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Abstract

Power electronic converter systems play an important role in the interconnec-
tion of renewable energy sources in microgrids and utility grid. The interface
between energy sources and microgrids is usually implemented by digitally con-
trolled power inverters. This thesis provides a discrete modelling and design
method for the digitally controlled inverters in microgrids.

The fundamentals and background of digital control of power inverters are in-
troduced. The small-signal models for digital pulse-width-modulations (PWMs)
with delay effects are derived. Based on the models, the controllers can be de-
signed using several methods according to the block diagrams. The simulation
software and experimental environment for the digitally controlled inverters are
described.

For inverters operating in parallel, a linear voltage control scheme with duty-
ratio feedforward is proposed. The control parameters are chosen according to
the stable operating condition derived in z-domain. The closed-loop transfer
function and output impedance for both the classical controller and the proposed
controller are derived theoretically. A comparison reveals the advantages of the
proposed control scheme: a unity closed-loop gain, no phase shift, good current
sharing and low total harmonic distortion (THD) of the output voltage. The
theoretical results are verified by the experimental setup of a system with two
digitally controlled inverters connected in parallel.

For digitally controlled grid-connected inverters with LCL filters, new small-
signal z-domain models are deduced. The proposed methods model the inverters
including different delay effects under most possible circumstances, which allows
a direct design for controllers in z-domain. The stability boundaries obtained
from the root loci of the classic models and the proposed models are compared
to the simulation results, showing that the proposed z-domain models are more
accurate in predicting instabilities. Experimental results are presented, showing
the proposed models are also capable of predicting the values of control variables
at the true sampling instants.

The phase-shifted modulated multisampled multilevel inverter is studied. The
filter current ripple frequency of the multilevel inverters is increased by the phase-
shifted PWM. The small-signal z-domain model is derived. Compared to the
bipolar switched inverter, the multisampled multilevel inverter is characterized
by the capability of achieving higher feedback control gains, which improves the
control performance. An experimental prototype based on a 10 kHz switching
frequency, 80 kHz sampling frequency five-level single-phase H bridge inverter is
tested to demonstrate the validity of the analysis.
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Chapter 1

Introduction

1.1 Power electronics in microgrids

The concept of distributed generation (DG) becomes promising when more and

more renewable energy sources such as solar energy, wind energy and hydroen-

ergy are available in reality. This is becoming important due to environmental,

social and political interests. Energy from these resources can be transmitted via

power electronics systems to local electric power networks. The local low-voltage

electric power systems, including power generation, energy storage and loads, are

connected to the conventional centralized grid and can also be disconnected from

the grid. These local electric power systems are known as microgrids [1, 2, 3, 4, 5].

In such systems, dc-ac inverters (or ac-ac converters) are connected to local com-

mon bus. Due to the long distances between each inverter, these inverters are

operating without intercommunications to provide power for local loads or remote

loads in the grid.

For dc-ac inverters providing power to local loads without connecting to the

grid, the inverters are operating in islanding mode. However, if the inverters

provide power to remote loads in the grid, the inverters are operating in grid-

connected mode. The islanding operation and the grid-connected operation are

the main operation modes of microgrids. For the islanding operation, the invert-

ers are disconnected from the grid and supply energy to their common loads in

parallel, where a system of parallel inverters is a good paradigm. These parallel

inverters provide energy only for local loads and are designed to share the power

demanded by their loads. Moreover, if one unit fails to operate properly, it can

quit the system of parallel inverters without causing instabilities. At the same

time, the power required by the local loads will be retrieved from the other units.

If the parallel inverters are not capable of maintaining the voltage level on the

loads, more inverters can be connected to the point of common coupling (PCC).

Consequently, such a system exhibits flexibility, reliability and redundancy while
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supplying energy to the local loads.

However, when there are more energy generated than the demands from local

loads, the inverters in microgrids can provide energy to the remote loads in the

grid. In that case, each unit can be considered as an independent grid-connected

inverter, as long as the grid voltage is not affected by the inverters in a microgrid.

The grid-connected inverter usually injects a current according to the commanded

current in phase with the grid voltage. In order to achieve a high power factor,

phase locked loops (PLLs) are used for synchronization between the current ref-

erence and the grid. Therefore, each grid-connected inverter behaves as a grid

voltage controlled current source. The voltage of grid-connected inverters follows

the voltage on the PCC.

Generally, inverters with the two main functions mentioned above form a mi-

crogrid. Although there are many complicated topologies and structures, this

thesis focuses on topics around the two classic operation modes (islanding and

grid-connected) of H bridge inverters. Advanced topologies operating in a par-

ticular mode are also studied. Modelling methods and design regulations will be

presented from the control point of view. Moreover, the main ideas in this thesis

can also be extended to other applications in the control of power electronics.

1.2 Digital control of power inverters

Either the islanding operation mode or the grid-connected operation mode re-

quires proper control techniques. As the controllers of the inverters usually have

complicated functions to ensure reliability, implementing a controller using ana-

log devices is difficult. Moreover, the flexibility is also limited if analog circuits

are mainly used. Under such conditions, the analog controllers are usually used

in low power applications to reduce the cost. On the other hand, as the per-

formance/price ratio of digital signal processors (DSPs) is increasing rapidly,

nowadays most switching converters are controlled by digital controllers. Dig-

ital controllers for medium and high power inverters have the advantages such

as lower sensitivity to variation of control parameters, immunity to switching

noises, high flexibility and complexity in control algorithms, programmability of

controllers and reduction of hardware components.

Due to the advantages of digital controllers, the control algorithms for island-

ing inverters and/or grid-connected inverters are usually implemented in DSPs.

In most cases, a controller for a power inverter can be implemented using a single

DSP (e.g., TMS320F28xx, ADSP2199x, etc.). The digital controllers are designed

according to the models of the inverters. If higher switching frequency is used

to reduce the electromagnetic interference (EMI), the sampling frequency can
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also be increased. In that case, high speed controllers are required and field pro-

grammable gate arrays (FPGAs) are usually combined with DSPs to implement

the high sampling frequency.

For some practical limitations of switching devices, the switching frequency

cannot be easily increased. However, the filter input voltage frequency can be

increased by the structure of multilevel inverters. This achieves more or less the

same filter input voltage frequency as that of the single H bridge inverter with

higher switching frequencies. The EMI of the inverters can be reduced dramat-

ically and higher sampling frequency can also be applied according to the level

of the inverters. As a result, using the structure of multilevel inverters for is-

landing operation and grid-connected operation attracts great interests. Plenty

of research work focuses on multilevel inverters controlled by one DSP plus one

FPGA, with the phase-shifted carriers generated by the FPGA. This hardware

arrangement provides sufficient feasibility of implementing complex digital con-

trol algorithms for multilevel inverters. The modelling of digitally controlled

multilevel inverters are required for controller design.

1.3 Problems in digitally controlled power in-

verters

Unlike analog controlled power inverters, the knowledge of digitally controlled

power inverters is still developing. A digital controller has significant influence

on the dynamic behaviour of the control system. As a result, digitally controlled

inverters have quite different dynamic behaviours from that of the analog con-

trolled inverters. Accurate models are required for response predictions, since

the classic averaged models for analog controlled inverters cannot be simply ap-

plied to digitally controlled inverters. The discrete-time models are applicable

to digitally controlled systems, but these models cannot be obtained from the

continuous-time models by using direct z-transform. More accurate modelling

methods are needed for engineers when designing power inverters with the fol-

lowing practical considerations [6, 7, 8].

1.3.1 System stability

Classic average models have been used to evaluate the stability of switching con-

verters [9] and are capable of predicting slow-scale oscillations. However, the

fast-scale instabilities such as period-n bifurcation can not be predicted by using

the average models [10].

For a digitally controlled system, the stability analysis cannot be performed
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using the average model. The main reason is that the sample and hold effect in

digital controllers cannot be properly modelled by average models. Moreover, the

delay effect differs when different pulse-width-modulation (PWM) strategies are

used. Therefore, stability analysis for digitally controlled power inverters should

be performed based on z-domain models. Compared to s-domain analysis, z-

domain analysis also brings convenience for modelling delay effect and sample

and hold effect.

1.3.2 Controller design

Classic average models enables a direct design for controllers in analog controlled

power inverters. Based on average models, the controllers can be obtained in

s-domain and the control performance can be evaluated by using s-domain anal-

ysis. The average models are widely used to evaluate the low frequency control

performances of digitally controlled power inverters. However, as the average

models cannot predict instabilities in digitally controlled systems, the design of

digital controllers based on s-domain analysis may not be able to guarantee an

accurate gain margin. Therefore, the z-domain analysis is essential for design of

digital controllers.

Based on the z-domain models, the design of digital controllers can be imple-

mented using two strategies. One method is to design the controller directly in

z-domain, which requires knowledge of the z-domain model of the inverter. This

method allows to implement discrete control schemes such as deadbeat control

scheme and repetitive-based control schemes. The other one is the indirect design

strategy, which converts the well known classic analog controllers into z-domain.

This method requires z-transform of s-domain transfer functions, where bilinear

transform is usually used to obtain the z-domain expressions of controllers.

1.3.3 Performance of controller

Steady-state performance and transient performance are important factors for

evaluating a controller. The steady-state performance of a digitally controlled

system can be evaluated using average models with good accuracy, as long as

the interested performance is in low-frequency range. However, the transient

response contains signals in a wide frequency range. Using average models may

reduce the accuracy in predicting high frequency components. In contrast, z-

domain models can be used to evaluated both the steady-state performance and

transient performance. z-domain analysis can precisely predict the rise time,

settling time and overshot in the transient response.

Robustness is another specification of a controller. Usually a robust digital
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controller should have a gain margin of two. Only using a z-domain model the

gain margin of a controller can be obtained from the z-plane root locus.

1.3.4 Power quality requirements

Inverters should be designed to meet the power quality requirements. The normal

voltage variation of islanding inverters should be within plus and minus 10% of the

rated RMS value. The grid-connected inverters do not regulate the voltage, but

they inject currents to the grid. Therefore, grid-connected inverters should have

protection functions when the grid voltage is out of the normal operating range.

The normal frequency range required for a inverter depends on the power level,

which can be found in [11]. The standard [11] also provides regulations for the

total harmonic distortion (THD) and individual harmonic current levels. These

requirements applies to both islanding inverters and grid-connected inverters.

The digitally control inverters described in this thesis are designed according to

these requirements.

For grid-connected inverters, power factor is specified to be higher than 0.85

when output exceeds 10% of the power rating [12]. However, most grid-connected

inverters are able to achieve a power factor close to unity. Another important

requirement is that the injected dc current should be smaller than 0.5% of the

rated output current [11, 12]. There are some techniques to minimize the dc

current. For transformerless inverters, high resolution dc current sensor or auto-

calibration [13] can be used to reduce the dc current injection. In our cases,

isolation transformers are used to block the dc current injection into the grid.

The grid-connected inverters in this thesis are designed according to the power

quality requirements.

There are also functions and specifications on the interconnection of the elec-

trical system, such as detection of islanding operation, automatic synchronization

and grounding of the system. Moreover, voltage flicker is a subjective problem

and has been discussed in IEEE Standard 519-1992, where the maximum bor-

derline of the flicker has been defined. These requirements have to be taken into

account in practice but are not included in the modelling of this thesis.

1.4 Overview of the thesis

This thesis focuses on the modelling and control of digitally controlled power

inverters in microgrids. These inverters may operate in islanding mode or in

grid-connected mode. For islanding operations, stand-alone inverters are used

to provide energy in parallel. The stand-alone inverters are controlled as voltage

sources. These controllers are always implemented by cascaded control loops with
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an internal current control loop [2, 14]. Therefore, an accurate model for cascaded

digital control loops has been proposed in this thesis. Based on the model, the

controller design and analysis can be performed.

When inverters operate in grid-connected mode, they should behave as cur-

rent sources. Inductive filters and LCL filters are usually used for grid-connected

inverters. The controller of an inverter with inductive filter is easy to design,

but for inverters with LCL filter, the design needs to be carefully considered.

Moreover, the delay effects significantly affect the dynamic behaviour of the sys-

tem. The LCL resonance in the high frequency range may lead to instabilities

when the controller is not well designed. Hence, a new modelling method for

grid-connected LCL inverters with accurately modelled delay effect is proposed

in the thesis.

More stand-alone and grid-connected inverters tend to use the multilevel struc-

ture to lower the EMI. Many modulation techniques have been proposed for mul-

tilevel inverters, but the modelling of the phase-shifted PWM is still not available.

Therefore, a general method of modelling digitally controlled multilevel inverters

is presented in the thesis, which is also extendible to other modulation technolo-

gies.

The thesis is organized as follows. In Chapter 1, a brief introduction about

digitally controlled power inverters in microgrids and the problems in this topic

are given. Chapter 2 illustrates background and state of the art of the modelling

and control for digitally controlled power inverters. Based on Chapter 1 and 2,

Chapter 3 first provides the details of discrete modelling, with delay effects taken

into account. Then, the block diagrams are derived for single switched switching

converters. The model is also extended to H bridge inverters. To demonstrate

the feasibility of the proposed model, a design example is provided. Furthermore,

preparations for simulation and experimental work are presented.

An example of controller design for stand-alone inverters is shown in Chap-

ter 4. The inverters are designed for parallel operation. The controllers are

designed in z-domain, based on the proposed model. The aim of the design is

to achieve good current sharing between inverters and to guarantee good power

quality. To demonstrate the advantage of the proposed controller, the perfor-

mance of the proposed controller has been compared to that of the conventional

controller.

Chapter 5 gives an example of z-domain modelling for inverter with a third-

order filter, i.e., grid-connected inverter with an LCL filter. Inverters with two

typical control schemes have been modelled in the z-domain. Compared to the

conventional s-domain models, the proposed models accurately predict the sta-

bility boundaries of control gains. Moreover, comparison between predictions of
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models, simulation and experimental results is provided to verify the capability

of the models in predicting stabilities and retrieving time-domain waveforms.

Chapter 6 models the multilevel inverter, which is sampled with a frequency

multiple of the switching frequency. These multilevel inverters become quite in-

teresting in many microgrids’ applications to increase power rating or to reduce

the EMI. However, due to the complexity of the PWM, exact models for mul-

tilevel inverters are still not available. Therefore, the modelling method for the

multisampled multilevel inverter is proposed. The chapter gives a concise way of

modelling and proves that multisampled multilevel inverters can achieve better

control performance compared to uniformly-sampled inverters.

Finally, conclusions are made in Chapter 7, which also highlights possible

future work that would combine with this research.
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Chapter 2

Background

2.1 Introduction

Conventional switching converters are controlled by analog controllers. For mod-

elling and analysis of the switching converters, averaged switching characteristics

are usually used [9]. The average modelling method has been widely applied to

determine the control performance at low frequency range. However, even for

analog controlled switching converters, average models fail to predict rapid dy-

namics [15]. Therefore, discrete-time maps have been developed as a more accu-

rate modelling strategy [16, 17]. These methods successfully predict the nonlinear

behaviour of naturally-sampled switching converters, but usually require solving

transcendental equations every cycle to find the switching instants. As a result,

approximated discrete-time models are proposed to reduce the computation load

involved.

As analysis of digitally controlled switching converters has attracted wide in-

terests in the last decade, the discrete-time mapping has also been applied to this

topic [18, 19, 20, 21]. Moreover, for digitally controlled switching converters with

sample and hold effect, it is easier to find the switching instants. Bilinear discrete-

time mapping has been proposed to show the capability of accurate prediction

of instabilities such as bifurcation, strange attractor and chaos [22]. However,

for practical controller design and performance analysis, it is more convenient to

implement design and analysis in the Laplace domain.

The quantization effect of digitally controlled switching converters has been

first studied in [23], where conditions of the limit cycle has been given. Based on

these results, a describing function method has been proposed to model the quan-

tization effect [24]. As the performance of DSPs improves and the resolution of

analog-to-digital (AD) converters and digital pulse-width-modulators (DPWMs)

becomes much greater than before, quantization effects can be neglected from

the dynamic point of view [25]. Then, a more accurate model, i.e., small-signal

8



z-domain model has been derived for DPWMs. This model enables the con-

troller to be directly designed in the z-domain, and provides an evaluation of the

controller in Laplace domain [25, 26]. Based on this accurate model, the clas-

sic design and analysis methods [27] for digitally controlled switching converters

become applicable.

This chapter introduces the fundamentals of digital control for power elec-

tronics. Basic principles of sample and hold and z-transform are illustrated.

The modelling methods and controller design techniques in the Laplace domain

are reviewed. Most commonly used models regardless of quantization effects are

provided. Based on the z-domain models, typical digital control strategies are

presented.

2.2 Fundamentals of digital control in power elec-

tronics

A typical digital controller for a single switched converter is shown in Figure 2.1.

The quantities of q1, ..., qm represent the analog variables which are required to be

measured. Through an analog-to-digital converter (ADC), these quantities are

converted to digital signals by ideal samplers, which are represented by q∗1, ..., q
∗
m.

The digital controller implemented by using a cluster of difference equations, is

equivalent to a control block comprised of z-domain transfer functions. The ratio

of the switch on time duration to the switching period is defined as the duty-

ratio. When a digital duty-ratio is calculated and updated in the PWM compare

register as u∗, the zero-order-hold (ZOH) is used to convert u∗ into a continuous

modulation signal which compares with the carrier to generate the switch drive

signals. Hence, the digital PWM is described by a pulse-to-continuous transfer

function with a digital input but with an analog output. The fundamental of the

 

Figure 2.1: The schematic of a typical digital controller.

digital control of switching converters is introduced in the following subsections.
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2.2.1 Ideal sampler and ZOH

This subsection explains the conversions and transfer functions between continu-

ous to discrete signals. The principle of sampling and hold in digital controllers

can be found in [27]. To convert an analog signal into a digital signal, an ideal

sampler is used. The conversion from digital signals to analog signals requires

a ZOH. In the digitally controlled system [27], the ideal sampling process is to

multiply the analog signal by a Dirac comb constructed from a series of Dirac

delta functions, which is written as

δT (t) =
∞∑

k=−∞

δ(t− kTs) (2.1)

with t the time, Ts the sampling period and k the integers. Assuming e∗ is the

ideally sampled digital signal in respect to the analog error signal e, it can be

represented as

e∗(t) = e(t)δT (t). (2.2)

On the other hand, the Dirac comb is a periodic function, whose Fourier series

can be derived as

δT (t) =
1

Ts

∞∑
k=−∞

ejk
2π
Ts
t. (2.3)

In order to describe the function of the ideal sampler, Laplace-domain analysis

is used. Substituting (2.3) into (2.2), the Laplace transform of e∗(t) becomes

e∗(s) =
1

Ts

∞∑
k=−∞

e(s+ jk
2π

Ts
). (2.4)

If an input signal contains frequency lower than 1
2Ts

(the Nyquist frequency), it

can be approximated from (2.4) that the transfer function of the ideal sampler is

equivalent to a gain of 1
Ts

.

In contrast, the ZOH keeps an impulse for one sampling period with the

amplitude equivalent to the area of the impulse, which is a pulse-to-continuous

transfer function known as

G∗ZOH(s) =
1− e−sTs

s
. (2.5)

Therefore, an ideal sampler cascaded by a ZOH with the same frequencies is rep-

resented by a continuous-to-continuous transfer function, whose Laplace-domain

transfer function is written as

GZOH(s) =
1− e−sTs
sTs

. (2.6)
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It is interesting to mention that, in the digital controller with a fixed frequency,

a ZOH followed by an ideal sampler behaves as a unity gain. From the transfer

function point of view, the pulse transfer function in z-domain describing the

ZOH followed by the ideal sampler is derived as

Z{G∗ZOH(s)} =
z

z − 1
− 1

z − 1
= 1. (2.7)

The principle of z-transform is illustrated in the following subsection.

2.2.2 z-Transform

In a continuous-time system, the impulse response is used to obtain the s-domain

transfer function. The Laplace transform of the impulse response is the transfer

function. In the discrete-time system, if a block is cascaded by a sampler, z-

transform is used to describe the transfer function [27].

 

(a) (b)

Figure 2.2: Block diagrams of the transfer functions. (a) Continuous-time system.
(b) Discrete-time system.

Fig. 2.2(a) and (b) show the block diagrams of the transfer function in a

continuous-time system and in a discrete-time system, respectively. In Fig. 2.2(a),

the impulse response of the block is h(t), whose Laplace transformH(s) represents

the transfer function. However, as the block H(s) in Fig. 2.2(b) is followed by a

sampler, the transfer function describing output h∗(t) as a function of input δ(t)

is obtained by the Laplace transform of h∗(t). If

H(s) =

∫ ∞
−∞

h(t)e−stdt, (2.8)

H∗(s) can be written as

H∗(s) =

∫ ∞
−∞

h∗(t)e−stdt

=

∫ ∞
−∞

(
∞∑
n=0

h(nTs)δ(t− nTs))e−stdt

=
∞∑
n=0

h(nTs)(

∫ ∞
−∞

δ(t− nTs)e−stdt).

(2.9)

Since
∫∞
−∞ δ(t− nTs)e

−stdt = e−snTs , Equation (2.9) can be expressed as

H∗(s) =
∞∑
n=0

h(nTs)e
−snTs . (2.10)
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Therefore, by letting z = esTs , the transfer function H∗(s) can be written as

H(z) = H∗(s)|esTs=z =
∞∑
n=0

h(nTs)z
−n. (2.11)

Finally, the z-transform is defined as

H(z) = Z{H∗(s)} (2.12)

and the table of commonly used Laplace transform and z-transform pairs can be

found in [27].

2.2.3 Discretization of controller

The digital controller comprised of difference equations can be represented by z-

domain transfer functions. These transfer functions should achieve the required

frequency response. As the conventional controllers designed in s-domain are well

known, converting an s-domain controller into its z-domain equivalent is used.

Since z = esTs , the z-domain equivalent controller can be obtained by substituting

s = 1
Ts

ln z into the s-domain controller. However, the rational expression in

z-domain is more practical. Hence, Padé approximation is used to derive the

z-domain controller, which is written as

s =
2

Ts

z − 1

z + 1
. (2.13)

For the transfer function of a controller G(s) in continuous-time system, the

digital controller in discrete-time system is derived as

G(z) = G(s)|s= 2
Ts

z−1
z+1
. (2.14)

This transform method is named as bilinear transform which is most com-

monly used in digital controller design. There is another method which is called

the impulse invariance. The method is to insert an ideal sampler after the s-

domain controller G(s), whose z-domain transfer function becomes Z{G(s)}.
Since an ideal sampler is introduced with an approximated gain of 1

Ts
, the equiv-

alent transfer function of the controller in z-domain is

G(z) = TsZ{G(s)}. (2.15)

Note that the impulse invariance method should be only used for digitaliza-

tion when the z-transform of the s-domain controller exists. For a proportional

controller in the s-domain, its digitalized transfer function in the z-domain should

maintain the same format.
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2.3 State of the art of modelling techniques for

digitally controlled switching converters

2.3.1 Classic average model

Before digital controllers were widely used, most switching converters were imple-

mented by using analog controllers. The input signal of the PWM is naturally-

sampled by the carrier. Therefore, the controller behaves as a non-delay controller

from signal sampling to duty-ratio updating. The gain of the PWM is modelled

as unity. This strategy has been extended for a digitally controlled system, with

quantization, sample and hold effects being neglected. The delay of the PWM

generation is considered as a half or one switching cycle, but the computation in

digital controller results in a half or one switching cycle delay [28, 29, 30]. Al-

though the digital controller is implemented in z-domain, it is transformed from

the s-domain controller during the design procedure. Therefore, the s-domain

transfer function of the controller is used for analysis. As the switch voltage is

represented by the voltage averaged in the switching period, the model is named

as average model. By using the s-domain transfer functions of power circuit and

controller circuit, the average model for the entire control loop can be obtained.

2.3.2 Small-signal s-domain model

Small-signal s-domain model is developed with the PWM well modelled. This

is a more accurate model compared to the classic average model as the sample

and hold effect and PWM delay effect are considered. For analog controlled

switching converters, the PWM does not bring any delay in the control loop. For

uniformly-sampled switching converters, the PWM delay depends on the shape

of the carriers [31]. When triangle carriers are used, the PWM delay can also

be approximated by a half switching period [32]. The quantization effect has

been neglected since it brings nonlinearity which is difficult to model. However,

the sample and hold effect has been taken into consideration. The approximated

transfer function of the sampler is written as 1
Ts

as explained in the previous

section. The transfer function of the ZOH is 1−e−sTs
s

. As a result, the sample and

hold effect is represented by a block with the transfer function of

GZOH(s) =
1− e−sTs
sTs

. (2.16)

The ZOH block is usually placed in the control loop preceded by the digital

controller block which is represented in s-domain [33]. The digital controller is

modelled in the same way as that in the classic average model. The advantage

of the small-signal s-domain model compared to the average model is that PWM
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delay and sample and hold effect are included. However, Due to the accuracy of

the s-domain represented sampler and digital controller is only guaranteed in low

frequency range, this model may fail to predict the system dynamic close to half

of the sampling frequency.

2.3.3 Classic z-domain model

As the s-domain models are not capable of predicting fast-scale instabilities, dis-

crete models are required as a solution. The discrete-time maps can be used

to predict instabilities such as bifurcation and chaos [16, 34]. Although these

maps can be used to find the gain boundaries, they are not convenient for con-

troller design due to the weak link between the maps and the frequency response

characteristics. Therefore, some papers propose the z-domain model for digitally

controlled switching converters, but the sample and hold effect is treated as a

unity gain [35, 36, 37]. The delay effect is estimated using the same method as

that in the classic average model. The continuous transfer functions describing

the output filter are transformed into the z-domain by using the impulse invari-

ance method [38]. The transfer functions of the controllers retain their z-domain

expressions. This modeling method neglects the type of PWM used. It works fine

when simple filters and controllers are used, but the accuracy is not very good

when the modulation strategy changes or the system’s order increases.

2.3.4 Small-signal z-domain model

Small-signal z-domain model is proposed for synchronously-sampled PWM. This

enables more accurate modelling for different types of PWMs, as the delay ef-

fects of DSP and PWM are carefully considered. This method is based on the

technique that sampling is triggered by the PWM carrier, also called uniform-

sampling. As the uniformly-sampled digital PWM contains high nonlinearity,

the Laplace transform is not applicable to exact modelling in large signal. How-

ever, the exact small-signal PWM models depending on the average duty-ratio D

have been proposed. By combining the ZOH and PWM together, the pulse-to-

continuous transfer functions of the PWM models are obtained. The continuous-

to-continuous and pulse-to-continuous transfer functions of the PWM models are

shown in Table 2.1 [25].

The transfer functions of the filter followed by a sampler is transformed into

the z-domain. The controllers are designed and expressed in the z-domain. This

modelling method provides a good way of evaluating a digital controller for single

switched converters, but some limitations exist:

1. The delay effect is dependent of the carrier and the duty-ratio update mode.
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Table 2.1: Transfer functions of the PWM model

Carrier GPWM(s) G∗PWM(s)

End-of-on-time e−sDTs Tse
−sDTs

Begin-of-on-time e−s(1−D)Ts Tse
−s(1−D)Ts

Symmetric-off-time 1
2
(e−s

DTs
2 + e−s

(2−D)Ts
2 ) Ts

2
(e−s

DTs
2 + e−s

(2−D)Ts
2 )

Symmetric-on-time 1
2
(e−s

(1−D)Ts
2 + e−s

(1+D)Ts
2 ) Ts

2
(e−s

(1−D)Ts
2 + e−s

(1+D)Ts
2 )

However, the previous model only discusses the delay when different carriers

are used.

2. The uniformly-sampled PWM model is proposed for single switched con-

verter. For converters with more switches and different modulation tech-

niques, extending the model is needed.

3. The example of the z-transform for the converter with single loop controller

and first-order filter is provided in that model. However, most converters

have a filter with higher order and/or cascaded control loops.

In order to apply the small-signal z-domain model to digitally controlled

switching converters, more work has to be done to overcome the limitations men-

tioned above. This thesis provides a general way of detailed modelling of digitally

controlled power inverters in the z-domain. Based on the proposed models, the

controllers design can be implemented and tested by simulation and experimental

work.

2.4 State of the art of digital control techniques

for power inverters

2.4.1 Classic controllers

The classic controllers are derived from conventional analog controllers. They

are represented in the s-domain and transformed into the z-domain for digital

controllers. The most commonly used controller for dc-dc converters is the pro-

portional plus integral (PI) controller. This control scheme has also been used for

dc-ac inverters [39, 40]. A typical PI controller can be expressed in the s-domain

as

GPI(s) = kp +
ki
s

(2.17)

with kp the proportional gain and ki the integral gain. As the integral compen-

sator achieves high gain in the low frequency range and low gain in the high
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frequency range, the proportional coefficient of the integrator can be quite high

without causing instabilities. However, the gain of the integrator at the funda-

mental frequency will be insufficient in some applications with high line frequency

such as in 400 Hz power systems. In that environment, the duty-ratio feedforward

strategy is required to improve the control performance [28].

In the synchronous reference frame, it is confirmed that the PI controller is

equivalent to the proportional plus resonant (PR) controller in the stationary

reference frame [41]. The typical proportional plus resonant controller in the

s-domain is given by

GPR(s) = kp + kr
s

s2 + ω2
1

(2.18)

with kr the resonant gain and ω1 the fundamental angular frequency. The con-

troller achieves infinite gain at the fundamental frequency, and the tracking per-

formance at the fundamental frequency is theoretically very good. However, this

controller cannot be physically implemented in analog circuits. Hence, a more

practical solution becomes

GPR(s) = kp + kr
2ξω1s

s2 + 2ξω1s+ ω2
1

(2.19)

with ξ the damping factor. The gain of (2.19) is with an amplitude of kr at the

fundamental frequency. By changing the value of kr, the gain with the required

value can be achieved. Moreover, for analog control circuits, (2.19) can be easily

implemented by second-order filters. For a digital controller, the relevant z-

domain expression can be obtained from (2.19) by using bilinear transform. The

PR controller has good tracking capability only at the fundamental frequency,

but does not provide compensation for harmonic frequencies components. As a

result, more complicated control methods are proposed for harmonic components

compensation.

2.4.2 Repetitive-based controllers

Repetitive-based controllers are proposed for precise tracking at selected frequen-

cies [42, 43]. To implement a controller it requires the sampling rate to be an

integer multiple of the fundamental frequency, which can be written as

GRep(s) =
1

1− zN
. (2.20)

The tracking performance for fixed periodical signals is very good, but additional

filters have to be used to suppress the gain in the high frequency range [44].

Otherwise, it may lead to instability problems because of the high gain at high-

order harmonic frequencies. When an additional filter is used, the gain of the
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compensator is infinite at the selected harmonic frequencies. As long as the filter

is well designed, the compensator has low gain in high frequency range without

causing instabilities.

2.4.3 Deadbeat controllers

The deadbeat controllers are based on the discrete model of a control object. It

aims for an output signal following the reference signal [45, 46]. For Nth-order

linear system, the minimum delay may be written as NTs, with Ts the sampling

period. The closed-loop transfer function of the deadbeat controlled system is

GDB(z) = z−N . (2.21)

By solving (2.21) with the known transfer function of the plant, the transfer

function of the deadbeat controller can be obtained. However, most deadbeat

controllers have delay of more than two sampling cycles. To compensate for the

delay introduced by computation and the deadbeat controller, [47] proposed a

solution with feedforward action. As a result, a fast controller is obtained with

the delay eliminated.

2.4.4 Linear controllers

Linear current controllers have been proposed for selective harmonic compensa-

tions [30, 48]. These control strategies are based on a cluster of bandpass filters

in PR controller. By turning the bandpass filters resonating at odd harmonic fre-

quencies, the suppression of harmonic components is very effective. The general

expression of linear controllers can be written as [6]

GL(s) = kp +
hmax∑

h=1,odd

kh
2ξωhs

s2 + 2ξωhs+ ω2
h

(2.22)

with kp the proportional gain, hmax the highest order of the compensator, kh

the gain at the specific frequency, ξ the damping factor and ωh the hth harmonic

frequency. At each harmonic frequency, the gain magnitude is equal to kh. There-

fore, by carefully choosing the coefficients of the harmonic compensators, a good

tradeoff between stability and control performance can be achieved.

As linear control schemes exhibit flexibility in choosing gains at selected fre-

quencies, this thesis uses linear control schemes as the main control method.

Moreover, to reduce the difference between control reference and target, duty-

ratio feedforward is involved. The design of the controller and selection of con-

trol parameters are implemented based on the proposed exact discrete model in

z-domain. The following chapters will provide examples on implementing the

modelling and control of digitally controlled power inverters.
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Chapter 3

Digitally Controlled Switching
Converters with Synchronously
Sampled
Pause-Width-Modulators

3.1 Introduction

For most power inverters in renewable energy systems, the entire controller of

each module is always implemented digitally. In classical digital control methods,

synchronized sampling and switching is a good solution to avoid the sampling

disturbance in the vicinity of the switching instant [49, 50]. The PWM updates

the calculated duty-ratio into the compare register in each switching period. The

duty-ratio is compared to the digital carrier to generate drive signals. Hence, the

PWM is actually equivalent to a sampling process on itself. For this reason, the

switching frequency and sampling frequency are always chosen to be the same,

known as the technique of uniform-sampling [25].

A digitally controlled inverter usually has an internal control loop with con-

verter current feedback. To guarantee stable operation, the maximum propor-

tional gain in the internal loop is limited by the sampling frequency and the

converter side inductance. Therefore, a precise model is required to determine

the feedback gains of the digital controller. Moveover, the model is also used for

controller design. The control performance can be evaluated based on the model

of the entire closed-loop control system. The time-domain and frequency-domain

analysis can be performed. The model is capable of predicting waveforms in

either steady-state or transient response.

In this chapter, the procedure of modelling and controller design is given.

The delay effect of uniformly-sampled PWMs is discussed. The delay effect is

dependent of the carrier waveshape and duty-ratio update mode. Furthermore,
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the PWM model is extended for bipolar and unipolar switched H bridges. Based

on the PWM model, general block diagrams for single digital control loop and

cascaded digital control loops are presented in both s-domain and z-domain. The

design of digital controllers can be implemented based on the block diagrams.

Examples of classic design methods using simulation, root locus and frequency

response tools are applied, which indicate the feasibility of the proposed model.

Finally, the simulation and experimental setup work throughout the thesis is

described.

3.2 Small-signal modelling of uniformly-sampled

digital PWMs with delay effects

The conventional PWM model assumes the sampled input is synchronized to the

peaks of the carriers and combines all delay effects in the controller as a total

DSP delay [25]. However, this is not always accurate when different duty-ratio

update modes are used. In a practical digital controller, different types of delay

exist and the delay effects should be discussed according to the duty-ratio update

techniques. In order to obtain exact models of the digital PWMs containing DSP

delay, two duty-ratio update modes are studied.

3.2.1 Digital PWM models in shadow mode

When a new duty-ratio is calculated, it is required to update this new value into

the PWM compare register. The time for update can be set in many different

ways. The most commonly used method is to load the duty-ratio into PWM

compare register at the instants which is synchronized to the carrier peaks. This

update mode is defined as the shadow mode. If the duty-ratio is updated in

shadow mode, the time-domain waveforms of the sawtooth PWM [25] are shown

in Fig. 3.1.

The ideally sampled quantity and calculated duty-ratio are represented by q∗

and x∗ in Fig. 3.1, respectively. In practice, the digital duty-ratio calculated with

time delay is d∗. The delay from x∗ to d∗ is required by the ADC conversion

time and duty-ratio computation time, represented by τd1 and τd2, respectively.

This delay must be smaller than one sampling period, otherwise it will lead to an

erroneous disorder in the controller. When the calculated duty-ratio d∗ is ready, it

can be updated into the PWM controller as u∗. The delay from signals sampling

to duty-ratio updating is defined as the DSP delay in this thesis. When using

sawtooth carriers in shadow mode, the duty-ratio is updated at each sampling

instant. Therefore, the DSP delay is equal to one switching period.
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(a) (b)

Figure 3.1: Key waveforms of the sawtooth PWM in shadow mode. (a) Begin-
of-on-time modulator. (b) End-of-on-time modulator.

On the other hand, the small-signal PWM delays from updated duty-ratio

u∗ to switching output y can be found in Table 2.1. For the begin-of-on-time

modulator and the end-of-on-time modulator, the PWM delays are (1 − D)Ts

and DTs, respectively. Therefore, the transfer functions describing the small-

signal switching output ŷ as a function of the small-signal ideal duty-ratio x̂∗ for

the begin-of-on-time modulator and the end-of-on-time modulator are [25]

G∗PWM(s) = Tse
−s(2−D)Ts (3.1)

and

G∗PWM(s) = Tse
−s(1+D)Ts , (3.2)

respectively.

When the triangle PWMs are used in shadow mode, the delay effects are more

complicated. The small-signal transfer functions from x̂∗ to ŷ are derived for the

symmetric-on-time modulator, which can be also extended to the symmetric-off-

time modulator.

For the symmetric-on-time modulator, the sampling is started at the time

when the PWM counter reaches its period value. The duty-ratio can be updated

into the PWM compare register when the PWM counter reaches its zero value,

period value, or both. The time-domain key waveforms of the symmetric-on-

time PWM in shadow mode when the duty-ratio is updated at the counter’s

zero value and updated at the counter’s period value are shown in Fig. 3.2 and

Fig. 3.3, respectively. In Fig. 3.2(a), if the processor is fast and the duty-ratio d∗

is calculated before the counter reaches zero value, the DSP delay from x∗ to u∗

is half switching period. However, if the processor is slow and the duty-ratio d∗ is
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(a) (b)

Figure 3.2: Key waveforms of the symmetric-on-time PWM in shadow mode
with duty-ratio updated when counter reaches zero value. (a) τd1 + τd2 <

Ts
2

. (b)
Ts
2
< τd1 + τd2 < Ts.

 
(a) (b)

Figure 3.3: Key waveforms of the symmetric-on-time PWM in shadow mode with
duty-ratio updated when counter reaches period value. (a) τd1 + τd2 <

Ts
2

. (b)
Ts
2
< τd1 + τd2 < Ts.
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calculated after the counter reaches zero value, the DSP delay becomes one and a

half switching periods, as is shown in Fig. 3.2(b). In this case, the maximum DSP

delay results in a poor dynamic performance. The small-signal transfer functions

describing ŷ as a function of x̂∗ for modulators in Fig. 3.2(a) and Fig. 3.2(b) are

[25]

G∗PWM(s) =
Ts
2

(e−s
(1+D)Ts

2 + e−s
(3−D)Ts

2 ) (3.3)

and

G∗PWM(s) =
Ts
2

(e−s
(3+D)Ts

2 + e−s
(5−D)Ts

2 ), (3.4)

respectively.

When the duty-ratio is updated at the counter’s period value, as is shown in

Fig. 3.3, the DSP delay does not depend on the speed of processor but remains as

one switching period. Therefore, it can be derived from Fig. 3.3(a) and Fig. 3.3(b)

that the small-signal transfer function describing ŷ as a function of x̂∗ is [25]

G∗PWM(s) =
Ts
2

(e−s
(3−D)Ts

2 + e−s
(3+D)Ts

2 ). (3.5)

This update method is widely used in digital controller design since the DSP

delay effect is fixed as one switching period.

When the duty-ratio is double-updated in shadow mode, i.e., on both the

counter’s zero and period value, the time-domain key waveforms of the symmetric-

on-time PWM are shown in Fig. 3.4. If the processor is fast and the duty-ratio d∗

is calculated before the counter reaches zero value, the DSP delay from x∗ to u∗ is

half a switching period. If the processor is slow and the duty-ratio d∗ is calculated

after the counter reaches the period value, the DSP delay becomes one switching

period. Hence, the minimum DSP delay in shadow mode is achieved under all

circumstance. The small-signal transfer functions describing ŷ as a function of x̂∗

for modulators in Fig. 3.4(a) and Fig. 3.4(b) are [25]

G∗PWM(s) =
Ts
2

(e−s
(1+D)Ts

2 + e−s
(3−D)Ts

2 ) (3.6)

and

G∗PWM(s) =
Ts
2

(e−s
(3−D)Ts

2 + e−s
(3+D)Ts

2 ), (3.7)

respectively.

3.2.2 Digital PWM models in immediate mode

When a new duty-ratio is calculated, the value can be immediately loaded into

the PWM compare register. If the duty-ratio is updated into the PWM compare

register immediately after it is calculated, the update mode is defined as the
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(a) (b)

Figure 3.4: Key waveforms of the symmetric-on-time PWM in shadow mode with
double update. (a) τd1 + τd2 <

Ts
2

. (b) Ts
2
< τd1 + τd2 < Ts.

 
(a) (b)

Figure 3.5: Key waveforms of the begin-of-on-time PWM in immediate mode.
(a) τd1 + τd2 < (1−D)Ts. (b) (1−D)Ts < τd1 + τd2 < Ts.
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immediate mode. The time-domain waveforms of the begin-of-on-time PWM in

immediate mode are shown in Fig. 3.5.

In immediate mode the delay is strongly dependent on the average duty-ratio

D. For the begin-of-on-time PWM, if τd1 + τd2 < (1−D)Ts, the transfer function

describing the small-signal switching output ŷ as a function of the small-signal

ideal duty-ratio x̂∗ is written as [25]

G∗PWM(s) = Tse
−s(1−D)Ts . (3.8)

On the other hand, if (1−D)Ts < τd1 + τd2 < Ts, the transfer function becomes

[25]

G∗PWM(s) = Tse
−s(2−D)Ts . (3.9)

Similarly, the time-domain waveforms of the end-of-on-time PWM in imme-

diate mode are shown in Fig. 3.6. For the conditions of τd1 + τd2 < DTs and

DTs < τd1 +τd2 < Ts (see Fig. 3.6 (a) and (b)), the small-signal transfer functions

from x̂∗ to ŷ are [25]

G∗PWM(s) = Tse
−sDTs (3.10)

and

G∗PWM(s) = Tse
−s(1+D)Ts , (3.11)

respectively.

 
(a) (b)

Figure 3.6: Key waveforms of the end-of-on-time PWM in immediate mode. (a)
τd1 + τd2 < DTs. (b) DTs < τd1 + τd2 < Ts.

More complicated delay effects exist when using triangle PWMs in immediate

mode. The small-signal transfer functions from x̂∗ to ŷ are derived for the imme-

diate mode symmetric-on-time modulator. However, the results can be extended

to the symmetric-off-time modulator. If the processor is fast and the duty-ratio
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d∗ is calculated within a half switching period, the time-domain key waveforms

of the symmetric-on-time modulator in immediate mode are shown in Fig. 3.7.

The small-signal transfer functions from x̂∗ to ŷ are [25]

G∗PWM(s) =
Ts
2

(e−s
(1−D)Ts

2 + e−s
(1+D)Ts

2 ) (3.12)

when τd1 + τd2 <
(1−D)Ts

2
(see Fig. 3.7(a)) and

G∗PWM(s) =
Ts
2

(e−s
(1+D)Ts

2 + e−s
(3−D)Ts

2 ) (3.13)

when (1−D)Ts
2

< τd1 + τd2 <
Ts
2

(see Fig. 3.7(b)).

 
(a) (b)

Figure 3.7: Key waveforms of the symmetric-on-time PWM in immediate mode
with a fast processor. (a) τd1 + τd2 <

(1−D)Ts
2

. (b) (1−D)Ts
2

< τd1 + τd2 <
Ts
2

.

On the other hand, if the processor is slow and the duty-ratio d∗ is calculated

during the rising slope of the triangle carrier, the time-domain key waveforms of

the symmetric-on-time modulator in immediate mode are shown in Fig. 3.8. The

small-signal transfer functions from x̂∗ to ŷ are [25]

G∗PWM(s) =
Ts
2

(e−s
(1+D)Ts

2 + e−s
(3−D)Ts

2 ) (3.14)

when Ts
2
< τd1 + τd2 <

(1+D)Ts
2

(see Fig. 3.8(a)) and

G∗PWM(s) =
Ts
2

(e−s
(3−D)Ts

2 + e−s
(3+D)Ts

2 ) (3.15)

when (1+D)Ts
2

< τd1 + τd2 < Ts (see Fig. 3.8(b)).
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(a) (b)

Figure 3.8: Key waveforms of the symmetric-on-time PWM in immediate mode
with a slow processor. (a) Ts

2
< τd1 + τd2 <

(1+D)Ts
2

. (b) (1+D)Ts
2

< τd1 + τd2 < Ts.

3.3 Modelling H bridges with synchronously sam-

pled PWMs

The digital PWM models in the previous sections are derived for the output

voltage of single switch. As power inverters are usually implemented by using

H bridges, describing the output voltage of H bridges as a function of the mod-

ulation signal is required. The transfer function of PWM model varies when

different carriers and modulation techniques are used.

The typical circuit diagram of an H bridge is shown in Fig. 3.9. The output

of the H bridge is the filter input voltage vin. The switching output is defined as

y = vin/Vdc. The switching output varies significantly when different modulation

strategies are used. In this section we only provide examples with end-of-on-time

carriers and symmetric-on-time carriers. Both bipolar switched and unipolar

switched PWMs are studied.

 

Figure 3.9: A typical H bridge circuit.
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3.3.1 Bipolar switched H bridges

If there are two voltage levels produced on the switch voltage vin, i.e., Vdc and

−Vdc, the H bridge is bipolar switched. In order to provide the model for a

single-update-mode bipolar switched H bridge, we assume that the duty-ratio is

updated at each sampling instant. Therefore, the DSP delay is one sampling

cycle. When the sampling frequency is equal to the switching frequency, the key

waveforms of bipolar switched H bridge are shown in Fig. 3.10.
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(a) (b)

Figure 3.10: Key waveforms of single-update-mode uniformly-sampled bipolar
switched H bridge. (a) End-of-on-time modulator. (b) Symmetric-on-time mod-
ulator.

It can be seen from Fig. 3.10 that the filter input voltage frequency of the

bipolar switched H bridge is equivalent to the switching frequency. The duty-

ratio can be updated only once when using sawtooth carriers. However, for

triangle carriers, the duty-ratio can be updated twice a switching cycle. As the

DSP delay from x∗ to u∗ is Ts, the small-signal transfer function describing ŷ as

a function of x̂∗ for end-of-on-time modulator is written as [25]

G∗PWM(s) = Tse
−s(1+D)Ts . (3.16)

On the other hand, for symmetric-on-time modulator, the small-signal transfer
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function G∗PWM(s) can be expressed as [25]

G∗PWM(s) =
Ts
2

(e−s
(3−D)Ts

2 + e−s
(3+D)Ts

2 ). (3.17)

For double-update-mode PWM where the sampling frequency and updating

rate is as twice as the switching frequency, the triangle carriers are usually used.

To provide the double-update-mode PWM model, the symmetric-on-time modu-

lator is used as the example. The key waveforms of double-update-mode bipolar

switched H bridge are shown in Fig. 3.11.
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Figure 3.11: Key waveforms of double-update-mode uniformly-sampled bipolar
switched H bridge.

For bipolar switched H bridges, each switching cycle contains two updated

samples with two relevant switching actions. If the sample is updated at the

upper peak of the carrier, the delay from u∗ to ŷ is (1−D)Ts
2

. On the other hand,

if the sample is updated at the lower peak of the carrier, the delay from u∗ to ŷ

becomes DTs
2

. During each switching cycle, the possibilities of the two situations

are equal. As the exact analytical expression of the double-update-mode PWM

model is not easy to obtain, the approximation can be applied by averaging the

two delay effects. With half switching cycle DSP delay from x∗ to u∗, the double-

update-mode PWM model of the bipolar switched H bridge is given by [25]

G∗PWM(s) =
Ts
4

(e−s
(2−D)Ts

2 + e−s
(1+D)Ts

2 ). (3.18)
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3.3.2 Unipolar switched H bridges

If there are three voltage levels produced on the switch voltage vin, i.e., Vdc, 0

and −Vdc, the H bridge is unipolar switched. When the H bridge is unipolar

switched, the key waveforms with single-update are shown in Fig. 3.12. For end-

of-on-time modulator, the duty-ratio can be updated twice a switching cycle. The

filter input voltage frequency of the unipolar switched H bridge is equivalent to

the switching frequency. However, for symmetric-on-time modulator, the duty-

ratio can be updated quadruply a switching cycle since the filter input voltage

frequency is as twice as the switching frequency. Hence, the modulation method

of using unipolar switched H bridge inverter with symmetric triangle carriers is

a good way to reduce the electromagnetic interference.
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(a) (b)

Figure 3.12: Key waveforms of uniformly-sampled single-update-mode unipolar
switched H bridge. (a) End-of-on-time modulator. (b) Symmetric-on-time mod-
ulator.

Similarly, the small-signal transfer function describing ŷ as a function of x̂∗ for

single-update-mode unipolar switched H bridge with end-of-on-time modulator is
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written as [25]

G∗PWM(s) =
Ts
2

(e−s(1+D)Ts + e−s(2−D)Ts). (3.19)

For single-update-mode unipolar switched H bridge with symmetric-on-time mod-

ulator, the transfer function is given by [25]

G∗PWM(s) =
Ts
4

(e−s
(2+D)Ts

2 + e−s
(3−D)Ts

2 + e−s
(3+D)Ts

2 + e−s
(4−D)Ts

2 ). (3.20)

The key waveforms of double-update-mode unipolar switched H bridge is

shown in Fig. 3.13.
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Figure 3.13: Key waveforms of uniformly-sampled unipolar switched H bridge
with double-update-mode.

For unipolar switched H bridges containing two updated samples in each

switching cycle, four relevant switching transients are generated (see Fig. 3.13).

Two situation are discussed to obtain the PWM model. If the sample is updated

at the upper peak of the carrier, the delay terms from u∗ to ŷ are represented by

τd1 = DTs
2

and τd3 = (1−D)Ts
2

. On the other hand, if the sample is updated at the

lower peak of the carrier, the delay terms becomes τd2 = (1−D)Ts
2

and τd4 = DTs
2

.
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Therefore, no matter whether the sampling starts at the upper peak or lower

peak of the carrier, the delay effect does not change. As a result, the small-signal

double-update-mode PWM model for the unipolar switched H bridge is [25]

G∗PWM(s) =
Ts
4

(e−s
(2−D)Ts

2 + e−s
(1+D)Ts

2 ). (3.21)

Comparing double-update-mode PWMs to the uniformly-sampled PWMs, it

can be seen that the double-update-mode PWMs result in a minimum delay time.

Hence, the double-update-mode is usually the recommended PWM strategy. In

practice, more sampling methods rather than uniform-sampling may be used,

such as asynchronous sampling, multisampling and hybrid sampling. In those

cases, the small-signal PWM model should be modified to accommodate the

sampling methods. However, the strategy of developing the transfer functions in

this section can be used in other cases.

3.4 Block diagrams of digitally controlled switch-

ing converters

3.4.1 Block diagram of a single control loop in s-domain

Based on the previous results, the block diagram of a switching converter with

a single loop digital controller can be schematically represented in Fig. 3.14 (a),

where the block of a switch with sampling period Ts represents the ideal sampler

and Gc(z) represents the digital compensator. The meanings of the variables in

Fig. 3.14 (a) are the same as those in Fig. 3.8 and Fig. 3.10. The output of

this block diagram is the measurable quantity q (usually representing the output

voltage or current). Fig. 3.14 (a) can be rearranged as is shown in Fig. 3.14 (b),

with the switching output y defined as the output of the block diagram. This ar-

rangement is convenient for obtaining the block diagrams of the cascaded control

loops in the following subsections. The switching converter output q as a function

of the switching output y is described by the block transfer function P (s).

In order to analyze the frequency response, the s-domain model in large signal

is required. Instead of using the sampled reference q∗ref , qref is used as the analog

reference input. The compensator Gc(z) should be converted into s-domain by

using z = esTs , which when approximated, can be written as

Gc(s) = Gc(z)|z=esTs ≈ Gc(z)|
z=

1+sTs/2
1−sTs/2

. (3.22)

The ZOH block is moved to be in front of the DSP delay block so that the DSP

delay and the comparator can be modeled as a delay block GPWM(s). When

triangle carriers are used, the approximation of large signal transfer function
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Figure 3.14: Block diagram of a single loop digitally controlled switching con-
verter. (a) Original block diagram. (b) Rearranged block diagram.

of GPWM(s) can be derived by averaging the delay effects. Therefore, the block

diagram of the single control loop in s-domain can be shown in Fig. 3.15. Analysis

in s-domain can be performed based on this model. In most cases, the transfer

function of the sampler can be regarded as 1
Ts

with good accuracy under the

Nyquist frequency.

 

Figure 3.15: Block diagram of the single control loop in large signal s-domain.

3.4.2 Block diagram of a single control loop in small-signal
z-domain

The digital PWM is a block described by a small-signal pulse-to-continuous trans-

fer function G∗PWM(s). Hence, from x̂∗ to q̂, the pulse-to-continuous transfer
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function becomes

H(s) = G∗PWM(s)P (s). (3.23)

To obtain the small-signal pulse transfer function describing the sample q̂∗

as a function of x̂∗, z-transform is used. Combining H(s) with the sampler, the

pulse transfer function can be derived as

H(z) = Z{H(s)}. (3.24)

 

Figure 3.16: Block diagram of the single control loop in small-signal z-domain.

Therefore, the feedback path including the sampler can be described by the

z-domain transfer function. The block diagram of the single control loop can

be represented in Fig. 3.16, based on which the z-domain analysis can be imple-

mented.

3.4.3 Block diagram of cascaded control loops in s-domain

In many second or higher order control systems, controllers with cascaded feed-

back loops are widely used. For a controller with two cascaded control loops,

the internal control loop usually has a faster dynamic performance than that of

the external one. The simplified block diagram can be schematically shown in

Fig. 3.17. The plant transfer functions for internal control loop and external

control loop are represented by P1(s) and P2(s), respectively.

In order to analyze the frequency response, the s-domain model in large signal

is required. Instead of using q∗ref2, qref2 is used as the reference input. As a result,

the sampler for the external feedback loop can be placed in front of the controller

of the external loop. The compensators Gc1(z) and Gc2(z) are converted into s-

domain using bilinear transforms. In a digital control loop, the transfer function of

a sampler preceded by a ZOH is 1. Therefore, a virtual ZOH followed by a virtual

sampler can be placed after the compensator Gc2(s) in the external control loop.

Moreover, the virtual sampler and the sampler in the internal feedback loop are

moved in front of the controller of the internal loop. Therefore, the block diagram

of the cascaded control loops in s-domain can be expressed as in Fig. 3.18.
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Figure 3.17: Block diagram of digitally controlled switching converter with cas-
caded loops.

 

Figure 3.18: Block diagram of the cascaded control loops in large signal s-domain.

3.4.4 Block diagram of cascaded control loops in small-
signal z-domain

Based on the z-domain modelling method for the single control loop, the block

diagram of the two cascaded control loops can be arranged as in Fig. 3.19.

 

Figure 3.19: Block diagram of the cascaded control loops in small-signal z-
domain.

Since the output of the PWM block is an analog signal, this block should

be placed in each feedback path, where the sampler can convert the output into

digital signal. The transfer functions for the feedback paths of the internal loop
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Figure 3.20: The digitally controlled buck inverter. (a) Power circuit. (b) Voltage
and current controller.

and the external loop are given by

H1(z) = Z{G∗PWM(s)P1(s)} (3.25)

and

H2(z) = Z{G∗PWM(s)P2(s)}, (3.26)

respectively. Thus, the z-domain analysis of the cascaded control loops can be

performed according to the block diagram.

3.5 Design of digital controllers

For a digitally controlled power inverter, the design of controller is according

to the system specifications. Achieving good transient and steady-state perfor-

mance and sufficient robustness are the main concerns for design. Robustness is

required for the system to have enough stability margin. A typical robustness

requirement is that a system should have a gain margin of two before reaching

the stability boundary. Several methods can be used to implement the design,

such as simulation, root locus and frequency response [27]. This section provides

an example of the controller design for a digitally controlled power inverter to ex-

plain these methods. A voltage and current controlled bipolar switched H bridge

buck inverter is exemplified and shown in Fig. 3.20.

The controller is comprised of cascaded feedback control loops with duty-ratio

feedforward. The internal current compensator is a proportional compensator,
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Table 3.1: Parameters of the Inverter
Symbol Quantity Value
Vdc DC voltage amplitude 200 V
Ts Sampling period 50 µs
L Inductor 1642 µH
rL Inductor parasitic resistance 0.4 Ω
C Capacitor 10 µF
R Resistor 30 Ω

and the external voltage compensator is a PI compensator. The voltage PI con-

troller is represented in z-domain as

Gv(z) = kv(1 +
kiTs
z − 1

). (3.27)

The voltage and current are synchronously sampled and the DSP delay is

assumed to be one switching cycle. Symmetric-on-time modulator is used to

generate the drive signals. The parameters of the system are shown in Table 3.1.

These parameters are extracted from the experimental system and used for the

design example in this section.

3.5.1 Design by simulation

The first direct method to design and evaluate the controller is based on simula-

tion [27]. A control system can be built in software such as MATLAB/Simulink

with continuous-time and discrete-time models. The block diagram of the digi-

tally controlled buck inverter is shown in Fig. 3.21.
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Figure 3.21: Simulink block diagram of digitally controlled buck inverter.

The reference voltage is set to step from zero to 100 V at 0.004 s. The tran-

sient response can be obtained from the simulation of the inverter model. When

the parameters of the PI controller are chosen as ki = 5000 and kv = 0.05, the

simulated voltage waveform is shown in Fig. 3.22. The transient response is eval-

uated by the rise time tr, the settling time ts and the overshoot Mp. These values
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can be measured from the simulation results and the design can be implemented

according to the time-domain specifications.

 

Figure 3.22: Simulation retrieved voltage waveform of the digitally controlled
buck inverter.

The values measured for the transient response from the simulation are tr =

0.0001 s, ts = 0.0024 s, and Mp = 42%. The overshoot appears with a oscillatory

frequency of 2.44 kHz. As is shown in Fig. 3.22, the measured average steady-

state error is 0.7%. In the following subsections, these results will be compared

with the analytical results.

3.5.2 Design by root locus

The second method for controller design is based on the root locus of the discrete

system [27]. For the PI controller of the buck inverter, the root locus is derived

when the proportional gain kv varies. The z-domain model of the buck inverter

can be schematically shown in Fig. 3.23.

The discrete transfer functions GiLx(z) and Gvox(z) can be obtained by

GiLx(z) = Z{G∗PWM(s)GiLy(s)} (3.28)
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Figure 3.23: z-domain model of digitally controlled buck inverter.

and

Gvox(z) = Z{G∗PWM(s)Gvoy(s)}, (3.29)

respectively. The discrete transfer functions GiLx(z) and Gvox(z) can be simplified

to

GiLx(z) =
Ni1z +Ni0

z3 +D1z2 +D0z
(3.30)

and

Gvox(z) =
Nv1z +Nv0

z3 +D1z2 +D0z
, (3.31)

respectively, with Ni0 = −VdcTsD0

2
(Aie

aτ1 + Aie
aτ2 +Bie

bτ1 +Bie
bτ2),

Ni1 = VdcTs
2

(Aie
−a(Ts−τ1) + Aie

−a(Ts−τ2) +Bie
−b(Ts−τ1) +Bie

−b(Ts−τ2)),

Nv0 = −VdcTsD0

2
(Ave

aτ1 + Ave
aτ2 +Bve

bτ1 +Bve
bτ2),

Nv1 = VdcTs
2

(Ave
−a(Ts−τ1) + Ave

−a(Ts−τ2) +Bve
−b(Ts−τ1) +Bve

−b(Ts−τ2)),

D1 = −e−aTs−e−bTs , D0 = e−(a+b)Ts , a = 1
2
( 1
CR

+ rL
L

+
√

∆), b = 1
2
( 1
CR

+ rL
L
−
√

∆),

∆ = ( 1
CR

+ rL
L

)2 − 4(R+rL)
LCR

, Ai = aCR−1
LCR(a−b) , Bi = 1−bCR

LCR(a−b) , Av = − 1
LC(a−b) , Bv =

1
LC(a−b) , τ1 = (1−D)Ts

2
and τ2 = (1+D)Ts

2
.

Therefore, when kc = 16 and kff = 1, the open-loop transfer function can be

obtained based on the z-domain model and the root locus versus kv is shown in

Fig. 3.24.

When kv = 0.05, it can be obtained from Fig. 3.24 that the conjugate pole

pairs have a damping ratio of ζ = 0.136 and a natural frequency (angular) of

ωn = 15.5 kHz. Thus, the rise time and settling time are given by

tr ≈
1.8

ωn
= 0.00012 (3.32)

and

ts ≈
4.6

ζωn
= 0.0023, (3.33)
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Figure 3.24: Root locus of digitally controlled buck inverter.

respectively. The overshoot can be crudely approximated by

Mp ≈ e−πζ/
√

1−ζ2 = 67%. (3.34)

Compared to the previous subsection, the rise time and settling time results

retrieved from root locus are almost in accordance with the simulation results.

The conjugate poles (0.622 ± j0.645) have a oscillatory frequency of 2.44 kHz

(This is different from the natural frequency). However, as (3.34) is a crude

approximation [27], the overshoot results of the two methods are not in good

agreement.

3.5.3 Design by frequency response

Frequency response design based on the Bode plot has attracted wide interests

[27]. The Bode plot can be obtained by either mathematical model or experimen-

tal measurement. By using frequency response method, the gain and phase at

required frequency of the system can be directly obtained from the Bode diagram.

Nyquist’s stability condition such as gain and phase margins can be retrieved.

The steady-state error, resonant peak and bandwidth can also be observed from

the frequency response.

Following on from the example of the buck inverter, based on Fig. 3.23, the

closed-loop transfer function can be written as

Gclose(z) =
(kff +Gv(z)kc)Gvox(z)

Vdc +Gv(z)kcGvox(z) + kcGiLx(z)
. (3.35)
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Figure 3.25: Bode diagram of closed-loop transfer function of the buck inverter.

The Bode diagram of the closed-loop transfer function is shown in Fig. 3.25. The

Bode curve stops at Nyquist frequency which is 10 kHz. As can be measured

from the Bode diagram, the gain in low frequency range is almost unity. The

resonant peak appears at the frequency of 2.43 kHz and the steady-state error is

less than 0.01%. The bandwidth of the system is about 3.22 kHz. Compared to

the simulation result, the resonant frequency on Bode diagram is in accordance

with the simulated oscillatory frequency in the transient response.

3.6 Simulation and experimental preparations

3.6.1 Simulation environment

The simulation work of the thesis is implemented in MATLAB/Simulink and

PLECS. The digital controllers can be built up by commonly used classic Simulink

models. The power circuit is comprised of PLECS elements. PLECS is a Simulink

toolbox developed by Plexim GmbH for fast simulation of power electronic cir-

cuits. A typical example of PLECS circuit is shown in Fig. 3.26.

3.6.2 Experimental setup

Experimental systems in the thesis are comprised of power inverters, filters, mea-

surement circuits and digital signal processors. Each power inverter printed cir-

cuit board (PCB) is composed of Mitsubishi Intelligent Power Modules (IPM)

PM30CSJ060 with a heat sink and optical couplers for drive. This board con-
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Figure 3.26: A grid-connected inverter power circuit composed by PLECS ele-
ments.

tains a three-phase inverter but is only used as a single-phase inverter (one leg

is not used). The input of this board is a dc power from a voltage source for in-

verters’ dc-link and PWM signals for driving switches. The output of this board

is the voltage between two legs of the H bridge and the fault signal of IPM. The

PCB layout is shown in Fig. 3.27.

 

Figure 3.27: The PCB layout of a power inverter and drive circuit.

The output filter and measurement circuit for voltage and current signals are

designed on one board, which PCB layout is shown in Fig. 3.28. The filter is

an LCL filter which can also be used as an LC filter. The currents of the two

inductors are measured by Hall sensors and converted to an analog signal ranging

from 0 to 3 V. The voltages of the capacitor and the output terminal are measured

and converted as well. The input of this board is the switch voltage. The output
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of this board is the output voltage of the capacitor, the output current of grid

side inductor, and the measured signals for ADCs.

The TMS320F28335 Experimenter Kits are used as the main controllers. The

controller boards are designed by Texas Instrument. Each controller board pro-

vides drive signals for inverter board. The controller board also monitors the

fault signal from IGBTs for protection. The measured signals of voltages and

currents are provided to ADC channels on the controller board. The picture of

the TMS320F28335 Experimenter Kit is shown in Fig. 3.29.

 

Figure 3.28: The PCB layout of a filter and measurement circuit.
f28335_usb_dock.jpg (PNG Image, 918x532 pixels) http://www.ti.com/graphics/tool/f28335_usb_dock.jpg
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Figure 3.29: The picture of the controller board.
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A single-phase inverter can be comprised of a power inverter board, a filter and

measurement board and a controller board. This inverter system can operates

in either stand-alone mode or grid-connected mode. By arranging more power

inverter boards together without changing the filter and measurement board and

the controller board, the multilevel cascade inverter can be constructed.

3.7 Conclusions

This chapter presents a general modelling technique for digitally controlled switch-

ing converters. The chapter analyzes the delay effect of uniformly-sampled PWMs

in detail. The delay effect varies when different carriers and duty-ratio update

methods are used. The small-signal PWM model precisely describes the delay

effect in a digital controller. This model is also extended to bipolar and unipolar

switched H bridges. The approximated models for double-update-mode PWMs

are also obtained. Block diagrams for digital control systems are obtained in

both s-domain and z-domain based on the proposed model. Therefore, a digi-

tal controller can be designed either in s-domain or in z-domain. An example

of controller design based on z-domain model is provided. This controller is di-

rectly designed in z-domain and the control performance is evaluated based on

the z-domain analysis. A comparison between different design methods reveals

the validity of the proposed model. Finally, the simulation software and experi-

mental setup for the rest the thesis are presented, which shows the methods used

in this thesis for validation of the proposed models.
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Chapter 4

Design of Digitally Controlled
Parallel Inverters

4.1 Introduction

This chapter provides an example of designing digital controllers for voltage con-

trolled inverters in renewable energy system. As is known, the load sharing per-

formance of digitally controlled parallel inverters is influenced by the output filter

and the line impedance between each inverter. Hence, designing the controller

usually determines how accurately the inverters share the load. For inverters with

the same circuit and control parameters, it seems that the load can be shared

equally. However, the filter inductors and capacitors and the feedback circuits

of the parallel inverters usually have notable difference. Due to the inconsisten-

cies of the filter and measurements parameters, guaranteeing accurate sharing

between each inverter under all circumstances is not straightforward. For this

reason, droop control methods have been developed [51]–[52], which are suitable

for parallel inverters with considerable unknown differences of the filter param-

eters and line impedance between each module. This strategy is based on the

conventional frequency and voltage droop according to the output power, which

achieves accurate active power sharing but inaccurate reactive power sharing due

to the mismatched line impedances [51], [53].

Since the frequency droop method achieves good accuracy in sharing loads, it

has been extended to improve the sharing accuracy of the reactive current or any

order of harmonic current [54]. However, injecting a series of harmonic signals

and calculating the power for each component is not practical. More realistic

methods are proposed in [40], [55] and [56], which enforce the output impedance

of the inverters. Output current feedback is used as a virtual impedance loop

in these methods. To suppress the harmonic distortion when nonlinear loads are

connected, the voltage reference is generated with a droop according to each har-
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monic component of the output current [2],[57]. This harmonic sharing method is

similar to the scheme proposed in [58], which can be considered as decreasing the

magnitude of output impedance at harmonic frequencies. These control strategies

are combined with the droop methods to obtain a good sharing accuracy.

Usually, power sharing is mainly implemented by using droop control meth-

ods. For high performance parallel inverters system, droop controller may result

in poor transient response performance [59] or reduced voltage regulation due

to the frequency variation. For digitally controlled parallel inverters connected

with short cables, the droop controller can be removed if the voltage controller

is capable of overcoming the mismatched hardware parameters. Without droop

controller, synchronizing inverters to the grid is straightforward. However, if the

controller is insufficient to achieve accurate load sharing, the droop controller

must be used to compensate the error. In order to achieve a good control per-

formance, the feedback gains of the inverters at the fundamental and harmonic

frequencies should be relatively high. The proportional gains of each inverter

are usually limited since it will reduce the stability margin significantly in dig-

itally controlled systems [60]. Therefore, an additional resonant compensator

is proposed to enhance the gain at the fundamental frequency [14], [61]. The

proportional plus resonant (PR) compensator can achieve high gain at selected

frequencies, reducing the sensitivity versus the circuit parameters. Nevertheless,

when PR controller is applied, trade off between stability, dynamic performance

and control accuracy has to be made. With higher proportional gains applied, the

steady-state error is reduced, but the system may become unstable. On the other

hand, a compensator with a high gain resonating at the fundamental frequency

has little influence on stability, but it brings significant phase error especially

when the line frequency varies.

In this chapter, the z-domain model is derived for digitally controlled inverter,

based on which the stability is investigated. The limitation of the proportional

gains in feedback loops is obtained which must be followed during the design.

A good trade off between stability and control accuracy is achieved by using a

linear voltage control scheme [30], [48] with duty-ratio feedforward [28]. Com-

pared to the classic PR controller, the proposed linear voltage control scheme

with duty-ratio feedforward highlights advantages such as: simple structure, low

sensitivities, good sharing performance and higher output voltage quality. The

theoretical analysis have been verified by the simulation and experimental results

of two digitally controlled inverters connected in parallel.
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(a)

PWM

 
(b)

Figure 4.1: The single phase digitally controlled inverter. (a) The power circuit.
(b) The controller.

4.2 Small-signal z-domain analysis of digitally

controlled inverters

The typical power circuit prototype and controller for a voltage controlled in-

verter are shown in Fig. 4.1. The power circuit consists of a bipolar switched H

bridge and an output LC filter. The controller, as shown in Fig. 4.1(b), is a cas-

caded digital controller consisting of a capacitor voltage and an inductor current

feedback with duty-ratio feedforward. The inductor current is sensed for the in-

ternal current feedback loop, where i∗L is the ideally sampled quantity. Although

the capacitor current feedback is an alternative solution, since the load usually

has a negligible dynamic behaviour, the two feedback schemes are equivalent [44].

The capacitor voltage is sensed for the external voltage feedback loop, where v∗o
is the ideally sampled quantity. Both the sampling period and the switching

period are Ts = 1
fs

. The duty-ratio calculated from the samples is updated at

each sampling instant, therefore the duty-ratio update delay1 is z−1. In digitally

controlled systems, using the s-domain model for stability analysis will lead to

inaccurate results. Therefore, in order to choose the control parameters in the

feedback path, the stability of the system is studied in small-signal z-domain.

The current control loop with a digital PWM modeled by a pulse-to-continuous

1Once the circuit variables are sampled, the digital processor calculates the duty-ratio value,
which needs some time. In the same time, the PWM compare register is waiting for the next
sampling instant to update the duty-ratio value. Hence, the computation delay has already
been included in the duty-ratio update delay.
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Figure 4.2: Model for the current control loop of the digitally controlled inverter.

transfer function G∗PWM(s) is represented as in Fig. 4.2. If the average duty-ratio

D is scaled into the range of 0 ≤ D ≤ 1, where D = 0 and D = 1 represent

the inverter achieving minimum output −Vdc and maximum output Vdc, respec-

tively, the transfer function of the ZOH and PWM in small-signal model can be

represented as [25]

G∗PWM(s) = Ts(αe
−sτ1 + (1− α)e−sτ2), (4.1)

where ratio α (0 ≤ α ≤ 1) is the duration of the falling edge of the carrier relative

to the sampling period Ts, which can result in end-of-on-time sawtooth, begin-of-

on-time sawtooth and symmetric-on-time triangle carriers. τ1 = (α−αD)Ts and

τ2 = (α+D−αD)Ts. In (4.1), the gain Ts and the delay e−sτ1,2 are introduced by

the ZOH and the PWM generator, respectively. Assuming the total delay of the

switches drive and signals transport is τi, when the cable resistance is negligible

and a pure resistor R is loaded in Fig. 4.1(a), the transfer function from u∗ to i∗L
in z-domain can be derived as [6]

Giu(z) = Z{G∗PWM(s)VdcGiLvs(s)e
−sτi} (4.2)

with

GiLvs(s) =
s/L+ 1/LCR

s2 + s(1/CR + rL/L) + (R + rL)/LCR
. (4.3)

This z-transform can be derived by splitting Giu(z) to

Giu(z) = αVdcTs(
Aie

a(τ1+τi−Ts)

z − e−aTs
+
Bie

b(τ1+τi−Ts)

z − e−bTs
)

+ (1− α)VdcTs(
Aie

a(τ2+τi−Ts)

z − e−aTs
+
Bie

b(τ2+τi−Ts)

z − e−bTs
) (4.4)

with a = 1
2
( 1
CR

+ rL
L

+
√

∆), b = 1
2
( 1
CR

+ rL
L
−
√

∆), ∆ = ( 1
CR

+ rL
L

)2 − 4(R+rL)
LCR

,

Ai = aCR−1
LCR(a−b) and Bi = 1−bCR

LCR(a−b) . Hence, the transfer function Giu(z) becomes

Giu(z) =
Ni1z +Ni0

z2 +D1z +D0

(4.5)
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with Ni1 = VdcTs(αAie
−a(Ts−τ1−τi) +(1−α)Aie

−a(Ts−τ2−τi) +αBie
−b(Ts−τ1−τi) +(1−

α)Bie
−b(Ts−τ2−τi)),

Ni0 = −VdcTsD0(αAie
a(τ1+τi)+(1−α)Aie

a(τ2+τi)+αBie
b(τ1+τi)+(1−α)Bie

b(τ2+τi)),

D1 = −e−aTs − e−bTs and D0 = e−(a+b)Ts . The discrete-time closed-loop transfer

function from i∗ref to u∗ without feedforward is written as

G1(z) =
kc
Vdc
z−1

1 + kc
Vdc
z−1Giu(z)

. (4.6)

The characteristic equation of (4.6) is

z3 +D1z
2 + (D0 +

Ni1kc
Vdc

)z +
Ni0kc
Vdc

= 0. (4.7)

Since a+b = 1
CR

+ rL
L

, it can be derived that D0 = e−(1/RC+rL/L)Ts and Ai+Bi = 1
L

.

If fs � 1√
LC

, fs � rL
L

and delay τi is very small compared to one switching

period, in the extreme condition of no load (R = ∞), it can be approximated

that a = j
√

1
LC

, b = −j
√

1
LC

(the real parts of a and b are much smaller than

their imaginary parts), D0 = 1 and D1 = −2 (the absolute value of D1 reduces if

fs
√
LC is close to 1). When the sawtooth carriers are used, e.g. the end-of-on-

time carrier with α = 0 and τ2 = DTs, Ni1 and Ni0 becomes

Ni1 = VdcTs((Ai +Bi) cos(

√
1

LC
(1−D)Ts)− j(Ai −Bi) sin(

√
1

LC
(1−D)Ts))

(4.8)

and

Ni0 = −VdcTsD0((Ai +Bi) cos(

√
1

LC
DTs) + j(Ai −Bi) sin(

√
1

LC
DTs)), (4.9)

respectively.

If the assumption of the cos(
√

1
LC
DTs) ≈ 1 is used, (Ai+Bi) cos(

√
1
LC
DTs) is

much bigger than (Ai−Bi) sin(
√

1
LC
DTs). Then the approximation of Ni1 = VdcTs

L

and Ni0 = −VdcTs
L

can be obtained. Similarly, when the triangle carriers are used,

e.g. the symmetric-on-time carrier with α = 1
2
, τ1 = (1−D)Ts

2
and τ2 = (1+D)Ts

2
, the

approximation of Ni1 = VdcTs
L

and Ni0 = −VdcTs
L

can be derived using the same

approach. Substituting the approximated values of D0 = 1, D1 = −2, Ni1 = VdcTs
L

and Ni0 = −VdcTs
L

into (4.7), the equation becomes

(z2 − z +
Tskc
L

)(z − 1) = 0. (4.10)

If Tskc
L

< 0, the pole z = 1
2

+ 1
2

√
1− 4Tskc

L
will be out of the unit circle. If Tskc

L
> 1,

there will be two conjugated poles out of the unit circle. Therefore, the internal

loop stable condition is

0 < kc <
L

Ts
. (4.11)
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Table 4.1: Parameters of the Islanding Inverters
Symbol Quantity Value
Vdc DC voltage amplitude 200 V
Ts Switching and sampling period 50 µs
L Inductance 1642 µH
C Capacitance 10 µF
rL Inductor parasitic resistance 0.4 Ω
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Figure 4.3: Root loci of the internal current loop. (a) End-of-on-time modulator
with D = 0.75. (b) Symmetric-on-time modulator with D = 0.5.

Numerical results are also provided to verify the approximated analytical sta-

bility condition (4.11). By using the parameters in Table 4.1, the root loci of

the internal loop with different carriers are shown in Fig. 4.3. The accurate re-

sults for maximum kc can be obtained. In Fig. 4.3(a) and (b), the maximum

gain values are kc = 27.7 and kc = 28.5, respectively, which are smaller than

the analytical result of L
Ts

= 32.8 in (4.11). This is because that the numerical

result of D0 = −1.83 (fs
√
LC = 2.55) is quite different from the approximation

of D0 = −2 (fs
√
LC � 1). However, regardless of the carriers and average

duty-ratio, the approximated result in (4.11) is acceptable and kc is usually much

smaller than the critical value L
Ts

in practice. This kc is also related to the exter-

nal voltage loop stability. In order to find proper control parameters, the entire

model of the cascaded control loops is required [59].

The digitally controlled inverter with cascaded control loops is schematically

represented in Fig. 4.4 [6], where

Gvovs(s) =
1/LC

s2 + s(1/CR + rL/L) + (R + rL)/LCR
. (4.12)
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Figure 4.4: Model for the cascaded control loops of the digitally controlled in-
verter.

The discrete transfer function from u∗ to v∗o is written as

Gvu(z) = Z{G∗PWM(s)VdcGvovs(s)e
−sτv} (4.13)

with τv a negligible delay introduced by the drivers and transport of signals. The

transfer function Gvu(z) can be derived as

Gvu(z) = αVdcTs(
Ave

a(τ1+τv−Ts)

z − e−aTs
+
Bve

b(τ1+τv−Ts)

z − e−bTs
)

+ (1− α)VdcTs(
Ave

a(τ2+τv−Ts)

z − e−aTs
+
Bve

b(τ2+τv−Ts)

z − e−bTs
) (4.14)

with Av = − 1
LC(a−b) and Bv = 1

LC(a−b) . Therefore, Gvu(z) can be written in a

shorter form as

Gvu(z) =
Nv1z +Nv0

z2 +D1z +D0

(4.15)

with

Nv1 = VdcTs(αAve
−a(Ts−τ1−τv) + (1 − α)Ave

−a(Ts−τ2−τv) + αBve
−b(Ts−τ1−τv) + (1 −

α)Bve
−b(Ts−τ2−τv))

and

Nv0 = −VdcTsD0(αAve
a(τ1+τv)+(1−α)Ave

a(τ2+τv)+αBve
b(τ1+τv)+(1−α)Bve

b(τ2+τv)).

Hence, according to Fig. 4.4, the closed-loop transfer function from v∗ref to v∗o
without feedforward can be written as

G2(z) =
Gv(z)G1(z)Gvu(z)

1 +Gv(z)G1(z)Gvu(z)
. (4.16)

The stability usually limits the proportional gains in the digitally controlled

converters [60]. Root loci are used to find the proper value of kv. To ensure

enough stability, the control parameter kc should be smaller than the maximum

value in Fig. 4.3. In our case, kc = 8 is chosen. Then the external voltage loop
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Figure 4.5: Root loci of the external voltage loop. (a) End-of-on-time modulator
with D = 0.5. (b) End-of-on-time modulator with D = 0.75. (c) Symmetric-on-
time modulator with D = 0.5. (d) Symmetric-on-time modulator with D = 0.75.

stability can be studied based on the z-domain closed-loop transfer function of

(4.16). With the parameters in Table 4.1, when the inverter is not loaded, the root

loci of the external voltage loop with different carriers and average duty-ratios

are shown in Fig. 4.5.

It can be seen in Fig. 4.5 (a) and (b) that the external voltage loop stability

condition for the end-of-on-time modulator is dependent on D. When D = 0.5

and D = 0.75, the critical values are given by kv = 0.108 and kv = 0.091,

respectively. However, for the symmetric-on-time modulator, the stable condition

is always kv < 0.108. This is because when the end-of-on-time carrier is used, the

transfer function of G∗PWM(s) = Tse
−sDTs is dependent on D, and consequently

the closed-loop transfer function of (4.16) is also dependent on D. When D is
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bigger, the delay is bigger and the stable range of kv is reduced, which is a big

disadvantage for its application in an ac system. On the other hand, when the

triangle carriers are used, the approximation of G∗PWM(s) = Tse
− sTs

2 [59] results

in an average duty-ratio independent transfer function. The delay is as half as the

switching period. In this case, the closed-loop transfer functions are almost the

same with different D values. Therefore, the stability condition differs slightly

while D is changing. The stability condition for triangle carriers is also equivalent

to the condition when sawtooth carriers are used with D = 0.5 (half switching

period delay). As uniform-sampling with sawtooth carriers can not obtain the

average values of the inductor current and avoid switching noise [49, 32], in this

chapter the symmetric-on-time modulator is used. The proportional gains are

chosen as kc = 8 and kv = 0.05 to ensure stability and these gains are also

associated with the inverter output impedance, which will be illustrated in the

next section.

4.3 Controller design for power sharing

The closed-loop transfer function and output impedance are investigated in this

section. The analysis is performed in large signal to obtain duty-ratio independent

transfer functions. However, the analysis should be restricted to the frequency

range under the half sampling frequency fs
2

. The exact model of the digitally con-

trolled inverter is shown in Fig. 4.6, where the PWM equivalent delay GPWM(s)

is comprised of the duty-ratio update delay and the switching delay. Since the

duty-ratio is updated at each sampling instant, the duty-ratio update delay is one

switching period. If the symmetric-on-time carrier is used, the switching delay is

approximately equivalent to a half switching period [32]. As a result, GPWM(s)

can be written as

GPWM(s) = e−
3
2
sTs . (4.17)

In Fig. 4.6, the ideal samplers are used to take the samples into the digital

controller. On the other hand, the samples are converted to continuous-time

signals by ZOHs. The transfer function of the ideal sampler is 1
Ts

, if the input

signal contains frequencies lower than the fs
2

. The transfer function of the ZOH

is known as G∗ZOH(s) = 1−e−sTs
s

. Moreover, the transfer functions of GiLd(s),

Gvod(s), GiLio(s) and Gvoio(s) in Fig. 4.6 are expressed as

GiLd(s) =
sCVdc

s2LC + srLC + 1
, (4.18)

Gvod(s) =
Vdc

s2LC + srLC + 1
, (4.19)

52



 

Figure 4.6: Model of the digitally controlled inverter.

GiLio(s) =
1

s2LC + srLC + 1
(4.20)

and

Gvoio(s) =
sL+ rL

s2LC + srLC + 1
, (4.21)

respectively.

The digital compensator in the voltage control loop is a function of z. There

are two design strategies for digital controllers. One is direct digital design [25]

based on the z-domain model. The other one is indirect design which converts

the known s-domain controller into z-domain [32]. For ac systems where reso-

nant controllers are used, the indirect design is very good at implementing the

continuous-time transfer functions. Hence, in this chapter the indirect design is

used and the compensator is designed into z-domain by using bilinear transform.

The voltage compensator is obtained from a known Gv(s) by

Gv(z) = Gv(s)|s= 2
Ts

z−1
z+1
. (4.22)

In reverse, mathematically, Gv(s) = Gv(z)|
z=

1+sTs/2
1−sTs/2

. As z = esTs ≈ 1+sTs/2
1−sTs/2 ,

therefore Gv(z) = Gv(z)|z=esTs ≈ Gv(z)|
z=

1+sTs/2
1−sTs/2

= Gv(s). Similarly, kc and kff

in digital controller are also equivalent to their continuous-time transfer function

for the frequency lower than fs
2

. Therefore, the transfer function of the voltage

path in Fig. 4.6 is equivalent to

Gvp(s) = Gv(s)GZOH(s) (4.23)

with GZOH(s) the transfer function of the ideal sampler and the ZOH. It is ap-

proximated that GZOH(s) = 1−e−sTs
sTs

. The transfer functions of the current path

and the feedforward path are

Gcp(s) =
kc
Vdc

GZOH(s) (4.24)
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and

Gffp(s) =
kff
Vdc

GZOH(s), (4.25)

respectively. Hence, the continuous equivalent transfer functions for the entire

digital controller are derived and the analysis of load sharing performance can be

studied. According to Fig. 4.6, the closed-loop transfer function from vref to vo

is

G(s) =
(Gvp(s)Gcp(s) +Gffp(s))VdcGPWM(s)

s2LC + sC(Gcp(s)VdcGPWM(s) + rL) +Gvp(s)Gcp(s)VdcGPWM(s) + 1
(4.26)

and the output impedance transfer function from io to vo is

Z(s) =
sL+ (Gcp(s)VdcGPWM(s) + rL)

s2LC + sC(Gcp(s)VdcGPWM(s) + rL) +Gvp(s)Gcp(s)VdcGPWM(s) + 1
.

(4.27)

4.3.1 Proportional plus resonant feedback control

As described in the previous section, for digitally controlled converters, the pro-

portional gains are limited by the stability conditions. In practice, the integral

compensator, resonant compensator or repetitive compensator, etc., are used

together with the proportional compensator to improve the steady-state per-

formance. For ac system operating at the fundamental frequency, the integral

compensator is not usually used since it has high gain in low frequency range.

However, the resonant compensator has high gain at resonant frequency and low

gain at other frequencies. Therefore, the PR compensator is widely used to en-

hance the control accuracy in ac systems. This compensator implemented in a

digital controller is derived by using bilinear transform, which is written as

GvPR(z) = kv + k1
az1z

2 + bz1z + cz1
Az1z2 +Bz1z + Cz1

, (4.28)

with Az1 = 4
T 2
s

+ 4ξω1

Ts
+ ω2

1, Bz1 = − 8
T 2
s

+ 2ω2
1, Cz1 = 4

T 2
s
− 4ξω1

Ts
+ ω2

1, az1 = 4ξω1

Ts
,

bz1 = 0 and cz1 = −4ξω1

Ts
. The continuous equivalent s-domain transfer function

of GvPR(z) is

GvPR(s) = kv + k1
2ξω1s

s2 + 2ξω1s+ ω2
1

. (4.29)

To evaluate the PR compensator, the performance at the fundamental frequency

is studied. It can be derived that ω2
1LC = 0.0016 and ω1C = 0.0031 Ω−1.

Therefore, at the fundamental frequency, the denominators of (4.26) and (4.27)

are mainly determined by Gvp(s)Gcp(s)VdcGPWM(s) + 1. When the PR com-

pensator without feedforward (kff = 0) is used [61], the gain of the closed-

loop transfer function approaches unity when the gain in the feedback path, i.e.
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Gvp(s)Gcp(s) is high enough. Since ω1L = 0.515 Ω, at the fundamental frequency,

Gcp(s)VdcGPWM(s) is much higher compared to sL in (4.27). Therefore, with a

relative big k1, the output impedance magnitude at the fundamental frequency

is close to 1
k1

. At harmonic frequencies, the output impedance magnitude of the

proportional plus resonant compensator controlled inverter is nearly kc
kvkc+1

. As

described in the previous section, kv should be small enough to ensure the inverter

stability, which will lead to big output impedances at harmonic frequencies. When

nonlinear loads are connected, the current containing harmonic frequencies on the

respective considerable output impedance will result in voltage distortion. In or-

der to be able to trade off between voltage distortion and sharing performance,

additional feedback has to be used [57].

4.3.2 Linear voltage feedback scheme using duty-ratio feed-
forward

Since the voltage drop across the filter inductor is usually very small, the average

switch voltage Vdcd and the output voltage vo are almost identical. Therefore, by

adding the voltage reference value directly to the PWM generator (see Fig. 4.1),

the compensator only has to compensate for the small difference between Vdcd

and vo instead of compensating for vo entirely [28]. With duty-ratio feedforward,

the tracking error will be much smaller. According to Fig. 4.1, the feedforward

duty-ratio is

dff = kff
vref
Vdc

. (4.30)

As illustrated in the previous subsection, when a classic PR compensator without

feedforward (kff = 0) is used, the gain of G(s) close to unity is achieved by

a large numerator of Equation (4.26), i.e., by choosing a large gain of Gv(s)kc.

Resonant compensator with high gain can achieve large Gv(s) at the fundamental

frequency. However, high resonant gains will bring big phase error around the

resonant frequency, which is not acceptable in practice. When feedforward (kff =

1) is applied, the gain of G(s) is always close to unity. Hence, in the case of

feedforward, steady-state accuracy does not depend on a high gain in the feedback

path. On the other hand, the classic PR compensator arrangement is designed

for linear load sharing [61]. In this case, additional compensation has to be used

for nonlinear load sharing. In [57] and [2], an additional output current feedback

scheme is proposed to achieve the required virtual impedance at hth harmonic

frequency, where the measurement of output current is necessary. Therefore, to

avoid using additional measurements, the linear voltage compensator [6] written
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Table 4.2: Parameters of the Controller
Symbol Quantity Value
kc Current proportional gain 8
kv Voltage proportional gain 0.05
ω1 Fundamental angular frequency 2π·50 rad/s
ξ Damping factor 0.01
k1 Fundamental gain 1
k3 Third harmonic gain 1
k5 Fifth harmonic gain 1
k7 Seventh harmonic gain 1
k9 Ninth harmonic gain 1
k11 Eleventh harmonic gain 1
k13 Thirteenth harmonic gain 1

as

Gv(z) = kv +
13∑

h=1,odd

kh
azhz

2 + bzhz + czh
Azhz2 +Bzhz + Czh

(4.31)

is used, with Azh = 4
T 2
s

+ 4ξωh
Ts

+ ω2
h, Bzh = − 8

T 2
s

+ 2ω2
h, Czh = 4

T 2
s
− 4ξωh

Ts
+ ω2

h,

azh = 4ξωh
Ts

, bzh = 0 and czh = −4ξωh
Ts

. The respective continuous equivalent

voltage compensator is

Gv(s) = kv +
13∑

h=1,odd

kh
2ξωhs

s2 + 2ξωhs+ ω2
h

. (4.32)

It can be approximated from (4.27) that the output impedance at hth har-

monic frequency is comprised of two parts in parallel, i.e. kc
kvkc+1

and 1
kh

. Com-

pared to the classic PR compensator (h3,odd = 0), the proposed linear voltage

compensator has fixed the impedance at each harmonic frequency (less than 13th).

The advantage of choosing a small kv is that the output impedance in the low

frequency range is large. With a large output impedance in the low frequency

range, it has good suppression of low frequency and dc current circulating in the

parallel inverters. On the other hand, at hth harmonic frequencies, the output

impedance magnitude is approximately equal to 1
kh

, which can be adjusted ac-

cording to the requirement. The most important parameters of the linear voltage

compensator are ξ and kh. Again, the stability condition should be satisfied first.

As is shown in (4.31), the absolute values of azh and czh are almost ξωhTs times

greater than the absolute values of Azh and Czh. If the value of khξωhTs is much

smaller than kv, proportional gain is more dominant for stability condition. Nor-

mally, it is true that khξωhTs � kv. Fig. 4.7 shows the root loci of voltage loop

when resonant compensators are used with the proportional compensator. When

the additional compensator resonates at fundamental frequency, the root loci are
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Figure 4.7: Root loci of the external voltage loop when resonant compensators
are used. (a) Proportional compensator plus fundamental frequency resonant
compensator. (b) Proportional compensator plus thirteenth harmonic frequency
resonant compensator.

derived by increasing kv while maintaining k1 = 260kv. When the additional

compensator resonates at 13th harmonic frequency, the root loci are derived by

maintaining k13 = 20kv. With ξ = 0.01 [30], in both cases khξωhTs = 0.041kv is

satisfied. It can be seen from Fig. 4.7(a) and (b) that the stability boundaries

are reduced to kv < 0.098 and kv < 0.097, respectively. However, it can be seen

that in practice with relative small resonant gains, the proportional gain is the

most important factor for stability. Note that the harmonic resonant frequency

can not approach the sampling frequency. If a very high ωh is required, the rele-

vant gain kh should be reduced to maintain the stability. The frequency domain

response with different kh, ξ and ωh has been studied in [48] for compensators

design. These results can also be used for the design of the resonant compen-

sators. A bigger ξ results in a wider passband, but there is a trade off between

passband and stability. A bigger kh results in higher tracking capability and lower

output impedance, but the sharing accuracy will decline if the cable impedance

is large. Usually, kh is chosen according to the output power level. When the

system is designed for high output current, kh should be big and although the

circular current increases, it is small compared to the high output current. On

the contrary, if the system is operating in low power level, kh should be relatively

small to suppress the circular current. Although the output impedance is then

increased, such small output current results in acceptable voltage droop and dis-

tortion. With properly adjusted kh and kv according to the output power level,

a good trade off of current sharing and output voltage quality can be achieved.

57



10
-4

10
-2

10
0

10
2

M
ag

ni
tu

de
 (

ab
s)

10
1

10
2

10
3

10
4

-450

-360

-270

-180

-90

0

90
P

ha
se

 (
de

g)

Bode Diagram

Frequency  (Hz)

Figure 4.8: Bode diagram of closed-loop transfer function (full line: linear volt-
age control scheme with duty-ratio feedforward; dashed line: classic PR control
scheme).

The control parameters are chosen as listed in Table 4.2. Fig. 4.8 and Fig. 4.9

show the Bode diagrams of the closed-loop transfer function and the output

impedance, respectively. It can be seen from Fig. 4.8 that as a relative small

resonant gain (k1 = 20kv) is used, the gain of the closed-loop transfer function

at the fundamental frequency for the classic PR control scheme is close to unity

(|G(jω1)| = 0.89). However, there is a large phase error when the frequency

varies around the fundamental frequency, which will be increased by higher res-

onant gains. In contrast, by using the proposed linear voltage control scheme

with duty-ratio feedforward, the gain of the closed-loop transfer function is unity

(|G(jω1)| = 1.0) and the phase error around the fundamental frequency is close to

zero, achieving good tracking performance. On the other hand, the feedforward

does not affect the system stability, since the structure of the feedback loop is

not changed by the feedforward.

The output impedance Bode diagram (see Fig. 4.9) shows that the classic PR

compensator has a resistive output impedance with magnitude close to 1
k1

= 1.0

at the fundamental frequency. However, the magnitude of the output impedance

at other harmonic frequencies is close to kc
kvkc+1

= 5.7. In contrast, the output

impedance magnitude of the proposed linear voltage compensator at each har-

monic frequency is almost equal to 1
kh

= 1.0. With a relative large value of kh, the

output voltage distortion can be suppressed by the linear voltage compensator.
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Figure 4.9: Bode diagram of output impedance (full line: linear voltage control
scheme with duty-ratio feedforward; dashed line: classic PR control scheme).

4.3.3 Sensitivities

In practical parallel inverter systems, there are small differences between the

parameters for each module. Normally, the drivers, switches and digital signal

processors have negligible difference, the main difference usually comes from mea-

surements and filters. By using calibrated ADC, the measurements deviations can

be eliminated. However, the parameters of the filters are fixed and the differences

cannot be eliminated. Then, a good controller means, by using this controller in

each inverter, the parameters differences between different modules are negligible

in the power sharing point of view. Since there is no additional droop control,

the sensitivities of the closed-loop transfer function and output impedance ver-

sus filter parameters should be reduced. The sensitivities versus the capacitance

of the LC filter are not of interest since the capacitors poles are connected in

parallel through short cables to the PCC. These capacitors can be considered as

a lumped capacitor. Therefore, the sensitivities versus the inductance and the

parasitic resistance of the filter determine the sharing accuracy. By using the

proposed linear voltage compensator with duty-ratio feedforward, the sensitiv-

ity of the closed-loop transfer function versus the inductance and the parasitic

59



resistance is

∂G(s)

∂(sL+ rL)
=

− sC(Gvp(s)Gcp(s) +Gffp(s))VdcGPWM(s)

(s2LC + sC(Gcp(s)VdcGPWM(s) + rL) +Gvp(s)Gcp(s)VdcGPWM(s) + 1)2
.

(4.33)

On the other hand, the sensitivity of the output impedance versus the inductance

and the parasitic resistance is

∂Z(s)

∂(sL+ rL)
=

− Gvp(s)Gcp(s)VdcGPWM(s) + 1

(s2LC + sC(Gcp(s)VdcGPWM(s) + rL) +Gvp(s)Gcp(s)VdcGPWM(s) + 1)2
.

(4.34)

It can be seen from (4.33) and (4.34) that at any harmonic frequency, when

higher gain of Gv(jωh)kc is achieved, the sensitivities of the closed-loop transfer

function and the output impedance will be significantly reduced. Fig. 4.10 and

Fig. 4.11 show the Bode diagrams of the closed-loop transfer function and the

output impedance with filter parameters in two cases, respectively. When a large

difference exists in filter parameters (case 1: L = 1642 µH and rL = 0.4 Ω; case 2:

L = 2100 µH and rL = 1 Ω), the gains of the closed-loop transfer function at

the fundamental frequency are almost identical (see Fig. 4.10). Although the

output impedances have magnitude difference (see Fig. 4.11), this difference does

not affect the sharing performance too much (error is less than 10%). Since the

linear voltage compensator achieves high gains at resonant frequencies, the filter

parameters discordance can be neglected from sharing accuracy point of view.

4.4 Simulation results

The simulation of parallel inverters controlled by classic PR controller and by

the proposed controller is performed in MATLAB/Simulink environment. The

power circuit of the inverters is built by PLECS components, as is shown in

Fig. 4.12. There is one nonlinear load consisting a diode bridge, a capacitor in

parallel with a resistive load connected to the PCC. The load resistance is 27 Ω.

The whole digitally controlled system comprised of two parallel inverters is shown

in Fig. 4.13. The yellow block in Fig. 4.13 is the subsystem which contains the

circuit of Fig. 4.12. The controllers in the simulation are expressed in z-domain

according to the experimental system.

The sharing performances achieved by the classic PR controller with droop

method and the proposed controller are compared. Two inverters commanded
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Figure 4.10: Sensitivities of the closed-loop transfer function versus filter param-
eters (full line: case 1; dashed line: case 2).
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Figure 4.11: Sensitivities of the output impedance versus filter parameters (full
line: case 1; dashed line: case 2).

by 115 V reference voltage are connected in parallel. The circuit parameters

in Table 4.1 are used. The resistance of the resistive load is 27 Ω. The voltage

references of the two inverters are synchronized. The line impedances of Inverter 1

and Inverter 2 are 0.171 Ω and 0.147 Ω, respectively.

The simulated waveforms of the classic PR controller with a droop method

are shown in Fig. 4.14. The parameters in Table 4.2 are used, without harmonic
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Figure 4.12: Simulink block diagram of the power circuit of two parallel inverters.

compensators and feedforward. The droop method of P − V droop and Q − φ
boost is used [2], with the droop coefficient and boost coefficient of 1× 10−5 and

1× 10−4, respectively.

Although the current sharing (3.6 A) is good when linear loads are connected

(see Fig. 4.14(a)), the output voltage amplitude is only 99 V. When a nonlinear

load is connected, the output voltage is severely distorted (Fig. 4.14(b) and (c)).

The calculated results of output voltage THD when a nonlinear load is connected

(Fig. 4.14(b) and (c)) show that the output voltage has much higher distortion

compared to the results when only linear loads are connected (Fig. 4.14(a)). When

a linear load and a nonlinear load are connected, the THD is 2.9%. When one

nonlinear load is connected, the THD is 3.1%. The output voltage distortion is

not well suppressed by the classic PR controller without additional compensation.

To obtain a fair comparison between the two control schemes, the same pa-

rameters listed in Table 4.2 are used for the proposed controller. The simulation

retrieved output currents and voltage waveforms of the proposed control scheme

are shown in Fig. 4.15. The output currents of the two inverters are clearly equal

(3.9 A) with linear loads connected. Moreover, the output voltage is pure sinu-

soidal and the RMS value is 111 V (see Fig. 4.15(a)). When a nonlinear load is

connected, the output voltage is distorted (Fig. 4.15(b) and (c)) due to the exis-

tence of the line impedances and output impedances. When a linear load and a

nonlinear load are connected, the output voltage THD is 1.2%. When a nonlinear
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Figure 4.13: Simulink block diagram of two digitally controlled inverters in par-
allel.

load is connected, the THD is 1.4%. A comparison of the simulated performance

of the two control schemes is summarized in Table 4.3. It can be seen that in an

environment with a highly distorted output current, the proposed linear voltage

control scheme with duty-ratio feedforward is more capable of providing a better

voltage tracking capability and a lower output voltage distortion.

4.5 Experimental results

The sharing performance is experimentally evaluated by two 115 V, 1 kW in-

verters connected in parallel. The circuit parameters in Table 4.1 are used. The

experimental setup of the parallel inverters system is shown in Fig. 4.16. Two in-

verters are synchronized to the grid and connected to the common loads through

HO5VV-F cables. The resistances of the cables of Inverter 1 and Inverter 2 are

0.071 Ω and 0.047 Ω, respectively. The inductances of the cables are negligible

(less than 0.1 µH). The inductors parameters of Inverter 1 and Inverter 2 are
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(a) (b)

 
(c)

Figure 4.14: Simulated output voltage and currents of the two parallel inverters
with the PR and droop controller (X–axis: Time, 5 ms/div; Y–axis: Magnitude
of output currents and voltage; output currents, 5 A/div; output voltage, 50
V/div). (a) Linear loads. (b) Linear load and nonlinear load. (c) Nonlinear load.

L1 = 1632 µH (and rL1 = 0.38 Ω) and L2 = 1623 µH (and rL2 = 0.39 Ω), respec-

tively. The filter capacitances are C1 = 10.3 µF and C2 = 10.2 µF, respectively.

Due to the experimental condition, the output currents are measured by two

shunt resistors (with rsh1,2 = 0.1 Ω, ±1% resistance tolerance). The oscilloscope

is Tektronix TDS 2014B with 4 non-isolated channels.

The control method is implemented using two TMS320F28335 from Texas In-

struments. The H bridges of the buck inverters are Mitsubishi IPM. The switches

are driven indirectly via optical couplers and the deadband time is 2.67 µs. The

symmetric-on-time modulator is used and the duty-ratio is updated at each sam-

pling instant. The measurements are calibrated from power circuit side to ADC

side. By producing a group of reference dc current or voltage signals on mea-

surements input (x1, x2, ..., xn), there are a group of digital output values from

the ADC (y1, y2, ..., yn). In our case, n = 8 and the measured data of the two

inverters are shown in Table 4.4 and Table 4.5. For example, the first column of
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(a) (b)

 
(c)

Figure 4.15: Simulated output voltage and currents of the two parallel inverters
with the proposed controller (X–axis: Time, 5 ms/div; Y–axis: Magnitude of
output currents and voltage; output currents, 5 A/div; output voltage, 50 V/div).
(a) Linear loads. (b) Linear load and nonlinear load. (c) Nonlinear load.

Load

Inverter 2

Inverter 1

PCC
 

Figure 4.16: Schematic of the experimental setup of the parallel inverters system.

Table 4.4 represents the current values provided from a power source, while the

second column adjacent to it represents the value read from the relevant memory

of DSP. When the linear combination of polynomial basis functions is used, these
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Table 4.3: Simulated Output Performance Comparison of the Classic Controller
and the Proposed Controller

Load(s) Classic controller Proposed controller

Current RMS Linear 3.6 A 3.9 A
Voltage RMS Linear 99 V 111 V

Linear 0.7% 0.5%
Voltage THD Linear and nonlinear 2.9% 1.2%

Nonlinear 3.1% 1.4%

Table 4.4: Measured Data for Calibration of Inverter 1
IL IL Ig Ig Vc Vc Vg Vg

(Source) (DSP) (Source) (DSP) (Source) (DSP) (Source) (DSP)

6.00 A 473.1 6.00 A 508.1 160.1 V 3848.4 161.0 V 3863.6
4.50 A 860.3 4.50 A 884.0 129.3 V 3499.7 120.7 V 3400.3
3.00 A 1246.6 3.00 A 1260.4 84.3 V 2988.6 80.6 V 2939.3
1.50 A 1636.1 1.50 A 1638.2 41.6 V 2501.9 40.6 V 2480.6
0.00 A 2025.2 0.00 A 2016.8 0.00 V 2028.2 0.00 V 2015.1
−1.50 A 2411.6 −1.50 A 2394.3 −41.1 V 1559.5 −40.5 V 1551.4
−3.00 A 2797.7 −3.00 A 2770.3 −84.0 V 1072.2 −80.1 V 1096.8
−4.50 A 3184.2 −4.50 A 3146.5 −129.4 V 555.1 −120.2 V 636.6
−6.00 A 3569.6 −6.00 A 3522.6 −160.1 V 206.7 −161.1 V 166.5

overdetermined equations related to the ADC output values and real circuit val-

ues are solved with least square method. For an analog current or voltage value

of x, the measured digital value of ADC is y. The required linear function is

assumed to be p(y) = β1y + β0, where the result of p(y) should approach the

value of x. Define x = (x1, x2, · · ·, xn)T, β = (β1, β0)T, y = (y1, y2, · · ·, yn)T and

M =

[
y1 y2 · · · yn
1 1 · · · 1

]
. (4.35)

The coefficients β1 and β0 are related to the overdetermined equation MTβ = x.

However, β1 and β0 can be solved by the least square method

β = (MMT)−1Mx. (4.36)

The calibration has been accomplished with the measured data in Table 4.4

and Table 4.5. Based on Equation (4.36), the coefficients of the linear functions

are obtained. The numerical results for coefficients of Inverter 1 and 2 are shown

in Table 4.6 and Table 4.7, respectively. These coefficients are fixed and used for

inverters with other applications in the following chapters.

The experimental waveforms and the relevant fast Fourier transform (FFT)

results of the classic PR controller with droop method are shown in Fig. 4.17 and
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Table 4.5: Measured Data for Calibration of Inverter 2
IL IL Ig Ig Vc Vc Vg Vg

(Source) (DSP) (Source) (DSP) (Source) (DSP) (Source) (DSP)

6.00 A 519.3 6.00 A 518.0 161.0 V 3846.3 160.5 V 3880.7
4.50 A 896.3 4.50 A 896.5 129.4 V 3509.9 120.2 V 3419.5
3.00 A 1275.7 3.00 A 1276.2 84.2 V 2997.5 80.9 V 2970.0
1.50 A 1655.0 1.50 A 1655.5 41.3 V 2512.3 40.7 V 2513.6
0.00 A 2037.7 0.00 A 2037.0 0.00 V 2046.4 0.00 V 2047.8
−1.50 A 2418.1 −1.50 A 2418.7 −41.2 V 1581.8 −40.3 V 1585.0
−3.00 A 2797.7 −3.00 A 2799.7 −84.2 V 1095.5 −80.6 V 1123.8
−4.50 A 3175.6 −4.50 A 3179.0 −129.5 V 582.9 −120.1 V 672.0
−6.00 A 3552.9 −6.00 A 3558.4 −160.1 V 237.2 −161.0 V 203.8

Table 4.6: Coefficients of Calibration for Inverter 1
IL Ig Vc Vg

β1 −0.0038734 −0.0039785 0.087883 0.087153
β0 7.8348 8.0195 −178.23 −175.65

Table 4.7: Coefficients of Calibration for Inverter 2
IL Ig Vc Vg

β1 −0.0039509 −0.0039440 0.088729 0.087443
β0 8.0460 8.0366 −181.40 −178.90

67



Fig. 4.18, respectively. The parameters in Table 4.2 are used, without harmonic

compensators and feedforward. Since changing operating frequency may result

in a poor resonant control performance, the droop method of P − V droop and

Q−φ boost is used [2], with the droop coefficient and boost coefficient of 1×10−5

and 1 × 10−4, respectively. Although the current sharing (3.6 A) is good when

linear loads are connected (see Fig. 4.17(a)), the output voltage amplitude is only

99 V. When a nonlinear load is connected, the output voltage is severely distorted

(Fig. 4.17(b) and (c)). The FFT results of the output voltage when a nonlinear

load is connected (Fig. 4.18(b) and (c)) show that the output voltage has much

higher distortion compared to the results when only linear loads are connected

(Fig. 4.18(a)). The distortion on the output voltage also affects the output current

waveforms. When a linear load and a nonlinear load are connected, the calculated

output voltage THD result is 2.9%. When one nonlinear load is connected, the

THD is 5.3%. Note that the maximum THD 5% limit is established by the

international regulations [11]. The output voltage distortion is not well suppressed

by the classic controller without additional compensation.

To obtain a relatively fair comparison between the two control schemes, the

same parameters listed in Table 4.2 are used for the proposed controller. The ex-

perimental output currents and voltage waveforms of the proposed control scheme

are shown in Fig. 4.19. The relevant output voltage FFT results are shown in

Fig. 4.20. The output currents of the two inverters are clearly equal (3.9 A) with

linear loads connected. Moreover, the output voltage is pure sinusoidal and the

RMS value is 112 V (see Fig. 4.19(a)). When a nonlinear load is connected, the

output voltage is distorted (Fig. 4.19(b) and (c)) due to the existence of the line

impedances and output impedances. However, with properly designed output

impedance, the distortion can be suppressed under acceptable tolerance. When a

linear load and a nonlinear load are connected, the output voltage THD is 1.2%.

When a nonlinear load is connected, the THD is 1.5%. A comparison of the

experimentally measured performance of the two control schemes is summarized

in Table 4.8. It can be seen that in an environment with a highly distorted out-

put current, output voltage distortion is inevitable. However, compared to the

classic PR controller, the proposed linear voltage control scheme with duty-ratio

feedforward is more capable of providing a better voltage tracking capability and

lower output voltage distortion to improve the output voltage quality. Compar-

ing the simulation results with the experimental results, it can be seen that they

are almost in accordance. These results confirm the advantages of the proposed

control scheme in load sharing performance.
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(a) (b)

 
(c)

Figure 4.17: Experimental output voltage and currents of the two parallel in-
verters with the PR and droop controller (X–axis: Time, 5 ms/div; Y–axis:
Magnitude of output currents and voltage; Channel 1: output current of Inverter
1, 5 A/div; Channel 2: output current of Inverter 2, 5 A/div; Channel 3: output
voltage, 50 V/div). (a) Linear loads. (b) Linear load and nonlinear load. (c)
Nonlinear load.

4.6 Conclusion

For parallel inverters connected through short cables, high sharing accuracy can

be achieved by using a properly designed controller without droop control. The

design of the controller is very important. In digitally controlled inverters, the

internal current loop proportional gain is limited by the filter inductance and the

sampling frequency, while the external voltage loop proportional gain is also lim-

ited by stability conditions. To improve the sharing accuracy and voltage quality,

the control scheme of the linear voltage compensator with duty-ratio feedforward

is used. The theoretical analysis shows that the closed-loop transfer function us-

ing the proposed control scheme remains unity gain over a wide frequency range.

Compared to a classic PR control scheme, the closed-loop transfer function of

the proposed control scheme has better voltage tracking performance and less

phase error around the fundamental frequency. The virtual output impedance
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(a) (b)

 
(c)

Figure 4.18: Experimental output voltage FFT results of the two parallel invert-
ers with the PR and droop controller (X–axis: Frequency, 125 Hz/div; Y–axis:
Magnitude, 10 dB/div; Window: Flattop). (a) Linear loads. (b) Linear load and
nonlinear load. (c) Nonlinear load.

resonated at harmonic frequencies suppresses the harmonic distortion when non-

linear loads are connected. The simulation and experimental comparison between

the proposed control scheme and the classic PR control scheme reveals the main

features of the parallel inverters using the linear voltage compensator with duty-

ratio feedforward: i.e., good sharing accuracy, better voltage tracking capability

and lower THD of the output voltage.
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(a) (b)

 

(c)

Figure 4.19: Experimental output voltage and currents of the two parallel invert-
ers with the proposed controller (X–axis: Time, 5 ms/div; Y–axis: Magnitude of
output currents and voltage; Channel 1: output current of Inverter 1, 5 A/div;
Channel 2: output current of Inverter 2, 5 A/div; Channel 3: output voltage, 50
V/div). (a) Linear loads. (b) Linear load and nonlinear load. (c) Nonlinear load.

Table 4.8: Experimental output Performance Comparison of the Classic Con-
troller and the Proposed Controller

Load(s) Classic controller Proposed controller

Current RMS Linear 3.6 A 3.9 A
Voltage RMS Linear 99 V 112 V

Linear 1.0% 0.6%
Voltage THD Linear and nonlinear 2.9% 1.2%

Nonlinear 5.3% 1.5%
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(a) (b)

 
(c)

Figure 4.20: Experimental output voltage FFT results of the two parallel inverters
with the proposed controller (X–axis: Frequency, 125 Hz/div; Y–axis: Magnitude,
10 dB/div; Window: Flattop). (a) Linear loads. (b) Linear load and nonlinear
load. (c) Nonlinear load.
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Chapter 5

Modelling of Digitally Controlled
Grid-Connected Inverters with
LCL Filters

5.1 Introduction

Voltage source converters (VSCs) with LCL filters are widely used in many grid-

connected applications such as PWM rectifiers [29, 62], uninterruptible power

supplies (UPSs) [61, 63] and photovoltaic (PV) inverters [60, 35, 30, 48, 64, 65, 66]

for the advantages of power factor controllability and bidirectional energy supply

capability. Compared to L filters, LCL filters employ much smaller size and lower

cost inductors. There is a good chance that the LCL filters will be employed for

all the grid-connected inverters in the future [67]. The design for the parameters

of the LCL filter has already been addressed [29]. However, the controller design

is still the issue: the LCL filter resonance has to be carefully taken into account

to maintain the system stability.

As the price/performance ratio of DSPs is decreasing dramatically, there is

the trend towards using entire digital control in high power switching converters.

Using floating-point DSPs embedding high resolution fast ADCs and enhanced

PWM generators, the application of more complicated control algorithms be-

comes feasible. Moreover, although the signals measured from the power circuits

contain considerable disturbance around switching instants, sampling algorithms

can be used to guarantee an average current reproduction with the rejection of

switching ripple and noise [47, 49].

Fig. 5.1 shows a typical circuit diagram of a digitally controlled grid-connected

inverter with an LCL filter. The analog variables (usually the converter current

iL, the grid current ig and the grid voltage vg) are converted into digital quanti-

ties via appropriate measurement circuits and ADCs. The process of converting

signals into the specified range of ADCs can be ideally represented by scaling
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Figure 5.1: Single phase inverter. (a) Power circuit. (b) Control circuit.

factors (1/IrefL , 1/V ref
g and 1/Irefg ) [28]. To avoid the erroneously sampled value

in the vicinity of the switching instant, the conversion of ADC is started when

the PWM counters reach to zero or period values [49]. The digital quantities (i∗L,

i∗g and v∗g) converted from ADCs are scaled to be numerically equivalent to the

relevant analog variables. By using a digital control algorithm, the duty-ratio is

calculated and updated into the PWM controller (represented as u∗) to generate

the drive signals.

The design of a digital controller and evaluation of the control performance for

grid-connected inverters are usually implemented by using classic average models.

In average models, the transfer function of the PWM is represented by an unity

gain with half or one switching cycle delay [32, 35, 62, 66]. In a more precise

model, the AD conversion delay, the computation delay, the PWM delay and the

transport delay are modeled together as a total delay [25]. However, a practical

digital system using synchronous sampling method has complex behaviours with

different delay effects [50]. The duty-ratio update modes may result in different

delay effects. Therefore, an accurate model including delay effects should first

take account of the processing delay and the duty-ratio update delay, after which

the switching delay and transport delay can be modeled.

With properly modeled delay effects, the new small-signal z-domain models

can be derived for digitally controlled grid-connected inverters with single control
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loop and cascaded control loops. The classic s-domain models accurately repre-

sent the interested control performance which is around the grid fundamental

frequency and low order harmonic frequencies. However, for stability analysis,

using s-domain models will lead to erroneous results. The maximum proportional

gains which are only attainable in z-domain analysis are limited in sampled-data

systems. With proposed z-domain models, the design of the digital controllers

can be implemented. These models are capable of predicting the steady-state and

transient responses for control variables at sampling instants, which are validated

by the relevant simulation and experimental tests.

5.2 Classic average models for grid-connected

inverters

In classic average models, the power circuit is modeled by s-domain transfer

functions using an averaged switch voltage. The control circuit, although im-

plemented digitally, is represented by continuous equivalent transfer functions.

There are plenty of control structures for the grid-connected inverters with LCL

filters [30, 35, 36, 37, 48, 60, 66, 67, 68, 69]. However, in this chapter two typical

control structures are provided as shown in Fig. 5.2. The first, (see Fig. 5.2(a)), is

the converter current feedback scheme [30, 70, 71]. The second, (see Fig. 5.2(b)),

is the converter current plus grid current feedback scheme [72], which is a typical

controller with cascaded control loops. Although many papers use the converter

current plus capacitor current feedback scheme [37, 60, 69], this strategy is equiv-

alent to the converter current plus grid current feedback scheme from the dynamic

point of view. Both controllers have the same total delay (processing delay and

PWM delay) from the command signal to drive signals, which is expressed as

Gd(s) = e−sτd . The delay effect with three typical values for τd can be used,

i.e., with τd = Ts/2 defined as the minimum delay, with τd = Ts defined as the

medium delay and with τd = 3Ts/2 defined as the maximum delay. Regardless

of the carrier waveshape and the delay of PWM, the switch voltage in the av-

erage model is represented by vs = Vdcd. Duty-ratio feedforward (expressed as

dff = vg/Vdc) is included [28]. In order to model the two control structures, the

classic PR compensator (represented by Gc(s)) and the proportional compensator

(represented by kL) are used as examples. However, the modelling methods in

this chapter are also applicable when other types of controllers are used.

Define the following as fa = LLgC, fb = C(Lg(R + rL) + L(R + rg)), fc =

L+Lg +C(rLrg +RrL+Rrg) and fd = rL+rg. The transfer functions describing

the converter current iL and the grid current ig as a function of the switch voltage
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Figure 5.2: The s-domain block diagrams of grid-connected inverters. (a) Con-
verter current feedback scheme. (b) Converter current plus grid current feedback
scheme.

vs are given by

GiLvs(s) =
s2LgC + sC(R + rg) + 1

s3fa + s2fb + sfc + fd
(5.1)

and

Gigvs(s) =
sCR + 1

s3fa + s2fb + sfc + fd
(5.2)

respectively. The transfer functions describing iL and ig as a function of the grid

voltage vg are expressed as

GiLvg(s) =
sCR + 1

s3fa + s2fb + sfc + fd
(5.3)

and

Gigvg(s) =
s2LC + sC(R + rL) + 1

s3fa + s2fb + sfc + fd
(5.4)

respectively.

The closed-loop transfer function ig(s)

iref (s)
and the grid voltage to grid current

transfer function ig(s)

vg(s)
of the converter current feedback scheme are written as

Gcl1(s) =
Gc(s)kLGd(s)VdcGigvs(s)

1 +Gc(s)kLGd(s)VdcGiLvs(s)
(5.5)
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Table 5.1: Parameters of the Grid-Connected Inverters
Symbol Quantity Value
Vdc Input voltage amplitude 200 V
Vg Grid voltage RMS value 110 V
Ts Sampling period 50 µs
ω1 Fundamental angular frequency 2π·50 rad/s
L Converter side Inductor 1642 µH
rL Converter side inductor parasitic resistance 0.4 Ω
C Capacitor 10 µF
Lg Grid side Inductor 1642 µH
rg Grid side inductor parasitic resistance 0.4 Ω
kL Proportional gain 0.08
kp PR compensator proportional gain 0.5
kr PR compensator resonant gain 40
ξ Damping factor 0.01

and

Ggd1(s) =
1 +Gc(s)kLVdcGiLvg(s)

1 +Gc(s)kLGd(s)VdcGiLvs(s)
Gd(s)Gigvs(s)−Gigvg(s) (5.6)

respectively.

The closed-loop transfer function describing ig as a function of iref and the

transfer function describing ig as a function of vg of the converter current plus

grid current feedback scheme are given by

Gcl2(s) =
Gc(s)kLGd(s)VdcGigvs(s)

1 + kLGd(s)VdcGiLvs(s) +Gc(s)kLGd(s)VdcGigvs(s)
(5.7)

and

Ggd2(s) =
(1 + kLVdcGiLvg(s))Gd(s)Gigvs(s)− (1 + kLGd(s)VdcGiLvs(s))Gigvg(s)

1 + kLGd(s)VdcGiLvs(s) +Gc(s)kLGd(s)VdcGigvs(s)
(5.8)

respectively.

For a classic PR compensator1, the transfer function can be expressed as

Gc(s) = kp(1 + kr
2ξω1s

s2 + 2ξω1s+ ω2
1

) (5.9)

in s-domain. When there is no damping resistor, by using the parameters in

Table 5.1 and first order Padé approximations of esTs = 1+sTs/2
1−sTs/2 [73] for Gd(s)

with the maximum delay, the Bode diagrams of the closed-loop transfer functions

Gcl1(s) and Gcl2(s) are shown in Fig. 5.3. The Bode diagrams of the grid voltage

1In practice, the compensators resonating at harmonic frequencies are also included to sup-
press the current THD. In order to achieve a better performance while maintaining the stability,
the respective gains for the harmonic compensators are reduced when the resonant frequency
increases.
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Figure 5.3: Bode diagrams of closed-loop transfer functions from iref to ig (full
line: converter current feedback control scheme; dashed line: converter current
plus grid current control scheme).

to grid current transfer functions Ggd1(s) and Ggd2(s) in the converter current

feedback scheme and in the converter current plus grid current feedback scheme

are shown in Fig. 5.4.

The Bode diagrams of the closed-loop transfer functions show that the con-

verter current control scheme has an unity closed-loop gain (G(jω1) = 1.0) at the

fundamental frequency. If the grid frequency deviates slightly from the nominal

fundamental frequency (within ±1 Hz), the closed-loop gain is almost constant

and the phase error is zero. When the converter current plus grid current con-

trol scheme is applied, the closed-loop gain (G(jω1) = 0.95) at the fundamental

frequency approaching unity is achieved by the high gain of the resonant com-

pensator. The phase error in this control scheme is considerable when the grid

frequency varies (see Fig. 5.3). The converter current control scheme achieves a

faster dynamic response since it has higher gain over a wide frequency range. On

the other hand, the Bode diagrams in Fig. 5.4(a) shows that even when duty-ratio

feedforward is applied, the grid voltage has considerable disturbance on the grid

current. When the filter capacitance increases, the current error becomes bigger.

However, the converter current plus grid current control scheme with duty-ratio

feedforward has a relative good suppression on the grid voltage disturbance (see

Fig. 5.4(b)). Both of the two control schemes are possible solutions for practical

implementation. The control performance around the fundamental frequency and

low order harmonic frequencies can be studied using s-domain models with good

accuracy, but the instabilities with high oscillatory frequencies can not be pre-
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(b)

Figure 5.4: Bode diagrams of the grid voltage to grid current transfer functions
(full line: with duty-ratio feedforward; dashed line: without duty-ratio feedfor-
ward). (a) Converter current feedback control scheme. (b) Converter current
plus grid current feedback control scheme.

cisely predicted. The root loci of the average models for the two control schemes

are shown in Fig. 5.5 and Fig. 5.6. These root loci give the stability boundaries

under different delay conditions. In the next section, the root loci of z-domain

models will also be obtained to predict the stability boundaries. The z-domain

models will be derived, which allows a full comparison between the classic models

and the proposed models.
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Figure 5.5: Root loci of the converter current feedback controlled grid-connected
inverters in s-plane . (a) Minimum delay. (b) Medium delay. (c) Maximum delay.

5.3 Small-signal z-domain models for digitally

controlled grid-connected inverters

For digitally controlled grid-connected inverters, the two feedback control schemes

are studied in z-domain. The converter current feedback scheme is a commonly

used control strategy in switching converters. The z-domain model in [25] is

extended for this third-order system. The converter current plus grid current

feedback scheme, which is used in the control of grid-connected inverters, is a

typical structure with converter current control in cascaded control loops. The

z-domain model for the cascaded digital control loops is derived in this chapter

as the modelling method in [25] is not directly applicable. Since the analysis

is implemented with small-signal models, the transfer functions in this section

represent the behaviour when signals have small excursions to their steady-state

values.
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Figure 5.6: Root loci of the converter current plus grid current feedback controlled
grid-connected inverters in s-plane with kL = 0.08. (a) Minimum delay. (b)
Medium delay. (c) Maximum delay.

5.3.1 Discrete models for grid-connected inverters

As the gain of the delay e−sTs is almost unity at the fundamental frequency

(e−jω1Ts ≈ 1), the continuous-time models can be used to investigate the control

performance in low frequency range. However, in order to design digital con-

trollers, discrete models are required. To simplify the analysis, the disturbances

of grid voltage are removed from the models without affecting the closed-loop

transfer functions. Hence, by modelling the digital processing delay τd1 and τd2

into the PWM, the block diagrams of the digitally controlled grid-connected in-

verters can be precisely represented in Fig. 5.7, where τ4 is the total time delay of

the switches drive, signals transport and measurements. Compared to the digital

PWM delay, this delay is negligible.

If a classic PR compensator is used for control, the digitalized compensator

is represented as Gc(z) in z-domain [30]. Usually, Gc(z) is derived as the dis-

crete equivalent of Gc(s) in Fig. 5.3 by using bilinear transform. For the PR
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Figure 5.7: Block diagrams of grid-connected inverters. (a) Converter current
feedback scheme. (b) Converter current plus grid current feedback scheme.

compensator Gc(s) in s-domain, its discrete equivalent Gc(z) is written as

Gc(z) = kp(1 + kr
az1z

2 + bz1z + cz1
Az1z2 +Bz1z + Cz1

), (5.10)

with Az1 = 4
T 2
s

+ 4ξω1

Ts
+ ω2

1, Bz1 = − 8
T 2
s

+ 2ω2
1, Cz1 = 4

T 2
s
− 4ξω1

Ts
+ ω2

1, az1 = 4ξω1

Ts
,

bz1 = 0 and cz1 = −4ξω1

Ts
.

To obtain the closed-loop discrete transfer functions of the two control struc-

tures, the feedback paths in Fig. 5.7 should be represented in z-domain. Hence,

z-transform is used to obtain discrete transfer functions of the feedback paths

which contain continuous plants followed by ideal samplers. The discrete transfer

functions describing î∗L and î∗g as a function of x̂∗ in small signal are derived as

GiLx(z) = Z{G∗PWM(s)VdcGiLvs(s)e
−sτ4} (5.11)

and

Gigx(z) = Z{G∗PWM(s)VdcGigvs(s)e
−sτ4}, (5.12)

respectively. The exact expressions of transfer functions GiLx(z) and Gigx(z) can

be obtained by defining

fQ =
√

(2f 3
b − 9fafbfc + 27f 2

afd)
2 − 4(f 2

b − 3fafc)3,

fC = 3

√
1
2
(fQ + 2f 3

b − 9fafbfc + 27f 2
afd),

a = fb
3fa

+ fC
3fa

+
(f2b−3fafc)

3fafC
,

b = fb
3fa
− (1+j

√
3)fC

6fa
− (1−j

√
3)(f2b−3fafc)

6fafC
and

c = fb
3fa
− (1−j

√
3)fC

6fa
− (1+j

√
3)(f2b−3fafc)

6fafC
.
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The transfer function GiLvs(s) can be split to

GiLvs(s) =
AL
s+ a

+
BL

s+ b
+

CL
s+ c

(5.13)

with AL = a2LgC−aC(R+rg)+1

(a−b)(a−c)LLgC , BL = b2LgC−bC(R+rg)+1

(b−a)(b−c)LLgC and CL = c2LgC−cC(R+rg)+1

(c−b)(c−a)LLgC
.

For the PWM model with G∗PWM(s) = Ts
2

(e−s
(3−D)Ts

2 +e−s
(3+D)Ts

2 ), the z-transform

of GiLx(z) can be deduced using the method as

Z{G∗PWM(s)Vdc
AL
s+ a

e−sτ4} =
VdcTsAL

2

ea(τ4− 1+D
2
Ts) + ea(τ4− 1−D

2
Ts)

z2 − e−aTsz
. (5.14)

Defining

ea = 1
2
(ea(τ4− 1+D

2
Ts) + ea(τ4− 1−D

2
Ts)),

eb = 1
2
(eb(τ4−

1+D
2
Ts) + eb(τ4−

1−D
2
Ts)),

ec = 1
2
(ec(τ4−

1+D
2
Ts) + ec(τ4−

1−D
2
Ts)),

D2 = −e−aTs − e−bTs − e−cTs ,
D1 = e−(a+b)Ts + e−(b+c)Ts + e−(a+c)Ts and

D0 = −e−(a+b+c)Ts ,

the discrete transfer function GiLx(z) can be written as

GiLx(z) =
NL2z

2 +NL1z +NL0

z4 +D2z3 +D1z2 +D0z
(5.15)

with

NL2 = VdcTs(ALea +BLeb + CLec),

NL1 = −VdcTs(ALea(e−bTs + e−cTs) + BLeb(e
−aTs + e−cTs) + CLec(e

−aTs + e−bTs))

and

NL0 = VdcTs(ALeae
−(b+c)Ts +BLebe

−(a+c)Ts + CLece
−(a+b)Ts).

Similarly, the transfer function Gigvs(s) can be split to

Gigvs(s) =
Ag
s+ a

+
Bg

s+ b
+

Cg
s+ c

(5.16)

with Ag = 1−aCR
(a−b)(a−c)LLgC , Bg = 1−bCR

(b−a)(b−c)LLgC and Cg = 1−cCR
(c−b)(c−a)LLgC

. Then the

discrete transfer function Gigx(z) can be written as

Gigx(z) =
Ng2z

2 +Ng1z +Ng0

z4 +D2z3 +D1z2 +D0z
(5.17)

with

Ng2 = VdcTs(Agea +Bgeb + Cgec),

Ng1 = −VdcTs(Agea(e−bTs +e−cTs)+Bgeb(e
−aTs +e−cTs)+Cgec(e

−aTs +e−bTs)) and

Ng0 = VdcTs(Ageae
−(b+c)Ts +Bgebe

−(a+c)Ts + Cgece
−(a+b)Ts).
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With the discrete transfer functions of the feedback paths, the z-domain

closed-loop transfer function
î∗g(z)

î∗ref (z)
of the converter current feedback scheme can

be obtained according to Fig. 5.7(a) as

Gcl1(z) =
Gc(z)kLGigx(z)

1 +Gc(z)kLGiLx(z)
. (5.18)

The closed-loop transfer function
î∗g(z)

î∗ref (z)
in respect to Fig. 5.7(b) is written as

Gcl2(z) =
Gc(z)kLGigx(z)

1 + kLGiLx(z) +Gc(z)kLGigx(z)
. (5.19)

Using the same parameters listed in Table 5.1 and D = 0.5, the Bode diagrams

of Gcl1(z) and Gcl2(z) are shown in Fig. 5.8. Comparing to the average models

derived Bode diagrams in s-domain (see Fig. 5.3), it can be seen that in the low

frequency range, s-domain models results and z-domain models results are almost

identical. When the control performance is interested in the low frequency range,

s-domain models can be used with good accuracy. However, s-domain models fail

to describe the dynamic behaviours of the digitally controlled systems apart from

low frequency range. z-domain models are necessary for dynamic performance

analysis. When frequency response specifications are given, controllers design

can be performed according to the z-domain models. For example, resonant

peaks in the frequency domain can be directly measured from the Bode diagrams.

Frequency response design can be implemented when required, according to the

Bode plots of the z-domain transfer functions.

5.3.2 Stability analysis for internal current loop

As most digital control strategies involve an internal converter current control

loop, the stability of the internal loop is studied first. A pure proportional feed-

back control in the internal loop is usually used to imitate the peak current

control in naturally-sampled switching converters. Even if a PR or a PI control

may be used in the internal loop, the proportional gains are most important for

the stability issue [60]. Assuming that the voltage on the filter capacitor has a

much slower dynamic behaviour compared to the PWM output, the small-signal

transfer function from PWM output to converter current can be approximated

by

P (s) =
Vdc

sL+ rL
e−sτ4 . (5.20)

The simplified control loop for the converter current regulator of a buck in-

verter is schematically represented in Fig. 5.9. The PWM model has three typical

expressions, i.e.,
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Figure 5.8: Bode diagrams of closed-loop transfer functions from i∗ref to i∗g with
maximum delay (full line: converter current feedback control scheme; dashed line:
converter current plus grid current control scheme).

 

Figure 5.9: Block diagram for the simplified converter current control loop of a
grid-connected inverter.

G∗PWM(s) = Ts
2

(e−s
(1−D)Ts

2 + e−s
(1+D)Ts

2 ),

G∗PWM(s) = Ts
2

(e−s
(1+D)Ts

2 + e−s
(3−D)Ts

2 ) and

G∗PWM(s) = Ts
2

(e−s
(3−D)Ts

2 + e−s
(3+D)Ts

2 ),

corresponding to the cases of minimum delay, medium delay and maximum de-

lay, respectively. In the case of the minimum delay, the discrete transfer function

from x̂∗ to î∗L is derived as

GiLx(z) =
VdcTs
2L

e
rL
L

(τ4+−1−D
2

Ts) + e
rL
L

(τ4+−1+D
2

Ts)

z − e−
rL
L
Ts

. (5.21)

Similarly, in the cases of the medium delay and the maximum delay, GiLx(z) can

be expressed as

GiLx(z) =
VdcTs
2L

e
rL
L

(τ4+−1+D
2

Ts)z + e
rL
L

(τ4+−1−D
2

Ts)

z2 − e−
rL
L
Tsz

(5.22)

85



and

GiLx(z) =
VdcTs
2L

e
rL
L

(τ4+−1−D
2

Ts) + e
rL
L

(τ4+−1+D
2

Ts)

z2 − e−
rL
L
Tsz

, (5.23)

respectively. As rLTs
L
� 1, the exponent terms in (5.21)–(5.23) can be approx-

imated by 1. Hence, the pole of the converter current control loop with the

minimum PWM delay can be derived by solving equation

z − 1 +
kLVdcTs

L
= 0, (5.24)

which gives the stable operating condition of

0 < kL <
2L

VdcTs
. (5.25)

Similarly, in the cases of medium and maximum delay, the characteristic equations

are given by

z2 + (
kLVdcTs

2L
− 1)z +

kLVdcTs
2L

= 0, (5.26)

and

z2 − z +
kLVdcTs

L
= 0, (5.27)

respectively, yielding the relevant stable operating conditions of

0 < kL <
2L

VdcTs
, (5.28)

and

0 < kL <
L

VdcTs
, (5.29)

respectively. Note that in the case of the maximum delay, the stable operating

range of the proportional gain is dramatically reduced, resulting in a more limited

achievable bandwidth. While designing controllers, the proportional gain for the

converter current loop is usually chosen to be smaller than L
VdcTs

. The similar

result related to the gain setting in a digital proportional current regulator can

also be found in [38].

5.3.3 Discrete root loci design

While designing a controller, a typical specification evaluating the robustness of

a system is the gain margin in root locus. For digitally controlled grid-connected

inverters, more precise stability boundaries can be obtained from discrete root

loci. Based on root loci, the dynamic performance in time-domain (rise time,

settling time and percent overshoot, etc.) can be evaluated according to the

conjugate pole pairs in z-plane.
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Using the same parameters listed in Table 5.1 and D = 0.5 (or any other

values for D between 0 and 1), the root loci2 of the converter current feedback

controlled inverter are shown in Fig. 5.10. The real poles of the converter current

feedback scheme with minimum and medium delay will move across the unit

circle when the total proportional gain equals to 0.324 and 0.306 (see Fig. 5.10(a)

and (b)), respectively. When the maximum delay is employed, the two conjugate

poles will move across the unit circle when the proportional gain equals to 0.139

(see Fig. 5.10(c)). Even when the minimum delay is involved, a gain higher than

0.167 may result in a ringing dynamic response. Note that 2L
VdcTs

= 0.328. As

is illustrated in the previous subsection, the internal current loop proportional

gain is usually chosen to be much smaller than L
VdcTs

. When kL = 0.08 and

kp = 0.5 with the maximum delay, it can be seen from Fig. 5.10(c) that the

closed-loop system still has a gain margin of 3.46. The longest settling time and

the highest overshoot in percentage of the conjugate pole pairs are 3.1 ms and

68%, respectively.

The root loci of converter current plus grid current feedback controlled in-

verter are shown in Fig. 5.11. The conjugate poles in the cases of minimum

delay, medium delay and maximum delay will move across the unit circle when

the proportional gain kp equals to 1.04, 1.04 and 1.02, respectively. These re-

sults are very dependent on the damping of the LCL resonance, for which an

analytical expression is difficult to obtain. However, the PWM delay can reduce

the stable operating range dramatically when the damping resistance increases.

In this chapter where the maximum PWM delay is achieved in experiment, the

proportional gain is chosen as kp = 0.5. Hence, a stable gain margin of 2 is

guaranteed3.

5.4 Simulation Results

For safety issue reasons, computer simulations are used to verify the capability of

the small-signal z-domain models in predicting stability boundaries. The power

circuit of the grid-connected inverter is constructed in PLECS, as is shown in

Fig. 5.12. Based on the power circuit of Fig. 5.12, the converter current controlled

grid-connected inverter and the converter current plus grid current controlled

2The root loci are derived when using pure proportional compensators. However, under
the condition of kr � 1

ξω1Ts
, the root loci in z-plane do not differ even if additional resonant

compensators are used. The only difference introduced by the resonant compensators is that a
pair of conjugate poles moving within the unit circle appears in the root loci.

3Though the discrete closed-loop transfer functions are average duty-ratio D dependent, the
root loci are derived with duty-ratio fixed as D = 0.5. These results have very little difference
when D is changing within (0, 1). This conclusion is only valid when the symmetric triangle
carriers are used for PWM generation.
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Figure 5.10: Root loci of the converter current feedback controlled grid-connected
inverters in z-plane. (a) Minimum delay. (b) Medium delay. (c) Maximum delay.

grid-connected inverter are shown in Fig. 5.13 and Fig. 5.14, respectively.

The s-domain models predictions are also used for comparison to show the

advantage of proposed models. The predicted maximum proportional gains of

the two control schemes with different delay effects are summarized from Fig. 5.5,

Fig. 5.6, Fig. 5.10 and Fig. 5.11. These predicted results are shown in Table 5.2.

For the converter current feedback control scheme, the actual proportional gain

is equal to kpkL. For the converter current plus grid current feedback control

scheme, the proportional gain kp in the grid current control loop is investigated

with kL = 0.08.

Fig. 5.15 shows the simulation results of the converter current controlled

grid-connected inverter when the actual proportional gain steps over the sta-

bility boundaries. Under the condition of the minimum delay, the root locus
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Figure 5.11: Root loci of the converter current plus grid current feedback con-
trolled grid-connected inverters in z-plane with kL = 0.08. (a) Minimum delay.
(b) Medium delay. (c) Maximum delay.

 

Figure 5.12: Simulink block diagram of the power circuit of the grid-connected
inverter.
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Figure 5.13: Simulink block diagram of the converter current controlled grid-
connected inverter.

Table 5.2: Predicted Maximum Proportional Gains
Control loop Minimum Medium Maximum

delay delay delay

Average models Converter current loop 0.651 0.315 0.201
predictions Grid current loop 1.09 1.05 1.04
Proposed models Converter current loop 0.324 0.306 0.139
predictions Grid current loop 1.04 1.04 1.02
Simulation Converter current loop 0.33 0.30 0.14
results Grid current loop 1.0 1.0 1.0

in Fig. 5.10(a) shows that a real pole will move across the unit circle when the

proportional gain increases. As π
Ts

represents half of the sampling frequency, the

oscillation frequency is 1
2Ts

and period-2 bifurcation may appear. After the con-

verter current passes through the CL filter, the bifurcation of the grid current is

not obvious. To give a clear view of the bifurcation, the simulated converter cur-

rent iL is shown in Fig. 5.15(a), where period-2 bifurcation can be seen after kpkL

steps higher than 0.33. In contrast, with the medium delay and the maximum

delay (see Fig. 5.10(b) and (c)), conjugate pole pairs will move across the unit cir-
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Figure 5.14: Simulink block diagram of the converter current plus grid current
controlled grid-connected inverter.

cle when kpkL is higher than 0.30 and 0.14, respectively. Hence, oscillations with

lower frequencies may occur. The relevant simulation results obviously show that

the converter current becomes unstable with lower oscillatory frequencies after

the steps (see Fig. 5.15(b) and (c)). Comparing the simulated stability bound-

aries to the predicted boundaries of the average model and the proposed model, it

can be seen in Table 5.2 that the accuracy of the proposed model is much better

than that of the average model. The proposed model for the converter current

control loop is capable of predicting the fast-scale instabilities while the classic

average model is not.

Fig. 5.16 shows the simulation results of the converter current plus grid current

controlled grid-connected inverter when the proportional gain of the external

control loop steps over the stability boundaries. It can be clearly observed that the

grid current ig becomes unstable after each step. Slow-scale instabilities appear

on the grid current. The oscillation frequencies observed in the simulation are

around 1.7 kHz, which are very low compared to the sampling frequency of 20 kHz.
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(a) (b)

 
(c)

Figure 5.15: Simulated waveforms of the converter current controlled grid-
connected inverter (X–axis: Time, 5 ms/div; Y–axis: Magnitude of converter
current: 5 A/div; and grid voltage: 50 V/div). (a) Minimum delay. (b) Medium
delay. (c) Maximum delay.

All the conjugated pole pairs in the s-plane root loci (see Fig. 5.6) and z-plane

root loci (see Fig. 5.11) move across the unit circle with oscillation frequencies

around 1.77 kHz. It can be seen from Table 5.2 that the simulation results are

in good agreement with the average model predictions and the proposed model

predictions for the grid current control loop. This is because that the slow-scale

instabilities in the external control loop are mainly caused by the LCL resonance.

When the damping resistance increases, the difference between s-domain results

and z-domain results becomes bigger, since the sample and hold effect will play

an important role. However, the high accuracy of z-plane root loci predictions

for the two control schemes verified in Table 5.2 shows that the proposed models

are capable of evaluating robustness of controllers.
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(a) (b)

 
(c)

Figure 5.16: Simulated waveforms of the converter current plus grid current con-
trolled grid-connected inverter (X–axis: Time, 5 ms/div; Y–axis: Magnitude of
grid current: 5 A/div; and grid voltage: 50 V/div). (a) Minimum delay. (b)
Medium delay. (c) Maximum delay.

5.5 Experimental Results

To show the validity of the proposed models, both the classic s-domain models and

small-signal z-domain models are used to predict time-domain waveforms of grid

current and grid voltage of the inverter. The z-domain models with maximum

PWM delay and the parameters listed in Table 5.1 are used for predictions.

Although the z-domain models are dependent of the average duty-ratio D, the

predictions are retrieved with a time-variant D.

According to the proposed modelling methods, the single loop controller and

cascaded loops controller are experimentally implemented on an 110 V, 600 W

grid connected inverter, as is shown in Fig. 5.17. A phase-locked loop (PLL) is

used for the grid synchronization. The current reference is generated from the

PLL. The experimental grid current and grid voltage are retrieved from the shunt

and the left side of the transformer in Fig. 5.17, respectively. To compare the
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Figure 5.17: Experimental grid connected inverter.

experimental results with the model predicted results, the same compensators

are used with the same parameters listed in Table 5.1. The digital controller is

performed in TMS320F28335. The H bridge of the inverter is implemented by

IPM. The inverter is bipolar switched with the deadband time of 2.67 µs. The

uniformly-sampled symmetric-on-time triangle PWM is applied. The duty-ratio

value is loaded to the PWM compare register at each sampling instant, therefore

the processing delay is one switching period and the maximum PWM delay is

achieved.

5.5.1 Steady-state responses

The steady-state responses are performed using a sinusoidal current reference with

an RMS value of 4.6 A. The classic average models, z-domain models, simulation

and experimental tests retrieved waveforms of the converter current controlled

and converter current plus grid current controlled grid-connected inverters are

shown in Fig. 5.18 and Fig. 5.19, respectively.

The classic average model and the z-domain model retrieved steady-state re-

sponses of the converter current controlled grid-connected inverter are almost

identical (see Fig. 5.18(a) and Fig. 5.18(b)). The predicted current amplitudes

(Ig) and phase angles (∆φ) are 4.6 A and 4.5◦, respectively. These predictions

are in very good agreement with the simulation result shown in Fig. 5.18(c).

However, it is shown in Fig. 5.18(d) that under the practical condition of a weak

grid, a larger phase lag exists in the current with a phase angle of ∆φ = 13.3◦.

The experimental current amplitude has difference with the models predicted

results. Moreover, when the grid voltage contains considerable harmonic compo-

nents (THD ≈ 2.0%), the grid current THD is about 2.7%. The performance of

this control scheme is severely affected by the quality of the grid voltage.

The steady-state responses of the converter current plus grid current con-

trolled grid-connected inverter show that the predictions of the classic aver-

age model and the z-domain model are almost the same (see Fig. 5.19(a) and

Fig. 5.19(b)). The current amplitudes and phase angles in models predictions are
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(a) (b)

  
(c) (d)

Figure 5.18: Steady-state response of the converter current controlled grid-
connected inverter (X–axis: Time, 5 ms/div; Y–axis: Magnitude of grid cur-
rent: 5 A/div; and grid voltage: 50 V/div). (a) Average model prediction. (b)
z-domain model prediction. (c) Simulation result (d) Experimental result.

4.4 A and 0.45◦, respectively. The simulation result is in accordance with the

models predictions (see Fig. 5.19(c)). However, in the experimental results (see

Fig. 5.19(d)), the current amplitude is 4.5 A and the phase angle is 6.9◦. The ex-

perimental grid current has a relative larger phase lag than the predicted results

and the simulation result. Compared to the converter current control scheme,

the experimental current distortion remains low (THD ≈ 2.1%) in this control

scheme.

Since the converter current control scheme achieves a higher closed-loop gain,

the amplitude of grid current in Fig. 5.18 is higher than that in Fig. 5.19. It can

be seen from Fig. 5.18 that when the converter current feedback scheme is used,

the grid current has a larger lagging phase angle. In contrast, when the converter

current plus grid current feedback scheme is used, a smaller grid current phase

error is achieved (see Fig. 5.19). In the environment when a distorted grid voltage

appears, exact predictions for experimental tests are not guaranteed. However,
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(a) (b)

  
(c) (d)

Figure 5.19: Steady-state response of the converter current plus grid current con-
trolled grid-connected inverter (X–axis: Time, 5 ms/div; Y–axis: Magnitude of
grid current: 5 A/div; and grid voltage: 50 V/div). (a) Average model prediction.
(b) z-domain model prediction. (c) Simulation result (d) Experimental result.

it is concluded that both the classic average models and z-domain models can be

used with good accuracy.

5.5.2 Transient responses

Fig. 5.20 and Fig. 5.21 show the transient responses of the converter current con-

trolled grid-connected inverter when the reference current steps at its peak. The

grid current achieves steady-state operation within two line cycles after the step.

The dynamic response time of this control scheme is short. The average model

and z-domain model predicted waveforms after the step are almost identical. The

predicted results are similar to the simulation and experimental results. However,

the experimental results are more different. This is because that in this control

scheme, the grid voltage adds significant harmonic components to the experi-

mental data. When the amplitude of the grid current is small, this disturbance is

more obvious. To a first approximation, the agreement between predicted results
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(a) (b)

  
(c) (d)

Figure 5.20: Transient response of the converter current controlled grid-connected
inverter with a step in the commanded current peak value from 2 A to 4 A
(X–axis: Time, 5 ms/div; Y–axis: Magnitude of grid current and grid voltage;
Channel 2: grid current, 2 A/div; Channel 3: grid voltage, 50 V/div). (a)
Average model prediction. (b) z-domain model prediction. (c) Simulation result
(d) Experimental result.

and experimental results is good.

The transient responses of the converter current plus grid current controlled

grid-connected inverter are shown in Fig. 5.22 and Fig. 5.23, where the dis-

turbance from grid in this control scheme is quite small. The average model

predicted results exhibit obvious oscillatory transitions (see Fig. 5.22(a) and

Fig. 5.23(a)). However, the z-domain model predicted transitions (see Fig. 5.22(b)

and Fig. 5.23(b)) are very similar to the simulation results (see Fig. 5.22(c) and

Fig. 5.23(c)) and experimental results (see Fig. 5.22(d) and Fig. 5.23(d)), where

no much transient oscillation is visible. After the step, the grid current achieves

steady-state in more than four line cycles. During this time, both of the average

model and the z-domain model predicted results are similar to the simulation and

experimental results. As this control scheme has a good suppression on harmonic
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(a) (b)

  
(c) (d)

Figure 5.21: Transient response of the converter current controlled grid-connected
inverter with a step in the commanded current peak value from 4 A to 2 A
(X–axis: Time, 5 ms/div; Y–axis: Magnitude of grid current and grid voltage;
Channel 2: grid current, 2 A/div; Channel 3: grid voltage, 50 V/div). (a)
Average model prediction. (b) z-domain model prediction. (c) Simulation result
(d) Experimental result.

current components, the agreement between predictions and experimental results

is good. A longer transition exist in the converter current plus grid current con-

trol scheme since the closed-loop gain on Bode plot is always lower than that of

the converter current control scheme.

An obvious disadvantage existing in the z-domain models is the duty-ratio

dependent instinct. When triangle carriers are used, the sum of the two PWM

delay terms is equivalent to an averaged delay with half switching period [59].

The error of this approximation when duty-ratio varies is negligible. This error

is only unacceptable if sawtooth carriers are used. However, in sampled-data ac

systems, sawtooth PWMs which cannot guarantee an average current sampling

are rarely used.
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(a) (b)

  
(c) (d)

Figure 5.22: Transient response of the converter current plus grid current con-
trolled grid-connected inverter with a step in the commanded current peak value
from 2 A to 4 A (X–axis: Time, 5 ms/div; Y–axis: Magnitude of grid current
and grid voltage; Channel 2: grid current, 2 A/div; Channel 3: grid voltage,
50 V/div). (a) Average model prediction. (b) z-domain model prediction. (c)
Simulation result (d) Experimental result.

5.6 Conclusion

In this chapter, typical digitally controlled grid-connected inverters with a single

control loop and cascaded control loops are studied. The classic average models

derived in s-domain for the two control schemes are described without including

the effect of sample and hold. In contrast, new small-signal z-domain models are

produced considering possible delay effects under most possible circumstances.

The small-signal z-domain models including different delay effects are precisely

modeled for digitally controlled converters with a single control loop and cas-

caded control loops. This permits a direct design of the digital compensators in

z-domain. The internal converter current loop stability condition is analytically

derived based on the z-domain models. Furthermore, the proposed models are

capable of predicting the dynamic responses and the steady-state values of the
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(a) (b)

  
(c) (d)

Figure 5.23: Transient response of the converter current plus grid current con-
trolled grid-connected inverter with a step in the commanded current peak value
from 4 A to 2 A (X–axis: Time, 5 ms/div; Y–axis: Magnitude of grid current
and grid voltage; Channel 2: grid current, 2 A/div; Channel 3: grid voltage,
50 V/div). (a) Average model prediction. (b) z-domain model prediction. (c)
Simulation result (d) Experimental result.

control variables at the sampling instants. The frequency responses and root loci

of the two control schemes are obtained, resulting in the relevant design specifi-

cations. The experimental prototype is implemented according to the proposed

models. The comparison between the predictions of the models and the experi-

mental results with the two control schemes confirms the validity of the proposed

models.
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Chapter 6

Modelling of Multisampled
Multilevel Inverters with
Improved Control Performance

6.1 Introduction

In classic digital control methods, synchronized sampling and switching is a good

solution to avoid noise and ripple in the vicinity of the switching instants [47, 49],

with the uniformly-sampled converter current representing the current value av-

eraged in each switching cycle. The controller usually employs an internal con-

verter current loop with proportional (or plus integral) feedback control [50, 74].

To guarantee a stable operation, the maximum proportional feedback gain in the

current loop is limited by the sampling frequency and the converter side induc-

tance [38]. As is reported in [32], if the current sampling frequency is halved, the

control gain has to be reduced by the factor of two, which results in a degraded

control performance. Apparently, if both the sampling frequency and the switch-

ing frequency can be increased, larger control gains and better performance are

achievable.

The rapid performance improvement of DSPs, or when combined with addi-

tional FPGAs means that applying high sampling frequency of exact multiples

of the switching frequency becomes feasible [75], [76], [77]. This new approach is

known as multisampling and has the purpose of reducing the delay of the PWM

and improving the control bandwidth. However, this approach has a major draw-

back that the multisampling also samples the current ripple. If the samples are

not acquired at the peaks of the triangle PWM carrier, an average current is not

guaranteed for the digital controller. In the dc-ac or ac-ac converters with a mul-

tisampling factor N , current distortion may appear when the duty-ratio is equal

to the integer multiples of 1
N

. Hence, a digital filter is required to remove the

switching ripple from the sampled current [78]. Moveover, when multisampling
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is used without increasing the switching frequency, the control gains and perfor-

mance are still limited by the switching frequency. Therefore, a high switching

frequency [32] or a high converter current ripple frequency [38] is still necessary

to improve the control performance.

The application of multilevel inverters has attracted wide interests in medium

voltage management markets [79, 80]. Many topologies have been proposed such

as diode clamped inverter [81, 82, 83], capacitor clamped inverter [84], generalized

multilevel inverter [85], cascaded multilevel inverters [86, 87, 88, 89] and hybrid

topologies. These multilevel inverters can significantly reduce the harmonic cur-

rent components where lower size filter can be used. To maximise the number

of voltage levels, asymmetric cascaded inverters have been proposed [90, 91]. Al-

though the dc sources with different voltages are required, capacitors can be used

in stead of dc sources with proper control strategy [92].

There are two typical modulation strategies for single-phase multilevel invert-

ers, i.e., level-shifted PWM and phase-shifted PWM. Due to practical limitations

of the switching devices, the switching frequency can not be easily increased.

However, with the multilevel inverter structures [79, 87, 93, 94, 95], the filter

current ripple frequency can be increased by the phase-shifted PWM modula-

tion strategy [95, 96, 97, 98, 99]. Without changing the switching frequency

of each switch, the ripple frequency can be increased in respect to the number

of inverter levels. The multisampling is performed according to the number of

the phase-shifted carriers [100, 101, 102, 103]. A classic voltage controller with

cascaded control loops for the multilevel inverter system, behaving as a typical

linear control system, is given as an example. In order to study the improved con-

trol performance of multisampled multilevel inverters, the small-signal z-domain

model is derived for the analysis. The analysis reveals that higher feedback gains

can be employed in the controller, which improves the control performance. Ex-

perimental results of a five-level inverter with octuple sampling frequency are

provided to validate the analysis.

6.2 Uniformly-sampled bipolar switched single-

phase H bridge inverter

Fig. 6.1 shows the power circuit of a single-phase H bridge inverter. The LC

filter is connected to smooth the filter input voltage vin. The controller of the

stand-alone inverter is a cascaded linear controller composed of an internal cur-

rent control loop and an external voltage control loop with duty-ratio feedforward

(kff = 1), as is shown in Fig. 6.2. The ideally sampled output voltage and induc-

tor current are represented by v∗o and i∗L, respectively. A proportional feedback
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Figure 6.1: A single-phase H bridge inverter.

 

Figure 6.2: Digital controller of the single-phase H bridge inverter.

controller is used in the internal loop with the gain of kc, while a PR controller

is applied to the external voltage loop. The compensator of the voltage control

loop is Gv(z) = kv + kr
∑h

k=1Hk(z), where Hk(z) is the digitalized band-pass

filter resonating at kth odd harmonic frequency. The ideally calculated (without

delay) digital duty-ratio is x∗, which is updated into the PWM controller with a

DSP delay period (ADC delay and computation delay). The PWM controller’s

updated duty-ratio signal u∗ is then converted to the level signal uH by a ZOH

and compared with the triangle carrier vc to generate the drive signals d and

d′. For a bipolar switched single-phase H bridge inverter, the drive signal for

IGBT 1 and 4 is d, whereas for IGBT 2 and 3 is d′. Signals d and d′ are com-

plementary but with a deadband. The waveforms of drive signals and the filter

input voltage vin are shown in Fig. 6.3.

In order to select the feedback control gains, the model describing the digital

control loops is needed. The key waveforms of the bipolar PWM inverter is

shown in Fig. 6.4, where the triangle carrier is represented by vc with a switching

frequency of fs = 1
Ts

. The sampling is synchronized to the time when the PWM

counter equals period value. Assuming the total time of ADC conversion and

duty-ratio computation is less than half sampling period, then the calculated

duty-ratio can be updated into the compare register at the time when the counter

equals zero. Therefore, the DSP delay from x∗ to u∗ is a half sampling period. As

u∗ is converted to uH by a ZOH and the drive signals are generated by comparing

uH with vc, the PWM delays from u∗ to the relevant drive signals in small signal
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(a) (b)

Figure 6.3: Waveforms of drive signals and filter input voltage of a bipolar
switched inverter. (a) Drive signals for IGBT 1, 2, 3 and 4 (X–axis: Time,
10 µs/div; Y–axis: Magnitude, 5 V/div). (b) Filter input voltage vin (X–axis:
Time, 5 ms/div; Y–axis: Magnitude, 50 V/div).

 

Figure 6.4: Key waveforms of the bipolar switched inverter.

are described by e−s
DTs
2 and e−s

(2−D)Ts
2 , where D is the average duty-ratio scaled

in the range of (0, 1). Assuming there is no delay from the drive signals to

the filter input voltage vin, the small-signal pulse-to-continuous transfer function

describing v̂in as a function of x̂∗ can be written as [25]

Gvinx∗(s) =
VdcTs

2
(e−sτd1 + e−sτd2) (6.1)

with τd1 = (1+D)Ts
2

and τd2 = (3−D)Ts
2

.

When the inverter has no load, the transfer functions describing the inductor

current iL and output voltage vo as a function of the filter input voltage vin are

GiLvin(s) =
s/L

s2 + srL/L+ 1/LC
(6.2)
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and

Gvovin(s) =
1/LC

s2 + srL/L+ 1/LC
, (6.3)

respectively. Hence, the pulse transfer functions from x∗ to the sampled signals

i∗L and v∗o in small signal are

Gi∗Lx
∗(z) = Z{Gvinx∗(s)GiLvin(s)} (6.4)

and

Gv∗ox
∗(z) = Z{Gvinx∗(s)Gvovin(s)}, (6.5)

respectively.

The z-transform of (6.4) can be derived by splitting Gi∗Lx
∗(z) into

Gi∗Lx
∗(z) =

VdcTs
2
Z{ s/Le−sτd1

s2 + srL/L+ 1/LC
+

s/Le−sτd2

s2 + srL/L+ 1/LC
}. (6.6)

Equation (6.6) can be written in a simplified form as

Gi∗Lx
∗(z) =

VdcTs
2
Z{Aie

−sτd1

s+ a
+
Bie

−sτd1

s+ b
+
Aie

−sτd2

s+ a
+
Bie

−sτd2

s+ b
} (6.7)

with a = 1
2
( rL
L

+
√

∆), b = 1
2
( rL
L
−
√

∆), ∆ = ( rL
L

)2 − 4
LC

, Ai = a
L(a−b) and

Bi = − b
L(a−b) . Note that τd1 < Ts and Ts < τd2 < 2Ts. The delay of the third and

fourth terms of the right side of (6.7) should be treated differently, i.e.,

Gi∗Lx
∗(z) =

VdcTs
2
Z{Aie

−sτd1

s+ a
+
Bie

−sτd1

s+ b
}

+
VdcTsz

−1

2
Z{Aie

−s(τd2−Ts)

s+ a
+
Bie

−s(τd2−Ts)

s+ b
}. (6.8)

Based on the z-transform theory, the z-transforms in (6.8) can be obtained as

Gi∗Lx
∗(z) =

VdcTs
2

(
Aie

a(τd1−Ts)

z − e−aTs
+
Bie

b(τd1−Ts)

z − e−bTs
)

+
VdcTsz

−1

2
(
Aie

a(τd2−2Ts)

z − e−aTs
+
Bie

b(τd2−2Ts)

z − e−bTs
), (6.9)

which can be written as

Gi∗Lx
∗(z) =

Ni11z +Ni10

z2 +D1z +D0

+
Ni21z +Ni20

z3 +D1z2 +D0z

=
Ni11z

2 + (Ni10 +Ni21)z +Ni20

z3 +D1z2 +D0z
(6.10)

with

Ni11 = VdcTs
2

(Aie
−a(Ts−τd1) +Bie

−b(Ts−τd1)),

Ni10 = −VdcTsD0

2
(Aie

aτd1 +Bie
bτd1),
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Table 6.1: Parameters of the Bipolar Switched Inverter
Symbol Quantity Value
Vdc DC voltage amplitude 200 V
Ts Switching and sampling period 100 µs
L Inductor 1642 µH
C Capacitor 10 µF
rL Inductor parasitic resistance 0.4 Ω

Ni21 = VdcTs
2

(Aie
−a(2Ts−τd2) +Bie

−b(2Ts−τd2)),

Ni20 = −VdcTsD0

2
(Aie

a(τd2−Ts) +Bie
b(τd2−Ts)),

D1 = −e−aTs − e−bTs and D0 = e−(a+b)Ts . Similarly, the z-transform of (6.5) can

be derived as

Gv∗ox
∗(z) =

Nv11z +Nv10

z2 +D1z +D0

+
Nv21z +Nv20

z3 +D1z2 +D0z

=
Nv11z

2 + (Nv10 +Nv21)z +Nv20

z3 +D1z2 +D0z
(6.11)

with

Nv11 = VdcTs
2

(Ave
−a(Ts−τd1) +Bve

−b(Ts−τd1)),

Nv10 = −VdcTsD0

2
(Ave

aτd1 +Bve
bτd1),

Nv21 = VdcTs
2

(Ave
−a(2Ts−τd2) +Bve

−b(2Ts−τd2)),

Nv20 = −VdcTsD0

2
(Ave

a(τd2−Ts) +Bve
b(τd2−Ts)),

D1 = −e−aTs − e−bTs and D0 = e−(a+b)Ts .

Therefore, according to Fig. 6.2, the closed-loop transfer function from i∗ref to

x∗ without feedforward can be written as

G1(z) =
kc
Vdc

1 + kc
Vdc
Gi∗Lx

∗(z)
. (6.12)

The closed-loop transfer function from v∗ref to x∗ without feedforward is

G2(z) =
Gv(z)G1(z)

1 +Gv(z)G1(z)Gv∗ox
∗(z)

. (6.13)

By using the parameters listed in Table 6.1, the root loci of the internal current

control loop and the external voltage control loop are shown in Fig. 6.5. According

to in Fig. 6.5, to ensure stable operation in the experimental tests, kc should

be smaller than 24.7 and kv should be smaller than 0.083. In our case, the

proportional gains are chosen as kc = 4 and kv = 0.05.

6.3 Multisampled multilevel inverters

To demonstrate the improved control performance as a result of the multisam-

pled multilevel inverter, this section provides a detailed analysis of the system’s
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Figure 6.5: Root loci of the control loops. (a) Internal current loop. (b) External
voltage loop with kc = 4.

operation compared to the bipolar switched inverter. A system comprised of two

cascaded H bridges inverters and modulated by four phase-shifted PWMs with

octuple-sampling frequency is modeled. The analysis is undertaken to assess the

performance advantages of the multisampled multilevel inverter.

6.3.1 System configuration

The power circuit of multilevel inverters with two cascaded H bridges topology

is shown in Fig. 6.6. Compared to the single H bridge inverter, the dc voltage

to each is halved. The drive signals for the upper and lower switches in each leg

are complementary. Therefore, four independent drive signals are generated from

the digital controller which block diagram is shown in Fig. 6.7.

6.3.2 Phase-shifted PWM

Two typical modulation strategies are usually used for multilevel inverters [98, 96].

The level-shifted modulation method requires the same switching frequency as

the filter current ripple frequency [104]. To achieve higher ripple frequency than

switching frequency, the phase-shifted PWM strategy can be employed for the

multilevel inverters. This modulation method is characterized by its capabil-

ity of improving the control performance of the filter voltage and current [105].

Since the filter input voltage frequency is increased as multiples of the switching

frequency, achieving an enhanced dynamic performance is evident. However, a

precise model for the digital modulator which can be used to design the controller

has not been proposed to date.
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Figure 6.6: The five-level H bridge inverters.

 

Figure 6.7: Digital controller of the five-level H bridge inverters.

For the case when there is no vertical crossing between the modulating signals

and the carriers, the time-domain diagram explaining the phase-shifted PWM is

shown in Fig. 6.8. To generate the drive signals, two opposite duty-ratios are

updated into PWM comparator as uH and u′H . The carriers vc1 and vc2 are used

to compare with uH to drive switches 1 and 2 in Fig. 6.6, respectively, with

vc2 leading vc1 by a phase angle of 90◦. The carriers vc3 and vc4 are used to

compare with u′H to drive switches 3 and 4, respectively, with vc4 leading vc3 by

a phase angle of 90◦. Moreover, vc1 and vc3 are synchronized. The sampling is

synchronized to the peaks of the carriers with the sampling frequency being eight

times of the switching frequency. The waveforms of the drive signals and the

filter input voltage of a multilevel inverter are shown in Fig. 6.9.
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Figure 6.8: Time-domain waveforms of the phase-shifted PWM.

6.3.3 Current ripple reduction

Multilevel inverters also provide an effective way of suppressing the filter cur-

rent ripple reduction [106]. For comparison, the ripple amplitude of the bipolar

switched inverter is derived first. To simplify the analysis, we assume the induc-

tor has no parasitic resistance and the capacitor voltage vo has a relative slow

dynamic behaviour. Then, the voltage on the filter inductor is

Vdc − vo = L
∆iL
DTs

(6.14)

during the rising edge of the inductor current, with ∆iL the peak-to-peak ampli-

tude of the current ripple. When the current is falling, the inductor voltage is

written as

−Vdc − vo = L
−∆iL

(1−D)Ts
. (6.15)
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(a) (b)

Figure 6.9: Waveforms of drive signals and filter input voltage of five-level phase-
shifted PWM multilevel inverters. (a) Drive signals for IGBT 1, 2, 3 and 4
(X–axis: Time, 10 µs/div; Y–axis: Magnitude, 5 V/div). (b) Filter input voltage
vin (X–axis: Time, 5 ms/div; Y–axis: Magnitude, 50 V/div).

Subtracting (6.15) from (6.14), it can be derived that

∆iL =
2VdcTsD(1−D)

L
. (6.16)

Therefore, the maximum inductor current ripple ∆iLmax of bipolar switched in-

verter is obtained when D = 0.5, i.e., ∆iLmax = VdcTs
2L

.

In the example of the five-level phase-shifted PWM multilevel inverter (see

Fig. 6.10), the input voltage frequency is increased to 4fs and the voltage ampli-

tude variation is reduced to Vdc
2

. Hence, the amplitude of the current ripple in

the multilevel inverter can be written as

∆iL =
VdcTsD

′(1−D′)
4L

(6.17)

with D′ = 4D − floor(4D). The maximum value of the ripple amplitude can

be derived as ∆iLmax = VdcTs
16L

. Compared to the bipolar switched inverter, the

multilevel inverter has reduced the filter current ripple amplitude by a factor of

8. An inductive filter with much smaller size can be used to suppress the ripple

in multilevel inverter.

6.3.4 Small-signal z-domain modelling for switching func-
tion

The waveforms in the last switching period in Fig. 6.8 are enlarged and shown in

Fig. 6.10. The modulation model can be obtained by describing the small-signal

filter input voltage v̂in as a function of x̂∗. It is shown in Fig. 6.10 that when x∗ is

changing slowly compared to the carriers, the delay effect can be determined by
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Figure 6.10: Time-domain enlarged view of the equivalent waveforms in phase-
shifted PWM multilevel inverters.
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Figure 6.11: Root loci of the control loops. (a) Internal current loop. (b) External
voltage loop with kc = 16.

the average duty-ratio D. If the drive signal is generated in the duration of the

rising edge of the carriers (e.g. v̂in1), the delay effect is expressed as e−sτd1 , where

τd1 = DTs
2
− floor(ND/2)Ts

N
+ Ts

N
with the multisampling factor N = 8. On the other

hand, when the drive signal is generated during the falling edge of the carriers (e.g.

v̂in2), the delay effect is written as e−sτd2 , with τd2 = (1−D)Ts
2
− floor(N(1−D)/2)Ts

N
+ Ts

N
.

Since the exact PWM model in the double-update-mode can not be obtained

straightforwardly [25], an approximation can be derived by averaging the delay

effects and the small-signal transfer function is written as

Gvinx∗(s) =
VdcTs
2N

(e−sτd1 + e−sτd2). (6.18)
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To obtain the small-signal transfer functions of Gi∗Lx
∗(z) and Gv∗ox

∗(z), the sim-

ilar theoretical method in the previous section is used. By using the z-transform

with the sampling frequency Nfs, The z-transform of Gi∗Lx
∗(z) can be written as

Gi∗Lx
∗(z) =

VdcTs
2N
Z{ s/Le−sτd1

s2 + srL/L+ 1/LC
+

s/Le−sτd2

s2 + srL/L+ 1/LC
}, (6.19)

and the z-transform result is given as

Gi∗Lx
∗(z) =

VdcTsz
−1

2N
(
Aie

a(τd1−2Ts)

z − e−aTs
+
Bie

b(τd1−2Ts)

z − e−bTs
+
Aie

a(τd2−2Ts)

z − e−aTs
+
Bie

b(τd2−2Ts)

z − e−bTs
).

(6.20)

The transfer function Gi∗Lx
∗(z) can be written in a short form as

Gi∗Lx
∗(z) =

Ni1z +Ni0

z3 +D1z2 +D0z
(6.21)

with Ni1 = VdcTs
2N

(Aie
−a(2Ts−τd1) + Bie

−b(2Ts−τd1) + Aie
−a(2Ts−τd2) + Bie

−b(2Ts−τd2))

and Ni0 = −VdcTsD0

2N
(Aie

a(τd1−Ts) +Bie
b(τd1−Ts) + Aie

a(τd2−Ts) +Bie
b(τd2−Ts)).

Similarly, the transfer function Gv∗ox
∗(z) can be derived as

Gv∗ox
∗(z) =

Nv1z +Nv0

z3 +D1z2 +D0z
(6.22)

with Nv1 = VdcTs
2N

(Ave
−a(2Ts−τd1) + Bve

−b(2Ts−τd1) + Ave
−a(2Ts−τd2) + Bve

−b(2Ts−τd2))

and Nv0 = −VdcTsD0

2N
(Ave

a(τd1−Ts) +Bve
b(τd1−Ts) + Ave

a(τd2−Ts) +Bve
b(τd2−Ts)).

Therefore, the closed-loop transfer function from i∗ref to x∗ for the multisam-

pled multilevel inverter without feedforward can be written as

GN1(z) =
kc
Vdc

1 + kc
Vdc
Gi∗Lx

∗(z)
(6.23)

with the sampling period of Ts/N (z = esTs/N). The closed-loop transfer function

from v∗ref to x∗ for the multisampled multilevel inverter without feedforward is

GN2(z) =
Gv(z)G1(z)

1 +Gv(z)G1(z)Gv∗ox
∗(z)

(6.24)

with the sampling period of Ts/N . Based on the closed-loop transfer functions,

the root loci of the internal current loop and the external voltage loop are shown

in Fig. 6.11. As the sampling frequency is increased, the driving delay becomes

significant, which may slightly affect the stability boundaries in the root loci.

Hence, according to Fig. 6.11, the proportional gains should be smaller than the

boundaries in root loci and are chosen as kc = 16 and kv = 0.2 to ensure stable

operation. Higher control gains result in a higher accurate voltage tracking capa-

bility. However, the gain kv is also related to the output impedance. Compared
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Figure 6.12: Bode diagrams of closed-loop transfer functions (dashed line: bipolar
switched inverter; full line: multisampled multilevel inverter).

to the gains of the bipolar switched inverter, much higher feedback gains are

achieved and the control performance is improved in the multisampled multilevel

inverter. The closed-loop transfer functions describing v∗o as a function of v∗ref for

the two systems are compared. With a heave resistive load (R = 5 Ω), the bode

diagrams of the closed-loop transfer functions are shown in Fig. 6.12. It can be

seen from Fig. 6.12 that the closed-loop gain of the multisampled multilevel in-

verter at selected frequencies is higher than that of the bipolar switched inverter.

At the fundamental frequency, the gains of the multisampled multilevel inverter

and the bipolar switched inverter are 0.956 and 0.869, respectively. Therefore, the

control performance has been improved by the multisampled multilevel inverter.

The experimental tests are implemented based on the previous analysis.

6.3.5 Modulation error

Note that the small-signal model (6.18) assumes that there is no vertical crossing

during multisampling, in which case the phase-shifted PWM is equivalent to the

alternative phase opposition (APO) level-shifted PWM with quadruple-switching

frequency. Since the frequency of the level-shifted carriers is half of the sampling

frequency, no vertical crossing exists when using the level-shifted modulation.

However, when the phase-shifted PWM is applied, the vertical crossing may occur

when D = 0.25, D = 0.5 and D = 0.75 where the phase-shifted carriers have

intersections. Fig. 6.13 shows the waveforms when vertical crossing occurs at D =

0.75. It can be seen that if the intersection of two carriers is between the levels of
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Figure 6.13: Key waveforms of phase-shifted PWM multilevel inverter when ver-
tical crossing occurs.

two adjacent duty-ratios, a vertical crossing appears on one carrier and a double

horizontal crossing appears on the other. Therefore, a switching action is missing

at that sampling period and the gain of the PWM in small signal becomes zero. As

is addressed in [38, 78], the vertical crossing results in a modulation nonlinearity

which may affect regulating performance of the digital controller. The number

of carriers intersections will significantly increase according to the number of

inverters, where more vertical crossing may occur. Hence, the modulation error

is a disadvantage existing in the multisampled multilevel inverters which limits

the inverters level.

6.4 Simulation results

The simulation of the bipolar switched inverter and multisampled multilevel in-

verter is preformed in Simulink. The block diagram of the power circuit of the

bipolar switched inverter is shown in Fig. 6.14. The digitally controlled system

is shown in Fig. 6.15, where the subsystem has been described in Fig. 6.14.

The power circuit of the multisampled multilevel inverter is comprised by

two H bridges, as is shown in Fig. 6.16. Based on this topology of multilevel

inverter, the block diagram of the digitally controlled multilevel inverter is shown

in Fig. 6.17.

The bipolar switched single-phase H bridge inverter and the system with mul-

tilevel cascaded H bridge inverters are simulated with the circuit parameters in

Table 6.1 and control parameters in the previous section. The highest harmonic

order is h = 5 and the resonant gain is kr = 20kv. The reference voltage is given
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Figure 6.14: Simulink block diagram of the power circuit of the bipolar switched
inverter.
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Figure 6.15: Simulink block diagram of the digitally controlled bipolar switched
inverter.

as 110 V. The H bridges are driven without deadband in simulation.

Fig. 6.18(a) shows the simulation retrieved waveforms of the output voltage

and current of the bipolar switched inverter. As the control gains are low, the out-

put voltage is only 106 V. The inductor current waveform is shown in Fig. 6.18(b).

It can be seen from Fig. 6.18(b) that the current contains considerable switching

noises with a frequency of 10 kHz. The peak-to-peak value of the inductor current

ripple is very high (6.5 A when D = 0.5).

When octuple-sampling frequency is used and quadruple filter input voltage
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Figure 6.16: Simulink block diagram of the power circuit of the multisampled
multilevel inverter.
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Figure 6.17: Simulink block diagram of the digitally controlled multisampled
multilevel inverter.

frequency is achieved for the multilevel inverter, the feedback control gains are

quadrupled. Fig. 6.19(a) shows the simulation waveforms of the output voltage

and current of the multisampled multilevel inverter. As the control gains are
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(a) (b)

Figure 6.18: Simulation retrieved waveforms of the conventional bipolar switched
inverter with a resistive load. (a) Output voltage and output current (X–axis:
Time, 5 ms/div; Y–axis: Magnitude, 50 V/div, 5 A/div). (b) Inductor current
(X–axis: Time, 5 ms/div; Y–axis: Magnitude, 5.33 A/div).

  
(a) (b)

Figure 6.19: Simulation retrieved waveforms of the multisampled multilevel in-
verter with a resistive load. (a) Output voltage and output current (X–axis:
Time, 5 ms/div; Y–axis: Magnitude, 50 V/div, 5 A/div). (b) Inductor current
(X–axis: Time, 5 ms/div; Y–axis: Magnitude, 5.33 A/div).

much higher, the control accuracy has been improved and the RMS value of the

output voltage is 109 V. The inductor current waveform is shown in Fig. 6.19(b),

where the amplitude of the ripple is significantly suppressed (less than 0.4 A)

and the frequency is higher (40 kHz). Compared to the bipolar switched inverter,

a much better control performance is achieved by the multisampled multilevel

inverter.

Fig. 6.20 and Fig. 6.21 shows the transient responses of the bipolar switched

inverter and the multilevel inverter, respectively. The resistive load steps from

108 Ω to 21.6 Ω. After the load step of the bipolar switched inverter, the out-

put voltage drops. It takes at least seven line cycles for the output voltage to
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Figure 6.20: Simulation results of dynamic response of the conventional bipolar
switched inverter when the load steps (X–axis: Time, 5 ms/div; Y–axis: Magni-
tude, 50 V/div, 5 A/div).

 

Figure 6.21: Simulation results of dynamic response of the multisampled multi-
level inverter when the load steps (X–axis: time, 5 ms/div; Y–axis: magnitude
of output voltage, 50 V/div; magnitude of output current, 5 A/div).

achieve steady-state. In contrast, for the multisampled multilevel inverter, the

output voltage reaches the steady-state within five line cycles after the load step

(see Fig. 6.20). Hence, a much better dynamic performance is achieved by the

multisampled multilevel inverter.

6.5 Experimental results

The two digital controllers are experimentally tested in a bipolar switched single-

phase H bridge inverter and a multilevel system of cascaded H bridge inverters.

The intelligent power modules PM30CSJ060 are used as H bridges with the dead-

band of 2.67 µs. The same circuit parameters in Table 6.1 are used and the control

parameters are chosen according to the analysis, with the highest harmonic order

h = 5 and the resonant gain of kr = 20kv.
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Figure 6.22: Experimental setup of the uniformly-sampled bipolar switched
stand-alone inverter.

  
(a) (b)

Figure 6.23: Experimentally retrieved waveforms of the conventional bipolar
switched inverter with a resistive load. (a) Output voltage and output current
(X–axis: Time, 5 ms/div; Y–axis: Magnitude, 50 V/div, 5 A/div). (b) Inductor
current (X–axis: Time, 5 ms/div; Y–axis: Magnitude, 5.33 A/div).

The experimental setup of the single-phase bipolar switched inverter is shown

in Fig. 6.22. A shunt is used to measure the output current. With a reference

voltage of 110 V (RMS value), Fig. 6.23(a) shows the experimental waveforms of

the output voltage and current of the bipolar switched inverter. As the control

gains are limited by the sampling frequency, the measured output voltage is

106 V. The inductor current waveform is measured on the ADC input channel, as

is shown in Fig. 6.23(b). It can be seen from Fig. 6.23(b) that the current contains

considerable switching noises with a frequency of 10 kHz. The maximum peak-to-

peak value of the experimentally measured inductor current ripple is 7.5 A (when

D = 0.5), where a well designed filter must be used to suppress the switching

ripple.

Compared to the bipolar switched inverter, octuple-sampling frequency is used

and quadruple filter input voltage frequency is achieved for the multilevel inverter.

The feedback control gains are quadrupled. The experimental setup of the mul-

tisampled multilevel inverter is shown in Fig. 6.24. Two inverter PCBs are used

to implement the system. Fig. 6.25(a) shows the experimental waveforms of the

output voltage and current of the multisampled multilevel inverter. As much

119



 

Figure 6.24: Experimental setup of the multisampled multilevel inverter.

  
(a) (b)

Figure 6.25: Experimentally retrieved waveforms of the multisampled multilevel
inverter with a resistive load. (a) Output voltage and output current (X–axis:
Time, 5 ms/div; Y–axis: Magnitude, 50 V/div, 5 A/div). (b) Inductor current
(X–axis: Time, 5 ms/div; Y–axis: Magnitude, 5.33 A/div).

higher control gains are guaranteed, the control accuracy has been improved and

the measured RMS value of the output voltage is 109 V. The inductor current

waveform is shown in Fig. 6.25(b), where the ripple is significantly suppressed.

The inductor current contains a ripple with a frequency of 40 kHz and a peak-

to-peak amplitude less than 1 A. Hence, a much better dynamic performance is

achieved by the multisampled multilevel inverter.

The dynamic responses of the bipolar switched inverter and the multisampled

multilevel inverter are also compared. The experimental waveforms are retrieved

during the transition of a load step. Fig. 6.26 and Fig. 6.27 show the dynamic

responses when the load steps from 108 Ω to 21.6 Ω. After the load step of

the bipolar switched inverter, the output voltage drops significantly within the

first line cycle. The lowest peak value of output voltage is close to 130 V. It

takes at least seven line cycles for the output voltage to achieve steady-state. In

contrast, the output voltage drop of the multisampled multilevel inverter after
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Figure 6.26: Experimental dynamic response of the conventional bipolar switched
inverter when the load steps (X–axis: Time, 5 ms/div; Y–axis: Magnitude, 50 V/-
div, 5 A/div).

 

Figure 6.27: Experimental dynamic response of the multisampled multilevel in-
verter when the load steps (X–axis: time, 5 ms/div; Y–axis: magnitude of output
voltage, 50 V/div; magnitude of output current, 5 A/div).

the load step is smaller. The lowest peak value of the output voltage during

the transition period is almost 140 V. Moveover, after the load step, the output

voltage reaches the steady-state within five line cycles. Hence, a much better

dynamic performance is achieved by the multisampled multilevel inverter.

However, there are also some disadvantages of the multisampled multilevel in-

verters. The deadband is usually mandatorily required by the H bridges. When

the number of the levels or the switching frequency increases, the phase-shift time

reduces. In that case, the deadband time is no longer negligible and it may intro-

duce considerable modulation error which leads to waveforms distortion. Another

drawback of the multisampled multilevel inverters is that the complexity of the

control algorithm is limited. As the computation load of the digital controller

in our system is almost saturated, the highest harmonic order of the resonant

compensator is h = 5. When a nonlinear load is connected, the output voltage
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(a) (b)

Figure 6.28: Experimental results of the multisampled multilevel inverter with a
nonlinear load. (a) Output voltage and output current (X–axis: Time, 5 ms/div;
Y–axis: Magnitude, 50 V/div, 5 A/div;). (b) Output voltage FFT result.

distortion is obvious.

Fig. 6.28(a) shows the output voltage and current waveforms of the multi-

sampled multilevel inverter with a nonlinear load connected. The relevant FFT

result of the output voltage is shown in Fig. 6.28(b), where the THD is about

2.3%. The THD of the output voltage remains low as long as the current is low.

Nevertheless, the current waveshape also differs when different distortion shapes

exist on the output voltage. In an environment with a high current injected to

the nonlinear load, guaranteeing low output voltage THD without sufficient har-

monic compensators is difficult. However, higher proportional feedback gains can

provide a low output impedance over a wide frequency range.

6.6 Conclusion

As increasing sampling and switching frequency of switching converters is be-

coming more and more interesting, switching devices which can afford higher op-

erating frequency are required. There are still practical limitations for switches

running at high frequency. However, by using the phase-shifted PWM method in

multilevel inverters, the filter current ripple frequency is increased, which allows

the controller to achieve better performance. This chapter discusses the digital

control of the multisampled multilevel inverter with a comparison to the control

of uniformly-sampled bipolar switched inverter. The uniform-sampling is used for

the bipolar switched inverter, while the octuple-sampling is used for the five-level

inverters system. A standard digital controller with cascaded control loops is

applied to the two inverter(s) configurations.

By developing the small-signal transfer function from the duty-ratio to the
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filter input voltage, the z-domain model for the multisampled multilevel invert-

ers is theoretically derived. Based on the closed-loop pulse transfer functions of

the two systems, the root loci are obtained. The control parameters are chosen

according to the root loci. It is shown that the control gains of the multisampled

five-level inverter can be increased as quadruple as the gains of the conventional

uniformly-sampled bipolar switched inverter. Therefore, a better control accu-

racy and dynamic performance is achieved. Following on from the theoretically

obtained control parameters, the experimental systems are implemented. Ex-

perimental results have validated the analysis, showing that the feasibility of

employing higher gains to achieve better control performance in multisampled

multilevel inverters. Hence, compared to the classic uniformly-sampled inverter,

the multisampled multilevel inverter, which keeps the same switching frequency,

is an alternative way of effectively implementing higher sampling frequency.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Three different classes of digitally controlled power inverters in microgrids have

been studied and modelled. Based on the proposed z-domain models, the design

method for digital controllers of the inverters has been demonstrated.

The fundamentals and state of the art of the digital control of power electron-

ics are introduced first. Modelling methods and control techniques are presented.

The thesis focuses on the digitally controlled switching converters with syn-

chronously sampled PWMs. Therefore, the small-signal modelling for uniformly-

sampled digital PWMs is presented. The digital PWM models with delays in

shadow mode and in immediate mode are developed. These models can be ex-

tended to bipolar switched and unipolar switched H bridges. Based on the PWM

models, the s-domain block diagrams and z-domain block diagrams for control

systems can be obtained. Design methods for the controllers by using the simu-

lation, the root locus and the frequency response are demonstrated. For further

validation of the modelling, the simulation software and the experimental ar-

rangement are prepared and described.

The stand-alone inverter with an LC filter and cascaded control loops is mod-

elled in z-domain. Small-signal PWM models are used. By using the z-transform,

the internal current control loop is analyzed in z-domain. The z-domain analysis

shows that the proportional gain is limited by the product of the filter inductance

and the sampling frequency. Using similar method, the z-domain model for the

cascaded control loops is obtained. The analysis shows that the proportional gain

of the external voltage control loop is also limited. The maximum gain of the

external loop is related to the proportional gain of the internal loop. However,

it should never exceed the product of the filter capacitance and the sampling

frequency. Based on the block diagram of the stand-alone inverter, the design of

the controller is implemented. The s-domain analysis can be performed on digi-

124



tally controlled power inverters. The closed-loop gain and the output impedance

can be obtained from the s-domain analysis. To achieve an expected closed-

loop gain and the output impedance, new linear control scheme with duty-ratio

feedforward has been proposed for parallel inverters in islanding operation mode.

In contrast to the classic PR controller, the analysis shows that the proposed

controller achieves a better capability of voltage tracking and a lower output

THD of voltage. The simulation and experimental comparisons have validated

the advantages of the proposed control scheme compared to the conventional

PR controller: higher tracking capability and lower THD of the output voltage.

Moreover, the proposed control scheme can also be used for other control systems

with ac references. Linear controller can be used for either ac voltage control or

ac current control since it achieves a high gain with adjustable magnitudes at the

fundamental frequency and harmonic frequencies. On the other hand, duty-ratio

feedforward is a good method to improve the tracking capability. The combi-

nation of linear controller and duty-ratio feedforward may be used for many ac

systems.

For grid-connected inverters with LCL filters, many digital control schemes

have been proposed. Some controllers only regulate the converter side current,

but some controllers have cascaded control loops. Accurate models for these grid-

connected inverters are not available. As a result, the design of controllers has

to be carefully performed since the LCL resonance may leads to instability prob-

lems. Since the high frequency oscillation exists in grid-connected inverters, using

classic average models may lead to wrong stability analysis results. Usually, the

control parameters are chosen by experience to guarantee stability. Therefore,

accurate discrete models are required to predict the stability boundaries. New

small-signal z-domain models are proposed for digitally controlled grid-connected

inverters with single control loop and cascaded control loops. The modelling of

grid-connected inverters with PR controllers is presented. Two control schemes

are studied: converter current control scheme and converter current plus grid

current control scheme. Different delay effects have been carefully taken into

account in the modelling. It shows that when synchronously-sampled triangle

carriers are used, there are usually three typical delay times, i.e., half switching

period delay, one switching period delay and one and a half periods delay. Based

on the possible delays, classic average models and small-signal z-domain models

are developed. The frequency responses show that the response of the s-domain

models and that of the z-domain models in low frequency range are almost iden-

tical. However, big difference exists when the frequency approaches the Nyquist

frequency. The s-domain root loci and z-domain root loci are also compared.

For the converter current control scheme, the stability boundaries predicted by
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s-domain root loci are quite different from the boundaries predicted by z-domain

root loci. For the converter current plus grid current control scheme, the sta-

bility boundaries predicted by s-domain root loci and by z-domain root loci are

almost the same. This is because the instability of the grid current control loop

is mainly caused by the resonance of the LCL filter. The analysis also shows

that the proportional gain of the converter current control loop should be smaller

than the product of the converter side inductance and the sampling frequency.

The simulation results have verified that the z-domain models are more accurate

in predicting the instabilities compared to the classic average models. Based on

the z-domain models, the controller can be designed and the parameters can be

selected. The PR controller for the grid-connected inverters are shown as an ex-

ample. The s-domain models and the z-domain models are used to predict the

time-domain waveforms of the grid-connected inverters. Steady-state responses

and transient responses are presented. By comparing the models predicted re-

sponses to the simulation and experimental results, it reveals that the proposed

z-domain models are also capable of predicting the values of control variables

at the true sampling instants. Therefore, the proposed new z-domain models

are capable of predicting stability, guiding the controller design and predicting

steady-state and transient responses.

At last, the multilevel inverters are modelled and compared to the single

H bridge inverter. Since the multilevel inverters modulated by level-shifted car-

riers can be easily modelled using the similar method to that of the bipolar or

unipolar switched inverters, the modelling procedure is not shown in that chap-

ter. However, models of multilevel inverters modulated by phase-shifted carriers

can be hardly found to date. Therefore, the modelling of multilevel inverters

modulated by phase-shifted carriers have been proposed in this thesis. It shows

that when phase-shifted carriers are used, the ripple frequency of filter input

current is increased. This filter input current is almost equivalent to that of a

bipolar switched inverter with a higher switching frequency. Under this condi-

tion, the sampling frequency can be increased according to the ripple frequency.

By using a higher sampling frequency, a multisampled multilevel inverter can be

implemented. The single bridge bipolar switched inverter and the five-level multi-

sampled multilevel inverter are compared. Both inverters use the same switching

frequency, but the sampling frequency of the multilevel inverter is eight times of

the sampling frequency of the single H bridge inverter. The small-signal transfer

function from the duty-ratio to the filter input voltage of the phase-shift PWM

multilevel inverter has been derived. The z-domain models for the uniformly-

sampled bipolar switched inverter and for the multisampled multilevel inverter

are developed. The z-domain analysis shows that the control gains of multisam-
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pled multilevel inverter can be quadruple of the gains of the bipolar switched

inverter without causing instability problems. As a result, the steady-state and

transient performances of the multilevel inverter are better than that of the bipo-

lar switched inverter. Moreover, the analysis shows that the amplitude of the

current ripple in the multilevel inverter is reduced by the factor of eight. The EMI

of the multilevel inverter is significantly suppressed. The simulation and experi-

mental results are shown to verify the analysis. The steady-state responses and

transient responses of both the bipolar switched inverter and the multisampled

multilevel inverter are provided, which reveals that the multisampled multilevel

inverter achieves better tracking capability and faster dynamic response.

7.2 Future work

Based on the research achievements, various tasks for future work can be done

and they are mentioned below.

The previous work focuses on modelling and control of single-phase invert-

ers. This could be extended to three-phase inverters and verified by the relevant

experimental work. The modelling and control method for single-phase invert-

ers can be used for sinusoidal PWM based three-phase inverters with control

in abc frame or αβ frame. However, for space-vector PWM based three-phase

inverters with control in dq frame, the modelling becomes more complicated.

There could be lots of work around the topic of modelling and controller design

of the space-vector PWM based three-phase inverters in dq frame. The result

can demonstrate whether it is practical to use z-domain analysis for space-vector

PWM based three-phase inverters. The result of z-domain analysis may be very

complicated, and may not straightforwardly give a design guideline. However, it

is worth to undertake the research and find out whether the z-domain analysis is

practical under this circumstance.

The parallel inverters and grid-connected inverters in the thesis are all con-

trolled by linear voltage/current controllers with fixed resonant frequencies. This

is because the controller cannot afford further computation load when resonant

frequencies are adjustable. In practice, the grid frequency is varying all the time.

If we use a fixed resonant frequency, the control performance may not be good all

the time. To improve the performance of the controller, the resonant frequencies

should be changed based on the grid fundamental frequency. The parameters

of the resonant controller should be adjusted according to the grid frequency

measured by the PLL. In the current experimental system, the processing capa-

bility of the DSP is not enough for calculating parameters periodically. However,

DSPs with higher processing speed could be used to solve the problem, where
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linear controllers with variable resonant frequencies can be implemented in the

controller.

There are only two H bridges for the multilevel inverter. The level of the mul-

tilevel inverter could be increased, and higher frequency of filter input voltage

and higher sampling frequency can be achieved. This can be solved by using con-

trollers comprised of FPGAs and DSPs. The computation can be performed in

the FPGA, which could guarantee a short time of the calculation of duty-ratios.

When the computation time is quite short compared to the sampling period, more

complicated control algorithms can therefore be used to improve the performance

of the control. Moreover, increasing the level of the multilevel inverters brings

the possibilities of reducing the switching frequency of each switch, which allows

high current going through the switching devices without causing low frequency

noise in the filter. The high sampling frequency high-level inverters can be exper-

imentally studied, where the modulation error can be observed. Moreover, more

interesting applications of multilevel inverters can be developed and tested.

128



References

[1] R. H. Lasseter. Microgrids. In Proceeding IEEE Power Engineering Society

Winter Meeting, volume 1, pages 305–308, 2002.

[2] J. M. Guerrero, J. Matas, Luis Garcia de Vicuna, M. Castilla, and J. Miret.

Decentralized control for parallel operation of distributed generation in-

verters using resistive output impedance. IEEE Transactions on Industrial

Electronics, 54(2):994–1004, Apr. 2007.

[3] J. M. Guerrero, J. C. Vasquez, J. Matas, M. Castilla, and L. G. de Vicuna.

Control strategy for flexible microgrid based on parallel line-interactive UPS

systems. IEEE Transactions on Industrial Electronics, 56(3):726–736, Mar.

2009.

[4] Xiaotian Zhang, Hao Zhang, J. M. Guerrero, and Xikui Ma. Reactive

power compensation for parallel inverters without control interconnections

in microgrid. In Industrial Electronics, 2008. IECON 2008. 34th Annual

Conference of IEEE, pages 922–925, Nov. 2008.

[5] Xiaotian Zhang, Hao Zhang, Xikui Ma, and J. M. Guerrero. Sharing of

active power supply and reactive power compensation for parallel invert-

ers. In Applied Power Electronics Conference and Exposition, 2009. APEC

2009. Twenty-Fourth Annual IEEE, pages 353–357, Feb 2009.

[6] Xiaotian Zhang and J. W. Spencer. Linear voltage-control scheme with

duty-ratio feedforward for digitally controlled parallel inverters. IEEE

Transactions on Power Electronics, 26(12):3642–3652, Dec. 2011.

[7] Xiaotian Zhang and J. W. Spencer. Study of multisampled multilevel in-

verters to improve control performance. IEEE Transactions on Power Elec-

tronics, 27(11):4409–4416, Nov. 2012.

[8] Xiaotian Zhang, J. W. Spencer, and J. M. Guerrero. Small-signal mod-

eling of digitally controlled grid-connected inverters with lcl filters. IEEE

Transactions on Industrial Electronics, PP(99):1–13, 2012.

129



[9] R. W. Erickson and D. Maksimovic. Fundamentals of Power Electronics.

Springer Science+Business Media Inc., 2001.

[10] S. K. Mazumder, A. H. Nayfeh, and D. Boroyevich. An investigation into

the fast- and slow-scale instabilities of a single phase bidirectional boost

converter. IEEE Transactions on Power Electronics, 18(4):1063–1069, Jul.

2003.

[11] IEEE Standard for Interconnecting Distributed Resources With Electric

Power Systems, IEEE Std 1547-2003, Aug. 2003.

[12] IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Sys-

tems, IEEE Std 929-2000, Dec. 2000.

[13] M. Armstrong, David.J. Atkinson, C.M. Johnson, and T.D. Abeyasekera.

Auto-calibrating DC link current sensing technique for transformerless, grid

connected, H-bridge inverter systems. IEEE Transactions on Power Elec-

tronics, 21(5):1385–1393, Sep. 2006.

[14] A. Hasanzadeh, O. C. Onar, H. Mokhtari, and A. Khaligh. A proportional-

resonant controller-based wireless control strategy with a reduced number of

sensors for parallel-operated UPSs. IEEE Transactions on Power Delivery,

25(1):468–478, Jan. 2010.

[15] S. K. Mazumder, A. H. Nayfeh, and D. Boroyevich. Theoretical and exper-

imental investigation of the fast- and slow-scale instabilities of a DC-DC

converter. IEEE Transactions on Power Electronics, 16(2):201–216, Mar.

2001.

[16] S. Banerjee and K. Chakrabarty. Nonlinear modeling and bifurcations in

the boost converter. IEEE Transactions on Power Electronics, 13(2):252–

260, Mar. 1998.

[17] M. di Bernardo and F. Vasca. Discrete-time maps for the analysis of bi-

furcations and chaos in dc/dc converters. IEEE Transactions on Circuits

and Systems I: Fundamental Theory and Applications, 47(2):130–143, Feb.

2000.

[18] Jingquan Chen, A. Prodic, R. W. Erickson, and D. Maksimovic. Predictive

digital current programmed control. IEEE Transactions on Power Elec-

tronics, 18(1):411–419, Jan. 2003.

130



[19] D. Maksimovic and R. Zane. Small-signal discrete-time modeling of digi-

tally controlled PWM converters. IEEE Transactions on Power Electronics,

22(6):2552–2556, nov. 2007.

[20] A. R. Oliva, S. S. Ang, and G. E. Bortolotto. Digital control of a voltage-

mode synchronous buck converter. IEEE Transactions on Power Electron-

ics, 21(1):157–163, Jan. 2006.

[21] Eric Wu and P. W. Lehn. Digital current control of a voltage source con-

verter with active damping of LCL resonance. IEEE Transactions on Power

Electronics, 21(5):1364–1373, Sep. 2006.

[22] V. Rajasekaran, Jian Sun, and B. S. Heck. Bilinear discrete-time mod-

eling for enhanced stability prediction and digital control design. IEEE

Transactions on Power Electronics, 18(1):381–389, Jan. 2003.

[23] A. V. Peterchev and S. R. Sanders. Quantization resolution and limit cy-

cling in digitally controlled PWM converters. IEEE Transactions on Power

Electronics, 18(1):301–308, Jan. 2003.

[24] H. Peng, A. Prodic, E. Alarcon, and D. Maksimovic. Modeling of quanti-

zation effects in digitally controlled dc-dc converters. IEEE Transactions

on Power Electronics, 22(1):208–215, Jan. 2007.

[25] D. M. Van de Sype, K. De Gusseme, F. M. L. L. De Belie, A. P. Van-

den Bossche, and J. A. Melkebeek. Small-signal z-domain analysis of

digitally controlled converters. IEEE Transactions on Power Electronics,

21(2):470–478, Mar. 2006.

[26] S. Buso and P. Mattavelli. Digital Control in Power Electronics. Morgan

and Claypool Publishers, 2007.

[27] G. F. Franklin, J. D. Powell, and M. Workman. Digital control of dynamic

systems. Addison-Wesley Longman, 1998.

[28] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den Bossche, and

J. A. Melkebeek. Duty-ratio feedforward for digitally controlled boost PFC

converters. IEEE Transactions on Industrial Electronics, 52(1):108–115,

Feb. 2005.

[29] M. Liserre, F. Blaabjerg, and S. Hansen. Design and control of an LCL-

filter-based three-phase active rectifier. IEEE Transactions on Industry

Applications, 41(5):1281–1291, Sept./Oct. 2005.

131



[30] M. Castilla, J. Miret, J. Matas, Luis Garcia de Vicuna, and Josep M.

Guerrero. Linear current control scheme with series resonant harmonic

compensator for single-phase grid-connected photovoltaic inverters. IEEE

Transactions on Industrial Electronics, 55(7):2724–2733, Jul. 2008.

[31] D. M. Van de Sype, K. De Gusseme, A. P. Van den Bossche, and J. A.

Melkebeek. Small-signal Laplace-domain analysis of uniformly-sampled

pulse-width modulators. In Proceeding IEEE 35th Power Electronics Spe-

cialists Conference, volume 6, pages 4292–4298, Jun. 2004.

[32] M. Hartmann, S. D. Round, H. Ertl, and J. W. Kolar. Digital current

controller for a 1 MHz, 10 kW three-phase VIENNA rectifier. IEEE Trans-

actions on Power Electronics, 24(11):2496–2508, Nov. 2009.

[33] Guanghai Gong, D. Hassler, and J. W. Kolar. A comparative study of

multicell amplifiers for AC-power-source applications. IEEE Transactions

on Power Electronics, 26(1):149–164, Jan. 2011.

[34] Yanfeng Chen, C. K. Tse, Shui-Sheng Qiu, L. Lindenmuller, and

W. Schwarz. Coexisting fast-scale and slow-scale instability in current-

mode controlled DC/DC converters: Analysis, simulation and experimen-

tal results. IEEE Transactions on Circuits and Systems I: Regular Papers,

55(10):3335–3348, Nov. 2008.

[35] M. Liserre, R. Teodorescu, and F. Blaabjerg. Stability of photovoltaic

and wind turbine grid-connected inverters for a large set of grid impedance

values. IEEE Transactions on Power Electronics,, 21(1):263–272, Jan. 2006.

[36] Fei Liu, Yan Zhou, Shanxu Duan, Jinjun Yin, Bangyin Liu, and Fangrui

Liu. Parameter design of a two-current-loop controller used in a grid-

connected inverter system with LCL filter. IEEE Transactions on Industrial

Electronics, 56(11):4483–4491, Nov. 2009.

[37] Guoqiao Shen, Xuancai Zhu, Jun Zhang, and Dehong Xu. A new feedback

method for PR current control of LCL-filter-based grid-connected inverter.

IEEE Transactions on Industrial Electronics, 57(6):2033–2041, Jun. 2010.

[38] H. Fujita. A single-phase active filter using an H-bridge PWM converter

with a sampling frequency quadruple of the switching frequency. IEEE

Transactions on Power Electronics, 24(4):934–941, Apr. 2009.

[39] Josep M. Guerrero, Luis Garcia de Vicuna, J. Matas, M. Castilla, and

J. Miret. A wireless controller to enhance dynamic performance of parallel

132



inverters in distributed generation systems. IEEE Transactions on Power

Electronics, 19(5):1205–1213, Sept. 2004.

[40] Josep M. Guerrero, Luis Garcia de Vicuna, Jose Matas, Miguel Castilla,

and Jaume Miret. Output impedance design of parallel-connected UPS in-

verters with wireless load-sharing control. IEEE Transactions on Industrial

Electronics, 52(4):1126–1135, Aug. 2005.

[41] D. N. Zmood, D. G. Holmes, and G. H. Bode. Frequency-domain analysis

of three-phase linear current regulators. IEEE Transactions on Industry

Applications, 37(2):601–610, Mar./Apr. 2001.

[42] Ying-Yu Tzou, Rong-Shyang Ou, Shih-Liang Jung, and Meng-Yueh Chang.

High-performance programmable AC power source with low harmonic dis-

tortion using DSP-based repetitive control technique. IEEE Transactions

on Power Electronics, 12(4):715–725, Jul. 1997.

[43] G. Escobar, A. A. Valdez, J. Leyva-Ramos, and P. Mattavelli. Repetitive-

based controller for a UPS inverter to compensate unbalance and harmonic

distortion. IEEE Transactions on Industrial Electronics, 54(1):504–510,

Feb. 2007.

[44] P. Mattavelli and F. P. Marafao. Repetitive-based control for selective

harmonic compensation in active power filters. IEEE Transactions on In-

dustrial Electronics, 51(5):1018–1024, Oct. 2004.

[45] A. Kawamura, T. Haneyoshi, and R. G. Hoft. Deadbeat controlled PWM

inverter with parameter estimation using only voltage sensor. IEEE Trans-

actions on Power Electronics, 3(2):118–125, Apr. 1988.

[46] A. Kawamura, R. Chuarayapratip, and T. Haneyoshi. Deadbeat control

of PWM inverter with modified pulse patterns for uninterruptible power

supply. IEEE Transactions on Industrial Electronics, 35(2):295–300, May.

1988.

[47] P. Mattavelli, G. Spiazzi, and P. Tenti. Predictive digital control of power

factor preregulators with input voltage estimation using disturbance ob-

servers. IEEE Transactions on Power Electronics, 20(1):140–147, Jan. 2005.

[48] M. Castilla, J. Miret, J. Matas, Luis Garcia de Vicuna, and Josep M. Guer-

rero. Control design guidelines for single-phase grid-connected photovoltaic

inverters with damped resonant harmonic compensators. IEEE Transac-

tions on Industrial Electronics, 56(11):4492–4501, Nov. 2009.

133



[49] D. M. Van de Sype, K. De Gusseme, A. P. Van den Bossche, and J. A.

Melkebeek. A sampling algorithm for digitally controlled boost PFC con-

verters. IEEE Transactions on Power Electronics, 19(3):649–657, May

2004.

[50] P. Mattavelli, F. Polo, F. Dal Lago, and S. Saggini. Analysis of control-

delay reduction for the improvement of UPS voltage-loop bandwidth. IEEE

Transactions on Industrial Electronics, 55(8):2903–2911, Aug. 2008.

[51] M. C. Chandorkar, D. M. Divan, and R. Adapa. Control of parallel con-

nected inverters in standalone AC supply systems. IEEE Transactions on

Industry Applications, 29(1):136–143, Jan./Feb. 1993.

[52] S.V. Iyer, M.N. Belur, and M.C. Chandorkar. A generalized computational

method to determine stability of a multi-inverter microgrid. IEEE Trans-

actions on Power Electronics, 25(9):2420–2432, Sep. 2010.

[53] A. Tuladhar, H. Jin, T. Unger, and K. Mauch. Parallel operation of single

phase inverter modules with no control interconnections. In Proceeding

IEEE 12th Applied Power Electronics Conference and Exposition, volume 1,

pages 94–100, Feb. 1997.

[54] A. Tuladhar, Hua Jin, T. Unger, and K. Mauch. Control of parallel inverters

in distributed AC power systems with consideration of line impedance ef-

fect. IEEE Transactions on Industry Applications, 36(1):131–138, Jan./Feb.

2000.

[55] Josep M. Guerrero, Luis Garcia de Vicuna, J. Miret, J. Matas, and J. Cruz.

Output impedance performance for parallel operation of UPS inverters us-

ing wireless and average current-sharing controllers. In Proceeding IEEE

35th Power Electronics Specialists Conference, volume 4, pages 2482–2488,

2004.

[56] Josep M. Guerrero, N. Berbel, L.G. de Vicuna, J. Matas, J. Miret, and

M. Castilla. Droop control method for the parallel operation of online

uninterruptible power systems using resistive output impedance. In Pro-

ceeding IEEE 21th Applied Power Electronics Conference and Exposition,

pages 716–1722, Mar. 2006.

[57] Josep M. Guerrero, Jose Matas, Luis Garcia De Vicuna, Miguel Castilla,

and Jaume Miret. Wireless-control strategy for parallel operation of

distributed-generation inverters. IEEE Transactions on Industrial Elec-

tronics, 53(5):1461–1470, Oct. 2006.

134



[58] U. Borup, F. Blaabjerg, and P.N. Enjeti. Sharing of nonlinear load in

parallel-connected three-phase converters. IEEE Transactions on Industry

Applications, 37(6):1817–1823, Nov./Dec. 2001.

[59] L. Corradini, P. Mattavelli, M. Corradin, and F. Polo. Analysis of paral-

lel operation of uninterruptible power supplies loaded through long wiring

cables. IEEE Transactions on Power Electronics, 25(4):1046–1054, Apr.

2010.

[60] Erika Twining and D.G. Holmes. Grid current regulation of a three-phase

voltage source inverter with an LCL input filter. IEEE Transactions on

Power Electronics,, 18(3):888–895, May 2003.

[61] Chien-Liang Chen, Yubin Wang, Jih-Sheng Lai, Yuang-Shung Lee, and

D. Martin. Design of parallel inverters for smooth mode transfer microgrid

applications. IEEE Transactions on Power Electronics, 25(1):6–15, Jan.

2010.

[62] J. Dannehl, C. Wessels, and F. W. Fuchs. Limitations of voltage-oriented

PI current control of grid-connected PWM rectifiers with LCL filters. IEEE

Transactions on Industrial Electronics, 56(2):380–388, Feb. 2009.

[63] A. A. Rockhill, M. Liserre, R. Teodorescu, and P. Rodriguez. Grid-filter

design for a multimegawatt medium-voltage voltage-source inverter. IEEE

Transactions on Industrial Electronics, 58(4):1205–1217, Apr. 2011.

[64] M. Castilla, J. Miret, A. Camacho, J. Matas, and L. de Vicuna. Reduction

of current harmonic distortion in three-phase grid-connected photovoltaic

inverters via resonant current control. IEEE Transactions on Industrial

Electronics, PP(99):1, 2011.

[65] L. Asiminoaei, R. Teodorescu, F. Blaabjerg, and U. Borup. Implementation

and test of an online embedded grid impedance estimation technique for PV

inverters. IEEE Transactions on Industrial Electronics, 52(4):1136–1144,

Aug. 2005.

[66] Guoqiao Shen, Dehong Xu, Luping Cao, and Xuancai Zhu. An improved

control strategy for grid-connected voltage source inverters with an LCL

filter. IEEE Transactions on Power Electronics, 23(4):1899–1906, Jul. 2008.

[67] F. Blaabjerg, R. Teodorescu, M. Liserre, and A.V. Timbus. Overview of

control and grid synchronization for distributed power generation systems.

IEEE Transactions on Industrial Electronics, 53(5):1398–1409, Oct. 2006.

135



[68] J. Dannehl, F. W. Fuchs, and P. B. Th andgersen. PI state space cur-

rent control of grid-connected PWM converters with LCL filters. IEEE

Transactions on Power Electronics, 25(9):2320–2330, Sep. 2010.

[69] Xuehua Wang, Xinbo Ruan, Shangwei Liu, and C. K. Tse. Full feedforward

of grid voltage for grid-connected inverter with lcl filter to suppress current

distortion due to grid voltage harmonics. IEEE Transactions on Power

Electronics, 25(12):3119–3127, Dec. 2010.

[70] M. Ciobotaru, V. G. Agelidis, R. Teodorescu, and F. Blaabjerg. Ac-

curate and less-disturbing active antiislanding method based on PLL

for grid-connected converters. IEEE Transactions on Power Electronics,

25(6):1576–1584, Jun. 2010.

[71] Fei Wang, J. L. Duarte, M. A. M. Hendrix, and P. F. Ribeiro. Modeling

and analysis of grid harmonic distortion impact of aggregated DG inverters.

IEEE Transactions on Power Electronics, 26(3):786–797, Mar. 2011.

[72] Poh Chiang Loh and D. G. Holmes. Analysis of multiloop control strategies

for LC/CL/LCL-filtered voltage-source and current-source inverters. IEEE

Transactions on Industry Applications, 41(2):644–654, Mar./Apr. 2005.

[73] J. C. Vasquez, J. M. Guerrero, A. Luna, P. Rodriguez, and R. Teodor-

escu. Adaptive droop control applied to voltage-source inverters operating

in grid-connected and islanded modes. IEEE Transactions on Industrial

Electronics, 56(10):4088–4096, Oct. 2009.

[74] W. Stefanutti, P. Mattavelli, G. Spiazzi, and P. Tenti. Digital control

of single-phase power factor preregulators based on current and voltage

sensing at switch terminals. IEEE Transactions on Power Electronics,

21(5):1356–1363, Sep. 2006.

[75] L. Corradini, P. Mattavelli, E. Tedeschi, and D. Trevisan. High-bandwidth

multisampled digitally controlled DC-DC converters using ripple compen-

sation. IEEE Transactions on Industrial Electronics, 55(4):1501–1508, Apr.

2008.

[76] L. Corradini and P. Mattavelli. Modeling of multisampled pulse width

modulators for digitally controlled DC-DC converters. IEEE Transactions

on Power Electronics, 23(4):1839–1847, Jul. 2008.

[77] L. Corradini, P. Mattavelli, and S. Saggini. Elimination of sampling-induced

dead bands in multiple-sampled pulsewidth modulators for DC-DC con-

136



verters. IEEE Transactions on Power Electronics, 24(11):2661–2665, Nov.

2009.

[78] L. Corradini, W. Stefanutti, and P. Mattavelli. Analysis of multisampled

current control for active filters. IEEE Transactions on Industry Applica-

tions, 44(6):1785–1794, Nov./Dec. 2008.

[79] J. Rodriguez, Jih-Sheng Lai, and Fang Zheng Peng. Multilevel inverters:

a survey of topologies, controls, and applications. IEEE Transactions on

Industrial Electronics, 49(4):724–738, Aug. 2002.

[80] M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. Perez. A survey on

cascaded multilevel inverters. IEEE Transactions on Industrial Electronics,

57(7):2197–2206, Jul. 2010.

[81] Akira Nabae, Isao Takahashi, and Hirofumi Akagi. A new neutral-point-

clamped PWM inverter. IEEE Transactions on Industry Applications, IA-

17(5):518–523, Sep. 1981.

[82] M. Marchesoni and P. Tenca. Diode-clamped multilevel converters: a prac-

ticable way to balance dc-link voltages. IEEE Transactions on Industrial

Electronics, 49(4):752–765, Aug. 2002.

[83] J. Pou, R. Pindado, and D. Boroyevich. Voltage-balance limits in four-level

diode-clamped converters with passive front ends. IEEE Transactions on

Industrial Electronics, 52(1):190–196, Feb. 2005.

[84] B.-R. Lin and Chun-Hao Huang. Implementation of a three-phase

capacitor-clamped active power filter under unbalanced condition. IEEE

Transactions on Industrial Electronics, 53(5):1621–1630, Oct. 2006.

[85] Fang Zheng Peng. A generalized multilevel inverter topology with self volt-

age balancing. IEEE Transactions on Industry Applications, 37(2):611–618,

Mar./Apr. 2001.

[86] K. Corzine and Y. Familiant. A new cascaded multilevel H-bridge drive.

IEEE Transactions on Power Electronics, 17(1):125–131, Jan. 2002.

[87] R. Teodorescu, F. Blaabjerg, J.K. Pedersen, E. Cengelci, and P.N. Enjeti.

Multilevel inverter by cascading industrial vsi. IEEE Transactions on In-

dustrial Electronics, 49(4):832–838, Aug. 2002.

[88] Zhong Du, L. M. Tolbert, J. N. Chiasson, and B. Ozpineci. Reduced

switching-frequency active harmonic elimination for multilevel converters.

IEEE Transactions on Industrial Electronics, 55(4):1761–1770, Apr. 2008.

137



[89] P. Lezana, J. Rodriguez, and D. A. Oyarzun. Cascaded multilevel inverter

with regeneration capability and reduced number of switches. IEEE Trans-

actions on Industrial Electronics, 55(3):1059–1066, Mar. 2008.

[90] J. Dixon, A. A. Breton, F. E. Rios, J. Rodriguez, J. Pontt, and M. A.

Perez. High-power machine drive, using nonredundant 27-level inverters

and active front end rectifiers. IEEE Transactions on Power Electronics,

22(6):2527–2533, Nov. 2007.

[91] C. Rech and J. R. Pinheiro. Hybrid multilevel converters: Unified analysis

and design considerations. IEEE Transactions on Industrial Electronics,

54(2):1092–1104, Apr. 2007.

[92] Zhong Du, L. M. Tolbert, B. Ozpineci, and J. N. Chiasson. Fundamental

frequency switching strategies of a seven-level hybrid cascaded h-bridge

multilevel inverter. IEEE Transactions on Power Electronics, 24(1):25–33,

Jan. 2009.

[93] N. Celanovic and D. Boroyevich. A fast space-vector modulation algorithm

for multilevel three-phase converters. IEEE Transactions on Industry Ap-

plications, 37(2):637–641, Mar./Apr. 2001.

[94] L.M. Tolbert and T.G. Habetler. Novel multilevel inverter carrier-based

pwm method. IEEE Transactions on Industry Applications, 35(5):1098–

1107, Sep./Oct. 1999.

[95] H. Akagi. Classification, terminology, and application of the modular multi-

level cascade converter (MMCC). IEEE Transactions on Power Electronics,

26(11):3119–3130, Nov. 2011.

[96] Poh Chiang Loh, D.G. Holmes, Y. Fukuta, and T.A. Lipo. Reduced

common-mode modulation strategies for cascaded multilevel inverters.

IEEE Transactions on Industry Applications, 39(5):1386–1395, Sep./Oct.

2003.

[97] Y. Liang and C. O. Nwankpa. A power-line conditioner based on flying-

capacitor multilevel voltage-source converter with phase-shift SPWM.

IEEE Transactions on Industry Applications, 36(4):965–971, Jul./Aug.

2000.

[98] G. Carrara, S. Gardella, M. Marchesoni, R. Salutari, and G. Sciutto. A

new multilevel pwm method: a theoretical analysis. IEEE Transactions on

Power Electronics, 7(3):497–505, Jul. 1992.

138



[99] D.G. Holmes and B.P. McGrath. Opportunities for harmonic cancella-

tion with carrier-based pwm for a two-level and multilevel cascaded invert-

ers. IEEE Transactions on Industry Applications, 37(2):574–582, Mar./Apr.

2001.

[100] G. R. Walker. Digitally-implemented naturally sampled PWM suitable

for multilevel converter control. IEEE Transactions on Power Electronics,

18(6):1322–1329, Nov. 2003.

[101] H. Akagi, S. Inoue, and T. Yoshii. Control and performance of a trans-

formerless cascade pwm statcom with star configuration. IEEE Transac-

tions on Industry Applications, 43(4):1041–1049, Jul./Aug. 2007.

[102] L. Maharjan, T. Yamagishi, H. Akagi, and J. Asakura. Fault-tolerant oper-

ation of a battery-energy-storage system based on a multilevel cascade pwm

converter with star configuration. IEEE Transactions on Power Electronics,

25(9):2386–2396, Sep. 2010.

[103] L. Maharjan, S. Inoue, and H. Akagi. A transformerless energy storage sys-

tem based on a cascade multilevel PWM converter with star configuration.

IEEE Transactions on Industry Applications, 44(5):1621–1630, Sep./Oct.

2008.

[104] Y. Sozer and D.A. Torrey. Modeling and control of utility interactive in-

verters. IEEE Transactions on Power Electronics, 24(11):2475–2483, Nov.

2009.

[105] M. Hagiwara and H. Akagi. Control and experiment of pulsewidth-

modulated modular multilevel converters. IEEE Transactions on Power

Electronics, 24(7):1737–1746, Jul. 2009.

[106] H. Ertl, J. W. Kolar, and F. C. Zach. Analysis of a multilevel multicell

switch-mode power amplifier employing the ”flying-battery” concept. IEEE

Transactions on Industrial Electronics, 49(4):816–823, Aug. 2002.

139



Appendix A

z-Transforms for Stand-Alone
Inverters

The flow chart of the z-transform program for a stand-alone inverter is shown in

Fig. A.1.

Set parameters

Calculate 
denominators of 
s-domain transfer 

functions

Calculate 
denominators of 

z-domain transfer 
functions

Calculate 
numerators of s-
domain transfer 

functions

Calculate 
numerators of z-
domain transfer 

functions

Start

Finish
 

Figure A.1: The flow chart of the program.
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The calculation code is shown below.

%% z−t rans forms
c l e a r a l l ;
c a r r i e r =2;
Vin=200;
Ts=1/10000;
Tc=1/10000;
L=1.64e−3;
rL =0.4;
rC=0;
C=10e−6;
R=1000;
k e s i =0;
Vref =156;
D=100/Vin ;
kc =4/200;
kv =00.05;
a=1/2∗(1/R/C+(rL+rC)/L . . .

+s q r t (1/Rˆ2/Cˆ2−4/L/C+2∗(rL+rC)/R/L/C+(rL+rC)ˆ2/L ˆ 2 ) ) ;
b=1/2∗(1/R/C+(rL+rC)/L . . .

−s q r t (1/Rˆ2/Cˆ2−4/L/C+2∗(rL+rC)/R/L/C+(rL+rC)ˆ2/L ˆ 2 ) ) ;
A=−(1−R∗C∗a )/ ( a−b)/L/C/R∗Vin ;
B=(1−R∗C∗b )/( a−b)/L/C/R∗Vin ;
A 1=−1/(a−b)/L/C∗Vin ;
B 1=1/(a−b)/L/C∗Vin ;

i f c a r r i e r==1 %%end o f on time
N1=Ts∗(A∗exp ( a∗( k e s i+D−1)∗Ts ) . . .

+B∗exp (b∗( k e s i+D−1)∗Ts ) ) ;
N0=Ts∗(−A∗exp ( ( a∗( k e s i+D−1)−b)∗Ts ) . . .

−B∗exp (b∗( k e s i+D−1)−a )∗Ts ) ) ;
D1=−exp(−a∗Ts)−exp(−b∗Ts ) ;
D0=exp(−(a+b)∗Ts ) ;
N1 1=Ts∗( A 1∗exp ( a∗( k e s i+D−1)∗Ts ) . . .

+B 1∗exp (b∗( k e s i+D−1)∗Ts ) ) ;
N0 1=Ts∗(−A 1∗exp ( ( a∗( k e s i+D−1)−b)∗Ts ) . . .

−B 1∗exp (b∗( k e s i+D−1)−a )∗Ts ) ) ;
end

i f c a r r i e r==2 %%symmetric on time
N1=Ts/2∗(A∗( exp ( a∗( kes i−D/2−1/2)∗Ts ) . . .

+exp ( a∗( k e s i+D/2−1/2)∗Ts ) ) . . .
+B∗( exp (b∗( kes i−D/2−1/2)∗Ts ) . . .
+exp (b∗( k e s i+D/2−1/2)∗Ts ) ) ) ;

N0=Ts/2∗(−A∗( exp ( a∗( kes i−D/2−1/2)∗Ts ) . . .
+exp ( a∗( k e s i+D/2−1/2)∗Ts ))∗ exp(−b∗Ts ) . . .
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−B∗( exp (b∗( kes i−D/2−1/2)∗Ts ) . . .
+exp (b∗( k e s i+D/2−1/2)∗Ts ))∗ exp(−a∗Ts ) ) ;

D1=−exp(−a∗Ts)−exp(−b∗Ts ) ;
D0=exp(−(a+b)∗Ts ) ;
N1 1=Ts/2∗( A 1∗( exp ( a∗( kes i−D/2−1/2)∗Ts ) . . .

+exp ( a∗( k e s i+D/2−1/2)∗Ts ) ) . . .
+B 1 ∗( exp (b∗( kes i−D/2−1/2)∗Ts ) . . .
+exp (b∗( k e s i+D/2−1/2)∗Ts ) ) ) ;

N0 1=Ts/2∗(−A 1∗( exp ( a∗( kes i−D/2−1/2)∗Ts ) . . .
+exp ( a∗( k e s i+D/2−1/2)∗Ts ))∗ exp(−b∗Ts ) . . .
−B 1 ∗( exp (b∗( kes i−D/2−1/2)∗Ts ) . . .
+exp (b∗( k e s i+D/2−1/2)∗Ts ))∗ exp(−a∗Ts ) ) ;

Nm2=Ts/2∗A∗exp ( a∗( k e s i+D/2−1/2)∗Ts ) . . .
+Ts/2∗B∗exp (b∗( k e s i+D/2−1/2)∗Ts ) ;

Nm1=Ts/2∗A∗( exp ( a∗( kes i−D/2−1/2)∗Ts ) . . .
−exp ( a∗( k e s i+D/2−1/2)∗Ts)∗ exp(−b∗Ts ) ) . . .
+Ts/2∗B∗( exp (b∗( kes i−D/2−1/2)∗Ts ) . . .
−exp (b∗( k e s i+D/2−1/2)∗Ts)∗ exp(−a∗Ts ) ) ;

Nm0=−Ts/2∗A∗exp ( a∗( kes i−D/2−1/2)∗Ts)∗ exp(−b∗Ts ) . . .
−Ts/2∗B∗exp (b∗( kes i−D/2−1/2)∗Ts)∗ exp(−a∗Ts ) ;

Nm2 1=Ts/2∗A 1∗exp ( a∗( k e s i+D/2−1/2)∗Ts ) . . .
+Ts/2∗B 1∗exp (b∗( k e s i+D/2−1/2)∗Ts ) ;

Nm1 1=Ts/2∗A 1∗( exp ( a∗( kes i−D/2−1/2)∗Ts ) . . .
−exp ( a∗( k e s i+D/2−1/2)∗Ts)∗ exp(−b∗Ts ) ) . . .
+Ts/2∗B 1 ∗( exp (b∗( kes i−D/2−1/2)∗Ts ) . . .
−exp (b∗( k e s i+D/2−1/2)∗Ts)∗ exp(−a∗Ts ) ) ;

Nm0 1=−Ts/2∗A 1∗exp ( a∗( kes i−D/2−1/2)∗Ts)∗ exp(−b∗Ts ) . . .
−Ts/2∗B 1∗exp (b∗( kes i−D/2−1/2)∗Ts)∗ exp(−a∗Ts ) ;

end
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Appendix B

z-Transforms for Grid-Connected
Inverters

The flow chart of the z-transform program for a grid-connected inverter is shown

in Fig. B.1.

Set parameters

Calculate 
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s-domain transfer 

functions

Calculate 
denominators of 

z-domain transfer 
functions

Calculate 
numerators of s-
domain transfer 

functions

Calculate 
numerators of z-
domain transfer 

functions

Start

Finish
 

Figure B.1: The flow chart of the program.
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The calculation code is shown below.

%%
c l e a r a l l ;
c a r r i e r =2;
Vin=200;
Vg=155;
Ts=1/20000;
L=1.64e−3;
Lg=1.64e−3;
rL =0.40;
rg =0.40;
C=10e−6;
R=00.0;
D=0.5;
kg =0.5 ; kr =20;
kL=16/Vin ;

%%% s ˆ2 Lg C + s C (R+rg ) + 1 AL BL CL
% G iLd=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−=−−−−− + −−−−− + −−−−−
%%% fa s3 + fb s2 + f c s + fd ( s+a ) ( s+b) ( s+c )

%%% s C R + 1 Ag Bg Cg
% G igd=−−−−−−−−−−−−−−−−−−−−−−−−−−−−−=−−−−− + −−−−− + −−−−−
%%% fa s3 + fb s2 + f c s + fd ( s+a ) ( s+b) ( s+c )

fa=L∗Lg∗C;
fb=C∗(Lg∗(R+rL)+L∗(R+rg ) ;
f c=L+Lg+C∗( rL∗ rg+R∗rL+R∗ rg ) ;
fd=rL+rg ;
fQ=(2∗ fb ˆ3−9∗ f a ∗ fb ∗ f c +27∗ f a ˆ2∗ fd )ˆ2 − . . .

4∗( fb ˆ2−3∗ f a ∗ f c ) ˆ 3 ) ˆ 0 . 5 ;
fC=(1/2∗( fQ+2∗ fb ˆ3−9∗ f a ∗ fb ∗ f c +27∗ f a ˆ2∗ fd ) ˆ ( 1 / 3 ) ;
a=−(−fb / fa/3−fC/ fa /3−( fb ˆ2−3∗ f a ∗ f c )/ f a /fC / 3 ) ;
b=−(−fb / fa/3+fC∗(1+ j ∗3ˆ0 .5 )/ fa / 6 + . . .

(1− j ∗3ˆ0 .5 )∗ ( fb ˆ2−3∗ f a ∗ f c )/ f a /fC / 6 ) ;
c=−(−fb / fa/3+fC∗(1− j ∗3ˆ0 .5)/ fa / 6 + . . .

(1+ j ∗3ˆ0 .5 )∗ ( fb ˆ2−3∗ f a ∗ f c )/ f a /fC / 6 ) ;
AL=Vin ∗( aˆ2∗Lg∗C−a∗C∗(R+rg )+1)/(a−b )/( a−c )/L/Lg/C;
BL=Vin ∗(bˆ2∗Lg∗C−b∗C∗(R+rg )+1)/(b−a )/ ( b−c )/L/Lg/C;
CL=Vin ∗( c ˆ2∗Lg∗C−c∗C∗(R+rg )+1)/( c−b )/( c−a )/L/Lg/C;
Ag=Vin∗(1−a∗C∗R)/( a−b )/( a−c )/L/Lg/C;
Bg=Vin∗(1−b∗C∗R)/( b−a )/ ( b−c )/L/Lg/C;
Cg=Vin∗(1−c∗C∗R)/( c−b )/( c−a )/L/Lg/C;

i f c a r r i e r==1 %%end o f on time
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ea=exp ( a∗( k e s i+D−1)∗Ts ) ;
eb=exp (b∗( k e s i+D−1)∗Ts ) ;
ec=exp ( c ∗( k e s i+D−1)∗Ts ) ;
NL2=Ts∗(AL∗ea+BL∗eb+CL∗ ec ) ;
NL1=−Ts∗(AL∗ea ∗( exp(−b∗Ts)+exp(−c∗Ts ) + . . .

BL∗eb ∗( exp(−a∗Ts)+exp(−c∗Ts ) . . .
+CL∗ ec ∗( exp(−a∗Ts)+exp(−b∗Ts ) ) ;

NL0=Ts∗(AL∗ea∗exp(−(b+c )∗Ts ) . . .
+BL∗eb∗exp(−(a+c )∗Ts)+CL∗ ec∗exp(−(a+b)∗Ts ) ;

D2=−exp(−a∗Ts)−exp(−b∗Ts)−exp(−c∗Ts ) ;
D1=exp(−(a+b)∗Ts)+exp(−(b+c )∗Ts)+exp(−(a+c )∗Ts ) ;
D0=−exp(−(a+b+c )∗Ts ) ;
Ng2=Ts∗(Ag∗ea+Bg∗eb+Cg∗ ec ) ;
Ng1=−Ts∗(Ag∗ea ∗( exp(−b∗Ts)+exp(−c∗Ts ) + . . .

Bg∗eb ∗( exp(−a∗Ts)+exp(−c∗Ts ) . . .
+Cg∗ ec ∗( exp(−a∗Ts)+exp(−b∗Ts ) ) ;

Ng0=Ts∗(Ag∗ea∗exp(−(b+c )∗Ts ) . . .
+Bg∗eb∗exp(−(a+c )∗Ts)+Cg∗ ec∗exp(−(a+b)∗Ts ) ;

end

i f c a r r i e r==2 %%symmetric on time
ea=(exp ( a∗( kes i −1/2−D/2)∗Ts ) . . .

+exp ( a∗( kes i −1/2+D/2)∗Ts ) / 2 ;
eb=(exp (b∗( kes i −1/2−D/2)∗Ts ) . . .

+exp (b∗( kes i −1/2+D/2)∗Ts ) / 2 ;
ec=(exp ( c ∗( kes i −1/2−D/2)∗Ts ) . . .

+exp ( c ∗( kes i −1/2+D/2)∗Ts ) / 2 ;
ea1=exp ( a∗( kes i −1/2+D/2)∗Ts ) / 2 ;
ea2=exp ( a∗( kes i −1/2−D/2)∗Ts ) / 2 ;
eb1=exp (b∗( kes i −1/2+D/2)∗Ts ) / 2 ;
eb2=exp (b∗( kes i −1/2−D/2)∗Ts ) / 2 ;
ec1=exp ( c ∗( kes i −1/2+D/2)∗Ts ) / 2 ;
ec2=exp ( c ∗( kes i −1/2−D/2)∗Ts ) / 2 ;
D2=−exp(−a∗Ts)−exp(−b∗Ts)−exp(−c∗Ts ) ;
D1=exp(−(a+b)∗Ts)+exp(−(b+c )∗Ts)+exp(−(a+c )∗Ts ) ;
D0=−exp(−(a+b+c )∗Ts ) ;
NL2=Ts∗(AL∗ea+BL∗eb+CL∗ ec ) ;
NL1=−Ts∗(AL∗ea ∗( exp(−b∗Ts)+exp(−c∗Ts ) + . . .

BL∗eb ∗( exp(−a∗Ts)+exp(−c∗Ts ) . . .
+CL∗ ec ∗( exp(−a∗Ts)+exp(−b∗Ts ) ) ;

NL0=Ts∗(AL∗ea∗exp(−(b+c )∗Ts ) . . .
+BL∗eb∗exp(−(a+c )∗Ts)+CL∗ ec∗exp(−(a+b)∗Ts ) ;

Ng2=Ts∗(Ag∗ea+Bg∗eb+Cg∗ ec ) ;
Ng1=−Ts∗(Ag∗ea ∗( exp(−b∗Ts)+exp(−c∗Ts ) + . . .
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Bg∗eb ∗( exp(−a∗Ts)+exp(−c∗Ts ) . . .
+Cg∗ ec ∗( exp(−a∗Ts)+exp(−b∗Ts ) ) ;

Ng0=Ts∗(Ag∗ea∗exp(−(b+c )∗Ts ) . . .
+Bg∗eb∗exp(−(a+c )∗Ts)+Cg∗ ec∗exp(−(a+b)∗Ts ) ;

NLm2=Ts∗(AL∗ ea1+BL∗eb1+CL∗ ec1 ) ;
NLm1=Ts∗(AL∗( ea2−ea1 ∗( exp(−b∗Ts)+exp(−c∗Ts ) ) + . . .

BL∗( eb2−eb1 ∗( exp(−a∗Ts)+exp(−c∗Ts ) ) + . . .
CL∗( ec2−ec1 ∗( exp(−a∗Ts)+exp(−b∗Ts ) ) ;

NLm0=Ts∗(AL∗( ea1∗exp(−(b+c )∗Ts ) . . .
−ea2 ∗( exp(−b∗Ts)+exp(−c∗Ts ) ) + . . .
BL∗( eb1∗exp(−(a+c )∗Ts ) . . .
−eb2 ∗( exp(−a∗Ts)+exp(−c∗Ts ) ) + . . .
CL∗( ec1∗exp(−(a+b)∗Ts ) . . .
−ec2 ∗( exp(−a∗Ts)+exp(−b∗Ts ) ) ;

NLm 1=Ts∗(AL∗ ea2∗exp(−(b+c )∗Ts ) . . .
+BL∗eb2∗exp(−(a+c )∗Ts)+CL∗ ec2∗exp(−(a+b)∗Ts ) ;

Ngm2=Ts∗(Ag∗ ea1+Bg∗eb1+Cg∗ ec1 ) ;
Ngm1=Ts∗(Ag∗( ea2−ea1 ∗( exp(−b∗Ts)+exp(−c∗Ts ) ) + . . .

Bg∗( eb2−eb1 ∗( exp(−a∗Ts)+exp(−c∗Ts ) ) + . . .
Cg∗( ec2−ec1 ∗( exp(−a∗Ts)+exp(−b∗Ts ) ) ;

Ngm0=Ts∗(Ag∗( ea1∗exp(−(b+c )∗Ts ) . . .
−ea2 ∗( exp(−b∗Ts)+exp(−c∗Ts ) ) + . . .
Bg∗( eb1∗exp(−(a+c )∗Ts ) . . .
−eb2 ∗( exp(−a∗Ts)+exp(−c∗Ts ) ) + . . .
Cg∗( ec1∗exp(−(a+b)∗Ts ) . . .
−ec2 ∗( exp(−a∗Ts)+exp(−b∗Ts ) ) ;

Ngm 1=Ts∗(Ag∗ ea2∗exp(−(b+c )∗Ts ) . . .
+Bg∗eb2∗exp(−(a+c )∗Ts)+Cg∗ ec2∗exp(−(a+b)∗Ts ) ;

end

NCRs2=Ts∗(Ag+Bg+Cg ) ;
NCRs1=−Ts∗(Ag∗( exp(−b∗Ts)+exp(−c∗Ts ) + . . .

Bg∗( exp(−a∗Ts)+exp(−c∗Ts ) . . .
+Cg∗( exp(−a∗Ts)+exp(−b∗Ts ) ) ;

NCRs0=Ts∗(Ag∗exp(−(b+c )∗Ts ) . . .
+Bg∗exp(−(a+c )∗Ts)+Cg∗exp(−(a+b)∗Ts ) ;

NLCs22=Ts∗(AL+BL+CL) ;
NLCs21=−Ts∗(AL∗( exp(−b∗Ts)+exp(−c∗Ts ) + . . .

BL∗( exp(−a∗Ts)+exp(−c∗Ts ) . . .
+CL∗( exp(−a∗Ts)+exp(−b∗Ts ) ) ;

NLCs20=Ts∗(AL∗exp(−(b+c )∗Ts ) . . .
+BL∗exp(−(a+c )∗Ts)+CL∗exp(−(a+b)∗Ts ) ;
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Appendix C

z-Transforms for Multilevel
Inverters

The flow chart of the z-transform program for multilevel inverters is shown in

Fig. C.1.

Set parameters

Calculate 
denominators of 
s-domain transfer 

functions

Calculate 
denominators of 

z-domain transfer 
functions

Calculate 
numerators of s-
domain transfer 

functions

Calculate 
numerators of z-
domain transfer 

functions

Start

Finish
 

Figure C.1: The flow chart of the program.
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The calculation code is shown below.

%% 10 kHz sampling
c l e a r a l l ;
c a r r i e r =2;
Vin=200;
Ts=1/10000;
Tc=1/10000;
L=1.64e−3;
rL =0.4;
rC=0;
C=10e−6;
R=1000;
Vref =156;
D=100/Vin ;
kc =4/200;
kv =00.05;
a=1/2∗(1/R/C+(rL+rC)/L . . .

+s q r t (1/Rˆ2/Cˆ2−4/L/C+2∗(rL+rC)/R/L/C+(rL+rC)ˆ2/L ˆ 2 ) ) ;
b=1/2∗(1/R/C+(rL+rC)/L . . .

−s q r t (1/Rˆ2/Cˆ2−4/L/C+2∗(rL+rC)/R/L/C+(rL+rC)ˆ2/L ˆ 2 ) ) ;
A=−(1−R∗C∗a )/ ( a−b)/L/C/R∗Vin ;
B=(1−R∗C∗b )/( a−b)/L/C/R∗Vin ;
A 1=−1/(a−b)/L/C∗Vin ;
B 1=1/(a−b)/L/C∗Vin ;

i f c a r r i e r==1 %%end o f on time
N1=Ts∗(A∗exp ( a∗( k e s i+D−1)∗Ts ) . . .

+B∗exp (b∗( k e s i+D−1)∗Ts ) ) ;
N0=Ts∗(−A∗exp ( ( a∗( k e s i+D−1)−b)∗Ts ) . . .

−B∗exp ( ( b∗( k e s i+D−1)−a )∗Ts ) ) ;
D1=−exp(−a∗Ts)−exp(−b∗Ts ) ;
D0=exp(−(a+b)∗Ts ) ;
N1 1=Ts∗( A 1∗exp ( a∗( k e s i+D−1)∗Ts ) . . .

+B 1∗exp (b∗( k e s i+D−1)∗Ts ) ) ;
N0 1=Ts∗(−A 1∗exp ( ( a∗( k e s i+D−1)−b)∗Ts ) . . .

−B 1∗exp ( ( b∗( k e s i+D−1)−a )∗Ts ) ) ;
end

i f c a r r i e r==2 %%symmetric on time
N1=Ts/2∗(A∗( exp ( a∗( kes i−D/2−1/2)∗Ts ) . . .

+exp ( a∗( k e s i+D/2−1/2)∗Ts ) ) . . .
+B∗( exp (b∗( kes i−D/2−1/2)∗Ts ) . . .
+exp (b∗( k e s i+D/2−1/2)∗Ts ) ) ) ;

N0=Ts/2∗(−A∗( exp ( a∗( kes i−D/2−1/2)∗Ts ) . . .
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+exp ( a∗( k e s i+D/2−1/2)∗Ts ))∗ exp(−b∗Ts ) . . .
−B∗( exp (b∗( kes i−D/2−1/2)∗Ts ) . . .
+exp (b∗( k e s i+D/2−1/2)∗Ts ))∗ exp(−a∗Ts ) ) ;

D1=−exp(−a∗Ts)−exp(−b∗Ts ) ;
D0=exp(−(a+b)∗Ts ) ;
N1 1=Ts/2∗( A 1∗( exp ( a∗( kes i−D/2−1/2)∗Ts ) . . .

+exp ( a∗( k e s i+D/2−1/2)∗Ts ) ) . . .
+B 1 ∗( exp (b∗( kes i−D/2−1/2)∗Ts ) . . .
+exp (b∗( k e s i+D/2−1/2)∗Ts ) ) ) ;

N0 1=Ts/2∗(−A 1∗( exp ( a∗( kes i−D/2−1/2)∗Ts ) . . .
+exp ( a∗( k e s i+D/2−1/2)∗Ts ))∗ exp(−b∗Ts ) . . .
−B 1 ∗( exp (b∗( kes i−D/2−1/2)∗Ts ) . . .
+exp (b∗( k e s i+D/2−1/2)∗Ts ))∗ exp(−a∗Ts ) ) ;

Nm2=Ts/2∗A∗exp ( a∗( k e s i+D/2−1/2)∗Ts ) . . .
+Ts/2∗B∗exp (b∗( k e s i+D/2−1/2)∗Ts ) ;

Nm1=Ts/2∗A∗( exp ( a∗( kes i−D/2−1/2)∗Ts ) . . .
−exp ( a∗( k e s i+D/2−1/2)∗Ts)∗ exp(−b∗Ts ) ) . . .
+Ts/2∗B∗( exp (b∗( kes i−D/2−1/2)∗Ts ) . . .
−exp (b∗( k e s i+D/2−1/2)∗Ts)∗ exp(−a∗Ts ) ) ;

Nm0=−Ts/2∗A∗exp ( a∗( kes i−D/2−1/2)∗Ts)∗ exp(−b∗Ts ) . . .
−Ts/2∗B∗exp (b∗( kes i−D/2−1/2)∗Ts)∗ exp(−a∗Ts ) ;

Nm2 1=Ts/2∗A 1∗exp ( a∗( k e s i+D/2−1/2)∗Ts ) . . .
+Ts/2∗B 1∗exp (b∗( k e s i+D/2−1/2)∗Ts ) ;

Nm1 1=Ts/2∗A 1∗( exp ( a∗( kes i−D/2−1/2)∗Ts ) . . .
−exp ( a∗( k e s i+D/2−1/2)∗Ts)∗ exp(−b∗Ts ) ) . . .
+Ts/2∗B 1 ∗( exp (b∗( kes i−D/2−1/2)∗Ts ) . . .
−exp (b∗( k e s i+D/2−1/2)∗Ts)∗ exp(−a∗Ts ) ) ;

Nm0 1=−Ts/2∗A 1∗exp ( a∗( kes i−D/2−1/2)∗Ts)∗ exp(−b∗Ts ) . . .
−Ts/2∗B 1∗exp (b∗( kes i−D/2−1/2)∗Ts)∗ exp(−a∗Ts ) ;

end
%% 80 kHz sampling
c l e a r a l l ;
c a r r i e r =2;
Vin=200;
Ts=1/10000;
Tc=1/10000;
L=1.64e−3;
rL =0.4;
rC=0;
C=10e−6;
R=1000;
Vref =156;
D=175/Vin ;
kc =16/200;
kv =00.2 ;
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a=1/2∗(1/R/C+(rL+rC)/L . . .
+s q r t (1/Rˆ2/Cˆ2−4/L/C . . .
+2∗(rL+rC)/R/L/C+(rL+rC)ˆ2/L ˆ 2 ) ) ;

b=1/2∗(1/R/C+(rL+rC)/L . . .
−s q r t (1/Rˆ2/Cˆ2−4/L/C . . .
+2∗(rL+rC)/R/L/C+(rL+rC)ˆ2/L ˆ 2 ) ) ;

A=−(1−R∗C∗a )/ ( a−b)/L/C/R∗Vin ;
B=(1−R∗C∗b )/( a−b)/L/C/R∗Vin ;
A 1=−1/(a−b)/L/C∗Vin ;
B 1=1/(a−b)/L/C∗Vin ;
% (D−f l o o r (8∗D)−1)∗Ts/8
% (1−D−f l o o r (8∗(1−D))−1)∗Ts/8
i f c a r r i e r==2 %%symmetric on time

N1=Ts/16∗(A∗( exp ( a∗( k e s i +(4∗D−f l o o r (4∗D)−1))∗Ts / 8 ) . . .
+exp ( a∗( k e s i +(4∗(1−D)− f l o o r (4∗(1−D))−1))∗Ts / 8 ) ) . . .
+B∗( exp (b∗( k e s i +(4∗D−f l o o r (4∗D)−1))∗Ts / 8 ) . . .
+exp (b∗( k e s i +(4∗(1−D)− f l o o r (4∗(1−D))−1))∗Ts / 8 ) ) ) ;

N0=Ts/16∗(−A∗( exp ( a∗( k e s i +(4∗D−f l o o r (4∗D)−1))∗Ts / 8 ) . . .
+exp ( a∗( k e s i +(4∗(1−D ) . . .
− f l o o r (4∗(1−D))−1))∗Ts /8))∗ exp(−b∗Ts / 8 ) . . .
−B∗( exp (b∗( k e s i +(4∗D−f l o o r (4∗D)−1))∗Ts / 8 ) . . .
+exp (b∗( k e s i +(4∗(1−D ) . . .
− f l o o r (4∗(1−D))−1))∗Ts /8))∗ exp(−a∗Ts / 8 ) ) ;

D1=−exp(−a∗Ts/8)−exp(−b∗Ts / 8 ) ;
D0=exp(−(a+b)∗Ts / 8 ) ;
N1 1=Ts/16∗( A 1∗( exp ( a∗( k e s i +(4∗D−f l o o r (4∗D)−1))∗Ts / 8 ) . . .

+exp ( a∗( k e s i +(4∗(1−D)− f l o o r (4∗(1−D))−1))∗Ts / 8 ) ) . . .
+B 1 ∗( exp (b∗( k e s i +(4∗D−f l o o r (4∗D)−1))∗Ts / 8 ) . . .
+exp (b∗( k e s i +(4∗(1−D)− f l o o r (4∗(1−D))−1))∗Ts / 8 ) ) ) ;

N0 1=Ts/16∗(−A 1∗( exp ( a∗( k e s i +(4∗D−f l o o r (4∗D)−1))∗Ts / 8 ) . . .
+exp ( a∗( k e s i +(4∗(1−D ) . . .
− f l o o r (4∗(1−D))−1))∗Ts /8))∗ exp(−b∗Ts / 8 ) . . .
−B 1 ∗( exp (b∗( k e s i +(4∗D . . .
− f l o o r (4∗D)−1))∗Ts / 8 ) . . .
+exp (b∗( k e s i +(4∗(1−D ) . . .
− f l o o r (4∗(1−D))−1))∗Ts /8))∗ exp(−a∗Ts / 8 ) ) ;

end

150


