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ABSTRACT 

Background 

Sepsis is a condition characterised by a massive acute inflammatory response and insulin resistance. 

Several inflammatory mediators involved in the immune response during sepsis have been 

identified. Recently it has become clear that adipose tissue contributes to the production of pro- and 

anti-inflammatory mediators, which have been termed adipokines. Adiponectin is an adipokine that 

has anti-diabetic, anti-atherogenic and anti-inflammatory properties. Its role in chronic inflammatory 

diseases, such as type II diabetes mellitus (DM) and obesity has been extensively studied. Generally, 

adiponectin is down-regulated in these conditions which are characterised by insulin resistance. 

Adiponectin, previously thought to be exclusively expressed in and secreted from adipocytes, has 

now been shown to be released from other tissues such as skeletal muscle, cardiac muscle and 

bone. Adiponectin from adipose tissue is down-regulated in mouse models of sepsis, however, no 

information is available about the role of adiponectin receptors. In chronic insulin resistance, 

adiponectin receptor gene expression is decreased, suggesting a down-regulation of the 

‘adiponectin system’. Adiponectin gene expression appears to be partially regulated by NFκB, a 

transcription factor co-ordinating the release of inflammatory mediators in response to an 

appropriate stimulus, such as lipopolysaccharide. Other signalling mechanisms may also be involved, 

in particular the HIF-1α pathway. HIF-1α is another transcription factor with a large number of target 

genes, many of which are involved in the inflammatory process. Although HIF-1α was initially 

discovered as a cellular regulator of hypoxia, the pathway has now been shown to be activated by 

other non-hypoxic mechanisms of up-regulation, including bacterial infection. HIF-1α is expressed in 

immune cells, however, its role in adipose tissue during sepsis remains unclear. 

Methods 

Three different lines of experiments used in this thesis. The animal model used high dose LPS 

injected intra-peritoneally (under general anaesthesia) into 8-10 week old male C57BL/6J mice.   

Mice were killed at 4 or 24 hours after injection and tissues (Peri-renal, subcutaneous and 

epididymal fat, liver, muscle, small bowel and spleen) were removed for analysis. Adiponectin and 

adiponectin receptor gene expression was determined by quantitative real-time PCR (qPCR). The cell 

culture model used cell lines, 3T3-L1 adipocytes and C2C12 myocytes, grown in culture and then 

treated with varying concentrations of LPS. Cells were harvested at 4 and 24 hours and qPCR was 

performed to ascertain adiponectin and adiponectin receptor gene expression. The same animal and 

cellular models were utilised for the HIF-1α investigations with protein determination carried out 

using ELISA. 

Finally, twenty-one septic patients were recruited from the Intensive care unit at the Royal Liverpool 

University Hospital, following ethical approval and written consent. Blood samples were taken on 
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days 1 and 2 and day of discharge and serum levels of total and HMW adiponectin were determined 

by ELISA. 

Results 

Alterations in adiponectin and its receptors expression in murine endotoxaemia 

Adiponectin receptors were down-regulated following LPS injection. The greatest changes acutely 

were in muscle, liver and peri-renal fat (adipoR1) and liver, muscle, peri-renal and sub-cutaneous fat 

(adipoR2). There were no significant changes in the other tissue depots.  After 24 hours, there were 

fewer changes in gene expression with adipoR1 being down-regulated in liver and skeletal muscle 

and AdipoR2 in skeletal muscle only. Down-regulation of adiponectin gene expression following LPS 

was confirmed in the adipose tissue depots. We demonstrated that the adiponectin gene was 

expressed in skeletal muscle and sequencing of the PCR product confirmed a 100% match for 

adiponectin mRNA. C2C12 myocytes were then used to verify the presence of adiponectin mRNA in 

skeletal muscle cells.  In tissue depots, adiponectin gene expression was significantly reduced in 

skeletal muscle in both the 4 and 24 hour cohorts respectively. 

Alterations in adiponectin and its receptors expression in cell lines 

In the cell lines, the inflammatory response to LPS was confirmed using IL-6 as a reference gene. This 

also confirmed methodological success. Adiponectin gene expression from 3T3-L1 adipocytes was 

acutely reduced following treatment with high dose LPS but there were no changes in expression in 

cells treated with lower concentrations of LPS. There were no changes at 24 hours. Adiponectin 

receptors were down-regulated but not consistently with dose and these changes were only 

observed in the cells harvested after 4 hours. In C2C12 myocytes, there was a significant reduction in 

adiponectin gene expression following high doses of LPS but there were minimal changes in 

adiponectin receptor expression in the C2C12 myocytes. 

Human Study 

There was a significant increase in both total and HMW adiponectin between day 1 and day of 

discharge and the ratio of HMW adiponectin to total adiponectin also increased between admission 

and discharge. There were no changes in total or HMW adiponectin or their ratio between day 1 and 

day 2 of admission. 

HIF-1α 

HIF-1α gene expression was up-regulated in liver and spleen 4 hours post LPS injection. The changes 

persisted 24 hours after LPS treatment with increased expression in liver, small bowel and spleen.  

Protein levels were elevated in skeletal muscle after 4 hours and liver after 24 hours and spleen. 
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Discussion 

These results increase the evidence that adipose tissue is not an inert storage medium for fatty acids 

but a sophisticated endocrine organ. The ‘adiponectin system’, including adiponectin and its two 

receptors, is down-regulated in-vivo and in-vitro models of sepsis. This may play a role in the 

metabolic derangements such as hyperglycaemia and insulin resistance. In addition, 

hypoadiponectinaemia may have a significant role in the disordered inflammatory process known to 

occur in sepsis, possibly impacting on mortality as shown in some animal studies. Adiponectin is not 

exclusively adipose tissue derived and interestingly we have demonstrated the presence of 

adiponectin mRNA in other tissue such as skeletal muscle. The effect of reduced gene expression 

from extra-adipose tissue depots is yet to be established but may have a paracrine or autocrine 

effect rather than an endocrine role. 

Low total and HMW adiponectin levels during human sepsis have also been identified. Whilst 

hypoadiponectinaemia in sepsis has been observed in previous studies, increases in HMW 

adiponectin associated with clinical improvement have not been previously demonstrated. A further 

signalling pathway investigated in these models was HIF-1α. These results demonstrate a global up-

regulation of HIF-1α gene expression across tissue depots and cellular models. This may reflect 

tissue hypoxia but also may reflect non-hypoxic up-regulation by LPS and inflammatory mediators. 

HIF-1α is known to play a part in the inflammatory process and, like adiponectin, has links to the 

NFκB signalling pathways. 
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CHAPTER 1: INTRODUCTION 

1.1 Sepsis 

Sepsis is a condition responsible for thousands of deaths annually and a large burden on health 

budgets throughout the world.  Angus et al. estimated the annual incidence to be 750,000 cases 

resulting in 215,000 deaths, nearly 10% of all deaths in the USA1. Although in-hospital costs in the 

USA are estimated at $16 billion2, the post-hospital care costs will almost certainly be much more3. 

 

Until 20 years ago, there were no clear definitions of sepsis. However, the concept of the Systemic 

inflammatory response syndrome (SIRS) and its wide ranging triggering factors (Infective and non-

infective (burns, trauma, acute pancreatitis)) was clearly established in a consensus conference in 

1992 (Table 1). 

 

Table 1: Criteria for diagnosis of the Systemic Inflammatory Response syndrome (SIRS) 

Two or more of:  

Temperature >38°C or <36°C 

Pulse >90 beats per minute 

Respiratory rate >20/min or PCO2 <32mmHg 

White Cell Count >12,000/mm3or <4000/mm3 

Table 1: SIRS Criteria: A consensus conference (1992 ) defined sepsis as a SIRS secondary to a confirmed or high suspicion of a pathogen4 

 
 

Severe sepsis was defined as sepsis associated with organ dysfunction, hypoperfusion or 

hypotension and septic shock as sepsis-induced hypotension despite adequate fluid resuscitation 

along with evidence of organ malperfusion4. These definitions are purely based on clinical 

symptoms. Quantification of severity is currently difficult with the lack of specific biochemical 

markers to define the septic pathology5. In 2001, a second consensus conference sought to further 

clarify the conditions of ‘infection’, ‘inflammation’ and ‘organ dysfunction’5. This was aimed at 
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helping the clinician to distinguish morbidity from the infective process from that of the host 

response, and target therapy appropriately5. 

 

Targeted treatment, however, has been difficult to find for a number of reasons: Patients with sepsis 

and septic shock are a very heterogeneous population with numerous different causative organisms 

and individual host responses. In addition, many trials use retrospective data set analyses based on 

notes coding and, despite large numbers, the frequency of known and unknown missing data is high1 

2 6. 

Sepsis can be caused by various organisms. Gram-negative organisms were shown to be the most 

frequently identified organism during the eighties (1979-1987) but thereafter, gram-positive 

organisms have predominated. In more recent studies, gram-negative and -positive organisms 

account for 80-90% and polymicrobial and fungal infection for about 5% each of all infections, 

depending on their source2 6 7. Gram-positive infections as a cause for sepsis have increased for 

several reasons, in particular frequent use of antibiotics causing gram-positive hospital-acquired 

infections, increased use of indwelling catheters and other invasive devices and a rise in recreational 

drug  use and HIV status allowing more opportunistic infection to occur2. Overall, respiratory tract 

infections are the most common site of infection accounting for 45-58% of cases of sepsis.  Other 

common sources are primary bloodstream, the abdominal cavity and the urinary tract1. 

 

1.1.2 Innate immunity and inflammation 

There are a large number of potential pathogens which may cause sepsis and subsequently activate 

the immune system, but the host response remains the same irrespective of the invading pathogen.  

Non-mammalian cells display highly conserved sequences of DNA which are not present in human 

DNA (pathogen associated molecular patterns, PAMPs)8-10. Human immune cells have pattern 

recognition receptors (PRRs) to identify the PAMPs and instigate a plan of attack against microbial 

invasion9. 
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The subsequent immune response is divided into two parts, the innate and the adaptive response.  

The innate immune system is the ingrained immediate response whereby host monocytes and 

macrophages recognise the PAMP of an invading organism as ‘foreign’. Host cell PRRs are activated 

and thus directly stimulate the innate immune system10. The end result includes phagocytosis and 

synthesis of antimicrobial peptides with the ultimate aim of destroying of the invading organism. 

Also, the expression of inflammatory markers, in particular cytokines and chemokines, is induced to 

control the recruitment of leucocytes to the infection site and the subsequent inflammatory 

response10. 

 

Activation of lymphocytes marks the initiation of the adaptive immune response11.  Following the 

destruction of the organism, antigen presenting cells (e.g. macrophages) present the antigen to T-

lymphocytes. This requires a co-stimulatory molecule expressed on the antigen presenting cell10. The 

combination of the PAMP and the co-stimulatory signal results in the clonal expansion and activation 

of specific T-lymphocytes. This also induces the activation and expansion of B-lymphocytes for the 

production of antibodies to protect against subsequent attack10. 

 

The inflammatory response to the invasion of pathogenic organisms is present throughout the body 

and has been shown to occur in other organs including skeletal muscle and adipose tissue12 13. White 

adipose tissue (WAT) is a sophisticated endocrine organ and producer of numerous signalling 

molecules which interact with many physiological processes including immunity, coagulation and 

glucose homeostasis14-20. It has been shown to release many inflammatory markers in response to 

stimulation with infective organisms12. 

 

Quantitatively, fatty acid secretion remains the greatest fraction, but many other molecules are 

produced from WAT. These include many hormones, particularly adiponectin and leptin, but also a 

range of proteins with wide diverse biological function. These have been termed adipokines and it 
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has been recommended that the term is restricted to molecules synthesised and secreted from 

adipocytes and does not include molecules released from other cell types in adipose tissue such as 

macrophages20. The adipokines released include cytokines such as TNF-α12 21, IL-612 and IL-1822, leptin 

23 24, Plasminogen activator inhibitor-125, resistin26, adipsin27 and adiponectin15 21 28-30. 

 

One of these ‘adipokines’, adiponectin, has been extensively studied since its identification in 1995. 

It has been shown to be an anti-inflammatory, anti-atherogenic insulin sensitizer, thus promoting 

glucose utilisation and fatty acid oxidation28 30-36. 

1.1.3 Host recognition and signalling pathways 

The host is able to recognise sections of the cell wall of different microbial species. Toll-like 

receptors (TLRs) are highly conserved transmembrane PRRs of the innate immune system3 11.  They 

respond to the presence of bacterial products and alert the host to a potential invader11 37. TLRs 

respond following binding of highly conserved parts of the invading microbe, instigating the innate 

immune system response 9. 

 

Nine TLRs have been described thus far (TLR1-9)38-40. They are integral membrane proteins, spanning 

the plasma membrane once. The TLR subtypes differ structurally with TLR2 and TLR4 sharing only 

24% of identical sequences11. This is suggestive that they bind different ligands. In contrast, the 

intracellular portion contains approximately 200 amino acids and is evolutionarily conserved 

suggesting they share similar intracellular pathways11 41.  TLR1 is ubiquitously expressed whereas 

TLR2 is expressed on blood mononuclear cells and lymphoid tissue.  TLR3 is present in lung, muscle, 

heart, brain and intestine. TLR4 was previously thought be expressed only in lymphocytes, spleen 

and heart11, however, it is now evident that in many insulin sensitive tissues (adipose tissue, liver 

and skeletal muscle), pancreatic cells and vascular tissue 42. TLR2 and TLR4 are the most intensively 

studied of this receptor family.  They have a number of ligands which include many components of 

the bacterial cell11 (Table 2). Although there is some overlap in the ligands for each receptor, TLR2 
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does not appear to be essential in cells that also express TLR4 but may be an alternative LPS 

receptor in those that do not43. 

Table 2: Ligands for Toll-like receptors 2 and 4 

 Gram negative ligands Gram positive ligands 

TLR 2 LPS 
(salmonella, shigella and E.Coli only) 
 

Lipoteichoic acid 
Peptidoglycans 
Lipopeptides 

TLR 4 LPS 
(Most gram-ve bacteria) 
Lipid A 

Lipoteichoic acid 

 

LPS preferentially activates the innate immune system by binding to TLR4. LPS binding protein (LBP) 

binds LPS and presents it to CD14, a known PRR on the surface of monocytes37. CD14 is an opsonic 

receptor but is unable to produce a transmembrane signal and therefore must interact with TLR4 for 

intracellular signalling8 11.  The binding of TLR4 to LPS is enhanced by MD2, an accessory protein 

which binds to the extracellular domains of TLR4 for maximal responsiveness44 (Figure 1). 

 

Post-receptor signalling 

Post-receptor signalling in response to LPS has been well documented. Nuclear Factor-ĸB (NFκB) 

activation is the final common pathway following stimulation of TLRs (Figure 1).  NFκB belongs to a 

category of rapid acting transcription factors and does not require protein synthesis for activation45. 

It is present in all animal cells and is highly conserved throughout many species except yeasts45. 
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Figure 1: Signaling pathway of NFκB following LPS binding to TLR-4 

 

 
 
 
Figure 1: Recognition of LPS on the surface of phagocytes leads to NFκB activation. LPS is opsonised by LBP and the complex is recognized 
by the opsonic receptor, CD 14, on the macrophage surface. CD 14 associates with the cell surface by means of a glycolipid linkage and is 
not capable of generating its own transmembrane signal. The complex of LPS/LBP/CD14 activates the TLR 4 complex and signals through 
the adaptor protein MyD88 and the serine kinase IRAK. NFκB is constitutively expressed in an inactive form, dimerised with Inhibitor-ĸB (I- 
ĸB) inhibitors.  They form a complex that is sequestered in the cytoplasm of cells.  I-ĸB has numerous ankyrin repeats which prevent 
transmission of nuclear localisation signals to NFκB45 46. Ligand binding to TLR-4 causes formation of a complex with the intracellular 
domain MyD88 (an adaptor protein) and IRAK (a kinase).  IRAK then phosphorylates the downstream molecule TRAF6, which activates 
NKKB inducing kinase (NIK) and I-κB which then dissociates. NFκB is then free to translocate to the nucleus and induce expression of NFκB 
target genes11. Upon activation, I-ĸB is degraded by its own kinase, I-ĸB kinase (IKK) which phosphorylates 2 serine residues in the I-ĸB 
regulatory domain46-48. Adapted from Aderem A et al8 11. (LPS: Lipopolysaccharide, LBP: Lipopolysaccharide Binding protein, TLR4: toll-like 
receptor-4) 
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There are more than 150 known target genes of NFκB, many related to immunity and inflammation 

(cytokines, chemokines, MHC complexes, Nitric Oxide (NO) and Cyclo-oxygenase-2) thus earning its 

name as the ‘central mediator of the human immune response49. NFκB regulates many acute phase 

proteins and is also induced by non-infective stress such as ischaemia/reperfusion injury, 

haemorrhagic shock and irradiation. 

1.1.4 Cytokines 

Following TLR activation, the expression of many pro-inflammatory and anti-inflammatory molecules 

is increased.  They can be broadly divided into pro-inflammatory (e.g. IL-6, TNF-α) and anti-

inflammatory (e.g. IL-10, IL-13) cytokines. Following pathogen invasion, the body mounts an 

inflammatory response, releasing pro-inflammatory cytokines in reaction to the triggering insult. 

Rapidly thereafter, an anti-inflammatory response occurs to down-regulate the release of 

inflammatory mediators and to alter their effects, thus attempting to restore homeostasis50 51 

(Figure 2). 

Figure 2: Cytokine response in sepsis 

 

 
Figure 2: Following pathogen invasion, there is rapid up-regulation of pro-inflammatory cytokines (e.g. IL-6, IL-1β, TNF-α). This can be seen 
as a response to mobilise immune cells and energy substrates to counteract the infection and represents a transient and highly regulated 
response52. In order to restore homeostasis, anti-inflammatory cytokines are released. In progressing sepsis, this process can become 
unchecked and out of control. Figure Adapted from Boontham et al.53 
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The severity of this reaction varies depending on the infection and also the host’s individual 

response. It is poorly understood why some infections cause sepsis and others do not, but genetic 

variations are likely to play a role54. The inflammatory response affects many physiological systems 

which are intricately linked to the inflammatory process. These include coagulation pathways, 

endothelial function and many metabolic pathways including glucose haemostasis. 

 

1.1.5 Glucose metabolism in sepsis 

Hyperglycaemia in sepsis and other forms of severe stress is very common55-57. Critical illness or 

trauma causes activation of hypothalamic-pituitary axis (HPA), resulting in the production of 

cortisol58 59. This is closely linked to the regulation of blood glucose levels. The neuroendocrine 

response is an essential component of adapting to illness and stress and is crucial for the 

maintenance of cellular homeostasis58. Although activation of the HPA axis is well described56 57, the 

mechanisms of dysfunctional glucose metabolism alterations in sepsis are more complex and not yet 

fully understood (Figure 3). 
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Figure 3: Contributing factors to hyperglycaemia during sepsis 

 

Figure 3: Critical illness or trauma causes activation of the hypothalamic-pituitary axis (HPA), resulting in the production of cortisol58 59. This 
is an essential component of adapting to illness and stress in order to maintain cellular homeostasis58. As a result of HPA activation, an 
orchestrated counter-regulatory hormone release occurs, which includes glucagon, growth hormone, cortisol, glucocorticoids and pro-
inflammatory cytokines57 58. This results in the ‘diabetes of injury’, thought to be beneficial in the initial stages of illness by promoting 
glucose uptake in non-insulin sensitive cells. During septic shock, exogenous drugs are administered including infusions of exogenous 
catecholamines, dextrose, TPN and enteral nutrition and steroids which aggravate hyperglycaemia58. Endogenous and exogenous 
catecholamines reduce pancreatic beta cell insulin secretion57 60 61. In early sepsis, there may also be low circulating insulin concentrations 
secondary to increased clearance62. A reduced peripheral response to insulin63 as well as increased gluconeogenesis occurs despite high 
circulating insulin levels due to increased gluconeogenic substrates e.g.  lactate, alanine, glycerol but also due to an increase in glucagon58. 
TNF-α, which is released during early sepsis, induces insulin resistance by reducing insulin receptor expression, tyrosine phosphorylation 
and inhibition of insulin induced phosphorylation of Insulin Receptor Substrate-164 65. Catecholamines also inhibit insulin binding, reduce 
tyrosine kinase  and reduce the availability of membrane bound glucose receptors66. 
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1.2 Adiponectin 

White adipose tissue (WAT) has long been considered to be purely a storage organ for high energy 

compounds for release at times of energy depletion.  However, more recently, WAT has come under 

the spotlight following its discovery as a sophisticated endocrine organ. Adiponectin (also previously 

known as Acrp3067, adipoQ68, apM169 and GBP2870) was discovered independently by four groups, 

with most demonstrating its adipose specificity using northern blotting techniques. Human 

adiponectin was shown to have 83% morphology with mouse adiponectin69. Adiponectin circulates 

in nanomolar concentrations in serum at approximately 10-30 µg/ml and has a relatively short half 

life of approximately 5-6 hours71. It accounts for approximately 0.05% of total serum protein67. 

Adiponectin has attractive properties to be a potential signalling molecule involved in 

hyperglycaemia and insulin resistance commonly seen clinically in sepsis. 

 

1.2.1 Structure 

Adiponectin is a 30 kDa, 244 amino acid polypeptide, coded for on chromosome 3q27 and is 

structurally similar to complement factor C1q and various members of the collagen family, namely 

Collagen X and VIIIa. The full length protein contains an amino terminal followed by a collagenous 

structure similar to Collagen X. This is extended by collagen repeats essential for the collagen triple 

helix formation, and there is a globular head at the C-terminus end 29 68 72. Complement factor C1q, 

an oligomer, contains a heterotrimeric unit with a three stranded collagen tail and three globular 

heads. The globular domain of adiponectin is structurally similar to TNF-α, suggesting a potential 

evolutionary link between the two molecules31. 

 

Adiponectin expression in-vitro commences from the intermediate stage (day 2-5 post confluence) 

of adipogenesis onwards67 68. Its expression is increased during adipocyte differentiation (up to 350 –

fold) and may therefore be able to act as a marker of adipocyte differentiation67 73 74. 
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Figure 4: Structure and hypothesized signalling pathways of adiponectin 

 

 
Figure 4: Adiponectin is produced predominantly by adipocytes but also by other cell types including skeletal muscle. The full length 
molecule undergoes post-translational modifications forming trimers, hexamers and 12-18-mers called low (LMW), middle (MMW) and 
high-molecular weight (HMW) respectively71 75 76. These are thought to be essential to its final function and to the insulin sensitising 
features of the molecule77 78. Adiponectin interacts with its two membrane receptors to initiate changes in glucose and insulin signalling 
via AMPK and PPARα72 79. Hara et al. found that HMW adiponectin binds the most avidly to its adiponectin receptors, thus stimulating AMP 
activated protein kinase (AMPK)80. Modified from Tilg et al. 200672. 

 

? 
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Adiponectin is produced predominantly by adipocytes but also by other cell types including skeletal 

muscle and endothelial cells (Figure 4). Once synthesized, it circulates as the full length protein and 

its proteolytic cleavage product consisting of the globular C-terminal domain. The globular head is 

thought to be cleaved by leukocyte elastases secreted from activated monocytes or neutrophils72 81. 

Globular adiponectin is present in very small amounts in plasma, if at all32 79. Globular adiponectin 

can trimerise after cleavage but cannot form any larger multimers81. The full length adiponectin 

molecule undergoes post-translational modifications thought to be essential to its final function. 

Modifications include hydroxylation and glycosylation of highly conserved lysine and proline residues 

within the collagenous section of the molecule. These are thought to be important to the insulin 

sensitising features of the molecule77 78. In bacterial recombinant non-glycosylated adiponectin 

where these changes do not occur, the end product is significantly less potent77. Within plasma, the 

full length adiponectin protein is present as homo-oligomers of which there are three distinct types29 

67 70.  Circulating full length adiponectin forms trimers, hexamers and 12-18-mers called low (LMW), 

middle (MMW) and high-molecular weight (HMW) respectively 71 75 76.  The stability of the larger 

multimers is maintained by di-sulphide bonds and represents a post-translational modification of the 

adiponectin71. It has been suggested that the HMW adiponectin is the more biologically active 

molecule70 80 82. Adiponectin interacts with its two membrane receptors to initiate changes in glucose 

and insulin signalling via AMPK and PPARα72 79. Hara et al. found that HMW binds the most avidly to 

its adiponectin receptors, thus stimulating AMP activated protein kinase (AMPK)80. 

 

1.2.2 Regulation 

Much of the work performed investigating adiponectin has utilised different mouse models that are 

genetically prone to obesity. This includes the following: 
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Table 3: Common mouse models used 

Mouse model Genetic modification and phenotype 

db/db mice 
 

Deletion of leptin receptor gene 
Mice develop

 
human Type 2 DM, hypertension and 

obesity 
83 84

 
85

. 

ob/ob mice 
 

Deletion of the leptin gene 
Mice develop insulin resistance, obesity and 
hyperinsulinaemia

86 87
. 

Obese Zucker rats 
 

Recessive modification of the leptin receptor 
Mice develop obesity and insulin resistance

88 89
 

KKAy 
 

Heterozygotes for the yellow spontaneous mutation 
Develop severe obesity, hyperlipidemia, and insulin 
resistance

90
 

 

 

There are consistent reports of down-regulation of adiponectin in pathologies characterised by 

chronic insulin resistance. These include type II DM 15 91 92, obesity 36 79 93 and the metabolic 

syndrome15 28. Gender differences in adiponectin expression and secretion have been described with 

plasma levels being consistently higher in females than males even with similar degrees of body 

adiposity77 94. This indicates that sex hormones may play a role in adiponectin regulation95 96. Similar 

to total adiponectin, HMW adiponectin shows a consistent relationship with gender with females 

having a higher concentration than males75 80 97 98. 

1.3 Mechanism of action 

Adiponectin has numerous actions including anti-inflammatory, anti-diabetic and anti-atherogenic 

effects31 32 36.  Its main metabolic effect is to increase fatty acid oxidation, thus reducing intracellular 

triglyceride concentration in insulin sensitive cells36. Secondly, it appears to enhance the suppressive 

effect of insulin on hepatic gluconeogenesis, via reduction in enzyme expression thus reducing 

hepatic glucose output31 99. 
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1.3.1 Adiponectin, the insulin sensitiser 

There is a clear link between adiponectin and insulin sensitivity/resistance which is demonstrated by 

many studies15 31 91 94 99 100. Many conditions that are characterised by insulin resistance e.g. obesity 

and type II DM display impaired glucose and lipid metabolism.  The end result is an increase in lipid 

stores in insulin sensitive tissues e.g. muscle and liver, and hyperglycaemia35 101. Adiponectin 

attenuates insulin resistance by increasing fatty acid oxidation and thereby reducing the triglyceride 

concentration of skeletal muscle and liver35.  This process is dependent on the intracellular activation 

of 5' adenosine monophosphate-activated protein kinase (AMPK) and peroxisome-proliferator 

activated receptor (PPARα)32 35. In skeletal muscle, adiponectin can directly increase fatty-acid 

transport, oxidation and dissipation, thus reducing the levels of intramyocellular lipids.  

Furthermore, treatment with exogenous adiponectin in diabetic mouse models has shown 

consistent reductions in plasma glucose levels and improvements in insulin resistance31 36. After 

adiponectin treatment, a decrease in circulating glucose without increase in plasma insulin levels is 

observed which indicates a potential reduction in hepatic glucose production31. This is consistent 

with a reduction in hepatic expression of gluconeogenic enzymes phosphoenolpyruvate 

carboxykinase (PECK) and Glucose-6-phosphatase (G6Pase) following adiponectin infusion99, 

suggesting a reduction in hepatic gluconeogenesis as an additional mechanism. 

 

1.3.2 Adiponectin, the anti-inflammatory hormone 

Adiponectin has anti-inflammatory properties77 102 103. This is important as it has been demonstrated 

that adiponectin may be reduced in the acute inflammatory processes12 and hypoadiponectinaemia 

in mice carries a higher mortality104 105. Numerous studies have attempted to elucidate some of the 

complexities of the hormone and its role in inflammatory processes. 

 

Adiponectin has been shown to inhibit proliferation of a number of myeloid cell lines, to reduce the 

phagocytic ability of macrophages and to down-regulate macrophage recruitment to sites of 
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inflammation100 103 106. TNF-α gene expression (adipose tissue) and plasma concentration are 

significantly higher in adiponectin knock-out mice compared to control animals, a phenomenon 

almost completely reversed by the addition of viral recombinant adiponectin28. A number of studies 

have demonstrated the role of pre-treatment with adiponectin to reverse the increased 

inflammatory cytokine release in macrophages following LPS treatment in-vitro106-108. Although these 

results are consistent, these studies clearly demonstrate that adiponectin given concurrently with 

LPS does not have the same effect. Therefore, adiponectin treatment may not be effective in clinical 

sepsis as pre-treatment before activation of the immune system by LPS or other bacterial 

components is practically impossible. 

 

In addition to reducing pro-inflammatory mediator production, adiponectin also appears to increase 

the production of anti-inflammatory mediators from macrophages and their precursors, as 

treatment with adiponectin increased IL-10 and IL-1RA in primary human monocytes, macrophages 

and dendritic cells107 109. 

 

The effects of adiponectin on white cell function are of interest. Sepsis is characterised by migration 

of leukocytes to the area of inflammation or damaged tissue in an attempt to remove the invading 

organism. This can result in further damage to the inflamed tissues. Various studies have 

demonstrated a role for adiponectin in this process. A reduction in cell adhesion molecules, which 

mediate adhesion of neutrophils to the endothelium, has been shown after treatment with 

adiponectin110 111, which could theoretically prevent endothelial damage during the inflammatory 

process. Adiponectin may therefore have a key role in sepsis, not only in the metabolic 

derangements that occur but also in regulation of the inflammatory cascade that accompanies the 

disease. 
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Investigations using murine 3T3-L1 adipocytes exposed to various mediators showed a reduction in 

adiponectin expression by glucocorticoids (Dexamethasone 100 nmol/L), insulin (100 nmol/L) and 

inflammatory cytokines such as TNF-α (10 and 100 ng/ml) and IL-6 (30 ng/ml) 28 112 113. These 

hormones resulted in up to 50% reduction in adiponectin gene and protein expression. In addition, 

removal of the respective mediator for 24 hours reversed these effects112 113. These observations 

support the concept that pro-inflammatory mediators contribute clinically to sepsis-induced insulin 

resistance by their interaction with adiponectin. 

 

In-vivo, in severe sepsis, as in obesity, adipose tissue and plasma adiponectin gene expression and 

secretion are reduced. This coincides with a rise in adipose tissue inflammatory cytokines12 103. This 

enhanced inflammation may contribute to the higher mortality observed in animals with 

hypoadiponectinaemia and polymicrobial sepsis than WT animals104 105. Adiponectin KO mice 

showed vastly elevated inflammatory markers, including cell adhesion molecules. Pharmacological 

interventions in particular the PPAR-γ agonist, rosiglitazone105 and recombinant adiponectin104 

improved mortality and ameliorated the rise in inflammatory markers and may therefore possess 

therapeutic potential for the treatment of sepsis. There is some evidence that recombinant 

adiponectin binds to and possibly neutralises LPS103 114. This may account for some of the 

documented reduction in plasma and adipose tissue adiponectin levels in models using LPS. 

 

Few clinical studies have been performed on the role of adiponectin in sepsis and endotoxaemia in 

humans. Human volunteer studies demonstrated no alteration in adiponectin or its multimer levels, 

despite rises in inflammatory cytokines, after injection with endotoxin115 116. However, the same 

study demonstrated the down-regulation of adipoR1 and adipoR2 gene expression in human whole 

blood (49% and 65% respectively) and monocytes (33% and 28% respectively) 12 hours after an IV 

injection of endotoxin in to healthy volunteers116. A further study, using a small number of samples 

from critically ill patients with historical controls, showed a much lower mean plasma adiponectin 
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concentration in the critically ill patients117. There was no correlation between plasma adiponectin 

and APACHE score. Although this study provides further information on adiponectin in the critically 

ill patient, the study was not initially designed to measure adiponectin and in addition, the group of 

patients was highly heterogeneous and male dominated. Due to lack of samples, there was only 

analysis on days 3 and 7 and no baseline samples for analysis. 

 

1.3.3 High molecular weight adiponectin and sepsis 

Post translational modification of adiponectin leads to multimerisation forming low, middle and high 

molecular weight adiponectin71. Emerging literature has demonstrated a greater correlation to 

markers of insulin resistance with High Molecular Weight (HMW) adiponectin rather than the total 

concentration80. Insulin resistance is also associated with alterations in HMW adiponectin and 

mutations in the adiponectin gene are associated with an increase in insulin resistance and type II 

DM76. 

The concept of the HMW/total adiponectin ratio has subsequently been established. This compares 

the concentration of HMW to total adiponectin in plasma. It has been demonstrated that, even 

without changes in total adiponectin, increases in the ratio demonstrating a rise in the HMW 

adiponectin multimer, confers favourable effects on insulin sensitivity and other metabolic 

parameters82. It has also been shown to be useful as a monitoring tool to assess response to the 

thiazolidinediones class of drug, used commonly to treat type II DM82. 

 

Despite increasing evidence that total adiponectin is reduced in sepsis and experimental 

endotoxaemia12 104 105, the role of HMW adiponectin in human sepsis has not been investigated 

thoroughly. A small study investigated HMW adiponectin in children with sepsis, septic shock and a 

control group. They found that HMW adiponectin levels were increased on day 1 compared to 

controls (8 vs 3.3 µg/ml p<0.05) and the absolute values correlate with the PRISM score, a score of 
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severity of illness in children118. However, other studies have shown a reduction in total adiponectin 

in mice with polymicrobial sepsis104 105 and in LPS induced endotoxaemia12. 

 

The link between adipose tissue inflammation and chronic insulin resistance may well be relevant in 

acute inflammatory conditions such as sepsis. It is also likely that adiponectin is not only linked to 

the metabolic derangements but also to the inflammatory changes seen in sepsis. 

 

Potential links include NFκB 119 120 and its target genes as well as mitochondrial dysfunction which 

has been postulated as a mechanism underlying changes in insulin signalling in the chronic 

inflammatory changes in type II DM and obesity121. Mitochondrial dysfunction is also a key feature of 

organ failure and dysfunction in sepsis and may therefore indicate a common process in acute as 

well as chronic inflammation122. 

1.4 Adiponectin receptors 

In the last 10 years, two adiponectin receptors, adipoR1 and adipoR2, have been identified123.  Both 

act as receptors for globular adiponectin (gAd) and the full length molecule (FLA), through 

modulation of the AMP activated protein kinase (AMPK) and peroxisome proliferator-activated α 

receptors (PPARα) pathways84. Adiponectin receptors are expressed in significant quantities in 

numerous tissues including skeletal muscle, liver, adipose tissue and pancreatic islet and acinar 

cells124-127
 .  

 

Adiponectin receptors are a type IVA protein with 7 trans-membrane domains with the N-terminus 

located intra-cellular and the C-terminus extra-cellular123. The two receptors share 66.7% sequence 

homology in the mouse123. Despite a distant relationship to G proteins, they are not coupled to them 

as there are no changes in cAMP, cGMP or intracellular calcium following adipoR1 and adipoR2 over-
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expression15. Table 4 summarises and compares the properties of the two adiponectin receptor 

subtypes. 

 

 

Table 4: Characteristics of adiponectin receptors 

 AdipoR1 AdipoR2 

Gene 1q36.13
123

 12p13.31
123

 

Size of coding gene 17K base pair
123

 97K base pair
123

 

Protein 375 amino acid
123

 311 amino acid
123

 

Molecular weight 42.4 kDa
123

 35.4 kDa
123

 

Site Skeletal muscle, adipose tissue, 

liver, cerebellum, thyroid, colon, 

pancreas and bone marrow
124 125 

127
 
128

 

Liver, adipose tissue, skeletal 

muscle, testis, pancreas and 

adipose tissue
124 127

 

 

The regulation of adiponectin receptors has not been clearly established.  3T3-L1 adipocytes 

increase their expression of adipoR1 and adipoR2 with differentiation from pre-adipocytes to 

mature adipocytes129. However, hormonal manipulation had only minimal effects on the expression 

of either receptor with adipoR2 expression only being increased following treatment with growth 

hormone. There was no effect on adipoR1129. 

 

There have been reports of differing concentrations of receptors in different tissues. A relative 

abundance of adipoR1 in murine skeletal muscle compared to adipoR2 and that adipoR2 

predominated in hepatic tissue123 126. Within fat depots, the evidence is less clear. AdipoR1 appears 

in greater concentrations in subcutaneous adipose tissue (SAT) compared to visceral adipose tissue 

(VAT) fat in lean individuals (30-50% less)130 131. In obese individuals, evidence is conflicting with up 

to 50% reduction in receptor expression seen in different fat depots130 131. AdipoR2 appears to be 

more consistently reduced in VAT in obese individuals than levels in SAT130 131. 
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1.4.1 Post-receptor signalling pathway 

Ligand binding to adiponectin receptors activates various intracellular signalling pathways resulting 

in activation of AMP-activated kinase (AMPK) and PPARα (Figure 5)15 34 35 123. Activation of AMPK has 

been reported to reduce the expression of genes encoding for gluconeogenic enzymes such as 

glucose-6 phosphatase (G6P) and phosphoenolpyruvate carboxykinase (PCK1) and the lipogenic 

enzyme srebf132. Tomas et al. showed an AMPK mediated increase in fatty acid oxidation and glucose 

transport in skeletal muscle34. Adiponectin binding to the extracellular C-terminal domain stimulates 

N-terminal binding to adaptor protein containing pleckstrin homologous domain (APPL1)133 134. 

APPL1 is involved in the regulation of cell proliferation and in the crosstalk between adiponectin 

signalling and insulin-triggered pathways133. Although APPL1 binding is not exclusive to adiponectin 

receptors, it may represent the missing link between the intracellular domains of adipoR1 and intra 

cellular signalling leading to activation of AMPK and MAPK15 133 (Figure 5). 
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Figure 5: Physiological effects of adiponectin signalling 

 

 
Figure 5: Ligand binding to the adiponectin receptors activates various intracellular signalling pathways resulting in activation of AMPK, 
PPARα and p38 Mitogen activated protein kinase (MAPK) 15 34 35 123. This reduces the expression of genes encoding for gluconeogenic 
enzymes such as glucose-6 phosphatase (G6P) and phosphoenolpyruvate carboxykinase (PCK1) and lipogenic enzymes such as srebf1132.  
In addition, PPAR-α target genes are increased.  

AdipoR2 AdipoR1 

?APPL1 
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Initially, adipoR1 and adipoR2 were thought to have similar intracellular and metabolic effects. 

However, new evidence may suggest that they may be in fact two distinct entities. Yamauchi et al. 

found that restoring adipoR1 levels in db/db mice, known to have reduced adipoR1 gene expression, 

increased activation of AMPK in the liver whereas adipoR2 over-expression did not84. This was 

further confirmed by reduced gene expression of G6P, PCK1 and srebf1 in the liver of adipoR1 

restored db/db mice but not following adipoR2 restoration. Conversely, the over-expression of 

adipoR2 increased the expression of glucokinase (gck) which is involved in glucose uptake, a finding 

not seen in adipoR1 restored mice. Also, the adipoR2 restored mice exhibited increased expression 

of the PPARα target genes such as Acox1 and Uncoupling protein-284. 

 

As expected, adipoR1 deficient mice have impaired glucose tolerance, insulin resistance and 

increased endogenous production of glucose84.  They are obese, glucose-intolerant animals with 

increased liver triglyceride concentrations, increased plasma cholesterol and show reduced 

locomotor activity and energy expenditure14. 

 

AdipoR2 Knockout (KO) mice, conversely, have a different phenotype.  Yamauchi et al. showed that 

these mice had no glucose intolerance or increased endogenous insulin production but who did have 

increased plasma insulin suggesting the presence of insulin resistance84.  In addition, Bjursell 

demonstrated a resistance to diet-induced obesity (DIO), weight gain and hepatic steatosis with 

reduced plasma cholesterol and lower fasting insulin. However, this study also demonstrated a 

degree of impaired glucose intolerance14. 
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1.4.2 Insulin resistance 

Adiponectin expression and secretion is down-regulated in both animal and human models of type II 

DM and obesity68 70 92 93 130. Interestingly, other adipokines e.g. leptin and resistin, tend to increase 

with increasing adiposity26 135 136. Expression of adiponectin receptors is also down-regulated in these 

mouse models (ob/ob and db/db (Table 3))79 126 127 and also in humans with obesity with some 

restoration of levels with weight loss131 137. The addition of type II DM in humans increased the 

down-regulation by a very small amount only130. Skeletal muscle adipoR1 levels also correlate with 

markers of central obesity as defined by waist circumference and truncal fat138, although this has 

been disputed128. 

 

Current hypotheses for insulin resistance in type II DM include a reduction in insulin induced glucose 

uptake and utilisation, despite a usually normal plasma insulin concentration, and a reduced ability 

to oxidise lipids, despite increased fatty acid levels and triglyceride concentrations in skeletal 

muscle121. This may be due to impaired insulin signalling possibly at the mitochondrial level121. 

Insulin resistance and obesity are very closely linked and adiponectin may form part of the link 

between the two pathologies15. Similarly sepsis-induced insulin resistance and hyperglycaemia may 

be partly caused by interaction between adiponectin and insulin signalling. Mitochondrial 

dysfunction is well established as a cause of cellular hypoxia during sepsis, therefore this may also 

play a role122. 

 

In conclusion, insulin resistant states are associated with changes in the adiponectin system, 

including adiponectin and its receptors. Down-regulation of both modalities indicates an overall 

system suppression causing hypoadiponectinaemia and adiponectin tissue resistance. So far, 

adiponectin has been shown to be down-regulated in animal and cellular models of sepsis but there 

is no information available regarding adiponectin receptor expression in different tissues. There may 



Page | 40  
 

also be further links between adiponectin signalling and inflammation, NFκB activation, and 

mitochondrial dysfunction, which can be elucidated by focussing on adiponectin receptor 

expression. 

 

To date, there have been no human studies on adiponectin receptor regulation in sepsis or 

endotoxaemia or human sepsis. 
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1.5 Hypoxia Inducible Factor-1α. 

Several theories exist which link cellular inflammation and metabolic derangement including NFκB 

activation and mitochondrial dysfunction, both of which are crucial features of inflammation and 

sepsis. Hypoxia, caused by reduced oxygen delivery as a consequence of impaired tissue perfusion 

and centralisation of the circulation is also discussed as a key factor in sepsis. Many treatment 

strategies have been targeted at increasing tissue perfusion and thus oxygen delivery139. 

Hypoxia, defined as a reduction in oxygen tension (PO2) within tissues and cells, can occur in 

numerous pathological conditions including ischaemia and inflammation140. Cells undergo a hypoxic 

transformation in order to maintain tissue integrity and to restore tissue oxygenation. This response 

is especially important for immune cells such as neutrophils that migrate into inflamed tissues 

characterised by profound hypoxia140 141. 

Obesity as a state of chronic inflammation also induces hypoxic changes. As a consequence of 

adipose tissue expansion the distance from the supplying capillary to the adipocytes increases, thus 

rendering them hypoxic20. Ye et al. analysed adipose tissue in ob/ob and wild type mice fed on a high 

fat diet and found a significant reduction in adipose tissue PO2
142

.  In both mice strains, there was 

significant up-regulation of hypoxia related genes including HIF-1α and glucose transporter-1. 

Interestingly this was not observed in the skeletal muscle of obese mice. These changes were 

reversible following caloric restriction and weight loss. 

HIF-1α is a transcription factor which is critically involved in the adaptive response of mammalian 

cells to hypoxia.  It was discovered in 1994 during experiments investigating the production of 

Erythropoietin (Epo). Under hypoxic conditions, red blood cells increase the production of Epo which 

stimulates the production of haemoglobin to increase the body’s oxygen carrying capacity143.  HIF-1α 

is known to play a crucial role in angiogenesis, cell invasion, anaerobic energy metabolism, cell 

survival, inflammation and drug resistance144 145-148.  It also has a major function in innate immunity, 

cellular adaption to cellular stress and has therefore been described as a ‘master regulator of innate 



Page | 42  
 

host defences’149. HIF-1α  is a  global regulator of macrophage and neutrophil function in 

inflammation and innate immunity141 150 and is capable of producing a response that it tailored to 

the needs of the cell by upregulating glycolysis under times of cellular stress143 151. 

1.5.1 Structure 

HIF is a heterodimer containing the subunits, HIF-1α and HIF-1β. HIF-1β is constitutively expressed 

whereas the α-subunit is unstable under normoxic conditions and rapidly undergoes oxygen and iron 

dependent breakdown149 152. HIF-1α is present in most mammalian cells and co-ordinates the cellular 

response to reducing oxygen tension144. 

1.5.2 Hypoxic regulation 

HIF-1α is post-translationally modified by prolyl hydroxylases (Figure 6) which hydroxylate specific 

proline residues on the HIF-1α protein.  This allows von Hippel Lindau protein (VHLp), a tumour 

suppressor protein and component of the ubiquitin ligase complex, to form high affinity bonds with 

the α-subunit.  The VHLp tags the complex for destruction by the ubiquitin proteinase mechanism 

and the protein is destroyed144 149 153 154.  The half life of HIF-1α is very short due to the activities of 

the proline hydroxylases enzymes (PHD 1, 2 and 3)155. In addition to the prolyl hydroxylases, an 

asparagine residue is hydroxylated under normoxic conditions thus preventing interaction with HIF 

transcriptional coactivators, p300/CBP. Under hypoxic conditions, the activity of the proline 

hydroxylase enzymes is inhibited thus preventing hydroxylation and ubiquination, therefore HIF-1α 

protein accumulates intracellularly. It then translocates into the nucleus where it forms 

heterodimers with HIF-1β.  These heterodimers are able to bind to the hypoxia responsive elements 

(HREs) of specific genes, thus increasing their transcription141 144 156-160. Genes whose expression is 

increased by HIF-1α-mediated effects are numerous and have a wide range of functions and include 

erythropoietin, glucose transporters (GLUT), glycolytic enzymes and vascular endothelial growth 

factor (VGEF)152.  HIF-α is essential in foetal development and HIF-1α KO mice are unviable as they 

develop disordered vasculature not compatible with life149 161. 
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Figure 6: Regulation of HIF-1α in hypoxic conditions 

Figure 6: Under normoxic conditions, prolyl hydroxylases hydroxylate specific proline residues on the HIF-1α protein. This allows the von 
Hippel Lindau protein (VHLp) to form high affinity bonds with the α-subunit, subsequently tagging it for destruction by the ubiquitin 
proteinase mechanism144 149 153 154.  Under hypoxic conditions, the activity of the proline hydroxylase enzymes are inhibited thus preventing 
hydroxylation and ubiquination and the HIF-1α protein accumulates intracellularly. HIF-1α then translocates into the nucleus where it 
forms heterodimers with HIF-1β.  These heterodimers are able to bind to the hypoxia responsive elements (HREs) of specific genes, thus 
increasing their transcription141 144 156-160. Genes include erythropoietin, glucose transporters (GLUT), glycolytic enzymes and vascular 
endothelial growth factor (VGEF). 
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1.5.3 Non-hypoxic regulation 

For many years, hypoxia was regarded as the main regulator of HIF-1α (Figure 6). However, there is 

now increasing evidence that non-hypoxic stimuli can promote HIF-1α accumulation, even under 

normoxic conditions150.  These stimuli are diverse both in structure and function and include 

insulin162 163, angiotensin II158 164 165, inflammatory cytokines166 and LPS153 158 167 168. Many studies have 

attempted to elucidate the complex signalling pathways of HIF-1α. It is now known that the 

mechanisms of action of hypoxic and non-hypoxic stimulation of HIF-1α are different. 

 

Under hypoxic conditions, it has been shown that the relationship between gene expression and 

protein was unreliable and showed reduced, increased and static changes in gene expression 

following stimulation with hypoxia 153 158 164 169.  Increasing evidence is now available demonstrating 

that hypoxia does not increase HIF-1α transcription170. 

 

Non-hypoxic stimuli, however, may act differently resulting in a transcriptional increase to allow HIF-

1α accumulation.  Experiments with angiotensin II in vascular smooth muscle cells clearly show 

differences in time curves and peak concentrations compared to hypoxia164. In addition, when these 

cells are treated with transcriptional inhibitors, non-hypoxic accumulation of HIF-1α is inhibited 

whereas hypoxic accumulation is not164. Also, an increase in transcriptional activity has been 

demonstrated with a combination of hypoxia and angiotensin II165. 

 

Numerous studies have now confirmed that transcriptional up-regulation is the predominant factor 

in LPS-induced HIF-1α activation153 158. Interestingly, bacterial exposure appears to be a stronger 

stimulus to HIF-1α stabilisation than hypoxia144. Peysonnaux showed a greater increase in HIF-1α 

gene and protein expression following treatment of mouse macrophages with group A 

streptococcus, MRSA, pseudomonas aeruginosa and salmonella typhimurium144, an effect which 

again was caused by increased transcriptional activity. 
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In re-oxygenation experiments, Frede found a similar rate of degradation of HIF-1α (half-life 

approximately 5 minutes) in cells treated with hypoxia or LPS, thus concluding that LPS did not 

interfere with the ubiquitination process153. These results were confirmed by using angiotensin II to 

induce HIF-1α in vascular smooth muscle cells164. Hence, hypoxic and non-hypoxic stimulated 

accumulation of HIF-1α must follow different pathways 

1.5.4 HIF-1α/immunity, myeloid cells and the response to bacterial stimulation 

Evidence is accumulating that HIF-1α plays an important role in controlling the inflammatory 

response in macrophages141 144 149 152 168 171-174.  HIF-1α Knockout (KO) mice are universally fatal in-

utero implicating HIF-1α in numerous pathways and cellular functions149 161. However, targeted 

deletion of HIF-1α in phagocytes provides phenotypically normal animals with significant differences 

in their response to inflammation141 171 175 176 (Figure 7). 

 

Infection leads to acidosis and hypoxia within tissues141. In healthy tissue, oxygen concentrations are 

17.5-63 mmHg (2-9%) whereas in infected tissues this can be as low as <1%. Myeloid cells have 

adapted to efficiently circulate normally and, when activated, be recruited to damaged/infected cells 

and perform cellular functions in hypoxic environments141 152. This forms part of the innate immune 

system of the body and is important as many bacteria survive and replicate well under anaerobic 

conditions. Therefore, immune cells must adapt to control the infective processes. Following 

discovery of HIF-1α in myeloid cells, this led the way for a potential regulator of hypoxic changes in 

immune cells144 149 161. 

1.5.5 Phagocyte function 

In HIF-1α deficient macrophages, the ability for intracellular killing of gram-negative and gram-

positive bacteria is significantly reduced without alteration in phagocyte recruitment144 150. In 

addition, macrophages with a HIF-1α targeted deletion display a 2-fold reduction under normoxic 

and a 3-fold reduction under hypoxic conditions in intracellular bacterial killing. Compared to normal 
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cells, there was a 15-fold increase in intra-cellular bacterial colonies present in HIF-1α deleted cells 

after 120 minutes of incubation with bacteria144.  Under hypoxic conditions, wild-type macrophages 

have a greater bactericidal effect on Group A Streptococcus than under normoxic conditions144.   

 

HIF-1α null macrophages showed significant reductions in pro-inflammatory cytokine release 

following LPS stimulation including TNF-α, IL-1α and β and IL-12168.  There were no effects on the 

concentrations of IFN-γ or anti-inflammatory cytokines such as IL-4 or IL-10168.  Furthermore, a 

significant reduction in TNF-α gene expression and protein secretion from mouse macrophages with 

HIF-1α deletions has been demonstrated144. It is therefore likely that HIF-1α forms part of a local 

bactericidal pathway which is stimulated during infection to produce a wide variety of mediators 

including cytokines and Nitric Oxide (NO) in order to increase bacterial killing.  Following bacterial 

invasion, phagocytes extravasate into oxygen-poor areas within the infected tissue. Under these 

conditions, HIF-1α production is increased by both direct stimulation from the invading pathogen 

and by tissue hypoxia, leading to increased phagocytosis and bactericidal activity of immunocytes. As 

a local process, this mechanism also prevents damage caused by radicals and pro-inflammatory 

mediators in a normoxic, non-infected parts of the body. 

 

 

 

  



Page | 47  
 

Figure 7: Consequences of HIF-1α activation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Links of HIF-1α with the immune system: HIF-1α, originally described as a regulator of hypoxia-mediated cell function, now has 
many links to the immune system. These include increased bacterial killing141, alterations in phagocytes motility and function141 149 168 174, 
regulation of LPS induced cytokine and nitric oxide production144 168,  and the up-regulation of natural antimicrobial peptides including 
granule proteases and nitric oxide144. HIF-1α is therefore evolving as a mediator of immune function, with links to the NFκB pathway. 
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1.5.6 Potential signalling pathways for non-hypoxic regulation of HIF-1α 

HIF-1α activation is intricately involved in the immune response to infection and is not restricted to 

the mammalian cell’s response to altered oxygen tension. Links to numerous signalling pathways 

have been demonstrated (Figure 8), including p44/42 MAPK, PI3K, PKC and NFκB. 

Figure 8: Signalling pathways induced by HIF-1α 

 

 
Figure 8: HIF-1α is likely to be a final common pathway for many signalling pathways. These include protein kinase C, PI3K and the p44/42 
MAPK pathways153 164 165 181 182. These pathways, in turn, may be activated by a number of different ligands including angiotensin II (A II), 
Lipopolysaccharide (LPS) and other pro-inflammatory mediators. 
 

 

The p44/42 MAPK pathway can be activated by a wide variety of proliferative and inflammatory 

stimuli177 178.  An increase in the phosphorylation of p44/42 MAPK following both LPS and hypoxia 

resulted in an increase in HIF-1α gene expression and protein accumulation153. With LPS stimulation, 

this pathway appears to be critical as inhibiting the upstream kinase molecules limits the production 

of HIF-1α153. 
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HIF-1α protein levels are clearly inhibited when inhibitors of phosphoinositol 3-kinase (PI3K) are 

used in angiotensin II treated smooth muscle cells164 165. An increase in HIF-1α protein levels 

following LPS which was dependent on PI3K has also been observed158.  Interestingly, PI3K inhibition 

is not associated with an increase in HIF-1α gene expression, thus implying a translational role for 

this pathway. Page et al. demonstrated a clear link between angiotensin II up-regulation of HIF-1α 

gene expression and protein kinase C signalling not present in hypoxic cells. This was further 

confirmed by Blouin et al. who identified that activators and inhibitors of PKC increased and 

decreased HIF-1α levels via altering gene expression. 

1.5.7 NFκB regulates HIF-1α 

It is becoming more evident that HIF-1α is dependent on the NFκB pathway. Van Uden et al. 

demonstrated in cell lines that all NFκB subunits could activate the HIF-1α promoter site under 

normoxic conditions170. Basal HIF-1α gene expression is also significantly downregulated in IKK-β 

deficient macrophages and p65 deficient fibroblasts prior to stimulation with LPS140. Bonello et al. 

demonstrated that p50 and p65 (Rel A) NFκB subunits directly attach to the HIF-1α promoter, and 

mutation of this site significantly reduced the induction of HIF-1α expression173 179. Following non-

hypoxic stimulation, HIF-1α accumulation has been shown to be dependent on NFκB activation. TNF-

α stimulation of kidney cells in-vitro resulted in accumulation of NFκB subunits in the nucleus and a 

significant increase in HIF-1α gene expression and protein accumulation170. Further investigation 

demonstrated that deletion of all NFκB subunits resulted in significantly reduced TNF-α induced HIF-

1α expression.  

 

In addition, Rius et al. demonstrated that p65 was recruited to the HIF-1α promoter site bone 

marrow derived macrophages (BMDM) after treatment for 4 hours with gram-positive and -negative 

bacterial species140. This site contains an NFκB binding site suggesting a further link between NFκB 

and hypoxia. The fact that TLR-4 KO macrophages have significantly reduced HIF-1α protein and 

gene expression further emphasizes the role of HIF-1α activation by LPS168. 
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In summary, there is now increasing evidence that non-hypoxic stimulation and up-regulation of HIF-

1α through increased transcription occurs. This is in contrast to the hypoxia related changes where 

the prevention of protein breakdown is the primary pathway. It is also becoming clear that the HIF-

1α pathways and NFκB activation are mutually dependent and therefore may play a role in the 

inflammatory process seen both systemically and in individual tissues such as adipose tissue. 

 

There is an emerging link between the role of hypoxia and the inflammatory response. Infected 

tissues are known to be profoundly hypoxic, with tissue PO2 being significantly lower than systemic 

PO2. Myeloid cells have subsequently evolved to function well in this hypoxic environment as part of 

the inflammatory response. It is now becoming clearer that these changes may not be restricted to 

myeloid cells but also occur in other cells such as skeletal muscle and adipose tissue. The systemic 

response to inflammation includes changes in the metabolic processes, glucose and fatty acid 

metabolism, and a myriad of other changes. Adiponectin is involved in the metabolic changes and 

also the response to inflammation. Activation of NFκB appears to be crucial to this process and is 

linked to inflammatory and adiponectin pathways. It is also important in the response to 

hypoxia/inflammation via interaction with HIF-1α. 
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1.6 Summary 

In summary, there are a number of changes that occur during the inflammatory process, many of 

which are interlinked and include NFκB as a central theme. This study will investigate two molecules, 

adiponectin and HIF-1α. Both molecules initially were thought to merely play a role in metabolic 

pathways, adiponectin in fatty acid metabolism in adipose tissue and HIF-1α as an up-regulator of 

glycolysis in hypoxic conditions. It is now becoming more evident that both molecules are intricately 

involved in the inflammatory process both in acute and chronic inflammation. The inflammatory 

process is also now digressing from focussing on classical immune cells, such as neutrophils and 

macrophages, to involving other tissues such as adipose tissue and skeletal muscle. This provides an 

ideal starting point to investigate the role of both molecules in sepsis and endotoxaemia in other 

tissues such as adipose tissue, skeletal muscle and liver, and to give further insight into their role in 

the immune response. 
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1.7 Hypotheses 

1. Adiponectin and its receptors are down-regulated in response to LPS 

The hypothesis is that adiponectin and its receptors will be down-regulated in acute inflammation, 

thus not only contributing to the disordered metabolic state but also to the inflammatory process. 

Thus, the primary aim is to investigate the expression of adiponectin and its receptors in in-vivo and 

in-vitro models of sepsis and endotoxaemia. This will be achieved by experiments to investigate: 

 Adiponectin and adiponectin receptor gene expression in tissue depots of endotoxaemic mice. 

 Adiponectin and adiponectin receptor expression gene expression in murine cell lines, 3T3-L1 

adipocytes and C2C12 myocytes. 

 Adiponectin receptor protein levels in tissue depots and cell lines. 

 

2. Adiponectin plasma levels are decreased during human sepsis 

We aim to identify whether adiponectin expression in mouse models follows the same pattern as 

plasma adiponectin levels in human septic patients. This may, in the future, provide a 

pharmacological option for the management of sepsis. Therefore, high molecular weight and total 

serum adiponectin and their ratio (HMW/total) were measured in patients with sepsis and 

compared to post-recovery levels. The hypothesis is that serum total and HMW adiponectin would 

be down-regulated in patients with sepsis or septic shock and that levels recover with improved 

clinical condition. 
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3. Expression of Hypoxia Inducible Factor -1α in experimental endotoxaemia 

We investigated the expression of hypoxia-inducible factor 1-α in adipose tissue, skeletal muscle and 

other organs linked to adiponectin signalling. The hypothesis is that HIF-1α expression is up-

regulated in as previously described in response to LPS. Therefore, HIF-1α gene expression and 

protein levels were investigated in tissue depots of endotoxaemic mice and in murine cell lines 

treated with LPS. 
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CHAPTER 2: METHODS 

2.1 Animals and tissue collection 

All experiments were carried out on 8- to 10-week-old male C57BL/6J mice (Charles River, UK). The 

care of the mice and all experimental procedures were approved by the UK Home Office and were 

conducted in accordance with the appropriate Project License (PPL 40/2692). LPS (Escherichia coli O 

111:B4, Sigma-Aldrich) was injected intraperitoneally (ip) under general anaesthesia (2% isoflurane 

in N2O/O2) at a dose of 25 mg/kg. 

Control animals were administered equivalent volumes of normal saline ip. All animals received 1 ml 

of normal saline subcutaneously (SC) simultaneously with LPS to compensate for fluid losses. Mice 

were housed in separate cages post procedures and maintained in the same temperature-controlled 

conditions (22+2oC, 12 h light/12 h dark cycle) with free access to standard laboratory chow and 

water. 

All mice were killed at 4 or 24 hours after injection of LPS by cervical dislocation. A 24 hours time 

point is commonly used in studies on LPS induced endotoxaemia, providing a sufficient period for a 

severe response to be established, while 4 hours was used to investigate acute effects. The tissue 

depots were removed and immediately frozen in liquid nitrogen and stored at -80°C until analysis. 

2.2 Primer Design 

Primers were designed using Beacon Designer 4 computer programme and have been validated in a 

previous peer review publication. 

Primers 

Primers used can be seen in Tables 5 and 6. 
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Table 5: Real time PCR primers 

PRIMER FORWARD REVERSE PROBE 

β- ACTIN 

NM-007393 

ACGGCCAGGTCATCACTATTG    

 

CAAGAAGGAAGGCTGGAAAAG 

 

ACGAGCGGTTCCGATGCCCTG 

 

ADIPONECTIN 

AF304466 

GGCTCTGTGCTCCTCCATCT 

 

AGAGTCGTTGACGTTATCTGCATAG 

 

CCCATACACCTGGAGCCAGACTTGGT 

 

ADIPO R1 AGATGGAGGAGTTCGTGTATAAGG 

 

GGCCATGTAGCAGGTAGTC 

 

TCAGCCAGTCAGGAAGCACATCATACGG 

 

ADIPO R2 CTTTCGGGCCTGTTTTAAGAGC ATATTTGGGCGAAACATATAAAAGATCC TACACACAGAGACGGGCAACATTTGGACAC 

 

HIF-1α 

NM-010431.1 

CAAGTCAGCAACGTGGAAGGT CTGAGGTTGGTTACTGTTGGTATCA TTCACTGCACGGGCCATATTCATGTC 

IL-6 ACAACCACGGCCTTCCCTACTT 

 

CACGATTTCCCAGAGAACATGTG TTCACAGAGGATACCACTCCCAACAGAACCT 

 

 

 

Table 6: Standard PCR primers  

PRIMER FORWARD REVERSE 

β-ACTIN TGCTGTCCCTGTATGCCTCT AGGTCTTTACGGATGTCAACG 

ADIPONECTIN TTAATCCTGCCCAGTCATGCCG AGAACTTGCCAGTGCTGCCGTC 

ADIPO R1 AAACTGGACTATTCAGGGATTGC CACCATAGAAGTGGACGAAAGC 

ADIPO R2 CCTATGCCTTCCTTTCG CACTCCTGCTCTGACCC 
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2.3 Polymerase chain reaction (Standard) 

Total RNA was extracted from adipose tissues with Trizol reagent (Invitrogen, UK), and 0.5 μg of 

DNase I-treated RNA was reverse transcribed using a Reverse-iT™ 1ST Strand Synthesis Kit (Abgene, 

UK) in the presence of anchored oligo dT in a total volume of 10 μl . 

 

Standard PCR reactions were carried out in a final volume of 12.5 µl. Components were separated on 

a 1% agarose/ethidium bromide gel at 100-110 mV. A 100bp ladder was used as a reference. The gel 

was examined with a UV transilluminator and photographed with the geldoc system. 

2.4 Polymerase chain reaction (Real time) 

Reactions were carried out in a final volume of 12.5 μl consisting of 12.5–50 ng of reverse 

transcribed cDNA mixed with the appropriate primers and probe and qPCR™ Core kit (Eurogentec, 

UK) in 96-well plates on a Mx3005P detector (Stratagene, USA). The primer and probe sets were 

designed using Primer Express software (Applied Biosystems) or Beacon Designer (Biosoft, USA) and 

synthesized commercially (Eurogentec).  Amplification started with 10 minutes at 95°C and then 40 

cycles of the following: 15 seconds at 95°C and 1 minute at 60°C. β-actin was used as an endogenous 

reference.  Relative quantification values were expressed using the 2-ΔΔCT method180 as fold changes 

in the target gene normalized to the reference gene and related to the expression of the controls. 

The PCR efficiency in all runs was close to 100% and all samples were analysed in duplicate. 

Statistical significance was determined using paired t-tests and Mann-Whitney U tests. 
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2.5 Protein extraction 

Protein determination by BCA method 

Samples were homogenized in SHE buffer (sucrose 250 mM / HEPES 1 mM / EDTA 0.2 mM, pH 7.2) 

and the concentration of protein in the supernatant determined by the BCA method. A solution of 

1/50 dilution of Copper sulphate/Bicinchoninic acid (BCA) was made. Using a protein standard 

solution (2 mg/ml BSA solution in 1% SDS) a standard curve was constructed in duplicate (0-40 

µg/µL). Then 1 µL sample was mixed with 19 µL 1% SDS and 200 µL BCA solution was added to each 

well. The 96 well plate was then incubated at 37°C for 30 minutes and read on a plate reader at 570 

nm. 

2.6 Western Blotting 

A 10% separating gel and 4% stacking gel were placed between two glass plates. The correct amount 

of protein added to the loading buffer in a 1:1 dilution and run at a constant voltage for 1-2 hours. 

All gels were transferred on to a nitrocellulose membrane and presence of protein bands was 

confirmed using ponceau stain. 

Phosphate Buffered Saline (137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4 1.5 mM KH2PO4, pH 7.2 - 

7.4) with Tween (0.5 ml/L) was used as a washing solution. Skimmed milk or bovine serum albumin 

(BSA) were used for blocking unspecific binding and as antibody diluents. 

Membranes were blocked overnight at 4°C on a rocking platform and then incubated in dilutions of 

primary antibody (AdipoR1: ADIPOR11-A, AdipoR2: ADIPO21-A, both Alpha Diagnostic, San Antonio, 

USA) at varying concentrations for 1 hour at room temperature (Appendix 2). Following three 

washes, the membranes were incubated with the secondary antibody (Goat anti-rabbit) (Serotec, 

UK) at a concentration of 1/1000 for 1 hour at room temperature. Detection was performed using 

chemiluminesence detection reagents (GE Healthcare). Membranes were imaged on to X-ray film. 
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2.7 Optimisation of Western Blots 

Membrane fractionation 

Tissue was homogenized in SHE buffer with protease inhibitors. Following initial centrifugation, 

samples were centrifuged at 100,000 g using the ultra-centrifuge and the pellets were resuspended 

in 1% SDS. Protein concentrations were determined by the BCA method.  Following membrane 

fractionation, an increased concentration was used for the western blotting (20 µg). The same 

concentrations of 1° (1/1000) and 2° (1/5000) antibodies were used. 

Dot blot 

In order to assess the function of all antibodies used, small amounts of cell lysates and recombinant 

protein were placed onto a nitrocellulose membrane. Blocking was carried out with 1% milk and 

dilution with 0.5% milk. 10, 20 or 40 μg of membrane fractionated protein was incubated with 

diluted antibodies (1/200 for the primary and 1/2000 for the secondary antibody). Bands were then 

detected with chemi-illuminescence. Membranes were imaged on to X-ray film. 

2.8 HIF-1α ELISA 

(R&D Systems DYC 1935) 

Samples were homogenized in lysis buffer (50 mM Tris (pH 7.4), 300 mM NaCl, 10% (w/v) Glycerol, 3 

mM EDTA, 1 mM MgCl2, 20 mM β-glycerophosphate, 25 mM NaF, 1% Triton X-100, 25 μg/mL 

Leupeptin, 25 μg/mL Pepstatin, and 3 μg/mL Aprotinin). The capture antibody was diluted to a 

working concentration of 4 µg/ml with PBS (137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4 1.5 mM 

KH2PO4, pH 7.2 - 7.4), and immediately was used to coat a 96-well plate which was sealed and 

incubated overnight at room temperature. After three washes with wash buffer (PBST 0.05% tween), 

plates were blocked using 5% BSA in PBS and incubated for 2 hours. After a further three washes, 

the samples and standards were diluted in reagent diluent (5% BSA in PBS) and added to the plate 
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and incubated for 2 hours. After washing detection antibody, at a concentration of 400 ng/ml, was 

added to each well and incubated for 2 hours. Streptavadin-HRP was diluted to a 1:200 

concentration and was added to each well and incubated for 20 minutes. Following a further the 

wash, colour substrate solution (1:1 mixture of Colour Reagent A (H2O2) and Colour Reagent B 

(Tetramethylbenzidine) was added. The reaction was stopped after 20 minutes with 2NH2SO4. 

Optical density was determined using a microplate reader at 450 nm with a reference wavelength of 

570 nm. To construct the standard curve, standards of 8000, 4000, 2000, 1000, 500, 250, 125 and 0 

pg/ml were used. 

2.9 Adiponectin ELISA (Mouse) 

(R&D systems DY1119) 

Samples were homogenized in lysis buffer (sucrose 250 mM / HEPES 1 mM / EDTA 0.2 mM, pH 7.2). 

The capture antibody was diluted to a working concentration of 2 µg/ml with PBS (137 mM NaCl, 2.7 

mM KCl, 8.1 mM Na2HPO4 1.5 mM KH2PO4, pH 7.2 - 7.4) and immediately was used to coat a 96-well 

plate which was sealed and incubated overnight at room temperature. After three washes with wash 

buffer (PBST 0.05% tween), plates were blocked using 1% BSA in PBS and incubated for 2 hours. 

After a further three washes, the samples and standards were diluted in reagent diluent (1% BSA in 

PBS) and added to the plate and incubated for 2 hours. After washing, the detection antibody 

(concentration 50 ng/ml) was added to each well and incubated for 2 hours. Streptavadin-HRP was 

diluted to a concentration of 1/200 and was added to each well and incubated for 20 minutes. 

Following a further the wash, the colour substrate solution (1:1 mixture of Colour Reagent A (H2O2) 

and Colour Reagent B (Tetramethylbenzidine)) was added for a further 20 minutes. The reaction was 

stopped after 20 minutes with 2NH2SO4. Optical density was determined using a microplate reader 

at 450 nm with a reference wavelength of 570 nm. To construct the standard curve, standards of 

2000, 1000, 500, 250, 125, 62.5, 37.25 and 0 pg/ml were used. 
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2.10 3T3-L1 adipocyte cell culture 

3T3-L1 adipocytes were grown in culture media (Dulbecco’s Modified Eagle Medium (DMEM) with 

10% Foetal Calf Serum (FCS)) until confluent. Pre-adipocytes were then differentiated with 10 mg/ml 

insulin, 1 mM dexamethasone and 100 mM 3-isobutyl-1-methylxanthine (IBMX). The feeding 

medium (feeding media DMEM, 10% FCS and 10 mg/ml insulin) was changed every 48 hours. On day 

12, cells were treated with LPS or cytokines. Cells were harvested after the appropriate time point 

using trizol reagent (Invitrogen, UK) and immediately frozen for RNA extraction. Six wells per time 

point per treatment/control were used for each experiment. 

Plates were stained at intermittent time points (pre-adipocytes, pre-differentiation, day 0, day 3 and 

day 12) using Oil Red O and Haematoxylin Staining. Cells were washed twice with 1x PBS and fixed 

using 10% formaldehyde (37% molecular biology grade) in PBS for 1 hour at room temperature. 

After washing with PBS, Oil Red solution was added and incubated for 1 hour at room temperature. 

After washing, haematoxylin was added and left for 5 minutes at room temperature. The plate was 

exhaustively washed with hot water and viewed under phase contrast microscopy. 

2.11 C2C12 myocyte culture 

C2C12 myocytes were grown in culture media (DMEM with 10% FCS, 1% penicillin/streptomycin and 

L-glutamine) until 60% confluent. Cells were then differentiated with differentiation media (DMEM 

with 2% horse serum, 1% penicillin/streptomycin and L-glutamine) 10 mg/ml insulin. On day 7, cells 

were treated with LPS. Cells were harvested after the appropriate time point using trizol reagent and 

immediately frozen for RNA extraction. All cell culture incubations were performed at 37°C. Six wells 

per time point per treatment/control were used for each experiment. 



Page | 61  
 

2.12 Sequencing real time PCR product 

RT PCR was run as per protocol. 6 duplicate samples had 1 µL dye added to each were run on a 

medium size 1% agarose gel with ethidium bromide (105 volts). Successful experiments were 

confirmed by visualisation under UV light. 

Purification for sequencing was carried out according to manufacturer’s guidelines (Nucleospin PCR 

clean-up gel extraction, MWG, Germany). Briefly, 6 PCR products (samples in duplicate) were 

combined and underwent gel lysis, DNA binding, membrane washing and drying and DNA elution. 

These samples were combined with PCR dye and run on a 1% agarose gel at 105 volts. Band 

brightness was assessed using UV light to compare to the ladder. The size of the band representing 

the gene of interest was then estimated according to the size of ladder bands. This sample was then 

sent for sequencing. A positive control using epididymal fat was also sequenced. 

2.2 Clinical study on changes in the adiponectin system in sepsis 

A pilot observational prospective pilot study was carried out to determine the plasma 

concentrations of total and HMW adiponectin in septic patients. 

2.2.1 Ethical approval 

The study received approval from the Local Research and Ethics committee (06/Q1502/7) and from 

the NHS trust (no 3258). This allowed witnessed assent from relatives with patients being informed 

as soon as practical to obtain retrospective consent. 
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2.2.2 Patient recruitment (Inclusion and exclusion criteria) 

All patients between 18 and 85 years admitted to the Intensive Care Unit at the Royal Liverpool 

University Hospital with sepsis or septic shock according to current consensus guidelines 

(ACCP/SCCM 2001)5 were approached for consent. 

Patients were divided into two groups: 

1. Patients with sepsis or septic shock and BMI <30 kg/m2 (n=10) 

2. Patients with sepsis or septic shock and BMI > 30 kg/m2 (n=11). 

Exclusion Criteria 

1. Pregnancy or lactation 

2. Insulinoma 

3. Immunosuppression due to other causes than sepsis (immunosuppressive treatment after 

organ transplant, AIDS or ongoing chemotherapy) 

4. < 18 yrs of age 

5. Unwilling to give consent (or consent not given by an appropriate representative) 

2.2.3 Data collected 

Demographic (age, sex, weight, height), clinical (Glasgow Coma Score, temperature, heart rate, 

respiratory rate, oxygen requirements) and laboratory data (baseline haematological and 

biochemical parameters) were collected. Data relating to ongoing therapies (inotrope and insulin 

requirements, feeding regime and daily glucose and lactate measurements) were also collected. 
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2.2.4 Samples 

Serum samples (7.5ml EDTA sample) were taken from each patient on admission to the intensive 

care unit. Further serum samples were taken on day 2 and on day of discharge. For patients who 

died, only day 1 and day 2 samples were taken. Following centrifugation (10 minutes at 3000 rpm), 

samples were stored at -80°C until analysis. 

2.2.5 Sample analysis 

2.2.6 Adiponectin ELISA (Human) 

(R&D systems DY1065) 

Samples were homogenized in lysis buffer (sucrose 250 mM / HEPES 1 mM / EDTA 0.2 mM, pH 7.2). 

The capture antibody was diluted to a working concentration of 2 µg/ml with PBS (137 mM NaCl, 2.7 

mM KCl, 8.1 mM Na2HPO4 1.5 mM KH2PO4, pH 7.2 - 7.4) and immediately was used to coat a 96-well 

plate which was sealed and incubated overnight at room temperature. After three washes with wash 

buffer (PBST 0.05% tween), plates were blocked using 1% BSA in PBS and incubated for 2 hours. 

After a further three washes, the samples and standards were diluted in reagent diluent (1% BSA in 

PBS) and added to the plate and incubated for 2 hours. After washing, the detection antibody 

(concentration 2 µg/ml) was added to each well and incubated for 2 hours. Streptavadin-HRP was 

diluted to a concentration of 1/200 and was added to each well and incubated for 20 minutes. 

Following a further the wash, colour substrate solution (1/1 mixture of Colour Reagent A (H2O2) and 

Colour Reagent B (Tetramethylbenzidine)) was added for a further 20 minutes.  The reaction was 

stopped after 20 minutes with 2NH2SO4. Optical density was determined using a microplate reader 

at 450nm with a reference wavelength of 570nm. To construct the standard curve, standards of 

4000, 2000, 1000, 500, 250, 125, 62.5and 0 pg/ml were used. 
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2.2.7 HMW Adiponectin ELISA (Human) 

(Alpico 47-ADPHU-E01) 

Samples were pre-treated with Protease II and the remaining HMW fraction was treated with 

Sample Pre-treatment Buffer. 100 μL of Protease I was added to 10 μL of sample and incubated for 

20 minutes at 37°C. Immediately, 400 μL of Sample Pre-treatment Buffer (sample dilution = 1/51) 

was added and vortexed. Pre-treated samples were diluted (1/101) as follows and vortexed allowing 

a final sample dilution of 1/5,151. 50 μL of each standard diluted pre-treated sample was added to 

the appropriate wells. The plate was incubated for 1 hour at room temperature. All wells were 

washed using wash buffer 3 times (Phosphate buffer (pH 7.2)). 50 μL of Biotin labelled monoclonal 

antibody was added to each well and incubated for 1 hour at room temperature. Following a second 

wash, 50 μL of the Enzyme Labelled Streptavidin were added to each well and incubated for 30 

minutes at room temperature. After a further wash, 50 μL of the substrate solution was added to 

each well and incubated for 10 minutes at room temperature. The reaction was stopped by adding 

50 μL of stop reagent (7.7% H2SO4) was added to each well. The absorbance of each well was 

measured between 10-30 minutes after addition of the stop reagent, using a microplate reader set 

to 492 nm, with a reference wavelength of 600-700 nm. 
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2.2.8 Statistical analysis 

Mouse model and cell line experiments 

Relative gene expression levels were determined using the 2-ΔΔCT method 180. Data are presented as 

mean values ± Standard Error of Mean (SEM). Differences between groups were analysed by 

Student’s unpaired t-test or non -parametric tests when data was non-normally distributed. In the 

animal model, 4 and 24 hour LPS treatment was compared with its own control group. Results were 

considered to be statistically significant when p<0.05. Where multiple comparisons were performed 

the significance level was corrected using Bonferroni’s method. Fold change was calculated as 1/2-

ΔΔCT. 

Clinical study 

Patient values were displayed as median and interquartile range and statistical significance between 

the groups was calculated using the Mann-Whitney U test. Correlations were performed between 

adiponectin and markers of clinical severity using Spearman’s correlation coefficient. Dependent 

data was analysed using the Wilcoxon test with Bonferroni correction. 
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CHAPTER 3: RESULTS 

3.1 Alterations in adiponectin and its receptors in murine endotoxaemia 

3.1.1 Initial experiments 

Mouse models 

All experiments were carried out on 8- to 10-week-old male C57BL/6J mice (Charles River, UK).  

Table 7 shows the mean body weights of the animals used in the experiments. As can be seen there 

were no significant differences between any of the groups, before and after treatment. 

Table 7: Mouse groups 

    Differences between groups 

Treatment 
group 

Time point n Weight (g) (mean 
+/-sd) 

Between time 
points 

Between groups 

SALINE 4 hours 6 24.13+/- 1.66 SAL p=0.85  

 24 hours 14 25.06+/- 0.96  4 hour p=0.51 

LPS 4 hours 6 24.81+/- 1.80 LPS p=0.47  

 24 hours 14 25.43+/-1.39  24 hours p = 0.41 

 

 

Mortality Rates 

No mice in the 4 hours treatment group died. In the 24 hour group, however, nine out of 23 mice 

died, an average of 17.44 hours following injection giving an overall mortality rate of 39.1%. This 

mortality rate is not dissimilar to that of severe sepsis in humans2 
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Confirmation of presence of beta actin and adipoR in tissue samples 

In order to confirm the presence of beta actin in the tissue samples, standard PCR was performed 

using four samples of control liver tissue. Using 0.5 μg cDNA per sample, beta actin was found in all 

samples (Figure 9). 

Figure 9: Standard PCR demonstrating beta actin gene expression in liver 

 

Figure 9: Beta actin expression was confirmed in liver tissue from control (4 h) mice using standard PCR. A PCR product of between 400 
and 500 base pairs was identified in all samples using primers for beta actin. 

 

Adiponectin receptors are known to be found in many tissues including liver, skeletal muscle and fat 

depots123. Initial experiments confirmed the expression of both receptor subtypes in mouse liver 

tissue using standard PCR (0.5 μg cDNA) (Figure 10). Splenic receptor mRNA has not been previously 

noted in the literature and therefore, standard PCR to identify this was performed (Figure 11). 

Figure 10: Standard PCR of adiponectin receptor expression in liver tissue from control mice 

 

Figure 10: Adiponectin receptors 1 and 2 gene expression was confirmed in liver tissue from control mice using standard PCR. PCR 
products of adipoR1 (447 base pairs) and adipoR2 (332 base pairs) were identified in all samples using appropriate primers. An Epididymal 
fat samples was used as a positive control. (Lanes 1-4 adipoR1 (0.5 µg cDNA per sample), Lanes 5-8 adipoR2 (0.5µg cDNA per sample), PC – 
positive control (Epididymal fat R2), bp: base pairs) 

Lanes 1-4 
Lanes 5-8 PC 

All lanes Liver samples from control 

4 h mice 

100 bp 

1000 bp 

500 bp 

1000 bp 

100 bp 

300 bp 
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Figure 11: Standard PCR of adiponectin receptor expression in spleen tissue from control mice 

 

` 

Figure 11: Adiponectin receptors 1 and 2 gene expression was confirmed in spleen tissue from control mice using standard PCR. PCR 
products of adipoR1 (447 base pairs) and adipoR2 (332 base pairs) were identified in all samples using appropriate primers. Beta actin 
expression was also confirmed in spleen tissue. (Lanes 1-4 – spleen adipoR1, Lanes 5-8 spleen adipoR2, Lanes 10-13 spleen beta actin, bp: 
base pairs). 

 

Real Time PCR 

Following confirmation of adiponectin receptors in liver and spleen, real-time PCR (qPCR) was then 

performed to quantify gene expression in all mouse tissue depots including three depots of WAT 

(epididymal, subcutaneous and peri-renal), skeletal muscle, liver, and spleen. qPCR experiments 

were run to 40 cycles however, Ct > 35 cycles depict no or very low expression of that gene. Each 

line on the graph represents one individual sample (Figure 12). 

  

Lanes 1-4 Lanes 5-8 

Lanes  10-13 

1000 bp 

100 bp 

500 bp 

300 bp 
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Figure 12: Amplification plots of the real-time PCR products 

A: Amplification plots using a Linear scale (myocyte beta actin) 

 

 

B: Amplification plots using a Logarithmic scale (myocyte beta actin) 

 

Figure 12: The example amplification plots show the cycle number on the x-axis and the fluorescence concentration on the y-axis. The 
horizontal blue line depicts the Ct, threshold of detection of fluorescence (on the logarithmic graph). qPCR experiments were run to 40 
cycles however, Ct > 35 cycles depicts no or very low expression of that gene. Each line on the graph represents one individual sample. A: 
Linear scale, B: logarithmic scale  
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Assessment of primers 

This experiment was performed to confirm that the primers used were only identifying a signal from 

cDNA and not from components of the RNA. Primer design techniques are such that this should be 

avoided but this experiment confirms this. The cycle number at which the amplification product 

becomes detectable is known as the Cyclethreshold or Ct. With this method, the Ct value identified does 

not include a signal from the amplification of genomic DNA which will impact on the result. 

 

Exclusion of contamination from genomic DNA contaminants during qPCR 

Tissue samples 

Real-time PCR primers (beta actin, adipoR1, adipoR2, adiponectin and HIF-1α) were combined with 

RNA from Epididymal fat and muscle (each with a positive control of cDNA). Using RNA, Ct was not 

achieved for any gene in either sample whereas cDNA samples reached threshold (Table 8). This 

confirms that the primers used do not amplify any signal from DNA in the final Ct and therefore DNA 

contamination is unlikely. 

 

Table 8: Ct values for RNA when combined with appropriate primers for each gene 

Gene Ct (cycle) 

β-actin 21.73 

AdipoR1 24.16 

AdipoR2 21.09 

Adiponectin 20.1 

HIF-1α 27.9 
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Assessment of treatment on beta actin Ct values 

For correct interpretation of the PCR results, the effect of the treatment on the expression of the 

housekeeping gene had to be evaluated. Results are expressed in values of relative expression; small 

changes in beta actin expression may alter the results. 

We therefore excluded any effect of LPS on the expression of beta actin mRNA in each tissue (Table 

9), 3T3-L1 adipocytes (Table 10) and C2C12 myocytes (Table 11) respectively. 

Table 9: Tissue average beta actin values following LPS 

 

Table 10: Adipocyte average beta actin values following LPS 

Group 2
-ΔΔCT 

Control 18.425 

0.1 μg/ml 19.15667 

1 μg/ml 19.76167 

5 μg/ml 18.83667 

10 μg/ml 18.91 

 

Table 11: Myocyte average beta actin values following LPS 

Group 2
-ΔΔCT 

Control 19.75667 

0.1 μg/ml 19.97167 

1 μg/ml 
 

20.385 

5 μg/ml 19.82167 

10 μg/ml 19.
1667 
 

 

  

  

  

   

 

 Liver Muscle Epi fat PR fat SC fat Small 
Bowel 

Spleen 

4 hour Control 23.54 24.62 21.88 23.00 21.38 18.8 18.95 

4 hour LPS 21.96 22.63 22.22 22.14 22.87 19.06 19.54 

24 hour Control 22.56 24.61 26.97 23.79 21.76 18.78 19.49 

24 hour LPS 20.86 22.85 24.98 23.10 20.97 19.36 19.41 
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3.1.2 Discussion: Initial experiments 

Mouse models are frequently used in the investigation of alterations in gene expression in 

endotoxaemia. Animal models of sepsis are complex and there have been significant concerns in the 

past with animal model research resulting in treatment regimes that are not efficacious in humans181 

182. There are a number of fundamental differences between human sepsis and experimental 

endotoxaemia underlying this lack of translation. 

 

There is no single animal model which replicates the human development of and host response to 

sepsis183. Also, animals used are frequently young, healthy males of the same breed giving a very 

homogenous population who require a large bacterial innoculum to develop a septic state183. There 

are two types of animal models commonly used: 

 

1. LPS injection models which mimic the early features of sepsis and induce an inflammatory 

state without bacteraemia183 184. This method is simple to perform and gives generally 

reproducible results and the injected dose can be altered to alter symptoms and severity of 

disease183. The sharp rise in cytokine concentrations seen following injection is felt to be 

much earlier and to a greater magnitude than that found in human sepsis181 183 185. 

 

2. Endogenous faecal contamination, usually performed by caecal ligation and needle puncture 

gives a state of polymicrobial intra-abdominal sepsis183 185. Some authors consider it to be 

the gold standard animal model for sepsis research181. Although not well standardised and 

therefore not always reproducible, the resulting cytokine profile is similar to that seen in 

human sepsis, as it relies on growth and replication of bacteria rather than direct 

innoculum183 185 186. 
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Both methods have a similar morbidity, mortality and degree of immunosuppression181 185.  A further 

limitation of these models is that clinical sepsis affects both genders, predominantly elderly patients 

with multiple co-morbidities.  Hence, the population profile is not correctly represented by young 

healthy mice. Advantages of murine models of sepsis include that the animals are easy to breed, 

come at a low cost and the use of rodents carries fewer ethical implications than models involving 

higher mammals or primates181. Turnbull et al. investigated the effect of age in murine models of CLP 

and found in young, mature and old mice mortality rates of 20, 70 and 75% respectively. This 

difference in mortality may significantly affect many results. Many clinicians feel that patient 

heterogeneity contributes to the lack of progression from animal studies to successful human 

therapeutic trials in anti-inflammatory agents in sepsis181 183. To improve correlation between animal 

and human studies, further studies need to be performed on varying breeds, genders and ages of 

animals187. 

 

The animal experiments used in these series of experiments were performed with 25 mg/kg LPS 

intraperitoneally to induce systemic endotoxaemia. Animals had access to standard laboratory chow 

and subcutaneous fluids were used to compensate for fluid losses. This model uses a very high dose 

of LPS, in an attempt to achieve a severe sepsis model, anticipating the same mortality rate as is 

seen in severe sepsis in other species2. As predicted, the mortality rate in this model was high at 

39.1%. 

 

There were no differences in body weight between animal groups or after treatment (Table 7). This 

was important to establish as caloric restriction and weight loss frequently observed in sepsis, are 

known to have an effect on adiponectin expression and secretion92 188. 
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This model used only male mice for two reasons: Firstly, it was an attempt to provide reproducible 

results from a homogenous mouse population. Secondly, using male animals could overcome the 

known phenomenon that female individuals (mouse and human) express higher levels of 

adiponectin than males77 94 93 104. 

 

The presence of beta actin and adiponectin receptors was confirmed in fat, liver and spleen as 

described previously.  PCR products from murine liver tissue treated with LPS were separated on an 

agarose gel (Figures 9 & 10), thus confirming previous findings123. This method was also successful in 

spleen (Figure 11). Real-time PCR was the primary experiment used to demonstrate relative changes 

in gene expression. Figure 12 shows a typical real-time PCR graph demonstrating the threshold at 

which expression becomes detectable: the earlier the threshold of detection (i.e. the lower the 

numerical value of Ct), the greater the expression of the gene in that sample. The Ct values observed 

in the initial experiments were between 18 and 24 cycles for beta actin, adiponectin and its 

receptors. Those for HIF-1α were higher with a mean of 27.9 (Table 8). This indicates that the 

expression of beta-actin, adiponectin and its receptors is high in these tissue depots whereas the 

expression of HIF-1α in these tissues is lower, although no accurate conclusions can be drawn from 

the raw data as to expression levels. 

 

Prior to performing qPCR on the tissue samples, confirmation that the primers were not identifying 

genomic DNA was essential. Although the primers were designed to theoretically exclude the 

replication of genomic DNA, confirmation was required. RNA from adipose tissue and muscle 

samples with positive and negative controls were used. RNA samples did not reach a threshold for 

any of the 5 genes tested (beta actin (BA), adipoR1, adipoR2, adiponectin or HIF-1α) whereas the 

positive controls achieved cycle at threshold (Ct) values of 21.73, 24.16, 21.09, 20.1 and 27.9 

respectively (Table 9). Thus extraneous signals from genomic DNA were not detected in tissue, 

adipocyte and myocyte samples. 
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Finally, it was important to identify the effect of the treatment on the expression of the 

housekeeping gene. There was very little effect of LPS on the expression of beta actin, thus making it 

a suitable housekeeping gene for the subsequent experiments (Table 9-11). 
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3.2 Alterations in adiponectin and its receptors in murine endotoxaemia 

This chapter describes results of the experiments investigating the expression of adiponectin and its 

receptors in the mouse model. Initially, the investigation of adiponectin in peri-renal (PRF), 

epididymal (EF) and subcutaneous (SCF) depots of WAT was investigated. PRF and EF are visceral fat 

depots whereas SCF is not. 

Adiponectin is expressed in adipose tissue and its expression and secretion is known to be reduced 

in sepsis12. We investigated three depots of adipose tissue: PRF, EF and SCF as they are different 

organs with respect to the type of adipose tissue they contain. 

We confirmed down-regulation of adiponectin in all three depots but only in the mice treated for 24 

hours. There were no changes at 4 hours (Figure 13).  This down-regulation in the adiponectin 

system may be implicated in the metabolic and inflammatory changes seen in endotoxaemia. 

The following graphs individually display the expression of adiponectin in individual tissue depots 

following treatment with LPS. Each treatment group is compared to its own control only.  
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3.2.1 Adipose tissue: Adiponectin 

Figure 13: Adiponectin expression in white adipose tissue 

A: Adiponectin expression in epididymal fat 

 

B: Adiponectin expression in peri-renal fat 

 

C: Adiponectin expression in subcutaneous fat 

 

Figure 13: Relative change in adiponectin gene 
expression in mouse tissue depots 4 and 24 hours 
following 25 mg/kg intra-peritoneal injection of 
LPS. Gene expression was determined by real-time 
PCR. Relative gene expression was calculated using 
the 2-ΔΔCT method and p<0.05 was considered 
significant. (*p<0.05, ** p<0.01). Housekeeping 
gene was β-actin.  
 
A:  Epididymal Fat adiponectin expression, B:  Peri-
renal fat adiponectin expression,  C: Subcutaneous 
Fat adiponectin expression,  
 
(Cont = Control group, LPS = Treatment group, 4 h 
4 hours treatment group, 24 h: 24 hours treatment 
group, Error bars display SEM) 
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3.3 Adipose tissue: Adiponectin receptor expression 

Following the confirmation of changes in adiponectin expression with LPS treatment, the expression 

of adiponectin receptors in the same three adipose tissue depots was investigated. 

 

AdipoR1 and adipoR2 gene expression in peri-renal (PRF) is rapidly down-regulated whereas in 

subcutaneous fat (SCF) only adipoR2 gene expression is reduced (Figure 14 C-F). Epididymal fat (EF) 

does not display any changes in gene expression at either time point (Figure 14 A&B). Potential 

hypotheses for these changes will be discussed at length in the discussion. However, they include 

tissue hypoxia, inflammatory cytokine release and differences between visceral and non-visceral fat 

depots. 
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Figure 14: Adiponectin receptor expression in white adipose tissue 

A: AdipoR1 expression in epididymal fat  B: AdipoR2 expression in epididymal fat 

 

C: AdipoR1 expression in peri-renal fat   D: AdipoR2 expression in peri-renal fat 

 

E: AdipoR1expression in sub-cutaneous fat  F: AdipoR2 expression in sub-cutaneous fat 

 

 

Figure 14: Relative change in adiponectin receptor gene expression in mouse tissue depots 4 and 24 hours following 25 mg/kg intra-
peritoneal injection of LPS. Gene expression was determined by real-time PCR in samples run in duplicate. Relative gene expression was 
calculated using the 2-ΔΔCT method and p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin. A: 
Epididymal Fat adipoR1 expression, B: Epididymal Fat adipoR2 expression, C:  Peri-renal fat adipoR1 expression, D: Peri-renal fat adipoR2 
expression, E: Subcutaneous Fat adipoR1 expression, F: Subcutaneous Fat adipoR2 expression. (Cont = Control group, LPS = Treatment 
group, 4 h 4 hours treatment group, 24 h: 24 hours treatment group, error bars display SEM). 4 hour mice n=6, 24 hour mice n=14. 

 



Page | 80  
 

3.4 3T3-L1 Adipocytes – initial experiments 

Following the identification of changes in adiponectin and their receptors in the mouse model of 

endotoxaemia, experiments were subsequently performed using 3T3-L1 adipocytes. Despite cell 

lines being a lower model for investigation, these experiments were performed in an attempt to 

elucidate regulation and signalling pathways. 3T3-L1 adipocytes were chosen as they are a murine 

cell line and are well established in the research of adipokines in chronic disease. 

3T3-L1 adipocytes were grown in culture according to standard laboratory protocols and 

confirmation of growth and differentiation was confirmed by visualisation of cells and staining for fat 

content. The following pictures demonstrate an example of cells at different stages of differentiation 

and staining (Figure 15). 

Figure 15: Pictures of 3T3-L1 adipocytes in culture at various stages of differentiation 

A: Pre-adipocytes - unstained 

 

 

 

 

100µm 
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B: 3T3-L1 Adipocyte day 3 post differentiation 

 

 

C: 3T3-L1 Adipocyte day 12 post differentiation – Treatment day 

 

Figure 15: 3T3-L1 adipocytes at different stages of culture from pre-adipocytes to differentiated cells ready for treatment.  A: Pre-
adipocytes – unstained, B: 3T3-L1 Adipocyte day 3 post differentiation, C: 3T3-L1 Adipocyte day 12 post differentiation H&O stained. All 
pictures taken at X10 magnification. 

 

 

Fat droplets 

accumulate in 

adipocytes 

confirming 

differentiation 

100µm 

100µm 

Early 

differentiation 

demonstrates 
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3.4.1 3T3-L1 adipocytes: IL-6 gene expression following LPS 

IL-6 is a known adipokine with its expression increased following LPS administration12. This gene has 

been used to ensure that the cells are responding to the LPS in an appropriate manner, thus 

rendering the result of the receptors and adiponectin PCR more reliable and confirming that it is a 

true result. The time curve seen here (Tables 12 & 13 and Figure 16) is typical for IL-6 as it is released 

early in the response of adipose tissue to LPS and then decreases over time53. In addition, the rise in 

IL-6 gene expression indicates that adipocytes are becoming inflamed following LPS treatment and 

releasing inflammatory cytokines, thus confirming our group’s previous results in the murine 

model12. 

 

Table 12: IL-6 gene expression in 3T3-L1 adipocytes following 0.1 µg/ml LPS treatment for up to 24 
hours 

Group 2
-ΔΔCT +SEM -SEM p-value 

1 h Control 1 0.262637 0.208007  

1 h LPS 1.86736 0.559301 0.430392 0.128918 

4 h Control 1 0.108668 0.098016  

4 h LPS 25.42778 9.860946 7.105441 0.000478 

8 h Control 1 0.471814 0.320566  

8 h LPS 5.010658 1.588566 1.206166 0.000996 

24 h Control 1 0.553274 0.356199  

24 h LPS 2.666597 0.652098 0.523966 0.061253 

Table 12: Results displayed as 2
-ΔΔCT

 with SEM, with each treatment group compared to its own control group only. IL-6 expression 
increases significantly (25-fold) after 4 hours treatment with 0.1 µg/ml LPS. n=6, samples run in duplicate. 
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Table 13: IL-6 gene expression in 3T3-L1 adipocytes following 1-10 µg/ml LPS treatment for 4 and 
24 hours 

Table 13: Results displayed as 2-ΔΔCT with each treatment group compared to its own control group only with Bonferroni correction. n=6, 
samples run in duplicate 
  

Incubation time Group 2
-ΔΔCT +SEM -SEM p-value 

4 hours Control 1 0.190989 0.160361  

 1µg/ml 34.29675 7.750036 6.321554 1.5x10-7 

 5 µg/ml 20.60611 7.156536 5.311755 2.14x10-5 

 10 µg/ml 22.85862 4.097921 3.474957 6.81x10-7 

24 hours Control 1 0.23303 0.18899  

 1 µg/ml 14.6213 4.111382 3.209031 1.05x10-5 

 5 µg/ml 10.76542 2.299231 1.894593 0.000109 

 10 µg/ml 6.611603 1.805666 1.418316 0.000138 



Page | 84  
 

 

Figure 16: IL-6 gene expression in 3T3-L1 adipocytes following LPS treatment 

A: IL-6 gene expression in 3T3-L1 adipocytes following 0.1 µg/ml LPS treatment for up to 24 hours 

 

 

 

B: IL-6 gene expression in 3T3-L1 adipocytes following 1-10 µg/ml LPS treatment for 4 and 24 

hours 

 

 

Figure 16: Graphs depicting the fold change of IL-6 gene expression in 3T3-L1 adipocytes following treatment with LPS (1-10 μg/ml) for 4 or 
24 hours. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT method and error 
bars display SEM. p<0.05 was considered significant. (*p<0.05, ** p<0.01, ***p<0.001). Housekeeping gene was β-actin. (cont: control 
cells). n=6, samples run in duplicate 
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3.4.1 3T3-L1 Adipocytes: Adiponectin gene expression following LPS 

Following the successful induction of inflammation confirmed by using IL-6 gene expression, the 

same experimental technique was used to investigate adiponectin and adiponectin receptor gene 

expression. Interestingly, compared to control, there was no difference in adiponectin gene 

expression using low dose LPS (0.1 µg/ml) however, there was a demonstrable dose response with 

increasing doses of LPS (1-10 µg/ml) (Table 14 & 15, Figure 17 & 18). This result is surprising as 0.1 

µg/ml LPS induced a significant rise in IL-6 gene expression. The two main time points of 4 and 24 

hours were used to maintain consistency with the animal experiments. 
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Table 14: Adiponectin gene expression in 3T3-L1 adipocytes following 0.1 µg/ml LPS for up to 24 
hours 

 

 

 

 

 

 

Table 14: Results displayed as 2
-ΔΔCT

 with SEM, with each treatment group compared to its own control group only. There are no changes 
in adiponectin gene expression with any time point using 0.1 µg/ml LPS. n=6, samples run in duplicate. 

 

 

 

Figure 17: Adiponectin gene expression in 3T3-L1 adipocytes following 0.1 µg/ml LPS treatment for 
up to 24 hours 

 

 
 
Figure 17: Graph depicting a lack of change in adiponectin gene expression in 3T3-L1 adipocytes following treatment with LPS (0.1 μg/ml) 

for up to 24 hours. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT
 method 

and error bars display SEM. p<0.05 was considered significant. Housekeeping gene was β-actin. (cont: control cells) n=6, samples run in 
duplicate. 

 

 

Group 2
-ΔΔCT +SEM -SEM p-value 

1 h Control 1 0.364885 0.267337  

1 h LPS 1.351286 0.572911 0.402332 0.560966 

4 h Control 1 0.182703 0.154479  

4 h LPS 1.406393 0.26345 0.221886 0.210711 

8 h Control 1 0.201604 0.167779  

8 h LPS 1.052145 0.120409 0.108044 0.831424 

24 h Control 1 0.316166 0.240217  

24 h LPS 0.669737 0.100179 0.087144 0.186943 
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3.4.3 3T3-L1 adipocytes: Adiponectin gene expression following LPS treatment 

 
Table 15: Adiponectin gene expression in 3T3-L1 adipocytes following 1-10 µg/ml LPS treatment 
for 4 and 24 hours 

 
 

 

 

 

 

 

 

Table 15: Results displayed as 2
-ΔΔCT

 with SEM, with each treatment group compared to its own control group only and Bonferroni 
correction applied. n=6, samples run in duplicate. 

 

Figure 18: Adiponectin gene expression in 3T3-L1 adipocytes following 1-10 µg/ml LPS treatment 
for 4 and 24 hours 

 

Figure 18: Graph depicting the changes in adiponectin gene expression in 3T3-L1 adipocytes following treatment with LPS (1-10 μg/ml) for 
4 and 24 hours. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT method and 
error bars display SEM. p<0.05 was considered significant. (** p<0.01). Housekeeping gene was β-actin. n=6, samples run in duplicate. 

 

 

Incubation time Group 2
-ΔΔCT +SEM -SEM p-value 

4 hours control 1 0.381852 0.276333  

 1 μg/ml 0.406596 0.248782 0.154344 0.153832 

 5 μg/ml 0.223498 0.319371 0.131484 0.161381 

 10 μg/ml 0.148137 0.04888 0.036753 0.002181 

24 hours control 1 0.725798 0.420558  

 1 μg/ml 0.593231 0.352092 0.220953 0.483881 

 5 μg/ml 0.860551 0.349309 0.248457 0.83982 

 10 μg/ml 0.565135 0.368188 0.222941 0.419607 
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Increasing concentrations of LPS (1 μg/ml, 5 μg/ml and 10 μg/ml) led to a clear reduction in 

adiponectin gene expression, with increasing concentration having an increased effect. 10 μg/ml LPS 

induced a significant 7-fold reduction in gene expression. Again this was a rapid effect, with changes 

after four hours. After 24 hours, again, there were no significant changes (Figure 18). This indicates 

that adiponectin gene expression in-vitro responds much quicker than in in-vivo murine adipose 

tissue studies. 

3.4.4 3T3-L1 Adipocytes: Adiponectin receptor R1 gene expression following LPS 

The same experimental technique was used to examine the effects of LPS on adiponectin receptor 

expression. In a similar manner to previous experiments, a time curve was performed using a 

concentration known to have had an effect in previous cells in this laboratory, 0.1 μg/ml189.  The 

experiments were performed at four time points over a 24 hour period (1, 4, 8 and 24 hours). As can 

be seen from the following two graphs, there was a small down-regulation in adipoR1 expression 

after 4 hours treatment (65% control). This was not seen in cells incubated for longer time periods. 

There were no changes in adipoR2 expression at any time period (Table 16 & 17, Figure 19 & 20). 
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Table 16: AdipoR1 gene expression in 3T3-L1 adipocytes following 0.1 µg/ml LPS treatment for up 

to 24 hours 

 
 

 

 

 

 

 

Table 16: Results displayed as 2
-ΔΔCT

 with SEM, with each treatment group compared to its own control group only. Only after 4 hours 
following treatment with 0.1 µg/ml LPS a reduction in adipoR1 gene expression was observed. n=6, samples run in duplicate. 

 
 
 
 
Figure 19: AdipoR1 gene expression in 3T3-L1 adipocytes following 0.1 µg/ml LPS treatment for up 
to 24 hours 
 

 

Figure 19: Graph depicting a small change in adiponectin receptor 1 gene expression in 3T3-L1 adipocytes following treatment with LPS 

(0.1 μg/ml) for up to 24 hours. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT 

method and error bars display SEM. p<0.05 was considered significant. (*p<0.05). Housekeeping gene was β-actin. (cont: control cells). 

n=6, samples run in duplicate. 

  

Group 2
-ΔΔCT +SEM -SEM p-value 

1 h cont 1 0.293573 0.226947  

1 h LPS 0.820362 0.165604 0.137789 0.559855 

4 h cont 1 0.105678 0.095577  

4 h LPS 0.651574 0.088875 0.078208 0.044523 

8 h cont 1 0.210417 0.173839  

8 h LPS 1.135504 0.26164 0.212643 0.661814 

24 h cont 1 0.199722 0.166474  

24 h LPS 0.904379 0.158907 0.135159 0.682949 
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3.4.5 3T3-L1 adipocytes: Adiponectin receptor R2 gene expression following LPS 

Table 17: AdipoR2 gene expression in 3T3-L1 adipocytes following 0.1 µg/ml LPS treatment for up 
to 24 hours 
 

Group 2-ΔΔCT +SEM -SEM p-value 

1 h Control 1 0.132643 0.117109  

1 h LPS 1.271325 0.136571 0.123323 0.185265 

4 h Control 1 0.10078 0.091553  

4 h LPS 0.721798 0.183034 0.146009 0.272215 

8 h Control 1 0.188327 0.158481  

8 h LPS 1.324089 0.168915 0.149804 0.172314 

24 h Control 1 0.3369 0.252001  

24 h LPS 0.961483 0.131424 0.11562 0.898072 

Table 17: Results displayed as 2
-ΔΔCT

 with SEM, with each treatment group compared to its own control group only. There are no changes 

in adipoR2 gene expression following 0.1 µg/ml LPS treatment. n=6, samples run in duplicate. 

 
 

Figure 20: AdipoR2 gene expression in 3T3-L1 adipocytes following 0.1 µg/ml LPS treatment for up 
to 24 hours 

 
 

Figure 20: Graph depicting the changes in adiponectin receptor 2 gene expression in 3T3-L1 adipocytes following treatment with LPS (0.1 
μg/ml) for up to 24 hours. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT 
method and error bars display SEM. p<0.05 was considered significant. Housekeeping gene was β-actin (cont: control cells). n=6, samples 
run in duplicate. 
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3.4.6 3T3-L1 Adipocytes: Adiponectin receptor gene expression following LPS 

In view of the minor changes observed after treatment with 0.1 µg/ml LPS, higher doses of LPS were 

used to treat the same cell line. A further three concentrations of LPS were used (1 μg/ml, 5 μg/ml 

and 10 μg/ml). AdipoR1 did not respond to LPS at higher concentrations (Figure 21) but adipoR2 was 

down-regulated (Figure 22). The response of adipoR2 was greater at higher concentrations of LPS. 

AdipoR2 responded rapidly with effects being seen at 4 hours. In a similar manner to the tissue 

experiments, there were no changes seen at 24 hours. 

 

These results demonstrate time-dependent changes in gene expression in response to the varying 

doses of LPS, which vary between receptor subtype and adiponectin itself. There appears to be few 

similarities between the three genes, suggesting that there may be differences in regulation and/or 

response to different doses of LPS. 
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Table 18: AdipoR1 gene expression in 3T3-L1 adipocytes following 1-10 µg/ml LPS treatment for 4 
and 24 hours 

 

 

 

 

 

 

 

Table 18: Results displayed as 2
-ΔΔCT

 with SEM, with each treatment group compared to its own control group only with Bonferroni 

correction. There are no changes in adipoR1 gene expression following 1-10 µg/ml LPS treatment. n=6, samples run in duplicate. 

 

 

Figure 21: AdipoR1 gene expression in 3T3-L1 adipocytes following 1-10 µg/ml LPS treatment for 4 
and 24 hours 

 

Figure 21: Graph depicting the changes in adiponectin receptor 1 gene expression in 3T3-L1 adipocytes following treatment with LPS (1-10 

μg/ml) for 4 and 24 hours. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT 

method and error bars display SEM. p<0.05 was considered significant.  Housekeeping gene was β-actin. n=6, samples run in duplicate. 

  

Incubation time Group 2-ΔΔCT +SEM -SEM p-value 

4 hours Control 1 0.106533 0.096276  

 1 μg/ml 1.107009 0.171281 0.14833 0.577524 

 5 μg/ml 0.83702 0.127975 0.111004 0.334789 

 10 μg/ml 0.870752 0.067074 0.062277 0.314486 

24 hours Control 1 12.53022 0.926091  

 1 μg/ml 0.908568 0.176939 0.148098 0.626799 

 5 μg/ml 0.99654 0.155679 0.134645 0.981832 

 10 μg/ml 0.95705 0.091054 0.083144 0.707906 
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3.4.7 3T3-L1 Adipocytes: Adiponectin receptor R2 gene expression following LPS 

Table 19: AdipoR2 gene expression in 3T3-L1 adipocytes following 1-10 µg/ml LPS treatment for 4 
and 24 hours 

 

 
 

 

 

 

 

Table 19: Results displayed as 2-ΔΔCT with SEM, with each treatment group compared to its own control group only with Bonferroni 
correction. There are no changes in adipoR1 gene expression following 1-10 µg/ml LPS treatment. n=6, samples run in duplicate. 

 

Figure 22: AdipoR2 gene expression in 3T3-L1 adipocytes following 1-10 µg/ml LPS treatment for 4 
and 24 hours 

 

Figure 22: Graph depicting the changes in adiponectin receptor 2 gene expression in 3T3-L1 adipocytes following treatment with LPS (1-10 
μg/ml) for 4 and 24 hours. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT 
method and error bars display SEM. p<0.05 was considered significant. (*p<0.05). Housekeeping gene was β-actin. n=6, samples run in 
duplicate. 

 

  

Incubation time Group 2-ΔΔCT +SEM -SEM p-value 

4 hours control 1 0.216885 0.17823  

 1 μg/ml 0.387786 0.127606 0.096012 0.02309 

 5 μg/ml 0.596668 0.098189 0.084314 0.066087 

 10 μg/ml 0.255784 0.104501 0.07419 0.017648 

24 hours control 1 0.247877 0.198639  

 1 μg/ml 0.92445 0.147892 0.127495 0.77511 

 5 μg/ml 1.194715 0.237475 0.198099 0.553701 

 10 μg/ml 0.907519 0.139032 0.120562 0.698579 
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3.5 Cytokine treatment 

Sepsis is a multi-factorial process comprising an initial insult followed by a cascade of further 

physiological and metabolic changes including inflammatory cytokine release. It is therefore 

important to discriminate whether the changes seen in-vivo represent a direct effect of LPS or 

whether inflammatory cytokines and other metabolic changes had any influence. Inflammatory 

cytokines, IL-6 and TNF-α were therefore used to treat the 3T3-L1 cells using the same technique as 

in previous experiments. 10 ng/ml IL-6 and TNF-α are commonly used doses in cell line experiments 

and has been demonstrated to have effects on adiponectin expression in 3T3-L1 cells in previous 

studies112. The next series of tables and figures display the effect on 3T3-L1 cells of treatment with 

inflammatory cytokines for 24 hours. 

 

IL-6 down-regulates its own expression following four hours of treatment. TNF-α, however, 

significantly up-regulates the expression of IL-6. However, AdipoR1 only was down-regulated 

significantly by IL-6 at both time points but not by TNF-α and neither cytokine had any effect on 

adipoR2 or adiponectin gene expression (Tables 20-23, Figures 23-26). Therefore, again a difference 

in the regulation of adiponectin and its receptors was observed with different cytokines. 

  



Page | 95  
 

3.5.1 3T3-L1 Adipocytes: IL-6 gene expression following cytokine treatment 

 

Table 20: IL-6 gene expression in 3T3-L1 adipocytes following IL-6 and TNF-α treatment for 4 and 
24 hours 
 

Incubation time Group 2-ΔΔCT +SEM -SEM p-value 

4 hours control 1 0.226396 0.184603  

 IL-6 10 ng/ml 0.446273 0.021079 0.020128 0.015238 

24 hours Control 1 0.241821 0.194731  

 IL-6 10 ng/ml 1.035026 0.665136 0.404922 0.951551 

4 hours Control 1 0.196829 0.164459  

 TNF-α 10 ng/ml 3.850378 1.087733 0.848135 0.001693 

24 hours Control 1 0.40609 0.288808  

 TNF-α 10 ng/ml 8.291693 5.093624 3.155305 0.000843 

Table 20: Results displayed as 2-ΔΔCT with SEM, with each treatment group compared to its own control group only. IL-6 down-regulates its 
own expression and increases the gene expression of TNF-α. n=6, samples run in duplicate. 

 

 

Figure 23: IL-6 gene expression in 3T3-L1 adipocytes following IL-6 and TNF-α treatment for 4 and 
24 hours 
 

 

Figure 23: Graph depicting the changes in adiponectin IL-6 gene expression in 3T3-L1 adipocytes following treatment with IL-6 and TNF-α 
(10 ng/ml) for 4 and 24 hours. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT 
method and error bars display SEM. p<0.05 was considered significant. (** p<0.01). Housekeeping gene was β-actin. n=6, samples run in 
duplicate. 
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3.5.2 3T3-L1 adipocytes: Adiponectin gene expression following treatment with 

inflammatory cytokines 

 

Table 21: Adiponectin gene expression in 3T3-L1 adipocytes following IL-6 and TNF-α treatment for 
4 and 24 hours 

Incubation time Group 2-ΔΔCT +SEM -SEM p-value 

4 hours Control 1 0.352997 0.2609  

 IL-6 10 ng/ml 0.961927 0.241654 0.193135 0.923161 

24 hours Control 1 0.714318 0.416678  

 IL-6 10 ng/ml 0.997462 0.958329 0.488752 0.99772 

4 hours Control 1 0.456027 0.3132  

 TNF-α 10 ng/ml 3.29056 1.595431 1.074472 0.053954 

24 hours Control 1 0.431551 0.301457  

 TNF-α 10 ng/ml 0.593917 0.420729 0.246271 0.0873 

 

Table 21: Results displayed as 2-ΔΔCT with SEM, with each treatment group compared to its own control group only. There are no changes 

in adiponectin gene expression following treatment with inflammatory cytokines. n=6, samples run in duplicate. 

 

 

Figure 24: Adiponectin gene expression in 3T3-L1 adipocytes following IL-6 and TNF-α treatment 
for 4 and 24 hours 

 

 
 
Figure 24: Graph depicting the changes in adiponectin gene expression in 3T3-L1 adipocytes following treatment with IL-6 and TNF-α (10 
ng/ml) for 4 and 24 hours. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT 
method and error bars display SEM. p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin. n=6, 
samples run in duplicate. 
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3.5.3 3T3-L1 Adipocytes: Adiponectin receptor R1 gene expression following treatment 

with inflammatory cytokines 

 

Table 22: AdipoR1 gene expression in 3T3-L1 adipocytes following IL-6 and TNF-α treatment for 4 
and 24 hours 

Incubation time Group 2-ΔΔCT +SEM -SEM p-value 

4 hours Control 1 0.063686 0.059873  

 IL-6 10 ng/ml 0.386355 0.066346 0.056622 0.003589 

24 hours Control 1 0.245595 0.197171  

 IL-6 10 ng/ml 0.50162 0.085981 0.0734 0.032261 

4 hours Control 1 0.578653 0.366549  

 TNF-α 10 ng/ml 0.737987 0.155018 0.128108 0.090398 

24 hours Control 1 0.214513 0.176625  

 TNF-α 10 ng/ml 0.863539 0.207015 0.166984 0.629802 

Table 22: Results displayed as 2-ΔΔCT with SEM, with each treatment group compared to its own control group only. IL-6 significantly down-
regulates the expression of adipoR1 in 3T3-L1 adipocytes but TNF-α has no effect. n=6, samples run in duplicate. 

 

Figure 25: AdipoR1 gene expression in 3T3-L1 adipocytes following IL-6 and TNF-α treatment for 4 
and 24 hours 

 

Figure 25: Graph depicting the changes in adipoR1 gene expression in 3T3-L1 adipocytes following treatment with IL-6 and TNF-α (10 
ng/ml) for 4 and 24 hours. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT 
method and error bars display SEM. p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin. n=6, 
samples run in duplicate. 
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3.5.4 3T3-L1 Adipocytes: Adiponectin receptor R2 gene expression following treatment 

with inflammatory cytokines 

 

Table 23: AdipoR2 gene expression in 3T3-L1 adipocytes following IL-6 and TNF-α treatment for 4 
and 24 hours 

Incubation time Group 2-ΔΔCT +SEM -SEM p-value 

4 hours Control 1 0.212667 0.175371  

 IL-6 10 ng/ml 0.548666 0.209785 0.151759 0.186241 

24 hours Control 1 1.12393 0.529175  

 IL-6 10 ng/ml 0.537375 0.651549 0.29449 0.604379 

4 hours Control 1 0.294139 0.227285  

 TNF-α 10 ng/ml 0.962594 0.204053 0.168363 0.908183 

24 hours Control 1 1.971691 0.663491  

 TNF-α 10 ng/ml 0.566115 0.240198 0.168644 0.586458 

Table 23: Results displayed as 2-ΔΔCT with SEM, with each treatment group compared to its own control group only. There are no changes in 
adipoR2 expression following treatment with inflammatory cytokines. n=6, samples run in duplicate. 

 

Figure 26 : AdipoR2 gene expression in 3T3-L1 adipocytes following IL-6 and TNF-α treatment for 4 
and 24 hours 
 

 

Figure 26: Graph depicting the changes in adipo R2 gene expression in 3T3-L1 adipocytes following treatment with IL-6 and TNF-α (10 
ng/ml) for 4 and 24 hours. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT 
method and error bars display SEM. p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin. n=6, 
samples run in duplicate. 
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3.6 Skeletal Muscle 

3.6.1 Initial experiments to confirm the presence of adiponectin gene expression in 

murine tissue 

Adiponectin is thought to be exclusively expressed from adipocytes. However, a small number of 

studies now have shown that adiponectin is expressed in other tissues including bone, 

cardiomyoctes and skeletal muscle190-195. Skeletal muscle is a large insulin sensitive organ and plays a 

major role in glucose metabolism and metabolic control in health196. In sepsis, there are well 

documented changes in skeletal muscle morphology and physiology and myopathies are not 

uncommon197. We therefore investigated adiponectin and receptor gene expression in murine 

skeletal muscle. 

3.6.2 Skeletal muscle: Adiponectin gene expression 

A 10-fold reduction in adiponectin gene expression after fours 4 hours following LPS injection was 

demonstrated. This down-regulation in gene expression persisted and increased further in the 

animals treated for 24 hours (Figure 27). This is different to adipose tissue where a demonstrable 

and less marked down-regulation was observed but only in the mice treated for 24 hours (Figure 13). 

Thus, skeletal muscle seems to respond more rapidly to treatment with LPS in-vivo than adipose 

tissue. 
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Figure 27: Adiponectin expression in Murine Skeletal muscle following LPS treatment 

 

Figure 27: Relative change in adiponectin gene expression in mouse skeletal muscle tissue depots 4 and 24 hours following 25 mg/kg intra-
peritoneal injection of LPS. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT 
method and p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin (Cont = Control group, LPS = 
Treatment group, 4 h 4 hours treatment group, 24 h: 24 hours treatment group). 4 hour mice, n=6, 24 hour mice n=11, samples run in 
duplicate. 
 

 

3.6.3 Skeletal muscle: Adiponectin receptor expression 

Murine skeletal muscle tissue was then investigated with respect to adiponectin receptors. 

Adiponectin receptor expression was significantly down-regulated following treatment with LPS with 

gene expression in the treated mice being only 10% of that of control mice after 4 hours and 50% 

after 24 hours (Figure 28). Despite a 10-fold reduction in expression in adipoR1 at 24 hours, there is 

a large SEM and a small sample size, therefore rendering the result non-significant. 
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Figure 28: Adiponectin receptor expression in Murine Skeletal muscle 

A: Adiponectin receptor 1 expression in skeletal muscle following LPS treatment 

 

 

 

B: Adiponectin receptor 2 expression in skeletal muscle following LPS treatment 

 

 

Figure 28: Relative change in adiponectin and adiponectin receptor gene expression in mouse skeletal muscle depots 4 and 24 hours 
following 25 mg/kg intra-peritoneal injection of LPS. Gene expression was determined by real-time PCR. Relative gene expression was 
calculated using the 2-ΔΔCT method and p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin. A:  
Skeletal Muscle adipoR1 expression, B: skeletal Muscle adipoR2 expression (Cont = Control group, LPS = Treatment group, 4 h 4 hours 
treatment group, 24 h: 24 hours treatment group). 4 hour mice, n=6, 24 hour mice n=11, samples run in duplicate 
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Having demonstrated such significant changes in adiponectin receptor expression in response to LPS, 

it was crucial to investigate this further. Firstly, the PCR product from the animal samples was 

sequenced to ensure the correct amplification product. Secondly, C2C12 myocytes were grown in 

culture and baseline experiments including identification of adiponectin by standard and real-time 

PCR. This is to ensure no contamination from blood or perimuscular fat providing the results 

observed. 

3.6.4 Adiponectin Real-time PCR product sequencing 

 

Epidydimal fat adiponectin sequencing 

Query  3    CCCATACACCTGGAGCCAGACTTGGTCTCCCACCTCCAGATGGAGGAGCACAGAGCC  59 
||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  774  CCCATACACCTGGAGCCAGACTTGGTCTCCCACCTCCAGATGGAGGAGCACAGAGCC  718 

 

57/57 

100% match 

 

Skeletal Muscle adiponectin sequencing (tissue) 

Query  1    CCCATACACCTGGAGCCAGACTTGGTCTCCCACCTCCAGATGGAGGAGCACAGAGCACAG  60 
|||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||| 
Sbjct  774  CCCATACACCTGGAGCCAGACTTGGTCTCCCACCTCCAGATGGAGGAGCACAGAGC-CAG  716 

 

59/60 

98% match 

Examining the electropherogram, the A nucleotide 4 from the end is a misread and should not be 

there therefore the sequencing process showed a 100% match to adiponectin in both the adipose 

tissue sample and the muscle sample sequenced. This demonstrates that adiponectin is correctly 

amplified in the murine skeletal muscle. 
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3.7 C2C12 Myocyte Culture and differentiation 

Cell Pictures 

 

Figure 29: Pictures of C2C12 myocytes at different stages of differentiation 
A: C2C12 Myocytes – Myoblasts 

 

 

B: C2C12 Myocytes – day 6 in differentiation media 

 

Figure 29: Pictures of C2C12 myocytes at varying stages during the differentiation process. A: C2C12 Myocytes – myoblasts, B: C2C12 

myocytes – day 6 in differentiation media 

Undifferentiated 

myoblasts 

Differentiated 

myocytes 
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3.7.1 Confirmation of adiponectin mRNA in C2C12 myocytes 

Figure 30: Standard PCR displaying the presence of adiponectin mRNA in C2C12 myocytes 

 

Figure 30: Standard PCR gel of C2C12 Myocyte cDNA (kindly donated by Adam Lightfoot, University of Liverpool) showing a dose response 

curve (all samples in duplicate) with increasing signal with increasing concentration of cDNA used in the experiment (0.5-4 µg/ml  cDNA). 

Positive (Epididymal fat) and negative (myocyte RNA) controls were used. Signal approximately 400-450bp (actual size 430bp). (neg: 

negative control, myoc BA: myocyte beta actin, Efat adipo: epididymal fat adiponectin, myocyte adiponectin (µg): increasing 

concentrations of myocyte cDNA (0.5-4.0µg), bp: base pairs). Adiponectin PCR: 34 cycles, Beta actin PCR: 25 cycles). 

 

 

At low concentrations of cDNA, there were weak bands only. However, at increased concentrations 

of cDNA, there were obvious bands, indicating that adiponectin is expressed but at low 

concentrations. The difference in band signal between the positive control and the myocyte 

adiponectin band demonstrates that C2C12 myocytes express adiponectin at a lower level than 

epididymal fat (Figure 30). 

 

Myocyte experiments 

Following the observations in whole mouse skeletal muscle, C2C12 myocytes were grown in culture 

and treated with LPS to ascertain any changes in the gene expression of adiponectin or its receptors. 

C2C12 myocytes were grown in culture using the standard laboratory protocol and were treated on 

day 7 with various doses of LPS. This was the same experimental conditions as the 3T3-L1 adipocyte 

experiments. Confirmation of LPS effects and identification of skeletal muscle inflammation were 

confirmed using IL-6 expression as IL-6 is known to be released during skeletal muscle contraction 

(Table 24 & Figure 31). 

1000 bp 

100 bp 

500 bp 

Neg              myoc               EF                          Myocyte adiponectin (µg cDNA) 
                       BA               adipo             0.5                1.0                   2                  4 
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3.7.2 C2C12 myocytes: IL-6 gene expression as a reference gene 

The response to LPS was confirmed in C2C12 myocytes by determination of IL-6 expression which 

showed a rapid 1000-fold increase in gene expression. Following a personal communication with 

Adam Lightfoot (pHD student, muscle group), previous results in C2C12 cells indicate that LPS 

concentrations of 1-10 µg/ml are generally required to elicit a change in gene expression.  Therefore, 

a 0.1 µg/ml treatment time curve (1, 4, 8 and 24 hours with 0.1 µg/ml LPS) was not performed as 

previously done in 3T3-L1 adipocytes treated with LPS. However, the 0.1 µg/ml dose was included in 

the concentration curve to achieve consistency between the adipocyte and the myocyte 

experiments. Thus the same concentrations were used (0.1-10 µg/ml LPS). In contrast, however, we 

did elicit a response with 0.1 µg/ml LPS with respect to IL-6 gene expression. 

Table 24: IL-6 gene expression in C2C12 myocytes following 0.1-10 µg/ml LPS treatment for 4 and 
24 hours 

 

 

 

 

 

 

 

 

Table 24: Results displayed as 2-ΔΔCT with SEM, with each treatment group compared to its own control group only with Bonferroni 
correction. There is a significant up-regulation in IL-6 gene expression in C2C12 myocytes (approx 1000-fold) after four hours which rapidly 
reduces, although remains significant (with the exception of the 0.1 µg/ml group), after treatment for 24 hours. n=6, samples run in 
duplicate. 

  

Incubation 
time 

Group 2-ΔΔCT +SEM -SEM p-value 

4 hours Control 1 0.104326 0.094471  

 0.1 µg /ml 849.6157 115.0902 101.3599 1.83x10-11 

 1 μg/ml 55.63805 8.739577 7.553137 1.38x10-7 

 5 μg/ml 953.6614 227.2549 183.5221 8.98x10-9 

 10 μg/ml 486.4002 57.23853 51.21201 3.23x10-10 

24 hours Control 1 0.183848 0.155297  

 0.1 µg /ml 1.652901 0.359435 0.295234 0.081948 

 1 μg/ml 3.714926 0.783289 0.646893 0.000457 

 5 μg/ml 7.077959 0.826607 0.740166 6.29x10-6 

 10 μg/ml 5.296356 0.393872 0.366609 4.99x10-5 
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Figure 31: IL-6 gene expression in C2C12 myocytes following 0.1-10 µg/ml LPS treatment for 4 and 
24 hours 

 

Figure 31:  Relative change in IL-6 gene expression in murine C2C12 myocytes. Gene expression was determined by real-time PCR. Relative 
gene expression was calculated using the 2-ΔΔCT method and p<0.05 was considered significant. (*p<0.05, ** p<0.01, ***p<0.0001). 
Housekeeping gene was β-actin. n=6, samples run in duplicate. 

 

3.7.3 C2C12 myocytes: Adiponectin gene expression following LPS 

Following treatment with LPS (0.1/1/5/10 μg/ml), there was a rapid down-regulation of adiponectin 

gene expression after only four hours treatment with 0.1, 1 and 10 µg/ml LPS (Table 25 & Figure 32). 

There was little change in adiponectin receptor gene expression with any concentration of LPS with 

the exception of a small reduction in expression of adipoR1 after treatment with 5 μg/ml LPS for four 

hours (Table 26 & Figure 33).  AdipoR2, however, showed an increase in expression after treatment 

with 0.1 µg/ml and 5 μg/ml LPS (Table 27, Figure 34). 
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Table 25: Adiponectin gene expression in C2C12 myocytes following 0.1-10 µg/ml LPS treatment 
for 4 and 24 hours 

 

Table 25: Results displayed as 2-ΔΔCT with SEM, with each treatment group compared to its own control group only with Bonferroni 
correction. There is significant down-regulation in adiponectin gene expression in C2C12 myocytes after four hours which is not present at 
24 hours. n=6, samples run in duplicate. 

 

 

 

Figure 32: Adiponectin gene expression in C2C12 myocytes following 0.1-10 µg/ml LPS treatment 
for 4 and 24 hours 

 
 
Figure 32: Relative change in adiponectin gene expression in C2C12 myocytes. Gene expression was determined by real-time PCR. Relative 
gene expression was calculated using the 2-ΔΔCT method and p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene 
was β-actin. n=6, samples run in duplicate. 

Incubation time Group 2-ΔΔCT +SEM -SEM p-value 

4 hours Control 1 0.238 0.192  

 0.1 µg/ml 0.51 0.059 0.05 0.04* 

 1 μg/ml 0.77 0.168 0.138 0.43 

 5 μg/ml 0.34 0.093 0.07 0.01* 

 10 μg/ml 0.46 0.10 0.08 0.04* 

24 hours Control 1 0.317 0.24  

 0.1 µg/ml 0.709 0.192 0.151 0.37 

 1 μg/ml 1.19 0.520 0.36 0.71 

 5 μg/ml 0.95 0.167 0.142 0.89 

 10 μg/ml 0.93 0.040 0.038 0.81 
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3.7.4 C2C12 Myocytes: Adiponectin receptor R1 gene expression following LPS 

AdipoR1 was down-regulated at moderate doses of LPS (5 µg/ml) after 4 hours whereas there was 

no significant change after 24 hours of treatment. 

Table 26: AdipoR1 gene expression in C2C12 myocytes following 0.1-10 µg/ml LPS treatment for 4 
and 24 hours 

 

 

 

 

 

 

 

Table 26: Results displayed as 2-ΔΔCT with SEM, with each treatment group compared to its own control group only with Bonferroni 
correction. There is significant down-regulation in adioR1 gene expression in C2C12 myocytes after four hours which is not present at 24 
hours. n=6, samples run in duplicate. 

 

Figure 33: AdipoR1 gene expression in C2C12 myocytes following 0.1-10 µg/ml LPS treatment for 4 
and 24 hours 

 

Figure 33: Relative change in adipoR1 gene expression in C2C12 myocytes. Gene expression was determined by real-time PCR. Relative 

gene expression was calculated using the 2-ΔΔCT method and p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene 

was β-actin. n=6, samples run in duplicate. 

Incubation time Group 2-ΔΔCT +SEM -SEM p-value 

4 hours Control 1 0.088 0.080  

 0.1 µg/ml 0.914 0.031 0.029 0.36 

 1 μg/ml 0.989 0.039 0.037 0.91 

 5 μg/ml 0.65 0.088 0.077 0.02 

 10 μg/ml 0.79 0.06 0.056 0.06 

24 hours Control 1 0.10 0.096  

 0.1 µg/ml 1.15 0.083 0.077 0.27 

 1 μg/ml 1.34 0.14 0.134 0.08 

 5 μg/ml 1.19 0.16 0.147 0.32 

 10 μg/ml 0.87 0.05 0.054 0.28 
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3.7.5 C2C12 Myocytes: Adiponectin receptor R2 gene expression following LPS 

 

Table 27: AdipoR2 gene expression in C2C12 myocytes following 0.1-10 µg/ml LPS treatment for 4 
and 24 hours 

 

 

 

 

 

 

 

Table 27: Results displayed as 2-ΔΔCT with SEM, with each treatment group compared to its own control group only with Bonferroni 

correction. There are no changes in adipoR2 gene expression after 4 hours incubation but there are small increases after 24 hours 

incubation. n=6, samples run in duplicate. 

 

 

Figure 34: AdipoR2 gene expression in C2C12 myocytes following 0.1-10 µg/ml LPS treatment for 4 
and 24 hours 

 

 
Figure 34: Relative change in adipoR2 gene expression in C2C12 myocytes. Gene expression was determined by real-time PCR. Relative 
gene expression was calculated using the 2-ΔΔCT method and p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene 
was β-actin. n=6, samples run in duplicate. 

Incubation time Group 2-ΔΔCT +SEM -SEM p-value 

4 hours Control 1 0.34 0.25  

 0.1 µg/ml 1.05 0.09 0.08 0.85 

 1 μg/ml 1.25 0.12 0.11 0.49 

 5 μg/ml 0.76 0.11 0.101 0.44 

 10 μg/ml 1.15 0.11 0.1 0.65 

24 hours Control 1 0.07 0.07  

 0.1 µg/ml 1.715 0.28 0.244 0.01 

 1 μg/ml 1.14 0.14 0.12 0.36 

 5 μg/ml 1.81 0.10 0.09 0.0001 

 10 μg/ml 1.185 0.06 0.065 0.106 
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3.8 Gene expression of adiponectin and its receptors in other tissues 

3.8.1 Liver 

In addition to adipose tissue and skeletal muscle, adiponectin receptors are known to be present in 

other tissues including the liver and spleen. The same experimental technique was subsequently 

continued investigating liver tissue from the mice injected with LPS. The expression of adiponectin is 

debated but the current opinion in the literature is that it is not expressed in normal tissue but can 

be induced in times of disease e.g. hepatic fibrosis models. In this model, there is no change in 

expression of adiponectin in hepatic tissue subjected to LPS treatment in-vivo. 

cDNA from human HUH7 cells, control and treated with LPS 0.1-10 µg/ml was investigated (kindly 

donated by Professor James Gallagher’s group, University of Liverpool). There was no expression of 

adiponectin mRNA in these cells (Ct values >38 or not obtained). There was also no expression of 

adiponectin in these cells after treatment with 0.1-10 µg/ml LPS. This is consistent with the current 

literature. Adiponectin gene expression results must be viewed with caution as the SEMs are very 

large and the raw data Ct values are high (Figure 35). 

AdipoR1 and adipoR2 gene expression, however, are rapidly down-regulated in liver tissue. AdipoR1 

expression remains down-regulated at 24 hours but there are no changes at 24 hours in adipoR2 

expression (Figure 36). 

  

  



Page | 112  
 

 

 

Figure 35: Adiponectin gene expression in mouse hepatic tissue 

 

Figure 35: Relative change in adiponectin gene expression in mouse liver tissue depots 4 and 24 hours following 25 mg/kg intra-peritoneal 
injection of LPS. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT method and 
p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin (Cont = Control group, LPS = Treatment group, 4 
h 4 hours treatment group, 24 h: 24 hours treatment group). 4 hour mice, n=6, 24 hour mice n=11. Samples run in duplicate. 
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Figure 36: Adiponectin receptor gene expression in mouse hepatic tissue 

A: Adiponectin receptor 1 gene expression in liver 

 

 

 

 

B: Adiponectin receptor 2 gene expression in liver 

 

Figure 36: Relative change in adiponectin receptor gene expression in mouse liver depots 4 and 24 hours following 25 mg/kg intra-
peritoneal injection of LPS. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT 
method and p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin. A: Liver adipoR1 expression, B: Liver 
adipoR2 expression. (Cont = Control group, LPS = Treatment group, 4 h: 4 hours treatment group, 24 h: 24 hours treatment group). 4 hour 
mice, n=6, 24 hour mice n=11. Samples run in duplicate. 
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3.8.2 Spleen 
Adiponectin is a known anti-inflammatory hormone with many roles including reduction in 

inflammatory cytokines, reduction in neutrophil binding and endothelial dysfunction.  The spleen is 

part of the immune system, making antibodies and removing antibody-coated bacteria and blood 

cells. The experiments were then continued to include splenic tissue. In the same mouse model, the 

spleen was investigated with respect to the expression of adiponectin and its receptors. There was a 

trend towards a down-regulation in adiponectin expression in both the 4 hour (36% of control p=0.2) 

and 24 hour groups (45% of control p=0.13) (Figure 37). AdipoR1 expression, however, was 

significantly down-regulated following 24 hours of treatment with LPS. There was no change in the 

expression of adipoR2 (Figure 38). 

Figure 37: Adiponectin gene expression in mouse spleen tissue 

 

Figure 37: Relative change in adiponectin receptor gene expression in mouse spleen 4 and 24 hours following 25 mg/kg intra-peritoneal 
injection of LPS. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT method and 
p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin. 4 hour mice, n=6, 24 hour mice, n= 14. Samples 
run in duplicate. 

  

http://en.wikipedia.org/wiki/Antibodies
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Figure 38: Adiponectin receptor gene expression in mouse spleen tissue 

A: Adiponectin receptor 1 expression in spleen 

 

 

 

B: Adiponectin receptor 2 expression in spleen 

 

Figure 38: Relative change in adiponectin receptor gene expression in mouse spleen 4 and 24 hours following 25 mg/kg intra-peritoneal 
injection of LPS. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT method and 
p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin. A: Spleen adipoR1 expression, B: Spleen adipoR2 
expression. (Cont = Control group, LPS = Treatment group, 4 h: 4 hours treatment group, 24 h: 24 hours treatment group). 4 hour mice, 
n=6, 24 hour mice, n= 14. Samples run in duplicate. 
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3.8.3 Small bowel 
Small bowel also contains large numbers of immunocytes including lymphocytes but also contains a 

large number of other different cells including enterocytes, goblet cells, paneth cells and 

enteroendcrine cells. Interestingly, there were no significant differences in the expression of 

adiponectin (Figure 39). However, there was a trend towards down-regulation both in adipoR1 

expression (58% of control p=0.18) and adipoR2 expression (63% of control p=0.08) in this tissue 

depot (Figure 40). 

Figure 39: Adiponectin gene expression in mouse small bowel tissue 

 

Figure 39: Relative change in adiponectin receptor gene expression in mouse small bowel 4 and 24 hours following 25 mg/kg intra-
peritoneal injection of LPS. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT 
method and p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin. 4 hour mice, n=6, 24 hour mice, n= 
14. Samples run in duplicate. 
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Figure 40: Adiponectin receptor gene expression in mouse small bowel tissue 

A: Adiponectin receptor 1 expression in small bowel 

 

 

 

B: Adiponectin receptor 2 expression in small bowel 

 

Figure 40: Relative change in adiponectin receptor gene expression in mouse small bowel tissue 4 and 24 hours following 25 mg/kg intra-
peritoneal injection of LPS. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT 
method and p<0.05 was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin. A:  Small Bowel adipoR1 expression, 
B: Small Bowel adipoR2 expression. (Cont = Control group, LPS = Treatment group, 4 h: 4 hours treatment group, 24 h: 24 hours treatment 
group). 4 hour mice, n=6, 24 hour mice, n= 14. Samples run in duplicate. 

  



Page | 118  
 

3.9 Protein determination using western blotting 

Western blotting was carried out to assess protein levels of adiponectin receptors in the tissue 

samples. Using a standard laboratory protocol, all blots were incubated overnight at 4°C with a 

primary antibody and at 1 hour at room temperature with a secondary antibody. Using the standard 

laboratory protocol (see methods section), phosphate buffered saline with Tween (PBST) with either 

milk or bovine serum albumin (BSA) as a blocking agent. Following optimisation, BSA was found to 

be superior. According to the manufacturer’s protocol, bands were expected at 43 kDa. 

In initial experiments, mouse liver samples were used as they are known to have a high 

concentration of adiponectin receptors.  Initial western blots were unsuccessful as despite adequate 

membrane blocking, no bands appeared. On subsequent attempts following optimisation (heating 

and membrane fractionation) and increasing concentrations of 1° (AdipoR1: ADIPOR11-A, AdipoR2: 

ADIPO21-A, both Alpha Diagnostic, San Antonia, USA) and 2° (Goat anti-rabbit, Serotec, UK) 

antibodies, no reproducible results were obtained. 

Initially, Phosphate Buffered Saline with Tween (PBST) as a wash buffer. Membranes were optimised 

with different milk and concentrations of Bovine Serum Albumin (BSA) for blocking and dilution.  

However, bands were not consistent, although membranes appeared well blocked. Altering the 

blocking solution to BSA further decreased the quality of the blots, therefore milk was used 

thereafter. Increased concentrations of 1° antibody were used but also had minimal success. Further 

blots then concentrated on optimisation with differing concentrations of 2° antibody using 1/1000 

concentration of 1° antibody and using membrane fractionation. This achieved no real improvement 

in the blocks. 

Interestingly, there were a number of blots with bands at approximately 72 kDa, twice the 

manufacturer’s expected molecular weight, particularly with adiponectin receptor 2. There is no 

clear explanation for this. 
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It was then decided that the lack of good results may be due to the quality of the antibody. As it was 

beyond the scope of this project to raise a non-commercial antibody, it was decided to purchase a 

second commercially available antibody (AdipoR1: ADIPOR12-A, AdipoR2: ADIPO22-A, both Alpha 

Diagnostic, San Antonio, USA). 

To assess the antibody, a dot blot technique was assessed using the new antibody with its own 

control peptide and a liver sample. The adipoR1 receptor antibody did not achieve good dots with 

the control peptide. However, good dots were achieved for all concentrations of sample for both 

adipoR1 and adipoR2. (Figure 41). The process of western blotting was recommenced using these 

antibodies at a concentration of 1/200. 1% milk was used for blocking and 0.5% milk for dilution of 

antibodies. 

 

Figure 41: Dot Blot to assess efficacy of new antibodies 

 

Figure 41: Dot blot using control peptides (lanes 1-3) and the membrane fractionation component of liver tissue from 1 control mouse 
(lanes 4-6). Concentrations of antibodies were: Primary 1/200, Secondary 1/2000 for both adipoR1 and adipoR2. Increasing concentrations 
of protein were used in the experiments from 10 to 40 µg. TTBS was used as the wash with milk used for blocking (1%) and dilution 
solutions (0.5%). Visible dots can be seen at all concentrations for adipoR2 but only at the higher protein concentrations in adipoR1. 

 

CONTROL 

CONTROL 

LANES 1-3 LANES 4-6 
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The optimisation process then commenced once again using liver and muscle samples (10-15 µg 

protein). This gave improved blots but with very inconsistent results. There were no bands for 

adipoR1 or for liver tissue but there were strong bands visible very early for adipoR2 (Figure 42). 

 

Figure 42: Western Blot using Liver and Muscle samples 

 

 

 

 

 

 

 

Figure 42: Western blot using whole cell lysate of liver (lanes 1 & 2) and muscle tissue (lanes 3-8) from control and treatment mice 
(different mice, single experiments). Concentrations of antibodies were: Primary 1/200, Secondary 1/2000 for both adipoR1 and adipoR2. 
Visible bands can be seen at 43 kDa for adipoR2 protein in the muscle tissue. There are no bands for adipoR1 or for liver tissue (either 
receptor).  TTBS was used as the wash with milk used for blocking (1%) and dilution solutions (0.5%). (C: Control mice, L LPS treated mice). 
Good bands for muscle R2 were also seen at 5, 20 and 40 minute exposure. 

 

  

R1 

Lanes 

72 kDa 

55 
43 
34 

1           2                 3             4               5              6             7             8 

R2 

Lanes 

72 kDa 

55 
43 
34 

1           2                 3             4               5              6             7             8 

LIVER 15 µg 
Lanes 1-2 

Muscle 10 µg                   Lanes 3-8 

1 minute exposure 
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Following more success of the western blot using muscle tissue, this experiment was repeated but 

did not yield a similar success with difficulties in blocking the membranes and poor end results 

(Figure 43). 

Figure 43: Western Blotting of muscle samples (treatment and control) 

 

 

 

 

 

 

Figure 43: Western blot using 15 μg protein (Whole cell lysate) 

from muscle (control and treatment 24 hours) samples were 

used with 1% milk for blocking and 0.5% milk for dilution. 

Antibody concentrations were : 1°: 1/200, 2°: 1/2000. Bands for 

adipoR1 visible after 1 minute but at multiple molecular 

weights including 43 kDa, 55 and 72 kDa. Bands for R2 visible 

were fainter but the blot was cleaner and visible after 5 

minutes. The 20 minute exposure picture demonstrated the 

clearest bands 

 

 

 

Western blotting for adiponectin receptors has therefore been of very limited success, despite 

numerous optimisation experiments and new antibodies. From the outset, a very high concentration 

of antibody was required, thus providing evidence of poor antibody efficacy. The commercial 

antibody options were limited and the generation of new antibodies was beyond the scope of this 

project. When the western blot was successful, the results were inconsistent and repeat 

experiments with the same concentrations did not yield the same results. There were a number of 

membranes that identified bands at approximately 72 kDa in hepatic samples, approximately twice 

the size of the quoted molecular weight of the receptors. The reason for this is unclear but one 

postulated theory is that this may have indicated a dimerised receptor. A summary of all successful 

blots undertaken can be seen in Appendix 2. 

20 minutes exposure 

LPS 24 h  Cont 24 h 

adipoR2 

adipoR1 

LPS 24 h  Cont 24 h 
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3.10 Discussion: 

Adiponectin expression in adipose tissue following lipopolysaccharide treatment 

Adiponectin is an adipokine which has been extensively studied since its discovery in 1995. Four 

groups independently identified adiponectin using different techniques including identification of 

mRNAs induced during adipocyte differentiation and identification of the gene by its ability to bind 

gelatine, thus naming it gelatine binding protein of 28 kDa or GBP2867-70   . Using northern blotting 

several authors demonstrated that it was restricted to adipose tissue in various mouse, rat and 

human tissues67-69 .  Adiponectin acts via two receptors, identified in 2003 by Yamauchi et al.123. 

Adiponectin receptors have been identified on many tissues with adipoR1 having a higher expression 

level in skeletal muscle whereas adipoR2 being predominant in hepatic tissue123. Adiponectin has 

been shown to be an anti-inflammatory, anti-atherogenic insulin sensitizer, promoting glucose 

utilisation and fatty acid oxidation28 30-36. This series of experiments investigated the role of 

adiponectin and its receptors in-vivo and in-vitro models of endotoxaemia. Adiponectin is well 

known to be down-regulated in chronic inflammatory processes such as obesity, type II DM and 

cardiovascular disease30 36 79 198 199. Our laboratory has previously demonstrated that in a murine 

model of acute endotoxaemia, WAT adiponectin gene and protein expression decreased 24 hours 

following ip LPS injection12. This series of experiments confirmed this finding at the mRNA level 

(Figure 13). 

 

Adiponectin receptor mRNA was also confirmed to be present in all tissues and cell types examined 

by qPCR which is consistent with the current literature123 124 126 127. Splenic adiponectin receptors 

have been identified in many species including the mouse123 and pig (adipoR2 only)200 . Changes in 

adiponectin and its receptor expression following LPS injection varied with tissue type are 

summarised in the following table: 
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Table 28: Summary of tissue adiponectin and receptor gene expression results 

Gene expressed and time adipoR1 
4 h 

adipoR1 
24 h 

adipoR2 
4 h 

adipoR2 
24 h 

Adiponectin 
4 h 

Adiponectin 
24 h 

Liver ↓1.5 ↓1.4* ↓2.7* ↓1.5 ↑0.54 ↓1.93 

Skeletal Muscle ↓9.8* ↓1.9* ↓6.2 ↓2.2* ↓6.94* ↓30* 

EF ↓ 1.5 = ↓1.8 ↓1.2 = ↓3.66* 

PRF ↓1.6* ↓1.2 ↓4.3* ↓1.5 ↓1.96 ↓2.9* 

SCF ↓1.2 ↓1.2 ↓2.9* = ↓1.31 ↓4.27* 

Small bowel = ↓1.3 ↓1.7 ↓1.5 ↓1.71 ↓1.56 

Spleen ↓1.2 ↓1.5* = = ↓2.77 ↓2.12 

Table 28: fold changes of adiponectin and adiponectin receptor gene expression only with direction of change. Mouse tissues treated with 
25 mg/kg LPS (* denotes statistical significance (p<0.05)) 

 

Briefly, there was a significant down-regulation in adiponectin gene expression in the three adipose 

tissue depots and skeletal muscle (Figures 13 & 27). This was accompanied by a rapid down-

regulation (at 4 hours) in adiponectin receptor gene expression which was observed in several 

tissues: muscle, liver and PRF showed down-regulation of adipoR1 and liver, muscle, PRF and SCF, 

down-regulation of adipoR2. These changes were accompanied by a sustained decrease (at 24 

hours) in liver and skeletal muscle adipoR1 expression and muscle adipoR2 only (Figures 14, 28 & 

36). These interesting findings will now be discussed further. 

3.10.1 Adipose tissue: Adiponectin and receptor expression 

Three depots of WAT were investigated in the mouse model, subcutaneous (SCF), epididymal (EF) 

and peri-renal fat (PRF). The changes in receptor expression were different in each depot. The 

greatest changes were observed in PRF with rapid down-regulation of gene expression of both 

receptors. In SCF, only adipoR2 was down-regulated and EF showed no response. Again the changes 

seen were only at four hours and gene expression had returned to values close to the control level 

by 24 hours (Figure 14). Interestingly, adiponectin expression was reduced in all three depots, but 

this was at the later time point of 24 hours (Figure 13). These depot-dependent changes in receptor 

expression may reflect a difference in the type of adipose tissue.  
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The murine adipose organ consists of subcutaneous (anterior and posterior) and visceral (ommental, 

mesenteric, peri-renal, retroperitoneal, parametrial, periovaric, epididymal and perivesical) 

depots201. In humans, the adipose organ is divided into visceral and subcutaneous adipose tissue. 

The subcutaneous WAT is a continuous layer under and in continuity with the dermal WAT. Visceral 

WAT is located in numerous places around organs within the thoracic and abdominal cavities (e.g. 

omental, mesenteric, peri-renal, epididymal). It accounts for approximately 9-18% of body weight in 

males and 14-28% in females202. This percentage can be increased up to 22 and 32% in obese male 

and female subjects respectively202.  Adipocytes structure appears to be similar in the two species 

but adipocyte size can be up to 30-40% bigger in humans201. 

 

Studies in animals and humans have shown that increased visceral rather than total adipose tissue 

plays a greater role in the development of the type II DM and the metabolic syndrome203. 

Interestingly, Nanniperi et al. demonstrated a higher concentration of adiponectin and both 

receptors in human sub-cutaneous WAT compared to visceral WAT130. This suggests that a higher 

concentration of adiponectin and its receptors in visceral fat per se may not be the most important 

factor in its role in the metabolic syndrome.  The greatest effect of LPS on receptor expression 

observed in these results was observed in PRF, a visceral depot. This may imply that visceral adipose 

tissue depot has a greater role in the development of infection-induced metabolic changes, in 

particular insulin resistance. However, the role of visceral adipose tissue in sepsis has not been 

extensively studied. 

 

Our results show similar changes to those observed in many mouse models of obesity where the 

expression of WAT adiponectin and its receptors is significantly reduced68 79 126. Plasma and adipose 

tissue adiponectin are also down-regulated in obese humans68 93 who display a 60% reduction in 

adipoR1 gene expression in SCF and ommental fat compared to those with a normal BMI131. In 

agreement with the results presented this thesis, expression differences between different fat 
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depots have already been observed.  Nannipieri et al. demonstrated a down-regulation of adipoR1 

and adiponectin only in visceral WAT whereas adiponectin and both receptors were down-regulated 

in SCF130. Therefore, as in obesity, it can be hypothesised that different WAT depots may play 

different roles in the pathogenesis of hyperglycaemia of sepsis. 

 

A further hypothesis is that the depot differences observed may reflect changes in blood supply to 

different organs as is frequently observed in sepsis. The peripheral circulation becomes profoundly 

vasodilated as a result of a multifactorial process involving molecules such as cytokines, endotoxin 

and nitric oxide204. The vasodilation is not uniform accross all tissue beds. Vasodilation can occur in 

capacitance vessels leading to blood pooling and relative hypovolaemia. Also, local vasodilation can 

cause shunting of blood past capillary exchange beds causing focal hypoperfusion despite a normal 

cardiac output205. The resulting hypotension leads to organ malperfusion, often of non-essential 

organs such as the skin and splanchnic areas. This can disturb of the delicate balance between 

oxygen delivery and consumption, causing hypoxia and the resulting anaerobic cellular metabolism, 

which, if not corrected quickly, proceeds to organ failure205.  This may contribute to alterations of 

adiponectin and its receptor expression as central blood supply to visceral fat depots, may be 

conserved more than to peripheral tissues. Perfusion to extra-peritoneal tissues, such as EF and SCF 

depots, therefore, may become compromised as the circulation is centralised to improve essential 

organ (brain and heart) perfusion. Therefore an improved blood supply leading to enhanced delivery 

of inflammatory cytokines may be a reason that changes in visceral fat depots are greater than the 

peripheral tissues. 

 

In contrast to the differing responses in receptor regulation in the various fat depots, adiponectin 

expression was comparable in all types of WAT (Figure 13). There were significant reductions in all 

depots after 24 hours but not in the acute phase. The reasons for this are unclear but it is possible 

that adiponectin is regulated differently to its receptors. So far, there has been no previous 



Page | 126  
 

examination of tissue receptor gene expression following LPS stimulation. It would be anticipated 

that a reduction in ligand expression should be countered by an up-regulation in receptor 

expression. However, the down-regulation of adiponectin in observed in this thesis appear to 

parallel the changes in adiponectin receptors with a time-lag. This indicates an in-vivo down-

regulation of the entire adiponectin system rather than just individual components. 

 

3.10.2 Adipocytes – adiponectin 

LPS treatment in-vitro allows the investigator to appreciate whether the changes observed are a 

phenomenon of LPS per se or whether they are secondary to the inflammatory response in-vivo. The 

next set of experiments investigated isolated 3T3-L1 adipocytes. The 3T3-L1 mouse fibroblastic cell 

line rapidly differentiates to an adipocyte phenotype when treated with dexamethasone, 3-Isobutyl-

1-methylxanthine (IBMX) and insulin206 and has been extensively used for the investigation of 

adipokine expression in different experimental models. We used LPS (E-Coli O 111:B4, Sigma-Aldrich) 

in varying concentrations to assess the change in expression of the components of the adiponectin 

system with time (24 hours). 

 

Changes observed following LPS and cytokine treatment of 3T3-L1 adipocytes are summarised in the 

following table: 

Table 29: Summary of 3T3-L1 adipocyte gene expression results 

Gene expressed 
and time 

adipoR1 
4 h 

adipoR1 
24 h 

adipoR2 
4 h 

adipoR2 
24 h 

adiponectin 
4 h 

adiponectin 
24 h 

IL-6 
4 h 

IL-6 
24 h 

LPS         

0.1 µg/ml ↓1.53* = ↓1.38 = ↑1.4 ↓1.5 ↑25.42 ↑2.66 

1 µg/ml = = ↓2.63 = ↓2.46 ↓1.69 ↑34.29 ↑14.62 

5 µg/ml ↓1.19 = ↓1.67 ↑1.19 ↓4.54 ↓1.16 ↑20.60 ↑10.76 

10 µg/ml ↓1.14 = ↓3.9 = ↓6.75* ↓1.78 ↑22.85 ↑6.61 

         

Cytokines         

TNF-α 10 ng/ml ↓1.35 ↓1.15 = ↓1.78 ↑3.29 ↓1.68 ↑3.85 ↑8.29 

IL-6 10 ng/ml ↓2.59* ↓1.99* ↓1.82 ↑1.12 = = ↓2.27 = 

 
Table 29: Fold changes of IL-6, adiponectin and adiponectin receptor gene expression with direction of change. 3T3-L1 cells treated 
with various concentrations of LPS and inflammatory cytokines. (* denotes statistical significance (p<0.05)) 
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As frequently done for cell line experiments, a reference gene was used as a marker of successful 

experimental conditions. IL-6 is well known to be secreted from adipocytes and myocytes12 13 and 

adipose tissue IL-6 may account for up to 15-35% of circulating levels207 208. LPS stimulation produced 

a 25-fold up-regulation in IL-6 gene expression (Figure 16), consistent with previous experiments12. 

 

IL-6 expression in adipocytes also demonstrates that these cells respond to LPS by increasing 

expression of inflammatory markers. This further confirms adipocytes as a producer of IL-6 and a 

contributor to the inflammatory process. 

Adiponectin expression in isolated 3T3-L1 adipocytes showed a clear reduction after LPS treatment 

(Tables 14 & 15, Figures 17 & 18). There is a greater reduction in expression with increasing doses of 

LPS with 10 µg/ml LPS being statistically significant. Again, there were no changes at 24 hours. This is 

a much more rapid time frame than the down-regulation observed in the tissue depots. Hence, the 

direct LPS effect on 3T3-L1 adipocytes in culture may be quicker than the one seen in a whole animal 

model, in which absorption and circulation of LPS is required. However, these experiments clearly 

show that there is an effect of LPS per se. 

 

3.10.3 Adipocytes – Adiponectin receptors 

In 3T3-L1 adipocytes treated with LPS, there was a concentration effect resulting in a difference in 

expression of the two receptors. Treatment with 0.1 µg/ml LPS reduced the expression of adipoR1 at 

four hours with no corresponding change by 24 hours (Table 16 & Figure 19). At higher doses of LPS, 

there was no change in adipoR1 gene expression (Table 18 & Figure 21). AdipoR2 expression, 

however, was unchanged following treatment with 0.1 µg/ml LPS (Table 17 & Figure 20). At higher 

doses of LPS (1 µg/ml and 10 µg/ml) there were significant reductions in adipoR2 gene expression.  

Again, no changes were observed at 24 hours (Table 19 & Figure 22). 
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This implies that a similar phenomenon occurs in isolated adipocytes as in whole visceral tissue 

depots. However, it may be that the two receptor subtypes respond to differing concentrations of 

LPS with adipoR1 responding to much lower concentrations than adipoR2. It is difficult to compare 

doses of LPS in-vivo and in-vitro because the systemic component of the response to LPS may 

potentiate its effects in-vivo. 

 

The differences observed in receptor subtype regulation in this study may reflect the emerging idea 

that the two receptors may have different modes of action and/or regulation14 84 209 . With regard to 

glucose metabolism, adipoR1 deficient mice have been shown to have impaired glucose tolerance, 

insulin resistance and increased endogenous production of glucose84. AdipoR2 KO mice, however, 

are lean, resistant to diet induced obesity, weight gain and hepatic steatosis, and display reduced 

plasma cholesterol and fasting insulin levels. Their glucose tolerance may be impaired as 

demonstrated by increased plasma insulin concentrations14 84. 

 

Yamauchi et al. demonstrated that db/db mice (leptin receptor deficient, prone to type II DM, 

hypertension and obesity (Table 3)) have reduced expression of both adipoR1 and adipoR2. Over-

expression of both receptors in this mouse strain improved the handling of an oral glucose load 

however, each receptor behaved differently: Restoration of adipoR1 levels significantly reduced 

endogenous glucose production and improved insulin resistance. Over-expression of adipoR2 had 

little effect, although, both experimental groups displayed improved insulin sensitivity84. A lack of 

adipoR2 binding leading to an increase in adipoR1 signalling and improved insulin sensitivity may 

explain the resistance of these animals to diet induced obesity14. Therefore, adipoR1 and adipoR2 

may not only differ in structure and tissue distribution123 but also in their signalling pathway and 

ultimate actions. It is entirely plausible that the response to LPS is different for each receptor within 

various tissues. 
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3.10.4 Response to cytokine treatment in 3T3-L1 adipocytes 

Cell culture experiments are an appropriate model to assess the cellular response to pro-

inflammatory cytokines. Hence, effect of inflammatory cytokines IL-6 and TNF-α on adiponectin 

receptor gene expression in 3T3-L1 adipocytes was investigated. 

 

IL-6 

IL-6 treatment of 3T3-L1 adipocytes resulted in down-regulation of IL-6 whereas TNF-α treatment 

up-regulated IL-6 gene expression (Table 20 & Figure 23).  Treatment with IL-6 (10 ng/ml) also 

resulted in a 2-fold reduction in adipoR1, both at 4 and 24 hours (Table 22 & Figure 25). This 

indicates that IL-6 may contribute to the in-vivo response initiated by LPS. There was no effect on 

adiponectin or adipoR2 gene expression following IL-6 treatment (Tables 21 & 23, Figures 24 & 26). 

A handful of other studies have investigated the role of IL-6 in mouse and human adipocytes. 

Fasshauer et al. investigated 3T3-L1 cells extensively with regard to adiponectin and its receptors112 

129 210. In contrast to these results demonstrating no change in adiponectin expression, they found 

that IL-6 treatment for 16 hours (30 ng/ml) reduced adiponectin expression and secretion by 75% 

and 25-45% respectively. This was a fully reversible effect following removal of IL-6 for 24 hours. This 

does not represent a dosing phenomenon as they also demonstrated reduced expression at lower 

doses of IL-6. Interestingly, the same group found no changes in adiponectin receptor expression. 

 

TNF-α 

TNF-α treatment resulted in a significant increase in IL-6 gene expression supporting the concept of 

adipose tissue contributing to the overall inflammatory process. TNF-α had no effects on adiponectin 

receptor gene expression in 3T3-L1 cells in this series of experiments (Tables 22 & 23, Figures 25 & 

26). This is in agreement with a previous study129. In this series, adiponectin gene expression, 

however, increased initially (3.2-fold at 4 hours p=0.05) supporting previous studies in human 
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adipocytes211. Following the initial rise, adiponectin gene expression then showed a downward trend 

at 24 hours (60% of control p=0.08) (Table 21 & Figure 24). 

This could be secondary to the following hypotheses: 

1. The initial rise could represent an initial counter-regulatory anti-inflammatory response to 

TNF-α treatment. The cells were directly treated with TNF-α. Therefore, the time required 

for TNF-α to be expressed after LPS treatment in-vivo is not required. 

 

2. Alternatively, this may reflect a delayed response as the experiments demonstrate an up-

regulation of IL-6. The IL-6 surge may cause a further down-regulation in adiponectin 

receptors but a longer observation period would have been required to investigate this 

hypothesis. 

 

Following LPS and cytokine treatment, many depots of adipose tissue demonstrate a down-

regulation of adiponectin and its receptors over varying time periods. This supports the concept that 

adipose tissue, once inflamed, is an endocrine organ, contributing to insulin resistance. Most 

importantly, the inflammatory response of WAT may not be confined to chronic disease but may 

also occur in acute immune activation such as sepsis. 

 

Despite a clear decrease in adiponectin receptor expression, the effect of LPS on adiponectin protein 

levels remains unclear. Despite experiment optimisation of experimental technique, the protein 

levels could not be effectively determined by western blotting. Therefore, it was not possible to 

determine the changes in protein translation. Interestingly, several papers have described 

immunoblotting for adiponectin receptors, although pictures of western blot bands in the literature 

are of limited quality. Although both receptor sub-types have been demonstrated at the protein 

level in tissues other than fat such as placenta212 213, prostate cancer cells214  and skeletal muscle85, 

only a few studies have identified the adiponectin receptor protein in fat tissue. 
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3.10.5 Skeletal muscle 

Adiponectin has long been thought of as an adipose specific molecule, being secreted only from 

adipose tissue depots, particularly WAT.  Evidence is now accumulating that adiponectin may 

actually be produced in other tissues including skeletal muscle, cardiac muscle and placental 

tissues190-195 212 213. Skeletal muscle metabolism becomes very disordered in sepsis therefore the next 

line of investigation examined mouse skeletal muscle tissue and cell lines with respect to 

components of the adiponectin system. 

 

C2C12 myocytes are differentiated from a myoblast cell line originally obtained through serial 

passage of myoblasts cultured from the thigh muscle of C3H mice after crush injury215. These were 

used for all experiments. The present study confirmed the presence of adiponectin in depots of 

whole skeletal muscle and ruled out contamination from blood or peri-muscular fat by identifying 

adiponectin mRNA in isolated C2C12 myocytes (Figure 30). However, there was a clear concentration 

effect with more pronounced band intensity with higher concentrations of cDNA (0.5-4 µg) in the 

standard PCR. This suggests a reduced expression in muscle compared to EF tissue which served as a 

positive control. For confirmation, the PCR product was sequenced and a 100% match for 

adiponectin could be demonstrated. 
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The results for myocyte and skeletal muscle adiponectin are summarised in the following table. 

Table 30: Summary of C2C12 myocyte and skeletal muscle adiponectin and receptor gene 
expression results 

Cells: C2C12 adipoR1 
4 h 

adipoR1 
24 h 

adipoR2 
4 h 

adipoR2 
24 h 

Adiponectin 
4 h 

Adiponectin 
24 h 

IL-6 
4 h 

IL-6 
24 h 

LPS         

0.1 µg/ml = ↑1.15 = ↑1.71 ↓1.96* ↓1.41 ↑849* ↑1.65* 

1 µg/ml = ↑1.34 ↑1.25 ↑1.15 ↓1.29 ↑1.19 ↑55* ↑3.71* 

5 µg/ml ↓1.53* ↑1.19 ↓1.31 ↑1.81 ↓2.94* = ↑953* ↑7.07* 

10 µg/ml ↓1.26 ↓1.14 ↑1.15 ↑1.18 ↓2.17* = ↑486* ↑5.29* 

Sk muscle 
tissue (25 
mg/kg) 

↓9.8* ↓1.9* ↓6.2 ↓2.2* ↓6.94* ↓30*   

Table 30: Fold changes of Il-6, adiponectin and adiponectin receptor gene expression with direction of change. 3T3-L1 cells treated with 
various concentrations of LPS and inflammatory cytokines. adipoR1: adiponectin receptor 1, adipoR2: adiponectin receptor 2, Sk Muscle: 
skeletal muscle. (* denotes statistical significance (p<0.05)). 

 

 

In tissue depots, there was a clear sustained down-regulation of both adiponectin and both 

receptors following LPS treatment (Figures 27 & 28).  These were sustained for both time periods, 

indicating a rapid and prolonged effect on the skeletal muscle, which was not observed in adipose 

tissue. The reduction in adipoR2 after four hours failed to reach statistical significance due to the 

large SEM, which most likely represents a type two statistical error due to small sample size. This 

was greater in magnitude and more rapid than changes observed in adipose tissue. 

 

For the cell line experiments, experimental conditions were again confirmed using IL-6 gene 

expression where LPS treatment resulted in approximately 1000-fold increase in gene expression 

(Table 24, Figure 31). IL-6 is known to be expressed from myocytes following LPS treatment13 216 217 

 

Adiponectin expression following LPS administration in C2C12 myocytes was significantly down-

regulated at all concentrations with the exception of 1 µg/ml LPS (Table 25 & Figure 32). This 

occurred after four hours of treatment but was not replicated in the cells treated for 24 hours. 
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LPS treatment had minimal effects on adiponectin receptor expression in isolated murine myocytes. 

There was a small reduction in expression of adipoR1 mRNA (5 µg/ml) after 4 hours and similar fold 

increase in adipoR2 by 24 hours but no other changes (Tables 26 & 27, Figures 33 & 34). This, 

therefore, does not mirror the tissue results. This is also different to the effect of LPS observed in the 

3T3-L1 adipocytes, where there were minimal changes in adipoR1 but a dose dependent reduction 

of adipoR2 (Figures 21 & 22).  However, similar to the adipocyte experiments, there is a change in 

time frame compared to the tissue results which may be a reflection of the in-vitro/in-vivo 

differences and the time taken to absorb LPS systemically in-vivo. 

 

Our results demonstrate a clear down-regulation of the adiponectin system in-vivo in skeletal muscle 

in systemic endotoxaemia. This change is quicker than similar changes observed in the WAT depots, 

and down-regulation is potentiated with a longer period of sepsis. The changes are not so marked in 

the cell line experiments. It could be expected that a reduction in the ligand would result in an 

increase in the number of receptors. This is clearly not the case in the results presented in this thesis 

which demonstrate down-regulation of the adiponectin system. It could be postulated that the 

ongoing inflammatory stimulus may override the normal homeostatic function of adipocytes, 

causing further dysregulation. In this and previous series of experiments12, we have demonstrated 

an increase in IL-6 expression following LPS administration both in-vivo and in-vitro. This shows that 

there is an ongoing release of cytokines in the adipose tissue and other organs which may potentiate 

the inflammatory response. 

 

In skeletal muscle as systemic inflammation has been shown to produce a local release of pro-

inflammatory cytokines (IL-6, IL-8, and IL-18)13 216 which may account for the continuing response in 

whole skeletal muscle. The down-regulation of the adiponectin system by pro-inflammatory 

mediators (IL-6, TNF-α) may represent a further aspect of the inflammatory dysregulation. 
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Skeletal muscle is an insulin sensitive organ which undergoes significant changes during sepsis218. 

Therefore, it is tempting to speculate that adiponectin receptor down-regulation significantly 

contributes to sepsis-induced insulin resistance in these animals. In order to investigate the role of 

adiponectin in sepsis-induced insulin resistance, measures of insulin resistance including 

euglycaemic clamp studies, would be required. Alternatively, septic adiponectin KO mice could be 

utilised and insulin sensitivity measured in a similar fashion. 

 

Several authors have demonstrated the presence of adiponectin in skeletal muscle192 194 195 with 

levels in the gastrocnemius muscle being approximately equivalent to its expression in WAT in mice 

on a normal diet195. The presence of all mono and multimeric forms was confirmed by western 

blotting192 but the location of the adiponectin within the muscle cell is not clearly defined. Using 

immunohistochemical staining, adiponectin has been located in whole muscle samples within the 

vascular endothelium194 195, in cellular structures including white adipocytes surrounding the muscle 

cells192 195 and in the sarcolemma of skeletal muscle fibres194. Most authors currently are of the 

opinion that adiponectin is not expressed from the myocyte (cytoplasm or nucleus) itself. However, 

Krause et al. have confirmed the presence of adiponectin in L6 myotubes192 194 195. 

 

The role of adiponectin in skeletal muscle has been investigated very little. However, one study did 

show that both long and short term high fat diets resulted in a significantly reduced adiponectin 

concentration in both WAT and skeletal muscle in rats195.  There are few reports of adiponectin in 

septic skeletal muscle, but one study investigated the levels of adiponectin in both whole mouse 

muscle and in isolated myocytes grown in culture219.  They found that the intra-peritoneal injection 

of 25 µg LPS/animal produced an increase in adiponectin gene expression (10-fold) and protein level 

(70%) from skeletal muscle and cells at 24 hours post injection. 
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The same study assessed the effects of inflammatory cytokines in cultured murine and human 

myotubes219. They used combinations of various cytokines to mimic LPS effects on adiponectin 

expression and found that only the combination of IFN-γ and TNF-α increased adiponectin 

expression by over 20-fold. In contrast, none of these cytokines alone had any effect, indicating a 

synergistic effect of IFN-γ and TNF-α 219 220 . They did not perform the same cell line experiments with 

LPS. 

 

This is in contrast to the results presented in this thesis, which showed a significant and sustained 

reduction in tissue adiponectin gene expression after LPS stimulation in-vivo. Two key differences in 

the experiments may explain these opposing results:  Delaigle and colleagues used 25 μg LPS per 

animal which is approximately 1/25 of the dose used in the experiments I undertook, therefore this 

may result in a milder form of the disease219. Human volunteer studies investigating milder 

spectrums of endotoxaemia have demonstrated no change in the components of the adiponectin 

system115 116. 

 

In addition, Delaigle et al. used murine tibialis anterior muscle and primary culture of human 

quadriceps muscle. These muscle types both contain predominantly fast twitch (type II) fibres221 222 

whereas in my experiments soleus muscle was used, which contains predominantly slow twitch 

(type I) fibres. This may be important as adiponectin expression from skeletal muscle has been 

shown to be associated with type IIA and IID fast twitch oxidative muscle fibre types. Slow (type I) 

and fast glycolytic muscle fibres (IIB) showed only a low level of adiponectin expression192. The fast 

oxidative fibre type also showed an increase in intramyocellular lipid (IMCL) concentration. Their 

experiments of adiponectin KO mice demonstrated an increase in IMCL and an increase in type IIB 

fibre size which is consistent with muscle biopsies from obese humans223. It is unexpected that 

adiponectin expression increases in inflammation particularly since a down-regulation in low-grade 

chronic inflammatory states is observed. Type II DM, obesity and the metabolic syndrome are all 
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associated with reductions in adiponectin gene expression in WAT and plasma adiponectin protein 

levels. Adiponectin expression is increased after caloric restriction or weight loss. Unfortunately, this 

study did not comment on the feeding situation of their animals or anorexia following LPS. 

Therefore, weight loss cannot be ruled out as a cause219. 

3.10.6 Liver 

Following the identification of adiponectin mRNA in skeletal muscle, hepatic tissue was investigated. 

Mouse liver depots demonstrated a positive finding for adiponectin mRNA but with little change in 

either of the treatment groups (Figure 35). However, the majority of the Ct values for liver 

adiponectin were over 30 cycles and frequently over 35. This implies that adiponectin may not be 

expressed and if expressed, at very low concentrations only. Furthermore, the standard error of the 

mean from the hepatic tissue was very high thus producing inconsistent results. Contamination from 

peri-hepatic fat tissue or blood could also not be ruled out as liver is a very vascular tissue. 

We then investigated a hepatocyte cell line (cDNA kindly donated by Professor James Gallagher’s 

group). There was no expression of adiponectin mRNA from these cells implying that the positive 

finding in the mouse liver tissue may reflect contamination from leucocytes or immunocytes within 

the liver and does not stem from hepatocytes per se. This would be consistent with the current 

literature as there are no reports of human studies of normal livers/hepatocytes expressing 

adiponectin mRNA224. Neumeier et al. demonstrated the presence of liver adiponectin in steatic 

rodent livers, but not in human liver samples, primary human hepatocytes or rat liver. This also 

suggests either contamination from fat cells or from the circulating blood cells225.  Kaser et al. 

demonstrated liver adiponectin protein expression was mainly stemmed from endothelial cells of 

portal vessels and liver sinusoids and not from hepatocytes. This was confirmed by incubating 

primary human hepatocytes with adiponectin which resulted in a dose dependent increase in 

adiponectin protein culture medium. There are also some reports of hepatic mRNA expression 

following carbon tetrachloride liver injury an experimental model of hepatic fibrosis, in animal and 



Page | 137  
 

cell studies226 227. Therefore, it appears that hepatic expression of adiponectin mRNA is not present 

in the normal liver but may be induced following liver injury. 

 

Adiponectin receptor expression has been clearly demonstrated in hepatocytes with hepatic 

adipoR2 expression being the highest in the body123. Expression levels in the liver follow the pattern 

of plasma and adipose tissue receptors in that expression is down-regulated in mouse models of 

obesity and diabetes99 106. Interestingly, a high fat diet in lean rats has been shown to down-regulate 

hepatic adipoR2 expression only228. The results presented in this thesis demonstrate a down-

regulation of both receptors following an LPS challenge in mice after 4 hours (Figure 36). Down-

regulation of adipoR1 is sustained, whereas the changes in adipoR2 are not significant after 24 

hours. 

 

Liver and muscle appear to have the most widespread change in receptor expression with changes at 

both time points and in both receptors. Both organs are known to be highly involved in glucose 

homeostasis and represent insulin responsive tissues229. One of the mechanisms of action of 

adiponectin is to improve insulin sensitivity, partly by reducing tissue stores of fatty acids in insulin 

sensitive tissues, such as adipose tissue and skeletal muscle, and to reduce hepatic gluconeogenesis. 

Thus a down-regulation of adiponectin receptors in skeletal muscle and liver may oppose this in 

sepsis and endotoxaemia may contribute to the observed insulin resistance. This also may imply a 

regulation through insulin signalling or hyperinsulinaemia which has been demonstrated in 3T3-L1 

adipocytes where insulin in concentrations as low as 10 nmol/L can down-regulate adiponectin gene 

expression112. To the best of my knowledge, insulin-dependent down-regulation has not been 

demonstrated for adiponectin receptors. 

 

To date, adiponectin receptors in skeletal muscle have only been investigated in the context of 

chronic pathologies characterised by insulin resistance such as obesity and type II DM. Several 
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mouse models have been used extensively to investigate chronic insulin resistance. Ob/ob and 

db/db mice are the most commonly used strains which are deplete in the leptin gene and leptin 

receptor gene respectively (Table 3). These mice develop obesity, type II DM and severe insulin 

resistance therefore provide a useful model to investigate the adiponectin system. Compared to 

control mice, there were significant reductions in adipoR1 (db/db) and both receptors (ob/ob) mRNA 

21 26 79 126. In humans, significant negative correlations between skeletal muscle adipoR1 (not 

adipoR2) and waist circumference, waist-hip ratio and truncal fat measured by DEXA scan in middle 

aged men have been demonstrated but surprisingly no correlation with BMI could be established138. 

Interestingly, plasma adiponectin was also negatively correlated with BMI, waist circumference and 

skeletal muscle insulin resistance as measured by a euglycaemic clamp138. In-vivo, adipoR1 but not 

adipoR2 is positively correlated with in-vivo insulin and C-peptide concentrations, first phase insulin 

secretion after adjustments for age, sex and body fat, and plasma triglyceride and cholesterol 

concentrations128. 

 

LPS, per se, may not be implicated in the down-regulation of adiponectin receptors in isolated 

mouse myocyte cell lines grown in culture. This is different to cultured adipocytes where low dose 

LPS resulted in a significant down-regulation of adipoR1 and higher doses affected adipoR2, in a 

similar fashion to systemic endotoxaemia. 

 

IL-6 may not always induce insulin resistance in myocytes. Pedersen et al. describe a phenomenon 

where IL-6 is released after exercise from the contracting myocyte secondary to metabolic changes 

within the muscle cell217. This leads to induction of the AMP-activated Kinase (a similar signalling 

pathway to adiponectin) within the myocyte in an autocrine/paracrine fashion. Subsequently fatty 

acid oxidation and glucose uptake is increased and insulin sensitivity improves. As a consequence, 

changes in adiponectin and its receptor gene expression may be less pronounced. Systemically, IL-6, 

however, increases hepatic glucose production during exercise and increases adipocyte lipolysis. This 
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is more in keeping and in agreement with traditional teaching that IL-6 produces insulin resistance in 

inflammatory conditions230 and in 3T3-L1 adipocytes208. Therefore there may be different roles of IL-

6 depending on the mechanism of secretion. This observation is made after exercise (muscular 

contraction) induced release of IL-6 and may not be due to the inflammatory process but due to 

metabolic changes in glycogen stores. 

 

3.10.7 Time course of adiponectin expression in sepsis 

Changes in adiponectin and adiponectin receptor gene expression in most tissue depots were seen 

early, by four hours post LPS injection but are not sustained in many tissues to 24 hours. This leads 

to the following hypotheses to consider: 

 

1. Endotoxaemia has been shown in previous studies to produce early rises in inflammatory 

cytokines from adipose tissue including IL-6 and TNF-α12. This animal model is known to 

produce sharp, early rises in inflammatory cytokines181 183 185 and could account for the early 

changes observed. In humans, the peak of inflammatory cytokines is 2-8 hours (two hours 

for TNF-α) and 6-8 hours for IL-6) following pathogen entry into the host53. Thereafter, the 

initial pro-inflammatory stimulus reduces and anti-inflammatory cytokines prevail53. This 

change of plasma cytokine levels may impact on the temporal relationship of adiponectin 

receptor gene expression in adipose tissue. 

 

2. The 24 hour group of mice are the surviving mice and data from animals that died was not 

included in the experiments.  Thus, the four hour group will contain animals with a full 

spectrum of severity of sepsis. This will include a wide variety in clinical symptoms, as is the 

case in human sepsis.  The 24 hour group however, may only indicate those with a lesser 

severity of illness and therefore may not have as marked changes. This may contribute to 

the lack of changes seen in many tissue depots at 24 hours. 
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3. Receptor half life may be short and therefore the possibility of receptor destruction must be 

considered although there is currently little evidence to support this. 

 

4. Skeletal muscle cells produce myokines (e.g. IL-6 and IL-15) in response to an inflammatory 

stimulus13 231 which could lead to a paracrine effect on the muscle cells and thus potentiate 

the stimulus to down-regulate receptor gene expression. This may account for the 

continuing effects seen in-vivo but not in-vitro. 

 

3.10.8 Adiponectin and adiponectin receptor gene expression in other tissues 

The gene expression results from spleen and small bowel are more difficult to interpret. 

Spleen 

Splenic adiponectin receptor mRNA expression was documented in the initial paper by Yamauchi et 

al. in 2003. Subsequently, receptors have also been demonstrated in splenic tissue of pigs200 and 

chickens232. Also, two studies have clearly demonstrated the presence of both receptors at the 

mRNA and protein level in mononuclear cells including macrophages233 234. Significant down-

regulation of adiponectin and both receptors in lymphocytes of obese subjects137 and monocytes of 

type II diabetics235 have been demonstrated but there is no literature on the effect of LPS on the 

spleen. However, these findings may be influenced by different types of immunocytes, in particular 

lymphocytes, which are present in the spleen. These results demonstrate an isolated reduction in 

adipoR1 gene expression at 24 hours following LPS injection but no other changes (Figure 37 & 38). 

This could be interpreted, as with the other results, secondary to tissue hypoxia and/or 

inflammatory response to cytokines released. This will require further investigation and should 

include the effect of LPS on different immune cells. 
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Small bowel 

Adiponectin receptor mRNA has also been identified in small bowel of mice as in a previous study236 . 

There is an emerging link between hypoadiponectinaemia and disorders of the large intestine such 

as colon carcinoma237 238. However, there are no studies relating to the expression or regulation of 

adiponectin following acute or chronic inflammatory stimuli. 

 

The results from this study, showing a trend towards a down-regulation of adipoR2 should, however, 

be viewed with caution for two reasons: 

1. There are a number of different cell types found in small bowel tissue any of which may 

contribute to the results for adiponectin receptor expression. These include, in the 

epithelium, enterocytes, goblet cells, paneth cells and enteroendocrine cells. 

2. There could be contamination by bowel contents. 

 

Without other confirming data (e.g. cellular data and sequencing), this data is hard to interpret. 
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3.11 Clinical studies on adiponectin changes in sepsis 

3.11.1 Baseline results 

The background work in this thesis has clearly demonstrated changes in the adiponectin system in 

response to LPS (in-vitro and in-vivo) and inflammatory cytokines (in-vitro). In the majority of tissue 

depots and cell lines examined, a down-regulation of adiponectin and its receptor expression was 

observed. This allowed us to proceed to an investigation of septic patients on the Intensive Care Unit 

(ICU) at the Royal Liverpool University Hospital. This hospital is a tertiary referral centre with 

approximately 8-900 in-patient beds and 15 level three beds. 

For the clinical study, 21 patients with severe sepsis were recruited from the ICU. All patients 

fulfilled the criteria for sepsis according to the 2001 consensus conference5. In order to fulfil the 

criteria for sepsis, patients must have two out of four of the SIRS criteria (Table 1) AND a positive 

culture or a high clinical index of suspicion of infection. Patients with sepsis had multiple sources of 

infection as shown in Table 31. 

Table 31: Sources of infection in patients with sepsis 

Source Patients (n) 

Abdominal 8 

Chest 9 

Necrotising Fasciitis 1 

Bone 2 

Renal tract 1 

 

Tables 32-34 show baseline characteristics and laboratory results of the recruited patients. These 

include age, BMI and the APACHE II score239 (which scores severity of illness on admission to ICU) 

and markers of organ function. Markers of organ system function include cardiovascular (heart rate 

(HR)), Respiratory (Respiratory rate (RR), fraction of inspired gases that is oxygen (FiO2) and partial 

pressure of oxygen (PO2)) and baseline biochemical and haematological parameters (white cell count 
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(WCC), C-reactive protein (CRP), haemoglobin (Hb), urea, creatinine (creat) and bilirubin (Bili)). 

Normal values can be seen in Appendix 3. These values are routinely measured in all patients to 

assess severity of illness on admission but also to guide treatment strategies and assess response to 

treatment. Data was subjected to statistical analysis using Mann-Whitney U test as the data was 

predominantly non-parametric with small numbers. 

In all patients, the median age was 63 year (55-71yr) with a median APACHE II score of 20 (Table 32). 

The APACHE II scoring system gives an integer score from 0-71, computed based on acute 

physiological derangements and a previous chronic health assessment239. Higher scores correspond 

to higher disease severity and increased calculated risk of morbidity and mortality. Scores of more 

than 20 equate to a moderate to severe presentation of sepsis. 

The Glasgow coma score is a score from 3-15 to indicate deteriorations in conscious level, median 

score was 15/15. Clinically, patients were not universally pyrexial but were tachycardic and 

tachypneoic, all requiring more than 50% supplemental oxygen. Biochemical and haematological 

markers (WCC / CRP) were universally elevated and most had a degree of renal impairment (Tables 

33 & 34) 

Table 32: All patients: Biometric data 

 n Median CI IQR 

Age (years) 21 63 [ 55.84; 68.64] [ 55 ; 71 ] 

APACHE 21 20 [ 17.86; 23.76] [ 18 ; 24 ] 

GCS 21 15 [ 12.65; 14.78] [ 14 ; 15 ] 

Height (cm) 21 167 [163.5;172.29] [ 162 ; 176 ] 

Weight (kg) 21 84.4 [ 74.08; 88.94] [ 71 ; 93 ] 

BMI (kg/m2) 21 30 [ 26.1; 32.13] [ 24 ;32.08 ] 

LOS (days) 21 7 [ 5.46 ; 13.12 ] [ 3 ; 15 ] 

Table 32: Biometric data for all patients including age, severity of illness scoring (APACHE), height, weight and length of stay (LOS) in the 
ICU. Parameters displayed as Median, inter-quartile range (IQR) and 95% confidence intervals (CI) (APACHE: acute physiology and chronic 
health evaluation, GCS: Glasgow Coma score, BMI: Body mass index) 
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Table 33 demonstrates the baseline cardiorespiratory values and inotrope requirements for the 

patients on admission to the ICU. This confirms that patients were exhibiting signs of sepsis 

(tachycardia, tachypnoea and increased oxygen requirements). Interestingly, temperature was near 

normal which is unusual as a higher temperature would be expected as a result of infection. 

Inotropes are frequently used to augment the sympathetic nervous system in sepsis. Most 

commonly used are α-agonists, predominantly noradrenaline in the UK, which cause 

vasoconstriction and increased systemic vascular resistance. This is to counteract the profound 

vasodilation seen in sepsis which improves blood pressure and organ perfusion. The amount of 

inotrope required is a surrogate marker of disease severity and with clinical improvement, this 

should reduce. Less frequently β- agonists are used to improve cardiac contractility but these are 

often second line drugs. For the purposes of this table, if two inotropes were used, their volumes 

infused have been combined. 

Table 33: All patients: Cardiorespiratory variables 

 n Median CI IQR 

Temp (°C) 19 37.1 [ 36.57 ; 37.91 ] [ 36.95 ; 38.15] 

HR (bpm) 21 116 [109.85 ; 128.91 ] [ 110 ; 123 ] 

RR (bpm) 21 20 [ 17.18 ; 24.34 ] [ 14 ; 26 ] 

FiO2 21 0.6 [ 0.53 ; 0.75 ] [ 0.5 ; 0.8 ] 

PO2 (kPa) 21 10.19 [ 9.68 ; 13.95 ] [ 9.54 ; 12.2 ] 

Total dose inotropes 
day 1 (ml) 19 241 [174.71 ; 495.39] [ 116 ; 488.5 ] 

Total dose inotrope 
day 2 (ml) 18 192 [133.16 ; 538.84] [60.5 ; 469.75 ] 

Mean hrly dose inotrope 
day 1 (ml/hr) 19 11 [ 8.9 ; 22.66 ] [ 6.08 ; 22.5 ] 

Mean hrly dose inotrope 
day 2 (ml/hr) 18 8 [ 5.33 ; 33.76 ] [ 2.52 ; 19.86 ] 

Table 33: All patients Cardiorespiratory variables on admission to ICU and inotrope requirements. Temp: Temperature, HR: Heart rate, RR: 

respiratory rate, FiO2: Fraction of inspired oxygen, PO2: Partial pressure of oxygen. Parameters displayed as Median, inter-quartile range 

(IQR) and 95% confidence intervals (CI) 
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Table 34 shows the baseline laboratory values of the recruited patients. As expected, markers of the 

inflammatory process (WCC and CRP) are both elevated and there is a degree of mild renal and 

hepatic impairment not uncommonly seen in patients with sepsis. 

Table 34: All patients: Laboratory results  

 n Median CI IQR 

WCC (x10/L) 21 23 [ 16.14 ; 27.31 ] [ 11.7 ; 31.9 ] 

CRP (mg/L) 18 198 [152.76 ; 244.46 ] [ 150.25 ; 240.5 ] 

Hb (g/dL) 21 10.3 [ 9.2 ; 11.18 ] [ 8.5 ; 11.2 ] 

Creat (µmol/L) 21 114 [ 96.89 ; 209.01 ] [ 76 ; 183 ] 

Urea (mmol/L) 21 9.2 [ 8.51 ; 14.31 ] [ 7.4 ; 13.1 ] 

Bili (µmol/L) 20 15 [ 14.55 ; 42.85 ] [ 8 ; 34.75 ] 

 

Table 34: All patients Laboratory results on admission to ICU. WCC: white cell count, CRP: C-Reactive protein, Hb: Haemoglobin, Creat: 
creatinine, Bili: Bilirubin, LOS: Length of stay). Parameters displayed as Median, inter-quartile range (IQR) and 95% confidence intervals (CI) 

 

Table 35 displays the metabolic parameters in the recruited patients that are important in sepsis. 

Serum glucose is measured to assess the degree of insulin resistance and the requirement of the 

patient for exogenous insulin. Insulin is frequently used in an attempt to maintain normoglycaemia 

in patients with sepsis. Serum lactate is measured for two reasons: Firstly to assess global organ 

perfusion as lactate is a by-product of anaerobic respiration. Serial lactate values can help to assess 

response to initial treatment, frequently aggressive fluid resuscitation and inotropes. Secondly, 

lactate is used as a surrogate marker of liver function as it is metabolised by the liver. 

Hyperlactataemia may, therefore indicate a deterioration in liver function. 
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Table 35: All Patients: Metabolic parameters 

 n Median CI IQR 

Mean plasma glucose 
day 1 

21 6.65 [6.37 ; 8.19] [5.86 ; 8.3] 

Mean plasma glucose 
day 2 

21 7.67 [7.1 ; 8.06] [6.95 ; 8.23] 

Mean plasma glucose discharge 16 6.64 [5.96 ; 7.06] [5.96 ; 7.21] 

Mean plasma lactate 
day 1 

21 1.75 [1.63 ; 2.67] [1.49 ; 2.72] 

Mean plasma lactate 
day 2 

21 1.65 [1.45 ; 2.63] [1.44 ; 1.8] 

Mean plasma lactate discharge 15 1.32 [0.61 ; 5.2] [1.21 ; 1.82] 

Total insulin required 
day 1 

6 28.5 [15.53 ; 40.8] [20 ; 36.25] 

Total insulin required 
day 2 

9 57 [25.9 ; 69.21] [24 ; 70] 

Mean hrly insulin dose (units/hr) 
day 1 

6 1.49 [0.72 ; 1.97] [0.91 ; 1.77] 

Mean hrly insulin dose (units/hr) 
day 2 

9 2.38 [1.08 ; 2.88] [1.04 ; 2.91] 

Table 35: All patients: metabolic parameters on admission, day1 and day of discharge to ICU. Discharge data are missing who died (SD: 

standard deviation, CI: 95% confidence interval 

 

 

A BMI of 30 kg/m2 is the separation between overweight and obese according to the WHO 

classification240 (Table 36). 

Table 36: BMI category according to the World Health Organisation 

BMI (kg/m2) Category 

<18 Underweight 

18 - 25 Normal 

>25 Overweight 

25 - 30 Pre-obese 

30.1 - 35 Obese Class I 

35.1 - 40 Obese Class II 

>40 Obese Class III 

Table 36: Body Mass index (BMI) is calculated by weight (kg) divided height2 (m) 
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When the recruited patients were divided into groups dependent on BMI, there were very few 

differences, clinically or metabolically, between them. There was a small increase in temperature in 

the overweight group (37.9°C vs 36.5°C, p=0.023), however, this is unlikely to be clinically significant. 

The only other difference was in the requirements of insulin on day two of admission. It is routine 

protocol to correct hyperglycaemia with exogenous insulin. The patients in the higher BMI group 

required more insulin that their lighter counterparts (60.8 units/day vs 21 units/day p=0.014). 

 

Plasma adiponectin was subsequently measured (µg/ml) using a commercially available ELISA kit. 

Total and HMW adiponectin were measured and their values compared.  Table 37-39 show plasma 

adiponectin values for all patients, patients BMI<30 kg/m2 and patients BMI >30 kg/m2 respectively. 

 

Table 37: All patients: Total and High molecular weight adiponectin and HMW/total ratio 

 
n CI 

Median 
(μg/ml) 

Interquartile 
Range 

p-value 

Total adiponectin day 1 21 [ 3.1 ; 4.58 ] 3.78 [ 2.86 ; 4.25 ] 
 

Total adiponectin day 2 21 [ 2.93 ; 4.74 ] 3.48 [ 2.52 ; 4.31 ] 
0.733$ 

Total adiponectin discharge 11 [ 3.66 ; 9.52 ] 4.96 [ 4.41 ; 8.16 ] 
<0.01** 

HMW adiponectin day 1 21 [ 2.03 ; 3.13 ] 2.5 [ 1.7 ; 3.5 ] 
 

HMW adiponectin day 2 21 [ 2.14 ; 3.16 ] 2.5 [ 2 ; 3.2 ] 
0.459$ 

HMW adiponectin discharge 11 [ 2.89 ; 6.8 ] 3.8 [ 2.45 ; 7.8 ] 
<0.001*** 

HMW/Total Ratio day 1 21 [ 0.58 ; 0.81 ] 0.64 [ 0.59 ; 0.86 ] 
 

HMW/Total Ratio day 2 21 [ 0.61 ; 0.86 ] 0.74 [ 0.65 ; 0.78 ] 
0.215$ 

HMW/Total Ratio discharge 11 [ 0.53 ; 1.23 ] 0.75 [ 0.58 ; 1.05 ] 
<0.01** 

Table 37:  Total and high molecular weight adiponectin in plasma measured by ELISA (μg/ml) in all patients. (SD: standard deviation, CI: 
95% confidence interval). Discharge data are missing for patients who died. Statistically significant increases compared to day 1 ** p<0.01, 
***p<0.001. (HMW: high molecular weight). $: non-significant changes comparing day 1 to day 2. 
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Table 38: Patients BMI <30 kg/m2: Total and High molecular weight Adiponectin 

 
n CI 

Median 
(μg/ml) 

Interquartile 
range 

Total adiponectin day 1 10 [ 2.53 ; 4.68 ] 3.29 [ 2.82 ; 4.19 ] 

Total adiponectin day 2 10 [ 2.57 ; 4.13 ] 3.4 [ 2.6 ; 4.1 ] 

Total adiponectin discharge 5 [ 3.42 ; 8.72 ] 5.37 [ 4.39 ; 6.93 ] 

HMW adiponectin day 1 10 [ 1.22 ; 3.14 ] 1.75 [ 1.27 ; 2.65 ] 

HMW adiponectin day 2 10 [ 1.43 ; 2.87 ] 2.3 [ 1.75 ; 2.65 ] 

HMW adiponectin discharge 5 [ 0.72 ; 7.24 ] 3.8 [ 2.2 ; 4 ] 

HMW/Total Ratio day1 10 [ 0.42 ; 0.79 ] 0.63 [ 0.4 ; 0.72 ] 

HMW/Total Ratio day2 10 [ 0.48 ; 0.78 ] 0.72 [ 0.57 ; 0.75 ] 

HMW/Total Ratio discharge 5 [ 0.2 ; 1.17 ] 0.71 [ 0.37 ; 0.91 ] 

Table 38: Total and high molecular weight adiponectin in plasma measured by ELISA (μg/ml) in patients BMI <30 kg/m2. (SD: standard 

deviation, CI: 95% confidence interval). Discharge data are missing for patients who died. 

 

 

Table 39: Patients BMI >30 kg/m2: Total and High molecular weight adiponectin 

 
n CI 

Median 
(μg/ml) range 

 
p-value 

Total adiponectin day1 11 [ 2.85 ; 5.25 ] 3.8 [ 3.08 ; 4.3 ] 
0.582 

Total adiponectin day2 11 [ 2.57 ; 5.98 ] 3.48 [ 2.61 ; 5.09 ] 
0.287 

Total adiponectin discharge 6 [ 0.92;13.13 ] 4.8 [ 4.48 ; 8.37 ] 
0.721 

 
    

 

HMW adiponectin day1 11 [ 2.27 ; 3.62 ] 2.9 [ 2.2 ; 3.7 ] 
0.161 

HMW adiponectin day2 11 [ 2.39 ; 3.81 ] 3.2 [ 2.25 ; 3.65 ] 
0.049 

HMW adiponectin discharge 6 [ 2.25 ; 8.88 ] 5.6 [ 2.9 ; 7.85 ] 
0.387 

 
    

 

HMW/Total Ratio day1 11 [ 0.63 ; 0.92 ] 0.71 [ 0.62 ; 0.94 ] 
0.127 

HMW/Total Ratio day2 11 [ 0.63 ; 1.04 ] 0.75 [ 0.69 ; 0.81 ] 
0.089 

HMW/Total Ratio discharge 6 [ 0.43 ; 1.66 ] 0.78 [ 0.65 ; 1.4 ] 
0.257 

Table 39: Total and high molecular weight adiponectin in plasma measured by ELISA (μg/ml) in patients BMI >30 kg/m2. (SD: standard 

deviation, CI: 95% confidence interval). Discharge data are missing for patients who died. Statistical significance of values compared to 

patients with a BMI of <30 kg/m2. 
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Table 40 shows the correlation of adiponectin (HMW and total) and its ratio to other well recognised 

markers of disease severity, such as APACHE score, CRP and white cell count. There is a positive 

correlation between APACHE score and total adiponectin at all 3 times points. 

Table 40: Correlation of adiponectin values and their ratios to clinical markers of sepsis 

Parameter APACHE n CRP n WCC n 

Total adiponectin day 1 0.503** 21 -0.126 18 0.042 21 

Total adiponectin day 2 0.415** 21 -0.229 18 0.084 21 

Total adiponectin discharge 0.356* 11 0.511* 10 -0.118 11 

       

HMW adiponectin day 1 0.371 21 -0.565 18 0.049 21 

HMW adiponectin day 2 0.415* 21 -0.370 18 0.173 21 

HMW adiponectin discharge 0.151 11 0.201 10 0.178 11 

       

HMW/Total Ratio day 1  -0.142 21 -0.447 18 -0.064 21 

HMW/Total Ratio day 2 -0.267 21 -0.272 18 -0.023 21 

HMW/Total Ratio discharge -0.534 11 -0.158 10 0.515 11 

Table 40:  Correlation of all adiponectin values to markers of disease severity. There is a positive correlation between APACHE score and 
total adiponectin at all 3 times points. *p<0.05,** p<0.01, ***p<0.001  (APACHE: acute physiology and chronic health evaluation , WCC: 
White cell count, CRP: C-reactive protein) 

 

In contrast to previous studies93 94, there were no significant differences between the obese and the 

non-obese groups of patients with respect to adiponectin and HMW adiponectin. Therefore, the 

following graphs display the values for all patients. The most striking finding is a significant increase 

in plasma total and HMW adiponectin from day 1 (admission) to day of discharge when a clinical 

improvement has been made (Figures 44, 45 & 46). 
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Figure 44: Total Plasma Adiponectin in all patients on day 1, 2 and discharge 

  

Figure 44: Total plasma adiponectin as measured by ELISA. There is a significant increase from Day 1 to day of discharge when patients 

have clinically improved and no longer fulfil the criteria for sepsis. Figure displayed as median (dark line), range (whisker plots) and 

Interquartile range (dark grey box). n=21 for day 1 and 2, n=11 for day of discharge. 

 

Figure 45: High molecular weight Plasma Adiponectin in all patients on day 1, 2 and discharge 

 

Figure 45: High molecular weight (HMW) plasma adiponectin as measured by ELISA. There is a significant increase from Day 1 to day of 
discharge when patients have clinically improved and no longer fulfil the criteria for sepsis. Figure displayed as median (dark line), range 
(whisker plots) and Interquartile range (dark grey box). n=21 for day 1 and 2, n=11 for day of discharge. 
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Figure 46: Ratio of HMW: Total plasma Adiponectin in all patients on day 1, 2 and discharge 

 

Figure 46: Ratio between High molecular weight (HMW) to total plasma adiponectin as measured by ELISA. There is a significant increase 
from Day 1 to day of discharge when patients have clinically improved and no longer fulfil the criteria for sepsis. Figure displayed as 
median (dark line), range (whisker plots) and Interquartile range (dark grey box). n=21 for day 1 and 2, n=11 for day of discharge. 

 

Total and high molecular weight (HMW) adiponectin was measured in all patients (Table 37). There 

were no significant differences between the two different BMI groups (< and >30 kg/m2). As there 

were no differences between the groups, the groups were combined for the purposes of analysis. 

There were no differences in total and HMW adiponectin concentrations between day one and two 

of the sepsis episode. On day of discharge, however, there was a significant increase in both total 

and high molecular weight adiponectin compared to the admission concentrations (Table 37).   

The ratio between HMW and total adiponectin was subsequently measured. This was performed to 

investigate the contribution of high molecular adiponectin to the total and to assess the change in 

the ratio with clinical improvement of sepsis. There was an increase in the HMW/total ratio, 

suggesting that the contribution from HMW adiponectin is greater in health than in patients fulfilling 

sepsis criteria. 
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3.12 Discussion 

Clinical study 

Following the background work in-vivo and in-vitro, the clinical study was performed. The rationale 

was to investigate plasma adiponectin and HMW adiponectin in septic patients. Adiponectin has 

been shown to be down-regulated in experimental endotoxaemia. HMW adiponectin, however, has 

been investigated less. 

HMW adiponectin is deemed to be the more active of the different mulitmers of adiponectin. 

Adiponectin monomers polymerise post-translationally to form larger molecular weight molecules 

linked via disulphide bonds98 (Figure 4). In human plasma, adiponectin circulates predominantly as 

low and high molecular weight monomers (190 kDa and >300 kDa respectively)71 98. HMW 

adiponectin has been shown to more avidly than other oligomers to its receptors76 80.  Genetic 

mutations resulting in impaired multimerisation or reduced plasma HMW adiponectin can result in 

increased type II DM and insulin resistance76. 

 

Total and HMW adiponectin and their ratio have been intensively studied as potential biomarkers 

for the development of the type II DM and the metabolic syndrome80 82 97 98 241 242. Interestingly, the 

significance of the correlation between HMW and total adiponectin and markers of insulin resistance 

appears to be stronger in female patients97. 

 

Following the identification of tissue hypoadiponectinaemia in the mouse model, the response to 

clinical sepsis in humans was investigated. Twenty-one patients (BMI<30 kg/m2 n=10, BMI>30 kg/m2 

n=11) who fulfilled the criteria for sepsis were recruited4. Samples were taken in sequence on days 1 

and 2 following admission and day of discharge from ICU. This allowed the patients to act as their 

own control, thus rendering a healthy volunteer control group unnecessary. Median age was 63 

years which is in keeping with recent sepsis epidemiological studies1 2. All patients fulfilled the 
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criteria for sepsis and displayed many clinical and laboratory signs on infection and ongoing 

inflammation (Table 33 and 34). Severity of illness scores were calculated and the median APACHE 

score was 20, indicative of a moderate to severe severity. 

 

When the groups were divided into BMI categories, with the exception of admission temperature, 

there were no statistical differences between the groups (36.5°C (BMI<30 kg/m2) vs 37.9°C (BMI>30 

kg/m2), p=0.023). The clinical significance of this is unknown and is likely to be small. Mean 

admission glucose levels were all <8 mmol/L with no significant differences between the groups 

(Table 35) and thus are lower than expected both from anecdotal practice and from the current 

literature where an estimated 50% of critically ill patients develop hyperglycaemia243. This is despite 

a relatively high severity of illness score (APACHE score median: 20 (18-24)). It is standard to treat 

hyperglycaemia in all patients to achieve normoglycaemia. Only 6 out of 21 patients required insulin 

on day 1 of sepsis, five of these were in the obese group. The non-obese and obese groups had 

average insulin requirements of 0.5 and 1.51 units of insulin per hour respectively. Although 

numbers are small, this suggests a greater degree of insulin resistance in the obese group. The 

differences in insulin requirements may either reflect long-standing insulin resistance or an acute 

change secondary to the activation of pathways associated with insulin resistance such as release of 

IL-6 or TNF-α. Due to small numbers, we were not able to separate out patients with different 

sources of infection which may have impacted on the metabolic changes. 

 

Unexpectedly, there were no differences between obese and non-obese patients with respect to 

total or HMW adiponectin. This is contrary to the current literature associating obesity with 

hypoadiponectinaemia15 93 94 100. However, there is no literature investigating adiponectin in obese 

septic patients, which renders a direct comparison to current literature difficult as other factors 

including inflammatory cytokines, endogenous and exogenous insulin infusions may influence 
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adiponectin levels. However, this study was not powered to investigate differences in adiponectin in 

obese patients, therefore a negative results is not unexpected. 

 

We did not separate the groups based on gender however, the results confirm the finding that HMW 

adiponectin is higher in women than men (6 vs 2.82 μg/ml, p=0.03)75 80 97. Interestingly, there was no 

difference in total adiponectin between the sexes despite a statistically significant increase in BMI in 

the female patients (31.8 vs 26.05 kg/m2, p=0.03).  

 

HMW adiponectin, total adiponectin and the HMW/total ratio all show a significant increase 

between day 1 and day of discharge (2.5 vs 3.8 μg/ml (p<0.001), 3.78 vs 4.96 μg/ml (p<0.01) and 

0.64 vs 0.75 (p<0.01) respectively) This increase in adiponectin is accompanied by a significant 

clinical improvement in condition, such that intensive care was no longer required. This is likely to 

reflect resolution of the pro-inflammatory process or a metabolic change indicating recovery. Sepsis 

commences with an overwhelming pro-inflammatory response followed by a counter-regulatory 

anti-inflammatory reaction to maintain homeostasis. This study demonstrated an increase levels of 

the ‘anti-inflammatory’ adiponectin corresponding to improved clinical condition. This suggests that 

the increase in adiponectin plasma level reflects improvement in the clinical condition and 

normalisation of the initially suppressed immune response. 

 

Although the significance of the different mulitmers is still disputed, it is becoming clear that visceral 

adiposity75 98 and pathologies characterised by insulin resistance and known hypoadiponectinaemia, 

also display lower levels of HMW adiponectin and this may be contributing to their insulin 

resistance. 
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Our results have identified a similar phenomenon in septic patients demonstrating lower total and 

HMW adiponectin. The observation that the ratio also improves significantly with improvement of 

clinical condition, i.e. the proportion of HMW becomes greater suggests that HMW adiponectin may 

have a key role in the inflammatory process and also the insulin resistance seen in sepsis. 

 

Correlations of adiponectin with clinical data 

We anticipated that an increase in disease severity and markers of the inflammatory response would 

be inversely correlated with adiponectin and HMW adiponectin. Unexpectedly, the opposite was 

demonstrated (Table 40).  There was a direct correlation of adiponectin with APACHE score on day 1, 

2 and discharge and with CRP on day of discharge. The reasons for this are unclear 

 

One interesting finding is that there is a trend towards an inverse correlation between HMW/total 

adiponectin ratio and APACHE score and to a lesser extent with CRP (Table 40). This would support 

literature from diabetic patients where differences in the HMW/total adiponectin ratio without 

correlates to be a better predictor of insulin resistance80. 
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3.13 Summary 

The experiments performed in this chapter clearly demonstrate a change in the adiponectin system 

in response to LPS and pro-inflammatory cytokines in-vitro and in-vivo and in response to sepsis in 

mice and humans. There is down-regulation of both adiponectin and adiponectin receptors from 

adipose tissue and skeletal muscle in mice but this is not consistently replicated in cellular studies, 

which may indicate a response to the ongoing systemic inflammatory process rather than direct 

cellular LPS effects. We have also demonstrated a down-regulation of adiponectin receptors in 

splenic tissue, however, the importance of this remains unclear. In septic patients, we have 

demonstrated an increase in total and HMW adiponectin plasma concentrations with clinical 

improvement and recovery from sepsis.  Although the signalling pathways and clinical importance of 

these phenomena are not fully understood, this represents a consistent change in the adiponectin 

system with acute inflammation. 
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3.14 Role of HIF-1α in sepsis 

The signalling pathways involved in the down-regulation of the adiponectin system in sepsis or acute 

inflammation are unknown. Each tissue depot may have regulatory pathways for different parts of 

the cellular cascade. Activation of various pathways including NFκB and inflammatory cytokines may 

be implicated but downstream signalling could be triggered by cellular hypoxia. We have looked at 

the expression of HIF-1α in tissues, adipocytes and myocytes. HIF-1α is a transcription factor known 

to be heavily involved in the cellular response to hypoxia. More recently, its role in non-hypoxic 

regulation of cellular function has been identified. The next line of investigation focussed on HIF-1α 

expression and secretion in response to LPS treatment. 

 

Using the same experimental model as in previous experiments, mice were given an intraperitoneal 

injection of 25 mg/kg LPS and killed at 4 or 24 hours. Tissues were then dissected and investigated 

for HIF-1α expression and protein accumulation. 

 

3.14.1 Murine tissue HIF-1α gene expression 

HIF-1α gene expression is upregulated in liver, all 3 depots of adipose tissue and spleen at four hours 

and liver, small bowel, PR and SC fat and spleen at 24 hours post LPS injection.  There was a trend 

towards a rise in HIF-1α gene expression in epididymal fat at 24 hours. There were no changes in 

skeletal muscle (Table 41 & Figure 47). 
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Table 41: HIF-1α expression in Mouse tissue depots 

 

 
Table 41: Relative change in HIF-1α gene expression in mouse tissue depots 4 and 24 hours following 25 mg/kg intra-peritoneal injection 
of LPS. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT method and p<0.05 
was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin. Each treatment group was compared to its own control 
group only. 

 

 

 

Figure 47: HIF-1α gene expression in mouse tissue depots 

A: Liver       B: Skeletal muscle 

 

 

 

 

 

 

4 hours     24 hours    

 2-ΔΔCT +SEM -SEM p-value 2-ΔΔCT +SEM -SEM p-value 

Liver 6.355 1.57 1.26 0.022 3.01 0.587 0.497 0.01 

Muscle 2.246 0.77 0.577 0.274 1.702 0.33 0.276 0.101 

Epi fat 5.211 2.16 1.53 0.005 2.11 0.82 0.595 0.09 

PR fat 4.372 0.711 0.611 0.00073 3.103 0.81 0.64 0.0003 

SC fat 2.126 0.179 0.15 0.015 2.239 0.529 0.428 0.005 

Spleen 2.799 0.535 0.634 0.008 3.239 0.655 0.545 3.23x10-5 

SB 3.714 0.377 0.273 0.07 3.08 1.288 0.906 0.02 
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C: Epididymal fat     D: Peri-renal fat 

 

E: Subcutaneous fat     F: Spleen 

 

G: Small bowel 

 

Figure 47: Relative change in HIF-1α gene expression in mouse tissue depots 4 and 24 hours following 25 mg/kg intra-peritoneal injection 
of LPS. Gene expression was determined by real-time PCR. Relative gene expression was calculated using the 2-ΔΔCT method and p<0.05 
was considered significant. (*p<0.05, ** p<0.01). Housekeeping gene was β-actin.  Each treatment group was compared to its own control 
group only. A:  Liver, B: Skeletal Muscle,  C: Epididymal Fat, D:  Peri-renal fat,  E: Subcutaneous Fat, F: Spleen G: small bowel (Cont = 
Control group, LPS = Treatment group, 4 h 4 hours treatment group, 24 h: 24 hours treatment group). 4 hour mice n=6, 24 hour mice n=14 
(fat depots, spleen and small bowel) n=11 (muscle and liver) 
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3.14.2 HIF-1α protein expression 

Following the determination of HIF-1α gene expression, we wished to establish the impact of LPS on 

HIF-1α protein accumulation. This is particularly relevant as hypoxic and non-hypoxic stimulation of 

HIF-1α have different signalling pathways. Non-hypoxic up-regulation stimulates transcription, 

whereas hypoxic stimulation prevents the protein breakdown without any effect on transcription. 

HIF-1α ELISA was performed on 3 samples from liver, muscle and spleen (in duplicate). Our group 

has already demonstrated and up-regulation of HIF-1α protein in adipose tissue in the same mouse 

model12. Numerically, liver secretes the most HIF-1α protein (approximately equivalent to adipose 

tissue12) with smaller amounts produced by muscle and spleen. There were increases in muscle 

expression at 4 hours (2.5-fold) and liver at 24 hours (2-fold). There was only adequate tissue for a 

very small sample size (n=3 in duplicate). Thus, these results were not subjected to statistical 

analysis (Figure 48)). 
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Table 42: HIF-1α protein levels following 25 mg/kg LPS ip injection: 4 hour samples 

Table 42: HIF-1α protein levels measured in pg HIF-1α/mg protein. (Cont = Control group, LPS = Treatment group, 4 h 4 hours treatment 

group, 24 h: 24 hours treatment group). 

 

 

 

Table 43: HIF-1α protein levels following 25 mg/kg LPS ip injection: 24 hour samples 

 
 
Table 43: HIF-1α protein levels measured in pg HIF-1α/mg protein. (Cont = Control group, LPS = Treatment group, 4 h 4 hours treatment 
group, 24 h: 24 hours treatment group). 
 

  

Sample 
number 

Liver 
4 h cont 

Liver 
4 h LPS 

Muscle 
4 h cont 

Muscle 
4 h LPS 

Spleen 
4 h cont 

Spleen 
4 h LPS 

1 927.504 937.698 92.495 35.638 55.18 66.812 

2 568.054 1044.947 207.755 512.565 66.585 65.28 

3 1124.55 738.438 160.847 597.549 133.14 76.82 

Mean 873.3693 907.0277 153.699 381.9173 84.968 69.637 

sd 282.1699 155.5392 57.962 302.882 42.105 6.26 

Sample 
number 

Liver 
24 h cont 

Liver 
24 h LPS 

Muscle 
24 h cont 

Muscle 
24 h LPS 

Spleen 
24 h cont 

Spleen 
24 h LPS 

1 241.409 345.391 24.65 51.101 58.587 28.11 

2 767.151 1104.18 84.19 52.614 44.27 23.87 

3 694.22 1856.326 55.301 56.85 51.315 43.77 

Mean 567.593 1101.966 54.713 53.52 51.39 31.91 

sd 284.827 755.469 29.77 2.98 7.15 10.48 
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Figure 48: HIF-1α protein levels in murine tissue depots 

A: Liver 

 

B: Skeletal Muscle 

 

C: Spleen 

 

Figure 48: HIF-1α protein expression in mouse 

tissue depots 4 and 24 hours following 25 mg/kg 

intra-peritoneal injection of LPS as measured by 

ELISA. Values are expressed as pg HIF/mg protein. 

n=3 in duplicate. A: Liver, B: Skeletal Muscle, C: 

Spleen. 
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3.14.3 HIF-1α gene expression in 3T3-L1 adipocytes following LPS 

Using the same experimental conditions as previous experiments, HIF-1α gene expression was then 

investigated in 3T3-L1 adipocytes and C2C12 myocytes. HIF-1α gene expression in 3T3-L1 adipocytes 

was affected very little by LPS treatment. There was a significant increase in HIF-1α gene expression 

after 24 hours incubation with 5 μg/ml LPS but only a trend towards an up-regulation after four 

hours and only with a single dose of LPS (1 µg/ml) (Table 44 & Figure 49).  
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Table 44: HIF-1α gene expression in 3T3-L1 adipocytes following 1-10 μg/ml LPS treatment for 4 
and 24 hours 

 

 

 

 

 

 

Table 44: Results displayed as 2-ΔΔCT with SEM, with each treatment group compared to its own control group only with Bonferroni 

correction. There is a significant up-regulation in HIF-1α gene expression in 3T3-L1 adipocytes only after 24 hours treatment with 5µg/ml 

LPS. There were no other changes. n=6, samples run in duplicate 

 

 

Figure 49: HIF-1α gene expression in 3T3-L1 adipocytes following 1-10 μg/ml LPS treatment for 4 
and 24 hours 

 

Figure 49: Relative change in HIF-1α gene expression in 3T3-L1 adipocytes. Gene expression was determined by real-time PCR. Relative 

gene expression was calculated using the 2-ΔΔCT method and p<0.05 was considered significant. (*p<0.05). Housekeeping gene was β-actin. 

n=6, samples run in duplicate. 

 

 

 

Incubation time Group 2-ΔΔCT +SEM -SEM p-value 

4 hours Control 1 0.171042 0.14606  

 1 μg/ml 1.709214 0.355834 0.294519 0.055476 

 5 μg/ml 1.543993 0.314098 0.261002 0.105337 

 10 μg/ml 1.435613 0.216339 0.188008 0.135532 

24 hours Control 1 0.126061 0.111948  

 1 μg/ml 1.666321 0.459584 0.36023 0.100067 

 5 μg/ml 2.370186 0.212457 0.19498 0.002345 

 10 μg/ml 1.183724 0.262426 0.214805 0.518405 
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3.14.4 HIF-1α gene expression in 3T3-L1 adipocytes following cytokine treatment 

Following the results with LPS treatment, I wished to ascertain whether the effect was also present 

following treatment with pro-inflammatory cytokines. 3T3-L1 adipocytes were therefore treated 

with 10 ng/ml IL-6 and TNF-α as in previous experiments. The results show that the up-regulation of 

HIF-1α is a phenomenon isolated to TNF-α treatment as is not observed following treatment with IL-

6. Interestingly, this was only in the cells observed for 4 hours and not in the 24 hour group. 

 

 

Table 45: HIF-1α gene expression in 3T3-L1 adipocytes following IL-6 and TNF-α treatment for 4 
and 24 hours 

Incubation time Group 2-ΔΔCT +SEM -SEM p-value 

4 hours Control 1 0.214744 0.176782 
 

 
IL-6 10 ng/ml 0.711039 0.234329 0.176246 0.385882 

24 hours Control 1 0.322187 0.243677 
 

      

 
IL-6 10 ng/ml 0.545758 0.244219 0.168719 0.228395 

4 hours Control 1 0.144709 0.126416 
 

 
TNF-α 10 ng/ml 1.95432 0.22664 0.203088 0.003473 

      24 hours Control 1 0.45698 0.313649 
 

 
TNF-α 10 ng/ml 1.652901 0.631541 0.45695 0.320447 

Table 45: Results displayed as 2-ΔΔCT with SEM, with each treatment group compared to its own control group only. n=6, samples run in 

duplicate. 
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Figure 50: HIF-1α gene expression in 3T3-L1 adipocytes following IL-6 and TNF-α treatment for 4 
and 24 hours 

 

Figure 50: Relative change in HIF-1α gene expression in 3T3-L1 adipocytes. Gene expression was determined by real-time PCR. Relative 

gene expression was calculated using the 2-ΔΔCT method and p<0.05 was considered significant. (** p<0.01). Housekeeping gene was β-

actin. n=6, samples run in duplicate. 
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3.14.5 HIF-1α gene expression in C2C12 myocytes following LPS 

Following the investigations in 3T3-L1 adipocytes, we performed similar experiments on C2C12 

myocytes. There were highly significant increases in all cells and at all time points and 

concentrations of LPS (Table 46, Figure 51). There was no consistent change with increasing or 

decreasing concentration. 

Table 46: HIF-1α gene expression in C2C12 myocytes following 0.1-10 µg/ml LPS treatment for 4 
and 24 hours 

Incubation time Group 2-ΔΔCT +SEM -SEM p-value 

4 hours Control 1 0.13 0.11  

 0.1 µg/ml 3.19 0.28 0.26 3.89x10-5 

 1 μg/ml 1.74 0.22 0.20 0.015 

 5 μg/ml 1.79 0.24 0.21 0.008 

 10 μg/ml 2.69 0.28 0.25 0.0001 

24 hours Control 1 0.07 0.06  

 0.1 µg/ml 2.47 0.25 0.23 3.33x10-5 

 1 μg/ml 2.1 0.28 0.25 0.001 

 5 μg/ml 3.41 0.46 0.40 3.51x10-5 

 10 μg/ml 2.31 0.22 0.20 4.1x10-5 

Table 46: Results displayed as 2-ΔΔCT with SEM, with each treatment group compared to its own control group only with Bonferroni 
correction. There is a significant up-regulation in HIF-1α gene expression in C2C12 myocytes at all doses of LPS and both time points. n=6, 
samples run in duplicate. 

Figure 51: HIF-1α gene expression in C2C12 myocytes following 0.1-10 μg/ml LPS treatment for 4 
and 24 hours 

 

Figure 51: Relative change in HIF-1α gene expression in 3T3-L1 adipocytes. Gene expression was determined by real-time PCR. Relative 

gene expression was calculated using the 2-ΔΔCT method and p<0.05 was considered significant. (** p<0.01, ***p<0.0001). Housekeeping 

gene was β-actin. 
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3.15 Discussion 

The role of HIF-1α in sepsis 

HIF-1α is a transcription factor which is up-regulated by both hypoxic and by non-hypoxic stimuli 

such as LPS. Upon hypoxic stimulation, the HIF-1α molecule is prevented from breakdown by 

inhibition of proline hydroxylases. It has been recently shown that the non-hypoxic stimulation of 

HIF-1α is more likely to be a transcriptional up-regulation rather than a prevention of breakdown164. 

A summary of results is shown in the following table: 

 

 

Table 47: Summary of HIF-1α gene expression 

 HIF-1α 4 hours HIF-1α 24 hours 

Mouse tissue: LPS 25 mg/kg 

Liver ↑6.355* ↑3.01** 

Muscle ↑2.246 ↑1.702 

EF ↑5.211** ↑2.11 

PRF ↑4.372*** ↑3.103*** 

SCF ↑2.126* ↑2.239** 

Small Bowel ↑3.714 ↑3.08* 

Spleen ↑2.799** ↑3.239*** 

Cells - 3T3-L1: LPS 

1 µg/ml ↑1.70 ↑1.66 

5 µg/ml ↑1.54 ↑2.37* 

10 µg/ml ↑1.43 ↑1.18 

Cells - 3T3-L1: Cytokines 

TNF-α 10 ng/ml ↑1.95* ↑1.65 

IL-6 10 ng/ml ↓1.4 ↓1.85 

Cells C2C12: LPS 

0.1 µg/ml ↑3.19*** ↑2.47*** 

1 µg/ml ↑1.74** ↑2.1** 

5 µg/ml ↑1.79*** ↑3.41** 

10 µg/ml ↑2.69*** ↑2.31*** 

Table 47: Fold changes of HIF-1α receptor gene expression only with direction of change in all samples (Mouse tissues, 3T3-L1 adipocytes 

and C2C12 myocytes) (* denotes statistical significance (*p<0.05, **p<0.01, ***p<0.0001)) 
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Our results clearly show an up-regulation of HIF-1α gene expression in liver, SCF, PRF and spleen 

tissue depots at both 4 and 24 hour time points (Figure 47). There is up-regulation in EF at 4 hours, 

small bowel at 24 hours only but no significant up-regulation in muscle tissue at either time point. It 

is difficult to assess whether this is due to hypoxic or non-hypoxic up-regulation. Richard et al. have 

successfully demonstrated that a transcriptional up-regulation represents non-hypoxic accumulation 

of HIF-1α165. Therefore, it can be hypothesized that non-hypoxic up-regulation may play a major role 

in the response of adipose tissue and adipocytes but also liver and splenic tissue to LPS. In addition 

to LPS, a number of other mediators involved in the inflammatory process, such as Insulin, thrombin, 

cytokines and NO, can have the same effect on HIF-1α and therefore may also be implicated (Table 

48).  

 

Table 48: Known non-hypoxic stimuli of HIF-1α in different cell types 

Stimuli Cell type 

Insulin Retinal epithelial cell162 human hepatoma cells 

(Hep G2)163 

Insulin like growth factor 

(ILGF) 1 and 2 

Human colon carcinoma cells244 Mouse 

embryonic fibroblast cells245 

Thrombin Vascular smooth muscle cells165 246 

Angiotensin II Vascular smooth muscle cells164 165, 

PGE2 Human prostate cancer cell line247 

Cytokines rat enterocytes166, human hepatoma cell (Hep 

G2)248 

Nitric oxide (NO) Proximal tubular LLC-PK1249 250, human 

embryonic kidney cells (HEK293)251 

TNFα Proximal tubular LLC-PK1250, 

LPS Mouse Macrophages158 168, human monocytes153, 

hepatocytes167 
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Our group has previously demonstrated increased HIF-1α gene expression in SCF and EF, 4 hours 

after LPS treatment in the same mouse model, with a prolonged effect seen after 24 hours12.  

Protein concentrations were elevated after 4 hours by 2-3-fold, but there were no changes at 24 

hours. Transcriptional up-regulation followed by increases in protein levels as demonstrated in this 

paper is the classically described non-hypoxic activation pattern153 164 (Table 49). NFκB activation has 

been demonstrated as a potential signalling pathway for non-hypoxic HIF-α up-regulation and its 

activation can explain the increase in gene expression after LPS treatment153 173 179. 

 

Table 49: Changes in HIF-1α mRNA and protein under hypoxic and non-hypoxic conditions 

HIF-1α mRNA Protein 

Hypoxic effects ↔ or ↓ ↑2° reduced breakdown 

Non-hypoxic effects ↑ ↑ 2° increased transcription 

 

 

In continuation of these experiments, protein estimation using ELISA was undertaken. Numerically, 

hepatic tissue produced the greatest amount of HIF-1α (Figure 48). In hepatic tissue, at four hours, 

despite a 6-fold increase in HIF-1 α gene expression, there was no subsequent rise in HIF-1α protein. 

By 24 hours, there was a rise in both protein and mRNA. The increase in both gene expression and 

protein concentrations may represent a transcriptional up-regulation in the liver consistent with 

non-hypoxic up-regulation of HIF-1α. In skeletal muscle, no statistically significant changes in gene 

expression were observed but there was an up-regulation of protein levels at 4 hours post LPS 

treatment. This may imply that skeletal muscle expression of HIF-1α is unaffected by LPS as 

demonstrated by a lack of increased transcription. Peripheral skeletal muscle is prone to 

malperfusion during sepsis, while perfusion to central organs is maintained. The results presented in 

this thesis indicate that skeletal muscle may be sensitive to the resulting hypoxia, which is reflected 

by a rise in protein concentrations without increased gene expression, (i.e. by prevention of the 

breakdown of HIF-1α protein). In splenic tissue, despite statistically significant rises in HIF-1α gene 

expression, there was no change in protein concentration. This result supports previous 
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observations in murine macrophages where HIF-1α mRNA but not protein, accumulates following 

bacterial infection, suggesting that an additional hypoxic stimulus, in addition to the inflammatory 

stimulus, is required140. These results should be interpreted with caution in view of the small 

numbers within each group. 

 

HIF-1α gene expression was also investigated in isolated 3T3-L1 adipocytes treated with varying 

concentrations of LPS and pro-inflammatory cytokines (Table 44 & Figure 49). The results varied 

between the different concentrations of LPS and the two time points. LPS had little effect on 

adipocytes with a small isolated up-regulation after 24 hours treatment with 5 µg/ml LPS. 

Interestingly, there was significant up-regulation after treatment with TNF-α but not with IL-6. Thus, 

in isolated 3T3-L1 adipocytes, LPS may not activate HIF-1α but adipocytes may still respond to other 

inflammatory mediators, such as TNF-α. 

 

This may indicate a difference between the in-vivo and in-vitro experiments. In-vivo, other 

inflammatory stimuli, such as hypoxia, LPS and/or hyperinsulinaemia may contribute to increased 

HIF-1α gene expression. There are reports of hypoxic stabilisation of HIF-1α which is augmented by 

the addition of LPS153 . Cells kept under normoxic conditions may not respond with increased 

expression. It remains unclear why IL-6 does not cause an up-regulation in 3T3-L1 adipocytes 

whereas TNF-α does. 

 

Macrophage infiltration into adipose tissue during inflammation has been previously 

demonstrated252 253. It is possible that the increased in HIF-1α gene expression observed in the 

presented experiments, is due to macrophage infiltration of the tissues. Leuwer et al. however, 

demonstrated no increase in macrophage markers in adipose tissue in the same murine model of 
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endotoxaemia as used in the present study12. Therefore, macrophage infiltration and subsequent 

contribution to the HIF-1α gene transcription appears unlikely. 

 

HIF-1α may represent a critical pathway within the inflammatory response. Interestingly, whilst 

having a favourable effect on bacterial killing and phagocytic function, increased cytokine production 

and endothelial binding may have detrimental effects systemically on the whole animal by 

prolonging and augmenting the inflammatory response. This adds further evidence to the overall 

complexity of the inflammatory process. HIF-1α may represent a further signalling pathway where 

different tissues respond in different ways to LPS treatment and systemic endotoxaemia. The 

combination of pro and anti-inflammatory effects of individual mediators may be one reason why 

previous attempts at treating sepsis by targeting a single pathway have failed despite promising 

animal studies254-256. 
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CHAPTER 4: GENERAL DISCUSSION 

Adiponectin is an adipokine which has been extensively studied since its discovery in 1995. In 

chronic inflammatory states, e.g. obesity, type II DM and the metabolic syndrome, adiponectin is 

well documented to be down-regulated15 28 36 79 91-93. This series of experiments has demonstrated 

the down-regulation of the adiponectin system, particularly adiponectin and adipoR1 in an acute 

inflammatory state. 

 

It has also been hypothesized that adiponectin regulation is related more to the amount of and the 

changes in visceral fat. In sepsis, however, the role of visceral fat has not been studied and thus the 

results presented here represent first evidence that it plays an important role in the host response 

to life threatening infection. This may suggest that adipose tissue and adipokines such as 

adiponectin may play key roles in the derangement of glucose metabolism and insulin resistance 

associated with infection. It is also possible that different types of WAT may have differing endocrine 

roles within the inflammatory state203. 

 

A difference in the regulation of adipoR1 and adipoR2 also appears to be also emerging. The two 

receptors respond differently to different stimuli in obese, diabetic mouse models and in human 

models84. This has not been studied in acute inflammatory states such as sepsis and endotoxaemia 

but it is likely that there is a link between adiponectin regulation and insulin sensitivity. The results 

presented here, however, show similar differences between the two receptors, further fuelling the 

hypothesis of the receptors having different roles. It is possible that the changes demonstrated in 

this work are a reflection of changes in insulin sensitivity in insulin-sensitive tissues rather than an 

adipose-specific effect. These experiments are not able to show this conclusively as no measure of 

insulin sensitivity was performed. 
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4.1 The role of the adiponectin system in sepsis 

Our results indicate that the adiponectin system as a whole is altered and predominantly down-

regulated in acute endotoxaemia in mice and humans. The impact on the whole animal is likely to be 

manifold and the most important ones will be discussed here. 

1. Hyperglycaemia and insulin resistance 

Hyperglycaemia has been intensively studied in the realms of sepsis and increases mortality 

following sepsis and septic shock257. Whilst criticised by some as not being reproducible, the study by 

Van den Berghe et al. demonstrated clear reductions in mortality from treating hyperglycaemia, and 

resulted in a worldwide change in practice257. Hypoadiponectinaemia could contribute to 

hyperglycaemia and insulin resistance and potentially increase mortality (Figure 52)), as has been 

demonstrated in animal studies104 105. The results from our clinical study clearly demonstrate that an 

improvement in clinical condition is associated with increased plasma adiponectin levels. Whilst no 

causation can be attributed, in clinical practice insulin resistance is known to improve with resolution 

of sepsis and raising adiponectin levels may facilitate normalisation of glucose metabolism. This 

process, however, is likely to be multi-factorial with changes in catecholamines, inflammatory 

cytokines and glucocorticoids as contributing mechanisms. 
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Figure 52: Hypothetical overview of the role of cytokines and LPS in insulin resistance in adipose 
tissue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 52: LPS instigates a bi-directional pathway. It stimulates the inflammatory response and subsequent release of pro-inflammatory 
cytokines from immune cells e.g. macrophages53. These cytokines cause impaired insulin signalling in many tissues including adipose 
tissue208. LPS also triggers the inflammatory response in adipose tissue causing a release of inflammatory markers12 which further fuel this 
process. In addition, LPS causes down-regulation of the adiponectin system in adipose tissue, thereby reducing fatty acid metabolism and 
increasing hepatic glucose output. All of these factors contribute to hyperglycaemia and insulin resistance. Hypoadiponectinaemia also 
contributes to the increased cytokine release and potentiates of the inflammatory response further. 
 
 
 

2. Inflammation 

Reductions in adipose and plasma adiponectin with sepsis also are associated with a concurrent 

increase in IL-612 105 116, TNF-α12 103 105 116  and endotoxin levels103 105 in humans and animals with 

varied models of endotoxaemia.  Interestingly, plasma IL-6 levels, which would normally peak 

around 4-6 hours in a polymicrobial sepsis mouse model (CLP) and then decline (Figure 53) remained 

elevated in adiponectin KO mice but not in control mice105. This suggests that adiponectin has a role 

in dampening the pro-inflammatory and promoting the anti-inflammatory response, eventually 

leading to a much higher mortality in KO mice compared to control animals. 
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IL-6 is also known to induce insulin resistance in adipocytes and impair insulin signalling208 258-261. 

Thus, the vastly increased IL-6 production from macrophages, lymphocytes, neutrophils and adipose 

tissue in endotoxaemia may contribute to impaired insulin signalling and alterations in adiponectin 

receptor expression. In addition, adiponectin is known to reduce the release of inflammatory 

cytokines from inflammatory cells and therefore, its down-regulation may aggravate or at least 

maintain the inflammatory response100 106 108. 

 

Figure 53 shows the well documented time course of cytokine release following a septic innoculum 

with the results from this thesis superimposed on the graph. 

 

Figure 53: Hypothetical overview of the temporal relationship between pro and anti-inflammatory 

cytokines and adiponectin and its receptor levels 

 

 
Figure 53: Overview of the temporal relationship between pro- and anti- inflammatory cytokines and adiponectin as suggested by this 
thesis. The early peak of pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) may coincide with reduced levels of adipoR in adipose tissue, and 
skeletal muscle. In adipose tissue the decline in adiponectin appears later. (figure adapted from Boontham et al. 2003)53 
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In skeletal muscle, systemic inflammation has been shown to produce a local release of pro-

inflammatory cytokines218 . This paracrine effect  may account for the continuing response observed 

in skeletal muscle. 

 

Other known anti-inflammatory properties of adiponectin include inhibition of TLR and NFκB 

signalling120 262 suppression of phagocytosis and neutrophil aggregation, inhibition of macrophage 

recruitment106 and suppression of cell adhesion molecules104 110 111.  

 

Systemic hypoadiponectinaemia has been shown to be associated with increased plasma endotoxin 

levels103. This, perhaps contributed to by reduced endotoxin neutralisation103 114, will likely augment 

the inflammatory response.  The combination of increased pro-inflammatory and reduced anti-

inflammatory effects secondary to hypoadiponectinaemia could further contribute to the higher 

mortality and increased inflammatory response observed with hypoadiponectinaemia in animal 

studies104 105. 

4.2 Clinical studies 

Few clinical studies have been performed on the role of adiponectin in sepsis and endotoxaemia in 

humans. Two volunteer studies used intravenous injections of endotoxin or LPS to investigate the 

change in adiponectin multimers115 116. Keller et al demonstrated rises in core body temperature, 

large increases of TNF-α and IL-6 but no corresponding decrease in plasma adiponectin levels115. 

Anderson also confirmed rises in inflammatory cytokines in WAT and plasma and found no change in 

the multimer composition of plasma adiponectin116. Interestingly, Anderson et al demonstrated 

reductions in both adipoR1 and adipoR2 gene expression by 33% and 28% in monocytes at 24 hours, 

suggesting a change in adiponectin receptor expression earlier than seen with adiponectin. 
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The volunteer human studies do not show changes in adiponectin with endotoxaemia possibly 

because severe sepsis is impossible to mimic in volunteers. The subjects display signs of mild 

systemic endotoxaemia and therefore represent the clinically milder end of the sepsis spectrum, 

which may not be associated with disordered glucose metabolism and overwhelming infection. 

Adiponectin receptor gene expression is, however, reduced in these individuals indicating that either 

early changes in the adiponectin system or that lower doses of LPS or endotoxin affect receptor 

expression. This would be consistent with the results of this study where more rapid changes in 

adipose tissue receptor gene expression were observed compared to adiponectin (Figures 13 & 14). 

 

A further study, using a small number of samples from a heterogenous cohort of critically ill patients, 

showed a much lower mean plasma adiponectin concentration in critically ill patients and showed a 

strong positive correlation with plasma cortisol on day 3 and 7117. There was no correlation between 

plasma adiponectin with severity of illness scores, similar to from the clinical study. This may 

represent a link to glucocorticoid regulation pathways which are fundamental for maintenance of 

vascular reactivity in sepsis. Although this study provides further information on adiponectin in the 

critically ill patient, the study was not initially designed to measure adiponectin and in addition, the 

group of patients was highly heterogeneous and male dominated. Due to lack of samples, there was 

only analysis on days 3 and 7 and no baseline samples for analysis. 

4.3 High molecular weight adiponectin 

High molecular weight (HMW) adiponectin is a known biomarker for metabolic diseases and 

potentially more active than full length adiponectin in promoting insulin sensitivity76 80. Reductions in 

HMW adiponectin levels have been demonstrated in patients with hypertension, 

hypercholesterolaemia, BMI>25 kg/m2, abdominal obesity and hyperglycaemia75. There is little data 

regarding HMW adiponectin in human septic patients. Volunteer studies utilising low dose 

endotoxin failed to demonstrate changes in HMW adiponectin. Hillenbrand et al., however, 
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demonstrated a significant reduction in septic patients compared to healthy blood donors263. This 

was inversely correlated to APACHE II score and BMI (although weight was estimated). 

Hypoadiponectinaemia was associated with significant increases in the plasma levels of other 

adipokines and cytokines such as IL-6, IL-8 and IL-10, PAI, MCP-1 and TNF-α. 

 

In contrast with the results from the clinical study, increases in HMW adiponectin levels on day 1 of 

sepsis compared to controls have been demonstrated in children with sepsis and septic shock118. 

This is unexpected as it contradicts much of the work investigating adiponectin. Potential 

confounding factors are that there is no gender data for the subjects and both adiponectin and 

HMW adiponectin are known to be higher in female adults75 80 97 98. The control group consisted of 

children who underwent cardiac catheterisation. This cohort may have underlying alterations in the 

adiponectin system, as chronic cardiac disease in adults is known to alter adiponectin levels100. This, 

however, has not been established in paediatric cardiac disease. 

The increases in plasma adiponectin levels demonstrated were accompanied by an improvement in 

clinical condition such that intensive care was no longer necessary (Figures 44-46). 

In this study, patients acted as their own controls, therefore allowing meaningful comparisons to be 

made between critical illness and recovery. HMW adiponectin, therefore, may be implicated in the 

inflammatory process by contributing to decreased cytokine production, as is observed in obese 

patients263. 

 

All these results taken together provide further evidence of the down-regulation of anti-

inflammatory signalling pathways in early sepsis. 

 

For many years, the signalling pathways of the anti-inflammatory effects of adiponectin have 

remained largely unknown. In recent studies it has become clear that two intracellular signalling 
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pathways, NFκB and HIF-1α, both intricately linked to inflammation and to adiponectin receptor 

regulation and are crucial in mediating the downstream effects of receptor activation. They will be 

discussed here:  

4.4 The potential role of NFκB 

NFκB is one of the master regulators of inflammation. As the role of adiponectin in the inflammatory 

pathway is becoming more defined, a number of studies have investigated the role of adiponectin 

on the NFκB pathways. Predominantly this has been studied in the context of endothelial cells and 

endothelial dysfunction in vascular disease262 264-266 and macrophages120. These studies have also 

demonstrated that the NFκB stimulated production of pro-inflammatory cytokines (IL-8, IL-18) was 

inhibited by adiponectin via the AMPK signalling pathway264-266. In differentiated macrophages, a 

target molecule has been proposed that works between NIK and IKB (Figure 54)120. 

 

In adipocytes, the signalling pathway of NFκB has also been investigated. Ajuwon et al. 

demonstrated that LPS induces nuclear translocation of NFκB in pig adipocytes267. In addition, the 

same group demonstrated that adiponectin over-expression reduced the LPS stimulated NFκB 

nuclear translocation, both in primary cell culture (porcine adipocytes) and in the cell lines used in 

this thesis, murine 3T3-L1 adipocytes268. This was accompanied by a reduction in pro-inflammatory 

cytokine release. 

 

It is therefore possible that hypoadiponectinaemia, seen in many models of sepsis and acute 

infection, may result in reduced suppression of the NFκB pathway, leading to increased endothelial 

dysfunction, increased and sustained cytokine production and the potential for increased mortality. 

Increased pro-inflammatory cytokines, particularly IL-6, are known to be associated with increased 

mortality in human269 270 and animal studies271. 
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Figure 54: The NFκB Pathway with the postulated site of action of adiponectin 

 

 

 

 
Figure 54: The NFκB Pathway. Globular adiponectin, known for its anti-inflammatory properties, inhibits LPS-induced TLR signalling in 
mouse differentiated macrophages (RAW264). The proposed site of adiponectin is between NIK and IKB. This phenomenon is mediated by 
adipoR1120. 
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4.5 The potential role of HIF-1α 

The results presented here demonstrate elements of an emerging complex interaction between the 

roles of LPS, inflammation and hypoxia and the HIF-1α signalling pathway. The transcriptional up-

regulation of HIF-1α has been demonstrated in the models of systemic and in-vitro endotoxaemia, 

thus implying a non-hypoxic stimulation of HIF-1α. 

 

Hypoxia was described as the predominant up-regulator of HIF-1α in the original studies 

investigating the significance of erythropoietin143. HIF-1α has subsequently been demonstrated to be 

up-regulated by non-hypoxic stimuli of different types153 158 164 165 167 168. In addition, there is now a 

well established link to the NFκB pathway, which in turn is intricately associated with 

inflammation272 273. 

4.5 HIF-1α and inflammation 

HIF-1α is involved in the inflammatory process in many ways including immune cell extravasation 

into hypoxic tissues during inflammation171. This is an essential part of the inflammatory cascade as 

inflamed tissues are profoundly hypoxic; therefore the survival of immune cells in these tissues relies 

on HIF-1α to increase glycolysis and thus provide energy substrates. 

 

Numerous studies have identified the role of HIF-1α in inflammation utilising HIF-1α null 

macrophages. In these cells, myeloid cell bactericidal activity is reduced144 171. Granule proteases 

from neutrophils, an important component of cell anti-microbial activity, are reduced in the absence 

of HIF-1α144. Mice with HIF-1α null macrophages showed significantly larger necrotic skin lesions, 

greater weight loss and much larger bacterial colonies within the skin (area of inoculation), blood 

and spleen following a subcutaneous innoculum known to result in necrotising soft tissue 

infection144. A further study by the same group also showed that mice with a targeted deletion of 
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HIF-1α showed significant protection against LPS induced hypothermia and hypotension which  

corresponded to a greater survival rate168. The effects of HIF-1α deletion are summarised below 

(Figure 55): 

 

Figure 55: Effects of targeted deletion of HIF-1α in macrophages 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 55: Targeted deletion of HIF-1α macrophages allow identification of the numerous ways HIF-1α interacts with the inflammatory 
process. These include protection from clinical symptoms144 168 171, Reduction in antibacterial compound and iNOS production144, reduced 
bacterial killing 141 171, loss of neutrophil motility171, reduced lactate production171, and reduction in inflammatory cytokines168 171 
 
 

 

Skin lesions following 
inoculums: oedema, 

epidermal hyperproliferation 
and inflammatory cell 

infiltration 

HIF-1α null 

macrophages  

(targeted deletion) 

Reduction in 
natural anti-

microbial peptide 
production 

Protection against 
Hypotension and 

hypothermia 

Reduction in 
clinical 

symptoms of 
inflammation 

Reduced 
bacterial killing 
Gram -ve and 

+ve 

Increased 
susceptibility 

to skin 
infections 

 

Reduction in 
iNOS expression 

by 70% 

Reduced lactate 
production 

consistent with 
reduced glycolysis 

and ATP production 

Reduction in LPS 
induction of 

inflammatory 
cytokines 

Loss of neutrophil 
motility in 

response to 
chemotaxic agent 



Page | 184  
 

Sepsis is characterised by global tissue hypoxia139 274. The HIF-1α pathway stimulated by hypoxia 

promotes bactericidal killing and protection from clinical symptoms of inflammation. It is also 

evident that the HIF-1α pathway is up-regulated by inflammatory mediators. This is in agreement 

with the results presented in this thesis, demonstrating a transcriptional upregulation in HIF-1α 

which suggests that the likely stimulus to be inflammatory rather than hypoxia. 

 

Interestingly a link between HIF-1α and NFκB activation has also been described. Gram-negative and 

-positive bacterial species, in addition to LPS, induce HIF-1α mRNA in immune cells in normoxic and 

hypoxic conditions via NFκB mediated pathways140 153. This has also been demonstrated in human 

embryonic kidney cells exposed to TNF-α170.  Further immunoprecipitation experiments 

demonstrated that Rel A is recruited to the HIF-1α promoter, which contains an NFκB binding site. 

 

NFκB may form a link between inflammation, sepsis with its associated cellular hypoxia and HIF-1α, 

particularly as non-immune cells are also known to induce HIF-1α under inflammatory conditions170. 

HIF-1α could therefore provide a link between two of the inherent survival mechanisms of the body: 

the response to hypoxia and bacterial invasion. It is likely that the two mechanisms are in some way 

combined in acute inflammation. There are reports in the literature of hypoxic stabilisation of HIF-1α 

which is further increased by the addition of LPS153. It may be that hypoxia, in-vivo, is the stimulus 

for increased gene expression and thus cells kept at normoxia may not respond with increased 

expression. HIF-1α is therefore no longer, merely a response to cellular hypoxia, but is intricately 

involved in the inflammatory process. It is clearly involved in phagocytic mobility and function and 

the cytokine response to bacterial invasion. Interestingly, this has also been correlated to clinical 

symptoms and mortality in mice168. 
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The implications of increased HIF-1α in adipose tissue are complex. We have shown that HIF-1α can 

be up-regulated under normoxic conditions in response to LPS. This may imply a contribution of 

adipose tissue to the inflammatory process which previously has not been identified. 

 

It is known that in hypoxic adipose tissue, insulin signalling pathways in adipocytes are inhibited by 

reducing insulin receptor phosphorylation275 and HIF-1α is activated, leading to the expression of 

many hypoxia responsive genes (VEGF, GLUT-1 and leptin)276. It could be hypothesized that this will 

have major implications on metabolic pathways, inducing insulin resistance, and on inflammatory 

pathways. Hypoxia alone induces the release of pro-inflammatory cytokines (TNF-α, IL-1 and IL-6) in 

adipocytes grown in culture142 277. In addition to the widely described reduction in adiponectin in 

chronic inflammation, Ye et al. described reduction in adiponectin mRNA and protein in response to 

hypoxia 277. 

 

It therefore appears that these interrelated pathways may ultimately control inflammation and the 

associated metabolic changes. Hypoxia-induced and bacterial stimulation of HIF-1α together with 

the concomitant reduction in adiponectin have a major effect on the stimulation of the 

inflammatory process, as the combination of both may contribute to the overwhelming 

inflammatory process commonly observed in sepsis. 

  



Page | 186  
 

4.6 Potential clinical consequences of adiponectin in sepsis 

4.6.1 Potential pharmacological agents modulating adiponectin 

Numerous anti inflammatory agents have been used in the treatment of sepsis and septic shock. 

These include anti-TNF-α antibodies, IL-1 receptor antagonist and anti-endotoxin antibodies254 256 278 

279. Success rates have been poor, despite reasonable success in animal models, with some showing 

increases in mortality. Postulated reasons for this include patient heterogeneity with respect to age 

and gender but also infection source and disease severity. 

There are several potential therapeutic targets for adiponectin pathways: 

 

Exogenous Adiponectin 

Exogenous adiponectin has been shown to reverse many of the known metabolic effects on 

hypoadiponectinaemia31 32 36 99 and is therefore is an attractive therapeutic target. Administration of 

exogenous adiponectin may be limited by the tertiary and quaternary structure of adiponectin 

having differing effects on different tissues100. One study demonstrated that pre-treatment with 

recombinant adiponectin in adiponectin KO mice with chemical peritonitis demonstrated reversal of 

the increases in inflammatory markers, cell adhesion molecules and neutrophil aggregation104. 

Interestingly, low molecular weight adiponectin (trimeric adiponectin) had no effect on the marker 

levels. 

 

The use of pre-treatment with exogenous adiponectin in acute inflammatory conditions, such as 

sepsis, may be limited as it would require treatment prior to the infective insult. There may a role in 

reducing cases of recurrent sepsis in specific conditions however, these are difficult to predict. 
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Increasing endogenous production via lifestyle changes such as weight loss through caloric 

restriction may also be an option in the chronic disease population280. However, this will not be 

feasible in patients with acute inflammatory conditions such as sepsis. 

 

Thiazolidinediones 

A number of drugs have been shown to enhance adiponectin secretion. The most widely studied are 

the thiazolidinediones but angiotensin converting enzyme inhibitors (ACEI) and angiotensin 2 

receptor blockers (ARB) also lead to increased adiponectin levels281 282. Thiazolidinediones are 

frequently used orally in the treatment of diabetes and are PPARγ agonists15 283 284. It is well 

documented that they increase the expression and secretion of adiponectin in-vivo285 286. They have 

also been shown to increase or normalise adiponectin expression and secretion in 3T3-L1 adipocytes 

and adipose tissue from obese mice by activating the adiponectin promoter site33. Similar findings 

have been demonstrated in obese and diabetic humans after three to six months treatment286-289. 

These drugs have not been investigated in human endotoxaemia. However, their use prior to the 

septic insult (CLP) has demonstrated a significantly improved mortality in wild-type mice105. 

 

4.6.2 Potential pharmacological agents modulating HIF-1α 

It could be an attractive therapeutic strategy to improve antibacterial efficiency and increase the 

immune response to invading micro-organisms. This could theoretically be achieved using a HIF-1α 

agonist and could be beneficial in localised controlled infection or inflammation, e.g. skin lesions or 

arthritic lesions. However, the pathology of early sepsis is characterised by disordered and excessive 

inflammation. Therefore, it can be anticipated that increasing the immune response in systemic 

sepsis, with the subsequent increase in the inflammatory activity actually worsen the clinical picture. 
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4.6.3 Critical illness polymyopathy 

It is well known that skeletal muscle plays a significant role in whole body glucose metabolism and is 

dysfunctional in other diseases characterised by insulin resistance e.g. type II DM. Acquired sepsis-

related myopathy is very common clinically and is termed the Critical Illness Polymyopathy (CIPM).  

It is a multi-factorial pathology comprising mitochondrial dysfunction, alterations in the sarcoplasmic 

reticulum and reductions in contractile proteins197 218. It is likely that inflammatory cytokines play a 

role as the systemic inflammatory response appears to produce a release of pro-inflammatory 

cytokines from muscle218. Recent studies also suggest a causative role for NFκB and its associated 

pathways290 in addition to the known link to hyperglycaemia257 291 292. 

 

It is an attractive theory that adiponectin could be involved in this process. Krause et al. found that 

the adiponectin KO mice showed a significant reduction (50%) in peak tetanic force (relative to mass) 

but no change in rate of muscle fatigue during a 2 minute low frequency stimulation protocol192. 

When the skeletal muscle depots (gastrocnemius/plantaris/soleus complex) in both adiponectin KO 

and control groups were examined for changes in fibre composition and size, no changes in fibre 

type were found but there were significant increases in fibre area in adiponectin KO IIB fibres.  

Staining of the muscle did not show any increase in muscle capillary density.  Unsurprisingly as 

adiponectin is known to metabolise lipids in muscle, there was a significantly greater ICML content in 

the adiponectin KO mice compared to their WT controls in all muscle fibre types. 

 

Skeletal muscle mitochondrial content is also reduced in adiponectin KO mice293. In addition, 

inhibition of adiponectin signalling blunts the induction of mitochondrial function in human skeletal 

muscle293. This indicates a degree of mitochondrial dysfunction in skeletal muscle associated with 

hypoadiponectinaemia. 
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The results presented in this thesis demonstrate the presence of adiponectin in skeletal myocytes 

and adiponectin down-regulation in the murine model of endotoxaemia. This could provide a link 

between sepsis and CIPM. Both pathologies are similar with hyperglycaemia, increased 

inflammatory cytokines and mitochondrial dysfunction being associated with a decreased 

concentration of contractile proteins, reduced peak force and absence of fatigueability. It poses the 

question as to whether a lack of adiponectin could be involved in the pathogenesis of critical illness 

polymyopathy (Table 50). 

 

Table 50: Physical characteristics of CIPM and adiponectin KO mice 

Critical illness polymyopathy Adiponectin KO Mice skeletal muscle 

Reduced peak force Reduced peak force 

No fatigueability No fatigueability 

Reduced involuntary isometric peak force  

Reduced compound muscle action potential Increased intramyocellular lipid 

Muscle atrophy No change in muscle length 

Mitochondrial dysfunction Mitochondrial dysfunction 

Friedrich et al. 2008197 Krause et al. 2008192 

 
Table 50: Physical characteristics of whole muscle in patients with critical illness polymyopathy and adiponectin KO mice. There are a 
number of similar characteristics which may link the two. 
 
 

In addition to this postulated hypothesis, there may be an association with the nutritional changes 

observed in critical illness such as malabsorption of nutrients and calories and anorexia. The 

literature however suggests that weight loss increases adiponectin levels in children294 and adults295. 

In most parts, this is correlated not only with body mass index but also with reduced adiposity and 

markers of inflammation. It is the norm for critically ill patients to lose fat and muscle mass during 

their illness. Therefore, it would be interesting to ascertain whether adiponectin levels would rise 

with weight loss or whether they would remain reduced with the ongoing inflammatory process and 

whether there is any correlation between adiponectin levels and BMI in septic patients. 
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4.7 A final hypothesis: The role of sphingolipids 

Sphingolipids are bioactive lipids which are produced by way of a condensation reaction between 

palmitoyl-CoA and serine296. Ceramide and glucosylceramide are precursors to complex 

sphingolipids. Accumulation of sphingolipids is associated with disordered metabolism and results in 

insulin resistance via alterations in insulin signalling (protein kinase C pathway)297 298. 

Phosphorylation of ceramide produces sphingosine-1-phosphate which has opposing actions to 

ceramide297. 

 

As demonstrated by euglycaemic clamp studies in mice, adiponectin reduces cellular ceramide which 

results in improved insulin resistance297, a process which is mediated by adipoR1 and adipoR2297. 

Both receptors possess ceramidase activity and over- and under-expression of adiponectin receptors 

have been demonstrated to increase and reduce ceramidase activity respectively, which is reversed 

by the addition of recombinant adiponectin297. 

 

There are many stimuli causing increased ceramide production and accumulation. These include 

FFA42, LPS299, inflammatory cytokines and components of the NFκB signalling pathway300. Hence, 

adiponectin and its receptors may mediate their effects via LPS-induced NFκB activation with 

increased ceramide production as a final common pathway to disordered metabolism and insulin 

resistance. A hypothetical overview can be seen in Figure 56: 
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Figure 56: Hypothetical interaction between sphingolipids and adiponectin in sepsis and acute 

inflammation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56: Sphingolipids have been suggested as a link between adiponectin and its numerous metabolic effects in inflammation. 

Increased ceramide, caused by substances including free fatty acids, LPS, cytokines and components of the NFκB pathway, is known to be 

associated with disordered metabolism and insulin resistance. Adiponectin, mediated by adipoR1 and R2, reduces ceramide. 
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Figure 56: Sphingolipids have been hypothesised as a link between adiponectin and the numerous varied roles it has been 
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4.8 Limitations 

Mouse model 

LPS injection as a model of sepsis is simple to perform and gives generally reproducible results 183. 

However, the sharp rise in cytokine concentrations seen following injection occurs much earlier and 

to a greater magnitude than that found in human sepsis and therefore multiple methods to induce 

sepsis, including more complex models e.g. caecal ligation and puncture, may have been 

preferable181 183 185. 

 

No blood results were taken in the mouse experiments. This was because there was a limited 

amount of blood available. In addition, samples would only have been available after the death of 

the animal when tissue harvesting was a priority. Useful results would include measures of glucose 

and insulin sensitivity (although these would be expected to be initially high in this model)181. 

Cytokine levels would have also been interesting data to collect. 

 

A single high dose (25 mg/kg) of LPS was used to mimic severe sepsis. There are studies that have no 

or negligible changes in adiponectin with mild endotoxaemia115 116. These studies, however, do show 

changes in adiponectin receptors. Therefore it would have been interesting to investigate a range of 

doses of LPS in the mouse model as this may have produced differing results. 

 

Adiponectin is known to be regulated by the sex hormones, particularly with testosterone being an 

inhibitor of adiponectin77 93-96. As a result, females are documented to have higher circulating levels 

of adiponectin which was confirmed in this study. A limitation of the murine model is therefore that 

only male mice were used. These experiments should therefore be replicated with female mice. 

 



Page | 193  
 

Samples sizes in the mouse model were small to comply with animal protection principles requiring 

the minimal number of animals to be used. Six mice is a standard number for these experiments, 

although a larger statistical variation is to be expected. The protein experiments were performed 

with smaller numbers due to problems in experimental technique; ideally these experiments would 

have been repeated. 

 

Cell lines 

The major limitation of this model is the lack of ability to reproduce the intricacies of different 

environments within intact mammals301. In-vitro experiments only give information about a specific 

cell type’s response to one treatment. For example, LPS was used in both the in-vivo and in-vitro 

experiments. The in-vivo response may be due to direct cellular LPS effects or alternatively due to 

systemic derangements such as hypoxia, hyperglycaemia or hyperinsulinaemia. Furthermore, LPS-

induced changes in circulating substrate concentrations or inflammatory cytokines may affect the 

results. Therefore, a negative in-vitro response may not reflect the systemic response to an insult. 

 

There is a lack of data regarding responses of adipocytes and myocytes to other metabolic 

derangements of sepsis such as hyperglycaemia, hyperlactataemia, hyperinsulinaemia and hypoxia. 

Further research is warranted to identify the effects of those metabolic disturbances in myocytes 

and adipocytes. 

 

Clinical study 

Obvious limitations include the lack of discharge data from patients who died. This could not be 

avoided for ethical reasons. However, it limits the sample size for comparisons of discharge data. 

These samples may have given valuable data regarding the ongoing inflammatory process in patients 

who did not improve. 
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In addition, there was no insulin sensitivity data. Whilst giving invaluable information, this is difficult 

to assess as the fasting status at presentation of septic patients is variable and would therefore not 

have given consistent results. Patients with type II DM were not excluded and assessment of 

baseline insulin resistance on admission was not feasible. 

 

A potential criticism of the study was the lack of a true control group to assess the effect of sepsis 

per se on adiponectin levels. However, the aim of the study was to assess adiponectin levels through 

the course of the critical illness to compare differences in the acute phase compared to the recovery 

phase of sepsis. 

 

In a continuation of the in-vitro studies, it would have been beneficial to measure cytokine levels in 

the septic patients and correlate them to changes in adiponectin levels. This would have clarified 

whether the changes observed in the animal and cellular models were replicated in the human 

study. 
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4.9 Future research 

Our main results indicate significant changes in the adiponectin system with the onset of sepsis and 

endotoxaemia. There are many further research questions that now exist within this field which 

merit investigation. 

For confirmation of the results demonstrated in this thesis, different animal models of sepsis and 

endotoxaemia should be used. Replication of the experiments using a second model of intra-

abdominal sepsis, such as Caecal ligation and puncture which would give data regarding poly-

microbial sepsis, would be ideal.  It would be essential to obtain blood samples from these animals 

to assess the systemic inflammatory response and also to assess plasma adiponectin levels. Insulin 

resistance data would also be very beneficial. 

The translation of adiponectin and its receptor gene expression to protein levels now requires to be 

investigated. This is fundamental to ongoing research as gene expression alone is not adequate to 

fully ascertain the behaviour of a protein and its receptor. This may require formation of antibodies 

due to the limited commercially available products. 

The signalling pathways of adiponectin remain to be fully elucidated.  There is clear evidence that 

the NFκB signalling pathway is intricately linked to adiponectin in chronic disease and it is an 

attractive theory that this ‘master regulator’ of the inflammatory process is also involved in changes 

observed in the adiponectin system in acute inflammation and infection. This should be further 

investigated in adipocytes in order to investigate fully the effect of NFκB on adiponectin and its 

receptors. Experiments should include the use of NFκB and/or TLR receptor antagonists to assess 

their role in the signalling cascade. 

The role of hypoxia, HIF-1α and the adiponectin system in acute inflammation needs further 

investigation. HIF-1α clearly has a role in the inflammatory process and hypoxic adipocytes show a 

clear up-regulation in HIF-1α, very similar to the results demonstrated in this thesis. Non-hypoxic up-
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regulation of HIF-1α via transcriptional up-regulation is now a recognised signalling pathway. Both 

activation patterns, hypoxic and inflammatory, need to be further explored to provide insights into 

intracellular signalling of the adiponectin system. 

Acute inflammation is a syndrome comprising of many metabolic disturbances, such as 

hyperglycaemia, hyperlactataemia, hyperinsulinaemia and hypoxia, all of which may play a role in 

the regulation of adipokines. A full evaluation of these derangements in conjunction with the 

increase in inflammatory cytokines and their impact on the adiponectin system is the next step in 

elucidating the role of the adiponectin system further. Also, the role of any potential therapeutic 

agents that act upon the adiponectin system needs to be investigated. Therapeutic evaluation 

should include PPARγ agonists and exogenous adiponectin. There is already preliminary data in mice 

that PPARγ agonists affect not only adiponectin levels but also mortality, therefore further 

investigation for its use in humans is required. 

The preliminary data presented in this thesis has identified skeletal muscle adiponectin in-vivo and 

in-vitro and therefore the next step would be to establish the exact location and functional role of 

adiponectin within the skeletal myocyte. 

The subsequent down-regulation of adiponectin and its receptors in skeletal muscle during 

endotoxaemia also requires further investigation. It would be prudent to repeat the animal 

experiments in various models of sepsis to assess the changes in the adiponectin system. This will 

confirm the observed findings and further investigate the hypothesis that the adiponectin system is 

down-regulated in sepsis. In a translational approach, this should be confirmed using human muscle 

biopsies. 

Speculation to an association of the adiponectin system with critical illness polymyopathy has been 

highlighted in this work. It would be an interesting line of investigation for future experiments which 

would need to include investigation of many inflammatory mediators with respect to their effects on 
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the adiponectin system. These include hyperglycaemia, pro-inflammatory cytokines and the NFκB 

signalling pathways in skeletal muscle. Further investigation should include skeletal muscle biopsies 

from patients with critical illness, with and without CIMP. This would allow identification of 

adiponectin and their receptors within the skeletal muscle and investigation of any differences 

between those with and without CIMP. 

The data presented in this thesis also demonstrate changes in the adiponectin system in septic 

patients. The clear increase with improvement of clinical condition may represent resolution of the 

inflammatory process but may also represent a prerequisite for recovery. One of the major 

limitations of this study is a small patient group with a heterogenous spectrum of sources of 

infection. A study adequately powered to assess mortality as related to plasma adiponectin levels 

would be the next step. 

A further question that would require investigation is the temporal relationship between the well 

documented inflammatory process, involving the rise and fall of pro- and anti-inflammatory 

cytokines, and the adiponectin system. It is possible that the effects we are observing in the animal 

and cell work is secondary to a sharp peak in pro-inflammatory cytokines. It is therefore essential to 

measure concomitant plasma pro- and anti-inflammatory cytokines at the same time points. Other 

known adipokines should also be investigated. Markers of insulin resistance would significantly add 

to this data but this is appreciated to be difficult in septic patients. 

We observed an increase in plasma adiponectin with improved clinical condition. It is likely that this 

may reflect resolution of the inflammatory cascade. However, it can also be hypothesized that this 

may reflect recovery of different tissues, including adipose tissue, skeletal muscle, improved 

nutritional status and resolution of other metabolic derangements, such as hyperinsulinaemia. 

Adiponectin levels will have to be correlated with other markers of patient recovery, such as acute 

phase proteins, pre-albumin and albumin levels and vitamin and nutrient levels. This may give 

important data as to the requirement of adiponectin for the recovery process. 
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4.10  Conclusions 

Adipokines have come to the forefront of metabolic disease and obesity research in the last ten 

years. They have been widely studied in this context, with the expression and secretion of most 

increasing directly with increasing adipose mass. Adiponectin is the exception to this rule, with its 

expression decreasing with increased adiposity and increased markers of inflammation. Adiponectin 

has many roles including being anti-diabetogenic, anti-inflammatory and anti-atherogenic. 

 

Until recently, adiponectin research has focussed on chronic inflammatory disorders such as obesity 

and diabetes. However, there is now increasing interest in the investigation of adiponectin in the 

acute inflammatory setting. Adiponectin, with its multifaceted roles, may play a role in the metabolic 

disturbances and the inflammatory changes observed in clinical sepsis. The primary research 

objective in this thesis was to investigate the role of the adiponectin system in various models of 

sepsis and endotoxaemia. The overall hypothesis, based on background work from acute and chronic 

inflammation, was that tissue adiponectin and adiponectin receptors were down-regulated in this 

model. 

 

This thesis contained three main hypotheses: The first was that adiponectin and its receptors are 

down-regulated in acute inflammation, thus contributing to the disordered metabolic state and to 

the inflammatory process. Hence, the primary aim was to investigate adiponectin and its receptors 

in in-vivo and in-vitro models of sepsis and endotoxaemia. 

The second hypothesis aimed to assess plasma adiponectin levels in human septic patients, to 

identify whether adiponectin expression in cell lines and in mouse models corresponds to changes in 

human patients. Finally, signalling pathways, in particular, the role of Hypoxia Inducible Factor -1α 

(HIF-1α) in response to LPS was investigated. Numerous links between adiponectin and NF-κB 

signalling have been demonstrated. NF-κB is an important regulator of hypoxia-inducible factor 1-α, 
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a transcription factor up-regulated by non-hypoxic stimuli such as LPS in addition to hypoxia. It was 

therefore mandatory to further elucidate the link between inflammation, adiponectin and HIF-1α in 

adipose tissue and other organs linked to adiponectin signalling. 

 

Following treatment with LPS, adiponectin expression, adiponectin expression was down regulated 

in all depots adipose tissue. This was replicated in adiponectin receptor expression in skeletal 

muscle, liver and peri-renal fat, however, changes in receptor expression were faster and were not 

sustained to the second time-point investigated. This may represent changes in perfusion of the 

tissues or differences in visceral and non-visceral fat.  Interestingly, adiponectin gene expression was 

also down-regulated in skeletal muscle, both acutely and sustained to the second time-point. The 

presence of skeletal muscle adiponectin was subsequently confirmed in isolated C2C12 myocytes 

using standard PCR and gene product sequencing. 

 

In the second part of the study, isolated 3T3-L1 adipocytes and C2C12 myocytes were grown in 

culture and adiponectin and adiponectin receptor gene expression was investigated. Cells were 

treated with LPS and inflammatory cytokines. Following LPS treatment, there was a clear down-

regulation of adiponectin but the receptor expression only showed a consistent response with 

adipoR2. C2C12 myocytes, again, responded with a down-regulation of adiponectin but minimal 

significant changes in receptor expression. Interestingly, the response to individual cytokines was 

different again with no change with adiponectin or adipoR2 gene expression with either IL-6 or TNF-

α, however, IL-6 down-regulated adipoR1 gene expression. 

 

In the third part of the study we investigated the adiponectin system in septic patients. As previously 

described adiponectin levels were higher in women. We further demonstrated that adiponectin and 

HMW adiponectin significantly increased with clinical improvement of sepsis.  Interestingly, the ratio 

between HMW adiponectin and total plasma adiponectin increased also. HMW adiponectin and the 
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HMW/total ratio have been identified as potential biomarkers in the development of chronic 

inflammatory disease such as type II DM. This has not previously been demonstrated in human 

septic patients. 

 

In an initial attempt to elucidate one of the signalling pathways associated with adiponectin 

regulation, we investigated the role of HIF-1α. HIF-1α is known to be a transcription factor that 

regulates many of the intracellular changes occurring secondary to hypoxia. More recently it has 

been identified as a regulator of the inflammatory cascade. We demonstrated that HIF-1α gene 

expression was up-regulated in liver and spleen, in addition to the adipose tissue depots but not in 

skeletal muscle. This was accompanied by up-regulation in protein levels in liver and muscle. 

Hypoxia-induced up-regulation of protein is not usually accompanied by a transcriptional up-

regulation, as observed in the skeletal muscle, whereas both transcription and translation were 

increased in liver tissue, thus implying a non-hypoxic mechanism of regulation. 

 

 

This series of experiments has improved knowledge of adiponectin and its receptors in acute 

inflammation. There is a paucity of data currently on adipokines in sepsis and this is an interesting 

field which should be investigated further. Future research should include therapeutic targets which 

could be used to augment the adiponectin effects, which are potentially beneficial in acute 

inflammatory conditions including human sepsis. 
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CHAPTER 5: APPENDICES 

Appendix 1: Baseline Mouse data and survival curve 
Mouse no Weight Exp Length (h) Group Survival Other Information 

1 24g 24 LPS Y  

2 25.4g 24 LPS Y  

3 25.5g 24 LPS Y  

4 24.6g 24 Control Y  

5 24.6g 24 Control Y  

6 25g 24 Control Y  

13 27.5g 24 LPS Y  

14 23g 24 LPS Y  

15 24.5g 24 LPS N Died 11 hours 

16 26.5g 24 Control Y  

17 24g 24 Control Y  

18 23g 24 Control Y  

25 26.6g 24 LPS Y  

26 23.9g 24 LPS N Died 21 hours 

27 23.5g 24 LPS Y  

28 25.4g 24 LPS N Died 19 hours 

29 24.5g 24 Control Y  

30 26g 24 Control Y  

35 27g 4 LPS Y  

36 22.4g 4 LPS Y  

37 25.4g 4 LPS Y  

38 24.9g 4 Control Y  

41 23.5g 4 LPS Y  

42 26.5g 4 LPS Y  

43 21.5g 4 Control Y  

44 24g 4 Control Y  

47 25.5g 4 LPS Y  

48 24g 4 LPS Y  

49 23g 4 Control Y  

50 26g 4 Control Y  

53 24.5g 24 LPS N Died 20 hours 

54 26.7g 24 LPS Y  

55 24.8g 24 LPS Y  

56 24.8g 24 LPS N Died 17.5 hours 

57 26.4g 24 LPS Y  

58 24.5g 24 LPS N Died 18 hours 

59 28.7g 24 Control Y No samples taken: Large cystic tumour found 

60 25g 24 Control Y  

61 25.1g 24 Control Y  

62 26g 24 Control Y  

63 26.4g 24 LPS N Died 14 hours 

64 26.4g 24 LPS Y  

65 25.3g 24 LPS Y  

66 24.1g 24 LPS Y  

67 26.4g 24 LPS N Died 19.5 hours 

68 26.9g 24 LPS Y  

69 26.5g 24 LPS N Died 17 hours 

70 25g 24 Control Y  

71 26.5g 24 Control Y  

72 25.1g 24 Control Y  
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Survival curve for mouse treatment groups 

 
Survival curve for mice treatment groups  : 4 hour control, : 4 hour LPS  : 24 hour Control, : 24 hour LPS 
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Appendix 2: Raw Data from Adiponectin and receptor experiments 
Raw Data: Adiponectin gene expression in all tissue samples 

 

Raw data for adiponectin receptor gene expression in all tissue samples 

 

 

Appendix 3: Summary of Western Blotting 
Summary of western blots and optimisation 

 

4 hrs treatment (control value =1) 
AdipoR1      AdipoR2     

 2-ΔΔCT +SEM -SEM p-value Fold 2-ΔΔCT +SEM -SEM p-value Fold 

Liver 0.544 0.084 0.073 0.05 ↓1.5 0.371 0.084 0.069 0.008* ↓2.7 

Muscle 0.102 0.109 0.052 0.017* ↓9.8 0.162 0.43 0.11 0.39 ↓6.2 

SB 1.163 0.12 0.109 0.521 ↑1.16 0.584 0.220 0.159 0.309 ↓1.7 

Epi fat 0.671 0.260 0.187 0.48 ↓1.5 0.543 0.173 0.132 0.24 ↓1.8 

PR fat 0.627 0.005 0.004 0.0087* ↓1.6 0.231 0.067 0.052 0.0043** ↓4.3 

SC fat 0.821 0.270 0.203 0.81 ↓1.2 0.348 0.095 0.074 0.041* ↓2.9 

Spleen 0.807 0.152 0.128 0.48 ↓1.2 1.138 0.184 0.159 0.48 ↑1.1 

4 h 2-ΔΔCT +SEM -SEM p-value 24 h 2-ΔΔCT +SEM -SEM p-value 

Liver 1.82 1.849 0.618 0.618  0.516 0.428 0.234 0.473 

Muscle 0.144 0.125 0.007 0.04*  0.033 0.022 0.013 0.0009*** 

SB 0.584 0.434 0.249 0.625  0.641 0.486 0.276 0.509 

Epi fat 1.08 0.48 0.33 0.854  0.273 0.120 0.08 0.01** 

PR fat 0.51 0.144 0.112 0.122  0.344 0.119 0.08 0.05* 

SC fat 0.761 0.148 0.124 0.40  0.234 0.04 0.03 0.0007*** 

Spleen 0.361 0.268 0.154 0.208  0.452 0.196 0.137 0.136 

24 hour treatment (control value =1) 

AdipoR1      AdipoR2     

 2-ΔΔCT +SEM -SEM p-value fold 2-ΔΔCT +SEM -SEM p-value fold 

Liver 0.614 0.053 0.049 0.09 ↓1.4 0.650 0.142 0.117 0.148 ↓1.53 

Muscle 0.509 0.038 0.036 0.01* ↓1.9 0.448 0.083 0.069 0.05* ↓2.2 

SB 0.766 0.168 0.137 0.28 ↓1.3 0.629 0.114 0.097 0.05 ↓1.58 

Epi fat 1.01 0.316 0.241 0.47 = 0.852 0.213 0.17 0.55 ↓1.2 

PR fat 0.801 0.145 0.122 0.27 ↓1.2 0.657 0.187 0.145 0.198 ↓1.5 
SC fat 0.824 0.211 0.168 0.47 ↓1.2 1.058 0.312 0.241 0.98 = 

Spleen 0.687 0.072 0.06 0.01* ↓1.5 0.922 0.129 0.113 0.58 ↓1.1 
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No Tissue 
depot 

Sample Protein 
conc 

Block Dilutn WCL 
/ MF 

heat 1° conc 2° conc Adipo R1 bands Description Adipo R2 bands Description 

4 & 
5 

Liver LPS 20 µg 5% 
milk 

1% 
milk 

WCL N 1/ 1000 1/ 1000 No bands  No bands  

 Liver LPS 20 µg 5% 
milk 

1% 
milk 

WCL N 1/ 1000 1/ 2000 No bands  No bands  

 Liver LPS 20 µg 5% 
milk 

1% 
milk 

WCL N 1/ 1000 1/ 5000 No bands  No bands  

 Liver LPS 20 µg 2% 
BSA 

2% 
BSA 

WCL N 1/ 1000 1/ 1000 No bands  No bands  

 Liver LPS 20 µg 10%
milk 

3% 
milk 

WCL N 1/ 1000 1/ 1000 No bands  No bands  

              

6 Liver Cont 20 µg 0.5% 
milk 

0.5% 
milk 

WCL N 1/ 1000 1/1000 No bands  No bands  

 Liver Cont 20 µg 0.5% 
milk 

0.5% 
milk 

WCL N 1/ 1000 1/ 2000 No bands  No bands  

 Liver Cont 20 µg 0.5% 
milk 

0.5% 
milk 

WCL N 1/ 1000 1/ 5000 No bands  No bands  

 Liver Cont 20 µg 2% 
BSA 

2% 
BSA 

WCL N 1/ 1000 1/ 2000 No bands  No bands  

              

8 Liver Cont 20 µg 1% 
BSA 

1% 
BSA 

WCL N 1/ 1000 1/ 2000  No Block  No Block 

 Liver Cont 20 µg 1% 
BSA 

1% 
BSA 

WCL N 1/ 1000 1/ 5000  No Block  No Block 

 Liver Cont 20 µg 2% 
BSA 

2% 
BSA 

WCL N 1/ 1000 1/ 2000  No Block  No Block 
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No Tissue 
depot 

Sample Protein 
conc 

Block Dilutn WCL/ 
MF 

heat 1° conc 2° conc Adipo R1 bands Description Adipo R2 bands Description 

9 Liver Cont x3 20 µg 1% 
BSA 

1% 
BSA 

MF N 1/ 1000 1/ 5000  No Block  No Block 

 Liver LPS x3 20 µg 1% 
BSA 

1% 
BSA 

MF N 1/ 1000 1/ 5000  No Block  No Block 

 Liver Cont x3 20 µg 1% 
BSA 

1% 
BSA 

MF N 1/ 1000 1/ 5000  No Block  No Block 

 Muscle Cont x3 20 µg 1% 
BSA 

1% 
BSA 

MF N 1/ 1000 1/ 5000  No Block  No Block 

               

10 Liver Cont x3 20 µg 5% 
milk 

1% 
milk 

MF N 1/ 1000 1/ 5000 72 kDa Clean Blot 
5 FBs 
10 VFBs 

72 kDa 
 

Clean Blot 
5 FBs 
10 VFBs 

10 
 

Muscle Cont x3 20 µg 5% 
milk 

1% 
milk 

MF N 1/ 1000 1/ 5000 No Bands Clean blot 43 kDa Clean Blot 
5 VFBs 
10VFBs 

              

11 Liver 
 
 
 
 

Cont x3 20 µg 5% 
milk 

1% 
milk 

MF N 1/ 1000 1/ 5000 No bands Clean blot 72 kDa 
 

Clean Blot 
5 SBs 
10MBs 

11 Muscle Cont x3 20 µg 5% 
milk 

1% 
milk 

MF N 1/ 1000 1/ 5000 No bands Clean blot 43 kDa CB 
5 SBs 
10 SBs 
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No Tissue 
depot 

Sample Protein 
conc 

Block Dilutn WCL/ 
MF 

heat 1° conc 2° conc Adipo R1 bands Description Adipo R2 bands Description 

12 Liver Cont 20 µg 5% 
milk 

1% 
milk 

MF N 1/ 1000 1/ 5000 No Bands Clean blot 72 kDa 5 SBs 
10 SBs 

 Liver Cont 20 µg 5% 
milk 

1% 
milk 

MF Y 1/ 1000 1/ 5000 No bands Clean blot 72 kDa 5MBs 
10  MBs 

 Liver Cont 20 µg 3% 
milk 

0.5% 
milk 

MF N 1/ 1000 1/ 5000 No Bands Clean blot 72 kDa 5  MBs 10  
MBs 

 Liver Cont 20 µg 3% 
milk 

0.5% 
milk 

MF Y 1/ 1000 1/ 5000 No Bands Clean blot 72 kDa 5  MBs 10  
MBs 

 Liver Cont 20 µg 0.5% 
milk 

0.5% 
milk 

MF N 1/ 1000 1/ 5000 No Bands Clean blot 72 kDa 5 SBs 
10 VSBs 

 Liver Cont 20 µg 0.5% 
milk 

0.5% 
milk 

MF Y 1/ 1000 1/ 5000 No Bands Clean blot 72 kDa 5 VSBs 
10 VSBs 

 Liver Cont 20 µg 3% 
milk 

1% 
milk 

MF N 1/ 1000 1/ 5000 No Bands Clean blot 72 kDa 5 VSBs  10 
VSBs 

 Liver Cont 20 µg 3% 
milk 

1% 
milk 

MF Y 1/ 1000 1/ 5000 No Bands Clean blot 72 kDa 5 VSBs 10 
VSBs 

               

13 Liver Cont 20 µg 5% 
milk 

1% 
milk 

MF N 1/ 500 1/ 2000 No Bands Clean blot 72 kDa 5 VSBs 10 
VSBs 

 Muscle Cont 20 µg 5% 
milk 

1% 
milk 

MF N 1/ 500 1/ 2000 No Bands Clean blot 72 kDa 
 
 
43 kDa 

5 VSBs 10 
VSBs 
5 VSBs 10 
VSBs 

              

13.
5 

Liver Cont 20 µg 1% 
BSA 

1% 
BSA 

MF N 1/ 500 1/ 2000  PB  PB 

 
 
 

Muscle Cont 20 µg 1% 
BSA 

1% 
BSA 

MF N 1/ 500 1/ 2000  PB  PB 
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Abbreviations 1: 1 minute exposure, 5: 5 minute exposure, 10: 10 minute exposure, 20: 20 minute exposure, 40: 40 minute exposure, CB : clean blot, FBs: faint bands. MBs: medium bands, SBs: strong bands, VSBs: 
very strong bands, kDa: Kilodaltons, WCL: whole cell lysate, MF: Membrane fractionation 

No Tissue 
depot 

Sample Protein 
conc 

Block Dilutn WCL/ 
MF 

heat 1° conc 2° conc Adipo R1 bands Description Adipo R2 bands Description 

   WASH SOLU TION CHA NGE D TO TTBS     

14 Muscle LPS x3 15 µg 1% 
milk 

0.5% 
milk 

WCL N 1/ 200 1/ 2000 43 kDa Poor Blot 
5 MBs 
10 SBs 
20 VSBs 40 
VSBs 

43 kDa Clean Blot 
5 NBs 
10-40  MBs 
 

 Muscle Cont x3 15 µg 1% 
milk 

0.5% 
milk 

WCL N 1/ 200 1/ 2000 43 kDa Poor Blot 
5 MBs 
10 SBs 
20 VSBs 40 
VSBs 

43 kDa Clean Blot 
5 NBs 
10-40  FBs 
 

15 
 

    EXPE RIME NT DID NOT WORK    

              

16 Muscle LPS x3 15 µg 1% 
milk 

0.5% 
milk 

WCL N 1/ 200 1/ 2000 No Bands Clean Blot 43 kDa 1, 5 20 
VSBs 

 Muscle Cont x3 15 µg 1% 
milk 

0.5% 
milk 

WCL N 1/ 200 1/ 2000 No Bands Clean Blot 43 kDa 1, 5 20 
VSBs 

              

17 Muscle LPS x3 15 µg 1% 
milk 

0.5% 
milk 

WCL N 1/ 200 1/ 2000 No Bands Clean Blot 43 kDa 1, 5 20 
VSBs 

 Muscle Cont x3 15 µg 1% 
milk 

0.5% 
milk 

WCL N 1/ 200 1/2000 No Bands Clean Blot 43 kDa 1, 5 20 
VSBs 

 Liver Cont x3 15 µg 1% 
milk 

0.5% 
milk 

WCL N 1/ 200 1/2000 No Bands Clean Blot CB No Bands 
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Appendix 4: Human biochemical and haematological test normal values 

White cell count (WCC): 4.5-10 x 109 cells/L 

C-reactive protein (CRP): <5 mg/L 

Haemoglobin (Hb):  Male:  13.8-18 g/dL, Female: 12-15 g/dL 

Creatinine (Creat): 50-130 µmol/L 

Urea: 2.5-7 mmol/L 

Bilirubin (Bili): 2-17 µmol/L 

Glucose (gluc): 3.5-5.0 mmol/L 

Lactate: 0.5-2.2 mmol/L 
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