., 2002), which yielded an excellent correlation between the extent of AG covalent 

binding to HSA and the aglycone appearance constant weighted by the percentage of 

isomerisation: diclofenac-AG was found to be much more protein reactive than 

ketoprofen-AG and ibuprofen-AG. 

Tandem mass-spectrometric analysis of the modification of purified serum albumin by 

AGs has only previously been reported for incubations of HSA with tolmetin-AG (Ding 

et al., 1993; Ding et al., 1995) and benoxaprofen-AG (Qiu et al., 1998).  However, the 

modification of HSA in vitro has been characterised in comparable molecular detail 

using other compounds (Kristiansson et al., 2003; Olsen et al., 2003; Alvarez-Sanchez 

et al., 2004; Aldini et al., 2006; Aleksic et al., 2007; Lockridge et al., 2008; Grigoryan et 

al., 2009; Jenkins et al., 2009; Frolov and Hoffmann, 2010; Meng et al., 2011; Whitaker 

et al., 2011; Deng et al., 2012).  By combining tryptic peptide HPLC, MRM survey 

scanning and product ion scanning, this technique enables identification of the site and 

structure of the modification and hence the chemical route of modification.  Because 

of its great abundance and long residence time in human blood (Tornqvist et al., 2002), 

HSA is seen as having an important place in the assessment of exposure to exogenous 

and endogenous electrophiles through the methodology of blood adductomics: the 
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characterisation and measurement of adducts formed by reactions between circulating 

electrophiles – such as drug AG – and blood nucleophiles (Rappaport et al., 2012). 

Diclofenac-AG was found to selectively modify lysine residues of HSA in vitro at pH 7.4: 

adducts were identified on only eight of the protein’s 59 lysines even when the AG was 

in 50-fold molar excess.  Whilst the selective modification of several HSA lysine 

residues by AG in vitro has been reported previously, modifications of small numbers 

of serine and arginine residues by AG have also been reported (Ding et al., 1995; Qiu et 

al., 1998).  The highest proportion of lysine modifications on HSA was shown to occur 

on the central part of the molecule, on subdomains IIA and IIIA.  These subdomains 

contain the hydrophobic pockets Sudlow sites I and II (located on IIA and IIIA, 

respectively).  Modifications on K195, K199 (site IIA) and K432 and 436 (site IIIA)were 

detected in these regions.  Additionally, two adducted lysines, namely K190 and K351, 

were located in a cleft between these two subdomains, and outside of the Sudlow sites 

(Sudlow et al., 1975).  A third subdomain on the HSA molecule, IIIB, contained the 

modified amino acids K525 and K541 (Ghuman et al., 2005).  The high proportion of 

adducts located in or around these pockets suggest that hydrophobic non-covalent 

interactions may be an important pre-requisite for covalent modification.   

The first indications of the importance of hydrophobic binding pockets for covalent 

modification of HSA by AGs came from the use of compounds known for their high-

affinity non-covalent binding at these sites.  For example, the covalent binding of 

diflunisal AG to HSA was decreased in the presence of diazepam (a Site II ligand) and 

diflunisal but increased in the presence of warfarin (a Site I ligand) (Williams and 

Dickinson, 1994); which suggests non-covalent binding of the conjugate at Site I is 

relatively unproductive of  covalent adducts.  Other experiments with site-selective 
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ligands also appeared to differentiate between low and high productivity non-covalent 

binding of NSAID AGs.  Thus warfarin reduced the non-covalent binding of (R)- and (S)-

carprofen AGs to a greater extent than did diazepam (Iwakawa et al., 1990); whereas 

diazepam displaced the unconjugated enantiomers to a greater extent than did 

warfarin (Iwakawa et al., 1990).  It seems reversible binding of an NSAID and covalent 

binding of its AG can occur selectively at Site II while reversible binding of the AG 

occurs selectively at Site I.  However, pre-incubation of HSA with diazepam, warfarin or 

tolmetin which did not significantly alter covalent binding of tolmetin-AG (Munafo et 

al., 1990).  Although diclofenac binds preferentially at Site II (Rahman et al., 1993) – in 

common with many carboxylate NSAIDs – its binding is displaced by ibuprofen, a Site II 

specific drug (Yamasaki et al., 2000). 

With the highest normalised ion counts for both transacylation and glycation adducts, 

K190 appears to be the most favourable lysine residue for modification by diclofenac-

AG (Figure 2. 12).  The location of K190 is in a cleft just outside Sudlow site I.  K190 was 

adducted detectably by benoxaprofen-AG (Qiu et al., 1998) but not by tolmetin-AG 

(Ding et al., 1993; Ding et al., 1995).  It is also adducted by a number of non-AG 

acetylating agents (Kristiansson et al., 2003; Jenkins et al., 2009; Meng et al., 2011; 

Whitaker et al., 2011), but not by several glycating (Aldini et al., 2006; Frolov and 

Hoffmann, 2010; Deng et al., 2012) or acylating (Olsen et al., 2003) agents.  Apparent 

preferential binding of benoxaprofen-AG to K159 (Qiu et al., 1998) and tolmetin-AG to 

K199 (Ding et al., 1995) suggests that the preferential modification of lysine residues 

may differ between AGs.  Whilst the UV absorbance and fluorescence of modified 

peptides was used for characterising the adduction selectivity tolmetin-AG and 

benoxaprofen-AG, respectively, differences between the ionisation and transmission 
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efficiencies of peptides mean that a greater mass spectral signal may not accurately 

reflect the abundance of a modified peptide. 

Normalised ion count data derived from time course incubation of 2mM diclofenac-AG 

with HSA in vitro suggested the transacylation adducts were formed preferentially 

during the first two hours, whereas after this time point little further increase in 

transacylation adducts was detected, but a sustained increase in the formation of 

glycation adducts was apparent (Figure 2. 11).  Comparing these data to the 

degradation of 2mM diclofenac-AG in HSA solution suggested that the 1-β isomer of 

diclofenac-AG may be responsible for early formation of transacylation adducts, with 

slower acyl migration and aldehyde-amine condensation inevitably retarding the 

formation of glycation adducts.  However, the contribution of the positional isomers of 

AGs to the formation of transacylation adducts on proteins remains unclear.  

Additionally, due to the quantitative limitations of normalised ion counts, it is by no 

means certain that glycation is the predominant mechanism of protein modification by 

the positional isomers. 

In an attempt to clarify this ambiguity over the direct protein reactivity of 1-β 

diclofenac-AG, synthetic 1-β diclofenac-AG was degraded in phosphate buffer to <10% 

exposure, with consequent formation of the acyl migration isomers.  This mixture was 

then incubated with HSA in increasing AG concentrations, and modification of the 

protein compared to a parallel incubation containing undegraded diclofenac-AG.  

Extensive removal of 1-β diclofenac-AG from the incubation mixture with HSA resulted 

in a reduction of transacylation adducts.  The consistent reduction of individual 

transacylated tryptic peptides (Figure 2. 12) provides definitive evidence for the 

contributory, and apparently disproportionate, role of the 1-β isomer in forming these 
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adducts because a direct comparison is made with the same modified peptides, which 

removes uncertainties relating to possible differential electrospray ionisation of 

different peptides.  This means that the experimental difference between ion counts of 

a transacylated peptide is equitable with molar quantities of the peptide.  In contrast, 

as expected, similar ion counts were seen for glycation adducts in the two incubations, 

probably due to similar exposure to the AG positional isomers in the pre-degraded and 

in-situ degraded solutions.  Although the qualitative features of protein adduction by 

AG are now well characterised, the quantitative aspects are still somewhat obscure.  In 

particular, the relative contributions of (i) acylation versus glycation, (ii) acylation 

versus glycation by the positional isomers and (iii) glycation by the individual positional 

isomers are essentially unknown.  (Dickinson and King, 1991) found that the rank order 

of covalent binding of diflunisal-AG and its isolated positional isomers to HSA is  

C-4>C-3>C-2>C-1.  The highest reactivity of the C-4 isomer is intuitively but 

hypothetically attributable to lowest steric hindrance by the acyl group of aldehyde-

amine condensation (Figure 2. 2).  However, the high reactivity of the C-4 isomer will 

be counterbalanced by the isomer’s low abundance in solution (Figure 2. 6).  In 

contrast, (Iwaki et al., 1999) found that HSA adduct formation from the 2-isomer of  

(S)-naproxen-AG proceeded more slowly than that from the 1-β-conjugate, which 

suggests particular structural features of AGs can be more influential than generic 

effects. 

Through these experiments, diclofenac-AG has been shown to be chemically unstable 

and protein reactive in vitro.  Whilst the % covalently binding of diclofenac-AG is lower 

than that of other NSAID AGs, the rapid rate of degradation, in the context of the 

relationships between degradation and HSA covalent binding derived by (Benet et al., 
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1993) and (Bolze et al., 2002), indicates that covalent binding is likely to be relatively 

extensive.  Consequently, these in vitro data suggest diclofenac-AG is a suitable drug 

AG to investigate potential hapten formation in experimental animals and patients.   

Incubations with pooled human plasma revealed extensive AG hydrolysis.  In vivo, this 

may represent a mechanism resulting in reduced exposure to AG metabolites (Mizuma 

et al., 1999; Zhang et al., 2011), consequently reducing the potential for protein adduct 

formation.  Good evidence was provided suggesting the role of the 1-β isomer, i.e. the 

biosynthetic product, in formation of acylation adducts.  Time course data provided 

clear evidence that the formation of covalent adducts of HSA by transacylation and 

glycation follows distinct time-lines in vitro.  The protein adducts generated with 

another electrophilic compound suggest adduction of lysine residues by AGs is likely to 

be a general phenomenon (Grigoryan et al., 2009). 

Finally, from early studies on the adduction of plasma proteins in humans 

administered carboxylic acid drugs (Smith et al., 1986; McKinnon and Dickinson, 1989; 

Volland et al., 1991; Benet et al., 1993; Mayer et al., 1993; Zia-Amirhosseini et al., 

1994; Sallustio et al., 1997), it is predicted that proteins modified by diclofenac-AG 

and/or other reactive metabolites of diclofenac will be present in the plasma of 

patients.  Recent advances in mass spectrometric technologies have brought within 

reach the structural characterisation of circulating protein haptens derived from drugs 

and their metabolites in patients on standard therapeutic doses (Jenkins et al., 2009; 

Meng et al., 2011).   
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3.1 INTRODUCTION   

In chapter 2, the protein reactivity and chemical instability of diclofenac-AG in vitro 

were described.  Diclofenac-AG was found to have a short half-life of degradation in 

phosphate buffer, pH 7.4, and was found to covalently bind to HSA in these 

incubations.  Consequently, with the reported 75% turnover of diclofenac into its AG 

metabolite in an incubation with human liver microsomes supplemented with UDPGA 

(Kumar et al., 2002), diclofenac would fit criteria outlined by the FDA in their MIST 

guidance (FDA, 2008) as necessitating ‘additional safety assessment’.   

The chemical instability and protein reactivity of diclofenac-AG defined in chapter 2 

could potentially result in cessation of development of the compound if it was a novel 

chemical entity, developed as a new NSAID for the market today, due to fears over the 

potential toxicity of its AG.  Despite this consideration, diclofenac has remained on the 

market as the most widely prescribed NSAID, accounting for over 35% of NSAID 

prescriptions in the Netherlands as long ago as 1990 (Leufkens et al., 1990), and 31.8% 

of NSAID prescriptions in general practice in the UK (Seager et al., 2000), resulting in an 

estimated 11 million people being exposed to the drug in the UK in the last 20 years 

(Jick et al., 2007).  Consequently, diclofenac clearly represents a pharmaceutical 

providing efficacious therapy with advantageous risk-benefit profile.  So much so that 

diclofenac is now available as an over-the-counter therapeutic in the UK (Hasford et 

al., 2004).  Despite its extensive therapeutic use, its chemically unstable and protein 

reactive AG still attracts frequent attention from toxicologists (Aithal et al., 2004; 

Sallustio et al., 2006; Lagas et al., 2010; Koga et al., 2011; Mueller et al., 2012; Pickup 

et al., 2012). 
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Toxicological fears over acyl glucuronides are largely centred on their potential to act 

as haptens, modifying proteins in the host organism, resulting in inappropriate 

immune stimulation (Spahn-Langguth and Benet, 1992; Shipkova et al., 2003).  As 

described in chapter 2, protein reactivity and chemical instability of AG metabolites do 

appear to be ubiquitous characteristics of these phase II metabolites, and are very well 

characterised following in vitro incubation (Munafo et al., 1990; Volland et al., 1991; 

Spahn-Langguth and Benet, 1992; Ding et al., 1993; Ding et al., 1995; Qiu et al., 1998; 

Ebner et al., 1999; Iwaki et al., 1999; Mortensen et al., 2001; Walker et al., 2007).  

Evidence for the translation of this protein reactivity from in vitro incubation systems 

to in vivo, however, is much less abundant (Benet et al., 1993; Bailey and Dickinson, 

1996), despite considerable interest in this research over the last 30 years (Faed, 1984; 

Spahn-Langguth and Benet, 1992).   

Experimental investigations into AG reactivity in vivo have focussed on the 

administration of the parent carboxylate to test subjects, both animals and humans, 

and measuring chemically undefined covalent modifications of unfractionated plasma 

proteins or partly characterised hepatic proteins.  Correlation of the covalent binding 

of carboxylate compounds with plasma exposure of AGs provides the most compelling 

evidence of AG’s responsibility (Smith et al., 1986; Hyneck et al., 1988a; Castillo et al., 

1995; Bailey and Dickinson, 1996).  However, whilst plausible, this does not provide 

definitive evidence of AG’s responsibility, as the analytical techniques are unable to 

differentiate protein adducts derived from distinct CRMs.  Consequently, with most 

carboxylate compounds, including diclofenac, metabolised to other CRMs capable of 

forming covalent protein adducts, whether acyl glucuronidation is responsible for 

covalent binding of carboxylate drugs to proteins in vivo is not necessarily proven. 
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A challenging limitation to previous in vivo research into AGs was the inaccessibility of 

pure AG, in large quantities, with AGs for experimentation usually obtained through 

isolation from liver microsome incubations (Smith et al., 1990a; Dubois et al., 1993b), 

or isolated from rat (Dickinson et al., 1994) or human (Munafo et al., 1990; Watt et al., 

1991; Castillo et al., 1995; Ding et al., 1995) urine samples or alternatively rat bile 

(Williams et al., 1992; Ebner et al., 1999).  These sources do not yield large quantities 

of pure material, meaning biosynthesis of AGs for in vivo investigation using these 

techniques is highly time consuming and potentially expensive.  Only recently has 

chemical synthesis of AGs resulted in the preparation of these metabolites for research 

at relatively high yields (Kenny et al., 2004; Stachulski et al., 2006).  Consequently, 

access to chemically synthesised diclofenac-AG created amongst the first opportunity 

to properly characterise the AGs reactivity with protein in an in vivo model.   

Only a few experiments have ever administered AGs to experimental animals, 

investigating the plasma clearance of AGs (Watt et al., 1991; Iwaki et al., 1995; Dong et 

al., 2005).  All of these experiments found AG metabolites to be rapidly cleared from 

the plasma, with clearances exceeding those of their aglycone.  All of these 

experiments also showed extensive hydrolysis of AGs.  The extensive AG hydrolysis 

observed in bile duct-ligated animals implies that hydrolysis is a consequence of 

plasma and/or tissue hydrolysis, rather than enterohepatic recirculation (Watt et al., 

1991; Iwaki et al., 1995; Dong et al., 2005). Consequently, this observation suggests 

that not only is plasma AG clearance rapid, as would be expected for most Phase II 

metabolites, but also that plasma hydrolysis causes AG clearance to exceed what 

would be expected of a stable Phase II metabolite.  This suggestion implies that rapid 

AG clearance from plasma may preclude extensive protein conjugation in situ.  
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However, this idea remains speculative, as none of these experiments investigated the 

protein reactivity of AGs in vivo.  

To address this issue, experiments were undertaken as described in this chapter to 

investigate the applicability of the rat to study diclofenac-AG reactivity with serum 

albumin proteins in vivo, firstly through the characterisation of the covalent 

modification of RSA in vitro.  Following this study, chemically synthesised diclofenac-

AG was administered intravenously to a rat to investigate whether covalent protein 

adducts could be detected in plasma.  The final experiments in the rat investigated the 

plasma disposition of diclofenac-AG.  All of these factors combined may allow 

prediction of the risk of protein adduct formation from a drug AG in the rat.  
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3.2 MATERIALS AND METHODS 

3.2.1 Materials 

Acetonitrile (LC-MS grade), hydrochloric acid (HCl), methanol (LC-MS grade) and 

trifluoroacetic acid (LC-MS grade) were purchased from Fisher Scientific, 

Leicestershire.  Bio Rad Bradford reagent was purchased from Bio Rad, Hertfordshire, 

UK.  Modified trypsin was purchased from Promega, Hampshire, UK.  Acetic acid  

(LC-MS grade), ammonium hydrogencarbonate, diclofenac sodium salt, dimethyl 

sulfoxide (DMSO), dithiothreitol, formic acid (LC-MS grade), HSA (approx. 99% pure, 

essentially globin free and fatty acid free), iodoacetamide, RSA (≥99% pure, lyophilized 

powder, essentially fatty acid free, essentially globulin free), sodium chloride, 

tris(hydroxymethyl)aminomethane (TRIS), urethane and zomepirac sodium salt were 

purchased from Sigma-Aldrich, Dorset, UK.  

0.1M phosphate buffer pH 7.4 was made using 0.3117% monosodium phosphate 

monohydrate, 2.0747% disodium phosphate, heptahydrate  w/v in distilled water.  

All other reagents were purchased from Sigma-Aldrich (Dorset, UK) unless otherwise 

stated. 

3.2.2 Animals 

Male rats of a Wistar substrain were purchased from Charles River UK Limited 

(Margate, Kent, UK) and were of body weight between 200-250 grams.  Animals were 

housed in groups and acclimatised to their surroundings for a minimum of five days 

prior to experiments.  All experiments were undertaken in accordance with criteria 

outlined in a license granted under the Animals (Scientific Procedures) act of 1986 and 

approved by the Animal Ethics Committee of the University of Liverpool. 
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3.2.3 Covalent modification of human and rat serum albumin by  

diclofenac acyl glucuronide during in vitro incubation 

Concentration-dependent modification of HSA and RSA by diclofenac-AG was 

investigated by in vitro incubation.  Increasing concentrations of 1-β diclofenac-AG 

(400nM, 4µM, 40µM, 400µM and 2mM) were incubated with 40µM HSA or RSA in 

0.1M phosphate buffer, pH 7.4, at 37°C for 16 hours.  The reaction was stopped and 

protein precipitated and separated through immediate vortex mixing with 900µl ice-

cold methanol and subsequent centrifugation at 24,000g at 4°C for 15 minutes.  The 

methanolic supernatant was removed, and the pellet washed three times with 60µl 

ice-cold methanol.  The precipitated protein was dissolved in 50µl of 0.1M phosphate 

buffer, pH 7.4, reduced with dithiothreitol (10mM) for 15 minutes at room 

temperature and alkylated with iodoacetamide (55mM) for a further 15 minutes at 

room temperature.  The protein mixture was then precipitated and washed with ice-

cold methanol as before.  The protein pellet was re-dissolved in ammonium 

hydrogencarbonate solution (50µM, 30µl), assayed for protein content using the 

Bradford assay (Bradford, 1976), and 30µl aliquots of 3.2mg/ml protein were digested 

with 5µg trypsin overnight.  The digests were desalted using 0.6 µl bed C18 Zip-Tip 

pipette tips (Millipore, Cork, Republic of Ireland) as per the manufacturer’s 

instructions, eluted with 10µl 50% acetonitrile, 0.1% trifluoroacetic acid in deionised 

water and dried by centrifugation under vacuum (SpeedVac, Eppendorf UK Ltd, 

Cambridge, UK) and stored at 4°C for a maximum of 2 weeks prior to LC-MS/MS 

analysis. For LC-MS/MS analysis, aliquots of 3 µL sample were delivered into a QSTAR 

Pulsar i hybrid mass spectrometer (AB Sciex) by automated in-line liquid 

chromatography (integrated LCPackings System, 5mm C18 nano-precolumn and  
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75μm x 15cm C18 PepMap column (Dionex, California, USA)) via a nano-electrospray 

source head and 10μm inner diameter PicoTip (New Objective, Massachusetts, USA). A 

gradient from 5% acetonitrile/0.05% TFA (v/v) to 48% acetonitrile/0.05% TFA (v/v) in 

60mins was applied at a flow rate of 300nL/min, and MS and MS/MS spectra were 

acquired automatically in positive ion mode using information-dependent acquisition 

(IDA) (Analyst, AB Sciex). Database searching was performed using ProteinPilot  

version 3 (AB Sciex) against the latest version of the SwissProt database, with 

biological modifications allowed and with the confidence level set to 10%. DAG was 

included as a high probability user-defined modification of Lys and carboxamidomethyl 

as a high probability user-defined modification of Cys. The data were also assessed 

manually for the presence of a dominant fragment ion of 278amu, indicative of 

cleavage of the transacylated hapten, and fragment ions of 215 and 250amu, indicative 

of cleavage of the glycated hapten.  

3.2.4 Investigations into the modification of serum albumin proteins of the 

rat following intravenous bolus administration 

A 264 gram rat was anaesthetised through intraperitoneal administration of 14% (w/v) 

urethane in 0.9% (w/v) saline, 1ml/kg.  Following induction of anaesthesia, the trachea 

was cannulated to maintain ease of respiration of the animal throughout the 

experiment.  The femoral vein was cannulated with a cannula flushed and filled with 

heparinised saline (250 U/ml).  A 60mg/kg (127 µmol/kg) dose of diclofenac-AG (made 

up as a 60mg/ml solution in 50% DMSO (v/v)) was administered as an intravenous 

bolus through the femoral cannula.  Two hours following drug administration, at a time 

point when the AG was expected to have been eliminated from literature (Watt et al., 

1991; Iwaki et al., 1995; Dong et al., 2005), the animal was exsanguinated through 
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cardiac puncture, and killed.  Plasma was isolated from blood following centrifugation 

at 2000g for 10 minutes at 4°C, and stored at -80°C until analysis.  RSA was isolated 

from 60 µl aliquots of plasma using affinity chromatography (Greenough et al., 2004; 

Jenkins et al., 2009b).  RSA was captured on a POROS anti-HSA affinity cartridge 

installed on a PerSeptive BioSystems Vision Workstation (Applied Biosystems, Foster 

City, CA, USA).  It was eluted with HCl (12 mM).  Eluted protein fractions were 

immediately neutralised with 0.1M Tris buffer, pH7.  Protein fractions were 

precipitated through vortex mixing with nine fold volumes of ice-cold methanol and 

separated by centrifugation at 14,000 rpm.  The methanolic supernatant was removed, 

and the pellet washed three times with 60µl ice-cold methanol.  The precipitated 

protein was dissolved in 50µl of 0.1M phosphate buffer, pH 7.4, reduced with 

dithiothreitol (10mM) for 15 minutes at room temperature and alkylated with 

iodoacetamide (55mM) for a further 15 minutes at room temperature.  The protein 

mixture was then precipitated and washed with ice-cold methanol as before.  The 

protein pellet was re-dissolved in ammonium hydrogencarbonate solution (50µM, 

30µl), assayed for protein content using the Bradford assay (Bradford, 1976), and 50µl 

aliquots of 3.2mg/ml protein were digested with 5µg trypsin overnight.  The digests 

were desalted using 0.6 µl bed C18 Zip-Tip pipette tips (Millipore, Cork, Republic of 

Ireland) as per the manufacturer’s instructions, eluted with 10µl 50% acetonitrile, 0.1% 

trifluoroacetic acid in deionised water, and dried by centrifugation under vacuum 

(SpeedVac, Eppendorf UK Ltd, Cambridge) and stored at 4°C prior to LC-MS/MS 

analysis within 2 weeks of sample preparation.  Mass spectrometric analysis was 

performed as outlined above for analysis of in vitro peptide samples. 
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3.2.5 Pharmacokinetic experiments 

Rats were anaesthetised through intraperitoneal administration of 14% (w/v) urethane 

in 0.9% (w/v) saline, 1ml/kg.  Following induction of anaesthesia, the trachea was 

cannulated to maintain ease of respiration of the animal throughout the experiment.  

The carotid artery and femoral vein were cannulated, with cannulae flushed and filled 

with heparinised saline (250 U/ml).  At desired time points, blood samples (100µl) 

were taken through the carotid artery cannula.  Diclofenac-AG (5mg/kg, 10.59µmol/kg) 

or diclofenac (3.36mg/kg, 11.35µmol/kg) dissolved in 0.1M phosphate buffer, pH 5 

was administered as an intravenous bolus through the femoral vein cannula (each 

dose group contained three animals).  The blood samples were taken 5 minutes before 

drug administration, and subsequently at 5, 10, 15, 20, 25, 30, 45, 60 and 120 minutes 

post-dose.  Blood samples were immediately centrifuged at 2100g for 10 minutes at 

room temperature, with AG in the separated plasma stabilised through the addition of 

2M acetic acid, 4% (v/v).  Plasma samples were stored at -80°C until analysis (Sparidans 

et al., 2008).   

3.2.6 Analysis of diclofenac and diclofenac-AG in plasma samples 

Stored plasma samples were thawed at room temperature and processed 

immediately.  Samples were diluted using acidified blank rat plasma, kindly provided 

by Julie Eakins, AstraZeneca, Alderley Park.  To 50 µl aliquots of acidified plasma 10µl 

of 3µM zomepirac internal standard was added in acetonitrile-water (1:1, v/v) 

containing 0.1% formic acid.  Protein was precipitated through addition of four times 

volume of ice-cold acetonitrile.  Precipitated protein was pelleted by centrifugation at 

14,000g for 5 minutes at 4°C.  Supernatant was removed, and filtered through 0.45-µm 

low-binding hydrophilic PTFE filter plates (Multiscreen Solvinert filter plates, Millipore, 
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Cork, Republic of Ireland) according to the manufacturer’s instructions to remove any 

remaining particulate material.  The filtrate was evaporated to dryness at 37°C under a 

constant stream of nitrogen, and reconstituted in 60µl of acetonitrile-water (1:1, v/v) 

containing 0.1% formic acid.  A 10 µl aliquot was injected onto the HPLC column.  

Analyte separation was performed at room temperature using a Zorbax Eclipse XDB-

C18 column (150 x 2.1 mm, 5µm; Agilent Technologies, Santa Clara, CA, USA) 

connected to a Dionex Ultimate 3000 HPLC system (Dionex Ltd., Macclesfield, 

Cheshire, UK) and a 4000 QTRAP hybrid quadrupole mass spectrometer (AB Sciex, 

Foster City, CA, USA).  Samples were maintained at 4°C in the autosampler.  Analytes 

were eluted using a gradient of acetonitrile containing 0.1% formic acid against 0.1% 

formic acid in water: 50-95% over 10 minutes.  The eluent flow rate was  

210µl/minute. Under these conditions diclofenac 1-β AG and its isomers eluted as a 

single peak at 2.7 minutes; zomepirac eluted at 5.2 minutes and diclofenac at 7.0 

minutes (Figure 3.1).  MS operating parameters for the multiple reaction monitoring 

(MRM) analyses of diclofenac and diclofenac-AG are shown in Table 3. 1.  No 

endogenous or artefactual materials interfering with analyte and internal standard 

signals in the selected MRM channels were detected in control plasma samples.  The 

lower limit of detection of diclofenac and the 1-β AG spiked into pooled rat plasma, as 

defined by signal to noise ratio > 3 was below 10nmol for both compounds.  The 

corresponding lower limits of quantification, as defined by accuracy of between 80-

120%, and precision (coefficient of variation) < 20% was 50nM for diclofenac (accuracy 

80.6%, precision 19.2%), and 30nM for diclofenac-AG (accuracy 99.0%, precision 

19.8%).  Three accuracy and precision replicates were run before sample analysis, and 
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one accuracy and precision run was also run for mass spectrometric assay for 

diclofenac and diclofenac-AG quantification. 

 
Figure 3. 1:  Total ion current chromatogram representing separation of diclofenac-
AG, zomepirac (internal standard) and diclofenac in rat plasma assays run on the API 
4000 QTrap mass spectrometer. 
 

Table 3. 1:  API 4000 QTrap mass spectrometric operating parameters for MRM 
assays of diclofenac-AG and diclofenac.  Parent ions are [M + H]+.  ** Internal 
standard. 

Parameters Diclofenac-AG Diclofenac Zomepirac** 

Fragmentation 
transition (m/z)* 

472.0296.1 296.1215.1 292.0139.0 

Declustering 
potential (V) 

37.00 31.00 40.00 

Entrance potential 
(V) 

10.00 10.00 10.00 

Collision energy 
(eV) 

14.00 41.00 27.00 

Collision exit 
potential (V) 

15.00 15.00 15.00 

Dwell time (ms) 200 200 200 
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3.2.7 Pharmacokinetic analysis 

Pharmacokinetic analysis of data was performed using Phoenix Winonlin (Version 5.2, 

Pharsight, St Louis, Missouri, USA).  Non-compartmental analysis was used to allow the 

AUC to be calculated for diclofenac and diclofenac-AG using the trapezoidal rule.  

Plasma clearance (CLp) was determined by the equation CLp= Dose/AUC0-∞.     

3.2.8 Statistical analysis 

To test if statistical significance was achieved between pharmacokinetic parameters 

for the plasma clearance of diclofenac or diclofenac-AG following intravenous bolus 

drug administration, data were assessed for normality using a Shapiro-Wilk test.  Data 

found to follow a normal distribution were assessed for significance using an unpaired 

t-test.  Data found to not to follow a normal distribution was assessed for significance 

using a Mann-Whitney Rank Sum test.  A statistically significant difference between 

groups was adjudged to be found if p<0.05.  Statistical analyses were performed using 

Sigmaplot for Windows Version 11.0.  
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3.3 RESULTS 

3.3.1 Comparison of the sensitivity of the API5500 QTrap mass spectrometer 

and the QStar I Pulsar hybrid mass spectrometer 

To allow assessment of the protein reactivity of diclofenac-AG towards RSA, in vitro 

incubations were undertaken.  At the time of this experimentation, no access to an API 

5500 QTrap (QTrap) mass spectrometer was available (chapter 2).  Consequently, mass 

spectrometric analysis of the covalent modification of RSA was undertaken using an 

ABI QStar Pulsar i hybrid (QStar) tandem mass spectrometer (AB Sciex, Foster City, CA, 

USA).  Diclofenac-AG was also incubated with HSA under the same conditions, with 

covalent modifications also analysed using the QStar mass spectrometer, to allow 

comparisons of modifications between RSA and HSA.  The QStar has been used 

successfully to characterise the adduction of HSA by β-lactams in vitro (Jenkins et al., 

2009a). 

On comparison of the data for the covalent modification of HSA by diclofenac-AG 

acquired by QStar and QTrap mass spectrometric analysis, it was apparent that the 

QTrap had greater sensitivity.  The lowest concentration of diclofenac-AG to produce a 

covalent adduct of HSA detectable by QStar analysis was 40µM, 100 fold higher than 

was achieved on the QTrap, which could detect a glycation adduct of K190 following 

incubation of 400nM diclofenac-AG with HSA.  The identification of greater numbers of 

modified lysine residues of HSA following incubation with diclofenac-AG at 4µM, 40µM 

and 400µM by QTrap than QStar analysis (3, 5 and 4 more lysine residues respectively) 

provided further evidence for the greater sensitivity of the QTrap.  Similar detection of 

HSA lysine modifications, however, was achieved following incubation with diclofenac-

AG at the highest concentration of 2mM. 
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3.3.2 Investigation into the covalent modification of rat serum albumin 

following in vitro incubation 

To assess the covalent modification of RSA (Table 3. 2), and its comparison to HSA 

(Table 3.2), diclofenac-AG was incubated for 16 hours at pH 7.4 and 37°C with 40µM 

RSA or HSA at increasing concentrations, from 4µM to 2mM.  Due to the differences of 

amino acid sequence between RSA and HSA, and consequently the production of 

differing peptides by tryptic digestion, definitive assertions of the selectivity of 

modification cannot be made following mass-spectrometric analysis because of the 

differential ionisation of peptides as discussed in chapter 2.  It is noticeable, however, 

that the numbers of lysine residues detected as modified by diclofenac-AG were far 

lower for RSA in comparison with HSA (4 in comparison to 10 respectively).  It is also 

noticeable that the lowest concentration of diclofenac-AG producing detectable 

covalent adducts was higher in incubations with RSA than HSA (400µM compared to 

40µM respectively).  Consequently, this suggests that RSA may be less susceptible to 

modification by diclofenac-AG than HSA at physiological pH in vitro, and certainly 

identification of RSA modifications by tandem mass spectrometry was lower. 
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Table 3. 2:  Covalent modifications of 40µM rat serum albumin (A) or 40µM human 
serum albumin (B) during incubation with synthetic diclofenac-AG at increasing 
concentrations.  G represents a covalent adduct formed through the glycation 
pathway, T represents a covalent adduct formed through the transacylation pathway.  
The covalent modifications were identified by LC-MS/MS analysis of tryptic peptides.  
The adducted amino acid is represented by an asterisk.  See figure 2.2 for comparison. 

Lysine 
residue 

Peptide 
sequence 

Concentration of diclofenac-AG in the incubation 
mixture 

4µM 40µM 400µM 2mM 

K199 MK*CSSMQR   G G 
K212 AFK*AWAVAR    G 
K317 EVCK*NYAEK    T 
K525 K*QTALAELVK   T T 

 
Table 3. 2B 

Lysine 
residue 

Peptide sequence 

Concentration of diclofenac-AG in the 
incubation mixture 

4µM 40µM 400µM 2mM 

K137 K*YLYEIAR    G 
K162 YK*AAFTECCQAADK    G 
K190 LDELRDEGK*ASSAK   G GT 
K195 ASSAK*QR    GT 
K199 LK*CASLQK  G G GT 
K351 LAK*TYETTLEK   G G 
K432 NLGK*VGSK    G 
K436 VGSK*CCK    GT 
K525 K*QTALVELVK    GT 
K541 ATK*EQLK    GT 
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3.3.3 Investigation of covalent binding of diclofenac acyl glucuronide to 

serum albumin in the rat 

Following intravenous bolus administration of 60mg/kg diclofenac-AG to a single rat, 

albumin was isolated using affinity chromatography, and tryptic digests of the protein 

were analysed using a QStar mass spectrometer.  Following exhaustive analysis of 

spectra, no diclofenac-related modifications could be detected. 

3.3.4 Plasma clearance of diclofenac and diclofenac acyl glucuronide from 

the rat: non-compartmental analysis 

The leading hypothesis for the mitigation of AG metabolites forming covalent adducts 

with proteins in vivo is their rapid elimination, and especially their rapid hydrolysis 

(Mizuma et al., 1999; Zhang et al., 2011).  Potentially this provides an explanation for 

the absence of detectable covalent HSA adducts in the rat that received bolus 

intravenous administration of a large (60mg/kg) dose of diclofenac-AG.  To test this 

hypothesis, the plasma clearance of diclofenac-AG administered as an intravenous 

bolus was investigated, and compared to that of diclofenac administered at a molar 

equivalent dose. 

Following bolus administration of diclofenac (Figure 3. 2) and diclofenac-AG  

(Figure 3. 3) to the rat, both compounds showed an exponential fall in plasma 

concentration typical of those seen following bolus administration of drugs (Clarke and 

Smith, 2001).  The mean plasma clearance of diclofenac-AG was found to be 

approximately 5.5 fold greater than that of diclofenac, resulting in plasma exposure of 

diclofenac as calculated by the mean AUC0-120 and AUC0-∞ to be 5.4 and 6.2 fold higher 

than that of diclofenac-AG (Table 3. 3).   
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Although diclofenac-AG was found in mouse plasma at low concentrations following 

administration of the aglycone (Sparidans et al., 2008), metabolism of diclofenac to its 

AG could not be quantified at any time point throughout the experiment.  Dilutions of 

plasma samples, up to 1 in 40, were required for quantification of diclofenac.  Due to 

the possibility of overloading the mass spectrometer, more concentrated plasma 

samples were not run in the attempt to assess metabolism of diclofenac to diclofenac-

AG. 

In vivo hydrolysis of diclofenac-AG to diclofenac, however, represented a considerable 

elimination pathway, with plasma concentrations of diclofenac surpassing those of 

diclofenac-AG by 15 minutes following AG administration.  Plasma exposure of 

diclofenac following AG administration over the 120 minute experiment, as calculated 

by AUC0-120, was two-fold greater than that of the AG.   
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Figure 3. 2:  (A) Plasma clearance of diclofenac-AG in the rat (filled circles) following 
iv administration of 5mg/kg and its hydrolysis to diclofenac (hollow circles).  (B) 
These data shown on a log scale for comparison with published related studies of 
drug and drug-AG clearance in rats (Watt et al., 1991; Iwaki et al., 1995; Dong et al., 
2005).  Data presented as mean ± standard deviation (n=3). 
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Figure 3. 3:  (A) Plasma clearance of diclofenac from the rat following iv bolus 
administration of 3.36 mg/kg. (B) These data shown on a log scale for comparison 
with published related studies of drug and drug-AG clearance in rats (Watt et al., 
1991; Iwaki et al., 1995; Dong et al., 2005).  Data presented as mean ± standard 
deviation (n=3).  
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Table 3. 3:  Pharmacokinetic parameters derived from non-compartmental modelling 
of data displayed in Figure 3. 2 and Figure 3. 3.  Statistically significant differences 
between the pharmacokinetic parameters of diclofenac-AG and diclofenac following 
intravenous bolus administration of the compounds is analysed by either an unpaired 
t-test or a Mann-Whitney rank sum test (* p<0.05, ** p<0.01, *** p<0.001).  n/a 
represents not applicable. 

Drug 
administered 

Analyte 
t ½ 

(mins) 
AUC0-120 

(mmol min L-1) 

AUC0-∞  
(mMol min L-1) 

Plasma 
Clearance  

(ml min-1 kg-1) 

Diclofenac Diclofenac 
12.69  

(± 4.51) 
849.59  

(± 134.4) 
988.45  

(± 261.9) 
12.00  

(± 2.98) 

Diclofenac-
AG 

Diclofenac-
AG 

4.12  
(± 0.58)* 

154.6  
(± 26.7)*** 

160.3  
(± 33.1)** 

67.81  
(± 12.83)** 

Diclofeanc n/a 
344.07  

(± 275.2) 
n/a n/a 
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3.4 DISCUSSION 

The aims of this work were to investigate the adduction of RSA by diclofenac-AG, in 

vitro, ascertain whether these covalent adducts could be detected in vivo following 

bolus administration of diclofenac-AG to the rat, and finally determine the 

pharmacokinetic properties of diclofenac-AG following intravenous administration. 

As with the investigations of HSA adduction by diclofenac-AG in vitro as described in 

chapter 2, diclofenac-AG was found to modify both RSA and HSA specifically at lysine 

residues.  Despite exhaustive analysis of the mass spectra, no modifications 

(acylations) of serine or arginine residues were detected, as have been reported for 

reactions of benoxaprofen-AG and tolmetin-AG with HSA (Ding et al., 1993; Ding et al., 

1995; Qiu et al., 1998).  Reasons for these marked differences between adductions of 

HSA by AGs are not clear, but most likely they reflect in combination the electrophilic 

and steric properties of the conjugates (Berry et al., 2009; Potter et al., 2011).  

However, modifications of non-lysine residues were few in all of these experiments 

(Ding et al., 1995; Qiu et al., 1998); in every case, greater numbers of modifications of 

lysine residues were detected. 

On comparison of the modification of HSA and RSA by diclofenac-AG, it is clear to see 

that greater numbers of lysine residues were detected as modified on HSA (ten lysine 

residues) in comparison to RSA (four lysine residues) following incubation with 2mM 

diclofenac-AG.  Additionally, the lowest concentration of diclofenac-AG yielding 

detectable covalent modification of albumin was 10-fold lower for HSA (a glycation 

adduct detected at K199 following incubation with 40M AG) than for RSA (a glycation 

adduct at K199 and a transacylation adduct at K525 following incubation with 400M 

AG) (Table 3. 2, Table 3.3).  These findings may suggest that covalent modification of 
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HSA is preferential to modification of RSA, although definitive conclusions as to the 

selectivity of the modifications cannot be made due to the potential for differential 

ionisation of tryptic peptides as discussed in section 2.28.   

Few investigations have attempted to determine the relative reactivity of AG 

metabolites with HSA and RSA, however, Watt and Dickinson (1990) found a 74.7% 

greater modification of HSA compared to RSA following incubation with diflunisal-AG 

at a molar ratio of 0.16:1 (AG:HSA) compared with 0.3:1 (AG:RSA) (Watt and Dickinson, 

1990), suggesting the lesser modification of RSA is a real result.  Whilst little difference 

was observed following incubation at lower AG concentrations, this may have been 

due to the low concentrations used. 

HSA and RSA, and other mammalian serum albumins (Ahmad et al., 2011) are 

comprised of generally well-conserved amino acid sequences; HSA and RSA sharing 

80% sequence homology (Carter et al., 1989; Kosa et al., 1997).  However, variations in 

their non-covalent binding sites have been reported.  Whilst non-covalent interactions 

of the Sudlow Site I ligands warfarin and phenylbutazone were similar between RSA 

and HSA, interactions were greatly reduced for the Sudlow site II ligands ibuprofen and 

diazepam (Kosa et al., 1997).  Species differences in the non-covalent interactions of an 

unconjugated carboxylic acid with RSA and HSA have been reported for the leukotriene 

D4-antagonist MK-571, whose S- isomer preferentially formed non-covalent 

interactions with HSA, whereas the R- isomer preferentially interacted with RSA (Lin et 

al., 1990).  With hydrophobic sites shown to be important in the covalent modification 

of HSA by AGs, as described in chapter 2 and by others (Munafo et al., 1990; Williams 

and Dickinson, 1994; Ding et al., 1995; Qiu et al., 1998), species differences resulting in 

lower affinity for AGs at these sites are likely to have an effect on covalent 
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interactions.  With bovine serum albumin in vitro, the covalent modification of 

tolmetin-AG was much less than binding to HSA, although the rate of adduct formation 

was the same as with HSA (Munafo et al., 1990).  BSA lacks inter alia K195 and K199 

(Ahmad et al., 2011), both of which in HSA are adducted by tolmetin AG in vitro (Ding 

et al., 1995). 

However, the absence of 6 of the 10 lysine residues of HSA modified by diclofenac-AG 

from the primary sequence of RSA is the most likely explanation for the reduced 

identification of modified lysine residues in RSA (sequences from (Sargent et al., 1981; 

Minghetti et al., 1986)).  The absence of these six lysine residues (K137, K162, K190, 

K195, K432 and K541) from RSA is likely to have a drastic effect on the extent of 

covalent modification.  Consequently, the appropriateness of RSA as an adduction 

target in any attempt to predict the covalent binding of drugs and metabolites to 

plasma proteins in humans may be questioned. 

Despite this observation, qualitative assessments of modifications of RSA by 

carboxylate drugs and their AGs is still useful.  An identification of AG-derived glycation 

adducts on RSA in vivo may at least suggest corresponding adductions of HSA in vivo, 

pro rata with metabolic formation of the AG, will be more abundant and/or numerous, 

due to the generically slower rate of plasma clearance of drugs in humans than rats 

(Chiou et al., 1998) and the more numerous sites for covalent modification of HSA than 

RSA (Table 3. 2, Table 3.3).  Consequently, to investigate if diclofenac-AG can modify 

RSA in vivo, a single intravenous bolus dose of diclofenac-AG was administered to an 

anaesthetised rat, and isolated serum albumin was analysed using peptide mass 

spectrometry to detect any covalently modified residues.  With two covalent adducts 

detected on lysine residues K199 and K525 following in vitro incubation of 400µM 
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diclofenac-AG with 40µM RSA, which represented a relative molar exposure of 10:1 

(AG:RSA), it was decided to administer diclofenac-AG to the rat at a dose, which, 

ideally, would produce a similar exposure of the conjugate to RSA. 

Taking the estimated total plasma volume of the 264 g rat used here to be 10.22 ml 

(Bijsterbosch et al., 1981), a 60mg/kg bolus intravenous dose would theoretically result 

in a maximum plasma diclofenac-AG concentration of approximately 3.3mM.  With the 

plasma concentration of RSA estimated at 22.3mg/ml (337.8µM) (Papet et al., 2003), 

the molar ratio of diclofenac-AG to RSA immediately following bolus administration is 

estimated at 9.76:1 (AG:RSA).  This is approximately the relative exposure of AG that 

produced detectable covalent adducts of RSA during a 16 hour in vitro incubation 

(Table 3. 2). 

Despite exhaustive analysis of the tryptic digests of RSA isolated from plasma samples 

taken from the rat 2 hours following AG administration, no covalent adducts could be 

detected using QStar mass spectrometry.  This finding would appear to conflict with 

non-mass spectrometry studies suggesting AGs are able to form covalent adducts with 

plasma proteins in the rat following administration of the parent carboxylic acid 

(Sallustio and Foster, 1995; Liu et al., 1996).  It must be emphasised, however, that 

because these covalent binding assays rely on essentially indiscriminate alkaline 

hydrolysis of adducts, they do not permit attribution of the drug metabolites 

responsible for covalent modification of plasma proteins in vivo.   

Glucuronidation of xenobiotics is traditionally considered a process acting to nullify the 

adverse chemical and physiological activities of unusable compounds and hasten their 

elimination from the biological system (Caldwell, 1982; Miners and Mackenzie, 1991; 

Spahn-Langguth and Benet, 1992).  With their generic potential for covalent adduct 
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formation in vivo, AGs clearly do not represent model products of glucuronidation.  

Therefore the exceptionally rapid elimination of AG metabolites can be regarded as an 

essential counterbalance to the metabolite’s chemical reactivity, which mitigates their 

potential to exert toxicological effect.   

Despite assumptions of AG’s rapid elimination, measurements of AG clearance in vivo 

have not been undertaken extensively.  Most investigations into the rates of AG 

clearance in vivo employed measurement of the conjugate’s renal clearance in 

humans, following administration of the parent drug.  In all of these cases, renal 

clearance of the AG metabolite was found to be greater than for the parent drug 

(Smith et al., 1985; Castillo et al., 1995; Vree et al., 1995).  Experiments in the rat, 

where the AGs of benoxaprofen, flunoxaprofen, diflunisal and the R- and S- isomers of 

naproxen were directly administered as an intravenous bolus also reported rapid AG 

elimination in comparison with their parent carboxylates (Watt et al., 1991; Iwaki et 

al., 1995; Dong et al., 2005).  Consequently, it was decided to investigate whether 

plasma clearance of diclofenac-AG in the rat is also rapid, potentially providing an 

explanation for not detecting covalent adducts in vivo. 

As expected, the plasma clearance of diclofenac-AG was found to be significantly 

greater than that of diclofenac (by approximately six-fold), resulting in a shorter 

plasma half-life of diclofenac-AG of 4.12mins in comparison to 12.69mins for 

diclofenac (Table 3. 3).  The greater clearance of diclofenac-AG may be a result of its 

greater affinity for export transporters.  The major route of elimination of diclofenac in 

the rat has been shown to be biliary elimination (Peris-Ribera et al., 1991), with TR-/- 

(MRP2 deficient) rats revealing the importance of the export transporter MRP2 for the 

elimination of diclofenac acyl glucuronide from the rat (Seitz et al., 1998).  In knockout 
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mice not expressing MRP2, no statistically significant reduction of diclofenac biliary 

elimination could be detected.  However, elimination of the AG was vastly increased 

(Lagas et al., 2010); suggesting that elimination of the AG is dependent on export 

hepatic export transporters, whereas that of diclofenac is not.  Further evidence for 

this difference was derived from in vitro studies using transfected MRP-2 that 

suggested that diclofenac is not transported by this protein (Lagas et al., 2009). 

As a consequence of the greater rate of AG clearance in comparison to diclofenac, 

plasma exposure of the AG was significantly lower by 5.5-fold, supporting the 

hypothesis that rapid clearance of AGs, resulting in reduced AG exposure may be a 

mitigating factor in the covalent modification of endogenous macromolecules.  

The plasma clearance of diclofenac-AG (67.81 ± 12.83 ml min-1 kg-1, Table 3.3) being 

approximately double the 35.5 ± 5.2 ml min-1 kg-1 hepatic blood flow of urethane-

anaesthetised rats (Hiley et al., 1978) indicates that mechanisms other than hepatic 

metabolism and elimination contribute to the conjugate’s clearance from the 

circulation.  The major mechanisms which would be expected to account for extra-

hepatic AG eliminations would generally be considered to be renal elimination, or 

extra-hepatic AG hydrolysis.   

Whilst investigations into the renal and biliary elimination of AGs was not undertaken 

in these studies, extra-hepatic hydrolysis of diclofenac-AG to its parent carboxylate 

appeared to represent an important route of clearance in the rat.  This has also been 

shown for the AGs of benoxaprofen, flunoxaprofen, diflunisal and naproxen (Watt et 

al., 1991; Iwaki et al., 1995; Dong et al., 2005).  High variability in plasma or tissue 

hydrolysis of diclofenac-AG was detected in this experiment, most likely due to inter-

animal variation.  This explanation is represented by one animal having consistently 
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lower values for plasma hydrolysis than the other two in the experiment.  Whilst 

correlations between hepatic blood-flow and AG clearance, as described above, 

suggest that the detection of plasma diclofenac is largely as a consequence of extra-

hepatic hydrolysis, the contribution of enterohepatic circulation was not defined in this 

experiment.  The relative contributions of plasma and tissue hydrolases/esterases to 

the clearance of drug AG from plasma are still largely unknown (Fukami and Yokoi, 

2012).  Human plasma contains three esterases in high enough concentrations to 

contribute significantly to ester hydrolysis: butyrylcholinesterase, paraoxonase and 

albumin (Li et al., 2005). However, there are substantial species differences between 

esterase expression and hydrolase activity in mammalian plasma (Bahar et al., 2012), 

and carboxylesterase is absent from human plasma (Li et al., 2005).  Extensive 

enterohepatic recirculation of several NSAIDs including diclofenac has been found in 

the rat (Stierlin and Faigle, 1979; Lin et al., 1985; Dietzel et al., 1990).  However, the 

extensive hydrolysis of the AGs of flunoxaprofen and benoxaprofen in rats with 

cannulated bile ducts (Dong et al., 2005), which consequently were unable to undergo 

enterohepatic recirculation, combined with the extensive hydrolysis of AGs incubated 

in isolated plasma as shown in chapter 2 and by others (Ruelius et al., 1986; Volland et 

al., 1991; Williams et al., 1992; Akira et al., 2002; Shipkova et al., 2003; Karlsson et al., 

2010), suggest hydrolysis is primarily located in the tissues and/or plasma.  If this is the 

case, plasma hydrolysis of AGs does represent an additional elimination pathway, 

complimenting rapid direct elimination, reducing the risk of AG-mediated adduction of 

macromolecules in vivo. 

From this work, it is clear that species differences, expressed as a 20% variance in the 

primary structure between RSA and HSA (Sargent et al., 1981; Minghetti et al., 1986; 
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Carter et al., 1989; Kosa et al., 1997), result in a marked disparity of covalent adducts 

detected by QStar mass-spectrometry.  This finding is likely to be principally a 

consequence of the absence from RSA of 60% of the lysine residues of HSA known to 

be modified by diclofenac-AG in vitro.  Despite the identification of two covalent 

adducts following incubation of 400µM diclofenac-AG with 40µM RSA, no AG derived 

adducts were identified on RSA isolated from a rat administered diclofenac-AG at a 

dose estimated to produce the same exposure.  Rapid elimination of diclofenac-AG 

from plasma was hypothesised to be a mechanism mitigating covalent adduct 

formation by the AG metabolite in the rat.  To investigate this proposition, the plasma 

clearance of an intravenous bolus dose of diclofenac-AG was determined.  Plasma 

clearance of the AG was rapid, resulting in a measured half-life of clearance of only 4 

minutes, which was three fold faster when compared to diclofenac.  Hydrolysis of the 

administered AG represented a considerable elimination pathway, resulting in three-

fold higher exposure of diclofenac than the AG over the 120 minute experiment.  

Whilst it cannot be definitively identified in this experiment whether enterohepatic 

recirculation or plasma/tissue hydrolysis was primarily responsible for the extent of 

diclofenac-AG hydrolysis detected in rats, the incubations of AGs with isolated human 

plasma described in chapter 2 do suggest that plasma hydrolysis of diclofenac-AG 

would be extensive.  This would constitute a significant elimination pathway, greatly 

reducing the adduction of proteins by diclofenac-AG in vivo, and consequently, may 

also be considered a detoxification pathway.  
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4.1 INTRODUCTION  

The most convenient and widely used route for the administration of pharmaceuticals 

is via oral ingestion of either liquid or capsule formulations.  However a variety of 

other routes of drug administration are available and may be used when episodic oral 

administration is considered inappropriate or undesirable.  Continuous infusion allows 

continuous administration of drugs, usually into the circulatory system.  Clinically, 

various routes of continuous infusion are used, including skin patches, where infusion 

is maintained by an osmotic gradient as is used in rotigotine administration in the 

treatment of Parkinson’s disease (Sanford and Scott, 2011).  Alternatively, in a hospital 

setting continuous intravenous drug infusion may be used, allowing continuous and 

consistent drug plasma concentrations.  This is used for compounds including 

antibacterial agents, flucloxacillin (Leder et al., 1999; Howden and Richards, 2001), and 

chemotherapeutics such as 5-fluorouracil (Howell et al., 1997; Recchia et al., 2001).  

These routes of infusion allow consistent and careful control of drug plasma 

concentrations.  This is particularly important for compounds where consistent plasma 

concentrations are required for efficacy. 

Plasma kinetic profiles of drugs following continuous infusion usually follow 1st order 

kinetic principles, where drug clearance is proportional to drug plasma concentration.  

Following commencement of drug infusion drug plasma concentrations are low.  

Consequently clearance is low, and below that of the rate of infusion, resulting in a rise 

in drug plasma concentration.  As drug plasma concentration increases, so does the 

rate of drug clearance.  This continues until the rate of drug clearance matches that of 

drug infusion.  At this point plasma drug concentrations remain constant, and are 

consequently maintained (steady-state pharmacokinetics are said to have been 
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reached) until cessation of drug administration (Clarke and Smith, 2001; Hill, 2004).  

Whilst continuous intravenous infusion is a heavily used technique in the delivery of 

drugs in a clinical setting, and consequently the pre-clinical model is well-established in 

development of these drugs, application of the continuous intravenous infusion model 

to in vivo toxicology studies is not. 

Commonly, pre-clinical investigations of drug pharmacokinetics and drug safety are 

undertaken in rat models.  The quicker rate of drug elimination in rats vs man is a 

major limitation.  With 52 of 54 drugs tested showed a faster rate of plasma clearance 

in the rat than man, ranging from 1.3 times faster for ketoprofen to 123 times faster 

for diazepam.  Only cyclosporine and nifedepine are cleared faster in man than the rat 

(Chiou et al., 1998). Consequently, even repeat drug administrations in the rat are 

unlikely to suitably model the clinical situation, as increased drug clearance may result 

in periods of ‘drug holiday’ of minimal drug exposure which is not observed in man.  

Consequently, it is hypothesised that continuous drug infusion, reaching steady state 

drug exposure may better model the clinical situation. 

Alternatively, continuous intravenous infusion may also be considered a useful tool in 

toxicological investigations of compounds.  Whilst allowing better correlation with 

clinical exposure, continuous infusion may also be used as a technique allowing 

‘forced’ increased drug (and potentially) metabolite exposure.  This increased drug 

and/or metabolite exposure may unmask mechanisms of toxicity not detectable 

following bolus drug administration techniques which are currently frequently used in 

current drug toxicity studies.  Acute dosing of compounds also has the potential to 

produce toxicities in secondary organs to the primary ones being studied.  Diclofenac 

represents a good example of this, where the dose-limiting toxicity is damage to the 
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gastrointestinal tract (Menasse et al., 1978; Seitz and Boelsterli, 1998), which limits 

doses which may be used for investigation of hepatotoxicity.  Continuous infusion may 

present a model by which these secondary toxicities may be avoided or managed to 

allow further investigation of toxicities of intended interest. 

To test the applicability of continuous infusion in a toxicological setting, diclofenac was 

chosen.  For some disorders including rheumatoid and osteo-arthritis diclofenac may 

be administered daily over many years, with dosing only ceased on suspicion of a 

serious ADR.  Due to the necessity of continuous drug efficacy, diclofenac is often 

administered either twice or three times a day, at daily doses reaching 150mg, 

sometimes in slow release formulations.  Further to this, the rat exhibits 3.7 times 

faster plasma clearance of diclofenac than man (15.7ml/min/kg against 4.2 ml/min/kg 

respectively) (Chiou et al., 1998).  Consequently, as described above, single bolus drug 

administrations or repeat bolus drug administration studies in the rat are unlikely to 

represent the clinical situation. 

Diclofenac is associated with the generation of idiosyncratic hepatotoxicity, with 

approximately 6.3 patients out of 100,000 requiring hospital treatment (de Abajo et 

al., 2004).  Further to this, transient ALT rises are observed in patients receiving drug 

treatment in approximately 15% of patients, with approximately 3-5% of patients 

experiencing ALT rises above 3x the upper limit of normal (Banks et al., 1995; Laine et 

al., 2009).  To date, no in vivo models have allowed prediction or mechanistic 

understanding of either of these two types of drug toxicities. 

Incubations with human liver microsomes supplemented with UDPGA has suggested 

that approximately 75% of a dose of diclofenac is directly glucuronidated, forming its 

acyl glucuronide metabolite, with the remaining dose oxidised by CYP2C9 into its 4-OH 
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metabolite (Leemann et al., 1993; Tang et al., 1999c; Kumar et al., 2002).  The acyl 

glucuronide metabolite can be further oxidised into 4-OH diclofenac catalysed by 

CYP2C8 (Kumar et al., 2002).  Alternatively diclofenac may be oxidised by CYP3A4 into 

its 5-OH metabolite (Shen et al., 1999).  Both the 4-OH and 5-OH diclofenac 

metabolites have been reported to be further oxidised into quinone-imine metabolites 

(1’, 4’-quinoneimine and 2’, 5’-quinoneimine metabolites respectively) (Poon et al., 

2001).  CYP2B, 2C and 3A isoforms have been implicated with oxidative metabolism in 

the rat (Tang et al., 1999a).  Bioactivation of diclofenac into its reactive metabolites 

has been postulated to play a key role in the eliciting of idiosyncratic ADRs associated 

with the parent drug (Boelsterli, 2003; Aithal, 2004).  

Presentation of hepatotoxic ADRs associated with diclofenac is usually delayed, with 

76% of cases presenting after 1 month following introduction to the compound (Banks 

et al., 1995).  This combined with case reports of liver failure following diclofenac re-

administration to patients already suffered a delayed hepatotoxic reaction to the drug 

(Helfgott et al., 1990; Greaves et al., 2001) suggest an immunological pathogenesis.  

Whilst production of drug-protein adducts is hypothesised to be a critical process in 

the pathogenesis of immune-mediated ADRs, the provision of ‘danger signals’ from 

stressed, necrotic or apoptotic cells is also required for immune stimulation 

(Matzinger, 1994; Curtsinger et al., 1999).  Mechanisms for generation of danger 

signals in drug, and diclofenac-induced liver injury are largely undefined.  Several 

mechanisms have been hypothesised for the production of danger signals, including 

translocation of bacteria or endotoxins from the GI tract to the liver (Deng et al., 2006; 

Deng et al., 2008) and cytokine release as a result of cell-death elicited as a 

consequence of underlying disease, including osteoarthritis (Banks et al., 1995).  
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Alternatively, with transient plasma ALT rises detected in 3-5% of patients receiving 

diclofenac therapy (Banks et al., 1995; Laine et al., 2009), it can be hypothesised that 

danger signal release may be a direct response to drug exposure.  We hypothesise that 

continuous infusion of diclofenac to the rat would unmask these mechanisms of 

hepatotoxicity, as a result of forced-increased drug-exposure. 

Individual variations in phenotype, resulting in increased drug exposure have also been 

associated with increased susceptibility to off-target hepatotoxicity associated with 

diclofenac.  Genotyping studies have revealed an increased abundance of 

polymorphisms in the ABCC2 gene in patients who have retrospectively experienced 

an off-target ADR to diclofenac treatment, with an odds ratio of 5.0 (p=0.05).  This 

gene encodes the hepatobiliary export pump MRP2.  Whilst the functional outcome of 

the 24C>T ABCC2 polymorphism is not fully defined (Daly et al., 2007), it has been 

associated with identified associated with reduced mRNA expression of the gene 

(Haenisch et al., 2007), suggesting that increased drug or metabolite exposure may 

play a role in the clinical onset of diclofenac induced liver injury.   

Further associations with polymorphisms in the genes encoding CYP2C8 and UGT2B7 

were also found to produce increased risk of developing idiosyncratic hepatotoxicity 

following treatment with diclofenac (Daly et al., 2007), further suggesting 

accumulation of drug metabolites may represent a mechanism for the pathogenesis of 

idiosyncratic hepatotoxicity towards diclofenac.  Continuous infusion of diclofenac 

provides a tool by which this may be more closely modelled. 

Through this chapter we investigate the use of the continuous intravenous infusion 

system for its applicability for toxicological assessment of diclofenac hepatotoxicity in 

the rat.  This chapter aims to investigate whether diclofenac reaches steady state 
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following continuous intravenous infusion, and consequently if this results in initiation 

of hepatotoxicity in the rat, and possibly identification of mechanisms responsible. 
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4.2 MATERIALS AND METHODS 

4.2.1 Materials 

Medfusion 3500 syringe pump (Smiths Medical, Ashford, Kent, UK), PhysioCath small 

animal vascular catheter (Data Sciences International, Minnesota, USA), Covance 

infusion harness (Instech Laboratories, Pennsylvania, USA), Vet-bond adhesive (3M, 

Minnesota), Water for injections (Hameln Pharmaceutical, Gloucestershire, UK and 

Freseniuis Kabi, Cheshire), Sterile 0.9% (w/v) saline and Sterile 5% (w/v) Manitol 

(Fresenius Kabi, Runcorn, UK), Vet-bond adhesive (3M Animal Care, Minnesota, USA), 

Diclofenac sodium salt (Sigma-Aldrich, Dorset, UK), Roche P modular analyser and 

standard Roche reagents (Roche Diagnostics, West Sussex, UK),  Bio Rad Bradford 

reagent (Bio Rad, Hertfordshire, UK), MRX microplate reader with Max Revelations 

3.04 software (Dynotech Laboratories, West Sussex, UK).  3,3’-diaminobenzidine, 

Background Blocker with Casein and X-cell plus polymer HRP (A.menarini diagnostics, 

Berkshire, UK), Carazzi’s Hematoxylin, polyclonal rabbit anti-catalase (2363-1, 

Epitomics, California, USA), Rabbit anti-SuperOxide Dismutase-2 (ab:13534, Abcam, 

Cambridgeshire, UK), polyclonal rabbit anti-CYP2C19 (HPA015066, SigmaAldrich, 

Dorset, UK), goat anti rat CYP1A1 (423635, Daiichi Pure Chemicals, Japan), rabbit anti-

BSEP (PC-064, Kamiya, Washington, USA), mouse anti-MRP2 (ab3373, Abcam, 

Cambridgeshire, UK), biotinylated rabbit anti mouse secondary (E0464, Dako, 

Calafornia, USA).  All other reagents were purchased from Sigma-Aldrich (Dorset, UK) 

unless otherwise stated.  

4.2.2 Animals   

Male rats of Wistar Hannover substrain RccHan:WIST of 10weeks of age were provided 

from Harlan Laboratories, UK.  Animals were housed in groups and acclimatised to 
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their surroundings for a minimum of 5 days prior to surgery for cannulation.  Following 

surgery, animals were housed singly.  Food and water was provided ad libitum to all 

animals throughout the study.  Experiments undertaken were in accordance with the 

criteria outlined in a licensed granted under the Animals (Scientific Procedures) Act of 

1986.  All cannulation surgery and sampling was performed by trained animal surgeons 

and technicians at AstraZeneca, Alderley Park, UK.  All analysis and sample work-up 

was performed in Liverpool. 

4.2.3 Cannulation procedure 

Initial induction of anaesthesia of rats was achieved by placing animals in an 

anaesthesia chamber containing 3-4% isoflurane/100% medical oxygen.   Following 

anaesthesia induction, the dorsal scapula and left ventral groin regions of the animals 

were shaved.  A small incision was made at the scapula region to facilitate cannula 

exteriorisation.   Proprietary skin cleansers were used on the shaved regions and the 

animals were transferred to the surgical table. Each animal was placed on a homeo-

thermic operating table over a sterile cloth and placed under 2-3% isoflurane 

inhalation.  A sterile drape was placed over the animal and a small incision 

(approximately 1cm) is made in the inguinal region adjacent to the peritoneal cavity. 

Following blunt dissection the femoral vein was exposed through the incision ligatures 

used to control blood flow.   Following this, an incision in the femoral vein was made, 

through which a PhysioCath catheter was inserted to a distance where the cannula tip 

sits within the vena cava.  The catheter was tied in place using silk ligatures 

and flushing of the catheter was carried out to ensure blood flow. The free end of the 

catheter was led subcutaneously from the groin to the incision at the scapula 

region.  The groin and neck incisions were closed using surgical staples and vet-bond 
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adhesive.  The free end of the catheter was led through a steel spring protector 

attached to an animal infusion harness.  The animal was then placed in the harness 

and the catheter was attached to the syringe pump via an infusion tether and swivel 

joint.  Following surgery, animals were maintained on continuous infusion of sterile 

saline at a flow of 1ml/hour/animal for approximately 24 hours.  This was then 

reduced to 0.5ml/hour/animal until 24 hours before drug dosing.  24 hours before 

drug dosing, animals were administered 5% mannitol vehicle at a flow rate of 

2ml/kg/hour, prior to administration of the test compound. 

4.2.4 Dose escalation arm 

To allow selection of the most appropriate dose for the study, a dose raising 

investigation was undertaken to investigate the maximum tolerated dose.  Using 2 

animals per group, diclofenac infusion of 12mg/kg/day using a vehicle of 5% mannitol 

(w/v) was well tolerated in animals.  A subsequent increase in dose to 24mg/kg/day 

was poorly tolerated.  Consequently, a 12mg/kg/day infusion of diclofenac was used 

for the main study. 

4.2.5 Continuous intravenous infusion of diclofenac at a dose of 

12mg/kg/day 

A 0.25mg/ml solution of diclofenac was made up in 5% (w/v) sterile mannitol solution, 

and was administered to rats at a rate of 2ml/kg/hour.  This equates to a dose of 

12mg/kg/day.  A control group was administered 5% (w/v) sterile mannitol solution at 

the same rate of infusion.  Drug infusion was maintained for 48hours.  Following the 48 

hour time point animals were disconnected from infusion equipment and cannulae 

were tied off.  Animals were subsequently maintained for 72 hours before termination 

of the study.  At desired time points, blood samples were obtained from animals 
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through tail vein knicks.  A composite sampling approach was chosen to ensure blood 

sampling is maintained below the 20% blood volume throughout the in-life phase of 

the study in accordance with the criteria in the Home Office Project License.  Group 

sizes were selected at n=8 for diclofenac infusion and n=6 for vehicle infusion.  Large 

group sizes were selected to allow for non-drug related losses from the study which 

are known to occasionally occur in continuous infusion experiments, including escape 

of animals from infusion equipment and development of blood clots in cannulae, 

preventing infusion.  The vehicle control group contained two less animals due to 

technical difficulties in the surgery procedure.  The diclofenac group contained one less 

animal than intended as one received its 24 hour dose in 24 minutes, and hence data 

achieved from this animal was discounted from analysis.  At the end of the in-life 

phase of the study, animals were killed by administration of halothane.  At the end of 

the experiment, a 3-5mm transverse section of the left lateral lobe of the liver was 

removed and stored in 10% buffered formalin and prepared for light microscopy 

assessment.  A further 3-5mm section from the left lateral lobe was isolated and 

immediately snap-frozen in liquid nitrogen and stored at -80°C for assessment of 

glutathione content.   

Table 4. 1: Blood sampling time points and volume (ml) for animals in diclofenac 
continuous infusion study. 

Dose group 

Number 
of 

animals 
in group 

Predose 1hr 2hr 6hr 24hr 48hr 72hr 96hr 
Terminal 
sample 
(120hr) 

Vehicle 
infusion 

3 0.2  0.2  1.2  1.8  3 

3 0.2 0.2  0.2  1.4  1.8 3 

Diclofenac 
12mg/kg/day 

4 0.2  0.2  1.2  1.8  3 

3 0.2 0.2  0.2  1.4  1.8 3 
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4.2.6 Isolation of plasma from blood samples  

Blood samples were collected from animals using tail vein knicks into heparinised 

tubes (Table 4. 1).  Plasma was isolated from these blood samples through 

centrifugation at 2100g for 10 minutes at 4°C.   

4.2.7 Analysis of diclofenac and diclofenac acyl glucuronide in plasma 

samples 

48µl of plasma were collected at 1hr, 2hr, 6hr, 24hr, 48hr, 72hr and 96hr following 

initiation of infusion, as well as immediately before sampling, using a composite 

sampling approach as outlined in Table 4. 1.  Plasma was immediately acidified through 

the addition of 2µl of 2M acetic acid in dH2O (4% v/v) to stabilise any acyl glucuronide 

metabolite.  Samples were subsequently immediately stored at -80°C until analysis 

(Sparidans et al., 2008). 

Plasma concentrations of diclofenac and diclofenac-AG were quantified as described in 

chapter 3. 

4.2.8 Pharmacokinetic analysis 

Non-compartmental analysis of diclofenac pharmacokinetics was assessed using 

Phoenix Winnonlin (Version 5.2, Pharsight, Missouri).  This allowed the area under the 

curve to be calculated. 

4.2.9 Clinical chemistry assessment 

Clinical chemistry assessment was undertaken at AstraZeneca, AlderleyPark, UK.  In 

brief, 600µl heparinised blood samples were isolated from animals at 72hr, 96hr and 

terminal (120hr) time points, and analysed for plasma ALT, glutamate dehydrogenase 

(GLDH), bile acid, total bilirubin, conjugated bilirubin and unconjugated bilirubin using 
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a Roche P modular analyser  and standard Roche reagents, as defined by 

manufacturer’s instructions.  

4.2.10 Histopathological assessment of hepatotoxicity  

Immunohistochemical preparation of slides was undertaken at AstraZeneca, Alderley 

Park UK.  All immunohistochemistry was performed on formalin-fixed paraffin-

embedded sections.  From these paraffin-embedded section 4µm sections were cut, 

mounted on glass slides, dewaxed, and rehydrated.  All antibody washes and dilutions 

were undertaken utilising Tris Buffered Saline (TBS) containing 0.1% Tween (v/v).  To 

allow visulalisation of antibodies, sections were incubated with 3,3’-diaminobenzidine 

and counterstained with Carazzi’s Hematoxylin.  Sections were subsequently 

dehydrated, cleared and mounted.  Appropriate positive and negative controls were 

utilized for analysis. 

For catalase and superoxide dismutase immunohistochemistry, heat-induced epitope 

retrieval was performed using 0.01M citrate buffer pH 6.0.  Endogenous peroxidase 

was blocked using 3% H2O2 (v/v) for 10 minutes.  Non-specific immunoglobulin (Ig)-

binding sites were blocked using Background Blocker with Casein for 20 minutes at 

room temperature (RT).  Sections were incubated in either polyclonal rabbit anti-

catalase (1:100 dilution) or Rabbit anti-SuperOxide Dismutase-2 (1:2000 dilution) for 

60 minutes at room temperature.  Following primary antibody incubation, sections 

were washed and incubated with a ready-to-use peroxidase-labelled secondary 

reagent, X-cell plus polymer HRP for 15 minutes at RT and subsequently washed again. 

For CYP2C19 immunohistochemistry, heat-induced epitope retrieval was achieved 

following incubation with proteinase K for 2 minutes.  Endogenous peroxidase was 

blocked using 3% H2O2 (v/v) for 10 minutes.  Non-specific Ig-binding sites were blocked 
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using Background Blocker with Casein for 20 minutes at RT.  Sections were incubated 

in either polyclonal rabbit anti-CYP2C19 (1:500 dilution) for 60 minutes at room 

temperature.  Following primary antibody incubation, sections were washed and 

incubated with a ready-to-use peroxidase-labelled secondary reagent, X-cell plus 

polymer HRP for 15 minutes at RT and subsequently washed again.  

For CYP1A1 staining, sections were immersed in 0.01M citrate pH 6.0 buffer and 

heated to 100◦C in RHS-2 processor for 5 minutes.  Endogenous peroxidase was 

blocked with 3% H202 for 10 minutes, and non-specific Ig-binding sites were blocked 

using Background blocker with Casein for 20 minutes at RT.  Sections were incubated 

in goat anti rat CYP1A1 (1:3000) for 60 minutes at RT.  Following this, a goat probe and 

goat HRP-polymer (Biocare Medical GHP516H) were applied for 15 minutes each, with 

sections then washed. 

For BSEP, heat-induced epitope retrieval was achieved following incubation of sections 

with 10mM EDTA, pH 8.0.  Endogenous peroxidase was blocked with 3% H2O2 for 10 

minutes, and non-specific Ig-binding sites were blocked using Background Blocker with 

Casein for 20 minutes at RT.  Sections were incubated in rabbit anti-BSEP (1:30 

dilution) for 60 minutes at RT.  Following primary antibody incubation, sections were 

washed and incubated with a ready-to-use peroxidase-labelled secondary reagent, X-

cell plus polymer HRP for 15 minutes at RT.  Thereafter, sections were washed again.   

For MRP2, heat-induced epitope retrieval was again achieved following incubation of 

sections with 10Mm EDTA, pH 8.0.  Endogenous peroxidase was blocked with 3% H2O2 

for 10 minutes, and non-specific Ig-binding sites were blocked using Background 

Blocker with Casein for 20 minutes at RT.  Sections were incubated with mouse anti-

MRP2 (1:300 dilution, Abcam: ab3373) for 60 minutes at RT.  A biotinylated rabbit anti 
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mouse secondary (1:400 dilution) was then applied for 30mins. Following secondary 

antibody incubation, sections were washed and incubated with X-cell plus polymer 

HRP for 15 minutes at RT.    Thereafter, sections were washed again in buffer.   

Sections were kindly read by John Foster, AstraZeneca, and scored on a scale from 

Grade 1 to Grade 4, as defined by Table 4. 2. 

Table 4. 2:  Scoring method used for histopathological analysis of sections 

Grading Severity 

Grade 1 Minimal / Very few/ Very small 

Grade 2 Slight / Few / Small 

Grade 3 
Moderate / Moderate number / Moderate 

size 

Grade 4 Marked / Many / Large 

  

4.2.11 Hepatic glutathione concentration 

Hepatic total glutathione levels (reduced glutathione (GSH) + oxidised glutathione 

(GSSG)) were determined using a microtitre plate assay.  In brief, approximately 50mg 

of hepatic tissue isolated from the medial lobe were isolated, and homogenised in 

200µl of 6.5% 5-sulphosalicylic acid (w/v) and 800µl glutathione stock buffer (143 mM 

NaH2PO4, 6.3mM EDTA, pH7.4 using 5M NaOH).  Homogenised tissue was incubated 

on ice for 10 minutes before centrifugation at 14,000 rpm for 5 minutes.   The 

supernatant was removed and used to determine total glutathione content 

spectophotometrically at 412nm using 5,5’-dithio-bis(2-nitrobenzoic acid), NADPH and 

GSH reductase, as described by (Vandeputte et al., 1994).  The results were compared 

to GSH standards (0-40 nMol/ml), and were normalised to protein content in the 

protein pellet. 
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4.2.12 Hepatic protein concentration for glutathione normalisation 

Protein concentration in pellets achieved from centrifugation in the glutathione assay 

was achieved using BioRad protein assay reagent as described by (Bradford, 1976).  

Protein standard curves were prepared using bovine serum albumin fraction V 

(0.5mg/ml). 

4.2.13 Statistical analysis 

To test if a significant difference could be observed in plasma diclofenac concentration 

between the 24hour and 48 hour time points (Figure 4. 1) the data were first assessed 

for normality using a Shapiro-Wilk test.  As this found that the data could be described 

using  a normal distribution, an unpaired t-test was used to investigate statistical 

significance. 

To test if a significant difference between vehicle control and diclofenac infused 

animals for clinical chemistry assays at each time point (Figure 4. 2), data was tested 

for normality using a Shapiro-Wilk test.  If data was found to follow a normal 

distribution an unpaired t-test was used to investigate significance, and a Mann-

Whitney Rank Sum test was used to test significance for non-normal data.  

For both tests a statistical significance was adjudged to have been found if p<0.05.  

Statistical analyses were assessed in SigmaPlot for Windows Version 11.0. 
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4.3 RESULTS 

4.3.1 Investigation into the maximum tolerated dose to be used for 

continuous intravenous infusion of diclofenac to the rat using a dose 

raising study 

To allow the best opportunity for hepatotoxicity and detection of covalent adducts to 

plasma proteins, an initial dose-raising study was run to ascertain the maximum 

tolerated dose of diclofenac infusion. 

An estimated maximum tolerated continuous intravenous dose of diclofenac was 

derived from the literature.  It is widely reported that the dose limiting toxicity of 

diclofenac is due to gastro-intestinal toxicity.  The LD50 following an oral dose of 

diclofenac to the rat was reported at 250mg/kg (Menasse et al., 1978).  With the 

bioavailability of diclofenac in the rat following an oral dose being reported at 79% 

following an oral dose of 1.25mg (Peris-Ribera et al., 1991), it was estimated that the 

LD50 of an intravenous dose of diclofenac would be 197.5 mg/kg.  Therefore, for an 

initial dose in a dose finding continuous intravenous infusion study it was decided to 

use a dose at least 10 times less than this.  A dose of 12mg/kg/day was used for the 

first investigation. 

This dose of 12mg/kg/day was well tolerated, with both animals in the test group 

surviving to the end of the in-life phase.  No clinical signs of adverse effects due to drug 

treatment were observed during the in-life phase of the study.  Upon necropsy, dark 

brown/black discolouration of areas of the cecum was observed, however, the dose 

was generally considered to be well tolerated.  Therefore, a higher dose of 

24mg/kg/day was investigated. 
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This higher dose of 24mg/kg/day was not tolerated in one of the two animals 

investigated.  This animal was prematurely removed from the study approximately 28 

hours into the 48 hour infusion.  This is due to exhibition of piloerection, reduced 

motor activity and reduced respiration rate combined with increased respiration 

depth.  On necropsy, dark red discolouration of the jejenum and black colouration of 

the cecum were observed.  The second rat in this group completed the infusion 

protocol, but exhibited piloerection, weight loss and low food consumption.  The 

24mg/kg/day dose was not considered to be tolerated, and a 12mg/kg/day infusion 

dose was selected for the main study. 

4.3.2 Investigation into plasma pharmacokinetics of diclofenac and 

diclofenac-AG following continuous intravenous infusion of 12mg/kg 

diclofenac/day. 

Plasma concentrations of both diclofenac and its AG metabolite were monitored 

throughout the study, using the same analytical assay described in Chapter 3, meaning 

that the lower limit of quantification was maintained at 50nM for diclofenac and 30nM 

for diclofenac-AG.  Lowest limits of detection were below 10nM for both diclofenac 

and diclofenac-AG. 

Plasma concentrations of diclofenac rose rapidly following initiation of infusion  

(Figure 4. 1), reaching a concentration of 1.19 ± 0.37µM over the first 6 hours of the 

experiment.  Plasma diclofenac concentrations subsequently appeared to stabilise 

between the 6 and 24 hour time points (24 hour concentration was 1.22 ± 0.20µM), 

with no statistical difference detected between the plasma concentration between 

these timepoints.  A statistically significant decrease in plasma diclofenac 

concentration was observed between the 24 and 48 hour time points, with plasma 
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concentration decreasing to approximately 423 ± 101 nM.  This reduction in plasma 

concentration whilst infusion was maintained suggests an adaptive change in animals 

resulting in enhanced drug clearance.  This is supported by plasma clearance of 

diclofenac increasing by a multiple of 1.76 (from 13.37ml kg-1 min-1 for 0-24hr time 

points to 23.48 ml kg-1 min-1 for the 0-48hr time points, Table 4. 3).  Following 

cessation of dosing, diclofenac concentrations remained above the lower limit of 

quantification at the 72 hour and 96 hour time points (119.83 ± 9.64nM and 76.08 ± 

23.14 nM (mean ± stdev) respectively).  

Throughout the experiment, diclofenac-AG could not be detected in plasma from the 

dose rats.  Due to the dilutions required for quantification of plasma diclofenac 

concentrations, it was not possible to use less diluted samples to investigate whether 

very low levels of diclofenac-AG might have been present, due to the need to avoid 

possible overloading of the HPLC-MS/MS with diclofenac.  

No diclofenac or diclofenac-AG could be detected in any plasma samples isolated from 

vehicle control animals. 
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Figure 4. 1:  Pharmacokinetic profile of diclofenac following continuous intravenous 
infusion to the rat for 48 hours (mean ± stdev).  * represents significant difference 
between the two points (p≤0.001) assessed using an unpaired t test. 
 
Table 4. 3: Pharmacokinetic parameters of diclofenac following continuous 
intravenous infusion to the rat.  Due to composite sampling used in the study, data 
was analysed from mean parameters 

Infusion 
timepoint 

Dose 
(nmol/kg) 

AUC 
(nmol hr L-1) 

Plasma clearance  

(ml kg-1 min-1) 

Diclofenac0-24 37724 47030.4 0.802 

Diclofenac0-48 75448 53544.7 1.409 

Diclofenac0-96 75448 55893.5 1.350 

Diclofenac0-∞ 75448 58022.0 1.300 

  

4.3.3 Assessment of hepatotoxicity induced by continuous intravenous 

infusion of diclofenac  

A combination of histopathology, immunohistochemistry and plasma clinical chemistry 

assays were used to assess whether continuous infusion of diclofenac resulted in 

hepatotoxicity.   
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Plasma samples taken at 72, 96 and 120 hour time points (all after cessation of dosing) 

were analysed for alanine transaminase, lactate dehydrogenase, total bile acid 

concentration, concentrations of both free and conjugated bilirubin, and glutamate 

dehydrogenase.  No statistically significant differences between diclofenac and vehicle 

treated animals could be detected for any of these clinical chemistry assays at any time 

point assayed throughout the investigations (Figure 4. 2).  These studies therefore did 

not provide evidence that administration of diclofenac had elicited hepatotoxicity.  

Following the end of the in-life phase of the study, livers were isolated from animals 

and assessed for hepatic glutathione content.  No difference between diclofenac and 

vehicle treated animals was detected (Figure 4. 2). 

Further liver sections were isolated at the end of the study, and prepared for 

histopathological and immunohistochemical analysis by a trained veterinary 

pathologist.  Haematoxylin and eosin (H & E) staining was used for assessment of 

alterations between diclofenac and vehicle treated animals.  Intrahepatocyte depletion 

of glycogen stores was observed in 4 out of 7 diclofenac treated animals in the study, 

as observed by the loss of intrahepatocyte vacuoles in H&E sections.  Glycogen 

depletion was graded as grade 2 severity in 3 animals, and grade 1 severity in 1.  

Glycogen depletion was not observed in any of the animals receiving vehicle infusion.   

On necropsy a growth was observed on the liver of one diclofenac treated animal, 

which (approximately 10mm width x10mm length x10mm height).  Upon 

histopathological staining, this was identified as an adhesion encapsulated 

haematoma.  In addition, the right medial lobe of the same animal appeared large 

upon necropsy.  Following H&E assessment, the lobe was identified as being 

hypertrophied.  Furthermore, this animal along with one other diclofenac treated 
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animal also showed an area of inflammatory cell infiltration and one further distinct 

diclofenac treated animal showed an area of necrosis with inflammatory cell 

infiltration (Table 4. 4).  
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Figure 4. 2:  Plasma biomarker assessment of hepatotoxicity and hepatic glutathione 
content.  Black filled in figures represent vehicle control, hollow white figures 
represent diclofenac infusion (mean ± stdev).  (A) Plasma ALT activity (B) Plasma GLDH 
activity (C) plasma LDH activity (D) plasma bile acid concentration (E) total plasma 
bilirubin concentration (F) hepatic glutathione content from livers isolated from 
animals at the end of the study (120 hrs following commencement of diclofenac 
infusion).  No statistical significance was observed between diclofenac or vehicle 
control treated animals.   
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Table 4. 4: Histopathological assessment of livers sections, allowing comparison 
between vehicle control and diclofenac infused animals. 

Histopathological finding 
Vehicle (5% mannitol) 

infusion 
Diclofenac continuous 

infusion (12 mg/kg/day) 

Glycogen depletion 
Not detected in any 

animals 
Grade 1 : 1 animal 
Grade 2 : 3 animals 

Necrotic foci with 
inflammatory cells 

Not detected in any 
animals 

Grade 2 : 1 animal 

Mixed inflammatory cell 
infiltration 

Grade 1 : 2 animals Grade 1 : 2 animals 

Hypertrophied right 
median lobe 

Not detected in any 
animals 

1 animal 

Adhesion encapsulated 
haematoma 

Not detected in any 
animals 

1 animal 

   

4.3.4 Immunohistochemical assessment of liver sections 

It was hypothesised that either induction of cytochrome P450 enzymes or hepatic 

export transporters could have contributed to the reduced plasma concentrations that 

were evident at time intervals beyond 24 h of continuous infusion.  Consequently, 

hepatic sections were immunohistochemically stained to assess expression of the 

cytochrome P450 isozymes CYP1A1 and 2C19 as well as the hepatic export 

transporters MRP2 and BSEP.   

Following analysis of sections, no consistent induction of the CYPs 1A1 or 2C19 could 

be found.  In addition, no consistent induction of the export transporters MRP2 and 

BSEP could be ascertained as reported in Table 4. 5. 
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Table 4. 5: Scored results of sections stained for immunohistochemistry.  6 animals 
were in the vehicle control group, and 7 animals were in diclofenac treated animals.  

Hepatic staining 
Vehicle (5% mannitol) 

infusion 

Diclofenac continuous 

infusion (12 mg/kg/day) 

CYP1A1 IHC 
Grade 1 : 3 animals 

Grade 2 : 3 animals 

Grade 1 : 4 animals 

Grade 2 : 3 animals 

CYP2C19 IHC 

Grade 1 : 1 animal 

Grade 2 : 2 animals 

Grade 3 : 3 animals 

Grade 1 : 1 animal 

Grade 2 : 5 animals 

Grade 3 : 1 animal 

BSEP IHC 
Grade 1 : 2 animals 

Grade 2 : 4 animals 

Grade 1 : 5 animals 

Grade 2 : 2 animals 

MRP2 IHC 
Grade 1 : 0 animals 

Grade 2 : 6 animals 

Grade 1 : 5 animals 

Grade 2 : 2 animals 

Catalase IHC 
Grade 1: 5 animals 

Grade 2 : 1 animal 

Grade 1 : 1 animals 

Grade 2 : 6 animals 

Superoxide dismutase-2 

IHC 

Grade 1 : 5 animals 

Grade 2 : 1 animal 

Grade 3 : 0 animals 

Grade 1 : 1 animal 

Grade 2 : 1 animal 

Grade 3 : 5 animals 

  

Diclofenac and its oxidative metabolites have been shown to elicit mitochondrial stress 

following incubation with isolated mitochondria and hepatocytes (Bort et al., 1999; 

Gomez-Lechon et al., 2003a; Gomez-Lechon et al., 2003b; Lim et al., 2006).  To test 

whether induction of oxidative stress had occurred in livers from rats dosed with 

diclofenac by continuous infusion, hepatic sections were stained for the expression of 

catalase and superoxide dismutase.  Continuous infusion of diclofenac resulted in 

expression of elevated levels of both of these enzymes, when compared to vehicle 

control animals (Figure 4. 3 and Figure 4. 4). 

Hepatic sections isolated from animals which had been infused with the dose vehicle 

infusion exhibited greater expression of SOD-2 in hepatocytes distributed around the 

central vein, although protein expression was also evident in in portal hepatocytes.  

Continuous infusion of diclofenac resulted in increased intensity of SOD-2 
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immunostaining around the vasculature.  This may be an indicator of oxidative stress.  

Conversely, midzonal hepatocytes appeared to have reduced SOD2 expression 

following diclofenac infusion, when compared to centrilobular or periportal 

hepatocytes. 

Catalase expression in rats receiving vehicle was evident primarily in portal areas, with 

reduced intensity of staining in centrilobular regions.  Intracellular catalase intensity 

was highest around peroxisomes (Figure 4. 3C).  Catalase staining in animals receiving 

diclofenac infusion was not apparent in portal areas, but was induced in centrilobular 

hepatocytes.  It was also noted that following diclofenac treatment, peroxisomes 

appeared enhanced in size (Figure 4. 3D). 
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Figure 4. 3: Continuous infusion of diclofenac induces expression of catalase in the 
liver.  (A+C) vehicle control animal (B+D) diclofenac infusion 12mg/kg/day for 48 
hours.  CV represents central vein, PV represents portal vein.  (A+B) at 10x 
magnification (C+D) at 40x magnification. 
 

 

Figure 4. 4: Continuous infusion of diclofenac induces hepatic superoxide dismutase 
immunostaining in cetntral vein (CV) areas.  (A) vehicle control (B) diclofenac infusion.  
Both figures at 10x magnification. 
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4.3.5 Identification of protein binding following continuous intravenous 

infusion of diclofenac to the rat. 

No evidence of covalently modified rat serum albumin adducts could be detected in 

plasma from diclofenac treated rats, using LC-MS technology. 
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4.4 DISCUSSION 

Currently, no investigations of the continuous infusion of diclofenac to the rat have 

been reported in the literature.  However, continuous intravenous infusion of 

diclofenac to humans, at a dose of 0.96mg/kg/day, has been reported to control fever 

in patients with acute cerebral damage and in neurosurgical critical care (Cormio et al., 

2000; Cormio and Citerio, 2007). 

Continuous intravenous infusion of diclofenac to the rat followed first order kinetics 

over the first 24 hours of infusion.  A rapid increase in diclofenac plasma concentration 

was observed initially, which subsequently slowed, culminating in steady-state 

diclofenac exposure between the 6 and 24 hour time points following commencement 

of infusion (Figure 4. 1).  Similar pharmacokinetic profiles have been observed for 

numerous other compounds following continuous intravenous infusion to either the 

rat or man, where the infusion has been maintained for sufficient time for plasma 

concentration to induce a rate of clearance matching that of continuous infusion  

(Bowersox et al., 1997; Arens and Pollack, 2001; Boselli et al., 2003) 

 Subsequently, between the 24 and 48 hour time points a statistically significant 

decrease in plasma diclofenac concentrations was found.  Plasma diclofenac 

concentrations declined by 65% (from 1.220 ± 0.195µM to 0.423 ± 0.102µM 

respectively).  This decline occurred whilst continuous intravenous infusion of 

diclofenac was maintained.  The pharmacokinetic analysis indicated that this decrease 

in plasma diclofenac concentration was indicative of a 76% increase in diclofenac 

plasma clearance, from the 0-24hr clearance of 13.37 to 23.48 ml kg-1 min-1 to  

0-48hours.  Little evidence of equivalent pharmacokinetic changes following 

continuous infusion of other compounds could be identified in the literature, with 
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most drugs being found to maintain steady-state plasma concentrations until infusion 

was ceased.  This suggests that this increased clearance is not a result of the infusion 

technique, but rather is likely to be due to an adaptive change resulting from 

continuous diclofenac exposure. 

The primary mechanisms for drug plasma clearance are drug metabolism and drug 

export via active transport.  Consequently, it was hypothesised that continuous 

infusion of diclofenac induced either drug metabolism or drug clearance, resulting in 

its enhanced plasma clearance between the 24 and 48hour timepoints. 

Diclofenac is metabolised into 3 primary metabolites in most species, including the rat 

and man, namely CYP mediated oxidation into the 4-OH and 5-OH metabolites and 

diclofenac-AG.  In the rat, the CYP enzymes 2B, 2C and 3A isoforms have been 

associated with diclofenac oxidation (Tang et al., 1999b), with glucuronidation 

catalysed by UGT2B1 (King et al., 2001).  Diclofenac-AG is transported into bile via the 

active biliary efflux transporter Multi-Drug Resistance Protein Type 2 (Mrp2), following 

which it is eliminated via bile in faeces, is hydrolysed to liberate parent diclofenac 

which undergoes enterohepatic cycling and /or is metabolized by CYPs to hydroxy-AG 

metabolites (Seitz et al., 1998).  On analysis of hepatic sections immunohistochemically 

stained using an MRP2 antibody, no induction could be identified on comparison 

between diclofenac and vehicle infused animals.  In the literature, whilst MRP2 has 

been shown to be inducible (Courtois et al., 1999; Payen et al., 2001; Choi et al., 2007), 

its induction by diclofenac has not been reported.  Genetic associations with mutations 

in the ABCC2 gene encoding MRP2 have suggested that reduced function of MRP2 is a 

risk factor in developing diclofenac hepatotoxicity (Daly et al., 2007), suggesting 

accumulation of diclofenac or its metabolites may be involved in the pathogenesis of 
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hepatotoxicity, and consequently, induction of this enzyme on exposure to diclofenac 

may be desirable cellular defence pathway.  However no identification of its induction 

could be detected in this study. 

Staining was also added to investigate whether diclofenac infusion resulted in hepatic 

induction of the bile salt export pump (BSEP).  Several case-reports of off-target 

hepatotoxicity elicited by diclofenac have been associated with generation of 

cholestasis in patients (Dunk et al., 1982; Banks et al., 1995; Hackstein et al., 1998), 

however it is not clear whether diclofenac induced cholestasis is a causative factor in 

diclofenac hepatotoxicity, or is a consequence of other hepatotoxic mechanisms of the 

drug.  To investigate the potential for diclofenac to elicit obstructive cholestasis plasma 

bile salt and bilirubin concentrations were assessed combined with investigation of 

induction of BSEP transcription.  Through this experiment, no evidence of BSEP 

induction or induction of cholestasis could be found. 

Induction of oxidative metabolism was also hypothesised to be a mechanism 

responsible observed increased plasma clearance of diclofenac.   Many CYP enzymes 

have been found to be inducible, usually following a drugs activation of gene pathways 

resulting in the stimulation of RNA synthesis (Guengerich, 2001).  

Oxidative metabolism of diclofenac is catalysed by CYP2B, 2C and 3A families, with 

CYP2C11 and CTP2C7 identified as subtypes involved in diclofenac metabolism (Tang et 

al., 1999a).  As no synthetic standards of 4-hydroxy and 5-hydroxy diclofenac were 

available to allow accurate method development and mass-spectrometric 

quantification, immunohistochemical staining of liver sections for the CYP isoforms 

1A1 or 2C19 were used to investigate induction of these enzymes as a possible 

mechanism for enhanced plasma diclofenac clearance following its continuous 



Chapter 4 – Pharmacokinetics and Toxicity Assessment of Diclofenac following 
Continuous Intravenous Infusion to the Rat 

Page 202 
 

intravenous infusion.  No CYP3 family immunoshistochemical stains were available for 

the investigation of CYP induction.   

No consistent induction of CYP enzymes could be identified in hepatic sections isolated 

from diclofenac infused animals when compared with vehicle controls (Table 4. 5).  

This is consistent with published literature where no induction of either CYP enzymes 

or UGTs by diclofenac has been reported using either in vitro or in vivo assays.  

Whether this reflects an absence of investigation into diclofenac’s ability to induce CYP 

enzymes remains unclear.  

For these immunohistochemical studies, however, it should also be noted that the 

timepoint for isolating the liver for stabilisation and immunohistochemical stabilisation 

was 72 hours following cessation of diclofenac delivery.  During this 3 day period it is 

possible that hepatocytes may have recovered, subsequently degrading induced CYP 

protein, with the cell returning to a normal phenotype.  It should also be noted that 

the absence of CYP2B and 3A immunohistochemistry, that induction of these enzymes 

may also have been responsible for increased diclofenac clearance following infusion.  

However, no evidence for their induction by diclofenac either has been reported in the 

literature.  Consequently no evidence was attained identifying induction of metabolism 

as a mechanism for increased diclofenac plasma clearance. 

Plasma concentrations of diclofenac acyl glucuronide were monitored throughout the 

experiment; however this metabolite could not be detected in plasma at any time 

point of sampling.  It should be noted that samples were diluted either 1 in 2, or 1 in 4, 

prior to analysis.  Consequently the lower limit of AG detection at these dilutions 

would be 20nM or 40nM.  Undiluted samples could not be assayed due to the 

sensitivity of the mass-spectrometer.  Due to the known concentration of diclofenac in 
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these samples, there was a high chance of overloading the system if undiluted samples 

had been analysed. 

In vitro investigations using liver microsomes have predicted that acyl glucuronidation 

accounts for approximately 70% of the clearance of diclofenac in the rat (Kumar et al., 

2002), however the rate of acyl glucuronidation by rat UGT2B1 is 3 time slower than 

that of human UGT2B7 (King et al., 2001).  

AG metabolites have been detected in plasma following single bolus administrations of 

the aglycone to the rat for several compounds including diflunisal and suprofen 

(Dickinson et al., 1989; Smith and Liu, 1995), potentially continuous intravenous 

infusion of diclofenac at a rate of 0.5mg/hour may be insufficient to allow turnover by 

UGTs to form the for AG metabolism in the rat to levels detectable in the plasma.  AG 

metabolites are largely biliary excreted in the rat (Peris-Ribera et al., 1991), with TR-/- 

rats deficient in MRP2 showing the importance of this transporter in the efflux of 

diclofenac-AG across the cannalicular membrane (Seitz et al., 1998).  This export pump 

driven efflux of AG metabolites has been associated with eliciting high up-

concentrations of AG metabolites along the cannalicular membrane and away from the 

basolateral membrance (Sallustio et al., 2000), resulting in reports of biliary 

concentrations of gemfibrozil-AG 50 to 5000 times higher than the circulatory 

perfusate (Sabordo et al., 1999; Sabordo et al., 2000).  Active up-concentrations of AG 

metabolites are also thought to be maintained by active transport across the 

basolateral membrane back from the blood into the hepatocyte (Sallustio et al., 2000).  

Consequently for AGs to reach the plasma, it is likely that they would need to be 

formed in concentrations sufficient to overwhelm this hepatic concentration-driven 

efflux.   
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It was further hypothesised that continuous intravenous infusion of diclofenac, 

resulting in continuous exposure of the drug and/or its metabolites might elicit 

hepatotoxicity in the rat.  However, throughout the study, no identification of 

diclofenac hepatotoxicity could be identified using either clinical chemistry assessment 

(Figure 4. 2) although possible diclofenac induced alterations in liver histopathology 

were observed in some diclofenac treated animals following assessment of H&E 

stained liver sections (Table 4. 4).  Restriction of blood sampling volumes, as dictated 

by the project license and the desire for close monitoring of plasma diclofenac 

concentrations, meant that time points for clinical chemistry assessment of 

hepatotoxicity were not ideal.  Since the half-life of alanine transaminases has been 

estimated to be 8 hours in the rat (Ennulat et al., 2010), it cannot be ruled out that 

raised ALTs may have occurred in diclofenac treated animals at time intervals been 

cleared before clinical chemistry sampling at the 72 hour time point.  No evidence of 

cell death was evident on examination of H&E stained liver sections.  This observation 

is in line with the findings of Sallustio, who found no induction of hepatotoxicity 

following daily oral administration of diclofenac at a dose of 15mg/kg (Sallustio and 

Holbrook, 2001).  With the reported bioavailability of diclofenac at 79% (Peris-Ribera 

et al., 1991), Sallustio’s bioavailable dose is calculated at 11.85mg/kg, close to our 

12mg/kg/day dose.  Intraperitoneal administration of diclofenac at bolous doses of 

100mg/kg to the rat and 80mg/kg to the mouse has been shown to elicit 

hepatotoxicity (Gomez-Lechon et al., 2003b; Deng et al., 2008).  These doses far 

exceed the 24mg/kg dose of diclofenac received by rats over the 48 hour period of this 

infusion study.   
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Translocation of bacteria and endotoxins from the GI tract has been suggested to play 

a key role in heightening immune responses and exacerbating toxicity.  Evidence of this 

for diclofenac has been shown from the attenuation in plasma ALTs by 

pharmacological sterilisation of a rat’s GI tract prior to diclofenac administration (Deng 

et al., 2006).  The dose selected for this infusion was designed to elicit minimal 

toxicological stress on the gastro-intestinal tract of rats, translocation of gastro-

intestinal bacteria and endotoxins to the liver may have been abated, and may provide 

an explanation by which hepatotoxicity observed in the single large doses reported in 

the literature was abated.  However, clinical evidence supporting this ‘germ theory’ is 

lacking, as histopathological examination of liver biopsies from patients undergoing an 

idiosyncratic adverse drug reaction to diclofenac as yet has not revealed bacterial 

hepatic translocation.   

Despite this, the immune system does appear to have a critical role in the eliciting of 

diclofenac induced hepatotoxicity.  Pharmacogenetic studies have revealed a 5-fold 

increased risk in development of diclofenac induced hepatotoxicity in patients 

expressing polymorphisms in genes encoding the interleukins IL-4 and IL-10 (Aithal et 

al., 2004), and associations with HLA11 (Berson et al., 1994).  Detection of circulating 

antibodies recognising diclofenac-modified rat heptic proteins in 100% of patients 

experiencing diclofenac induced hepatotoxicity, and 60% of patients receiving 

diclofenac therapy without hepatotoxicity, combined with identification of diclofenac-

modified hepatic proteins in a liver isolated from a patient experiencing diclofenac 

induced hepatotoxicity provide good evidence for the immune system and the role of 

drug-protein adducts.  Further evidence has been achieved from mouse models, where 

lymph nodes isolated from diclofenac sensitised mice were stimulated on ex vivo 
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exposure to the hydroxyl metabolites of diclofenac (Naisbitt et al., 2007), and selective 

killing of diclofenac-exposed hepatocytes by splenocytes isolated from mice sensitised 

to diclofenac (Kretz-Rommel and Boelsterli, 1995).  The source of danger signals, which 

are hypothesised to be necessary for propagation of delayed ADRs to diclofenac, 

however remain unclear. 

In vitro investigations have associated diclofenac with eliciting cell death through 

perturbation of mitochondrial function.  Two separate mechanisms have primarily 

been hypothesised in eliciting diclofenac mitochondrial disruption.  Due to its weakly 

acidic properties, combined with its lipophilic nature, diclofenac has been 

hypothesised to readily cross the outer membrane of mitochondria, acting to uncouple 

mitochondrial oxidative phosphorylation (OXPHOS) (Whitehouse, 1967; Boelsterli and 

Lim, 2007).  Further to this, the diphenylamine structure of NSAIDs including diclofenac 

has been suggested to be important in this function (Masubuchi et al., 1999; 

Masubuchi et al., 2000).  Oxidative metabolites of diclofenac have also been suggested 

to act synergistically to mitochondrial toxicity elicited through the parent compound 

through inducing increased cellular calcium concentrations, subsequently inducing 

mitochondrial permeability transition (mPT), and eliciting cell death (Lim et al., 2006).   

Experimental evidence for diclofenac eliciting mitochondrial stress to hepatocytes has 

only ever been shown following in vitro incubation, with no direct in vivo evidence.  

Further to this, diclofenac has only been identified as cytotoxic to hepatocytes 

following incubation at super-physiological concentrations, with the exception of one 

recent study where repeat administration of diclofenac to primary human hepatocytes 

to elicit hepatotoxicity at 6.5µM concentration (Mueller et al., 2012).  With 99.5% of a 
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dose of diclofenac plasma bound (Chamouard et al., 1985), the potential of diclofenac 

to elicit mitochondrial stress in vivo remains controversial (Boelsterli and Lim, 2007).  

Histopathological assessment of H&E stained liver sections however, did not reveal any 

mitochondrial swelling, indicative of mitochondrial stress as a consequence of opening 

of the mPT pore.  H&E staining however did reveal glycogen depletion from 

hepatocytes in 4 animals of the 7 receiving diclofenac infusion.  Glycogen depletion in 

three of these animals was classified as grade 2.  Metabolism of glycogen in stores may 

represent a mechanism for replenishing energy production lost as a consequence of 

diminished ATP provision due to mitochondrial stress.  To further test for 

mitochondrial stress, hepatic sections were immunohistochemically stained for 

catalase and superoxide dismutase as markers of reactive oxygen species released as a 

consequence of mitochondrial dysfunction.  

Immunohistochemical assessment of liver sections revealed an induction in both 

catalase and superoxide dismutase staining following continuous infusion of diclofenac 

(Figure 4. 3, Figure 4. 4 and Table 4. 5).  This suggests that diclofenac treatment may 

increase hepatic exposure to reactive oxygen species.  Both catalase and superoxide 

dismutase staining was found most intense in the areas surrounding the central vein.  

This is where cytochrome P450 enzymes are most abundantly expressed (Lindros, 

1997), potentially providing further evidence of the importance of oxidative 

metabolism in eliciting mitochondrial stress.  

In summary, following continuous intravenous infusion of 12mg/kg/day for 48 hours, 

no hepatotoxicity could be detected using clinical chemistry assays and 

histopathological assessment of hepatic sections.  Induction of mitochondrial stress 

was suggested by depletion of glycogen stores and induction of the ROS scavenging 
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enzymes superoxide dismutase and catalase.   These adaptive mechanisms appear to 

be protective mechanisms, abating cell death.  Further to this, protection against 

hepatotoxicity also appears to have been elicited through induction of unidentified 

mechanisms 24hours following commencement of diclofenac infusion, resulting in 

enhanced plasma clearance of the parent drug.    
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5.1 INTRODUCTION 

The biotransformation of drugs to reactive intermediates, able to covalently modify 

endogenous macromolecules, is hypothesised to play a key role in the pathogenesis of 

delayed hypersensitivity reactions and other off-target ADRs (Kalgutkar and Soglia, 

2005; Park et al., 2005; Park et al., 2011).  Consequently, pharmaceutical companies 

will usually preferentially avoid the incorporation of chemical structures capable of 

being metabolically bioactivated into CRMs in drug design, and routinely incorporate 

screens into pre-clinical drug development and candidate selection to assess a 

molecule’s covalent binding towards macromolecules (Evans et al., 2004; Kalgutkar 

and Soglia, 2005; Nakayama et al., 2009; Thompson et al., 2012).  However, covalent 

binding assays using radiolabelled compounds almost invariably have a major 

mechanistic limitation: if they employ simple hepatic microsomal incubations to 

generate reactive metabolites, they are usually restricted to assessing oxidative 

bioactivations (Evans et al., 2004); if they employ complex preparations, such as 

isolated hepatocytes (Thompson et al., 2012), which should express all of the various 

bioactivation pathways, they invariably create a substantial requirement for additional 

studies if the metabolic basis of a positive finding is to be identified. 

Metabolic activation of carboxylate compounds to intermediates able to covalently 

modify proteins is also considered a critical stage in the pathogenesis of off-target 

ADRs associated specifically with this class of compounds (Boelsterli, 2002; Skonberg et 

al., 2008; Aithal, 2011).  The covalent binding of carboxylate compounds in vivo is well 

established, as shown by their modification of plasma proteins in volunteers and 

patients (Smith et al., 1986; Hyneck et al., 1988; Volland et al., 1991; Munafo et al., 

1993; Dickinson et al., 1994; Castillo et al., 1995) and in experimental animals (Smith et 
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al., 1990b; Sallustio and Foster, 1995; Liu et al., 1996; Dong et al., 2005).  Modification 

of hepatic proteins has also been revealed in both humans (Aithal et al., 2004) and 

animals (Pumford et al., 1993; Hargus et al., 1994; Wade et al., 1997; Wang and 

Dickinson, 1998; Wang and Dickinson, 2000; Wang et al., 2002; Aithal et al., 2004).  

However, none of these investigations determined either the precise structural type or 

the location of the covalent modification.  Proof of the adduction of plasma proteins 

rested solely on liberation of the parent drug from the unfractionated protein samples 

by non-specific alkaline hydrolysis.  This method is assumed to release the carboxylic 

acid and any oxygenated metabolites (Hermening et al., 2000) selectively from (i) 

amine and ester (acylation/transacylation) adducts and (ii) ester linkages within 

glycation adducts derived exclusively from AG metabolites (Figure 2.2), and thereby 

assays acylation and glycation adducts collectively and indiscriminately (Smith et al., 

1990a).  While these assumptions are reasonable in respect of the parent carboxylate, 

oxygenated metabolites released by alkaline hydrolysis might have been adducted via 

alkylation reactions to cysteine residues through thioether bonds (Deng et al., 2011).  

Limited identification and quantification of modified hepatic proteins was achieved 

using Western blotting with anti-drug antibodies (Wade et al., 1997; Wang et al., 2001; 

Aithal et al., 2004).  Radiotracer experiments in rats confirmed the covalent binding of 

carboxylate drugs – including diclofenac – to plasma and hepatic proteins (Masubuchi 

et al., 2007; Takakusa et al., 2008) but did not provide any additional insights into 

either the mechanisms or sites of bioactivation or the sites of protein adduction.  

Nevertheless, it should be noted that several drugs not known to form AGs also 

adducted plasma proteins. 
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The importance of haptenation in eliciting immune responses has been shown 

specifically for carboxylate compounds.  Circulating antibodies to diclofenac 

metabolite-modified liver protein adducts were found in all patients diagnosed with 

diclofenac-induced liver injury, 60% of patients receiving diclofenac therapeutics, but 

in none of the healthy controls (Aithal et al., 2004).  The specific killing of hepatocytes 

exposed to diclofenac (and showing protein modifications) by lymphocytes derived 

from spleens isolated from diclofenac-immunised mice provides further evidence for 

the importance of covalent modification in immune-mediated off-target ADRs 

associated with carboxylate compounds (Kretz-Rommel and Boelsterli, 1995). 

Direct glucuronidation of carboxylate compounds to AGs has received the most 

attention as the bioactivation pathway potentially responsible for generation of these 

off-target ADRs.  Many AGs have been shown to be chemically unstable (Table 2.1) and 

protein reactive (Munafo et al., 1990; Volland et al., 1991; Spahn-Langguth and Benet, 

1992; Ding et al., 1993; Ding et al., 1995; Qiu et al., 1998; Ebner et al., 1999; Iwaki et 

al., 1999; Mortensen et al., 2001; Walker et al., 2007) during in vitro incubation.  With 

evidence of the covalent binding of carboxylate compounds to plasma proteins in 

volunteers and patients correlating to AG plasma exposure (Smith et al., 1986; Hyneck 

et al., 1988; Volland et al., 1991; Benet et al., 1993; Munafo et al., 1993; Dickinson et 

al., 1994; Castillo et al., 1995), acyl glucuronidation has been designated a metabolic 

pathway of toxicological concern, producing uncertainty in the pharmaceutical 

industry as to how to progress AG-forming compounds safely (Faed, 1984; Spahn-

Langguth and Benet, 1992; Boelsterli, 2002; Shipkova et al., 2003; FDA, 2008). 

As a result of this anxiety, pharmaceutical companies often feel the need to provide 

evidence mitigating the potential risk of drugs found to form AGs in humans, often 
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deriving reassurance from the identification of AGs that are relatively stable in vitro 

and thereby possess low protein reactivity (Benet et al., 1993).  For example, following 

the identification of citalopram’s metabolism to a carboxylic acid which undergoes acyl 

glucuronidation, the authors felt the need to emphasise that the drug was 

administered at low doses (<40mg daily) and the AG was not a major metabolic 

product (Dalgaard and Larsen, 1999).  Following identification of the extensive 

metabolism of the ester pro-drug BIBF 1120 to an AG, reassurance was derived from 

the conjugate’s long degradation half-life at pH 7.4 (10.5 hours), and consequently it 

was claimed that the AG ‘has a low tendency to form covalent adducts to protein due 

to its higher stability [in vitro] and thus should not be the cause of safety concerns’, 

despite the identification of its acyl migration isomers circulating in plasma (Stopfer et 

al., 2011).   

Further to these experiences, efforts have been made to investigate the applicability of 

pre-clinical tests to predicting the clinical risks of carboxylic acid drugs and their AG, 

with correlations between drug risk and AG instability in vitro (Sawamura et al., 2010), 

predictions of AG instability and protein adduction (Bolze et al., 2002; Wang et al., 

2004; Karlsson et al., 2010) and extensive investigations into structure-activity 

relationships of AG (Vanderhoeven et al., 2004a; Vanderhoeven et al., 2004b; Baba 

and Yoshioka, 2009a; Baba and Yoshioka, 2009b; Yoshioka and Baba, 2009) being 

undertaken.  Medicinal chemists are also investigating mechanisms to remove 

carboxylic acid structures from the pharmacophore (Crosignani et al., 2011a), or 

incorporating α-carbon moieties to sterically hinder acyl glucuronidation or provide 

increased stability  to the resulting AG (Crosignani et al., 2011b; Gallant et al., 2011).   
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Anxiety over drug acyl glucuronidation, however, may be unjustified.  To date, no 

evidence has been reported showing covalent modification of protein in vivo is 

definitely attributable to AGs, either in animal models, or in man.  Moreover, rates of 

renal and biliary clearance of AGs in man are high (Smith et al., 1985; Verbeeck et al., 

1988; Castillo et al., 1995; Balani et al., 1997; Hofmann et al., 2005; Wang et al., 2006), 

with the conjugate’s clearance from biological systems further increased by their 

spontaneous and enzymatic hydrolysis in both plasma (Ruelius et al., 1986; Volland et 

al., 1991; Williams et al., 1992; Akira et al., 2002; Karlsson et al., 2010) and tissues, 

including the liver (Brunelle and Verbeeck, 1996; Iwamura et al., 2012).  Consequently 

in vivo blood exposure of AGs may actually be relatively low in many cases, and 

certainly considerably reduced in comparison with exposures predicted by liver 

microsome incubations (Table 2.1).  These factors have led to debate as to whether AG 

metabolites actually do form covalent protein adducts in vivo, and consequently 

whether they actually are of toxicological concern (Bailey and Dickinson, 2003; 

Shipkova et al., 2003; Regan et al., 2010).  The most compelling evidence of protein 

modification by a xenobiotic AG in a complex biological system is the observation that 

covalent binding of diclofenac to proteins in isolated rat hepatocytes was greatly 

reduced by inhibitors of glucuronidation but was not affected by inhibitors of P450 

(Kretz-Rommel and Boelsterli, 1993).  Nevertheless, metabolic AG formation does not 

translate inevitably into measurable covalent protein binding in either isolated 

hepatocytes or in vivo (Levesque et al., 2007). If AG metabolites do not produce 

protein adducts in vivo, it would have to be assumed that the adduction of plasma and 

hepatic proteins by carboxylic acid drugs was due entirely to reactions with the diverse 

electrophilic products of oxidative bioactivation (Chen et al., 2006; Masubuchi et al., 
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2007; Takakusa et al., 2008) and thioester conjugation (Grillo and Benet, 2002; Grillo, 

2011) that many such drugs, including diclofenac (Shen et al., 1999; Poon et al., 2001; 

Grillo et al., 2003; Masubuchi et al., 2007; Grillo et al., 2008a; Grillo et al., 2008b; 

Waldon et al., 2010), are known to form. 

To address this issue HSA, isolated from patients receiving conventional therapeutic 

doses of diclofenac, was analysed in the form of tryptic peptides, using tandem mass 

spectrometry.  Survey scanning was used to search specifically for acylation adducts 

and adducts derived exclusively from AG metabolites; namely the simple, predictable, 

glycation adducts of lysine residues that were found following incubation of the 

protein with synthetic 1-β diclofenac-AG (chapter 2).  In addition to glycating HSA in 

simple buffered incubations, diclofenac-AG has also been shown to glycate proteins in 

the much more complex environment of rat liver microsomes (Kretz-Rommel and 

Boelsterli, 1994). However, HSA was pragmatically selected for investigation of AG 

binding in these studies as it has a well characterised structure (Ghuman et al., 2005), 

is accessible and abundant, and has a long residence time in the circulation (Nicholson 

et al., 2000; Tornqvist et al., 2002), which favours accumulation of adducted protein 

(Zia-Amirhosseini et al., 1994), but it is also a physiologically relevant target for 

covalent modification by drug AG because these metabolites frequently circulate in 

plasma (Volland et al., 1990; Benet et al., 1993; Zia-Amirhosseini et al., 1994; 

Hermening et al., 2000; Zhang et al., 2011; Klepacki et al., 2012).  HSA has a significant 

experimental advantage in that it can be readily extracted from plasma and greatly 

enriched by affinity chromatography (Greenough et al., 2004; Jenkins et al., 2009b).  

Additionally, even relatively unsophisticated analyses of circulating HSA for adducts of 

drug and non-drug xenobiotics and their metabolites have identified HSA as a common 
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and tractable target of diverse acylating and alkylating species (Noort et al., 1999; 

Johannesson et al., 2001; Johannesson et al., 2004; Damsten et al., 2007; McCoy et al., 

2008).  HSA has an established place in protein adductomics: the assessment of 

exposure to exogenous and endogenous electrophiles through characterisation and 

measurement of adducts (Rappaport et al., 2012). In certain cases (Johannesson et al., 

2001; Johannesson et al., 2004), there is evidence that HSA is adducted selectively. 

Several undefined plasma proteins were modified by unidentified reactive metabolites 

of zomepirac and diflunisal in rats but the major modified protein was serum albumin 

(Bailey and Dickinson, 1996). While none of the studies that found carboxylic acid 

drugs bound covalently to circulating human plasma proteins identified the modified 

proteins, it is known that ketoprofen-AG, which circulates at relatively high 

concentrations versus the parent compound (Grubb et al., 1999), binds selectively to 

HSA in vitro (Dubois et al., 1993); there being no detectable covalent binding to 

fibrinogen and gamma globulins, and only low-level binding to alpha and beta 

globulins. These instances of selective adduction might be attributable to HSA’s 

abundance of nucleophilic side chains (Kristiansson et al., 2003). 

Due to tandem mass spectrometry of modified peptides enabling the sequence 

location and incremental mass of the modification to be identified simultaneously, 

even when only small samples of human protein are available (Jenkins et al., 2009b; 

Meng et al., 2011; Whitaker et al., 2011), it was anticipated this technique may allow 

the glycation pathway of adduct formation from diclofenac to be revealed in patients.  

Identification of HSA adducts formed through the glycation pathway would provide 

unequivocal proof that an AG metabolite is responsible for at least a fraction of any 
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adductions of the protein that occur in vivo, due to retention of a glucuronic acid 

residue in the adducts (Figure 2.2).    
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5.2 MATERIALS AND METHODS 

5.2.1 Materials 

Acetonitrile (LC-MS grade), hydrochloric acid (HCl), methanol (LC-MS grade) and 

trifluoroacetic acid (LC-MS grade) were purchased from Fisher Scientific, 

Leicestershire.  Bio Rad Bradford reagent was purchased from Bio Rad, Hertfordshire, 

UK.  Modified trypsin was purchased from Promega, Hampshire, UK.  Acetic acid (LC-

MS grade), ammonium hydrogencarbonate, diclofenac sodium salt, dithiothreitol, 

formic acid (LC-MS grade), iodoacetamide, potassium phosphate (KH2PO4), potassium 

chloride (KCl), tris(hydroxymethyl)aminomethane (TRIS) and zomepirac sodium salt 

were purchased from Sigma-Aldrich, Dorset, UK. 

0.1M phosphate buffer, pH 7.4 was made using 0.3117% monosodium phosphate 

monohydrate, 2.0747% disodium phosphate, heptahydrate  w/v in distilled water. 

All other reagents were purchased from Sigma-Aldrich, Dorset, UK, unless otherwise 

stated. 

5.2.2 Recruitment of diclofenac patients, blood sampling and plasma 

stabilisation 

Six patients were recruited to the study by Guru Aithal and Ira Pande at the 

Nottingham Digestive Diseases Centre, NIHR Nottingham Digestive Diseases 

Biomedical Research Unit, University of Nottingham and the Department of 

Rheumatology respectively, both at Nottingham University Hospitals NHS trust.  The 

patients had taken combined 100-150mg doses of diclofenac per day for a minimum of 

one year (Supplementary tables 6 and 7).  Diclofenac was taken variously as twice- or 

thrice-daily at 50mg or 75mg doses.  Patients N01-N03 took their final dose of 

diclofenac in the clinic, and an 18ml blood sample was removed 1 hour later.  Patients 
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N08-N10 took their final dose of diclofenac at home, and an 18ml blood sample was 

removed at the hospital 2.5 to 3 hours later.  Blood samples were collected by Marie-

Josèphe Pradere, at the Departmental of Rheumatology, Nottingham University 

Hospitals NHS Trust, into heparinised tubes on melting ice to minimise AG degradation 

and therefore protein adduction ex vivo, and centrifuged at 2000g for 10 minutes at 

4°C.  It is known that AG can be stabilised effectively at physiological pH through 

cooling alone (Xue et al., 2006; Matthews and Woolf, 2008; Klepacki et al., 2012).  

Plasma aliquots (60µl) for mass spectrometric analysis of covalent modifications of 

HSA by diclofenac were immediately frozen at -80°C in cryovial tubes.  They were not 

acidified because mildly acidic conditions cause a selective loss of AG glycation adducts 

from serum albumin (Smith et al., 1990a).  100 µl plasma aliquots for analysis of 

diclofenac and diclofenac-AG were taken, and the AG was immediately stabilised by 

acidification (Kenny et al., 2004) through addition of 2M acetic acid, 4% (v/v) final 

concentration (Sparidans et al., 2008).  Based upon the behaviour of other NSAIDs and 

their AGs (Ojingwa et al., 1994), reversible protein binding of diclofenac and 

diclofenac-AGs in the plasma sample will have been decreased significantly by 

acidification. Acidified plasma samples were immediately frozen and stored at -80°C.  

All samples were frozen at -80°C within 1 hour of blood collection.  Sample 

stabilisation of samples N08, N09 and N10 was performed by Melanie Lingaya and 

Rawinder Bainwait, Nottingham Digestive Diseases Centre, NIHR Nottingham 

Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of 

Nottingham.  Plasma samples were transported to the University of Liverpool, buried 

in dry ice, and were immediately stored at -80°C until they were analysed.  The 

covalent binding samples were analysed between 3 and 39 weeks after blood 
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sampling, and the plasma samples for diclofenac and diclofenac-AG metabolite 

analysis were run between 12 and 13 weeks of blood sampling.  Control plasma was 

obtained from 3 healthy volunteers who had never taken diclofenac.   

5.2.3 Analysis of diclofenac and diclofenac-AG concentrations in plasma 

samples 

Stored plasma samples were thawed at room temperature and processed 

immediately.  To 50 µl aliquots of the acidified plasma 10µl of 3 µM zomepirac internal 

standard was added in acetonitrile-water (1:1, v/v) containing 0.1% formic acid.  

Protein was precipitated through addition of four times volume of ice-cold acetonitrile.  

Precipitated protein was pelleted by centrifugation at 14,000g for 5 minutes at 4°C.  

Supernatant was removed, and filtered through 0.45-µm low-binding hydrophilic PTFE 

filter plates (Millipore, Cork, Republic of Ireland) according to the manufacturer’s 

instructions to remove any remaining particulate material.  The filtrate was evaporated 

to dryness at 37°C under a constant stream of nitrogen, and reconstituted in 60µl of 

acetonitrile-water (1:1, v/v) containing 0.1% formic acid.  A 10 µl aliquot was injected 

onto the HPLC column.  Analyte separation was performed at room temperature using 

a Zorbax Eclipse XDB-C18 column (150 x 2.1 mm, 5µm; Agilent Technologies, Santa 

Clara, CA, USA) connected to a Dionex Ultimate 3000 Ultimate 3000 HPLC system 

(Dionex Ltd., Macclesfield, Cheshire, UK) and a 4000 QTRAP hybrid quadrupole mass 

spectrometer (AB Sciex, Foster City, CA, USA).  Samples were maintained at 4°C in the 

autosampler.  Analytes were eluted using a gradient of acetonitrile containing 0.1% 

formic acid against 0.1% formic acid in water: 50-95% over 10 minutes.  The eluent 

flow rate was 210µl/minute. Under these conditions diclofenac 1-β AG and its isomers 

eluted as a single peak at 2.7 minutes; zomepirac eluted at 5.2 minutes and diclofenac 
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at 7.0 minutes.  MS operating parameters for the multiple reaction monitoring (MRM) 

analyses of diclofenac and diclofenac-AG are shown in Table 5. 1.  No endogenous or 

artefactual materials interfering with analyte and internal standard signals in the 

selected MRM channels were detected in control plasma samples.  The lower limit of 

detection of diclofenac and the 1-β AG spiked into pooled human plasma obtained 

from healthy volunteers, as defined by a signal to noise ratio > 3, was below 10nM for 

both compounds.  Detection of analytes in the clinical samples was confirmed using 

enhanced product ion (EPI) scans (Hopfgartner et al., 2004); the MS/MS spectra 

obtained matched the spectra of the authentic compounds.  The corresponding lower 

limits of quantification, as defined by accuracy of between 80-120%, and precision 

(coefficient of variation) < 20% was 50nM for diclofenac (accuracy 93.2%, precision 

15.9%), and 30nM for diclofenac-AG (accuracy 108.7%, precision 3.9.).  Three 

validation assays were run prior to analyte analysis, with further validation assays run 

each time sample analysis was performed. 

Table 5. 1:  MRM parameters for analysis of diclofenac and diclofenac-AG in plasma 
samples.  *Parent ions are [M + H]+.  ** Internal standard 

Parameters Diclofenac-AG Diclofenac Zomepirac** 

Fragmentation 

transition (m/z)* 
472.0296.1 296.1215.1 292.0139.0 

Declustering 

potential (V) 
37.00 31.00 40.00 

Entrance potential 

(V) 
10.00 10.00 10.00 

Collision energy (eV) 14.00 41.00 27.00 

Collision exit 

potential (V) 
15.00 15.00 15.00 

Dwell time (ms) 200 200 200 
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5.2.4 Isolation of HSA from plasma obtained from diclofenac patients 

Stored plasma samples were thawed at room temperature.  HSA was immediately 

isolated from three 60µl aliquots of unacidified plasma samples from each of the six 

diclofenac patients using affinity chromatography at room temperature (Greenough et 

al., 2004; Jenkins et al., 2009a).  HSA from patients N01, N02, N03 and N08 and also 

HSA from the pooled control plasma was captured on a POROS anti-HSA affinity 

cartridge (Applied Biosystems, Foster City, CA, USA).  This cartridge expired before any 

more plasma samples could be processed, and could not be replaced because the 

manufacturer had discontinued production. Therefore HSA from patients N09 and N10 

was captured using an Affinity Removal System column (HSA only; 4.6 x 50mm; Agilent 

Technologies, Santa Clara, CA, USA).  Both columns were installed on a PerSeptive 

BioSystems Vision Workstation (Applied Biosystems).  HSA was eluted with HCl (12 

mM) for patients N01, N02, N03 and N08 (Greenough et al., 2004), and with a 

proprietary acidic elution buffer (Agilent Technologies) for the N09 and N10 samples.  

Eluted protein fractions were immediately neutralised through addition of 0.1M Tris 

buffer, pH 7.  Protein fractions were precipitated immediately through vortex mixing 

with nine volumes of ice-cold methanol, and the precipitate was pelleted by 

centrifugation at 14,000 rpm.  The supernatant was removed, and the pellet washed 

three times with 60µl ice-cold methanol.  The precipitated protein was dissolved 

immediately in 50µl of 0.1M phosphate buffer, pH 7.4, reduced with dithiothreitol 

(10mM) for 15 minutes at room temperature and alkylated with iodoacetamide 

(55mM) for a further 15 minutes at room temperature.  The protein was then 

precipitated and washed with ice-cold methanol as before.  The protein pellet was re-

dissolved in ammonium hydrogencarbonate solution (50µM, 50µl), assayed for protein 
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content using the Bradford assay (Bradford, 1976), and 50 µl aliquots of 3.2mg/ml 

protein were digested with 5µg trypsin overnight.  On the following day, the tryptic 

peptides were subjected to ion exchange chromatography on a PolySULFOETHYL A 

strong cation-exchange column (200 × 4.6 mm, 5 µm, 300Å; PolyLC Inc, Columbia, MD, 

USA); a procedure that enhances substantially the sensitivity of the peptide analyses 

by LC-MS/MS (Jenkins et al., 2009b).  Peptides were eluted with a linear gradient (0-

50% over 75 min) of 10 mM KH2PO4 containing 1 M KCl and acetonitrile (3:1,v/v), pH 

<3, against 10 mM KH2PO4 and acetonitrile (3:1,v/v), pH <3, at a flow rate of 1 ml/min. 

The eluate was monitored at 214 nm. Approximately 15 peptide-containing fractions (2 

ml) were collected per elution. They were dried by centrifugation under vacuum 

before being desalted using a Macroporous Reversed-Phase C18 High-Recovery column 

(4.6 × 50 mm, Agilent Technologies) installed on a Vision Workstation and finally dried 

under vacuum for LC-MS/MS analysis.  These analyses were carried out within 1 week. 

5.2.5 Mass spectrometric characterisation of modified HSA isolated from 

patients receiving therapeutic doses of diclofenac 

Modified tryptic peptides were detected on a 5500 QTRAP hybrid triple-

quadrupole/linear ion trap instrument fitted with a Nanospray II source (AB Sciex).  

MRM transitions for peptides modified by diclofenac-AG by the transacylation or 

glycation pathways were selected as follows: the m/z values for all singly charged 

peptides with a missed trypsin cleavage at the modified lysine residue and mass 

additions of either 277 amu (for the transacylated peptide) or 453 amu (for the 

glycated peptide) were calculated.  These values were paired with the m/z values of 

the dominant fragment ions of diclofenac, namely m/z 215 and m/z 250 (Figure 2.6) to 

complete the MRM transitions.  Transitions for which a modified peptide was detected 
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in any of the experiments described here are listed in Supplementary tables 1 and 2, 

with cation exchange fractions shown in Supplementary table 3.  Other transitions 

representing peptides modified by a range of drugs in our laboratory but not observed 

here are listed in Supplementary tables 4 and 5.  Sample aliquots (2.4-5.0 pmol) were 

delivered into the mass spectrometer by an Ultimate 3000 HPLC System through a 5-

mm C18 nano-precolumn, a C18 PepMap column (75 µm × 15 cm; Dionex) and a 10-

µm i.d. PicoTip ionspray emitter (New Objective, Woburn, MA, USA). The ionspray 

potential was set to 2200-3500 V, the nebuliser gas to setting 19 and the interface 

heater to 150°C.  A gradient from 2% acetonitrile/0.1% formic acid (v/v) to 50% 

acetonitrile/0.1% formic acid (v/v) over 60 min was applied at a flow rate of  

300 nL/min. MRM transitions were acquired at unit resolution in both Q1 and Q3 to 

maximize specificity. Collision energies were optimised for each MRM transition and 

dwell times were 20 ms. MRM survey scans were used to trigger up to three enhanced 

product-ion scans of modified peptides according to the MIDAS technique (Unwin et 

al., 2005; Unwin et al., 2009), with Q1 set to unit resolution and with dynamic fill of the 

trap.  

Modified tryptic peptides were also analysed on an AB Sciex Triple TOF 5600 for 

confirmation.  The higher resolution and broader mass range of this instrument 

allowed for more confident assignments of some peptide sequences and hapten 

structures. Peptide aliquots (2.4-5.0 pmol) were delivered into the mass spectrometer 

via a 10-µm i.d. PicoTip (New Objective) by a direct-flow nano-LC system (Eksigent, 

Dublin, CA, USA): a NanoLC-Ultra chromatograph linked to a cHiPLC-Nanoflex docking 

station, ChromXP C18  trap column (200 m × 0.5 mm) and ChromXP C18 column (75 

µm × 15 cm). The ionspray potential was set to 2200-3500 V, the nebuliser gas to 
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setting 5 and the interface heater to 150oC.  A gradient from 2% acetonitrile/0.1% 

formic acid (v/v) to 50% acetonitrile/0.1% formic acid (v/v) in 90 min was applied at a 

flow rate of 300 nL/min. The instrument acquired data at 25 MS/MS spectra per cycle 

with an accumulation time of 100 ms each. The data were sorted in PeakView (AB 

Sciex) to highlight spectra with fragment ions of m/z 215 and m/z 250 and were then 

interpreted manually.  
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5.3 RESULTS 

5.3.1 Covalent binding of diclofenac to human serum albumin isolated from 

patients receiving therapeutic doses of the drug 

As found previously with in vitro incubations of benoxaprofen-AG and tolmetin-AG 

(Ding et al., 1993; Ding et al., 1995; Qiu et al., 1998), diclofenac was found to modify 

HSA in patients by both transacylation and glycation pathways, with representative 

mass spectra shown in Figure 5. 1.  Whilst the MRM transitions utilised in MIDAS 

analysis of the modifications were designed specifically for adducted HSA lysine 

residues, no modifications of other amino acid residues, such as the arginines and 

serines adducted by benoxaprofen-AG and tolmetin-AG (Ding et al., 1995; Qiu et al., 

1998), were identified by exhaustive analyses of selected cation exchange fractions on 

a 5500 QTRAP hybrid triple-quadrupole/linear ion trap mass spectrometer. 

Reactive metabolites of diclofenac were found to have modified the HSA isolated from 

all six patients analysed (Table 5. 2), with transacylation adducts detected in all 

samples.  Glycation adducts were detected in three of the six patient samples analysed 

(N01, N08 and N09).  The finding of these glycation adducts revealed definitively for 

the first time that AG metabolites can modify proteins in vivo.  None of these 

modifications were detected on tryptic peptides of the HSA isolated from pooled 

control plasma. 

Whilst diclofenac was found to have modified at least one amino acid residue of HSA 

isolated from each patient analysed, the number of lysine residues identified as 

modified and chemical pathways of modification varied greatly between patients.  The 

numbers of lysine residues modified through the transacylation pathway varied from 

one residue (K195) for patients N09 and N10, to five residues for patients N01, N02 
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and N08.   Transacylation adducts to residue K195 were identified in all 6 patient 

samples analysed.  K199 and K541 were the next most commonly modified lysine 

residues identified by the transacylation pathway in patients, N01, N02, N03 and N08. 

Glycation adducts, however, were only detected in three out of the six patient samples 

isolated.  Whilst four distinct lysine residues were identified as modified in HSA 

isolated from patient N08 (K195, K199, K432 and K525), only one modification was 

detected on albumin samples isolated from patients N01 (K199) or N09 (K195).   

From these data it is apparent that greater numbers of modifications by the 

transacylation pathway were detected compared to glycation, suggesting this may be 

the more favourable chemical pathway of adduct formation in vivo.  However, it 

cannot be discounted that differential ionisation of peptides, producing different lower 

limits of identification, may not allow accurate comparison. 

Almost all the modified lysine residues of HSA detected in the patient albumin samples 

were also detected following in vitro incubation of diclofenac-AG with HSA (Chapter 2).  

The only exception to this finding was the detected acylation of K436 (peptide 

433VGSKCCK439).  However, two of the eight lysine residues modified in vitro were not 

modified detectably in vivo, namely K137 and K351.  Only three of the eight lysines 

glycated by diclofenac-AG in vitro were adducted with the complete AG structure 

(Figure 2.2) in vivo: K195, K199 and K432.  All of these residues were transacylated 

both in vivo and in vitro. Two of the seven lysines transacylated and glycated in vitro 

were only transacylated in vivo: K190 and K541.  Uniquely in peptide 525KQTALVELVK534 

from the HSA of patient N08, K525, which was transacylated in vitro and in vivo and 

adducted with the complete AG structure in vitro, was adducted with glucuronic acid 

alone.  
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Figure 5. 1:  Examples of product-ion spectra demonstrating covalent modification of 
K199 in the tryptic peptide 198LKCASLQK205 of HSA isolated from a patient (N08) 
receiving diclofenac: modification by the transacylation (A) or glycation (B) 
pathways. The modified peptides were analysed on a 5500 QTRAP instrument. Ions 
produced by fragmentation of the diclofenac and diclofenac-AG residues are enclosed 
by red ellipses (see Figure 2.6).  The m/z values of the modified peptides and 
fragments correspond to the 35Cl2 isobars. C+iodo=cysteine residue alkylated with 
iodoacetamide. Note, the modified and unmodified peptides were not resolved 
completely by LC. The assignments of the ‘+453,’ ‘+277’, ‘+176’, and ‘+158’ ions are 
given in Figure 2.6.  The ‘+78’ ion was commonly seen on analysis of spectra glycated 
by the AG, but the fragment could not be definitively identified.  The MRM transitions 
for these peptides and the other adducted peptides are given in Supplementary tables 
1 and 2. 
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Table 5. 2: Identification of modified lysine residues of HSA isolated from patients 
receiving therapeutic doses of diclofenac and their chemical routes of modification. 

Patient 

identification 

number 

Time of blood 

sampling following 

last dose of 

diclofenac 

Chemical pathway 

of modification* 

Modified lysine 

residues** 

N01 1hr 
Transacylation 

K190, K195, K199, 

K432, K541 

Glycation K199 

N02 1hr Transacylation 
K190, K195, K199, 

K432, K541 

N03 1hr Transacylation K195, K199, K541 

N08 2 hr 52 mins 

Transacylation 
K195, K199, K436, 

K525, K541 

Glycation 
K195, K199, K432, 

K525 

N09 2hr 34 mins 
Transacylation K195 

Glycation K195 

N10 2hr 40mins Transacylation K195 

 

5.3.2 Detection and quantification of diclofenac-AG in plasma samples 

Plasma samples were also isolated and stabilised for qualitative analysis of diclofenac 

and diclofenac-AG and for quantitative analysis where possible.  LLOQ of the analyses 

were defined, as described in the methods section, at 50nM for diclofenac and 30nM 

for diclofenac-AG.  Sparidans et al. (2008) obtained corresponding figures of 68nM and 

42nM respectively (Sparidans et al., 2008).  Analytes were determined as detected but 

not quantified when their concentration was below the LLOQ provided the MRM peak 

eluting at the correct retention time had a signal-noise ratio of >3.  Further 

confirmation of analyte detection was provided through the use of multiple reaction 

monitoring-triggered EPI scans (Hopfgartner et al., 2004).  The survey scans triggered 



Chapter 5 – Formation of Covalent Protein Adducts by Diclofenac Acyl Glucuronide 
Metabolites in Patients 

Page 236 
 

MS/MS data capture automatically on detection of a signal for diclofenac (m/z 

296.1215.1) or diclofenac-AG (m/z 472.0296.1).  Analyte detection was confirmed 

by EPI scans if drug fragments were found in spectra captured at the known elution 

time of the analyte.  The known mass spectrometric fragments of diclofenac (MW 295 

for the 35Cl2 isobar) are m/z 215, 250 and 278.  The presence of diclofenac-AG was 

shown by identification of the known diclofenac fragments (the conjugate underwent 

conventional facile loss of the glucuronic acid residue), and occasionally by additional 

identification of the loss of water from diclofenac-AG giving an ion at m/z 454 (as 

shown by Figure 5. 2).  The lower limit of detection of diclofenac and diclofenac-AG 

was identified at <10nM for both analytes. 

Blood was taken from patients N01, N02 and N03 1 hour following the last 

administration of diclofenac.  Diclofenac-AG was not detected in plasma from N01 and 

N02 (Table 5. 3).  The concentrations of diclofenac from N01 and N02 were below the 

LLOQ.  Diclofenac-AG was detected in plasma from patient N03, and confirmed using 

EPI scans, although it remained below the LLOQ.  The plasma diclofenac concentration 

in this patient was 166.7nM.  

The time point of blood sampling from patients N08, N09 and N10 was extended to 

about three hours following the last dose of diclofenac.   Plasma concentration of 

diclofenac could be quantified in patients N08 and N10, at 423nM and 63.9nM, 

respectively, and the drug could be detected in patient N09.  The only patient in whom 

diclofenac-AG could be quantified in was patient N08, at 90.78nM, although it could be 

detected in the N09 and N10 plasma samples. 
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Table 5. 3:  Plasma diclofenac and diclofenac-AG concentration.  ND=not detected 
(MRM signal-to-noise ratio <3 at confirmed Rt of the analyte). NQ=not quantified 
(analyte concentration >LLOD,  <LLOQ). 

Patient 

ID 

Time of 

blood sampling 

Diclofenac AG 

(nM) 
Diclofenac (nM) 

N01 1 h ND NQ 

N02 1 h ND NQ 

N03 1 h NQ 166.7 

N08 2 hr 52 mins 90.78 423.3 

N09 2hr 34 mins NQ NQ 

N10 2hr 40 mins NQ 63.91 

 

 



Chapter 5 – Formation of Covalent Protein Adducts by Diclofenac Acyl Glucuronide 
Metabolites in Patients 

Page 238 
 

 

Figure 5. 2:  Representative total ion current scan (A), and EPI scans showing 
identification of diclofenac (B) and diclofenac-AG (C) in plasma isolated from patient 
N03. The protonated molecules (m/z 296 and m/z 472, respectively) and the fragment 
ions are enclosed by red ellipses (see Figure 2.6). The fragment ion of the AG at m/z 
454 is [M+H-H2O]+.  
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5.4 DISCUSSION 

The main aim of this study was to investigate whether AG metabolites can form 

covalent adducts with a protein in patients receiving therapeutic doses of the drug, 

using mass spectrometric techniques proven in vitro for identification of the adducts.  

Identification of glycation adducts of HSA in plasma isolated from three of the six 

patients analysed (N01, N08 and N09) provides the first definitive evidence that AGs 

can form covalent adducts in humans.  This finding reinforces the toxicological 

concerns held over AG metabolites over the last 30 years (Faed, 1984; Benet et al., 

1993; Shipkova et al., 2003; Skonberg et al., 2008). 

Transacylation adducts were formed in all of the six patients tested.  Whilst AGs are 

known to covalently modify HSA through the transacylation pathway in vitro (Ding et 

al., 1995; Qiu et al., 1998), reactive ester metabolites other than AGs may also be 

responsible in vivo.  Greater numbers of modifications in the clinical samples had 

occurred by the transacylation pathway than glycation.  This is unlike the 16 hour 

incubations of diclofenac-AG with HSA, where modifications by glycation were 

detected at lower concentrations than transacylation (Table 2.7).  Nevertheless, 

because of the high plasma concentration of HSA (Anderson and Anderson, 2002), the 

low molar ratio of AG to protein in these incubations bears some resemblance to the 

situation in vivo.  It is hypothesised, because 1-β AGs form transacylation adducts 

exclusively and sequential acyl migration and aldehyde-amine condensation are 

required for formation of glycation adducts (Chapter 2) and (Smith et al., 1990a), that 

in vivo AGs may be cleared before extensive acyl migration and/or glycation occurs, 

resulting in increased transacylation adduct formation in comparison to glycation. 
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Clearance of AGs in humans has been shown to be rapid, with renal clearances of 

zomepirac-AG of 406 ± 110 ml/min (11.3 fold faster than its aglycone) in healthy 

volunteers, and ibuprofen-AG of 2.46 ± 0.82 ml/min/kg (307.5 fold faster than its 

aglycone) in elderly patients (Smith et al., 1985; Castillo et al., 1995).  Biliary clearance 

of AG metabolites (Verbeeck et al., 1988; Balani et al., 1997; Hofmann et al., 2005; 

Wang et al., 2006) and their extensive spontaneous and enzymatic hydrolysis as shown 

in chapter 2 and the literature (Ruelius et al., 1986; Volland et al., 1991; Williams et al., 

1992; Akira et al., 2002; Karlsson et al., 2010) might also contribute to rapid and 

extensive plasma clearances of AGs.  This suggests that 1-β AGs may consequently be 

cleared from the plasma before extensive rearrangement into their positional isomers 

occurs, resulting in greater plasma exposure of the 1-β AG isomer than the positional 

isomers individually or collectively, and potentially greater formation of transacylation 

adducts than glycation. 

Nevertheless, there are reports of AG positional isomers in human plasma (Hyneck et 

al., 1988; Stopfer et al., 2011).  The extent of AG isomerisation in a patient’s plasma in 

vivo may be assessed through the use of longer LC-gradient conditions, allowing 

complete separation of positional isomers, as was described in chapter 2.  In the 

present study, all AG positional isomers were co-eluted in metabolite analyses to 

increase assay sensitivity.  From these analyses, only plasma of one patient (N08) 

contained a sufficiently high AG concentration for a separation gradient to be run.  

Unfortunately time was not available to perform this assay. 

However, it cannot be discounted that acyl-coenzyme A thioester (acyl-CoA thioester) 

conjugates of carboxylate compounds, which can also form covalent adducts through 

the transacylation pathway, and transacylate glutathione (Grillo and Benet, 2002; 
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Sidenius et al., 2004) and protein (Olsen et al., 2003) in vitro, may also be responsible 

for transacylation adducts detected in patient samples.  Studies using isolated rat 

hepatocytes and selective conjugation inhibitors indicated adduction of intracellular 

proteins by xenobiotic carboxylic acids can be mediated by their acyl-CoA thioesters (Li 

et al., 2002; Li et al., 2003; Grillo and Lohr, 2009).  Indeed the modification of proteins 

in rat hepatocytes by phenylacetic acid occurred in the absence of detectable AG 

formation (Grillo and Lohr, 2009).  Unlike AG metabolites, which are considered to be 

relatively low reactivity CRMs but with high abundance, allowing them to leave 

hepatocytes, reaching the general circulation and extra-hepatic tissues, acyl-CoA 

thioester metabolites are generally considered to be high reactivity but low abundance 

CRMs (Boelsterli, 2002).  To date no evidence has shown acyl-CoA thioesters escaping 

the cell into plasma.  Consequently, if the diclofenac-CoA thioester is partly or entirely 

responsible for the transacylation adducts detected on albumin in this experiment, it 

would suggest protein modification is at least partly located in the liver.    

This hypothetical mechanism of HSA adduction in vivo would appear to conflict with 

the findings of early studies of plasma protein modification by carboxylate drugs, 

where modification was found to correlate with plasma AG exposure (Smith et al., 

1986; Hyneck et al., 1988; Benet et al., 1993).  Due to their ability to reach the blood 

stream in appreciable concentrations (Grubb et al., 1999; Dockens et al., 2000; 

Hermening et al., 2000; Stangier et al., 2007; Stopfer et al., 2011; Zhang et al., 2011), if 

protein modification does occur in the plasma, it would suggest that AG metabolites 

are more likely to be responsible for transacylation adducts detected in patients.  With 

extensive hepatic generation of albumin, at approximately 12g/day (Anderson and 

Anderson, 2002), its intrahepatic modification by transacylation or glycation before 
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secretion into the plasma cannot be discounted.  Although serum albumin is 

synthesized largely in the liver, albumin gene expression has been detected in several 

other tissues (Shamay et al., 2005).  In principle, any tissue that synthesizes the protein 

and glucuronidates diclofenac could produce modified albumin.  Finally, the relative 

contributions of AGs and acyl-CoA thioesters to protein adduction in vivo might differ 

between carboxylic acids; as seems to be the case in isolated hepatocytes (Li et al., 

2002; Li et al., 2003; Grillo and Lohr, 2009). 

Any attempt at analysing protein adduction by AGs has to be qualified by an 

appreciation that even the use of advanced LC-MS/MS techniques has potentially 

significant limitations.  In particular, the glycation reactions of sugar species are very 

complex and probably incompletely understood (Ahmed and Thornalley, 2002; Wa et 

al., 2007), and certainly not limited to the familiar lysine condensation reactions and 

Amadori rearrangements (Frolov and Hoffmann, 2010).  No practical analysis of 

protein modification by a drug AG can allow for all of the potential glycation products; 

for example, cross-linking adducts derived from Amadori (2-ketoamine) structures 

(Acharya et al., 1988).  Consequently, in comparison with the intrinsically simple 

acylation adducts, the number of glycation adducts formed in vitro and in vivo may 

have been underestimated.  

Whilst no experiments have ever investigated plasma AG exposure following 

diclofenac administration to humans, the reported Cmax of diclofenac is approximately 

1.93µg/ml (6.5µM) in volunteers, or 0.99µg/ml (3.3µM) in patients with rheumatoid 

arthritis (Crook et al., 1982), with the normal population range for the concentration of 

HSA in plasma between 35-50mg/ml (530-758µM) (Anderson and Anderson, 2002), 

although concentrations have been shown to be lower in patients with rheumatoid 
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arthritis (Ballantyne et al., 1971; Crook et al., 1982).  Consequently, as plasma 

concentrations of diclofenac-AG are unlikely to exceed those of the aglycone Cmax, the 

maximum expected molar ratio of AG : HSA in patient’s plasma will be between 

0.012:1 and 0.004:1.  By analogy with the glycation of plasma proteins by endogenous 

species (Bhonsle et al., 2012), low albumin levels in patients might be associated with 

increased AG-mediated glycation because albumin competitively inhibits the natural 

glycation of less abundant proteins. 

In vitro incubation of 400nM diclofenac-AG with 40µM HSA (molar ratio of 0.01 : 1) 

revealed only a single modification of HSA, through the glycation pathway, at K190.  In 

contrast to this, several lysine modifications were identified on HSA isolated from 

patient’s plasma samples.  Cation-exchange enrichment of tryptic peptides during 

sample preparation may have increased the sensitivity of detection, revealing 

modifications undetectable in its absence, despite in vitro incubation for 16 hours.  

Alternatively, the long turnover time of HSA of approximately 21 days (Anderson and 

Anderson, 2002) or 14.6 days in rheumatoid arthritis patients (Ballantyne et al., 1971), 

may allow accumulation of covalent modifications.  Reduction of plasma HSA 

concentrations by 23% (Ballantyne et al., 1971) or 16.6% (Crook et al., 1982) in 

patients with rheumatoid arthritis, resulting in an increased ratio of AG:HSA may also 

result in increased albumin modification.   

Attempts were made to quantify plasma diclofenac and diclofenac-AG concentrations 

in patient’s plasma samples.  Restrictions in place for ethical approval of the study 

meant only one time point could be selected for blood sampling, meaning in-depth 

pharmacokinetic analyses could not be undertaken.  Due to the long turnover time of 

serum albumin in human plasma (Anderson and Anderson, 2002), the time point of 
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sampling is not likely to greatly influence the detection of covalent modifications of 

albumin in patients who have taken diclofenac for many months.  Consequently, time 

points were selected with the aim of allowing quantification of diclofenac and 

diclofenac-AG.   

Previous studies of diclofenac pharmacokinetics in humans used the enteric coated 

formulation of the drug, with tmax shown to be highly variable in these studies, varying 

from 1 hour to 5 hours in different individuals, but with a mean of between 2.0 and 2.5 

hours (Willis and Kendall, 1978; Willis et al., 1979; Willis et al., 1980).     

Whilst no restrictions were placed on the formulation of diclofenac for patients 

recruited to the study, it was known that most of the patients would be receiving 

enteric coated diclofenac-sodium formulations. The enteric coating is a pH-sensitive 

polymer, which remains intact in the acidic environment of the stomach, protecting 

the contents of the tablet.  After passing through the stomach, the coating 

disintegrates in the alkaline environment of the small intestine.  With absorption of 

enteric coated formulations delayed until later in the gastro-intestinal tract, it was 

assumed that tmax of enteric coated formulations would be later than those of standard 

diclofenac sodium formulations.  Blood samples were collected from the first few 

patients (N01-N03) 1 hour following DCF administration. This was selected to ensure 

patient compliance. However, with AG only detected in one sample and only minimal 

DCF detected in all three, it was decided to extend this time-point to three hours, and 

allow patients to take their final dose of DCF out of the clinic. 

Diclofenac-AG could not be detected in plasma samples isolated from patients N01 and 

N02, who received enteric-coated diclofenac sodium.  Plasma diclofenac was below 

the LLOQ, but could be detected.  Patient N03, however, received a modified (slow) 
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release form of the enteric coated formulation of diclofenac.  At this 1 hour time point, 

diclofenac could be quantified at 166.7nM, and although the AG remained below the 

LLOQ, its identification was confirmed by an EPI scan.   

The time point of blood sampling was extended to 2.5-3 hours after the last 

administration of diclofenac for the second group of patients (N08-N10).  This time 

point was selected to be closer to the reported plasma tmax of enteric coated 

formulations, in an attempt to facilitate identification and quantification of diclofenac 

and its AG metabolite.  Diclofenac could be quantified in the plasma of two patients, 

namely N08 (at 423.3nM, following administration of enteric coated formulation) and 

N10 (at 63.39nM receiving diclofenac sodium).  Diclofenac-AG could also be quantified 

in patient N08 (90.8nM), and whilst it could not be quantified, the AG was identified in 

plasma from patients N09 and N10 samples (Table 5. 3).   

In each plasma sample assayed through this study, the diclofenac concentration was 

considerably lower than the Cmax reported in the literature.  Whilst the Cmax of 

diclofenac has been reported to be reduced in rheumatoid arthritis and elderly 

patients compared to healthy volunteers (Willis and Kendall, 1978; Crook et al., 1982), 

values measured in this study remain lower than expected.  The most likely reason for 

this disparity is the time point of blood sampling.  The extensive variation of tmax values 

in patients receiving the same enteric coated formulation (Willis et al., 1980) means 

that consistent quantification with only one time point of sampling is difficult.  Rapid 

absorption of diclofenac following an initial lag-time (Willis et al., 1979; Willis et al., 

1980) suggests that the window of sampling within which diclofenac is detectable 

before Cmax is reached may be small, although it remains unclear whether this 

phenomenon is specific to enteric coated formulations of diclofenac, or is a property of 
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diclofenac itself.  This study, however, does provide confirmation that diclofenac is 

metabolised to its AG metabolite in patients, and the AG metabolite is present in 

plasma. 

Through the detection of drug-derived glycation adducts of HSA isolated from patients 

receiving diclofenac therapy, these experiments have provided the first definitive 

confirmation that AG metabolites can form covalent protein adducts in vivo.  This re-

affirms the potential of these metabolites to act as haptens, potentially having a role in 

the initiation of delayed hypersensitivity ADRs associated with their parent carboxylate 

compounds.   
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6.1 INTRODUCTION 

ADRs, accounting for 6.5% of hospital admissions in the UK (Pirmohamed et al., 2004), 

represent a major challenge for clinicians and healthcare systems alike.  Representing 

the 2nd most common cause of attrition of NCEs before clinical trials (Kola and Landis, 

2004), ADRs also play a large role in the reduced productivity and consequential 

profitability of the pharmaceutical industry.  With an estimated cost for the 

development of an NCE into a marketed drug of $802 million (DiMasi et al., 2003), late-

stage drug withdrawal as a consequence of ADRs inflicts a massive financial burden on 

the pharmaceutical industry.  Consequently, to avoid this situation, pre-development 

(in silico) prediction and/or in-development identification of compounds likely to elicit 

ADRs in humans is essential.  Off-target ADRs, however, as a consequence of their low 

incidence and unpredictable nature are currently infrequently detected before the 

drug is exposed to large clinical populations (Park et al., 2000), after large financial 

investment has already been made in the compound. 

Covalent binding of drugs or their CRMs to proteins is widely recognised as a potential 

risk factor in the pathogenesis of ADRs (Kalgutkar and Soglia, 2005; Park et al., 2005), 

with many drugs associated with idiosyncratic liabilities undergoing covalent binding in 

vitro and in vivo (Nakayama et al., 2009; Park et al., 2011a).  This recognition has 

resulted in the incorporation of screens in pre-clinical drug development to assess 

covalent binding, and consequential decision trees into how drugs should be managed 

if they are found to bind extensively (Evans et al., 2004; Park et al., 2011a; Sakatis et 

al., 2012).   

Whilst the covalent binding of drugs or their CRMs to proteins critical for cellular 

function has been suggested to have a role in idiosyncratic reactions towards drugs 
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(Park et al., 2005), including the pathogenesis of immune-allergic ADRs, such as 

anaphylaxis and hepatotoxicity associated with carboxylate compounds, it is the 

covalent binding of drugs or their CRMs with proteins and their subsequent 

presentation to the immune system by MHC molecules that is thought to be associated 

with their pathogenesis (Pichler, 2003; Park et al., 2011b), although direct non-

covalent interaction of drugs at T-cell receptors has been suggested for some 

compounds (Pichler, 2002) including sulfamethoxazole (Schnyder et al., 1997).   

With 14% of the drug withdrawn from the market between 1960-1999 containing a 

carboxylic acid group (Fung et al., 2001), attention has been drawn to the possible 

consequences of drug bioactivation at this site (Skonberg et al., 2008).  Further to this 

background situation, many carboxylate drugs remaining on the market do so with 

black-box warnings to their safety (Skonberg et al., 2008; Stepan et al., 2011), usually 

as a consequence of their association with off-target anaphylaxis or hepatotoxicity.    

A common metabolic pathway of carboxylate compounds is their direct and often 

extensive glucuronidation at the carboxylic acid group (Table 2.1), forming acyl 

glucuronides (AG).  AGs have been shown to be chemically unstable and protein 

reactive in vitro (Benet et al., 1993; Stachulski et al., 2006).  With covalent binding of 

carboxylate compounds to serum albumin in humans and animals correlating to 

plasma AG exposure (Smith et al., 1986; Hyneck et al., 1988; Smith et al., 1990b; Benet 

et al., 1993; Castillo et al., 1995; Sallustio and Foster, 1995; Liu et al., 1996), it has been 

proposed that CRM’s derived from carboxylic acids can elicit ADRs.  Consequently, this 

perceived association has resulted in anxiety in the pharmaceutical industry over the 

progression of compounds found to be metabolised to AGs, and incorporation of the 

phrase:  
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‘Phase II conjugation reactions usually render a compound more water soluble and 

pharmacologically inactive, thereby eliminating the need for further evaluation.  

However, if the conjugate forms a toxic compound, such as an acyl glucuronide, 

additional safety testing may be needed (Faed, 1984)’  

 

into the FDA’s  guidance for industry in the safety testing of drug metabolites (FDA, 

2008).   

However, to date, no direct and compelling evidence has shown covalent binding of 

AG metabolites to proteins in vivo.  Furthermore, with the expected rapid clearance of 

phase II metabolites (Caldwell, 1982), whether AGs actually are responsible for the 

covalent binding of carboxylate compounds is unclear, and certainly undefined.  

Consequently, further investigations into and potential cessation of development of 

compounds extensively metabolised into AGs, as advised by the FDA may be 

unnecessary.   

To address this, the central aim of this thesis was to investigate whether AG 

metabolites could directly form detectable covalent adducts to serum albumin in vivo.  
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6.2 RISK ASSESSMENTS OF ACYL GLUCURONIDE REACTIVITY 

The first focus of this thesis was to investigate diclofenac-AG as a suitable tool for the 

investigation of AG reactivity in vivo for the studies undertaken in consequence 

chapters of the thesis.  The criteria set-out for the suitability of an AG was that 

concerns made over its acyl glucuronidation would be made if the drug was developed 

as a NCE today.  In accordance with the FDA’s guidance for industry, the extensive 

(75%) acyl glucuronidation of diclofenac-AG in isolated liver microsomes supplemented 

with UDPGA (Kumar et al., 2002) and detection in pre-clinical species (Stierlin and 

Faigle, 1979; Sparidans et al., 2008) suggests that ‘additional safery testing may be 

needed’ (FDA, 2001). 

Safety testing of AGs are focussed on the investigating the protein reactivity of the 

molecule.  The most commonly used mechanism in pharmaceutical studies for the 

investigation of AG protein reactivity is through investigation of their rate of 

degradation in phosphate buffer, pH 7.4 at 37°C (Ebner et al., 1999; Wang et al., 2004; 

Walker et al., 2007; Potter et al., 2011; Stopfer et al., 2011).  This follows the finding of 

excellent correlation (r2=0.995) between the rate of degradation and protein binding 

of 9 AGs following in vitro incubation under physiological conditions (Benet et al., 

1993), and allows correlation of the reactivity of different AG molecules to be assessed 

and compared (Shipkova et al., 2003; Stachulski et al., 2006). 

Incubations in Chapter 2 revealed diclofenac-AG to spontaneously degrade under 

these conditions, with a t½ of degradation of 0.79 hours.  Whilst some discrepancy was 

found between this value of degradation and the value previously reported by (Ebner 

et al., 1999), increased time-points at the early portions of the degradation curve and 

homology with the other reported degradation t½ of 0.7 hours (Sawamura et al., 2010) 
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provides increased confidence in this data.  This rapid degradation of diclofenac-AG 

places it amongst the most reactive AGs reported.  Further studies were undertaken to 

confirm that this intrinsic reactivity also represented protein reactivity.  Following 

incubations with human serum albumin, covalent binding of diclofenac-AG was shown 

using both an established alkaline hydrolysis technique as well as direct tandem mass 

spectrometric analysis of tryptic peptides of the modified protein.  This confirmation of 

the chemical instability and protein reactivity of diclofenac-AG, combined with its 

extensive acyl glucuronidation does suggest that if diclofenac was developed as a NCE 

today, it is most likely that concerns would be raised about potential risk over its acyl 

glucuronidation.   

Correlation of the rate of degradation of the 1-β AG as to the consequential perception 

of safety of the compound however is less assured.  A study correlating the marketable 

fate of 21 carboxylate drugs with the degradation t½ of their 1-β AGs did show a good 

separation between compounds classified as safe.  No separation however, could be 

achieved to separate drugs with warnings attached to their safety and those 

withdrawn due to safety concerns (Sawamura et al., 2010).  Drugs in this warning 

category include naproxen, probenecid, ibuprofen and diclofenac.  With NSAIDs some 

of the drugs most commonly exposed to man, (Aithal, 2011).  6% of the US population 

using a prescription NSAID and 24 % of the US population exposed to ibuprofen in a 

month (Paulose-Ram et al., 2003), and with diclofenac, ibuprofen and naproxen the 

most commonly prescribed NSAIDs by general practitioners in the UK (Langman et al., 

2001), potentially useful compounds whose risk is not particularly high may not be 

progressing through pre-clinical drug development as a consequence of their acyl 

glucuronidation.  



Chapter 6 – Final Discussion 

Page 264 
 

6.3 CHEMICAL INTERACTIONS OF ACYL GLUCURONIDE METABOLITES WITH 

PROTEINS 

Secondary investigations in the thesis were undertaken in Chapter 2 to utilise methods 

developed in the validation of diclofenac-AG as a suitable AG for study to explore the 

chemistry of interaction between AGs and protein, and potentially to allow some 

prediction as to how the AG might behave in vivo. 

Incubations in phosphate buffer revealed diclofenac-AG to degrade primarily by acyl 

migration, with little hydrolysis detected.  The preferential degradation of by acyl 

migration rather than hydrolysis has also been reported for many other AGs (Watt and 

Dickinson, 1990; Iwaki et al., 1999; Corcoran et al., 2001; Akira et al., 2002; Berry et al., 

2009; Johnson et al., 2010; Karlsson et al., 2010).  Increased hydrolysis of  

diclofenac-AG was found following incubation with HSA at reduced (400µM) AG 

concentrations, with an absence of noticeable hydrolysis at higher concentrations of 

(2mM) AG in the incubation mixture.  This was hypothesised to reveal the weak 

esterase potential of AGs, as has previously been reported for other AGs (Watt and 

Dickinson, 1990; Sallustio et al., 1997; Iwaki et al., 1999; Mizuma et al., 1999; Akira et 

al., 2002) as well as other ester drugs (Ma et al., 2005).  Furthermore, extensive 

hydrolysis was revealed following incubation of the drug in isolated human plasma.  

This was considered to be a reflection of esterases known to reside in the plasma 

(Fukami and Yokoi, 2012), and again is reflective of the findings with other AGs (Watt 

and Dickinson, 1990; Dickinson and King, 1991; Dubois et al., 1994).  This esterase 

activity observed following incubation in isolated human plasma is likely to be 

reflected in in vivo studies, and in man may result in reduced plasma exposure to AGs, 

reducing their potential for covalent modification of protein.  This has been proven in 
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vivo where co-administration of zomepirac with the esterase inhibitor PMSF resulted 

in increased plasma exposure of zomepirac-AG, and a consequent increase in the 

covalent modification of protein (Smith et al., 1990b).   

These findings suggest that as well as the known extensive renal and biliary clearance 

of AGs in man, plasma hydrolysis of AGs in vivo, potentially by both HSA and plasma 

esterases may enhance the rate of clearance of AGs from the plasma, and 

consequently result in reduced AG exposure, consequently reducing the potential for 

AGs to modify plasma in vivo.   

Further experiments in Chapter 2 were directed to study the covalent modification of 

HSA by AGs.  An alkaline hydrolysis method was set-up to allow quantification of the 

covalent modification of HSA by protein, as commonly used in AG experiments.  This 

revealed modification to be both time and concentration dependent.  It is unclear from 

both this experiment and the literature as to whether following a maximum covalent 

modification of HSA by AGs being reached, whether a decline in the detection of 

binding is seen.  This is due to the consistent variation in the assay (Watt and 

Dickinson, 1990; Dickinson and King, 1991; Dubois et al., 1994).  Whilst not conclusive, 

a reduction in binding would mean that covalent modification of AGs is reversible, and 

although not extensive, may reduce the rate of covalent adduct accumulation in vivo. 

Direct tandem mass-spectrometric identification of the covalent modification of 

peptides was used to provide quantitative analysis of the interactions of diclofenac-AG 

with HSA.  These experiments confirmed that diclofenac-AG formed both glycation and 

transacylation adducts with HSA following in vitro incubation.  Covalent binding of the 

AG was primarily located in or around hydrophobic pockets on the HSA molecule, 

known to be important in the non-covalent interaction of many drugs with HSA 
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(Ghuman et al., 2005).  Potentially this may suggest the importance of non-covalent 

interaction of AGs with protein for covalent binding with protein.  Further work in the 

investigation of the chemical interactions of diclofenac-AG with HSA revealed the 

differential role of the 1-β diclofenac-AG to form transacylation adducts.  Combined 

with the earlier work of (Smith et al., 1990a) who suggested that acyl migration was 

required for glycation adducts.  This may suggest that as a consequence of the 

expected rapid elimination of AGs from the plasma as expected by their rapid urinary 

and biliary clearance (Smith et al., 1985; Verbeeck et al., 1988; Castillo et al., 1995; 

Balani et al., 1997; Hofmann et al., 2005; Wang et al., 2006) and extensive hydrolysis in 

the plasma Chapter 2 and (Iwaki et al., 1999; Mizuma et al., 1999; Akira et al., 2002), 

AGs may be expected to be cleared before extensive acyl migration, and consequently 

if they do form covalent adducts in vivo, it may be suggested that these could be 

expected to be through transacylation.  
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6.4 APPLICABILITY OF THE RAT TO STUDY THE POTENTIAL OF ACYL 

GLUCURONIDE METABOLITES TO FORM COVALENT ADDUCTS IN VIVO 

Following the validation of diclofenac-AG as a useful tool to investigate the protein 

reactivity of AGs in vivo, it was subsequently decided to investigate the applicability of 

the rat as a model system to investigate AG protein reactivity towards serum albumin.  

Initial investigations were undertaken to ascertain the covalent modification of RSA by 

diclofenac-AG following in vitro incubation.  These experiments revealed a reduction in 

the detection of the covalent modification of RSA than HSA following incubation with 

diclofenac-AG.   Modification of HSA could also be detected at 10-fold lower AG 

incubation concentrations than RSA.  This suggests that RSA is less susceptible to 

covalent modification by diclofenac-AG, although, as a consequence of the potential 

for differential ionisation of tryptic digest peptides of RSA and HSA in the mass 

spectrometer, assertive assessment of a quantitative reduction of covalent binding 

cannot be made.  However, a 74.7% reduction in the covalent binding of diflunisal-AG 

to RSA, was shown following the use of an alkaline hydrolysis detection of modification 

(Watt and Dickinson, 1990).  Loss of 60% of the identified diclofenac-AG binding sites 

on HSA in RSA, as a consequence of the 20% sequence variance in the two proteins 

(Sargent et al., 1981; Minghetti et al., 1986; Carter et al., 1989; Kosa et al., 1997) is 

hypothesised to be the attributable for the apparent reduced covalent modification of 

RSA by diclofenac-AG when compared to HSA. 

Despite this apparent reduced modification of RSA by diclofenac-AG, reports in the 

literature have still associated AGs with the covalent modification of plasma proteins in 

the rat detected following administration of their parent aglycones (Sallustio and 

Foster, 1995; Liu et al., 1996), with Western blot analysis identifying RSA as a main 
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target in the plasma for modification (Bailey and Dickinson, 1996).  However, again, as 

a consequence of the inability of antibody and alkaline hydrolysis methods to identify 

metabolic species responsible for covalent adducts detected, it remains possible that 

these adducts are not elicited by AGs, and may be formed through other bioactivation 

pathways of the drugs tested.  

With access to relatively large quantities of synthetic diclofenac-AG, it was decided to 

investigate whether covalent adducts to plasma proteins could be detected following 

intravenous bolus administration of the AG to the rat.  However, despite selection of a 

dose estimated to allow similar instantaneous AG exposure to RSA in plasma, as 

allowed detectable covalent adducts in in vitro incubations, no covalent adducts could 

be detected.  This was hypothesised to be a consequence of rapid AG clearance of the 

rat, preventing sufficient exposure to allow detectable covalent adducts.  With the 

physiological role of glucuronidation to enhance a molecule’s polarity and affinity for 

export transporters, consequently resulting in its rapid clearance from biological 

systems and organisms (Caldwell, 1982; Miners and Mackenzie, 1991) it was 

hypothesised that diclofenac-AG would be eliminated rapidly from the rat, as has been 

shown for other AGs (Watt et al., 1991; Iwaki et al., 1995; Dong et al., 2005), 

potentially with plasma esterases also acting to hydrolyse the drug in vivo, further 

increasing plasma clearance, as predicted through incubations in Chapter 2.  This 

hypothesised rapid clearance may prevent AG exposure reaching sufficient levels to 

allow detectable covalent modification of RSA in vivo in the rat.  

To investigate this hypothesis, the plasma clearance of an intravenous bolus dose of 

diclofenac-AG was investigated, and compared to that of diclofenac.  Plasma clearance 

of diclofenac-AG was found to be over 460% faster than diclofenac, with a plasma half-
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life of the AG of 4.12 minutes, indicating this hypothesis of rapid and extensive 

clearance of diclofenac-AG from the rat is valid.  As predicted by in vitro investigations 

in Chapter 2, extensive hydrolysis of diclofenac-AG was detected in the rat.  It could 

not however be completely defined whether high concentrations of plasma diclofenac 

following administration of its AG were a consequence of plasma (or tissue) AG 

hydrolysis, or a consequence of enterohepatic recirculation of the aglycone, as has 

previously been proved to occur in the rat (Stierlin and Faigle, 1979; Fukuyama et al., 

1994).  Whilst elimination of AG through plasma esterases may be considered a 

process resulting in reduced AG exposure, enterphepaic recirculation of diclofenac 

may act to further increase exposure through subsequent re-glucuronidation of the 

aglycone. 

With the plasma clearance of pharmaceuticals from the rat known to be faster than 

man (Chiou et al., 1998), combined with suspected reduced affinity of AG modification 

of HSA, the rat does not represent a suitable in vivo tool for the investigation of serum 

albumin modification by AGs in man.  The short t½ of circulatory rat serum albumin of 

2.5 days, in comparison to 21 days for humans (Tornqvist et al., 2002) also suggests 

that repeat dose studies investigating whether adducts could accumulate would not be 

useful.  The increased biliary clearance of AGs in rats in comparison to man, as a result 

of a humans preferentially exporting larger molecules across the hepatobiliary plasma 

membrane, unlike rats (Boelsterli, 2003) may however suggest the rat may be more 

suitable to investigation of hepatic modification of peptides by AGs. 
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6.5 THE USE OF CONTINUOUS INTRAVENOUS INFUSION TO INVESTIGATE 

POTENTIAL MECHANISMS FOR THE PRODUCTION OF DANGER SIGNALS BY 

DICLOFENAC 

Whilst the covalent binding of haptens to proteins is considered critical for their 

presentation to the immune cell in the hapten hypothesis (Padovan et al., 1997; Park 

et al., 2001; Pichler, 2003; Posadas and Pichler, 2007; Park et al., 2011b), antigen 

presentation alone is not considered sufficient for the stimulation of immune 

responses.  Danger signals from apoptotic, necrotic or stressed cells are also 

considered mandatory (Matzinger, 1994; Pirmohamed et al., 2002; Li and Uetrecht, 

2010).  Currently, the range of endogenous molecules that may act as danger signals 

are largely unknown (Li and Uetrecht, 2010), but in theory they may be generated by 

any mechanism resulting in cell stress, for example cytotoxic action of a drug.  With the 

apparently critical role of danger signals in off-target immune mediated ADRs, 

identification of potential mechanisms for their provision would be useful in providing 

better understanding of the mechanisms involved in idiosyncratic ADRs, and 

potentially helping towards a better understanding of the risk of NCEs.  To address 

this, investigations were undertaken with diclofenac, a model drug used to study off-

target hepatotoxicity (Boelsterli, 2003; Aithal, 2004), to investigate whether 

hepatotoxicity could be elicited in the rat following its continuous intravenous 

infusion. 

Dose-limiting gastro-intestinal toxicity of diclofenac (Menasse et al., 1978) and its rapid 

clearance following intravenous bolus administration as shown by Chapter 3 and  

(Chiou et al., 1998; Peris-Ribera et al., 1991) represent a major challenge in the study 

of the potential for diclofenac to elicit hepatocellular stress in vivo.  In an attempt to 
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overcome these obstacles, a continuous intravenous infusion drug delivery system, 

hypothesised to allow continuous drug exposure throughout the 48 hour study was 

used.  This would negate the drug’s rapid clearance, whilst the intravenous route of 

administration allows reduced drug exposure to the gastro-intestinal tract, reducing 

risk for the development gastro-intestinal toxicity in rats.  Whilst the use of continuous 

intravenous administration of drugs allowing continuous exposure is well established 

and used clinically (Howell et al., 1997; Leder et al., 1999; Howden and Richards, 2001; 

Recchia et al., 2001), few reports of its use in a toxicology setting have been reported. 

However, despite infusion of a maximum tolerated dose of diclofenac to the rat for 48 

hours, no evidence of hepatotoxicity could be detected.  Instead, plasma 

measurements of diclofenac concentration revealed an adaptive response to 

diclofenac infusion in animals resulting in enhanced plasma clearance of the drug.  

Further to this, increased expression of the ROS scavenging enzymes, catalase and 

superoxide dismutase were detected.  Whilst time points of toxicological investigation 

were not ideal, due to Home Office license constraints on blood volume sampling, 

these findings suggest that absence of hepatotoxicity may be a consequence of these 

adaptive responses to drug exposure. 

Whilst the adaptive mechanisms responsible for enhanced plasma diclofenac clearance 

could not be revealed, it is possible that this increased clearance may reduce the 

potential for drug metabolite or CRM accumulation.  Cellular accumulation of drugs or 

their metabolites has been associated with the pathogenesis of many idiosyncratic 

ADRs (Park et al., 2011a).  With no idiosyncratic ADRs reported for drugs administered 

at a daily dose of below 10 mg per day (Uetrecht, 2003; Stepan et al., 2011), clearly a 

threshold of drug exposure is required before a risk of idiosyncratic liability is reached.  
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Cellular accumulation of drugs or their CRMs is likely to increase the threshold to these 

ADRs.  Consequently, if this adaptive response, resulting in increased drug clearance 

translates to patients receiving chronic drug therapy, failure of a patient to adapt 

leading to reduced efficiency for drug or CRM elimination compared with the rest of 

the population may represent an increased risk of the individual for development of an 

idiosyncratic reaction towards the drug.  Genetic polymorphis studies in man, 

associating MRP2, CYP2C8 and UGT2B7 with increased incidence of hepatotoxicity in 

patients receiving diclofenac (Daly et al., 2007) does suggest that accumulation of 

CRMs may have a role in the development of diclofenac-induced hepatotoxicity in man 

specifically.  Before these hypotheses can be made confidently, the absence of 

hepatotoxicity and mechanisms of increased clearance need to be confirmed.  This 

could be undertaken through repeating the infusion study, allowing consistent 

assessment of plasma biomarkers of hepatotoxicity throughout the time course.  Livers 

should be isolated from rats immediately following cessation of infusion for 

histopathologial assessment of hepatotoxicity and export transporter induction.  

Western blot analysis investigating the hepatic induction of metabolising enzymes and 

export transporters, as well as metabolising enzyme function assays using microsomes 

or hepatocytes isolated from rats in the study may be used to confirm any 

histopathological findings from immunohistochemical staining.  
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6.6 COVALENT MODIFICATION OF HSA ISOLATED FROM VOLUNTEER PATIENTS 

BY DICLOFENAC ACYL GLUCURONIDE 

6.6.1. Identification of the modification of HSA by diclofenac acyl glucuronide 

in patients receiving therapeutic doses of diclofenac 

With the inapplicability of the rat model to investigate covalent modification of serum 

albumin by AGs as outlined in section 6.4, it was decided to investigate if covalent 

modifications could be detected in patients receiving therapeutic doses of the drug.  

Collaboration with the Department of Rheumatology and the Nottingham Digestive 

Diseases Centre at the Queens Medical Centre in Nottingham provided access to 

plasma samples isolated from patients receiving therapeutic administration of 

diclofenac for at least a year.  Albumin was isolated from these plasma samples, and 

covalent binding was assessed using direct mass-spectrometric analysis of tryptic 

digests of isolated albumin. 

With the retention of glucuronic acid in the adduct, the identification of glycation 

adducts to serum albumin isolated from three out of the six patients tested showed for 

the first time, definitive evidence for the covalent binding of AG metabolites to HSA in 

vivo.  With the well-established associations of covalent binding with immunological 

ADRs, largely shown through investigations into penicillin hypersensitivity (Park et al., 

2011a), this identification of AG covalent binding in vivo clearly represents an area of 

toxicological interest (Faed, 1984; Spahn-Langguth and Benet, 1992; FDA, 2008).   

However, it must also be noted that glycation adducts could only be detected to HSA 

isolated from 50% of the patients analysed.  Whilst it is assured that transacylation 

adducts are elicited as a consequence of direct bioactivation at the carboxylic acid 

group, due to the covalent linkage with protein at this site, metabolites other than AGs 
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may also be responsible.  Coenzyme A thioester conjugates of carboxylate compounds 

have also been shown undergo transacylation reactions with protein (Li et al., 2002; 

Olsen et al., 2003), and glutathione (Grillo and Benet, 2002; Sidenius et al., 2004).  

Consequently, they have the potential to also transacylate proteins in vivo (Skonberg 

et al., 2008; Grillo, 2011).  However, as suggested in section 6.3, with the 1-β isomer 

primarily responsible for the formation of transacylation adducts (Chapter 2), and 

potentially increased 1-β AG isomer exposure when compared to the acyl migration 

isomers, as a consequence of rapid AG clearance, potentially before extensive acyl 

migration in vivo, detection of transacylation adducts in vivo may also be a 

consequence of acyl glucuronidation. 

However, it must be remembered that to date, unlike the β-lactam antibiotics, 

immunogenicity of AG derived covalent adducts, has not yet been shown.  The only 

real evidence in the literature for the immunogenicity of AG adducts suggested by the 

generation of antibodies in rats exposed to RSA modified in vitro by diflunisal-AG 

through incubation (Worrall and Dickinson, 1995).  The requirement for co-

administration of Freund’s adjuvant to elicit antibody production, however, hardly 

provides good evidence for the immunogenicity of AGs.  With many drugs found to 

covalently bind to proteins without associations to toxicity, clearly an important next 

step in the research into the risk of acyl glucuronidation would be to investigate the 

immunogenicity of covalent adducts generated by AGs.  Consequently, it is clear that 

as well as confirming the covalent binding of AGs to serum albumin with other 

carboxylate compounds, investigations into the resulting immunogenicity is important.  

Approaches similar to those used in the investigation of β-lactam immunogenicity may 

be useful, where identification of circulating antibodies able to recognise the drug 
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isolated from drug-hypersensitive patients (Christie et al., 1988; Torres et al., 1997), 

and proliferation of lymphocytes isolated from hypersensitive patients following drug 

exposure or exposure to the drug target (Meng et al., 2011; El-Ghaiesh et al., 2012).  

Importantly, investigations into the covalent modification of proteins, and 

immunogenicity of these proteins should be undertaken, as outlined below, in 

combination with modified proteins also being tested for their immunogenicity.  

6.6.2. Considerations of disposition in the covalent modification of serum 

proteins by carboxylate compounds 

The disposition of AGs may provide further evidence for their role in hypersensitivity 

off-target ADRs associated with carboxylate compounds.  Generalised hypersensitivity 

reactions are usually considered to be a consequence extracellular covalent 

modification of proteins, resulting in the drug-hapten presentation by MHC-II 

molecules, and stimulation of CD4+ T-cells and B-cells (Pichler, 2003).  Consequently, 

due to the well-defined systemic circulation of AGs (Volland et al., 1990; Benet et al., 

1993; Mayer et al., 1993; Zia-Amirhosseini et al., 1994; Stangier et al., 2000; Zhou et 

al., 2001; Wang et al., 2006) acyl glucuronidation may be suggested to be the 

bioactivation pathway responsible for hypersensitivity ADRs to carboxylate 

compounds.  However, it is also possible that intrahepatically modified peptides may 

be exported outside the cell, and result in the stimulation of MHC-II responses.  

Suggested reactivity of oxidative metabolites of some carboxylate metabolites and 

their subsequently formed quinone-imines (Tang et al., 1999; Chen et al., 2006) may 

also have a role to play on the extracellular covalent binding of carboxylate 

compounds.   
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On the other hand, tissue-specific delayed hypersensitivity ADRs, as observed with 

diclofenac-induced hepatotoxicity, are thought to be associated with hapten 

presentation following the modification of intracellular proteins, with antigen 

presentation through MHC-I molecules, resulting in CD8+ T-cell responses (Pichler, 

2003).  This suggests modification of intracellular proteins is required for the 

development of hepatotoxic ADRs towards carboxylate compounds.  The intracellular 

nature of protein modification suggests that CRMs of carboxylate compounds unable 

to escape the hepatocyte also have a role to play in the pathogenesis of these ADRs.   

Immunohistochemical studies have been used to visualise and identify covalently 

modified hepatic proteins in the rat.  These studies have shown covalent modification 

of hepatic proteins to be located primarily on the canalicular membrane of 

hepatocytes.  AGs, as a consequence of their high canalicular concentrations, 

estimated to be between 50 to 5000 times higher than in the plasma (Sallustio et al., 

1996; Sallustio et al., 2000), have been hypothesised to be responsible for covalent 

adducts located across the canalicular membrane.  The high concentration of AGs at 

the canalicular membrane is considered to be a consequence of their high affinity for 

transport across the basolateral membrane into the hepatocyte by MRP3, and 

subsequently across the canalicular membrane by MRP2 and BCRP, as has been shown 

for diclofenac-AG through the selective transgenic knockout of mouse transporters 

(Lagas et al., 2010) and rats (Seitz et al., 1998).  Extensive reduction in the covalent 

binding of diclofenac through inhibition of glucuronidation (Kretz-Rommel and 

Boelsterli, 1993) and disruption of metabolite export by MRP2 (Seitz et al., 1998) also 

further suggests the potential of these metabolites to form covalent adducts to hepatic 

proteins in vivo.  Whilst these studies do provide strong evidence for the role of AGs to 
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form covalent adducts in the liver, they may still arise as a consequence of the 

bioactivation of compounds into several metabolites other than AGs.  Until the 

physiological consequences of covalent binding are ascertained, questions will remain 

as to its role in toxicology. 
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6.7 SUMMARY 

Through this thesis, in vitro experiments revealed diclofenac-AG to be chemically 

unstable and protein reactive following in vitro incubation.  This revealed it was a 

suitable AG for use throughout the rest of the thesis to investigate AG protein 

reactivity in vivo.  Further in vitro experiments revealed that plasma hydrolysis may act 

alongside drug elimination to enhance the clearance of AGs from organisms.  

Experiments in the rat revealed it is not a suitable tool for investigating AG protein 

reactivity towards serum albumin, potentially as a consequence to species differences 

in the primary sequence between HSA and RSA.  The rapid plasma clearance of AGs 

was confirmed in the rat, with continuous infusion of diclofenac revealing an adaptive 

change resulting in an enhanced rate of plasma clearance of diclofenac, alongside 

induction of the ROS scavenger enzymes catalase and superoxide dismutase.  The 

absence of any signal of hepatotoxicity in these animals suggests these adaptive 

changes act to protect the animal from any deleterious consequences of drug-

exposure.  The final experiments in the thesis were focussed on the identification of 

whether the AG of diclofenac could be identified covalently bound to serum albumin 

isolated from patients receiving therapeutic doses of the drug.  The identification of 

glycation adducts to HSA isolated from 50% of patients tested identify for the first time 

that AGs can form covalent adducts in vivo.  The definitive identification of 

transacylation adducts in vivo, which is also novel, also further confirms that 

bioactivation at the carboxylic acid of site of carboxylate drugs results in the formation 

of CRMs capable of forming covalent adducts in vivo, however identification of CRM(s) 

responsible for these transacylation adducts was not possible.  These findings re-affirm 

concerns over the safety of the carboxylic acid functional group in pharmaceuticals, 
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and reaffirms anxiety over acyl glucuronidation as a potential toxification pathway.  To 

assess whether these covalent adducts actually are a toxicological concern, 

physiological consequences of these covalent modifications needs to be assessed.  
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Supplementary 1.1 Chemical synthesis of diclofenac-AG 

The first stage describes the synthesis of allyl α, β-D-glucuronate (Supplementary 

Figure 1B).  D-glucuronic acid (Supplementary Figure 1A) (4 g, 20 mmol) was stirred 

with polymer-bound fluoride (6.7 g, 20 mmol) in 30 ml of dry dimethylformamide at 

20°C for 3 hours.  Following this, 1.9 ml of 22 mmol allyl bromide was added and the 

reaction mixture was stirred at 40°C for 20 hours.  The reaction mixture was filtered 

away, and the resin washed twice with 10 ml dimethylfromamide.  The combined 

filtrate was concentrated under high vacuum to provide the crude products as a pale 

yellow oil.  Flash chromatographic separation using ethyl aceteate, isopropyl alcohol 

and dH2O at ratios of 5, 3, 1 (v/v) provided the ester at 75% yield. 

The second stage describes the conversion of allyl α, β-D-glucuronate to diclofenac 

allyl glucuronate (Supplementary Figure 1C).  Diisopropyl azodicarboxylate (0.1 ml, 0.5 

mmol) was slowly added over 10 mins to a solution of diclofenac (0.170 g, 0.5 mmol), 

triphenylphosphine (0.135 g, 0.5 mmol) and allyl α, β-D-glucuronate (0.12 g, 0.5 mmol) 

in 3 ml anhydrous tetrahydrofuran stirred under nitrogen at 0°C.  After 1 hour the 

solution was evaporated to dryness and purified using silica chromatography, eluting 

with 5% MeOH in dichloromethane.  Appropriate fractions were pooled and 

evaporated to give the product as an α/β mixture.  A second chromatography, eluting 

with 5% ethanol in diethyl ether provided the pure β product as a white solid with a 

yield of 30%. 

The final stage describes the conversion of 1-β diclofenac allyl glucuronate to 1-β 

diclofenac-AG (Supplementary Figure 1D).  A solution of 1-β diclofenac allyl 

glucuronate (0.3 mmol) and tetrakis(triphenylphosphine)palladium (0.03 mmol) made 

in dry tetrahydrofuran and cooled to 0°C.  To this mixture morpholine (0.3 mmol) was 
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added, with the reaction mixture stirred under nitrogen for 1 hour, and was 

subsequently evaporated to dryness.  The crude product was subsequently purified by 

chromatography, eluting with 20% ethanol-dichloromethane.  Appropriate fractions 

were concentrated to provide the desired 1-β diclofenac-AG product.  Occasionally, 

reversed-phase column chromatography (acetonitrile, dH2O, 10-40%) or 

recrystallization was required to remove residual traces of palladium.  Pure 1-β 

diclofenac-AG was obtained with a 75% yield in this step as a white solid.  

 

Supplementary figure 1:  Schematic representation of the chemical synthesis of 
diclofenac-AG.  Reaction intermediates are (A) D-glucuronide (B) Allyl α,β-D-
glucuronate (C) Diclofenac ally glucronate (D) Diclofenac-AG.  Reaction steps are (i) 
Stirring of (A) with polymer bound fluoride in dimethylformate at 20°C followed by 
addition of ally bromide at 40°C.  (ii)  Slow addition of diisopropyl azodicarboxylate to a 
solution of diclofenac, triphenylphosphine and (B) in anhydrous tetrahydrofuran at 
0°C.  (iii)  Addition of morpholine to a solution of (C) 
tetrakis(triphenylphosphine)palladium at 0°C. 
 

Purity of synthetic 1-β diclofenac-AG was assessed using a combination of LC-UV, 

tandem mass-spectrometric and NMR assessment.  For acceptable use in experiments, 

purity was above 98%.  LC-UV conditions as described in section 2.2.4 were used to 

assess diclofenac purity.    
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Supplementary Table 1:  MRM transitions for peptides modified by diclofenac-AG 
identified in either in vitro incubations in chapter 2, or in clinical samples in chapter 5 

Peptide Charge 
Q1 

Q3 
Transacylation Glycation 

137KYLYEIAR144 2+ 667.3 754.8 215.1 
137KYLYEIAR144 2+ 667.3 754.8 250.1 
137KYLYEIAR144 3+ 445.2 503.5 215.1 
137KYLYEIAR144 3+ 445.2 503.5 250.1 

181LDELRDEGKASSAK195 3+ 599.6 657.9 215.1 
181LDELRDEGKASSAK195 3+ 599.6 657.9 250.1 
181LDELRDEGKASSAK195 4+ 449.9 493.7 215.1 
181LDELRDEGKASSAK195 4+ 449.9 493.7 250.1 

191ASSAKQR197 2+ 513.2 600.7 215.1 
191ASSAKQR197 2+ 513.2 600.7 250.1 
191ASSAKQR197 3+ 342.5 400.8 215.1 
191ASSAKQR197 3+ 342.5 400.8 250.1 
198LKCASLQK205 2+ 613.3 700.7 215.1 
198LKCASLQK205 2+ 613.3 700.7 250.1 
198LKCASLQK205 3+ 409.2 467.5 215.1 
198LKCASLQK205 3+ 409.2 467.5 250.1 

349LAKTYETTLEK359 2+ 787.8 875.3 215.1 
349LAKTYETTLEK359 2+ 787.8 875.3 250.1 
349LAKTYETTLEK359 3+ 525.5 583.9 215.1 
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Supplementary Table 2:  MRM transitions for peptides modified by diclofenac-AG 
identified in either in vitro incubations in chapter 2, or in clinical samples in chapter 5 

Peptide Charge 
Q1 

Q3 
Transacylation Glycation 

349LAKTYETTLEK359 3+ 525.5 583.9 250.1 
349LAKTYETTLEK359 4+ 394.4 438.2 215.1 
349LAKTYETTLEK359 4+ 394.4 438.2 250.1 

429NLGKVGSK436 2+ 540.8 628.3 215.1 
429NLGKVGSK436 2+ 540.8 628.3 250.1 
429NLGKVGSK436 3+ 360.8 419.2 215.1 
429NLGKVGSK436 3+ 360.8 419.2 250.1 

433VGSKCCK439 2+ 558.7 646.2 215.1 
433VGSKCCK439 2+ 558.7 646.2 250.1 
433VGSKCCK439 3+ 372.8 431.1 215.1 
433VGSKCCK439 3+ 372.8 431.1 250.1 

525KQTALVELVK534 2+ 703.8 791.4 215.1 
525KQTALVELVK534 2+ 703.8 791.4 250.1 
525KQTALVELVK534 3+ 469.5 527.9 215.1 
525KQTALVELVK534 3+ 469.5 527.9 250.1 

539ATKEQLK545 2+ 548.3 635.7 215.1 
539ATKEQLK545 2+ 548.3 635.7 250.1 
539ATKEQLK545 3+ 365.8 424.1 215.1 
539ATKEQLK545 3+ 365.8 424.1 250.1 
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Supplementary Table 3:  Summary of HSA peptides identified as modified in clinical 
samples, showing cation exchange fractions modified peptides were detected and 
their representative m/z values 

Patient 
Cation 

exchange 
fraction 

Peptide Transacylation Glycation Ion 

N01 

39-40 198LKCASLQK205  G 700.8 2+ 
41-42 198LKCASLQK205 T  612.8 2+ 
41-42 429NLGKVGSK436 T  540.3 2+ 
41-42 539ATKEQLK545 T  547.7 2+ 
43-44 191ASSAKQR197 T  512.7 2+ 
51-52 181LDELRDEGKASSAK195 T  599.3 3+ 

N02 

41-42 198LKCASLQK205 T  612.8 2+ 
41-42 429NLGKVGSK436 T  540.3 2+ 
41-42 539ATKEQLK545 T  547.7 2+ 
43-44 191ASSAKQR197 T  512.7 2+ 
51-52 181LDELRDEGKASSAK195 T  599.3 3+ 

N03 
41-42 198LKCASLQK205 T  612.8 2+ 
41-42 539ATKEQLK545 T  547.7 2+ 
43-44 191ASSAKQR197 T  512.7 2+ 

N08 

39-40 198LKCASLQK205  G 700.8 2+ 
39-40 198LKCASLQK205  G (-H2O) 691.9 2+ 
39-40 525KQTALVELVK534 T  469.2 3+ 
41-42 198LKCASLQK205 T  612.8 2+ 
41-42 429NLGKVGSK436  G 628.3 2+ 
41-42 539ATKEQLK545 T  547.7 2+ 
43-44 191ASSAKQR197  G 600.7 2+ 
43-44 191ASSAKQR197 T  512.7 2+ 
43-44 433VGSKCCK439 T  559.2 2+ 
51-52 525KQTALVELVK534  G 435.6 3+ 

N09 
43-44 191ASSAKQR197  G 600.7 2+ 
43-44 191ASSAKQR197 T  512.7 2+ 

N10 43-44 191ASSAKQR197 T  512.7 2+ 
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Supplementary Table 4:  MRM transitions run for detection of peptides modified by 
diclofenac-AG.  None of the peptides represented in this table were identified as 
modified following either in vitro incubations of diclofenac-AG with HSA (Chapter 2) or 
HSA isolated from patients receiving therapeutic doses of diclofenac (Chapter 5).  

Peptide Charge 
Q1 

Q3 
Transacylation Glycation 

1DAHKSEVAHR10 2+ 714.3 801.8 215.1 
1DAHKSEVAHR10 2+ 714.3 801.8 250.1 
1DAHKSEVAHR10 3+ 476.5 534.9 215.1 
1DAHKSEVAHR10 3+ 476.5 534.9 250.1 
11FKDLGEENFK20 2+ 752.8 840.3 215.1 
11FKDLGEENFK20 2+ 752.8 840.3 250.1 
11FKDLGEENFK20 3+ 502.2 560.3 215.1 
11FKDLGEENFK20 3+ 502.2 560.3 250.1 

146HPYFYAPELLFFAKR160 3+ 726.3 784.6 215.1 
146HPYFYAPELLFFAKR160 3+ 726.3 784.6 250.1 
146HPYFYAPELLFFAKR160 4+ 544.9 588.7 215.1 
146HPYFYAPELLFFAKR160 4+ 544.9 588.7 250.1 
161YKAAFTECQAADK174 2+ 970.8 NA 215.1 
161YKAAFTECQAADK174 2+ 970.8 NA 250.1 
161YKAAFTECQAADK174 3+ 647.5 705.9 215.1 
161YKAAFTECQAADK174 3+ 647.5 705.9 250.1 
161YKAAFTECQAADK174 4+ 485.9 529.7 215.1 
161YKAAFTECQAADK174 4+ 485.9 529.7 250.1 

210AFKAWAVAR218 2+ 649.3 736.8 215.1 
210AFKAWAVAR218 2+ 649.3 736.8 250.1 
210AFKAWAVAR218 3+ 433.2 491.5 215.1 
210AFKAWAVAR218 3+ 433.2 491.5 250.1 
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Supplementary Table 5:  MRM transitions run for detection of peptides modified by 
diclofenac-AG.  None of the peptides represented in this table were identified as 
modified following either in vitro incubations of diclofenac-AG with HSA (Chapter 2) or 
HSA isolated from patients receiving therapeutic doses of diclofenac (Chapter 5). 

Peptide Charge 
Q1 

Q3 
Transacylation Glycation 

275LKECCEKPLLEK286 2+ 912.9 NA 215.1 
275LKECCEKPLLEK286 2+ 912.9 NA 250.1 
275LKECCEKPLLEK286 3+ 608.9 667.2 215.1 
275LKECCEKPLLEK286 3+ 608.9 667.2 250.1 
275LKECCEKPLLEK286 4+ 456.9 500.6 215.1 
275LKECCEKPLLEK286 4+ 456.9 500.6 250.1 

367VFDEFKPLVEEPQNLIK383 3+ 775.1 833.4 215.1 
367VFDEFKPLVEEPQNLIK383 3+ 775.1 833.4 250.1 
367VFDEFKPLVEEPQNLIK383 4+ 581.6 625.3 215.1 
367VFDEFKPLVEEPQNLIK383 4+ 581.6 625.3 250.1 

473VTKCCTESLVNR484 2+ 872.8 960.4 215.1 
473VTKCCTESLVNR484 2+ 872.8 960.4 250.1 
473VTKCCTESLVNR484 3+ 582.2 640.6 215.1 
473VTKCCTESLVNR484 3+ 582.2 640.6 250.1 
473VTKCCTESLVNR484 4+ 436.9 480.7 215.1 
473VTKCCTESLVNR484 4+ 436.9 480.7 250.1 

542EQLKAVMDDFAAFVEK557 3+ 706.9 765.3 215.1 
542EQLKAVMDDFAAFVEK557 3+ 706.9 765.3 250.1 
542EQLKAVMDDFAAFVEK557 4+ 530.4 574.2 215.1 
542EQLKAVMDDFAAFVEK557 4+ 530.4 574.2 250.1 
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Supplementary Table 6: Concomittant medications and patient characteristics of 
patients N01-N03 analysed for covalent binding of diclofenac-AG to human serum 
albumin, and plasma concentrations of diclofenac and diclofenac-AG 

 N01 N02 N03 

Sex Male Female Female 
Date of birth 
(dd/mm/yy) 

07/11/1968 05/02/1945 06/07/1959 

Diclofenac dose 50mg bid EC 50mg bid EC 
50mg am 

75mg pm EC MR 

Diagnosis 
Rheumatoid 

arthritis (2010) 
Rheumatoid 

arthritis (1998) 
Rheumatoid 

arthritis (1990) 

Other medical 
issues 

Sciatica 

Osteoporosis 
fracture L2 

Erosive antral 
gastritis 

Carcinoma Breast 
(10/2010) 

Concomitant 
medications 

Methotrexate 
25mg/wk  
(Oct 2010) 

Methotrexate 
10mg/wk  
(02/2010) 

Methotrexate 
20mg/wk  

(1999) 

Folic Acid Folic Acid (02/2010) 
Folic acid  
5mg /wk 

Leflunomide 
(02/2011) 

Prednisolone 
Calcichew D3 Forte 

bid 

 Alendronate 
Prednisolone 5mg 

daily (12/2010) 
 Calcichew D3 Forte Omeprazole 

 Dermovate 
Tamoxifen 20mg 
daily (Dec 2010) 

 
Etanercept 
(12/2009) 

Zoladex iv monthly 
(Dec 2010) 

 
Omeprazole 

(04/2011) 
 

 
Citalopram 
(04/2011) 
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Supplementary Table 7:  Concomittant medications and patient characteristics of 
patients N08-N10 analysed for covalent binding of diclofenac-AG to human serum 
albumin, and plasma concentrations of diclofenac and diclofenac-AG 

 N08 N09 N10 

Sex Male Male Female 
Date of birth 
(dd/mm/yy) 

16/12/1947 17/12/1962 09/04/1934 

Diclofenac dose 50mg tds EC 50mg tds 50mg bid 

Diagnosis 
Rheumatoid arthritis 

(approx. 1980s) 

Ankylosing 
Spondylitis 1977 

 

Massive swelling 
right knee 

Jan2011, working 
diagnosis OA. 

Other medical 
issues 

Insulin dependent 
diabetes mellitus 
Coronary artery 

bypass graft 

Wegener’s 
Granulomatosis 

with left ICA 
occlusion 

associated with left 
hemisphere 

Infarction (2006) 

Generalised nodal 
osteoarthritis; 
migraine since 

childhood; 
hypertension; 

 

Concomitant 
medications 

Sulfasalazine 
Azathioprine 
150mg/day 

Co-codamol prn 

Hydroxychloroquine 
Simvastatin 
40mg/day 

Lansoprazole 15mg 
OD 

Insulin 
Lansoprazole 

15mg/day 
 

Aspirin Paracetamol prn  
Atenolol   

Paracetamol   
Alendronate   

Beclomethasone   
Rosuvastatin   

Adcal   
Thyroxine   
Ramipril   
Tadalafil   

 


