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Abstract 

The prediction of sound and vibration transmission in built-up structures is 

important for human comfort, health and safety. For structural reasons, 

engineering structures often incorporate periodic ribbed plates to increase stiffness 

and stability whilst reducing the weight. However, vibration propagation on 

periodic ribbed plates is complex due to the existence of stop/pass bands. This 

thesis is concerned with predicting vibration transmission between isotropic, 

homogeneous plates and periodic ribbed plates. The objectives are to investigate 

the use of Statistical Energy Analysis (SEA) and develop and validate advanced 

SEA (ASEA) using ray tracing to incorporate tunnelling mechanisms.  

Two approaches were considered for modelling the periodic ribbed plate: either 

representing it as a single subsystem or representing each bay as a single 

subsystem in the high-frequency range (above the fundamental local mode of the 

bay). In the low-frequency range (below the fundamental local mode of the bay) 

Finite Element Methods (FEM) and laboratory experiments show that the periodic 

ribbed plate can be adequately modelled in SEA using wave approaches from 

periodic structure and orthotropic plate theories. In the high-frequency range a 

significant decrease in energy along successive bays was identified using FEM 

leading to the conclusion that it is not appropriate to model a periodic plate as a 

single subsystem. SEA models were therefore investigated that treated each bay as 

an individual subsystem using wave theory. For different L-junctions formed from 

an isotropic, homogeneous plate and a periodic ribbed plate, SEA significantly 

underestimated the response in the bays. Experimental SEA (ESEA) was used to 

investigate these discrepancies which confirmed the existence of tunnelling 

mechanisms between physically unconnected subsystems. In contrast to SEA 

which gave errors up to 60 dB for the furthest bay from the junction, ASEA gave 

errors less than 6 dB when the mode count for the bay was greater than five. 

A range of two- and three- plate structures with different periodic ribbed plates or 

periodic folded plate have been modelled with ASEA. The results all lead to the 

conclusion that ASEA can successfully incorporate tunnelling mechanisms and 

provide a significantly more accurate approach to predicting high-frequency 

vibration transmission across periodic ribbed plates than SEA.  
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1 Introduction   

1.1 Background and motivation 

The ability to predict sound and vibration transmission in built-up structures such 

as buildings, ships, trains and automobiles is important for human comfort, health 

and safety. It is also the result of stringent legislation introduced in many 

countries by specifying a maximum allowable sound pressure level or vibration 

level to provide a safe and comfortable environment (for example, see [1] for ship 

noise legislation, [2, 3] for automobile industries and [4] for building design). In 

addition, for existing structures with high levels of sound and vibration, an 

understanding of the transmission mechanisms is needed to make effective noise 

or vibration control decisions.  

For structural reasons, engineering structures often incorporate periodic ribbed 

plates to increase the strength, static stiffness and stability whilst reducing the 

weight. In terms of vibration propagation on periodic ribbed plates, they often 

exhibit a stop/pass band feature where in certain frequency bands (stop bands) 

waves cannot propagate and will attenuate exponentially and in other frequency 

bands (pass bands) waves can propagate freely [5]. To-date there has been limited 

focus on the wave transmission in built-up structures when periodic ribbed plates 

are incorporated. Therefore, the primary motivation for this thesis is to predict 

sound and vibration transmission in built-up structures that comprise both 

isotropic, homogeneous plates and periodic ribbed plates. The research in this 

thesis is purely on vibration transmission. 

In engineering fields, two approaches are generally used for predicting vibration 

transmission in built-up structures; either deterministic or statistical methods. The 

most common deterministic approach is the Finite Element Method (FEM) [6]. At 

low frequencies (large wavelengths), FEM can provide quick, efficient 

calculations of the structural response. However at high frequencies (small 

wavelengths), deterministic models can be impractical due to the high 

computational cost and the fact that the uncertainty in describing the physical 

properties of the structure meaning that it is not possible to accurately predict the 

response at any one point on the structure. For this reason, statistical approaches 
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are used at high frequencies, such as Statistical Energy Analysis (SEA) [7]. SEA 

predicts the spatial-average energies on subsystems that represent cavities, beams 

or plates. Calculation of the energy flow between subsystems requires 

determination of statistical parameters such as coupling loss factor. Although, 

experimental techniques either from physical or numerical experiments are 

studied to obtain this parameter (for example, Bies and Hamid [8] and Hopkins 

[9]), theoretical models based on a wave approach are most commonly used to 

determine coupling loss factors.  

Theoretical analysis using a wave approach is often applied to structures formed 

from simple and continuous elements such as plates, shells or beams. However, 

wave theory is well-suited to modelling sound and vibration transmission across 

isolated junctions rather than large built-up structures which incorporate periodic 

ribbed plates.  

Combining the wave approach and Bloch theory, Tso and Hansen [10] considered 

an L-junction comprised of a periodic ribbed plate and an isotropic homogeneous 

plate. This allowed them to model the periodic ribbed plate as a single subsystem 

whilst incorporating stop/pass band feature of the periodic structure. This thesis 

will reconsider the validity of using such an approach at high frequencies through 

comparison with FEM and measurements. 

Langley [11] proposed Wave Intensity Analysis (WIA) for high frequency 

vibration problems where SEA was significantly in error due to the absence of 

diffuse fields. In WIA, the directional wave intensity is represented by a Fourier 

series, and the order of the Fourier series is calculated from the associated power 

balance equation. For the first order of Fourier series, WIA is equivalent to SEA. 

For coupled subsystems where there is a spatial wave filtering effect at the 

interface of the subsystem, SEA can significantly underestimate the energy 

transmission across the subsystems. WIA is able to take into account spatial 

filtering and in situations where the subsystems do not have diffuse fields, 

provides considerable improvement to SEA.  

It has been proposed that the inadequacies of SEA could be overcome by using 

indirect coupling loss factors between physically unconnected subsystems. 

Langley and Bercin [12] proposed that WIA can also be cast into the form of SEA 
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with the addition of indirect coupling loss factors. The existence and importance 

of indirect coupling loss factors has also been discussed by Mace [13], Blakemore 

et al. [14, 15] etc. This topic is considered in a more detailed review of the 

literature in section 2.4.1. 

Heron [16] proposed that indirect coupling loss factors (referred to as a tunnelling 

mechanism) could be incorporated by using ray tracing in an advanced form of 

SEA (ASEA). Heron validated ASEA using an in-line array of beams and made a 

proposal for its extension to plate systems. However, the latter was not 

implemented and validated and no published literature using ASEA for plate 

systems has been found. In addition, neither ASEA nor WIA has previously been 

considered for periodic ribbed plates. Hence in this thesis, ASEA is implemented 

to assess its potential to incorporate indirect coupling in structures formed from 

isotropic, homogeneous plates and periodic ribbed plates.  

 

1.2 Objectives  

This thesis is concerned with the prediction of vibration transmission between 

isotropic, homogeneous plates and periodic ribbed plates. The main objectives are 

to develop and validate a methodology using SEA or ASEA for the analysis of 

isolated plate junctions and to incorporate this approach in the modelling of larger 

built-up structures. The validation will initially be carried out using FEM, and 

then confirmed with physical experiments. Two distinct frequency ranges will be 

considered for the periodic ribbed plate: a low-frequency range where the plate 

can be modelled as a single subsystem (either as an orthotropic plate or 

incorporating periodic theory) and a high-frequency range where each bay on the 

ribbed plate can be modelled as a subsystem in an SEA or ASEA model. 
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1.3 Chapter layout 

The layout of the chapters in this thesis is as follows. 

Chapters 2, 3, 4 and 5 predominantly describe the theory that is used in the thesis. 

Chapter 2 reviews the prediction of structure-borne sound transmission using 

statistical approaches based upon statistical energy analysis. This includes 

experimental statistical energy analysis which is used with the output from finite 

element models to determine structural coupling parameters. This chapter 

describes an advanced from of statistical energy analysis (ASEA) which is used in 

this thesis to incorporate tunnelling mechanisms. 

Chapter 3 discusses the vibration field on isotropic and orthotropic plates for 

bending and in-plane waves. 

Chapter 4 focuses on descriptions of vibration propagation on periodic ribbed 

plates of infinite extent. It investigates the role of pass and stop bands on periodic 

ribbed plates which are further explored in terms of the natural frequencies of the 

bays formed between the ribs using receptance method. The analysis in this 

chapter is needed to calculate coupling loss factors for SEA models which treat 

the periodic ribbed plate as a single subsystem. 

Chapter 5 presents theoretical models for wave transmission between coupled 

plates across structural junctions considering bending only models and bending 

and in-plane wave models. 

Chapter 6 applies SEA, ESEA and ASEA with the main aim of predicting 

vibration transmission through L-junctions comprising an isotropic, homogeneous 

plate and a periodic ribbed plate. In this chapter, these models are validated 

against numerical experiments with FEM. 

Chapter 7 contains the validation of SEA, ESEA and ASEA using physical 

experiments on L-junctions in the laboratory.  
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Chapter 8 applies ASEA to other L-junctions with different damping and different 

periodic features to further prove the validity of ASEA. It also investigates the 

validity of using ASEA on larger structures that incorporate these L-junctions.  

Chapter 9 contains the conclusions and considers future work.   

The novelty and originality in this thesis stems from demonstrating that indirect 

coupling is important for structure-borne sound transmission at high frequencies 

involving individual bays on a periodic plate when each bay supports local modes. 

The thesis shows that the assumption that the periodic ribbed plate can be treated 

as a single subsystem in SEA at high frequencies can be invalid due to a 

significant decrease in vibration across the ribs. To model this behaviour, ASEA 

has been implemented as described by Heron [16] and adapted to ribbed plates 

with long narrow bays in order to incorporate tunnelling mechanisms. ASEA has 

subsequently been validated using both FEM and laboratory experiments.   
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2 Statistical and numerical models for structure-borne sound 

transmission: SEA, ESEA, ASEA and FEM  

2.1 Introduction 

In engineering, numerical methods such as Finite Element Method (FEM) are 

often used to predict the modal response of complex structures. However, the 

large size of the models and expense in computation resources often limit the 

accurate prediction to relatively low frequencies with large wavelength. For small 

wavelengths at high frequencies, uncertainties arise in FEM due to the high 

sensitivity of mode shapes and modal resonant frequencies to small variations of 

the geometry. Similarly, numerical methods are known to be rather inaccurate 

with high order of modes, even for idealized models [17].  

Due to uncertainties and large computational expense using FEM at high 

frequencies, statistical methods such as Statistical Energy Analysis (SEA) are 

developed to calculate the response of the systems using statistical modal 

parameters. As a result, a large structure is divided into subsystems which are 

expressed using statistical modal parameters, and then responses of the system are 

calculated in terms of total time-average distribution of energy among subsystems 

rather than exact displacements or forces. The average response of subsystems 

using SEA is more reliable than the numerical prediction since it eliminates the 

effects of small variations of the structure. This is extremely useful at the design 

stage where the details of the structures are not available to engineers. Since the 

development of SEA by Lyon in the 1960s [18], it has been widely and 

successfully applied in various engineering fields such as buildings, aerospace, 

naval and automobile industries.  

This thesis is based around the use of statistical methods as a framework of 

analysis for structure-borne sound transmission in built-up structures. Hence this 

chapter describes such methods, namely Statistical Energy Analysis (SEA), 

Experimental Statistical Energy Analysis (ESEA) and Advanced Statistical 

Energy Analysis (ASEA). The latter is used to incorporate tunnelling mechanisms 

between physically unconnected subsystems. The thesis uses numerical 

experiments with Finite Element Method (FEM) to provide the data to test the 
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statistical approaches and therefore the approach to FEM is also described in this 

chapter.  

2.2 Statistical Energy Analysis (SEA) 

2.2.1 Literature review  

This section reviews the literature relating to the concepts, main assumptions of 

and some limitations of SEA.  

2.2.1.1 Concepts and assumptions  

The origins of SEA concern the analysis of a linear system comprised of two 

‘weakly’ coupled oscillators excited by independent broadband random noise [7]. 

It is found that power flow is proportional to the difference in energies of 

uncoupled resonators and it always flows from the resonator with higher energy to 

the one with lower energy. The analysis was extended to solve more complicated 

multi-modal subsystems under the assumption that the energy flow between two 

multi-modal subsystems is proportional to the difference in their modal energies. 

However, this statement can only be justified under the following assumptions 

[17]: 

(1) ‘Weak’ or ‘light’ coupling between subsystems  

In a modal approach, weak coupling can be considered to occur when the local 

modes of an uncoupled subsystem hardly change when it is coupled to other 

subsystems so that energy flow can be related to the local modal energies [19]. In 

terms of waves, weak coupling requires the wave field incident upon either side of 

the junction between two subsystems to be incoherent [20]. In the case of weak 

coupling, the energy flow is only dependent on the local properties of the 

subsystems, whilst if it is strong coupling, energy flow between subsystems is 

largely dependent on the global properties of the system where standard SEA 

formulation will no longer hold. Various criteria have been proposed to evaluate 

the validity of the condition of weak coupling and the applicability of SEA in 

previous studies. Langley [21, 22] proposed a definition of weak coupling where 

the difference between the Green function of a coupled subsystem and that of the 

uncoupled subsystem is sufficiently small. Fahy and James [23, 24] extended 
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Langley’s definition and proposed a practical method to determine the strength of 

coupling between two subsystems by using the time delay in the rise of kinetic 

energy of one subsystem when an impulsive excitation is injected to the other 

subsystem. Mace [25] gave a simple evaluation of coupling strength both from the 

modal analysis and the wave analysis. All of these methods try to ensure a 

well-conditioned energy response matrix in SEA for the matrix inversion.  

(2) Equipartition of modal energy in subsystems 

This assumption means that each mode of the subsystem carries equal amount of 

energy. The modal responses for subsystems are also assumed to be incoherent. 

To satisfy these assumptions requires a selection of similar mode groups to form 

subsystems often based on the similarity of geometries of the structures. It is often 

considered that subsystems with low damping tend to get close to the condition of 

equipartition of modal energy. The extreme situation of ‘true’ equipartition of 

modal energies can only be achieved when the subsystem damping is zero [7].   

However, Yap and Woodhouse [26] indicated a contrary conclusion against the 

classical SEA prediction that subsystems with low damping didn't always yield 

equipartition of the modal energies and SEA could significantly overestimate the 

modal energies of those subsystems that are not physically connected to the 

source subsystem (for example, a chain of subsystems).  

(3) Subsystem response to be dominated by the reverberant field 

Under this assumption, the energy in a subsystem can be considered uniformly 

distributed. With highly damped subsystems, however, this assumption will not be 

true.  

(4) Equal probability of natural frequencies occurring in the interested 

frequency bands 

This assumption means that each subsystem is a member of a population of 

systems that are generally physically similar, but different enough to have 

randomly distributed parameters [18].  

(5) Statistically independent excitation on subsystems  
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Such excitation applies equal modal forces to all the subsystem modes and injects 

energy into the direct wave field equally at all points of the excited subsystem [27] 

so that the basic SEA assumption of equal partition of modal energies among 

subsystems is satisfied. Statistically independent excitations are described as over 

the plate surface with constant amplitude but with phase randomly distributed 

with location. Under this type of excitations, the energy response can be 

calculated by summing the energy response due to excitation applied to each point 

in the excited subsystem [28]. It can be realized using rain-on-the-roof excitation 

where the complex forces are delta-correlated, broadband excitations applied on 

the subsystem with magnitude at any location proportional to the local mass 

density and the phase follows a uniform probability in the range of (0, 2π). Ideal 

rain-on-the-roof can excite the local modes of the excited subsystem equally [28].  

 

2.2.1.2 Limitations  

Limitations of SEA result from the constraints of the assumptions that the 

development of SEA is based upon.  

SEA can only give the estimate of the statistically averaged global response for a 

subsystem and cannot predict the distributions of the energy field. This may cause 

significant error or even the failure of SEA if the local response within a 

subsystem dominates the total response instead of the global response. In other 

words, the assumption of equipartition of modal energies is not satisfied. 

Therefore, additional procedures need to be taken in order to incorporate the large 

local response. This assumption of equipartition of modal energies in the 

modelling was removed by Maxit and Guyader [29] by incorporating the modal 

energy distribution in the SEA formulation. The modal information of subsystems 

needs to be calculated and for complex structures, this can be achieved using the 

Finite Element Method (FEM). This procedure is only applied to those 

subsystems for which equipartition doesn't occur. The rest of the subsystems are 

modelled using classical SEA theory.   

Another issue that limits the application of SEA is in frequency bands where the 

subsystems have low mode count and low modal overlap (more discussions see 
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section 2.2.4). Craik et al. [30] discussed the application of SEA at low 

frequencies where low mode count and modal overlap occurs. Theoretical models 

by spatially averaging the mobilities of the subsystem were used to determine the 

coupling loss factors. It was stated that “modal properties of the receiving 

subsystem affect coupling between two subsystems”. Large fluctuations of 

coupling loss factors from the measurements were observed at low frequencies 

and they seemed to follow the same manner as the mobility of the receiving 

subsystem. The theoretical method was also able to give the upper and lower limit 

of coupling loss factor at low frequencies. Hopkins [31] investigated the 

application of SEA for different structural junctions with low modal overlap and 

mode count. It was shown that small variation of material properties can cause 

significant differences in the coupling parameters. Therefore, it is necessary to use 

numerical or experimental ensemble average to determine the coupling loss 

factors instead of one single deterministic analysis.  

The assumption of weak coupling is also one of the concerns in the application of 

SEA as in many engineering structures the coupling between subsystems can be 

considered as ‘strong’.  Although weak coupling has been considered as one of 

the basic assumptions in the derivation of SEA, Scharton and Lyon [32] showed 

that this assumption could actually be removed in SEA by redefining the 

subsystem ‘blocked’ energies. Mace and Rosenberg [33] related the coupling 

strength to the damping of the subsystems and it was indicated that when the 

coupling is strong (small damping), more information is needed for each 

subsystem than normal SEA in order to give accurate predictions (i.e. the coupling 

loss factor results can be sensitive to the shape of the subsystem).   

 

2.2.2 General formulation of SEA 

The SEA model is based on energy balance for groups of resonant modes within a 

structure. A complex built-up structure is modelled as an assembly of coupled 

mode groups named subsystems. The modes for each subsystem are considered 

statistically and the calculated responses are spatial averaged energies for each 

subsystem. As the response of a subsystem is based on its resonant modes, SEA 

should be used at frequencies above the fundamental mode of the subsystem.  
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Figure 2.1 illustrates a general linear system consisting two subsystems in SEA. 

The direction of energy flow is represented by arrows. The input power is applied 

to subsystem 1 as Win, the transferred power between subsystem 1 and 2 is 

labelled as W12 and W21, and the dissipated powers for the two subsystems are 

labelled as W1d and W2d.   

Conservation of energy requires that the energy entering one subsystem must 

equal the energy leaving that subsystem. Energy leaving each subsystem is partly 

transferred to other coupled subsystems and partly dissipated due to internal 

losses such as damping. The power balance equations for the system in Figure 2.1 

can be expressed as: 

in 21 1d 12W W W W    (2.1) 

12 21 2dW W W 
 (2.2) 

          

Figure 2.1 Schematic of a two-subsystem model 

 

The power transfer from subsystem 1 to subsystem 2, W12, can be expressed in 

terms of coupling loss factor, η12 which in SEA is defined as the fraction of 

energy transferred per radian cycle and the energy in subsystem 1, E1 as: 

12 12 1W E  (2.3) 

 

  

W12
 

Subsystem 1 Subsystem 2 

W21
 

Win
 

W1d
 

W2d
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Dissipated power within subsystem 1 due to internal damping can be quantified 

using the internal loss factor, η11: 

1d 11 1W E  (2.4) 

Substituting equations (2.3) and (2.4) into equations (2.1) and (2.2), a matrix form 

of the power balance equations can be written as: 

11 12 21 1in

12 21 22 20

EW

E

  


  

     
     

          

 (2.5) 

The above matrix equation can be extended to a more general form for an SEA 

model with N subsystems as shown in equation (2.6).  
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 

 








 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 1

2

N

E

E

E  
 
 
 
 
 
 
 
 

 (2.6) 

where Wi  is the input power into subsystem i and Ei is the energy of subsystem i.  

If the input powers and the loss factors are known, energies for all subsystems can 

be calculated using matrix inversion.  

The leading diagonal elements of the N×N matrix in equation (2.6) characterize 

the total power leaving each subsystem, and define the total loss factor, ηi: 

1 1

=
N N

i ik ii ik

k k
k i

   
 



    (2.7) 
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The total energy Ei can also be expressed using modal energy ei as average energy 

per mode: 

/i i ie E n  (2.8) 

where ni is the modal density of subsystem i, which can be a function of frequency. 

Equation (2.6) can now be rewritten in terms of modal energy as: 
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  (2.9) 

where e is a column vector of modal energies: 

 
T

1 1 2 2/ / /N NE n E n E ne  (2.10) 

 

2.2.3 Determination of subsystems 

Subsystems are often defined on the basis of the similarity of the physical 

components and the existence of the physical boundaries of the whole system. 

However, this is not always appropriate. For example, sometimes the definition of 

a subsystem will change depending on the frequency range under consideration.  

Structural subsystems such as plates and beams can often support more than one 

wave type, e.g. a plate can support bending, quasi-longitudinal and transverse 

shear motion at the same time [34]. As each wave type will result in a group of 

modes with different properties and energies, they have to be considered as 

separate subsystems in the SEA model. These subsystems may also be coupled to 

each other at structural junctions where the conversion of wave types occurs.  
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2.2.4 Modal density and modal overlap 

Since SEA calculates the energy power flow between groups of modes, modal 

density is an effective measure of the energy storage capability of a subsystem. 

Modal density, n(f), describes the number of modes ∆N in a frequency band ∆f 

with central frequency f. Frequency-average modal density is defined as: 

0 0

( ) ( )
( ) lim = lim

N N f f N f
n f

f f    

  


 
 (2.11) 

Statistical mode counts, N(f), can be determined in wavenumber space [7] for 

equation (2.11), or alternatively, the modal density can be determined using 

theoretical, numerical or experimental methods.  

Although theoretical modal densities can be used for simple homogeneous 

elements, many structures are not homogeneous or are sufficiently complex to 

model that experimental methods are the only practical method to obtain the 

modal densities.   

Modal densities can be estimated using equation (2.12) from either numerical or 

physical experiments to determine the driving-point mobility such as the method 

discussed by Clarkson and Pope [35] using the equation as: 

 
2

1
S

2 1

1
( ) 4 Re d

f

f
n f S Y

f f
 

   (2.12) 

Where Re{Y} is the real part of the driving-point mobility. n(f) gives a band-

averaged modal density in the frequency band with lower and upper limits f1 and 

f2 and centre frequency f. 

For simple structures, the driving-point mobility can also calculated using 

theoretical models. 

(1) Driving-point mobility for infinite thin plates  
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For an infinite thin plate, the driving-point mobility is real and given by 

Cremer et al. [34] as: 

dp

p s

1
=

8
Y

B 
 (2.13) 

where Bp is the bending stiffness of the plate.  

(2) Driving-point mobility for rectangular thin plates  

For a rectangular thin plate with dimensions of Lx×Ly×hp, the driving-point 

mobility at position (x, y) can be calculated using the modal summation method 

[36]: 

2

dp 2 2
=1 =1

( , )
( , )=

(1+ )-

mn

m n p x y mn

x y
Y x y i

h L L i




   

 

  
  (2.14) 

where η is the damping loss factor of the plate and ( , )mn x y  is the mode shape of 

the (m, n)
th

 mode and mn is the corresponding natural frequency, which can be 

calculated using the equation given by  Warburton [37]: 

22

p

2
=

12 (1- )
mn mn

x

Eh
q

L




 

 
 
 

 (2.15) 

where E, ρ, μ are the Young’s modulus,  density and Poisson’s ratio of the plate 

respectively, and  qmn can be calculated from: 

4 4 4 2= ( )+ ( )( / ) 2( / ) [ ( ) ( )+(1+ ) ( ) ( )]mn x y x y x y x y x yq G m G n L L L L Q m Q n J m J n   

 (2.16) 
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The parameters Gx, Qx, Jx and Gy, Qy, Jy are given in Table 1 for free-free (FF) and 

simply-supported-simply-supported (SS) boundary conditions along two opposite 

edges of the plate.  

The mode shape ( , )mn x y can be calculated from characteristic beam functions 

for x- and y-directions given in [38]: 

( , ) ( ) ( )mn x y x y    (2.17) 

where the characteristic beam function for simply-supported boundary conditions 

can be calculated from [38]: 

( ) 2 sinm

x

m x
x

L




 
  

  ,     

( ) 2 sinn

y

n y
y

L




 
   

 

 (2.18) 

N.B. The use of beam functions for free-free boundary conditions results in errors 

(particularly for the low order modes) as noted by Leissa [39]. However, this 

boundary condition is not used to determine the driving-point mobility in this 

thesis.  

Modal overlap describes the degree of overlap in modal response and is defined 

by the ratio of the half-power bandwidth to the average frequency spacing 

between mode frequencies [7]. It is often used to assess whether various forms of 

modelling are appropriate in SEA [31]. The modal overlap factor of subsystem i, 

Mi, can be calculated from the modal density and total loss factor of the subsystem 

as shown in equation (2.19) [7] as:  

( ) ( )i i iM f f n f  (2.19) 

 

When the plates and/or beams are coupled with each other to form a more 

complicated structure, geometric mean modal overlap, Mav, can be used to 
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evaluate the modal overlap proposed by Fahy and Mohammed [40]. For two 

subsystems i and j, Mav can be calculated from: 

av i jM M M  (2.20) 

 

 

Table 1: Mode parameters for rectangular thin plate used to calculate natural 

frequencies  

Boundary 

condition  

Mode 

number 

(n) 

 G(n) Q(n) J(n) 

Free-Free 

1 

2 

3 

n (n>3) 

0 

0 

1.506 

n-1.5 

0 

0 

1.248 

2
( 1.5) 1

( 1.5)
n

n 

 
  

 

 

0 

1.216 

5.017 

2 6
( 1.5) 1

( 1.5)
n

n 

 
  

 
 

Simply-

supported

- Simply-

supported 

1 

2 

3 

n (n>3) 

0 

2 

3 

n 

0 

4 

9 

2n  

J=Q 
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2.2.5 Internal loss factor 

For structural vibration problems, the internal loss factor often describes the 

material damping. Internal loss factors are generally obtained experimentally by 

measuring the energy dissipation in each subsystem while it is decoupled from the 

whole structure. The internal loss factors vary with the wave types, but in noise 

control, bending waves are usually the primary concern as they are the main cause 

of sound radiation.  

The reverberation time, T, is commonly used to measure internal loss factors for 

subsystems that are isolated from the whole system. The reverberation time is the 

time needed for the subsystem response to drop by 60 dB after the excitation has 

been interrupted. The experimental measurement of reverberation time is 

discussed in section 7.2. The relationship between the reverberation time and the 

internal loss factor for subsystem i, ηii, is given by Cremer et al. [34], which is 

expressed as: 

2.2
=ii

fT
  (2.21) 

When T is measured in-situ where the subsystem is coupled to other subsystem(s), 

instead of internal loss factor, the total loss factor of the subsystem is obtained:  

1

2.2
=      ( )

N

i ii ij

j

i j
fT

  


    (2.22) 

Although equation (2.22) is used for the evaluation of the total loss factors, if the 

internal loss factor is much larger than the sum of the coupling loss factor, this 

equation can also be used to give an estimate of the internal loss factors. Note that 

the sum of the coupling loss factors 
1

N

ij

j




 is not only dependent on the number of 

subsystems that are coupled to subsystem i, but also dependent on the frequency. 

Therefore when equation  (2.22) is used to estimate the internal loss factor, it may 

give a good estimation in certain frequency range but inaccurate prediction at 

frequencies outside this range.  
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2.2.6 Coupling loss factor 

The subsystems are coupled together in SEA to allow the transfer of energy. This 

coupling can be quantified by Coupling Loss Factor (CLF) which describes the 

fraction of energy transmitted from one subsystem to another per radian cycle. 

The evaluation of coupling loss factors is a key process in SEA modelling and 

they can be determined either from theoretical or experimental approaches.      

(1) Theoretical determination of coupling loss factors  

Most models in this thesis consider the coupling between two plate subsystems 

along a line junction, such as the structure shown in Figure 2.2. The energy 

intensity in plate i, dIi(θ) in the angle range of (θ, θ+dθ) can be calculated from: 

g, 

d
d ( ) ( )i i iI c D


  


 (2.23) 

Where εi 
is energy density over the plate surface as εi =Ei / Si (Si is the surface area 

of the plate and Ei is the energy of subsystem i). cg, i is the group speed of 

subsystem i which is used to describe the velocity at which energy is conveyed 

along the wave. Θ is the range of wave angles (i.e. for a diffuse field, Θ=2π). D(θ) 

is a weighting function concerning the probability of wave propagation directions 

[7]. If subsystem i is an isotropic plate and characterized by a diffuse field so that 

waves have equal probability over of all directions, D(θ) =1 is applied. The 

intensity impinging upon the junction line only considers the projection along the 

coupling length. If the wave transmission across the junction is characterised by 

an angle-dependent transmission coefficient τij(θ) as dIj=τij(θ)dIi, the total power 

transferred from  plate i to j can be calculated from: 

/2

/2

( ) cos d ( )ij ij ij iW L I





   


   (2.24) 

Where Lij is the length of the coupling line, Lijcos(θ) represents the projection of 

the intensity onto the junction line.  
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Figure 2.2   Two plates coupled though a line junction 

 

Using equation (2.23),  (2.24)  can be rewritten as: 

/2
g, 

0

( )cos d
i i ij

ij ij

i

E c L
W

S



   


   (2.25) 

Putting equation (2.25)  into (2.3), the coupling loss factor from subsystem i to j 

can be obtained:  

g, 
 

i ij

ij ij

i

c L

S
 


  (2.26) 

where ij is the angular-average transmission coefficient which can be expressed 

as: 

/2

0

( )cos dij ij



       (2.27) 

Equations (2.26) and (2.27) are only valid for isotropic homogeneous plates due to 

spatially equal distribution of energy over all directions where the weighting 

function D(θ) =1. For orthotropic plates, this criterion no longer holds, so angle-

d ( )iI   

  

d
 

( d ( )ij iI  ）  

Subsystem i 

Subsystem j 
Lij 
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dependent D(θ) needs to be introduced to consider the orthotropicity and is 

derived in Chapter 5.   

 (2) Experimental determination of coupling loss factors  

Coupling loss factors can be evaluated from physical experiments by measuring 

the input power as well as the distribution of the vibration energy, such as the 

works by Lalor [41], Bies and Hamid [42]. This will be discussed in detail in 

Chapter 7.  

Numerical experiments using Experimental Statistical Energy Analysis (ESEA) 

can also be used to calculate coupling loss factors and is discussed in section 2.3.  

 

2.2.7 Consistency relationship  

The consistency relationship in SEA is based on the assumption that there is no 

energy dissipation at the coupling junction. The coupling loss factors between two 

subsystems i and j are related as: 

=i ij j jin n   (2.28) 

Mace [43] pointed out that this relationship only holds when the coupling between 

subsystems is conservative where there is no energy dissipation at the coupling 

junction. It is shown that with non-conservative coupling, significant error may 

occur in using the consistency relationship.  

 

2.2.8 Requirements on dimensions of plate subsystem due to high internal 

losses 

One of the SEA assumptions requires the uniform distribution of energy over each 

subsystem or a reverberant field on the subsystem. If there is a significant 

decrease in energy level in a subsystem due to high internal damping or large 

subsystem size, this assumption will no longer hold. This does not necessarily 

mean that SEA should fail to work as Yap and Woodhouse [26] have shown that 
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if the excitation is distributed over the surface of the subsystem such as rain-on-

the-roof, SEA would still give reasonable prediction despite of the high internal 

damping. However, this situation still needs to be considered in SEA.  

Lyon proposed an upper limit for subsystem size with the aim of significant decay 

with distance within the subsystem with relatively high damping using the 

maximum subsystem dimension, Lmax, i , as [7]:  

,

max,

0.5 g i

i

ii

c
L

f 
  (2.29) 

No derivation or validation of this requirement was provided by Lyon [7]; hence 

an alternative approach is considered below for subsystem representing plates.  

Assuming power input into subsystem i along one of the plate edges, we consider 

another edge that is connected to another subsystem. The average distance that 

wave travels from the starting edge to the coupling edge can be characterized 

using the mean free path, dmfp, which is defined as: 

mfp

S
d

U


  (2.30) 

where U is the perimeter (U=2Lx+2Ly for rectangular plate) and S is the surface 

area. 

A requirement on subsystem damping can be found by assuming that the power 

dissipated due to internal damping must be significantly smaller than the power 

available to be transmitted to other subsystems. Assuming an energy level 

difference of at least 10 dB leads to the following requirement: 

trans

dissipated

10lg 10 dB
W

W
  (2.31) 

If a unity power input is assumed, the power dissipated over the distance of the 

mean free path can be calculated from: 
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dissipated mfp g, exp( 2 / )ii iW f d c    (2.32) 

Therefore, at the coupling edge, the power available for transmission is: 

trans dissipated mfp g, 1 1 exp( 2 / )ii iW W f d c       (2.33) 

Substituting  (2.32) and  (2.33) into(2.31) gives: 

g, 

mfp

1.2 i

ii

c
d

f 
  (2.34) 

If the dimensions of the subsystems are known, equation (2.34) can be used to 

estimate an upper frequency limit that satisfies this criterion. This requires the use 

of the largest mean free path, mfp, =1max{ }N

i id  after evaluating all N subsystems. As 

the group speed is also dependent on the frequency, for bending wave propagation, 

the group speed can be calculated using the following equation given in[34]: 

p L, 

g, B, 2 2
3

i

i i

fh c
c c


   (2.35) 

where hp is the thickness of the plate and cL, i 
is the quasi-longitudinal wave speed 

of the plate subsystem i.  

Then equation (2.34) can be re-written as equation (2.36) to calculate the upper 

frequency limit: 

 
p L,

2

mfp, =1max{ }

i

N

ii i i

h c
f

d
  (2.36) 

Using the above approach, it is found that Lyon’s criterion is actually based on the 

rule that the dissipated power is half of the transmitted power so that instead of a 

10 dB difference in equation (2.31), Lyon chose 3 dB such that the dissipated 
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power is equal to half of the transmitted power and the waving travelling distance 

used the largest dimension of the subsystem instead of mean free path. The 

validity of this requirement will be considered in chapter 6 for specific SEA 

models. 

 

2.3 Experimental Statistical Energy Analysis (ESEA) 

2.3.1 Literature review  

When theoretical determination of coupling loss factors fails due to the 

complexity of the subsystems and coupling junctions, experimental methods such 

as Experimental Statistical Energy Analysis (ESEA) can be used to obtain 

coupling loss factors.   

ESEA is developed from SEA power balance equations to determine the unknown 

loss factors in situ using either physical or numerical experiments. Lyon and 

Dejong [7] proposed the possibility of using both experimental and numerical 

means to predict the coupling loss factor for SEA. By using broad band excitation 

on the source subsystem, the coupling loss factor can be obtained by measuring 

the energies on the source and receiving subsystems. They acknowledged the 

difficulty to predict accurate CLFs with low modal overlap however didn’t 

propose any solutions.  

Many works relating to ESEA focused on how to accurately measure the 

responses of the subsystems that is valid to be used in the frame work of SEA. 

Bies and Hamid [8] proposed a power injection method to measure the coupling 

loss factors in situ based on an inverse SEA procedure. Power was injected using 

point excitation at several randomly chosen positions on each subsystem to ensure 

the statistical independence of modes which is a basic requirement for SEA. For 

each excitation position, the response of the subsystem was measured from ten 

randomly chosen positions and the CLF is calculated from an average of the 

ensemble measurement. They also used the reverberant decay method to measure 

the loss factor in comparison with power injection method which was a steady-

state technique. It was shown that the in situ power injection method for loss 

factor measurement gave good agreement with the steady-state measurement 
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when the subsystem is decoupled from the structure. The steady-state method 

consistently gave higher loss factors than the transient decay method, and this 

discrepancy was explained as because “energy distribution among modes of the 

system (in this case a lightly damped plate) during reverberant decay is not in 

steady state equilibrium” [8]. 

Clarkson and Ranky [44] carried out the similar ESEA procedure proposed by 

Bies and Hamid using transient excitation as power input to determine the 

coupling loss factor between two coupled plates. It is indicated that condition of 

the energy matrix from measurement can significantly affect the accuracy of the 

ESEA prediction. Woodhouse [45] also showed small errors in measurement that 

were used in the ESEA matrix inversion may result in larger error in the 

prediction of loss factors and proposed a matrix-fitting method to assess whether 

the system can be modelled on the basis of SEA.  Clarkson and Ranky [44] 

successfully applied this method to the coupled plates, and Hodges et al. [46] 

optimized the matrix-fitting routines to increase the efficiency and accuracy of 

measurement matrix inversion. However, this method is still largely dependent on 

the accuracy of the measurement data.  

Lalor [41, 47, 48, 49] carried out loss factor measurements by using the power 

injection method but predominantly addressed the problem of ESEA matrix 

condition for large complex structures. The occurrence of an ill-conditioned 

energy matrix is related to the insensitivity of SEA subsystem energy distribution 

to the change of coupling loss factor. The matrix condition can be improved by 

rearranging the SEA power balance matrix to eliminate the internal loss factors 

and the coupling loss factors can be expressed in terms of the measured input 

power and subsystem energies. For complex structures, the calculation of the 

subsystem energies from measurement was discussed by introducing the concept 

of equivalent mass. This can be calculated from measured power input, total loss 

factor and velocity levels of the subsystem [50]. It was also suggested that the 

uncertainty in determining subsystem modal densities can be overcome by using 

the consistency relationship between two subsystems.  

Hopkins [9, 51] applied ESEA by using the data from numerical experiments with 

Finite Element Method (FEM). It was demonstrated that the use of ESEA can be 
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extended to the situation of low modal overlap and mode count by using ensemble 

average.  Bending and in-plane wave conversion at structural junctions was also 

identified by FEM with ESEA as this is often difficult to identify in physical 

experiments.  

2.3.2 Simplified ESEA 

Based on the SEA power balance equations in (2.1) and (2.3), the coupling loss 

factor from subsystem i to j can be estimated by assuming that there is negligible 

power flowing back from j to i and that all transmission takes place along the 

direct transmission path from i to j. This is given by Craik [52]: 

=
j

ij i

i

E

E
   (2.37) 

If the internal loss factor of subsystem i is much larger than the total loss factor of 

this subsystem, equation (2.37) can be further simplified as:   

j

ij ii

i

E

E
   (2.38) 

2.3.3 General ESEA matrix formulation  

The general formulation of ESEA can be expressed in the following form [31]: 
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                                                                                                                                (2.39)      

where Eij is the energy of subsystem i with power input into subsystem j.   
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ESEA requires power input into each of the subsystems in turn and for each 

power input, the spatial averaged energy on all subsystems need to be measured 

and inserted into the ESEA formulation. Determination of the input powers and 

subsystem energies allows inversion of the energy matrix to calculate the coupling 

loss factors.  

The inversion of the matrix may result in some negative coupling loss factors 

which are clearly physically impossible. For the energies and powers measured 

with physical experiments, this may be caused by the measurement uncertainty 

[53]. Sheng et al. [54] investigated negative coupling loss factors in ESEA and 

considered that they could be caused by non-conservative coupling which means 

that there is energy dissipated at the junction which standard SEA does not 

incorporate. If the coupling loss factors are obtained from numerical experiments 

with FEM, errors due to discretization can be evaluated using element mesh error, 

which will be discussed in section 2.5.3. The negative coupling loss factors are 

caused by an ill-conditioned matrix. A possible solution is to rearrange the ESEA 

formulations and mathematically improve the matrix condition. If the negative 

coupling loss factors still occur, they have to be considered as invalid data.   

 

2.3.4 Alternative ESEA matrix formulations 

In order to reduce the chance of having ill-conditioned matrices, one possible 

alternative ESEA formulation is proposed by Lalor [55] as shown in equation 

(2.40) by eliminating internal loss factors in the power balance equations, which 

may increase the matrix condition numbers compared with the general 

formulation.   
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(2.40) 

Using equation (2.40) for each subsystem, one gets N sets of matrix equations for 

the coupling loss factors {ηri} relating to subsystem i. Compared with the standard 

ESEA doing a matrix inversion with N×N size, equation (2.40) reduces the matrix 

size to only (N-1)×(N-1) so that the matrix could be better conditioned.  

The internal loss factors are calculated separately using equation (2.41).  
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Assuming weak coupling, Lalor considered the coupling between physically 

unconnected subsystems to be negligible so that these indirect coupling loss 

factors can be treated as equal to zero. Based on this, equation (2.40) can be 

altered to further improve the matrix condition [47].  

Considering a three-subsystem model shown in Figure 2.3, the subsystems are 

connected in a chain where subsystem 1 and 3 are not directly connected. In the 

absence of indirect coupling, 13 and 31 are set to be zero in the formulation of 

ESEA. 
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Figure 2.3 Three subsystems in a chain 

 

By rearranging and partitioning the matrices in equation (2.40) for three-

subsystem model, all the zero coupling loss factors are placed together      
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(2.42)             

As η13 and η31 are both zero, only the upper left sub-matrix needs to be considered 

and (2.42) can be replaced by (2.43) to calculate the coupling loss factors. 
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Hopkins [31] shows that the general ESEA formulation often gives the lowest 

condition numbers while Lalor’s formulation can sometimes slightly improve the 

matrix condition by giving a lower condition number. However, both methods 

may still produce negative coupling loss factors depending on the number of 

subsystems.  

 

2.4 Advanced Statistical Energy Analysis (ASEA) 

2.4.1 Literature review: Tunnelling mechanism in the application of SEA 

SEA has been successfully used in the area of noise and vibration prediction. 

However, when applied to complex structural assemblies, SEA predictions often 

exhibit some errors due to the complexity of various wave and power transmission 

mechanisms among which the tunnelling mechanism occurs when indirect 

coupling exists between two SEA subsystems that are physically separated from 

each other by other subsystems.  

The concept of a tunnelling mechanism originated from quantum mechanics 

which describes the phenomenon that a particle tunnels through a barrier that it 

classically could not surmount [56]. Conceptually, the tunnelling mechanism in 

SEA occurs when two physically unconnected subsystems are coupled together. It 

is also sometimes referred to as indirect coupling.  

An important tunnelling example was studied by Price and Crocker [57] for the 

coupling between two rooms separated by a wall. The tunnelling was explained as 

the result of non-resonant (mass law) transmission where power flow between the 

two rooms is contributed by “non-resonant modes with small amplitudes but 

acting as efficient radiators” [58]. Leppington et al. [59] incorporated this energy 

transmission mechanism into the theory of SEA by adding the mass law 

contribution. They also indicated the non-resonant transmission not only 

depended on the mass of the plates, but also on the incident wave angle and 

frequency. 

For structural vibration problems, Blakemore et al. [14, 15] investigated wave 

transmission in perfect and imperfect periodic systems found in submarines. In 
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both situations, it was found that SEA significantly underestimated the subsystem 

response. The reason for this error was explained by Langley [60] as the result of 

a spatial wave filtering effect at the interface of the subsystems. Even if a diffuse 

field is generated in the excited subsystem, the wave filtering will result in a less 

and less diffuse field as the wave propagates through successive subsystems.  

Langley and Bercin [61] took account of the wave directional filtering effect at the 

structural junctions and proposed a wave intensity analysis to calculate the 

subsystem response. The analysis results can be expressed in the form of 

conventional SEA with additional coupling loss factors between physically 

unconnected subsystems. It was shown that these indirect coupling loss factors, 

may be very small compared with other coupling loss factors, but could play a 

very important role in the vibration transmission in structures.  

Cuschieri and Sun [62] suggested that there were three reasons that may cause 

indirect coupling for vibration problems: Firstly, the directly coupled subsystems 

are strongly coupled; secondly, the sizes of the subsystems are smaller than the 

wavelength; thirdly, the junction between the subsystems is in the nearfield of 

another junction. Lalor [47] considered three flat plates connected in a chain 

forming two L-junctions and tunnelling occurs at low frequencies when the 

flexural modes of the two physically unconnected subsystems are coupled via 

in-plane motion of the middle plate so that it is acting as a connector. For this type 

of tunnelling mechanism, it has been already modelled into the existing SEA 

theory by including the in-plane subsystems. Langley [21, 22] used a power flow 

method to analyze complex dynamic systems in the framework of SEA and 

showed that for certain weakly coupled systems, tunnelling can occur, however 

standard SEA can still give accurate results if every subsystem is subject to 

excitation. If only one subsystem is excited, SEA may have errors especially for 

subsystems distant from the excitation.   

Heron [16] studied a chain of one-dimensional rods using ray theory to track the 

power flowing around the SEA subsystems at high frequencies and then used the 

standard SEA to take care of the residual power. This approach is referred to as 

Advanced Statistical Energy Analysis (ASEA). Heron applied ASEA to a one-

dimensional model and suggested it could be extended to two-dimensional plate 
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network but indicated that “the actual implementation could well be 

computationally expensive”.  

Fredö [63] suggested the reason that standard SEA failed to predict the indirect 

coupling for highly damped subsystems was because it neglected the energy 

decay of the subsystems. He proposed a modification of the SEA power balance 

to introduce a decay factor that accounted for the drop of energy across a 

subsystem.  

This thesis makes use of ASEA for two-dimensional plate systems. The basic 

concept of ASEA is first introduced in a qualitative description. Then the general 

formulations of ASEA are derived. A detailed algorithm for ray tracing that is 

used in ASEA is discussed and a complete ASEA algorithm for two-dimensional 

subsystems is presented.  

 

2.4.2 Qualitative description of ASEA 

In SEA, we assume all power transfer occurs between available power per unit 

modal energy in one subsystem to available power per unit modal energy in the 

same or another subsystem. In ASEA, it is necessary to refer to available and 

unavailable power per unit modal energy. The concept of unavailable power is 

introduced to describe power losses within the subsystems which will not be 

available for further transmission.  

In ASEA, each subsystem is considered in turn as the ‘chosen’ subsystem. In this 

chosen subsystem, all the junctions that connect this subsystem to all other 

subsystems are identified. For each of these junctions, the available power per unit 

modal energy that is incident upon the junction at one angle of incidence is 

calculated. Then Snell’s law, ray tracing and wave theory are used to track this 

available power and calculate two types of power transfer. Firstly, power transfer 

from available power in the chosen subsystem that is reflected back from the 

junction as available power as well as available power that is transmitted to 

available power in other connected subsystems. Secondly, power transfer from 

available power in the chosen subsystem to unavailable power in the chosen 

subsystem and all other connected subsystems. These calculations are repeated for 
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all the junctions in all the subsystems. How far the available power per unit modal 

energy in the chosen subsystem is tracked is determined by an ASEA level 

number which denotes the number of transfers of available to unavailable power 

per unit modal energy on each subsystem. For example, ASEA1 means that when 

we have considered power incident on all junctions in each subsystem there will 

have been one transfer of available to unavailable power per unit modal energy on 

each subsystem. With a level number of zero (i.e. ASEA0) there is no transfer 

from available power to unavailable power and therefore ASEA0 is equivalent to 

SEA. For each angle of incidence, all transfers of power are entered into a pair of 

coupling matrices, A and B. Matrix A describes available to available power 

transfers and matrix B describes available to unavailable power transfers. When a 

diffuse field is assumed for each subsystem, this calculation is repeated until all 

possible angles of incidence have been considered. A diffuse field version of 

matrices A and B is calculated by integrating over all angles of incidence. When 

the chosen level number of calculation has been reached, the residual power is 

accounted in matrix A to maintain the power balance. The final step is to assign 

power input to corresponding subsystem(s) and solve the ASEA energy balance 

equations involving matrices A and B to calculate the subsystem responses. 

 

2.4.3 General ASEA formulation 

In SEA, the responses of all subsystems are steady-state and with the input power 

known, the energies of subsystems can be calculated from equation (2.9). This 

equation can also be expressed as follows to make a clear link to ASEA as: 

         (2.44) 

where e is a column vector of SEA modal energies as: 

 
T

1 1 2 2/ / /N NE n E n E Ee  (2.45) 
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and P is the column vector of input powers, and M is a diagonal matrix of modal 

overlap factors as shown in equation (2.46) with each element calculated using 

equation (2.19).  
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H is a matrix determined by the coupling loss factors and modal densities of SEA 

subsystems  as: 
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Where ηij is the coupling loss factor from subsystem i to j. It is worth noting that 

the sum of each column of matrix H should equal zero due to the power balance 

requirement. H is a symmetric matrix because of the consistency relationship in 

SEA in equation (2.28).   

In standard SEA, all subsystem energies are stored modal energies which are 

available for transmission to other subsystems. In ASEA, the energy in each 

subsystem is divided into two parts as available energy and unavailable energy. 

Therefore, ASEA divides equation (2.44) into two parts as proposed by Heron 

[16]: 
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 P Ae Me  (2.48) 

 Q Be Md  (2.49)  

where the available modal energy is denoted by e and the unavailable modal 

energy is denoted by d. Here the term ‘unavailable modal energy’ may be 

considered rather inappropriate for power dissipated due to wave propagation 

which does not involve subsystem modes. However, it is still used in the 

formulation of ASEA in order to maintain a link to the framework of SEA. 

Accordingly, column vectors P and Q are available power input and unavailable 

power input respectively. For N subsystems, A and B are N×N matrices that 

represent the power transfers where element (j, i) of matrix A represents the 

available power per unit modal energy transferred from subsystem i to available 

power in subsystem j and the element (j, i) of matrix B represents the available 

power per unit modal energy transferred from subsystem i to unavailable power in 

subsystem j. The response of the subsystems can be calculated from e+d once A, 

B, P and Q are known. 

In equation (2.48) the physical meaning of matrix A is the power transfer from 

available power in a particular subsystem to available power in another subsystem 

(including that subsystem itself) while matrix B in equation (2.49) represents the 

transfer of available power to unavailable power. The terms M∙e and M∙d in 

equation (2.48) and (2.49) give the available power lost and unavailable power 

lost within each subsystem. 

From Equation (2.48) and (2.49), the sum of the modal energies can be written as: 

1( )  e d M Q R  (2.50) 

where 

1( )( )  R M B M A P  (2.51) 



36 

For rain-on-the-roof excitation on a subsystem, all the input power is available for 

transmission, so it can be treated as available power input whilst the unavailable 

power input Q is zero.  Then the above equation can be simplified as follows: 

1( )( ) ( )   P M A M B M e d  (2.52) 

Combining equations  (2.48)  and  (2.49)  gives, 

( ) ( )    P Q A B e M e d  (2.53) 

Comparing equation (2.53) with (2.44), it is seen that A+B must obey the same 

relationship concerning the sum of each column to zero as A+B corresponds to H 

in the SEA formulation shown in equation (2.44). This requirement serves as an 

important check of validity of ASEA throughout the calculation process. ASEA 

requires calculating the elements of matrices A and B in order to obtain the 

subsystem response.  

2.4.4 Power transfer across subsystems 

The key component of ASEA is to determine the power transfer matrices A and B. 

This is achieved by tracing the power across the subsystems. 

Consider the energy field on a subsystem i with modal energy of ei. Note that this 

subsystem doesn’t necessarily have to be the subsystem where the structure is 

actually excited because ASEA needs to perform the following calculation for all 

subsystems. 

If a diffuse vibration field in the subsystems is assumed, the available power in 

subsystem i impinging upon the coupling junction for one- and two-dimensional 

subsystems is calculated as follows. 

(1) One-dimensional subsystems 

For a one-dimensional subsystem such as a beam with length, Li, the time, t, for 

waves to travel from one end of the beam to the other end can be calculated from: 
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mfp
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c c
   (2.54) 

where dmfp is the mean free path representing the average distance that wave 

travels between two boundaries. For a one-dimensional subsystem, dmfp equals the 

beam length, Li  and cg, i is the group velocity of subsystem i. 

As the waves travel both from left to right and right to left along the beam, the 

power flow in one direction can be calculated from the following equation: 

/ 2i
i

E
W

t
  (2.55) 

Combining equations (2.54) and (2.55) gives: 

g, / 2 /i i i iE L W c  (2.56) 

The modal density expression for beams is given by: 

g, 

2
( ) i

i

L
n f

c
  (2.57) 

Using modal energy ei to replace Ei allows equation (2.56) can be written as: 

i iW e  (2.58) 

Thus we define the available power per unit modal energy at each end of beam 

subsystem i for potential transportation to other subsystems as: 

a, / =1i i iW W e  (2.59) 
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(2) Two-dimensional subsystems 

For a diffuse vibration field on subsystem i, the incident energy is uniformly 

distributed in angle, and the intensity dIi(θ) associated with a narrow range of 

angles, dθ is given based on equation (2.23) as: 

g, d
d ( )

2

i i

i

i

E c
I

S





  (2.60) 

where Ei can be expressed in terms of modal energy ei and modal density ni using 

equation (2.8) where the modal density for a plate can be calculated from: 

g, 

( )= i i
i

i

k S
n f

c
 (2.61) 

where ki 
is the wavenumber of subsystem i for a certain wave type, which is 

defined as ki=ω/ci.  

Substituting equation (2.61) into equation(2.60) gives: 

d ( )

d( ) 2

i i iI e k

 
  (2.62) 

Considering only bending wave transmission on the plate, ki can be replaced by 

bending wavenumber kB can be expressed as: 

B

B p L

2 3
k

c h c

 
   (2.63) 

Where hp is the thickness of the plate and cL is the quasi-longitudinal wave speed 

of the plate. 

Therefore, the power per unit modal energy impinging upon a fraction of the 

boundary line, dUi, at an angle of incidence, , perpendicular to this boundary can 

be calculated from: 
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With Wa,i as the initial available power in subsystem i, we can now proceed with 

the calculation of matrices A and B by tracing this initial power across the 

subsystems with the following steps: 

Step 1: All elements in the N×N matrices A and B are set to zero at the beginning 

of the calculation. The elements in these matrices are filled and updated during the 

power tracking procedure.  

Step 2: The initial available power, Wa, i, at an incident wave angle, , is added to 

element (i, i) of matrix A as the available power originating in subsystem i which 

is currently in subsystem i as available power. Further power transfer from 

available to available power will be recorded and accumulated at the 

corresponding element in matrix A. Note that it is not critical which subsystem is 

chosen as subsystem i because all subsystems will eventually be considered and 

the power is always normalized to modal energy. 

Step 3:  If subsystem j is coupled to subsystem i, the available power that can 

flow into subsystem j is calculated using the transmission coefficient as shown in 

equation (2.65). This transmitted available power now becomes the ‘starting 

available power’ in subsystem  j for further tracking. 

s, a, j ij iW W  (2.65) 

All subsystems which are coupled to subsystem i must be considered as forming 

different paths to track. It is noted that the case when j i  also needs to be 

considered, which means that power reflected back into subsystem i as new 

‘starting available power’ in subsystem i can be calculated using the reflection 

coefficient rij as in equation (2.66).  

s, a, i ij iW r W  (2.66) 
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The reflected power from a junction may, or may not be tracked further. If it is not 

to be tracked any further, it must be considered as residual power, Wr, j, which is 

then subtracted from element (j, i) of matrix A. 

It is noted that in standard SEA, the calculation proceeds as discussed in section 

2.2.6 using: 

/2

a, 
0 - /2

= d d
ijL

i ij i in W l



     (2.67) 

where the length of the junction connecting subsystems i and j is Lij. Thus the 

coupling loss factor can be calculated from: 

=
ij i

ij ij

i

L k

n
 


 (2.68) 

where the angular-average transmission coefficient is given in equation (2.27). 

Step 4: Track the ‘starting available power’ Ws, j in subsystem j. As the wave 

propagates across the subsystem, the available power will be dissipated due to 

internal loss depending on the distances that the wave travels. Consider when the 

wave reaches another coupling junction, the wave has travelled a distance of 
j , 

then the remaining available power We,  j can be calculated from: 

e, s, g,  exp( / )j j jj j jW W c    (2.69) 

Note that this differs from the proposal by Heron [16] which used an average 

distance for polygonal plates, whereas here the exact distance travelled can be 

calculated using ray tracing algorithm described in the next section. 

The power loss due to internal dissipation is given by: 

l,  s,  e,  j j jW W W   (2.70) 
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This part of power is no longer available for further transmission, and should be 

subtracted from element (j, i) of matrix B as the power transfer from available 

power that originated in subsystem i to unavailable power in subsystem j. 

Subtraction instead of summation is due to the mathematical arrangement of the 

equations and to satisfy the power balance equations. It is worth mentioning that 

since all of the power traced in this process originated in subsystem i, it is only 

column i of matrices A and B that require updating due to the power balance 

relationship. As noted previously, the power balance can be checked at any time 

by summing each column of A+B to ensure it is equal to zero.  

For one-dimensional subsystems, the wave propagation distance in subsystem j, κj, 

in equation (2.69) is only related to the length of the beam subsystem. However, 

for two-dimensional plate subsystems, the travelling distance requires geometric 

calculations to track the wave propagation path from one junction to another. 

Considering the initial available power Wa, i, in order to determine the exact wave 

propagation path, there are two factors to take into account. As shown in equation 

(2.64), Wa, i is dependent on the incident wave angle; hence different wave angles 

result in different propagation paths.  Another important factor is the position 

along the coupling junction where Wa, i is injected. The power injection position 

along the coupling junction does not only affect the wave propagation path, but 

also determines the power injection position at the next junction. Only with this 

knowledge can the power flow be tracked further. Therefore, both factors need to 

be incorporated into the geometrical calculation. Section 2.4.5 introduces a 

geometric ray tracing theory to determine the wave propagation path within a 

subsystem.  

If the initial power, Wa, i, is associated with an incident wave angle,  , and the 

power injection position occurs at the coordinate ijl along the junction between 

subsystem i and j where 0 ≤ lij ≤ Lij (Lij is the length of this junction). Hence the 

resulting ASEA matrices A and B will be a function will be functions of  and lij, 

denoted as  
  

     
 and  

  

     
 respectively. ASEA calculation has to consider every 

position along the junction with the length of Lij and every possible incident wave 

angle. This can be achieved by performing an integral for all possible incident 

wave angles and all power injection positions along the junction as: 
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(2.72) 

Step 5: Take We, j 
as the injected power and keep tracking the power by repeating 

the procedure from Step 3. Matrices A and B are used as accumulators with the 

elements in column j being updated throughout this process. The whole process 

can stop at any stage leaving the remaining power Wr, j. This residual power must 

be subtracted from element (j, i) of matrix A in order to satisfy the power balance 

equations. The convergence of ASEA depends on how far the power is tracked. 

This is indicated by the number of subsystems across which the power is tracked, 

resulting in an ASEA level number. For example, by the end of the calculation, if 

the power has been tracked across each subsystem twice, it indicates an ASEA 

level number of two i.e. ASEA2. If the level number is very large, such that 

matrix A is effectively zero, ASEA is equivalent to a ray tracing procedure where 

all phase effects are ignored.  

Step 6: After finishing an ASEA calculation for one coupling junction on 

subsystem i, the same procedure is repeated for all the other junctions with 

subsystem i restarting from Step 2.  

Step 7: After completing the calculations for all the junctions in subsystem i, 

repeat the same procedure for all the other subsystems from Step 2.  

Step 8: The final results of matrices A and B that will be used in equation (2.50) 

to calculate subsystem responses are summations of the A and B results obtained 

from Step 7 for each subsystem: 

1

1

1

1 1 1

1

1 1 1

... ...

... ...

i N

i N

J JJ

k ik Nk

k k k

J JJ

k ik Nk

k k k

  

  

   

   

  

  

A A A A

B B B B
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where 1 2, ,..., NJ J J is the number of junctions for each subsystem and N is the 

number of subsystems. Note that Aik and Bik correspond to the coupling between 

subsystem i (     ) and another subsystem through junction k (      ). 

So here k does not represent subsystem number as in equation (2.71) and (2.72). 

Substituting equation (2.71) into (2.73) gives: 
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(2.75) 

This derivation is based on only considering bending wave transmission. If 

in-plane waves need to be taken into account, the ASEA calculation needs to start 

again from Step 1 for in-plane transmission and the entire process is repeated.  

Step 9: Solve equation (2.50) using matrices A and B and by assigning the power 

input for rain-on-the-roof in matrix P. 
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2.4.5 ASEA for two-dimensional subsystems using ray tracing  

Heron [64] successfully applied Advanced Statistical Energy Analysis to 

one-dimensional rod systems. However, when it comes to a two-dimensional 

subsystems, as indicated by equations (2.74), Heron noted that the ASEA 

calculation could be intensive.  

The key issue in applying ASEA to two-dimensional plate systems is to determine 

the wave propagation path used in (2.69) with the knowledge of the incident wave 

angle and position of wave injection. The theory of Geometrical Ray Tracing 

(GRT) often used in the area of optics and room acoustics is used to calculate the 

wave propagation paths.  

2.4.5.1 Brief review of ray tracing theory in acoustics and structural vibration 

Ray tracing theory is used in the study of geometrical room acoustics to model the 

sound propagation path in space at high frequencies where the sound waves can 

be considered to propagate along straight lines [65]. When the propagation of a 

wave is obstructed by geometrical boundaries of the space, it is either modelled as 

a specular reflection, diffraction or diffusion. By tracing the rays, not only the 

propagation paths can be determined, but also the sound energy distribution in 

space can be obtained by summing the acoustic energy traces at receiver positions. 

However, the energy summation can only be carried out on the basis that the 

energies carried by rays are uncorrelated.  

For vibration fields, Cremer [34] applied the concept of ray tracing to calculate 

the responses of a simple rod by using wave summation. Gunda et al. [66] used 

image source method to analyze a square plate structure. Cotoni and Le Bot [67] 

extended the ray tracing methods to coupled thin plate structures to deal with both 

specular and diffuse reflection. The high frequency ray tracing methods allow 

calculation of the energy distribution across the subsystem with certain level of 

accuracy instead of obtaining a spatially averaged response as in SEA. However, 

this accuracy is at the cost of computational efforts as numerous rays need to be 

generated in order to use the energy summation method to get reasonable 

accuracy. 
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Compared with the above ray tracing methods for structural problems, the 

computation load is relatively low for ASEA as the energy distribution in the 

subsystem is not calculated. With the incident wave angle and wave injection 

position known for a specific ray, all that is needed is to calculate is the 

propagation path, position and wave angle when the ray strikes the next junction.  

 

2.4.5.2 Mathematical description of ray tracing  

Assume that the plate subsystem has polygonal shape with junctions and 

uncoupled boundaries as shown in Figure 2.4. If we only consider specular 

reflection, then the angles of incidence and transmission follow Snell’s law. 

 

 

Figure 2.4 Geometric ray tracing for polygon plate subsystem (The blue 

coloured lines are referred to as boundaries which are not 

connected to other subsystems; the red lines are referred to as 

junctions which are connected to at least one other subsystem.)   

 

 

Consider a wave injected from subsystem s to subsystem i at position P0 with an 

incident wave angle of θ, the transmitted wave angle φ in subsystem i is calculated 

using Snell’s law as: 
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sin sins ik k   (2.76) 

where ks and ki are wavenumbers of subsystems s and i.  

When the wave travels across subsystem i, a local coordinate system xi-yi is used 

for calculation. The waves can be represented by unit vectors {m, n} pointing in 

the direction of propagation. The transmitted wave is expressed by vector      ; 

hence for the transmitted wave angle φ and injection position coordinate 

P0(xi0, yi0).       can be expressed as: 

0

cos
=

sin

m
U

n





   
   

      

 (2.77) 

The ray function can then be calculated from: 
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 (2.78) 

Equation (2.78) can also be written in a general form as  

0i iRx Ty C    (2.79) 

where R, T and C are constants for a known wave. 

When the wave strikes the first boundary      as shown in Figure 2.4, the reflected 

wave is represented by vector,     , which can be calculated using equation (2.80).  

 0 0 0 1 12( )V U U n n     (2.80) 

where the unit vector      is a normal vector  at the intersection point between the 

wave and the first reflecting boundary so that            =0. 
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The intersection point between the wave and the reflecting boundary     , is

1 1 1( , )i iP x y , can be calculated from: 

1 0
0 0

1 0

i i
i i

i i

x x mRx Ty C

Rm Tny y n

      
      

         

 (2.81) 

As the boundary      is bounded within a certain length, it is necessary to find out 

whether the intersection point is inside or outside the perimeter of the subsystem.  

The boundary      is bounded by two points 1 1 1( , )L i L i LP x y   and 2 2 2( , )L i L i LP x y   , 

such that the intersection point 1 1 1( , )i iP x y is only within the boundary by satisfying 

the following equation: 
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y y y y y y
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        
      
            

 (2.82) 

If the intersection point is located on the boundary, the distance D between P1 and 

P0 can be calculated from: 

2 2

0 1 0 1( ) ( )i i i iD x x y y     (2.83) 

The incident wave angle, inc , impinging upon the junction can also be calculated 

from vector       using: 

inc arctan
n

m


 
  

 
 (2.84) 

If the boundary is a reflecting boundary such as      shown in Figure 2.4, ASEA 

calculation requires ray tracing theory to keep tracking the wave until a junction 

obstructs the ray such that the propagation distance should be the summation of 

the propagation distance calculated after each reflection.  If there is more than one 
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junction in the subsystem, it is always the first junction that needs to be 

considered as the reflected power will no longer be traced and treated as residual 

power in ASEA matrices.  

When the ray hits the junction, it will be transmitted to the next subsystem. With 

the knowledge of the intersection position and the wave vector, the calculation 

repeats from the beginning of the derivation of Section 2.4.5.2 for the next 

subsystem until it meets the required ASEA level number. 

 

2.4.5.3 Flow chart of the ray tracing algorithm  

Based on the above mathematical description of the ray tracing theory for ASEA 

to calculate wave propagation distance, the following flow chart shown in Figure 

2.5 demonstrates the algorithm used for ray tracing in ASEA when power is 

injected into one subsystem. 

The input parameters include (a) the geometry of each subsystem in the local 

coordinate system where all the boundaries and junctions are labelled from 1 to Nb; 

(b) the coordinate of the power injection position and (c) the transmitted wave 

angle. 
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Figure 2.5 Flow chart of geometrical ray tracing across plate subsystems for 

ASEA 
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2.5 Numerical modelling using Finite Element Method (FEM) 

2.5.1 Literature review:  the application of FEM in structural vibration 

The finite element method is widely used in solving complex elasticity and 

structural analysis problems in civil and aeronautical engineering. In FEM, 

continuous structures are discretized into a set of elements connected through 

nodal points [6] and the responses of these nodal points are calculated from the 

equations of motion including a mass and stiffness matrix. This section reviews 

the application of FEM specifically in the area of structural dynamic analysis for 

coupled plates.   

Simmons [68] used FEM to calculate the vibration transmission across L- and H-

junctions of plates. The energies of the plates calculated from FEM were then 

used to determine the coupling loss factors in SEA. It was observed that responses 

predicted from FEM at individual positions and frequencies are not reliable in the 

context of SEA due to the discrepancies between the real structure and the 

numerical models in terms of material properties and boundary conditions, which 

will result in a shift in eigenfrequencies and error in mode shapes. Therefore, 

spatially averaged energies of the plates in frequency bands are required for the 

analysis.  The results were found to be in good agreement with theoretical and 

measurement results.  

Steel and Craik [69] used FEM to predict the coupling loss factors at low 

frequencies with low mode overlap down to the fundamental mode. It was found 

that at the fundamental mode, coupling loss factors calculated from FEM agrees 

well with the theoretical method using the method proposed by Craik et al. [30] 

by spatially averaging point mobilities of the receiving subsystem. However, 

discrepancies occured above the fundamental frequency and it was indicated that 

this could be caused by errors in accurately modelling the real structure in FEM.  

Hopkins [51, 70] used a Monte Carlo method with FEM to determine coupling 

loss factors where subsystems had low mode counts and low modal overlap. The 

comparison between FEM predictions, measured data and SEA using a wave 
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approach confirmed the existence of wave conversion between bending and in-

plane waves at the structural junction.  

Mace and Shorter [28] used FEM to analyze energy flow among subsystems. The 

nodal responses of the subsystems to distributed time harmonic excitation were 

decomposed into global modes so that better computational efficiency could be 

achieved. Mace and Rosenberg [33] extended this method to investigate the effect 

of subsystem irregularity on the coupling loss factors between two plates. It was 

concluded that coupling power is sensitive to the subsystem irregularity when the 

coupling is strong, normally the cases with low damping.    

Fredö [71] used FEM in combination with SEA to determine the power 

transmission between coupled plates. It was indicated that the use of FEM can 

overcome many deficiencies of SEA such as the abilities of dealing with 

complicated subsystems, narrow band sources and non-resonant transmission. The 

Energy Flow Coefficient (EFC) between two subsystems calculated from FEM 

was case specific however it tended towards the CLF at high frequencies. It was 

also shown that the existence of negative EFCs was the results of substantial non-

resonant transmission.     

 

2.5.2 FEM modelling   

2.5.2.1 Shell element S4R 

In this thesis, finite element analysis is carried out using commercial software 

ABAQUS 6.10. A rectangular four-node, shell element, S4R is used to model 

isotropic, homogeneous plates and periodic ribbed plates. The S4R element is a 

general purpose element which is quoted as giving “robust and accurate solutions 

in all loading conditions for thin and thick shell problems” [72]. It uses 

Kirchhoff’s thin plate theory when plate thickness is small and changes to 

Mindlin–Reissner’s thick plate theory as the thickness increases. The thin plate 

limit is assessed in section 3.1.3 by using the comparison between the plate 

thickness and the wavelength.  
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In order to make a preliminary assessment of the S4R element, Figure 2.6 

compares FEM calculations of the driving-point mobility on a rectangular simply-

supported plate with infinite plate theory for a thin plate calculated using equation 

(2.13). Mobilities are calculated in narrow bands with 2 Hz resolution and 

averaged into one-third octave bands. The plate has a thickness of 13 mm and the 

element size is chosen to be 10 mm which allows seven elements per wavelength 

at the highest frequency of interest at 10 kHz. The close agreement between FEM 

and infinite plate theory between 1 kHz and 5 kHz indicates that the S4R element 

adequately represents thin plate theory. However, there appears to be a distinct 

offset from infinite plate theory of up to 2 dB between 6.3 kHz and 10 kHz. The 

thin plate limit calculated using equation (3.28) is 9038 Hz. Hence it is possible 

that this small discrepancy is due to the FEM element reproducing thick plate 

behaviour near and above the thin plate limit. 

 

Figure 2.6 Driving-point mobilities from five randomly chosen positions 

(indicated by *) on a simply-supported, rectangular plate 

calculated using FEM averaged in one-third octave bands 

compared with infinite plate theory. (Lx×Ly=1.2 m×0.8 m, 

hp= 0.013m, ρ=1180 kg/m
3
, E=5.93×10

9
 N∙m
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 and  μ=0.3) 
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2.5.2.2 Excitation: rain-on-the-roof 

Statistically independent excitation is applied to each subsystem by using rain-on-

the-roof (ROTR) excitation on all the unconstrained nodes over the plate surface 

with complex forces of unity magnitude and random phase. However, on ribbed 

plates these forces are only applied to nodes in the bays (i.e. not on the ribs). In 

this thesis, ten sets of different rain-on-the-roof are used to calculate the average 

responses with confidence intervals. 

2.5.2.3 Damping 

Ignoring the loss due to sound radiation, the internal loss factor is solely 

determined by the damping effects of the subsystems. Damping is introduced in 

FEM using the fraction of critical damping,  , which is related to the internal 

damping loss factor by Cremer et al. [34] and Crede and Harris [73]: 

=2ii   (2.85) 

This relation is only valid for the damping–controlled modal response and when 

  <0.1 based on Cremer et al. [34] and Crede and Harris [73].  

All FEM models presented in this thesis use constant damping values which are 

entered into ABAQUS by using the values of the fraction of critical damping.  

2.5.2.4 Boundary conditions 

In this thesis, the term ‘bending wave only models’ is used where only bending 

waves are transmitted across the junction. The junction nodes are simply-

supported (or ‘pinned’) to prevent displacement in the three coordinate directions. 

Hence only bending moments can be transmitted and in-plane waves cannot be 

generated at the junction. For ‘bending and in-plane wave models’ the junction 

nodes are unconstrained to allow displacement and rotation which allows 

conversion between bending and in-plane waves at the junction. 
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2.5.2.5 Post-processing 

Individual frequency results from FEM are combined into one-third-octave bands 

for ESEA analysis. There are two reasons that a frequency band average should be 

used instead of using individual frequencies directly. Firstly, errors in calculating 

eigenfrequencies occur at high frequencies even with accurate finite element 

models due to the discretization of the structure. Secondly, for complex models, 

discrepancies in material properties, boundary conditions and geometries of the 

models between the FEM and the real structure are almost inevitable. Therefore, it 

is often experienced that a frequency shift occurs in eigenfrequencies between the 

FEM and real structure. However, if the responses are combined into wide 

frequency bands, it is shown to be able to give a sufficiently accurate estimate of 

the response of the structures.  

2.5.2.6 Computational resources 

Computation is carried out using High Performance Computing Clusters provided 

by the University of Liverpool on 8 dual processor dual core 2.4 GHz nodes with 

8 GB of RAM.  

 

2.5.3 FEM element mesh error 

In FEM calculations, inadequate mesh refinement can be a source of error. For 

reasonable accuracy, it is usually recommended that at least six representative 

elements should fit into the shortest wavelength present in the analysis. For 

improved accuracy, ten or more elements can be used at the shortest wavelength, 

but the computation time and memory requirements rapidly increase.   

To balance computational efficiency and accuracy, a method of evaluating the 

adequacy of the element size and mesh by comparing the input power with the 

total power contained in the system
 
is used as described by Hopkins [74].  

The total power input into a subsystem can be calculated from equation (2.86) 

using the complex forces applied on N unconstrained nodes and their 

displacements. 
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The power dissipated by the subsystem after response, Wout, can be calculated 

from equation  (2.87): 

out i iW E  (2.87) 

For bending waves, Ei can be calculated using equation (2.88) from the 

displacement perpendicular to the plate surface for all N elements in the FEM 

model. 
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The mesh and element size can be evaluated by calculating the element mesh error, 

emesh, between Win and Wout, as shown in equation (2.89).  

out in

mesh

in

100%
W W

e
W


   (2.89) 

Because emesh is dependent upon the damped modal response, it is only strictly 

valid at frequencies under damping control. As emesh only considers bending wave 

energy, emesh will be large when there is significant in-plane wave energy.  

Hopkins [74] has shown that whilst the mesh error is usually close to 0% in the 

vicinity of the global eigenfrequencies when the element size is adequate, the 

error is highly dependent upon the excitation, for example, there can be large 

variations between different sets of ROTR. Mesh errors ranging between 0% and 

40% were typically found to indicate satisfactory element sizes. 

  



56 

2.6 Conclusions 

This chapter reviewed and described the principles of SEA, FEM and ASEA as 

prediction models for structure-borne sound transmission that will be used in this 

thesis.  

ESEA was introduced as an approach to estimate coupling loss factors from 

numerical experiments with FEM which will be compared with coupling loss 

factors determined from wave theory that will be described in chapter 5. 

ASEA was introduced as an extension to SEA which can incorporate tunnelling 

mechanisms between physically unconnected subsystems. ASEA will be tested on 

structural junctions including periodic ribbed plates in chapters 6, 7 and 8. A ray-

tracing algorithm used to track power flow among subsystems in ASEA was 

described in detail. 

The models in this chapter were described in a generic form that applies to many 

different kinds of vibration fields. Therefore the next chapter, Chapter 3, describes 

the specifics of vibration fields on isotropic and orthotropic plates that are the 

subject of this thesis. 
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3 Vibration field on isotropic and orthotropic plates 

This chapter presents theoretical models based on the wave approach for the 

vibration propagation on plate structures.  

It begins with the discussion of free vibration in thin isotropic, homogeneous 

plates. Three different wave types that are supported by the plate are described 

including bending, quasi-longitudinal and transverse shear waves. The equation of 

motion governing the wave propagation is presented for all three wave types, 

along with the thin plate limit and other properties of isotropic plates such as 

modal density and modal overlap.  

Structures consisting of thin plates stiffened or reinforced by a periodic array of 

ribs are widely used in aircraft, ships and buildings. The reason that these types of 

structures are widely used is primarily for their advantageous elastic properties. It 

is shown that rearranging the distribution of material in structural members is the 

most efficient way to resist stress [75], and also result in stronger structures, more 

economical in material. Although the ribs normally take a relatively small part of 

the total weight of the structures, they substantially influence the strength, 

stiffness and stability of the plates [75], and also affect the dynamic behaviour of 

the plates. Unlike isotropic homogeneous structures where elastic properties in all 

directions are found to be identical, the ribbed plates often exhibit different elastic 

properties in two mutually perpendicular directions and therefore can be 

considered as orthotropic. It is noted that these types of structures are often 

regarded as structurally orthotropic to distinguish them from naturally orthotropic 

materials such as timber. In this thesis, only structurally orthotropic plates are 

discussed so that the materials of the separate plates as well as the ribs are always 

homogeneous and isotropic. 

Since the elastic properties strongly affect the wave propagation supported by the 

plates, the wave propagation on a periodic ribbed plate can be analyzed by 

considering the orthotropic properties of the entire structure. The dynamic 

behaviour of a ribbed plate can be described by considering an equivalent flat 

plate with orthotropic elastic properties. The equations of motion for thin 

orthotropic plates are derived in a similar manner to the isotropic plates. However, 
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the description of orthotropic plates is more complex due to the angle-dependent 

elastic properties.  

 

3.1 Wave propagation on thin, isotropic, homogeneous plates 

An isotropic, homogeneous thin plate typically supports three different types of 

waves in the audio frequency range: bending, quasi-longitudinal and transverse 

shear waves [34]. The latter two are described as in-plane waves due to the 

motion staying in the same plane as the structure.    

Among these three wave types, bending waves tend to be the most important for 

many structure-borne sound transmission problems due to the sound radiation 

caused by their out-of-plane displacements. However, for wave propagation 

across large distances where several structural junctions are involved in the 

transmission path, conversion between bending and in-plane waves will occur and 

needs to be considered [76] as for built-up structures it can make a significant 

contribution to the total change of energy in the modelling of SEA [51, 77]. 

Therefore, in this section, the equations of motion for all three types are presented.  

3.1.1 Bending waves 

Applying the classical thin plate theory [78] where the bending wavelength is 

larger than the plate thickness, the equation of motion for a bending wave 

travelling in the x-y plane (see Figure 3.1) can be expressed as a function of the 

lateral displacement,  , in the following form 

2
p4
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B t

 
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  
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 (3.1) 

where ρ is the plate density, hp is the thickness of the plate and Bp is bending 

stiffness (or flexural rigidity). For isotropic plate, Bp can be calculated from:  
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where E is Young’s modulus and  μ is the Poisson’s ratio of the plate material.   

with the fourth-order differential factor 4 defined as: 

4 4 4
4

4 2 2 4
2

x x y y

  
   

   
 (3.3) 

 

 

 

Figure 3.1 Bending wave propagating along a plate element (NB lateral 

displacement   and angular displacement   are exaggerated on 

the diagram)  

 

Figure 3.1 shows the parameters describing bending wave motion on a plate for a 

plane harmonic bending wave travelling in a direction characterized by a 

propagation heading angle,  , on the positive x-y plane. The solution to equation 

(3.1) can be written as: 

( , , ) exp[ ( cos sin )]exp( )x y t A k x y i t    
  
 (3.4) 

where A is the complex wave amplitude.  

Substituting equation (3.4) into (3.1) leads to two pairs of solutions for k as: 
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Bk ik 
  
 (3.5) 

Bk k   (3.6) 

Where kB 
is defined as bending wavenumber given as: 
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 (3.7) 

The imaginary wavenumbers in equation (3.5) represent the propagating waves 

with ‘ ’ indicating the positive direction and ‘+’ indicating negative direction of 

propagation. The real wavenumbers in equation (3.6) represent the near-field 

which decays exponentially.  

Therefore, the general solutions of the bending wave equation for an isotropic 

plate have four complex amplitudes corresponding to the two pairs of 

wavenumbers shown as: 
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 (3.8) 

The four unknown amplitudes  1 2 3 4, , ,A A A A  can be calculated by applying the 

corresponding boundary conditions or continuity relations. 

The bending wave phase velocity is calculated from: 
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The group velocity is defined as the velocity of the overall shape of the wave and 

it represents the velocity with which wave energy propagates. For bending wave, 

it is given as: 

g, B B

B

d
2

d
c c

k


 

  
 (3.10) 

Now only consider the wave propagation in x-direction, the bending wave can 

also be characterized by the rotation of the plate cross-section about y-axis,  , 

which can be calculated from the lateral displacement   as: 

x






   

 (3.11) 

At a cross-section perpendicular to x-axis, the moment acting on the edge due to 

bending wave propagation (see Figure 3.1) is given by: 

2 2

p 2 2
( )M B

x y

 


 
  

    
 (3.12) 

The force at the edge is a combination of a shear force and a force that resists 

twisting at the boundary (see Figure 3.1) and is given as: 

3 3

p 3 2
(2 )F B

x x y

 


  
   

      
 (3.13) 

The energy per unit width carried by bending wave can be characterized by the 

wave intensity with propagation amplitude A [34].  

2 3

B p BI A B k
  
 (3.14) 
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3.1.2 In-plane waves 

The equations of motion for quasi-longitudinal wave and transverse shear wave in 

thin isotropic homogeneous plates are given by [34]: 

22 2 2

2 2 2 2
0

(1 ) 2(1 )

y

x

E E
G

x y t x y


 

 

   
    

          
 (3.15) 
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2 2 2 2
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E E
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x y t x y


 

 

    
   

         

(3.16) 

Where ξx and ξy brepresent the in-plane displacement in the x- and y-directions 

respectively. G is the shear modulus given as: 

 
2(1 )

E
G




   
 (3.17) 

The solution of ξx and ξy can be obtained by introducing a displacement potential 

  and scalar function   to uncouple the motion equations (3.15) and (3.16) 

developed by Cremer et al. [34] as: 

=x
x y


 


    

 (3.18) 

y
y x


 

 
 

 

(3.19) 

The displacement potential   describes rotational part of the displacement which 

incorporates the quasi-longitudinal wave. The divergence-free part of the 

displacement which represents transverse wave is described by the stream 

function . Therefore, the general solution of the in-plane wave equations for 

harmonic wave propagating in the angle of   can be similarly written as bending 

wave as: 
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1 L 2 L( , , ) { exp[ ( cos sin )] exp[ ( cos sin )]}exp( )x y t A ik x y A ik x y i t         

 

(3.20) 

3 T 4 T( , , ) { exp[ ( cos sin )] exp[ ( cos sin )]}exp( )x y t A ik x y A ik x y i t         

 

(3.21) 

where the in-plane quasi-longitudinal and transverse shear wavenumbers are 

given as: 
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 (3.22) 
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(3.23) 

Thus, the phase velocities of the corresponding in-plane waves can be calculated: 

L 2

L (1 )

E
c
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   
 (3.24) 
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G
c
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 

 

(3.25) 

Compared with the bending wave solution in equation (3.8) where the wave field 

is represented by four amplitude variables, for quasi-longitudinal and transverse 

shear waves, each only need two amplitude variables to characterize the wave 

propagation.  

As the in-plane waves travels in the x-y plane, it induces a normal force Fx and an 

in-plane shear force Fy. The two forces at θ=0º can be expressed in terms of in-

plane displacements given by Timoshenko [78] as: 
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 (3.26) 

L T
p= +yF Gh

y x

   
 
    

(3.27) 

 

3.1.3 Thin plate limit 

Equations (3.1) and (3.15) for bending and quasi-longitudinal waves are both 

based on the assumption that the plate is thin enough that the wavelength is much 

larger than the plate thickness. This places an upper limit to the frequency of 

analysis because at higher frequencies, the shear strain and hence the shear stress 

across the plate thickness which is not considered in the thin plate theory cannot 

be neglected [79]. Cremer et al. [34] suggested the frequency limits in thin plate 

theory for both bending and quasi-longitudinal waves at which the relative errors 

in the phase velocity is 10% and 3% respectively. For bending waves, it is 

approximately equivalent to the condition that bending wavelength equals six 

times of the plate thickness. Therefore, the thin plate limit for bending waves can 

be evaluated using equation (3.28). Similarly, for quasi-longitudinal waves, the 

thin plate limit for the use of equation (3.15) is given in equation (3.29). It is 

noted that thin plate limits are only required for bending and quasi-longitudinal 

waves which both have contributions to the lateral displacement while for 

transverse shear waves, there is no such requirement in the formulation of the 

wave equations.   

L
B,thin

p20
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f
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 (3.28) 
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

 
(3.29) 
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3.1.4 Modal density  

Modal density for two-dimensional subsystems is strongly dependent on the 

geometry as well as the boundary conditions. However, Xie et al. [80] show that 

for homogeneous elements such as beams and uniform plates, the modal density 

will converge to asymptotic values regardless of the boundary conditions at high 

frequencies. Therefore the asymptotic modal densities can be used to represent in-

situ subsystem modal densities without considering the boundary conditions.  

Modal density of plate subsystems corresponding to different wave types are 

given in [19] as: 

B

p L

3
( )     for bending waves (thin plate)

S
n f

h c
  (3.30) 

T 2

L

4
( )     for transverse shear waves
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fS
n f

c




  (3.31) 

Q 2

L

2
( )     for quasi-longitudinal waves

fS
n f

c




 
(3.32) 

where   is the Poisson’s ratio of the plate material, and S is the surface area of 

the plate. 

 

3.2 Wave propagation on thin, orthotropic plates 

3.2.1 Literature review: orthotropic plate vibration 

There is a large amount of literature on orthotropic plates; hence only the major 

contributions to the research on plate vibration are reviewed here.  

Early investigations on the topic of orthotropic structures were generally based on 

the fact that natural materials are generally anisotropic. Toritsky [75] gave a 

review of some of the earliest works on the elasticity of orthotropic bodies. These 

works were purely theoretical and only considered naturally orthotropic structures. 
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Lechnitsky [81, 82] investigated the strain-stress relations and elastic properties 

for structurally orthotropic plates. Expressions were derived to characterize the 

elastic properties for stiffened plates as equivalent orthotropic plates. Based on 

this, the estimation of natural frequency for orthotropic plates with various 

boundary conditions was also presented. 

Toritsky [75] investigated stiffened plates as structurally orthotropic plates and 

presented theoretical and empirical solutions for stiffened plates considering both 

bending and in-plane displacements.  

Rao et al. [83] formulated bending wave propagation on orthotropic plates using 

the finite element method. However, this formulation couldn’t incorporate 

in-plane waves due to the assumption of very large lateral displacements 

compared with in-plane displacement to simplify the geometric stiffness matrix.  

Deobald and Gibson [84] applied the Rayleigh-Ritz method to model the bending 

of rectangular orthotropic plates and used finite element analysis to validate the 

analytical results. They also proposed a method to use natural frequencies of 

orthotropic plates from measurements to determine the elastic properties of the 

orthotropic plates.   

 

3.2.2 Orthotropic plate theory 

Timoshenko et al. [78] gave the relations between the stress and strain 

components for the case of plane stress in x-y plane as shown in Figure 3.2 (the 

stress in z-direction z is ignored) written as: 
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 (3.33) 

where: 
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 (3.34) 

According to Betti’s reciprocity theorem for symmetry condition of the stiffness, 

the following relationship applies [75]: 

x yx y xyE E   (3.35) 

The elastic modulus in the two principal  directions xE  and 
yE , shear modulus 

xyG  and Poisson’s ratio 
xy  and 

yx  are used to characterize the equivalent 

material properties.  

In this thesis, since the dynamic behaviour of orthotropic plates is only considered 

to be caused by the geometry of the plate cross-section due to the periodic 

stiffened ribs, the orthotropicity of the plate material is not considered so that all 

the structures discussed in this thesis are made of homogeneous materials. 

However, the equivalent elastic properties in two orthotropic directions of the 

periodic plate may not be equal to the material elastic properties. As a result, the 

equivalent properties must be used. 

 

 

Figure 3.2 Stress-strain, resulting moment and lateral displacement of a plate 
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3.2.3 Bending waves and angle-dependent bending stiffness 

Considering bending wave propagating on the orthotropic plate, the strain 

components in equation (3.33) can be expressed as: 

2

2x z
x
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
     

2

2xy z
x y





 

 
 (3.36) 

Substituting equation (3.36) into (3.33) gives: 
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(3.38) 
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(3.39) 

With the expressions of the strain components, the bending and twisting moments 

are given as: 
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 (3.40) 
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(3.41) 
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(3.42) 

Similarly to the isotropic plate, the equation of motion for bending waves can be 

expressed as: 
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 (3.43) 

where H is: 

2xy y xyH B B 
  
 (3.44) 

H describes the torsional effects of the plate, which can be estimated using a 

geometrical mean of the bending stiffness in two orthotropic directions as: 

  x yH B B
  
 (3.45) 

Troitsky [75] notes that equation (3.45) is only valid when the thickness of the 

plate is constant, the deflection of the plate is relatively small and the 

deformations can be considered to be fully elastic.  

Consider a specific orthotropic plate consisting of an isotropic plate with periodic 

stiffened ribs as shown in Figure 3.3, the bending stiffness components are given 

in [85] as: 
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(3.48) 

where hp is the thickness of the plate. It is assumed that both the ribs and plate are 

made of the same material with Young’s modulus E and Poisson’s ratio μ. 

Equivalent shear modulus xyG  can be calculated using equation (3.17) if the plate 

is isotropic, but with orthotropic plates, it is normally determined from 
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experiments although approximate estimations may exist for some cases. bxI , the 

moment of inertia of the rib, can be calculated using equation (3.49). 

3

b b
b

12
x

b h
I 

  
 (3.49) 

Where bb and hb are the width and the thickness of the rib as shown in Figure 

3.3 (b).  

For the periodic ribbed plate in Figure 3.3, H is given in [85] as: 

2
 
12(1 )

E
H




   
 (3.50) 

The bending wavenumber for an orthotropic plate can be determined using the 

similar procedure to section 3.1.1, which also leads to four components to 

characterize the bending wave propagation and near-fields. For an orthotropic 

plate, the bending wavenumber is not only dependent on frequency, but also 

dependent on the wave heading angle. The angle-dependent wavenumber B( )k   

can be calculated from: 

p
4

B ( )
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h
k

B


 




  
 (3.51) 

where the angle-dependent bending stiffness per unit width ( )B   is given in [86] 

as: 

4 2 2 4( ) cos 2( 2 )cos sin sinx xy y xy yB B B B B        
  
 (3.52) 
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Figure 3.3 (a) Plate with periodic ribs symmetrically arranged around the 

centre line of the plate; (b) Dimension parameters of the periodic 

ribbed plate 

 

Consider an orthotropic plate as shown in Figure 3.3 with dimensions and 

material properties shown in Table 2. Figure 3.4 shows the angle-dependent 

wavenumber for the ribbed plate at different frequencies. At low frequencies, the 

variation of the absolute values of bending wavenumber with the change of wave 

heading angle is small. This is because the bending wavelength is much larger 

than the rib spacing so the contribution of the stiffened ribs on the overall elastic 

properties of the plate is also small. However, at high frequencies where the 

bending wavelength is similar or smaller than the rib spacing, the values of 

wavenumber vary significantly. Note from equation (3.51) the ratio between the 

wavenumber at 0º and 90º is /x yB B and is independent of frequency. When the 

wave heading angles are close to the two principal directions (0º-10º and 80º-90º), 

the wavenumber does not show significant variance with heading angle .   
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Table 2: Dimension and material properties of a ribbed plate as shown in Figure 

3.3 

Dimensions Material properties 

Lx×Ly=1.2 m×0.8 m 

hp=13 mm; l=150 mm; 

bb=30 mm; hb=50 mm. 

ρ=1180 kg/m
3 

cL=2350 m/s 

μ=0.3
 

 

 

 

Wave heading angle   ( º ) 

Figure 3.4   Angle-dependent bending wavenumber for a periodic ribbed plate 

shown in Figure 3.3 (dimensions and material properties see 

Table 2) at different frequencies 

 

 

 

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

1000 Hz

5000 Hz

10000 Hz

100 Hz

B
en

d
in

g
 w

av
en

u
m

b
er

 (
 r

ad
ia

n
s/

m
 )

 



73 

Figure 3.5 shows the variation of bending stiffness with the change of wave 

heading angles considering different geometric parameters of the ribbed plate. In 

general, at the wave heading angles of 0º (in the x-direction) and 90º (in the 

y-direction), the orthotropic plate behaves exactly as isotropic plate with bending 

stiffnesses of Bx and By respectively. Therefore when only the arrangement of the 

ribs (rib width, height or spacing) changes, the bending stiffness at 0º heading 

angle stays the same as an isotropic plate without the ribs. For all other wave 

angles, the shear modulus Gxy influences the variation of the bending wavenumber. 

As the orthotropicity of the plate elastic properties induces in-plane shear [87] 

while bending only induces normal stress parallel to principal  material directions, 

the overall bending stiffness in an arbitrary heading angle is not only dependent 

on the bending stiffness in its two principal directions but also on the shear 

modulus.  

It is shown in Figure 3.5 that by increasing the rib width and rib height, or 

reducing the rib spacing, the bending stiffness in y-direction will be increased 

resulting in an increase in bending stiffness at all heading angles except 0º.  When 

the plate thickness varies, there is a more significant effect on the bending 

stiffness in the x-direction than y-direction because the main contribution to the 

bending stiffness in the y-direction is due to the ribs. 
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Wave heading angle   ( º ) 

Figure 3.5   Angle-dependent bending stiffness for a periodic ribbed plate 

shown in Figure 3.3 (dimensions and material properties see 

Table 2) with different geometric parameters (only one parameter 

is chosen as a variable in each graph with all the others 

geometries fixed where the blue curves represent the default 

values): (a) rib width; (b) rib height; (c) plate thickness; (d) rib 

spacing.  Wave heading angle of 0º corresponds to the x-direction 

and 90º corresponds to y-direction.  
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3.2.4 Approximate natural frequencies of orthotropic plates  

Exact natural frequencies of a periodic ribbed plate are difficult to obtain using 

theoretical methods. Numerical calculation can be both time consuming and 

computationally expensive for complicated large structures or at high frequencies. 

However, many approximate theoretical methods have been developed. These 

normally consider the plate as orthotropic plate and simplify the geometry of the 

structure into a uniform plate with orthotropic elastic properties. 

Dickinson [88] gives an approximate solution to calculate natural frequencies for 

an orthotropic plate using the Rayleigh-Ritz method: 

1/2
44
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 (3.53) 

where mode number parameters Gx, Qx, Jx and Gy, Qy, Jy are dependent on the 

boundary conditions and can be calculated from Table 1 with the corresponding 

mode number. H is the bending stiffness parameter from equation (3.44). Bending 

stiffness as xB , yB  and xyB  can be obtained from equation (3.46), (3.47) and 

(3.48) for the periodic ribbed plate with an overall dimension of a b and an 

equivalent mass per unit area, s .  

Table 3 shows the natural frequency calculated from equation (3.53) compared 

with FEM where the element size is chosen to be 0.01 m which is smaller than 

one tenth of the wavelength at 500 Hz. Below the 10
th

 mode, the relative error 

compared with numerical method is less than 12% which indicates the achievable 

accuracy of the Rayleigh-Ritz method when considering the ribbed plate as an 

orthotropic plate. Note that error does not linearly increase with increasing mode 

number. As the mode count increases, as shown in Figure 3.6, the Rayleigh-Ritz 

method also misses a significant number of modes. This is mainly due to the 



76 

limitations of the method being unable to incorporate the local modes of the 

rectangular bays separated by stiffened ribs whose fundamental mode occurs at 

637.3Hz.  

Table 3: Natural frequencies of a periodic ribbed plate (dimensions and material 

properties see Table 2) calculated from Rayleigh-Ritz method compared 

with numerical results using finite element method 

Mode 

number 

Rayleigh-Ritz 

method (Hz) 

Finite element 

method (Hz) 

Relative error to FEM 

results (%) 

1 62.38 58.08 7.40 

2 75.18 73.55 2.22 

3 105.15 104.12 0.99 

4 154.32 150.27 2.69 

5 221.61 210.58 5.24 

6 240.82 215.28 11.86 

7 249.51 227.59 9.63 

8 268.01 250.93 6.81 

9 300.71 282.29 6.53 

10 305.98 287.41 6.46 

 

 

Frequency (Hz) 

Figure 3.6   Mode count for a periodic ribbed plate (dimensions and material 

properties see Table 2) calculated from the Rayleigh-Ritz method 

compared with numerical results using finite element method 
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3.2.5 In-plane waves 

The equations of motion for quasi-longitudinal and transverse shear waves in 

orthotropic plate are given by Bosmans [87] in (3.54) and (3.55) based on the 

strain-stress relations in x- and y-directions.  

22 2 2

2 2 2
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  

   
     
        

 (3.54) 

22 2 2

2 2 2
+( + ) 0x

xy y y xy xy yG E G E
x y t x y


  

    
    

       

(3.55) 

Equation (3.54) and (3.55) have similar expressions compared with the in-plane 

wave equations for isotropic plate. However, unlike equations (3.15) and (3.16), 

in-plane wave equations for orthotropic plates cannot be separated into uncoupled 

equations for pure quasi-longitudinal and transverse shear wave equations because 

in an orthotropic structure, the compression causing longitudinal waves always 

induces shear at the same time in a direction that is not one of the principal  

material directions [87].  

Similarly to bending wave propagation on an orthotropic plate, the in-plane 

wavenumber for an orthotropic plate are also angle-dependent. The general 

expression of the angle-dependent in-plane wavenumber is given as: 

2 2
( )=

cos + sin +( + ) ( )sin cosx xy yx x xy

k
E G E G V


 

         
 (3.56) 

where ( )V  is the solution of the wave equations (3.54) and (3.55) when 

considering sinusoidal harmonic in-plane motion on the othotropic plate. The 

problem can be simplified as: 

2 + + =0aV bV c
  
 (3.57) 

where 
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=( + )sin cosyx x xya E G  
  
 (3.58) 

2 2 2 2= cos - sin + (sin -cos )x y xyb E E G    

 

(3.59) 

= -c a

 

(3.60) 

The two roots of equation (3.57) are: 

 
2 2

1

- + +4
=

2

b b a
V

a


  
 (3.61) 

 
2 2

2

- - +4
=

2

b b a
V

a


 

(3.62) 

The decision to use V1 or V2 in equation (3.56) is determined by the relative values 

of Young’s modulus and shear modulus.  

At θ=0º, the in-plane wavenumber is equal to the quasi-longitudinal wavenumber 

in the x-direction, or the transverse shear wavenumber.  

L T(0)=                 =   
x xy

k k
E G

 
 

   
 (3.63) 

At θ=90º, the in-plane wavenumber equals the quasi-longitudinal wavenumber in 

the y-direction, or the same transverse shear wavenumber as in equation (3.63).  

L (90 )=
y

k
E




   
 (3.64) 
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3.2.6 Modal density 

The modal density for an orthotropic plate can be calculated using a similar 

approach to that in section 2.2.4 with the knowledge of the natural modes of the 

orthotropic plate which could be obtained from section 3.2.4 using the Rayleigh-

Ritz method or from either numerical or physical experiments. 

For bending waves, the modal density is given by Bosmans and Vermeir [89] for 

an orthotropic plate: 

/2

s

0

1
( )

( )

S
n f d

B




 
 

  
 (3.65) 

where s is the equivalent mass per unit area of the orthotropic plate including the 

mass of the ribs. Angle-dependent bending stiffness ( )B  can be obtained from 

equation (3.52). 

Lyon [7] replaced the integral in equation (3.65) to give an approximate 

estimation of the modal density for an orthotropic plate using the bending stiffness 

in two principal directions of the plate:   

s 1 1
( )

4
x y

S
n f

B B

  
  
 
    

 (3.66) 

Heckl [90] also proposed an alternative method to calculate the modal density 

using a geometrical average bending stiffness. 

s

4

1
( )

2
x y

S
n f

B B




  
 (3.67) 

The modal density for the periodic ribbed plate calculated using equations (3.65),  

(3.66) and (3.67) are shown in Figure 3.7 for comparison with numerical results 

using FEM. The results show that although Lyon and Heckl’s methods only 

consider the bending stiffness in two principal directions and are independent of 
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shear modulus Gxy, the agreement with Bosmans and Vermeir’s method is 

excellent and all three methods give close estimations compared with FEM. 

Bosmans and Vermeir’s results are almost identical with Heckl’s in this example 

as the later can be derived from the former by approximating the bending stiffness 

in the two principal directions, Bx and By, with the geometrical mean of the 

bending stiffness,       .  

 

Figure 3.7   Modal density of the periodic ribbed plate calculated using 

different theoretical methods considering the ribbed plate as an 

orthotropic plate compared with the results obtained from 

numerical experiments. 

 

3.2.7 FEM modelling for orthotropic plates 

Orthotropic plates in FEM software ABAQUS can be modelled using the same 

shell element as isotropic plates but assigning orthotropic material properties. 

Based on the strain-stress relations for an orthotropic plate as shown in equation 

(3.33),  equivalent Young’s modulus xE , yE , shear modulus Gxy  and Poisson’s 

ratio xy  need to be input into the FEM model. In addition, shear moduli Gxz and 

Gyz are also included because they may be required for modelling transverse shear 
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deformation in a shell [72]. These parameters are usually obtained from laboratory 

measurement. However, for structural orthotropic plates made of isotropic 

homogeneous materials, they can also be estimated analytically. For the periodic 

ribbed plate as shown in Figure 3.3, 
xE  , yE   , and Gxy  can be calculated using 

equations as (3.46), (3.47) and (3.17). The shear modulus Gxz and Gyz would have 

little effect on the results when bending waves and in-plane waves travelling in x-

y plane are considered.  They are estimated using the following equations: 

 =xz xyG G
  

 (3.68) 

=
2(1+ )

y

yz

yz

E
G




 (3.69) 

The orthotropic material properties in ABAQUS have to comply with the 

following material stability requirements for plane stress [72]:  

, , , , >0x y xy xz yzE E G G G 
  
 (3.70) 

< /xy x yE E    (3.71) 

3.3 Conclusions 

This chapter described the theory for bending and in-plane wave fields on 

isotropic and orthotropic plates. Calculations were carried out for a periodic 

ribbed plate treated as an orthotropic plate to illustrate the important features that 

will be relevant to the predictions in chapters 5 and 6. 

Concerning the prediction of eigenfrequencies on a periodic ribbed plate, it was 

shown that the Rayleigh-Ritz method missed a significant number of modes at 

high frequencies in comparison with FEM. For modal densities, approximated 

equations from both Lyon and Heckl give close estimations of the modal densities 

compared with the theory from Bosmans and Vermeir. 
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4 Wave theory for predicting vibration propagation on periodic 

ribbed plates 

4.1 Introduction  

This chapter focuses on wave descriptions of vibration propagation on periodic 

ribbed plates of infinite extent. These theories are needed in chapter 5 to calculate 

coupling loss factors for SEA models which treat the periodic ribbed plate as a 

single subsystem. This chapter also investigates the role of pass and stop bands on 

two-dimensional structures (i.e. plates) which are further explored in terms of the 

natural frequencies of the bays formed between the ribs. 

 

4.2 Literature review: vibration of periodic ribbed plates 

This section gives a brief overview of literature concerning structure-borne sound 

transmission on periodic plates, primarily focussing on periodic ribbed plates. 

Brillouin [5] first studied wave propagation on periodic structures using Bloch 

theory and showed that waves travelling in periodic structures could display a 

distinctive frequency band gap property referred to as stop bands in which waves 

cannot propagate in the structure. These exist alongside pass bands in which 

waves can travel freely in the structure without any attenuation. Since then, much 

work has been done on the dynamic features of periodic structures. Due to the 

large quantity of literature, this section only reviews the studies on vibration of 

periodic ribbed/stiffened plates.  

Heckl [91] first discussed the bending wave propagation on a plate with periodic 

attached beams. It was shown that when beam spacing is shorter than 1/4 of the 

bending wave length it is possible to treat the ribbed plate as an orthotropic plate. 

When the beam spacing is similar to, or larger than the bending wavelength, 

Heckl related the vibration field of two adjacent periodic elements by introducing 

a propagation constant using Brillouin’s method for periodic structures. The 

propagation constant was derived and it was suggested that this general 

methodology could be extended to other periodic structures. Rumerman [92] 

further extended Heckl’s method and derived the expression of forced response 
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and free modes of an infinite periodic stiffened plate and in this derivation, the 

ribs were idealized as parallel line attachments capable of exerting line forces and 

moments upon the plate. The motion of the ribs was ignored in this method so that 

this method could not cope with the case when an in-plane wave was generated at 

the junction.  

In the work by Heckl and Rumerman a two-dimensional plate was simplified as 

an equivalent one-dimensional plate where only the normal incidence of bending 

waves was considered.  Mead and Wilby [93] used a receptance method to 

analyze a two-dimensional periodic ribbed plate. This method allowed analysis of 

random incidence but vibration in the direction parallel to the ribs was considered 

as independent free sinusoidal motion; hence the analysis can be simplified to 

only consider the direction perpendicular to the ribs. The propagation constant in 

terms of receptance was given and the internal loss factor η was included using a 

complex bending stiffness, Bp(1+iη).  

A thorough review of work on wave propagation on periodic structures between 

1964 and 1995 is given by Mead [94]. The paper reviews different methods 

available to analyze wave propagation on periodic structures including the 

receptance method, transfer matrix method and finite element method.  

Classical periodic theory considers wave propagation on in finite periodic 

structure while in reality structures are finite. Clarkson and Mead [95] suggested 

that when a finite periodic structure is highly damped, the theory for infinite 

periodic structures can be used with sufficient accuracy. The ‘exact’ results for 

finite periodic structures can potentially be calculated by using the receptance 

method or the transfer matrix method.  

When the periodic structure is coupled with other elements forming larger built-

up structures, its pass/stop band features can affect the wave transmission and 

response distribution in the system. However, few research papers have been 

found to focus in this area. Tso and Hansen [10] carried out analysis using the 

wave approach for vibration transmission across an L-junction comprised of an 

isotropic, homogeneous plate and a periodic ribbed plate. The vibration field of 

the periodic ribbed plate was described using the classical Bloch theory for 

infinite periodic structures and then incorporated into the calculation of 
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transmission coefficient between the two plates. It was found that the transmission 

coefficient is dependent upon the incident wave angle and frequency, and it shows 

the stop/pass band phenomenon. However when the angular averaged 

transmission coefficient is used to calculate the coupling loss factor in SEA, no 

distinct stop bands occurred, instead only some transmission troughs were found 

indicating the existence of the pass bands. Langley et al.[96] considered a model 

of three plates coupled in a chain including a periodic ribbed plate in the 

framework of SEA. The periodic ribbed plate was not modelled as a subsystem in 

this model, but as a non-conservative coupling element between two 

homogeneous, isotropic plate subsystems. The transmission and absorption 

coefficients associated with the ribbed plate were successfully introduced using 

the dynamic stiffness method and a computationally efficient approach based on a 

one-dimensional waveguide. This paper pointed out that the main advantage of 

this work compared with SEA and wave intensity analysis is that it enables to 

analyze the effect of stop/pass bands of the periodic structure on vibration 

transmission for coupled structures, while SEA may fail to model the periodic 

structure and the wave intensity analysis can offer a considerable improvement 

than SEA by incorporating the wave filtering effect but is still unable to capture 

the stop/pass band behaviour.  

Another extensive review of literature was carried out by Mester and Benaroya 

[97] focusing on both ‘perfect’ and ‘imperfect’ periodic structures. In this thesis, 

only ‘perfect’ periodicity is considered whereas in reality there will be 

engineering tolerances. Work by several authors (e.g. Langley [60], Lin [98], 

Hodges and Woodhouse [99]) on imperfect finite periodic ribbed plates have 

shown that the rib spacing irregularity causes localization of high order modes 

resulting in a rise of the response near the  and this phenomena cannot be 

predicted by classical periodic theory.   

 

4.3 Vibration field on a periodic ribbed plate 

An isotropic, homogeneous plate with periodically reinforced beams 

symmetrically attached on both sides of the plate is chosen for analysis as shown 
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in Figure 3.1. The ribs divide the isotropic plate into smaller plate elements and 

each element is referred to as a bay. This symmetrical arrangement of periodic 

ribs is used to avoid the generation of in-plane waves so that only bending waves 

are considered in the modelling.  

In this section, a periodic ribbed plate of infinite extent is analyzed using the thin 

plate theory and Bloch theory to consider the periodicity of the structure. The 

stop/pass band characteristics of the periodic plate are studied in detail.   

For a periodic structure, the wave motion in terms of the lateral (or out-of-plane) 

displacement,  , for an arbitrary element n, is related with its neighbouring 

element n+1 given by [5] using Bloch theory:  

1 exp( )n n   
  
 (4.1) 

where the propagation constant,  , is a complex value. If   is purely imaginary, 

waves will travel freely across the structure without any attenuation. The 

frequency range where this occurs is referred to as a pass band. On the other hand, 

if the propagation constant contains a non-zero real part, the wave will decay 

exponentially and the corresponding frequency range is referred to as a stop band.  

For an infinite two-dimensional periodic system such as the case shown in Figure 

3.3 (a), equation (4.1) can then be extended and written as: 

n 1 n+1 n 1exp( ) ( , , ) ( , , )  exp( ) ( , , ) ( , , )n n n n nx y t x y t x y t x l y t         
  
 (4.2) 

where l is the length of the bay between two ribs in the x-direction. If the width of 

the stiffened ribs is small enough to ignore, each periodic element of the structure 

is simplified to a bay which can be represented by a thin isotropic plate. Thus, l in 

equation (4.2) is equal to the length of the bay in the x-direction.  

The following derivation follows the approach of Tso and Hansen [10] and 

incorporates the stiffened ribs in the modelling of the boundary conditions by 

considering torsional, bending and inertia effects. 
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Considering bending waves propagating in the x-y plane, the wave motion on each 

bay is governed by equation (3.1) for thin isotropic plates. As the stiffened ribs are 

parallel to the y-axis and extend to infinity towards both directions, the wave 

motion along the y-axis is continuous and is given by: 

  
B( ) exp( sin )y ik y    (4.3) 

where Bk  is the bending wavenumber of the plate and   is the wave heading 

angle. 

The displacement can therefore be described using: 

  
x B( ) exp( )exp( sin )exp( )n n m n ik yx k x i t     (4.4) 

Substituting equation (4.4) into (3.1) yields the bending wave motion on one bay 

as:  

B

4

x

1

( , , ) exp( ) exp( sin )exp( )n n m m n

m

jkx y t A k x i ty 






  
 


  
 (4.5) 

The four wavenumbers in the x-direction can be obtained from:  

                              1x B cosk ik  ,          2x B cosk ik   , 

2

3x B (1 sin )k k   , 2

4x B (1 sin )k k     

(4.6) 

Bloch theory formed in equation (4.2) is applied for adjacent bays in conjunction 

with equation (4.5). The four unknown wave amplitudes 1 2 3 4( , , , )A A A A and the 

wave propagation constant,  , need to be solved by considering the appropriate 

boundary conditions for the periodic element.  
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Figure 4.1 Forces, moments and displacements for two adjacent bays 

separated by a rib 

 

Similarly as expressed in equation (4.2), Bloch theory gives the relationship 

between the displacement  , plate rotation  , force F and moment M at the 

boundaries of two adjacent bays as: 

1
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 (4.10) 

 

The right-hand side of equations (4.7) and (4.8) can also be written in the 

following form according to the continuity conditions at the junction between the 

beam and the bay assuming that the width of the beam can be ignored: 
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1
1 0
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n n

n nx x l
x x 


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
  
 (4.11) 

1
1 0

( ) ( )
n n

n nx x l
x x 


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
  
 (4.12) 

The stiffened beam causes a discontinuity in the junction force and bending 

moment between the neighbouring elements, hence the above continuity 

conditions are not suitable for the junction force and bending moment. Instead, the 

equilibrium of the forces and moments at the junction must consider the torsional, 

bending and inertia effects of the stiffened beam.  

The equilibrium of forces in z-direction needs to consider the shear force of the 

beam due to its bending motion in the y-z plane,  

1

2b
1 b b0

( ) ( ) ( )
n n n

n n nx l x x l

F
F x F x S x

y
  


  


   

   
 (4.13) 

where b , bS  are density and cross-sectional area of the beam respectively. bF  is 

the lateral shear force in the beam, which results from the bending of the beam in 

the x-y plane. It can be calculated by: 

3

b b 3

( )nx
F B

y




   
 (4.14) 

where Bb is the bending stiffness of the rib. For a rectangular beam structure, it is 

given as: 

b b bxB E I
  
 (4.15) 

where the Young’s modulus of the beam is bE and bxI is the moment of inertia of 

the beam about x-axis which can be calculated from equation (3.49). 

Therefore, using equation (4.14) and (4.15), equation (4.13) can be rewritten as: 
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 (4.16) 

The variation in plate rotation along the y-axis causes the beam to twist which 

results in a torsional moment. Considering the equilibrium of moment of the line 

parallel to the y-axis and passing through the beam centroid, the following 

equation of equilibrium for bending moment is given as: 

1

2b
1 bc0

( ) ( ) ( )
n n n

n n nx l x x l

M
M x M x I x

y
 


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
   

   
 (4.17) 

where bcI  is the second moment of inertia per unit length of the beam about the 

centroid given as: 

3 3 2

b b b b b b b
bc

b b12 12

b h h b S b h
I

h b

 
   

    
 (4.18) 

The torsional moment of the beam Mb is related to the shear modulus, Gb, and the 

torsional constant,  Jb for the beam as: 

b

( ) ( )n n
b b b b

n

x x
M G J G J

y x y

  
   

     
 (4.19) 

where Gb can be calculated using equation (3.17) and the torsional constant for the 

beam , Jb , is given in [100]  as: 

3

b b
b 5

b b

1 192 tanh
3 2

b bh b b h
J

h b





  
   

     
 (4.20) 

Therefore, equation (4.17) can be written as: 
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 (4.21) 

Replacing all the elements containing n+1 by the corresponding element of n 

using equations (4.7) to (4.10) and substituting  equation  (4.5)  to equations 

(4.11), (4.12), (4.16) and (4.21) gives: 
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(4.25) 

These four equations (4.22) to (4.25) can be written in matrix form as: 

1x 2x 3x 4x 1 1

1x 1x 2x 2x 3x 3x 4 4x 1 2 3 42 2

1 2 3 4 1 2 3 43
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where 

2 2

x ym mq k k 
 



91 

3 2

x y x(2 )m m mp k k k  
 

22
b b y x2 2bc x

x y x

p p

( )exp( )
mm

m m m

G J k kI k
u k k k l

B B


   

 

42
b b y3 2b b

x y x x

p p

[ (2 ) ]exp( )
x

m m m m

E I kS
z k k k k l

B B

 
    

 

The matrix equation can be abbreviated as: 

[ ] exp( ) [ ]m mA A1 2Η Η
  
 (4.27) 

Furthermore,  equation (4.27) can be written in the form as: 

[ ] exp( )[ ]m mA AΗ
  
 (4.28) 

where 1 2 1Η Η Η . This is a standard eigenvalue problem in which the 

eigenvalues of the matrix H are exp(λ). The solution of the corresponding 

eigenvectors gives the unknown wave amplitudes  1 2 3 4, , ,A A A A  for insertion in 

equation (4.5). 

The calculation results in four propagation constants in two pairs with one exp(λ) 

from each pair being the reciprocal of the other. These correspond to waves which 

either decay or propagate in the positive and negative directions. If we consider 

waves that travel in one direction in general, only one positive and one negative 

free wave can occur at any frequency so that one pair of the eigenvalues is valid 

and either one of the eigenvalues in this pair can be used in further subsequent 

calculations. (In this thesis, the real part of the complex propagation constant is 

presented as positive.) 

To illustrate the propagation constants, consider such a periodic ribbed plate as 

shown in Figure 3.3(a) made from Perspex. The geometrical dimensions are 

illustrated in Figure 3.3(b). Figure 4.2 shows the complex propagation constants 

for this structure with different propagation wave angles.   
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Frequency (Hz) 

Figure 4.2 Real and imaginary parts of the propagation constant, λ, with 

different propagation wave angles for an infinite periodic ribbed 

plates (dimensions and material properties see Table 2) 

 

If the propagation constant is purely imaginary, the bending wave will travel 

freely across the ribbed plate; hence the corresponding frequency falls within a 

pass band. Between two consecutive pass bands where the propagation constant 

has a non-zero real part, there will be no propagating wave and the frequency falls 

within a stop band.  

As shown in Figure 4.2, the distribution of stop/pass bands is dependent upon the 

wave propagation angle as well as frequency. In general, with the increase of 

propagation wave angles, the width of the pass bands reduces while the band gap 

increases. At 0°, when the real part is non-zero, the imaginary part is either zero or 

–π. Bending waves with propagation angle above ≈60° do not exhibit any pass 

bands anymore and the stop bands dominate the entire frequency range.  

Figure 4.3 shows the bending wave propagation with wave heading angles from 0° 

to 90° on the periodic plate. The black shaded area represents purely imaginary 
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propagation constants, which can be referred to as a propagation zone. The white 

areas, on the other hand, are attenuation zones where a non-zero real part of the 

propagation constant exists. Bending wave fields on plates with only one specific 

propagation angle are rarely found in the real world, and usually contain many 

different angles. For example, in a diffuse vibration field the bending waves occur 

at all possible propagation angles. As shown in Figure 4.3, at any particular 

frequency the periodic plate doesn’t exhibit a single pass or stop band, which is in 

contrast to the case of a one-dimensional periodic structure.  

It is expected that the greatest vibration response will occur in pass bands. Hence 

it is of great importance for structural engineers to understand the band gap 

characteristics for periodic structures. 

 

                        

Frequency (Hz) 

Figure 4.3 Propagation and attenuation zones of a periodic ribbed plate 

(black shaded areas: propagation zones; white areas: attenuation 

zones) 
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4.4 Effect of geometrical properties on stop/pass band distribution 

Taking the default dimensions for the ribbed plate shown in Table 2, Figure 4.4 to 

Figure 4.7 show the variation in the distribution of propagation and attenuation 

zones when one parameter is changed from the default value. 

 Figure 4.4 (a) and (b) show different widths for the rib. It can be seen that 

when the rib width is increased, the four attenuation zones surrounded by 

propagation zones cover a wider frequency range. However, the upper bounds 

of the propagation zones in terms of the wave heading angles remain the same. 

 Figure 4.5 (a) and (b) show different heights for the rib. It can be seen that 

when the rib height is increased, the area of the propagation zones has been 

compressed both to a lower heading angle and in frequency range. Also the 

attenuation zones at small wave heading angles tends to move towards lower 

frequencies.  

 Figure 4.6 (a) and (b) show different bay spacings. With increasing bay 

spacing, the width of each attenuation zone is compressed in frequency range 

and moves towards lower frequencies so that more propagation and 

attenuation zones appear below 10 kHz. 

 Figure 4.7 (a) and (b) show different plate thicknesses. With increasing plate 

thickness, the propagation zones extend to higher wave heading angle while 

the attenuation zones are moved to higher frequencies so that less attenuation 

zones appear below 10 kHz. 
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Frequency (Hz)  

       

Frequency (Hz) 

Figure 4.4 Variation of rib width (a) 15 mm, (b) 60 mm on the distribution 

of propagation and attenuation zones. (Compare with Figure 4.3 

for 30 mm rib width where all other parameters remains the same 

with rib height: 50 mm, rib spacing: 150 mm and plate thickness: 

13 mm)  
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Frequency (Hz) 

Frequency (Hz) 

Figure 4.5 Variation of rib height (a) 25 mm, (b) 100 mm on the distribution 

of propagation and attenuation zones. (Compare with Figure 4.3 

for 50 mm rib height where all other parameters remains the same 

with rib width: 30 mm, rib spacing: 150 mm and plate thickness: 

13 mm)  
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Frequency (Hz) 

  

Frequency (Hz) 

Figure 4.6 Variation of bay spacing (a) 100 mm, (b) 300 mm on the 

distribution of propagation and attenuation zones. (Compare with 

Figure 4.3 for 150 mm bay spacing where all other parameters 

remains the same with rib width: 30 mm, rib height: 50 mm and 

plate thickness: 13 mm)  
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Frequency (Hz) 

  

Frequency (Hz) 

Figure 4.7 Variation of plate thickness (a) 5 mm, (b) 20 mm on the 

distribution of propagation and attenuation zones. (Compare with 

Figure 4.3 for 13 mm bay spacing where all other parameters 

remains the same with rib width: 30 mm, rib height: 50 mm and 

bay spacing: 150 mm)  
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4.5 Relationship between bounding frequencies of stop/pass bands 

and natural frequencies of the periodic element from a ribbed 

plate 

4.5.1 Introduction 

Previous studies by Gupta [101] and Mead [102] have found that for certain 

periodic structures, the upper and lower bounds of pass bands can be identified by 

the natural frequencies of a periodic element. In this section this is investigated 

because it is important to understand the relationship between the natural 

frequencies and the bounding frequencies of the pass bands for a two-dimensional 

periodic ribbed plate. In chapters 6 and 7, the bays of the periodic ribbed plate 

will be treated as individual subsystems in SEA and ASEA models; this is only 

possible once the bay supports local modes. For practical purposes, the 

fundamental mode is calculated for a bay with simply-supported boundaries. 

Therefore it is of interest to relate the fundamental mode of a bay (SSSS) to the 

first pass or stop band. 

 

4.5.2 General approach for analysing periodic structures using the 

receptance method 

Mead [102] introduced a receptance approach to calculate the propagation 

constant for general periodic structures and applied this method. Such receptance 

methods are thoroughly described by Bishop and Johnson [103] to calculate the 

vibration response of the whole system from analyzing individual components of 

the system. The receptance method is initially used in this section to determine the 

response of a general periodic system as shown in Figure 4.8 (a). This is then 

applied to a specific periodic system, a two- dimensional periodic ribbed plate in 

order to investigate the relationship between the natural frequencies and the 

bounding frequencies of the pass bands.  
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Figure 4.8  (a) Schematic of a general infinite periodic system; (b) forces 

and displacements at two coupling ends of one periodic element 

 

 

In a periodic system, each periodic element can be characterized by its 

receptances which relate the force and displacement at its two coupling ends. 

Taking one of the periodic elements shown as in Figure 4.8 (b), the displacements 

and forces on the left and right ends of the element are related through the 

following receptance matrix.  

1 11 12 1

2 21 22 2

F

F

  

  

     
     

             
 (4.29) 

where 11  and 22  are direct receptances and 12  and 21  are cross receptances. 

It is noted that the receptances can also be expressed as the ratio of rotational 

angle over moment at the two ends of the periodic element. This will be referred 

to as rotational receptances later in the thesis. In this case, equation (4.29) can be 

changed to: 

1 11 12 1

2 21 22 2

M

M

  

  

     
     

             
 (4.30) 
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For free motion on an infinite periodic system, Bloch theory yields the 

displacements and forces at the corresponding positions of two neighbouring 

periodic element is related through propagation constant   as: 

2 1=exp( )  
  
 (4.31) 

2 1=exp( )F F
  
 (4.32) 

Substituting (4.31) and (4.32) into (4.29) gives: 

1 11 12 1[ exp( ) ]F    
  
 (4.33) 

1 12 22 1[ exp( ) ]e F    
  
 (4.34) 

Eliminating 1  and 1F  by dividing (4.33) by (4.34) obtains: 

11 12 12[exp( ) exp( )] 0        
  
 (4.35) 

as exp( ) exp( ) 2cosh( )     , equation (4.35) can be written as: 

11 22

12

cosh( )
2

 







  
 (4.36) 

When propagation constant  is imaginary, -1 cosh( ) 1  , and represents the 

wave inside a propagation zone. The bounding frequencies that define the 

boundaries of the propagation and attenuation zones are therefore positions that 

satisfy 

cosh( ) 1  
  
 (4.37) 
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4.5.3 Using the receptance method to calculate the natural frequencies of a 

periodic element  

The natural frequencies of an individual periodic element are calculated in this 

section with different boundary conditions in order to find their relationship to the 

bounding frequencies of the pass bands of the complete periodic structure.     

(1) Free boundary 

Considering one periodic element taken out of the whole structure without any 

constraint at the boundary, the boundary receptance at natural frequencies will be 

infinite whilst the ratios α11/ α22 and α11/ α12, remain finite according to [101]. 

Bishop and Johnson [103] calculate α11/ α22 and α11/ α12 for symmetric elements 

where α11=α22. Hence the ratios will be either +1 or 1 so that they satisfy the 

equation cosh( ) 1   . Therefore, the natural frequencies of the periodic element 

with free boundaries are located at the bounding frequencies of the pass bands.   

(2) Simply-supported or Clamped boundaries 

If the element is clamped or simply-supported at both its coupling ends, it will 

have different natural frequencies. Based on the boundary condition which yields 

zero translational displacement at both coupling ends, this gives: 

1 11 1 12 2 0F F    
  

 (4.38) 

2 21 1 22 2 0F F    
  

 (4.39) 

In order to satisfy equation (4.38) and (4.39), the determinant of the receptance 

matrix: 

11 12

21 22

0
 

 


  
 (4.40) 

As 12 21  for reciprocity requirement, equation (4.40) can be reduced to 

equation (4.41) for a symmetric element.  
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2 2 11
11 12

12

- =0     = 1


 


 
  
 (4.41) 

Equation (4.41) is only satisfied at natural frequencies so that cosh( ) 1   , 

therefore simply-supported or clamped boundaries also define the bounding 

frequencies of the pass bands.  

 

4.5.4 Applying the receptance method to periodic ribbed plates 

For one-dimensional periodic beam systems, the exact point receptances can be 

calculated theoretically. However, for some complex two-dimensional periodic 

structures such as the periodic ribbed plate shown in Figure 3.3, exact receptances 

of each element can be difficult to calculate using theoretical methods. Hence 

some simplifications have to be made. Therefore, the periodic element of the 

ribbed plate in Figure 3.3 is simplified to be a thin plate representing the bay and 

only considering the ribs in terms of their effect on the bay as structural line 

discontinuities.  

Now we only consider one bay from the periodic plate as illustrated in Figure 4.9, 

the solution of equation (3.1) for bending wave motion in a thin plate can be 

expressed in relation with the mode number in y-direction given by [36].   

1 2 3 4( , , ) [ cosh( ) sinh( ) cos( ) sin( )]sin( )exp( )a a a ax y t A x A x A x A x n y i t                 

 (4.42) 

where  1 2 3 4, , ,A A A A are wave amplitude constants which are determined from 

the corresponding boundary conditions at the two coupling ends where x=0 and 

x=a. Also 

x
x

a
 

        

y
y

b
   (4.43) 
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  1a

a
n K

b
  

        
1a

a
n K

b
     (4.44) 

2 2 2

p p( / ) /
K

n b B h



 
  (4.45) 

where integer n=1, 2, 3... represents the mode number in y-direction, B is the 

bending stiffness,  is the  density and h is the thickness of the plate in the bay. 

( , )x y  is the mode shape corresponding to the natural frequency ω. 

 

 

Figure 4.9 One periodic element as a thin rectangular plate 

 

To calculate the receptance at the coupling lines of both right and left sides, the 

equation (4.42) need to be solved by applying the boundary conditions. First, 

simply-supported boundary conditions at the coupling edges of x=0 and x=a are 

considered. From equation (4.42), it can be shown that the bending moment and 

the responses in displacement in the y-direction both follow a sinusoidal 

distribution. Thus the formulation of receptance which is the ratio of the 

displacement and force will cancel the y-component and it will not be considered 

in the following derivation. 

The simply-supported boundary conditions at the opposite coupling lines yield: 
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( , , ) 0x y t      M=M1    at x=0 

(4.46) 

( , , ) 0x y t     M=M2    at x=a 

At natural frequencies, the mode shape s ( , )A x y at the boundaries has: 

 ( , ) 0sA x y   and 
2

12
sin( )sA

B M n y
x




 


    at x=0 

(4.47) 

( , ) 0sA x y   and 
2

22
sin( )sA

B M n y
x




 


  at x=a 

where M1 and M2 are magnitudes of the bending moment per unit length along the 

coupling lines. Considering both boundaries, the overall solution for the mode 

shape is a sum of two parts where M1 and M2 are applied using equations from 

(4.47) respectively as: 

1 2
s s s( , ) ( , ) ( , )

M M
A x y A x y A x y 

  
 (4.48) 

and  

    
1

2

1
s 2 2

p

sinh( ) sin( )
( , ) sin( )

( ) sinh( ) sin( )

a a

M
a a a a

x xM a
A x y n y

B

 


   

   
   

      
 (4.49) 

2

2

2
s 2 2

p

sinh[ (1 )] sin[ (1 )]
( , ) sin( )

( ) sinh( ) sin( )

a a

M
a a a a

x xM a
A x y n y

B

 


   

    
   

     

(4.50) 

The rotational receptances for a plate are defined by Azimi et al. [104] as:  

                 
1

( , ) /

( 1) sin( )

j
s M

ij j

j

A x y x

M n y




 



         

at x=xi     i=1,2, x1=0 and x2=a

 

(4.51) 
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Substituting equation (4.49) and (4.50) into (4.51), the direct and cross 

receptances of the plate when two opposite coupling edges are simply-supported 

can be obtained and simplified as:   

11 22= = coth( ) cot( )a a a aCa        
  
 (4.52) 

12 21= = / sinh( ) / sin( )a a a aCa        
  
 (4.53) 

where Ca is defined as: 

2 2

p ( )a a

a
Ca

B  
 

   
 (4.54) 

11 22=   because of the symmetrical nature of the structure and 12 21=  due to the 

reciprocity relationship.  

For the periodic ribbed plate shown in Figure 3.3 (dimensions and material 

properties in Table 2), Figure 4.10 shows the receptances with the fundamental 

mode in y-direction (n=1 used in equation (4.44) and (4.45)) at the coupling lines 

for the bay element from the model. Figure 4.11 shows the correspondingcosh( )  

calculated from these receptances using equation (4.36). In Figure 4.10, each time 

the receptance jumps between positive and negative values corresponds to a 

position in Figure 4.11 where cosh( ) 1   . It can be calculated from equation 

(4.29) that when cosh( ) 1  , 1 2   and 1 2F F   where the forces at both ends 

of the element have opposite phase whereas when cosh( ) 1   , 1 2   and 

1 2F F  both forces have the same phase.  
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Frequency (Hz) 

Figure 4.10 Direct and cross receptances for a rectangular thin plate  

 

Frequency (Hz) 

Figure 4.11 cosh( )  variation with frequency for a rectangular thin 

plate 
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Figure 4.12 compares the propagation constants calculated using the receptance 

method and the wave approach. The propagation angle used in the wave approach 

is zero. This means that it does not contribute to the modal response in y-direction 

which is the closest equivalent situation to the calculation used in the receptance 

method.  A noteworthy finding is that the receptance method and the wave 

approach give the same lower frequency limit for all pass bands; however for the 

upper frequency limit of each pass band, the receptance method gives a lower 

frequency than the wave approach. This discrepancy is caused due to the 

simplifications in the receptance method and the assumptions in the wave 

approach: 

 In the wave approach, the plate element in y-direction is considered as 

infinite whereas the receptance method incorporates the modal response in 

the y-direction due to its finite length. 

 The receptance method simplifies the stiffened rib to a continuous line 

discontinuity in the structure so that the effect of torsion and bending of 

the ribs on wave propagation between bays is ignored. In contrast, the 

wave approach takes account of this in the modelling. However, both 

methods ignore the finite width of the rib in the x-direction so that the 

periodic elements in the structure only consider the bays as thin plates.  

Although there are differences between these two methods, this should not deter 

the usage of the receptance method to investigate the relationship between the 

bounding frequencies of the periodic structure and the natural frequencies of its 

periodic elements.   
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Frequency (Hz) 

Figure 4.12 Real and imaginary part of the propagation constant 

calculated from receptance methods for comparison with 

the wave approach  

 

 

4.5.5 Calculating natural frequencies of a thin rectangular plate 

representing a periodic element 

The calculation of natural frequencies of thin rectangular plates with various 

boundary conditions have been widely studied. Leissa [105] calculated the ‘exact’ 

first six modes for rectangular thin plate with different length/width ratio of all 

possible boundary conditions using a numerical method. Dickinson [88] made the 

approximation of considering the mode shape of a rectangular thin plate is 

represented by mode shapes of single beams along x and y axes. The solution of 

natural frequencies of the plate can be developed using energy as the primary 

parameter and is often referred to as the Rayleigh-Ritz method. The approximate 

natural frequencies using such a method for the rectangular periodic bay in Figure 

4.9 are adapted from Blevins [85] as: 
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1/21/2 34 4
p1 2 1 2 1 2 1 2

4 4 2 2 2

S

2 2 ( )

2 12 (1 )
ij

EhG G J J H H J J
f

a b a b



 

   
     

       
 (4.55) 

where i and j are mode number indices corresponding x and y direction. and E, s , 

 are Young’s modulus, mass density per unit area and Poisson’s ratio 

respectively. Geometrical dimensions of the plate a, b and h represents length in 

x-direction, width in y-direction and plate thickness respectively. Dimensionless 

constants G, J and H are dependent on the boundary conditions and mode number, 

which are given in Table 1. 

 

4.5.6 Investigating the relationship between natural frequencies of the 

periodic element and bounding frequencies for pass/stop bands of 

periodic ribbed plates 

As noted in Section 4.5.3, the bounding frequencies of the pass bands are 

determined by the natural frequencies of a single periodic element. The boundary 

conditions must either be free (FFFF) or combinations of simply-supported and 

clamped (e.g. SSSS, CCCC, SCSC, SSCC) for the two opposite junctions that are 

connected to adjacent periodic elements. Considering the bay element from the 

periodic ribbed plate, the natural frequencies with the above boundary conditions 

can be calculated using equation (4.55). The following results will are calculated 

from FFFF and SSSS boundary conditions.  

For the periodic ribbed plate introduced in chapter 3 as shown in Figure 3.3 

(dimensions and material properties in Table 2), Figure 4.13 shows a selection of 

mode numbers in the y-direction (taking values from one to four) alongside their 

corresponding propagation constants that have been calculated from the 

receptance method. This shows that all the natural modes for simply-supported 

boundaries indicate the starting frequency of a pass band (or ending frequency for 

a stop band). However, it is only for the first mode in the y-direction that all the 

natural modes with free boundaries exactly indicate the starting frequency of a 

stop band (or ending frequency for a pass band). The latter finding is not 
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problematic because it has been shown in Figure 4.12 that the simplifications in 

the receptance method means that this starting frequency is more accurately 

identified by the wave approach. 

Figure 4.14 allows an assessment of whether the natural frequencies indicate the 

boundaries of pass or stop bands over the full range of mode numbers in the y-

direction. As previously indicated by Figure 4.13, it is confirmed that all natural 

frequencies with simply-supported boundary conditions determine the lower limit 

of each pass band but for free boundary conditions, the upper bounds of the pass 

bands are only described by the natural frequency for the first mode.  Note that the 

natural frequencies at 0Hz for FFFF elements are not included on the figures. 

In conclusion, the fundamental mode of a bay assuming simply-supported 

boundaries will always occur at the same frequency as the lower boundary of the 

first pass band on the periodic ribbed plate. This means that in chapters 6 and 7 it 

will be reasonable to attempt to treat the bays of the periodic ribbed plate as 

individual subsystems in SEA and ASEA models above the fundamental mode 

frequency. This might have been difficult to justify if the fundamental mode 

always fell within the first stop band where that stop band covered all angles of 

incidence. Fortunately, all the examples for periodic ribbed plates in section 4.4 

show that the first stop band never covers all angles of incidence at any particular 

frequency. Therefore, at frequencies above the fundamental mode of each bay, 

there will always be angles of incidence that are in a pass band. However, it will 

only be once the SEA and ASEA models are analysed in chapters 6 and 7 that we 

will be able to assess whether the effect of successive spatial filtering across a 

ribbed plate (which reduces the available angles of incidence) still makes it 

reasonable to treat bays as individual subsystems. 

 

4.6 Conclusions 

This chapter used wave theory and Bloch theory to describe bending wave 

propagation on a periodic ribbed plate with symmetric ribs. This theory will be 

incorporated in chapter 5 to determine the SEA coupling loss factor for L-

junctions which incorporate this type of periodic ribbed plate. 
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Geometries for a variety of different periodic ribbed plates were described for 

analysis in this thesis. Their stop/pass band characteristics have been analyzed to 

indicate how these geometric parameters can significantly change the distribution 

of the propagation and attenuation zones. 

This chapter also investigates the relations between the bounding frequencies of 

the stop/pass bands of the periodic ribbed plate and the natural frequencies of the 

periodic element of the ribbed plate. This analysis is performed in order to 

examine the validity of SEA and ASEA models in chapter 6 where each bay of 

the ribbed plate will be treated as a single subsystem in SEA. 

 

                   

 

Frequency (Hz) 

Figure 4.13 Real part of propagation constant for the periodic ribbed plate as 

shown in Figure 3.3 (dimensions and material properties in 

Table 2) with natural frequencies of a single periodic element 

(  markers represents the natural modes with simply-supported 

boundary conditions (SSSS);  markers with free boundary 

conditions (FFFF); fij and fi means natural frequency with mode 

number i in x-direction and mode number  j in y-direction ) 
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   Frequency (Hz) 

Figure 4.14 Natural modes with different boundary conditions for periodic 

bay element (  markers represents the natural modes with 

simply-supported boundary conditions;  markers with free 

boundary conditions;  marks the bounding frequencies of pass 

bands); pass bands are shaded in grey. 
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5 Structure-borne sound transmission across structural 

junctions using wave theory 

5.1 Introduction 

This chapter describes the prediction models for structure-borne sound 

transmission across structural junctions of semi-infinite plates using the wave 

approach. The resulting transmission coefficients are used to determine the 

coupling loss factors for use in SEA and ASEA.  

Various structural junctions are discussed in this chapter starting with bending and 

in-plane wave transmission across an L-junction of two thin, isotropic, 

homogeneous plates. Secondly, bending wave transmission in a plate with a single 

reinforcing rib is discussed. Thirdly, considering a plate with periodic reinforcing 

ribs and an isotropic homogeneous plate forming an L-junction, bending wave 

transmission in the coupled structure is modelled based on Tso and Hansen [10]. 

The effect of periodicity of the ribbed plate on the wave transmission is discussed.  

Finally, the same L-junction is considered but the periodic ribbed plate is 

modelled as a plate of uniform thickness with orthotropic elastic properties. This 

allows adaptation of the model for the L-junction with two isotropic homogeneous 

plates by using angle-dependent bending stiffness instead of isotropic bending 

stiffness.  

5.2 Literature review on vibration transmission through structural 

junctions 

In the wave approach to SEA, the vibration fields on the subsystems are 

represented by superposition of travelling waves [17] and the power transfer 

between subsystems through structural junctions is qualified by the transmission 

coefficient. The transmission coefficient of structural junctions has been carried 

out by others for different types of structural junction. This section reviews the 

works on rigid plate/plate and plate/beam junctions.  

5.2.1 Plate/Plate junctions 

Early publications on the structure-borne sound transmission between structural 

junctions of semi-infinite plates were limited to normal incidence [106, 107] as 
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the plates were discretized into a series of strips perpendicular to the junction. 

Both the bending and in-plane wave transmission across the junction were studied.  

The normal incidence case was extended to oblique incidence by Lyon and 

Eichler [108] in studying a T-junction. They only considered bending wave 

transmission in the model as the generation of in-plane wave was ignored due to 

the assumption of a simply-supported junction. Kihlman [109, 110] studied both 

the bending and in-plane wave transmission for a symmetric cross junction of 

semi-infinite plates. Due to the symmetric arrangement of the junction, the 

formulation was simplified as in-plane waves were only generated in the plates 

perpendicular to the source plate and the plate in the same plane as the source 

plate only carries bending wave. Cremer et al. [34] carried out a comprehensive 

investigation on wave transmission through various structural junctions, such as 

L-, T- and cross junctions taking into account bending and in-plane wave 

transmission. Craik [111] summarized the structure-borne sound transmission for 

typical types of building structural junctions in the framework of SEA. The work 

focused on the determination of coupling loss factors from the wave approach. 

Considering the diffuse vibration field assumption in SEA, the coupling loss 

factor was calculated from an angular averaged transmission coefficient obtained 

from an integration of angle-dependent transmission coefficient over all angles of 

incidence using equation (2.27).  

Junctions of plates coupled at arbitrary angles were discussed by Rosenhouse [112] 

for folded plates and the damping was also considered. A general description of 

wave transmission at junctions of plates with arbitrary coupling angles was given 

by Langley and Heron [113] based on a dynamic stiffness matrix formulation.  

Many works also studied L-junctions comprised of more complicated plate 

structures than isotropic, homogeneous plates. Tso and Hansen [10] analyzed the 

vibration transmission across an L-junction comprised of an isotropic, 

homogeneous plate and a periodic ribbed plate as the one discussed in chapter 4. 

Although the vibration field on the periodic ribbed plate is more complicated than 

the isotropic, homogeneous plate, the wave transmission at the junction is 

modelled using the same method as for the L-junction of two semi-infinite 

isotropic, homogeneous plates as discussed by Cremer et al. [34]. Bosmans et al. 
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[86, 89] investigated structural junctions comprised of orthotropic plates and the 

boundary conditions are described in a more complicated way to incorporate in-

plane wave transmission and such a description can also be used for other 

junctions.  

In this chapter, wave approaches considering both bending and in-plane wave 

described by Cremer et al. [34] and Bosmans et al. [86, 114] are used to calculate 

the transmission coefficient between isotropic and orthotropic plates. The model 

from Tso and Hansen is also adopted for the L-junction of isotropic and periodic 

ribbed plates.  

5.2.2 Plate/Beam junctions 

The vibration transmission at junctions formed from plates and beams was 

investigated by Heckl [106] and Cremer et al. [34]. The coupling between the 

plate and beam is usually simplified as a line junction by ignoring beam cross-

section deformation. The effect of beam shear deformation and rotational inertia is 

considered.  Wöhle et al. [115] theoretically and numerically analyzed the wave 

transmission in a plate with a single reinforcing rib. This work had been done in 

the context of SEA aiming to predict the coupling loss factor using angular 

averaged transmission coefficients for semi-infinite plates. Graven and Gibbs [116] 

and Gibbs and Graven [117] extended previous methods for a plate/beam junction 

based on a different formulation of the boundary conditions and incorporated the 

damping loss factor in the modelling. The effect of plate thickness and material 

constants in the transmission of bending and in-plane waves was discussed. It also 

confirmed that when the beams are symmetrically attached to the plate, with an 

incident bending wave impinging upon the junction, there was no in-plane 

generation on the plate. Lu et al. [118] incorporated the cross-section vibration of 

the beams in the modelling of wave transmission across plate/beam junctions, and 

the power conservation error was used to evaluate the accuracy of the method.  It 

was indicated that this method only satisfies the power conservation requirement 

at low frequencies and large errors could occur in higher frequencies. Steel [119] 

developed a model using the wave approach and impedance formulations to 

investigate the wave transmission between columns and walls of framed buildings. 

This method allows the bending and torsional wave motion in the beam. Craik and 
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Wilson [120] used a simplified method for vibration transmission across 

plate/beam junctions by treating the beam as a massless and stiff element.   

Cremer [121] investigated an ideal plate-beam system considering bending wave 

propagation on an infinite thin plate with one stiffened beam with the emphasis on 

the stresses in the plate and the beam. Heckl [106] extended this analytical model 

to consider finite systems and indicated that very small attenuations due to the 

beam were found near the resonances of the beam and higher attenuations 

elsewhere. Both of their studies assumed that the plate was made of a set of 

narrow strips of plates and the model was simplified into a one-dimensional 

problem where a set of one-dimensional dynamic elements was considered. 

However, the major limitation of this analytical approach is that it only allows the 

wave motion in the direction that is normal to the junction. Cremer et al. [34] later 

developed the analytical expressions of wave propagation on such a structure with 

infinite extent considering an oblique incident wave angle and showed that the 

main feature of this type of structure was the ‘trace-matching’ phenomena when 

the bending wave attenuation caused by the stiffened beam vanished. Grice and 

Pinnington [122]  discussed the frequency limitation of this approach for finite 

systems due to the local resonance reacting.  

 

5.3 Wave transmission across an L-junction of thin, homogeneous, 

isotropic plates 

This section describes the structure-borne sound transmission for L-junctions of 

semi-infinite, thin, homogeneous, isotropic plates using the wave approach. First 

of all, only bending wave transmission is considered with an oblique incident 

wave angle impinging upon the junction between the two plates. Secondly, 

incident bending waves with a wave conversion between bending and in-plane 

waves at the junction is modelled. The wave approach presented in this section 

follows that of Cremer et al. [34], Craik  [111] and Bosmans [87].  
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5.3.1 Bending waves only 

This section only considers the bending wave transmission at the L-junction. The 

two semi-infinite plates are assumed to be connected to each other by a junction 

beam as shown in Figure 5.1. The junction beam does not represent a physical 

part of a real junction. It is assumed to have zero mass and a rigid cross-section 

[74]. As only the transmission of the bending wave at the junction is allowed, the 

junction beam is considered to be simply-supported such that there is no lateral 

displacement of the junction beam although it is free to rotate.  

 

 

Figure 5.1 Bending wave transmissions between two isotropic homogeneous 

plates across a junction beam and its corresponding coordinate 

system 
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For the source plate (plate 1), carrying an incident bending wave propagating at an 

angle of   with a wave amplitude of unity, the displacement of the incident wave, 

inc , can be expressed as: 

  
inc B1 B1exp( cos )exp( sin )exp( )ik x ik y i t       (5.1) 

where 1Bk  is the bending wavenumber of the plate 1. The first two exponential 

terms of equation (5.1) represent bending wave propagation in the positive x- and 

y-direction, respectively.  

When the incident wave reaches the junction, a transmitted wave on plate 2 and a 

reflected wave on the source plate 1 are generated. The propagation directions of 

the reflected waves have the same wave angle as expressed in equation (5.2) if a 

specular reflection is assumed. The wave angles of the transmitted waves can be 

determined by Snell’s Law as shown in equation (5.3).  

  
=   (5.2) 

B1 B2sin sink k 
 

(5.3) 

where  is the reflected wave angle and  is the transmitted wave angle. Equation 

(5.3) also indicates that along the y-directions, incident, transmitted and reflected 

waves have the same wavenumbers so that the y-component for these waves are 

expressed the same as in equation (4.4) as B1exp( sin )ik y . 

As indicated by equation (5.3), the transmitted wave angle  increases with the 

increase of the incident wave angle  . If the wavenumber of the incident wave is 

larger than that of the transmitted wave, that is B2 B1<k k , there is an upper limit for 

the incident wave angle. Above this limit the transmitted wave angles would have 

complex values and there will be no transmission of propagating waves. This 

upper limit can be defined as a cut-off angle, co  , which based on the Snell’s law, 

can be calculated by setting = / 2   as shown in equation (5.4): 
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B2
co

B1

= arcsin
k

k


 
 
 

 (5.4) 

Based on these, the general expressions of transmitted and reflected waves in 

terms of displacements can be written as: 

  
trans 2 B2 2 B1= exp( )exp( sin )exp( )xT k x ik y i t     (5.5) 

reflect 1 B1 1 B1= exp( )exp( sin )exp( )xT k x ik y i t   
 

(5.6) 

where B1xk  represents the bending wavenumber component in x-direction for plate 

1.   

Substituting equation (5.5) and (5.6) into equation (3.1) for bending wave on 

isotropic plate respectively, two pairs of wavenumbers are obtained for 

transmitted waves: 

  

2 2 2

B2 B2 B1 B2sin cosxk i k k ik       (5.7) 

2 2 2 2

B2 B2 B1 B2sin 1 sinxk k k k      
 

(5.8) 

The wavenumber in x-direction can either be real or imaginary. The pair of 

imaginary wavenumbers corresponds to the travelling wave along positive and 

negative x-direction whereas the real wavenumbers represent the near-field where 

waves decay exponentially.  

(1) Source plate 

The total displacement on the source plate consists of the contribution from the 

incident wave in the positive x-direction, the reflected travelling wave and the 

near-field in the negative x-direction. Equation (5.5) can then be rewritten as: 
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1 inc reflect nf ,1

2

B1 1 1 B1 1 2 B1 1 B1    [exp( cos ) exp( cos ) exp( (1 sin ))]exp( sin )ik x T ik x T k x ik y i t

   

    

  

      

 

 (5.9) 

(1) Receiving plate 

Similarly, the total displacement on the receiving plate is made of a transmitted 

wave and near-field in the positive x-direction.  

2 trans nf ,2

2

3 B2 2 4 B2 2 B1    [ exp( cos ) exp( (1 sin ))]exp( sin )T ik x T k x ik y i t

  

   

 

      
 

 (5.10) 

To calculate the four unknown wave amplitudes  1 2 3 4,  ,  ,  T T T T  in equation (5.9) 

and (5.10), the corresponding boundary conditions and continuity conditions at 

the junction beam need to be considered. 

(1) Continuity conditions: junction lateral displacement 

As the junction beam is simply supported, there is no lateral displacement along 

the junction.   

1
1 1 =0
( ) 0

x
x   (5.11) 

2
2 2 =0
( ) 0

x
x 

 
(5.12) 

Putting equation (5.11) and (5.12) into the wave equations of the source and 

receiving plates gives: 

1 2 1T T    (5.13) 
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3 4 0T T 
 

(5.14) 

(2) Continuity conditions: junction rotation 

The continuity of junction rotation requires that the angular rotation of the source 

plate at the junction equals to the angular rotation of the receiving plate at the 

junction. The angular rotation of plate can be calculated from equation (3.11), 

thus this continuity condition can be written as: 

1 2

1 2

1 20 0x x
x x

 

 

 


 
 (5.15) 

Substituting equation (5.9) and (5.10) into (5.15) gives: 

2 2

1 B1 2 B1 3 B2 4 B2 B1cos (1 sin ) cos (1 sin ) cosTik T k T ik T k ik           

 (5.16) 

(3)  Equilibrium Condition: Bending moment 

The sum of the bending moments at the junction must equal zero, as 

1 2
1 20 0

0
x x

M M
 
   (5.17) 

The bending moment per unit length for the isotropic plate is given in equation 

(3.12)  and inserting into (5.17) gives: 

1 2

2 2 2 2

1 1 2 2
1 1 2 22 2 2 2

1 2 = 0

( ) ( ) 0

x x

B B
x y x y

   
 



    
     

    
 (5.18) 

where Bi represents the bending stiffness for plate i calculated from equation (3.2) 

and i  is the Poisson’s ratio.  
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Substituting equations (5.9) and (5.10)  into (5.18) gives: 

   2 2 2 2 2 2 2 2

1 1 B1 2 1 B1 3 2 B2 4 B2

2 2 2 2

1 B1 B1 1 1 2 2

cos 1 sin cos 1 sin

cos sin ( )

T B k T B k T B k T k

B k k B B

   

   

    

   
 

 (5.19) 

Equations (5.13), (5.14), (5.16) and (5.19) can be combined into matrix form as: 

   

1

2

2 2

B1 B1 B2 B2 3 B1

2 2 2 2 2 2 2 2 2 2 2 2
1 B1 1 B1 2 B2 2 B2 4 1 B1 B1 1 1 2 2

1 1 0 0 1

0 0 1 1 0

cos (1 sin ) cos (1 sin ) cos

cos 1 sin cos 1 sin cos sin ( )

T

T

ik k ik k T ik

B k B k B k B k T B k k B B

    

       

     
     
     
     
      
     
               

 

 (5.20) 

The unknown amplitudes  1 2 3 4,  ,  ,  T T T T can determined by the inversion of the 

matrix in equation (5.20).  

 

5.3.2 Evaluation of the transmission coefficients 

The transmission coefficient is defined as the wave power transmitted across the 

coupling junction divided by the incident wave power on it. Similarly, the 

reflection coefficient is the ratio of reflected wave power from the junction to the 

incident wave power. The transmission coefficient,  , and reflection coefficient, r, 

can be expressed using the ratio of wave intensities as: 

trans trans

inc inc

( ) ( )
( )

( ) ( )

W I

W I

 
 

 
   (5.21) 
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reflect reflect

inc inc

( ) ( )
( )

( ) ( )

W I
r

W I

 


 
 

 
(5.22) 

As only bending waves are considered, the sum of transmission and reflection 

coefficients equals unity: 

1r    (5.23) 

For the source plate, the incident bending wave upon the junction has unit 

amplitude and the wave angle of  . Its wave intensity in the x-direction can be 

expressed based on equation (3.14): 

3

B1 1 B1( ) cosxI B k    (5.24) 

The wave intensity is the power flow per unit width, which can be calculated from 

the force and velocity and moment components as follows: 

* *

B

1
( ) Re{ }

2
I M F     (5.25) 

where   is the rotation angle of the plate which can be calculated from equation 

(3.11).  *  represents complex conjugate and  
. 
 indicates the derivative with respect 

to time. The bending moment M and force F for source plate and receiving plate 

can be calculated from the following equations. 

For the transmitted waves on the receiving plate (plate 2) at the junction: 

2 2 2

2 2 3 B2 2 B2( cos )M B T k k     (5.26) 

3 B2

.

2 cosT k   
 

(5.27) 

3 3 2 2

2 2 3 B2 2 B2 B1cos (2 ) sin cosF B T ik ik k         
(5.28) 
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For the reflected waves on the receiving plate at the junction: 

2 2 2 2

1 1 1 B1 1 B1( cos sin )M BT k k     (5.29) 

1

.

1 B1 cosT k   
 

(5.30) 

3 3 3 2

1 1 1 B1 1 1cos (2 ) sin cosBF BT ik ik         
(5.31) 

The wave intensities for transmitted waves and reflected waves are be calculated 

by putting equation (5.26) to (5.28) and (5.29) to (5.31) into (5.25) respectively. 

The transmission coefficient and reflection coefficient can then be calculated from 

equation (5.21) and (5.22) by using the transmitted and reflected wave intensity 

and the wave intensity for incident wave in equation (5.24).  

Figure 5.2 shows the transmission coefficient between the L-junction of two 

identical isotropic plates. The transmission coefficient for an incident wave is only 

a function of incident wave angle and does not vary with frequency. As the two 

plates are made of the same material and have the same thickness, at normal 

incidence (θ=0º), half of the energy carried out by incident wave is transmitted 

and half is reflected back to the source plate. When θ=90º, the incident wave 

travels along the coupling junction; hence there is no energy transmitted to the 

receiving plate. The angular average transmission coefficient for this type of L-

junction is 1/3.  

Assuming the source plate has a diffuse vibration field, the angular-average 

coefficients can be calculated from equation (2.27).  The coupling loss factor used 

in SEA can be calculated from angular-average transmission coefficient as shown 

in equation (2.26).   
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Figure 5.2 Angle-dependent transmission coefficients between L-junction of 

two identical isotropic homogeneous plates using the wave 

approach considering bending wave transmission.  

 

5.3.3 Bending and in-plane waves 

In the theoretical model for only bending wave transmission through the 

L-junction, the junction beam is considered to be simply supported. If this 

constraint is removed, when bending wave incident upon the junction, the incident 

wave generates not only bending, but also quasi-longitudinal and in-plane waves.  

The incident bending wave with unity amplitude is described in equation (5.1), 

and the transmitted and reflected bending wave field can be expressed in the same 

way as in equation (5.5) and (5.6).  

The wave field of in-plane wave on the receiving plate and source plate can be 

written as follows based on the equation (3.20) and (3.21). 

For the reflected in-plane wave on the receiving plate: 

1 5 L1 1exp( )exp( sin )xT ik x ik y i t       (5.32) 
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1 6 T1 1exp( )exp( sin )xT ik x ik y i t     

 

(5.33) 

For the transmitted in-plane wave on the receiving plate: 

2 7 L2 B1exp( )exp( sin )xT ik x ik y i t       (5.34) 

2 8 T2 B1exp( )exp( sin )xT ik x ik y i t     

 

(5.35) 

where Lik  and Tik  represent the in-plane wavenumbers for plate i which can be 

calculated from equations (3.22) and (3.23). The in-plane wavenumber for plate i 

in x-direction, Lixk  and Tixk can be calculated by substituting equation (5.34) and 

(5.35) into (3.18) and (3.19), then putting them into (3.15) and (3.16). 

2 2 2

L L B sinix i ik k k    (5.36) 

2 2 2

T T B sinix i ik k k  

 

(5.37) 

The formulation of bending and in-plane wave field on the source plate and 

receiving plate leaves eight unknown wave amplitudes  1 2 8, , , T T T which can 

be solved by applied the corresponding boundary conditions at the junction beam. 

(1) Continuity conditions 

For the rigid junction beam as shown in Figure 5.1, the displacements and rotation 

at the junction beam are assumed to be equal to the displacements and rotation at 

the plate edge. Therefore, at the coupling edges of the source and receiving plate, 

continuity conditions apply for the displacements and rotation as shown in the 

following equations: 

L 2 T 2 L 1 T 1+ = +x x x x     (5.38) 
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B 2 B 1=x x 

 

(5.39) 

L 2 T 2 L 1 T 1+ = +y y y y   
 (5.40) 

1 2= 
 

(5.41) 

(2)  Equilibrium Conditions 

Similar to the equilibrium conditions for bending only model, the sum of forces 

acting on the junction beam equals zero, which leads to the following constraints: 

1 2+ =0z zF F  (5.42) 

1 2+ =0x xF F

 

(5.43) 

1 2+ =0y yF F
 (5.44) 

1 2=M M
 

(5.45) 

where M and F are calculated from equation (3.12) and (3.13) respectively using 

the total wave fields in terms of displacement expressed as follows: 

1 inc B1 L1 T1= + + +      (5.46) 

2 B2 L2 T2= + +   

 

(5.47) 

 

By solving the equation group (5.38) to (5.45), the unknown wave amplitudes 

which are dependent on frequency and incident wave angle can obtained. 
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Transmission coefficients are used to quantify the energy flow between the two 

plates and also it allows the evaluation of the wave conversion from incident 

bending wave to in-plane wave.  

The wave intensity of an incident bending wave can be calculated from equation 

(5.24) and the wave intensities of the transmitted or reflected bending waves can 

be calculated from equation (5.25) using the expressions of forces, bending 

moments and rotations from equations (5.26)-(5.31). As for in-plane waves, the 

total wave intensity for an in-plane wave is given by [34] as: 

 * *

L T

1
( )= Re (- ) + (- )

2
LT x yI F i F i    (5.48) 

Fx and Fy are in-plane forces which can be calculated from equation (3.26) and 

(3.27). The contribution from quasi-longitudinal and transverse shear waves can 

be calculated by separating the equation (5.48) into two parts.  

The plate junction are assumed to be conservative, therefore the conservation of 

the energy requires that the sum of the transmission coefficients is equal to unity 

meaning that the total energy transmitted or reflected at the junction should be 

equal the energy carried in the incident wave upon the junction. For the L-junction, 

this requirement can be expressed as: 

B1B2 B1L2 B1T2 B1B1 B1L1 B1T1+ + + + + =1r r r    (5.49) 

where the subscript BiBj, BiLj, BiTj represent bending wave (B) to bending wave 

(B), quasi-longitudinal wave (L) and transverse shear wave (T) transmission or 

reflection from plate i to plate j.  

Figure 5.3 (a)-(c) show the transmission coefficients between the two plates of L-

junction at 100 Hz, 1 kHz and 10 kHz when an incident wave impinges upon the 

junction from plate 1. In these graphs, the transmission coefficient is represented 

by the vertical distance between boundary lines. The plate properties remain the 

same as listed in Figure 5.2. When both bending and in-plane are considered, the 

angle-dependent transmission coefficient also varies with frequency. With 
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bending wave incident upon the junction, a wave conversion from bending to in-

plane wave appears which can be quantified by a different transmission 

coefficient. At 100 Hz (Figure 5.3 (a)), the wave conversion from bending wave 

to in-plane wave occurs at below 5º, above which almost all incident waves that 

are transmitted and reflected are bending waves. At 1 kHz (Figure 5.3 (b)), the 

same trend applies except that the wave conversion range has increased to 10º. It 

is found that both the transmission and reflection coefficient from bending to 

bending waves are reduced by around 0.1 while the bending to in-plane wave 

transmission is more pronounced than at 100 Hz. At 10 kHz (Figure 5.3 (c)), the 

wave conversion range is further extended to 32º. Below 32º, bending to bending 

wave transmission and reflection no longer dominates the wave transmission. 

Below 18º, bending to quasi-longitudinal transmission dominates the wave 

conversion and from 18º to 32º, bending to transverse shear conversion is 

dominant. 

 

(a) 100 Hz 
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Figure 5.3 Angle-dependent transmission coefficients between L-junction 

using wave approach considering both bending and in-plane waves 

when incident bending wave on plate 1 at (a) 100 Hz; (b) 1000 Hz; 

(c) 10 kHz. BiBj, BiLj, BiTj represent bending wave (B) to 

bending wave (B), quasi-longitudinal wave (L) and transverse 

shear wave (T) transmission or reflection from plate i to plate j. 
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(b) 1 kHz 

(c) 10 kHz 
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5.4 Bending wave transmission across plate with a single reinforcing 

rib 

Many engineering structures are composed of plates with one or more reinforcing 

ribs that can be modelled as a plate/beam junction. The review of literature on 

vibration transmission across plate/beam junction can be found in section 5.2.2.  

In this section, bending wave transmission across two semi-infinite plates 

separated by a single reinforcing rib shown in Figure 5.4 is considered using the 

wave approach described by Cremer et al. [34]. The junction follows the same 

type of plate/rib structure that is discussed in Chapter 4 for the periodic ribbed 

plate, where the generation of in-plane waves is avoided due to the symmetric 

arrangement of the rib.   

 

 

 

Figure 5.4 Two semi-infinite plates separated by a rib  
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The boundary conditions at the junction have already been discussed in section 

5.3 as illustrated in equation (4.11), (4.12), (4.16) and (4.21). They can be 

re-written as: 

1 20 0
( ) ( )

x x
x x 

 


  
 (5.50) 

1 20 0
( ) ( )

x x
x x 

 


  
 (5.51) 

4
21

1 2 b b b b 140 0 0
0

( )
( ) ( ) ( )xx x x

x

x
F x F x E I S x

y


  

  



   

   
 (5.52) 

3
21 1

1 2 b b bc20 0
00

( ) ( )
( ) ( )

x x
xx

x x
M x M x G J I

x y x

 


 


 
   

     
 (5.53) 

Substituting equation (5.9) and (5.10) into (5.50) to (5.53), the four unknown 

wave amplitudes can be solved by doing the matrix inversion similarly as for the 

wave transmission across the L-junction. Furthermore, the angle-dependent 

transmission coefficients as well as coupling loss factors can be calculated. 

The same plate and rib dimensions as shown in Table 2 are chosen as an example.  

The angle-dependent transmission coefficient at the plate/beam junction is shown 

in Figure 5.5 (the plate thickness, rib dimensions and material properties are the 

same as shown in Figure 3.3 (b)). 

 As the incident wave angle tends towards 90º, the transmission coefficient 

decreases to zero. 

 As shown from Figure 5.5, unity transmission coefficient occurs at certain 

frequencies, which means that the ribs have no blocking effect on wave 

propagation on the plate. Cremer et al. [34] attributes this phenomenon to 

the results of ‘trace-matching’ associated with the bending and torsional 

vibrations of the rib. ‘trace-matching’ occurs at a certain frequency and a 

certain incident wave angle where the wavenumber in x-direction kBcosθ 

coincides with the wavenumber of free waves within the rib. By 
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understanding these ‘trace-matching’ regions, one may manipulate the 

properties of the plate or the rib and design structures to transmit or block 

waves at given range of frequency and angle of incidence. 

 At low frequencies, it generally shows wider high transmission peaks. 

Above 3200 Hz, the peak is split into two separate peaks and with the 

increase of frequency, the two peaks drift apart, but the peak with higher 

incident wave angle is always wider than the other.   

 

 

Frequency (Hz) 

Figure 5.5 Variation of transmission coefficient for two semi-infinite plates 

separated by a rib with incident wave angle and frequency. 
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Figure 5.6 to Figure 5.8 investigates the effect of rib and plate dimensions on 

wave transmission across the junction. Each figure shows the variation of one 

dimension parameter compared with the default value given in Figure 3.3 (b), and 

the rest of the dimensions keep the same values as the defaults.  

Figure 5.6 (a) and (b) show different width of the rib. With the increase of the rib 

width, the high transmission peaks are compressed to low angle range and the 

peaks also become narrower. For the rib width of 15 mm, there is no transmission 

above 75º in contrast of 60º for 30 mm of rib width and 30º for 60 mm of rib 

width.  At low frequencies with small incidence angles, the transmission is 

significantly reduced with the increase of the rib width. 

Figure 5.7 (a) and (b) show different heights of the rib. With the increase of the 

rib height, the boundary separating the two main zones with high transmission 

coefficient is moved towards to lower frequency and the area of the high 

transmission zones is also reduced. With the increase of the rib height, the two 

peaks of high transmission at high frequencies are separated wider, which results 

in narrow peaks at high incidence angle.      

Figure 5.8 (a) and (b) show different thicknesses of the plate. With the increase of 

the plate thickness, the area of high transmission zones is extended and the 

boundary separating the two main zones with high transmission coefficient is 

moved towards to higher frequency. 

In general, the increase of rib width, rib height and the decrease of plate thickness 

enhance the wave blocking effect of the rib resulting in larger area of zero 

transmission in the incidence wave angle-frequency domain.    
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Figure 5.6 Variation of rib width (a) 15 mm, (b) 60 mm on the transmission 

coefficient. (Compare with Figure 5.5 for 30 mm rib width where 

all other parameters remains the same with rib height: 50 mm, 

plate thickness: 13 mm)  
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Figure 5.7 Variation of rib height (a) 25 mm, (b) 100 mm on the 

transmission coefficient. (Compare with Figure 5.5 for 50 mm rib 

height where all other parameters remains the same with rib 

width: 30 mm, plate thickness: 13 mm) 
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Figure 5.8 Variation of plate thickness (a) 5 mm, (b) 20 mm on the 

transmission coefficient. (Compare with Figure 5.5 for 13 mm 

plate thickness where all other parameters remains the same with 

rib height: 50 mm, rib width: 30 mm) 
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5.5 Bending wave transmission across an L-junction comprised of a 

homogeneous isotropic plate and a periodic ribbed plate  

This section considers a periodic ribbed plate as described in chapter 4 connected 

to an isotropic homogeneous plate to form an L-junction where the coupling 

junction is parallel to the ribs as shown in Figure 5.9. The bending wave 

transmission across the junction is investigated using the wave approach taken 

from Tso and Hansen [10]. For bending wave incident upon the junction from the 

isotropic plate, the displacement field on the isotropic plate is given in equation 

(5.1). The reflected wave field on the isotropic plate is given by equation (5.9).  

 

Figure 5.9 L-junction comprised of an isotropic homogeneous plate and a 

periodic ribbed plate with ribs parallel to the coupling junction 

 

For the ribbed plate, the transverse displacement caused by the transmitted 

bending waves in the positive x-direction can be written in terms of the two 

eigenvalues and together with their corresponding eigenvectors: 

4 4

2 3 1 4 2

1 11 1

exp( ) exp( ) exp( ) exp( ) exp( )m m
mx mx y

m m

A A
T k x T k x ik y i t

A A
   

 

     
       

     
 

 

 (5.54) 

x2 
y 

x1 
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Where 3T  and 4T  are unknown constants associated with the wave amplitudes,  1  

and 2  are a pair of propagation constants determined from matrix equation (4.28) 

as eigenvalues and vectors  1 2 3 4, , , A A A A  and  1 2 3 4, , , A A A A    are corresponding 

eigenvectors.  

The junction beam is considered to be simply-supported such that only bending 

wave are transmitted. The same continuity and equilibrium conditions are 

considered as in equations (5.11), (5.12), (5.15) and (5.18). Four unknown 

amplitudes  1 2 3 4, , , T T T T can be determined from the following equation: 

1 2 3 4[ ]TT T T T 1 2L L  (5.55) 

where  

4 4

1 2

1 11 1

4 4
2

B1 B1 1 x 2 x

1 11 1

4 4
2 2 2 2 2 2 2 2 2

1 B1 B1 1 B1 B1 1 x 2 B1 2 2 B1

1 11 1

1 1 0 0

0 0 exp( ) exp( )

(1 sin ) exp( ) exp( )

(1 sin ) exp( ) ( ) exp( ) ( )

m m

m m

m m
x m m

m m

m m
y x y m y mx y

m m

A A

A A

A A
ik k k k

A A

A A
k k k k k k k k

A A

 

  
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 
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1
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


 
 
 
 
 
 
 
 
 

 

 (5.56) 

 
2 2 2

B1 B1 1 B11 0 cos cos
T

yik k k      2
L

                             
 (5.57) 

where kB1 is the bending wavenumber of plate 1, the isotropic homogeneous plate. 

kB1x=kB1cosθ and kB1y=kB1sinθ represent the wavenumbers in x- and y-direction 

respectively.  

The transmission coefficient is calculated using the wave intensities on the source 

and receiving plates as described in section 5.3.2. For the transmitted wave on the 

periodic plate, to calculate the wave intensity, the bending moment, force and 

angular displacement can be calculated from equations (5.58) to (5.60): 
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4 4
2 2 2 2

trans p 3 1 x 2 B2 4 2 x 2 B2

1 11 1

exp( ) ( ) exp( ) ( )m m
m y m y

m m

A A
M B T k k T k k

A A
   

 

 
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(5.58) 

4 4
3 2 2 3 2 2

trans p 3 1 x B2 2 B2 4 2 x B2 2 B2

1 11 1

exp( ) ( 2 ) exp( ) ( 2 )m m
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A A
F B T k k k T k k k
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 (5.59) 

4 4

trans 3 1 x 4 2 x

1 11 1

exp( ) exp( )m m
m m

m m

A A
i T k T k

A A
   

 

 
  

 
 

 

(5.60) 

 

Figure 5.10 shows the transmission coefficient from the isotropic plate to the 

periodic ribbed plate.  

 Referring back to Figure 4.3 which shows the propagation and attenuation 

zones for the same periodic ribbed plate, the transmission with a certain 

transmission coefficient only occurs within the propagation zones. The L-

junction exhibits wave filtering behaviour over certain ranges of incidence 

wave angle. Clear boundaries are found between propagation and 

attenuation zones, and these boundaries correspond with the boundaries 

shown in Figure 4.3 except for the propagation zone at around 10 kHz 

with low incident wave angles where the propagation zone for the L-

junction is smaller than that of the periodic ribbed plate. It is noted that 

this conclusion is only true for this specific case where both plates are 

made of the same material and have the same thickness. As for the cases 

where the isotropic and periodic ribbed plates have different thickness, 

further investigation will be made.  

 Within the propagation zones, the transmission coefficients vary with 

frequency as well as with incident wave angle.   
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 As the incident wave angle tends towards 90º, the transmission coefficient 

decreases to zero. 

 In the propagation zones, the transmission coefficient only equals unity at 

specific frequencies with specific incident wave angles. Within such range, 

the periodic ribs have no blocking effect on wave propagation on the plate.  

 It can be seen that no wave transmission occurs above around 60º. 

Therefore there exists a cut-off angle for bending wave transmission 

across an L-junction with periodic ribbed plate. This doesn’t happen for 

the bending wave transmission across an L-junction with two isotropic, 

homogeneous plates.  

 In many practical structures, bending waves will be incident over a range 

of angles; hence, there will not usually be well-defined pass and stop 

bands as can occur on one-dimensional periodic systems such as for rods 

and beams.   

 Frequency (Hz) 

Figure 5.10 Angle-dependent transmission coefficient for an L-junction comprised 

of isotropic homogeneous plate and a periodic ribbed plate  
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Figure 5.11 to Figure 5.14 shows the effects of the variations of geometric 

properties of the plate and ribs on the vibration transmission across the L-junction. 

Comparing these graphs with the corresponding graphs from Figure 4.4 to Figure 

4.7 of the distribution of the propagation and attenuation zones for the periodic 

ribbed plate, similar conclusions can be made on the effect of the variation of each 

parameter.  

The difference between the two sets of graphs is discussed here. In most cases, the 

boundaries of each propagation zones for the L-junction correspond with the 

boundaries for the periodic ribbed plate. At very high frequencies, the propagation 

zones for the L-junction may be smaller than the periodic ribbed plate (for 

example, Figure 5.11 (a) and (b), Figure 5.12(a)), and it seems that the wave 

propagation for L-junction is constrained into the propagation zones of the 

periodic ribbed plate.  However, in some cases, the propagation zones of the L-

junction do not fall into the propagation zones of the periodic ribbed plate such as 

Figure 5.12(b) and Figure 5.14(a) and a frequency shift is shown.  It is noticed 

that this phenomena only occurs when all the propagation zones across the 

frequency are compressed below 20º.  

It is also observed that for Figure 5.13 (b), there is a large area with scattered high 

values for the transmission coefficients. This is due to a poorly conditioned matrix 

with a high condition number (>10
15

) and it can therefore be considered as 

calculation noise. This indicates potential problems in the approach proposed by 

Tso and Hansen because it will be not applicable to all geometric permutations for 

the periodic ribbed plate.   
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Figure 5.11 Variation of rib width (a) 15 mm, (b) 60 mm on the transmission 

coefficient of L-junction with periodic ribbed plate. (Compare 

with Figure 5.10 of 30 mm rib width where all other parameters 

remains the same with rib height: 50 mm, plate thickness: 

13 mm, bay spacing: 150 mm)  
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Figure 5.12 Variation of rib height (a) 25 mm, (b) 100 mm on the 

transmission coefficient of L-junction with periodic ribbed plate. 

(Compare with Figure 5.10 of 50 mm rib height where all other 

parameters remains the same with rib width: 30 mm, plate 

thickness: 13 mm, bay spacing: 150 mm)  
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Figure 5.13 Variation of bay spacing (a) 100 mm, (b) 300 mm on the 

transmission coefficient of L-junction with periodic ribbed plate. 

(Compare with Figure 5.10 of 150 mm bay spacing where all 

other parameters remains the same with rib height: 50 mm, rib 

width: 30 mm, plate thickness: 13 mm)  
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Figure 5.14 Variation of plate thickness for both plates (a) 5 mm, (b) 20 mm 

on the transmission coefficient of L-junction with periodic 

ribbed plate. (Compare with Figure 5.10 of 150 mm bay spacing 

where all other parameters remains the same with rib height: 50 

mm, rib width: 30 mm, bay spacing: 150 mm)  
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Figure 5.15 Variation of plate thickness for isotropic plate (a) 5 mm, (b) 

20 mm on the transmission coefficient of L-junction with 

periodic ribbed plate. (Compare with Figure 5.10 of 150 mm bay 

spacing where all other parameters remains the same with rib 

height: 50 mm, rib width: 30 mm, bay spacing: 150 mm, plate 

thickness: 13 mm)  
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5.6 Wave transmission across an L-junction of orthotropic plates 

using angle-dependent bending stiffness 

This section extends the theoretical models for structure-borne sound transmission 

across L-junctions of isotropic plates to L-junctions of isotropic and orthotropic 

plates. Due to the wide application of the orthotropic structures in engineering, 

structural junctions consisting of isotropic and orthotropic plates such as presented 

in section 6.5 where the periodic ribbed plate can be considered as an orthotropic 

plate are commonly seen. Theoretical models for structure-borne sound 

transmission are available for simple periodic structures. However complexity of 

modern structural engineering has created many orthotropic structures that 

theoretical solutions are often difficult or impossible to find. Therefore, alternative 

methods are required. This section considers the periodic plates as orthotropic 

plates and quantifies the effect of orthotropicity on the vibration transmission at 

L-junctions.  

The derivation of this section is developed mainly based on section 3.2 where the 

wave equations for orthotropic plates are presented and section 5.2 and 5.6 where 

the wave approach for bending and in-plane wave transmission across L-junctions 

are discussed. As the formulation of boundary conditions at the coupling junction 

is identical to the model for isotropic plates, this section will focus on the effects 

on vibration transmission caused by the orthotropic characteristics. 

5.6.1 Solutions to the wave equations 

As previously discussed in chapter 3, wave propagation on the orthotropic plate is 

subject to an angle-dependent wavenumber. Therefore the solution of the wave 

equation can be written as: 

t t t t t t= exp[- ( )cos ]exp[- ( )sin ]exp( )T ik x ik y i t       (5.61) 

where kt(θt) the angle-dependent wavenumber of the transmitted(reflected) 

wavenumber with corresponding wave heading angle θt.  
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Considering the incident bending wave on plate 1 with a heading angle θ1 and 

angle-dependent wavenumber kB1(θ1), the propagation direction of the transmitted 

wave is determined from Snell’s law as: 

t t t B1 1 1( )sin = ( )sink k     (5.62) 

Substituting equation (5.62) into (5.61), the solution of the wave equation can be 

re-written as: 

t t t B1 1 1= exp[- ( )cos ]exp[- ( )sin ]exp( )T ik x ik y i t       (5.63) 

kt can either be bending or in-plane wave by substituting equation (5.63) into 

corresponding equations of motion presented in section 3.2.    

5.6.2 Angular-average transmission coefficient 

Since the boundary conditions for an L-junction of orthotropic plates are identical, 

the angle-dependent transmission coefficient can be calculated in exactly the same 

way as discussed in the previous section in this chapter.  

The coupling loss factor used in SEA between the two plates of the L-junction is 

calculated from angular-average transmission coefficient. The angular-average 

transmission coefficient can be calculated from equation (2.27) assuming a diffuse 

field where all incident wave angles have equal probability to occur. In a diffuse 

field on an orthotropic plate, the energy is not distributed uniformly among 

different directions of propagation [123]. Lyon [7] gave a weighting function D(θ) 

to describe the wave distribution in the wavenumber diagram that measures the 

distribution of area in the interval between k(θ, ω) and k(θ, ω+∆ω) as given by 

[123]: 

( , )
( )= ( , )

k
D C k

 
  







 (5.64) 

where the constant C is calculated from the condition: 
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2

0
( )d =2D



    (5.65) 

The weighting function for bending waves is calculated by substituting equation 

(3.51) into (5.64) as: 

B( )= / ( )BD C B   (5.66) 

For in-plane waves, the weighting function can be similarly obtained as: 

2

in-plane in-plane( )= ( )/D C k    (5.67) 

where the in-plane wavenumber k(θ) is calculated from equation (3.56) 

 

5.7 Transmission across an L-junction of orthotropic plates using 

representative bending stiffness 

A simplified method is proposed to model the vibration transmission across L-

junction of orthotropic plates. Instead of using angle-dependent bending stiffness 

as discussed in the previous section, only one constant value of bending stiffness 

is applied for the orthotropic plate so that the orthotropic plate can be considered 

as an isotropic homogeneous plate. The same models presented in section 5.3 can 

therefore be used to calculate both bending and in-plane wave transmission across 

the L-junction.    

5.7.1 Using equivalent bending stiffness 

Cremer et al. [34] suggested that the driving-point impedance of an orthotropic 

plate is very nearly equal to that of an isotropic homogeneous plate whose 

bending stiffness is equal to the geometric mean of the bending stiffness in the 

two principal directions of the orthotropic plate. This equivalent bending stiffness 

is calculated from: 
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p, p, p, =equiv x yB B B  (5.68) 

 

5.7.2 Using bending stiffness in the principal direction of transmission  

Another alternative is to only consider the primary wave travelling direction as a 

representative of the bending stiffness for the entire plate. This is due to the fact 

that the main power transmission occurs at lower angles of incidence and the 

bending stiffness in these directions is close to that of the principal direction.  

 

5.8 Conclusions 

This chapter contains the wave theory derivations used to calculate transmission 

coefficients that are needed for subsequent calculation of coupling loss factors for 

the SEA and ASEA models in chapters 6, 7 and 8. Two types of junction are 

considered: an L-junction and an in-line junction formed by the presence of a rib. 

For an L-junction comprised of a homogeneous isotropic plate and a periodic 

ribbed plate, Tso and Hansen’s model was found to generate numerical errors for 

certain geometrical arrangements of the ribs and bays. However, these errors do 

not occur with the periodic ribbed plates considered in chapters 6, 7 and 8.  
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6 Prediction of structure-borne sound transmission across L-

junctions 

6.1 Introduction 

This chapter implements the theories described in chapters 2, 3, 4 and 5 to model 

vibration transmission between two plates that form an L-junction. Two L-

junctions are considered as shown in Figure 6.1 (a) L-junction of two isotropic 

homogeneous plates and Figure 6.1 (b): L-junction of an isotropic homogeneous 

plate and a periodic ribbed plate. All plates are made of Perspex with dimensions 

and material properties shown in Table 4. Note that the ribbed plate has the same 

rib arrangement and dimensions as described in Table 2 for which its periodic 

properties were shown in chapters 4 and 5. 

Whilst periodic ribbed plates are the main concern of this thesis, the reason for 

starting the analysis with an L-junction of isotropic homogeneous plates was that 

any fundamental problems with FEM can be expected to be highlighted by 

comparison with SEA on this simpler plate junction. 

 

                       

                     Model 1                                                       Model 2 

Figure 6.1 Model 1: L-junction comprised of two isotropic homogeneous 

plates; Model 2: L-junction comprised of an isotropic 

homogeneous plate and a periodic ribbed plate 

 

 

 

Plate 1 

Plate 2 Plate 2 

Plate 1 
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Table 4: Dimensions and material properties of L-junctions shown in Figure 6.1 

L-junction Plate 1 Plate 2 

Material 

properties for 

Perspex 

Model 1 

p

=1.0 m

=0.8 m

0.013 m

x

y

L

L

h 

 

p

=1.2 m

=0.8 m

0.013 m

x

y

L

L

h 

 
ρ=1180 kg/m

3
 

cL=2350 m/s 

μ=0.3 

ηii=0.06 Model 2 

p

=1.0 m

=0.8 m

0.013 m

x

y

L

L

h 

  p b

b

=1.2 m        =0.8 m

0.013 m  =0.05 m

=0.03 m      0.15 m

x yL L

h h

b l





 

 

 

6.2 Numerical experiments with FEM  

In this section, numerical experiments using FEM are carried out on the test L-

junctions and the sufficiency of mesh is evaluated using mesh error.  

6.2.1 ABAQUS processing times 

Model 1 consists of 17901 nodes and 17600 elements. There are 10 steps of 

calculation corresponding to 10 sets of different ROTR and the responses for 70 

individual frequencies are calculated for each step. The total calculation time for 

the job is 1 hour 48 minutes 44 seconds. The post processing including the 

extraction of the response data from the ABAQUS result file and calculations of 

kinetic energies for the subsystems is carried out within ABAQUS using codes 

written in Python scripts [124].  The post processing for model 1 took 28 minutes 

27 seconds. Model 2 consists of 21303 nodes and 20960 elements. The same 

calculation for 10 sets of ROTR took 2 hours 7 minutes 17 seconds and the post 

processing took 32 minutes 35 seconds.  
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6.2.2 Mesh errors 

It is necessary to ensure that the discretization errors in the FEM modelling are 

negligible. The S4R finite element size is chosen to be 0.01 m which gives at least 

seven elements in one wavelength for the highest one-third octave band of 

analysis at 10 kHz. The adequacy of the mesh element size is evaluated using the 

mesh errors that are discussed in section 2.5.3 by comparing the injected power 

with the dissipated power in the system. 

The application of ESEA requires numerical experiments using rain-on-the-roof 

(ROTR) excitations on each subsystem in turn. For each subsystem, 10 sets of 

different ROTR excitations are used which allows the calculation of 95% 

confidence intervals using the Student’s t-distribution. Individual frequency 

results from FEM are combined into one-third-octave bands for ESEA analysis to 

determine the coupling loss factors. This general arrangement is applied to all 

FEM models throughout this thesis.  

For Model 1, the average mesh errors are shown in Figure 6.2 where all edges 

including the junction are simply-supported and in Figure 6.3 when the junction 

between the two plates is free (i.e. without constraints). The errors are low across 

the entire frequency range with no indication of significant errors above 6.3 kHz 

due to the S4R element (refer back to section 2.5.2.1) no longer reproducing thin 

plate behaviour. At low frequencies, the mesh error tends to fluctuate more than at 

high frequencies, which results in larger confidence intervals. In most frequency 

bands, the mesh error is below 10%.  

When in-plane waves are generated at the junction, the element mesh error is 

expected to increase because the mesh error only considers out-of-plane 

displacement. However, this can be used to indicate the existence of in-plane 

wave energy. Comparison of Figure 6.2 and Figure 6.3 indicates that in-plane 

wave energy only occurs above 1.25 kHz although the increase in mesh error is 

sufficiently small that the values are still below 10%.   

The mesh errors for Model 2 with all edges simply-supported are shown in Figure 

6.4. Comparison of Figure 6.2 and Figure 6.4 indicates that the errors are similar 

when the ROTR is applied to the isotropic homogeneous plate, but when the 
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ROTR is applied to the periodic ribbed plate, the errors increase up to 25% at low 

frequencies, where the wavelength is larger than the rib spacing. This can be 

attributed to the fact that the energy of the beams is not included in the calculation 

of the mesh error.  

For the narrow band data in Models 1 and 2, the maximum error is approximately 

15% and 25% respectively. These errors are well below the maximum value of 40% 

which has previously been found to give negligible errors in the vibration 

response [51]. It is concluded that the mesh errors for this element size are 

sufficiently low to continue with the modelling in this chapter.  
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                                          Element size/ bending wavelength (%) 

 100Hz         315Hz   1 kHz       3.15 kHz   10 kHz 

    1.3           2.4      4.2          7.5      13.4 

  
 

 
 

Figure 6.2 Element mesh error for L-junction of two isotropic homogeneous 

plates (Model 1) with simply-supported boundaries along all edges. 

(a) rain-on-the-roof on plate 1; (b) rain-on-the-roof on plate 2 
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                                       Element size/ bending wavelength (%) 

 100Hz         315Hz   1 kHz       3.15 kHz   10 kHz 

    1.3           2.4      4.2          7.5      13.4 

 

 

Figure 6.3 Element mesh error for L-junction of two isotropic homogeneous 

plates (Model 1) with free boundary at the coupling junction. (a) 

ROTR on plate 1; (b) ROTR on plate 2. 
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                             Element size/ bending wavelength (%) 

 100Hz         315Hz   1 kHz       3.15 kHz   10 kHz 

    1.3           2.4      4.2          7.5      13.4 

 

 

Figure 6.4 Element mesh error for L-junction of an isotropic plate and a 

periodic plate (Model 2) with simply-supported boundaries along 

all edges. (a) ROTR on isotropic plate; (b) ROTR on periodic 

ribbed plate. 
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6.3 L-junction comprised of two isotropic homogeneous plates 

Structure-borne sound transmission across the L-junction comprised of two 

isotropic homogeneous plates (Model 1: see Figure 6.1) is analyzed in this section 

based on the discussions in the previous chapters for the prediction of structure-

borne sound transmission using ESEA and wave approaches.  

In this section, FEM with ESEA as discussed in Chapter 2 is used to calculate the 

coupling loss factors and the results are compared with the wave approach 

described in Chapter 5.   

6.3.1 Bending waves only 

Figure 6.5(a) and Figure 6.6(a) show the coupling loss factors considering only 

bending wave transmission across the junction. The bending mode counts for the 

two plates, NB1 and NB2, and geometric mean of the modal overlap factors, Mav are 

also shown above the graphs. 

In general, the variation of coupling loss factors obtained from different ROTR 

reduces with increasing frequency resulting in smaller confidence intervals at high 

frequency bands. 

FEM with ESEA generally gives good agreement with coupling loss factors 

calculated using the wave approach as the latter lie within the 95% confidence 

intervals of ±2SD. However, there are exceptions at the two ends of the frequency 

range.  

At low frequencies where mode counts and geometric mean of the modal overlap 

factors are small (from Fahy and Mohammed [40] this condition can be 

considered as NB<5 and Mav<1), ESEA is not expected to give a good prediction 

for individual members of an ensemble. There is a significant variation between 

individual members of the ensemble of ROTR; hence the FEM result with a single 

set of ROTR is of little practical use. However, the arithmetic average of the 

ensemble gives reasonable predictions at low frequencies. This has also been 

observed with other L- and T-junctions by Hopkins [19]. 
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In the 6.3 kHz, 8 kHz and 10 kHz one-third octave bands on Figure 6.5 (a) and 

Figure 6.6 (a), there are differences of 1.1 dB to 3.9 dB between the wave 

approach and the ensemble average from FEM with ESEA. In these frequency 

bands it is notable that the 95% confidence intervals from FEM with ESEA do not 

overlap the curve for the wave approach. Referring back to section 2.5.2.1 it is 

possible that this is caused by the S4R element no longer reproducing thin plate 

behaviour. However, the mesh error did not indicate significant issues in section 

6.2.2.  

6.3.2 Bending and in-plane waves 

In Figure 6.5 (b) and Figure 6.6 (b), the L-junction is modelled to allow both 

bending and in-plane waves. Comparison between the wave approach for bending 

wave only model and bending and in-plane wave model in Figure 6.5 (b) and 

Figure 6.6 (b) has shown that at low frequencies below 630 Hz where there is no 

in-plane mode, the two models are equivalent to each other. As frequency 

increases, the difference between the two models becomes larger due to the 

increase of the in-plane mode counts.  

Between 100 Hz and 5 kHz, the coupling loss factors show good agreement 

between the wave approach and FEM with ESEA. At higher frequencies, a 

difference up to 3 dB occurs. This is similar to that seen with the bending only 

model.  

At high frequencies, it appears that FEM with ESEA agrees well with the bending 

wave only model but this is purely coincidence.  

6.3.3 ESEA errors in the internal loss factor 

Figure 6.7 (a) and (b) show that the error in the internal loss factor calculated from 

ESEA is similar for the bending only and bending and in-plane wave models. This 

shows that there are no significant errors in the internal loss factor between 500 

Hz and 10 kHz. Above 5 kHz, the 95% confidence intervals from FEM with 

ESEA do not overlap the actual value for the internal loss factor but the error is 

less than 0.5 dB. 
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

NB2 = 1.3 2.1 3.2 5.1 8.1 12.8 20.5 32.1 51.3 80.8 128.3 

Mav= 0.3 0.5 0.7 1.2 1.9 3.0 4.8 7.5 11.9 18.8 29.8 
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NT1 =    0.1 0.2 0.6 1.6 3.8 9.8 24.3 61.3 

MB,av = 0.3 0.5 0.7 1.2 1.9 3.0 4.8 7.5 11.9 18.8 29.8 

ML,av =      0.1 0.2 0.4 1.0 2.4 6.0 

MT,av =     0.1 0.2 0.4 1.1 2.7 6.8 17.1 

 
    

Figure 6.5 Coupling loss factors from plate 1 to 2 determined using FEM with 

ESEA compared with wave approach with (a) bending wave only; (b) 

bending and in-plane wave. Mode counts and the geometric mean of 

the modal overlap factors for different wave types are shown at the top 

of the figure. 

10
2

10
3

10
4

85

90

95

100

105

110

115

Frequency (Hz)

C
o

u
p

li
n

g
 l

o
ss

 f
ac

to
r 

( 
d

B
 r

e 
1

0-1
2
 )

 

 


12

 (FEM & ESEA: ensemble of 10 sets of rain-on-the-roof)


12

 (FEM & ESEA: average with 95% confidence intervals)


12

 (Wave approach: bending wave only)

10
2

10
3

10
4

85

90

95

100

105

110

115

Frequency (Hz)

C
o

u
p

li
n

g
 l

o
ss

 f
ac

to
r 

( 
d

B
 r

e 
1

0-1
2
 )

 

 


12

 (FEM & ESEA: ensemble of 10 sets of rain-on-the-roof)


12

 (FEM & ESEA: average with 95% confidence intervals)


12

 (Wave approach: bending wave only)


12

 (Wave approach: bending and in-plane wave)

(a) Bending wave only 

(b) Bending and in-plane wave 

 

Plate 1 

Plate 2 

 

Plate 1 

Plate 2 



163 

 
 

TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

NL1 =     0.1 0.2 0.5 1.3 3.4 8.5 21.5 

NT1 =    0.1 0.2 0.6 1.6 3.8 9.8 24.3 61.3 

MB,av = 0.3 0.5 0.7 1.2 1.9 3.0 4.8 7.5 11.9 18.8 29.8 

ML,av =      0.1 0.2 0.4 1.0 2.4 6.0 

MT,av =     0.1 0.2 0.4 1.1 2.7 6.8 17.1 

 
 

Figure 6.6 Coupling loss factors from plate 2 to 1 determined using FEM with 

ESEA compared with wave approach with (a) bending wave only; 

(b) bending and in-plane wave. Mode counts and the geometric 

mean of the modal overlap factors for different wave types are 

shown at the top of the figure.  
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Figure 6.7 Internal loss factors determined using FEM and ESEA compared with 

actual internal damping used in FEM. Consider (a) bending waves only; 

(b) bending and in-plane waves. Mode counts and the geometric mean 

of the modal overlap factors for different wave types are shown at the 

top of the figure. 
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6.3.4 Comparison between matrix ESEA and simplified ESEA 

As discussed in section 2.3.2, simplified ESEA can be used to predict the coupling 

loss factors without performing the matrix inversion. Simplified ESEA in 

equation (2.37) requires the total loss factors to calculate the coupling loss factors, 

but this is not available from FEM. Therefore the internal loss factor is used to 

replace the total loss factor. This simplification is only valid when the internal loss 

factor is much larger than the sum of the coupling loss factors. Hence this section 

investigates the errors that are incurred when using simplified ESEA with L-

junctions.  

Figure 6.8 compares the coupling loss factors calculated from matrix ESEA and 

simplified ESEA for (a) bending wave only model and (b) bending and in-plane 

wave model. In general, the two methods both give good estimates compared with 

the wave approach, and the difference between the two methods is less than 3 dB 

across the whole frequency range.  

At low frequencies, matrix ESEA gives a better estimate than simplified ESEA 

when compared with the wave approach. This is clearly observed for the CLFs 

from plate 2 to plate 1 in the frequency range of 250 Hz to 1 kHz. This is because 

the sum of the coupling loss factors is similar to the internal loss factors, thus the 

assumption to use simplified ESEA is not valid. However it doesn’t make a 

significant difference in this specific model as each subsystem is only coupled to 

one other subsystem and the internal loss factor is relatively high. At high 

frequencies where the sum of the coupling loss factors is much smaller compared 

with the internal loss factor, the difference between the two ESEA methods is 

negligible (less than 1 dB). 

Simplified ESEA provides a quick evaluation of the coupling loss factor between 

subsystems and is convenient for physical measurements where the coupling loss 

factor between two subsystems can be calculated by only measuring the responses 

on the two subsystems. The results in this section indicate that for L-junctions of 

Perspex plates, simplified ESEA can provide equally good results compared with 

matrix ESEA in the frequency range from 1 kHz to 10 kHz.   
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

NL1 =     0.1 0.2 0.5 1.3 3.4 8.5 21.5 

NT1 =    0.1 0.2 0.6 1.6 3.8 9.8 24.3 61.3 

MB,av = 0.3 0.5 0.7 1.2 1.9 3.0 4.8 7.5 11.9 18.8 29.8 

ML,av =      0.1 0.2 0.4 1.0 2.4 6.0 

MT,av =     0.1 0.2 0.4 1.1 2.7 6.8 17.1 

 

Figure 6.8 Coupling loss factors of between an L-junction with two isotropic, 

homogeneous plates using matrix ESEA and simplified ESEA. (a) 

Bending waves only model; (b) Bending and in-plane waves 

model.   
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6.4 Effect of the internal loss factor on coupling loss factors 

determined from FEM with ESEA 

SEA assumes a reverberant vibration field on subsystems with no significant 

decrease in vibration across each subsystem. This assumption may no longer be 

valid when the internal damping of the subsystem is high, particular at high 

frequencies. All the plates analyzed in this thesis are made of Perspex whose 

internal loss factor is 0.06. This can be considered as relatively high damping and 

its effect therefore requires further investigation here.   

The effect of damping is not considered when calculating the coupling loss factors 

using the wave approach. However, Yap and Woodhouse [26] investigated the 

damping effect and showed that the coupling loss factors may be strongly 

dependent on damping when the subsystem is lightly damped.  

Figure 6.9 shows the coupling loss factors for the same L-junction analysed in 

section 6.3 but with internal loss factors ranging from 0.015 to 0.24. Between 

100 Hz and 1 kHz, there are differences in the coupling loss factor of up to 10 dB 

between the lowest damping of 0.015 and the highest damping of 0.24. As the 

internal loss factor increases, the differences between coupling loss factors 

reduces. For example, the coupling loss factors calculated with internal loss factor 

of 0.12 and 0.24 almost overlap with each other. However, the difference between 

internal loss factor of 0.12 and 0.06 is clearly observed and below 0.06, the 

differences in CLF are at least 2 dB in most one-third octave bands. Subsystems 

with the highest internal loss factor of 0.24 show the best agreement with the 

wave approach with less than 3 dB of discrepancy. This indicates that the errors 

using the wave approach to predict coupling loss factors at low frequencies can be 

large for lightly damped subsystems. Also, the ESEA energy matrix (equation 

(2.39)) is almost singular, hence the inversion is likely to produce errors [125].  

The upper x-axis of Figure 6.9 shows the geometric mean of the modal overlap, 

MB,av. For the indicator for the applicability of SEA, the use of the wave approach 

in SEA is often considered valid when MB,av is greater than unity. On this basis the 

wave approach is valid above 100 Hz for subsystems with internal loss factor of 
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0.24, 400 Hz for internal loss factor of 0.06 and 1.6 kHz for internal loss factors of 

0.015.  

At high frequencies, Figure 6.9 shows that varying internal loss factors has little 

effect on the coupling loss factors. CLFs calculated from different internal loss 

factor tend to merge together with differences less than 2 dB. 

Figure 6.10 shows the energy level differences between the source subsystem and 

receiving subsystem with different internal loss factors. Between 1 kHz and 5 kHz, 

there is good agreement with discrepancies less than 3 dB. These results confirm 

the finding of Villot and Bosmans [126] that when using distributed excitation 

such as rain-on-the-roof, SEA can be applied to highly damped subsystems.  

It is also shown that the discrepancy between the wave approach and FEM with 

ESEA that occurs above 6.3 kHz is not due to the internal loss factor of Perspex 

being relatively high. 

In section 2.2.8 the requirement on maximum subsystem dimensions due to high 

internal losses were discussed. The upper frequency limits for the L-junction with 

different internal loss factors calculated using these criteria is shown in Table 5. 

This indicates that for subsystems made of Perspex (internal loss factor of 0.06), 

this requirement is met up to 15 kHz so the SEA assumptions of uniform 

distribution of energy over each subsystem or a reverberant field on the subsystem 

is satisfied for results shown up to 10 kHz in this thesis. However, it also shows 

that for higher internal losses, the frequency limit significantly decreases to below 

5 kHz. Therefore, to model the L-junction using SEA would not be valid based on 

this requirement. However, the results presented in this section do not show 

significant error with internal loss factors larger than 0.06. This may be due to the 

criterion being developed for subsystems that are connected on all sides rather 

than only on one side as with the isolated L-junction. 

Table 5: Frequency limit due to damping based on the criteria given in section 

2.2.8  

Internal loss factor 0.015 0.03 0.06 0.12 0.24 

Upper frequency limit 

(Hz) 
238840 59710 14927 3732 933 
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 Mav 

 

η11= η22=0.24 1.2 1.9 3.0 4.8 7.5 11.9 19.1 29.8 47.7 75.1 119.2 

η11= η22=0.12  1.0 1.5 2.4 3.8 6.0 9.5 14.9 23.8 37.6 59.6 

η11= η22=0.06    1.2 1.9 3.0 4.8 7.5 11.9 18.8 29.8 

η11= η22=0.03      1.5 2.4 3.7 6.0 9.4 14.9 

η11= η22=0.015       1.2 1.9 3.0 4.7 7.5 

TOB(Hz) 100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

 
Figure 6.9 Coupling loss factors (FEM with ESEA averaged 10 sets of 

ROTR) with different internal loss factors 
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 Mav 

 

η11= η22=0.24 1.2 1.9 3.0 4.8 7.5 11.9 19.1 29.8 47.7 75.1 119.2 

η11= η22=0.12  1.0 1.5 2.4 3.8 6.0 9.5 14.9 23.8 37.6 59.6 

η11= η22=0.06    1.2 1.9 3.0 4.8 7.5 11.9 18.8 29.8 

η11= η22=0.03      1.5 2.4 3.7 6.0 9.4 14.9 

η11= η22=0.015       1.2 1.9 3.0 4.7 7.5 

TOB(Hz) 100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

 

 
Figure 6.10 Ensemble average of energy level difference between the source 

subsystem and receiving subsystem (10 sets of ROTR).  Different 

internal damping loss factors are used in FEM.   
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6.5 L-junction with a periodic ribbed plate modelled as a single 

subsystem 

The L-junction comprised of an isotropic plate and a periodic ribbed plate 

(Model 2 - see Figure 3.3) is analyzed using the wave approach from Tso and 

Hansen [10] (section 5.5) and FEM with ESEA where the ribbed plate is treated 

as a single subsystem. 

6.5.1 Low frequency model treating the periodic ribbed plate as an 

orthotropic plate 

At low frequencies where the bending wavelength is larger the bay spacing of the 

periodic ribbed plate, the ribbed plates can be treated as uniform plates with 

orthotropic elastic properties. Wave propagation on orthotropic plate is discussed 

in section 3.2 and theoretical models for wave transmission across structural 

junctions of orthotropic plates are presented in section 5.6 and 5.7.  

Figure 6.11 shows the coupling loss factors across the same L-junction in section 

6.5 calculated from FEM with ESEA where the periodic ribbed plate is modelled 

as an orthotropic plate in ABAQUS. Both FEM models give large fluctuations at 

low frequencies and good agreement is found at high frequencies with confidence 

intervals overlapping with each other in most frequency bands although the 

orthotropic models are considered not valid at high frequencies where the bending 

wavelength is smaller than the bay spacing. For the complete FEM model, the 

coupling loss factor curves show four clear troughs which is explained in the next 

section as caused by the stop bands of the periodic ribbed plate identified in 

Figure 4.3. However, these troughs have not been picked up by the orthotropic 

FEM model. It is also noticed that for the coupling loss factors from the ribbed 

plate to the isotropic plate, the orthotropic FEM with ESEA slightly overestimates 

the coupling loss factors. This discrepancy can be explained as follows: in the 

FEM model for the complete ribbed plate, the energies of the ribs are not 

accounted in the calculation of the coupling loss factors so when the ribbed plate 

is excited, the transmission coefficient from the ribbed plate to the isotropic plate 

will be underestimated which will result in an underestimated coupling loss factor. 
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

NB2 = 1.0 1.0 3.0 4.0 6.0 10.0 16.0 20.0 35.0 53.9 86.9 

Nbay=      1.6 2.5 4.0 6.4 10.1 16.0 

 

Figure 6.11 Coupling loss factors of between an L-junction with a uniform plate 

and a periodic ribbed plate determined using FEM with ESEA (10 sets 

of ROTR) where ribbed plate is modelled as a plate with orthotropic 

elastic properties in FEM compared with the model in section 6.6. 

Mode counts and the geometric mean of the modal overlap factors of 

the two subsystems are shown at the top of the figure.  
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Figure 6.12 shows a comparison of theoretical results with the wave approach 

using different bending stiffness presented in section 5.6 and 5.7. The models are 

shown for the entire frequency range although strictly speaking they are only valid 

below the fundamental mode of the bay or at frequencies where the bay spacing is 

less than half of the bending wavelength. This is purely done to illustrate the 

relatively good agreement that can exist even when the models are not strictly 

valid. The wave approach using the equivalent bending stiffness gives the best 

agreement with FEM with ESEA where ribbed plate is modelled as an orthotropic 

plate. The wave approach using angle-dependent bending stiffness tends to 

underestimate the CLFs while using the bending stiffness in the x-direction 

overestimate the CLFs. It is noticed that these two methods seemed to give an 

upper and lower envelop of the ESEA predictions.  

Figure 6.13 shows the theoretical results with the wave approach using different 

bending stiffness compared with FEM with ESEA where the ribbed plate is 

modelled exactly in FEM. It is found that the wave approach using angle-

dependent bending stiffness gives a slightly better estimate than using the 

equivalent bending stiffness in terms of the number of frequency bands that the 

theoretical results falls into the 95% confidence intervals of FEM with ESEA.  

In summary, FEM with ESEA where the ribbed plate is modelled as an 

orthotropic plate generally gives close prediction compared with the complete 

FEM model. Theoretical models using the wave approach with different bending 

stiffness yield close results at low frequencies with less than 2 dB of discrepancy 

and the predictions also agree well with FEM with ESEA. At high frequencies, 

the discrepancies become larger between different bending stiffness models. 

Compared with FEM with ESEA, wave approaches using equivalent bending 

stiffness and angle-dependent bending stiffness give the best estimates while 

using bending stiffness in only the x-direction overestimates the CLFs.  

The problem with the orthotropic plate models is that they are not able to predict 

the troughs in the CLF that are caused by the stop bands of the periodic ribbed 

plate. Hence in the next section, the wave approach from Tso and Hansen will be 

used to incorporate this phenomenon. 
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

NB2 = 1.0 1.0 3.0 4.0 6.0 10.0 16.0 20.0 35.0 53.9 86.9 

Nbay=      1.6 2.5 4.0 6.4 10.1 16.0 

 

 

Figure 6.12 Coupling loss factors of between an L-junction with a uniform plate 

and a periodic ribbed plate determined using FEM with ESEA (10 sets 

of ROTR) where ribbed plate is modelled as a plate with orthotropic 

elastic properties in FEM compared with wave approach using 

different bending stiffness.  
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

NB2 = 1.0 1.0 3.0 4.0 6.0 10.0 16.0 20.0 35.0 53.9 86.9 

Nbay=      1.6 2.5 4.0 6.4 10.1 16.0 

 

 

Figure 6.13 Coupling loss factors of between an L-junction with a uniform plate 

and a periodic ribbed plate determined using FEM with ESEA (10 sets 

of ROTR) compared with wave approach from Tso and Hansen and 

wave approach using angle-dependent bending stiffness.  
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6.5.2 Low-,  mid- and high-frequency models using the wave approach from 

Tso and Hansen 

6.5.2.1 Coupling loss factors from FEM with ESEA  

The coupling loss factors calculated from FEM with ESEA are shown in Figure 

6.14 in comparison with results from the wave approach from Tso and Hansen 

[10]. The CLFs from the isotropic plate to the ribbed plate are calculated using 

this wave approach and the CLFs in the opposite direction are calculated from the 

consistency relationship using the modal density for the periodic ribbed plate from 

Bosmans and Vermeir[89] described in section 3.2.6.  

Both the wave approach and FEM with ESEA show troughs in the coupling loss 

factors at 630 Hz, 2500 Hz and 5000 Hz. These troughs correspond to the first 

three attenuation zones that can be identified in Figure 4.3.  

In general, good agreement is found, with the results from the wave approach 

falling within the 95% confidence intervals of FEM with ESEA in most one-third 

octave bands. The maximum discrepancy is 3 dB except for 12  in the 100 Hz and 

125 Hz one-third octave bands. Between 100 Hz and 500 Hz where the geometric 

mean of modal overlap factors is less than unity, large variations occur with 

individual rain-on-the-roof excitation resulting in large confidence intervals. 

ESEA gives accurate predictions for the internal loss factors as shown in Figure 

6.15. Between 1 kHz and 10 kHz, the ILF for the isotropic homogeneous plate is 

underestimated by up to 1 dB and for the periodic ribbed plate it is overestimated 

by up to 1 dB.  

On the basis of this section it appears that the Tso and Hansen model is adequate. 

However, it will be shown in section 6.5.2.3 that above 1kHz this model is not 

appropriate because it is not correct to assume that the ribbed plate can be 

modelled as a single subsystem. 
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

NB2 = 1.0 1.0 3.0 4.0 6.0 10.0 16.0 20.0 35.0 53.9 86.9 

Mav= 0.3 0.3 0.6 0.7 1.5 2.9 5.3 8.7 17.1 26.3 47.9 

 

Figure 6.14 Coupling loss factors of between an L-junction with a uniform plate and a 

periodic ribbed plate determined using FEM and ESEA (10 sets of ROTR) 

compared with theoretical results using wave approach from Tso and 

Hansen [10]. Mode counts and the geometric mean of the modal overlap 

factors of the two subsystems are shown at the top of the figure. 
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

NB2 = 1.0 1.0 3.0 4.0 6.0 10.0 16.0 20.0 35.0 53.9 86.9 

Mav= 0.3 0.3 0.6 0.7 1.5 2.9 5.3 8.7 17.1 26.3 47.9 

 
Figure 6.15 Internal loss factors of the two subsystems determined using FEM 

and ESEA (10 sets of ROTR with 95% confidence intervals) 

compared with the actual internal loss factor used in FEM. Mode 

counts and the geometric mean of the modal overlap factors of the 

two subsystems are shown at the top of the figure. 

 

 

6.5.2.2 Comparison between matrix ESEA and simplified ESEA 

Figure 6.16 shows comparison of the coupling loss factors calculated from matrix 

ESEA and simplified ESEA.  

In contrast to the L-junction of isotropic homogeneous plates in section 6.3.3, it is 

seen in Figure 6.16 that there is a difference between matrix ESEA and simplified 

ESEA across the frequency range. One cause of the difference between matrix 

ESEA and simplified ESEA is that the total energy determined for the ribbed plate 
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excited with ROTR rather than when the isotropic homogeneous plate was excited. 

However, this mesh error only gave a discrepancy in the power of approximately 

1 dB. 

In the next section it will be shown that the Tso and Hansen model is not 

appropriate because it is not correct to assume that the ribbed plate can be 

modelled as a single subsystem. Hence, the fact that it is not possible to identify 

whether simplified ESEA or matrix ESEA is more accurate is not problematic. 

 

TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

NB2 = 1.0 1.0 3.0 4.0 6.0 10.0 16.0 20.0 35.0 53.9 86.9 

Mav= 0.3 0.3 0.6 0.7 1.5 2.9 5.3 8.7 17.1 26.3 47.9 

 

Figure 6.16 Coupling loss factors of between an L-junction with a uniform plate 

and a periodic ribbed plate using matrix ESEA and simplified ESEA 

averaged from 10 sets of ROTR with 95% confidence intervals 

compared with the wave approach from Tso and Hansen.  
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6.5.2.3 Decrease in vibration level across the bays of the periodic plate 

Up to this point in this chapter, the periodic plate has been treated as a single 

subsystem in the SEA model. However the approach from Tso and Hansen to treat 

the periodic ribbed plate as a single subsystem is only valid if there is no 

significant decrease in vibration across successive bays.  

Figure 6.17 shows the energy level difference between the source plate (plate 1) 

and the bays on plate 2. Assuming simply-supported boundaries for each bay, the 

fundamental local mode for bending occurs at 637 Hz. Below this fundamental 

mode there is no significant decrease in level across the periodic ribbed plate; 

hence it is reasonable to treat the periodic plate as a single subsystem. However, 

above this fundamental mode, the energy levels in each bay differ and when the 

mode counts for each bay, Nbay>5 (i.e. above the 3.15 Hz one-third octave band) 

there are large energy level differences between the bays. At 10 kHz, the energy 

level difference between the first bay that is closest to the junction and the furthest 

bay is more than 50 dB. This indicates that at high frequencies, the periodic plate 

cannot be modelled as a single subsystem in SEA. Therefore it is concluded that 

the two subsystem model using the Tso and Hansen wave approach gave good 

agreement with FEM with ESEA in Figure 6.14 for the wrong reason. Therefore 

at high frequencies, it is now reasonable to consider alternative SEA models 

which treat each bay on the periodic plate as a separate subsystem.  
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

Nplate1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

Nplate2 = 1.0 1.0 3.0 4.0 6.0 10.0 16.0 20.0 35.0 53.9 86.9 

Nbay=      1.6 2.5 4.0 6.4 10.1 16.0 

 

Figure 6.17 Energy level difference between the source subsystem (Plate 1) and 

bays on the periodic plate (Plate 2) from FEM (10 sets of ROTR with 

95% confidence intervals). Mode counts for the two plates as well as 

the mode counts for an individual bay of the periodic plate are shown 

on the upper x-axis. 
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6.6 L-junction with a periodic ribbed plate: High frequency model 

treating the bays of the periodic plate as individual subsystems 

6.6.1 SEA model with CLFs calculated using a wave approach (nine-

subsystems) 

This section considers an SEA model treating each bay of the periodic plate as an 

individual subsystem. The coupling loss factors are calculated using the wave 

approach for a rib junction (section 5.4). All the coupling loss factors between 

physically unconnected subsystems are set to zero in the SEA formulation. 

Figure 6.18 shows the SEA prediction for the nine-subsystem model compared 

with FEM results averaged from 10 sets of ROTR on plate 1. As noted in section 

6.5.2.3, the SEA model is only appropriate above the fundamental bending mode 

of the bay, therefore the results are only shown at and above the 1 kHz one-third 

octave band. Figure 6.18 shows that SEA only agrees with the FEM model for the 

first four bays that are closest to the junction. For more distant bays, SEA 

underestimates the response by up to 25 dB.  

It is concluded that this nine-subsystem model using coupling loss factors from 

the wave approach does not provide an improved prediction when compared with 

the two-subsystem model. Hence the next step is to see whether using coupling 

loss factors determined from ESEA would improve the prediction.   
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

Nbay=      1.6 2.5 4.0 6.4 10.1 16.0 

Mav= 0.1 0.2 0.3 0.4 0.7 1.1 1.7 2.6 4.2 6.6 10.5 

 

Figure 6.18 Energy level difference between the source subsystem (Plate 1) and 

bays on the periodic plate (Plate 2) from FEM (10 sets of ROTR) 

compared with SEA for a nine-subsystem model using coupling loss 

factors calculated from wave approach. Mode counts for plate 1 and 

the bays of the ribbed plate, geometric mean of modal overlap for 

plate 1 and any individual bay are shown on the upper x-axis. 
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6.6.2 SEA model with CLFs calculated from FEM with ESEA (nine-

subsystems) 

In order to investigate the large discrepancies with the nine-subsystem SEA model 

using coupling loss factors calculated from wave approach, this section uses FEM 

with ESEA to determine the coupling loss factors. The nine subsystems are 

excited in turn with ROTR and standard ESEA formulation in equation (2.39) is 

used to calculate the coupling loss factors. 

Figure 6.19 shows the coupling loss factors between adjacent subsystems. Above 

the 1 kHz one-third octave band, 12 calculated from ESEA (see Figure 6.19 a) 

shows good agreement with wave approach. However, for the CLFs between 

adjacent bays (see Figure 6.19 b), good agreement is only observed above the 

1.6 kHz one-third octave band when the mode count of the bay Nbay>2.5.  

Figure 6.20 (a)-(d) show that matrix ESEA for a nine-subsystem model does not 

only give CLFs between physically connected subsystems, but also gives CLFs 

between physically unconnected subsystems. The strength of the CLFs between 

physically unconnected subsystems decreases with increasing distance between 

the two subsystems. For example, the CLF from plate 1 to bay 2 at 10 kHz is 

65 dB which is lower than the CLF from plate 1 to bay 1 of 86 dB. The CLF from 

plate 1 to the furthest bay at 10 kHz is 70 dB lower than the CLF from subsystem 

plate 1 to bay 1. Although it is very small, it still indicates positive coupling 

between the two subsystems.  

Figure 6.21 (a) and (b) show the internal loss factors calculated from ESEA for 

the isotropic plate (plate 1) and bays on the periodic ribbed plate. The internal loss 

factor for plate 1 (see Figure 6.21 (a)) calculated from ESEA shows good 

agreement with actual values for all one-third octave bands starting from 100 Hz 

with a discrepancy less than 1 dB. For the internal loss factors of the bays as 

shown in Figure 6.21 (b), good agreement only occurs at and above the 1.6 kHz 

one-third octave band. This indicates that the bays of the periodic plate can only 

be treated as individual subsystems when the mode count of the bays bay 1.6N  .   
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(a) Coupling loss factors between subsystem 1 and 2 

TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

Nbay=      1.6 2.5 4.0 6.4 10.1 16.0 

Mav= 0.1 0.2 0.3 0.4 0.7 1.1 1.7 2.6 4.2 6.6 10.5 

 

(b) Coupling loss factors between adjacent bays  

TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

Nbay=      1.6 2.5 4.0 6.4 10.1 16.0 

Mav= 0.1 0.2 0.3 0.4 0.7 1.1 1.7 2.6 4.2 6.6 10.5 

 
Figure 6.19 Coupling loss factors between physically connected subsystems 

for a nine-subsystem model determined using FEM with ESEA 

(10 sets of ROTR) compared with the wave approach. Mode 

counts, geometric mean of modal overlap for subsystem 1 and 

any individual bay are shown on the upper x-axis. 
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(a) Coupling loss factors between subsystem 1 and all other subsystems 

TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

Nbay=      1.6 2.5 4.0 6.4 10.1 16.0 

Mav= 0.1 0.2 0.3 0.4 0.7 1.1 1.7 2.6 4.2 6.6 10.5 

 

(b) Coupling loss factors between subsystem 2 and all other subsystems 

TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

Nbay=      1.6 2.5 4.0 6.4 10.1 16.0 

Mav= 0.1 0.2 0.3 0.4 0.7 1.1 1.7 2.6 4.2 6.6 10.5 
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(c) Coupling loss factors between subsystem 5 and all other subsystems 

TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

Nbay=      1.6 2.5 4.0 6.4 10.1 16.0 

Mav= 0.1 0.2 0.3 0.4 0.7 1.1 1.7 2.6 4.2 6.6 10.5 

 

(d) Coupling loss factors between subsystem 9 and all other subsystems 

TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

Nbay=      1.6 2.5 4.0 6.4 10.1 16.0 

Mav= 0.1 0.2 0.3 0.4 0.7 1.1 1.7 2.6 4.2 6.6 10.5 

 

Figure 6.20 Coupling loss factors between physically unconnected 

subsystems for a nine-subsystem model determined using FEM 

with ESEA (10 sets of ROTR) compared with wave approach. 

Mode counts, geometric mean of modal overlap for subsystem 1 

and any individual bay are shown on the upper x-axis. 
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

Nbay=      1.6 2.5 4.0 6.4 10.1 16.0 

Mav= 0.1 0.2 0.3 0.4 0.7 1.1 1.7 2.6 4.2 6.6 10.5 

 

Figure 6.21 Internal loss factors for a nine-subsystem model determined using 

FEM and ESEA from 10 sets of ROTR compared with theoretical 

results using wave approach. The results are averaged from 10 

sets of ROTR with 95% confidence intervals. Mode counts, 

geometric mean of modal overlap for subsystem 1 and any 

individual bay are shown on the upper x-axis. 
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Figure 6.22 shows the energy level difference calculated from ensemble average 

of FEM in comparison with the prediction using SEA where the coupling loss 

factors are obtained from FEM with ESEA (general matrix formulation). Good 

agreement is found between the two methods. It also shows that using these CLFs 

from FEM with ESEA gives a distinct improvement compared to using the CLFs 

from the wave approach. One may claim that this is a circular process as the CLFs 

are determined from FEM data using ESEA, subsequently incorporated in SEA 

and then compared with FEM. However, the process of using ESEA with more 

than two subsystems will only result in coupling loss factors if it is possible to 

treat the system as an SEA system. This is critical if an assessment is to be made 

of the importance of indirect coupling loss factors. 

Use of the general ESEA matrix formation for the nine-subsystem model has 

identified the coupling between physically unconnected subsystems, which can be 

referred as indirect coupling.  

The next step is to investigate how indirect coupling would affect the prediction 

of the energy responses in the nine-subsystem SEA model. Therefore, the 

alternative ESEA matrix formation equation (2.40) is used which allows the 

coupling loss factors between physically unconnected subsystems to be forced to 

zero. The CLFs between physically connected subsystems are determined from 

FEM with ESEA (alternative matrix formulation) and then used in an SEA model 

to calculate the subsystem energies.  

Figure 6.23 shows the energy level differences from SEA using CLFs from the 

alternative ESEA matrix where CLFs between physically unconnected subsystems 

are forced to zero. Again, a large discrepancy is found compared with FEM 

results. Therefore, it is clear that even though the CLFs between physically 

unconnected subsystems are small compared with the CLFs for direct coupling, 

they play an important role in vibration transmission across the periodic plate and 

cannot be ignored. This non-resonant transmission phenomenon for coupling 

between physically unconnected subsystems is referred to as ‘tunnelling’. 

However, we cannot incorporate tunnelling into a standard SEA model without 

ESEA and this is of little use for predictive engineering design. For this reason the 
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next section implements Advanced SEA for the nine-subsystem model which 

incorporates tunnelling.  

 

 

TOB(Hz)  1k 1.25k 1.6k 2k 2.5k 3.15k 4k 5k 6.3k 8k 10k 

NB1 = 10.7 13.4 17.1 21.4 26.7 33.7 42.8 53.5 67.4 85.6 106.9 

Nbay= 1.6 2.0 2.5 3.2 4.0 5.1 6.4 8.0 10.1 12.8 16.0 

Mav= 1.1 1.3 1.7 2.1 2.6 3.3 4.2 5.3 6.6 8.4 10.5 

 

Figure 6.22 Energy level difference between the source subsystem (Plate 1) 

and bays on the periodic plate (Plate 2) from FEM averaged from 

10 sets of ROTR compared with SEA for a nine-subsystem model 

using CLFs from wave approach and SEA using CLFs from 

alternative ESEA where CLFs between physically unconnected 

subsystems are forced to zero. Mode counts for subsystem 1 and 

the bays of the ribbed plate, geometric mean of modal overlap for 

subsystem 1 and any individual bay are shown on the upper x-

axis. 
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TOB(Hz)  1k 1.25k 1.6k 2k 2.5k 3.15k 4k 5k 6.3k 8k 10k 

NB1 = 10.7 13.4 17.1 21.4 26.7 33.7 42.8 53.5 67.4 85.6 106.9 

Nbay= 1.6 2.0 2.5 3.2 4.0 5.1 6.4 8.0 10.1 12.8 16.0 

Mav= 1.1 1.3 1.7 2.1 2.6 3.3 4.2 5.3 6.6 8.4 10.5 

 

Figure 6.23 Energy level difference between the source subsystem (Plate 1) 

and bays on the periodic plate (Plate 2) from FEM averaged from 

10 sets of ROTR compared with SEA for a nine-subsystem model 

using CLFs from wave approach and SEA using CLFs from 

alternative ESEA where CLFs between physically unconnected 

subsystems are forced to zero. Mode counts for subsystem 1 and 

the bays of the ribbed plate, geometric mean of modal overlap for 

subsystem 1 and any individual bay are shown on the upper x-

axis. 
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Dotted  lines: SEA for a nine-subsystem model using CLFs calculated from the wave approach

Markers: FEM averaged from 10 sets of ROTR on subsystem 1

Solid  lines: SEA for a nine-subsystem model using CLFs from FEM with ESEA where CLFs 
                     between physically unconnected subsystems are forced to zero
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6.6.3 ASEA model (nine-subsystems) 

Advanced Statistical Energy Analysis (ASEA) described in section 2.3 is used 

here to incorporate tunnelling mechanisms between physically unconnected 

subsystems for the L-junction with ribbed plate that were identified in the 

previous section.  

6.6.3.1 Computation times 

As ASEA gives different results with different level number representing different 

number of power transfers for each subsystem, the calculations proceed until 

convergence occurs for all subsystems.  The ASEA calculation has been carried 

out using Matlab on a PC with Intel Core 2 Duo CPU @ 3.00 GHz and 4 GB 

RAM from 100 Hz to 10 kHz.  

As described in section 2.3, the ray tracing algorithm in ASEA involves intensive 

calculations and could be computationally expensive. However, for this specific 

model, the ray tracing algorithm can be significantly simplified. This is due to the 

fact that all junctions are parallel to each other and all subsystems are rectangular 

with the same thickness and material; thus no matter how far the ray is traced, the 

wave angle impinging upon the junction always stays the same and the wave 

propagation path for each subsystem is only related to the initial wave angle and 

the length of the subsystem in the direction perpendicular to the junction.  

Table 6 shows the CPU times for running ASEA models with different level 

numbers. When narrow bands at 10 Hz intervals are used to calculate the one-

third octave bands, the computation time significantly increases compared with 

using only the one-third octave band centre frequencies.   

Figure 6.24 shows the difference between ASEA8 calculations using centre 

frequencies of the one-third octave bands and narrow bands at intervals of 10 Hz 

combined into one-third octave bands. In most frequency bands, the difference 

between the two calculations is less than 1 dB for all bays. However, for the last 

two bays (subsystems 7, 8 and 9) at 2.5 kHz and 4 kHz, the difference is up to 

3 dB. It will be shown in later calculations that this error is negligible in the 
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context of the errors incurred with SEA. In this chapter, all ASEA calculations use 

narrow band calculations at 10 Hz intervals. However, to reduce computation 

times the results in chapters 7 and 8 use one-third octave band centre frequencies. 

 

Table 6: ASEA computation time with different level numbers using 0.01 

angular resolution for each one-third octave band centre frequency and 

narrow bands with 10 Hz resolution between 1 kHz and 10 kHz. 

ASEA with different 

level number 

CPU time  

One-third octave bands Narrow bands  

(10 Hz interval) 

ASEA1 88s 1h 48m 44s 

ASEA2 127s 2h 41m 20s 

ASEA3 162s 3h 24m 57s 

ASEA4 188s 4h 2m 12s 

ASEA5 210s 4h 34m 17s 

ASEA6 237s 4h 59m 20s 

ASEA7 242s 5h 21m 30s 

ASEA8 240s 5h 26m 

 

 

Figure 6.24 Difference between the ASEA8 energy level differences 

calculated using narrow band calculations at 10 Hz intervals 

minus the ASEA8 energy level difference calculations using only 

the one-third octave band centre frequencies. 
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6.6.3.2 Effect of nearfields 

ASEA uses ray tracing theory to track the propagating waves and therefore it 

essentially assumes that the effect of any nearfield originating from one junction 

and arriving at the next junction is negligible. It is therefore necessary to 

investigate whether this assumption is reasonable. This is done by considering 

whether the mean-square velocity of the nearfield generated on a bay is negligible 

when it reaches the next rib compared with the mean-square velocity of the free 

propagating wave. Bending waves on the source plate would impinge upon the 

junction from all angles, but here we only consider the worst-case situation for 

normal incidence on the ribs. This can be calculated by converting equations (5.9) 

and (5.10) from displacement to velocity and creating a velocity level difference 

between the free propagating wave and the nearfield along the first bay as shown 

in Figure 6.25 and Figure 6.26 for the start and end frequencies to which ASEA 

applies which are 1 kHz and 10 kHz respectively. These calculations show that by 

the time that the nearfield has travelled the full length of the bay (150 mm) to the 

next rib, the velocity level difference is at least 50 dB. Therefore, the assumption 

made in ASEA to ignore the nearfield is reasonable. 
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Figure 6.25 Velocity level difference between the free wave and the nearfield 

at various distances along the first bay near the junction on the 

periodic ribbed plate at 1 kHz and 10 kHz.  

 

 

Figure 6.26 Velocity level difference between the free wave and the nearfield at 

various distances along a bay for waves leaving the rib junction on 

the periodic ribbed plate at 1 kHz and 10 kHz.  
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6.6.3.3 Comparison of FEM and ASEA 

Figure 6.27 (a)-(h) show the energy level difference between the source 

subsystem (subsystem 1) and the bays of the periodic ribbed plate with different 

ASEA level number for comparison with FEM.  

Comparison of FEM with SEA (ASEA0) indicates that the latter only gives a 

reasonable prediction for the three bays nearest the junction (subsystems 2, 3 

and 4). For the bays that are further away, SEA significantly underestimates 

vibration transmission. 

Convergence with ASEA occurs for the furthest bay away from the junction at 

ASEA8. For the first four subsystems that are closest to the source subsystem, all 

ASEA predictions are very close to FEM. For more distant subsystems, low levels 

of ASEA show discrepancies compared with FEM, whereas high levels of ASEA 

always gives good agreement with FEM. In some cases the ASEA prediction does 

not always improve with the increase of ASEA level number, for example, ASEA 

6 for bay 6 gives slightly better results than ASEA8. However, this is purely 

coincidence because it is only after convergence that ASEA can be compared with 

FEM.  

Figure 6.28 compares ASEA8 with FEM and SEA (ASEA0). For the last bay 

(subsystem 9), ASEA8 only gives a discrepancy up to 3 dB compared with FEM 

whereas SEA (ASEA0) has a discrepancy of more than 25 dB. It is also observed 

that in the frequency range between 1 kHz and 2.5 kHz, there is a discrepancy 

between ASEA8 and FEM especially for the furthest four bays away from the 

junction; however, it is seen that above 2.5 kHz when the mode count of the bay 

Nbay>5, closer agreement is achieved. Recalling that by using ray tracing ASEA 

does not account for phase effects, so it is possible that the discrepancies with 

FEM between 1 kHz and 2.5 kHz are due to coherence between the waves that 

impinge on the junctions. 

Earlier in this chapter it was seen that at high frequencies (6.3 kHz to 10 kHz) 

there was a small error (up to a few decibels) which was attributed to the fact that 

the S4R element did not exactly replicate thin plate theory near and above the thin 
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plate limit (8 kHz one-third octave band). However, considering that the energy 

level differences for individual bays are at least 15 dB and at most 72 dB at these 

high frequencies it is clear that this FEM error is generally negligible. 

For periodic ribbed plates the agreement between SEA and FEM for the first few 

bays nearest the junction indicates that tunnelling mechanisms are not significant. 

However for more distant bays, SEA significantly underestimates vibration 

transmission whereas ASEA is able to successfully incorporate tunnelling and 

provide a significantly more accurate prediction. As periodic ribbed plates in 

engineering structures typically have many bays, ASEA should therefore have 

practical applications. 
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Figure 6.27 Energy level difference between the subsystem 1 (source 

subsystem) and the bays of the periodic plate predicted from 

ASEA with different level numbers compared with FEM. 
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TOB(Hz)  1k 1.25k 1.6k 2k 2.5k 3.15k 4k 5k 6.3k 8k 10k 

NB1 = 10.7 13.4 17.1 21.4 26.7 33.7 42.8 53.5 67.4 85.6 106.9 

Nbay= 1.6 2.0 2.5 3.2 4.0 5.1 6.4 8.0 10.1 12.8 16.0 

Mav= 1.1 1.3 1.7 2.1 2.6 3.3 4.2 5.3 6.6 8.4 10.5 

 

 

Figure 6.28 Energy level difference between the source subsystem (subsystem 

1) and the bays of the periodic plate predicted from ASEA8 

compared with FEM and SEA. Mode counts for subsystem 1 and 

the bays of the ribbed plate, geometric mean of modal overlap for 

subsystem 1 and any individual bay are shown on the upper x-axis. 

 

 

6.7 Conclusions 

This chapter compared FEM, SEA and ASEA for L-junctions formed by a 

homogeneous isotropic plate and a periodic ribbed plate.  

In the low-frequency range below the fundamental local mode of the bay on the 

ribbed plate, the main conclusion is that the periodic ribbed plate can be modelled 

as a single subsystem either using the wave approach from Tso and Hansen, or 

using orthotropic plate theory with the wave approach from Bosmans and Vermeir. 
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In the high-frequency range above the fundamental local mode of the bay on the 

ribbed plate there is a significant decrease in energy along successive bays of the 

periodic ribbed plate; hence it is no longer appropriate to model this periodic plate 

as a single subsystem. For this reason it is not appropriate to use the wave 

approach from Tso and Hansen. Therefore SEA models were investigated that 

treat each bay as an individual subsystem using wave theory to model 

transmission across each rib. The good agreement between SEA and FEM for the 

first few bays near the junction indicates that tunnelling mechanisms are not 

significant. However, there is less agreement for more distant bays and SEA 

underestimates the response in the furthest bay by up to 25 dB. ESEA was then 

used to investigate this large discrepancy. ESEA indicates the existence of 

tunnelling between physically unconnected subsystems, which is not usually 

incorporated in SEA with plate subsystems. To incorporate this tunnelling 

mechanism, ASEA is used to track the energy flow across the plate system. In this 

chapter ASEA is shown to be able to successfully incorporate tunnelling and 

provide a significantly more accurate prediction for the furthest bay with 

discrepancies less than 3 dB. As periodic ribbed plates in engineering structures 

typically have many bays, ASEA should find practical applications.  

The main conclusion is that ASEA is able to successfully incorporate tunnelling 

for plate junctions that incorporate periodic ribbed plates and that ASEA provides 

a significantly more accurate predictive approach to vibration transmission across 

periodic ribbed plates than SEA. The good agreement between ASEA and FEM 

above 2.5 kHz indicates that the ASEA assumptions that phase effects can be 

ignored and that the nearfield plays a negligible role are both appropriate for this 

particular L-junction. 

Further investigations on the application of ASEA to other L-junctions 

incorporating a periodic ribbed plate and to systems with more than two plates are 

carried out in chapter 8.  
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7 Experimental verification 

This chapter discusses the measurement of vibration transmission across L-

junctions formed from isotropic, homogeneous plates and periodic ribbed plates. 

The results from these physical experiments are compared with numerical 

calculations using FEM, SEA and ASEA to confirm the validity of the theoretical 

models discussed in the previous chapters. The measurements used to determine 

material properties of the plates are also discussed. 

Two L-junctions are assembled for the experiments and fixed into a specially 

designed frame to simulate simply-supported boundary conditions along the plate 

edges.  

7.1 Measurement of material properties 

This section discusses the experimental determination of material properties of the 

plate structures including Young’s modulus, quasi-longitudinal phase speed and 

internal loss factor. These parameters are needed for the FEM, SEA and ASEA 

models.  

7.1.1 Measurement of the bending stiffness  

For homogeneous materials such as Perspex, Young’s modulus can be 

experimentally determined using modal analysis by measuring the point input 

impedance as a function of frequency at the centre of a strip specimen made from 

the material. This method is described in ISO/PAS 16940:2004 for glass 

specimens [127]. The input impedance is given as the transfer function between 

the injected force at one point and the velocity. This impedance shows the 

property of resonances corresponding to the resonance frequencies of the beam. 

The resonance frequencies of the beam can be used to calculate the bending 

stiffness for a plate of the same material according to [19]: 

2
2

p, 2
=

2

i
i s

i

L f
B

C



 
 
 

 (7.1) 
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where L is the length of the beam, ρs is the surface density and fi is the i
th

 resonant 

frequency. Ci is a parameter dependent on the number of resonance frequency. For 

free boundary conditions, it is given as: C1=1.87510, C2=4.69410, C3=7.85476 

and C4=10.99554.  

Equation (3.2) can then be used to calculate Young’s modulus of the material and 

equation (3.24) can be used to calculate the quasi-longitudinal wave speed.  

The measurement setup is shown in Figure 7.1, the centre of beam sample is 

mounted using beeswax onto a force transducer which is screwed onto the shaker. 

An accelerometer is mounted on top of the beam. When the accelerometer is fixed 

to the surface of the beam, the mass of it has effectively been added to the beam 

that can reduce the vibration level at the measurement point. The effect of the 

mass can be ignored when the accelerometer impedance is much less then the 

beam impedance as given by Hopkins [19]: 

ac dpm Z  (7.2) 

where mac, the mass of the accelerometer of B&K 4393, is 2.4 grams and the 

driving-point imdedance for inifine beam excited at the middle can be calculated 

from [34]: 

dp B=2 (1+ )Z Sc i  (7.3) 

where S is the beam cross-section area. After evaluation for the beams used in the 

measurements and the equation (7.2) is satisfied so that the mass loading of the 

accelerometer won’t affect the measurement results.   

The beam samples made from Perspex
TM 

are chosen with different lengths (0.1 m, 

0.2 m, 0.3 m, 0.5 m and 1 m) in order to measure a wider frequency range. The 

cross-section of the beam samples are all the same with 20 mm width and 10 mm 

thickness. The density of the material is measured as 1218 kg/m
3
 and the 

Poisson’s ratio is taken as 0.3 [128].  
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Figure 7.2 shows an example of the beam input impendence spectrum from the 

measurements. Each trough corresponds to a natural frequency that will be used in 

equation (7.1) to calculate the bending stiffness and other material properties. The 

measurement results from different lengths of beams are shown in Table 7. As a 

result, the estimated Young’s modulus averaged over the results from all beam 

samples in the frequency range of 25 Hz to 5k Hz is 94.54 10 Pa with a standard 

deviation of 91.03 10 Pa. The corresponding quasi-longitudinal phase speed is 

calculated as 2045 m/s with a standard deviation of 230 m/s. 

 

Table 7: Measurements of material properties using beam impedance method 

Beam 

length 

(m) 

Mode 

number 

Resonant  

frequency (Hz) 

Quasi-longitudinal 

wave speed (m/s) 

Young’s modulus 

(GPa) 

0.2 

1 423.4 2298.8 5.86 

2 2256 1954.5 4.23 

3 5670 1754.3 3.41 

0.3 

1 188 2296.6 5.85 

2 1025 1998.0 4.42 

3 2590 1803.1 3.60 

4 4830 1715.9 3.26 

0.5 

1 69 2341.4 6.08 

2 384 2079.2 4.79 

3 981 1897.1 3.99 

4 1849 1824.7 3.69 

1 

1 17.5 2375.4 6.25 

2 97 2100.9 4.89 

3 246.5 2306.7 4.03 

4 464 1931.6 3.72 

Average 2045 4.54 

Standard deviation 230 1.03 
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Figure 7.1 Experiment setup for measuring the impedance of a beam 

sample. 

 

 

Figure 7.2 

 

Example of input impedance spectrum from a measurement with 

troughs corresponding to the resonant frequencies.  
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7.1.2 Measurement of the internal loss factor 

The internal loss factor can be can be calculated from the results of the 

measurement procedure presented in section 7.1.1 by determining the half-power 

bandwidth (3 dB reduction) at each resonant peak as using: 

3dB,

int, =
i

i

i

f

f



 (7.4) 

where 
3dB,if  is the half-power bandwidth for the i

th
 resonance frequency, if .  

The results of the individual measurements for different length of beams are 

shown in Table 8. The average internal loss factor is 0.06 with a standard 

derivation of 0.01. This method allows the determination of internal loss factor 

over a wide frequency range. However, only the internal loss factors at the 

resonance frequencies can be calculated and if the internal loss factor is highly 

dependent on the frequency, the use of the input impedance method may be 

limited. This method is based on modal analysis where the internal loss factors are 

dependent on the mode shapes of the structure. Therefore, it can result in 

significant differences between the measured internal loss factors of beams and 

plates [19].   

This internal loss factor will be compared with the measured total loss factor on 

each plate of the L-junction. This measurement procedure using structural 

reverberation time is discussed in the next section. 
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Table 8: Measurements of Internal loss factor using beam impendence method 

Beam 

length (m) 

Mode 

number 
Resonant frequency (Hz) Internal loss factor 

0.2 

1 423.4 0.068 

2 2256 0.042 

3 5670 0.076 

0.3 

1 188 0.072 

2 1025 0.040 

3 2590 0.052 

4 4830 0.089 

0.5 

1 69 0.072 

2 384 0.057 

3 981 0.051 

4 1849 0.052 

1 

1 17.5 0.057 

2 97 0.042 

3 246.5 0.069 

4 464 0.070 

Average 0.06 

Standard deviation 0.01 

 

7.2 Measurement of structural reverberation time 

7.2.1 Introduction  

In section 2.2.5, the internal loss factor and total loss factor in SEA were 

introduced and can be calculated from structural reverberation time. When a 

subsystem is isolated from the whole system (i.e. suspended by bungee cords or 

supported by soft elastic layers), the measurement of the structural reverberation 

time can be used to calculate the internal loss factor of this subsystem using 

equation (2.21). When the reverberation time of a subsystem is measured in situ, 

the results can be used to assess the total loss factor of this subsystem as in 

equation (2.22). This section therefore discusses the measurement of structural 

reverberation time for bending waves on plates to determine the total loss factors. 

The measurement of structural reverberation time uses the integrated impulse 

response method described in ISO 3382 [129] for determining the reverberation 
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time in space. This method was introduced by Schroeder [130] to calculate the 

vibrational energy decay using reverse-time integration of an impulse response. A 

Maximum Length Sequence (MLS) is generated internally in B&K DIRAC 

system as the impulse signal. This is a periodic, pseudo-random white noise signal, 

having the desirable property that its frequency spectrum over one period is as flat 

as the spectrum of an ideal impulse [131]. It is then fed into a shaker via a power 

amplifier to excite the plate. The impulse response is obtained by cross-correlating 

the excitation signal with the measured response signal which is measured using 

an accelerometer. After one-third octave band filtering, the impulse response is 

integrated in the time domain and results in a single curve representing the decay 

of vibration levels with time.  As a result, the reverberation time can be estimated 

by apply a linear curve fitting to the most linear and clear part of the decay curve.  

In order to determine the structural reverberation time in octave-band or one-third 

octave bands, the impulse response is usually sent through some filters before the 

decay time is calculated. The effect of the filters on the decay time is thoroughly 

discussed by Jacobsen [132]. As a filter also has its own impulse response, the 

decay time of the filter must be shorter than the actual structural decay time in 

order that it can be measured with a good accuracy [19]. The effect of the filter is 

dependent upon the filter bandwidth, B, and the actual reverberation time, T. It is 

suggested by Jacobsen [132] that the product of these two, BT, can be used to 

assess the effect of the filter on the decay curve. ISO 3382 [129] requires that 

BT>8 in order to ensure that the measured decay curve is unaffected by the 

impulse response filter. As the bandwidth of a filter varies with band central 

frequency, fc, for one-third octave bands, the bandwidth B=0.236fc. The actual 

reverberation time T is obtained from measurement.  

7.2.2 Measurement set-up 

The measurement set-up is shown as in Figure 7.3. An external sound card is used 

and the excitation MLS signal is obtained from B&K DIRAC system through the 

sound card output.  

Three excitation positions and for each excitation, four accelerometer positions 

are chosen for measurements. The accelerometers need to be positioned in the 
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reverberant field of the plate. The reverberant distance, rdr , from the excitation 

point at which the energy density in the direct field is equal that in the reverberant 

field can be approximately calculated using [19] for plates: 

  
rd

B,p4

iSr
c




  (7.5) 

where i  is the total loss factor of the plate. 

 

 

Figure 7.3 

 

Experiment setup for measuring the reverberation time 
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Figure 7.4 shows an example of the decay curve measured in situ on one of the 

plates of the L-junction with two isotropic, homogeneous plates. As one plate is 

coupled to another with different thickness and slightly different material 

properties, energy measured is returning from the excitation but also from the 

other plate. Therefore, the corresponding decay curve is not a straight line, but 

instead, with many slopes. The evaluation normally starts from 5 dB below the 
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initial vibration level to minimise the curvature introduced by the detector [19]. 

Using different range of the curves for the linear curve fitting will result in 

different reverberation time (as shown in Figure 7.4, the difference between T10 

and T20). With the evaluation range increasing, the decay time increases due to the 

effect of the returning energy coming from the other coupled plate. Therefore, in 

order to measure the total loss factor of the plate, short evaluation range such as T5 

and T10 should be used before the energy comes back from the other plate.  

 

 

Figure 7.4 

 

Decay curve measured in situ on one plate of the L-junction 

with two isotropic, homogeneous plates, and the evaluation 

reverberation time using different range of the decay curve 

of T10 and T20 
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7.3 Measurement of vibration transmission across L-junctions of 

simply-supported plates 

7.3.1 Introduction 

Many engineering structures have complex geometries and the coupling between 

structures can be non-rigid, dissipative and non-uniform. In some situations, it is 

difficult or even impossible to theoretically calculate the coupling loss factors. 

FEM is one solution, but as discussed in Chapters 2 and 6, it comes with certain 

limitations and uncertainties. Therefore, another possibility is to measure the 

coupling loss factor through physical experiments.  

In the theoretical analysis of the structure, simply-supported boundary conditions 

are often considered which allows free rotation of the edge about its centre tangent 

line while the displacements in all three dimensions are restricted. This is a 

mathematically idealized boundary condition and difficult to arrange in a 

laboratory. Works such as in [133, 134] have addressed the experimental methods 

to support structures in a way close to the idealized simply-supported boundary 

conditions.  

It is useful to have a reliable experimental test rig to investigate the structure 

behaviour under controlled boundary conditions and also provide verification for 

the theoretical models. In this section, the design of the experimental frame to 

support the L-junctions is presented to allow a close approximation of the simply-

supported boundary conditions and the frame was tested by the measurement of 

the driving-point mobilities for both the isotropic, homogeneous plate and the 

ribbed plate. Then the design for the experiment frame for the L-junction is 

illustrated and the measurement step-up and procedures are discussed.    

Due to the material limitations, the plate material properties and dimensions used 

in the actual experiments differ from the analytical models discussed in Chapter 6. 

The plates available for experimental test make two L-junctions: one with two 

isotropic, homogeneous plates and the other is comprised of an isotropic plate and 

a periodic ribbed plate. Young’s modulus, internal damping, and quasi-

longitudinal wave speed are measured using the methods discussed in section 7.1. 

The dimensions and material properties are summarized in Table 9. Accordingly, 
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theoretical and numerical models based on these properties are built for 

comparison with the experimental results. 

Note that the thin plate limit for plates 1 and 2 for Model 1 are 9038 Hz and 

10456 Hz respectively, whereas for Model 2 they are both 10456 Hz. 

 

Table 9: Plate dimensions and material properties used in the experiments 

Model Plate 1 Plate 2 
Material properties for the 

plates 

1 

p

=1.0 m

=0.8 m

0.010 m

x

y

L

L

h 

 
p

=1.2 m

=0.8 m

0.010 m

x

y

L

L

h 

 

ρ1=1180 kg/m
3
 

cL,1=2350 m/s 

ρ2=1218 kg/m
3
 

cL,2=2045 m/s 

μ1= μ2=0.3 

2 
p

=1.0 m

=0.8 m

0.010 m

x

y

L

L

h 

 

p b

b

=1.2 m        =0.8 m

0.01 m  =0.025 m

=0.03 m      0.15 m

x yL L

h h

b l





 

ρ1=ρ2=1218 kg/m
3
 

cL,1=cL,2=2045 m/s 

μ1= μ2=0.3 
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7.3.2 Design of the experimental frame to provide simply-supported 

boundary conditions 

Most theoretical methods to analyze structure-borne sound transmission through 

coupled structures are built up based on idealized boundary conditions in place of 

actual boundary conditions in real world. Although the mathematical idealization 

of the boundary conditions can greatly simplify the theoretical modelling, the 

justification of it in real practice can be largely dependent upon the test structures 

and their corresponding boundary conditions. Among all the idealized boundary 

conditions, it is known that simply-supported boundary condition is most difficult 

to achieve in the laboratory as it requires a continuous support of the edges of the 

structure that the edges are free to rotate but no lateral displacement in all three 

directions. Some works have been reported to try to support the structure in a way 

that is close to the idealized boundary conditions.  Mínguez [135] presented a 

design to create approximately simply-supported boundary conditions in the 

laboratory for compression test of panels.  As it is sketched in Figure 7.5, the 

unloaded edges of plate were supported by attaching high strength steel wires into 

a set of machined slots along the edges of the plate using a brass collar with s set 

of screw and a piece of structural-steel angel section. The ends of the steel wires 

were fixed to a metal frame. Wilson [136] suggested two different methods to 

stimulate the simply-supported boundary condition. Figure 7.6 uses a set of metal 

pins to support the plate edge. The pins are fixed to a timber baffle by using 

grooved aluminium strips. Figure 7.10 uses a ‘z’ shaped thick metal strip as a 

rotational spring to support the edges of the plate. Unlike the other methods 

reviewed in this section where the plates are supported at discrete distances, this 

method could provide continuous supports, which seems closer to the idealized 

boundaries. Lacour et al. [137], Putra and Thompson [138] and Maillard and 

Fuller [139] all followed a similar method by using metal strips to support the 

plates.  
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Figure 7.5 

 

Design for simply-supported boundary conditions in 

laboratory by Mínguez [135] using steel wires as supports. 

 

Figure 7.6 

 

Design 1 for simply-supported boundary conditions in 

laboratory from Wilson [136] using metal pins as supports 

 

A 

A 

Plate 

A-A view 

 

Test fixture frame 

 

Screw 

 Screw 

 

Steel wire 

 

Steel  

angle  

section 

 

Plate 

 

Set screw 

 

Brass 

collar 

 



214 

 

Figure 7.7 

 

Design 2 for simply-supported boundary conditions in 

laboratory from Wilson [136] using rotational spring with a 

‘z’ shaped metal strip 

 

In this thesis, the design of this frame allows tests both on the single rectangular 

plates and the L-junctions of two rectangular plates. The simply-supported 

boundary conditions are achieved by supporting the edges of plates with a set of 

pins distributing in a periodic distance along the edges.  

As shown in Figure 7.8, the sharp ends of the pins support the plate edges along 

the centre line. The supporting pins are fitted into a heavy steel frame (dimensions 

see in the figure) to minimise flanking transmission through pins and the frame 

into the plate. The metal frame is isolated from the ground using resilient layers.  

The ideal simply-supported boundary is a continuous condition along the 

boundary. In practice, it is only possible to use the pins at discrete distances.  

However, if the distance between any two adjacent pins is sufficiently small such 

that the bending wavelength is much larger than the pin spacing, it should give a 

close approximation to the continuous condition. In the design of the frame, the 

distance between two pins next to each other is chosen to be 20 mm which is 

much less than the bending wavelength of 60 mm at 10 kHz for a Perspex plate 

with 10 mm thickness.  

The frame for an individual plate is shown in Figure 7.9. There are 196 pins to 

support the four edges of the plate. The installation of plate starts by adjusting the 

free plate to the right height (pins pointing at the centre line of the plate edge) and 

horizontal position using large blocks and smaller spacers. The pins at the centre 
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and two ends of each edge are first fixed using a screw driver to the point that the 

sharp end of the pin is tightly pointing against the edge of the plate at the central 

line of the edge. The rest of the pins are fixed from centre to the ends. The 

distance between the frame and the plate edge is designed to be 5 mm, and it is 

important to keep this distance consistence. As the pins will introduce a 

compression force to the plate, and the Perspex plate has a relatively low bending 

stiffness, too much compression may results in a large lateral displacement at the 

middle of the plate.  

The frame for L-junction comprises of two U-shaped frames (see Figure 7.10 (a) 

using the same design of pins for the individual plate frame. The two frames are 

not connected with each other (as shown in Figure 7.10 (b)) in order to prevent 

flanking transmission between the two plates through the coupling of the frame. 

All the edges of the L-junction are simply-supported except the coupling junction 

which has no supports.  
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Figure 7.8 

 

Supporting pins and steel frame  
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Figure 7.9 

 

Frame used for measurements on an individual rectangular plate 

 

Figure 7.10 

 

Frame for the two rectangular plates. (a) Overview of the 

frame design (b) The individual frames for each plate are not 

connected with each other to prevent flanking transmission (c) 

View of the supporting pins on each plate. 

(a) 

(b) 

(c) 

(b) 

(c) 
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7.3.3 Experimental validation of the simply-supported boundary conditions 

In order to test validity of using the pins to approximate simply-supported 

boundary conditions, the frame for single plate is used to measure the driving-

point mobility on both the isotropic, homogeneous plate (plate 2 of model 1 in 

Table 9) and the periodic ribbed plate (plate 2 of model 2 in Table 9). 

The driving-point mobility of a finite rectangular isotropic plate with simply-

supported boundaries can be calculated using Rayleigh-Ritz method [38] 

described in section 2.2.4. The driving-point mobility of the periodic ribbed plate 

can also be estimated using the similar method; however discrepancies are 

expected due to the error in the calculation of natural modes for the ribbed plate as 

discussed in section 3.3.4. For this reason, FEM is also used for ribbed plate to 

calculate the mobilities for the periodic ribbed plate. The theoretical results are 

used as comparison with the measurement to validate the effectiveness of the pins.   

Figure 7.11 shows the driving-point mobility at two positions of an isotropic, 

homogeneous plate. The measurement shows excellent agreement with the 

theoretical results at both positions by capturing the majority of peaks in the 

mobility up to 3 kHz, although there is a 10 Hz shift for the fundamental mode. 

Above 2 kHz, the measured results tend towards infinite plate theory. 

Figure 7.12 shows the driving-point mobility measured at both the ribs and the 

bays. The measured driving-point mobilities both at the rib and the bay follow the 

same trend as the theoretical prediction, though the peaks from the measured 

mobility cannot be predicted by the theoretical method. The discrepancy is caused 

by the simplification of the Rayleigh-Ritz method where the ribbed plate is treated 

as a plate of uniform thickness with orthotropic properties.  Comparing with 

measurement with FEM results, better agreement is found but this still shows a 

shift in resonance peaks. The discrepancies are caused by using the shell element 

to model the ribs. Figure 7.13 averages the results into one-third octave bands. It 

is shown that the measurement has a close agreement with FEM while the 

theoretical results overestimate the mobilities at high frequencies above 4 kHz.  

The results indicate that simply-supported boundary conditions can be achieved 

with sufficient accuracy in the laboratory using metal pins along the edges.  
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Figure 7.11 

 

Driving-point mobilities (narrow band) for simply-supported 

isotropic plate. The measurement is compared with Rayleigh-Ritz 

theory for an finite plate and infinite plate theory   
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Figure 7.12 

 

Driving-point mobilities (narrow band) for simply-supported 

periodic ribbed plate. The measurement is compared with 

theoretical results for finite plate and FEM results.   
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Figure 7.13 

 

Driving-point mobilities (one-third octave band) for simply-

supported periodic ribbed plate. The measurement is compared 

with theoretical results for finite plate and FEM results.   
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7.3.4 Measurement of bending wave transmission across L-junctions 

In order to measure vibration transmission up to 10 kHz, a broadband signal via a 

shaker is used as the excitation source because it is difficult to provide such a 

signal using an impact hammer. The flat spectrum of excitation is achieved by 

using a graphic equalizer to adjust the amplification for each one-third octave 

band in the range of 500 Hz to 10 kHz with fluctuations less than 2 dB in 

acceleration.  

The bending wave transmission between two plates of L-junction is determined 

by measuring the out-of-plane vibration.  In order to represent the vibration level 

of the entire plate, a spatial average of velocity levels is performed over several 

randomly chosen accelerometer position with each excitation position.  

In the experiments, three excitation positions are chosen on each plate and with 

each excitation position, four accelerometer positions are randomly chosen on 

each plate to measure the rms velocity. 

The surface averaged velocity of plate i is calculated using: 

 2 2

sa e,

e=1 =1

1
< > = < >

N M

i i m

m

v v
N M

  (7.6) 

where N and M represent the number of excitations and number of measurements 

per excitation.  
2

e,< >i mv  is the rms velocity measured at accelerometer position m 

for the excitation position e.  

The spatial-average mean-square velocity 2

sa< >iv  can then be used to calculate the 

energy level difference, E, ijD , between plate i and plate j of the L-junction as: 

2

s, sa

E, 2

s, sa

< >
=10lg

< >

i i

ij

j j

v
D

v





 
  
 

 (7.7) 

where s, i  is the surface density of plate i.  
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The measurements of the spatial-average mean-square velocity on the source and 

receiving plates give a standard deviation for the source and receiving plates. The 

standard deviation of the energy level difference calculated from the velocity 

levels can be calculated by combining the standard deviations from two sets of 

measurements, which is given by [140] as: 

 
2 2

1 2= +s s s  (7.8) 

where s is the combined standard deviation, s1 and s2 are standard deviations of 

individual sets of measurement.  

The 95% confidence interval of the combined measurement can be calculated 

using: 

1
2 2 2
1 2

,0.975

1 2

95% = + v

s s
CC t

n n

 
 
 

 (7.9) 

where n1 and n2 are sample size of the two measurement sets and 
,0.975vt is the 

student t-distribution of 95% confidence interval with a degree of freedom of v 

which can be calculated from: 

2 2
2 2

1 2

1 2

2 2 2 2

1 2 1 21 2

1 2 1 2

1 1 1
= +

-1 -1
+ +

s s

n n

s s s sv n n

n n n n

   
   
   
   
   
   

 (7.10) 

 

7.3.5 Measurement procedure for velocity levels 

The measurement setup to measure the velocity level difference between the two 

coupled plates of the L-junction is shown as in Figure 7.14. In the real 

measurement, there are four channels available to analyze the velocities. So there 

will be two accelerometers on each plate for every measurement.  
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The L-junction is formed by two Perspex plates which are bonded together at the 

junction line using cyanoacrylate glue. The glue is applied uniformly along the 

connecting surface and after it dries, the junction can be considered relatively 

rigid.  

The measured acceleration is analyzed in one-third octave bands from 100 Hz to 

10 kHz. The results for the two L-junctions are discussed in the next section.  

 

 

 

Figure 7.14 

 

Experiment setup for measuring the velocity level 

difference on the L-junction. 
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7.4 Comparison between analytical and experimental results 

The physical experiments designed for measuring vibration transmission across L-

junction are used to confirm the theoretical models presented in the previous 

chapters of the thesis.  

7.4.1 L-junction of two isotropic, homogeneous plates 

7.4.1.1 Measurement of vibration levels 

Figure 7.15 shows the energy level difference between the two coupled isotropic 

plates obtained from measurement for comparison with SEA (wave approach) and 

FEM. The FEM model uses an ensemble formed using 10 different sets of ROTR. 

At low frequencies, large variations are observed for the measurement results and 

there are 1 to 5 dB discrepancies between the averaged measurement energy level 

difference and the theoretical results. Both the measurement and FEM with ESEA 

show such tendency due to the low modal overlap. Above 400 Hz up to 10 kHz, 

the measurement gives good agreement with the theoretical results with a 

maximum of 2.5 dB discrepancy.  There is no evidence that the layer of super 

glue at the junction has a significant effect on vibration transmission. The results 

also show that above 6.3 kHz, FEM overestimates the energy level difference by 

up to 6 dB. However this cannot be attributed to the S4R element because the thin 

plate limit is 10 kHz.  
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

NB2 = 1.3 2.1 3.2 5.1 8.1 12.8 20.5 32.1 51.3 80.8 128.3 

Mav= 0.3 0.5 0.7 1.2 1.9 3.0 4.8 7.5 11.9 18.8 29.8 

 

 

Figure 7.15 

 

Energy level difference between two coupled isotropic plates from 

measurement compared with SEA (wave approach) and FEM 

models. (a) source on plate 1; (b) source on plate 2.  
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7.4.1.2 Measurement of total loss factors 

Reverberation time measurements are carried out as discussed in section 7.2 to 

determine the total loss factor of the two plates. For each plate, three excitation 

positions are chosen and with each excitation, four accelerometer positions are 

chosen to measure the reverberation time using a Brüel & Kjær DIRAC system.    

Table 10 shows the average reverberation time for each plate and the product of 

bandwidth and reverberation time, BT, as an evaluation of the one-third octave 

band filter effect. It is confirmed in most one-third octave bands, the 

measurements of reverberation time on the two plates are not be affected (BT>8) 

by the band filter. As the plate size is relatively small (1.0 m×0.8 m and 

1.2 m×0.8 m), the accelerometers may be impossible to be positioned in the 

reverberant field using the evaluation in equation (7.5) (i.e. at 10 kHz, rrd for the 

two plates are 0.39 m and 0.47 m respectively). This may also cause some error in 

the measurements.  

Figure 7.16 shows the total loss factor for the two plates measured using the 

reverberation time method compared with the internal loss factor measured using 

beam samples. At low frequencies, the total loss factor is higher than the internal 

loss factor because the coupling loss factor is higher than the internal loss factor at 

low frequencies. Above 630 Hz the mean total loss factor is slightly lower than 

the internal loss factor although the 95% confidence intervals for the total loss 

factor often overlap the internal loss factor. As noted in section 7.1, there can be 

small differences between material properties measured on beam samples and 

large plates. 
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Table 10: Reverberation time measured in situ for the two plates of the L-junction 

using Brüel & Kjær DIRAC system 

Frequency (Hz) 
Plate 1 Plate 2 

T  (s) BT (Hz∙s) T  (s) BT (Hz∙s) 

100 0.28450 6.7 0.26883 6.3 

125 0.26800 7.9 0.26125 7.7 

160 0.34158 12.9 0.20558 7.8 

200 0.25158 11.9 0.13608 6.4 

250 0.19808 11.7 0.12492 7.4 

315 0.33908 25.2 0.13608 10.1 

400 0.08750 8.3 0.12583 11.9 

500 0.11425 13.5 0.07908 9.3 

630 0.13442 20.0 0.07325 10.9 

800 0.11117 21.0 0.06183 11.7 

1000 0.05358 12.6 0.05317 12.5 

1250 0.05233 15.4 0.04733 14.0 

1600 0.03450 13.0 0.03967 15.0 

2000 0.03183 15.0 0.03342 15.8 

2500 0.01892 11.2 0.01708 10.1 

3150 0.01767 13.1 0.01650 12.3 

4000 0.01917 18.1 0.01508 14.2 

5000 0.01150 13.6 0.01283 15.1 

6300 0.00933 13.9 0.01133 16.9 

8000 0.00875 16.5 0.00983 18.6 

10000 0.00717 16.9 0.00658 15.5 
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

NB2 = 1.3 2.1 3.2 5.1 8.1 12.8 20.5 32.1 51.3 80.8 128.3 

Mav= 0.3 0.5 0.7 1.2 1.9 3.0 4.8 7.5 11.9 18.8 29.8 

 

 

Figure 7.16 

 

Total loss factors for the two coupled plates of L-junction 

measured using reverberation time method compared with the 

measured internal loss factor (see in section 7.2.3). 
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7.4.2 L-junction of an isotropic, homogeneous plate and a periodic ribbed 

plate 

The measurement of vibration transmission across the L-junction of an isotropic 

plate and periodic ribbed plate is carried out using the same technique discussed 

in section 7.3. For the periodic ribbed plate, each bay is excited at three random 

positions and the vibration levels of the ribbed plate are also measured in bays 

with four accelerometer positions on each bay.  

7.4.2.1 Two subsystem SEA model 

Figure 7.17 shows the energy level difference from measurements, FEM, and 

SEA using CLFs calculated from the wave approaches with Tso and Hansen’s 

model and the orthotropic plate model using angle-dependent bending stiffness. 

Figure 7.18 shows the coupling loss factors calculated using ESEA from 

measurements, FEM with ESEA and the two wave approaches. The results in both 

figures confirm the conclusions from section 6.7 that below the fundamental local 

mode of the bays (630 Hz one-third octave band) both the wave approaches using 

Tso and Hansen’s model and the orthotropic plate model provide reasonable 

predictions using SEA. Although measurements and the Tso and Hansen’s model 

closely agree on the attenuation in the first attenuation zone (400 Hz one-third 

octave band) for 12, it appears that the consistency relationship does not correctly 

calculate 21 in the 400Hz band. However, the measurements do indicate the same 

pattern of troughs in the CLF due to attenuation zones as the Tso and Hansen’s 

model. 
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.6 2.5 3.9 6.2 9.8 15.6 25.0 39.1 62.5 98.4 156.2 

NB2 = 2.3 3.7 5.8 9.4 14.7 23.4 37.4 58.5 93.6 147.4 234.0 

Nbay=      1.4 2.2 3.4 5.4 8.5 13.5 

 

 

Figure 7.17 

 

Energy level difference between the isotropic plate and the 

periodic ribbed plate calculated from measurement data compared 

with FEM and the wave approach using Tso and Hansen’s model 

and the wave approach using angle-dependent bending stiffness. 
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.6 2.5 3.9 6.2 9.8 15.6 25.0 39.1 62.5 98.4 156.2 

NB2 = 2.3 3.7 5.8 9.4 14.7 23.4 37.4 58.5 93.6 147.4 234.0 

Nbay=      1.4 2.2 3.4 5.4 8.5 13.5 

 

 

Figure 7.18 

 

Coupling loss factors between the isotropic plate and the periodic 

ribbed plate calculated from measurement data compared with 

FEM with ESEA and theoretical results.   
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7.4.2.2 Decrease in energy level decrease across the bays of the nine-

subsystem model 

As discussed in section 6.5, although SEA of the two-subsystem model for L-

junction of isotropic plate and ribbed plate gives good estimation compared with 

the measurement data, it needs to be examined at high frequencies, whether it is 

appropriate to treat the ribbed plate as a single subsystem. 

Figure 7.19 plots the energy level difference between the isotropic plate (source 

subsystem) and the bays of the ribbed plate.  At 10 kHz, the measurement shows 

that there is a 30 dB energy level difference between the bay closest to the 

junction and the furthest bay. The biggest energy decrease occurs from the first to 

the second bay with 5 to 10 dB of decrease at high frequencies. Smaller energy 

decreases are observed across bay 2 to 5 followed by another large decrease from 

bay 5 to bay 6.  However, after bay 6, the energy levels for the last three bays are 

very close to each other with almost no energy decrease.  

As discussed in section 6.7, due to the large energy level decrease across bays of 

the periodic ribbed plate at high frequencies, it is not appropriate to treat the 

ribbed plate as a single subsystem. Therefore, Figure 7.20 shows the results from 

a nine-subsystem SEA model in terms of an energy level difference for 

measurements, FEM and ASEA.  

From Figure 7.20 it is seen that SEA predictions start to depart from the 

measurement results from bay 3 onwards and this discrepancy increases with 

increasing distance of each bay from the junction. For the furthest bay, SEA 

overestimates the energy level difference by 40 dB. This confirms the earlier 

finding in section 6.6.1 that SEA using CLF from wave approach is not 

appropriate for the nine-subsystem model. ASEA makes a significant 

improvement in the prediction by reducing the discrepancy to less than 5 dB.   

The good agreement between measurements, FEM and ASEA provides further 

evidence that the conclusions from Chapter 6 are correct. 
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1= 1.6 2.5 3.9 6.2 9.8 15.6 25.0 39.1 62.5 98.4 156.2 

Nbay=      1.4 2.2 3.4 5.4 8.5 13.5 

Mav= 0.2 0.2 0.4 0.6 1.0 1.5 2.5 3.8 6.2 9.7 15.4 

 

Figure 7.19 

 

Measured energy level difference between the source subsystem 

(subsystem 1) and the successive bays of the periodic ribbed plate 

with 95% confidence intervals. Mode counts for subsystem 1 and 

the bays of the ribbed plate, geometric mean of modal overlap for 

subsystem 1 and any individual bay are shown on the upper x-axis. 
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Figure 7.20 

 

Measured energy level difference between the source subsystem 

(subsystem 1) and the successive bays of the periodic ribbed plate 

compared with FEM, SEA and ASEA predictions. 
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7.5 Conclusions 

In this chapter, experimental work in the laboratory has been used to quantify 

material properties and to measure vibration transmission on L-junction of plates. 

A specially designed frame has been created to simulate simply-supported 

boundary conditions using metal pins along the edges of the plates. Close 

agreement between the driving-point mobility from measurements and an 

analytical model confirm the effectiveness of the frame to provide a simply-

supported boundary condition.  

The first L-junction under test was comprised of two isotropic homogeneous 

plates for which good agreement between measurements and FEM provided 

validation of the FEM model. 

The second junction under test comprised an isotropic homogeneous plate and a 

periodic ribbed plate. The measurements show good agreement with both FEM 

and ASEA up to 10 kHz. Along with the findings from chapter 6 this confirms 

that for L-junctions of isotropic and periodic ribbed plates above the fundamental 

mode of each bay, ASEA gives significantly better estimates of the energy levels 

in individual bays than SEA.   
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8 Application of ASEA to built-up structures incorporating 

periodic ribbed plates 

In chapters 6 and 7, ASEA was successfully used to predict vibration transmission 

across L-junctions comprised of an isotropic, homogeneous plate and a periodic 

ribbed plate. In chapter 6 it was shown that ASEA can take into account the 

tunnelling mechanism between physically unconnected subsystems and the results 

show a significant improvement in predicting subsystem responses on a periodic 

ribbed plate compared with SEA.  

In order to confirm that ASEA is appropriate for more general use with periodic 

plates, this chapter first considers the application of ASEA to a similar L-junction 

but with different geometric parameters for the periodic ribbed plate to change the 

distribution of the attenuation and propagation zones. Secondly, the effect of 

internal loss factor on the ASEA results is analyzed. Thirdly, larger built-up 

structures are analyzed with ASEA to evaluate its performance for (a) a folded 

plate structure comprising a chain of L-junctions of isotropic, homogeneous plates, 

(b) an in-line periodic structure created by connecting another isotropic, 

homogeneous plate to the periodic plate and (c) flanking transmission introduced 

by adding another plate to the L-junction coupling both plates to form a more 

complicated built-up structure. 

 

8.1 Effect of stop/pass bands on the application of ASEA 

It is now appropriate to consider whether the L-junction analysed in detail in 

chapter 6 was a special case, or whether ASEA can be used to model a wider 

range of periodic ribbed plates. Section 4.4 discussed the effect of geometric 

parameters on wave propagation on the periodic ribbed plate due to the stop/pass 

bands. It was shown that by altering the dimensions of the periodic ribbed plate, 

the vibration propagation could be significantly changed. These results are now 

used to consider two different L-junctions compared with the ‘default’ L-junction 

considered in chapter 6. These L-junctions have periodic ribbed plates with 

different geometric properties that result in distinctly different stop/pass bands. 

The geometric properties are listed in Table 11. 
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Table 11: Dimensions of the periodic ribbed plate in different L-junctions used to 

study the effect of stop/pass bands on the efficacy of ASEA 

 
Dimensions 

 (mm) 

Figure references for 

angle-dependent 

transmission 

coefficients of the 

plate/beam junction 

Figure references for 

propagation and 

attenuation zones of 

the periodic ribbed 

plate 

L-junction 

(Default) 

hp=13    hb=50 

bb=30     l=150 
Figure 5.5 Figure 4.3 

L-junction 1 
hp=13    hb=25 

bb=30     l=150 
Figure 5.7 (a) Figure 4.5 (a) 

L-junction 2 
hp=5       hb=50 

bb=30      l=150 
Figure 5.8 (a) Figure 4.7 (a) 

 

For L-junctions 1 and 2, Figure 8.1 and Figure 8.2 respectively show the energy 

level difference calculated from FEM, SEA and ASEA between the source 

subsystem 1 (the isotropic, homogeneous plate) and the bays of the periodic plate. 

For both junctions, ASEA gives a significant improvement compared with SEA. 

The mode counts for the isotropic plate and the bay of the periodic plate are 

shown on the upper x-axis. These indicate that ASEA provides a good prediction 

above the limiting frequency where the mode count of the bay, Nbay>1. For 

L-junction 1, this limiting frequency is the 800 Hz one-third octave band and for 

L-junction 2 it is the 250 Hz one-third octave band.  

L-junction 1 has a reduced rib height compared with the default junction; hence 

the angle-dependent transmission coefficient for the L-junction has a wider range 

of transmission angles (see Figure 5.12 (a)). For this reason the energy decrease 

across the subsystems tends to be lower than with the default junction. It is also 

seen that a peak occurs for ASEA predictions in the 6.3 kHz one-third octave 

band. Figure 5.7 (a) indicates that the 6.3 kHz band is located at the trough 

between two high transmission zones at 5 kHz and 8 kHz.  Figure 8.3 plots the 

angle-dependent transmission coefficient for these three frequency bands.  When 

the incident wave angle below 15º, both 5 kHz and 8 kHz bands have a range of 

angles with high transmission coefficients (i.e. 0.98 to 1), while for 6.3 kHz bands, 
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no high values exist below 15º. Therefore, a significant reduction in vibration 

transmission is expected which results in a high peak for energy level difference. 

This effect is significant for this particular L-junction because all the subsystems 

are rectangular with the same thickness and material. Therefore, because specular 

reflection is assumed, the wave angle upon each junction is always the same and 

equal to the incident wave angle. For this reason, the same wave filtering effect is 

caused by each rib so that the total effect is strengthened as the wave travels 

across the bays. These peaks are not picked up by FEM which indicates that the 

specular reflection assumption may not hold true due to the motion of the ribs.  

For L-junction 2 which has a reduced plate thickness, the angle-dependent 

transmission coefficient is compressed to a smaller range of angles (see Figure 

5.14 (a)) compared with default L-junction and it also has more propagation zones. 

The energy level difference has been significantly increased compared with the 

default L-junction. Above 250 Hz where Nbay>1, ASEA typically improves the 

prediction by 20 dB to 55 dB compared with SEA for the furthest bay of the 

ribbed plate.  ASEA shows three troughs in the energy level difference at 1.6 kHz, 

3.15 kHz and 6.3 kHz. FEM also predicts three troughs at 1.25 kHz, 3.15 kHz and 

5 kHz; which are within one one-third octave band of the ASEA predicted troughs.   

For all three L-junctions analysed in this thesis, ASEA generally gives good 

agreement with FEM for periodic ribbed plates with different geometric properties. 

This is important as it demonstrates that it was not a fortuitous event that ASEA 

gave good agreement with FEM for the L-junction in chapter 6.  
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 1.1 1.7 2.7 4.3 6.7 10.7 17.1 26.7 42.8 67.4 106.9 

Nbay=      1.6 2.5 4.0 6.4 10.1 16.0 

 

Figure 8.1 

 

Energy level difference between the source subsystem 

(subsystem 1) and the bays of the periodic plate (L-junction 1: see 

Table 11) predicted from ASEA8 compared with FEM and SEA 

(ASEA0). Mode counts for subsystem1 and the bays (subsystem 2 

to 9) are shown at the top of the figure. 
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TOB(Hz)  100 160 250 400 630 1k 1.6k 2.5k 4k 6.3k 10k 

NB1 = 2.8 4.5 7.0 11.1 17.5 27.8 44.5 69.6 111.3 175.3 278.3 

Nbay=   1.0 1.7 2.6 4.2 6.7 10.4 16.7 26.3 41.7 

 

Figure 8.2 

 

Energy level difference between the source subsystem 

(subsystem 1) and the bays of the periodic plate (L-junction 2 in 

Table 11) predicted from ASEA8 compared with FEM and SEA 

(ASEA0). Mode counts for subsystem1 and the bays (subsystem 2 

to 9) are shown at the top of the figure. 

 

  

10
2

10
3

10
4

20

40

60

80

100

120

140

160

Frequency (Hz)

E
n

e
rg

y
 l

e
v

e
l 

d
if

fe
re

n
c
e
 (

d
B

)

 

 

E
1
/E

9

E
1
/E

8

E
1
/E

7

E
1
/E

6

E
1
/E

5

E
1
/E

4

E
1
/E

3

E
1
/E

2

 

   

4 5 7 9 

1 

3

  
8 

2 
6 

L-junction 2 

Marked lines: FEM averaged from 10 sets of ROTR 

on subsystem 1 

Dotted lines: SEA for a nine-subsystem model using 

CLFs calculated from wave approach 

Solid lines: ASEA8 



242 

 

Figure 8.3 

 

Transmission coefficient cross a rib (L-junction 1: see Table 11) at 

5 kHz, 6.3 kHz and 8 kHz.  

 

 

8.2 Effect of internal loss factor on the application of ASEA 

This section investigates the effect of the internal loss factor on the efficacy of 

ASEA for the L-junction from chapter 6. In section 6.4, the effect of damping on 

the application of ESEA is discussed, which indicates that at high frequencies, 

internal damping has little effect on the SEA prediction when ROTR excitation is 

used. However, it is necessary to determine whether ASEA only gives good 

predictions when the internal loss factor is relatively high, as with Perspex. For 

this reason a range of internal loss factors are investigated from 0.015 to 0.24. 

Figure 8.4 (a)-(d) shows the energy level differences between the source 

subsystem (subsystem 1) and the four bays furthest from the junction (subsystems 

6-9) with internal loss factors from 0.015 to 0.24. The energy level differences are 
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with  ROTR excitation on the source subsystem, SEA gives inaccurate predictions 

and the error is dependent upon the internal loss factor.  

For the highest loss factor of 0.24, ASEA generally shows good agreement with 

FEM except for the last two bays (subsystem 8 and 9) where there is a 

discrepancy up to 10 dB between ASEA and FEM. However, ASEA still gives a 

better prediction than SEA and this is likely to represent the highest loss factor 

that would be practically achievable on an engineering structure.  
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Figure 8.4 Energy level difference between the source subsystem (subsystem 

1) and (c) Subsystem 8; (d) Subsystem 9 predicted from ASEA8 

compared with FEM and SEA (ASEA0).  
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8.3 Nine-subsystem model with a folded plate 

In this thesis, the main focus has been on periodic ribbed plates for which the 

transmission coefficient between adjacent bays used in ASEA is calculated using 

a wave approach described in section 5.4. Each rib results in a transmission 

coefficient that has sharp peaks with high transmission at specific angles of 

incidence. In addition, this type of junction has a limiting angle above which no 

wave transmission occurs. Having demonstrated in section 8.1 that different 

periodic ribbed plates can successfully be modelled using ASEA it is now 

appropriate to look at modelling periodic plates where the transmission coefficient 

has (a) smooth variation with angle of incidence (i.e. no rapid transitions between 

high and low transmission) and (b) no limiting angle for transmission below 90. 

Hence this section considers a nine-subsystem model of a folded plate formed by 

eight L-junctions in a chain as shown in Figure 8.5. All the plates are isotropic 

and homogeneous and made of Perspex as in previous chapters and only bending 

wave transmission is considered so that all boundaries are simply supported. 

Subsystem 1 of this nine-subsystem model has the same plate dimensions as plate 

1 from chapter 6 and all the other subsystems have the same dimensions as the 

bays of the periodic plate. These material properties and dimensions are given in 

Table 4. 

 

Figure 8.5 Folded isotropic, homogeneous plate formed from eight 

L-junctions connected in a chain. 
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Figure 8.6 Energy level difference between the source subsystem 

(subsystem 1) and subsystems 2 to 9 predicted from ASEA with 

different ASEA level numbers compared with FEM. 
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TOB(Hz)  1k 1.25k 1.6k 2k 2.5k 3.15k 4k 5k 6.3k 8k 10k 

NB1 = 10.7 13.4 17.1 21.4 26.7 33.7 42.8 53.5 67.4 85.6 106.9 

NB2,3,..9= 1.6 2.0 2.5 3.2 4.0 5.1 6.4 8.0 10.1 12.8 16.0 

Mav= 1.1 1.3 1.7 2.1 2.6 3.3 4.2 5.3 6.6 8.4 10.5 

 

Figure 8.7 Energy level difference between the source subsystem (subsystem 

1) and subsystems 2 to 9 of the folded plate predicted from ASEA8 

compared with FEM and SEA. Mode counts for subsystem 1 and 

the smaller subsystem (2-9), geometric mean of modal overlap for 

subsystem 1 and any individual subsystem among 2 to 9 are shown 

on the upper x-axis. 

 

Figure 8.6 (a)-(h) show all the energy level differences with different ASEA level 

numbers between source subsystem 1 and the other subsystems. Convergence was 

achieved at ASEA8 for the furthest subsystem, subsystem 9. SEA underestimates 

the energy levels for the last three subsystems by up to 15 dB compared with 

FEM. In contrast, ASEA significantly improves the prediction of energy levels for 

the last three subsystems by reducing the discrepancy to less than 5 dB.  

Figure 8.7 compares ASEA8 in comparison with FEM and SEA (ASEA0). In 

section 6.6.3, it was observed that when 1<Nbay<5, discrepancies occurred 

between ASEA and FEM. Figure 8.7 indicates a similar finding, but with good 

agreement achieved after Nbay >3.  
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8.4 Ten-subsystem model: validation of ASEA for a larger structure 

formed by two L-junctions 

In this section, a 10-subsystem model is considered where a third plate is added to 

the L-junction at the far end of the periodic ribbed plate to form two connected 

L-junctions as shown in Figure 8.8. This results in a chain of subsystems where 

the source and receiver subsystems at the ends of the chain are both isotropic, 

homogeneous plates.  

 

 

Figure 8.8 Two connected L-junctions including a periodic ribbed plate 

forming a 10-subsystem model 
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Figure 8.9 shows the ASEA9 predictions for comparison with FEM and SEA. 

SEA gives a poor estimate of the energy level in subsystem 10 by up to 50 dB. 

ASEA gives a significant improvement compared to SEA with discrepancies from 

FEM up to 10 dB above 2.5 kHz where Nbay >3.  

For the three bays closest to the junction between subsystem 1 and the ribbed 

plate (subsystems 2, 3 and 4), ASEA slightly underestimates the energy levels by 

up to 5 dB. In contrast, for more distant bays (subsystems 5, 6, 7, 8 and 9) and the 

receiving plate (subsystem 10), ASEA generally overestimates the energy levels 

by up to 11 dB. 

It is concluded that ASEA is a significant improvement on SEA particularly when 

Nbay>5, but there are still differences between ASEA and FEM which are unlikely 

to be due to phase effects because they occur even when Nbay >10. 
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TOB(Hz)  1k 1.25k 1.6k 2k 2.5k 3.15k 4k 5k 6.3k 8k 10k 

NB1,10 = 10.7 13.4 17.1 21.4 26.7 33.7 42.8 53.5 67.4 85.6 106.9 

NB2,3,..9= 1.6 2.0 2.5 3.2 4.0 5.1 6.4 8.0 10.1 12.8 16.0 

 

Figure 8.9 Energy level difference between the source subsystem 

(subsystem 1) and subsystems 2 to 10 representing three coupled 

plates including a periodic ribbed plate. ASEA9 is shown for 

comparison with FEM and SEA.  
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8.5 Ten-subsystem model: validation of ASEA for a larger structure 

with flanking transmission  

In this section, flanking transmission is introduced for the L-junction with the 

periodic ribbed plate by adding a third plate to connect the isotropic, 

homogeneous plate and the periodic ribbed plate as shown in Figure 8.10. The 

third plate (subsystem 10) is made of the same material and has the same 

thickness as subsystem 1.  

 

 

Figure 8.10 Three coupled plates including a periodic ribbed plate forming a 

ten-subsystem model.    

 

In the FEM model, the ribs of the periodic plate are not connected to the third 

plate (subsystem 10). This is achieved by assigning a small gap (10
-6

 m) between 

the edge of the rib and the surface of subsystem 10. This is to ensure that the 

coupling between each bay of the ribbed plate and subsystem 10 can be modelled 

as an L-junction between two isotropic, homogeneous plates without considering 

the ribs. Future work will consider the more practical situation where the ribs are 

connected to the adjacent plate. 
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Subsystem 10 introduces flanking transmission paths between the source 

subsystem (subsystem 1) and the bays of the periodic ribbed plate. Energy level 

differences between the source subsystem and other subsystems calculated from 

FEM, SEA and ASEA are shown in Figure 8.11.  

The FEM results show that the decrease in energy level mainly occurs for the five 

bays closest to the junction between the ribbed plate and subsystem 1 (subsystems 

2, 3, 4, 5 and 6). In addition, the energy levels above 4 kHz for the adjacent bays 

in the furthest three bays (subsystems 7, 8 and 9) are similar with differences only 

up to 2 dB. Referring back to Figure 6.28 for the isolated L-junction the energy 

levels above 4 kHz for the furthest three bays were up to 10 dB apart. This 

indicates that flanking transmission is significant for the three bays that are 

furthest away from the source subsystem.  

Comparison of FEM with SEA indicates that SEA gives a good prediction for the 

three bays closest to the junction between subsystem 1 and the ribbed plate 

(subsystems 2, 3 and 4). However, there is less agreement for more distant bays 

and SEA overestimates vibration transmission to the last bay by up to 20 dB. Note 

that this is an overestimate whereas for the isolated L-junction, SEA 

underestimates vibration transmission to the last bay by up to 25 dB (see section 

6.6).  

The FEM results can now be compared with ASEA9 where convergence occurs. 

For the three bays closest to the junction between subsystem 1 and the ribbed 

plate (subsystems 2, 3 and 4), ASEA gives an equally good prediction to SEA 

above 4 kHz. However, ASEA gives a significantly improved prediction for the 

more distant bays (subsystems 5, 6, 7, 8 and 9) above 4 kHz. For the furthest bay, 

ASEA improves the prediction by around 15 dB compared to SEA. However, for 

the furthest three bays ASEA slightly overestimates the transmission predicted by 

FEM by 3 to 7 dB.  

For this structure where flanking transmission is introduced, ASEA is able to 

provide a significantly better prediction than SEA for the individual bays, 

particularly when Nbay >5.  
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TOB(Hz)  1k 1.25k 1.6k 2k 2.5k 3.15k 4k 5k 6.3k 8k 10k 

NB1= 10.7 13.4 17.1 21.4 26.7 33.7 42.8 53.5 67.4 85.6 106.9 

NB10= 16.0 20.1 25.7 32.1 40.1 50.6 64.2 80.2 101.1 128.4 160.5 

NB2,3,..9= 1.6 2.0 2.5 3.2 4.0 5.1 6.4 8.0 10.1 12.8 16.0 

 

Figure 8.11 Energy level difference between the source subsystem (subsystem 

1) and subsystems 2 to 10 of three coupled plates including a 

periodic ribbed plate predicted from ASEA9 compared with FEM 

and SEA.  

 

10
3

10
4

5

10

15

20

25

30

35

40

45

50

55

60

Frequency (Hz)

E
n

e
rg

y
 l

e
v

e
l 

d
if

fe
re

n
c
e
 (

d
B

)

 

 

E
1
/E

9

E
1
/E

8

E
1
/E

7

E
1
/E

6

E
1
/E

5

E
1
/E

4

E
1
/E

3

E
1
/E

2

E
1
/E

10  

Marked lines: FEM averaged from 10 sets of ROTR 

on subsystem 1 

Dotted lines: SEA for a nine-subsystem model using 

CLFs calculated from wave approach 

Solid lines: ASEA9 



255 

8.6 Conclusions 

This chapter extends the application of ASEA to more complicated built-up 

structures and investigates factors that could reduce the accuracy of ASEA.  

For L-junctions comprised of an isotropic, homogeneous plate and a periodic 

ribbed plate, the geometric properties of the ribbed plate can significantly affect 

vibration transmission due to the distribution of the stop/pass bands. The 

transmission coefficient across the rib is highly variable depending on the angle of 

incidence and frequency resulting in a transmission coefficient with peaks and 

troughs. Hence in some cases, the assumption of specular reflection in ASEA will 

cause significant peaks or troughs in the ASEA prediction of energy response on 

the bays. However, FEM does not always predict these peaks or troughs to be in 

the same frequency band as ASEA and this may be attributed to the fact that 

specular reflection is not always an appropriate assumption. 

The effect of different internal loss factors for the plates in the L-junction was 

assessed using FEM and ASEA. This indicates that ASEA works well with both 

lightly and highly damped plates. However, discrepancies between ASEA and 

FEM can occur with high damping for bays on the periodic ribbed plate that are 

distant from the source subsystem.  

For ribbed plates, the ribs cause the transmission coefficient between adjacent 

bays to have sharp peaks with high transmission at specific angles of incidence. 

For this reason, a nine-subsystem model of a folded plate formed by eight L-

junctions was used to assess ASEA when there is a smooth variation of 

transmission coefficient with angle of incidence. The results showed good 

agreement between ASEA and FEM indicating that the use of ASEA is likely to 

be applicable to many other types of junction that connect long, narrow bays in a 

periodic array. 

The effect of flanking transmission is investigated by adding a third plate to the L-

junction that couples the isotropic plate and the periodic ribbed plate. For this 

structure where flanking transmission is introduced, ASEA is able to provide a 

significantly better prediction than SEA for the individual bays. It is found that 

flanking via the third plate has a more significant effect on the subsystems that are 
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far away from the source subsystem than the subsystems close to the source 

subsystem. Unlike the isolated L-junction where SEA tends to underestimate the 

energy levels on the subsystems, introducing flanking transmission in this 

structure caused SEA to significantly overestimate the energy level differences.  

Considering all the L-junctions in this chapter as well as in chapters 6, 7, and the 

larger structures in this chapter, ASEA tends to give reasonable agreement with 

FEM when Nbay >3. 

From the ASEA models analysed in this chapter and in chapter 6, it is reasonable 

to conclude that in order to achieve convergence for all subsystems the level 

number should be at least equal to the subsystem number minus one. This is 

slightly different to Heron [16] who, based upon a chain of rod subsystems, 

proposed that it should be at least equal to the subsystem number minus two. 

In all the models presented in this chapter, ASEA has proved to be an effective 

method to predict vibration transmission at high frequencies for built-up structures 

where tunnelling is involved.   
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9 Conclusions and future work 

This section summarises the main findings and conclusions in this thesis and gives 

suggestions for potential future work. 

9.1 Conclusions 

This thesis has validated theoretical and experimental models for structure-borne 

sound transmission in built-up structures which incorporates periodic ribbed 

plates. Theories for different prediction models were presented in chapters 2, 3, 4 

and 5. Chapter 6 and 8 implemented these theories on examples of L-junctions 

and larger built-up structures. Chapter 7 validated the theories using physical 

experiments.  

Chapter 2 outlined the principles of SEA, FEM and ASEA as prediction models 

for structure-borne sound transmission. ESEA was introduced as an approach to 

estimate coupling loss factors from numerical experiments with FEM which will 

be compared with coupling loss factors determined from wave theory that was 

described in chapter 5. ASEA was presented as an extension to SEA which can 

incorporate tunnelling mechanisms between physically unconnected subsystems. 

A ray-tracing algorithm used to track power flow among subsystems in ASEA 

was described in detail. ASEA was validated on structural junctions including 

periodic ribbed plates in chapters 6, 7 and 8. 

The models in chapter 2 were often described in a generic form that applies to 

many different kinds of vibration fields. Therefore Chapter 3 described the theory 

for bending and in-plane wave fields on isotropic and orthotropic plates. 

Calculations were carried out for a periodic ribbed plate which was treated as a 

flat plate with orthotropic material properties. This was used to illustrate the 

important features that were relevant to the predictions in chapters 5 and 6. In 

order to incorporate the orthotropic plate in SEA, eigenfrequencies of the 

orthotropic plates were needed to calculate the mode count and modal overlap. 

Concerning the prediction of eigenfrequencies on a periodic ribbed plate as an 

orthotropic plate, it was shown that the Rayleigh-Ritz method missed a significant 
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number of modes at high frequencies in comparison with FEM. For modal 

densities, approximated equations from both Lyon and Heckl give close 

estimations of the modal densities compared with the theory from Bosmans and 

Vermeir. 

Chapter 4 used wave theory and Bloch theory to describe bending wave 

propagation on a periodic ribbed plate with symmetric ribs. This theory was then 

incorporated in chapter 5 to determine the SEA coupling loss factor for L-

junctions which incorporate this type of periodic ribbed plate. Stop/pass band 

characteristics of different periodic ribbed plates were analyzed to indicate how 

these geometric parameters can significantly change the distribution of the 

propagation and attenuation zones. Chapter 4 also investigated the relations 

between the bounding frequencies of the stop/pass bands of the periodic ribbed 

plate and the natural frequencies of the periodic element of the ribbed plate. This 

analysis was performed in order to examine the validity of SEA and ASEA 

models in chapter 6 where each bay of the ribbed plate was treated as a single 

subsystem in SEA. 

Chapter 5 contained the wave theory derivations used to calculate transmission 

coefficients that are needed for subsequent calculation of coupling loss factors for 

the SEA and ASEA models in chapters 6, 7 and 8. Two types of junction were 

considered: an L-junction and an in-line junction formed by the presence of a rib. 

For an L-junction comprised of a homogeneous isotropic plate and a periodic 

ribbed plate, Tso and Hansen’s model was found to generate numerical errors for 

certain geometrical arrangements of the ribs and bays. However, these errors do 

not occur with the periodic ribbed plates considered in chapters 6, 7 and 8. 

Chapter 6 compared FEM, SEA and ASEA for L-junctions formed by a 

homogeneous isotropic plate and a periodic ribbed plate.  

In the low-frequency range below the fundamental local mode of the bay on the 

ribbed plate, an important conclusion is that the periodic ribbed plate can be 

modelled as a single subsystem either using the wave approach from Tso and 

Hansen, or using orthotropic plate theory with the wave approach from Bosmans 

and Vermeir. 
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In the high-frequency range above the fundamental local mode of the bay it was 

shown that on the ribbed plate there is a significant decrease in energy along 

successive bays. Hence it is no longer appropriate to model the periodic plate as a 

single subsystem. For this reason it is not appropriate to use the wave approach 

from Tso and Hansen. Therefore SEA models were investigated that treated each 

bay as an individual subsystem using wave theory to model transmission across 

each rib. However, SEA was found to underestimate the response in each bay up 

to 25 dB. ESEA was then used to investigate this large discrepancy. ESEA 

indicated the existence of tunnelling between physically unconnected subsystems, 

which is not usually incorporated in SEA with plate subsystems. To incorporate 

this tunnelling mechanism, ASEA was used to track the energy flow across the 

plate system. In contrast to SEA, ASEA gave good agreement with FEM by 

reducing the discrepancies to less than 3 dB.  

The main conclusion is that ASEA is able to successfully incorporate tunnelling 

for plate junctions that incorporate periodic ribbed plates and that ASEA provides 

a significantly more accurate predictive approach to vibration transmission across 

periodic ribbed plates than SEA.  

In chapter 7, experimental work in the laboratory was used to quantify material 

properties and to measure vibration transmission on L-junctions of isotropic, 

homogeneous plates and periodic ribbed plates to validate SEA and ASEA models. 

A specially designed frame has been created to simulate simply-supported 

boundary conditions using metal pins along the edges of the plates. Close 

agreement between the driving-point mobility from measurements and an 

analytical model confirmed the effectiveness of the frame to provide a simply-

supported boundary condition. The first L-junction under test was comprised of 

two isotropic homogeneous plates for which good agreement between 

measurements and FEM provided validation of the FEM model. The second 

junction under test comprised an isotropic homogeneous plate and a periodic 

ribbed plate. The measurements showed good agreement with both FEM and 

ASEA up to 10 kHz. Along with the findings from chapter 6 this confirmed that 

for L-junctions of isotropic and periodic ribbed plates above the fundamental 

mode of each bay, ASEA gives significantly better estimates of the energy levels 

in individual bays than SEA. 
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Chapter 8 extended the application of ASEA to more complicated built-up 

structures and also investigated the factors that would affect the performance of 

ASEA. In all the models presented in this chapter, ASEA has proved to be an 

effective method to predict the vibration transmission at high frequencies for 

built-up structures where tunnelling is involved.  

For L-junctions comprised of an isotropic, homogeneous plate and a periodic 

ribbed plate, the geometric properties of the ribbed plate can significantly affect 

vibration transmission due to the distribution of the stop/pass bands. The 

transmission coefficient across the rib is highly variable depending on the angle of 

incidence and frequency resulting in a transmission coefficient with peaks and 

troughs. Hence in some cases, the assumption of specular reflection in ASEA will 

cause significant peaks or troughs in the ASEA prediction of energy response on 

the bays. However, FEM does not always predict these peaks or troughs to be in 

the same frequency band as ASEA and this may be attributed to the fact that 

specular reflection is not always an appropriate assumption. 

The effect of internal loss factor on ASEA was also analyzed and the results 

indicated that ASEA works well with highly damped subsystems if ROTR 

excitation is used on the source subsystem. However, discrepancies between 

ASEA and FEM can occur with high damping for subsystems that are far away 

from the source subsystem.  

For ribbed plates, the ribs cause the transmission coefficient between adjacent 

bays to have sharp peaks with high transmission at specific angles of incidence. 

For this reason, a nine-subsystem model of a folded plate formed by eight L-

junctions was used to assess ASEA when there is a smooth variation of 

transmission coefficient with angle of incidence. The results showed good 

agreement between ASEA and FEM indicating that the use of ASEA is likely to 

be applicable to many other types of junction that connect long, narrow bays in a 

periodic array. 

The effect of flanking transmission is investigated by adding a third plate to the L-

junction that couples the isotropic plate and the periodic ribbed plate. For this 

structure where flanking transmission is introduced, ASEA is able to provide a 

significantly better prediction than SEA for the individual bays. It is found that 
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flanking via the third plate has a more significant effect on the subsystems that are 

far away from the source subsystem than the subsystems close to the source 

subsystem. Unlike the isolated L-junction where SEA tends to underestimate the 

energy levels on the subsystems, introducing flanking transmission in this 

structure caused SEA to significantly overestimate the energy level differences.  

This thesis comprehensively discussed the applicability of different prediction 

models for structure-borne sound transmission in built-up structures including 

periodic ribbed plates at both low frequencies and high frequencies. When 

modelling periodic ribbed plate with classical SEA, large errors can occur due to a 

tunnelling mechanism at high frequencies which is not incorporated. Considering 

the four L-junctions analysed in chapters 6, 7 and 8 at frequencies where the mode 

count in the bay is greater than 5, SEA has been shown to be in error by up to 

60 dB for the bay that is most distant from the junction, but this discrepancy can 

be reduced to less than 6 dB by using ASEA. Hence, the validity of ASEA has 

been confirmed by numerical and physical experiments and it can be concluded 

that ASEA is a robust and effective methods when tunnelling is involved.  

 

9.2 Future work 

The specific periodic ribbed plate considered in this thesis has ribs attached 

symmetrically on both sides of the plate in order to prevent the generation of 

in-plane wave in the plate. In reality, many engineering structures have stiffened 

ribs on only one side of the plate which allows in-plane waves to be generated. 

Hence, using ASEA on such periodic structures would be worth studying.  

There is also potential in extending the work of Tso and Hansen as a low-

frequency solution for L-junctions and also to T- and cross junctions comprised of 

either all periodic ribbed plates or in combination with isotropic homogeneous 

plates.  

In this thesis the focus has been on treating the bays as subsystems because the 

relatively large bay areas are (a) more important for sound radiation and (b) more 

likely to be used to connect machinery/equipment either acting as a structure-

borne sound source or as a vibration-sensitive receiver. However there is potential 
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to investigate the prediction of vibration on the ribs as these can also be used to 

connect machinery or equipment. 

Further work could also investigate the application of ASEA to imperfectly 

periodic structures to assess the effect of Anderson localization on vibration 

transmission.     
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