
 

 
 

 

Compressed Sensing on 

Terahertz Imaging 
 

 

Thesis submitted in accordance with the 

requirements of the University of Liverpool for the 

degree of Doctor of Philosophy 

 

by 

Hao Shen 

 

June 2012 

 

Department of Electrical Engineering and Electronics 



 

I 
 

Abstract 

 
Most terahertz (THz) time-domain (pulsed) imaging experiments that have been 

performed by raster scanning the object relative to a focused THz beam require 

minutes or even hours to acquire a complete image. This slow image acquisition is a 

major limiting factor for real-time applications. Other systems using focal plane 

detector arrays can acquire images in real-time, but they are too expensive or are 

limited by low sensitivity in the THz range. More importantly, such systems cannot 

provide spectroscopic information of the sample. 

 

To develop faster and more efficient THz time-domain (pulsed) imaging systems, this 

research used random projection approach to reconstruct THz images from the 

synthetic and real-world THz data based on the concept of compressed/compressive 

sensing/sampling (CS). Compared with conventional THz time-domain (pulsed) 

imaging, no raster scanning of the object is required. The simulation results 

demonstrated that CS has great potential for real-time THz imaging systems because 

its use can dramatically reduce the number of measurements in such systems. 

 

We then implemented two different CS-THz systems based on the random projection 

method. One is a compressive THz time-domain (pulsed) spectroscopic imaging 

system using a set of independent optimized masks. A single-point THz detector, 

together with a set of 40 optimized two-dimensional binary masks, was used to 

measure the THz waveforms transmitted through a sample. THz time- and 

frequency-domain images of the sample comprising 20×20 pixels were subsequently 

reconstructed. This demonstrated that both the spatial distribution and the spectral 

characteristics of a sample can be obtained by this means. Compared with 

conventional THz time-domain (pulsed) imaging, ten times fewer THz spectra need to 

be taken. 
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In order to further speed up the image acquisition and reconstruction process, another 

hardware implementation - a single rotating mask (i.e., the spinning disk) with 

random binary patterns - was utilized to spatially modulate a collimated THz. After 

propagating through the sample, the THz beam was measured using a single detector, 

and a THz image was subsequently reconstructed using the CS approach. This 

demonstrated that a 32×32 pixel image could be obtained from 160 to 240 

measurements. This spinning disk configuration allows the use of an electric motor to 

rotate the spinning disk, thus enabling the experiment to be performed automatically 

and continuously. To the best of our knowledge, this is the first experimental 

implementation of a spinning disk configuration for high speed compressive image 

acquisition. 

 

A three-dimensional (3D) joint reconstruction approach was developed to reconstruct 

THz images from random/incomplete subsets of THz data. Such a random sampling 

method provides a fast THz imaging acquisition and also simplifies the current THz 

imaging hardware implementation. The core idea is extended in image inpainting to 

the case of 3D data. Our main objective is to exploit both spatial and 

spectral/temporal information for recovering the missing samples. It has been shown 

that this approach has superiority over the case where the spectral/temporal images 

are treated independently. We first proposed to learn a spatio-spectral/temporal 

dictionary from a subset of available training data. Using this dictionary, the THz 

images can then be jointly recovered from an incomplete set of observations. The 

simulation results using the measured THz image data confirm that this 3D joint 

reconstruction approach also provides a significant improvement over the existing 

THz imaging methods. 
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Chapter 1  

Introduction 

 

1.1 Motivation of the Work 

As shown in Figure. 1.1, terahertz (THz) radiation refers to electromagnetic waves at 

frequencies in the THz range, which lie between the high-frequency edge of the 

microwave band and the long-wavelength edge of far-infrared light. Many crystalline 

substances possess sharp characteristic spectral features in this frequency range, 

which are associated with both inter- and intra-molecular vibrational modes [1, 2]. 

This, when coupled with the ability of THz radiation to propagate through common 

barrier materials, such as clothing and packaging, makes THz imaging and 

spectroscopy a potentially powerful tool for nondestructive determination of the 

chemical composition and physical structure of a concealed sample [3]. Indeed, over 

the past decade THz time-domain (pulsed) imaging has been demonstrated in 

applications areas as diverse as the medical diagnosis of human tissue, the detection 

and chemical mapping of illicit drugs and explosives, and pharmaceutical tablet 

inspection [4-7]. 

 

 

Figure. 1.1 The THz range of the spectrum lies between high-frequency edge of the microwave band 

and the long-wavelength edge of far-infrared light. 

 

THz time-domain (pulsed) imaging (TPI) systems have been studied and developed 
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rapidly since 1995. However, because of the relatively modest power levels available 

from the photoconductive sources commonly used in THz time-domain spectroscopy 

(THz-TDS) and imaging systems, and the lack of compact and sensitive 

multi-element THz detectors, most TPI experiments have been performed by raster 

scanning the object relative to a focused THz beam, and by using a single-point 

detector. Consequently, a complete image usually takes minutes or even hours to 

acquire, depending on the total number of pixels and the required spectral 

range/resolution. This is a major limiting factor for real-time applications such as in 

vivo medical and security imaging, or for on-line industrial process monitoring. Other 

approaches, such as those using focal plane detector arrays, single-shot electro-optic 

sensing using crossed polarizers and a charge-coupled device (CCD) camera, the 

Radon transform, and interferometric imaging [8-12], respectively, have certain 

limitations in speed, resolution or hardware requirement. Therefore, it is necessary to 

improve the current techniques to achieve a fast, cost-effective THz imaging system. 

 

Fortunately, a novel theory in signal processing called compressed/compressive 

sensing/sampling (CS) [13, 14] has emerged over the past decade. An advantage of 

CS is to sense sparse signals by reducing the sampling rate and storage of acquisition 

devices. Recently Chan et al. [15, 16] reported a new THz imaging procedure, based 

on CS. The proposed CS-THz imaging system can solve problems such as no 

conventional CCD and complementary metal-oxide semiconductor (CMOS) imagers 

in the THz range and the slow data acquisition using the raster scanning approach. 

The free-space time-domain (pulsed) THz wave front travelling from an object to a 

single-point detector was spatially modulated by the insertion of a series of planar 

two-dimensional (2D) masks. Each mask comprised a random checkerboard pattern 

of 32×32 pixels which could each either transmit or block the THz radiation. By 

recording the THz field in the presence of each mask, a 2D image of the object was 

reconstructed [15]. This approach not only eliminates the need to raster scan the 

object or THz beam, but also reduces the number of measurements required [15]. 

This is a significant improvement in speed compared with the traditional raster 
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scanning used for THz imaging (assuming that the masks can be changed 

automatically, for example, by using the newly developed THz spatial modulator 

[17]).  

 

To date, current CS-THz systems still have much room for improvement. A major 

advantage of TPI is that the transient electric field, rather than the radiation intensity, 

is measured as a function of time. This coherent detection scheme not only yields a 

THz signal with excellent signal-to-noise ratio (SNR) and a high dynamic range, but 

also preserves the important phase information. Therefore, the first problem is that 

such a CS-THz system has not been proved to obtain the spectral information of the 

desired sample. Secondly, as each row of sensing matrix Φ is independent, the 

imaging speed is limited by the slow translation of one random pattern to another [18]. 

We noted that a THz spatial modulator could, in principle, be used for automatic 

CS-THz imaging [17]. However, this first generation THz spatial modulator has only 

4×4 pixels, limiting its practical imaging applications. The second generation 32×32 

pixels THz spatial modulator is still underdeveloped. Thirdly, a fully random binary 

operator incurs high computational complexity and huge memory, especially for 

high-resolution imaging [16]. For example, to get a 512×512 image with 64k 

measurements (i.e., 25% sampling rate), it requires several to tens of gigabytes of 

storage and giga-flop operations, which is unrealistic in practice. 

 

The motivation for this research is to further improve the performance of current 

CS-THz systems. The aim is to achieve the following goals: firstly, to obtain both the 

spatial distribution and the spectral characteristics of a sample using the CS-THz 

system; secondly, to design specific sampling operators to minimize the sampling rate 

and the computational complexity; and thirdly, to achieve high speed compressive 

image acquisition. 
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1.2 Organization of the Thesis 

Chapter 2 introduces the background of two main aspects of this work: THz imaging 

and CS. Section 2.1 discusses the sources and detectors of THz radiation, THz-TDS 

system, THz imaging and the corresponding applications. Following a brief 

introduction to CS, section 2.2 continues with a discussion of the sparse signal model. 

After this, the classical properties of sensing matrices and various constructions for 

structured CS matrices are reviewed. The chapter then focuses on the theory and 

algorithms for sparse recovery; and concludes with a discussion of some extensions of 

the sparse recovery framework. 

 

Chapter 3 presents the simulation results for random projection on synthetic and 

real-world THz data. A linear random projection procedure will be demonstrated in 

this chapter. The minimum mean square error (MMSE) linear estimation was used as 

the reconstruction algorithm. The reconstructed THz images from both the synthetic 

and real-world THz data were subsequently acquired to obtain the desired image. 

Some key aspects of compressive THz imaging, including the effect of signal-to-noise 

ratio (SNR), the effect of number of measurements, and the limit of spatial resolution 

etc., were investigated and will be presented in this chapter. 

 

Chapter 4 reports on the development of a THz time-domain (pulsed) spectroscopic 

imaging system using a set of independent optimized masks. The coherent detection 

scheme not only yields a THz signals with excellent SNR and high dynamic range, 

but also preserves the important phase information. This enabled us to measure a THz 

spectrum at each pixel in the image. Such a THz spectrum can be reconstructed and 

obtained by using CS. In the experiment, two well-defined absorption features were 

observed in the lactose spectrum; this result agrees well with the published data. To 

the best of our knowledge, this is the first time that a CS-THz system has been used to 

obtain both the spatial distribution and the spectral characteristics of a sample. Also, 

the design of these optimized masks (these binary masks are optimized to 
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approximate the Karhunen-Loeve transform (KLT)) enables the sampling rate to be 

extremely small (only 10% of the pixels are required for reconstructing an image). 

The corresponding results have recently been published [18]. 

 

Chapter 5 further develops a faster and more efficient THz imaging system, based on 

a single spinning disk configuration, which allows the use of an electric motor to 

rotate the spinning disk, thus enabling the experiment to be performed automatically 

and continuously. In the THz imaging experiment, it took about 80 seconds to 

measure one THz image. We showed for the first time, to our knowledge, that a 

continuously spinning disk can be used for fast compressive TPI. A second generation 

spinning disk without substrate was developed to minimize the effect of the disk itself 

on the THz imaging system. This new generation spinning disk, which has the 

potential to achieve faster and more efficient THz imaging will be discussed. A brief 

summary of current CS-THz systems is reported at the end of this chapter. The results 

of this research into single spinning disk configuration have recently been published 

[19, 20]. 

 

Chapter 6 describes a three-dimensional (3D) joint reconstruction approach which 

has been applied to reconstruct THz images from random/incomplete subsets of THz 

data. Such a random sampling method provides a fast THz imaging application which 

can minimize the current THz imaging hardware implementation. We first propose to 

learn a spatio-spectral/temporal dictionary from a subset of available training data. 

Using this dictionary, the THz images can then be jointly recovered from an 

incomplete set of observations. The corresponding results have been accepted for 

publication [21]. 

 

Chapter 7 summarises the current achievements, i.e., random projection (Chapters 4 

and 5) and random sampling (Chapter 6) on THz imaging. Compared with the current 

CS-THz techniques, the proposed CS-THz systems have been further developed to be 

faster and more efficient. Additional, this chapter includes suggestions for future work. 
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We anticipate achieving compact design, fast computation, and easy implementation 

with potential video rate THz imaging speed.  
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Chapter 2  

Background 

 

2.1 Terahertz Imaging 

Many challenges, such as a lack of suitable sources, sensitive detectors, and other 

components for the manipulation of radiation in terahertz (THz) range, limited the 

evolutions in the field of THz in the 1960s-1970s. However, in the 1980s, the 

development of the femtosecond laser provided an alternative way to conduct 

spectroscopy in the THz range. This method, which relies on the optical excitation of 

photoconductive dipole antennas, is so-called THz time-domain spectroscopy 

(THz-TDS) [1-4]. The first images acquired using THz-TDS, as shown in Figure. 2.1, 

were reported by Hu and Nuss in 1995 [5, 6]. This is an impressive milestone and 

leads the subsequent evolutions of THz imaging techniques. The subsequent 

developments of THz imaging are mainly based on THz-TDS, which is closely linked 

to the ultrafast laser technology, especially to the development of the Ti:sapphire 

femtosecond laser [7]. The following sections will discuss THz sources, THz 

detectors, THz-TDS, THz imaging and its applications. 

 

 

Figure. 2.1 (a) Photograph and (b) THz image of a packaged semiconductor integrated circuit (plastic 

packaging). This is one of the first images acquired using THz-TDS. Figure adapted from [5]. 
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2.1.1 THz Sources 

This section discusses several general sources for THz generation: photoconductive 

emitter, optical rectification, photomixing sources (continuous-wave (CW) 

generation), the backward wave oscillator (BWO), the far infrared laser (FIR laser), 

the quantum cascade laser (QCL), and the free electron laser (FEL).  

 

A. Photoconductive emitter 

Currently, the most widely used broadband time-domain (pulsed) THz sources are 

ultrashort laser driven THz emitters based on frequency down-conversion from the 

optical region [8]. Photoconduction, one of the most common approaches, is based on 

a photoconductive switch on a semiconductor substrate excited by a femtosecond 

laser pulse. The dynamics of the transient current that generated the electromagnetic 

field determines the frequency content. Therefore, a current transient that evolves on 

the timescale of a few hundred femtoseconds to a few picoseconds will generate a 

radiation in the THz range [9]. Figure 2.2 presents the practical implementation of a 

biased photoconductive switch/antenna for generation of THz pulses [10, 11]. The 

metallic electrodes provide the bias field to the photoconductive gap between these 

two electrodes. When impinging the femtosecond laser pulses onto the gap, the 

current impulses will be generated. High energy photons can excite electrons across 

the electronic bandgap of the photoconductor into the conduction band. Using 

femtosecond laser pulses, the resulting current transients will generate the THz pulses 

that are emitted by a THz dipole antenna structure. More details for generation and 

detection of THz pulses from biased semiconductor antennas can be found in previous 

research [12]. 
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Figure. 2.2 Photoconductive antenna for generation of broadband THz pulses. 

 

B. Optical Rectification 

Another common method for generating broadband THz radiation is optical 

rectification, which is based on an electro-optic crystal by difference-frequency 

mixing of the frequency components of a femtosecond laser pulse [9]. The generation 

of THz radiation by nonlinear frequency mixing of laser beams was first demonstrated 

by mixing in LiNbO3 and quartz in 1969 [13]. Over the past forty years, many papers 

have proposed this method using various materials, such as LiNbO3 and LiTaO3, 

GaAs and CdTe, and ZnTe, to achieve ultrabroadband generation of THz pulses 

[14-21]. The current ‘hotspot’ of this area is the generation and detection of ultrashort 

THz transients by four-wave mixing in the focal region of intense laser fields [22-24]. 

 

The generation of THz radiation by short laser pulses requires efficient 

difference-frequency mixing of all the frequency components within the spectrum of 

the laser pulse. Thus, a distribution of difference frequencies in the time domain 

appears as an electric field transient with a shape similar to the envelope of the laser 

pulse. This process has since been referred to as optical rectification. Two factors, the 

bandwidth of the excitation pulse and the phase matching between the near-infrared 

pump beam and the generated THz field, determine the bandwidth and temporal shape 



 

12 
 

of the generated THz transient [9]. In the nonlinear crystal, the THz photons interact 

with the pump photons and create sidebands to the pump frequencies by difference- 

and sum- frequency generation (DFG and SFG), respectively. Note that this SFG 

process, which leads to the electro-optic effect, is widely used for optical detection 

[9]. 

 

By using both photoconduction and optical rectification approaches, the typical 

frequency range of generated THz radiation is from 0.1 to 3 THz or higher, depending 

on the laser pulse parameters. The average power levels range from nanowatts to 

hundred microwatts, and pulse energies are typically in the femtojoule to nanojoule 

range [8]. 

 

C. Photomixing Sources 

Photomixing is the generation of CW THz radiation from two lasers. Such a THz 

generation approach delivers an outstanding performance if spectral resolution is the 

primary concern. It is a complementary method for photoconductive generation. Note 

that, compared with photoconductive broadband time-domain (pulsed) THz 

generation, no femtosecond laser is required in the CW systems. The output of two 

frequency stabilized lasers is spatially overlapped in a photomixer and focused onto a 

biased photoconductive antenna (PCA) with an optimized electrode geometry [25]. 

Thus, the mixing of these two incident waves is exploited to generate a CW THz 

radiation, which oscillates with two different frequencies of two incoming waves 

[26-28]. After detuning one of the lasers, the emission frequency can be swept in a 

wide spectral range. Both the amplitude and the phase of the CW THz radiation can 

be detected coherently with a homodyne detection scheme [26, 29].  

 

The general principle for CW THz generation is similar to that for photoconductive 

broadband generation. Two CW lasers with identical polarization are required; the 

lasers with frequency 1  and 2  are spatial overlapped to generate a THz beat note. 
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The co-linear lasers are then used to illuminate the photoconductive THz emitter. 

Subsequently, the desired THz radiation with frequency 
21  THz  is generated. 

A Silicon hyper-hemispherical lens is used to collimate the THz beam. Note that the 

linewidth and stability of the two lasers determine the spectral resolution of the CW 

THz generation. Thus, the spectral resolution offered by CW THz spectroscopy is 

significantly higher than any other techniques in the THz range [9]. 

 

 

Figure. 2.3 Schematic diagram of two-beam photomixing with a photomixer. 

 

D. Backward Wave Oscillator (BWO) 

The BWO, also called backward wave tube, is a vacuum tube that is used to generate 

THz radiation [30]. An electron gun generates an electron beam that is interacting 

with a slow wave structure. The generated THz radiation has its group velocity 

directed opposite to the direction of motion of the electrons (i.e., the phase velocity of 

the wave is positive and the group velocity is negative). BWOs can operate in the THz 

region at moderate power levels (1-100 mW). A number of BWOs can be 

implemented and integrated into a system to generate a wide frequency range of THz 

radiation. A photo of BWO source which provides electromagnetic radiation at a 

single frequency is presented in Figure. 2.4.  
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Figure. 2.4 A photo of BWO source (Insight Productive Company, USA) which provides 

electromagnetic radiation at 0.14 THz. 

 

E. Far Infrared (FIR) Laser 

The FIR gas laser is relatively old coherent source developed in the THz region. It is 

an optically pumped laser which consists of a long waveguide filled with gaseous 

organic molecules. The most widely used gas is methanol, which provides a powerful 

(typically 100 mW) emission line at 118 μm [8]. Such FIR laser is line-tuneable in the 

range of 0.3 to 5 THz. Because it is inefficient, often requires helium cooling, and is 

only line-tuneable, the FIR laser technology has seen only modest development in 

recent years. 

 

F. Quantum Cascade Laser (QCL) 

QCL is a semiconductor laser that emits in the mid- to far-infrared region. It has been 

demonstrated as a relatively new source developed in the THz spectrum, but until 

very recently several significant problems had prevented THz QCLs from being 

realized. The main problems are caused by the long wavelength of THz radiation. 

This results in a large optical mode, which results in poor coupling between the small 

gain medium and the optical field, and in high optical losses, owing to free electrons 

in the material [31]. The first QCL to operate in the THz region was developed by 

NEST-Pisa and the Cavendish Laboratory [32]. Such THz QCL emitted at 4.4 THz, 

providing about 2 mW of average power. They addressed the above and other 

problems in an innovative design. This system demonstrated pulsed operation at a 

temperature of 10 K (requires helium cool); however, the optimized fabrication 

promises to lead to CW operation at a temperature of 70 K (liquid nitrogen 

temperatures). The QCL-based THz systems have been demonstrated by many 
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research groups, such as MIT and the University of Leeds [33, 34]. 

 

G. Free Electron Laser (FEL) 

The FEL with energy-recovering linear accelerators provides extremely high-power 

THz emissions [35]. Unlike gas, liquid or solid-state lasers, in which electrons are 

excited in bound atomic or molecular states, FELs use a beam of high-velocity 

bunches of electrons propagating in a vacuum through a strong, spatially varying 

magnetic field [31]. The magnetic field causes the electron bunches to oscillate and 

emit photons. The FEL has an extremely wide frequency range and is widely tuneable. 

Also, it may generate CW or pulsed waves, and provides an average brightness of 

more than six orders of magnitude higher than typical photoconductive emitters. 

However, such systems require prohibitive costs, space and a dedicated facility. 

 

Note that both the photoconductive emitter and BWO THz sources were used in our 

after-mentioned experiments to generate both broadband and single frequency THz 

radiation. 

 

2.1.2 THz Detectors 

Corresponding to the THz sources, several methods for THz detection are discussed 

here, including photoconductive sampling, free-space electro-optic sampling, thermal 

detectors (including bolometers), heterodyne detectors, extrinsic germanium detectors, 

and field-effect transistor (FET) detectors. 

 

A. Photoconductive Sampling 

One of the most common methods for broadband time-domain (pulsed) THz detection 

can be done by photoconductive detector. It has the same structure as the 

photoconductive emitter, whereas the only difference is that the detector antenna is 

not biased by any external circuit. A part of the femtosecond laser pulses’ train is split 
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and used to excite the detector structure. The detected THz pulses supply the electric 

field which required driving a photocurrent in the antenna. This photocurrent can be 

presented as a convolution of the electric field acquired by the antenna and the 

transient photoconductivity acquired by the gate pulse [9]. When the transient 

photoconductivity is much faster than the duration of the THz field, the photocurrent 

is proportional to the THz field strength. Oppositely, with long-live photoconductivity, 

the photocurrent is proportional to the temporal integral of the THz field. Therefore, 

the trapping and recombination time of the photoinduced carriers determines the 

bandwidth of the detector, and the transient photoconductivity can be treated as a 

low-pass filter function that is applied to the frequency spectrum of the THz pulse 

incident on the detector [9]. 

 

The material of the photoconductive detector is important for acquiring a high 

bandwidth of the detected THz signal. In 1988, radiation-damaged silicon-on-sapphire 

was used as photoconductive material [2]. Currently, low-temperature-grown (LTG) 

GaAs with a few hundred femtosecond carrier lifetimes is popular [36-39]. Other 

materials with smaller bandgaps, such as LTG-GaAsSb [40], LTG-InGaAs [41], 

superlattice structures with LTG-InGaAs/InAlAs [42, 43] and ion-implanted InGaAs 

[44-46], have also been proposed. 

 

B. Free-Space Electro-Optic Sampling 

The electro-optic (EO) sampling, another common method for broadband 

time-domain (pulsed) THz detection, is a coupling between a low-frequency electric 

field (i.e., THz pulse) and an optical pulse (the laser beam). As shown in Figure. 2.5, 

the THz electric field modulates the birefringence of the sensor crystal; and this in 

turn modulates the polarization ellipticity of the laser beam [31]. The probe 

polarization evolves into an almost circular, but elliptical, polarization after a λ/4 plate. 

A Wollaston prism splits the probe beam into two orthogonal components, which are 

sent to a balanced photo-detector. The ellipticity modulation of the laser beam, i.e., 

the difference between the two orthogonal components of the probe pulse, can then be 
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used to analyze the information on both the amplitude and phase of THz pulse. The 

materials of such electro-optic method have already been studied in the 

aforementioned broadband THz sources based on an electro-optic crystal. Note that 

the noise equivalent power (NEP) of both photoconductive and electro-optic detectors 

is around 10
-15

 W/Hz
1/2

; and the operating temperatures are both at room temperatures. 

Such EO sampling approach is used in our after-mentioned experiment to detect the 

broadband time-domain (pulsed) THz radiation. 

 

 

Figure. 2.5 Schematic diagram of a typical setup for free-space EO sampling. 

 

C. Thermal Detectors 

Many types of thermal detectors, such as bolometers, Golay cells, and pyroelectric 

detectors, can be used in the THz region [47]. Due to the low output power of THz 

sources, most of these systems require cooling to reduce the relatively high levels of 

thermal background radiation. Such approaches can reach NEP=10
-17

 W/Hz
1/2

 at an 

extremely low temperature - about 4 K and below. In a specific case, using the 

hot-electron Titanium nanobolometers, the NEP can reach 3×10
-19

 W/Hz
1/2

 at 0.3 K 

[48]. The operation principles of thermal detectors have been described in various 

research [49]. Some of the thermal detectors can operate at room temperature, 

whereas the NEP is relatively larger. A photo of one of the pyroelectric detectors is 

shown in Figure. 2.6; and note that this pyroelectric detector is used in our 

after-mentioned experiment to detect the single frequency THz radiation from a BWO 

source. 
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Figure. 2.6 A photo of pyroelectric detector (SPH-49, Spectrum Detector Inc. USA). NEP=3×10

-9
 

W/Hz
1/2

 . 

 

D. Heterodyne Detectors 

Heterodyne detectors are used in applications requiring very high spectral resolution 

of the detector. A local oscillator source at the THz frequency is mixed with the 

received THz signal in these systems. The downshifted signal is then amplified and 

recorded [31]. A Schottky-diode mixer has been reported for sensing applications at 

2.5 THz [50]. Cryogenic cooling can be used for higher sensitivity in heterodyne 

detectors. The most widely used is the superconductor-insulator-superconductor 

tunnel junction mixer [51]. More details of the heterodyne detectors have been 

discussed in various research [52]. 

 

E. Extrinsic Germanium Detectors 

The germanium-based extrinsic photoconductor detector is the first extrinsic 

photo-detector. Due to the limitation of silicon detectors (i.e., for wavelengths longer 

than 40 μm there are no appropriate shallow dopants for silicon), the germanium 

devices are more suitable for detecting long wavelengths. The NEP can reach a few 

parts 10
-17

 W/Hz
1/2

 in a doped germanium crystal. A general review of extrinsic 

germanium detectors has been studied in various research [47]. 
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F. Field-Effect transistor (FET) Detectors 

FET detectors can be used for both resonant (single wavelength) and non-resonant 

(broadband) THz detection and can be directly tuneable by changing the gate voltage. 

They can operate in room temperatures where the achieved NEP is around 10
-10

 

W/Hz
1/2

. The operation principle of FET has been discussed in various research [47]. 

 

2.1.3 THz Time-Domain Spectroscopy (THz-TDS) 

Experimental Setup 

The THz-TDS system, which allows a material's far-infrared optical properties to be 

determined as a function of frequency, has been reviewed in several publications [9, 

53-57]. Basically, in THz-TDS systems, the photoconduction and optical rectification 

can be used for THz generation; correspondingly, the photoconductive sampling and 

free-space EO sampling can be used for THz detection. The nonlinear optical 

techniques (optical rectification and EO sampling) are especially advantageous in 

their broadband properties and well-investigated frequency properties. However, the 

photoconductive antenna has a number of materials and fabrication techniques and 

may provide some complementary functions to optical rectification and EO sampling 

techniques. Figure 2.7 illustrates the THz-TDS system that was used in our 

experiment, using a photoconductive emitter for THz generation and the EO crystal 

for THz detection. A Ti:sapphire femtosecond laser provides ultrashort 

visible/near-infrared pulses. The output is split into two parts: a pump beam is used 

for THz generation and a probe beam for THz detection. The optical pulse is focused 

onto a biased PCA. The THz pulse generated from the PCA is collimated by the 

parabolic mirrors and is finally focused onto the EO crystal. Note that, except for such 

transmission THz-TDS, other implementations such as reflection THz-TDS and 

attenuated total reflection (ATR) THz-TDS are also widely used in spectroscopy 

applications [58-67]. 
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Figure. 2.7 Schematic configuration of a full THz-TDS system for transmission spectroscopy. A 

photoconductive emitter is used for THz generation and an EO crystal is used for THz detection. (PM: 

parabolic mirror, BS: beam splitter, PC THz emitter: photoconductive THz emitter, and EO: 

electro-optic). 

 

Data Analysis 

The first application of transmission THz-TDS was proposed in 1989 on water vapour 

in the ambient atmosphere [4], and subsequently the absorption coefficient and index 

of refraction of a range of dielectrics and semiconductors were reported [68]. To date, 

transmission THz-TDS is widely used in most THz spectroscopy measurements. The 

THz-TDS systems shown in Figure 2.7 are performed in transmission configuration. 

 

 

Figure. 2.8 Schematic diagram of the geometries for transmission and reflection THz spectroscopy. 

)(ˆ
0 E  is the incident field, )(ˆ tE  is the transmitted field, and )(ˆ rE  and )(ˆ ' rE  are the 

reflected fields from first and second interface of the sample. Figure adapted from [9]. 
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The general schematic diagram of the geometries for transmission and reflection THz 

spectroscopy is presented in Figure 2.8. The incident THz pulse can be described by 

its spectral amplitude and phase )(ˆ
0 E , which is obtained by Fourier transformation 

of the measured THz data in time-domain. Ignoring the multiple reflections within the 

sample, the transmitted and reflected signals in this geometry can be expressed as [9] 
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where 
12t̂ , 

23t̂ , 
12r̂ , and 

23r̂  are various complex Fresnel field transmission and 

reflection coefficients. Such transmission and reflection spectroscopy can be used to 

acquire the complex index of refraction of the sample, )()()(ˆ  inn  , where 

)(  is the extinction coefficient which related to the absorption coefficient )(  

through  2/)()( c . In transmission THz-TDS, two THz pulses, respectively 

propagating through air and the sample, are recorded and their spectral amplitudes 

and phases can be compared as [9] 
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For analyzing the sample materials with low absorption coefficient, the Fresnel 

transmission coefficients are real-valued, and at normal incidence we find [9] 
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In Figure 2.9, an example of a typical transmission THz-TDS measurement is shown. 

Figure 2.9 (a) illustrates a time trace of the THz signal, and Figure. 2.9 (b) presents 

the frequency spectra of this THz signal. 
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Figure. 2.9 (a) THz bandwidth transient recorded in the time domain and (b) its corresponding 

frequency spectrum. 

 

Equations (2.3) and (2.4) are only suitable for the sample materials with vanishing 

absorption and infinite thickness. For thin samples, the multiple reflections of the 

signal in the sample need to be taken into account. A sequence of signal echoes will 

appear following the main transmitted pulse in time domain. To solve this problem, 

Duvillaret et al. proposed a general situation including a Fabry-Perot factor )(FP  

and complex valued Fresnel transmission coefficients [69]. For a sample in air, the 

generalized transmission function )(ˆ T  is [9, 69] 
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The same authors demonstrated a method based on the presence of multiple signal 

echoes to calculate the sample thickness [70]. This method improves the 

determination of the optical constants, such as index of refraction, through 

simultaneous determination of the sample thickness. The thickness of any material 

with moderate absorption can be precisely obtained using this method. 
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Advantages and Disadvantages of the Time-Domain Approach 

After the development of the Fourier Transform technique in the 1950s, a well 

established technique, Fourier transform infrared (FTIR) spectroscopy, became a 

standard analytical method in the frequency range between 500 to 4000 cm
-1

. The 

advantages and disadvantages of the time-domain approach when compared to FTIR 

spectroscopy will now be discussed. 

 

Firstly, the time-domain approach measures the transient electric field, not merely 

intensity of the THz radiation. Compared with the FTIR method, time-domain 

approach enables to obtain the THz spectrum with much better sensitivity and 

dynamic range [71]. Thus, high-quality THz spectra can be obtained easily and 

widely.  

 

Secondly, because of the time-gated coherent detection technology used, the 

measurement is sensitive only to coherent radiation, and moreover only to radiation 

which is phase-locked to the repetition rate of the femtosecond oscillator. That means 

the extraneous ambient noise from the incoherent blackbody radiation can be 

minimized. As a result, the system can operate at room temperature without the liquid 

cryogens which had previously limited the wide use of THz spectrometers.  

 

Thirdly, as shown in Figure 2.9, the time-domain system provides both a typical 

waveform and the corresponding spectral amplitude and phase. The waveform in 

Figure 2.9 (a) is recorded as a function of time delay from a photoconductive 

sampling measurement. This is approximately proportional to the THz electric field, 

which contains both the amplitude and phase information.  

 

Fourthly, another benefit is the broad bandwidth of the radiation, which is broader 

than any other source in the THz range. In THz-TDS, the broadband coverage can be 

used for chemical mapping, which means locating materials by relying on their 
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unique THz absorption signatures. 

 

It is also worth noting that the THz-TDS have some limitations. As the non-linear 

optical mixing is inefficient, it makes the power in the THz beam extremely low. 

Although the dynamic range could be quite high in THz-TDS, which means the 

detector can filter many common noises [72], the detector still requires a lot of power 

to operate. Therefore, most of existing THz imaging systems rely on the raster 

scanning method to scan an object using a single detector. In practice, such a method 

significant limits the image acquisition time. 

 

Other limitations are inherent in the nature of the time-domain system [57]. In most 

cases, the spectral resolution is limited by the length of a scanning delay line in a 

conventional Fourier transform spectrometer. Thus, such a system is inadequate to 

achieve high-resolution applications. Also, the experiment may require a source to 

operate in the higher frequency range. THz-TDS system performs well in the 

low-frequency THz range, such as below 1 THz, whereas it performs less well in 

comparison to a quantum cascade laser operating at a high-frequency THz range [8]. 

The expensive femtosecond laser source is another disadvantage for most of the 

common applications. 

 

Generally speaking, transmission/reflection/ATR THz-TDS not only have the above 

advantages and disadvantages but also have respective benefits: transmission 

configuration offers reliable and quantitative THz spectra; reflection configuration can 

be used to study opaque samples; and ATR configuration is more suitable for rapid 

screening of many samples. 

 

2.1.4 THz time-domain (pulsed) imaging (TPI) 

Since the first TDS imaging system was reported in 1995 [5, 6], most of the THz 
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imaging since then has been based on THz-TDS, so-called THz time-domain (pulsed) 

imaging (TPI). Such an imaging system has all the previously mentioned advantages 

of the time-domain approach. This technique will now be briefly discussed, including 

its imaging modes, experimental setup and data analysis. 

 

Experimental Methods (Transmission/Reflection TPI) 

Most of the early studies were based on transmission TPI [5, 6], as shown in Figure 

2.3. The THz radiation is generated by pumping a biased THz emitter with an 

ultrashort laser pulse from a femtosecond laser. This THz radiation is collected, 

collimated and then focused onto the sample. After penetrating the sample, the THz 

radiation is then collected and focused onto the THz detector.  

 

In a THz imaging measurement, the THz waveform is taken from each position over 

the surface of a sample and recorded as function of time delay. Such an imaging 

system offers three-dimensional information: the vertical and horizontal dimension of 

the sample and the time-delay (depth) dimension. After measuring the THz waveform 

for each position of the sample, one can build the image pixel by pixel. Typically, 

images obtained using different portions of the data contain different types of 

information about the sample. Peak-to-peak amplitude of the THz time-domain pulse 

provides the amount of THz absorption at different parts of the image; whereas 

spectral phase and time delay of the transmitted THz pulse offers the thickness of the 

sample.  

 

Currently, TPI has been developed for many applications. However, the penetration 

depth is limited to only a few hundred microns because of the strong absorption of the 

great number of samples. Therefore, another powerful THz-TDS system, reflection 

TPI, is more appropriate for some THz imaging applications, as it not only allows 

opaque samples but also allows the use of the time-of-flight capabilities of the 

technique [11, 73]. By measuring the time difference of THz pulses reflected from the 

surface and the inner structures of the sample, the thickness of the sample can be 
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directly determined. This method offers a better performance than other indirect 

methods such as the near-IR spectroscopy approach [73, 74]. All the thickness 

information of multilayered samples can be identified using this approach. Figure 

2.10 shows the schematic diagram of a reflection TPI system.  

 

 

Figure. 2.10 Schematic diagram of a reflection TPI system. (PM: parabolic mirror, BS: beam splitter, 

PC THz emitter: photoconductive THz emitter, and PC THz detector: photoconductive THz detector). 

 

Data Analysis 

Here we studied the data analysis in a reflection TPI system, and the data analysis of 

transmission TPI system can be studied in a similar way. In order to analyze the THz 

data, the electromagnetic theory of studying the THz propagation in a multilayered 

medium is used. The incident THz pulse was first Fourier transformed to frequency 

domain. Then the transmission and reflection coefficients were calculated at each 

frequency using a 1-D model [75], together with the complex dielectric function for 

each layer of sample. The calculated reflection coefficients were finally Fourier 

transformed back to time domain to obtain a typical THz waveform with sample 

information. It was assumed that the incident THz radiation is p-polarized (i.e., the 

component of the electric field parallel to the incident plane) and the M-layered 

medium is uniform in the transverse. The schematic diagram of this 1-D model is 

shown in Figure. 2.8. The magnetic field of the THz radiation only has a z-component, 

which can be expressed as [63, 75] 
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With 
0k  the wavevector in vacuum, θ the incidence angle, and )( i

 the dielectric 

function in the ith layer of the sample. The x-component of the electric field can be 

obtained from Maxwell's equation [63, 75] 
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Figure. 2.11 Schematic diagram of 1-D model for simulating THz propagation in a multilayered 

medium. 

 

According to the continuity of ),()( yxH i

z
 and ),()( yxE i

x
 at the boundary 

iLy  , 

the boundary conditions are [75] 
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Therefore, we can obtain the following iterative formula from equation (2.10) [75]: 
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where 
iiiii  11 /  . Given arbitrarily, 1MA  and 0MB , 

1A  and 
1B  can 

be calculated by iterating equation (2.9). The reflection coefficient can be written as 

11 / AB , the transmission as 1/ AAM , and the absorptance as 111 //1 AAAB M . 

Note that, in the case of s-polarized incident THz (i.e., the component of the electric 

field perpendicular to the incident plane), we can use the similar way for analysis, but 

iii  /1

,

  will be used to replace 
i  [75]. 

 

 
Figure. 2.12 Simulated (a) refractive index and (b) extinction coefficient using a Lorentz model. Here, 

the center frequency value is 31 cm
-1

 (0.93 THz); the width of oscillator is 5 cm
-1

; the strength of the 

oscillator is 8 cm
-1

; and the C1=0.2, C2=0.2, C3=0.2 and C4=0. 

 

A Lorentz model with K-oscillators is used to express the complex dielectric function 

in the ith layer of the sample [63]: 
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where )(i

n , )(i

n , and )(i

nS  are the centre frequency, the width, and the strength of 

the kth oscillator (k=1, 2, ..., K) for the ith layer (i=1, 2, ..., M). The real part of this 

equation is the refractive index and the imaginary part, i.e., the second item in the 

bracket is an empirical expression for the extinction coefficient. Figure. 2.12 presents 

an example to simulate refractive index and extinction coefficient using a Lorentz 

model with one oscillator, which has one spectral feature at 31 cm
-1

 (0.93 THz). It is 

clear that such an oscillator will introduce the spectral feature of sample in both 

refractive index spectrum and extinction coefficient spectrum. Using the 

aforementioned equations, we can express a THz waveform reflected from a layered 

sample under normal incident condition [63]: 
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where D is the coating thickness, and 
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Taylor expansion is used to rewrite equation (2.13) for understanding the physical 

meaning [63]: 
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Now, it is clear that the first item is the THz reflection from the surface and the 

second item represents the THz multiple reflections within the sample. The first item 

in the brackets corresponds to the "fundamental" reflection and the rest of the items 

correspond to the "parasitic" reflection [63]. After Fourier transforming it back to time 

domain, all the multiple reflections can be separated because of their phase difference. 
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Normally, the strength of "parasitic" reflection is much less than that of the 

"fundamental" reflection unless the change in refractive index at the interface is large. 

So such "parasitic" reflection can be used to identify the presence of air gap within the 

multilayered medium. 

 

 
Figure. 2.13 (a) Typical THz waveform measured for a one-layer sample. (b) B-scan of THz 

waveforms measured for a one-layer sample. 

 

A typical THz waveform, as shown in Figure. 2.13 (a), can be obtained by Fourier 

transformed back to time domain. Figure. 2.13 (a) shows a one-layer sample, and it is 

easy to identify the peak intensity, which is an indicator to the refractive index of the 

surface. The interface index, which gives a measure of the strength of reflection from 

the interface, can also be obtained. Between these two peaks, the surface reflection 

and the interface reflection, the layer thickness can be consequently calculated. It is 
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noted that the absolute layer thickness can be determined by the value of refractive 

index of each layer. 
1n , which is the refractive index of air, is equal to 1. Then, 

according to the THz waveform and aforementioned equations, 
2n  and 

3n  can be 

estimated one after another. Finally, the layer thickness can be calculated. Basically, 

with the knowledge of any two of the THz waveform, the refractive indices and the 

layer thickness, the other one can be easily determined. More details about the 

reflection TPI, such as a discussion about the oscillation-like features caused by 

resonance absorption, etc., can be found in other research [63]. From Figure. 2.10 (b), 

the B-scan of the one-layer sample is shown after measuring a row of THz waveforms 

from Figure. 2.10 (a). It is easy to identify the surface in red and the interface in dark 

blue, respectively. A whole image of the sample can be obtained by raster scanning it. 

 

As discussed, the TPI system offers three-dimensional information: the vertical and 

horizontal dimension of the sample and the time-delay (depth) dimension. We can use 

different portions of the data to obtain an image of the sample. To demonstrate this 

point, Figure. 2.14 illustrates the THz transmission images of a chocolate bar obtained 

by two different portions of the THz data [77]. Figure. 2.14 (a) shows the image 

obtained by the peak-to-peak amplitude of the time-domain THz pulse. From this 

image it can be found that: firstly, the middle part is thicker than the top and bottom 

part of the sample – this is because of the sample’s plano-convex structure. Secondly, 

considering the scattering effects of the sample, the embossed letters are visible but 

rather difficult to read. Thirdly, the inner materials, almonds, can be easily identified 

because they absorb more THz radiation than chocolate. Figure. 2.14 (b) presents the 

image obtained by a different method, based on the transit time of the THz pulse 

through the sample, rather than the amplitude that used in Figure. 2.14 (a). Because 

the thicker sample delays the THz pulse to a greater extent, using this method, the 

image contains the information of thickness of sample. As a result, the embossed 

letters, which are thicker than other parts of the sample, are more easily distinguished. 

It is noted that, the primary source of noise in the THz-TDS system comes from the 
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instability of the femtosecond laser source. These noise sources have much more 

effect on the peak-to-peak THz pulsed amplitude compared to that on the path length 

delay corresponding to the phase of the THz pulse. Therefore, images obtained using 

the time delay or phase of the pulse can offer better quality than those which depict 

the amplitude transmission. More details about the transmission TPI system have been 

proposed in other research [77]. 

 

 

Figure. 2.14 THz transmission images of a chocolate bar obtained by using (a) peak-to-peak amplitude 

of the transmitted time-domain pulse and (b) variation in transit time of the THz pulse through the 

sample. Figure adapted from [77]. 

 

Most TPI systems rely on the raster scanning method to form an image pixel by pixel. 

Other more approaches, such as THz tomography and interferometric imaging, 

single-shot electro-optic sensing using crossed polarizers and a CCD camera, 

chirped-pulse technique, and a parallel method with the time-domain techniques, CW 

THz systems, are not further discussed here but details about them can be found in 

other research [78-85]. 

 

2.1.5 Applications of THz Imaging 

The applications of THz imaging exploit the unique properties of THz radiation, 
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which include the transparency of common packaging materials; and many desired 

materials exhibit unique spectral fingerprints in the THz range, which can be used for 

chemical mapping. Since the first image with a THz-TDS system was obtained in 

1995 [5] and the first CW image obtained with a photomixer based system was 

reported in 2001 [86], many applications have used THz imaging, due to its 

non-destructive nature. Currently the THz imaging research has expanded into the 

fields of security screening [87-91], plastics industry [92-96], pharmaceutical industry 

[11, 63, 97-101], and art conservation [102-106]. 

 

A. Security Screening 

The THz systems have considerable marketing potential in the field of security, such 

as body scanner, mail and luggage inspection, and hand-held optoelectronic THz 

system [87-91]. Some of the so-called body scanners have been recently used at 

airports, where most of them operate at a few tens of GHz; and other THz receiver 

arrays under development are based on highly developed microwave technology at 

one or a few hundred GHz [9]. These will not be discussed further here because, 

strictly speaking, these systems do not operate in the classic optoelectronic THz 

range. 

 

As many crystalline substances possess sharp characteristic spectral features in the 

THz range, together with the ability of THz radiation to propagate through common 

barrier materials, optoelectronic THz systems have been developed for explosives’ or 

illicit drugs’ detection within an envelope, a parcel or a suitcase. As an impressive 

example, Picometrix developed a QA-1000 THz imaging system for transmission 

imaging [91]. The transmission image through an attaché case is presented in Figure. 

2.15. All the desired inner objects, such as a knife, a bottle and a gun, can be 

identified easily. In this case, the pixel intensity was logarithmically proportional to 

power integrated from 0.2 to 2 THz. Sixty-six pixels can be obtained per second and 

each pixel has a size of 1.5 mm×1.5 mm. The raster scan speed was 0.1 m/s in 

continuous motion. At this rate and resolution, it took approximately 100 minutes to 
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scan a 1 m
2
 area of the object. It is worth noting that any metal-made (such as 

aluminium) suitcase is not transparent to THz radiation. Because of this problem and 

the long scanning time, THz imaging can be used as a supplement to current X-ray 

scanners but is unlikely to replace them. 

 

While bulk explosives like RDX have already been spectroscopically analyzed in the 

THz region [87, 88], liquid explosives still need to be characterized. Currently, some 

research groups in Marburg and at DTU are working on the hand-held optoelectronic 

THz systems for the detection of liquid explosives. 

 

 

Figure. 2.15 Transmission image through an attaché case using QA-1000 THz imaging system. All the 

inner objects, such as a knife, a bottle and a gun, are clearly identified. Figure adapted from [91]. 

 

B. Plastics Industry 

Several applications regarding the THz system in the plastics industry, such as inline 

monitoring of polymeric compounding processes, the quality control of plastic weld 

joints, and fibre orientation, have previously been discussed [92-96]. 

 

This research looks at one of the applications: the determination of additive content in 

polymeric compounds with THz-TDS [92]. Polymeric compounds are mixtures of 
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polymeric-based materials and various additives. These various added substances are 

used to improve the properties of standard polymers for a variety of applications. In 

plastics industry, it is important to guarantee the precise composition of the materials 

with respect to their additive content.  

 

THz-TDS was shown to identify a variety of additive-polymer combinations with 

differing additive contents [92]. It was found that standard polymers are transparent at 

low THz frequencies; when processed into compounds, their THz properties are 

distinctively affected by additives. In any case, the additive content can be deduced 

from the measured refractive index. Thus, THz-TDS was involved to measure the 

refractive index. In Figure. 2.16, the refractive indices are presented as a function of 

the volumetric additive content for different polymeric compounds, i.e., polyethylene 

and Mg(OH)2, polypropylene and chalk, and polyamide and glass fibres. The 

measured refractive indices provide a reliable determination of the additive content of 

the material combination. Thus, THz-TDS has great potential in quality control in 

compounding processes.  

 

 

Figure. 2.16 Refractive index as a function of the volumetric additive content for different polymeric 

compounds. Figure adapted from [92]. 
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C. Pharmaceutical Industry 

In the pharmaceutical industry, the coating thickness and the inner structures of the 

solid dosages forms determine the release kinetics of the active pharmaceutical 

ingredient (API). If the coating is non-uniform or has any defects, then the desired 

dose delivery and bioavailability can be compromised [63]. Consequently, there is a 

critical need for measuring the coating thickness precisely and mapping and 

characterizing the inner structures non-destructively.  

 

THz systems have been found to have many advantages in the pharmaceutical 

industry: THz waves can propagate through most of the pharmaceutical materials; 

many excipients and active ingredients have spectral features in the THz range; and 

the THz radiation is relatively safe because it is nonionizing. Therefore, based on 

these benefits, the potential of THz systems in the pharmaceutical industry was 

recently proposed by Teraview [97-101]. 

 

 

Figure. 2.17 Three-dimensional TPI false color image showing the coating thickness map of the two 

tablet surfaces and the central band. Color represents coating thickness, and the scale is in μm. The 

scales in the x, y and z directions are in mm. The inset shows the optical photograph of the same tablet 

where the defect areas are highlighted by a yellow ellipse. Figure adapted from [11]. 

 

As a sample, Figure. 2.17 shows the intra-tablet variation of coating thickness. 

Obviously, the coating thickness of the central band was thinner than that on the top 

and bottom surface of the tablet. Also, the coating defects, together with 
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corresponding site, depth and size, were identified clearly. In the development of 

coating technology, weight gain data during coating is normally used. This approach 

assumes that the coated film is uniformly distributed, and evaluates the coating 

thickness by coating time. In Figure. 2.18, the inter-tablet variation of the coating 

thickness of eight tablets with the same coating time is demonstrated. Such results 

demonstrate that the weight gain method is not always an appropriate assumption [11]. 

THz systems provide a potential method to precisely measure the coating thickness 

and monitor the coating processes. 

 

 
Figure. 2.18 The averaged coating thickness of each individual tablet against the coating time. The 

inset shows the coating thickness map (in μm) of eight tablets with the same coating time of 120 

minutes. Figure adapted from [11]. 

 

D. Art Conservation 

Both paintings and murals are valuable cultural heritage of mankind; they often 

consist of several layers as they have been painted and repainted over time. Each layer 

represents an artwork of a particular era. In order to discover the different layers' 

images, some non-destructive approaches have been used, but these have limitations 

such as resolution and penetration depth. Thus THz systems were developed as 

another potential method to use in art conservation [102-106].  

 



 

38 
 

Figure. 2.19 shows the first results of transmission measurements on painting [102]. 

The THz images were obtained using two methods: the pulse delay of the transmitted 

THz pulse maximum, and power transmission integrated over the different 

frequencies interval. This preliminary study showed that different absorption 

coefficients of different paints are revealed by light and dark areas, which means that, 

in principle, different paints can be identified. Further study, including the detection of 

mural paintings, was then proposed [103-106]. 

 

 

Figure. 2.19 (a) Photograph of the painting sample and corresponding THz images: (b) delay of the 

transmitted THz pulse maximum, and power transmission integrated over the frequency interval 

covering (c) 0.3-0.4 THz and (d) 0.1-0.2 THz. Figure adapted from [102]. 

 

In summary, a large variety of practical applications have been discussed for THz 

systems. They provide a potential and powerful method for non-destructive detection 

and inspection. For image acquisition in THz-TDS, the rate at which THz waveforms 

can be acquired is one of the key considerations because it directly determines the 

time for obtaining an image. Typically, a motorized stage is used to move the sample 

through the THz beam focus, so the image can be pixel-by-pixel required. A complete 

image usually takes minutes or even hours to acquire, depending on the total number 

of pixels and required spectral range/resolution. In both transmission TPI and 
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reflection TPI systems, there is a trade-off between the scan range and the scan rate, 

which means, to a certain extent, the high scan rates limit the scan range. A short scan 

range not only limits the spectral resolution of measurement but also limits the range 

of penetrating depths through a material. Considering the need of commercial and 

real-time THz applications, THz systems still have some limitations, such as the slow 

data acquisition and high cost of hardware implementation. Therefore, there is a 

critical need to improve the current THz systems and develop a fast, cost-effective 

one to fill the industry requirements. 

 

2.2 Compressed Sensing 

Over the past few years, compressed/compressive sensing/sampling (CS) has attracted 

considerable attention in the research fields of applied mathematics, computer science, 

and electrical engineering because it can outstrip the traditional limits of sampling 

theory. Based on CS theory, we can represent the sparse signals using only a few 

non-zero coefficients in a suitable basis or dictionary. Then non-linear optimizations 

and algorithms can recover the signals from very few experimental measurements. 

Since it was introduced by Candès, Romberg, and Tao and of Donoho in 2006 

[107-109], thousands of papers have been dedicated to this growing research field, 

including some excellent tutorials and review articles [110-118]. More references and 

software are listed on the website from Rice University [119]. 

 

This section reviewed the basic theory underlying CS. A brief introduction to and 

background of CS was followed by a discussion of the sparse signal model. After that, 

alternative constructions for structured CS matrices were reviewed. Then we focused 

on the theory and algorithms for sparse recovery; and concluded with a discussion of 

some extensions of the sparse recovery framework. In subsequent chapters, the CS 

fundamentals presented in this section will be extended to the specific emerging 

application, i.e., THz imaging system. 
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2.2.1 Background of CS 

Analog to digital conversion plays a fundamental role in the digital world, and 

analog-to-digital converters (ADC) translate the analog information into a digital 

stream of numbers. These ADC devices must hold a snapshot of a fast-varying input 

signal for signal processing. Since the measurements are spaced in time, in general it 

is hard to recover the analog signal perfectly unless some prior on its structure is 

incorporated. After sampling, a huge amount of data has to be stored and then 

processed. Consequently, this requirement imposes unprecedented strains on ADC 

devices, powerful processors and sufficient storage devices. All conventional 

compression techniques are developed to discard most of the useless data we acquire 

without much perceptual loss. However, this still does not alleviate the numerous 

strains on data acquisition devices and processors. Under these circumstances, CS is 

proposed to merge compression and sampling, i.e., to directly measure the part that 

will not end up being thrown away [107]. 

 

A. Shannon-Nyquist Theorem 

A common way for transferring an analog signal to a discrete representation is to 

assume that the signal is bandlimited, so the spectral contents are limited to a maximal 

frequency B. Bandlimited signals have limited time variation and can be reconstructed 

from equispaced samples with rate at least 2B; this is often attributed to 

Shannon-Nyquist theorem [120, 121].  

 

Such theorem can be defined as followed: If a function x(t) contains no frequencies 

higher than B hertz, then it is completely determined by giving its ordinates at a series 

of points spaced 1/(2B) seconds apart [121]. Processing at the Nyquist rate provides a 

clear relation between the spectrum of x(t) and that of its samples x(nT); that enables 

the digital operations which can be substituted for their analog counterparts. 
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This basic principle underlies many DSP applications for estimating and detecting the 

analog signals. While the signal acquisition devices have been developed rapidly in 

the last half century, the increasingly higher rates still cannot be met constantly using 

available hardware. Consequently, it becomes more difficult to obtain twice the 

maximum frequency present in the signal. Structured analog signals can be processed 

more efficiently than non-structured analog signals using Shannon-Nyquist theorem. 

However, this reconstruction requires knowledge of the structure of the signals. Also, 

in many emerging applications, the rates dictated by the Shannon-Nyquist theorem are 

so high as to impose severe challenges on the acquisition hardware, the subsequent 

storage and the DSP processors. So we are interested in finding a method to recover 

the unknown structured signals at rates much below Nyquist. 

 

B. Compressed Sensing 

Recently, Candès, Romberg, Tao and Donoho [107-109, 111] showed the concept of 

CS: a signal having a sparse representation can be recovered exactly from a small set 

of linear measurements. An advantage of CS is to sense sparse signals by reducing the 

sampling rate and storage of acquisition devices. It is noted that CS differs from 

conventional sampling in three respects, as follows. Firstly, classical sampling theory 

considers continuous-time signals with infinite length. However, CS is focused on 

measuring finite-dimensional vectors. Secondly, in the spirit of modern sampling 

methods [122, 123], CS systems acquire signals by more general linear measurements, 

rather than sampling signals at specific points in time. Thirdly, signal recovery in the 

Nyquist-Shannon framework is achieved through a linear process. In contrast, signal 

recovery in CS is typically achieved using nonlinear methods.  

 

CS offers a mathematical framework for simultaneous sensing and compression of 

finite-dimensional vectors. In CS we do not acquire this signal 1Nx  directly but 

rather acquire NM   linear measurements 11   NNMM xy  using an NM   
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CS sampling matrix Φ. The actual information contents of the signal determine the 

sampling rate, i.e., the number of M, rather than the dimensions of the space in which 

the signal resides. The fact that NM   renders the solution is undetermined, but if 

we know 
1Nx  is compressible by transform coding with a know transform, the data 

of this signal still can be acquired by M measurements. If the sample matrix Φ is 

well-chosen (i.e., it satisfies some properties and conditions, which will be discussed 

below) and a degree of reconstruction error is allowed, the number of M can 

dramatically smaller than N, which is usually required. 

 

In recent years, considering CS has been developed in practical implementations for 

numerous applications [124-129], it is necessary to further discuss the basics of CS. 

Two major research areas exist [117], as follows: one area includes theory and 

applications related to CS sampling operators that are not random matrices and often 

exhibit considerable structure. The random sampling operators, which are 

fundamental in conventional CS theory, largely need to be optimized or replaced by 

other structured measurement operators that correspond to the practical application, 

such as imaging, sampling hardware, wireless channels and sensor networks. The 

other area consists of signal representations that exhibit structure beyond sparsity, 

such as continuous-time signals with infinite-dimensional representations. For many 

signals, such structure allows a higher degree of signal compression. 

Infinite-dimensional signal representations also show that the standard sparsity cannot 

easily describe the rich structure. Because reducing the sampling rate is one of the 

primary impetuses behind CS, it is significant to build theory that can accommodate 

low-dimensional signal in arbitrary Hilbert spaces (typical infinite-dimensional 

function spaces which are indispensable tools in the theories of Fourier analysis). 

Both of these areas are motivated by practical CS applications. 
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2.2.2 Sparse Signal Model 

Signal processing focuses on acquiring, processing and extracting information from 

the signals. Accurate models for the signals need to be built in order to design 

algorithms for a particular problem. Generally, models can help distinguish the classes 

of interesting signals from the uninteresting signals, so the signals can be operated or 

analyzed efficiently and accurately. For much of classical signal processing, the 

signals can be modelled as vectors living in an appropriate vector space; however, 

such simple linear models cannot capture much of the structure present in many 

signals [116]. Facing these challenges, sparse signal model, one of the traditional 

low-dimensional models, which has particular geometrical structures, has been 

involved to enable signal information to be reserved via a simple linear and 

nonadaptive projection to a much lower dimensional space. The projection dimension 

is also independent of its ambient dimension [130].  

 

We can define a signal as sparse if it can be well-approximated as a linear 

combination of a few elements from a proper basis and dictionary. Sparse models 

provide a mathematical expression for capturing the high-dimensional signals which 

contain relatively little information compared to their ambient dimension. Sparsity, 

the most prevalent signal structure used in CS, is the signal structure behind many 

compression algorithms. Sparsity has been exploited in signal processing applications 

as diverse as compression, denoising, deconvolution, restoration, and inpainting 

[131-137]. 

 

In general, a proper basis and dictionary can be chosen either by using a sparsifying 

dictionary based on a mathematical model of the data [138-144] or learning a 

dictionary to perform best on a training set [145-149]. The evolution of the first 

approach, predefined transforms, which are characterized by an analytic formulation 

and a fast implicit implementation, is now briefly described. Analytic dictionaries are 
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typically formulated as tight frames, meaning that xxT   for all x, and therefore 

the dictionary transpose can be used to obtain a representation over the dictionary 

[138]. This analytical approach then proceeds by analyzing the behaviour of the 

filter-set xT , and establishes decay rates and error bounds. 

 

Such a tight frame approach has several advantages [138]: firstly, it is easier to 

analyze the behaviour of T  as an analysis operator than to derive sparsity bounds 

in a synthesis framework. Secondly, the algorithms for both analysis and synthesis 

operators become reversals, simplifying algorithm design. Thirdly, such an approach 

produces a useful structure for both the analysis and synthesis frameworks. Due to 

these advantages, currently, several methods, such as discrete cosine transform (DCT), 

wavelets, wavelet packets, curvelets, contourlets, and bandelets, are all proposed to 

exploit one-dimensional and two-dimensional mathematical models for constructing 

effective dictionaries for signal and images [139-144]. 

 

As an example of the sparse models, a typical THz image or a THz waveform can be 

approximated as a sparse signal under a certain dictionary. For instance, most natural 

THz images are characterized by large smooth regions and relatively few sharp edges. 

Signals with such structure are known to be approximately sparse under DCT or 

wavelet transform. The lowest frequency components provide a rough scale of the 

image, while the high frequency components offer the details about the edge 

information [116]. As most of the coefficients are very small, after setting a threshold 

to let these small coefficients to zero, we can obtain a good approximation of sparse 

representation. Thus, it has a great potential to develop a CS approach to THz 

imaging. 
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2.2.3 Sensing Matrices 

As discussed in the previous section, given a signal NRx , we can represent the CS 

process using M linear measurements mathematically as 

11   NNMM xy ,                      (2.16) 

where Φ is an NM   sensing matrix and MRy . Sensing matrix Φ aims to reduce 

the dimension from NR  to MR  ( NM  ). In CS, we assumed that the 

measurements are nonadaptive, that means the sensing matrices are fixed in advance. 

Consequently, two main questions exist: first, how to design the sensing matrix to 

ensure the desired information in the signal x? Second, how to recover the signal x 

from measurements y? This section considers the first question of how to design the 

sensing matrix. The desirable properties for the sensing matrix are presented, 

followed by several examples of sensing matrix constructions that satisfy these 

properties. The second question will be discussed in the next section. 

 

By now, the sensing matrices should satisfy some classical properties and conditions, 

such as null space property (NSP), restricted isometry property (RIP), and coherence. 

Here, the RIP is briefly discussed; more details about these three properties and 

conditions can be found in other research [116]. 

 

The Restricted Isometry Property (RIP) 

The NSP is sufficient for establishing guarantees; however, it is somewhat difficult to 

show directly, and these guarantees do not account for noise. The RIP is easier to 

handle and performs well with noise. Candès, Romberg and Tao introduced the RIP 

(initially called the uniform uncertainty principle) as a fundamental property of CS 

matrices [109, 145]. The isometry condition is presented as follows [146]: the 

restricted isometry constant k  of a matrix Φ is the smallest number such that 

2

2

2

2

2

2
)1()1( xxx kk   ,              (2.17) 
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for all 
kx  . 

 

A matrix Φ is said to satisfy the RIP of order k if constant )1,0(k exists. By the 

definition RIP it is assumed that bounds that are symmetric to approximately 1 for 

convenience. In practice, it could be extended to be 

2

2

2

2

2

2
xxx   ,                  (2.18) 

where  0 . Giving such bounds, we can scale Φ and let it satisfy the 

symmetric bound about 1 in equation (2.17). 

 

Sensing Matrix Constructions 

This section will discuss how to construct matrices that satisfy the above conditions 

and properties. Random matrices are found to be good constructions as sensing 

matrices. The entries of random matrices Φ of size NM   are independent and 

identically distributed (i.i.d.). To a great extent, the random matrices can satisfy the 

RIP if the entries are chosen as a Gaussian, Bernoulli, or any sub-Gaussian 

distribution [145, 146]. These random constructions also make the sensing matrices 

that satisfy the NSP. 

 

Using these random matrices to construct the sensing matrix has several advantages. 

Firstly, random matrices are democratic so it is possible to recover a signal using any 

sufficiently large subset of the measurements [147, 148]. Secondly, in practice we 

focus on the signal x which is often sparse to some basis or frame Ψ. That means we 

actually require ΦΨ to satisfy the RIP. Because the random matrices are almost 

incoherent with any sparse signals, in most of the cases, ΦΨ must satisfy the RIP 

whatever the Ψ is. Thirdly, when considered against any sparse signals, the 

incoherence property of random matrices requires fewer measurements using random 

matrices than that using other matrices’ constructions. However, it also has a number 

of weaknesses. The full random matrix is impractical to build in hardware. Because of 
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its unstructured property, it requires relatively more complicated computation and 

large storage. Currently, a number of hardware setups have been implemented to 

enable random measurements, such as random demodulator [149], random filtering 

[150], the modulated wideband converter [151], random convolution [152], and the 

compressive multiplexer [153].  

 

There still exist a number of sensing matrices satisfying the RIP, such as Toeplitz and 

circulant matrix, Vandermonde matrix, uniform spherical matrix, random signs matrix, 

partial Fourier matrix, Partial Hadamard matrix, sparse projection matrix and very 

sparse projection matrix, and structurally random matrices. More details have been 

discussed in other research [154-164].  

 

2.2.4 Signal Recovery Algorithms 

Signal recovery algorithms, which recover the sparse signal 
1Nx  from only 

NM   measurements 
11   NNMM xy , play a fundamental role in CS theory. 

Basically, the signal x can be recovered by solving an optimization problem of 
0  

norm: 

)(..minargˆ
0

yBztsxx
z

 ,                 (2.19) 

where )(yB  ensures that x̂  is consistent with the measurements y. For noise-free 

signals, we can set }:{)( yxzyB  ; and for noisy signals, we can instead 

consider }:{)(
2

 yxzyB . Unfortunately, the function 
0

.  is nonconvex 

and difficult to solve. Solving problem (2.19) is both numerically unstable and 

non-deterministic polynomial-time (NP) hard, requiring an exhaustive enumeration of 

all k

NC  possible locations of the nonzero entries [160]. Currently, a minimum mean 

square error (MMSE) linear estimation and a number of nonlinear algorithmic 

http://en.wikipedia.org/wiki/NP_(complexity)
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approaches such as 
1  minimization algorithms, greedy algorithms, and 

total-variation minimization (TV-min) algorithms, have been proposed to solve this 

optimization problem. 

 

A. MMSE Linear Estimation 

As discussed, the CS process using M linear measurements can be presented 

mathematically as 
11   NNMM xy . Reconstructed images can be obtained by the 

MMSE linear estimation [165, 166]. MMSE estimation describes the approach which 

minimizes the mean square error. It refers to estimation in a Bayesian setting with 

quadratic cost function. The reconstruction matrix MN̂  according to 

11
ˆˆ

  MMNN yx  can be written as 

1)(ˆ  T

xx

T

xx RR ,                   (2.20) 

where 
xxR  represents the autocorrelation function of the input signal. For nature 

images, we approximate 
xxR  using the autoregressive model of order 1 (AR(1) 

model) with correlation coefficient 95.0 . MMSE linear estimation is a fast 

reconstruction algorithm, however it is impossible to achieve high quality image 

reconstruction by using this algorithm. The reconstructed image is not that clear when 

recovering the complex image with many sharps. Generally, the natural image can be 

easily reconstructed and recognized by using the MMSE linear estimation. If we aim 

to achieve high quality reconstruction, we have to use other nonlinear reconstruction 

algorithms. The following sections provides a discussion of how to further improve 

the quality of the reconstructed images by using other nonlinear reconstruction 

algorithms. 

 

B. l1 Minimization Algorithms 

The use of 1  minimization first appears in the Ph.D. thesis of B. Logan [167] in 

connection with sparse frequency estimation. In 1992, the earliest theoretical work on 
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sparse recovery using 
1  minimization was reported by Donoho and Logan. The 

optimization problem of 
0  norm can be solved more tractable by replacing 

0
.  

with its convex approximation 
1

. . Thus, we consider the optimization based on the 

1  norm: 

)(..minargˆ
1

yBztsxx
z

 .                 (2.21) 

From [139, 168], problem (2.19) has been proved to be equivalent to problem (2.21). 

Surprisingly, optimization based on the 1  norm can recover the k-space signals fully 

and approximate the compressible signals with high probability using only 

)/log( kNCkM   i.i.d. Gaussian measurements [107, 108].  

 

A number of algorithms designed to solve the problem (2.21) are also present, such as 

interior-point method [169], gradient projection [170] method and homotopy method 

[171]. Comparatively speaking, the interior-point method provides accurate recovery, 

whereas its computation speed is slow; gradient projection has relatively great 

computation speed; and homotopy method is practical for small-scale problems. 

Furthermore, reweighted 1  algorithm is proposed to reduce the effect from 

measurement noise on the reconstruction algorithms [172].  

 

C. Greedy Algorithms 

There also exists a variety of greedy/iterative methods for computing sparse 

representations [173-181]. Greedy algorithms rely on iterative approximation of the 

signal coefficients and support, either by iteratively recognizing the support of the 

signal until a convergence criterion is met, or alternatively by acquiring an improved 

estimate of the sparse signal at each iteration that attempts to account for the 

mismatch to the measured data [116]. Two of the most common greedy methods are 

Orthogonal Matching Pursuit (OMP) and iterative thresholding. More details about 

these two algorithms were presented in various research [116, 182-184]. 
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D. Total-Variation Minimization Algorithms 

The use of total-variation minimization (TV-min), which is closely connected to 
1  

minimization, first appears in 1990 by Rudin, Osher and Fatemi [185]. Compared 

with 
1  minimization, which is suitable for one-dimensional signal recovery, TV-min 

has been proposed to recover two-dimensional images [108]. Briefly, the optimization 

of TV norm is given as 

xytsx
TV

..min ,                     (2.22) 

where 
TV

x  is the TV norm of a two-dimensional object x. For discrete data 

),( 21 ttx , 1,0 21  Ntt ,  

 
21,

2

212

2

211 ),(),(
tt

TV
ttxDttxDx ,              (2.23) 

where 1D  is the finite difference ),1(),( 21211 ttxttxxD   and 

)1,(),( 21212  ttxttxxD . The TV-min problem can be recast as special convex 

programs known as second order cone programs (SOCPs) [108, 186]. Generally 

speaking, TV-min can offer accurate and robust reconstructed results by recovering 

two-dimensional images synchronously, with relatively slow computation speed. 

 

Basically, the MMSE linear estimation and the TV-min nonlinear reconstruction 

algorithm were mainly used in our experiments. The MMSE linear estimation is used 

in fast compressed imaging as its corresponding computational time is relatively short, 

so it can be used in real time imaging processing. And the TV-min nonlinear 

reconstruction algorithm is used for high quality image reconstruction. It is the most 

popular method for non-linear reconstruction of 2D images. For other methods, like 

OMP, it is time consuming and the result is not as good as that of the TV-min [116].  
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2.2.5 CS Imaging Applications 

CS has a wide range of applications to imaging, such as the optical single-pixel 

camera, tomography, digital holography, spectral imaging, geophysical imaging, and 

medical imaging (including magnetic resonance imaging (MRI)), and photo-acoustic 

imaging [108, 125, 187-193]. Here we discuss some of these CS imaging application 

highlights. All these CS imaging systems have impressive advantages, such as great 

imaging acquisition efficiency and simple hardware implementation. 

 

A. Single-Pixel Camera 

The optical single-pixel camera architecture employs a digital micro-mirror array to 

perform optical calculations of linear projections of an image onto pseudorandom 

binary patterns [108, 187]. As shown in Figure. 2.20, the incident light is reflected by 

the sample and then formed on the digital micro-mirror device (DMD) array, whose 

mirror orientations are modulated in the pseudorandom pattern supplied by the 

random number generators (RNG). Finally, the light is focused onto the photodiode 

for reconstruction and processing. An image can be obtained while sampling the 

image fewer times than the number of pixels. It is noted that this system relies on a 

single-pixel photodiode for detection rather than a CCD or CMOS array. Thus, CS 

provides the implementation of such an imaging system with simpler and less 

expensive hardware. 

 

 

Figure. 2.20 Schematic diagram of single-pixel camera. The incident light is reflected by the sample 

and then formed on the digital micro-mirror device (DMD) array whose mirror orientations are 
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modulated in the pseudorandom pattern supplied by the random number generators (RNG). Finally, the 

light is focused onto the photodiode for reconstruction and processing. Figure adapted from [187]. 

 

B. Digital Holography 

Digital holography is a computational imaging from electronically recorded 

holograms using electronic detector arrays [188]. Traditional digital holography is not 

regarded as a 3D tomographic approach because the 3D object estimation from the 

data is underdetermined. Using the CS approach, the compressive holography enables 

3D tomography from a single 2D monochromatic digital holography. The results and 

more details were presented in various research [188]. 

 

C. Spectral Imaging 

Spectral imaging is a powerful tool for a variety of applications because it provides 

the nature of the materials. Conventional spectral imaging is slow because of a 

trade-off between spatial resolution, spectral resolution, light collection, and 

measurement acquisition time. Based on the concept of CS, a novel single-shot 

compressive spectral imaging system was developed to eliminate this trade-off [189]. 

The main features of the system design are two dispersive elements, arranged in 

opposition and surrounding a binary-valued aperture code. Such structure results in 

spatially-varying, easily-controllable, spectral filter functions with narrow features 

[189]. 

 

D. Magnetic Resonance Imaging (MRI) 

Imaging speed is important in many MRI applications and it is mainly limited by 

physical (gradient amplitude and slew-rate) and physiological (nerve stimulation) 

constraints [192]. Aiming to exploit the sparsity which is implicit in MR images, the 

researchers developed CS based implementation for rapid MRI. Several 

implementations for 2D and 3D Cartesian imaging (most of the current product pulse 

sequences in the clinic are Cartesian) were demonstrated. It was shown that the 

sparsity of MR images can be exploited to significantly reduce scan time or improve 
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the spatial resolution. More details about the experimental implementations and 

corresponding results were proposed in various research [192]. 
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Chapter 3  

Random Projection on THz Imaging 

 

3.1 Introduction of Random Projection on THz Imaging 

Over the past decade, TPI has been demonstrated in applications areas as diverse as 

the medical diagnosis of human tissue, the detection and chemical mapping of illicit 

drugs and explosives, and pharmaceutical tablet inspection [1-4]. Because of the 

relatively modest power levels available from the photoconductive sources commonly 

used in THz time-domain spectroscopy and imaging systems, and the lack of compact 

and sensitive multi-element THz detectors, most TPI experiments have been 

performed by raster scanning the object relative to a focused THz beam, and by using 

a single-point detector. Consequently, a complete image usually takes minutes or even 

hours to acquire, depending on the total number of pixels and the required spectral 

range/resolution. For example, normally it takes six minutes to scan a 400×400 pixels 

image [5].  

 

Focal-plane detector arrays can be used to achieve real-time THz imaging [6, 7]. 

However, this system requires high complexity and operational cost. More 

importantly, such systems cannot provide spectroscopic information of sample. By 

non-uniform sampling in the Fourier domain, interferometric or tomographic 

approaches can significantly reduce the number of measurements. However, the 

acquisition speed of such systems is still limited by raster scanning unless a full THz 

detector array is used [8-10]. The acquisition speed is a major limiting factor for 

real-time applications such as in vivo medical and security imaging, or for on-line 

industrial process monitoring. This chapter discusses how we used CS, a novel theory 

in signal processing, to achieve high-speed THz imaging. 



 

68 
 

 

Nowadays, CS has emerged to sense sparse signals by reducing the sampling rate and 

storage of acquisition devices [11, 12]. As discussed in section 2.2.3, a typical THz 

image or waveform can be approximated as a sparse signal. In addition, the optical 

single-pixel camera architecture can be adapted to image at wavelengths (such as THz 

range and far-infrared range) that are currently impossible with conventional CCD 

and CMOS. Thus, a single-pixel THz imaging system can be built based on the 

concept of CS. Figure. 3.1 shows the schematic diagram of this single-pixel THz 

imaging system. After propagating through the sample and masks, the THz beam was 

collimated, by using a focus lens, onto the detector. A small number of linear 

projections of an image onto random binary patterns were recorded and finally used 

for reconstruction and processing. Compared with conventional THz imaging, this 

approach not only eliminates the need to raster scan the object or THz beam, but also 

reduces the number of measurements required. In the next sections, we will 

demonstrate that such a fast and efficient THz imaging system is achievable by using 

random projection approach. 

 

 
Figure. 3.1 Schematic diagram of single-pixel THz imaging system. 

 

3.2 Simulation Procedure on Random Projection 

As discussed in equation 2.16, given a THz signal NRx , we can represent the CS 

process using M linear measurements mathematically as 11   NNMM xy  where Φ 

is an NM   sensing matrix and MRy . Sensing matrix Φ aims to reduce the 
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dimension from NR  to MR  ( NM  ). In practice, the linear measurements 
1My , 

i.e., linear projections of an image onto random binary patterns, can be directly 

measured from the THz detector. In the simulations, they can be obtained by 

multiplying the original image 
1Nx  and sensing matrix Φ. In order to solve the 

problem shown in equation 2.19, the minimum mean square error (MMSE) linear 

estimation is used as the reconstruction algorithm [13, 14]. Then, the reconstructed 

image can be written as 11
ˆˆ

  MMNN yx . According to this, using the equation 2.20, 

the reconstruction matrix can be expressed as 
1)(ˆ  T

xx

T

xx RR , where 
xxR  

represents the autocorrelation function of the input signal. For nature images, we 

approximate 
xxR  using the AR(1) model with correlation coefficient 95.0 . A 

flowchart diagram of the simulation on synthetic and real-world THz data is presented 

in Figure. 3.2, to demonstrate a general reconstruction process.  

 

 

Figure. 3.2 Flowchart diagram of simulation on synthetic and real-world THz data. 

 

3.3 Simulation Results on Synthetic Data and Real-World THz Data 

A. Data Analysis using a Different Number of Measurements 

This section reports the random projection on THz imaging in order to briefly 

demonstrate some motivations and benefits of the CS-THz system. From Figure. 3.3, 

we assumed that we aim to obtain a 96×96 pixels THz image from a full body scan, 
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and, obviously, a weapon is hidden on the back of the human body. The conventional 

TPI will take 96×96=9216 measurements to fully raster scan the object, thus it is 

time-consuming. Full random matrices are chosen to be the sensing matrices to 

reconstruct the images. The entries in such matrices are independent and identically 

distributed (i.i.d.). More significantly, it can also be shown that random matrices will 

satisfy the RIP with high probability if the entries are chosen according to a Gaussian, 

Bernoulli, or more generally any sub-Gaussian distribution. The full random matrices 

have been mathematically proved for compressed sensing, so we chose them as our 

sampling operator in this chapter to validate the feasibility of random projection on 

THz imaging. MMSE linear estimation is used as the reconstruction algorithm. Figure. 

3.4 shows the simulated results 
11   NNMM xy  for linear measurements. The 

96×96 original image 
1Nx  is presented in the left-hand inset. The reconstructed 

image 11
ˆˆ

  MMNN yx  (right-hand inset) is obtained by using 500 measurements. 

In this case, M=500, N=9216, and, obviously, the reconstructed image can be 

identified when M<<N. 

 

 

Figure. 3.3 Original image for body scan with weapon. 
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Figure. 3.4 Simulated results for linear measurements. The left-hand inset image is the original image 

and the right-hand inset image is the reconstructed image using 500 linear measurements. 

 

 

 
Figure. 3.5 Reconstructed images using (a) 24×24 physical pixels sensing matrices; (b) 48×48 physical 

pixels sensing matrices; and (c) 96×96 physical pixels sensing matrices. (SR: sampling rate). 

 

The image is respectively reconstructed using three various sizes of sensing matrices, 

which contain 24×24, 48×48 and 96×96 physical pixels. Note that all three sets of 

sensing matrices are converted to 96×96 pixels for sampling. Figure. 3.5 shows the 

reconstructed images using these three various sizes of sensing matrices. For all kinds 

of sensing matrices, the more measurements we measured (i.e., larger sampling rate) 
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the better the quality of the reconstructed images. Normally, good reconstruction 

results (i.e., in this case, the weapon can be identified easily) can be obtained by 

random sampling only 10%-30% of the sample, rather than pixel-by-pixel raster 

scanning the object. For high resolution sensing matrices such as in Figure. 3.5 (c), 

the required measurements can be further reduced to only 5%-8%. Furthermore, as 

Figure. 3.5 (a) to (c) shows, various sizes of sensing matrices can provide various 

resolutions of reconstructed images. That means, for certain applications such as 

security inspection, CS-THz imaging system can maintain the balance of individual 

privacy and security requirements. Using low resolution sensing matrices (Figure. 3.5 

(a)), we can protect privacy and identify whether the object in which we are interested 

actually exists. If yes, this imaging procedure can be done using higher resolution 

sensing matrices (Figure. 3.5 (b) and (c)) to recognize the certain shape of the desired 

object. In brief, compared with conventional TPI, the CS-THz system has potential 

benefits to further speed up the imaging procedure. 

 

B. Data Analysis using Different Signal to Additive Gaussian Noise Ratios 

In order to illustrate the robustness of such a CS-THz system, we compared the 

variety of reconstructed images (sample image "angry" and "smile") from the 

simulated signals in the presence of Gaussian white noises, as shown in Figure. 3.6. In 

addition, the MMSE linear estimation was used for recovery, and all images have 

96×96 pixels. Considering the complexity of the sample images, sampling rates of 

10%, 20% and 30% were chosen. It can be seen that most of the reconstructed images 

can be easily recognized, except for ones at relatively low signal to additive Gaussian 

noise ratio and low sampling rate. Obviously, the quality of reconstructed images is 

determined by the sampling rates and the additive signal-noise-ratio. Higher SNRs 

and more sampling rates offer a more impressive reconstructed image. 

 

Based on the data from Figure. 3.6, we can further quantize the signal to noise ratios 

(SNR) for reconstructed images, as shown in Figure. 3.7. As expected, the SNRs for 

reconstructed images become greater when increasing the number of measurements or 
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the signal to additive Gaussian white noise ratio; also, they will tend to stabilize when 

in the presence of high signal to additive Gaussian noise ratio. The reconstructed 

results could perform much better when using other nonlinear algorithms, however, 

the imaging procedure will synchronously require more computations.  

 

Figure. 3.6 The simulation results for reconstructing two images ("angry" and "smile") using the full 

random projection. MMSE linear estimation is used for recovery. All images have 96×96 pixels. (SR: 

sampling rate, SNR: signal to additive Gaussian noise ratio). 
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Figure. 3.7 SNRs for reconstructing an image "Smile" using the full random projection. MMSE linear 

estimation is used for recovery. (SR: sampling rate, SNR: signal to noise ratio). 

 

C. Data analysis on spatial resolution 

Aiming to quantize the spatial resolution of such an imaging system, a given sample 

(a single-pixel line) was reconstructed using MMSE linear estimation for different 

sampling rates, as shown in Figure. 3.8. Figure. 3.9 (a) shows the A-scan of 

reconstructed image from each row of the data for reconstructing a single-pixel line at 

50% sampling rate, which is presented in Figure. 3.8 (j). In Figure. 3.9 (b), we 

averaged all the 96 curves presented in Figure. 3.9 (a) for spatial resolution definition. 

The spatial resolution can be calculated using full width at half maximum (FWHM) 

method, given by the difference between the two extreme values of the independent 

variable at which the dependent variable is equal to half of its maximum value 
maxf . 

The total pixel number of the image and the corresponding sampling rates determine 

the spatial resolution of the reconstructed image. The corresponding spatial 

resolutions for different sampling rates are shown in Table. 3.1. Considering the 

reconstructed images are normally obtained by using no more than 30% sampling 

rates of total pixels, the spatial resolution of such random projection THz imaging 

system is approximately two pixels. 
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Figure. 3.8 (a) Original image (a single-pixel line). The corresponding reconstructed results (b)-(j) 

using MMSE linear estimation for different sampling rates at 10%, 15%, 20%, 25%, 30%, 35%, 40%, 

45% and 50%, respectively. All images have 96×96 pixels. 

 

 

Figure. 3.9 (a) A-scan of reconstructed image from each row of the data for reconstructing single-pixel 

line at 50% sampling rate. All 96 rows of the data from Figure. 3.7 (j) are presented. (b) The average 

value of all rows of the data from (a). 
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Table. 3.1 The corresponding spatial resolution for different sampling rates. 

 10% 15% 20% 25% 30% 35% 40% 45% 50% 

Spatial resolution 

(pixels) 

2.74 2.25 2.05 1.83 1.70 1.59 1.52 1.47 1.39 

 

3.4 Simulation Results on Real-World THz Data 

To further demonstrate random projection on THz imaging, we extended this idea 

using real-world THz data. The THz data were acquired across an area of 20.0 

mm×22.0 mm using a TPIscan-1000 system (TeraView Ltd, Cambridge, U.K.), which 

covers a spectral range from 0.1 to 3.5 THz. The images have 268×120 pixels and at 

each pixel a THz waveform was recorded as function of time delay over a scan range 

of 4.0 mm. The sample used is a polythene pellet of a diameter of 25.0 mm. Inside the 

pellet there is a T-shaped plastic sheet which is located approximately 0.2 mm below 

the sample surface. We chose a two-dimensional datacube at a certain time delay 

(152th temporal band); and for ease of computations we resized the images, using 

bicubic interpolation, so that the overall data size was 96×96.  

 

 

Figure. 3.10 (a) Original image. The corresponding reconstruction results (b)-(h) using MMSE linear 

estimation for different sampling rates at 3%, 5%, 10%, 15%, 20%, 25% and 30%, respectively. 
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Table. 3.2 Mean square error (MSE) and signal-to-noise ratio (SNR) in dB, for different observation 

rates. 

 3% 5% 10% 15% 20% 25% 30% 

MSE 0.6128 0.5738 0.5482 0.5401 0.5366 0.5348 0.5333 

SNR (dB) 4.2533 4.8242 5.2204 5.3513 5.4064 5.4364 5.4604 

 

Figure. 3.10 (b)-(h) shows the reconstruction results for different sampling rates at 3%, 

5%, 10%, 15%, 20%, 25% and 30%, respectively. The dark areas correspond to the 

polythene pellet, and the bright areas correspond to the T-shaped plastic sheet. One 

can see that all the reconstruction results are visually recognizable. As the sample is 

relatively sparse, it can be reconstructed at very low sampling rates, such as 3% of the 

total pixels. According to the data from Figure. 3.10, Table. 3.2 show the mean square 

error (MSE) and signal-to-noise ratio (SNR) in dB for different observation rates. As 

expected, better quality images (better SNR) could be obtained by increasing the 

observation rate. 

 

3.5 Summary 

The simulation results on synthetic and real-world THz data demonstrate the 

feasibility of random projection THz imaging system and its impressive performances. 

This chapter has discussed the effect of SNRs and the number of measurements, and 

the limit of spatial resolution. After quantizing these performances, we found that it is 

not only worthwhile but imperative to develop the physical CS-THz imaging system 

to solve the problems such as a lack of conventional CCD and CMOS imagers in THz 

range and slow data acquisition using the raster scanning approach. 
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Chapter 4  

CS-THz System using a set of 

Independent Optimized Masks 

 

Recently Chan et al. [1, 2] reported the first THz imaging system based on the 

concept of CS [3, 4]. The basic hardware implementation is similar to Figure. 3.1. The 

free-space pulsed THz wave front traveling from an object to a single-point detector 

was spatially modulated by the insertion of a series of planar two-dimensional (2D) 

masks. Each mask comprised a random checkerboard pattern of 32×32 pixels that 

could each either transmit or block the THz radiation. By recording the THz field in 

the presence of each mask, a 2D image of the object was reconstructed [3]. This 

approach not only eliminates the need to raster scan the object or THz beam, but also 

reduces the number of measurements required [3]. This is a significant improvement 

in speed compared with the traditional raster scanning used for THz imaging. 

 

A major advantage of TPI is that the transient electric field, rather than the radiation 

intensity, is measured as a function of time. This coherent detection scheme not only 

yields a THz signals with excellent SNR and high dynamic range, but also preserves 

the important phase information. Therefore, here comes the first problem: such 

CS-THz system has not been proved to obtain the spectral information of desired 

sample. The second problem is that a fully random binary operator incurs high 

computational complexity and huge memory, especially for high-resolution imaging 

[2]. For example, to get a 512×512 image with 64k measurements (i.e., 25% sampling 

rate), it requires nearly gigabytes storage and giga-flop operations, which is 

unrealistic in practice. 

 

Here we proposed to use a set of optimized masks to further speed up the image 
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acquisition process. We will also demonstrate that THz spectroscopic images could be 

obtained [5]. In this chapter, we discussed the design of the mask set. Numerical 

simulation results were presented to prove this idea. Then, the experimental results 

using both IR and THz source concluded that both the spatial and the spectral 

characteristics of samples could be reconstructed. 

 

4.1 Masks Design based on CS 

Consider an 
cr II   image, with 

crIIN   pixels in total, and suppose that one wants 

to sample it using only )( NM   measurements. Let NRx  denote the vector 

signal of the N-pixel input image. As discussed in the chapter 2, our CS process using 

M linear measurements can be defined as equation (2.14): 

11   NNMM xy , 

where Φ is an NM   sensing matrix and MRy . The selection of the sensing 

matrices Φ (so-called "masks" physically) holds the key to the quality of the 

reconstructed image. Typically, a set of random measurement functions/masks are 

used in CS [1, 2]. However, it has been noted that random projections do not work 

well at low signal-to-noise ratios (SNR) or at low sampling rates [6, 7]. In this chapter, 

we used an optimized mask set, aiming to reduce further the number of necessary 

measurements, while still retaining the quality of the reconstructed image. In brief, the 

binary masks are optimized to approximate the Karhunen-Loeve transform (KLT). 

The idea is quite similar to that of [8] where the 2D discrete cosine transform is 

quantized with the ternary set {1,0,-1}. Specifically, we assumed that the 

autocorrelation matrix xxR  of the input image follows the isotropic 2D model with 

correlation coefficient 0.95 [9]. The NM   floating-coefficient KLT matrix U is 

then obtained through the eigenvalue decomposition of xxR . After that, we used 

MATLAB 7.0 to search an optimal threshold T so that the binary matrix ),( lk  
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defined below yields the maximum coding gain (coding gain is the effective gain 

which is usually measured as the dB difference between a coded and uncoded signal 

producing the same bit error rate) [9], 



 


.otherwise

,),(

,0

,1
),(

TlkU
lk                    (4.1) 

The binary matrix ),( lk  was then used to make the masks.  

 

 
Figure. 4.1 Optimized mask set for CS-THz system. 

 

Figure. 4.1 shows all 40 masks used in our experiment. The masks each comprised 

20×20 pixels and were constructed from self-supported copper tape. Each pixel had 

dimensions of 2.0 mm×2.0 mm, thus providing a 40.0 mm×40.0 mm imaging area. It 

was confirmed that the pixels were either totally transparent or totally opaque to THz 

radiation. The lack of a supporting substrate eliminates possible THz 

absorption/dispersion or phase delays in propagation through the transparent pixels, 

making this design ideal for broadband spectroscopic imaging applications. 
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Figure. 4.2 Simulated results demonstrating the universality of the proposed mask. (a) Original image 

and reconstructed images using (b) 40 optimized masks, (c) 40 random masks, and (d) 120 random 

masks [5]. 

 

It should be emphasized that our mask optimization is based on a general isotropic 2D 

model, rather than being based on a training set of images. Thus, our masks are 

generically applicable to a wide range of samples. Indeed, extensive computer 

simulation demonstrates that our binary approach offers good visual quality for most 

20×20 image patches. Figure. 4.2 (b) shows one set of such example images obtained 

using the 40 optimized masks of the test objects shown in Figure. 4.2 (a). In particular, 

the far-right panel of Figure. 4.2 shows the image obtained of two light points against 

a dark background and demonstrates that reasonable image quality is obtained using 

the mask set in this extreme case. As a comparison, Figures. 4.2 (c) and (d) shows 

images reconstructed using 40 and 120 random masks, respectively. As expected, the 

optimized masks outperform the random masks at this low sampling rate (10%, i.e., 

40 measurements for images comprising 20×20 pixels). The quality of the 

reconstructed images can be improved by increasing the number of random masks 

from 40 (a sampling rate of 10%) to, for example, 120 (a sampling rate of 30%), 

although the measurement time will increase. From simulated results, it is proved that 

we can obtain great reconstruction images with less number of measurements by 

using these 40 optimized masks than that by using random masks. In the next section, 

we will develop this mask set into the physical experimental setup. 
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4.2 CS-THz Experiment using IR Light Source 

4.2.1 Experimental Setup 

IR light source was first used to demonstrate the idea of CS-THz using a set of 

independent optimized masks. Figure. 4.3 shows the schematic diagram of the 

compressive imaging system using IR light source. An IR LED and a photodiode were 

used as the light source and the detector, respectively. The IR light from a source was 

collimated using a parabolic mirror. After propagating through the masks and sample, 

the IR beam was then focused, by using another parabolic mirror, onto the detector. 

Similar to that in previous studies, a single-point detector is utilized to measure the 

signal. Data acquisition (DAQ) card (National Instrument USB-6221) is used to 

collect the signal recorded from detector and send it to PC for image reconstruction. 

In our experiments, all the samples were made of self-supported copper tape. Limited 

by the diameter of parabolic mirror, the image window is of size 40.0 mm×40.0 mm.  

 

 

Figure. 4.3 Schematic diagram of the compressive imaging system (PM: parabolic mirror, LED: light 

emitting diode, PD: photodiode, DAQ: data acquisition). 

 

4.2.2 Experimental Results 

Figure. 4.4 shows the simulated and reconstructed results ( 11   NNMM xy ) 
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comparison using 40 optimized masks. The 20×20 original image 
1Nx  is presented 

in the left-hand inset. It is clear to see that the reconstructed results are highly close to 

the simulated results, thus the reconstructed image 11
ˆˆ

  MMNN yx  (right-hand 

inset) is easily obtained. In this case, M=40, N=400, and again, the reconstructed IR 

image can be identified when M<<N. 

 

 

Figure. 4.4 Simulated results for linear measurements. The left-hand inset image is the simulated 

results and the right-hand inset image is the reconstructed image using 40 optimized masks. 

 

Figure. 4.5 shows, as examples, the IR images of English characters T, H, A, M and G 

reconstructed by 40 optimized masks. The dark areas (in blue) correspond to the 

opaque copper tape, and the bright areas (in red) correspond to the cut-through holes. 

In all cases, with MMSE linear estimation, all the characters can be easily recognized 

with only 10% sampling rate. For relatively much sparse signals, such as "T", "H" and 

"A", it offers high quality of reconstructed images. However, due to the limited image 

resolution, for relatively less sparse signals (i.e., images consist of relatively more 

sharp areas), such as "M" and "G", the reconstruction performance becomes worse. 

Certain parts of information around sharp areas which are not such sparse were 

missed in the reconstruction procedure. 
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Figure. 4.5 (a) Photographs of the samples shaped as "T", "H", "A", "H" and "G" used in IR imaging 

experiment, and their corresponding IR images reconstructed using (b) MMSE linear estimation. Each 

image has 20×20 pixels and was reconstructed by 40 optimized masks. 

 

One of the easiest and most useful methods to solve this problem is to increase the 

resolution of the mask set. Here we extend the original 20×20 pixels imaging area to 

be an 80×80 pixels area. Similar to the block CS method [10], the 80×80 pixels image 

is divided into four 20×20 pixels areas and each block is sampled independently using 

the same 40 optimized mask set. Figure. 4.6 shows the reconstructed 20×20 pixels 

and 80×80 pixels IR images shaped as "E", respectively. Two reconstruction 

algorithms, i.e., MMSE linear estimation [10, 11] and the total variation minimization 

(TV-min) nonlinear reconstruction algorithm [12] have been investigated. Compared 

with Figure. 4.6 (b) and (d), even with MMSE linear estimation, the reconstructed 

80×80 pixels IR images perform much better reconstruction quality than the 20×20 

pixels images. 

 

 

Figure. 4.6 (a) Photographs of the samples shaped as "E" used in IR imaging experiment. Their 

corresponding 20×20 pixels IR images are reconstructed using (b) MMSE linear estimation and (c) 

TV-min nonlinear reconstruction algorithm. The extended 80×80 pixels IR images are reconstructed 

using (d) MMSE linear estimation and (e) TV-min nonlinear reconstruction algorithm. 
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4.3 CS-THz Experiment using BWO THz Source 

4.3.1 Experimental Setup 

As a further demonstration that the developed compressed imaging system is also 

applicable to THz imaging, we used a backward wave oscillator (BWO) source 

(Insight Product Company, USA) which provides electromagnetic radiation at 0.14 

THz. The schematic diagram of this system is illustrated in Figure. 4.7. The detector 

used was SPH-49 (Spectrum Detector Inc. USA).  

 

 

Figure. 4.7 Schematic diagram of the compressed THz imaging system using BWO source. 

 

4.3.2 Experimental Results 

Similar to that in [13], we reported a THz imaging system using BWO as a radiation 

source. The experimental results further inspect the performance of such CS imaging 

system in THz range. Figure. 4.8 shows the THz images reconstructed using 

simulated signals and measured signals. With MMSE linear reconstruction, although 

the THz radiation is not that uniform in the whole imaging window (the signal in 

upper area is relatively weak), all the characters are visually recognizable. From 

section 4.2.2 and this section, as this CS imaging system works great in both IR and 

THz range, we can further develop this proven technique into TPI system to replace 

the conventional raster scan method. 
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Figure. 4.8 THz images reconstructed using (a) simulated signals and (b) measured signals. Each 

character of this sample shaped as "COOL" is respectively reconstructed using 40 optimized masks. 

Each image has a 20×20 pixels with a pixel size of 2.0 mm×2.0 mm. A BWO source at 0.14 THz was 

used to illuminate the sample and the transmitted THz radiation was measured using a single-element 

pyroelectric sensor. 

 

4.4 CS-THz Time-Domain (pulsed) Spectroscopic Imaging 

Experiment 

4.4.1 Experimental Setup 

Aiming to obtain both a spatial and spectral features of a sample, we developed 

Figure. 4.3 into a time-domain (pulsed) THz spectroscopic imaging system. Figure. 

4.9 shows our experimental arrangement, which is similar to that typically used for 

the coherent generation and detection of broadband THz radiation [14]. A Ti:sapphire 

laser provides visible/near-infrared pulses of 12 fs duration at a center wavelength of 

790 nm with a repetition rate of 76 MHz. The output is split into two parts: a 330 mW 

beam is used for THz generation and a 40 mW beam serves as the probe beam for 

THz detection. THz radiation is generated from a low-temperature-grown (LTG) 

GaAs photoconductive emitter with an electrode gap of 0.4 mm and is biased using a 

10 kHz square wave of peak amplitude ±100 V. The THz pulses emitted (in the 

“reflection” geometry [14]) are collimated and focused onto a 1.0-mm-thick (110) 

ZnTe crystal for electro-optic detection. Only one pair of parabolic mirrors is required 

for imaging using the compressive sampling technique as the sample (and the binary 
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masks) is placed in a collimated THz beam. In our experimental arrangement, 

however, we retained two pairs of parabolic mirrors to allow conventional THz-TDS 

measurements to allow, in addition, conventional THz-TDS measurement to be 

performed. 

 

 

Figure. 4.9 Experimental arrangement for TPI using compressive sampling. Each of 40 masks has a 

40.0 mm×40.0 mm imaging area. The copper pixels are opaque to THz radiation while the white pixels 

are transparent to THz radiation. (BS: beam splitter, PM: parabolic mirror) [5]. 

 

4.4.2 Experimental Results 

As mentioned in the chapter 2, the THz frequency region of the electromagnetic 

spectrum offers a unique combination of properties. Many crystalline substances 

possess sharp characteristic spectral features in this frequency range associated with 

both inter- and intramolecular vibrational modes [15, 16]. This, when coupled with 

the ability of THz radiation to propagate through common barrier materials, such as 

clothing and packaging, makes THz imaging and spectroscopy a potentially powerful 

tool for nondestructive determination of the chemical composition and physical 

structure of a concealed sample [17]. Here, for the first time, the CS-THz 

time-domain (pulsed) spectroscopic imaging has been demonstrated to obtain both a 

spatial and spectral characteristics of a sample. Similar to [1, 2], based on the 

experimental setup of compressed TPI from Figure. 4.9, CS has been proposed to 
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reduce the number of measurements and acquisition time, rather than the conventional 

raster scan method which is time-consuming.  

 

Figure. 4.10 shows an example of experimental results for TPI. The original image, 

which has a 20×20 pixels with a pixel size of 2.0 mm×2.0 mm, is made by copper 

tape in Figure. 4.10 (a). The THz beam penetrating the sample and one of the 40 

masks was converted to the THz electric field and then recorded as a function of time 

delay using the time-domain spectroscopy system. In total, 40 THz waveforms were 

measured; one for each of the 40 masks. Each waveform was Fourier transformed into 

the frequency domain, and the THz amplitude at a selected frequency was used for 

image reconstruction. As can be seen, the Chinese character "big" can be 

reconstructed in both spatial domain and spectral domain at different THz frequencies 

from 0.15 THz to 2.0 THz. 

 

 

Figure. 4.10 (a) Original 20.0 mm×20.0 mm image of a Chinese character “big”. (b) Spatial domain 

reconstruction. (c)-(f) Reconstructed image at 0.15, 0.3, 1.0 and 2.0 THz. All image have 20×20 pixels 

and the pixel size is 2.0 mm×2.0 mm. 

 

Similarly, aiming to obtain the chemical mapping of samples, a sample comprising 

regions of polyethylene, lactose, and copper tape (Figure. 4.11 inset) was placed in the 

collimated THz beam path together with one of the 40 optimized masks, and also the 

THz electric field was recorded as a function of time delay using the time-domain 

spectroscopy system. Measurements were performed at room temperature with dried 

air purging to exclude water vapor. In all measurements, the variable delay stage, 

which provides the time delay between the THz pulse and probe pulse, was scanned 

over a distance of 5.0 mm, providing a spectral resolution of 0.03 THz. Again, all the 

40 THz waveforms corresponding to each of the 40 masks was Fourier transformed 
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into the frequency domain, and the THz amplitude at a selected frequency was used 

for image reconstruction. 

 

 

Figure. 4.11 (a)-(c) Reconstructed THz images of the sample at 0.50, 0.54, and 1.38 THz, respectively. 

Each image is 40.0 mm×40.0 mm. (d) RGB chemical map of the sample where red is assigned to 

lactose, green to polythene, and blue to regions of no transmission (copper areas). (e) THz spectra of 

polyethylene (upper trace) and lactose (lower trace). The inset shows a photograph of the sample that is 

made of copper tape with two square holes (each 20.0 mm×20.0 mm). A 3.0-mm-thick polyethylene 

pellet is placed at the top-left square while a 3.2-mm-thick lactose pellet is placed at the bottom-right 

square [5]. 

 

Figure. 4.11 (a)-(c) show the THz images reconstructed at frequencies of 0.50, 0.54, 

and 1.38 THz. At 0.5 THz, the absorption of both polyethylene and lactose is minimal, 

and this is reflected in the reconstructed image in which two bright regions are 

observed corresponding to strong THz transmission through both materials (Figure. 

4.11 (a)). The dark areas correspond to the opaque copper tape. Lactose monohydrate 

powder has tow well-defined strong absorption features at 0.54 and 1.38 THz [18]. 

Consequently, at these two frequencies, the reconstructed sample image shows a 

much weaker transmission for the lactose (bottom-right square of Figures. 4.11 (b) 

and (c)). 
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A major advantage of THz-TDS is that the transient electric field, rather than the 

radiation intensity, is measured as a function of time. This coherent detection scheme 

not only yields a THz signals with excellent SNR and high dynamic range, but also 

preserves the important phase information. This enabled us to measure a THz 

spectrum at each pixel in the image. Figure. 4.11 (e) shows the calculated THz spectra 

of the lactose and polyethylene, determined by averaging over an area of 4×4 pixels at 

the centers of the lactose (top-left square) and polyethylene (bottom-right square) 

regions. Two well-defined absorption features are observed in the lactose spectrum at 

0.54 and 1.38 THz, which agree well with the published data [19]. To the best of our 

knowledge, this represents the first combined THz imaging and spectroscopic 

measurement using a binary mask set. Furthermore, as a THz spectrum was obtained 

for each pixel of the image, spatially resolved chemical maps of the sample can be 

obtained by using cosine correlation mapping [20]. For a better visualization of the 

chemical distributions in the sample, the extracted chemical maps are displayed as a 

red-green-blue (RGB) map [20]. Figure. 4.11 (d) demonstrates that in this way the 

chemical distribution of the lactose and polyethylene can be clearly distinguished. 

 

4.5 Summary 

In conclusion, we have reported the experimental implementations of both IR and 

THz imaging, especially for THz time-domain (pulsed) spectroscopic imaging, using 

an optimized binary mask set. The time-domain (pulsed) THz spectroscopic imaging 

is possible using a single-point detector and CS, allowing a spatial and chemical map 

of sample to be obtained. This significantly reduces the number of measurements 

required to form an image, with a commensurate reduction in image acquisition time. 

Furthermore, we have been able to demonstrate image reconstruction over a far 

greater frequency range (up to 2.0 THz), which is of considerable significance for a 

broad range of imaging applications. For the future work, considering the pixel 

number of masks is only 20×20 pixels, we can further increase the pixel number of 
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masks to obtain higher resolution reconstructed images. Also, for the time being, all 

the 40 masks are changed manually, we can improve the system which enables the 

measurement to be done automatically and continuously, idea for real-time THz 

imaging application. 
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Chapter 5  

CS-THz System using a Single Spinning 

Disk 

 

Motivated by the CS theory several single-pixel cameras [1-4] have been developed. 

Most of existing works use a random Bernoulli operator, in which the entries of Φ are 

random selected as 0 and 1 with equal probability. In such systems, a set of 

independent two-dimensional random binary masks are required, each of which 

corresponds to one row of Φ. Despite their theoretical advantages, there are a couple 

of practical limitations. First, as each row of Φ is independent, the imaging speed is 

limited by the slow translation of one random pattern to another [2, 3]. Second, a fully 

random binary operator incurs high computational complexity and huge memory, 

especially for high-resolution imaging [4].  

 

To solve these problems, in our work [5], we proposed the use of a single rotating disk 

(similar to the Nipkow disk used in confocal microscopy [6]) for a fast single-pixel 

camera. The measurements in [5] were preformed in a "stop-measure-rotate" fashion 

by using a motorized stage to rotate the disk, and THz images were obtained using a 

backward wave oscillator (BWO) source operating at a single frequency of 0.14 THz. 

After that, in [7], we showed for the first time, to our knowledge, that a continuously 

spinning disk can be used for fast compressive IR imaging and TPI. This enables the 

measurement to be done automatically and continuously, ideal for real-time THz 

imaging applications. 
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5.1 Spinning Disk Design based on CS 

Figure. 5.1 illustrates the schematic diagram of the spinning disk. This spinning disk 

has random binary patterns, where 0 (the black pixel) and 1 (the white pixel) have 

equal probabilities. During the imaging process, the whole disk s covered except for a 

small fixed rectangular area, which has the same dimension of reconstructed image. 

When spinning the disk, each effective mask is obtained from the rectangular window 

in green with different binary patterns (the ring area between two dashed red lines is 

the imaging area). Then, a set of effective masks are obtained for reconstruction. 

 

 

Figure. 5.1 Schematic diagram of the spinning disk. When spinning the disk, each effective mask is 

obtained from the rectangular window in green with different binary patterns (i.e., the area between two 

red dashed lines is the actual imaging area). 

 

From a signal processing point of view, the sampling operator Φ corresponding to a 

spinning disk can be approximated as random block Toeplitz matrix with the 

following form: 
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where each )11(  LiMAi
 is an 1×n (n=N/L) random binary row vector. The 

parameter L (or equivalently n) depends on the rotation step α and the position of the 

observation rectangular area. L becomes large when α is small and when the 

rectangular area is close to the center of the disk. Compared with the full random 

matrix used in [2], Φ given above requires less storage space and yields much faster 

computation. More importantly, it can be easily implemented in hardware. [8] and [9] 

first derived that when x is a sparse signal (i.e., when the sparsifying transform  is 

an identity matrix), the total number of measurements required is 

))/log(( 3 KNKOM  . More recent results in [10] show that the bounds could be 

further improved to ))(log( 2 NKOM  . This implies that the spinning disk 

implementation offers a sub-optimal theoretical bound (with an extra scaling factor of 

log N) when  is an identity matrix. For other , there is no reported work about 

theoretical performance bounds of (block) Toeplitz matrix.  

 

In order to illustrate the validation of this spinning disk approach and the robustness 

of the corresponding reconstruction algorithms, we compared the various of 

reconstructed images from the simulated signals in the presence of Gaussian white 

noises. Similar to that in chapter 4, both the minimum mean square error (MMSE) 

linear estimation [11, 12] and the total variation minimization (TV-min) nonlinear 

reconstruction algorithm [13] have been investigated. As we can see from Figure. 5.2, 

most of the reconstructed images can be easily recognized except ones using TV-min 

nonlinear reconstruction algorithm at relatively low signal to additive Gaussian noise 

ratio. Note that only 120 measurements (each of these 120 effective masks is obtained 

by spinning the disk for each 3 degrees) were necessary to obtain an image of 1024 

pixels. This represents a 9 times reduction in measurement number and thus 

measurement time. We can further quantize the signal to noise ratios (SNR) for 

reconstructed images from Figure. 5.2 to Figure. 5.3. The SNRs for reconstructed 

images become greater when increasing the number of measurements or the signal to 

additive Gaussian white noise ratio; also they will tend to stable when in the presence 
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of high signal to additive Gaussian noise ratio. Compared with those using MMSE 

linear estimation, the simulation results using TV-min nonlinear reconstruction 

algorithm perform much better in most of cases, especially in the presence of high 

signal to additive Gaussian noise ratio. However, in relatively low signal to additive 

Gaussian noise ratio, MMSE works better in return. So in the realistic experiment 

with large noises, further increase in the measurement number may decrease the 

quality of the reconstructed images. 

 

 

Figure. 5.2 The simulation results for reconstructing an image of English character "A" using the 

spinning disk configuration. Both MMSE linear estimation and TV-min nonlinear reconstruction 

algorithm are used. All images have 32×32 pixels. (NM: number of measurements, SNR: signal to 

additive Gaussian noise ratio). 
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Figure. 5.3 SNRs for reconstructing an image of English character "A" using the spinning disk 

configuration. Both MMSE linear estimation and TV-min nonlinear reconstruction algorithm are 

investigated. (NM: number of measurements, SNR: signal to noise ratio). 

 

Figure. 5.4 presents the SNR comparison for reconstructed images using full random 

operators (FRO) and spinning disk configuration (SDC). As expected, the quality of 

the reconstructed images could be improved by increasing the number of 

measurements. For spinning disk configuration, it is about 2-5 dB degradation with 

regard to the full random operators. This spinning disk implementation could yield 

similar performance as Gaussian random operators (the theoretically ideal operator in 

CS theory). The inset reconstructed images are easily obtained using 360 

measurements. With the theoretical validation of the spinning disk configuration, we 

will develop it into the experimental implementation in the next section. 
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Figure. 5.4 SNRs comparison for reconstructed images using spinning disk configuration (SDC) and 

full random operator (FRO). TV-min nonlinear reconstruction algorithm is used. For SDC, it is about 

2-5 dB degradation with regard to the FRO. The insets show the reconstructed images using 360 

measurements: the top two images are reconstructed using FRO and the bottom two are recovered 

using SDC, both at 10 dB and 60 dB signal to additive Gaussian noise ratio. (NM: number of 

measurements, SNR: signal to noise ratio). 

 

5.2 CS-THz Experiment using IR Light Source 

5.2.1 Experimental Setup 

Although some theoretical results about (block) Toeplitz measurement operator were 

investigated in literature [8-10, 14, 15], their practical applications in compressive 

imaging applications, especially hardware implementations are still under 

development. Here we developed the first spinning disk configuration into 

experimental implementation. 

 

Figure. 5.5 shows the schematic diagram of a spinning disk based compressive 

imaging system. Also, a photo of such compressive IR imaging system is presented in 
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Figure. 5.6. As expected, during the imaging process, the whole disk is covered except 

for a small fixed rectangular area. Each time the disk is rotated by α deg, the inner 

product between the object and the rectangular area is measured using a single 

detector. As a further illustration, we provided a video demonstration [16] to explain 

the spinning disk imaging process, and to demonstrate how the quality of the 

reconstructed images progressively improves as the number of measurements 

increased. Note that, at each rotation angle, the new binary pattern inside the 

rectangular is shifted version of the previous pattern with only a small number of 

elements added in. So the corresponding sampling operator Φ could thus be 

approximated as a Toeplitz block matrix which is discussed above. 

 

 

Figure. 5.5 Schematic diagram of a spinning disk based compressive imaging system. The square 

enclosed by the solid red line represents the "effective image window". In our experiment, the spinning 

disk has a radius of R=95.0 mm and the image window is placed l=35.0 mm from the center of the disk. 

A hole of 0.5 mm diameter at the edge of the spinning disk is used for synchronizing the mask position 

and the measured signal. (LED: light emitting diode, PD1: photodiode, DAQ: data acquisition) [7]. 
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Figure. 5.6 Photo of a spinning disk based IR compressive imaging system. A pair of LED and 

photodiode in white dashed square, together with a hole of 0.5 mm diameter at the edge of the spinning 

disk, are used for synchronizing the mask position and the measured signal. (LED: light emitting diode, 

PM: parabolic mirror). 

 

In our IR experiment, an IR LED and a photodiode were used as the light source and 

the detector, respectively. The IR light from a source was collimated using a parabolic 

mirror. After propagating through the sample and the spinning disk, the IR beam was 

then focused, by using another parabolic mirror onto the detector. All the samples 

were made of copper tape on a plastic plate and the spinning disk was fabricated by 

simply printing the designed binary patterns on a transparent plastic sheet. This 

spinning disk has a radius of R=95.0 mm and the imaging window is placed l=35.0 

mm from the center of the disk (Figure. 5.5). The effective image window has a 

dimension of 32×32 (1024 pixels in total). The spatial resolution of the image is 

mainly limited by the pixel size, which is much larger than the wavelength of the IR 

radiation used here. 
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Figure. 5.7 Synchronizing the disk rotation with data measurement by comprising the measured data 

from detector and the feedback signal from photodiode (PD1). (a) Measured data for reconstruction. (b) 

Feedback signal for synchronization. 

 

One important issue is how to synchronize the disk rotation with data measurement. 

To achieve this, we put a hole of 0.5 mm diameter near the edge of the spinning disk. 

An LED and a photodiode (PD1 in Figure. 5.5) were then used to monitor the disk 

rotation. The signal recorded using PD1 provides information about the relative masks 

positions for the data acquisition (DAQ) card. Concretely, from Figure. 5.7, once the 

spinning disk is rotated to the position of the hole which near the edge of the spinning 

disk, we will obtain an peak value such as that in the position "A" and "B" in the 

figure. From each peak value to the next one (i.e., from the start position to the end 

position of every 360 degrees), we can easily monitor the positions corresponding to 

each measurement (effective masks). Hence, the system can effectively measure the 

CS samples while continuously spinning the disk. 
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Also, two reconstruction algorithms, i.e., the MMSE linear estimation [11, 12] and the 

TV-min nonlinear reconstruction algorithm [13] have been investigated. Note that CS 

requires nonlinear reconstruction [13, 17]. However, algorithms like TV-min 

optimization are time-consuming. To keep up with the measurement speed, we used 

the classical MMSE linear operator [11, 12] as an initial solution, in which the 

autocorrelation matrix of x follows the autoregressive model of order 1 with the 

autocorrelation coefficient ρ=0.95 [12]. The time required to reconstruct a 32×32 

pixel image using MMSE reconstruction is only about 0.002 s, while that using 

TV-min optimization is around 5 s (hardware specification: Intel Core2 Duo CPU at 

2.00 GHz, 3.00 Gbyte memory; software: MATLAB 2011a). 

 

5.2.2 Experimental Results 

Based on the experimental setup in Figure. 5.5, the experimental IR results are 

presented here. Figure. 5.8 shows, as examples, the IR images of English characters T, 

E, R, and A, and a Chinese character guo reconstructed from 240 measurements (each 

of these 240 effective masks is obtained by spinning the disk for each 1.5 degrees). 

The dark areas correspond to the opaque tape, and the bright areas correspond to the 

cut-through holes. One can see that, even with MMSE linear reconstruction, all the 

characters (including the complicated guo) are visually recognizable. As expected, 

better quality images could be obtained using the TV-min optimization algorithm. The 

imaging acquisition speed is about 1 image/s, mainly limited by the speed of the 

specific electric motor (940D series, MFA) used in our experiment. This achievement 

demonstrate the proof of the principle, also allows the measurements to be done 

continuously. So we can further extend such idea to the THz imaging system. 
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Figure. 5.8 (a) Photographs of the samples used in IR imaging experiment, and their corresponding IR 

images reconstructed using (b) MMSE linear estimation and (c) the TV-min nonlinear reconstruction 

algorithm. Each image has 32×32 pixels and was reconstructed from 240 measurements [7]. 

 

5.3 CS-THz Experiment using BWO THz Source 

5.3.1 Experimental Setup 

As a further demonstration that the developed compressed imaging system is also 

applicable to THz imaging, in our prior THz compressive imaging experiments [5], 

we used a BWO source (Insight Product Company, USA) which provides 

electromagnetic radiation at 0.14 THz. The schematic diagram of this compressive 

THz imaging system using BWO source is illustrates in Figure. 5.9. The detector used 

was SPH-49 (Spectrum Detector Inc. USA). A DSP Lock-in Amplifier (SR830, 

Stanford Research System, USA) was used to amplify the signal in the measurements. 

Figure. 5. 10 shows the photo of such compressive THz imaging system using BWO 

source. The power supply provides 1400 volts to generate this BWO source. 
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Figure. 5.9 Schematic diagram of the compressive THz imaging system using BWO source. A single 

rotating mask (a spinning disk) was used to modulate the THz beam. 

 

 

Figure. 5.10 Photo of the compressive THz imaging system using BWO source. 

 

The THz measurements based on such setup were performed in a 

"stop-measure-rotate" using a motorized stage which can set the step size accurately. 

So in this setup, no extra components are needed to synchronize the disk rotation with 

data measurement. As shown in Figure. 5.11, the random binary pattern of the 

spinning disk was fabricated on a 0.5-mm-thick standard print circuit board (PCB).  
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Figure. 5.11 The physical spinning disk which is fabricated on a 0.5-mm-thick standard print circuit 

board (PCB). The diameter of this spinning disk is 20.0 mm and each of the physical pixel is 1.0 

mm×1.0 mm. 

 

5.3.2 Experimental Results 

As expected, all sample patterns which are concealed in fiber reinforced epoxy resin 

can be identified easily in Figure. 5.12. Here, the THz measurements were preformed 

in a "stop-measure-rotate" method. All the images with 1024 pixels were 

reconstructed from 100 measurements in about 200 seconds, which represents a 

significant reduction in both the measurement number and the measurement time. 

This is the first time for spinning disk configuration to be developed in THz imaging 

system. We anticipated that better image quality could be obtained by improving the 

SNR, and shorter image acquisition time could be achieved by using a fast THz 

detector.  
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Figure. 5.12 (a) Photograph of samples, and the corresponding THz images reconstructed using (b) 

simulated signals and (c) measured signals. The samples used are copper tape with a cut-through 

pattern of "T", "H" and "z", which is concealed in fiber reinforced epoxy resin. The spinning disk was 

used, and the images were reconstructed from 100 measurements. Each image has a 32×32 pixels with 

a pixel size of 1.0 mm×1.0 mm. A BWO source at 0.14 THz was used to illuminate the sample and the 

transmitted THz radiation was measured using a single-element pyroelectric sensor [5]. 

 

5.4 CS-THz Time-Domain (pulsed) Imaging Experiment 

5.4.1 Experimental Setup 

Based on the setup in Figure. 5.13, we further developed the spinning disk 

configuration in a typical THz time-domain system [3]. The THz emitter was a biased 

photoconductive antenna [18] and the THz receiver was a ZnTe electro-optic crystal 

[19]; both of them were driven by femtosecond laser pulses from a Ti:sapphire laser. 

In the experiments, we first found that maximum THz signal (peak position) by 

varying the time delay between the THz pulse and the optical probe pulse using a 

variable delay stage. We then fixed the position of the variable delay stage at the THz 

peak position, and recorded the THz signal as a function of the rotation angle of the 

spinning disk, which, in this case, was driven by a motorized rotation stage (CR1-Z7 

series, Thorlabs). The physical spinning disk is same as that used in Figure. 5.11. We 

found that the PCB substrate material absorbs strongly THz radiation at frequencies 
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above 1.0 THz. Consequently, the THz signal reduced significantly after transmitting 

through the spinning disk, and the useful frequency range was below 0.45 THz. 

 

 

Figure. 5.13 Photo of the compressed THz time-domain (pulsed) spectroscopic imaging system. A 

photoconductive emitter is used for THz generation and an EO crystal is used for THz detection. (BS: 

beam splitter, PC THz emitter: photoconductive THz emitter, and EO: electro-optic). 

 

5.4.2 Experimental Results 

The stability of the femtosecond laser directly determines the SNR of THz 

time-domain (pulsed) imaging system. It depends on many environmental conditions 
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such as electrical noise, room temperature and cooler temperature. It is necessary to 

monitor the power of laser during the whole experiment. As shown in Figure. 5.14 (a), 

during the starting period of time, the power of laser will continuously decease. We 

can calibrate the measured data by using the recorded power of laser which is as a 

function of time delay. Form Figure. 5.14 (b), to some extent, the difference between 

the simulated results and the experimental results can be reduced. Empirically, the 

power of laser will tend to be stable after a period of time. It is important to keep the 

environmental conditions stable because they directly determine the stability of 

femtosecond laser. The power of laser should be recorded during the whole 

experiment to monitor the system stability and for calibration if possible. 

 

 
Figure. 5.14 (a) Power of laser as a function of time delay. (b) Simulated and reconstructed results 

comparison. The curve in blue is the simulated results which is the ideal simulated data. The one in red 

is the measured data; and the one in green is the calibrated data using the data from (a). 

 

Owing to the limited SNR, the rotation speed of the spinning disk was 5 deg/s and it 

took about 80 seconds to measure one THz image. For the same reason, we used 160 

measurements for image reconstruction, as further increase in the measurement 

number decreases the quality of the reconstructed THz images. It was also reported in 

[2] that, even with full random binary operators, more measurements could add more 

artifacts for reconstructed THz images. Figure. 5.15 shows our experimental results 

for THz images of A, U, and H. Although the quality of reconstructed images is not as 

good as that in the IR experiments, all these characters are still recognizable. Also, 

compared with classical MMSE reconstruction, the TV-min optimization does not 
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provide much visual improvement. This could be caused by the imperfection of the 

operator Φ in practical implementations. Fabrication error and misalignment of the 

spinning disk patterns as well as the nonuniform disk substrate could all contribute 

such noises in Φ. Nevertheless, our experimental results demonstrated the concept of 

using a continuously spinning disk approach for rapid compressive THz imaging. 

 

 

Figure. 5.15 (a) Photographs of the samples used in the THz imaging experiment, and their 

corresponding THz images reconstructed using (b) MMSE linear estimation and (c) the TV-min 

nonlinear reconstruction algorithm. Each image has 32×32 pixels and was reconstructed from 160 

measurements [7]. 

 

Recall that, in [2, 3], a set of 10s or 100s of physical masks were used and it could 

take up to 30 min [3] to complete the THz image acquisition by switching 40 masks 

manually. Our spinning disk approach uses only one physical mask and less 

acquisition time. This simplifies the experimental setup, and allows the measurements 

to be done continuously. We noted that a THz spatial modulator could, in principle, be 

used for automatic CS-THz imaging [20]. However, the THz spatial modulator 

reported has only 4×4 pixels, limiting its practical imaging applications.  
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5.5 New Generation Spinning Disk 

Considering that the PCB substrate material absorbs strongly THz radiation as well as 

the nonuniform disk substrate could contribute to such noises in Φ, currently, we 

designed a new generation spinning disk without substrate to minimize these noises. 

This new generation spinning disk is made of a 0.28-mm-thick steel plate. A number 

of 2.0-mm-diameter holes are drilled on this steel plate instead of 1.0 mm×1.0 mm 

squares which are fabricated on the PCB board. The schematic diagram of this new 

generation spinning disk is shown in Figure. 5.16. The corresponding sampling 

operator Φ could also be approximated as a Toeplitz block matrix. Using this new 

generation spinning disk, it can offer similar performance as that using our previous 

spinning disk, whereas minimizing the effect of the disk itself to the THz imaging 

system. 

 

 

Figure. 5.16 Schematic diagram of new generation spinning disk which is made of a 20.0 mm×20.0 

mm steel plate. The diameter of each holes drilled on the plate is 2.0 mm. 

 

In order to illustrate the validation of this new generation spinning disk approach, we 

developed it in our IR experiments. Similar to the previous IR experiments, an IR 

LED and a photodiode were used as the light source and the detector, respectively. 
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The effective image window has a dimension of 33.4 mm×33.4 mm. In all the IR 

experiments, 1440 measurements were recorded to reconstruct the images of size 

96×96 (9216 pixels in total), which means the sampling rate is around 15.6%.  

 

 

Figure. 5.17 (a) Photographs of the samples used in IR imaging experiment, and their corresponding 

IR images reconstructed using (b) MMSE linear estimation and (c) the TV-min nonlinear 

reconstruction algorithm. Each image has 96×96 pixels and was reconstructed from 1440 

measurements. 

 

Figure. 5.17 shows, as examples, the IR images of English characters A, B, C, D, E, F, 

and G reconstructed from 1440 measurements. One can see that, even with MMSE 

linear reconstruction, all the characters are visually recognizable. Similar to that using 

previous spinning disk, better quality images could be obtained using the TV-min 

optimization algorithm. For further quantitative analysis, we used four normal 

samples (in Figure. 5.18, from left to right) for reconstruction. For the extremely 

small patterns such as squares of size 1×1, 3×3 pixels and 1-pixel-width straight line, 

it is hard to recognize using either MMSE linear estimation or the TV-min nonlinear 

optimization. For the other patterns, even with MMSE linear estimation, the images 

are visually recognizable. Also, better quality images could be obtained using the 

TV-min optimization algorithm. Considering the diameter of each physical holes of 

this spinning disk is 2.0 mm, this new generation spinning disk provides a reasonable 

spatial resolution to reconstruct such small patterns whose size are only around 1.0 

mm. As the physical holes cannot be fabricated as small as possible (diffraction need 
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to be averted), such configuration of the new generator spinning disk has great 

potential to achieve a high resolution performance. 

 

 
Figure. 5.18 (a) Normal sample images used in IR experiments, and their corresponding IR images 

reconstructed using (b) MMSE linear estimation and (c) the TV-min nonlinear reconstruction algorithm. 

Four samples from left to right: (I) Four squares of size 1×1, 3×3, 5×5, and 7×7 pixels. (II) Four 

straight lines whose widths are 1, 3, 5, and 7 pixels. (III) A straight line with 1-pixel-width. (IV) A 

straight line with 3-pixels-width. Each pixel equals to 0.33 mm in practice. 

 

For the time being, this new generation spinning disk is only applied in the IR 

experimental implementation. From the proof of principle above, we believe that it is 

ready for our new generation spinning disk to be developed in the THz time-domain 

(pulsed) imaging system to minimize the noises in Φ. To some extent, the SNR could 

be become well once it is used in the future. 

 

5.6 Discussion 

Chan et al. reported the first THz-CS implementation in 2006, after that, we designed 

two different sampling operators and successfully demonstrate both of them in the 
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practical THz time-domain (pulsed) systems. We summarized the current CS-THz 

systems using the physical masks (i.e., random projection on THz imaging) and 

present them in the Table. 5.1 as below:  

 

Table. 5.1 Comparison for current CS-THz systems. 

 Chan et al. [2] Our work 

Number of 

masks 

Hundreds of 

masks 

40 optimized masks [3] A single spinning disk 

configuration [5, 7] 

Sampling 

operator Φ 

Full random 

0/1 pattern 

Optimized 0/1 pattern Random 0/1 block 

Toeplitz matrix 

Sampling rate 0.2-0.4 0.1 0.16 

Imaging 

resolution 

3232 2020 3232 

Spectrum 0.15 THz 0.1 THz-2.0 THz 0.1 THz-0.45 THz 

 

From this table, we can find that two different sampling operators were designed and 

used in our work. There are several improvements we achieved: firstly, we reduced 

the number of masks to 40 masks and one single spinning disk, rather than hundreds 

of masks. That means the imaging processing could be further speed up. Secondly, the 

sampling rates we achieved in both experiments are better than the one Chan et al. 

used. And Thirdly, we successfully reconstructed images within a THz range, rather 

than a specific frequency, so we can obtain more spectral information in the 

experiments.  

 

For the 40 optimized masks, both the spatial and spectral characteristics of a sample 

have been reconstructed using a extremely low sampling rate. And for the spinning 

disk configuration, it allows an automatically and continuously high-speed 

compressive image acquisition. Both of these two methods have further developed the 

current CS-THz areas, ideal for real-time THz imaging applications.  
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5.7 Summary 

In this chapter, we have reported the design and implementation of a continuously 

spinning disk based compressive imaging system. Such an approach offers the 

advantages of compact design, fast computation, and easy implementation with 

potential video-rate imaging speed.  

 

As demonstrated here, the idea of the spinning-disk approach is applicable to both IR 

and THz time-domain imaging. In particular, for a 32 × 32 image, 240 measurements 

(i.e., around 24% sampling rate) are sufficient to get an IR image with reasonably 

good quality. For IR imaging, the imaging acquisition speed we achieved is about 1 

image/s, mainly limited by the speed of the specific electric motor used in our 

experiment.  

 

For THz imaging, owing to the limited SNR, the rotation speed of the spinning disk 

was 5 deg/s and it took about 80 seconds to measure one THz image. 160 

measurements (about 16%) can reconstruct images with acceptable quality. Further 

increase in the measurement number decreases the quality of the reconstructed THz 

images. Even with full random binary operators, more measurements could add more 

artifacts for reconstructed THz images. Also, compared with classical MMSE 

reconstruction, the TV-min optimization does not provide much visual improvement. 

This could be caused by the imperfection of the operator Φ in practical 

implementations. Fabrication error and misalignment of the spinning disk patterns as 

well as the nonuniform disk substrate could all contribute such noises in Φ.  

 

Considering that the PCB substrate material absorbs strongly THz radiation as well as 

the nonuniform disk substrate could contribute to such noises in Φ, currently, we 

designed a new generation spinning disk without substrate to minimize these noises. 
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Using such new generation spinning disk configuration, the THz image quality and 

acquisition speed could be significantly improved. From further quantitative analysis, 

the reconstructed IR results show that the new generation spinning disk can be used to 

recover high quality IR images and has great potential to achieve a high resolution 

performance. In the future, we look forward to seeing our new generation spinning 

disk to be developed in the THz time-domain (pulsed) imaging system to minimize 

the noises in Φ.  
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Chapter 6  

Three-Dimensional Reconstruction from 

Random/Incomplete Subsets of THz 

Data 

 

To date, a number of random projection approaches on THz imaging based on CS 

have been proposed [1-6]. Such methods require data in a much lower sampling rate 

than the Nyquist sampling rate. Similar to that was reported in the previous chapters, 

in such systems, the THz beam passing the object is spatially modulated by a set of 

physical masks [2, 3] or a physical spinning disk [5, 6], and the resulting THz beam 

was then focused by using parabolic mirror onto the single pixel detector. A set of 

linear combinations of the object beam multiplied by the mask patterns were recorded 

for image reconstruction. Although the number of measurements is much smaller than 

that of the pixels to be reconstructed, such method using physical sampling operators 

is still time consuming and not that accurate. In [2, 3], such mechanical movement for 

changing one mask to another limit applications of CS-THz imaging, especially for 

high resolution imaging. 

 

Currently, Cho et al. [7] reported fast THz reflection tomography using block-based 

CS [8]. It enables the THz tomography that reduces measurement time by apply the 

CS technique to the spatial domain. This proposed method does not require any 

additional spatial modulator or corresponding hardware and achieves fast acquisition 

and reconstruction without image degradation. It provides a general solution to the 

fast THz tomography. However, up to now, all these CS implementations have been 

performed on two-dimensional (2D) THz images.  
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In this chapter, we reported the compressive multidimensional imaging, especially the 

first implementation of direct three-dimensional (3D) compressive THz imaging by 

using random sampling [9]. Using such system, one can offer better quality of 

reconstructed images and faster acquisition than conventional frame-by-frame 2D 

approach, synchronously minimizing the hardware implementation. In section 6.1, 

similar to the idea of [7], a faster TV-min (so-called NESTA) [10] is used to 

frame-by-frame reconstruct 2D image. And in section 6.2, we demonstrated that only 

5% of the 3D THz data is necessary to reconstruct all 3D THz images, thus has huge 

potential in significantly speeding up the THz measurements and reducing the 

required data storages. 

 

6.1 Frame-by-Frame Inpainting 

For the first step, a frame-by-frame 2D reconstruction is used here in order to 

demonstrate such compressive multidimensional imaging implementation without any 

physical spatial modulators, i.e., random sampling on THz imaging. In our work, 

random sampling is equivalent to under sampling. We keep a number of samples at 

random locations from a given set of data and leave the rest of the samples. Each 

observation measures one or more properties of observable bodies distinguished as 

independent objects or individuals. We can recover the signals using a small number 

of original data rather than the whole data set.  

 

The results presented below are based on the THz data acquired across an area of 20.0 

mm×22.0 mm using a TPIscan-1000 system (TeraView Ltd, Cambridge, U.K.), as 

shown in Figure. 6.1 (a), which covers a spectral range from 0.1 to 3.5 THz. The 

images have 268×120 pixels and at each pixel a THz waveform was recorded as 

function of time delay over a scan range of 4.0 mm. The sample used is a polythene 

pellet of a diameter of 25.0 mm. Inside the pellet there is a T-shaped plastic sheet 

which locates approximately 0.2 mm below the sample surface. In this section, for 
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ease of computations we resized the images, using bicubic interpolation, so that the 

overall data size was 200×200×512. Figure. 6.1 (b) shows a 3D data cube extracted 

from the sample (40 layers started from 140th temporal band). 

 

 

Figure. 6.1 (a) TPIscan-1000 system (TeraView Ltd, Cambridge, U.K.). (b) 3D data cube extracted 

from the sample (40 layers start from 140th temporal band). 

 

A fast and robust first-order method for sparse recovery, NESTA, can solve the 

following TV-min problem which is used to recover 2D images [10]: 


2

..min
lTV

xbtsx .                   (6.1) 

In the spirit of Nesterov's smoothing technique, this method achieves a fast and 

accurate signal recovery by subtle averaging of sequences of iterates. Using such 

algorithm, a frame-by-frame reconstruction is presented, which means each 200×200 

pixels cross-sectional THz image is recovered by using random sampling. Figure. 6.2 

(b)-(f) shows the reconstruction results for one example THz image (166th temporal 

band) for different sampling rates at 10%, 15%, 20%, 25% and 30%, respectively. The 

dark areas correspond to the polythene pellet, and the bright areas correspond to the 

T-shaped plastic sheet. One can see that, all the reconstruction results are visually 

recognizable. According to the data from Figure. 6.2, Table. 6.1 show the mean square 

error (MSE) and signal-to-noise ratio (SNR) in dB for different observation rates. As 

expected, better quality images (better SNR) could be obtained by increasing the 
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observation rate.  

 

 

Figure. 6.2 (a) Original image. The corresponding reconstruction results using NESTA (b)-(f) for 

different sampling rates at 10%, 15%, 20%, 25% and 30%, respectively. 

 

Table. 6.1 Mean square error (MSE) and signal-to-noise ratio (SNR) in dB, for different observation 

rates. 

 10% 15% 20% 25% 30% 

MSE 0.0865 0.0680 0.0605 0.0511 0.0457 

SNR (dB) 21.01 23.00 24.84 25.85 26.98 

 

A 3D reconstruction data cube extracted from the total reconstruction results is 

presented in Figure. 6.3. The T-shaped sample can be easily identified using NESTA 

at a 20% sampling rate. The reconstruction results can offer similar performance to 

the original image in Figure. 6.1 (b). Thus, this frame-by-frame reconstruction 

directly reduces the number of sampling points in the spatial domain without spatial 

modulation or transformation of the signal. It can substantially reduce the number of 

measurements and computational time without degrading the image quality. 
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Figure. 6.3 3D reconstruction data cube extracted from the total reconstruction results (40 layers start 

from 140th temporal band) using NESTA for a 20% sampling rate. 

 

6.2 3D joint Dictionary Learning and Recovery 

Up to now, all the CS implementations have been performed on 2D THz images. In 

this section, we further developed the CS technique and reported the first 

implementation of direct 3D compressive THz imaging by using random sampling. 

Our main object is to exploit both spatial and spectral/temporal information for 

recovering the missing samples. To achieve this object, we first proposed to learn a 

spatio-spectral/temporal dictionary form a subset of available training data. Using this 

dictionary, we then jointly recovered the original data samples from a incomplete set 

of observations. Our experimental results confirm significant improvement over the 

existing methods. 

 

Basically, CS was first developed for single vector problem, but later, its theoretical 
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extension to the case of multiple vectors was studied in several works [11-14]. 

Distributed CS [14] and multiple measurement vector (MMV) [11] are two typical 

extensions. The idea in MMV is to jointly recovering the sparse vectors, while 

exploiting the common sparsity within the vectors. This can be the case where several 

measurement vectors are available over time/frequency. In most CS-based methods 

for multidimensional data, the data is treated as a number of independent single 

vectors (for example, 2D THz image inpainting in section 6.1). Although there are 

some works exploiting the correlation among different spectral/temporal bands 

[15-17], the advantages of joint sparse recovery have yet to be recovered. One of the 

contributions of this section is to develop an MMV-based method for reconstruction 

of multidimensional data from an incomplete set of observations. 

 

On the other hand, there are some efforts to take advantages of learned dictionaries as 

sparsifying transforms, rather than fixed predefined bases [18-21]. The learned 

dictionaries are well-adapted to a particular class of data and can be considered as a 

powerful tool for sparsifying and denoising [22], or recovering signals from 

incomplete set of observations. In general, few works have been done for exploiting 

the spectral/temporal information for training the dictionaries [17, 19, 21] and more 

work can be carried out in this regard. In this section, a new strategy is proposed for 

learning a spatio-spectral dictionary from a subset of available 3D data. Instead of 

learning the dictionary individually for each spectral/temporal image, we proposed to 

consider several adjacent spectral/temporal images for learning the dictionary atoms. 

Thus, both spatial and spectral/temporal information are incorporated into the 

dictionary atoms. This dictionary, which is obtained from a subset of available data, 

will be used in the reconstruction stage. In this stage, we proposed an MMV-based 

technique to jointly recover the original data from an incomplete set of observations. 

To do this, we applied the proposed method to segments of consecutive smoothly 

varying images to achieve the corresponding sparse coefficients. The sparse 

coefficients were then multiplied with the dictionary to recover the original image 

pixels. 
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6.2.1 Dictionary Learning for 3D Training Data 

In dictionary learning framework the aim is to find a dictionary that can sparsely 

represent a signal or image subject to availability of a set of training data. A dictionary 

is normally defined as an overcomplete matrix in which the columns (also called 

atoms) describe the features of the given training signals or images. Numerous 

applications can take advantages of learned dictionaries some of which are 

compression, denoising [22, 23], inpainting [23], and image separation [24, 25]. In 

contrast to traditional dictionary learning, which is defined for 1D and 2D signals, 

here we considered 3D data and attempted to simultaneously exploit both spatial and 

spectral/temporal information in designing the dictionary. 

 

Supposed that the 3D data is composed of N adjacent images of size nn  which are 

spectrally/temporally related. Assumed further that we have only access to a subset of 

dL  adjacent images from this set denoting by }
~

...,,
~

,
~

{
~

21 d

d

L

Lnn
XXXRX 


. The 

superscript )~(   indicates the training data samples. The i-th datacube, extracted from 

X
~

 was represented by )
~

(~ XRx ii  , where 
iR  is the datacube extraction operator. 

The datacube is of size of 
dLrr  , however, we represented it by a column vector 

of length 
dLr 2  throughout the subsequent discussions.  

 

We extracted all datacubes with full spatial overlap [23] and defined the following 

minimization problem to find a sparsifying dictionary from the training vector 

...},~,~{ 21 xx : 


0

2

~,

~..~~min iFii
sD

stssDx
i

.                  (6.2) 

In the above expression, 
kLr dRD



2

 is an overcomplete dictionary (
dLrk 2 ), }~{ is  



 

128 
 

are sparse coefficients with scalar τ being the sparsity degree. Moreover, 
F

  

denotes the Frobenius norm and 
0

  (
0 -norm) counts the number of non-zeros. 

Problem (6.2) is not simultaneously convex in })~{,( isD  and thus cannot be jointly 

minimized with respect to both variables. Instead, it should be minimized by 

considering one of the variables fixed at a time. Many "alternating minimization" 

approaches have been reported for (6.2) or its variations in the corresponding 

literature (see [22] and references therein). Here we used K-SVD [22] to solve (6.2). 

K-SVD is a generalization of K-means clustering and attempts to design a dictionary 

by alternatingly minimization of (6.2) using a sparse coding method followed by a 

Singular Value Decomposition (SVD). We noted that since the 
ix̂ 's include both 

spatial and spectral/temporal information, the obtained dictionary atoms also have this 

property, and hence called spatio-spectral/temporal. 

 

6.2.2 Joint Reconstruction from Incomplete Data 

In the reconstruction stage, we assumed that an incomplete set of 3D observations is 

available and the aim is to recover the missing samples. By incomplete set we meant 

accessing to only few random samples of original data. These observations can be 

obtained as a result of random sampling which is a special case of compressed sensing. 

It is noteworthy to mention that although the work presented herein is designed for 

reconstruction from incomplete data it could be further extended for recovery from 

random projections (CS framework) in the future. Here, we proposed a joint recovery 

technique which utilizes the aforementioned learned spatio-spectral/temporal 

dictionary to reconstruct the original images. In what follows we mathematically 

described the problem and the method. 

 

Consider a sampling operator, denoted by )(M , which operates simultaneously on a 
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set of 
dL  adjacent images, and keeps only 

dLnm 2  samples from X. These 

observed samples are then re-arranged into a column vector of length m denoted by 

)(XMy  , which presents an observation vector. A number of observation vectors 

can be generated in this way, for all other subsets, denoted by ...},,{ 21 yy . Now, 

assumed that we only have access to these vectors, in addition to the sampling 

operator )(M  and the dictionary D. Having these information, the aim is to recover 

the original images 
N

jjX 1}{  . 

 

The single image case of the aforementioned problem (i.e., 1 dLN ) is called 

image inpainting in which the aim is to fill in the missing pixels of a corrupted image 

[22, 23]. Here, the situation is more complicated since we faced a sequence of related 

images which should not be treated independently. Our aim is to exploit the 

spectral/temporal dependency, as well as spatial dependency, while recovering the 

original data samples. Equipped with a learned spatio-spectral/temporal dictionary, we 

extended the method in [22, 23] for this purpose. Assuming that the unknown 

datacubes 
ix  have a sparse representation over the dictionary D, the following 

minimization problem can be defined for any subset of 
dL  spectral/temporal bands: 

  
i i

iiii
sX

DsxsXMy
i

2

20

2

2}{,
)(min  .            (6.3) 

This problem is not simultaneously convex in all variables and should be solved 

alternately. Consider for the moment that X (and correspondingly ix ) is fixed. 

Therefore, (6.3) is simplified to the following sparse coding problem: 

  
i i

iiii
s

Dsxs
i

2

20}{
min  .                   (6.4) 

 

There exist different methods in the literature to solve the above problem, such as 

orthogonal matching pursuit (OMP) or focal underdetermined system solver 

(FOCUSS). All these methods are in the context of single measurement vector (SMV) 
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and treat the datacubes, independently, rather than jointly. In many multidimensional 

applications, particular in THz imaging, the amplitudes of image sequences vary 

smoothly in spectral/temporal dimension, and also there may exist some correlations 

in this dimension. Hence, we proposed joint recovery of sparse coefficient to exploit 

this information. This is in-line with the spatio-spectral/temporal dictionary we 

proposed in the previous section. There are several sparse recovery approaches in the 

context of multiple measurement vector (MMV) such as MFOCUSS [11] or MOMP 

[12] which can be used here. The main goal in MMV is to simultaneously recover 

several sparse vectors having the same supports (locations of non-zeros). In order to 

utilize MMV for reconstruction of 3D data, the problem (6.4) should be modified.  

 

Consider 
rL  consecutive subsets of X, i.e., ...},,{ 21 XX . Assume further that i-th 

extracted datacube from all these subsets are vectorized and arranged into a 
rd LLr 2  

matrix ]...,,,[ 21 riLiii xxx . It is important to note that since each 
ix , itself, is taken 

from a subset of 
dL  images, 

i  involves the information from 
rd LL  bands. 

Correspondingly, we defined the rLk  sparse coefficients matrix by 

]...,,,[ 21 riLiii sssS  . Now instead of solving (6.4), we proposed to solve the 

following joint minimization problem: 

  
i i

Fiii

p

S
DSSJ

i

2)(

}{
)(min ,                 (6.5) 

where: 

  
  


k

z

k

z

p
L

l

z

il

pz

ii

p
r

ssSJ
1 1

2/

1

2
][

2

][)( )()()( .             (6.6) 

In the above expression, 10  p , and )()(

i

p SJ  is the sparsity constraint which is 

applied jointly on the columns of iS . Also, ][ z

is  denotes the z-th row of iS , and ][ z

ils  

is the ),( lz -th entry of iS . We considered MFOCUSS [11] algorithm for solving 

(6.5) which is an extension of FOCUSS algorithm to the MMV case. 
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After finding all the sparse coefficients, we returned to (6.3) and solved it with respect 

to X. This can be obtained by taking the gradient of (6.3) with respect to X and setting 

it to zero which leads to: 

)RM()RRMM(ˆ T

i

T1

i

i

T

i

T   

i

iDsyX  ,           (6.7) 

where M and 
iR  are the matrix representation forms of )(M  and )(iR  operators, 

respectively. Although the above expression seems computationally expensive at the 

first glance, it can be simply obtained in a pixel-wise fashion, particularly because the 

matrix to invert in (6.7) is diagonal [23, 25]. It is noteworthy to mention that the 

above estimation should be executed for all subsets which ultimately gives all 

spectral/temporal images NXXX ˆ...,,ˆ,ˆ
21 . 

 

6.2.4 Results and Discussions 

The results presented below are based on the THz data which is presented in section 

6.1. In this section, for ease of computations we resized the images, using bicubic 

interpolation, so that the overall data size was 128×128×512. A subset of THz data 

was first selected for generating the training samples. We extracted the datacubes of 

size 
dLrr  , with r=8. The experiments were conducted for different dL  and rL  

to evaluate the performance in each case. The THz images were of size 128×128 (i.e., 

n=128), and we considered full spatial overlap when extracting the datacubes. In 

addition, the number of dictionary atoms (length of each row of D) was k=1024. 

 

We applied the proposed method to learn the overcomplete dictionary D in different 

trails with dL =1, 2 and 4. Since we worked in the time domain, the obtained 

dictionary is called spatio-temporal. To examine the reconstruction performance, we 

assumed availability of only 5% of entire pixels. Such an incomplete set was 
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generated, by zeroing 95% of samples uniformly at random locations. The same 

experiment was repeated for 10% pixel availability. We then applied the proposed 

joint reconstruction method (MFOCUSS with learned dictionary) to the incomplete 

observations for obtaining the sparse coefficients as well as the original THz images. 

This experiment was repeated for 
rL =1, 2 and 3. The accuracy of recovery, in terms 

PSNR (peak signal to noise ratio) is tabulated in Table. 6.2. The effects of proposed 

spatio-temporal dictionary are clearly seen by comparing the results with the case of 

discrete cosine transform (DCT) dictionary. For example, the achieved PSNR for 

dL =4, 
rL =3, and 10% observations using the proposed method is almost 6.5 dB 

more than what is achieved with DCT dictionary. 

 

Table. 6.2 Recovery accuracy (PSNR) in dB, for two cases of MFOCUSS with spatio-temporal 

dictionary (proposed), and MFOCUSS with DCT dictionary. The results are shown for different 

observation rates and different selection of Ld and Lr [9]. 

   PSNR (dB) 

dL  
rL  Observation rate Proposed MFOCUSS with DCT 

1 1 5% 

10% 

16.73 

18.11 

13.10 

14.18 

2 1 5% 

10% 

18.13 

19.41 

13.29 

14.49 

4 1 5% 

10% 

18.54 

23.12 

13.62 

15.71 

4 2 5% 

10% 

21.33 

24.12 

14.24 

16.10 

4 3 5% 

10% 

22.39 

24.91 

15.60 

18.33 

 

Furthermore, Table. 6.2 shows that higher PSNR is achieved when more number of 

segments is used for both learning the dictionary and image reconstruction. For 

http://en.wikipedia.org/wiki/Discrete_cosine_transform
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example, the achieve PSNR for 
dL =4, 

rL =3, and 10% observations is almost 7 dB 

more than what is achieved when 
dL =1, 

rL =1 using the proposed method. This 

behavior shows the significance of using MMV versus SMV. Note that the choice of 

dL =1, 
rL =1 is equivalent to SMV with no exploitation of temporal information.  

 

For comparison with other SMV-based algorithms we also show in Table. 6.3 the 

accuracy of recovery when the proposed method, TV-min [10] and OMP [26] were 

used with different observation rates. The results of the proposed method in Table. 6.3 

is for 
dL =4, 

rL =2. As expected, Table. 6.3 shows the superiority of the proposed 

method over those methods relying on single vector reconstruction. 

 

Table. 6.3 Recovery accuracy (PSNR) in dB, for different methods. We used Ld = 4 and Lr = 2 for the 

proposed method [9]. 

Method Observation rate 

5% 10% 15% 20% 25% 30% 

TV-min 14.92 17.97 19.40 21.70 22.10 22.55 

OMP 14.58 19.03 21.89 23.50 24.09 25.06 

Proposed 21.33 24.12 24.91 25.99 26.11 27.04 

 

In addition, the reconstruction results for one example THz image (152th temporal 

band) have been shown in Figure. 6.4. As seen from Figure. 6.4, the proposed method 

was able to reconstruct the image with highest PSNR among other methods. 

Comparing the results in this figure reveals the advantages of spatio-temporal 

dictionary learning and also joint sparse recovery over the conventional image 

reconstruction approaches. 
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Figure. 6.4 (a) Original image, (b) incomplete image, keeping only 5% of pixels. Reconstruction 

results using (c) proposed method (MFOCUSS with learned dictionary), (d) MFOCUSS with DCT 

dictionary, (e) FOCUSS with learned dictionary, (f) FOCUSS with DCT dictionary, (g) OMP with 

learned dictionary, (h) OMP with DCT dictionary, and (i) TV-min inpainting [9]. 

 

6.5 Summary 

In this chapter, a new fast tomography method with conventional THz imaging system 

is proposed using under-sampled data in the spatial domain. After a frame-by-frame 

2D reconstruction has been reported by NESTA, a new spatio-spectral/temporal 

dictionary learning is presented for 3D data. The proposed method learns a 

sparsifying dictionary from a subset of available data. The key point is to 

simultaneously use several adjacent images for training, thus, exploiting both spatial 

and spectral/temporal information through the dictionary atoms. Following this idea, 
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we proposed an MMV-based method for joint recovery of sparse coefficients from an 

incomplete set of observations. The sparse coefficients and the dictionary, together, 

were later used to recover the missing samples. Our results on THz data confirmed the 

significant improvement we achieved compared with existing approaches. This 

proposed method does not require any additional hardware and achieves fast 

acquisition and reconstruction. It provides a general solution to the fast spatial-domain 

THz imaging and has huge potential in significantly speeding up the THz 

measurements and reducing the required data storages. 
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Chapter 7  

Conclusions and Future Work 

 

7.1 Conclusions 

In this research, we developed a faster and more efficient THz imaging system based 

on the concept of CS. Both the random projection and the random sampling methods 

for compressive THz imaging were investigated. On the hardware side, we 

implemented two CS-THz systems based on random projection: one used a set of 

independent optimized masks and the other employed a single spinning disk.  

Compared with conventional TPI, these two CS THz imaging systems require no 

raster scanning of the object and fewer measurements. For random sampling, we 

demonstrated a 3D joint reconstruction of THz images from random/incomplete 

subsets of THz data. 

 

The random projection approach was used to reconstruct THz images from the 

synthetic and real-world THz data. The MMSE linear estimation was used as the 

reconstruction algorithm and the simulated results were subsequently reconstructed 

and obtained. Some key aspects of compressive THz imaging, including the effect of 

number of measurements, the effect of signal-to-noise ratio (SNR), and the limit of 

spatial resolution etc., have been investigated. The simulation results demonstrated 

that CS can be successfully used in THz imaging systems and has great potential on 

real-time THz imaging system because its use can dramatically reduce the number of 

measurements needed in such systems. 

 

Two different CS-THz systems were developed based on the random projection 

method. One of these is a THz time-domain (pulsed) spectroscopic imaging system 
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using a set of independent optimized masks. A single-point THz detector, together 

with a set of 40 optimized 2D binary masks, was used to measure the THz waveform 

transmitted through a sample. THz time- and frequency-domain images of the sample 

comprising 20×20 pixels were subsequently reconstructed. We demonstrated the first 

CS-THz system which can obtain both the spatial distribution and the spectral 

characteristics of a sample. The binary masks are optimized to approximate the 

Karhunen-Loeve transform (KLT). Using such masks, the achieved sampling rate is 

extremely small, only 10% of the pixels are required for reconstructing an image. 

 

In order to further speed up the image acquisition and reconstruction process, another 

hardware implementation - a single rotating mask (i.e., a spinning disk) with random 

binary patterns - was used in TPI systems. This demonstrated that a 32×32 pixel 

image could be obtained from 160 to 240 measurements. This spinning disk 

configuration allows the use of an electric motor to rotate the spinning disk, thus 

enabling the experiment to be performed automatically and continuously. We reported 

the first, to the best of our knowledge, experimental implementation of a spinning 

disk configuration for high speed compressive THz image acquisition. Also, a second 

generation spinning disk without substrate was developed to minimize the effect of 

the disk itself on the THz imaging system. Compared with the current spinning 

disk-based THz imaging system, such a new generation spinning disk has potential to 

achieving faster and more efficient THz imaging. 

 

We developed a three-dimensional (3D) reconstruction method in order to reconstruct 

THz images from random/incomplete subsets of THz data. Such a random sampling 

approach also provides a fast THz imaging application, which can minimize the 

current THz imaging hardware implementation. We first proposed to learn a 

spatio-spectral/temporal dictionary from a subset of available training data. Using this 

dictionary, the THz images can be then jointly recovered from an incomplete set of 

observations. Such a method offers fewer computations and greater SNRs than any 

other algorithms. 



 

140 
 

 

7.2 Future Work 

The immediate future work following up the work described in this thesis is to 

develop the second generation spinning disk to THz imaging systems. Currently, the 

spinning disk configuration has been proved to achieve a video-rate performance in 

the NIR range. However, owing to the limits of SNR, the rotation speed of the 

spinning disk was five deg/s and it took about 80 seconds to measure one THz image. 

It is projected that, after testing the performance of the second generation spinning 

disk, it can be used in the TPI to further improve the SNR. Hopefully, using such new 

generation configuration, we can achieve real-time THz imaging application, 

synchronously characterizing the spectral information of the desired sample.  

 

After that, for the random projection approach, we will focus on camera calibration, 

derivation of theoretical performance bounds, fast reconstruction algorithms and 

high-resolution imaging. The design of other types of efficient THz modulator based 

on different constructions of sensing matrix is another research area. Also, 

considering both the reconstructed IR and THz results are good, such an approach can 

be applied to other frequencies, not only in THz range, for an efficient imaging 

implementation. 

 

For the random sampling method, several interesting future plans can be imagined for 

this work. First, studying the effects of applying the proposed method to other types 

of multidimensional data. Second, extension to a CS regime and recovery from 

random projections. Furthermore, we applied classical K-SVD with OMP to learn the 

spatio-spectral dictionaries; however, we are going to study the effects of using 

MFOCUSS or MOMP for the dictionary learning stage of the proposed method. 

Basically, such an approach proposes a novel way to reconstruct a THz image without 

any physical modification to the current THz systems; and also to directly reduce the 
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number of measurements and amount of storage required. In the future, we hope to 

further develop the joint recovery algorithms, and integrate them with the current THz 

systems to achieve an on-line CS-THz system. 

 


