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Abstract

This work presents a framework for the optimisation of various aspects of rotor blades in for-
ward flight. The literature survey suggests that the quest for such a method is generating much
research as more performance is obtainable from current designs. With increasing computational
power and efficient methods, this can be of practical use to the helicopter industry. The proposed
method employs CFD in conjunction with metamodels such as artificial neural networks (ANNs)
and kriging interpolation, and a non-gradient based optimiser, in the form of genetic algorithms
(GAs), for optimisation. The approach is demonstrated using several cases, including the opti-
misation of linear twist of rotors in hover (a steady case) and the optimisation of rotor sections
in forward flight (an unsteady case); other cases include transonic aerofoils, wing and rotor tip
planforms. For rotor tip planforms, first a simple rectangular rotor in hover was optimised. Then
the developed method was used to optimise the anhedral and sweep of the UH60-A rotor blade
in forward flight while constraining its hover performance and the final rotor optimisation was
for a BERP-like rotor in forward flight, also constraining hover performance. For each case, a
parameterisation method was defined, a specific objective function created using the initial CFD
data and the metamodel was used for evaluating the objective function during the optimisation
using the GAs. The obtained results suggest optima in agreement with engineering intuition but
provide precise information about the shape of the final lifting surface and its performance. The
results were checked by comparison with the Pareto subset of data and the metamodels were also
validated with high-fidelity CFD data. Neither was sensitive to the employed techniques with sub-
stantial overlap between the outputs of the selected methods. The main CPU cost was associated
with the population of the CFD database necessary for the metamodel. To improve this further,
the Harmonic Balance alternative for obtaining the CFD data (as opposed to Time Marching)
was used to increase efficiency and reduce clock time for the BERP-like tip optimisation. The
novelty of this method is the use of a metamodel in conjunction with high-fidelity CFD data so
that high-resolution performance improvements can be captured efficiently using a non-gradient
based method.
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curves are defined by 4 control points, knots - 2 are the
end points and the other 2 effectively define the gradient at
the end points.

B-splines They are a more general form of Bézier curves. They allow
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Chapter 1

Introduction

1.1 Motivation

The design of rotor blades is complex, in that it involves many disciplines of engineering such
as aerodynamics, structural, dynamics, aeroelasticity and control systems. These disciplines do
not just play an individual part in the design of the rotor blade, but are also coupled and hence
have influence on each other; some more strongly than others12 . Even within a single discipline
such as the aerodynamics of the rotor, there are often conflicting design requirements; Forward
flight tends to have opposite requirements to hover, the blade on the advancing side has opposite
requirements to that on the retreating side of a forward moving helicopter and so on13 . Therefore,
defining an optimum blade tends to be a compromise between these various conditions. Hence, the
optimum is determined by the objectives to be achieved by the rotor. While the initial concept
design may be relatively easy to come up with, finding the optimum design parameters, while
taking into consideration all the variables, is not an easy task.
Therefore, computer codes that aid helicopter designers have been, and are still being, developed
and used in industry14,15 . In the past, these methods were limited to using simple theories that
modelled the aerodynamics of a rotor. This limitation was due to the high cost in obtaining
sufficient data to make valid comparisons for a set of design parameters. This is obtained either
by experimental data or by computational simulations. Both methods involve high costs. The
computational costs, however, can be reduced by reducing the complexity of the models used to
simulate the aerodynamics around a rotor. This, however, compromises the accuracy of the data.
Nevertheless, over time, computing power capabilities have increased allowing more advanced
simulation models to be used. This has gathered a lot of interest in the research of design and
optimisation methods as seen in Section 1.3.

A variety of methods have been developed, and the majority of the applications have been for
cases that are small in size (such as aerofoils) or simple in the simulation of the aerodynamics
(such as cases where operation is optimised for a single static condition). The challenge now, is
to apply these methods to a complex design such as a helicopter rotor blade, where the aero-
dynamics are complex and change, and the design space has a large number of dimensions, and
to do this accurately and efficiently. The initial concept design is a well-established process and
designers and engineers of rotor blades have a lot of experience to lean on, as well as the assistance
of simple codes to aid them in obtaining a preliminary rotor design. The optimisation methods
become more applicable when optimisation of an existing design is required to obtain even greater
performance from a rotor.

Optimisation techniques usually require a starting design point, so the design stage is just as
important as the optimisation. While it is possible for optimisation to lead to new designs, the
time and effort involved would attract a high cost. Take the BERP tip blade as an example16 . The
BERP tip blade is not something that can easily be created simply by using optimisation methods.
However, if the designer’s ideas and experience in the field of aerodynamics was used to create
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an initial design, then the dimensions and extent of BERP blade characteristics can be perfected
to improve its performance greatly. When many characteristics of a rotor are ‘tweaked’ in such
a way, a considerable amount of improvement can be made13 . This is what makes optimisation
so important and has led to the increase in the amount of research and papers written on this topic.

In addition to the added performance gained by using optimisation procedure, the use of nu-
merical solutions for the optimisation problem removes some of the workload of obtaining the
optimum design from the designer while still giving the designer flexibility. In the case of rotors
specifically, there are many criteria and objectives that must be fulfilled simultaneously, what
is known as multiobjective optimisation (MOO). Depending on the required performance, it is
possible to program the optimiser to create a rotor tailored to its expectations in many diverse
conditions.

The challenge of optimisation for helicopters has been summarised in the following quote from
Celi17 :
“Researchers in helicopter applications of optimisation face a complex multidisciplinary problem,
with several possible choices of design variables, objective functions, behavior and side constraints,
analysis models, sensitivity formulations, approximation concepts, optimisation algorithms, not
to mention the many types of results that can be generated and presented.”

1.2 Literature Search

The literature survey started off with very broadly used terms such as rotor optimisation, multi-
objective optimisation, shape, aerodynamic optimisation, helicopter rotor design, etc. The papers
that were relevant often led to other specific papers through the bibliography. Also, specific words
and ideas that repeated themselves in many papers, such as ‘shape optimisation’, ‘evolutionary
algorithms’, ‘artificial neural networks’, ‘genetic algorithms’, ‘adjoint methods’, ‘surrogate models’,
‘metamodels’, ‘non-linear programming’, etc. were then used in the same databases. This led
to a greater search space as it covered other areas of engineering such as electric component
engineering and so on. A lot of the literature was also obtained from conferences, especially the
American Institute of Aeronautics and Astronautics (AIAA), American Helicopter Society (AHS)
and European Rotorcraft Forum (ERF) and their corresponding journal papers as well as more
specific conferences geared towards optimisation and Computational Fluid Dynamics (CFD).
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1.3 Literature Review

The design of helicopters, in general, is a complicated task and requires a number of iterations
before the final design is obtained. The University of Maryland has documented an upgrade of a
helicopter18 . This paper provides some basic insight into the design of helicopters, especially the
rotor. For example, the preliminary sizing to determine the number of blades, the diameter, AR
and solidity of rotors is to achieve a required cruise speed at low cost. This incorporates many
variables such as aerofoil sections, taper, twist and blade tip design (which itself includes sweep,
taper and anhedral).
NASA documented a design-from-scratch procedure for rotorcraft design and optimisation1 . Fig-
ure 1.1(a) is an image from this document showing a simplified overall design process for heli-
copters. Figure 1.1(b) is an expanded version of a part of that process, which involves the design
of the rotor. As can be seen, the design of the rotor is an iterative process between various dis-
ciplines. However, even within the aerodynamic discipline alone, the process requires a number
of iterations that must fit in with constraints that may be due to sizing, material and other such
limiting factors, which are not necessarily aerodynamic related. This narrows the aspects of a
blade that can be optimised aerodynamically.

NASA also developed a more recent conceptual design tool14 that designs rotorcraft for specific
requirements and then analyses the performance for a set of flight conditions and missions. It has
the ability to calculate the weight, power and size of typical configurations but allows flexibility in
obtaining new concepts. Various components can be added and sized accordingly. The governing
equations are simplified methods and most are analytical, although higher order methods such as
CAMRAD have been coupled with them19 .

The optimisation for rotor aerodynamics is typically one that is initiated from an already ‘op-
timised’ design, to tweak the values of certain design parameters so that more performance is
obtained in hover and forward flight. Over time, many studies have been carried out on the effec-
tiveness of various design parameters for rotor blades. Leishman’s book13 gives some insight in to
the significance of each parameter. It also provides some basic theories and effects that the geom-
etry of a rotor has on overall performance. In some cases, the significance is large, but the design
parameter is optimised for a non-aerodynamic purpose primarily. For example, in the preliminary
design of the rotor, the rotor diameter is usually specified according to non-aerodynamic purposes
such as storage, gear box ratio, torque limits, stiffness or drooping of stationary blades and so on.
However, the rotor diameter does affect the aerodynamic performance of the helicopter, since the
bigger the diameter, the better the hover performance because of the lower disc loading and hence
the lower the induced velocity and power. In addition, the autorotation capabilities are improved.
Another characteristic sometimes affected by non-aerodynamic parameters mentioned is solidity,
σ. Aerodynamically, reducing the rotor solidity, reduces the profile power but increases the disc
loading and hence induced power. Since there is less lifting area, the angle of attack of the blades
may need to be increased to maintain the same lift. Therefore, σ is limited by the stall margin of
the blade. In forward flight, a higher solidity is required to maintain the same lift, but the greater
the σ, the lower the Figure of Merit (FM).
In his book13 , Leishman also gives a basic outline of how to select aerofoils. For hover,

FM =

C
3/2
T√
2

κC
3/2
T√
2

+
σCdo
8

(1.1)

=
1

κ+ 2.6√
σ

(
C

3/2
L
CD

)−1 (1.2)

According to Equation 1.2, the aerofoils must have high C
3/2
l /Cd.

The general emphasis is typically on obtaining a high Clmax . This will allow lower solidity and

3



high manoeuvre loads, a higher drag divergence Mach number permitting higher flight speeds
without too much power loss and noise, a good lift-to-drag over a wide range of Mach numbers
to maintain low profile power consumption and low autorotative descent and a low pitching mo-
ment to minimise blade torsion moments, vibrations and to keep loads on the control system small.

Usually thickness is kept small to accommodate a higher Mach number. To compensate for
the lift, camber is added. In some cases, trailing edge tabs and reflex angles are added to highly
cambered aerofoils so that high lift and zero moments can be obtained. On the retreating side,
where stall is likely to occur, thicker and more cambered aerofoils stall more gently than thin
aerofoils with sharp leading edges. To obtain the best performance, a compromise is required.

Martin and Leishman20 performed a study on how different tip shapes (rectangular, sweep, taper
and subwing tips) in hover affect wake geometry (which is a significant contributor to the per-
formance of rotors - especially in hover12 - as it can result in velocity gradients that cause stall
on the following blade, high induced velocities and radial flow) and came up with a number of
findings. For example, in hover, tip sweep appeared to decrease both radial and axial convection
of the core while taper increased radial and decreased axial convection. Also, the primary effect
of sweep is that the vortex core is pushed outward past the tip plane path because a swept tip
does not conform to the circular streamlines, but is “sheared” so that it extends to outside r/R
= 100%. The vortex peak swirl velocity (over tip speed) is a function of vortex strength, core
circulation normalised with the farfield value and vortex radius. It is also a function of blade
planform (twist, taper and sweep) since these parameters influence the peak bound circulation
which influences the vortex strength.

Previously, Caradonna also carried out experiments on wakes and looked specifically at vortex
strength21 . His experiments used a hot-wire probe to find the wake trajectories and velocities.
He used a method similar to that used by Cook22 to separate the velocity induced by the wake
and the velocity induced by the rest of the system. Even though there is quite a lot of variabil-
ity between vortices, they all seem to have similar appearances to the classic Rankine vortex23 .
However, as rotor speed increases, the appearance departs from the Rankine vortex. The non-
dimensional vortex strength remained, however, independent of tip speed. Furthermore, blade
vortices seem to contain all the blade circulation.
Caradonna also wrote a second paper on the use of CFD in rotorcraft design12 . Some of the com-
promises in the design of the main rotor - such as the tip speed - are pointed out. The compromise
here is between transonic flow on the advancing side and stall on the retreating side. However,
this is strongly dependent on the aerofoil section, twist, planform and propulsive requirements.
For hover, the single most important flow issue is the wake because it is the primary determinant
of induced power. For forward flight, it has slightly less significance because the wake is convected
away from the blade faster; but its detailed prediction is still required for vibratory loadings, for
example.

Very specific design parameters such as twist, aerofoil sections, tip sweep, anhedral and plan-
form geometry start to emerge as significant contributors to rotor blade performance as more
of these studies are looked at. Keys et al.24 also carried out wind tunnel studies on the effect
of twist on rotor blades. Twist improves hover performance because of the better distribution
of loads, i.e. more uniform downwash in the far wake leads to lower induced power. However,
very low and even negative angles on the tips of rotor blades can adversely affect forward flight
performance and vibratory loads. Also, as twist is increased, there is more downwash inboard
in hover, and so there is an increased downward push on the fuselage. In effect, one has a rotor
disc that pushes the load (or fuselage) down in the middle but is trying to lift it with the tips.
The effect of twist in forward flight is that more power is required above an advance ratio (µ) of
0.2 due to the increase in profile power on the advancing tip rather than the increase in Mach
number resulting in a decrease in L/D. The effect on stall inception is minimal. Stall inception
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was defined as the CT/σ where the blade torsion or pitch link loads increase rapidly (Cm). Also,
in general, increasing blade twist increases hub and blade vibratory loads. The paper also provide
some suggested solutions such as the use of sweep and taper on the blade tip but also the use of
live twist, so that there is azimuthal variation in the twist to obtain a reduction in twist on the
advancing side. Some helicopters such as the UH60-A reverse the twist at the tip so that the loss
is reduced in forward flight, while maintaining the performance in hover13 .

These parameters, which have relatively large influence on the design, have become the focus
of design and optimisation and are modified to suit the requirements of the rotor. Figure 1.2
shows some of the blade planforms that have been developed.
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(a)

(b)

Figure 1.1: (a) General design process for helicopters, (b) The design process involving rotors. (Cour-
tesy of Stanley A. Orr and Robert P. Narducci, Framework for Multidisciplinary Analysis, Design, and
Optimization With High-Fidelity Analysis Tools, NASA/CR-2009-215563, Feb 20091 ).
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1.3.1 High-fidelity and Low-fidelity Models

Rotor blade optimisation is becoming an increasingly important part of the design process as
engineers push the boundaries of rotorcraft efficiency and performance further. However, the
development of helicopter rotor optimisation specifically has been slow compared to other rotors
such as turbines and compressor blades. This is due to the increased complexity and unsteady
nature of the flow around a rotor blade17 . Also, the problem is a multi-disciplinary problem
involving aerodynamics, aeroelastics, dynamics and flight control coupled to each other. This has
lead to the development of comprehensive codes that are able to take into consideration all these
disciplines17 by combining modules of codes for each discipline. A recent example of this is the
work by Rajmohan et al.25 . Here, GT-Hybrid, a CFD solver was coupled with a dynamics code,
DYMORE to assess a manoeuvre for a UH60-A rotor. The effects of the blade geometry and wake
model fidelity were explored in steady flight comparing loose and tight coupling of the codes. GT-
Hybrid was used as a high-fidelity CFD code employing Navier-Stokes equations near the blade
and wake models further away. DYMORE uses lifting line theory and an auto-pilot algorithm to
perform a fully-trimmed aeroelastic simulation. Differences in the aerodynamics, such as stall on
the retreating side, were found to exist even due to the options of loosely and tightly coupling
the two codes, suggesting that the coupling of disciplines will be a key part in developing good
optimisation tools in the future, when computational power increases and CPU-time is reduced.
Biedron and Lee-Rausch26 also used an unstructured flow solver (FUN3D) loosely coupled with
with CAMRAD II in comparing experimental and CFD data and how they are integrated for the
UH60-A rotor.
Celi also suggests that the optimisation method should be decoupled from the analysis so that it
is usable with different analysis tools, hence allowing the optimisation technique to use the best
version of the analysis code at any time.
Also, the development of optimisation techniques has progressed quite quickly in the structural
aspect of rotor design for various objectives such as vibration reduction27,28 . This was not the
case on the aerodynamic front due to the lack of modelling techniques17 that are both efficient and
accurate, although there has been significant improvement. Nevertheless, several authors2,17,29,30

have attempted to devise a variety of successful optimisation techniques. However, each method
is typically limited either by the efficiency of the method or the accuracy of the results. The rea-
son for this is that high-fidelity CFD simulations are necessary to accurately capture the effects
of design changes, especially for rotor aerodynamics but a number of these CFD solutions are
required for the process and each calculation can take a long time at a significant computational
cost. For example, it was found by Walsh2 , who initially optimised a blade without including a
wake model for the analysis, that including one had significant contributions to the design of the
final optimum rotor blade. Even in the case of fixed-wing aircraft for a single point optimisation
problem, the use of higher-fidelity solvers is desirable such as in the work by Rallabhandi and
Mavris for sonic boom optimisation31 .

To overcome the computational cost problem, a lower fidelity model or metamodel can be used.
A metamodel is a model of a model. For this project, it would be a lower fidelity model of the
high-fidelity CFD model used to obtain the performance of a number of designs. The metamodel
is able to predict the performance of unknown design points a lot faster but with the same ac-
curacy as a higher fidelity model. It is able to do this because it is given a reduced number of
parameters relative to the CFD method and uses only these parameters to find patterns in the
change of the output required. It does this accurately because the data it is provided with, are
based on high-fidelity aerodynamic data obtained from CFD.

Some work has also been done in using both techniques dynamically such as the work by Ko-
lencherry et al.32 where a kriging metamodel was constantly updated with promising high-fidelity
data as the optimisation was carried out. Collins et al.30 also used a combination of low and
high-fidelity models to optimise a scaled BO-105 rotor in hover and forward flight for noise and
power. An initial set of designs was obtained and used to obtain Pareto optimal designs, a few
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of which were selected for validation using the high-fidelity solver and these results were used to
update the lower order model.

CFD Methods

In the first attempts at optimisation of rotors, the CFD methods used were simplified. For exam-
ple Walsh2 attempted to optimise a rotor in hover while maintaining the performance in forward
flight. HOVT (a strip theory momentum analysis with no wake model in the initial analysis) was
used to obtain the hover horsepower and CAMRAD, a comprehensive code, for the forward flight
horsepower and manoeuvre and trim conditions. Even at this early stage, the idea of using CFD
methods for optimisation was attractive. CAMRAD was used because it could be coupled with
CFD methods that could be used to obtain better models of effects like transonic effects33 . Only
some change in the geometry of the blade was captured and hence only a slight improvement was
obtained. The conclusions were that further validation and testing would be required.
In the work done by Bohorquez et al.34 for optimisation of small rotors where one of the key
objectives was cost-effectiveness, the computational cost of the solutions was further reduced by
using incompressible steady calculations with one-equation models of turbulence.

The optimisation by Le Pape and Beaumier35 was coupled with the solver elsA developed by
ONERA. Steady RANS was used for the hover calculations. Computations were performed on a
coarse grid during optimisation and a fine grid once the minimum was found. In addition, the
HOST (Helicopter Overall Simulation Tool) was coupled with elsA, to include aeroelastic and dy-
namic disciplines in the analysis (i.e. soft blade), since blade torsion has a significant influence on
the aerodynamics of the rotor. So at each optimisation step, the HOST code computed the blade
deformation (flap bending and torsion) and the rotor angles (flap and lead-lag) and a new grid
was built around the deformed blade and the CFD computed. However, no recomputation of trim
was done, making the coupling slightly inaccurate, especially if forward flight was being considered.

Le Pape36 later extended his work to forward flight. elsA was only used for hover optimisa-
tion since forward flight calculations would take a lot more time and a trimming model would
be required as well. HOST was used as the aerodynamic model for the forward flight cases as
well as in hover coupled with elsA. It was used as a lifting-line model with a prescribed wake
model for forward flight. However, these types of solvers are not very capable of determining the
performance of complex blade shapes in forward flight.

Imiela37 optimised the aerodynamic properties of rotor blades considering both hover and for-
ward flight using CFD, whilst constraining structural and aeroelastic deformation as calculated by
CSD. The solutions were based on high-fidelity CFD/CSM analyses that had weak fluid-structure
coupling (i.e. each discipline calculated alternately) combined with an optimisation algorithm.
FLOWer was used for the aerodynamic simulation and HOST for blade dynamics and elasticity,
although the optimisation itself was focused on aerodynamics. The structural model was not
modified during the optimisation.

It can be seen that using a high-fidelity model directly for optimisation of rotor blades is either
limited to simpler cases such as hover, or the model’s fidelity is reduced for more complex cases
such as forward flying rotors. To be able to model forward flight efficiently, a lower order model
is required, but its accuracy still needs to be maintained, especially because of its complexity.
Metamodels have this ability.

Metamodels

Metamodels have been used extensively in the optimisation of turbomachinery blades38,39 .
Mengistu and Ghaly38 used an artificial neural network (ANN) as a metamodel, along with a Ge-
netic Algorithm (GA) optimiser to optimise turbomachinery blades. They used high-fidelity CFD

9



data to train the ANN to predict the performance of interpolated design points. The prediction
weights were updated using an optimisation algorithm to minimise the error between the network
output and the training data (obtained using CFD). The training strategy was enhanced using
a GA and gradient-based optimisation. There was no rule for determining the number of nodes
in the layer of neurons, but a good initial guess was the average of the input and output nodes.
This number was increased to create an optimal-trained network. If the number of nodes was too
small, underfitting occured, where high error values were obtained and too much generalisation
occurred, and vice versa.

In terms of helicopter rotors, optimisation using metamodels has been performed mostly with
the aim of vibration and noise reduction such as the work done by Glaz, Friedmann and Liu27,28 .
Here, it is suggested that for the particular case of vibration reduction, kriging has proven to be
the best surrogate method. However, it brings out the factors that affect the choice of approxima-
tion method - such as sampling density, scheme used to select the points and the parameters of
the metamodel. It is suggested that since no single metamodel is generically the best, it may be
useful to use a combination of metamodels instead. Three metamodels were used viz. polynomial
response surface, kriging and radial-basis neural networks. These were combined by a weighted
average surrogate algorithm. The conclusions drawn were that the most accurate method de-
pended on sample size and the error evaluation method and that the most accurate metamodel
did not necessarily produce the best design. Also, in the work done by Liu et al.40 , it was shown
that for more complicated cases, kriging out-performs RBFs whereas for simpler cases, RBFs are
more accurate and efficient. Celi17 also mentioned that the “connection between predictions and
accuracy of the optimisation may be more subtle than appears at first glance.”
Imiela37 used DACE41 , a MATLAB kriging based metamodel for the optimisation of the rotor
in forward flight. Kriging is similar to radial basis function interpolation (RBFs). It is a method
of interpolation but the weights involved are driven by the data rather than arbitrary functions.
Usually, the weights are functions of the distances of points from the required data point. This
means that an estimate of the error is also available. The aim is to determine the weights such
that the variance of the estimator is low.42

Kriging is becoming increasingly popular. One reason is because it has few assumptions; in fact
the only real assumption is that the design space or equation is continuous43 . For example, Glaz
et al.44,45 used it to predict the unsteady lift, drag and moment under dynamic stall for rotor
sections on a helicopter blade. The Navier-Stokes equations were used to compute the calcula-
tions and the dynamic stall was modelled as a function of time and time history. This non-linear
mapping function that is numerically found, linking the input to the output, was modelled using
kriging at each time step. In effect, the surrogate model had two dimensions: the kriging for
each time step, and the SBRF (surrogate based recurrence framework) to complete the prediction
including the time histories. This worked well, with error values falling within 3%. There are a
number of types of kriging apart from ordinary kriging, such as universal, co-kriging and blind
kriging43 . Kriging, however, has been found to be less accurate when the data is sparse43 .
Marcelet and Peter46 compared the performance of four different metamodels. It was found that
kriging and ANN were two of the most accurate methods, and that kriging was more efficient.
Ahmed and Qin47 compared RBFs and a number of kriging methods as metamodels to optimise
hypersonic spiked blunt bodies. They explain how kriging works and that it can be as good a
metamodel if not better than an RBF. Rendall and Allen48 did some work on improving the
efficiency of RBFs. Their paper describes a version of RBFs called greedy RBFs whereby the pre-
diction of a point is dependent on a smaller selection of points from the entire design space thereby
avoiding the calculation of each point’s prediction in relation to the required output. It also lists
a number of commonly used basis functions used in RBFs and suggests that the greedy RBF will
be useful in compressing data and improving efficiency. This was not verified by other researchers.

In the work done by Sun et al.49 , Response Surface Models (RSMs) were used to obtain the
performance of interpolated design variables for rotor sections in pitching motion. However, they
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also included a regression model to give it more flexibility in fitting the surface, similar to kriging.
In addition, they used t-statistics to determine the significance of each variable to the objective
function and hence determine the accuracy of the response surface.
Hajela50 also discusses a number of metamodels used in rotor optimisation such as Immune Net-
work modelling, where the design and performance parameters are simulated as antibodies and
their corresponding antigens. Their relation is quantified by a matching function, which works
similarly to the fitness value in a Genetic Algorithm (a non-gradient based optimiser).
Other methods include the use of the Fourier transform to predict the flow solver data, as in
the work done by Nadarajah and Tatossian51 . Their goal was to introduce a Mach number
variation into an existing non-linear frequency domain (NLFD) framework and then introduce a
time-varying cost function through an adjoint boundary condition to redesign a NASA rectangu-
lar supercritical wing. They state that there is a need to develop cost-effective optimal control
techniques for unsteady aerodynamics and that an efficient method may be the use of periodic
methods such as the Linearised Frequency Domain. However, these methods become highly inac-
curate when there are strong non-linearities although further validations with high fidelity software
show that this can be overcome52 . The efficiency of the NLFD approach is dependent on the pe-
riodicity of the flow. In the case of rotor aerodynamics, representing the variations of loading
in the frequency domain can lead to a large number of modes required to represent the data as
compared to other methods, such as the Proper Orthogonal Decomposition method (POD). The
POD method as an interpolation technique was used by Oyama et al.53 to optimise transonic
aerofoils for lift/drag ratio. The aerofoils were represented as splines with the design parameters
being the control points, and a POD technique was used to obtain the lift-to-drag ratio for new
aerofoils that existed on the Pareto front.

A modified version of the POD technique called the Gappy POD method was developed by Will-
cox et al.54,55 for aerodynamic applications. This method is used to interpolate for incomplete
or “gappy” data by solving a linear system of equations given a set of POD modes54 . Such a
method could be used to fill in for incomplete experimental data, or for unknown conditions and
even inverse design. In the work done by Gunes et al.,56 a comparison is made of kriging and
POD based interpolation to reconstruct the unsteady flowfield around a cylinder. It was found
that the POD method is more accurate when there are many snapshots and smaller gaps in the
field. When this was not the case, kriging provided a more accurate solution.

Metamodels can be very useful in reducing computational cost and expanding databases as long
as they can give accurate predictions that the optimiser can rely on. The usual way of testing the
accuracy is to validate an unknown point in the database with its actual value as obtained from
the high-fidelity solver. In the work done by Tahara et al.57 , where two optimisers were being
compared, they introduced an error value which was the difference between the measured and ex-
pected improvement by the optimiser. In a similar way, this can be applied to metamodels, where
the difference between the predictions and actual values are used to validate the model. If the cost
of running an additional set of data is high, another method of testing the prediction accuracy of
a metamodel is to use cross-validation43 . Here, the design space is divided into subsets, and each
one is removed and the metamodel trained without it. It is then reintroduced and compared with
its prediction. The average of these is the error. The problem with metamodels is that they fit
the existing data but the accuracy of their predictions outside of this trained area is questionable.

The gain in computational cost through the use of metamodels increases with the number of
objectives but the accuracy decreases58 . The reasons for this are stated by Karakasis and Gian-
nakoglou58 who suggest that even in the comparison of the case of single and multi objective op-
timisation, within the first generation, the single objective optimsation individuals cluster around
the optimum region and the metamodel has sufficient points to reliably evaluate them whereas in
the case of a Pareto optimisation technique, the available information is spread over a front. To
counter this, a number of these can be combined with weighted formulae.
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In Karakakis58 , a metamodel was built for each new member of the population and was limited
to a local vicinity of approximately 100 to 150 individuals. It was found that this worked better
than building an overall global metamodel in terms of better approximations.

1.3.2 Sampling Methods

Before a metamodel can be used, the sampling of points in the design space must be determined.
This is what is known as ‘Design of Experiments’, (DOE). The DOE depends on many factors
such as the metamodel to be used, the cost of running the high-fidelity software, the dimensions
of the problem and the shape of the design space. Usually Latin hypercube sampling (LHS), and
its variants, minimum bias design and orthogonal arrays are preferred59 . Crowley et al.60 used a
nested LHS method, where there were LHS of increasing resolution within each other.

Mackman et al.61 compared kriging and RBF methods for various cases including aerodynamic
coefficients for aircraft manoeuvres. They compared a number of sampling methods and using
error estimations, determined which were the most accurate and the quickest to converge by ded-
icating a portion to exploration and some to refinement of non-linearities.

Other common sampling methods are the factorial methods including full and fractional fac-
torial62 . Some less common ones are also available, such as the Delauney sampling method63 .
This method treats the design space like an unstructured grid, dissecting it using the Delauney
triangulation method into simplexes that are repeatedly refined to the optimal refinement for the
objective. The Morris-Mitchell criterion is another method that uses a criterion that best satisfies
an exchange technique iteratively43 .

1.3.3 Optimisation and its Challenges

There are several difficulties involved in engineering optimisation, some of which are64 :

• Unevaluable and infeasible points/regions: Not all points in the space are legitimate designs
- inevaluable points cause the simulation to crash and infeasible points are not physically
realisable designs. This is addressed via constraints.

• Expensive evaluation: Simulators are usually designed for accuracy more than efficiency and
therefore they can take a non-negligible amount of time to evaluate a point. A variety of
methods, efficient and more accurate, should be used to counteract this. For example the use
of both low order models and high order models or Time-marching and Harmonic Balance
techniques.

• Badly structured space: The structure of the space of good designs may be difficult to search.
Therefore, the use of global optimisation methods should be used.

• Multiple local optima: The search space may have a large number of local optima and this
can trap gradient-based local optimisers and even global optimisers. They may be true local
optima or apparent local optima such as those caused by noise, (e.g. due to round-off errors,
approximations in the model or in the grid, inexact solvers and so on). Engineering intuition
and the use of methods such as Genetic Algorithms counter this.

• Non-smoothness: This often results from table look-up or numerical problems which usually
appear as discontinuities in objective functions. Metamodels can be used to smooth surfaces
leading to better results.

The second point is very true of rotor optimisation. Hence, work on rotor optimisation has tended
to lean towards gradient-based optimisation techniques since the number of solutions required
for non-gradient based optimisation is high, which increases the total computational cost of op-
timising helicopter rotors. For example, Le Pape and Beaumier’s35 attempt to maximise Figure
of Merit (FM) of a rotor by modifying the geometry of the blade in an automated routine used
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CONMIN65 , a gradient-based optimiser developed by Vanderplaat.
However, non-gradient based methods, especially evolutionary type methods, have been used more
for other types of rotors such as compressor and turbine blades, and usually for a single point
condition.
For example, in Zhao66 , the optimisation of turbines is performed using a neural network trained
model and a GA. The original data was obtained using a Navier-Stokes solver. Bézier curves were
used to define the geometry and their control points were used as design parameters. In Samad39 ,
a Navier-Stokes RANS code was coupled with a multi-objective GA to find the optimum blade
shape of a transonic axial compressor rotor to improve adiabatic efficiency and total pressure
ratio. Again, Bézier curves were used for the definition of the blade geometry. In this case, the
GA was used to find a global optimum region and then a refined search was made using Newton’s
method, which is gradient-based. In addition, clustering was used to find the Pareto-optimal
solution or front. Mengistu and Ghaly38 also used a GA to optimise turbomachinery blades. In
their case, the performance is measured by the adiabatic efficiency and its total pressure coeffi-
cient. The design variables include the back pressure and the shape parameters. The first term
in the optimisation function attempts to maximise the efficiency or minimise the total pressure
loss coefficient, while the second term would eliminate large differences in the above between the
design and off-design points. The last term is a penalty term including geometric and aerodynamic
constraints such as the exit flow angle, spacing to chord ratio and stall margin. The weightings
of the penalty coefficient are set by the user. They were successful in obtaining an optimised blade.

Evolutionary methods have also become attractive for fixed wing aircraft. For example, Watan-
abe67 uses Euler simulations with a GA to optimise a passenger plane wing for shock waves, that
is the lift-to-drag ratio. Constraints were applied such as the thickness at the root, the reference
area, the minimum volume of the wing or fuel cells and the range of angle of attack. Steady state
CFD calculations of rotors also attract evolutionary optimisation methods. For example, Liu et
al.68 used an extended compact genetic algorithm (ECGA) to optimise Horizontal Axis Wind
Turbines (HAWT) rotor blades for maximising power by modifying twist and chord.

In terms of helicopter rotors, evolutionary type optimisation was applied by Glaz et al.27,28 in the
optimisation of forward-flying rotors for vibration and noise reduction. Sun et al.49 used GAs to
optimise rotor sections in pitch-translation motions for forward flight simulation.
Allen, Rendall and Morris29 started off with aerofoils and fixed wings, but applied their methods
to optimise rotor twist in hover. Their method directly modifies the design shape and its meshing
and one of the key features of their method is their parameterisation technique, which is linked
to RBF interpolation allowing local and global control of the grid coordinates. The optimisation
itself is based on a gradient-based parallel optimiser. The differences between having local and
global control over the mesh and shape deformation is highlighted. The process, even for hover of
a relatively coarse grid, was lengthy. Application of such a method to forward flight might render
it impractical.
Bohorquez et al.34 tried to reduce the computational load by using a combination of blade element
momentum theory (BEMT) coupled with lookup tables and experimental data to optimise a small
rotor in hover for better power loading.

Typically, the rotor blade design problem is also complicated by conflicting performance require-
ments between hover and forward flight35 . Le Pape’s36 method was a very versatile method,
optimising for anhedral, sweep, twist, chord and aerofoil distribution of rotor blades, where these
variables could be optimised for the whole blade or only part of it. In hover, collective pitch was
an added variable so that thrust could be varied and maximum FM could be achieved. In the
multi-objective optimisation process, one flight condition was optimised for whilst the other acted
as a constraint. For example, for the 7A ONERA rotor, twist was optimised in hover, whilst
constraining performance in forward flight.
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Imiela37 used a Genetic Algorithm to optimise the rotor and the MATLAB DACE kriging toolbox
as a metamodel. Hover and forward flight were both considered whilst constraining structural
integrity within boundaries. A number of optimisation algorithms were tested - CONGRA, a
conjugate-gradient based method (which works by using gradients as well as finding new search
directions based on former iterations), SUBPLEX - a non-gradient based method - and EGO,
which uses a metamodel in a GA. The conclusions were that CONGRA does not reach the op-
timum fast enough, and that it was dependent on the step size. SUBPLEX had difficulties with
the tip optimisation, almost producing a rectangular blade. This may be due to issues with accu-
racy. EGO was the most efficient and the least-error prone, which suggests that metamodels are
promising for rotor optimisation.

What to optimise for?

The design objectives are usually specified as an objective function containing the relevant perfor-
mance parameters as components that are weighted. In some cases, the best compromise is found
between all the performance parameters and a design is selected from this subset. One example
is the Pareto front method. Other methods also include goal programming69 , where instead of
finding a point that is the maximum or minimum of an objective function, a solution is found
that satisfies a goal or reaches it with minimum distance and satisfying constraints. The paper
by Deb69 describes this in more detail, including a method independent of weight factors.
Where objective functions are used, they should have the following qualities4 :

- Complete, so that all pertinent aspects of the decision problem are presented, i.e. all the
objectives are captured for example, stall on the retreating side, compressibility effects on
the advancing side, pitching moments and so on.

- Operational, in that they can be used in a meaningful manner i.e. the optimiser must be
able to access the performance and make a decision based on that.

- Decomposable, if disaggregation of objective functions is required or desirable. For exam-
ple, the rotor with the best advancing side performance should be obtainable by adding
or removing components from the objective function.

- Non-redundant, so that no aspect of the decision problem is considered twice. Sometimes
it is possible that two components of an objective function capture the same performance
metric in addition to others. It is important to make sure that this does not happen as it
would result in one performance parameter being weighted more than intended.

- Minimal, such that there is no other set of objective functions capable of representing
the problem with a smaller number of elements. This avoids the above problem as well.
For example, moment curves on a blade over a revolution can capture pitching moment
performances as well as stall and shock effects. Therefore, the use of, for example, the
drag curve to capture the stall effects is unnecessary and would result in redundancies and
added unnecessary workload.

K. and S. Hall70 attempted to find the optimum radial and azimuthal distribution of blade
element thrust that would give minimum rotor induced drag, similar to reducing downwash for
fixed-wing aircraft where elliptic loading is the most ideal. With increasing forward speed, the
induced power (in the form of induced drag or torque), first decreases and then increases sharply
because the rotor must remain trimmed (especially in roll) even though the region of low speed
and flow reversal on the retreating side increases. Their aim was to find the optimal distribution
for low induced power by optimising the circulation distribution independent of the rotor geome-
try and also reducing the gaps in the wake on the retreating side at moderate advance ratios (µ).
In their paper, they present the theory and a computational model for finding minimum power
and the circulation distribution for that minimum power.

In the work done by Le Pape36 , maximising the Figure of Merit (FM) was the objective in
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Figure 1.3: Figure showing power as a func-
tion of velocity of forward flight2 .

Blade by Walsh2

Blade by Le Pape35

Figure 1.4: Figure comparing blades optimised
for different objectives.

hover. In forward flight, torque coefficient (CQ) was optimised for while constraining the thrust
coefficient (CT). The same objectives were used in Imiela’s work37 , with the addition of con-
straining the propulsive force in forward flight.

In Bohorquez et al.34 , a small rotor was optimised in hover for power loading rather than FM.
This parameter was actually the maximum power loading envelope obtained at various disk load-
ings so that the results were independent of disk loadings.

Hajela and Lee71 performed multidisciplinary optimisation, and for forward flight, the objec-
tive was to avoid stall while maintaining trim conditions and power used i.e. torque. In addition,
they had limitations on blade frequencies, pitching and rolling moments, hub shears, aeroelastic
stability margins, autorotation index and other material constraints.

In the Blue-Edge design72 , the objective was to actively reduce BVI noise while constraining
forward flight performance. This also happened to be one of the first cases where high-fidelity
CFD was used in the optimisation loop to obtain better hover performance by modifying the
anhedral and twist of the blade.

The objective function should encompass all the objectives as well as the constraints to obtain the
required performance. For example, the objective in Walsh’s paper2 was to reduce the required
power in hover without compromising forward flight, i.e. for the total power curve of Figure 1.3
to be lowered. The resulting optimised blade had very different characteristics from that obtained
by Le Pape35 , for which the objective was the increase of FM and only considered hover as shown
in Figure 1.4.

Gradient-based Optimisation

Gradient-based methods use the gradient of a performance function in order to find the best di-
rection that leads to the optimum solution. One of the more commonly used pieces of software
is CONMIN, developed by Vanderplaat65 at NASA. It has been used by a number of authors35 .
The memorandum by Walsh2 states that the CONMIN optimiser was used to optimise the aero-
dynamic performance of rotor blades by selecting the point of taper initiation, root chord, taper
ratio and maximum twist, which minimise hover horsepower while not degrading forward flight
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performance. CONMIN was also used by Celi17 for aerodynamic and vibration reduction optimi-
sation.

CONMIN can optimise constrained linear and non-linear problems. It uses finite difference meth-
ods to find the gradient and can also use conjugate direction methods by Fletcher and Reeves73

for unconstrained minimisation problems. The optimisation can also be performed without any
conditions of constraint. Also, in order to test other designs that may not otherwise be found,
constraints can be added after an optimum is found and continued from that point. Such an
option may be desirable when minimising functions for which one or more constraints are difficult
to evaluate.
It works by iteratively updating the design so that at iteration i, x̄i = x̄i−1 + αs̄i where s̄ is a
vector direction and α is the distance in that direction. s̄ is determined so that for an arbitrary
small α, the optimisation function is reduced (since one is trying to find minimum) the most, i.e.
steepest descent, and no constraints violated. If it violates a constraint, a direction s̄ is found
to overcome the constraint with minimal increase in the optimisation function3 . Figure 1.5 is a
summary how the CONMIN method works for three points (A, B and C) under various constraint
scenarios.
CONMIN works efficiently if there are few constraints and relatively smooth varying data. In
the case of total aerodynamic rotor optimisation, where the constraints are much more and the
data uneven, it may be less efficient and may fail to reach the global optimum. There is a high
probability of the solution getting trapped in local optima.

The tendency of gradient-based methods to stagnate near local optimum regions of the de-

Figure 1.5: Figure showing how the gradient-based optimiser, CONMIN operates. Three points, A,B and
C are shown in various locations with regard to the constraints. At A, steepest descent is used to reach the
minimum, at B, a constraint is encountered and the point attempts to move along the constraint contour
and at C, the point attempts to overcome the constraint.3

sign space is a major problem. This is why in the work carried out by Walsh2 , it was found that
the starting design point had a significant role in the final geometry obtained. Therefore, it was
necessary to start the optimisations from various points in the search space so that a number of
optima are obtained and the best of these was selected.

Schwabacher et al.74 worked to overcome this problem. They used gradient-based methods to
optimise various shapes such as aircraft and yachts, which used a learning algorithm based on
previous optimisation procedures to determine where the best initial design point should be. Sim-
ilarly, Chen and Lee75 tried to improve gradient based methods by using a ‘gradient-forecasting
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search method (GFSM)’ to dynamically adjust prediction steps so that it can overcome local op-
tima.

Mohammadi and Pironneau76 used a gradient-based optimisation method to optimise supersonic
aircraft for sonic boom. They make the suggestion that in the case of multi-criteria optimisation,
shape optimisation is conflicting. Therefore, the use of the Pareto optimality method attempts to
improve all aspects of the body by minimising a convex combination of all criteria. However, they
suggest that the argument in such linear combinations led to problems such as the existence of
many sub-optima, requiring global optimisation tools such as Genetic Algorithms (GAs), which
are simple but very slow and hence propose that the solution may well be a combination of gra-
dient and evolutionary methods.
Lehner et al.77 also propose a hybrid-optimisation technique for multi-disciplinary optimisation
of a subsonic aircraft. The optimiser was a genetic algorithm non-gradient based one, but at
smoother points in the design space and where the data is continuous, a gradient based method
was used.

Non-gradient based optimisation is expensive especially for cases where each solution is costly,
such as forward flight rotor optimisation. This is why Le Pape36 for example, used a GA for hover
optimisation but used CONMIN for the forward flight optimisation. This again re-iterates the
importance of using lower order metamodels to improve non-gradient based optimisation efficiency.

Another option is to use codes such as ADIFOR that can find derivatives analytically and semi-
analytically and hence considerably reduce computational time17 .

Non-gradient based Optimisation

These methods do not rely on the computation of gradients of a function and hence are not
trapped in local optima. This is their greatest advantage and they therefore belong to a group
termed global optimisation techniques. Although the convergence to a global optimum is not
guaranteed, the probability of it occurring is very high. Also, new designs in the search space
are easily introduced, increasing the chances of a truly global optimum design for the required
objective.

Typically, these methods consist of a performance metric and a selection phase based on this
metric. The added advantage is that sample points can be created and combined with other
points in the population so new designs are easier to create than with gradient-based methods.
Some examples are statistical methods, genetic algorithms, evolutionary programming, simulated
annealing (although it does involve some discretised determination of gradients), branch and
bound etc.

Genetic Algorithms (GAs) simulate the evolutionary process involved in natural selection i.e.
that an initial population exists from which newer generations are created, with each new gener-
ation increasing in ‘fitness’ by the processes of crossover and mutation within the individuals.

Another method similar to GAs is Simulated Annealing (SAs)64 . SAs are based on an anal-
ogy with the way metals cool and anneal. They start from an initial point and move from one
point to another until they reach an optimum. At each iteration, a new point replaces the current
point dependent on a probability, P. If the new point is better than the current point, P=1, if not,
it has a lower value. This still gives it the chance of trying new paths and subsequently escaping
local optima. At the start, the probability of moving to a worse point is high, but decreases as
the optimisation progresses.
In comparison, SAs differ in that they follow a path, whereas GAs combine points from various
regions in the search space to obtain new solutions. GAs also have a high inertia in switching
attention to a new area compared to SAs. The best method is dependent on the problem. GAs
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maintain a population of points rather than one, and they hence are beneficial in that way. SAs
are useful where the optimisation problem is large and has many local optima around the global
optimum78 .

Badyrka et al.79 carried out a study comparing three optimisers; Genetic Algorithms (GAs),
Repulsive Particle Swarm Optimiser (RPSO) and a direct geometric search algorithm (VTDi-
rect). The RPSO method is relatively new and was developed by Mishra80 . In the PSO, the data
points simulate the individuals (or particles) of a swarm. Each has a position and velocity in the
swarm and keeps in memory the overall best position it has been in. The individuals communicate
the global or local best position to all members. Generally, it is known that the PSO methods
suffer from premature convergence81 . Therefore modified versions of this method tend to be used.
In the repulsive version, it allows the particles to have a wider local search ability and prevents it
from getting stuck in local optima. Particles are allowed to learn from a pre-determined number
of random individuals80 . Furthermore, particles are not allowed to move into areas outside the
constraints specified. In the Regrouping version, once premature convergence is detected, the
particles are automatically regrouped around the optimum found but with a smaller design space
and the process is repeated81 .

The VTDirect method works by systematically subdividing the design space into quadrants. The
division is such that the objective function value (OFV) is kept at the centre and the decision of
how to divide is based on the size of the quadrant and the OFV. A quadrant is most likely to be
divided if it is large and has a small OFV.
Badyrka et al.79 came to the conclusion that the RPSO method has a lot of promise and can have
similar performance levels to GAs. It has less control parameters than the GA. They also suggest
that for more complex optimisations, it may be good to couple the RPSO with a GA.

Vytla et al.82 employed a hybrid GA-PSO optimiser to optimise a train nose for reduced drag.
They found the combined method to be more efficient and robust than either optimiser on its
own. Similarly, Poloni et al.83 used a hybrid GA and gradient-based method along with an ANN
to optimise the keel of a yacht for high lift and low drag, parameterised by Bézier curves. They
describe a number of Pareto-based selection methods. One of the novel methods described is a
version of a multi-directional crossover. They also suggest that replacing individuals rather than
whole generations is more efficient. This makes it easier to parallelise the whole procedure. Du-
likravich et al.78 also used a hybrid method that combined a number of optimisation techniques
including GAs, SAs, gradient methods and the Nelder-Mead simplex method (NM) to create a
more robust optimiser. The method switches between these techniques where they work best; for
example the gradient method is employed when the variance from the GA’s output is small and
the NM method is used when the random behaviour of the GA is prevalent. This is controlled
by a set of rules which can be found in further detail in the paper. The rules determine which
method is the most efficient and accurate based on aspects such as the diversity of the selection
and so on.
Other methods are population based incremental learning, Ant Colony Optimisation etc.

Régnier et al.84 state that there are three classifications of non-gradient based optimisation:

• Apriori - Decide and Search: the decision maker decides what is required and the solution
is found e.g. the use of a weighting system. Only one Pareto solution is found.

• Progressive and Sequential - Decide and Search: Optimisation and decision-maker are in-
tertwined. The preferences are sequentially updated. Multiple runs are required to obtain
Pareto solution.

• Aposteriori - Search and Decide: A single optimisation run provides a set of solutions that
the decider can choose from e.g. Evolutionary Algorithms (EAs).
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The last one is of particular interest to this project since no target performance is required. Rather,
the best design within the constraints on performance is required. Both the weighted sum and the
Pareto method were used. The advantage of using a weighted sum is that it selects a small region
in the database where the optimum can be found. The design variables do not change much in this
area. However, this reduces the flexibility of finding another such region unless the weights are
changed. Therefore, the Pareto method is used to find the best compromise of the performance
parameters and typically, the results of the weighted sum method should lie somewhere on the
Pareto front85 . The advantage of using a Pareto method is it allows the designer to see the best
compromise before making the decision. However, this can still be a difficult task if the number
of design variables is high and if the properties of the Pareto subset are not properly analysed.
More information about this can be found in the paper by Daskilewicz and German86 .

Some other search methods such as Tabu, Nelder-Mead and Powell’s method are given in Ha-
jela’s paper50 . Also, the paper by Sobieski et al.87 , although relatively dated, has some useful
insights into the various methods used in multi-disciplinary optimisation.
The cost of running high-fidelity software in order to find optimum solutions usually prevents the
use of global optimisation techniques. Therefore, rotor optimisers usually consist of an approx-
imate model or metamodel mentioned in Section 1.3.1 (known as Surrogate-based Optimisation
(SBO)), which is used to predict the behaviour of flow without the use of the high-fidelity software,
such as a highly accurate flow solver. Once the optimal solution has been reached, the high-fidelity
solver is used to validate the optimum solutions.

Methods involved in Genetic Algorithms

The performance metric (mentioned in Section 1.3.3) for GAs, is called a fitness value. The
success of a GA depends on its ability to perform a balanced amount of exploration as well as
exploitation of the promising regions. A good GA usually favours exploration in the beginning of
the search and gradually shifts to exploitation64 . In general, the GA has a number of stages. It
begins with a population of individuals from which a selection of two parents are made based on
their fitness value. These parents are crossed over to create offspring that have a new combination
of the design parameters from their parents. Mutation might occur, which alters the offspring.
Based on the fitness value of the offspring, it survives into the next generation.

The fitness value is determined by the objective of the optimisation and can be obtained based
on a number of different methods, some of which are given in Tan et al.4 . They performed a
survey of various evolutionary methods for MO (Multi-objective) optimisation and compare them
quantitatively and qualitatively. A list of existing methods is given in Table 1 of that report. This
table is included here as Table 1.1.

Evolutionary Methods
for MO

MO Handling Techniques Other Operators Applied

Charnes and Cooper
(1961)

Goal programming.

Ijiri (1965) Goal programming.

Jutler(1967) Weighted min-max approach.

Solich (1969) Weighted min-max approach.

Fourman (1985) Lexicographic ordering, starting with the most one and proceeding to the order
of importance of objectives.

Schaffer (1985):
VEGA

Main population was divided into sub-
populations and selection was performed
according to each objective function in
each sub-population.

Proportional selection.

Goldberg and Simple Pareto domination scheme. Sharing on whole population.
Continued on Next Page. . .
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Table 1.1 – Continued
Evolutionary Methods
for MO

MO Handling Techniques Other Operators Applied

Richardson (1987) Proportional Selection

Allenson (1992) Sex was used to distinguish between two objectives and was assigned at birth.

Chen et al. (1992) Transformation of qualitative relationships between objectives into quantita-
tive attributes for an appropriate weight of each objective in a way similar to
linguistic ranking methods. The weight generated can be used with an aggre-
gating approach or Pareto-ranking.

Hajela and Lin (1992):
HLGA

Weighted-sum method was used for fitness
assignment. To search for multiple solu-
tions in parallel, the weights were not fixed
but encoded in the genotype instead.

The diversity of the weight com-
binations was promoted by phe-
notype fitness sharing.

Mating restriction was employed
for faster convergence and better
stability.

Jakob et al. (1992) Linear combination of objective functions.

Fonseca and Fleming
(1993): MOGA

Pareto domination scheme. It was extend-
able for single set of goals and priorities.

Sharing on whole population.

Mating restriction was employed
for faster convergence and better
stability.

Wilson and Macleod
(1993)

Goal attainment.

Adeli and Cheng
(1994)

Use of Penalty function.

Horn et al. (1994):
NPGA

Use of Penalty function, Randomly-
selected comparison set was used to deter-
mine the winner of the competitors.

Phenotype sharing was applied if
the competitors end in a tie in
domination.
Tournament selection.

Ritzel et al. (1994) Minimizing one objective function while considering other objective functions
as constraints.

Reduction to a single objective.

Srinivas and Deb
(1994): NSGA

Several layers of classification of the indi-
viduals according to domination were ap-
plied.

Sharing on dummy fitness value
in each layer.

Proportional Selection

Sandgren (1994) Goal programming.

Murata and Ishibuchi
(1995): MIMOGA

The weights that are attached to the MO
functions were not constant but randomly
specified for each selection.

A tentative set of Pareto-optima
was stored and updated at every
generation. A number of individ-
uals were randomly selected from
the set and used as elite individ-
uals.

Vemuri and Cedeno
(1995)

Individuals were ranked for each objective.
Total ranking for each individual was then
determined by the sum of all the ranking
numbers.

Similarity among individuals was
used during selection and re-
placement.

Coello (1996): Monte
Carlo method 1

Space was explored twice, first searching
for ideal vector and then searching for min-
max optimum.

Mating Restriction was applied.

Contraints were handled by
death penalty method.

Continued on Next Page. . .
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Table 1.1 – Continued
Evolutionary Methods
for MO

MO Handling Techniques Other Operators Applied

Coello (1996): Monte
Carlo method 2

Space was explored only once, and Pareto
set was generated while searching for ideal
vector. Then this set was analysed to check
min-max optimum.

Mating restrictions were applied.

Sharing was used to overcome
high selection pressure.
Min-max tournament selection
was applied.

Greenwood et al.
(1996)

Compromise between no preference infor-
mation (in the case of pure Pareto rank-
ings) and aggregation methods like the
weighted-sum to perform imprecise rank-
ing of attributes.

Sharing was employed to dis-
tribute the Pareto-front.

Tournament selection.

Kita et al. (1996) Use of concepts of entropy and temperature, combined with Pareto-based rank-
ing technique, in selection.

Sakawa et al. (1996) Fuzzy goals of objective functions were qualified by eliciting linear membership
functions.

Viennet et al. (1996) Each function as separately optimized.
The populations from each run were pro-
cessed and set Pareto-optima was obtained
via elimination of Pareto inefficient points.

Elitist selection was employed
when optimizing each function
separately.

Bently and Wakefield
(1997): SWR

Linear combination of objection functions which have been converted into ratios
by using the best and worst solution in the current populations.

Bently and wakefield
(1997): SWGR

Sum of weighted global ratios.

Bently and Wakefield
(1997): WAR

Weighed average ranking. Non-generational selection. Fit-
ness of an individual was counted
increasingly.
Crossover and mutation to pro-
duce new individual which sub-
stituted the worst individual.

Lis and Eiben (1997):
MSGA

Generalized version from (Allenson 1992)
where the sex was not restricted to male
and female.

Multi-parent crossover was ap-
plied for recombination, requir-
ing one parent from each sex.
A solution was represented by a
string, like in classical GA, and
the sex market.

Marcu (1997) Adaptation of goal and use of goal values in Pareto-ranking to direct the search
towards the middle region of the trade-off.

Fujita et al. (1998) Multiple functions were unified into scalar
function so that 1 for every Pareto optima
while other non-Pareto optima has value
equal to how far it was from a set of Pareto
optima.

Sharing was employed to the
scalar function.

The algorithm limited the
crossover between a pair of
similar solutions.

Jaszkiewicz(1998) Weights are randomly selected. Then a
temporary population is created composed
of best known solution on the current
weights.

Each individual in the popu-
lation is optimized locally ac-
cording to the randomly selected
weight function.

Continued on Next Page. . .
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Table 1.1 – Continued
Evolutionary Methods
for MO

MO Handling Techniques Other Operators Applied

Laumanns et al.
(1998)

Predators were applied to chase the prey (candidate solution) according to one
of the objectives. As there are several predators with different selection criteria,
those prey individuals, which are best with respect to all objectives, are able
to produce more.

Voget and Kolonko
(1998)

The method is similar to goal attainment, except that membership functions
are used to express goals in vague terms.

Cvetkovic and Parmee
(1999)

Transformation of qualitative relationships between objectives into quantitative
attributes for an appropriate weight of each objective in a way similar to lin-
guistic ranking methods. The weight generated can be used with a aggregating
approach or Pareto-ranking.

Hiroyasu et al. (1999) Simple Pareto domination scheme. Population was divided into sev-
eral islands where simple ge-
netic operations were performed
in each island. After certain
generations, migration was per-
formed.
When the size of the frontier so-
lution exceeds a criterion, shar-
ing was performed.

Knowles and Corne
(1999): PAES

Simple Pareto domination scheme. Based on (1+1) evolution strat-
egy.
Local search was used from a
population of one but using a
reference archive of previously
found solutions to store Pareto-
optima and to identify domi-
nance ranking of candidate solu-
tions.
Tracking the degree of crowding
in different regions of solution
space to spread reference archive.

Romero and Man-
zanares (1999):
MOAQ

A family of agents for each objective and each family tried to optimize an
objective considering the solutions found for other objectives.

Sait et al. (1999) Fuzzy goal-based cost computation measure combined with fuzzy allocation
scheme was applied. It used fuzzy rules and membership functions to combine
multiple objectives and added controlled randomness in placing a cell on an
empty location within a fuzzy window.

Tagami and Kawabe
(1999)

Based on a Pareto neighbourhood search method on the basis of distribution
in objective space divided into pre-specified regions.

Tan et al. (1999):
MOEA

Pareto domination scheme, extendable for
soft/hard goals and priorities and even set
of goals and priorities.

Dynamic sharing on whole pop-
ulation.

Switching Preserved Strategy
(SPS) for elitism.
Tournament selection.

Zitzler and Thiele
(1999):SPEA

Simple Pareto domination scheme. Fitness
of solutions was determined only from solu-
tions stored in the external non-dominated
set.

Use of clustering to reduce the
number of non-dominated solu-
tions stored.

Non-dominated solutions found
so far were store externally.
Binary tournament selection.

Continued on Next Page. . .

22



Table 1.1 – Continued
Evolutionary Methods
for MO

MO Handling Techniques Other Operators Applied

Andrzej and Stanislaw
(2000)

Simple Pareto domination scheme. Constraint tournament selection
where functions are evaluated
only for feasible solutions.

Knowles and Corne
(2000): M-PAES

Simple Pareto domination scheme. Based on PAES (Knowles and
Corne 1999), but uses a popu-
lation of solutions and employs
crossover.
Besides the main population,
two archives were required for
elitism.

Mariano and Morales (
2000): MDQL

Each agent proposes a solution for its corresponding objective function. Solu-
tions were then evaluated using non-dominated criterion and solutions in the
final Pareto set were rewarded.

Rekiek et al. (2000) Use of preference ranking organisation method for enrichment evaluation
(Brans et al. 1986).

Sefroui and Periaux
(2000)

Based on non-cooperative game theory to find Nash equilibria.

Khor et al. (2000):
IMOEA

Pareto domination scheme, extendable for
soft/hard goals and priorities and even set
of goals and priorities.

Dynamic population size based
upon on-line discovered Pareto-
front for desired population
distribution density and Dy-
namic local fine-tuning to
achieve broader neighborhood.

Khor et al. (2001):
EMOEA

Pareto domination scheme, extendable for
soft/hard goals and priorities and even set
of goals and priorities.

Tabu list and Tabu constraint
were used for individual exami-
nation and preservation.
Lateral interference for uniform
distribution.

Table 1.1: Summary of existing evolutionary methods compiled by
Tan et al.4

For each method in Table 1.1, a comparison is made for the type of method used. Figure 1.6
from this report, is a comparison of the trends in each of these methods. As can be seen, the
most popular schemes used over the last few years (up to 2001) are Pareto, ranking, and weights.
Overall, the report states that methods that used Pareto, ranking, goals and preference, preserved
important non-dominant individuals via the method of switching preserved strategy. Also, the
distribution along the Pareto front and the robustness in a noisy environment was more or less the
same. It was also observed that elitism was found to be an important strategy for obtaining good
performance. Elitism allows high performing individuals to enter the next generation without the
selection, crossover or mutation operations. These methods are still the most popular methods
used today in Genetic Algorithms. A few newer methods that are as robust and have good perfor-
mance have been developed. An example is the conservation technique called crowding described
in the work by Hirsh64 . Crowding takes into consideration other as well as fitness values, such as
diversity preservation etc.

A number of methods exist for selecting the parents from a population. The aim of the se-
lection process should be to select individuals who are generally fitter so that the pressure is
directed towards better performing individuals and hence generations. One of the simplest and
most straightforward methods is the roulette-wheel method where the probability of selection is
proportional to the fitness of the individual. Another method is the rank-based method which is
more useful when there is a wide range of fitness values. Here the individuals are ranked and their
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Figure 1.6: Comparison of the methods used in optimisation techniques developed in the last 50 years. It
can be seen that ranking, Pareto and weights are the techniques that have become most popular.4

probability of selection is proportional to their rank rather than their fitness value.
There are a number of crossover methods as well. Usually the design parameters are converted
to binary format (the gene) and then a random point is selected where the gene is split and part
of it swapped with the other parent. Floating point methods also exist where any one design
parameter is swapped with that of the other parent. Other methods include heuristic crossover,
linear crossover, arithmetic crossover and so on64 . In the case of the optimisation of the turbo-
machinery blades, Mengistu and Ghaly38 used two methods of crossover - arithmetical where two
parents are linearly combined, and heuristic which uses the fitness of the parents to determine the
search direction and then creates the new offspring.
Similarly, there are numerous ways that mutation can be applied. The simplest is to randomly
switch a random bit of the binary format of the design parameter. Other methods are more
progressive where the probability of mutation occurring drops as the optimisation matures64 .
Mutation can create new designs or reintroduce old designs in the gene pool and improve the di-
versity of the design search space or gene pool. This is important because after many generations,
selection could drive all the bits into 1 position (using the example of binary coding - to either a
1 or a 0). Mutation allows you to reintroduce the missing bit. Also, it allows retesting. However,
the number of mutations must be kept to a minimum to reduce randomness88 . Sometimes, binary
representation can mean that there are big changes in the binary form for small changes in pa-
rameter. Therefore, in these types of cases, the Gray code or reflected binary code89 is sometimes
used where two successive parameter values differ in a single bit in their binary form, i.e. instead
of counting up from 7 to 8 for example, which results in a binary change of 4 bits (0111 to 1000),
this code allows a conversion of only one bit (0111 to 0101) which translates to counting from 7 to 5.

Constraints can be applied to the resulting offspring. One approach is to treat the gene as a
faulty gene and try to repair it50 . A simpler approach is the penalty method where the fitness
value is diminished based on the constraint that has been violated and by how much it is violated.
In some cases, if a constraint is violated, the offspring is removed from the new population i.e.
a hard constraint, otherwise its fitness value is compromised, but it is allowed to join the new
population based on its new fitness value i.e. a soft constraint50 .

Hirsh created a design optimiser called GADO (Genetic Algorithm Design Optimiser)64 used
for engineering design. The document describes a method of improving the search for the opti-
mum function in a genetic algorithm (GA) using GADO.
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These are some of its features:

• Screening Module (SM)
The idea of the SM is to predict the merit of a proposed design before the simulator is used
to evaluate it.
The SM selects a point that is promising (using extrapolation and not simulation). Before a
point is selected, the SM finds the K nearest neighbours (usually two, but this is dependent
on the sharpness of the optimum) and checks if it is above a certain threshold value before
adding it to the new sample population.

• The Diversity Maintenance Module
This ensures that the selected points are not very similar to each other such that it does
not represent the search space. It prevents being trapped in local optima. If at a certain
point it is found that the points are quite similar, the module rebuilds the population using
previous points.

• Guided Crossover
- It forms search directions without computing gradients, done by joining pairs of points,
ranking these directions and taking a step in the best direction. Directions are ranked by
the ratio of the difference in the fitness to the distance between them. It works like this:

– One point is selected, c1.

– For every other point in the population, a mutual fitness is calculated as below:

Mutualfitness(A,B) =
(fitness(A)− fitness(B))2

Euclideandistance(A,B)2
(1.3)

A choice for the second point, c2 is made by maximising the mutual fitness.

– c1 and c2 are swapped if necessary so that c1 has the highest fitness.

– The result of the crossover is a point along the line joining c1 and c2 selected at random
from the small region around c1, the better point as follows:

Result = L× c1 + (1− L)× c2 (1.4)

where L is a uniformly distributed random number in the interval [1-0.2x,1+x] and
x = 0.75× (1−n)+0.25 where n is number of iterations. Nevertheless, this should not
be used as the only crossover operator64 . There are many other methods such as the
heuristic method:
If the parents are X̄ and Ȳ such that Ȳ is fitter than X̄, then the new born is Ȳ +
r· (Ȳ − X̄) where r is a random value selector between 0 and 1.
Other methods include point, random (which produces a lot of diversity), arithmetic
and linear.

• Dynamic Penalty
This GA uses an ‘adaptive penalty’ approach for handling constraints. When the GA focuses
too much on feasibility it reduces the penalty coefficient and vice versa.

A number of selection strategies are described in Hirsh64 two of which are:

• Fitness proportional (roulette wheel) selection
The probability of an individual being selected is dependent on its fitness.

• Rank-based selection
Each individual’s probability of being selected depends on its fitness rank rather than its
actual fitness. The most commonly used methods of carrying out this selection are:

25



- Tournament selection: Two candidates selected and the fitter of the two is selected for
reproduction.
- Weight series selection: Each individual is assigned a weight dependent on fitness rank
(weights usually taken to be a decreasing arithmetic or geometric series). Proportional se-
lection is then performed using the weights rather than the actual fitness.

Rank-based is considered to be more appropriate for use in domains where the fitness range is
extremely wide.

In steady state GAs, each new individual replaces an old individual, so the population remains
constant. In generational GAs, the entire population or a portion of it is replaced simultaneously.
Steady state converges faster than generational.

Two mutation operators are described:
Uniform mutation: It replaces each component of a solution vector with a random value uniformly
selected from the component range.
Non-uniform mutation: At the beginning of the optimisation it acts like uniform mutation. It then
becomes more and more conservative about the amount of change it makes to a vector component
as the optimisation progresses.

Toffolo and Benini90 also did some work on improving MO optimisation by improving the di-
versity of the gene pools created by GAs. In their version (GeDEM), genetic diversity was a real
objective in itself, measured as variable or optimisation function distance to neighbours. Benini
also used GeDEM to optimise calibration of centrifugal pumps91 . One of the aspects of the GA
used was in the selection of parents. A reproduction pressure was included that selected fitter
individuals to crossover, but this pressure varied with the generation so that at the start of the
optimisation, the pressure allowed more diversity, but towards the end, more exploitation of the
best genes rather than exploration of the design space took place.

Another advantage of GAs is that they can be easily parallelised to reduce the time that it
can take92 . González et al.93 created a parallel computing modified GA called the hierarchi-
cal asynchronous parallel evolutionary algorithm (HAPEA) which proved to use slave machines
more efficiently. It also created a number of populations at each generation instead of a single
population93 .

Other Optimisation Methods

Hassan and Charles94 used a reverse-design method to design aerofoil blades for a hovering heli-
copter. Here the pressure distribution was specified by the user and the aerofoil geometry that
best produced this distribution was created for each radial station along the blade span. CAM-
RAD/JA was used to compute the rotor trim state as well as the far-wake-induced incidence and
the actual modification and analysis of the geometry was carried out by the solver RFS2 which
had a built-in ability to generate new grids of the geometry created at each iteration. This concept
could work well, but it is necessary for a three dimensional approach to be taken rather than the
aggregation of many 2D sections to form a blade.

Another method of optimisation or design that has generated a lot of interest is Adjoint-Base
Optimisation. This method computes the sensitivity of the shape to the objective. Jameson et
al.95 use an adjoint approach where a target pressure distribution is specified for a fixed wing and
the Navier-Stokes equations are used to iteratively correct the shape function to obtain the re-
quired distribution by reducing a constrained cost function by gradient-based optimisation. Mani
et al.96 developed an adjoint based method to optimise aerofoils for dynamic stall. The objective
was to reduce the peak pitching moment while maintaining lift. This was successfully carried out
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with considerably less computational effort than performing a time-dependent simulation for the
same amount of flexibility in the design. Nielsen et al.97 applied an adjoint based method for
the design of rotors in hover using Navier-Stokes equations with the aim of creating a general
time-dependent adjoint-based optimisation method for rotorcraft. The results were comparable
with those of independent approaches and showed improvement in Figure of Merit.

Liu et al.98 also used a reverse engineering method to design rotor blades for HAWTs. They
modified the twist, chord and aerofoil in the form of Bézier curves for each section along the blade
and merged these 2D designs smoothly along the span. The strip theory was used taking into
account hub and tip losses, cascade effects etc. A good blade design was obtained that had an
overall increase in the output power. However, for a more accurate prediction and hence a more
validated result, it is important to optimise taking into account the effects of the flow field over
the entire 3D region. Inverse design methods have been explored for a long time. Lekoudis and
Sankar99 used an inverse potential flow method to prescribe the skin friction coefficient and obtain
a pressure distribution from it for a wing. Also, a similar method was used to design aerofoils and
nacelle inlets for a target pressure distribution.

Drayna et al.100 created a direct nonlinear sensitivity solver to optimise a scramjet inlet. It
can be incorporated into an existing solver without having to rewrite any of the original solver
code, which is what would be required in the case of an adjoint sensitivity solver. It is more
accurate than a linearised solver and also requires no new boundary conditions.

Fuselage Optimisation

A small part of this project was dedicated to fuselage optimisation. This is because a significant
contributor to the inefficiency of helicopter flight is the fuselage, and research is dedicated to this
area specifically. For example, Garavello et al.101 used GAs to optimise parts of the fuselage of
the ERICA tiltrotor using CFD. Changes to the wing-fuselage junction, the air intake and engine
exhaust led to improvements in lift, drag and pressure loss. Therefore although the main focus
of this project is the optimisation of rotor blades, a part of this study focuses on a method to
parameterise and optimise a simplified fuselage geometry.

Flow around a helicopter component is complex. However, it becomes even more complex when
the components are close to each other due to their induced effects on each other. Changes in the
positioning of these components can result in large changes in the aerodynamic performance of
the overall helicopter. Sa et al.102 carried out CFD tests on the HARTII rotor as an isolated rotor
as well as combined with the fuselage to determine the effects the fuselage has on the aerodynam-
ics of the rotor. It was found that improvements were made on the capture of the blade-vortex
interactions on the advancing and retreating sides and the phase difference at the front of the
disk. Stronger upwash was also observed which which affected the cyclic trim angles and blade
deformation. A common feature that also has a significant effect due to rotor/fuselage interac-
tions is the distance between the rotor and the fuselage. This can cause significant variation in
the inflow and dynamic loads103 . There is a large amount of documentation on work done on
rotor-body interactional aerodynamics, one of the more popular and early ones being the work
done by NASA on the ROBIN (ROtor Body INteraction) body104–106 .

The ROBIN body was created by smooth transitions of ellipsoidal equations resulting in a very
streamlined body, much more than expected on a typical helicopter fuselage. A more realistic
modification of it using the same parameterisation method is the ROBIN-mod710 .

The Japan Aerospace Exploration Agency (JAXA) recently also developed their own simplified
version of a helicopter fuselage, one that has closer drag characteristics to a typical helicopter
fuselage107 . This fuselage however, does not have a parameterisation method. The aim therefore,
is to apply the parameterisation technique of the ROBIN to the JAXA body and use it as a
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demonstration of the optimisation and parameterisation method for simplified fuselage bodies.

Another example of an experimental fuselage body is the ROTEST stand used in the HART
(Higher harmonic control Aeroacoustics Rotor Test) project108 , although it was not specifically
built for fuselage modelling and testing.

1.3.4 Parameterisation Techniques

Parameterisation is essentially numerical coding of the design variables to obtain a general form
of representing a particular shape. It is a key part of the optimisation process. Samareh109 states
that a good parameterisation technique for multidisciplinary shape optimisation should be:

• automated

• provide consistent geometry changes across all disciplines

• provide sensitivity derivatives

• fit into product development time

• have a direct connection to the CAD system for design

• produce a compact and effective set of design variables

However, the initial main focus in this case will be the last point made. This is because the
optimisation method desired is one that will not require grid regeneration until the end of the
process. The coupled method has been used by a number of authors such as Le Pape36 where for
the elsA solver, an in-house analytic grid-generator was used to create a grid for each evaluation.
However, in this project, the optimisation technique is to be decoupled from the high-fidelity CFD
model and linked to it through a lower fidelity model.
Hàjek describes a number of techniques used to parameterise aerofoils in the light of aerody-
namic optimisation110 . This paper states that the choice of technique strongly influences the
optimisation. Similarly, Castonguay and Nadarajah111 also performed a study on four different
parameterisation method for the optimisation of aerofoils using an inverse method. Below are
some of the methods described in both these papers:

Mesh point approach: Here eac mesh point can be independently moved. This is one of
the easiest to implement and allows a lot of flexibility in the design but can lead to discontinuous
geometries and possibly too many control variables111 .

Joukowski transformation: Consists of transforming a circle in the complex plane via the
transformation

z = ϵ+
1

ϵ
(1.5)

The circle should pass through the point ϵ = 1. The aerofoil shape is controlled by varying the
centre of the circle. This method was especially advantageous in the past because it enabled the
plane potential flow to be analytically solved.

Splines: These use piece-wise polynomial approximations of curves. B-splines use the same
idea but are slightly more complex in that they are built on linear combinations of base functions.
Non-Uniform Rational B-Splines (NURBS) are a further development. Ghaly and Mengistu112

show that Bézier curves were used because of the simplicity of their implementation. However,
they are global and hence a change in a single control point changes the shape of the entire blade
and so the designer has less control over local regions. To accommodate this, B-splines were used.
They work just like Bézier curves but have more complex interpolation functions. These allow
more local control, but are still not accurate in describing conic sections such as rounded leading
edges etc. Therefore, non-ration B-splines (NURBS) were used since these allowed local control
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and could also reproduce conic sections as accurately as required by industrial standards.

Hick-Henne ‘bump’ functions49 : Modelling small or moderate perturbations of ‘baseline’
airfoil shapes used especially in inverse design. The perturbation is expressed as a linear super-
position of ‘bump’ functions of the form

y = sint(xβ) (1.6)

where β is used to control the maximum of the bump function, located at x = π/21/β and t
controls the width of the function (typically t = 3). It allows specific regions to be refined thereby
reducing the number of variables and their nature ensures continuous gradients of the shapes.
However, they are not orthogonal and hence are incapable of representing the full set of continous
functions111 .

PARSEC5,111 : used mainly for subsonic and transonic aerofoils. The aerofoil shape is expressed
as an unknown linear combination of suitable base functions and selecting 12 important geometric
characteristics as the control variables in such a way that the shape can be determined by solving
a linear system with these variables. The variables are shown in Figure 1.7. The advantage of

Figure 1.7: PARSEC variables of an aerofoil for parameterisation5 .

PARSEC is that no baseline shape is needed, a wide range of aerofoil shapes can be generated,
constraints are easy to impose and the impact of individual PARSEC design parameters on aero-
dynamic properties can be easily predicted. The disadvantage though, is that it cannot cover as
wide a range as spline curves.

B-splines, NURBS: For complex geometries, the use of Bézier curves, splines and NURBS
is quite popular, especially in the optimisation of compressor blades39,66 mainly because they
allow a greater degree of freedom with the use of fewer variables and can produce smooth, discon-
tinuity free curves. However, the implementation of constraints is not as straightforward as using
numerical representations of physical measurements. Philip Schneider gives a detailed explanation
of how NURB curves work and his article.113 Joh114 used NURBS with 36 points to fully describe
the M6 wing. This shows the versatility of the technique but also the high number of parameters
used to describe a simple body. In Mengistu and Ghaly’s paper112 , they describe a method for
finding the minimum number of control points to represent turbomachinery blades using NURBS
within a specified tolerance. An objective function to be minimised is a representation of the
error and the weights and control point coordinates are the parameters being optimised for. In
this way, coordinate point data curves can be converted to NURB curves and vice versa. In the
case of Mengistu and Ghaly112 , simulated annealing (SA) was used to optimise for the minimum
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number of points.
In Samad39 , cubic spline interpolation was used to define the blade (i.e. a separate cubic spline
exists for each interval - these are popular because they produce smooth curves and are easy to
implement). In total 20 variables were brought down to 6 variables.
Le Pape36 used Beziér curves to parameterise all the distributions of the variables in rotor opti-
misation except for the aerofoils.
The use of splines. Bézier curves and NURBS allow localised control and reduced number of
variables and the ability to represent continuous curves as well as discontinuities in the geometry.
However, the link between the values and the design variables are not intuitive to the user.

Kulfan and Bussoletti115 also carried out some work on parameterisation. They divided the
parameterisation into two classes, one for the shape function such as aerofoils etc. and the other
for body cross-sections such as fuselages, nacelles etc. For an aerofoil, the leading edge and trailing
edge are specified and the curve in between these extremes is what is modified. Berstein polyno-
mials were used to do this. This technique was adapted to parameterise aerofoils and wings116 .

Vanderplaat also describes a parameterisation method in the appendix of his paper3 where the
shape of an aerofoil is defined with an equation:

t = δ
(
A
√
x+ a1x+ a2x

2 + ...anx
n
)

(1.7)

where t is the thickness of the aerofoil and δ is the thickness to chord ratio for the initial aerofoil.
The square root term yields a parabolic LE term. The coefficients A, a1, a2,..., an are the variables
perturbed by the optimisation function.

Other parameterisation methods include Fourier series, piece-wise polynomial, and orthogonal
polynomial. NACA has in effect a parameterisation system of 4, 5 and 6-digit sections. In gen-
eral, most helicopter optimisation problems rarely exceed 10 - 30 design variables17 . The aim in
terms of parameterisation, would be to maintain a low number of design parameters to optimise,
while giving the designer as much flexibility in the specific design variables required as possible.
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1.4 Summary of Aims

For this project, the broad aim is to be able to initiate the optimisation process from an existing
blade that is already some-what optimised for a specific objective to a certain extent. From the
literature survey, it seems that between non-gradient and gradient based methods, the former
seems to be gaining popularity for more complex cases such as rotor blade design. The limiting
factor seems to be the computational effort in attempting to use this method with high-fidelity
simulation data. However, several lower order models can be used to accurately predict inter-
polated data given a set of high-fidelity data. They are able to maintain accuracy and increase
efficiency at the same time by orders of magnitude, because they are given only a limited set of
inputs that are actually the objectives of the designer. Based on the patterns in changing these
input parameters, they make the link between the input and output. This seems to be more in
line with the objective of fine-tuning the aerodynamic design of a blade.
The adjoint based method offers a lot of flexibility to the design and is more suitable for designing
from scratch or from highly unoptimised designs i.e. cases where a big design change is expected.
Therefore it was not developed for this project at this time.
The Genetic Algorithm is a popular non-gradient based method that provides a simple efficient
way of implementation. Other non-gradient based methods can be used as well. However, as a
starting point, this method is selected. Some of the features explained in Section 1.3.3 will be
used to create the GA.
A number of metamodels are of interest. This part of the optimisation process is quite important,
as it is the part that overcomes the problem of efficiency with non-gradient based methods. The
kriging and Neural Network methods particularly show a lot of potential for accurate interpolation
and ease of coupling with the optimiser.
The design parameters and objectives are also key components of the optimisation process. The
literature survey has provided important objectives in selecting the techniques used to param-
eterise designs and offered good points to take into consideration when creating an objective
function. These two parts are highly dependent on the user and their experience. This method
however, is aimed at assisting, rather than replacing the designer. Therefore, some of it is reliant
on user-experience.

The process will be demonstrated for a number of aerodynamic bodies ranging from aerofoils
to rotors in order to validate the process. Metamodels will be employed with Navier-Stokes CFD
as the high-fidelity flow model. The novelty of the work is the combination of simple methods that
result in efficient and accurate optimisation of well-defined parameters of rotor blades, which are
already designed with specific objectives in mind, in order to obtain the best performance out of
the design. This is obtained by decoupling the optimisation process directly from the high-fidelity
solver and linking it through a lower-order model that relies on the CFD model for its accuracy.

1.5 Thesis Outline

Chapter 2 is a description of the high-fidelity solver, the Helicopter Multi-Block solver (HMB)
used for all the cases in this project.
Chapter 3 describes the optimisation technique and all its components in detail. The chapters
that follow show the application of the method to a variety of cases ranging from aerofoils in
steady state, to rotors in forward flight. Some parts of these results are included in Chapter 3 to
explain the optimisation method better.
Chapter 4 describes the application of the method to a transonic aerofoil.
Chapter 5 describes the application of the method to the optimisation of rotor sections in forward
flight. This case was used to develop the initial code.
Chapter 6 applies the method to a wing planform.
Chapter 8 describes the application of the method to the UH60-A in forward flight motion. Hover
performance was also optimised.
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Chapter 10 describes the application of the method to the BERP-like rotor tip in forward flight
and hover.
Chapter 11 describes the summary, conclusions and future work that can be carried out from this
project.

For each case, a unique aspect of the optimisation technique was developed. The fully devel-
oped method was used on the final case, the BERP-like tip rotor. What follows after that is
the conclusion and a summary of further developments that can be made on this project. The
appendices were used to present the optimisation method and raw data.
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Chapter 2

CFD Methods

2.1 Helicopter Multiblock Solver

The CFD Solver used for this work is the Helicopter Multiblock Solver (HMB). For all the test
cases, the Reynolds Averaged Navier-Stokes (RANS) method was used with the κ−ω turbulence
model. HMB solves the RANS equations in integral form and discretises using a cell-centred finite
volume approach on structured multiblock grids. Temporal integration is done using an implicit
dual-time stepping method. The details of the theory behind this method and the derivation of
its equations can be found in Anderson23 .
The Navier-Stokes equations defines the flow by mathematically stating the conservation laws of
physic:

• Conservation of mass (Continuity equation):

∂ρ

∂t
+
∂(ρUi)

∂Xi
= 0 (2.1)

where ρ is the density, Ui is the velocity in the ith direction which is Xi.

• Conservation of momentum (Newton’s 2nd law):

∂(ρUi)

∂t
+
∂(ρUiUj)

∂Xj
= ∂fi +

∂p

∂Xi
− ∂τij
∂Xj

(2.2)

where fi are the body forces (such as gravity, coriolis effect and so on) in the ith direction,
p is the pressure and τij is the Newtonian stress tensor given as,

τij = µ

[(
∂Ui

∂Xj
+
∂Uj

∂Xi

)
− 2

3
δij
∂Uk

∂Xk

]
(2.3)

where µ is the molecular viscosity and δij is the Kronecker delta given as

δij =

{
1 if i=j
0 otherwise

}
(2.4)

• Conservation of energy (1st law of thermodynamics):

∂ρE

∂t
+

∂

∂Xj
[Ui (ρE + p)] +

∂

∂Xj
(Uiτij + qj) = 0 (2.5)

where E is the total energy (internal and kinetic) per unit volume and qi is the heat flux
with respect to the ith direction. Both are given as:

E = e+
1

2
U2
i (2.6)

qi = −kT
∂T

∂Xi
(2.7)

(2.8)

where e is the internal energy, kT is the heat transfer coefficient and T is the temperature.
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For fluids, all of the above are functions of the three velocity components in each perpendicular
direction, the density, the pressure and the internal energy. They can be expressed in matrix form
for a fluid element fixed in space (i.e. conservation form of the equations). So the N-S Equations
can be expressed as

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= J (2.9)

where Q is the vector of conserved variables, F, G and H are the flux vectors in the x, y and z
directions and J contains the source terms as shown:

Q =


ρ
ρu
ρv
ρw

ρ(e+ U2

2 )

 (2.10)

F =


ρu
ρu2 + p− τxx
ρuv − τxy
ρwu− τxz

ρ
(
e+ U2

2

)
u+ pu− k ∂T

∂x − uτxx − vτxy − wτxz

 (2.11)

G =


ρv
ρuv − τyx
ρv2 + p− τyy
ρwv − τyz

ρ
(
e+ U2

2

)
v + pv − k ∂T

∂y − uτyx − vτyy − wτyz

 (2.12)

H =


ρw
ρuw − τzx
ρvw − τzy
ρw2 + p− τzz

ρ
(
e+ U2

2

)
w + pw − k ∂T

∂x − uτzx − vτzy − wτzz

 (2.13)

J =


0
ρsx
ρsy
ρsz
ρ(usx + vsy + wsz) + ρq

 (2.14)

i.e. the first rows of each matrix are part of the continuity equation, the 2nd, 3rd and 4th represent
the conservation of momentum and the last row represents the conservation of energy23 . The
source terms, sx, sy, sz, usx + vsy +wsz and q are typically zero except in the case of a hovering
rotor where a Froude condition is applied as explained later.

The N-S equations completely describe turbulent flow, however, at high Reynolds numbers, there
are many turbulent scales that vary with time and space. Therefore, the number of turbulent
scales are reduced by time averaging the Navier-Stokes equations to give the Reynolds-Averaged
Navier-Stokes equations (RANS). This results in additional unknowns (called Reynolds stresses)
which must be modelled with a turbulence model. This is described in more detail later on in this
chapter.

As mentioned, the HMB flow solver uses a cell-centred finite volume approach combined with
an implicit dual-time stepping method. The governing equations are applied to each cell in turn.
The spatial discretisation of Eqn 2.9 leads to a set of ordinary differential equations in time,

d

dt
Qi,j,kϑi,j,k +Ri,j,k = 0 (2.15)
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where ϑi,j,k is the volume of the cell and Ri,j,k is the flux residual.
The solution marches in pseudo-time iterations for each real time-step to achieve fast convergence.
The following system of equations is then solved in the implicit scheme during the time integration
process

∆V Qm+1
i,j,k −∆V Qm

i,j,k

∆V∆τ
+

∆V Qn+1
i,j,k −∆V Qn

i,j,k

∆V∆t
= Rn+1

i,j,k (2.16)

where n represent real time step iterations, m represents pseudo time step iterations, ∆τ is the
pseudo time-step increment and ∆t is the physical time step increment. ∆V is the cell volume
change. The term Qn+1

i,j,k is obtained when the pseudo time steps converge (first part of Eqn 2.16)
to within a user-defined tolerance. An implicit scheme is used for the pseudo time integration and
Rn+1

i,j,k is approximately given as

Rn+1
i,j,k ≈ Rn

i,j,k +
∂Rn

i,j,k

∂Qn
i,j,k

(Qn+1
i,j,k −Qn

i,j,k) (2.17)

The pseudo time integration is typically carried out till a convergence of 0.001. To ensure this is
reached, for most cases, the maximum number of pseudo time steps was set to between 100 and
200.
Combining Eqns 2.16 and 2.17, the linear system becomes,(

1

∆t
+

(
∂Ri,j,k

∂Qi,j,k

)n)(
Qn+1

i,j,k −Qn
i,j,k

)
= −Rn

i,j,k (2.18)

The convective fluxes are resolved using Osher’s scheme117 . Second-order accuracy is provided
using the Monotone Upstream-centred Schemes for Conservation Laws (MUSCL) variable extrap-
olation method118 and any spurious oscillations across shock waves is removed using the Van
Albada limiter. Central differencing spatial discretisation is used to solve for the viscous terms.
The linearisation results in a set of non-linear equations. This is solved by integration in pseudo-
time using a first-order backward difference. A Generalised Conjugate Gradient (GCG)119 method
is then used in conjunction with a Block Incomplete Lower-Upper (BILU)119 factorisation as a
pre-conditioner to solve the linear system of equations, which is obtained from a linearisation in
pseudo-time.

Turbulent flow causes aerodynamic structures that vary with time and space quite frequently.
To run the full Navier-Stokes equations to obtain all of these structures would require a high
resolution in time and space. However, with increasing Reynold’s number, it is found that the
larger scale turbulent structures carry more of the energy than the small ones. To avoid the
high computational cost, therefore, the variables can be split into two components: an average
value and a fluctuating component. So if the conservation equations are time averaged, then a
number of additional terms, Reynolds stress terms, appear in the equations (denoted with ‘R’ in
the following equations):

∂(ρUi)

∂t
+
∂(ρUiUj)

∂Xj
= ∂fi +

∂p

∂Xi
− ∂

∂Xj

(
τij + τRij

)
(2.19)

∂ρE

∂t
+

∂

∂Xj
[Ui (ρE + p)] +

∂

∂Xj

(
Ui(τij + τRij ) + qRj

)
= 0 (2.20)

where qRj is the turbulent heat flux. The turbulence model is then employed to model these
Reynolds stress terms. A number of turbulence models are available in HMB. For the cases pre-
sented here, the two-equation κ − ω model was used11 . In a few cases Menter’s Shear Stress
Transport (SST)120 blending was also applied as it improves the performance where adverse pres-
sure gradients exist. For this model, two transport equations are used: the turbulent kinetic
energy, κ, and the κ-specific dissipation rate, ω which is a function of the length. The eddy
viscosity is obtained as:

µT = ρ
κ

ω
(2.21)
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The full turbulent transport equations used in the formulation of the κ− ω model are given as

∂

∂t
(ρκ) +

∂

∂xj
(ρUjκ) =

∂

∂xj

[(
µ+

µT
σκ

)
∂κ

∂xj

]
+ ρ (Pκ − β∗ωκ) (2.22)

∂

∂t
(ρω) +

∂

∂xj
(ρUjω) =

∂

∂xj

[(
µ+

µT
σω

)
∂κ

∂xj

]
+ ρ

(
α

υt
Pω − β

β∗ω2

)
+ ρSl (2.23)

The values for the coefficients are given in Table 2.1 for the model. The flow solver was used in
parallel for the large grid cases. Message Passing Interface (MPI) was used for the communication
between the processors in parallel.

α β β∗ σκ σω Sl
5
9

3
40

9
100 2 2 0

Table 2.1: Table of coefficients for the κ− ω turbulence model from Wilcox11 .

2.2 Harmonic Balance Method

The time-marching method, even when parallel computing is used, can take a few days of clock
time for a rotor to be fully analysed. An alternate method that can be used to obtain the per-
formance of the rotors to the same accuracy (provided a sufficient number of modes is used), is
the Harmonic Balance Method (HB)121 . With HB, the time taken to do the same calculation is
about an order of magnitude less than the time taken using the time-marching method. This
greatly improves the efficiency of the optimisation process, making it a more usable technique in
the design of rotors. The method is demonstrated for the UH60-A rotor in forward flight and the
results obtained using 4 modes are in fair agreement with flight test data and the time marching
results. This is a positive outcome suggesting that either harmonic balance or time marching
methods can be used with this framework. A higher number of modes would be needed if higher
harmonic vibratory performance parameters are required.

If the solution can be assumed to be fully developed and periodic, then the governing equa-
tions can be represented in the frequency domain. This is the basis of the HB method. It obtains
the Fourier coefficients of the variables at each point in the mesh. Eqn 2.24 (which is the same as
Eqn 2.15 but with terms removed for clarity) represents the governing equation where Q(t) is the
solution and R(t) is the residual which are assumed to be periodic,

F (t) =
dQ(t)

dt
+R(t) = 0 (2.24)

R(t) is the residual and is a function of the grid, the grid velocity and the variables, Q(t). The
grid motion is known, therefore, Q(t) can be obtained from Eqn 2.24. As a Fourier series with a
fixed number of modes, NH , Eqn 2.24 becomes

Q(t) = Q̂o +

NH∑
n=1

(
Q̂c cos (ωnt) + Q̂s sin (ωnt)

)
=

NH∑
k=−NH

Q̂ke
ikωt (2.25)

R(t) = R̂o +

NH∑
n=1

(
R̂c cos (ωnt) + R̂s sin (ωnt)

)
=

NH∑
k=−NH

R̂ke
ikωt (2.26)

F (t) = F̂o +

NH∑
n=1

(
F̂c cos (ωnt) + F̂s sin (ωnt)

)
=

NH∑
k=−NH

F̂ke
ikωt (2.27)
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where k is the wave number. This system of equations is substituted into Eqn 2.24. The Fourier
terms are then given as

F̂o =
ω

2π

∫ 2π/ω

o
F (t)dt = R̂o (2.28)

F̂c =
ω

π

∫ 2π/ω

o
F (t) cos(wnt)dt = ωnQ̂sR̂c (2.29)

F̂s =
ω

π

∫ 2π/ω

o
F (t) sin(wnt)dt = −ωnQ̂cR̂s (2.30)

This results in equations for each mode, n, giving a system of NT equations, where NT = 2NH+1,
for the Fourier series coefficients:

R̂o = 0 (2.31)

ωnQ̂sR̂c = 0 (2.32)

−ωnQ̂cR̂s = 0 (2.33)

or as
iωkŴk + R̂k = 0 (2.34)

This is expressed in matrix form as:
ωMQ̂+ R̂ = 0 (2.35)

where M is an NT ×NT matrix.
As mentioned earlier, R(t) is a function of W (t) and it is non-linear. Therefore each coefficient,
R̂k depends on all the coefficients Ŵk and hence must be solved iteratively. There are a number
of ways that this can be carried out.
In the pseudo-spectral method, Eqn 2.34 is transformed back to the time domain and the period
is split into NT equal discrete time intervals, represented as Whb and Rhb. Then Eqn 2.35 is
decomposed to form,

ωDWhb = Rhb (2.36)

where D = E−1ME, E being a transformation matrix transforming Ŵ and R̂ to Whb and Rhb.
The diagonal of D is 0. Pseudo time marching can then be applied to the harmonic balance
equation

dWhb

dt
+ ωDWhb +Rhb = 0 (2.37)

This is the standard way of solving for the solution. However, other methods exist that use less
memory, which can be a limiting factor in the use of the HB method. More details are given in
Woodgate et al.121,122 and Jang et al.123 .

Figure 2.1 shows a qualitative comparison of a UH60-A blade solution using TM and HB (2
and 4 modes). That the results are similar especially when more modes are used, suggests that
both data sets could be included in the CFD database. Figure 2.2 shows the lift and moment
coefficient comparison between the analysis of the TM method and the HB method for the same
rotor. Four modes were used to construct the solution using the HB method. i.e. a solution exists
for every 10 degrees of azimuth.

2.3 Grid Generation

In all cases, multiblock structured grids were used and were generated using ICEM-CFD124 . Dif-
ferent types of grids were used for different topologies. For aerofoil sections and blocking around
the blade of a rotor, a C-grid was used as shown in Figure 2.3. For rotors, this C-grid is wrapped
in an H-grid. For helicopter fuselage bodies, the geometry is enclosed in an O-grid, which is
wrapped in an H-grid. The mesh spacing normal to the solid surfaces was always 1×10-5 chords
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2 modes 4 modes

Figure 2.1: Pressure contours of the UH60 rotor using 2 and 4 modes for the Harmonic Balance method
(red lines) compared to the solution from the time-marching method (black lines). The lines represent
isobars at the same pressure values at an azimuth of 90 degrees, which represents the worst case.

(y+ < 1) to resolve the turbulent boundary layer. The spacing was then transitioned smoothly
i.e. the ratio of spacing from one cell to the next was never greater than two.

For a hovering rotor, the wake is assumed to be steady and so the calculation is a steady-state
and assumed to be periodic. Therefore the flow is solved for only a 1/Nblade segment of the full
flow field with a periodic boundary conditions as shown in Figure 2.4(a) on the left which is for
a 4-bladed rotor. The boundary conditions for the inflow and outflow are ‘potential sink/Froude’
condition to suppress recirculation in the flow domain and were placed at the rotor origin125 .
These conditions must be prescribed at a distance of at least 5 rotor radii125 . An axial velocity
was prescribed at the outflow boundary based on the rotor thrust and outflow radius. Also, for all
rotors, the blade is not connected to the hub directly so that root vortices can also be captured,
as seen on the right of Figure 2.4(a). Figure 2.4(b) shows the root on the left and tip on the right
with typical wall spacing and number of cells.
Also for hovering rotors, the hub is modelled as a cylinder, whereas for forward flight, it is mod-
elled as a simplified smooth elliptic hub.

For the forward flying grid, the full rotor is required. Therefore, a 1/Nblade segment is built
(as in Figure 2.4(a)) and then copyrotated at the symmetry planes to form the full rotor and
flow field. The typical number of cells used is also shown in Figure 2.4. Rotor grid sizes were
approximately eight million cells. It is assumed that the rotor blades are rigid and are connected
to the hub by a set of three hinges. The flap, lead-lag and pitch centre positions and order are
user-defined. In all the cases presented here, this was the order used. The flapping, lead-lag and
pitch angles were defined using a set of harmonics with cosine and sine components as follows:

β(Ψ) = βo − β1s sin(Ψ)− β1c cos(Ψ)− β2s sin(2Ψ)− β2c cos(2Ψ)− ... (2.38)

δ(Ψ) = δo − δ1s sin(Ψ)− δ1c cos(Ψ)− δ2s sin(2Ψ)− δ2c cos(2Ψ)− ... (2.39)

θ(Ψ) = θo − θ1s sin(Ψ)− θ1c cos(Ψ)− θ2s sin(2Ψ)− θ2c cos(2Ψ)− ... (2.40)

where β is the flap angle, δ is the lead-lag angle and θ is the pitch angle. The way that these
values are prescribed in the frame of reference of the helicopter is detailed in Steijl et al.125 and
Leishman13 .

For wing optimisation cases, the grid was generated automatically using the ICEM-CFD scripting
language. Here, the position of the aerofoil coordinates could be modified and using this as a
reference, the entire geometry was built around it. The blocking could then be automatically
snapped to named points and curves. An example of these replay (.rpl) files can be found in
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r/R = 0.675

r/R = 0.865

Figure 2.2: Experimental data in comparison to CFD by time marching (TM) and Harmonic Balance
(HB) methods. The mean value has been removed.

Figure 2.3: C grid for aerofoils.

Appendix B.10.1. A similar, but only partly automated, method was used for BERP-like rotor
tip shapes.

2.4 Procedure for dM/dt

To simulate the aerodynamics of a section of a rotor blade, a harmonic pitching-translation motion
was used. The aerofoil is hinged at its quarter-chord point. The translation uses 1 harmonic and
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(a)

(b)

Figure 2.4: Grid for hovering rotor.

can be represented as:
x = xo + xs sin(2kt) + xc cos(2kt) (2.41)

where xo is the initial position, k is the reduced frequency and xs and xc are the coefficients of
the sine and cosine components.
Since the blade tip Mach number and the free stream Mach numbers are known, the local Mach
number is given by:

M = Mtip
r

R
+M∞ sin(Ψ) (2.42)

= Mref +M∞ sin(Ψ) (2.43)

where Ψ is the azimuth angle, given by ωt. Since µ = M∞
Mtip

,

M = Mref + µMtip sin(Ψ) (2.44)

M

Mref
= 1 + µ

R

r
sin(Ψ) (2.45)

Ψ is ωt and ω is represented as a non-dimensional value as

ω =
2kU∞
c

(2.46)

So the translational motion can be fully defined by knowing the advance ratio, the tip Mach
number, the station along the blade, the reduced frequency and the free stream Mach number.
Similarly, the angle of attack is also represented as a single harmonic motion. xc and xs can be
used to specify the amplitude of oscillation. For a rigid blade, the amplitude would be the same
throughout the span.
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2.5 Wake Visualisation and Vortex Criterion

There are several ways of visualising the wake of a rotor depending on the definition of a vortex.
In this project, the Q and λ2 criteria have been used to do this. Using the eigenvalues of the
velocity gradient tensor, ∇u, it has been proposed that a vortex core is a region with complex
eigenvalues of ∇u. Complex eigenvalues imply that the local streamline pattern is closed or spiral
in a reference frame moving with the point126 .
Q is the second invariant of ∇u. If it is positive and the pressure is lower than the ambient pres-
sure, then an eddy exists according to Hunt126 . Q represents the balance between shear strain
rate and vorticity magnitude. Q vanishes at a wall unlike vorticity strength.

Haller127 analyses a few definitions, including the Q and λ criteria. Q is defined as

Q =
1

2
[|Ω|2 − |S|2] > 0 (2.47)

and must satisfy the condition in Equation 2.47 for there to be a vortex. Here, Ω is the norm of
the vorticity tensor (or the spin tensor) and S is the strain rate i.e. Ω must exceed S.
On the other hand, the λ criterion states that

λ2(S
2 +Ω2) < 0 (2.48)

for a vortex to exist. Jeong and Hussain126 start from the idea that a pressure minimum is not
a characteristic unique to vortices and that pressure minimums that do exist in vortices can be
removed by viscous effects. Therefore, they break down the velocity gradient tensor and obtain
S and Ω and define a vortex as a region where the S2 + Ω2 has two negative eigen values. More
details on the formulation of these definitions can be found in Haller127 and in the original paper
by Jeong and Hussain126 .
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Chapter 3

Optimisation Method

As seen in Chapter 1, there has been substantial research and interest in the use of evolutionary
algorithms (EAs) in the optimisation of rotors. However, application and development in the past
has mostly occurred in the design of compressors, turbines or electric rotors, where the ratio of
the blade size to the actual rotor is quite low38,39,66 . In the case of helicopter and other rotorcraft
rotors, the more popular methods used were gradient-based since they have a lower demand for
computational effort, time and cost. Using non-gradient based methods is expected to obtain
global optima. However, the high computational effort rendered these methods impractical for
rotor optimisation.

Nevertheless, there are a number of ways that have recently been developed that could reduce the
computational effort in terms of time as well as storage and with the advances made in computing
power, the use of these methods in rotor optimisation is becoming more feasible. The use of
metamodels or surrogate models can reduce the calculation time and is expected to counteract
the extra optimisation time required with the use of non-gradient based optimisation techniques
whilst still maintaining global optimisation. Figure 3.1 is a map of the stages involved in the
optimisation. It is an aposteriori type method84 . The work described here aims to demonstrate a
framework allowing different aspects of rotors and fuselages to be aerodynamically optimised given
an existing design as a starting point. For real helicopter rotors, the initial designs would already
be near optimum and the aim is to capture the aerodynamic effects of any design changes and
adjust the variables of the design to find an optimum that will lead to better rotor performance.

3.1 Optimisation Framework

To improve the efficiency of using a non-gradient based method, the high-fidelity solver is decou-
pled from the optimisation loop. It is available to the optimiser through a database. Therefore
the first step in the process is to create a database or population of designs. It is important for
the parameters to be clearly defined as well as the boundaries of the database and the constraints.
These must be user-defined and are based on experience and the requirements of the optimisation
case. A parameterisation technique must be created if it does not already exist for the case. A
few have been developed in this project for cases where the parameterisation technique was not
clearly defined or it did not adequately describe the design for the optimisation required. The
boundaries of these parameters are then set, based on engineering expertise of the problem and
the case in question. Once these have been determined, a sampling method is used to generate a
number of design points to create the database or design space using the high-fidelity solver. For
each case, the geometry is modified and run using the high-fidelity solver.
The next step is to determine the performance parameters that capture the objectives of the op-
timisation and to then combine these into a single value that the optimiser can use to determine
the overall performance of an individual design. This again, is dependent on the experience of
the user, but is also guided by the performance of the designs in the database and validated using
other optimisation criteria such as the Pareto Front method53,86 .
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Figure 3.1: Map of the processes involved in the optimisation of rotors.

The optimiser now uses the database (which represents the design space) to determine the perfor-
mance of a design point. However, it may need to evaluate the performance of a design point that
may not exist in the database and whose solution would need to be obtained using the solver in
order to obtain its performance. This would incur a large computational cost and time as such re-
quirements tend to occur often. To overcome this, a metamodel is used to predict the performance
of unknown design points based on the performance of the existing points in the database by some
interpolation technique. The accuracy or the tolerance value of the error in these predictions is
what determines the resolution of the design parameter values in the database. The metamodel
can be validated using a small number of additional design points obtained using the high-fidelity
solver. A selection of different metamodels were tested in this work including artificial neural
networks (ANNs), kriging, polynomial fit and proper orthogonal decomposition (POD). Of these,
the former two were the most successful in terms of accuracy and efficiency. The optimiser can
then employ the predictions of the metamodel to obtain the performance of new designs quickly.
After a number of iterations, the designs are expected to converge to an optimum or a cluster of
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optimal designs. The optimiser is able to exercise constraints specified by the user. The final new
design is then validated using the high-fidelity solver.

This method was tested for different cases including:

- sections along a rotor blade,
- transonic aerofoils,
- wing planforms,
- rotors in hover,
- rotors in forward flight,
- simplified helicopter fuselages.

For the rotors, three different test cases were used:

- a simple rectangular NACA 0012 blades in hover,
- the UH60-A rotor in hover and forward flight and
- a BERP-like rotor in hover and forward flight applied to a typical fast flying, manoeuvrable rotor.

Most of the method was created using the first case, the sections along a rotor blade, and a
number of metamodels were compared as well as the outcome in comparison to the Pareto front
optima. In terms of parameterisation techniques, a parameterisation method for curves was devel-
oped using the transonic aerofoil test case. For the fuselage body, a modified version of the ROBIN
body parameterisation technique105 was employed. For the BERP-like rotor, the planform was
defined using three different curves that defined the sweep and notch geometry.
In most of the cases, the sampling method used was a full-factorial method due to the small number
of points in the database. However, for the optimisation of a multi-segment fixed wing planform,
other sampling methods were tested, and the one used was a variation of the fractional-factorial
method. Also, the grid generation was automated for this case which allowed for a much faster
way of developing the initial database since there were five design parameters. This automation
was also applied to the fuselage and BERP-like rotor cases. The Latin Hypercube Sampling (LHS)
method was also tested in the transonic aerofoil test case. For the rotor cases, the overall optima
in both flight conditions were obtained for the UH60-A and the BERP-like rotor. It was during
this time that further development of the overall optimisation method took place. The method
was also applied to a simplified fuselage body for drag reduction.

The rest of this chapter describes each stage of the optimisation in more detail and the following
chapters describe the application and results obtained for each test case.

3.2 Parameterisation Techniques

Parameterisation plays a key part in increasing the efficiency of the optimisation process. The
fewer the design variables used to define a shape (for a fixed amount of flexibility), the smaller
the initial population of high-fidelity data (since the number of dimensions of the database is
reduced), the less training time required for the metamodels, the more accurate their predictions
are given a fixed number of samples and the faster the output of the optimiser. For the cases
analysed in this work, there already exists a number of parameterisation techniques, some that
can only be applied to specific cases and some that are more generic.

For example, for the rotor section test case, NACA aerofoils were used. NACA aerofoils have
their own parameterisation technique that defines aspects such as thickness, camber, position of
maximum camber and so on using independent numerical values in their naming system. The
advantage of this method is that values are easily interpreted into the design i.e. they are intuitive
to the actual shape of the design. However, the disadvantage is that they can only be used for a
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particular class of aerofoils and cannot be generically applied to define all aerofoils. Also, for more
flexibility in the design, more design variables would be required, which multiplies the number of
initial designs.

There are other techniques that can be used to reduce the number of parameters. These tech-
niques, however, can reduce the intuitiveness of the shape representation or reduce the flexibility
of the design changed. For example, the use of splines and NURBS can be used to represent the
data quite efficiently for the amount of flexibility available, but the movement of control points
and weights is not directly intuitive to how the shape is being changed. However, this method is
very useful for the design of compressor blades for example, as these are anyway typically defined
as splines. Also, for the objectives of this project, perhaps the amount of flexibility that such
a technique provides is not required, as the aim is to fine-tune specific design parameters rather
than change a shape completely.
Another method uses equations, where the coefficients of the equations are varied to change the
design and the equations are then matched at their end points. This technique allows a lot of
flexibility since any number of equations can be used to define a shape. The matching can be
used to reduce the number of independent variables. With experience, these variables can become
some-what intuitive to the change in the shape. This is useful in planform design and it has also
been used in this project for the BERP-like tip and fuselage parameterisation.
Overall, the parameterisation method should be tailored to what best works for each case. Kul-
fan115 discusses a number of methods used to parameterise aerofoils and also discusses a new
method of parameterisation. A number of desirables of an ideal parameterisation method is also
listed, specifically for aerofoils as follows115 , although the characteristics can be applied to other
cases too:

1. Well behaved: produce smooth and realistic shapes.
2. Mathematically efficient and a numerically stable process that is fast, accurate and

consistent.
3. Require relatively few variables to represent a large enough design space to contain

optimum aerodynamic shapes for a variety of design conditions and constraints.
4. Allows specification of key design parameters such as leading edge radius, boat-tail

angle, aerofoil closure (examples specific to aerofoils).
5. Provide easy control for designing and editing the shape of a curve.
6. Intuitive - Geometry algorithm should have an intuitive and geometric interpretation.
7. Systematic and Consistent - The way of representing, creating and editing different

types of geometries must be the same.
8. Robust - The represented curve will not change its geometry under geometric transfor-

mations such as translation, rotation and affine transformations.

For most of the cases, the parameterisation was simply the use of the design variable itself.
For example, for the hovering rotor, the twist parameter was simply the linear twist angle, for
the UH60-A rotor planform optimisation, the angle of anhedral and sweep at the tip were the
parameters used. However, for the optimisation of some of the cases, such as the RAE 2822
aerofoil, the fuselage and the BERP-like rotor, specific techniques were developed and these are
described below. The choice of these methods was mainly due to simplicity specific to the case.
For example, the Chebyshev method for the transonic aerofoil allowed smooth design with specific
parameters for the design variables optimised and is described further in Section 3.2.1. The fuse-
lage parameterisation is a well established method, and with modifications (explained in Section
3.2.3), allows a single parameter to vary all other parameters for a smooth transition from one
cross-section to another. Similarly, this was the case for the BERP-like blade equations. Each
design variable required was independently defined but allowed a smooth curve to be created and
the process was automated as explained in Section 3.2.2.
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3.2.1 Curve Parameterisation

To parameterise the RAE 2822 aerofoil, a different approach was adopted as it does not have a
direct parameterisation method that is flexible enough like the NACA digit sections. The method
is based on the Chebyshev function128 , such that a curve can be fully defined with a small number
of coefficients. A function, f(x) is used to represent the aerofoil as follows:

f(x) =

N∑
k=0

αkDk (3.1)

where αk represents the coefficients, k is the coefficient number up to N, Dk is given by Tk −Tk+2

where

Dk = Tk − Tk+2, (3.2)

Tk = cos(kγ(x)), (3.3)

γ(x) = cos−1(2
√
x− 1) (3.4)

x is an array of points along the chord of the aerofoil for which the corresponding y points will be
found. The error as a function of the coefficients is

E(α) =

Np∑
n=1

(f(xn)− yn)
2 (3.5)

E(α) =

Np∑
n=1

(
N∑
k=0

αkDk(xn)− yn

)2

(3.6)

where Np is the number of co-ordinate points. To minimise E, the gradient must be equated to
0. Therefore differentiating Equation 3.6,

∇E =
∂E

∂αk
= 2

Np∑
n=1

(
N∑
k=0

αkDk(xn)− yn

)
Dk(xn) (3.7)

And the Hessian is

H =
∂2E

∂α2
k

= 2

Np∑
n=1

Dk(xn)Dk(xn) (3.8)

So, the new αk can be found as follows

E(αknew) = E(αk) +∇E(αknew − αk) +
1

2
(αknew − αk)H(αknew − αk) (3.9)

αknew = αk +H−1∇E (3.10)

where ∇E, H are the gradient and Hessian matrices. The RAE 2822 upper surface was defined
using six coefficients, the first three of which were used for the optimisation. The error for
convergence, E(αknew) was 0.0074. Modifying the coefficients has different effects on the thickness
and curvature of the aerofoil shape as shown in Figure 3.2.
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(a) (b)

Figure 3.2: (a) The original upper curve compared to the parameterised upper curve of the RAE 2822.
Error convergence was 0.0074. (b)The effect of increasing the 3 coefficient values to the upper surface curve.
The original surface’s six coefficients are α1 = 0.009149, α2 = 0.001444, α3 = −0.000325, α4 = −0.000266,
α5 = −0.000060, α6 = −0.000050.

This parameterisation technique was coded in C and can be found in Appendix B.7.

The method can also be used to parameterise a planform of a wing. For the parameterisation of
a complete 3D wing, the program in Appendix B.7.1 was used. This is a simple model of a wing
only used to demonstrate this parameterisation technique on a wing planform. Figure 3.3 shows
the changes that occur to the leading edge if its first parameterisation coefficient is changed. It
results in a change in the chord distribution of the wing. The change that occurs is not linear
along the span of the wing which is more evident when the changes are bigger.
Figure 3.4 shows the changes that occur to the leading edge of the wing when both the first
and second coefficients are changed. The 2nd coefficient has the effect of moving the maximum
chord towards the tip and also slightly modifying the maximum chord. This slight change in the
maximum chord can be compensated for using the first coefficient.
The 3rd coefficient appears to produce a ‘jump’ in the size of the chord or a ‘kink’ in the leading
edger curve at the root and the 4th coefficient does the same but in the opposite direction. Both
cases are shown in Figure 3.5. So, if both are used and modified, a smooth curve can be obtained
as shown in Figure 3.5. This occurs because the addition of two more coefficients adds an addi-
tional mode to the equation i.e. it gives an additional degree of freedom or increases its order.
Figure 3.6 shows that with more coefficients, more flexible curves can be obtained. On the other
hand, the lack of a direct and independent link between the coefficients and established aerofoil
parameters (chord, thickness, camber etc.) is a limitation of this method.
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3.2.2 BERP-like Rotor Tip Parameterisation

This parameterisation technique allows for the following design features to vary: (i) the sweep
angle, (ii) the gradient of the BERP notch, (iii) the spanwise position of the notch. A schematic
showing the variables used to modify these parameters is shown in Figure 3.7. To do this, both
the leading and trailing edges of the BERP tip are modified. Referring to Figure 3.8, the leading
edge is defined by three equations and the trailing edge by two.
For the leading edge, the first part is defined by a sigmoid curve that represents the notch region
(Figure 3.8(a)). The sigmoid equation is given as:

y =
∆y

1 + e−g(x−xo+∆x/2)
(3.11)

where ∆y is the notch height i.e. the notch length in the chord-wise direction, ∆x is the total
width of the notch i.e. the notch length in the span-wise direction, g is the gradient of the notch
and xo is where the notch starts from. The x coordinate of the notch maximum is defined by the
user and is kept constant except when the notch position needs to be varied. The g value is varied
to change the gradient.

The second part is used to define the sweep (Figure 3.8(b)). It represents the part of the leading
edge after the notch as a parabola:

y = −a(x− x1)
2 +∆y + yadd (3.12)

where a is the gradient of the parabola used to alter the sweep, x1 corresponds to the notch end
and the beginning of sweep, ∆y is the notch height and yadd is an additional y offset value to
ensure that the y ordinate of the parabola starts at the same position as the notch height. The
value of yadd is computed automatically, once x1 and ∆y are known.

The third part describes the delta tip which joins to the trailing edge (Figure 3.8(c)). It is
represented as a polynomial of order 2.5:

y = −b(x+ c)2.5 −∆y′ (3.13)

where b is the gradient of the delta tip, c is the centre where the gradient of the curve becomes
0 (used to match the gradient of the curve to the previous parabola) and ∆y′ is the additional y
displacement required to match the curve to the previous parabolic curve. See Figure 3.8.

The two parameters, g and a can be changed independently and the rest of the parameters
appearing in the equations are automatically adjusted so that the curves match at the point and
the gradient level. These are the values of ∆x, ∆y′, c. The initial x co-ordinate, xo is modified
with the gradient of the parabola so that the tip point occurs at the same place for a required
sweep. This is why for different notch positions, different sweep parameters are used to obtain the
same sweep distribution. The gradient b is dependent on the trailing edge curve as well. Therefore
the trailing edge must be determined first. The gradient of the trailing edge curve can also be
modified independently of the sweep gradient of the leading edge. This allows the tip point of the
blade to move in the y-direction which inherently modifies the chord distribution as well.

The trailing edge is defined first by a linear curve that has the same gradient as the leading
edge sweep parabola or a scaled value of it, if required, and then by a polynomial of order 3.5
that is matched to the point and gradient of the sweep curve that comes before. The trailing edge
curve must be specified before hand, as the tip point is required to find the gradient of the delta
polynomial so that the leading and trailing edge curves meet at a single point. So the first curve
for the trailing edge is given as

y = −a(x− x1) + ∆y + yaddTE
(3.14)
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And the latter part of the trailing edge is given by

y = −bTE(x+ cTE)
3.5 −∆y′TE (3.15)

where all the values and constants correspond to the trailing edge parameters except for the sweep
parameter, a which is exactly the same as the leading edge sweep. The gradient of the trailing
edge can be increased or decreased relative to the leading edge sweep gradient by scaling it with
a factor. Figure 10.6 show the examples used to build the design space for the optimisation.

Figure 3.7: BERP-like tip Schematic.

Figure 3.8: (a) Notch gradient, (b) sweep and (c) delta parameter equation definitions for the BERP
planform.
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3.2.3 Fuselage Parameterisation

Figure 3.9: ROBIN fuselage with additional parts.

There are two parts to the parameterisation of the fuselage. First the parameters must be
found to define the shape of the original fuselage design. The second part is to then determine
which parameters to optimise and how the rest of the parameters are associated with the selected
parameters. The method described here is with reference to the JMRTS fuselage developed
by JAXA107 . The parameterisation method is based on the super-ellipse equations used on the
ROBIN body105 . These equations are as follows:(

x+ xo
A

)n

+

(
y + yo
B

)m

= C (3.16)

The simplest form of this equation and one that is commonly known, is that of a circle where m
= n = 2, A = B = 1, C is the radius squared and xo, yo is the coordinate of the centre. i.e.

(x− xo)
2 + (y − yo)

2 = r2 (3.17)

For this parameterisation, the longitudinal axis of the fuselage is always specified on the x-axis.
The fuselage is then prescribed as a number of cross-sections along this axis, called stations (see
Figure 3.9. Therefore, the varying co-ordinates of these stations are the y and z co-ordinates. The
y and z coordinates at each station are obtained from the centre of the station (Y, Z), its height
and width (H, W) and the curvature of the section at its corners (N). This latter parameter has
the ability to make the cross-section vary from a diamond shape, through to a circle and to the
other extreme of a square. These five parameters are defined as a function of x i.e. they are varied
along the x-axis using the super-ellipse equations so that at each station (x coordinate), there is a
specific, H, W, Y, Z and N from which its y and z coordinates can be obtained. For generalisation
purposes, let the five parameter be called y for now. Then if Equation 3.16 is rearranged so that
y is given in terms of x, it becomes:

y = B

[
C −

(
x+ xo
A

)n]1/m
− yo (3.18)

To represent y in polar co-ordinate form, the following must be true,

y + yo = rcosϕ (3.19)

x+ xo = rsinϕ (3.20)

where r is the radius of the polar circle. Substituting these into Equation 3.18,

(y + yo)
m = Bm

[
C −

(
x+ xo
A

)n]
(3.21)

(rcosϕ)m = Bm

[
C −

(
rsinϕ

A

)n]
(3.22)
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which after some re-arrangement becomes,

rmAncosmϕ+ rnBmsinnϕ = AnBmC (3.23)

For this to be in polar co-ordinate form, m = n and C = 1. Therefore,

rn (Bncosnϕ+Ansinnϕ) = AnBn (3.24)

Therefore,

r =

[
AnBn

Bncosnϕ+Ansinnϕ

]1/n
(3.25)

where now, A = radius vertically = H/2, B is the radius horizontally = W/2 and n is the power
of the ellipse which is N, the curvature at the corners. Therefore r and the y and z coordinates
are given by,

r =

[ (
H
2

W
2

)N(
W
2 cosϕ

)N
+
(
H
2 sinϕ

)N
]1/N

(3.26)

y = rsinϕ+ yo (3.27)

z = rcosϕ+ zo (3.28)

In this way, a number of parts can be obtained for a helicopter fuselage such as the main body,
doghouse, sponsons, fin and tail plane and so on. Figure 3.11 shows an example of this on a
ROBIN fuselage. The points are obtained for one side and then mirrored in the vertical plane.
To do this, a systematic method has been developed. Figure 3.9 shows the terminology used to
describe the parameters of a fuselage using the ROBIN body with sponsons added. The hierarchy
is shown in Figure 3.10.
The first division in the hierarchy is the part e.g. the main body, the dog house or pylon,

Segment

Station

Points

Part

Fuselage

Figure 3.10: Fuselage Parameterisation hierarchy.

sponson 1 etc. Each of these parts is defined by segments. A segment has a set of super-ellipse
coefficients that are used over that segment. In Figure 3.9, the main body is made up of four
segments. Each segment consists of a number of stations, each with its own x co-ordinate and
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finally, each station is made up of a number of points with y and z co-ordinates. This method
was used for the parameterisation and optimisation of the JMRTS fuselage in Chapter 9. An
additional parameter, Nb was added so that the curvature on the bottom surface can be different
to the upper surface. The code simply reads an extra line of coefficients and applies it to when ϕ
corresponds to the lower part of the geometry. Figure 3.12 summarises the process of generating
a fuselage. More details can be found in the HMB Technical Note129 . The related programs can
be found in Appendix B.8.1 and B.8.2 and an example file can be seen in Appendix B.8.3 and
B.8.4.

Figure 3.11: Example of parts of a fuselage created using the parameterisation method.

PROCESS OUTPUTINPUT

parametric_fuselage.f
parametric_fuselage_out1.dat
parametric_fuselage_out2.dat

icemscript1.rpl
icemscript2.rpl

icemscript1.rpl

icemscript2.rpl robin_scriptpart2.tin − pylon

robin_scriptpart1.tin − main body

STEP 2 − Create geometry files

STEP 1 − Create output files

STEP 3 − Create farfield and associate blocking file

execute

ICEMCFD

ICEMCFD
−−− merge −−−

all parts

−−− assosciate −−−

icemscript1_2_ffgeom.blk

robin_scriptpart1_2_ff.tin
.topo and .geo
files

.grd file

HMB solver

ICEMCFD

Multibock
icemscript_ffgeom.rpl

hexa2eros

parametric_fuselage2.dat
parametric_fuselage1.dat
2 parts:

Figure 3.12: Schematic of the mesh generation process.
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3.3 Sampling the Design Space

There are a number of ways that the database can be populated130 . In this case three types of
methods have been used dependent on the size of the optimisation case: the full factorial, frac-
tional factorial and Latin hypercube sampling (LHS). These methods were used loosely and not
in their strictest sense in order to achieve more accurate predictions from the metamodels.

The full factorial method analyses all the other variables for each design variable. Therefore
it has the highest number of design points. The fractional factorial method uses every other point
of the full factorial method i.e. it is a sparser version of the full factorial database. For this
project, the points selected using this method were such that there was a higher concentration
where the optimum was heading towards. This was found by repeating the optimisation a number
of times with additional points in the database each time. This is also called adaptive sampling
or updating43 .

The LHS method attempts to use a design parameter value only once or as few times as pos-
sible in populating the database. So for example, if there are two parameters with equal number
of design parameters, the LHS will select the design points along the diagonal line (or hyperplane
for higher number of parameters) of the database. If there are more variables for one design
parameter than another, then a random additional point is created for the component that has
fewer variables. Now in the cases in the work where the LHS was used, in addition to the LHS
points, points along the boundaries of the database were also included. This is why it was stated
that some of the sampling methods used were not used in their strictest sense for various reasons
as will be explained for each case individually.

The more points that exist in the database, the more accurate the metamodel predictions will be.
This means that the full factorial method will always produce the most accurate results. How-
ever, for cases where the computation time and cost of obtaining the performance of each design
point is high, it is important to reduce the number of such calculations by selecting as few points
as possible as in the case of fractional factorial and LHS methods. These methods can produce
good results if the points are selected carefully and if some additional points on the boundary
of the database is included. Cameron et al.62 used an automated adaptive sampling method to
optimise laminar flow aerofoils. In his method, the Pareto front was updated after a set number
of generations and the mean square error of the kriging metamodel was used to calculate the
probability that a new sample added at any given point would dominate members of the existing
Pareto front. This was automated in the genetic algorithm used, NSGAII62 and repeated until a
set sample size was obtained. Forrester et al.131 also describe an optimal LHS method based on
adaptive sampling. In this project, however, since the case is larger than an aerofoil, the process
was carried out manually for more control over the selection points.

3.4 Objective Function

The objective function is a key part that determines the outcome of the optimisation. Ideally it
should be4 :

1. Complete so that all aspects of the decision problem are presented
2. Operational i.e. they can be used in a meaningful manner
3. Decomposable if disaggregation of the function is required
4. Non-redundant so that no aspect of the decision is considered twice
5. Minimal so that the function considers the minimum required for a decision

In line with these properties, the objective function is therefore presented as the summation of
weighted components that quantify the objectives. However, the actual values of each component
that makes up the objective function may vary by orders of magnitude, meaning that the objective
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function would be biased based on the range of values, rather than the sensitivity of the value
to performance. Therefore, each performance parameter is scaled with the corresponding value
of a reference design which is usually the original design. So a generic objective function can be
presented as:

OFV =

n∑
i=0

wi
Pi

P r
i

+ C (3.29)

where OFV is the objective function value, wi is the weight assigned to the ith performance
parameter, Pi is the ith performance parameter value for the design being evaluated, P r

i is the
performance parameter value for the reference design and C is a constant value added so that if

the reference design was the design being analysed, the OFV would be 0 i.e. C = −
n∑

i=0

wi.

The weights for the function are guided by the initial CFD data. Say for example, there are two
performance parameters, P1 and P2, for an optimisation problem and the objective is primarily
to improve P1 and secondarily to improve P2. For each design point a ratio can be found between
P1 and P2. Assume the average of all these ratios is 1:1.5 for P1:P2. Then the limiting weight to
weigh P1 more than P2 in the objective function is 1.5/(1+1.5) = 0.6 or w1 = P2/(P1+P2), i.e. on
average, the weight of P1 must be ≥ 0.6. However, this should only be used as a guidance value,
as individually, the deviation from this ratio can be large. This method is a simple way to obtain
some guidance in determining the weights, but its complexity can be increased for example, with
the use of standard deviation and other attributes.

The objective function method differs from what is known as the Pareto method of optimisa-
tion. The Pareto method tries to find the best compromise in performance for the designs, i.e. in
the Pareto subset, an increase in one performance parameter will result in a decrease in another.
Therefore it creates a boundary or front of design points. The objective function method however,
tends to concentrate the optimum designs to a cluster in the design space as opposed to spreading
the optimum design along a front i.e. it selects designs in a region of the Pareto front. In this
project, the Pareto front was found using the GA where the elite members of the population were
the ones that fulfil the Pareto conditions, as opposed to a selection of the fittest individuals for the
weighted method. In this work, both methods were used and the results show that the selected
optima using the weights method were also members of the Pareto front. Both the Objective
Function and Pareto Front GAs can be found in Appendix B.6.1 and B.6.3.

3.5 Metamodels

The cost of running the high-fidelity solver to analyse every new design created by the optimiser
can be quite high in terms of computational effort and time. To avoid this, a lower fidelity
approximation of the performance parameters based on the high fidelity data in the database
can be used until the final result is obtained. This allows the optimiser to access the accuracy
that comes with the high-fidelity model with the efficiency of the low-fidelity model or metamodel
(model of a model). Four metamodels are described here.

3.5.1 Artificial Neural Networks

An ANN interpolates based on patterns obtained from a set of data, similar to how the biological
brain learns132 . Figure 3.13 is a schematic of the structure of a multilayer feed-forward ANN. It
consists of a number of neurons connected to every other neuron in the next layer, from input
to output6 . The layers between the input and output are known as hidden layers and make up
what is known as the perceptron. It is here that ‘learning’ takes place. Each neuron is associated
with a weight and an activation function. The weight determines how much influence a neuron
has on the output and the activation function keeps the values within bounds and gives the ANN
the ability to be differentiable so that error corrections can be made using, for example as in this
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case, a gradient descent method. The activation case used most commonly and in all the cases
presented here is the sigmoidal function132 generically shown in Equation 3.30 and in Figure 3.14,

y = 1/(1 + e−x) (3.30)

Figure 3.13: An example of a neural network trained to receive inputs such as camber and thickness to
obtain the lift coefficient (adapted from Spentzos6).

Figure 3.14: Typical sigmoid function (y = 1/(1 + e−x) from x=-10 to 10.

There are two phases for ANNs: training phase and predicting mode. In the training phase,
a training data set is available to the ANN, that is, both input and output. The weights of the
neurons are randomly chosen and the ANN makes a prediction. The error between this predicted
output and the target output is then fed-back through the layers and the weights are adjusted
accordingly. The full set of data, known as an epoch, is fed in repeatedly and the error back-
propagated until the error converges to a pre-set value. In this work, this is done via a conjugate
gradient descent method.

For example, let’s assume that there are n initial inputs of the ANN (i=1,2,...,n). If the hid-
den layers have J nodes each, then for the first layer, these are all connected to the n inputs
through neurons with weights wij (i=1,2,...,n, j=1,2,...,J). Each input is first weighted with the
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weight for that input and that neuron:

uj =

n∑
i=0

xi × wij , i = 1, 2, ..., n and j = 1, 2, ..., J (3.31)

This is then passed through the activation function to get the output from that neuron:

yj =
1

1 + e−uj
, j = 1, 2, ..., J (3.32)

This is repeated at each node at every hidden layer until the final output layer is reached for
each pattern. The optimum number of hidden layers depends on the complexity of the problem.
If there are more dependencies between input parameters, then more layers are required to deal
with these inter-dependencies i.e. for the ANN to be ‘smarter’. In general, increasing the number
of layers makes an ANN smarter and increasing the number of neurons per layer makes an ANN
more accurate6 . Also, it is critical that during every epoch, the patterns are introduced at a
random order. This ensures faster learning, avoids ‘memorising’ and increases the capability of
the ANN to tackle situations it has not been trained for6 .

In the training phase, the difference between the target output and the predicted output (the
error value), is used to determine the changes in the weights of the neurons through a back-
propagation technique based on chain differentiation. For the ANN used in this project, the error
was corrected after all patterns had been through the system, i.e. one epoch rather than after
each pattern. The mean squared error can be found as

E =
K∑
i=1

|zi − ti| or as
1

2

K∑
i=1

(zi − ti)
2 (3.33)

where K is the total number of outputs, ti is the ith target output, zi is the ith output obtained
from the final output layer. The aim now is to find the output that minimises E. The method
used is the gradient-descent with momentum (GDM) method6 which works as follows.

The error change due to a change in the output is found by differentiating Eqn.3.33 and is given
by

∂E

∂zi
= zi − ti (3.34)

Therefore, the change in the error due to the change in the input to the node that created zi is

∂E

∂uj
=
∂E

∂zi

∂zi
∂uj

= (zi − ti)(zi(1− zi)) (3.35)

where ∂zi/∂uj is found by differentiating Eqn.3.32 where zi is the equivalent of yj for the output
layer. Similarly, the change in E due to a change in the hidden layer node input (which is similar
to x in Eqn. 3.32 is

∂E

∂xj
=

∂E

∂zi

∂zi
∂uj

∂uj
∂xj

(3.36)

= wij(zi − ti)(zi(1− zi)) (3.37)

This is repeated all the way to the first input and the total error calculated. Then the weights are
changed by a small amount in proportion to the error calculated and the input to each neuron.
So wij can be updated as:

∆wij = η
∂E

∂xj
+ α∆wij (3.38)

wij = wij +∆wij (3.39)
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In Eqn.3.39, α is termed the learning momentum as it scales up the change in the weight at each
iteration (it is multiplied by the previous weight change), and η is termed the learning rate as it
scales up the movement along the gradient. The higher these values are, the lower the training
time required. However, too high values can cause instability and a failure to converge. To further
improve the speed of training the ANN, the ANN is allowed to skip a number of steps periodically
before the weights are modified as a ratio of the last written weights. A further improvement is
the use of an adaptive learning rate. This means that the learning rate changes according to the
change or gradient in error for each epoch or set of epochs which allows the training to occur
faster when the ANN is learning quickly and slower if it is learning slowly. The learning rate, η, is
multiplied by a fraction less than 1 if the ratio of the present error to the previous error falls above
a certain value and greater than 1 if it falls below a certain value. In this way, η is constantly
adapting to the ANN’s learning ability.

Another important parameter to consider in training the ANN is the error convergence. This
value must not be smaller than the error resolution of the data points used for training. For
example, if the CFD data is accurate to within 0.01 of its value, then the ANN training must not
force the difference between the predicted and target value to be less than 0.01. If so, the ANN
prediction trends bend and flex to try and pass through each point inside that tolerance resulting
in over-fitting and large training times. Figure 3.15 shows a comparison of ANN predictions when
trained to different convergence values for the rotor section test case. This case is explained in
more detail in Chapter 5. However, for the purpose of demonstrating the effects of the ANN
parameters, it is explained briefly here. The aim was to optimise the camber and thickness values
of a NACA 5-digit rotor sections for a blade in forward flight using the moment, lift and drag
parameters. These loads are compared against the camber parameter here. As can be seen, the
best compromise is a convergence value of about 0.01 in that the trend is captured. A smaller
convergence value over-fits the data as it falls within the error tolerance of the training data itself.
The length of time for training required increased exponentially with smaller convergence values.
The smallest convergence took about 25 times longer than the intermediate which took approx-
imately 6 times longer than the biggest convergence value. Also, using a fixed η took the ANN
about 1.25 times longer to train.
Using the adaptive η results in a different weights file, but the differences in the overall predictions
are negligible as shown in Figure 3.15.

The number of hidden layers (hl) and neurons (n) required to get accurate predictions is de-
termined by the physics of the test case, the number of inputs and outputs6 . It was found that
if more inputs and output variables are used, then a ‘smarter’ ANN is required i.e. one which
allows more degrees of freedom, therefore an increased number of layers and neurons are required.
Having too many layers for a small number of inputs and outputs can cause over-fitting of the
data. Figure 3.16 shows the predictions with different numbers of layers and neurons for a number
of outputs belonging to the rotor section test case. The Cl and Cd curves show that when the
output variables are increased, an increase in the number of layers or neurons has approximately
the same accuracy as a single output prediction with less layers or neurons. The green curve is
the most inaccurate because it has a large number of outputs and the least number of neurons
and hidden layers. Increasing the number of neurons increases the accuracy of the predictions.
This is seen more clearly in Figure 3.16(c) for the average Cm. For a single output, the ANN
with 2 layers and 21 neurons has a more accurate curve fit than the ANN with 2 layers and 15
neurons. For the 7 output case for the same output in Figure 3.16(d), a higher degree of freedom
is required and hence an increase in the number of layers is required to get a smooth curve fit
through the data similar to the single output prediction. Increasing the number of neurons does
not improve the prediction accuracy.

This shows the importance in validating the metamodel before using it in the optimiser. In
this project, the metamodel is always validated with additional high-fidelity data unknown to the
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Figure 3.15: Error convergence comparison for an example ANN. This is for the optimisation of a NACA
5-digit rotor section on a blade in forward flight. The x-axis is the camber value of the section and the
y-axis is the peak-to-peak moment of the section over a full revolution. The various curves and the legend
correspond to the training of the ANN to converge at different error values as well as a comparison with
the ANN that had an adaptive learning rate. The black dots represent the data used for training and the
pink dots are the accurate CFD data not used in the training set. i.e. validation data. The full test case
analysis can be found in Chapter 5.

metamodel. Once the ANN is trained, it can then be used to accurately predict the output for
any input within the limits trained with.

The ANN was coded in fortran and can be found in Appendices B.3.2 - B.3.5. It is a modification
of the work done by Spentzos6 . For large values along the x-axis of the activation function i.e.
for large input values, the resolution of the output is not good (see Figure 3.14). Hence, for more
accurate results, the inputs are normalised to between 0 and 1 where the resolution is much better.
To do this, the program norma.f (see B.3.2 in Appendix B) is used. If input data that is not
within the range of the original data is required for the prediction stage (i.e. extrapolated of data),
then these inputs must be included in the file to be normalised, so that all data is always between
0 and 1. These inputs for which the outputs are unknown, can be deleted from the data file in
the training stage and re-introduced in the prediction stage. However, it has been found that
the ANN is highly inaccurate in predicting extrapolated data, therefore it is suggested that the
outputs of the input parameters on the boundaries of the design space are always known values.
Once the inputs have been normalised, the normalised data are used to train the ANN using the
program nn.f (see B.3.3 in Appendix B). Training can continue until a set epoch value or until
the values converge to a pre-defined error value between the predicted and target results. In this
case, training is always carried out until convergence to a specified error margin.

After training the ANN, the final weights are contained in a file. This file is used to predict
the output for a normalised set of inputs using the program predict.f (see Appendix B.3.4) and
then the predictions are denormalised using the denorma.f program (see Appendix B.3.5) to
obtain the predicted results.
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(a) (b)

(c) (d)

Figure 3.16: Comparison of ANN prediction for scaled average Cl, Cd and Cm with different numbers of
outputs (out), hidden layers (hl) and neurons (n). The number of inputs is constant at two. This is for the
optimisation of a NACA 5-digit rotor section on a blade in forward flight. The x-axis is the camber value
of the section and the y-axis is the average moment, lift and drag of the section over a full revolution. The
various curves and the legend correspond to the training of the ANN with different numbers of neurons and
layer. The black dots represent the data used for training and the cyan dots are the accurate CFD data
not used in the training set. i.e. validation data. The full test case analysis can be found in Chapter 5.
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3.5.2 Polynomial Fit

Given a number of points, the aim is to fit a polynomial curve through them or create a polynomial
equation that satisfies all the points given. Hence, the more known points there are, the more
reliable the predictions are and the greater the degree of the polynomial can be. For example, if
only two points existed, only a straight line could be used to predict data that falls anywhere on
the plane. If three points were known, then a quadratic curve could be fitted through the points
and hence the predictions are more accurate and so on. The maximum degree of the polynomial
is dependent on the number of points available, the limit being due to the number of unknowns
in a set of simultaneous equations. If (x1,y1) (x2,y2) and (x3,y3) are three points on a plane and
a quadratic polynomial is to be fitted through these points, then,

Ax21 +Bx1 + C = y1 (3.40)

Ax22 +Bx2 + C = y2 (3.41)

Ax23 +Bx3 + C = y3 (3.42)

Using Gaussian elimination or LU decomposition or any other such technique to solve simultane-
ous equations, the coefficients A, B and C can be found.
It is possible to use a polynomial to fit nonlinear data. However, if the data do not follow a
polynomial trend, having too high a degree of polynomial can result in over-fitting the curve.
Therefore, normally, the degree of polynomial is limited to 6 or less133 .

Figure 3.17 shows a comparison of a polynomial fit for the same data used to analyse the ANN
in Section 3.5.1. With a polynomial of order 4, the data are not as accurate as the ANN, but
with an order of 10, the polynomial fits closer, although it is less smooth and still not quite as
accurate. The advantage of the polynomial technique is that it does not require training time as
the ANN does. However, for the sake of accuracy, as it is not likely that more than 4 or 5 known
points will exist for a variable, which limits the order of the polynomial, the ANN will be selected
in preference to this technique.
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Figure 3.17: Comparison of ANN prediction accuracy with polynomial of order 4 and 10 for ∆Cm. 3
hidden layers (hl) and 15 neurons (n) were used for the ANN. Number of inputs is kept constant at 2. The
solver training and prediction comparison is included.

The polynomial fit method was coded with MATLAB and can be found in Appendix B.5. The
method can be very effective if a law exists for the variation of the output. For example if Cd

versus Cl follows a parabola, then polynomial fit can be used.

3.5.3 Kriging

The kriging approximation method is a more complex version of the polynomial fit method. It
uses sample data points to build a model that can be used to predict the output or performance of
interpolated design points by fitting a low-order polynomial through the data points but allowing
the predictions along these polynomials to deviate based on a correlation model such as a Gaussian
distribution of all the existing points. The Gaussian distribution’s characteristics are based on the
correlation between the sample points i.e. on their proximity to each other. This allows the kriging
parameters to change with the prediction point giving it more flexibility while still maintaining
accuracy41 . Assume the output or performance, P is represented as:

P (x, y) = f(x, y) + Z(x, y) (3.43)

where f(x, y) is the polynomial and Z(x, y) is the correlation model that is based on the Gaussian
distribution for all the cases in this project. The correlation between all the sample points with
each other and the correlation between the required point and all the points is found as the
Gaussian distribution of the distances between all these points with a ‘roughness’ parameter, θ
for each design parameter. So, Z is actually a function of θ as well as x and y i.e. Z(θ, x, y). All
the parameters and values are normalised and then denormalised at the end so that the mean of
Z(x, y) is 0. Also, the data are normalised in a scalar way over each parameter between 0 and 1.
So the correlation between P and F can be described as:

Fβ ≈ P (3.44)
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where β can be approximated as:

β =
(
F TZ−1F

)−1
F TZ−1P (3.45)

and the variance can be estimated as:

σ2 =
1

m
(P − Fβ)T Z−1 (P − Fβ) (3.46)

where m is the number of initial data points. The matrix Z, and β and σ2 depend on θ. θ is
effectively a width parameter that determines how far the influence of a data point extends43 . It
is similar to a weight put on each input depending on its influence on the output. A low value
means there is a high correlation and the influence of each point affects many other points. A
large value means there is less correlation and hence it has less influence on another point. In this
way, θ can also be used to find out the design parameters that have the most influence on the
performance parameters.
The optimum value of θ is defined as the maximum likelihood estimator, the maximiser of

−1

2

(
mlnσ2 + ln |Z|

)
(3.47)

where |Z| is the determinant of Z41 . This value is found iteratively41 , although for small cases
with few inputs, a good estimate can be made by comparing predictions with the original data.
Since this is the case for this project and to quicken the kriging process, this process was used to
obtain θ.
The Gaussian correlation function, Z(x, y) can be found as the covariance matrix:

Cov(i, j) = exp
(
−
∑[

θx(xi − xj)
2 + θy(yi − yj)

2
])

(3.48)

or exp
(
−
∑[

d2
])

(3.49)

Cov(i, r) = exp
(
−
∑[

θx(xi − xr)
2 + θy(yi − yr)

2
])

(3.50)

where i and j are the sample points and r is the required points, x and y are the design parameters
and d is the distance between the points, which in this case is squared. Actually, the value to
which it is raised can be between 0 and 2 and represents the differentiability of the response
function with respect to the design parameters. Values close to 0 indicate that the function is not
differentiable or smooth and closer to 2 is for differentiable functions41 .
The weight matrix, λ, that contains all the weights to obtain the required point from each point
in the design space, can then be found as

λ = Cov(i, j)−1Cov(i, r) (3.51)

Then the prediction can be made as the summation of each appropriately weighted objective
function value

P̂r =

n∑
i=0

λi × Pi(x, y) (3.52)

More details can be found in the references41,134 . For the polynomial fit, up to order two poly-
nomials are common. In some cases, constant values are sufficient, such as the mean value of all
the data.

Figure 3.18 compares the data in Figure 3.17 as predicted by the polynomial, ANN and kriging
metamodels. The kriging method tends to smooth the surface out more than the ANN, although
this can be dealt with by tweaking the parameters. Nevertheless, the ANN and the kriging both
seem to perform consistently well across all the cases with little change in parameters, slightly
more so for the ANN than the kriging method. The advantage of the kriging is that training
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time is not required. Both methods are capable of making reasonably accurate predictions. An
example of the fortran kriging program is included in Appendix B.4.1.

Figure 3.18: Comparison of ANN prediction accuracy with polynomial of order 10 and kriging for ∆Cm. 3
hidden layers (hl) and 15 neurons (n) were used for the ANN. Number of inputs is kept constant at 2. The
solver training and prediction comparison is included. ON the right, the blue surface is the ANN prediction
and the red is the kriging prediction.

3.5.4 Proper Orthogonal Decomposition (POD)

This is a mathematical technique that is used in many applications to compress data135 . An anal-
ogy can be made with the Taylor series or the Fourier transform, where the part of the infinite
equation that does not add significantly to the data is neglected. In the case of fluid dynamics,
the flow is decomposed into modes. The modes that make major changes to the flow are retained
and the rest are ignored.

The principle behind POD is that any function can be written as a linear combination of a finite
set of functions, called basic functions. There are a number of different ways of performing this
decomposition two of which are the Karhunen-Loève Decomposition (KLD) and Singular Value
Decomposition (SVD) methods. The SVD method can be described as follows:
Let A be the data matrix, an m× n matrix where m > n. The SVD equation of A is:

A = USV T (3.53)

where U (whose columns are called left singular vectors - output basis vectors for A) is an m×mo
matrix, S (whose diagonal elements are called singular values ordered in decreasing value order)
is a mo ×mo and V T (whose rows are called the right singular vectors - input basis vectors for
A) is mo× n matrix. More details can be found in Lawson135 .

The Karhunen-Loève expansion is usually used to represent stochastic processes (i.e. a family
of random variables with respect to time) as a combination of random deterministic time func-
tions. The method of snapshots for the KLD method was introduced by Sirovich136 . A snapshot
is a set of data at certain spatial points at one particular time. So, the data matrix consists of two
dimensions, the first being the spatial grid point data and the second being time. The snapshots
are taken at regular intervals over the period of flow. In the KLD method, any snapshot can be
expanded using eigen functions. Using velocity as an example,

u(x, t) = um(x) +

Nt∑
i=1

ai(t)Φi(x) (3.54)
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where um(x) is the mean velocity, Φi(x) is the spatial KLD mode and ai(t) is the temporal KLD
eigen function. To generate this decomposition, the first step is to calculate the covariance of the
input data matrix,

B = (1/N)(ATA) (3.55)

The resulting matrix is symmetric and has dimensions of N × N . The eigenvalues and eigen
vectors of the covariance matrix are then computed. The matrix containing the eigen vectors are
temporal KLD eigen functions ai(t). The original data matrix is then multiplied by the eigen
vector to produce Φi(x). The eigenvalues represent the amount of energy stored in the mode i.e.
its contribution to the overall flow.
Typically enough modes are stored so that 99% of the energy is captured:

m∑
n=1

λn/

∞∑
n=1

λn > 0.99 (3.56)

Generally the KLD mode is faster and requires fewer modes to reconstruct the flow. Also, it is
less sensitive to load imbalance and hence larger block sizes can be used. Even with increased
number of snapshots i.e. larger matrices, the KLD execution time increases slower than the SVD
method. The number of snapshots has a larger effect on execution time than the number of
spatial point data. In addition, a method was found for compressing data as it is obtained for
each time step from the solver, using the SVD method. No such method was found for the KLD135 .

The POD described is not only used as a compression tool to reduce the size of data stored,
but can also be used to predict missing data for required inputs, what has come to be commonly
known as ‘gappy’ data55 . From the theory shown, the model is reconstructed using the eigen
functions that carry the highest energy. In this case, the aim is to be able to predict the loads of
aerofoils that were not solved for using CFD. There are two methods of doing this: the POD/-
Galerkin method and the POD/interpolation method. The POD/interpolation method is more
suitable with data that does not have much correlation137 .

The field data is reproduced as follows:

U =

p∑
i=1

αiΦ
i (3.57)

where U is the data that exists, p is the number of modes used for reconstruction, αi is the ith

temporal POD coefficient and Φi is the ith spatial POD basis vector.

The file containing the original data set (gappy file), U, and the required file are usually or-
ganised as the value at each spatial point down i.e. each row represents the value of U at a
different point in space, and for each snapshot or time step across i.e. each column represents a
time step so that you have a matrix of nspace × nsnapshots. Using for example, the ∆Cl values for
the aerofoils, the thickness values could replace the spatial data points and the camber values as
the snapshots. So for example, the case described in the ANN section (Section 3.5.1) earlier is
used where ∆Cl is the data matrix for A and it would look like this:

0 13 23 33 43
9 0.977276 1.033416 3.000609 5.007123 7.083982
12 1.000000 0.642496 2.269264 3.946593 5.717450
15 1.137035 0.074969 1.296992 2.585237 4.025577
18 1.407559 0.693965 0.077982 0.971107 2.044992

First, a mask vector, nk must be created which describes where the data is missing as follows:

nki = 0 if Uk
i is missing or incorrect (3.58)

nki = 1 if Uk
i is known and available (3.59)
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where Uk
i is the ith element of the vector Uk. Let g be the solution vector that has some elements

missing. Then,

g̃ =

p∑
i=1

biΦ
i (3.60)

where g̃ is the repaired vector. The error between the data that exists in both the solution with
the missing data and the repaired vector is given by E,

E = g − g̃ (3.61)

Only the existing data are compared using the mask vector to mask out the new inputs. The
coefficient bi is varied so as to reduce the error. b can be found by differentiating Equation 3.61
with respect to b such that

Mb = f (3.62)

where Mi,j = (Φi,Φj) and f = (g,Φi). Solving this for b, g can be obtained and the missing data
inserted into the original data matrix54 .

Now, if a number of snapshots are missing i.e. entire capsules of data, then the first step is
to fill in the missing data with random values or average values for the required points. Use this
data matrix to obtain the POD basic vectors. As described above, use these matrices to obtain
a corrected data matrix from Equation 3.60. The values from these intermediate repaired data
are now used to reconstruct the missing data for the next iteration. This is continued until the
algorithm converges or the maximum number of iterations is reached. For a more in-depth expla-
nation of the KLD method, see the work done by Ly and Tran138 .
This method however, is reliant on the availability of data in as many positions as possible and
requires at least two elements of data in each snapshot. It also does not perform well with few
data points. With smaller files, within each snapshot, if in addition to the required point, another
point is missing, the accuracy of the prediction is highly compromised. For example, take the
load, average Cm at a thickness of 12% and camber of 23 for the rotor optimisation case described
in Section 3.5.1. Compare the data shown below. The difference is more than double the actual
value. This large effect is because the initial matrix is small and so every point missing represents
a large portion of the initial matrix.
For the matrix shown earlier predictions were made for the aerofoil of camber 33, thickness 12

Prediction method Avg Cm

CFD 1.296992

1 point missing 1.28567

2 points missing 3.47769

and 18 using an ANN and the gappy POD method and compared. The comparison is shown 3.19
and as can be seen, the POD does not perform well with sparse data. Even with a greater number
of points such as 20 variables for each design parameter, which is far above what is practically
viable with high-fidelity CFD software, the ANN has superior performance as demonstrated here.
The ANN predictions of 21 points of average Cm were used to show the POD’s dependency on
amount of data available to it, shown in Figure 3.20. With one point missing, the error is small,
but as the number of missing points increases, the error grows. Also, the position of the missing
data plays a role. If there are many points missing in one location as opposed to points spread
over the full domain, the error can be larger as shown in Figure 3.20. This is one of the main
advantages that the ANN has over the POD interpolation method in that even though ANNs
require more time for training, the POD would require more points for higher accuracy which
reduces its efficiency.
The gappy POD method was originally used to reconstruct images that were ‘damaged’ or un-
clear such as face recognition, satellite maps and CFD flow field data. In these cases, more data is
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Figure 3.19: Comparison of ANN prediction and POD prediction trained with the original database of 20
CFD points less the two that are predicted.

available and at a comparatively smaller resolution. Therefore, the POD interpolation technique
works well. However, in the case where very little data is available (which is expected when high
fidelity CFD data is required) the trends are not predicted as accurately as other methods are
able to predict.

The gappy POD method was coded in MATLAB and be found in Appendix B.2.1. It is self-
contained within MATLAB and uses in-built functions of MATLAB. The POD method was also
coded for other applications in HMB using fortran math packages. More information can be found
in the POD Technical Note139 .

Figure 3.20: Comparison of original data (ANN predictions of average Cm for varying NACA aerofoil
thicknesses at R =50% - see Chapter5) with POD interpolation predictions comparing number and position
of training data points.
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3.6 Genetic Algorithm Optimisation Method

For the optimisation, a non-gradient method in the form of a genetic algorithm (GA) was imple-
mented and combined with the metamodels. Figure 3.21 shows the analogy and terminology used
as applied to the optimisation of an aerofoil case: Selection, Crossover, Mutation, Competition,
Survival. Two parents are first selected based on a roulette wheel technique. The roulette wheel

Figure 3.21: Outline of the genetic algorithm employed for an aerofoil selection case and the analogy with
genetics.

is a file containing the full population of design points. However, each design point takes up as
much space (i.e. it is repeated) in the file as is proportional to its fitness or performance by dupli-
cation i.e. the wheel is biased towards fitter individuals. A random selection is made from it, but
since the wheel is biased, the evolution leads to better designs being created. The proportionality
function for space on the roulette wheel is user-defined from linear to exponential and is necessary
for convergence and stability. This is because if the number of individuals in the database is very
high, the percentage of space taken up by fitter individuals on the roulette wheel reduces and the
selections become less biased and more random. Therefore a better fitness assignment rule would
be an exponential one rather than a linear one for example.

Once the parents are selected, their ‘genes’ are swapped or crossed over. A number of crossover
methods have been developed. The most commonly used is random crossover and it is used in this
project. Here, a gene or more are randomly selected and swapped producing two new offspring.
In the illustration in Figure 3.21 either the thickness or camber is selected randomly and swapped
between the two aerofoils.

For the mutation stage, the offspring parameters are converted to binaries of 10 bits analogous
to genes. This representation is simple and effective. In the natural world, the genome is the
most basic form of discretisation - similarly in the computing world, binary is the basic form of
discretisation. A random bit is then chosen and changed to either 1 or 0. Mutation is necessary
since it has been found that after a number of generations, some characteristics of the genes get
‘lost’64 . Mutation allows for these characteristics to be re-introduced into the gene pool and it
also increases diversity which allows the global optimum to be found. Its probability is kept low
by allowing only one point to be changed and there is a 50% chance that it will be changed to a
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different value. So the probability of 1 bit changing is 1 in 20 for 10 bits. This prevents the change
in the phenotype from happening too often which will cause the process to lose its evolutionary
driving force. The probability of mutation can be increased by selecting more than 1 point for
mutation or by switching the bit in the gene rather than assigning it a value it may already have
or by swapping two bits in the code.

The resulting offspring is then assessed by employing the trained ANNs (along with its normalisa-
tion and denormalisation functions) and combining their output using the user-defined objective
function. This objective function is then modified to stay within the user-defined constraints.
There are two types of constraints exercised. One type limits the boundaries of the design space
so that the predictions by the metamodel are accurate. The other includes physical constraints
such as geometric e.g. thickness, minimum tip chord length etc. and aerodynamic constraints
e.g. angle of attack, stall margin, drag-divergence Mach number. There are two ways to deal
with these constraints - either as hard constraints or as soft constraints50 . An option is set in the
program that gives the user the ability to determine whether a constraint should be treated as a
soft or hard constraint140 . Soft constraints are beneficial initially as they increase the diversity of
population preventing the GA from terminating pre-maturely before the global optimum is found.

After a number of such iterations, a pool of the offspring characteristics is created and a threshold
value is set so that only the majority of the fitter individuals survive and pass on into the next
generation pool. The fittest individuals are always carried through into the next generation. This
is termed elitism. While the GA can converge without the help of elitism, the convergence takes
longer and has a lower probability of being the global maximum since only mutation is capable of
re-introducing new design characteristics or ‘alleles’ back into the pool and these may not be the
best designs. Using elitism ensures that the best genes still exist in the gene pool (or ‘live longer’)
and hence there is a higher probability of reaching the maximum value64 . Cloning is avoided as
it can change the selection process unfairly.

The genetic algorithm was coded in C and can be found in Appendix B.6.1. A script (Appendix
B.6.2) is used to run it for the required number of generations. Details of how to operate the GA
and its associated files can be found in the Optimisation Technical Note140 , mentioned in the list
of publications from this thesis.

3.7 Pareto Front Optimisation

The optimiser used here employs an objective function to determine the optimum and so the
selection pressure is towards a small area in the design space. However, another way of finding
the optimum is to find the designs that provide the best compromise between all the performance
parameters. This is known as the Pareto front. The advantage of using a Pareto-front-type
optimiser (PFO) is that it provides you with a range of design points that represent the best
combination of performance measure parameters. In essence, the PFO method provides the user
with the designs that give the best performance for each parameter and subsequently leaves the
weighting of these performance parameters to them at the end of the optimisation process.
The advantage of using an objective-function-type optimiser (OFO) is that it allows designs that
do not necessarily fall on the Pareto front to be included in the genetic algorithm’s selection based
on the end-point required. So, rather than spreading out the performance along a front, it clusters
it at a specific objective.
For example in Figure 3.22, if CM has less value in the objective of the design, point 2 is still a
good design even though it may not fall on the Pareto front. However, having the Pareto front is
a good indicator that there may be a slightly better design, possibly at point 4.
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Figure 3.22: Pareto front and objective function type optimisers.
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Chapter 4

Aerofoil Optimisation

To demonstrate the optimisation framework on aerofoils, the RAE 2822 transonic aerofoil was
used. The reason for using this aerofoil is that it is designed with a very specific objective in mind,
which is to have good performance in terms of lift and drag at high Mach numbers, especially
in the transonic to supersonic flow regime141 . This makes it a good candidate for optimisation
since its objectives are clear, and there is potential for further improvement within constraints
such as lift-to-drag ratio and moments. The added advantage of using this aerofoil is that the
experimental data on this aerofoil at these conditions are readily available. Also, it does not have a
flexible parameterisation method and so this provides an opportunity to develop a generic method
usable for shape optimisation. This parameterisation technique uses Chebyshev polynomials and
is described in Section 3.2.1. Its application to the upper surface of the RAE 2822 aerofoil is also
shown in Figure 3.2.

4.1 Parameterisation Technique

First the method was applied to a variety of aerofoils (NACA 0012, RAE 2822, NACA 23009 and
ONERA OA213), and their Cp distribution compared in order to find what error convergence
values were needed to obtain a shape curve that was accurate enough to produce the same results.
For simple aerofoils like the NACA 0012, the parameterisation technique works very well with
almost zero error in the shape using only a few coefficients. However for more complex aerofoils
like the NACA 23009, the OA213 and the RAE 2822, more coefficients are required. Figure 4.1 is
a Cp plot obtained from XFOIL for the NACA 23009 aerofoil and that of the reconstructed one.
The error of the shape was 0.013728 with 3 coefficients and 0.005775 with 5. The moment values
tend to be the most sensitive to the aerofoil shape. For both the actual and the reconstructed
aerofoil, the values are within about 0.2%. The maximum error was for drag, approximately a
1% difference. For the ONERA OA 213 aerofoil which is used on wind turbines, the error was
0.068819 with 3 coefficients and 0.027594 with 5 coefficients. Figure 4.2 is the corresponding Cp

plot. The error in moment coefficient is over 16% which is high suggesting that this error conver-
gence value for the geometry is too large.

Therefore an error convergence less than approximately 0.01 is selected. However, it is also
good practice to look at the recreated curve, even if the error convergence falls within this value.
This is because the error is the sum of the absolute difference along the curve, therefore the same
value can be obtained whether the error is a small but well distributed difference in the curves or
a very accurate curve that has a large localised error, in which case the former would most likely
produce better results.

For the RAE 2822 aerofoil, six coefficients were required to parameterise the upper surface with
an error convergence of 0.00741. Figure 4.3 shows the Cp curve for the original RAE 2822 aerofoil
and its parameterised version. The difference is minimal resulting in a difference in Cl, Cd and
Cm of negligible values as shown in Table 4.1.
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Parameterised NACA 23009 Original NACA 23009

Figure 4.1: Cp plots predicted by XFOIL for the parameterised aerofoil NACA 23009 (a) and the original
NACA 23009 aerofoil (b) at Mach 0.2 and Re = 1×106.

Parameterised OA213 Original OA213

Figure 4.2: Cp plots predicted by XFOIL for the parameterised ONERA aerofoil OA 213 (a) and the
original ONERA aerofoil OA 213 (b) at Mach 0.2 and Re = 1×106. The error convergence was about 0.03
resulting in large differences in moments especially. This suggest a smaller error is required and hence a
value of 0.01 was chosen.

4.2 Objective Function

The objective was to improve the lift for a reduced amount of drag. Therefore, the lift-to-drag
ratio (Cl/Cd) was the objective used. However, a constraint was placed on the drag coefficient (Cd)
so that it never exceeded the original aerofoils drag value. This also ensured that the optimised
aerofoil is one that will have the same or higher lifting capability than the original design. As
this is a transonic aerofoil, an important constraint is to ensure that the drag divergence Mach
number does not fall below the value for the original design. In addition, its moments must be
maintained to within a small margin of the original value. The latter is quantified using the
moment coefficient (Cm) about the quarter chord point of the aerofoil. The former is obtained
analytically using Korn’s method with a technology factor of 0.95142 . The program for this can
be found in Appendix B.12.

4.3 Optimisation

The variables to be optimised were the first three parameter coefficients of six used to define the
upper surface of the aerofoil.

To create the initial population, steady calculations were run at the conditions described in Cook
et al.141 (Mach 0.725, Re 6.5 million, AoA = 2.92o) using HMB to obtain a database of 27
points (full factorial combination of 3 values for each coefficient). An ANN was trained for each
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RAE 2822 Aerofoil Cl Cd Cm

original 0.7983 0.01888 -0.2912
parameterised 0.7981 0.01886 -0.2903

Table 4.1: Table comparing aerodynamic coefficients of the original and parameterised RAE 2822 aerofoil.

performance parameter using this data with the following ANN parameters: 3 inputs, 2 hidden
layers, 15 neurons in each layer and 1 output. The variation in predictions of Cl/Cd with the
three coefficients, α1, α2 and α3, are shown in Figure 4.4. Increasing α1 and α2, the 1st and 2nd

coefficients, decreases the lift-to-drag ratio and the trend is non-linear. However, increasing α3

causes an increase of Cl/Cd and its effect is dependent on the values of α1 and α2, more evidently
noticeable in Figure 4.4(b).
A GA was then used to select the best aerofoils. The objective function used here was simply the
Cl/Cd. The constraints were a minimum value of Cl, a maximum value of Cm and a minimum
value of Mdd. Two of the optimum aerofoils obtained along with the original are shown in Table
4.2. The optimum aerofoil was analysed using the HMB solver and these results are also shown
in Table 4.2. Note the difference in the ANN and CFD predictions. The ANN predictions are
reasonably accurate, but it worth mentioning that small errors in the ANN predictions of the
objective function’s components can add up to larger errors in the OFV. Hence, it is good prac-
tice to analyse the GA’s selection using CFD to validate the optimum parameters. Also, it may
be better to train an ANN with the OFV itself - but this reduces the flexibility of changing the
objective function and constraint handling without re-training the ANN.

Figure 4.5 shows the Mach number contours around the three aerofoils in Table 4.2, and Fig-
ure 4.6 shows the original and the best optimised aerofoil. The optimised aerofoil has a maximum
camber further aft than the original aerofoil so that a good pressure gradient is maintained for a
larger part of the aerofoil, but to counter the change in moments that this causes, the front of the
aerofoil, close to the leading edge is more rounded so that a lower pressure is maintained on the
top surface at the front as can be seen from from the Cp plot in Figure 4.5.

Figure 4.7 shows the Pareto front output for the RAE 2822 transonic aerofoil optimisation. Here
three performance parameters are used to create a 3D Pareto front using drag divergence Mach
number, lift and drag coefficients. Again, it can be seen that the optimal selection using the ob-
jective function falls along the Pareto front. Using an objective function and constraints confines
the optimal aerofoils to a small area on the front. In this case particularly, the Pareto front offers
a huge variety of designs that can be used, which still makes it difficult to choose the optimum.
The objective function helps to define how much compromise in one performance parameter can
be allowed to improve another. The objective function was to optimise the lift-to-drag ratio while
constraining Mdd and Cm.

RAE 2822 and Optimum

Note α1 α2 α3 Cl Cd Cm Mdd Cl/Cd

original 0.029724 0.009149 0.001444 0.7981 0.01886 -0.2903 0.75194 42.317

CFD (b) 0.029724 0.009149 0.003444 0.8084 0.01767 -0.2875 0.75152 45.750

ANN (c) 0.028929 0.009283 0.004450 0.7823 0.01801 -0.2821 0.75490 43.437

CFD (c) 0.028929 0.009283 0.004450 0.8056 0.01762 -0.2868 0.74957 45.721

Table 4.2: Data for the original RAE 2822 aerofoil and the modified parameterised upper surfaces of the
aerofoils (1st 3 coefficients of 6). The most optimum aerofoil is (c) with a higher Cl/Cd, slightly lower drag
divergence Mach number and slightly higher absolute Cm. Note the difference in the predictions of the
ANN and CFD. Small errors in the components that make up the objective function, can add up to larger
errors in the final value.
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Figure 4.3: Cp and aerofoil section comparison of the original and parameterised RAE 2822 at Mach =
0.725 and AoA = 2.92 degrees.
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(a)

(b)

Figure 4.4: Cl/Cd ANN predictions of varying 1st 3 coefficients of parameterised upper surface of RAE
2822. Optimum seems to aim for low α1 and α2 and high α3. No constraints are implemented.
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Figure 4.6: The original RAE 2822 and the optimised aerofoil shape: α1 - 7.95×10-4, α2 + 1.34×10-4, α3

+ 3.006×10-3.

Figure 4.7: Pareto front for the RAE 2822 aerofoil using drag divergence Mach number, Cl and Cd. The
grey surface is a surface plot of these values. The black dots make up the Pareto front points and the blue
spots are the GA’s selection using the objective function.
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4.4 Sampling of the Design Space

This case was also used to test out the Latin Hypercube Sampling (LHS) method in comparison to
the full factorial method. The validation data were additional points in the design space obtained
using the HMB solver, but these results were not included in the training data for both the LHS
and full factorial sampling techniques. Using the LHS method (with additional database boundary
points) obtains the same trends but not as accurately as using the full factorial method as can be
seen in Figure 4.8 for pitching moment, which had the worst prediction accuracy with the LHS.
However, the trend was still captured and this was sufficient to obtain similar optimum design
parameters.

α3 = 0.00044

α3 = 0.00344

Figure 4.8: LHS comparison for the RAE 2822 moment coefficient.
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Chapter 5

Rotor Aerofoils Optimisation

In this case, the aerofoil sections for a rotor blade are optimised for forward flight. The simulated
conditions are shown in Figure 5.1. Typically rotors tend to have up to three different sections

Figure 5.1: Conditions of forward flight for optimisation.

on a rotor blade. Usually these sections are selected to improve the efficiency of the rotors or to
counter the disadvantages of varying other design aspects of the rotor such as twist, planform,
etc. For this case, the assumption is that the rotor is a rigid blade with twist and a cyclic pitch
amplitude of 8 degrees. Three stations along the blade are selected to be optimised. The design
parameters to be optimised for were thickness and camber and to do this, the NACA 5-digit
aerofoils were used as the parameterisation technique. Table 5 shows the parameters to be used
in creating the initial population.
The CFD calculations were carried out by simulating the motion of the section as a dM/dt
unsteady calculation, the details of which can be found in Section 2.4. Therefore for each section,
the Mach number variation changes depending on the station. The details for each station are
also included in Table 5. Each CFD calculation was carried out over three cycles and the results
from the final revolution were used to obtain the performance of the section.

5.1 Performance Parameters

The objective here is to minimise the adverse effects of compressibility on the advancing side
and high angles of attack at low Mach number on the retreating side of the rotor disk. Both
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Radii (r/R) 0.5 0.75 0.9

Mach number range 0.15 - 0.55 0.325 - 0.725 0.43 - 0.83

AoA 10±8 7±8 5±8

NACA Thickness (t/c) 9, 12, 15 and 18

NACA Camber (5-digit) 0, 130, 230, 330, 430

Table 5.1: Table showing test cases used for 2D optimisation.

these aerodynamic phenomena not only cause increase in torque (and hence power requirements)
and drag, but they also cause high pitching moments that put high demands on the pitch links.
Therefore a good performance parameter to include in the objective function would be the pitch-
ing moment over a full cycle as well as the lift and drag coefficients. Figures 5.2 to Figures 5.7
show the variation in these three performance parameters for a full cycle (360o azimuth) at r/R
= 0.5 and 0.9.

Looking at the coefficient of drag first, it can be seen that stall is easily observable at the in-
board station in Figure 5.2. For the NACA 0009, on the retreating side (close to ψ = 270o, its
average drag coefficient (Cdavg) is much higher. Also the oscillations caused by the shedding of
vortices are large and with lower frequency which is also an indication of stall. With increasing
camber and thickness, the average drag drops and the oscillations reduce. On the advancing side,
an increase in the drag can be observed with increasing camber due to compressibility effects.
Also at high thickness values, there is a higher increase in drag with increased camber on the
advancing side than with thinner aerofoils.
The effect of compressibility at high Mach number on the advancing side at the outboard station
is also evident from the drag curves in Figure 5.3. The NACA 0009 does not have the steep drag
rise and the NACA 0012 also behaves the same to some extent. All the other aerofoils have a steep
drag rise on the advancing side. At higher thickness values, camber has little effect on the drag
rise. Not much change in drag occurs on the retreating side with change in camber and thickness
although the NACA0009 seems to stall. The blip in the curves, especially visible at thicknesses
of 15% and 18% are due to the sudden form of a shock on the surface of the aerofoil as shown in
Figure 5.8.
Overall, taking the average drag value will distinguish the designs that are vastly poorly perform-
ing sections from better ones. However, further performance parameters are necessary to fine-tune
the optimisation for smaller changes in the thickness and camber.

Figures 5.4 and 5.5 show the pitching moment variation with azimuth at the inboard and outboard
stations. For the moments, the aim is to try and keep it as close to zero as possible to reduce the
load required on the pitch links. There are two parameters that can be used to do this viz. the
average value, Cmavg and the peak-to-peak value, ∆Cm, over a full cycle. ∆Cm is a good indicator
of the power required to maintain the blade’s pitching moment, but it does not account for all
the oscillations in the curve. Together with the average moment, it then gives a more complete
picture. However, Cmavg also reflects the power required to maintain pitching moment. Therefore,
using both parameters will increase its weighting in the objective function. Therefore, the decision
was to use the Cmavg since it gives a more complete picture than ∆Cm. This is more visible in
the 9% thickness plot at r/R = 0.5 in Figure 5.4, where the symmetrical aerofoil has one of the
lowest ∆Cm but it has the most oscillations due to stall which is better reflected in its Cmavg . At
the outboard station, the Cmavg reflects the same objective as ∆Cm. This confirms the use of the
Cmavg over ∆Cm.

The Cl curves in Figures 5.6 and 5.7 can also be used to show the effects of stall and com-
pressibility, but this has been adequately dealt with using the drag and moment curves. However,
the average Cl is used as a constraint.
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It is accepted that a more fair comparison would be to compare the performance at the same
lifting capability of the design, for example by considering the zero-lift angles as opposed to the
geometric angle of attack. However, for an unsteady case such as this, it is difficult to match the
lift load throughout the cycle or to even obtain the same average lift value, because of the many
aerodynamic phenomena that occur based on shape. For the cases shown here, a maximum of
50% difference in average Cl was contained within the data for the very extreme cases where the
un-cambered thin sections and the highly cambered thick sections were compared. This shows
the complexity of the optimisation task though it could be addressed with further computations.

Once the performance parameters were established, the metamodel was employed. For the meta-
model, ANNs were trained with the scaled data i.e. as a ratio to the reference section (NACA
0012) at the same conditions. The ANN parameters were 2 input, 2 hidden layers with 15 neurons
each and 1 output for each performance parameter. The error convergence was set to 0.01 and
convergence occurred at the end of the run. The trained ANN was then used to predict points
every 10th of the range. The results agreed well with the data obtained from the solver - most
points overlapping exactly. The trends in all the performance parameters (i.e. the average and
peak-to-peak values for all the coefficients as well as the gradient of the moment and drag curves)
as predicted using ANNs can be seen in Figure 5.9. It can be seen that drag has more variation
with thickness than with camber and moment seems to have similar sensitivity to both thickness
and camber.

Figure 5.2: Cd for varying NACA aerofoil camber - thickness 9, 12, 15 and 18% chord at the inboard
station, r/R = 0.5. Mloc = 0.35, M∞ = 0.2 in forward flight.
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Figure 5.3: Cd for varying NACA aerofoil camber - thickness 9, 12, 15 and 18% chord at the outboard
station, R = 90%. Mloc = 0.63, M∞ = 0.2 in forward flight.

Figure 5.4: Cm for varying NACA aerofoil camber - thickness 9, 12, 15 and 18% chord at the inboard
station, R = 50%. Mloc = 0.35, M∞ = 0.2 in forward flight.
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Figure 5.5: Cm for varying NACA aerofoil camber - thickness 9, 12, 15 and 18% chord at the outboard
station, R = 90%. Mloc = 0.63, M∞ = 0.2 in forward flight.

Figure 5.6: Cl for varying NACA aerofoil camber - thickness 9, 12, 15 and 18% chord at the inboard
station, R = 50%. Mloc = 0.35, M∞ = 0.2 in forward flight.
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Figure 5.7: Cl for varying NACA aerofoil camber - thickness 9, 12, 15 and 18% chord at the outboard
station, R = 90%. Mloc = 0.63, M∞ = 0.2 in forward flight.

Figure 5.8: Pressure contours on the lower and upper surface of NACA 0015 for increasing azimuth angle.
R = 90%, Mr/R in hover would be 0.63 and M∞ = 0.2 in forward flight.
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5.2 Objective Function

To create the objective function, the reference design to which all designs will be scaled is the
NACA 0012 section so that the weightings are truly proportional to the requirements and are not
affected by the actual values of the performance parameters. To capture the objectives, Cdavg

and Cmavg over a complete revolution of the rotor was used to create the objective function while
keeping C lavg ≥ 1. The drag component was the primary component in providing the selection
pressure and the moment component, secondary. The guiding weights therefore, were determined
by averaging the ratio of average Cdavg to Cmavg :

1

n

n∑
i=1

Cdavg

Cmavg

= 1.2129 (5.1)

where n = 20 is the number of sample points and the limiting weight for the loads were

w(Cdavg) =
1

1 + 1.2129
= 0.452 (5.2)

w(Cmavg) =
1.2129

1 + 1.2129
= 0.548 (5.3)

As there was large variance in this ratio and since Cdavg is the primary component, the objective
function used was

OFV = −0.5Cdavg − 0.3Cmavg + 0.8 (5.4)

The ANN predictions of these two components at 50%R and 90%R and the effect camber and
thickness have on them can be seen in Figure 5.9. Both drag and moment show that thick
aerofoils are more suitable inboards and thinner ones, outboard, as expected. Moment also refines
the optimisation of camber showing that more symmetrical aerofoils are suitable outboard and
vice versa.

5.3 Optimisation

The GA employs these trained ANNs to obtain the optima. Figure 5.10 shows that the optima
also fall on the Pareto front at all three stations. The objective function forces the global solution
to a small region on the Pareto front. The combined Pareto and objective function method used
the objective function to create the selection pressure for the parents for crossover, but does not
determine the fitness. Table 5.2 shows the results of the GA for the inboard and outboard stations.
Thinner more symmetrical sections are good for outboard stations and thicker, more cambered
sections perform better more inboards, which is in agreement with most real-life helicopter rotors.

r/R = 0.5 r/R = 0.9

Camber Thickness OFV Camber Thickness OFV

33 15 0.44 9 9 0.30

43 16 0.42 7 11 0.14

32 14 0.36 5 10 0.12

Table 5.2: Aerofoils selected by the GA for the inboard and outboard stations. The * values are scaled
with the reference section, the NACA 0012.

The kriging metamodel was also employed to compare its performance with the ANN predic-
tions. A comparison between the optimum surface created by both is shown in Figure 5.11. It
can be seen that kriging favours a smoother surface, although this did not significantly affect the
outcome of the optimisation (a 1% difference in camber).
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Cdavg ∆Cd

Cmavg ∆Cm

Clavg ∆Cl

∂Cm ∂Cd

Figure 5.9: Variation of loads for r/R = 50% and 90%; Red represents the upper extreme and blue, the
lower extreme.
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Inboard station

Midboard station

Outboard station

Figure 5.10: Comparison for the dM/dt cases inboard, midboard and outboard stations of the use of
pareto optimisation, objective functions and both i.e. objective function used for selection pressure on
designs.
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Inboard station, 50% r/R

Outboard station, 90% r/R

Figure 5.11: Comparison of the optimum surface created by the ANN (blue) and Kriging (red) metamodels.
The GA selection is shown as white dots.
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Chapter 6

Wing Planform Optimisation

6.1 Design Space Generation

The optimisation of a wing planform was carried out to test the optimisation process with an
increased number of parameters. The steady flow calculation was carried out at Mach 0.4 with
a Reynolds number of approximately 2 million. The wing to be optimised is a multi-segment
wing shown in Figure 6.1 that uses the NACA 23012 aerofoil throughout. It has three segments.
The root is fixed and the tip chord is constrained in chord length but allowed to translate in the
X-axis. The two mid-chords, M1 (closer to the root, z/b = 0.272) and M2 (closer to the tip, z/b
= 0.927) and their corresponding positions (∆M1 and ∆M2) as well as the tip chord position (see
Figure 6.1), are the parameters to be optimised for optimal wing loading along the span, which
is an elliptic distribution of loading. To create the required grids for this optimisation, an ICEM
replay script was written to automate grid generation for the CFD simulation. The script can be
found in Appendix B as Listing B.10.1. The objective was to have elliptic loading of the wing i.e.
an elliptic lift distribution over the span of the wing without compromising the lift to drag ratio
of the wing.

To modify a grid for the three segment planform, the four files that contain the sections at
the root, M1, M2 and tip chord can be changed by directly modifying their length and position as
required and the ICEM-hexa script can be replayed in ICEM to generate the geometry. A block-
ing file exists where each vertex has been previously constrained to a specifically named point.
Therefore, once the new geometry is created, the blocking can be opened and using the ‘snap to
point ’ button of ICEMCFD, the association is performed automatically and the grid can be set up.

In this way a number of grids were created and analysed using HMB. An example is shown
in Figure 6.2. Sampling was done by taking a uniform distribution of points within the parameter
boundaries (including the boundary values). As the optimisation proceeded, new points were
added, especially wherever the GA suggested the optimum was, resulting in a higher resolution of
the area where the optimum was expected to be in the design space. However, as this refining of
the database occurred, new points were added elsewhere where the data seemed sparse so that the
ANN was capable of making predictions of similar accuracy in other places of the design space.
This adaptive sampling was carried out manually after the original design space was obtained,
until the error between the target value and predicted value fell within a tolerance level.

There are optimisation algorithms that can do this sampling automatically, for example, as de-
scribed in the paper by Haftka143 . The Efficient Global Optimisation Algorithm (EGO) starts
by creating a kriging metamodel and it keeps adding points until the prediction error falls inside
a tolerance level. It builds the kriging model using all the data except a small subset of it. It
then evaluates the error in prediction by calculating the rms error value between the original and
predicted values for this small subset (similar to the work done for this case). It also estimates
the probability of error along the predicted curve using the kriging variance as a measure of
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uncertainty and then adds points where the uncertainty and error are high.

Figure 6.1: Definition of the parameters for optimisation of the wing.

Figure 6.2: Grid for the wing.

6.2 Planform Optimisation

The optimisation was for elliptical loading which was measured as ‘Eell’ by comparing the CL

distribution along the span to a parabolic fit of the curve and evaluating the difference between
them (See Appendix B.11). Therefore the objective function was given as:

OFV = Eell =

x=b/2∑
x=0

√
(Cl − Clell)

2 (6.1)

where x is the spanwise location and b is the span of the wing. The greater the difference, the
worse the design. In addition, CL/CD and CL were constrained to be greater than the original
wing’s design values, which places a constraint on the drag as well. The CL, and hence CD, was
constrained to be within a small margin over the original wing’s values to allow the GA to explore
the design space and increase the diversity of the population.
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(a)

Figure 6.3: LHS comparison for the near laminar
flow wing elliptic loading.

Figure 6.4: ANN (black) and Kriging (white)
comparison for the wing optimisation performance
parameter, Eell.

Therefore four ANNs, for CL, CD, CL/CD and Eell, were trained for each of the parameters
normalised by the corresponding parameter of the original wing. As there are five variables and
typically three values for each variable are used for training the ANNs, the number of design
points required using a full-factorial method would be 35 = 243. However, for this case, only 40
design points were used to build the database as it was sufficient for accurate predictions and
this was validated with additional CFD points not included in the training data. An adaptive
fractional factorial sampling method was used where the optimisation method itself played a part
in the sampling to improve accuracy by populating more towards where the global optimum was
likely to be found. A comparison with the LHS technique is shown in Figure 6.3. The LHS does
not perform as well as there are fewer points used to train the ANN. Therefore, the fractional
factorial method was used.

Kriging was also used to compare the two metamodels. The regression function was a one-degree
polynomial and the correlation function was Gaussian. Figure 6.4 shows again that the ANN and
kriging method both give similar predictions although the ANN was slightly more accurate. The
difference in the optimum design by both metamodels was 2.4% in the OFV of the same design.

Figure 6.5 visualises the trends using the predictions of the ANN for M1 and M2 along with
the training data for these parameters. It shows that a small inboard and outboard chord in-
creases the lift but also the drag. However, when they are analysed together as CL/CD, a high
chord for M1 and a low chord for M2 gives a good compromise which also favours better lift
distribution. Figure 6.6 shows the variation of CL/CD and Eell with the position of M1 and M2.
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CL CD

CL/CD Eell

Figure 6.5: ANN prediction using CFD training data (black dots) for M1 and M2 values, shown at 0 ∆M1
and ∆M2.
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CL/CD Eell

Figure 6.6: ANN predictions of performance parameters as a function of the position of chord variables.

The GA was run for 19 generations with 1000 iterations per generation. In this case, the
fitness value was minimised as opposed to the other cases, where they are maximised. The results
of the GA’s optimisation are shown in Figure 6.8. The average fitness per generation in Figure
6.7 shows the convergence and stability of the GA for this case. This is defined as:

OFV j
avg =

1

N

i=N∑
i=0

OFV j (6.2)

where j is the generation number, i is the individual in a population of N individuals. Table 6.1
shows the CFD data and the ANN prediction for one of the optimum wings in comparison to the
baseline wing and a rectangular wing.
The optimisation can be seen to select a more tapered wing with high values of M1 and low

M1 ∆M1 M2 ∆M2 ∆T CL CD CL/CD Eell(%) Note

1 -0.140 0.6086 -0.476 0 0.1162 0.00803 14.4585 37.64% Original

1 0 1 0 0 0.1109 0.00797 13.9198 58.89% rectangular

1.04178 -0.0134 0.4725 -0.0023 -0.096 0.1181 0.00808 14.6154 33.15% ANN (a)

1.04178 -0.0134 0.4725 -0.0023 -0.096 0.1182 0.00809 14.6079 24.92% CFD (a)

Table 6.1: Table showing the wing designs analysed with CFD. Eell is the percentage difference between a
parabolic distribution and the CL distribution. The GA’s selection of optimum is also included (a). Design
(a) is a new point created and predicted by the ANN. The CFD analysis of it is also shown for comparison.

values of M2 and a moderately swept forward wing. The CL/CD of design (a) in Table 6.1 is
higher than the original and its Eell is lower. This wing has more taper and maintains some of
the original wing’s sweep as shown in Figure 6.9 along with CL distributions. It seems to be that
the taper accounts more for the elliptic loading and the position of the sections accounts more for
the L/D (from the scales), although both are affected by all parameters.

Figure 6.10 compares the velocity magnitude of the optimised and original blade at a point be-
hind the blade. It shows that for the optimised wing, the velocity is reduced behind the wing
suggesting a lower vortex speed and hence better lift distribution. The improvement compared to
the original wing as well as a rectangular wing is also visualised in Figure 6.11 using streamlines
of the secondary flow behind the wing.
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Figure 6.7: The average fitness per generation. Note that, here the OFV is minimised.

Figure 6.12 visualises the magnitude of velocity. Note the more spread out distribution

L/D Eell

Figure 6.8: GA selection of ANN prediction of L/D and elliptic loading.

for the optimised wing. The vortex behind the rectangular wing is smaller. Since CL is more or
less the same and the angle of attack is the same, circulation must be the same, therefore a larger
vortex means a slower speed vortex and vice versa and hence the optimised wing has a better lift
distribution (take into account that the vortex is further back from the wing tip at the same slice
position for the tapered wing). Also Figure 6.13 shows how far the vortex extends after the wing
(taking into consideration the sweep for the GA optimum), indicating the strength of the vortex.
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Figure 6.9: Planform comparison of the designs in Table 6.1.

Figure 6.10: Comparison of velocity magnitude contours for the optimised blade (red) and the original
blade (black) at 2.3 chord lengths behind the trailing edge.
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Rectangular

Original wing

GA optimum new point - (a) in Table 6.1

Figure 6.11: Cp distribution of the designs in Table 6.1 and secondary flow visualisation a chord length
behind the trailing edge. The green points are for the rectangular blade and are shown as a reference.
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Rectangular

Original

GA Optimum new point

Figure 6.12: CL distribution visualisation using velocity magnitude (left), and streamline visualisation of
secondary flow (right) at 2.5 chord lengths behind the trailing edge for the wings in Table 6.1.
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Rectangular

Original

GA Optimum new point

GA Optimum existing point

Figure 6.13: Q criterion iso-surface = 1× 10−6 showing extent of vortex tip.
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Chapter 7

Hovering Rotor Optimisation

A simple rotor with no coning or anhedral, aspect ratio of 16, linear twist, and a single section
(NACA 0012) throughout the span (similar to the one used by Caradonna12) was used to analyse
the change in performance that occurs due to the increase of twist at varying collective. The
tip Mach number was 0.6 with a Reynold’s number of about 1 million. The CFD solution was
expected to be periodic, therefore the grid used was a quarter segment of the flow field with
periodic boundary conditions as described in Section 2.3. The grid was a relatively coarse grid of
approximately 2 million cells.

7.1 Performance Parameters

The performance parameters used here are the non-dimensional values of Figure of Merit (FM),
thrust coefficient (CT) and torque coefficient (CQ). For hover, the Figure of Merit (FM) is a good
measure of rotor efficiency and is defined as:

FM =
Induced Power

Actual Power
(7.1)

Figure 7.1 shows the FM, CT and CQ for the hovering rotor. These plots were obtained by run-
ning a number of twisted blades at increasing collective angles (represented by the points on the
figures). ANNs were trained to predict these performance parameters based on the collective and
twist inputs to show the trends in the figures.

The general trend of the FM curve is that there is an increase in FM with increased collective
until a certain point where the FM falls due to stall occuring resulting in a drop in the increase
in thrust and an increase in the increase in torque which decreases the FM. The aim is to obtain
a high FM and to keep it that way over a range of collective. A highly twisted blade is able to
maintain a high FM over a bigger range of collective as shown in Figure 7.1 but at the cost of
reducing that maximum value. Reducing the twist can obtain a higher FM but it is unlikely that
the rotor will be operating at those conditions for a large enough proportion of the time to discard
obtaining high FM for other conditions. Too low a twist results in stall outboards which also has
the largest dynamic head and hence there is benefit in avoiding stall in this region.

This suggests that the gradient of the FM with respect to CT would be a good component to
capture the objective in addition to maximising the FM. Figure 7.2 shows the FM vs. CT curve
and the CT vs. CQ curve which is the hovering rotor equivalent of an aerofoil drag polar curve.
With higher thrust, the torque increases greatly especially for less twisted blades. This may be
because of the stronger vortices shed from the blade due to compressibility effects and relatively
high angles of attack at the tip. With twist, the angle of attack at the tip is brought down and
hence a lower torque is obtained. Figure 7.3 shows the pressure contours around the root and tip
sections of the rotor with a twist of 0, 8 and 12o and a collective of 12o.
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Figure 7.1: Rotor in hover, Aspect Ratio = 16, Coning = 0, Anhedral = 0, Twist = 0, 8 and 12o: FM,
CT and CQ vs collective angle. Mtip = 0.6.
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(a)

(b)

Figure 7.2: ANN predictions of (a) FM vs CT and (b) CT vs. CQ for 5 values of collective used to train
the ANNs.
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Root: r/R = 2.5/16 Tip: r/R = 15.9/16

0 degrees twist

8 degrees twist

12 degrees twist

Figure 7.3: Rotor in hover, Aspect Ratio = 16, Coning = 0, Anhedral = 0, Collective = 12o and various
twist distributions at the root and tip. Mtip = 0.6.
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7.2 Objective Function and Metamodel

The objective was to keep the FM constant at a high value for a wide range of collective angles.
To capture this, two parameters were used viz. the maximum FM (FMmax) over a range of thrust
values as well as the gradient of the FM with respect to CT (∇FM). Eighteen sample points
consisting of six collective angles at three linear twist angles (0, 8 and 12o) were obtained using
CFD to create the initial database (these data points can be seen in Figure 7.1. ANNs were
trained to be able to predict the parameters based on the collective and twist. This amount of
data was required to obtain accurate predictions from the metamodels. Validation was carried out
for an additional twist distribution of 11 degrees and the results agreed well as seen in Figures 7.1
and 7.2 even though the grids used were relatively coarse. Therefore, these predictions were used
to obtain data regarding the two objective components, FMmax and ∇FM . Once the training
for the components were complete, they were combined in an objective function that acted as the
‘fitness’ value for the optimiser. The objective function is given in Equation 7.2.

OFV = 0.35FMmax − 0.55∇FM + 0.2 (7.2)

The weights in Equation 7.2 were such that the importance of having little change in FM must
be greater than maximising FM for a single point. The average ratio of FMmax to ∇FM was
1:1.0396. Therefore, the limiting weights that would give ∇FM a greater than or equal weight to
FMmax using the average ratio was:

w(FMmax) =
1.0396

1 + 1.0396
= 0.51 (7.3)

w(∇FM) =
1

1 + 1.0396
= 0.49 (7.4)

However, a greater difference in the weights was selected to ensure that ∇FM always has a higher
weighting than FMmax.

Kriging was also used to interpolate between the CFD data. Both, the ANN and kriging methods,
predicted the data with approximately the same accuracy. Figure 7.4 shows the comparison. The
case for 11 degrees twisted blade was not included in the training data. Therefore, it is used to
show the comparison in prediction accuracy between the two methods relative to the CFD data
for that twist distribution. The kriging tends to have a smoother prediction of the distribution
for the known data. However, for the unknown data, the ANN predictions are more accurate and
hence the ANN method was used for the optimisation. Figure 7.5 shows the predictions for these
two objectives.

7.3 Blade Twist Optimisation

The GA was employed and run for five generations with 500 occurrences of crossovers in each
generation, a 1 in 16 chance of mutation and a margin of fitness definition for the elite of 0.02.
The time to complete this task was 21.2 seconds using a single Pentium processor, starting from a
population of three. The optimum twist selected by the GA is shown in Figure 7.6. The optimum
twist lies between 10 and 12o, with the maximum point being around 11o. Figure 7.7 shows the
CP distribution of the various twist distributions at a collective of 12 degrees. The stall can be
seen clearly at the 0 degrees of twist blade whereas the twisted blades are free of stall and the
pressure distribution is more uniform. This is also easily seen in the wake visualisation using the
Q-criterion in Figure 7.8. The slight improvement gained by using 11o rather than 12o is difficult
to find by comparison of the flow field but it is clearly visible in the FM vs. CT curve in Figure
7.2. The performance of the 11o is only slightly degraded at higher collectives, i.e. it maximises
the plateau by allowing only small drops in FM with collective, allowing higher achievable values
of maximum FM compared to the 12o twist.
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FM vs. Collective FM vs. CT for 11o

Figure 7.4: ANN and kriging predictions and validation for FM.

(a) (b)

Figure 7.5: ANN predictions of (a) FMmax vs. twist and (b) ∇FM vs. twist.

7.3.1 Sampling Technique Test

This case was also used to demonstrate the effect of using the full factorial and Latin Hypercube
(LHS) sampling techniques. Figure 7.9 shows the predictions by the ANN of FM against collective
using three databases. When the LHS method using random selected points is used, the error
in the predictions is large. However, it is known that the maximum FM is achieved at a higher
collective with increasing twist. Therefore, selecting the point of 8 degrees collective at a twist of
8 degrees instead of at twist 0 degrees, made the predictions much more accurate. For cases where
there are many maxima or minima and where such a prediction from experience cannot be made,
the LHS is not as accurate. The LHS is usually useful where the amount of data points is large,
unlike this case, and picking a set number of points that fit the criterion of the LHS (described in
Section 3.3) does not result in big changes in the outcome.
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Figure 7.6: GA selection of optimum twist based on the maximum FM and the change in FM with
collective angle increase for 5 values of collective used to train the corresponding ANN.
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0 degrees twist

8 degrees twist

11 degrees twist

12 degrees twist

Figure 7.7: Blade load (Cp) at 12 degrees of collective.
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0 degrees twist 8 degrees twist

11 degrees twist 12 degrees twist

Figure 7.8: Visualisation of tip vortices using Q criterion (value of 0.1) for a range of twists at θ = 12
degrees.

Figure 7.9: LHS comparison for the FM of a rotor in hover.
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Chapter 8

Forward Flying Rotor Optimisation

For this case, the UH60-A rotor was used as a starting point because it was designed for high
speed flight. It also has an extensive set of experimental data for forward flying rotors in the
public domain. This rotor has an AR of 15.5. It has a tip sweep of 20o and there is also a reversal
of twist near the tip. Figure 8.1 shows the twist and aerofoil distribution for the UH60-A blade.
Also, blade torsional deformation was used with five harmonics to simulate the aeroelasticity of

Figure 8.1: UH60 rotor blade twist and aerofoil distribution.

the blade as obtained from Datta et al.144 . This, as well as the conditions of flight are given in
Table 8.1. The trim conditions were: single flap harmonic with -0.7 for the cos term and -1 for
the sin term, a single pitch harmonic of -2.39 for the cos term and 8.63 for the sin term and no
lag harmonics.

8.1 Parameterisation and Grid Generation

The aim is to optimise the sweep and anhedral parameters of the planform for forward flight
while constraining hover performance and then optimise the hover performance using twist. The
sampling used was full factorial with four cases of anhedral and five of sweep as shown in Figure 8.2.
The parameterisation method was simply the use of the angle in degrees of sweep and anhedral.
The grid geometry was generated as follows. A is the sweep angle, and with reference to Figure
8.3, the following constants were defined:

• Area of tip = D + E + F = 1.1117

• span, q = r + p = 1.0737
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Tip Mach number, Mtip 0.641
Advance ratio, µ 0.368
shaft angle 7.31o

Reynolds number, Re 0.5e-6
Freestream mach, M∞ 0.236256
Collective (built-in) 13.47o

Collective 11.6o

Cone angle 3.43o

AR 15.5
Nominal blade twist -16o

Lock number, γ 8.0
Centre 0,0,0
Flap hinge 1,0,0
Lag hinge 1.1,0,0
Pitch centre 1.5,0,0

Twist harmonics:
1st cos: 1.4772260, sin: -1.108055
2nd cos: -0.5285583, sin: 1.371093
3rd cos: -0.1224511, sin: -0.098077
4th cos: 0.5819061, sin: -0.244197
5th cos: -0.2909757, sin: -0.386423

Table 8.1: Table showing the conditions of flight for the UH60-A in forward flight.

• pre-sweep chord (i.e. the chord before the swept part of the blade starts) = 1

x =
√
2− 2CosA (8.1)

B = 90−A/2 (8.2)

r = xCosA/2 (8.3)

T1 = xSinA/2 (8.4)

T2 = pTanA = (q − r)TanA (8.5)

Also C1 is defined as: (8.6)

C1 = (C − 1)
r

q
+ 1 (8.7)

The areas D, E and F are given by:

D = πr2 × A

2π
=
A

2
(8.8)

E =
1

2
rC1 =

r2

2q
(C − 1) +

r

2
(8.9)

F =
1

2
(C1 + C)p =

r2

2q
(1− C) +

q

2
(C + 1)− r (8.10)

Area =
A

2
− r

2
+
q

2
(C + 1) = 1.1117 (8.11)

Therefore C is defined as: (8.12)

C =
2×Area−A+ r − q

q
(8.13)
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Figure 8.2: UH60 optimisation for sweep, anhedral and twist CFD design points.

Figure 8.3: UH60 tip geometry for sweep modification.

At the tip there is also a reversal of twist and some inherent anhedral. Both of these are non-linear
and can be approximated as a second-order polynomial. Since the value of r changes with the
sweep angle, the twist and anhedral must be re-defined at the new point. These are defined as
quadratics by solving for the three unknowns in each quadratic using three known points.
Therefore, the twist as a function of span (for collective 13.47), X is given by:

θ = 3.76696895X2 − 110.837065731X + 823.338742751 (8.14)

And the inherent anhedral as displacement of the quarter chord point from the Z-axis as a function
of span, X is given by:

∆Z = −0.0196387563X2 + 0.537139079948X − 3.67093898682 (8.15)
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Table 8.2 shows some examples of the geometry values for different sweep angles including the
original of 20o. A small program to automate this is given in Appendix B.13. Also, the curvature

A (deg) 10 20 30 40

x 0.1743 0.3473 0.5176 0.6840
r 0.1736 0.3405 0.5000 0.6428
T1 0.01519 0.06031 0.13397 0.23396
T2 0.1587 0.2663 0.3312 0.3616
C 1.06991 1.06217 1.04875 1.01919
C1 1.01131 1.06417 1.02270 1.01149
θ (deg) at r 8.10695 8.04173 8.17481 8.45692
z at r -0.01405 -0.02056 -0.02769 -0.03497

Table 8.2: Geometry values for varying sweep. Areas are divided by c2 and lengths by c.

that forms the sweep at the leading edge is modified from an arc to a spline tangent to the straight
part of the sweep for a smooth surface. This is done in ICEM by first forming the arc and then
matching its point and tangent to the end curve of the sweep. The resulting planform curvature
is shown in Figure 8.4.

In addition to sweep, anhedral was optimised as well. There already exists a slight inherent
non-linear anhedral for the tip of the UH-60 rotor. Initially, the anhedral to be optimised for was
linear and added to the already existing inherent anhedral, i.e.

z1 = rtanϕ (8.16)

z2 = (r + p)tanϕ (8.17)

where z1 is the additional drop at the mid-section and z2 is the additional drop at the tip end. The
mid-section between the start of the blade tip section and the tip was moved to the correct location
for sweep and the anhedral. Then surfaces were created. Smoothing of the surface was applied
between the mid-section and the initial point of the anhedral. Figure 8.5 shows this method of
adding anhedral. The geometry produces a bulge at the point where the anhedral is implemented,
which is unrealistic. Therefore, a non-linear smoothed arc transition of the anhedral was used
instead. This produces a more realistic shape as shown in Figure 8.6.

Figure 8.4: UH60 tip sweep geometry planform curvature. The black surface has a sweep of 10 degrees
and the blue, a sweep of 40 degrees.
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sweep 20, anhedral 15 deg upper surface sweep 20, anhedral 15 deg lower surface

sweep 20, anhedral 15 deg LE sweep 20, anhedral 15 deg TE

Figure 8.5: Anhedral implementation using gradient matching between mid section and initiation section.

Figure 8.6: Anhedral implementation for the UH60-A using a smoothed arc.
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8.2 Validation

Validation of the data was carried out for the original UH60-A rotor for two section along the span
at r/R = 0.675 and 0.865. The experimental data was obtained from Coleman and Bousman145 .
Figure 8.7 shows the Mach squared Cn and Cm for these two sections. The time marching (TM)
matches the experimental data quite accurately. The TM solution was obtained at every quarter
degree of azimuth, although the full flow solution was obtained every 10 degrees. For the Harmonic
Balance method (HB), four modes were used to construct the solution i.e. a solution exists for
every 10 degrees of azimuth. Both methods were accurate in different regions. However, for the
optimisation described here, the TM method was used for all the cases.

M2Cn M2Cm

r/R = 0.675

r/R = 0.865

Figure 8.7: Experimental data in comparison to CFD data by time marching (TM) and Harmonic Balance
(HB).
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8.3 Results Analysis

For the 20 cases used to build the initial design space (using a full factorial method),the lifting
and pitching moment loads over the full disk were integrated. Some of these are shown in Figures
8.8 - 8.10. The effect of anhedral can be seen in the results for the M2Cn and M2Cm shown in
Figures 8.8. Adding more anhedral loads the back of the disc more which distributes the disk
loading more evenly. It tends to reduce the loading on the advancing side tip, but makes up for
it on the retreating side. The moment is more evenly distributed as well.
Figure 8.9 compares the same loading for different sweeps with no anhedral. The loading is
reduced overall, but more so at the back of the disk. The drop in the lift at the tip of the disk
on the advancing side is reduced with more sweep. The moment distribution is also more even
although the tip has a much higher pitching moment magnitude. This is expected with sweep,
since the moment is taken about the pitch axis and since the distance of the swept part from the
pitch axis is increased with more sweep, more pitching moment is observed. Figure 8.10 shows
the same comparison but with an anhedral of 15 degrees. The top figure is the baseline design i.e.
with 0 degrees anhedral and 20 degrees of sweep. Having more sweep reduces the loading at the
back of the disk without adding load to the front of the disk. It also reduces the drop in lift on
the advancing side tip. The anhedral and sweep both add more moment to the tip of the blade
and hence the moment variation at the tip is highest for the case with most sweep and anhedral.
However, this is made up with more favourable moments more inboards.
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sweep 20, anhedral 0

sweep 20, anhedral 5

sweep 20, anhedral 10

sweep 20, anhedral 15

Figure 8.8: M2Cn(left) and M2Cm(right) plots for the UH60 with 20 deg sweep and increasing anhedral.
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sweep 0, anhedral 0

sweep 20, anhedral 0

sweep 30, anhedral 0

sweep 40, anhedral 0

Figure 8.9: M2Cn(left) and M2Cm(right) plots for the UH60 with different sweep and 0 deg anhedral.
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sweep 20, anhedral 0 - original

sweep 0, anhedral 15

sweep 20, anhedral 15

sweep 40, anhedral 15

Figure 8.10: M2Cn(left) and M2Cm(right) plots for the UH60 with different sweep and 15 deg anhedral
as well as the original rotor.
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8.4 Performance Parameters

The objective was to optimise the UH60-A rotor anhedral and sweep to reduce the pitch loads,
stall on the retreating side and shock effects on the advancing side whilst maintaining or improving
the thrust, torque and vibratory loads. The stall and shock effects are observed as large changes
in the pitching moment. Therefore the objective can be captured with a function that includes
the average and peak-to-peak pitching moments. The other parameters can be incorporated as
constraints; as a margin of change in thrust, torque and vibratory moments. The vibratory mo-
ment is calculated as the pitching moment less the mean and 1/rev oscillation.

The full and vibratory pitching moments for the blade from 0 to 360 degrees azimuth are shown
in Figure 8.11 for varying sweep and anhedral. Adding more sweep decreases the peak-to-peak
pitching moment. Adding anhedral does not have a large effect on the peak-to-peak moment but
it changes the moment most around the front and advancing side of the disk. This change is larger
with more sweep. The overall effect on the performance parameter is that it move the average
pitching moment closer to zero pitching moment. Adding both, anhedral and sweep, increases the
vibratory pitching moment and the effect of anhedral is more significant with more sweep.

Table 8.3 summarises the performance parameters to be used for the optimisation for a few

0 deg sweep, 20 deg sweep, 40 deg sweep,
varying anhedral varying anhedral varying anhedral

Total pitching moment

0 deg sweep, 20 deg sweep, 40 deg sweep,
varying anhedral varying anhedral varying anhedral

Vibratory pitching moment

Figure 8.11: Total and vibratory pitching moments for a single blade over a revolution of the rotor in
forward flight. The original rotor has 20 degrees sweep and 0 degrees anhedral.

of the results to compare the effect of sweep and anhedral on these parameters. High anhedral
tends to favour good average and peak-to-peak pitching moment, while more sweep favours good
peak-to-peak but has worse average pitching moments. Both suffer higher amplitude vibratory
pitching moment when increased.
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Sweep (deg) Anhedral (deg) pitchavg ∆ pitch

40 0 -0.001462 0.002690
30 0 -0.001468 0.002713
20 0 -0.001412 0.002794
20 5 -0.001296 0.002783
20 10 -0.001223 0.002743
20 15 -0.001150 0.002706

Vibratory

40 0 0.000 0.001116
30 0 0.000 0.001032
20 0 0.000 0.001024
20 5 0.000 0.001012
20 10 0.000 0.001072
20 15 0.000 0.001153

Table 8.3: Summary of performance of design points using moments of a single blade.

8.5 Optimisation

The CT for all the designs were within about 4% of each other and since further trimming was
not used, the thrust was neglected as long as it fitted within 5% of the original rotor’s perfor-
mance. For CQ, the coefficients were within about 5% of each other. The torque constraint was
relaxed to allow for diversity, as long as the anhedral and sweep values were constrained within
the boundaries of the database. It was treated as a soft constraint, i.e. the points that violated
this constraint of greater than 5% increase in torque were included in the next generation but
were penalised first.

To capture the objectives, the average pitching moment (Cpitch
m ) and the overall peak-to-peak

pitching moment (∆Cm
pitch) would make up the components of the objective and the vibratory

pitching moment peak-to-peak (∆Cm
vib-pitch) value would be added as a constraint to the torque

coefficient.

The two components of the objective function were weighted equally. However, since on aver-

age, the ratio of ∆Cm
pitch to Cpitch

m is 1.164:1, the weights that would weight them equally were
found to be:

1

n

n∑
i=0

∆Cpitch
m

Cpitch
m

= 1.164 (8.18)

∆Cpitch
m : Cpitch

m = 0.47 : 0.53

(8.19)

So the overall objective function was:

OFV = −0.47∆Cpitch
m − 0.53Cpitch

m + 1, if∆Cvib−pitch
m ≤ 5% and scaled CQ ≤ 1.0

otherwise, OFV = −0.47∆Cpitch
m − 0.53Cpitch

m + 1− 0.5(∆Cvib−pitch
m − 1.05)− 0.5(CQ − 1.02)

All the performance values of the design points were scaled with a reference rotor, which was the
original rotor in this case. These scaled values were used to train the ANN. The ANN predictions
are shown in Figure 8.12 for each of the components of the objective function. The ANNs accuracy
was also estimated relative to the change in the performance of the design obtained using the CFD
data. The maximum error in the objective function obtained was found to be 0.85%.
The GA was then used to find the optimum design using 500 iterations over five generations.
∆Cm

vib-pitch was constrained to be not more than 5% higher than that of the original blade and
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CQ not more than 2%. The result are also shown in Figure 8.13(a). Table 8.4 shows some of the
designs used to train the ANNs, as well as an additional data point that had a sweep 17 degrees and
an anhedral of 11 degrees used to validate the ANN in scaled values. This point performed better
than the baseline case and was not too far from the optimal region. The average, peak-to-peak
moments, and torque coefficient are reduced and there was a 5% increase in vibratory peak-to-
peak moment. The points selected by the GA also lay on the Pareto front as shown in Figure
8.13(b). Again, it can be seen that the objective function method confines the optima to a region
of the design space as opposed to a spread of the best compromise between the design points. The
aerodynamic benefit obtained from the optimisation is due to the change in distribution of the
loads. This is shown in Figure 8.14. Generally, the anhedral off-loads the tip of the rotor for most
of the cycle. This allows the sweep to be reduced which reduces the average pitching moment.

Sweep(deg) Anhedral(deg) Cpitch
m ∆Cm

pitch ∆Cm
vib-pitch CQ OFV Remark

20.0 0.00 1.0000 1.0000 1.0000 1.000 0.000 original

20.0 15.00 0.7485 0.8145 1.1245 0.906 0.183 best in initial
population

17.1 11.00 0.7594 0.8239 1.0525 0.933 0.209 best new design
by GA

Table 8.4: Comparison of optimised and original UH60-A rotor blade in terms of pitching moment per-
formance.

Figure 8.12: ANN prediction for pitching moments of a blade with varying sweep and anhedral. Values
were scaled with original blade of 0 deg anhedral, 20 deg sweep. Black dots on the plot are data used for
training the ANN. GA selections are shown as red dots.

(a) (b)

Figure 8.13: (a) Genetic algorithm results, (b) Comparison between Pareto front optimisation and objec-
tive function selection.
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Ψ = 70o

Ψ = 100o

Ψ = 150o

Ψ = 340o

Figure 8.14: Cp plots at different azimuth angles for the original (SW20AN0) and validation point
(SW17.1AN11) UH60 rotors at the swept part of the blade, where R = 15.5.
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8.6 Hover Performance

To ensure that the optimised blade for forward flight does not compromise the performance in
hover, the rotor with 17 degrees sweep and 11 degrees anhedral was analysed in hover. In addition,
its twist was optimised for hover performance. The original blade had a twist of 16 degrees. In
addition, a twist of 21 and 11 degrees was analysed using the HMB time marching method. As in
the hover case in chapter 7, the optimisation was for maximising the FM over a range of thrust
values. A database of 9 values were used i.e. three collective settings for each twist distribution.
Table 8.5 shows the results.
It can be seen that the optimised blade performs better than the original blade even with the

Sweep Anhedral Twist CT CQ FM

17.1 11 11 2.20E-002 2.46E-003 0.646576
17.1 11 11 1.50E-002 1.11E-003 0.760250
17.1 11 11 9.78E-003 5.89E-004 0.707279

17.1 11 21 2.20E-002 2.05E-003 0.767487
17.1 11 21 1.49E-002 1.06E-003 0.785730
17.1 11 21 1.02E-002 6.20E-004 0.714826

17.1 11 16 2.20E-002 2.11E-003 0.744721
17.1 11 16 1.49E-002 1.07E-003 0.786982
17.1 11 16 9.94E-003 5.90E-004 0.721870

20 0 16 2.20E-002 2.25E-003 0.700278
20 0 16 1.50E-002 1.10E-003 0.767443
20 0 16 9.85E-003 5.96E-004 0.706070

Table 8.5: Initial CFD database for Hover Optimisation.

same twist distribution in terms of both FM and CQ. An ANN was trained to predict the FM
based on the thrust and these predicted values were used to create a database to train the ANN
for the optimisation function parameter: FMmax and ∇FM. These predictions are shown in Figure
8.15. The ANN surface created for FM against collective and twist can be seen in Figure 8.16(a).
The optimisation function was as follows:

OFV = 0.48FMmax − 0.52∆FM − 0.04 (8.20)

Once the GA was run, the optimum was found to be approximately 14.5 degrees of twist, a
difference of -1.5 degrees from the original twist distribution as shown in Figure 8.16(b). As can
be seen, the change in the OFV around that value of twist changes very little with twist. Therefore,
it can be assumed that the hover performance is improved with the new planform design. This is
expected, as it is well-accepted that in hover, less sweep and more anhedral benefits the rotor13 .

FMmax ∇FM

Figure 8.15: ANN predictions of FMmax and ∇FM.
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(a)

(b)

Figure 8.16: (a) ANN prediction of the FM, (b) Optimum twist distribution for hover of the blade
optimised for forward flight.
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Chapter 9

Fuselage Parameterisation and
Optimisation

Fuselage drag is a major contributor to the overall drag of a helicopter because of its bluff, not
streamlined, shape and its additional components such as non-retractable landing gear, weapons,
rear-facing surfaces etc. Also, helicopters tend to yaw and fly at some pitch which makes it difficult
to obtain a streamlined fuselage at all conditions146 .
At low speeds, the effect of the rotor wake on the fuselage also becomes significant104 and further
interactional effects contribute to the drag.

9.1 Grid Generation

For the grid generation, standard multi-block topologies (as described in Section 2.3) were gen-
erated using ICEM-Hexa and these were projected on the fuselage shapes. The system for HMB
makes use of the ICEM-Hexa scripting language to generate geometries in an easy-to-use fashion.
These are combined with pre-existing multi-block topologies to produce the meshes.
The outline of the mesh generation process is as follows:

• Step 1: Components of a generic fuselage are generated using ICEM replay files (extension
.rpl) from parameterisation coefficients. Example of such a script can be found in Appendix
B.8.1.

• Step 2: An ICEMCFD replay file loads the components in ICEM and produces points, curves
and surfaces as shown in Figure 9.1.

• Step 3: A pre-defined topology is loaded in a far-field domain as shown in Figure 9.1.

• Step 4: The blocks are then re-associated with the geometry.

• Step 5: The mesh is exported to HMB format.

The replay files were generated using a fortran code129 . This code (Appendix B.8.3 - B.8.2) reads
in a set of parameterisation coefficients and creates a set of geometry points and an ICEMCFD
replay file. The replay file can be run in ICEMCFD where it opens the point geometry created
by the fortran code and creates the surfaces of the fuselage body. Depending on the geometry,
this program has the ability to create matching patch surfaces or full lofted surfaces. Also, if
point data is directly available, the program can read this data directly and create the replay
files. It also has the ability to close the ends of the fuselage with a surface or at a point. Then
another replay file builds the far-field geometry around the fuselage after which the blocking can
be associated and the mesh generated.

This parameterisation method was applied to the ROBIN104 and ROBIN-mod710 bodies. Grids
were generated and some initial results were obtained which can be found in Appendix C. However,
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to demonstrate the optimisation process on a fuselage body, they were not selected in preference
to the recent results from JAXA on their JMRTS fuselage7 . This body was parameterised using
the same technique for the ROBIN fuselage and the optimisation was performed using some of
these parameters.

Number of blocks 160
Number of cells 3.3 million
Wall spacing 1× 10−5

Table 9.1: Table summarising mesh properties for the fuselage.

(a)

(b)

Figure 9.1: (a) Step 2 and (b) Step 3 of the mesh generation process demonstrated with the ROBIN body.
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9.2 JAXA JMRTS Fuselage

The JMRTS (JAXA Multi-purpose Rotor Testing System) fuselage (Figure 9.2) developed by
JAXA is a generic fuselage designed for investigating the aerodynamics of a rotor/fuselage in for-
ward flight for a less aerodynamic fuselage than the ROBIN. Here, it is used as a demonstration
of the capability of this optimisation procedure, specifically the parameterisation part, to improve
the drag characteristics of a simplified fuselage. The conditions of flight are those used to obtain
the experimental data i.e. Mach number of 0.175, Re = 1.1 million and an angle of attack of -2
degrees7 .

The fuselage was parameterised using the method described in Section 3.2.3. For the JAXA

Figure 9.2: JAXA JMRTS fuselage in the wind tunnel showing that the isolated fuselage data was obtained
with the hub grips on7 .

JMRTS fuselage, 10 segments were used with 6 variables (8 coefficients each) in each segment, to
represent the shape. For each segment, the additional parameter, Nlw was employed, since the
curvature on the lower surface is different to that on the upper surface. The parameters are given
in Table 9.2. The parameters modified to alter the shape are in italics. The value in bold is the
control parameter as explained later.
The comparison between the recreated shape and the original shape can be seen in Figure 9.3
which also includes the experimental data on the top surface of the fuselage. The separation at the
rear of the fuselage does not occur due to the lack of the hub on the fuselage, which was present in
the experimental data. The pressure distribution at a number of stations along the longitudinal
axis is also shown in Figure 9.4. An initial solution of the original geometry was obtained and the
results showed that the front area of the fuselage (x = -0.68 to x = -0.4) produced approximately
61% of the total pressure drag, the doghouse area (x = -0.4 to x = -0.2) produced approximately
19% of the pressure drag and the back slant (x = 0.2 to 0.4), approximately 17%. This suggests
that the front area of the fuselage could benefit from aerodynamic optimisation. The drag values
were calculated by integrating the pressure and viscous forces over the surface of the body.
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Figure 9.3: JMRTS Fuselage Cp distribution along Y=0 (centerline). Freestream Mach number is 0.175,
Reynold’s number is 1.1 million and the angle of attack is -2 degrees. The mesh size is about 3 million
cells.

Figure 9.4: Pressure distribution comparison between the original and the parameterised shape.
Freestream Mach number is 0.175, Reynold’s number is 1.1 million and the angle of attack is -2 degrees.
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9.3 Surface Parameterisation

Parameter C1 C2 C3 C4 C5 C6 C7 C8

Part 1: x = 0.015 to 0.06, ∆x = 0.02

H 0.300 -62.60 -0.150 0.700 4.000 -0.210 1.500 1.001
W 0.965 -0.950 -0.400 0.400 1.800 0.035 0.420 1.800
Yo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Zo 0.050 -0.050 0.000 1.000 1.000 0.000 0.200 1.001
Nup 2.000 0.080 0.000 0.400 1.000 0.000 0.000 1.000
Nlw 2.000 -0.064 0.000 0.400 1.000 0.000 0.000 1.000

Part 2: x = 0.06 to 0.24, ∆x = 0.05

H 0.460 -0.770 -0.500 0.700 2.500 0.000 0.000 1.000
W 0.960 -1.000 -0.400 0.400 1.800 0.055 0.410 1.800
Yo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Zo 0.006 0.020 -0.240 1.000 1.000 0.000 0.000 1.000
Nup 2.000 0.080 0.000 0.400 1.000 0.000 0.000 1.000
Nlw 2.100 -0.230 0.000 0.400 1.000 0.000 0.000 1.000

Part 3: x = 0.24 to 0.30, ∆x = 0.05

H 0.345 2.000 0.000 0.700 3.500 0.000 0.000 1.000
W 0.950 -1.000 -0.400 0.400 1.800 0.055 0.410 1.800
Yo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Zo 0.009 3.500 -0.250 1.000 2.000 0.000 0.000 1.000
Nup 2.000 0.080 0.000 0.400 1.000 0.000 0.000 1.000
Nlw 2.000 -0.064 0.000 0.400 1.000 0.000 0.000 1.000

Part 4: x = 0.30 to 0.44, ∆x = 0.05

H 0.400 —1.645— -0.220 0.920 1.500 0.000 0.000 1.000
W 0.446 -1.000 -0.460 0.500 4.000 0.000 0.000 1.000
Yo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
Zo -0.005 0.850 -0.220 0.920 1.500 0.005 0.855 1.001
Nup 2.200 3.403 -0.280 0.200 2.000 0.000 0.000 1.000
Nlw 1.500 0.690 0.000 0.400 1.000 0.000 0.000 1.000

Part 5: x = 0.44 to 0.58, ∆x = 0.06

H 0.620 -3.950 -0.560 0.920 2.500 0.000 0.000 1.000
W 0.450 -1.000 -0.460 0.500 4.000 0.000 0.000 1.000
Yo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
Zo 0.099 -2.800 -0.560 1.000 2.500 0.000 0.000 1.000
Nup 3.866 0.800 -0.280 0.200 2.000 0.000 0.000 1.000
Nlw 1.550 0.650 0.000 0.400 1.000 0.000 0.000 1.000

Part 6: x = 0.58 to 0.88, ∆x = 0.05

H 0.620 -0.070 -0.580 1.000 2.000 0.000 0.000 0.000
W 0.448 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Yo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Zo 0.099 -0.005 -0.580 1.000 2.000 0.000 0.000 0.000
Nup 5.600 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Nlw 1.400 1.000 0.000 1.000 0.000 0.000 0.000 0.000

Part 7: x = 0.88 to 1.16, ∆x = 0.05

H 0.612 -1.000 -0.880 1.100 1.500 0.000 0.000 1.000
W 0.450 -0.525 -0.800 1.100 2.500 0.000 0.000 1.000
Yo 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Zo 0.100 -0.400 -0.880 1.000 1.500 0.032 6.500 0.500
Nup 5.750 -10.00 -0.800 1.100 1.000 0.000 0.000 0.000
Nlw 2.680 -0.530 -0.600 0.500 1.000 0.000 0.000 0.000

Continued on Next Page. . .
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Table 9.2 – Continued

Parameter C1 C2 C3 C4 C5 C6 C7 C8

Part 8: x = 1.16 to 1.26, ∆x = 0.05

H 1.000 -1.300 -0.900 1.100 1.000 0.312 0.360 0.500
W 0.450 -0.525 -0.800 1.100 2.500 0.000 0.000 1.000
Yo 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Zo 1.000 0.290 -1.270 0.800 1.000 -0.094 0.120 0.330
Nup 3.750 -2.805 -0.665 1.100 1.000 0.000 0.000 0.000
Nlw 2.750 -0.580 -0.600 0.500 1.000 0.000 0.000 0.000

Part 9: x = 1.26 to 1.51, ∆x = 0.05

H 0.445 -1.400 -1.120 0.800 2.500 0.000 0.000 1.000
W 0.410 -3.400 -1.000 1.100 3.500 0.000 0.000 1.000
Yo 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Zo 0.027 0.012 -1.280 1.000 1.000 0.000 0.000 0.000
Nup 2.600 -0.804 -0.800 1.100 1.000 0.000 0.000 0.000
Nlw 2.230 -0.550 -0.800 1.000 1.000 0.000 0.000 0.000

Part 10: x = 1.51 to 1.548, ∆x = 0.02

H 0.175 -2.400 -1.530 0.800 1.000 0.000 0.000 1.000
W 0.142 -2.500 -1.530 1.100 1.000 0.000 0.000 1.000
Yo 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000
Zo 0.027 0.040 -1.280 1.000 1.000 0.000 0.000 0.000
Nup 4.900 -4.404 -0.800 1.100 1.000 0.000 0.000 0.000
Nlw 2.300 -0.600 -0.800 1.000 1.000 0.000 0.000 0.000

Table 9.2: Parameters for the JMRTS Fuselage by JAXA.
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(a)

(b)

Figure 9.5: (a) The parts along the x-axis that make up the parameterised JAXA fuselage, (b) The
fuselage grid position showing x coordinate definitions (this is translated compared to Figure 9.5(a) so that
the rotor centre is at the origin).

Parts 1, 2, 3 and 4 define the front of the fuselage up to the point where the wind screen
would end as shown in Figure 9.5. In the actual geometry, however, the fuselage is translated so
that the rotor centre is at the origin as shown in Figure 9.5(b). The optimisation objective is to
improve the drag characteristics of the fuselage by modifying the slope of this front area whilst
maintaining the total volume of the fuselage.
To do this, it was decided to use the gradient of part 4 (P4) as the parameter to optimise and
to modify all the other parameters related to the front part of the fuselage in association with its
value, by matching the height (H) and the vertical position (Zo) of each section as well as their
gradients to P4, while constraining these values at P5 and P1. This was carried out as follows:
First, a new value for C2 of H, at part P4 (P4.C2∗) is defined. Then P4.C1∗ is found so that the
height at x = 0.44 is matched to that of P5 using Equation 9.1 since this coefficient has direct
control over the height.

P4.C1∗ = HP5
x0.44 − P4.C2∗

(
0.44 + P4.C3

P4.C4

)P4.C5

(9.1)
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Then using these two new coefficients, the height of P4 and its gradient, at x = 0.30, can be found.

HP4∗
x0.3 = P4.C1 + P4.C2

(
0.30 + P4.C3

P4.C4

)P4.C5

(9.2)

∇HP4∗
x0.3 =

P4.C5P4.C2∗

P4.C4

(
0.30 + P4.C3

P4.C4

)P4.C5−1

(9.3)

C1 and C2 for P3 can then be found by matching the height and gradient of P3 to the new values
for P4 at x = 0.30.

P3.C2∗ =
∇HP4∗

x0.3P3.C4

P3.C5
(
0.30+P2.C3

P2.C4

)P2.C5−1
(9.4)

P3.C1∗ = HP4∗
x0.3 − P3.C2∗

(
0.30 + P3.C3

P3.C4

)P3.C5

(9.5)

Similarly to Equations 9.3, the gradient and height can be found with the new coefficients at x =
0.24 for P3.
Now for P2, the gradient and height needs to also be matched to P1 at x = 0.06, where they
meet. Therefore, to satisfy four constraints, four unknowns and equations are required. The four
unknowns selected are C1, C2, C3 and C5 i.e. C4 is kept constant at a non-zero value. The
equations to match are shown below:

∇HP3∗
x0.24 =

P2.C5∗P2.C2∗

P2.C4

(
0.24 + P2.C3∗

P2.C4

)P2.C5∗−1

(9.6)

∇HP1
x0.06 =

P2.C5∗P2.C2∗

P2.C4

(
0.06 + P2.C3∗

P2.C4

)P2.C5∗−1

(9.7)

HP3∗
x0.24 = P2.C1∗ + P2.C2∗

(
0.24 + P2.C3∗

P2.C4

)P2.C5∗

(9.8)

HP1
x0.06 = P2.C1∗ + P2.C2∗

(
0.06 + P2.C3∗

P2.C4

)P2.C5∗

(9.9)

For simplicity, this is done iteratively, by first selecting a value for P2.C5H∗. Then by dividing
Eqn. 9.6 by Eqn. 9.7, P2.C3H∗ can be found as

P3.C3∗ =

0.06

(
∇HP3∗

x0.24

∇HP1
x0.06

)1/(P3.C5∗−1)

− 0.24

1−
(
∇HP3∗

x0.24

∇HP1
x0.06

)1/(P3.C5∗−1)
(9.10)

Then C2 and C1 can be found using Eqn. 9.6 and 9.8 respectively, as shown below:

P2.C2∗ = −
(
∇HP3∗

x0.24P2.C4

P2.C5H∗

)(
P2.C4H

0.24 + P2.C3H∗

)P2.C5H∗−1

(9.11)

P2.C1∗ = HP3∗
x0.24 − P2.C2∗

(
0.24 + P2.C3∗

P2.C4

)P2.C5∗

(9.12)

By subtracting Eqn. 9.9 from Eqn. 9.8, Eqn.9.13 is obtained.

P2.C2∗

[(
0.24 + P2.C3∗

P2.C4

)P2.C5∗

−
(
0.06 + P2.C3∗

P2.C4

)P2.C5∗
]
= HP3∗

x0.24 −HP1
x0.06 (9.13)

The LHS of Eqn.9.13 should equate to the RHS with the new values of C2, C1, C3 and C5 while
C5 is changed iteratively till they converge.
The next part is to modify P1 so that it matches the gradient and the height at x = 0.06 and
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matches the height at x = 0.015. Again, there are three unknowns required to satisfy three
conditions. C3, C6 and C7 were used as the unknowns with the following equations:

HP2∗
x0.06 = P1.C7∗

[
P1.C1 + P1.C2

(
0.06 + P1.C3∗

P1.C4

)P1.C5
]1/P1.C8

+ P1.C6∗ (9.14)

HP1
x0.015 = P1.C7∗

[
P1.C1 + P1.C2

(
0.015 + P1.C3∗

P1.C4

)P1.C5
]1/P1.C8

+ P1.C6∗ (9.15)

∇HP1
x0.06 =

P1.C7∗P1.C5P1.C2

P1.C8P1.C4

[
P1.C1 + P1.C2

(
0.06 + P1.C3∗

P1.C4

)P1.C5
](1/P1.C8−1)

(9.16)

×
(
0.06 + P1.C3∗

P1.C4

)P1.C5−1

(9.17)

Subtracting Eqn.9.15 from Eqn.9.14,

HP2∗
x0.06 −HP1

x0.015 = P1.C7

(P1.C1 + P1.C2

(
0.06 + P1.C3∗

P1.C4

)P

1.C5

)1/P1.C8

−

(
P1.C1 + P1.C2

(
0.015 + P1.C3∗

P1.C4

)P

1.C5

)1/P1.C8


P1.C6∗ = HP2∗
x0.06 − P1.C7∗

(
P1.C1 + P1.C2

(
0.06 + P1.C3∗

P1.C4

)P1.C5
)1/P1.C8

(9.18)

By starting with an initial guess for C3 and iteratively solving the above equations for C6 and
C7, the final values for these three coefficients can be obtained.

Once the heights have been modified, the next step was to modify the Zo coefficients so that
the lower surface of the fuselage stays the same as the original. For P1 and P4, C6 and C7 are
modified. For P2 and P3, C1 and C2 are modified. The new value of Zo at a particular station,
was found by finding half the difference between the new and the old height at that station i.e.

Z∗ = Z + 0.5 (H∗ −H) (9.19)

Then C1 and C2 were found as follows:

C2∗ =
Z∗
x1 − Z∗

xo(
0.24+C3

C4

)C5 −
(
0.06+C3

C4

)C5
(9.20)

C1∗ = Z∗
x1 − C2∗

(
0.24 + C3

C4

)C5

(9.21)

And C6 and C7 as follows:

C7∗ =
Z∗
x1 − Zxo(

C1 + C2
(
0.06+C3

C4

)C5
)1/C8

−
(
C1 + C2

(
0.015+C3

C4

)C5
)1/C8

(9.22)

C6∗ = Z∗
x1 − C7∗

(
C1 + C2

(
0.06 + C3

C4

)C5
)1/C8

(9.23)

Figure 9.6 shows the effect of changing P4.C2∗. The original is the red surface, while the white
has a lower value and the cyan a higher value. Notice that at the front, the lower coefficient value
takes up a greater volume (it is the outer most surface), whereas at the rear, the higher coefficient
takes up a greater volume (the cyan has the outermost surface). This is so that the full volume
of the body is kept constant and was carried out by modifying the width of the entire fuselage.
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Figure 9.6: JMRTS fuselage shape comparison between parameterised original, coefficient C2 = 1.645
(red), one with coefficient C2 = 1.24 (white) and one with coefficient C2 = 2.0 (cyan). The CL for all of
these bodies was approximately 0.00012 to 0.00013. The CD varied from approximately 0.0251 to 0.0267
and the CM (about the origin which is where the hub is centred) was negligible (of the order of 10-5).

9.4 JMRTS Optimisation Results

The parameterised body was compared to the original JMRTS fuselage shown previously in Figure
9.3. It shows the Cp distribution of the original and parameterised body along with the experi-
mental data. Both sets of data fit quite close to each other. They also fit the experimental data
quite accurately except for the rear part of the fuselage. This is because the isolated fuselage
experiments were carried out with the hub grips still on and rotating, whereas the CFD solution
was obtained without the hub grips and blade.
The overall drag of the original body was also very close to the parameterised shape as shown
in Table 9.3. This suggests that the coefficient of Table 9.2 can accurately represent the JMRTS
shape and that the parameterised body can be used in the optimisation process to represent the
JAXA JMRTS fuselage.

In addition, to allow for the stagnation points near the front and rear of the fuselage to be
somehow closer to reality since an isolated fuselage computation would have no influence from
the rotor, an actuator disk (AD) was added. The AD simulates the effect of a rotor by creating a
pressure difference on a single plane inside the flow147 . ADs have been found to give reasonably
correct predictions for the effects of rotor flows on fuselages147 if modelled well. In this case, the
employed AD was simply a uniform load distribution and produced a CT value similar to set-
tings of the JAXA experiments7 . More details on the AD method can be found in the Technical
Notes148 . The disk was defined by its radius, centre and thickness as well as the CT and µ of the
rotor. The change in dimensionless pressure across the disk is then given by

∆P = µ2CT (9.24)

The overall effect of the AD was to increase the magnitude of drag as shown in Table 9.3 but
this resulted in a more realistic flow-field around the fuselage. Figures 9.7 compares the CP dis-
tribution along the centre of the fuselage with and without the AD. The separation on the upper
surface can also be seen in Figure 9.8. Figures 9.9 and 9.10 are qualitative visualisations of how
the flow is deflected by the AD and the vortices formed.
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Figure 9.7: Pressure distribution comparison of the parameterised fuselage with and without the actuator
disk. CT = 0.0047, µ = 0.16.

without AD with AD

Figure 9.8: Flow visualisation of separation occuring at the rear of the JMRTS fuselage. CT = 0.0047, µ
= 0.16, M∞ = 0.175.
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Z/L = -0.1 no AD Z/L = -0.1, AD

Z/L = -0.2 no AD Z/L = -0.2, AD

Figure 9.9: Flow visualisation through the actuator disk. Contour colours show CP. The actuator disk
centre is at Z = 0. CT = 0.0047, µ = 0.16
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X/L = -0.38 X/L = -0.22 X/L = 0.0

no Actuator Disk (AD)

with Actuator Disk (AD)

X/L = 0.42 X/L = 0.98 X/L = 2.0

no Actuator Disk (AD)

with Actuator Disk (AD)

Figure 9.10: Secondary flow visualisation at sections along the fuselage. Contour colours represent CP.
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9.5 Drag Optimisation Results

9.5.1 Preliminary Drag Results

To obtain a general idea of which part of the fuselage to optimise, a modified fuselage was created
that reduced the gradient of the windscreen area as shown in Figure 9.11. Figure 9.12 also shows
the Cp distribution for some stations along the centreline for both fuselages. The pressure slices
amplify the differences between the two shapes.

The total drag (pressure and friction) for the front part of the original, parameterised and modi-
fied shapes is shown in Table 9.3. As a result of the modification, a slight increase of the volume
of the body was also obtained. This increase in volume of the body caused by the change in shape
was approximately 0.8% and was combined with a 0.2% decrease in surface area. This shows that
significant drag improvements can be made for an almost insignificant change in the total volume
of the body.

Figure 9.11: Cp distribution along the centreline for the parameterised and the modified JAXA bodies.

9.5.2 Optimisation of the Parameters

A number of variations of the JMRTS fuselage were made by modifying the P4.C2∗ coefficient
of the parameterisation technique. Figure 9.13 shows some of these with their pressure contours.
The stagnation point remained constant with a maximum displacement of approximately 4 mm
between the two extreme designs. Each of them was computed with an acutator disk having a
CT of 0.0047 and µ = 0.16. For each of these, the drag coefficient at the front of the fuselage i.e.
up to and including the windscreen area, was calculated and the data are shown in Figure 9.14.
Since there is only one parameter to optimise for, no Pareto front is obtained and the selection
is simply the one with the lowest drag i.e. P4.C2∗ = 1.24. The polar plot of this fuselage is
compared to that of the original fuselage i.e. P4.C2∗ = 1.645 in Figure 9.15. Against both angle
of attack and lift coefficient, it can be seen that the optimised fuselage has a lower drag for the
same lifting performance.
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(X/L = -0.15) (X/L = -0.20) (X/L = -0.25)

(X/L = -0.30) (X/L = -0.40) (X/L = -0.50)

Figure 9.12: Cp distribution differences along the fuselage of the original parameterised fuselage and the
modified one (red is modified and blue is parameterised original).

Description CD CL CMy

Original full body (no AD) 0.02206 0.000474 -0.000201
Parameterised full body (no AD) 0.02378 -0.001412 0.000600
Original full body with AD 0.02710 -0.000247 0.000123
Parameterised full body with AD 0.02689 0.000105 0.000194

Original front fuselage 0.005816 ≃0 N/A
Parameterised front fuselage 0.005732 ≃0 N/A
Modified front fuselage 0.004060 ≃0 N/A
Original front fuselage with AD 0.033378 ≃0 N/A
Parameterised front fuselage with AD 0.033129 ≃0 N/A
Modified front fuselage with AD 0.032805 ≃0 N/A

Table 9.3: Comparison of drag for the original, parameterised and modified JMRTS fuselages. The front
is defined as the area containing the front cone and front slope i.e. up to x = -0.2 (or 0 to 0.44 in the
parameter table, Table 9.2).
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P4.C2∗ = 1.24 P4.C2∗ = 1.4

P4.C2∗ = 1.645 P4.C2∗ = 2.0

Figure 9.13: CP variation for a selection of parameter values.

Figure 9.14: Variation of drag coefficient for the front of the fuselage with change in parameterisation
coefficient, C2. The original body has a parameterisation coefficient of 1.645.
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Figure 9.15: Polar plot of the optimised and original showing Drag vs Angle of attack and Lift vs Drag
coefficient. The green curve is for the original and the red for the optimised.
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Chapter 10

BERP-like Tip Optimisation

The BERP tip was designed for high speed forward flight without compromising hover16 . The
aim was to reduce transonic effects like drag rise and to increase rotor thrust by delaying stall
using the planform and aerofoil selections9 . The problems associated with this flight regime, are
associated wth the fact that the effects of compressibility such as transonic flow and shockwaves
become significant especially on the advancing blade. Typically thin aerofoils are used, but these
tend to stall more easily at high angles of attack which occur on the retreating side.

The first step in the design of the BERP was the aerofoil selection. The aerofoils were selected
such that thinner sections could be used to enable higher forward flight speeds. Camber was
introduced to improve the stall capability of the blade on the retreating side (the aft-loaded RAE
9645)9 . However, with camber comes increased downward pitching moments alleviated by using
an aerofoil that counters the pitching moment inboards i.e. one with reflex (the RAE 9648). This
resulting blade behaved well in terms of control requirements and twist loads149 . The tip aerofoil
used was the RAE 9634 which behaves well in transonic conditions.
The planform was then optimised to reduce high Mach number effects by first sweeping the tip of
the blade back. This moves the aerodynamic centre of the swept part backwards causing control
problems in the pitch axis. To counteract this, the swept part was translated forward which in-
troduces a notch on the leading edge of the blade. The notch corners were smoothed to avoid flow
separation. A “delta” tip was also incorporated so that a stable vortex formed at higher angles
of attack on the retreating side to delay stall9 .

Some of the beneficial characteristics of the blade are that the blade stall occurs first inboards of
the notch and does not spread outwards. Favourable pressure gradients are observed outboard of
the notch9 . This is because at high angles of attack, such as at the retreating side, the vortex
formed travels around the leading edge and the flow over the swept part remains attached and
stable at large angles of attack as shown schematically in Figure 10.1. The BERP blade shows
similar performance to a standard rotor blade at low speed flight, but superior performance in
forward flight due to the absence of drag rise and flow separation on the retreating side due to the
improved incidence capability150 . The strong shock inboard of the notch does not progress out-
boards as it would normally do, therefore alleviating early shock induced separation even though
the twist is high to maintain hover performance150 . Anhedral in the tip was incorporated because
it was found that the moment at the tip about the pitch axis was greatly increased due to a local
lift about the tip edge150 . In hover, the FM was improved due to the minimisation of blade area
and overall, there were no penalties in hover performance. In the BERP IV version, the twist
was optimised for hover to improve the hover performance without increasing the risk of high
vibration149 .
Further work by Srinivasan et al.,151 investigated the influence of planform on airloads in hover by
comparing a UH60-A, a rectangular UH60-A and a high-twist BERP blade. The BERP produced
approximately the same FM with more thrust for the same collective and minimal shock-induced
separation was observed in comparison to the UH60-A as well as a more tightly braided stable tip
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vortex.

The BERP planform design is restricted, but based on the estimated information given in some
of the literature,152 a BERP-like tip was developed and used. Some additional details on the
planform can also be found in Srinivasan et al.151 such as that the notch starts about 80% of the
span. The aim of this optimisation process is to quantify the improvements that a BERP-like tip
can have on a typical high speed forward flying rotor. Such rotors tend to have swept tips and
thin sections outboards on the rotor. The base rotor selected here is made of two sections, the
HH-02 and the NACA 64A-006 at the tip (shown in Figure 10.2) and has a sweep of 20 degrees
initiated at r/R = 0.92. It has an AR of approximately 13.7 and linear twist of -9 degrees. The
optimisation was carried out primarily for forward flight, although hover conditions was analysed
and constrained.

Figure 10.1: Vortex along the leading edge for the BERP tip8 .

(a)

(b)

Figure 10.2: (a) Cross section of the HH-02 and the NACA 64A-006 aerofoils used on this blade. The
baseline twist is 9 degrees linear. (b) the original planform of the BERP rotor obtained from Brocklehurst9 .
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10.1 Parameterisation Technique

The BERP-like planform parameterisation technique is described in Section 3.2.2. Figure 10.3
shows some example of the three parameters to be varied viz. the notch gradient, the notch
position and the sweep of the BERP-like tip.

Varying the gradient of the notch, Varying the notch position,
sweep = 0.15, notch position = 12 sweep = 0.15, notch gradient = 35

Varying the tip sweep angle,
notch gradient = 25, notch position = 12

Figure 10.3: Planform view of the parameter changes to the geometry.

Having three values for each of the three parameters results in a design space containing 27
design points as shown in Figure 10.4. The reason why the design space is not a regular cube
shape, is due to the values of sweep. This is because when the notch initiation point is varied,
to get the tip point to be in the same place for the highest sweep value for example, the sweep
gradient has to be changed accordingly, since it is defined by a parabola. This is shown in Figure
10.5 where the red curve represents a BERP with notch position at 12 and sweep parameter 0.25.
To obtain the same sweep with a BERP tip with notch position at 11.5, a sweep parameter of
0.185 must be used instead of 0.25.
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Figure 10.4: Sample space for the planform of the BERP-like rotor.

Figure 10.5: The value of the sweep parameter must be changed to with the notch position for the same
sweep.
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Base rotor with BERP modification (b) Varying the gradient of the notch

(c) Varying the sweep (d) Varying the initiation of the notch

Figure 10.6: Visualisation of the three parameter changes to the blade tip geometry in ICEMCFD.
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10.2 Grid and Geometry Generation

Figure 10.6 shows how a swept rotor tip can be transformed into a BERP-like tip and the effect
of varying the BERP parameters. The base rotor is made up of two sections - the HH-02 inboard
(up to r/R = 0.92) and the NACA 64A-006 at the tip (r/R = 1). The aerofoil is linearly blended
towards this latter section. This rotor has a rectangular tip swept back by 20 degrees, shown
in Figure 10.7. When the BERP planform is applied to this tip, the non-linear variation of the
chord means that the thickness changes non-linearly as well. To maintain the thickness so that it
decreases linearly, from 9.6% (thickness of the HH-02) to 6% (thickness of the NACA 64A-006),
sections are cut from the base rotor such that when they are scaled to the chord length required,
they have the thickness value that satisfies the linear variation. The problem with this method is
that the point of maximum thickness for each of these sections varies non-linearly and therefore
the blade surface appears to be bumpy. To overcome this, the notch section is blended from the
HH-02 to a NACA-64A section of the appropriate thickness and then the rest of the tip is built
with NACA-64A sections of the required thickness so that at the tip, the thickness is 6%.
Another issue that arises is that the HH-02 aerofoil has a tab whilst the NACA 64A-006 does
not. So a tab is introduced for the NACA64A and is kept constant till the tip, where the tip is
rounded off. The tab is introduced by cutting the aerofoil curves at about 20% from the trailing
edge and then rotating the latter part of the curves in the longitudinal axis of the blade so that it
adds the required thickness for the tab. The curve is then blended by point, tangent and radius
to the main part of the curve to remove any kinks.
Also, the twist is removed from where the BERP tip begins, to avoid having a dihedral trailing
edge as shown in Figure 10.8. The trailing edge point is kept at a constant z-value and each
section is twisted so that its chord line (not necessarily its quarter chord point) intersects (or its
extension intersects) the reference pitch axis. This prevents dihedral from occurring.

A number of ICEM replay files are used to automate these steps, but some manual interven-
tion is required in the creation of these grids. The scripts and their usage can be found in the
HMB Technical Note, TN10-BERPGrid153 .

Figure 10.7: Schematic of the original fast flying rotor blade used as an initial point for this optimisation
exercise.

10.2.1 Anhedral

The tip anhedral is implemented as follows. Let us assume that 10 degrees of anhedral is to be
implemented starting from the station r/R = 0.946 to the tip. Then, for each station in between
these two stations (r/R = 0.946 and r/R = 1.0), there will be a ∆z distance by which that section
should be translated downwards (Figure 10.9) which is found as:

∆z = ∆xtanθ (10.1)
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Figure 10.8: Effect of twisting about the quarter chord point (top) or about the quarter chord line
(bottom).

Once each station has been translated, then the stations are joined by curves and surfaces are
created.

10.3 Flight Conditions

The hover flight conditions for the blade were based on a rotor tip Mach number of 0.65 which
was assumed from a tip speed of approximately 220m/s at ISA sea level conditions. The chord of
the blade was 1.75 ft, therefore the Reynolds number was approximately 8 million. The weight of
the aircraft was approximated by assuming a pressure altitude of 0 ft, a free-air temperature of
20o C, a wheel-height of 80 ft to ensure out-of-grounds operations and a torque factor of 1 with
100% rpm. The weight capability at these conditions is approximately 20,000 lb. This results in
a CT of 0.018 based on a rotor radius of 24 ft.

CT =
T

1/2ρA(ΩR)2
=

9000× 9.81

0.5× 1.225× π (7.32)× 2202
= 0.018 (10.2)

For forward flight, the conditions are for high speed at reasonable thrust level. Therefore, the
advance ratio, µ = 0.34, CT = 0.0122. This was obtained from typical maximum speed, minimum
thrust for that speed based on empty weight + 20% or about 6.2 tonnes.
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10 deg

x∆

∆ z

∆ zi

85 deg
blade leading edge

towards blade root

∆ xi

blade tip
rotor sections

Figure 10.9: Anhedral definitions for the BERP tip.
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10.4 Hover Results

The objective for this case, was to obtain a high FM over a wide thrust setting. Therefore the
FM over a range of thrusts was obtained for the original rotor and a BERP variant. Figure 10.10
shows the comparison of these blades for increasing CT /σ. The BERP rotor with the same twist
and anhedral has a better FM at low thrust, but at higher thrust values, its performance drops
to below that of the original rotor. With a higher twist, some of the performance of the original
rotor is redeemed and with an anhedral of 20 degrees implemented, an improved rotor in hover is
obtained.
The reason for this performance trend is that for the BERP rotor, the loading of the blade increases
steeply where the BERP section starts as can be seen in Figure 10.11. Also the loading inboards
is lower than the original rotor. With increasing twist, the inboard loading is increased which
improves the FM. The anhedral reduces the outboard loading and thus the performance of the
BERP blade matches the original rotor blade.

Figure 10.10: Figure of Merit vs. thrust coefficient of the original blade and the BERP variants with
varying twist and anhedral.

Figure 10.11: Lift distribution along the span with varying twist at 13 degrees of collective.
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10.5 Forward Flight Results

The original BERP rotor used aerofoils specifically designed for its overall performance9 . However,
the optimisation here only changes the planform while using generic aerofoil sections. To compare
the effect of the aerofoil on the planform, steady flow 2D results were obtained at a number of
sections and azimuths and compared to the flow of the section on the blade at the same conditions.
This was done by obtaining the section at the rotor and running it as a steady 2D aerofoil to obtain
the same lift coefficient at the same Mach and Reynolds conditions experienced on the rotor. In
this way the downwash angle can be estimated as well even with some caution since 3D effects
are not included.
Figure 10.12 shows the comparison of the aerofoil with the rotor section at r/R = 0.75 at 4 azimuth
angles. It can be seen that the 3-dimensional effects on the rotor section play an important
role in reducing the geometric angle via the downwash increment. The aerofoils also have large
pitching moments especially more outboards on the retreating side as shown in Figure 10.13
and 10.14. This shows the importance of selecting good aerofoils for a BERP-like rotor and
hence why much effort was put in to selecting the RAE aerofoils for the actual BERP rotor. A
dM/dt optimisation similar to the one discussed in154 prior to the planform optimisation would
have likely produced a better rotor. However, regardless of the rotor sections, these aerofoils
have been used in rotorcraft and this case only serves to highlight the planform optimisation.
The high suction peaks of Figures 10.13 and 10.14 at 190 and 280 degrees of azimuth show the
limitation of the employed aerofoils since they are pushed to high lift and high suction peaks.

Azimuth = 10 deg Azimuth = 100 deg Azimuth = 190 deg Azimuth = 280 deg

Figure 10.12: Aerofoil comparison to section on BERP-like rotor at the same conditions before the notch,
green is the 2D aerofoil and red is the rotor section, r/R = 0.75.

Azimuth = 10 deg Azimuth = 100 deg Azimuth = 190 deg Azimuth = 280 deg

Figure 10.13: Aerofoil comparison to section on BERP-like rotor at the same conditions in the middle of
the notch, green is the 2D aerofoil and red is the rotor section, r/R = 0.862.

Azimuth = 10 deg Azimuth = 100 deg Azimuth = 190 deg Azimuth = 280 deg

Figure 10.14: Aerofoil comparison to section on BERP-like rotor at the same conditions after the notch,
green is the 2D aerofoil and red is the rotor section, r/R = 0.918.
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r/R = 0.750

Azimuth (deg) rotor geometric
angle (deg), A

2D incidence for
same Cn (deg), B

“downwash” (deg), A - B

10 13.8571 5.40 8.46
100 15.6783 3.07 15.61
190 12.1430 7.00 5.14
280 17.0265 8.80 8.23

r/R = 0.862

Azimuth (deg) rotor (deg) aerofoil (deg) downwash (deg)

10 22.6805 4.80 17.88
100 14.6000 1.03 13.57
190 10.3370 4.30 6.04
280 15.8830 6.80 9.08

r/R = 0.918

Azimuth (deg) rotor (deg) aerofoil (deg) downwash (deg)

10 10.108 2.30 7.81
100 9.1738 0.55 8.62
190 8.3903 3.80 4.59
280 10.916 6.15 4.77

Table 10.1: Table showing the effective downwash angle at 3 stations on the BERP-like blade; before the
notch, in the middle of the notch and after the notch. Figures 10.12 to 10.14 correspond to this data.
Rotor stands for the rotor section pitch angle (A), aerofoil for the equivalent Cn aerofoil angle (B) and
“downwash” is the difference between A and B.

10.5.1 Tip Sweep Effects

Table 10.2 shows the effect of sweep on the performance parameters of the BERP rotor. There
is considerable loss in thrust with increased sweep. Therefore, for all cases shown, the rotor was
trimmed to give the same thrust of approximately CT /σ = 0.09. These results comparing the
effect of sweep are shown in Figures 10.15 - 10.17 for the results with the highest notch gradient
and the most inboard and outboard notch positions. With more sweep, it can be seen that the
distribution of the lifting load is reduced at the back and outboards on the advancing side, and
is increased at the front of the disk and more inboards on the advancing side. The load is also
distributed more inboards in the spanwise direction at the notch for the blade with a more inboard
notch.
The pitching moment is mostly negative on the advancing side and mostly positive on the retreat-
ing side. With increased sweep, the magnitude of the moment increases (Figure 10.18) since the
moment is calculated about the pitch axis. Also as with M2Cn, a more inboard notch spreads the
moment peaks out.
The torque distribution shows a drop in CQ where the notch of blade is. CQ is highest at the back
of the disk and lowest at the tip in the advancing side. These extremes increase in magnitude with
more sweep. Overall, on the advancing side, the torque reduces with increased sweep and on the
retreating side reaches maximum value. Figure 10.18 shows a 3D view of the load distributions
comparing low and highly swept blade tips for the most inboard and outboard notch BERP-like
tips. The torque distribution shows that the effect of sweep is increased when the notch is more
outboard. The advantage of high sweep on the advancing side and low sweep on the retreating
side is also shown. The moment distribution has similarities to the torque distribution and its
magnitude is much higher at the front and back for the more swept tips. The lifting load distri-
butions differ much less than the other performance parameters.

Figure 10.19 compares the blade loads at 4 azimuth positions and shows the effect of sweep
at each location. As can be seen, high sweep offloads the tip at the back of the disk and increases
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it at the front. On the advancing side, lift is maintained till just after the notch, where the highly
swept blade loses lift quickly. The torque is low for higher sweep for most of the blade. At the
tip, after the notch region, however, it increases rapidly. The pitching moment follows a similar
pattern although the sweep does not have much of an effect inboards.

NE NG SWEEP CT/σ CQ avg M2CM ∆M2CM

After trimming

11.75 28 0.09 0.0905 0.000192 -0.002527 0.010297
11.75 28 0.13 0.0900 0.000191 -0.001640 0.010290
11.75 28 0.21 0.0899 0.000186 -0.000197 0.011147

Table 10.2: Sweep effects on performance comparison. NE is the notch position parameter and NG is the
notch gradient parameter. avg M2CM is over one revolution and ∆M2CM is the peak-to-peak amplitude
over one revolution.
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NE = 11.5 NE = 12

Low Sweep

Medium Sweep

High Sweep

Figure 10.15: M2Cn for the BERP-like rotors with fixed parameters: NE = 11.5 and NE = 12, NG = 35
and variable sweep parameters. The black line indicates the M2Cn = 0 line.
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NE = 11.5 NE = 12

Low Sweep

Medium Sweep

High Sweep

Figure 10.16: M2Cm for the BERP-like rotors with fixed parameters: NE = 11.5 and NE = 12, NG = 35
and variable sweep parameters. The black line indicates the M2Cm = 0 line.
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NE = 11.5 NE = 12

Low Sweep

Medium Sweep

High Sweep

Figure 10.17: M2Cq for the BERP-like rotors with fixed parameters: NE = 11.5 and NE = 12, NG = 35
and variable sweep parameters. The black line indicates the M2Cq = 0 line and the white line indicates
the approximate middle value, M2Cq = 0.2.

156



NE = 11.5 NE = 12

M2Cn

M2Cm

M2Cq

Figure 10.18: M2Cn, M
2Cm and M2Cq for the BERP-like rotors with fixed parameters: NG = 28 and

variable sweep parameters for different notch positions. Red is lowest sweep, blue is highest sweep. The
arrow shows the freestream direction.
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M2Cn M2Cm M2Cq

Azimuth = 0 degrees

Azimuth = 90 degrees

Azimuth = 180 degrees

Azimuth = 270 degrees

Figure 10.19: Comparison at azimuth 0, 90, 180 and 270 degrees of the M2Cn, M
2Cm and M2Cq for

BERP-like rotor with fixed parameters: NE = 11.5 and 12, NG = 28 and variable sweep parameters.
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10.5.2 Effect of Notch Offset

Figure 10.15 - 10.17 also compare the loads when the BERP area of the blade is increased i.e.
when the notch is more inboards. Again, these are trimmed results although not much variation
with notch position occurs in thrust with or without trimming as shown in Table 10.3. The effect
of this parameter is to amplify the effect of the sweep parameter. For example, the redistribution
of lift so that it is reduced at the back and increased at the front caused by sweep is larger in
magnitude when the notch starts more inboard. The same can be seen for moment in Figure
10.16 where the region on the edge of the disk where moment is higher is thinner for the more
outboard notch. For torque, the general trend is an increase with radial position. Where the notch
occurs there is a drop in torque and then a continued increase followed by another drop where the
anhedral occurs. With a more outboard notch, the torque continues to rise prior to reaching the
notch for longer, therefore the latter part of the curve is higher. This can be seen in Figure 10.17
where the value of the reduced region at the notch is not as low when the notch is more outboard.
Also, the torque further out from the notch is higher for the rotor with the more outboard notch.
More inboards, on the advancing side, a decrease in torque is observed over a larger region and
this brings the total value of the torque down as shown in Table 10.3. Figure 10.20 shows that
the total torque on the blade is most affected by notch position on the retreating side.
The table 10.3 also shows that the peak-to-peak moment decreases (also seen in Figure 10.19) but
the absolute average moment over a full revolution increases, the further outboard the notch is.

NE NG SWEEP CQ avg M2CM ∆M2CM

After Trimming

11.50 28 0.185 0.000186 0.000296 0.011556
11.75 28 0.21 0.000186 -0.000197 0.011147
12.00 28 0.25 0.000184 -0.000468 0.010621

Table 10.3: Example of BERP spanwise notch position performance comparison. NE is the notch position
parameter and NG is the notch gradient parameter. avg M2CM is over one revolution and ∆M2CM is the
peak-to-peak amplitude over one revolution. The sweep values differ because the gradient of the parabola
differs when the position of notch changes, but in actual fact, the sweep is the maximum sweep on all three
rotors and it is the same amount of sweep.
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M2Cm

M2Cq

Figure 10.20: Comparisons of the integrated loads, M2Cm and M2Cq for BERP-like rotor with fixed
parameters: NE = 11.5 and 12, NG = 35 and variable sweep parameters.
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10.5.3 Effect of Notch Gradient

Figure 10.21 compares the performance of different notch gradients. The notch gradient has a
smaller influence on the design than the other parameters tested. The difference in the lift and
moment distribution do not change much. With a higher notch gradient, there is a slight increase
in the pitching moment, evident from Table 10.4 where the average moment is slightly higher and
the peak-to-peak value is lower, suggesting that a higher notch gradient provides better perfor-
mance. The torque is not affected much at low sweep, but at higher sweep, notch gradient has
slightly more influence on the torque as shown in Table 10.4 and Figure 10.21.

NE NG SWEEP CT/σ CQ avg M2CM ∆M2CM

12.00 25 0.10 0.0908812 0.000189 -0.002561 0.009611
12.00 28 0.10 0.0906629 0.000189 -0.002464 0.009566
12.00 35 0.10 0.0910765 0.000189 -0.002357 0.009489

11.75 25 0.21 0.0897566 0.000188 -0.000295 0.010960
11.75 28 0.21 0.0898069 0.000186 -0.000197 0.011147
11.75 35 0.21 0.0898057 0.000187 -0.000105 0.011019

Table 10.4: Example of BERP spanwise notch gradient performance comparison. NE is the notch position
parameter and NG is the notch gradient parameter. avg M2CM is over one revolution and ∆M2CM is the
peak-to-peak amplitude over one revolution.
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NG = 25 NG = 35

M2Cn

M2Cm

M2Cq

Figure 10.21: M2Cn, M
2Cm and M2Cq for the BERP-like rotors with fixed parameters: NE = 11.75 and

SW = 0.21 with varying NG. The black line indicates a contour level = 0 line and the white line indicates
the approximate middle value for M2Cq = 0.2.
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10.6 Integrated Loads

Figures 10.22 and 10.23 show the integrated loads of pitching moment and torque over the blade
during one revolution for varying design parameters. The peak-to-peak moment value reduces
with further outboard notch positions and the average moment tends to be more centred around
zero when sweep is higher. The torque seems to be mostly affected by sweep and on the advancing
and retreating side. The torque is reduced more on the advancing side than the increase on the
retreating side. This is because it alleviates the compressibility effects. On the retreating side, the
differences are more subtle. This data suggests that a highly swept blade would be optimal. Hav-
ing a higher notch gradient would also improve the moments and having a notch more inboards
would amplify the effects of the sweep. The quantities of the design parameters that make up the
optimum design are obtained in the next section.
The vibratory pitching moment (defined as the pitching moment less the mean and 1/rev oscil-
lation) in Figure 10.24 shows sensitivity to sweep mostly. However, its effect is captured in the
peak-to-peak moment and hence it is not used in the objective evaluation.

Figure 10.22: M2Cm integrated over the full blade at each azimuth for the BERP-like rotors.

Figure 10.23: M2Cq integrated over the full blade at each azimuth for the BERP-like rotors.

Figure 10.24: Vibratory M2Cm integrated over the full blade at each azimuth for the BERP-like rotors.
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10.7 Planform Optimisation

The original population obtained from the CFD results contained 27 points. The design param-
eters selected were the average pitching moment (Cmavg), peak-to-peak pitching moment (∆Cm)
and the torque coefficient (Cq). The objective function weights were determined such that on
average, each of these parameters had the same influence. This was determined using the data
from the original population which was obtained using the high-fidelity CFD solver. First each
design was scaled with the baseline design case. The baseline case chosen was the BERP most
similar to the typical fast flying rotor as shown in Figure 10.25. The parameters for it are NE =
12, NG = 25, SW = 0.25. The average ratio of Cmavg to ∆Cm was found to be 2.7893:1 and the
average ratio of ∆Cm to Cq was found to be 0.9548:1. Therefore the ratio of Cmavg to ∆Cm to
Cq is obtained as: 2.6634 : 0.9548 : 1.0000. The weight for Cq was then calculated as:

wCq =
2.6634

2.6634 + 0.9548 + 1
= 0.5767 (10.3)

Hence the weight of Cmavg and ∆Cm are given as:

wCmavg
= 0.5767/2.6634 = 0.2165 (10.4)

w∆Cm = 0.5767/0.9548 = 0.6040 (10.5)

Cq was also used as a constraint. Since the rotors were trimmed to a CT/σ = 0.09, CT/σ did not
need to be constrained.
From this data, it was determined that the most influential design parameter was the sweep,
followed by the notch position and then the gradient. ANNs were trained for each of the perfor-
mance parameters as shown in Figure 10.26. These parameters were used to find the optimum
blade using a GA which was compare with the Pareto front shown in Figures 10.27 to 10.29.
The ANNs accuracy was also estimated relative to the change in the performance of the design
obtained using the CFD data. The maximum error in the objective function obtained was found
to be 2.7%.
The comparison of the optimum with the original baseline blade is shown in Table 10.5 for the
trimmed rotors. A much better avg M2Cm was obtained and also a slightly better ∆M2Cm. The
performance of the resulting optimum relative to the baseline design is shown in Figures 10.30,
10.31 and 10.32. The black line indicates the contour line of the baseline design and the red is
the optimum blade design. On the moment plot, it can be seen that the optimised blade has
larger areas of lower moment especially on the retreating side but also on the outboard region
of the advancing side. A similar trend can be seen for the torque plot. Figure 10.32 shows the
difference in the objective function components between the optimum and the baseline design.
For the regions of higher OFV, the areas enclosed by red are larger showing that the optimsed
blade increases the area where performance is good and vice versa for areas of poorer performance.

The hover performance of the optimum blade was measured and compared to the baseline in
Table 10.5. The results were obtained at a collective of 13 degrees. The CT/σ is slightly less than
the baseline design mostly due to the added solidity, but the FM obtained was higher. Figure
10.33 compares the CP distribution for the BERP reference and optimised blade. It can be seen
that the optimised one spreads the loading at the tip over more of the span. Therefore, overall,
the optimised blade has better performance than the baseline blade especially in terms of moment
where the average pitching moment was reduced to approximately a fifth of the baseline designs.
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NE NG SWEEP CT/σ CQ avg M2CM ∆M2Cm

11.75 35 0.21 0.0831761 0.000171 -0.000373 0.010782
After trim 0.0898057 0.000187 -0.000105 0.011019

Baseline 0.0904548 0.000186 -0.000517 0.010832

Hover Performance Comparison

NE NG SWEEP CT/σ FM Collective (deg)

11.75 35 0.21 0.28957 0.6873 13

Baseline 0.30390 0.6543 13

Table 10.5: BERP and baseline case (NE = 12, NG = 25, SW = 0.25) performance comparison related
to Figure 10.30. NE is the notch position parameter and NG is the notch gradient parameter. avg M2CM
is over one revolution and ∆M2CM is the peak-to-peak amplitude over one revolution

Figure 10.25: The baseline BERP-like rotor in comparison to a swept tip design. The parameters for this
rotor are NE = 12, NG = 25, SW = 0.25.

Cq scaled average Cm scaled ∆Cm

Figure 10.26: ANN predictions with training data and GA selection shown for each of the performance
parameters. The white dots are the GA optimal selection and the black dots are the CFD training data
for the ANNs. The dashed line is where the contour level = 1 i.e. the value for the baseline design.

Figure 10.27: Pareto front points compared with GA selection; red is NE = 11.5, green is NE = 11.75,
blue is NE = 12. The white dots are the GA optimal selection and the cyan dots are the Pareto front
solutions.
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Figure 10.28: Pareto front for the BERP-like design.

(a) (b)

Figure 10.29: (a) Pareto front points compared with GA selection; red is NE = 11.5, green is NE = 11.75,
blue is NE = 12, (b) OFV contour colour map in the design space. The white dots are the GA optimal
selection, the cyan dots are the Pareto selection and the black dots are the CFD training data for the
ANNs.
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M2Cm M2Cq

Figure 10.30: Optimum (red contour lines) compared to reference (black contour lines) for M2Cm and
M2Cq.

M2Cm M2Cq

Figure 10.31: 3D view of load distribution for the optimum (red) and the original (blue) rotors.
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Figure 10.32: OFV for the baseline and BERP-like rotor where the black contour lines represent the
reference rotor with parameters: NE = 12, NG = 25, SW = 0.25, and the red lines represent the optimised
rotor with parameters: NE = 11.75, NG = 35 and SW = 0.21 where OFV= −0.2×M2Cm − 0.6×M2Cq.

CP distribution comparison

Planform comparison

Figure 10.33: Cp and planform distribution of the reference (blue) and optimised (red) BERP variant at
high thrust (collective = 13 degrees) in hover.
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Chapter 11

Summary and Conclusions

11.1 Summary of the Optimisation Method

This thesis documents an optimisation method for helicopter rotor blades using Computational
Fluid Dynamics (CFD). The objective was to “tweak” an existing good design to obtain even
more performance out of it. The optimiser allows for high-fidelity CFD computations to be used
to obtain accurate aerodynamic data for the objective, but at the same time, allows for this to
be carried out efficiently by use of a lower order model, or metamodel. The information obtained
from the metamodel is based on interpolation data from the high-fidelity model. This maintains
accuracy and efficiency and makes the method usable for helicopter rotor aerodynamics. The main
reason for this is that the optimisation method is decoupled from the high-fidelity CFD data. The
two are linked through a database. The high-fidelity CFD data is used to populate the database
to create a design space and the optimiser accesses this design space through a metamodel. In
most cases, a parameterisation technique existed, but for some cases, specific parameterisation
techniques had to be developed to create the design space.

The optimiser used was a Genetic Algorithm (GA). The reason for this is that the design space for
rotor aerodynamics especially, is expected to be uneven and hence the likelihood of the optimiser
getting trapped in local optima is high. Evolutionary methods avoid this problem and one of
the most effective of these methods are GAs. GAs for all the cases were coupled with and relied
on metamodels. A number of metamodels were tested, including polynomial and POD based
methods, and the most promising ones were the Artificial Neural Networks (ANNs) and kriging
methods.

Once all of this was put together, the method was demonstrated using a number of cases:

• transonic aerofoil test case in steady flow

• wing planform optimisation in steady flow

• optimal selection of rotor aerofoil sections in unsteady flow

• optimal selection of twist for hovering rotors in steady flow

• forward flying rotor optimisation in unsteady flow in conjunction with hover optimisation
of the same

• optimisation of simplified fuselage bodies for drag reduction

• optimisation of a BERP-like rotor in forward flight constraining hover performance

For the transonic aerofoil case (Chapter 4), the RAE 2822 aerofoil was used and a parame-
terisation technique was created using the Chebyshev polynomial method (described in Section
3.2.1). Three parameters were optimised for high lift to drag ratio while constraining drag and
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drag divergence Mach number. The results showed an 8% increase in L/D with negligible change
in pitching moment and drag divergence Mach number. A version of the Latin Hypercube Sam-
pling method (LHS) was also tested against the full factorial method.

For the wing planform optimisation in Chapter 6, the aim was to obtain elliptic loading by varying
the chord and sweep while maintaining lift and drag. The wing was split into three sections and
their position and width were defined as the five design parameters. Due to the relatively larger
number of parameters, the sampling method used was a version of adaptive fractional factorial
method, where points were added to the database where there was the most promise of finding the
optimum. The results showed a 13% improvement in the elliptic loading and a small improvement
in lift-to-drag while constraining maximum drag.

In Chapter 5 for the rotor section optimisation, dM/dt calculations were performed to simu-
late a rotor section in forward flight. NACA aerofoils were used and the design parameters were
the thickness and camber as defined using the NACA numbering system. The objective was to
reduce the effects of compressibility on the advancing side and of high angle of attack on the
retreating side. This was captured using the moment curve over a full revolution of the rotor
and the average drag. This case was also used to test the effect of the ANN parameters on its
prediction accuracy and to compare the predictions of the kriging and ANN metamodels. The
final design had resulted in over 50% reduction in the average pitching moment and at most, a
37% reduction in average drag both, inboard and outboard, over one revolution.

The optimisation method was then applied to full rotors in hover and in forward flight. Chapter
7 describes a simple rectangular rotor optimisation in hover for high Figure of Merit (FM) over
a range of thrust coefficients. This was obtained by modifying the linear twist of the blade and
measuring the highest FM and the gradient of the FM over a range of collective angles. The
LHS method was tested here and its limitations for small sets of data was shown. The kriging
method was also compared to the ANN for this case. The twist selected was slightly less than the
maximum in the design space. The increase in the maximum FM from the original was 3%, but
the maximum FM changed less with thrust than the baseline which is quantified by the gradient
of the FM against the thrust. This was improved by 7.5%.

Chapter 8 describes the optimisation of the UH60-A rotor sweep and anhedral of the blade tip
in both hover and forward flight. The parameterisation technique ensured that the area of the
tip remained constant and that a smooth surface was maintained where the anhedral occurred.
The objectives were to reduce stall effects on the retreating side and compressibility effects on the
advancing side and the pitching moment was used to capture this via two parameters viz. the
peak-to-peak and the average value over a full revolution. The vibratory pitching moment and
the torque were constrained. The resulting blade had a lot more anhedral and slightly less sweep
resulting in a 6.7% decrease in torque, a 17.6% decrease in the peak-to-peak pitching moment over
a revolution and a 24% decrease in the average pitching moment in one revolution. The hover
performance with the new planform was maintained.

The final rotor case was the BERP-like rotor tip (Chapter 10). Here a parameterisation tech-
nique was defined using a set of equations that captured three design parameters viz. the notch
position, notch gradient and sweep of the tip. Due to the significant change in area, the rotor
was trimmed to ensure the same thrust/solidity of the rotor. The objective was the same for the
forward flight optimisation of the UH60-A rotor. The forward flight conditions were taken from
a typical fast-flying, moderate lift rotor. The hover performance, in terms of FM, with a BERP
modification was maintained by modifying the twist and anhedral. This rotor was then used to
optimise the BERP-like rotor in forward flight and the final design was then analysed in hover to
check for any performance compromise. The objectives were captured using the pitching moment
curves as before, but torque was also included in the objective as well as a constraint. Here, the
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Harmonic Balance method was used to obtain all the forward flight data for the initial design space
as opposed to the time marching method used in all the other cases. This significantly improved
the efficiency of the method. The final blade had a steep notch at about 86% of the span with
high sweep resulting in an improvement in the average pitching moment over a revolution of 80%,
although the peak-to-peak moment was increased by 1.7%. The torque did not change much and
hover performance was maintained.

The method was also applied to fuselage optimisation in Chapter 9. As an example, the JM-
RTS fuselage from JAXA was selected as a suitable test case. The parameterisation used was
a modification of the super-elliptic equation technique used to define the ROBIN fuselage. The
objective was to reduce the drag by changing the angle of the wind screen. This test case was
mainly carried out for development of the parameterisation method. The generation of geometries
is automated in ICEMCFD. Also a very simplified uniform actuator disk was included to simulate
the downwash from the rotor on to the fuselage. A 3.3% reduction in drag was achieved for a
shape that reduced the gradient of the windscreen area.

The conclusions drawn about the method and each of these test cases is explained further in
the next section.

11.2 Conclusions

The CFD database for most of the cases were built using the HMB Time Marching method.
However, the Harmonic Balance method was used for the BERP rotor case because of its much
faster clock time in obtaining high-fidelity results. The HB method used was able to obtain a
snapshot at every 10 degrees of azimuth. The only limitation was the memory required. With
higher number of modes and higher grid resolution, the memory increases rapidly, hence, for the
same number of snapshots as in the TM method, which requires a set number of modes and for
a limited amount of memory, the grid resolution is sometimes reduced. Nevertheless, the results
obtained were shown to be very similar to that obtained by time marching and any change in
values was relative resulting in the same outcome.

The metamodel of choice was mostly the ANN and in some cases, the kriging method. These
two methods were most popular because of their ability to model the design space accurately
without overfitting or underfitting the data with changes in their parameters. Metamodels were
checked aposteriori against HMB solutions. The optimiser developed was a GA. While a number
of different evolutionary techniques could have been used, such as Simulated Annealing, Particle
Swarm etc., from the literature, GAs are one of the most successful techniques in terms of im-
plementation, ability to find the global optimum and relative efficiency. Within the objectives
of this project, it performed well. Future work will include testing it against other non-gradient
techniques.

The parameterisation techniques used were dependent on each case. The choice of parameters
and their values depended on the experience of the user, the objectives required and the initial
design.
For example, in the case of the transonic aerofoil optimisation, the RAE 2822 aerofoil was parame-
terised using Chebyshev polynomials. Six coefficients were required to define the shape. However,
only the first three were optimised as they controlled the thickness, the camber and the position of
maximum camber, which are known to significantly change the lift-to-drag ratio. The final design
had more or less the same thickness and camber but with the camber pushed further backwards
creating more favourable pressure gradients.

For the wing, the parameters were simply the chord length and position at two spanwise sta-
tions and the position of the tip. This effectively controlled the sweep and taper of the wing and
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the objective was to obtain as close to elliptic loading as possible. The final design removed the
forward sweep of the full wing, tapered the end a bit more and maintained the backward sweep
at the tip. This reduced the loading more outboards which resulted in a lift distribution closer to
an elliptic distribution due.

For the rotor section optimisation, a parameterisation technique already existed since NACA
aerofoils were used. Again, the important characteristics chosen were the thickness and camber of
the aerofoils. The optimum selection was for thick, cambered aerofoils, such as the NACA 33015,
inboard of the rotor (r/R = 0.5) and thinner (9% thickness), more symmetrical (9% camber)
aerofoils, outboards (r/R = 0.9). This is a well-known and tested theory since inboards the Mach
number is slower therefore thicker aerofoils can be used. High camber is also advantageous because
of the high angles of attack experienced inboard due to the twist of the blade. Outboards, the
flow is more compressible and so the optimum tends to avoid shock effects. This case was a good
case to use as a starting point to develop the optimisation method since the results expected were
more or less known.

Similarly for the hovering rotor, high twist is expected to be the optimum for obtaining good
Figure of Merit (FM). The compromise was between obtaining a high single point FM or a lower
FM but for a bigger range of thrust. The optimum selected had 11 degrees of twist, which was
less than the maximum twist tested of 12 degrees, showing that a wide design space was selected.
The optimum also removed stall from the tip when compared to the untwisted blade.

For the UH60-A and the BERP-like rotors, twist as well as anhedral were optimised in hover.
In both cases, however, forward flight was the main condition optimised for since this is the
main condition that these rotors were designed for. Hover performance was then improved or
constrained. In the UH60-A case, the parameters, sweep and anhedral were first optimised for
forward flight, then the new design was tested in hover and found to maintain good performance.
Nevertheless, twist was optimised for hover as well, and found to be approximately the same as
the original rotors hover. Much more anhedral was added to the tip (11 degrees) which helped
reduce the drop in moment on the advancing side which reduced the overall average moment. The
sweep was slightly reduced (14.5%) since not as much of it was required as the anhedral off-loaded
the tip of the rotor.

For the BERP-like rotor, a simulation of a typical fast flying, moderate thrust rectangular ro-
tor with sweep was the baseline point. This planform was converted to a BERP-like tip using a
parameterisation technique that used parabolic and sigmoidal curves. Using this technique, three
important features of the BERP-like tip could be captured viz. the sweep, the notch gradient
and the notch position. However, this baseline BERP-like tip had a lower performance in hover.
Therefore, the twist and anhedral were first optimised in hover to obtain the same performance
of the original rectangular swept rotor. More anhedral was added to offload the tip and a higher
twist was added to regain the load more inboards. Once this blade was obtained, the planform was
then optimised for forward flight. The parameter that had the biggest effect in load distribution
was the sweep. The position of the notch had an effect on the peak-to-peak pitching moment
and average moment. It also amplifies the effect of the BERP-like part of the blade since a more
inboard notch means a larger BERP-like tip i.e. a lower rise in torque, a bigger rise in moment
and so on. The notch gradient has a smaller effect on the performance, although a higher notch
gradient reduces the torque slightly.
Overall, the optimum selection was a highly swept tip, with a high notch gradient and the ini-
tiation of the notch in between the two extremes. The reason for this was because its average
pitching moment was very close to zero. Torque and peak-to-peak did not change much with
notch position. Peak-to-peak moment was mainly affected by the sweep, where lower sweep was
preferable. However, the effect was not large compared to the gain in average moment with higher
sweep. A higher notch gradient also favoured a large decrease in the average moment. This rotor
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was then tested in hover and maintained good hover performance over a range of thrust. In terms
of the parameters used in Chapter 10, the optimum had a sweep of 0.21 (same as the baseline),
a notch gradient of 35 (40% higher than the baseline) and a notch position of 11.75 (about 2%
more inboards).

A further case that was run, was the JMRTS fuselage. The objective was to optimise the wind
screen gradient for drag. Therefore, the parameters were linked to a single value that controlled
this gradient. The automation of the grid generation part made it easy to modify this parameter
and obtain results quickly. The final design was the one that had the least gradient, which was
approximately 24% less than the baseline in terms of the parameterisation coefficient. This case
was mainly performed for the parameterisation part for future work.

Overall, the method works well in fine-tuning parameters for improved aerodynamic performance
efficiently. Some understanding of rotor design is still necessary and the aim was not to replace,
but assist the designer in obtaining optimal designs. There is still much work that can be carried
out for this endeavour as described below.

11.3 Future Work

The objective of this project was to create an efficient technique for the optimisation of aspects of
rotor blades so that this can be of practical use. While, this objective has been successful, a further
development would be to optimise the method itself so that a number of options are available to the
user in terms of metamodels, optimisers and so on. Also, a more integrated approach would make
it easier for the user. For example, a python script could be used to train the ANN and produce
the results suggesting where further points may be required and once the error predictions fall
within a given level, then the optimiser is run automatically and all the data presented to the user.

The adjoint method is a popular method for optimisation. With this method, the sensitivity
of the optimisation is directly linked to the shape. It allows a more dynamic way of finding the
optimum, although it allows perhaps too much flexibility for “tweaking” purposes since the sen-
sitivity is linked to the shape via the grid points, rather than a selected set of parameters. The
availability of this method, at least for small cases, along with the method described so far, would
be advantageous to compare and develop.
Along these lines, a parameterisation method that automatically creates the CAD design would
be required. In this project, the use of ICEMCFD replay files allowed some automation, especially
for the wing case and the fuselage and part of the BERP-like rotor.

In terms of metamodels, further investigation into the POD technique would be useful. The
POD method was found to be useful with good accuracy where large amounts of data are avail-
able. This may be the case depending on what the optimisation purpose is and the method used.
For example, it may be useful to use it in conjunction with an adjoint method to predict flow.
However, it would also be beneficial to explore a way of using this method accurately for small
amounts of data. The advantage in the POD technique is that very little training time is required
when compared to the ANN method and it is not sensitive to as many variables as in the case of
ANNs and kriging. It would also be beneficial to be able to compare the metamodels prediction
accuracy with change in the design points. This could be used to determine the resolution required
in the initial database.

Further work could also be carried out for sampling methods. This area was not explored in
much detail since the nature of this project only required small design spaces and hence, full fac-
torial methods were used mostly, even though some work was done using fractional factorial and
Latin Hypercube Sampling techniques. Adaptive techniques were used where points were added
during the optimisation process itself to refine promising areas of the design space. This was done
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manually. However, automation of this method would improve the efficiency of the overall code.

The objective function evaluation requires user experience, especially in determining what per-
formance parameters capture the objectives. The weights also require some experience, although
guided by the initial CFD data. However, the way the weights are determined could be further
improved, by using the statistical data of the database, such as the the mean, standard devia-
tion and variance of the objective components relative to each other. This allows the designer
to equalise the weightings of the different objectives. However, what is also required, is a way of
quantifying the value of a performance parameter for a specified design criterion. This will allow
the designer to place the right weight for each component. A deeper analysis of the initial data,
such as the coupling of performance parameters could lead to a better understanding of how much
weight to place on each component.

The high-fidelity model used two methods viz. the Time Marching (TM) and Harmonic Bal-
ance (HB). The HB method was much more efficient in terms of wall clock time, however it is
limited by its high memory usage. Further work on reducing the memory usage of this method
would increase its accuracy as well as maintaining its efficiency. This would also allow further
investigation in to more subtle changes in the BERP-like tip like the effect of the gradient of the
notch and possibly other parameters not explored in this work.
In addition to the high-fidelity model, a more multi-disciplinary approach would be an important
improvement. The inclusion of aeroelastic and aeroacoustic effects would allow the problems as-
sociated with these disciplines to be included in the optimisation process. These are significant
issues for the rotorcraft industry. The current model will require changes for this to be included,
but the overall concept can still be used to include these disciplines as long as good performance
parameters that capture the objectives and constraints can be obtained.

A more advance model could also be used for the actuator disk in the fuselage optimisation.
This would create more realistic results especially at faster flight conditions. Also, the inclusion
of the hub in the geometry would produce results more similar to the experimental data.

For rotor section optimisation, a comparison at the same geometric angle of attack and was
carried out. However a comparison at the same lifting capability would provide more insight into
the advantage of one section over another.

For the wing planform optimisation case, another good optimisation problem would be to op-
timise the taper and twist of the planform for the same performance parameters.

In the future the aim is to also apply this method to investigate interactional aerodynamics such as
rotor/fuselage, main rotor/tail rotor and other interactions. It is also hoped that with increasing
computing power and efficient methods, the inclusion of other disciplines such as aeroelasticity
would become feasible.
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[110] J. Hájek. Parameterization of Airfoils and its Application in Aerodynamic Optimization.
Charles University, Prague, Czech Republic.

[111] P. Castonguay and S. K. Nadarajah. Effect of Shape Parameterization on Aerodynamic
Shape Optimisation. In 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,
USA, January 2007.

181



[112] W. S. Ghaly and T. T. Mengistu. Optimal Geometric Representation of Turbomachinery
Cascades using NURBS. Inverse Problems in Science and Engineering, 11(5):359 – 373,
October 2003.

[113] P. J. Schneider. NURB Curves: A guide for the Uninitiated. Develop, the Apple Technical
Journal, (25), 2008.

[114] C.-Y. Joh. Development of a NURBS-based Wing Design Optimization System. IEEE
Explore, 2008.

[115] B. M. Kulfan and J. E. Busoletti. Fundamental Parametric Geometry Shape Representa-
tions for Aircraft Component Shapes. In 11th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, volume AIAA 2006-6948, Portsmouth, Virginia, September 2006.

[116] D. P. Young. Technical Notes: Note on Parameterization of Airfoils. AIAA Journal, 49(1),
January 2011.

[117] S. Osher and S. Chakravarthy. Upwind Schemes and Boundary Conditions with Applications
to Euler Equations in General Geometries. Journal of Computational Physics, 50:447 – 481,
January - February 1983.

[118] B. van Leer. Flux-vector splitting for the euler equations. In Eighth International Conference
on Numerical Methods in Fluid Dynamics, volume 170 of Lecture Notes in Physics, pages
507 – 512, Berlin / Heidelberg, 1982.

[119] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, MA,
1994.

[120] F. R. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applica-
tions. AIAA Journal, 32(8):1598 – 1605, August 1994.

[121] M. Woodgate and G. N. Barakos. Implicit CFD Methods for Fast Analysis of Rotor Flows.
In 36th European Rotorcraft Forum, volume ERF Paper 14, Session 1 [CDROM], Paris,
France, September 2009.

[122] M. A. Woodgate and K. J. Badcock. Implicit Harmonic Balance Solver for Transonic Flow
with Forced Motions. AIAA Journal, 47(4):893 – 901, April 2009.

[123] J.-S. Jang, S. Choi, H.-I. Kwon, D.-K. Im, D.-J. Lee, and J.-H. Kwon. A Preliminary Study
of Open Rotor Design Using a Harmonic Balance Method. In 50th AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Exposition, volume AIAA 2012-
1042, Nashville, Tenessee, USA, January 2012.

[124] ANSYS Inc., ICEM-CFD Hexa Mesh Generation Software.
http://www.ansys.com/products/icemcfd.asp.

[125] R. Steijl, G. Barakos, and K. Badcock. A Framework for CFD Analysis of Helicopter Rotors
in Hover and Forward Flight. International Journal for Numerical Methods in Fluids, 51:819
– 847, 2006.

[126] J. Jeong and F. Hussain. On the Identification of a Vortex. Journal of Fluid Mechanics,
285:69 – 94, 1995.

[127] G. Haller. An Objective Definition for a Vortex. Journal of Fluid Mechanics, 525:1 – 26,
2005.
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Appendix A

Fundamental Relationships for
Rotorcraft Aeromechanics

A.1 Rotor

T = ṁw (A.1)

Tvi =
1

2
ṁw2 = P (A.2)

w = 2vi (A.3)

A∞
A

=
1

2
(A.4)

(A.5)

Actually A is slightly bigger than that, because of viscous effects and a swirl component of velocity
in the rotor wake induced by spinning blades(R∞ = 0.78R).

vh = vi =

√(
T

A

)
1

2ρ
=
P

T
= power loading (A.6)

P = Tvh =
T

3
2

√
2ρA

= 2ρAv3i (A.7)

pressure variations

∆p = p2 − p1 =
T

A
(A.8)

T

A
= p2 − p1 =

(
p∞ +

1

2
ρw2 − 1

2
ρv2i

)
−
(
p∞ − 1

2
ρv2i

)
=

1

2
ρw2 (A.9)

If Cd is constant, for a rectangular blade, the profile power, (Po), is given by:

PO =
1

8
ρNbΩ

3cCdR
4 (A.10)

A.1.1 Non-dimensionalisation

This is based on one dimensional flow so the value of inflow is assumed to be distributed uniformly
over the disk. Since there are no viscous losses assumed, the power is the ideal power coefficient.

λh =
vi
Vtip

=

√
CT

2
(A.11)

CP =
P

1
2ρAV

3
tip

=
C

3/2
T√
2

(A.12)

CPO
=

1

8
σCd where σ =

Nbc

πR
(A.13)
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This theory shows the correct trend, but underpredicts the actual power required. TO correct

for this, a factor κ (the induced power correction factor) is included i.e. CP =
κC

3/2
T√
2

. It is found

by experiment or more advanced blade element methods (usually about 1.15). It embodies non-
uniform inflow, tip losses, wake swirl, finite no. of blades etc.
FM, Figure of merit is an additional way of determining the hover efficiency and is better in that
it is non-dimensional unlike power loading.

FM =
Ideal power required to hover

Actual power required to hover
< 1 (A.14)

Ideal power is the one calculated using the simple momentum theory above. i.e. no viscous effects
(which add profile as well as some induced power). Actual is a measured value.
Note: FM is only comparative at the same disk loading because increasing the DL increases
induced power relative to profile power.

FM =
Pideal

κPideal + Pprofile
=

C
3/2
T√
2

κC
3/2
T√
2

+ σCd
8

(A.15)
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Appendix B

Programs

B.1 MATLAB script to create POD modes and use them to in-
terpolate

LISTING B.1: KLD TEST INTERPOLATEV.M
clear ;
n=load ( ’ op f un c t e s t t h i c k . txt ’ ) ;
[M,N] = s ize (n) ;

for i =1:N
data ( : , i ) = n ( : , i ) ;

end

covar = ( data∗data ’ ) /M; % Calcu la te KLD of s i g n a l s
[Vx , Sx ] = eig ( covar ) ;
Vx = f l i p l r (Vx) ;
Ux = ( data ’∗Vx) ; % Ux i s the s p a t i a l KLD modes , phi ( x )
Vxt=Vx ’ ; % matrix with e igen vec to r s conta ins the temporal

e i g en func t i on s , a ( t )
Sx = rot90 ( Sx ) ;
Sx = f l i p l r ( Sx ) ;
for i =1:N

sva lue s ( i , 1 ) = Sx ( i , i ) ;
end
eig sum = sum( sva lue s ) ;

modes=M; % re con s t ru c t i on
for i =1:modes

Uxm( : , i ) = Ux( : , i ) ;
Vxtm( i , : ) = Vxt ( i , : ) ;

end
save U. txt Uxm −ASCII ;
save V. txt Vxtm −ASCII ;
r ec = Uxm∗Vxtm;
rec = rec ’ ;
save r e c r e a t e . txt r ec −ASCII ;

%% Using averages
for j =1:4

for i =1:4
Vxtm( i ,M+j ) =((1−0.5)∗Vxtm( i ,42+ j ) +(0.5)∗Vxtm( i ,43+ j ) ) /1 ;

end
end

i n t e=Uxm∗Vxtm;
i n t e=inte ’ ;
save i n t e . txt i n t e −ASCII ;

% %% Using polynomial i n t e r p o l a t i o n
% F i r s t c=n ( : , 1 ) ;
% l a s t c=n ( : ,N) ;
% f o r i =1:M
% FC( i , : ) =[ F i r s t c ( i ) ˆ0 F i r s t c ( i ) ˆ1 F i r s t c ( i ) ˆ2 F i r s t c ( i ) ˆ 3 ] ;
% end
%
% co e f f=l i n s o l v e (FC, l a s t c ) ;
%
% pred =3.5;
% p r e d i c t t h i s =[pred ˆ0 pred ˆ1 pred ˆ2 pred ˆ 3 ] ;
% f o r i =1:M
% answer ( i )=c o e f f ( i , 1 ) ∗ p r e d i c t t h i s ( i ) ;
% end
% answ=sum( answer ) ;

B.2 MATLAB scripts for the Gappy POD method

B.2.1 Main program

LISTING B.2.1: GAP POD.M
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clear ;
%th i ck

= [ 9 ; 9 . 4 5 ; 9 . 9 ; 1 0 . 3 5 ; 1 0 . 8 ; 1 1 . 2 5 ; 1 1 . 7 ; 1 2 ; 1 2 . 6 ; 1 3 . 0 5 ; 1 3 . 5 ; 1 3 . 9 5 ; 1 4 . 4 ; 1 5 ; 1 5 . 3 ; 1 5 . 7 5 ; 1 6 . 2 ; 1 6 . 6 5 ; 1 7 . 0 9 ; 1 7 . 5 5 ; 1 8 ] ;

%A=load ( ’ R09T12 loads incomplete . txt ’ ) ;
%N=load ( ’ R09T12 loads pred ict . txt ’ ) ;
%A=load ( ’ . . / incomplete33 . txt ’ ) ;
%N=load ( ’ . . / p red i c t33 . txt ’ ) ;
A=load ( ’ . . / incomplete . den . txt ’ ) ;
N=load ( ’ . . / p r ed i c t . den . txt ’ ) ;
%A=load ( ’ matrix . txt ’ ) ;
%N=load ( ’ matr ix pred . txt ’ ) ;
%A=A’ ;
%N=N’ ;
c l =3; %requ i r ed column
%masc = [ 1 ; 1 ; 0 ; 0 ] ;
masc = [ 1 ; 0 ; 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1 ] ; % masc vector
%f o r i i i =1:1
% masc ( i i i )=1;
%end
%fo r i i i =2:21
% masc ( i i i )=0;
%end
%masc=masc ’ ;
[U, e ,mean, nb]=POD(A,99 ) ;
for k=1:1
[UU, ee ,MEAN, nbnb]=POD(N,99 ) ;% i f you use mean , only 1 i t e r a t i o n i s req
%masc = [ 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 0 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 0 ; 0 ; 0 ] ;
%G=GPOD(mean ,U, nb ,N, masc , c l ) ;
G=GPOD original (mean,U, nb ,N, masc , c l ) ;
N( : , c l )=G;
k ;
end
% something i s s t i l l not r i gh t − there must be a way o f us ing more data in
% the A matrix without adding guessed va lues at nodes in the matrix where
% data i s not a v a i l a b l e . This i s when MEAN would be used in s t ead o f mean −
% but at t h i s point , e i t h e r can be used to obta in the same r e su l t , the only
% d i f f e r e n c e being the number o f i t e r a t i o n s r equ i r ed to obta in i t .

B.2.2 POD function

LISTING B.2.2: POD.M

function [ phi , lam , Xmean , nbas i s ]=POD(X, cenergy )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This func t i on c a l c u l a t e s the POD bas i s ve c to r s
%
% Function inputs :
% X : (n x nsnap ) snapshot matrix
% n = number o f s t a t e s in f u l l space
% nsnap = number o f snapshots
% cenergy : how much energy o f the ensemble you want
% to capture , i . e . cenergy = 99.9 ( percent )
%
% Function outputs :
% phi : (n x nsnap ) matrix conta in ing POD bas i s ve c to r s
% lam : ( nsnap x 1) vector conta in ing POD e ig enva lue s
% Xmean : (n x 1) the mean o f the ensemble X
% nbas i s : number o f POD bas i s v e c to r s you should use
% to capture cenergy ( percent ) o f the ensemble
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ca l c u l a t e the mean o f the snapshots
nsnap = s ize (X, 2 ) ;
Xmean = sum(X, 2 ) /nsnap ;
% Obtain new snapshot ensemble with zero mean
for i =1:nsnap

X1 ( : , i ) = X( : , i )−Xmean ;
end
% METHOD OF SNAPSHOTS
% ca l c u l a t e the emp i r i c a l c o r r e l a t i o n matrix C
C = X1’∗X1/nsnap ;
% Calcu la te the POD bas i s
[ evectorC , evalueC ] = eig (C) ;
phi = X1 ∗ evectorC ;
% Normalize the POD bas i s
for i =1:nsnap

phi ( : , i ) = phi ( : , i ) /norm( phi ( : , i ) , 2 ) ;
end
% return the POD e ig enva lue s in a vector
lam = diag ( evalueC ) ;
% Rearrange POD eigenva lues , v e c to r s in descending order .
% Note that the c o r r e l a t i o n matrix C i s symmetric , so SVD and EIG
% w i l l g ive the same evectorC and evalueC but they are a l ready in
% descending order and hence we don ’ t need to rear range evectorC and evalueC
% i f SVD i s used
lam = rot90 ( lam , 2 ) ;
phi = f l i p l r ( phi ) ;

%%% Find the number o f POD bas i s v e c to r s captur ing cenergy ( percent ) o f energy %%%%

% to t a l energy
tenergy = sum( lam) ;
energy = 0 . ;
nbas i s = 0 ;
i = 1 ;
while ( ( ( energy / tenergy ) ∗100) < cenergy )

energy = energy + lam( i ) ;
i = i +1;
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end
nbas i s = i ;
for i =1: nbas i s

PHI ( : , i )=phi ( : , i ) ;
end
phi=PHI ;
% p lo t e i g enva lue s corresponding to nbas i s v e c to r s
%p lo t ( lam ( 1 : nbas i s ) / tenergy /100 , ’∗ ’ )
%x l abe l ( ’Number o f POD eigenva lues ’ )
%y l abe l ( ’ Energy captured ’ )
%gr id on

B.2.3 Gappy POD function

LISTING B.2.3: GPOD.M

function [ g r epa i r ed ]=GPOD(Xmean , phi , nbas is , g , mask , c o l )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This func t i on use the Gappy POD method to r epa i r the gappy
% data g
%
% Function inputs :
% Xmean : (n x 1) ensemble mean , obtained from POD.m func t i on
% phi : (n x nsnap ) POD bas i s , obtained from POD.m func t i on
% n = number o f s t a t e s in f u l l space
% nsnap = number o f snapshots
% nbas i s : number o f POD bas i s v e c to r s we use ( u sua l l y captures 99.9% of energy ) ,
% obtained from POD.m func t i on
% g : (n x 1) gappy vector g needs to be r epa i r ed
% mask : (n x 1) mask vector corresponding to the gappy vector g
%
% Function outputs :
% g r epa i r ed : (n x 1) the r e s u l t a f t e r r epar ing gappy vector g
%
% Al l the va r i ab l e names are very c l o s e to what we presented in the r e f e r e n c e s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
m=s ize ( g , 2 ) ;
for k=1:m
% The s i z e o f the problem
n=s ize ( g , 1 ) ;
% subtracted by the ensemble mean
g ( : , c o l )=g ( : , k ) ;%−Xmean ;
% gappy vector with mean subtracted
g ( : , k )=mask .∗ g ( : , k ) ;

% GAPPY POD METHOD
% Find a l l the c o e f f i c i e n t s M ij = ( ph i i , p h i j ) o f the system Mb = f
% using the gappy inner product
for i = 1 : nbas i s

for j = 1 : nbas i s
M( i , j ) = (mask .∗ phi ( : , i ) ) ’∗ phi ( : , j ) ;

end
% Find the r i gh t hand s i d e f o f the system Mb = f
% Note that the gappy inner product i s absorbed in g
% s in c e g = mask .∗ g
gt=g ’ ;
f ( i , k ) = gt (k , : ) ∗phi ( : , i ) ;

end
end
M;
det (M) ;
f ;
% so l v e f o r the POD c o e f f i c i e n t s , note that the s i z e o f the system
% i s very smal l = number o f POD bas i s ve c to r s used
b = M\ f ;
for k=1:m
% Finding the in te rmed ia te r epa i r ed vector g t i d l e v ia POD expansion
g t i d l e = phi∗b ;
% The gappy vector with mean subtracted i s now repa i r ed . Note that
% in the presence o f noise , we should not perform th i s r e pa i r but
% use g t i d l e in s t ead s i n c e i t i s b e t t e r .
%f o r j =1:n
% i f mask ( j , 1 )==0

g ( j , k )=g t i d l e ( j , 1 ) ;
% end
%end
% The f i n a l r epa i r ed vector
g r epa i r ed=g ( : , k ) ;%+Xmean ;
end
% Here the whole matrix i s used as opposed to GPOD original .m where only
% the row where a p r ed i c t i on i s r equ i r ed i s used .
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B.3 Artificial Neural Network code

B.3.1 Readme file

Normalise the data first by running normatest.f
2 files are produced. the second file to which you write to with a user-defined filename will be produced
with the normal- ised data if you set segmentation line to 0 and the output on screen shows the min and
max of all the inputs and outputs. In addition a file called norma.dat is created containing the number
of columns, the max and min of the original file and of the normalised file. This file is used for denormalising.

*********************************************************************************
This program nntest.f, performs the training of a neural network
ilay is the maximum number of layers that can be implemented with this program
imax1, imax2 limits the size of the matrices
inp is a matrix that contains the patterns and its size is limited by imax1 and imax2
Therefore imax1 must be > the number of patterns
And imax2 must be > the number of neurons i.e. numhidden
numinput is the number of inputs
numoutput is the number of outputs
numpatterns is the number of patterns
nml is the number of layers not including input and output
numhidden is the number of hidden neurons in each layer
weightIH is a matrix containing the weights of the input to hidden layer neurons (imax2 x imax2 )
weightHH is a matrix containing the weights of the hidden to the next hidden layer (imax2 x imax2 for
each layer)
weightHO is a matrix containing the weights of the hidden to the output layer (imax2 x imax2 )
deltaweight for each of these is the change in the corresponding weight matrix due to a change in the output
which occurs in the back propagation
An input file is required that contains data such as those below:
- patfile is the pattern file i.e. the training data
the number of columns in the patfile = no. of inputs + no. of outputs
This file should be a normalized version of the original file (normalized using program norma.f)
- istart determines if the training should be started afresh (hot start*see note at end) or continue from a
previous run (cold start)
- epoch is the number of times the patterns are run through the network
- alpha is the learning momentum
- eta is the learning rate
where the new weight at time n is given by eta x previous output + alpha x weight at time n-1
- ifresh is the refresh rate. It is the number of epochs after which a file is written
- cerror is the error it is trying to converge to
- wfile is a file to write in the final values of the weights etc.
perceptron is the hidden layers. The number of weights in the perceptron is the number of connections
between hidden layers not including the weights from input to hidden and hidden to output.
There is a loop containing all the patterns nested in a loop for all the epochs
To initialise, a matrix WEIGHTS.MTX is created that contains random values for the weights
The first line contains the epoch number and the error0
The second line contains the number of inputs, layers, hidden neurons and outputs
The lines after that contain the values for the weights in the matrices weightIH,HH,HO
These weights are then read from these matrices and the number of weights is calculated
The patfile is then read into a matrix input for the inputs and target for the outputs and the number of
patterns are counted
The matrix ’list’ contains an integer for each pattern (a count).
This ’list’ matrix is mixed up randomly for each epoch and hence the patterns are introduced randomly.
This prevents the ANN from memorising, increases the learning rate and improves its capabilities of pre-
dicting unknown points.
The values are then propagated forward from IH to HH, HH to nHH and HH to HO where matrices sum
hold the final value as it moves through the ANN.
Each loop uses the sigmoid transfer function to get across the neuron to its output (which is the input of
the synaptic gap)
In the last loop from the HH to the HO, the error is calculated and the pattern with the worst error is
denoted i1.
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This is printed on screen as the ANN is trained.

Then backpropagation is performed and the weights re-adjusted as the loops are carried out from out-
put to input to obtain the change in weight. The weights themselves are then adjusted using previous
weights.
For each epoch, the outputs on screen are the epoch number, error1, errormax and i1.

The final values of weights, epochs etc. are put in a file with the name as the last row of the input file.

error 0 is the very first error i.e. of epoch 1. error is calculated for each pattern and error1 is calculated
as error/error0.
This error1 is what must converge to cerror. errormax is the maximum error at a particular pattern called
i1.

*********************************************************************************
To predict the output, run the predict file, ensuring the number of inputs, outputs and layers are cor-

rect.
Enter the file and read the output in the file predict.pat.

*********************************************************************************
Denormalise the predicted file by running the program denormastest.f

edit if necessary, to get appropriate tecplot file

IMPORTANT: If you require extrapolated data, make sure that when the data is normalized, the ex-
trapolated points are included.
In the case of training, include them in normlalisation and then delete them from the normalized file before
beginning training.
Then re-introduce them when predicting and then denormalise.

Note: For hot starting, change epoch final number to required value in the testfile or wfile.

Also, the more number of layers and neurons the more discontinuities in the drop in error during training.

The more number outputs, the more uneven the predictions are.

B.3.2 Normalising the inputs

This is required so that the sensitivity of the sigmoid activation function to the input does not
diminish with large input values. See Section 3.5.1 of the thesis.
LISTING B.3.2: NORMATEST.F

program cg2tec2
character∗30 f i l e i n , f i l e o u t 1 , f i l e o u t 2
real ∗8 value (200000 ,20) ,mx(20) ,mn(20)
real ∗8 maxi (20) , mini (20) , lamda , beta
integer i t ime , ntime
integer answer

69 format (20(1X, f15 . 1 0 ) )
70 format (20(1X, E16 . 8 ) )

print ∗ , ’ do you want to use p r ev i ou s l y c reated norm . dat f i l e ? ’
read∗ , answer
print ∗ , ’ ente r f i l e to read data from ’
read∗ , f i l e i n
i f ( answer . eq . 0 ) then

print ∗ , ’ ente r number o f columns ’
read∗ , i c o l s

endif

c print ∗ , ’ ente r max and min f o r each column ’
do i =1, i c o l s

c read∗ , mini ( i ) ,maxi ( i )
mini ( i ) =0.0000000001
maxi ( i ) =0.9999999999

enddo
print ∗ , ’ ente r f i l e s to wr i t e data to ’
read∗ , f i l e o u t 1 , f i l e o u t 2

c read∗ , f i l e o u t 1

print ∗ , ’ ente r l i n e number f o r segmentation o f f i l e s ’
read∗ , n l

c n l =100000000

open (1 , f i l e=f i l e i n )
do i =1 ,999999

read (1 ,∗ ,END=666) ( value ( i , j ) , j =1, i c o l s )
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enddo
666 continue

i l i n e s=i−1
close (1 )
print ∗ , ’INPUT FILE READ’

do j =1, i c o l s
mn( j )= 99999.0
mx( j )=−99999.0

enddo

do i =1, i l i n e s
do j =1, i c o l s

mn( j )=dmin1 (mn( j ) , va lue ( i , j ) )
mx( j )=dmax1(mx( j ) , va lue ( i , j ) )

enddo
enddo

do i =1, i c o l s
print ∗ ,mn( i ) ,mx( i )

enddo

do i =1, i l i n e s
do j =1, i c o l s

r d i f=mx( j )−mn( j )
i f ( r d i f . eq . 0 . 0 ) r d i f =0.0000001
lamda=(maxi ( j )−mini ( j ) ) / r d i f
beta=mini ( j )−lamda∗mn( j )
value ( i , j )=value ( i , j )∗ lamda+beta

c value ( i , j )=(value ( i , j )−mn( j ) ) /(mx( j )−mn( j ) )
enddo

enddo

open (1 , f i l e=’norma . dat ’ )
write (1 ,∗ ) i c o l s
do i =1, i c o l s

write (1 ,∗ ) mini ( i ) ,maxi ( i )
enddo
do i =1, i c o l s

write (1 ,∗ )mn( i ) ,mx( i )
enddo
close (1 )

open (1 , f i l e=f i l e o u t 1 )
open (2 , f i l e=f i l e o u t 2 )
do i =1, i l i n e s

i f ( i . l e . n l ) write (1 ,70) ( value ( i , j ) , j =1, i c o l s )
i f ( i . gt . n l ) write (2 ,70) ( value ( i , j ) , j =1, i c o l s )

enddo
close (1 )
close (2 )
print ∗ , ’OUTPUT FILEs WRITTEN’
end

B.3.3 Training the ANN

The training is used to obtain the weights for the neurons to give accurate predictions of unknown
outputs. See Section 3.5.1 of the thesis.
LISTING B.3.3: NNTEST ADAPTIVE ETA.F

program neura l n e t
parameter ( imax1=650 , imax2=25, i l a y =25)
integer epoch , i s t a r t
integer i , j , k , p , np , l i s t ( imax1 )
integer numpattern , numinput , numhidden , numoutput , nml
real ∗8 input ( 0 : imax1 , 0 : imax2 ) , target ( 0 : imax1 , 0 : imax2 )
real ∗8 output ( 0 : imax1 , 0 : imax2 )
real ∗8 hidden ( i l ay , imax1 , imax2 )
real ∗8 sum ( 0 : imax1 , 0 : imax2 ) ,summ(0 : imax1 )
real ∗8 weightIH ( 0 : imax2 , 0 : imax2 )
real ∗8 weightHH( i l ay , 0 : imax2 , 0 : imax2 )
real ∗8 weightHO (0 : imax2 , 0 : imax2 )
real ∗8 deltaO ( 0 : imax1 ) , deltaH ( i l ay , 0 : imax1 )
real ∗8 deltaweightIH ( 0 : imax1 , 0 : imax2 )
real ∗8 deltaweightHO (0 : imax1 , 0 : imax2 )
real ∗8 deltaweightHH ( i l ay , 0 : imax1 , 0 : imax2 ) , inp ( imax1 , imax2 )
real ∗8 er ror , eta , alpha , smallwt , e r ror1 , errormax , r
real ∗8 errorprev , d e l e r r o r
character∗50 p a t f i l e
character∗40 w f i l e

11 format (60( f12 . 6 , 2X) )
12 format (A50)
13 format (A1)

smallwt=0.5
iepoch=1
e r r o r0 =0.0

c p a t f i l e i s the pattern f i l e i . e . the t r a i n i n g data
open (11 , f i l e=’ input ’ )
read (11 ,∗ ) p a t f i l e
read (11 ,∗ ) i s t a r t
read (11 ,∗ ) numinput
read (11 ,∗ ) nml
read (11 ,∗ ) numhidden
read (11 ,∗ ) numoutput
read (11 ,∗ ) i f r e s h
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read (11 ,∗ ) c e r r o r
read (11 ,∗ ) eta
read (11 ,∗ ) alpha
read (11 ,∗ ) w f i l e
close (11)

900 format (D8. 3 ’ , ’D8 . 3 )
950 format (D8. 3 ’ , ’ D8. 3 ’ , ’ D8 . 3 )

open (12 , f i l e=’ weights .mtx ’ )
write (12 ,∗ ) ’ 1 0 .1 ’
write (12 ,∗ ) numinput , nml , numhidden , numoutput

c i n t i t i a l i s e input to h idden weights
do j =1,numhidden

do i =1,numinput
de ltaweightIH ( i , j ) =0.0
weightIH ( i , j ) =2.0∗( rand (0) )∗ smallwt
write (12 ,900) weightIH

enddo
enddo

c i n t i t i a l i s e h idden to output weights
do k=1,numoutput

do j =1,numhidden
deltaweightHO ( j , k )=0.0
weightHO( j , k ) =2.0∗( rand (0) )∗ smallwt
write (12 ,900) weightHO

enddo
enddo

c i n i t i a l i s e hidden1 to hidden2 weights
do i l =1,nml
do i =1,numhidden

do j =1,numhidden
deltaweightHH ( i l , j , i ) =0.0
weightHH( i l , j , i ) =2.0∗( rand (0) )∗ smallwt
write (12 ,950) weightHH

enddo
enddo
enddo
close (12)

i f ( i s t a r t . eq . 1 ) then
write (∗ ,∗ ) ’# Hot s t a r t i n g . . . ’
open (12 , f i l e=wf i l e )
read (12 ,∗ ) iepoch , e r r o r0
read (12 ,∗ ) numinput , nml , numhidden , numoutput
do i =0,numinput

do j =0,numhidden
read (12 ,∗ ) weightIH ( i , j )

enddo
enddo
do i =0,numhidden

do k=0,numoutput
read (12 ,∗ ) weightHO( i , k )

enddo
enddo
do i l =1,nml
do i =0,numhidden

do j =0,numhidden
read (12 ,∗ ) weightHH( i l , i , j )

enddo
enddo
enddo
write (∗ ,∗ ) ’# weight func t i on s read ’
close (12)

else
write (∗ ,∗ ) ’# Cold s t a r t i n g ’

endif

c c a l c u l a t e number o f weight func t i on s
norm1=(numinput∗numhidden )+(nml−1)∗( numhidden∗∗2)+

& numhidden∗numoutput
write (∗ ,∗ ) ’# ’ ,norm1 , ’ t o t a l weight components ’
write (∗ ,∗ ) ’# ’ , ( nml−1)∗( numhidden∗numhidden ) ,

& ’ weight components in perceptron ’
c

open (15 , f i l e=p a t f i l e )
i=1

10 l i s t ( i )=i
read (15 ,∗ ,END=66) ( inp ( i , j ) , j =1,numinput+numoutput )
do j =1,numinput

input ( i , j )=inp ( i , j )
enddo
do j =1,numoutput

target ( i , j )=inp ( i , j+numinput )
enddo

i=i+1
goto 10

66 continue
numpattern=i−1
write (∗ ,∗ ) ’# ’ , numpattern , ’ pa t t e rns ’
close (15)

do epoch=iepoch ,90000000
do i =1,numpattern−1

number=in t ( rand (0) ∗ f l o a t (2 ) )
i f (number . eq . 1 ) then

i i i= l i s t ( i )
l i s t ( i )=l i s t ( i +1)
l i s t ( i +1)= i i i

endif
enddo
e r r o r =0.0
errormax=−10.0e+6
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do np=1,numpattern
p=l i s t (np)

c propagate forward from input to hidden1
do j =1,numhidden

sum(p , j )=weightIH (0 , j )
do i =1,numinput

sum(p , j )=sum(p , j )+
& input (p , i )∗weightIH ( i , j )

enddo
hidden (1 ,p , j ) =1.0/(1.0+ exp(−sum(p , j ) ) )

enddo

c propagate forward from hidden−1 to hidden−n
do i l =1,nml−1
do j =1,numhidden

sum(p , j )=weightHH( i l , 0 , j )
do i =1,numhidden

sum(p , j )=sum(p , j )+
& hidden ( i l , p , i )∗weightHH( i l , i , j )

enddo
hidden ( i l +1,p , j ) =1.0/(1.0+ exp(−sum(p , j ) ) )

enddo
enddo

c propagate forward from hidden−n to output , c a l c u l a t e e r r o r & remedy per output node
do k=1,numoutput

sum(p , k )=weightHO (0 , k )
do j =1,numhidden

sum(p , k )=sum(p , k )+
& hidden (nml , p , j )∗weightHO( j , k )

enddo
output (p , k ) =1.0/(1.0+ exp(−sum(p , k ) ) )
i f ( epoch . eq . 1 ) e r r o r 0=e r r o r

r=target (p , k )−output (p , k )
r=abs ( r )

c r=0.5∗ r∗ r
e r r o r=e r r o r+r
errormax=dmax1( errormax , r )

i f ( errormax . eq . r ) i 1=p
deltaO (k )=(target (p , k )−output (p , k ) )∗

& ( output (p , k ) ∗(1.0− output (p , k ) ) )
enddo
i f ( epoch . eq . 1 ) e r r o r 0=e r r o r
e r r o r1=e r r o r / e r r o r0

c backpropagate from output to hidden−n , use output remedy to c a l c u l a t e remedy per hidden−n node
do j =1,numhidden

summ( j )=0.0
do k=1,numoutput

summ( j )=summ( j )+
& weightHO( j , k )∗deltaO (k )

enddo
deltaH (nml , j )=summ( j )∗hidden (nml , p , j )∗

& (1.0− hidden (nml , p , j ) )
enddo

c backpropagate from hidden−n to hidden1 , use hidden−n remedy to c a l c u l a t e remedy per hidden−n−1
node

do i l=nml−1,1,−1
do j =1,numhidden

summ( j )=0.0
do jk=1,numhidden

summ( j )=summ( j )+
& weightHH( i l , j , jk )∗deltaH ( i l +1, jk )

enddo
deltaH ( i l , j )=summ( j )∗

& hidden ( i l , p , j ) ∗(1.0− hidden ( i l , p , j ) )
enddo
enddo

c backpropagate from hidden1 to input & use hidden1 remedy to re−c a l c u l a t e i−h1 weights
do j =1,numhidden

deltaweightIH (0 , j )=eta∗deltaH (1 , j )+
& alpha∗deltaweightIH (0 , j )

weightIH (0 , j )=weightIH (0 , j )+
& deltaweightIH (0 , j )

do i =1,numinput
de ltaweightIH ( i , j )=

& eta∗ input (p , i )∗deltaH (1 , j )+alpha∗
& deltaweightIH ( i , j )

weightIH ( i , j )=weightIH ( i , j )+
& deltaweightIH ( i , j )

enddo
enddo

c propagate from hidden1 to hidden n & use hidden2 remedy to r e c a l c u l a t e h n−h n+1 weights
do i l =1,nml−1
do j =1,numhidden

deltaweightHH ( i l , 0 , j )=eta∗deltaH ( i l +1, j )
& +alpha∗deltaweightHH ( i l , 0 , j )

weightHH( i l , 0 , j )=weightHH( i l , 0 , j )+
& deltaweightHH ( i l , 0 , j )

do i =1,numhidden
deltaweightHH ( i l , i , j )=

& eta∗hidden ( i l , p , i )∗deltaH ( i l +1, j )
& +alpha∗deltaweightHH ( i l , i , j )

weightHH( i l , i , j )=weightHH( i l , i , j )+
& deltaweightHH ( i l , i , j )

enddo
enddo
enddo
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c propagate from hidden3 to output & use output remedy to re−c a l c u l a t e h3−o weights
do k=1,numoutput

deltaweightHO (0 , k )=
& eta∗deltaO (k )+alpha∗deltaweightHO (0 , k )

weightHO (0 , k )=weightHO (0 , k )+
& deltaweightHO (0 , k )

do j =1,numhidden
deltaweightHO ( j , k )=eta∗hidden (nml , p , j )∗

& deltaO (k )+alpha∗deltaweightHO ( j , k )
weightHO( j , k )=weightHO( j , k )+

& deltaweightHO ( j , k )
enddo

enddo
enddo
i f ( ( epoch/ i f r e s h )∗ i f r e s h . eq . epoch ) then

ca l l weights ( epoch , er ror0 , numinput , nml ,
& numhidden , numoutput , weightIH , weightHH , weightHO , w f i l e )

d e l e r r o r=1
i f ( epoch . eq .1∗ i f r e s h ) e r ro rp r ev=er ro r1
i f ( epoch . gt .1∗ i f r e s h ) then

d e l e r r o r=sq r t ( ( e r r o r 1 ∗ e r r o r1 ) /
& ( e r ro rp r ev ∗ e r ro rp r ev ) )

i f ( d e l e r r o r . l t . 0 . 5 0 . and . eta ∗1 . 0 5 .
& l t . 1 . and . e r r o r 1 . l t . e r r o rp r ev ) eta=eta ∗1.05

i f ( d e l e r r o r . gt . 1 . 0 5 . and . eta ∗0 . 8 5 . gt . 0 . 0 1
& . and . e r r o r 1 . gt . e r r o rp r ev ∗1 .05) eta=eta ∗0.85

endif
write (∗ ,∗ ) epoch , er ror1 , errormax , i1 ,

& errorprev , d e l e r r o r , eta
e r ro rp r ev=er ro r1

endif
i f ( e r r o r1 . l t . c e r r o r ) goto 1000

enddo
1000 continue

ca l l weights ( epoch , er ror0 , numinput , nml , numhidden , numoutput ,
& weightIH , weightHH , weightHO , w f i l e )

write (∗ ,∗ ) epoch , er ror1 , errormax
write (∗ ,∗ ) ’The End ’
stop
end

c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c
subroutine weights ( epoch , er ror0 , ninput , nl , nhidden , noutput ,

& wweightIH , wweightHH , wweightHO , wwf i l e )
c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c

parameter ( imax3=25, i l a y =25)
integer epoch
real ∗8 wweightHH( i l ay , 0 : imax3 , 0 : imax3 )
real ∗8 wweightHO (0 : imax3 , 0 : imax3 ) , wweightIH ( 0 : imax3 , 0 : imax3 )
character∗40 wwf i l e

11 format (6 ( f12 . 6 , 2X) )

c weights
open (111 , f i l e=wwfi le , status=’UNKNOWN’ )
write (111 ,∗ ) epoch , e r r o r 0
write (111 ,∗ ) ninput , nl , nhidden , noutput
do i =0, ninput

do j =0,nhidden
write (111 ,∗ ) wweightIH ( i , j )

enddo
enddo
do i =0,nhidden

do k=0,noutput
write (111 ,∗ )wweightHO( i , k )

enddo
enddo
do i l =1, n l
do i =0,nhidden

do j =0,nhidden
write (111 ,∗ )wweightHH( i l , i , j )

enddo
enddo
enddo
close (111)
return
end

B.3.4 Predicting the outputs

The is used to predict the output for a set of input parameters. See Section 3.5.1 of the thesis.
LISTING B.3.4: PREDICTTEST.F

program pred i c t 6
parameter ( imax3=99, i l a y =35)
real sumout ( 0 : imax3 ) ,sumH( i l ay , 0 : imax3 )
real inp ( 0 : imax3 ) , outp ( 0 : imax3 )
real weightHH( i l ay , 0 : imax3 , 0 : imax3 )
real weightHO (0 : imax3 , 0 : imax3 )
real weightIH ( 0 : imax3 , 0 : imax3 )
character∗32 f i l ename1
character∗50 dummy
character∗1 rep ly

60 format (99(1X, F12 . 8 ) )
666 format (A50)

open (1 , f i l e=’ t e s t f i l e ’ )
read (1 ,∗ ) iepoch , e r r o r

195



print ∗ , ’ epoch i s ’ , i epoch
read (1 ,∗ ) numinput , nml , numhidden , numoutput
do i =0,numinput

do j =0,numhidden
read (1 ,∗ ) weightIH ( i , j )

enddo
enddo
do i =0,numhidden

do k=0,numoutput
read (1 ,∗ ) weightHO( i , k )

enddo
enddo
do i l =1,nml
do i =0,numhidden

do j =0,numhidden
read (1 ,∗ ) weightHH( i l , i , j )

enddo
enddo
enddo
close (1 )

print ∗ , ’ ente r f i l ename with input cond i t i on s
& ( output wr i t t en to p r ed i c t . pat ) ’

read∗ , f i l ename1

open (1 , f i l e=f i l ename1 )
open (2 , f i l e=’ pr ed i c t . pat ’ )
do i i i =0 ,9999999

read (1 ,∗ ,END=69) ( inp ( j ) , j =1,numinput )
c c a l c u l a t e t o t a l s i g n a l to j−th neuron on hidden1 l ay e r

do j =1,numhidden
sumH(1 , j )=weightIH (0 , j )
do i =1,numinput

sumH(1 , j )=sumH(1 , j )+inp ( i )∗weightIH ( i , j )
enddo
sumH(1 , j ) =1.0/(1.0+ exp(−sumH(1 , j ) ) )

enddo
c c a l c u l a t e t o t a l s i g n a l to j−th neuron on hidden n l ay e r

do i l =1,nml−1
do j 1 =1,numhidden

sumH( i l +1, j1 )=weightHH( i l , 0 , j 1 )
do j 2 =1,numhidden

sumH( i l +1, j 1 )=sumH( i l +1, j1 )+sumH( i l , j 2 )∗weightHH( i l , j2 , j 1 )
enddo
sumH( i l +1, j1 ) =1.0/(1.0+ exp(−sumH( i l +1, j1 ) ) )

enddo
enddo

c c a l c u l a t e t o t a l s i g n a l to k−th neuron on output l ay e r
do k=1,numoutput

sumout (k )=weightHO (0 , k )
do j =1,numhidden

sumout (k )=sumout (k )+sumH(nml , j )∗weightHO( j , k )
enddo
sumout (k ) =1.0/(1.0+ exp(−sumout (k ) ) )

enddo
write (2 ,60) ( inp ( j ) , j =1,numinput ) , ( sumout (k ) , k=1,numoutput )

enddo
69 continue

close (2 )
close (1 )
end

B.3.5 Denormalising the outputs

The denormalisation undoes the previous normalisation step. it denormalises the output after
predictions are made. See Section 3.5.1 of the thesis.
LISTING B.3.5: DENORMATEST.F

program cg2tec2
character∗30 f i l e i n , f i l e o u t
character∗70 dummy(3)
integer r ep ly
real ∗8 value (999999 ,99) ,mx(99) ,mn(99)
real ∗8 maxi (99) , mini (99) , lamda , beta
integer i t ime , ntime

70 format (99(1X, E16 . 8 ) )
77 format (A70)
222 format (D8. 3 ’ ’D8. 3 ’ ’D8 . 3 )

print ∗ , ’ ente r f i l e to read data from ’
read∗ , f i l e i n
print ∗ , ’ i s i t a t e cp l o t f i l e ? (1/0) ’
read∗ , r ep ly
print ∗ , ’ ente r number o f l i n e s per block ’
read∗ , nblock

open (1 , f i l e=’norma . dat ’ )
read (1 ,∗ ) i c o l s
do i =1, i c o l s

read (1 ,∗ ) mini ( i ) ,maxi ( i )
enddo
do i =1, i c o l s

read (1 ,∗ )mn( i ) ,mx( i )
enddo
close (1 )
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i=1

open (15 , f i l e=f i l e i n )
do i i i =1 ,10000000

i f ( r ep ly . eq . 1 ) then
read (15 ,77 ,END=66)dummy
do ib=1, nblock

read (15 ,∗ ) ( value ( i , j ) , j =1, i c o l s )
i=i+1

enddo
else

read (15 ,∗ ,END=66) ( value ( i , j ) , j =1, i c o l s )
i=i+1

endif
enddo

66 continue
i l i n e s=i−1
close (15)

print ∗ , ’INPUT FILE READ’

do i =1, i l i n e s
do j =1, i c o l s

lamda=(maxi ( j )−mini ( j ) ) /(mx( j )−mn( j ) )
beta=mini ( j )−lamda∗mn( j )
value ( i , j )=(value ( i , j )−beta ) /lamda

enddo
enddo

print ∗ , ’Do you want to make the output f i l e a t e cp l o t f i l e ?
& (1/0) ’

read∗ , r ep ly

open (11 , f i l e=’ denormed . dat ’ )
i=1
do i i i =1 ,909090909

i f ( r ep ly . eq . 1 ) then
write (11 ,∗ ) ’TITLE=”Rotor Pred i c t i on ” ’
write (11 ,∗ ) ’VARIABLES=”R” ”Camber” ”Thickness ” ”OpValue” ’
write (11 ,∗ ) ’ZONE I=7, J=10, K=10, DATAPACKING=POINT ’
do ib=1, nblock

write (11 ,70) ( value ( i , j ) , j =1, i c o l s )
i=i+1

enddo
else

write (11 ,∗ ) ( value ( i , j ) , j =1, i c o l s )
i=i+1

endif
i f ( i . eq . i l i n e s +1) goto 777

enddo
777 continue

close (11)
print ∗ , ’OUTPUT FILE WRITTEN’
end
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B.4 Kriging Metamodel

B.4.1 Main Fortran Program

PROGRAM KRIG
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c Krig ing f o r 2 parameters
c theta va lues are opt imised such that p s i i s reduced . One theta i s
c kept constant ( tht ) and the other a l t e r e d .
c The va lues are normal i sed to between 0 and 1 f i r s t ( s u f f i x n) .
c Then the mean and standard dev i a t i on found and used to
c normal i se them ( s u f f i x z ) .
c Pred i c t i on occurs f o r a s e t f i l e o f data .
c Change in de l t a i s the add i t i on o f a smal l va lue .
c N i s the t o t a l number o f t r a i n i n g data po int s .
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

INTEGER N
PARAMETER(N=20)
REAL A1(N) ,A2(N) , o fv (N) ,A1z (N) ,A2z (N)
REAL ofvz (N)
REAL A1n(N) ,A2n(N) , ofvn (N)
REAL d i s t (N,N) , d i s t r (N) , covk (N,N) ,CCC(N) , lambda (N) ,F(N)
REAL bb(N) ,FH(N) ,YH(N) ,CH(N,N)
REAL meanA1 ,meanA2 ,meanV , sigma
REAL pi , sA1 , sA2 , sV , prV , rA1 , rA2
REAL thA1 , thA2 , dete r
REAL det (2 ) ,work (N)
REAL p s i i (N)
REAL maxA1 ,minA1 ,maxA2 ,minA2 ,maxV,minV
INTEGER aa (N) , H, job

pi = 3.141592654
OPEN (10 , FILE=’ tra in ing data CMdel ta . txt ’ , STATUS=’OLD’ )

DO J=1,N
READ(10 ,∗ ) A1( J ) ,A2( J ) , o fv ( J )

ENDDO

c ∗−−− FIND MAX AND MIN OF ALL COLUMNS −−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
DO J=1,N

minA1=dmin1 (minA1 ,A1( J ) )
maxA1=dmax1(maxA1 ,A1( J ) )
minA2=dmin1 (minA2 ,A2( J ) )
maxA2=dmax1(maxA2 ,A2( J ) )
minV=dmin1 (minV , ofv ( J ) )
maxV=dmax1(maxV, ofv ( J ) )

ENDDO

c ∗−−− NORMALISE DATA IN ALL COLUMNS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
DO J=1,N
A1n(J )=(A1( J )−minA1) /(maxA1−minA1)
A2n( J )=(A2( J )−minA2) /(maxA2−minA2)
ofvn ( J )=(ofv ( J )−minV) /(maxV−minV)

ENDDO

c ∗−−− CALCULATE MEAN AND SD AND NORMALISE −−−−−−−−−−−−−−−−−−−−−−−−∗
meanA1=SUM(A1n) /N
meanA2=SUM(A2n) /N
meanV=SUM( ofvn ) /N
sA1=sqr t (SUM((A1n−meanA1) ∗∗2) /(REAL(N−1) ) )
sA2=sqr t (SUM((A2n−meanA2) ∗∗2) /(REAL(N−1) ) )
sV=sqr t (SUM(( ofvn−meanV) ∗∗2) /(REAL(N−1) ) )

A1z=(A1n−meanA1) /sA1
A2z=(A2n−meanA2) /sA2
ofvz=(ofvn−meanV)/sV

c ∗−−− REQUIRED PARAMETER VALUES −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
c File to read inputs f o r p r ed i c t i on from i s p r e d i c t t h i s . txt
c File that p r ed i c t i o n s are going to be wr i t t en to i s
c predicted CMdeltapoly0 . pat

OPEN(12 , f i l e=’ predicted CMdeltapoly0 . pat ’ )
OPEN (11 , FILE=’ p r e d i c t t h i s . txt ’ , STATUS=’OLD’ )
DO K=1,209
print ∗ ,K
READ(11 ,∗ ) reqA1 , reqA2
rA1=reqA1
rA2=reqA2
reqA1=((( reqA1−minA1) /(maxA1−minA1) )−meanA1) /sA1
reqA2=((( reqA2−minA2) /(maxA2−minA2) )−meanA2) /sA2

c ∗−−− INITIALISE THETA AND ALL VALUES −−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
thA1=1.3167
thA2=0.1
de l t a =0.001
p s i=0
beta=0
beta2=0
sigma=0

c ∗−−− DISTANCE BETWEEN ALL POINTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
DO I=1,N
DO J=1,N
d i s t ( I , J )=(thA1∗(A1z ( J )−A1z( I ) )∗∗2+thA2∗(A2z ( J )−A2z( I ) ) ∗∗2) ∗∗ ( 0 . 5 )

c print ∗ , d i s t ( I , J )
ENDDO
ENDDO

c ∗−−− DISTANCE BETWEEN REQUIRED AND ALL −−−−−−−−−−−−−−−−−−−−−−−−−−∗
DO J=1,N
d i s t r ( J )=(thA1∗(A1z ( J )−reqA1 )∗∗2+thA2∗(A2z ( J )−reqA2 ) ∗∗2) ∗∗ ( 0 . 5 )
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ENDDO

c ∗−−− COVARIANCE BETWEEN ALL POINTS − Gaussian −−−−−−−−−−−−−−−−−−−∗
DO I=1,N

c i n i t i a l i s e some matr i ces to be used l a t e r
p s i i ( I )=0
lambda ( I )=0
F( I )=1
FH( I )=0
YH( I )=0

DO J=1,N
covk ( I , J )=EXP(−( d i s t ( I , J ) ∗∗2) )

ENDDO
ENDDO

c ∗−−− COVARIANCE BETWEEN REQUIRED AND ALL − Gaussian −−−−−−−−−−−−−∗
DO I=1,N
CCC( I )=EXP(− d i s t r ( I ) ∗∗2)

c print ∗ ,CCC( I )
ENDDO

c ∗−−− CHOLESKY DECOMPOSITION AND INVERTED −−−−−−−−−−−−−−−−−−−−−−−−∗
CH=covk
CALL schdc (CH,1 ,N, work , 0 , 0 , i n f o )
CALL sgeco (CH,N,N, aa ,H, bb)
CALL s g ed i (CH,N,N, aa , det , work , 0 1 )
DO I=1,N
DO J=1,N
FH( I )=FH( I )+CH( I , J )∗F(J )
YH( I )=YH( I )+CH( I , J )∗ o fvz ( J )
ENDDO
beta=beta+FH( I )∗FH( I )
beta2=beta2+FH( I )∗YH( I )
ENDDO
beta=beta2 /beta

c print ∗ , ’ beta ’ , beta

c ∗−−− CALCULATE INVERSE OF COVARIANCE −−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
CALL sgeco ( covk ,N,N, aa ,H, bb)
CALL s g ed i ( covk ,N,N, aa , det , work , 1 1 )
dete r=det (1 ) ∗10∗∗ det (2)
DO I=1,N
DO J=1,N

p s i i ( I )=p s i i ( I )+(o fvz ( J )−F(J )∗beta )∗covk ( I , J )
ENDDO

sigma=sigma+( p s i i ( I ) ∗( o fvz ( I )−F( I )∗beta ) /N)
ENDDO

c get p s i
p s i=dete r ∗∗(1/N) ∗ sigma

c p s i =−0.5∗(N∗LOG( sigma )+LOG( dete r ) )
c print ∗ , ’ de te r i s ’ , de te r

print ∗ , ’ p s i i s ’ , ps i , ’ p r ep s i i s ’ , p r ep s i
c print ∗ , ’ sigma i s ’ , sigma

print ∗ , ’ thA1 ’ , thA1 , ’ thA2 ’ , thA2 , ’ thA3 ’ , thA3

c ∗−−− CALCULATE LAMBDA −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
DO I=1,N
DO J=1,N

lambda ( I )=lambda ( I )+CCC(J )∗covk (J , I )
ENDDO
ENDDO

c ∗−−− PREDICT VALUE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
prV=0
DO I=1,N
prV=prV+lambda ( I )∗ ofvz ( I )

ENDDO

c ∗−−− DENORMALISE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
prV=prV ∗ sV + meanV
prV=prV ∗ (maxV−minV) + minV
WRITE(12 ,∗ ) rA1 , rA2 , prV
ENDDO

c ∗−−− WRITE PREDICTION PARAMETERS TO A FILE −−−−−−−−−−−−−−−−−−−−−∗
OPEN(111 , f i l e=’ predictparameterCMdelta . txt ’ , status=’UNKNOWN’ )
WRITE(111 ,∗ ) minA1 ,maxA1 ,minA2 ,maxA2 ,minV ,maxV,meanA1

& ,meanA2 ,meanV , sA1 , sA2 , sV , thA1 , thA2
DO I=1,N
DO J=1,N
WRITE (111 ,∗ ) covk ( I , J )
ENDDO
ENDDO
CLOSE(111)
CLOSE(12)
END

B.4.2 Fortran Subroutines and Run Script

The fortran subroutines to be used along with the main program are:

- sgedi.f
- sgeco.f
- sgefa.f
- sscal.f
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- saxpy.f
- isamax.f
- sswap.f
- sasum.f
- sdot.f
- schdc.f

They are available through the LINPACK package from www.netlib.org.
The way to run the the kriging method is using the following script:

g f o r t r an −c −g sged i . f
g f o r t r an −c −g sgeco . f
g f o r t r an −c −g sg e f a . f
g f o r t r an −c −g s s c a l . f
g f o r t r an −c −g saxpy . f
g f o r t r an −c −g isamax . f
g f o r t r an −c −g sswap . f
g f o r t r an −c −g sasum . f
g f o r t r an −c −g sdot . f
g f o r t r an −c −g schdc . f
g f o r t r an −c −g OFV kr ig zbeta a l l theta testpo ly0CMavg . f
g f o r t r an −g −o k r i g OFV kr ig zbeta a l l theta testpo ly0CMavg . o sged i . o s g e f a . o s s c a l . o saxpy . o sswap . o

isamax . o sasum . o sdot . o sgeco . o schdc . o
. / k r i g
rm ∗ . o
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B.5 Polynomial interpolation

The polynomial interpolation technique creates a polynomial fit of a specified degree through a
set of data. See Section 3.5.2 of the thesis.
LISTING B.5: POLYNOMIAL10 INTERPOLATION.M

clear ;
p=10; %number o f th i ckne s s va lues
q=10; %number o f camber va lues
matrixA=load ( ’ R09 loads dCm tra in ing poly10 . txt ’ ) ;
for i =1:p%10

th i ck ( i )=matrixA (q∗ i , 2 ) ;%(10∗ i , 2 ) ;
for j =1:q%10

OP per thick ( j , i )=matrixA ( ( i −1)∗q+j , 3 ) ;%( ( i −1)∗10+j , 3 ) ;
OP per camber=OP per thick ’ ;

end
end
camber=matrixA ( 1 : q , 1 ) ;%(1 : 1 0 , 1 ) ;
for i =1:q%10

C( i , : ) =[camber ( i ) ˆ0 camber ( i ) ˆ1 camber ( i ) ˆ2 camber ( i ) ˆ3 camber ( i ) ˆ4 camber ( i ) ˆ5 camber ( i ) ˆ6
camber ( i ) ˆ7 camber ( i ) ˆ8 camber ( i ) ˆ 9 ] ;

end
for i =1:p

T( i , : ) =[ th i ck ( i ) ˆ0 th i ck ( i ) ˆ1 th i ck ( i ) ˆ2 th i ck ( i ) ˆ3 th i ck ( i ) ˆ4 th i ck ( i ) ˆ5 th i ck ( i ) ˆ6 th i ck ( i ) ˆ7
th i ck ( i ) ˆ8 th i ck ( i ) ˆ 9 ] ;

end
for i =1:p%10

prec ( : , i )=l i n s o l v e (C, OP per thick ( : , i ) ) ;
end
for i =1:q

pret ( : , i )=l i n s o l v e (T, OP per camber ( : , i ) ) ;
end
%pred i c t i on
ae ro th i ck =12;
aerocamber =[4.30000005784115734E−006;

2 .1499999959150000;
4 .2999999961299995;
6 .4500004263449995;
8 .5999999965599994;
10 .749999996774999;
12 .900000426989999;
15 .049999567204999;
18 .000014997500003;
19 .349999567634999;
21 .499999997850001;
23 .650000428064999;
25 .800000858279997;
28 .000008138499997;
30 .099999568710000;
32 .249999998924999;
34 .400000429140000;
38 .000002569499998;
38 .699999139570004;
40 .849999569784998;
43 .000000000000000 ] ;

for ip =1:21
pred i c t th i s camber =[aerocamber ( ip ) ˆ0 aerocamber ( ip ) ˆ1 aerocamber ( ip ) ˆ2 aerocamber ( ip ) ˆ3 aerocamber ( ip

) ˆ4 aerocamber ( ip ) ˆ5 aerocamber ( ip ) ˆ6 aerocamber ( ip ) ˆ7 aerocamber ( ip ) ˆ8 aerocamber ( ip ) ˆ 9 ] ;
p r e d i c t t h i s t h i c k =[ ae ro th i ck ˆ0 ae ro th i ck ˆ1 ae ro th i ck ˆ2 ae ro th i ck ˆ3 ae ro th i ck ˆ4 ae ro th i ck ˆ5 ae ro th i ck

ˆ6 ae ro th i ck ˆ7 ae ro th i ck ˆ8 ae ro th i ck ˆ 9 ] ;

k=0;
for i =1:q

d i f f=camber ( i )−aerocamber ( ip ) ;
i f d i f f >= 0

k=k+1;
di f fcamb (k )=d i f f ;

end
end
c losestcamberabove=min( di f fcamb )+aerocamber ( ip ) ;
kk=0;
for i =1:p

d i f f=th i ck ( i )−ae ro th i ck ;
i f d i f f >= 0

kk=kk+1;
d i f f t h i c k ( kk )=d i f f ;

end
end
c l o s e s t t h i c kabove=min( d i f f t h i c k )+ae ro th i ck ;

highc=p−kk+1; %th i s i s the one you change to the c l o s e s t h igher value to ae ro th i ck
i f highc==1

lowc=highc ;
else

lowc=highc −1;
end
hight=q−k+1; %th i s i s the one you change to the c l o s e s t h igher value to aerocamber
i f hight==1

lowt=hight ;
else

lowt=hight −1;
end
c1value=pred i c t th i s camber ∗prec ( : , lowc ) ;
c2va lue=pred i c t th i s camber ∗prec ( : , h ighc ) ;
t1va lue=p r e d i c t t h i s t h i c k ∗pret ( : , lowt ) ;
t2va lue=p r e d i c t t h i s t h i c k ∗pret ( : , h ight ) ;
cva lue=c2value −( th i ck ( highc )−ae ro th i ck ) /( th i ck ( highc )−th i ck ( lowc ) ) ∗( c2value−c1value ) ;
tva lue=t2value −(camber ( h ight )−aerocamber ( ip ) ) /( camber ( h ight )−camber ( lowt ) ) ∗( t2value−t1va lue ) ;
va lue ( ip , 1 )=aerocamber ( ip ) ;
va lue ( ip , 2 )=ae ro th i ck ;
value ( ip , 3 )=(cva lue+tva lue ) /2
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B.6 Genetic Algorithm code

B.6.1 Genetic Algorithm in C

This program and its requirements are described in detail in the Technical Note.140 To run the
program, use the run script in Section B.6.2 where the number of generations can also be set. It
requires a number of files that describe the inputs, constraints, objective function weights, the
settings, the initial population and so on. The process is described in Section 3.6 of the thesis.
LISTING B.6.1: GA TRIAL.C

/∗ GENETIC ALGORITHM
∗
∗ Use the run s c r i p t to run t h i s program .
∗
∗/

#include<s t d i o . h>
#include<math . h>
#include<s t d l i b . h>
#include<s t r i n g . h>
#include<time . h>

/∗−−− FUNCTION DEFINITIONS −−−∗/
f loat binary func ( f loat ) ; /∗ f unc t i on f o r conver t ing decimal to binary ∗/
f loat bintodec (void ) ; /∗ f unc t i on f o r conver t ing binary to decimal ∗/

struct { /∗ s t r u c tu r e f o r each chromosome ∗/
f loat in [ 1 2 ] ; /∗ inputs c h a r a c t e r i s t i c f o r an i nd i v i dua l ∗/
f loat out [ 1 2 ] ; /∗ and output f o r that i nd i v i dua l ∗/
f loat ofv ; /∗ OFV or f i t n e s s value ∗/
int index ; /∗ i d e n t i t y number ∗/
int norm ; /∗ normal i sed f i t n e s s i n t e g e r − f o r r o u l e t t e ∗/
} gr id [ 1 0 0 0 ] ;

main ( int argc , char ∗argv [ ] )
{
int no o f i n , no o f out , no o f con ; /∗ number o f inputs , outputs and con s t r a i n t s ∗/
int no of hcon , no o f s con ; /∗ number o f hard and s o f t c on s t r a i n t s ∗/
FILE ∗norm ;
p r i n t f ( ”GA ver s i on 25\n\n” ) ;
/∗−−− FIND REQUIRED DATA −−−∗/
norm=fopen ( ” inputparams . in ” , ” r ” ) ;
f s c a n f (norm , ”no . o f inputs : %d\n” ,& no o f i n ) ;
f s c a n f (norm , ”no . o f outputs : %d\n” ,& no o f ou t ) ;
f s c a n f (norm , ”no . o f hard const : %d\n” ,&no of hcon ) ;
f s c a n f (norm , ”no . o f s o f t const : %d\n” ,& no o f s con ) ;
f c l o s e (norm) ;
f loat VAR[ no o f i n+no o f ou t +1] , va lue ; /∗ reads the loads from i n i t i a l pool i . e . s o l v e r data ∗/
f loat ngr id ; /∗ reads the input va lues on the r o u l e t t e wheel ∗/
f loat emargin , th r e sho ld ; /∗ reads s e t t i n g s f o r e l i t sm margin and su r v i v a l th re sho ld

f i t n e s s ∗/
f loat ve , minve , maxve , max ; /∗ used to f i nd max and minimum OF va lues f o r normal i z ing and

e l i t i sm ∗/
f loat maxi [ n o o f i n ] , maxi2 [ n o o f i n ] ; /∗ s e l e c t s two input va lues to c r o s s over f o r each input va r i ab l e

∗/
f loat s e l e c t v a r [ n o o f i n ] ; /∗ i s the s e l e c t e d va r i ab l e a f t e r mutation ∗/
f loat e l i t [ n o o f i n ] ; /∗ used to s e l e c t e l i t e v a r i ab l e ∗/
f loat JJ , apre [ n o o f i n ] ; /∗ f o r t r an func t i on s pred i c t ed inputs ∗/
f loat aout [ no o f ou t ] ; /∗ f o r t r an func t i on s pred i c t ed outputs ∗/
f loat a5a [ n o o f i n ] , b5b [ no o f ou t ] , c5c ; /∗ used to compare inputs so i nd i v i dua l s are not repeated in new

gen f i l e ∗/
f loat con , cccc ; /∗ constant value to add to obj func and f i n a l f i t n e s s value ∗/
f loat weight [ no o f ou t ] , cns [ no o f con ] ; /∗ weights f o r ob j e c t i v e func t i on and con s t r a i n t s ∗/
f loat mx[ no o f i n ] ,mn[ n o o f i n ] ; /∗ maximum and mimimum of inputs to normal i se with ∗/
int a , b , i , i i , j , j j , k , kk , count l ine , gen ; /∗ counter s ∗/
int counter ; /∗ counters ∗/
int normal izeto , gen max ; /∗ normal ize f i t n e s s va lues from 0 to . . . and max

i t e r a t i o n s ∗/
int rounum , bk , rouindex , r o u l i ; /∗ r ou l e t t ewhee l f i l e i n f o ∗/
int s e l e c t uppe r , b in upper ; /∗ upper l im i t o f the random number generator ∗/
int se l1pt , s e l2pt , crpt , mupt , mut ; /∗ random s e l e c t i o n po int s in r o u l e t t e wheel and cross ,

mutation point ∗/
int s e l g ene [ n o o f i n ] ; /∗ gene s e l e c t i o n to c r o s s ove r ∗/
int con num [ no o f con ] ; /∗ c on s t r a i n t parameter number ( s t a r t s from 0 − i . e . 1 s t

output i s 0) ∗/
int c on r e l [ no o f con ] ; /∗ c on s t r a i n t r e l a t i o n number ( g r ea t e r than = 1 , l e s s

than = 0) ∗/
int con sh [ no o f con ] ; /∗ s o f t or hard cons t ra in t , s o f t i s 0 , hard i s 1 ∗/
f loat con w [ no o f con ] ; /∗ s o f t c on s t r a i n t weight ∗/
int bin [ n o o f i n ] [ 2 ] [ 1 0 ] ; /∗ f o r conver s ion back to decimal from binary ∗/

FILE ∗ s e l e c t ed , ∗ input , ∗output , ∗denorm , ∗penalty , ∗ r ou l e t t e , ∗ r o u l s e l e c t , ∗binread , ∗ b inwr i t e ;
FILE ∗pool , ∗poolread1 , ∗poolread , ∗ po o l e l i t , ∗ on l y e l i t , ∗ ofvweights , ∗ cons t ra in t , ∗ s e t t i n g ;
char f i l ename [ 1 2 8 ] , s t r ch [ 5 0 ] ;

/∗−−− READ SETTINGS, CONSTRAINTS AND WEIGHTS FILES −−−∗/

s e t t i n g = fopen ( ” s e t ” , ” r ” ) ;
f s c a n f ( s e t t i ng , ”%f \n%d\n%d\n%f \n%f \n” ,&emargin ,&normal izeto ,&gen max ,& thre sho ld )==4;
f c l o s e ( s e t t i n g ) ;
no o f con=no of hcon+no o f s con ;
c on s t r a i n t = fopen ( ” c on s t r a i n t s . dat” , ” r ” ) ;
for ( i =0; i<no o f con ; i++)
{ f s c a n f ( cons t ra in t , ”%d %f %d %d %f \n” ,&con num [ i ] , &cns [ i ] , &c on r e l [ i ] , &con sh [ i ] , &con w [ i ] ) ==5;}
f c l o s e ( c on s t r a i n t ) ;
o fvwe ights = fopen ( ” o fvwe ights . txt ” , ” r ” ) ;
j j =0;
while ( ( j = getc ( o fvwe ights ) ) != EOF)

{
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ungetc ( j , o fvwe ights ) ;
f s c a n f ( ofvweights , ”%f \n” ,&weight [ j j ] ) ==1;
j j=j j +1;

}
f c l o s e ( o fvwe ights ) ;
con=0;
for ( i =0; i<no o f ou t ; i++)
{con=con+weight [ i ] ; }
con=−1∗con ; // value to n e u t r a l i s e Object ive func t i on so r e f e r e n c e value has

a value o f 0 .
p r i n t f ( ”con:% f \n” , con ) ;

/∗−−− READ INITIAL POPULATION FILE −−−∗/
for ( i =0; i<no o f i n ; i++) // i n i t i a l i s e max and min va lues
{mx[ i ]=−1000; mn[ i ]=1000;}
j j =0;
s t r cpy ( f i l ename , argv [ 1 ] ) ;
input = fopen ( f i l ename , ” r ” ) ;
while ( ( j = getc ( input ) ) != EOF )

{
ungetc ( j , input ) ;
for ( i =0; i <( n o o f i n+no o f ou t ) ; i++)
{

f s c a n f ( input , ”%f ” ,&VAR[ i ] ) ==1;
}
f s c a n f ( input , ”%f ” ,&value )==1;
g r id [ j j ] . o fv=value ;
for ( i =0; i<no o f i n ; i++)
{

gr id [ j j ] . in [ i ]=VAR[ i ] ;
i f ( g r id [ j j ] . in [ i ]>=mx[ i ] ) {mx[ i ]= gr id [ j j ] . in [ i ] ; }
i f ( g r id [ j j ] . in [ i ]<=mn[ i ] ) {mn[ i ]= gr id [ j j ] . in [ i ] ; }

}
for ( i =0; i<no o f ou t ; i++)
{

gr id [ j j ] . out [ i ]=VAR[ i+no o f i n ] ;
}
gr id [ j j ] . index=j j ;
j j=j j +1;

}
f c l o s e ( input ) ;
p r i n t f ( ”%d\n ” , j j ) ;

/∗−−−−− SELECTION − ROULETTE BASED −−−−−∗/
/∗−−− F i r s t normal ize the f i t n e s s va lues −−−∗/
minve=10000; // i n i t i a l i z e minimum f i t n e s s
maxve=−10000; // i n i t i a l i z e maximum f i t n e s s
for ( i =0; i< j j ; i++)

{
ve=gr id [ i ] . o fv ;
i f ( ve<minve )
{minve=ve ;}
i f ( ve>maxve)

{maxve=ve ;
for ( j =0; j<no o f i n ; j++)
{ e l i t [ j ]= gr id [ i ] . in [ j ] ; }

}
}

p r i n t f ( ”maxve = %f \n” ,maxve ) ;
/∗−−− ELITISM − best a e r o f o i l s > c e r t a i n f i t n e s s in the i n i t i a l pool put in to next genera t i on i . e . pool .

dat −−−∗/
st rcpy ( f i l ename , argv [ 2 ] ) ;
p o o l e l i t = fopen ( f i l ename , ”w” ) ;
o n l y e l i t = fopen ( ” best . txt ” , ”w” ) ;
for ( i =0; i< j j ; i++)

{
i f ( ( g r id [ i ] . o fv >= (maxve − emargin ) ) )
{
a=0;
for ( k=0;k<no o f con ; k++) // account f o r hard c on s t r a i n t s here
{

i f ( ( c on r e l [ k]==1) &&(con sh [ k]==1) )
{ i f ( g r id [ i ] . out [ con num [ k]]>=cns [ k ] ) {a=a+1;}}
else i f ( ( c on r e l [ k]==0) &&(con sh [ k]==1) )
{ i f ( g r id [ i ] . out [ con num [ k]]<=cns [ k ] ) {a=a+1;}}

}
i f ( a==no of hcon )

{ for ( j =0; j<no o f i n ; j++)
{ f p r i n t f ( p o o l e l i t , ”%f \ t ” , g r id [ i ] . in [ j ] ) ;
f p r i n t f ( o n l y e l i t , ”%f \ t ” , g r id [ i ] . in [ j ] ) ;}
for ( j =0; j<no o f ou t ; j++)
{ f p r i n t f ( p o o l e l i t , ”%f ” , g r id [ i ] . out [ j ] ) ;
f p r i n t f ( o n l y e l i t , ”%f ” , g r id [ i ] . out [ j ] ) ;}
f p r i n t f ( p o o l e l i t , ”%f \n” , g r id [ i ] . o fv ) ;
f p r i n t f ( o n l y e l i t , ”%f \n” , g r id [ i ] . o fv ) ;
}

}
}

f c l o s e ( p o o l e l i t ) ;
f c l o s e ( o n l y e l i t ) ;
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− end o f e l i t i sm −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

for ( i =0; i< j j ; i++) // normal i se to get number o f r e p e t i t i o n s in rou l e t t ewhee l
{

ngr id=(gr id [ i ] . o fv − minve ) / (maxve − minve ) ∗ normal i zeto ;
g r id [ i ] . norm = ( int ) ngr id ;

}
/∗−−− Put i t on a r ou l e t t e wheel which i s the f i l e r ou l e t t ewhee l . txt −−−∗/
count l i n e =0;
r o u l e t t e=fopen ( ” rou l e t t ewhee l . txt ” , ”w” ) ;
for ( i =0; i< j j ; i++)

{
rouindex = gr id [ i ] . index ;
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rounum = gr id [ i ] . norm ;
for ( k=0;k<rounum ; k++)
{

f p r i n t f ( r ou l e t t e , ”%d \n” , rouindex ) ;
c ount l i n e=count l i n e +1;

}
}

f c l o s e ( r o u l e t t e ) ;
int rou l [ c ount l i n e ] ; /∗ array going to conta in r o u l e t t e wheel ∗/
r o u l s e l e c t=fopen ( ” rou l e t t ewhee l . txt ” , ” r ” ) ;
for ( a=0;a<count l i n e ; a++)

{
f s c a n f ( r o u l s e l e c t , ”%d\n” ,& r o u l i )==1;
rou l [ a]= r o u l i ;

}
f c l o s e ( r o u l s e l e c t ) ;

srand ( time (NULL) ) ;

/∗−−−−−−−−−−− REPEAT FOR GEN NUMBER OF RUNS TO POPULATE NEXT GEN −−−−−−−−−−−∗/
for ( gen=0;gen<gen max ; gen++)
{
/∗−−− SELECT 2 PARENTS TO CROSSOVER −−−∗/
s e l e c t uppe r=count l i n e ;
s e l 1p t=rand ( )%s e l e c t uppe r ;
s e l 2p t=rand ( )%s e l e c t uppe r ;
for ( j =0; j<no o f i n ; j++)

{
maxi [ j ]= gr id [ r ou l [ s e l 1p t ] ] . in [ j ] ;
maxi2 [ j ]= gr id [ r ou l [ s e l 2p t ] ] . in [ j ] ;
}

p r i n t f ( ”SELECTED: ” ) ;
for ( j =0; j<no o f i n ; j++)
{ p r i n t f ( ”var%d parent1 = %f , var%d parent2 = %f \ t ” , j , maxi [ j ] , j , maxi2 [ j ] ) ;}
p r i n t f ( ”\n” ) ;

/∗−−− CROSSOVER −−−∗/
for ( j =0; j<no o f i n ; j++)

{
s e l g ene [ j ]=rand ( )%no o f i n ;
i f ( s e l g ene [ j ]==1)

{
max=maxi2 [ j ] ;
maxi2 [ j ]=maxi [ j ] ;
maxi [ j ]=max ;
}

}

p r i n t f ( ”CROSSED: ” ) ;
for ( j =0; j<no o f i n ; j++)
{ p r i n t f ( ”var%d ch i l d1 = %f , var%d ch i l d2 = %f \ t ” , j , maxi [ j ] , j , maxi2 [ j ] ) ;}
p r i n t f ( ”\n” ) ;
/∗−−− normal i se f i r s t between 0 and 30 so i t f i t s in l im i t ed binary number−−−∗/
for ( j =0; j<no o f i n ; j++)
{maxi [ j ]=(maxi [ j ]−mn[ j ] ) /(mx[ j ]−mn[ j ] ) ∗ 30 ;
maxi2 [ j ]=(maxi2 [ j ]−mn[ j ] ) /(mx[ j ]−mn[ j ] ) ∗ 30;}

/∗−−− CONVERSION TO BINARY CODING I .E. PHENOTYPE TO GENOTYPE −−−∗/
for ( j =0; j<no o f i n ; j++)
{bk=binary func (maxi [ j ] ) ;
b inread=fopen ( ” thebinary ” , ” r ” ) ;
f s c a n f ( binread , ”%d %d %d %d %d %d %d %d %d %d”,&bin [ j ] [ 0 ] [ 0 ] , & bin [ j ] [ 0 ] [ 1 ] , & bin [ j ] [ 0 ] [ 2 ] , & bin [ j ] [ 0 ] [ 3 ] , &

bin [ j ] [ 0 ] [ 4 ] , & bin [ j ] [ 0 ] [ 5 ] , &bin [ j ] [ 0 ] [ 6 ] , & bin [ j ] [ 0 ] [ 7 ] , & bin [ j ] [ 0 ] [ 8 ] , & bin [ j ] [ 0 ] [ 9 ] ) ==10;
f c l o s e ( binread ) ;
bk=binary func (maxi2 [ j ] ) ;
b inread=fopen ( ” thebinary ” , ” r ” ) ;
f s c a n f ( binread , ”%d %d %d %d %d %d %d %d %d %d”,&bin [ j ] [ 1 ] [ 0 ] , & bin [ j ] [ 1 ] [ 1 ] , & bin [ j ] [ 1 ] [ 2 ] , & bin [ j ] [ 1 ] [ 3 ] , &

bin [ j ] [ 1 ] [ 4 ] , & bin [ j ] [ 1 ] [ 5 ] , &bin [ j ] [ 1 ] [ 6 ] , &bin [ j ] [ 1 ] [ 7 ] , &bin [ j ] [ 1 ] [ 8 ] , & bin [ j ] [ 1 ] [ 9 ] ) ==10;
f c l o s e ( binread ) ;
}

bin upper =10; /∗ upper bound f o r mutation point i s max binary d i g i t s ∗/
// p r i n t f (” Of f sp r ing in binary ( gene ) format :\n”) ;
for ( k=0;k<no o f i n ; k++)
{
// p r i n t f (” va r i ab l e %d : \n” ,k ) ;
// f o r ( j =0; j <2; j++)
// {
// p r i n t f (” %d : ” , j +1) ;
// f o r ( i =0; i<bin upper ; i++)
// {
// p r i n t f (”%d” , bin [ k ] [ j ] [ i ] ) ;
// }
// p r i n t f (”\n”) ;
// }
}
/∗−−− MUTATION −−−∗/
for ( j =0; j<no o f i n ; j++)

{
mupt=rand ( )%bin upper ; /∗ random number generator < upper bound ∗/
mut=rand ( )%2; /∗ mutation b i t i . e . r ep l a c e with t h i s b i t (1 or 0) ∗/
bin [ j ] [ 0 ] [ mupt]=bin [ j ] [ 0 ] [ mut ] ;
bin [ j ] [ 1 ] [ mupt]=bin [ j ] [ 1 ] [ mut ] ;
}

// p r i n t f (”mutated :\n”) ;
// f o r (k=0;k<no o f i n ; k++)
//{
// p r i n t f (” va r i ab l e : %d\n” , k ) ;
// f o r ( j =0; j <2; j++)
// {
// p r i n t f (” %d : ” , j +1) ;
// f o r ( i =0; i<bin upper ; i++)
// {
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// p r i n t f (”%d” , bin [ k ] [ j ] [ i ] ) ;
// }
// p r i n t f (”\n”) ;
// }
//}
/∗−−− CONVERSION BACK TO PHENOTYPE I .E. DECIMAL −−−∗/
for ( k=0;k<no o f i n ; k++)
{

b inwr i t e=fopen ( ” thebinary2 ” , ”w” ) ;
for ( j =0; j <2; j++)
{

for ( i =0; i<bin upper ; i++)
{

f p r i n t f ( b inwr ite , ”%d ” , bin [ k ] [ j ] [ i ] ) ;
}
f p r i n t f ( b inwr i te , ”\n” ) ;

}
f c l o s e ( b inwr i t e ) ;
s e l e c t v a r [ k]=bintodec ( ) ;

}

/∗−−− denormal i se −−−∗/
for ( k=0;k<no o f i n ; k++)
{ s e l e c t v a r [ k]= s e l e c t v a r [ k ] / 30 ∗ (mx[ k]−mn[ k ] ) + mn[ k ] ; }

s e l e c t e d=fopen ( ”neww . txt ” , ”w” ) ;
for ( k=0;k<no o f i n ; k++)
{ f p r i n t f ( s e l e c t ed , ”%f \ t ” , s e l e c t v a r [ k ] ) ;
p r i n t f ( ” f i n a l o f f s p r i n g : %f \ t ” , s e l e c t v a r [ k ] ) ;}
f p r i n t f ( s e l e c t ed , ”\n” ) ;
f c l o s e ( s e l e c t e d ) ;

/∗−−− FINDING OPTIMIZATION FUNCTION VALUE USING TRAINED ANN −−−∗/

/∗−−− normal i z ing −−−∗/
normatest (&no o f i n ) ;
norm=fopen ( ” f i l e o u t . txt ” , ” r ” ) ;

/∗−−− p r ed i c t i n g and denormal iz ing outputs −−−∗/
for ( k=0;k<no o f ou t ; k++)
{

kk=k+1;
p r e d i c t t e s t (&kk ) ;
denormatest (&kk ) ;
penalty=fopen ( ”denormed . dat” , ” r ” ) ;
for ( j =0; j<no o f i n ; j++)
{ f s c a n f ( penalty , ”%f ” , &apre [ j ] ) ;}
f s c a n f ( penalty , ”%f \n” ,&aout [ k ] ) ;
f c l o s e ( penalty ) ;

}

/∗−−−−−−−−−− PENALTY FOR VALUES OUTSIDE CONSTRAINTS −−−−−−−−−−∗/
cccc=con ;
for ( k=0;k<no o f ou t ; k++)
{

cccc=cccc + weight [ k ] ∗ aout [ k ] ;
}
for ( k=0;k<no o f i n ; k++)

{ i f ( apre [ k ] < mn[ k ] ) { cccc=cccc − (10 ∗ (mn[ k ] − apre [ k ] ) ) ;}
i f ( apre [ k ] > mx[ k ] ) { cccc=cccc − (10 ∗ ( apre [ k ] − mx[ k ] ) ) ;}}

for ( k=0;k<no o f con ; k++) // s o f t c on s t r a i n t s
{ i f ( ( c on r e l [ k]==1) && ( con sh [ k]==0) )

{ i f ( aout [ con num [ k ] ] < cns [ k ] ) { cccc=cccc − ( con w [ k ] ∗ ( cns [ k ] − aout [ con num [ k ] ] ) ) ;}}
i f ( ( c on r e l [ k]==0) && ( con sh [ k]==0) )
{ i f ( aout [ con num [ k ] ] > cns [ k ] ) { cccc=cccc − ( con w [ k ] ∗ (− cns [ k ] + aout [ con num [ k ] ] ) )

;}}
}

for ( k=0;k<no o f ou t ; k++)
{ p r i n t f ( ”%f ” , aout [ k ] ) ;}

p r i n t f ( ”%f \n” , cccc ) ;

/∗−−− ADD TO POOL WITHOUT REPETITION AND WITH PENALTY FACTOR ADDED −−−∗/
j =0;
i i =1;
counter=0;
s t r cpy ( f i l ename , argv [ 2 ] ) ;
poo l read = fopen ( f i l ename , ” r+” ) ;
while ( ( j < i i ) )
{

i =0;
i i =0;
poolread1 = fopen ( f i l ename , ” r ” ) ;
while ( ( i = getc ( poolread1 ) ) != EOF)

{ungetc ( i , poo l read1 ) ;
for ( i =0; i<no o f i n ; i++)

{ f s c a n f ( poolread1 , ”%f ” ,&a5a [ i ] ) ==1;}
for ( i =0; i<no o f ou t ; i++)

{ f s c a n f ( poolread1 , ”%f ” ,&b5b [ i ] ) ==1;}
f s c a n f ( poolread1 , ”%f \n” ,&c5c )==1;
i i= i i +1;}

f c l o s e ( poolread1 ) ;
for ( i =0; i<no o f i n ; i++)

{ f s c a n f ( poolread , ”%f ” ,&a5a [ i ] ) ==1;}
for ( i =0; i<no o f ou t ; i++)

{ f s c a n f ( poolread , ”%f ” ,&b5b [ i ] ) ==1;}
f s c a n f ( poolread , ”%f \n” ,&c5c )==1;
i =0;
k=0;
while ( i<no o f i n )
{

i f ( sq r t ( ( a5a [ i ]−apre [ i ] ) ∗( a5a [ i ]−apre [ i ] ) ) <=0.00001) {k=k+1;}
i=i +1;
i f ( ( i==no o f i n ) && (k!= no o f i n ) ) { counter=counter +1;}
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}
i f ( k==no o f i n ) {break ;}
i f ( ( counter == i i ) && ( cccc>th re sho ld ) ) // i f whole f i l e checked and above thre sho ld . . .
{

a=0;kk=0;
while ( kk<no o f con ) // . . . and hard c on s t r a i n t s are met . . .
{ i f ( ( c on r e l [ kk]==1) && ( con sh [ kk]==1) )

{ i f ( aout [ con num [ kk]]>=cns [ kk ] ) {a=a+1;}}
else i f ( ( c on r e l [ kk]==0) && ( con sh [ kk]==1) )
{ i f ( aout [ con num [ kk]]<=cns [ kk ] ) {a=a+1;}}
kk=kk+1;

}
i f ( a==no of hcon ) // ( hard c on s t r a i n t s met ) . . . add to next genera t i on .
{

for ( i =0; i<no o f i n ; i++)
{ f p r i n t f ( poolread , ”%f \ t ” , apre [ i ] ) ;
p r i n t f ( ”%f \ t ” , apre [ i ] ) ;}
for ( i =0; i<no o f ou t ; i++)
{ f p r i n t f ( poolread , ”%f ” , aout [ i ] ) ;
p r i n t f ( ”%f ” , aout [ i ] ) ;}
f p r i n t f ( poolread , ”%f \n” , cccc ) ;
p r i n t f ( ”%f \n” , cccc ) ;

}
}
j=j +1;

}
f c l o s e ( poo l read ) ;
}
return 0 ;
}

/∗−−− FUNCTION FOR THE CONVERSION TO BINARY − 6−d i g i t be f o r e decimal point , 3−d i g i t a f t e r decimal po int
−−−∗/

f loat binary func ( f loat p)
{
int div , rem , i , n , bin [ 7 ] , bindec [ 3 ] , bk , count ;
f loat f r , r , f rac , number ;
FILE ∗ b in f ;
i =0;

f r = ( int )p ;
div = p ;
while ( div > 0)

{
f r = f r /2 ;
div = f r ;
r = ( f r − div ) ∗2 ;
rem = r ;
bin [6− i ] =rem ;
i=i +1;
f r = div ;

}
i f ( i <7)

{
n = 7− i ;
while (n > 0)
{

bin [ n −1]=0;
n = n −1;

}
}

bk=bin [ 4 ] ;

/∗ f r a c t i o n part ∗/
f r a c = p − ( int )p ;
number = f r a c ;
count = 0 ;
while (number>0)
{

number = number ∗ 2 ;
bindec [ count ] = ( int ) number ;
number = number − ( int ) number ;
count = count + 1 ;
i f ( count==3) break ;

}
i f ( count<3)
{

n=count ;
while (n<3)
{

bindec [ n ]=0;
n = n + 1 ;

}
}

b in f=fopen ( ” thebinary ” , ”w” ) ;
f p r i n t f ( b inf , ”%d %d %d %d %d %d %d %d %d %d \n” , bin [ 0 ] , bin [ 1 ] , bin [ 2 ] , bin [ 3 ] , bin [ 4 ] , bin [ 5 ] , bin [ 6 ] , bindec

[ 0 ] , bindec [ 1 ] , bindec [ 2 ] ) ;
f c l o s e ( b in f ) ;
return bk ;
}

/∗−−− FUNCTION FOR THE CONVERSION OF BINARY TO DECIMAL −−−∗/

f loat bintodec (void )
{

FILE ∗binread , ∗output ;
f loat sum1 , sum2 ;
int i , val1 , val2 , bin [ 2 ] [ 1 0 ] ;
b inread=fopen ( ” thebinary2 ” , ” r ” ) ;
for ( i =0; i <2; i++)
{
f s c a n f ( binread , ”%d %d %d %d %d %d %d %d %d %d\n” , &bin [ i ] [ 0 ] ,& bin [ i ] [ 1 ] ,& bin [ i ] [ 2 ] ,& bin [ i ] [ 3 ] ,&

bin [ i ] [ 4 ] ,& bin [ i ] [ 5 ] ,& bin [ i ] [ 6 ] ,& bin [ i ] [ 7 ] ,& bin [ i ] [ 8 ] ,& bin [ i ] [ 9 ] ) ;
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}
f c l o s e ( binread ) ;
sum1=0;
sum2=0;
i =0;
for ( i =0; i <7; i++)

{
val1 = bin [0 ] [6 − i ] ;
sum1 = sum1 + val1 ∗ pow(2 , i ) ;
va l2 = bin [1 ] [6 − i ] ;
sum2 = sum2 + val2 ∗ pow(2 , i ) ;

}
i =0;
for ( i =0; i <3; i++)

{
val1 = bin [0 ] [9 − i ] ;
sum1 = sum1 + val1 ∗ pow (0 . 5 , i +1) ;
va l2 = bin [1 ] [9 − i ] ;
sum2 = sum2 + val2 ∗ pow (0 . 5 , i +1) ;

}
output = fopen ( ”new . txt ” , ”w” ) ;
f p r i n t f ( output , ”%f %f \n” , sum2 , sum1) ;
f c l o s e ( output ) ;
return sum1 ;

}

B.6.2 Running the GA code in B.6.1

LISTING B.6.2: RUN

g f o r t r an −c normatest . f
g f o r t r an −c p r e d i c t t e s t . f
g f o r t r an −c denormatest . f
g f o r t r an −c ga . c
g f o r t r an −o ga ga . o denormatest . o p r e d i c t t e s t . o normatest . o
. / ga t r a i n i n g da t a . txt . o fv gen 01 . dat
#. / ga gen 03 . dat gen 04 . dat

a=2
while [ ”$a” − l e ”3” ]
do

echo ”$a”
l e t ”b=a−1”
echo ”$b”
. / ga gen 0 ”$b” . dat gen 0 ”$a” . dat
l e t ”a+=1”

done

rm thebinary thebinary2 rou l e t t ewhee l . txt f i l e o u t . txt new . txt neww . txt p r ed i c t . pat denormed . dat
rm ∗ . o

e x i t 0

B.6.3 Running the Pareto GA code in B.6.1

This program obtains the Pareto Front using a similar technique to the GA.
LISTING B.6.3: GA TRIALV24PARETO 2INP.C

/∗This i s the main f i l e . I t f i n d s 2 parents to cros sover , and c r o s s e s over random genes in
i n t e g e r form .
The program f i nd s the pareto optimal . However i t uses the sum of ob j e c t i v e s to cause a s e l e c t i o n
pre s su r e .

The t ra ined ANN i s used to p r ed i c t the r equ i r ed outputs and the r e s u l t i n g weights o f the neurons
are s to r ed in the f i l e ’ t e s t f i l e ’ a long with the number o f inputs , l aye r s , neurons and outputs .
F i r s t , the o f f s p r i n g a e r o f o i l s ( f i l e i s new . txt ) are normal i sed ( f i l e i s f i l e o u t ) , then i t s
opt imizat i on value pred i c t ed ( f i l e i s p r ed i c t . pat ) and then denormal ized ( f i l e i s denormed . dat ) .
Penalty i s inc luded i f the va lues f a l l ou t s ide the c on s t r a i n t s .
The r o u l e t t e method i s used f o r s e l e c t i o n i . e . normal i za t ion o f the f i t n e s s va lues i s done
f o r the e n t i r e f i l e be f o r e s e l e c t i o n occurs . The r o u l e t t e i t s e l f i s a f i l e conta in ing the
po in t s with h igher f i t n e s s repeated as many times as i s p ropo r t i ona l to i t s f i t n e s s , so that
i t has a h igher p r obab i l i t y o f being picked .
A pool o f the o f f s p r i n g c h a r a c t e r i s t i c s i s c reated .
E l i t i sm can be used here .
The conver s ion to binary i s a func t i on that can be c a l l e d and a l s o a e r o f o i l s out o f
c on s t r a i n t s are inc luded in the pool but with the penalty value , s i n c e t h i s i s assumed to
make the GA converge f a s t e r .
The GA i s repeated with the new pool f o r a c e r t a i n number o f i t e r a t i o n s .
Mutation has been implemented .
The input f i l e i s g ene r i c so data can be read from the pool .
F rac t i ona l va lues f o r the c h a r a c t e r i s t i c s have been introduced and the opt ion o f exc lud ing
va lues that v i o l a t e c on s t r a i n t s .
In t h i s vers ion , s t r u c t u r e s have been used in s t ead o f matr i ce s to save memory space .
Here , the genes are swapped as opposed to swapping b i t s o f the genes which i s what prevented
the GA from converg ing without e l i t i sm .
The loads are pred i c t ed from more than 1 ANN. Each ANN i s as s i gned to p r ed i c t a smal l
number o f s im i l a r loads e . g . Avg Cm and Delta Cm.
User−de f ined c on s t r a i n t s such as minimum l i f t , e t c have been implemented .
∗/

/∗ Note that the OFV i s not read but ca l cu l a t ed when the i n i t i a l pool i s read − so i f you want
i t to inc lude va lues out s ide the c on s t r a i n t s with the penalty added , i t wont add the penalty .
For t h i s to happen , i t must be read from the f i l e . ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ BUGS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗
∗
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∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#include<s t d i o . h>
#include<math . h>
#include<s t d l i b . h>
#include<s t r i n g . h>
#include<time . h>

/∗−−− FUNCTION DEFINITIONS −−−∗/
f loat binary func ( f loat ) ; /∗ f unc t i on f o r conver t ing decimal to binary ∗/
f loat bintodec (void ) ; /∗ f unc t i on f o r conver t ing binary to decimal ∗/

struct { /∗ s t r u c tu r e f o r each chromosome ∗/
f loat A1 ; /∗ gene f o r 1 s t c o e f f i c i e n t ∗/
f loat A2 ; /∗ gene f o r 2nd c o e f f i c i e n t ∗/
f loat A3 ; /∗ gene f o r 3 rd c o e f f i c i e n t ∗/
f loat CQ; /∗ CD ∗/
f loat CM; /∗ CM ∗/
f loat MDD; /∗ MDD ∗/
f loat ofv ; /∗ OFV or f i t n e s s value CL/CD ∗/
int index ; /∗ i d e n t i t y number ∗/
int norm ; /∗ normal i sed f i t n e s s i n t e g e r − f o r r o u l e t t e ∗/
} gr id [ 1 0 0 0 ] ;

main ( int argc , char ∗argv [ ] )
{
f loat a1 , a2 , a3 , ct , cq , cm,mdd, value ; /∗ reads the twist , c o l l e c t i v e and OF from i n i t i a l pool i . e .

s o l v e r data ∗/
f loat ngr id ; /∗ reads the tw i s t and c o l l e c t i v e va lues on the r ou l e t t e wheel ∗/
f loat emargin , th r e sho ld ; /∗ reads s e t t i n g s f o r e l i t sm margin and con s t r a i n t i n c l u s i o n

thre sho ld ∗/
f loat ve , minve , maxve , max ; /∗ used to f i nd max and minimum OF va lues f o r normal i z ing and

e l i t i sm ∗/
f loat maxA1 , max2A1 , maxA2 , max2A2 , maxA3 , max2A3 ; /∗ s e l e c t s two th i ckne s s va lues and camber va lues to

c r o s s over ∗/
f loat se lectA1 , se lectA2 , se l ec tA3 ; /∗ i s the i nd i v i dua l b i t o f the binary used f o r conver s ion back

to decimal ∗/
f loat e l i t A1 , e l i t A2 , e l i t A3 ; /∗ used to s e l e c t e l i t e th i ckne s s and e l i t e camber va lues ∗/
f loat JJ , aa , bb , cc ; /∗ used in the f o r t r an func t i on s to read from the f i l e s and e l i t e

R ∗/
f loat aaaa , bbbb , cccc , dddd ; /∗ used in the f o r t r an func t i on s to read from the f i l e s ∗/
f loat aaa , bbb , ddd , eee , f f f ; /∗ used in the f o r t r an func t i on s to read from the f i l e s ∗/
f loat a5a , b5b , d5d , e5e , g5g , f 5 f , c5c , h5h ; /∗ used in the f o r t r an func t i on s to read from the f i l e s ∗/
f loat cta , cqa , cma ,mdda ; /∗ used in the f o r t r an func t i on s to read from the f i l e s ∗/
f loat conCM,marginCM , minLift ,minMDD; /∗ user de f ined c on s t r a i n t s ∗/
f loat minofv , maxofv ,gCm,gMD,gCQ;
int counter ; /∗ gr id counters ∗/
int normal izeto , gen max ; /∗ normal ize f i t n e s s va lues from 0 to . . . and max i t e r a t i o n s ∗/
int rounum , bk , rouindex , r o u l i ; /∗ r ou l e t t ewhee l f i l e i n f o ∗/
int s e l e c t uppe r , bin upper , mmg upper ; /∗ upper l im i t o f the random number generator ∗/
int nin , a , b , i , i i , j , j j , k , kk , count l ine , gen ; /∗ counter s ∗/
int se l1pt , s e l2pt , crpt , mupt , mut ; /∗ random s e l e c t i o n po int s in r o u l e t t e wheel and cross ,

mutation point ∗/
int se lgene , se l1gene , se l2gene , s e l 3gene ; /∗ gene s e l e c t i o n to c r o s s ove r ∗/

int binA1 [ 2 ] [ 8 ] , binA2 [ 2 ] [ 8 ] , binA3 [ 2 ] [ 8 ] , ho lder [ 1 ] [ 8 ] ; /∗ f o r conver s ion back to decimal from binary ∗/

FILE ∗ s e l e c t ed , ∗ input , ∗output , ∗norm , ∗denorm , ∗penalty , ∗ r ou l e t t e , ∗ r o u l s e l e c t , ∗binread , ∗binwrite , ∗
s e t t i n g ;

FILE ∗pool , ∗poolread1 , ∗poolread , ∗ po o l e l i t , ∗ on l y e l i t ,∗ temp ;
temp = fopen ( ”norma . dat” , ” r ” ) ;
f s c a n f ( temp , ”%d\n” ,&nin ) ;
f loat mxA[ nin ] ,mnA[ nin ] ; /∗ f o r normal i s ing f o r mutation binary ∗/
char f i l ename [ 1 2 8 ] ;

p r i n t f ( ”GA ver s i on 24\n\n” ) ;
s e t t i n g = fopen ( ” s e t ” , ” r ” ) ;
f s c a n f ( s e t t i ng , ”%f \n%d\n%d\n%f \n” ,&emargin ,&normal izeto ,&gen max ,& thre sho ld )==4;
p r i n t f ( ”%f %d %d %f \n” , emargin , normal izeto , gen max , th re sho ld ) ;
f c l o s e ( s e t t i n g ) ;

for ( j =0; j<nin ; j++)
{

f s c a n f ( temp , ”%f %f \n” ,&mnA[ j ] ,&mxA[ j ] ) ;
}
for ( j =0; j<nin ; j++)
{

f s c a n f ( temp , ”%f %f \n” ,&mnA[ j ] ,&mxA[ j ] ) ;
}
f c l o s e ( temp) ;
/∗−−− USER−DEFINED CONSTRAINTS −−−∗/

/∗ open a f i l e to read from∗/
maxofv=−10000;
minofv=10000;
j j =0;
s t r cpy ( f i l ename , argv [ 1 ] ) ;
input = fopen ( f i l ename , ” r ” ) ;
while ( ( j = getc ( input ) ) != EOF )

{
ungetc ( j , input ) ;
f s c a n f ( input , ”%f %f %f %f %f %f %f \n” ,&a1 ,&a2 ,&a3 ,&cq ,&cm,&mdd,&value )==7;
g r id [ j j ] . A1=a1 ;
g r id [ j j ] . A2=a2 ;
g r id [ j j ] . A3=a3 ;
g r id [ j j ] .CQ=cq ;
g r id [ j j ] .CM=cm;
gr id [ j j ] .MDD=mdd;
g r id [ j j ] . o fv=value ;
i f ( g r id [ j j ] . ofv>maxofv ) {maxofv = gr id [ j j ] . o fv ;}
i f ( g r id [ j j ] . ofv<minofv ) {minofv = gr id [ j j ] . o fv ;}
gr id [ j j ] . index=j j ;
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j j=j j +1;
}

// p r i n t f (”%d\n ” , j j ) ;
f c l o s e ( input ) ;
p r i n t f ( ”A1 : max : %f , min : %f \n ” , mxA[ 0 ] ,mnA[ 0 ] ) ;
p r i n t f ( ”A2 : max : %f , min : %f \n ” , mxA[ 1 ] ,mnA[ 1 ] ) ;
p r i n t f ( ”A3 : max : %f , min : %f \n ” , mxA[ 2 ] ,mnA[ 2 ] ) ;

/∗−−−−− SELECTION − ROULETTE BASED −−−−−∗/
st rcpy ( f i l ename , argv [ 2 ] ) ;
p o o l e l i t = fopen ( f i l ename , ”w” ) ;
o n l y e l i t = fopen ( ” best . txt ” , ”w” ) ;
for ( i =0; i< j j ; i++)

{
gCm=gr id [ i ] .CM; gMD=gr id [ i ] .MDD; gCQ=gr id [ i ] .CQ;
for ( j =0; j< j j ; j++)
{

// i f ( ( g r id [ j ] .CM <= gCm) && ( gr id [ j ] .MDD <= gMD) )
i f ( ( sq r t ( ( g r id [ j ] .CM − gCm) ∗ ( g r id [ j ] .CM − gCm) ) <= 0.05 ) && ( gr id [ j ] .MDD <=

gMD) && ( gr id [ j ] .CQ <= gCQ) )
{a=j ; gCm=gr id [ j ] .CM; gMD = gr id [ j ] .MDD; gCQ = gr id [ j ] .CQ;}

}
p r i n t f ( ”a i s %d\n” , a ) ;

f p r i n t f ( p o o l e l i t , ”%f \ t%f \ t%f \ t%f %f %f %f \n” , g r id [ i ] . A1 , g r id [ i ] . A2 , g r id [ i ] . A3 , g r id [ i ] .CQ, g r id [ i ] .
CM, gr id [ i ] .MDD, gr id [ i ] . o fv ) ;

f p r i n t f ( o n l y e l i t , ”%f \ t%f \ t%f \ t%f %f %f %f \n” , g r id [ a ] . A1 , g r id [ a ] . A2 , g r id [ a ] . A3 , g r id [ a ] .CQ, g r id [ a ] .
CM, gr id [ a ] .MDD, gr id [ a ] . o fv ) ;

}
f c l o s e ( p o o l e l i t ) ;
f c l o s e ( o n l y e l i t ) ;
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− end o f e l i t i sm −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

for ( i =0; i< j j ; i++)
{

ngr id=(gr id [ i ] . o fv − minofv ) / (maxofv − minofv ) ∗ normal i zeto ;
g r id [ i ] . norm = ( int ) ngr id ;

// p r i n t f (” normgrid %d\n” , g r id [ i ] . norm) ;
}

/∗−−− Put i t on a r ou l e t t e wheel which i s the f i l e r ou l e t t ewhee l . txt −−−∗/
count l i n e =0;
r o u l e t t e=fopen ( ” rou l e t t ewhee l . txt ” , ”w” ) ;
for ( i =0; i< j j ; i++)

{
rouindex = gr id [ i ] . index ;
rounum = gr id [ i ] . norm ;
for ( k=0;k<rounum ; k++)
{

f p r i n t f ( r ou l e t t e , ”%d \n” , rouindex ) ;
c ount l i n e=count l i n e +1;

}
}

f c l o s e ( r o u l e t t e ) ;
// p r i n t f (” count l i n e %d \n” , count l i n e ) ;
int rou l [ c ount l i n e ] ; /∗ array going to conta in r o u l e t t e wheel ∗/
r o u l s e l e c t=fopen ( ” rou l e t t ewhee l . txt ” , ” r ” ) ;
for ( a=0;a<count l i n e ; a++)

{
f s c a n f ( r o u l s e l e c t , ”%d\n” ,& r o u l i )==1;
rou l [ a]= r o u l i ;

}
f c l o s e ( r o u l s e l e c t ) ;

srand ( time (NULL) ) ;

/∗−−−−− Repeat f o r gen number o f runs to populate pool . dat −−−−−∗/
for ( gen=0;gen<gen max ; gen++)
{
/∗−−− Se l e c t 2 parents to c r o s s ove r −−−∗/
s e l e c t uppe r=count l i n e ;
s e l 1p t=rand ( )%s e l e c t uppe r ;
s e l 2p t=rand ( )%s e l e c t uppe r ;
s e l 1gene=rand ( )%mmg upper ;
s e l 2gene=rand ( )%mmg upper ;
s e l 3gene=rand ( )%mmg upper ;
// p r i n t f (” s e l p t %d %d\n” , s e l1pt , s e l 2p t ) ;
// p r i n t f (” rou l %d %d\n” , rou l [ s e l 1p t ] , r ou l [ s e l 2p t ] ) ;
maxA1=gr id [ r ou l [ s e l 1p t ] ] . A1 ;
max2A1=gr id [ rou l [ s e l 2p t ] ] . A1 ;
maxA2=gr id [ r ou l [ s e l 1p t ] ] . A2 ;
max2A2=gr id [ rou l [ s e l 2p t ] ] . A2 ;
maxA3=gr id [ r ou l [ s e l 1p t ] ] . A3 ;
max2A3=gr id [ rou l [ s e l 2p t ] ] . A3 ;
// p r i n t f (”PARENTS: maxA1=%f max2A1=%f maxA2=%f , max2A2=%f , maxA3=%f , max2A3=%f \n” ,maxA1 ,max2A1 ,maxA2 ,

max2A2 ,maxA3 ,max2A3) ;

/∗−−− CROSSOVER −−−∗/
mmg upper=2;
i f ( s e l 1gene==0)
{max=max2A1 ;
max2A1=maxA1 ;
maxA1=max;}
i f ( s e l 2gene==0)
{max=max2A2 ;
max2A2=maxA2 ;
maxA2=max;}
i f ( s e l 3gene==0)
{max=max2A3 ;
max2A3=maxA3 ;
maxA3=max;}

// p r i n t f (”CROSSED: maxA1=%f max2A1=%f maxA2=%f , max2A2=%f , maxA3=%f , max2A3=%f \n” ,maxA1 ,max2A1 ,maxA2 ,
max2A2 ,maxA3 ,max2A3) ;
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/∗−−− normal i se f i r s t between 1 and 10 so i t f i t s in l im i t ed binary number−−−∗/
maxA1=(maxA1−mnA[ 0 ] ) /(mxA[0]−mnA[ 0 ] ) ∗ 30 ;
maxA2=(maxA2−mnA[ 1 ] ) /(mxA[1]−mnA[ 1 ] ) ∗ 30 ;
maxA3=(maxA3−mnA[ 2 ] ) /(mxA[2]−mnA[ 2 ] ) ∗ 30 ;

/∗−−− CONVERSION TO BINARY CODING I .E. PHENOTYPE TO GENOTYPE −−−∗/

/∗ convert to binary ∗/
bk=binary func (maxA1) ;
b inread=fopen ( ” thebinary ” , ” r ” ) ;
f s c a n f ( binread , ”%d %d %d %d %d %d %d %d”,&binA1 [ 0 ] [ 0 ] ,& binA1 [ 0 ] [ 1 ] ,& binA1 [ 0 ] [ 2 ] ,& binA1 [ 0 ] [ 3 ] ,& binA1

[ 0 ] [ 4 ] ,& binA1 [ 0 ]
[ 5 ] , &binA1 [ 0 ] [ 6 ] ,& binA1 [ 0 ] [ 7 ] ) ==8;
f c l o s e ( binread ) ;
bk=binary func (max2A1) ;
b inread=fopen ( ” thebinary ” , ” r ” ) ;
f s c a n f ( binread , ”%d %d %d %d %d %d %d %d”,&binA1 [ 1 ] [ 0 ] ,& binA1 [ 1 ] [ 1 ] ,& binA1 [ 1 ] [ 2 ] ,& binA1 [ 1 ] [ 3 ] ,& binA1

[ 1 ] [ 4 ] ,& binA1 [ 1 ]
[ 5 ] , &binA1 [ 1 ] [ 6 ] , &binA1 [ 1 ] [ 7 ] ) ==8;
f c l o s e ( binread ) ;

bk=binary func (maxA2) ;
b inread=fopen ( ” thebinary ” , ” r ” ) ;
f s c a n f ( binread , ”%d %d %d %d %d %d %d %d”,&binA2 [ 0 ] [ 0 ] ,& binA2 [ 0 ] [ 1 ] ,& binA2 [ 0 ] [ 2 ] ,& binA2 [ 0 ] [ 3 ] ,& binA2

[ 0 ] [ 4 ] ,& binA2 [ 0 ]
[ 5 ] , &binA2 [ 0 ] [ 6 ] ,& binA2 [ 0 ] [ 7 ] ) ==8;
f c l o s e ( binread ) ;
bk=binary func (max2A2) ;
b inread=fopen ( ” thebinary ” , ” r ” ) ;
f s c a n f ( binread , ”%d %d %d %d %d %d %d %d”,&binA2 [ 1 ] [ 0 ] ,& binA2 [ 1 ] [ 1 ] ,& binA2 [ 1 ] [ 2 ] ,& binA2 [ 1 ] [ 3 ] ,& binA2

[ 1 ] [ 4 ] ,& binA2 [ 1 ]
[ 5 ] , &binA2 [ 1 ] [ 6 ] , &binA2 [ 1 ] [ 7 ] ) ==8;
f c l o s e ( binread ) ;

bk=binary func (maxA3) ;
b inread=fopen ( ” thebinary ” , ” r ” ) ;
f s c a n f ( binread , ”%d %d %d %d %d %d %d %d”,&binA3 [ 0 ] [ 0 ] ,& binA3 [ 0 ] [ 1 ] ,& binA3 [ 0 ] [ 2 ] ,& binA3 [ 0 ] [ 3 ] ,& binA3

[ 0 ] [ 4 ] ,& binA3 [ 0 ]
[ 5 ] , &binA3 [ 0 ] [ 6 ] ,& binA3 [ 0 ] [ 7 ] ) ==8;
f c l o s e ( binread ) ;
bk=binary func (max2A3) ;
b inread=fopen ( ” thebinary ” , ” r ” ) ;
f s c a n f ( binread , ”%d %d %d %d %d %d %d %d”,&binA3 [ 1 ] [ 0 ] ,& binA3 [ 1 ] [ 1 ] ,& binA3 [ 1 ] [ 2 ] ,& binA3 [ 1 ] [ 3 ] ,& binA3

[ 1 ] [ 4 ] ,& binA3 [ 1 ]
[ 5 ] , &binA3 [ 1 ] [ 6 ] , &binA3 [ 1 ] [ 7 ] ) ==8;
f c l o s e ( binread ) ;

b in upper=8; /∗ upper bound f o r mutation point i s max binary d i g i t s ∗/
for ( j =0; j <2; j++)
{

p r i n t f ( ”A1 %d : ” , j +1) ;
for ( i =0; i<bin upper ; i++)
{
p r i n t f ( ”%d” , binA1 [ j ] [ i ] ) ;
}
p r i n t f ( ”\n” ) ;

}
for ( j =0; j <2; j++)
{

p r i n t f ( ”A2 %d : ” , j +1) ;
for ( i =0; i<bin upper ; i++)
{
p r i n t f ( ”%d” , binA2 [ j ] [ i ] ) ;
}
p r i n t f ( ”\n” ) ;

}
for ( j =0; j <2; j++)
{

p r i n t f ( ”A3 %d : ” , j +1) ;
for ( i =0; i<bin upper ; i++)
{
p r i n t f ( ”%d” , binA3 [ j ] [ i ] ) ;
}
p r i n t f ( ”\n” ) ;

}

/∗−−− MUTATION −−−∗/
mupt=rand ( )%bin upper ; /∗ random number generator < upper bound ∗/
mut=rand ( )%mmg upper ; /∗ mutation b i t i . e . r ep l a c e with t h i s b i t (1 or 0) ∗/
binA1 [ 0 ] [ mupt]=binA1 [ 0 ] [ mut ] ;
binA1 [ 1 ] [ mupt]=binA1 [ 1 ] [ mut ] ;
mupt=rand ( )%bin upper ; /∗ random number generator < upper bound ∗/
mut=rand ( )%mmg upper ; /∗ mutation b i t i . e . r ep l a c e with t h i s b i t (1 or 0) ∗/
binA2 [ 0 ] [ mupt]=binA2 [ 0 ] [ mut ] ;
binA2 [ 1 ] [ mupt]=binA2 [ 1 ] [ mut ] ;
mupt=rand ( )%bin upper ; /∗ random number generator < upper bound ∗/
mut=rand ( )%mmg upper ; /∗ mutation b i t i . e . r ep l a c e with t h i s b i t (1 or 0) ∗/
binA3 [ 0 ] [ mupt]=binA3 [ 0 ] [ mut ] ;
binA3 [ 1 ] [ mupt]=binA3 [ 1 ] [ mut ] ;

// p r i n t f (”mutated :\n”) ;
// f o r ( j =0; j <2; j++)
//{
// p r i n t f (” tw i s t %d : ” , j +1) ;
// f o r ( i =0; i<bin upper ; i++)
// {
// p r i n t f (”%d” , b in tw i s t [ j ] [ i ] ) ;
// }
// p r i n t f (”\n”) ;
//}
// f o r ( j =0; j <2; j++)
//{
// p r i n t f (” c o l l %d : ” , j +1) ;
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// f o r ( i =0; i<bin upper ; i++)
// {
// p r i n t f (”%d” , b i n c o l l [ j ] [ i ] ) ;
// }
// p r i n t f (”\n”) ;
//}
/∗−−− CONVERSION BACK TO PHENOTYPE I .E. DECIMAL −−−∗/
b inwr i t e=fopen ( ” thebinary2 ” , ”w” ) ;
for ( j =0; j <2; j++)
{

for ( i =0; i<bin upper ; i++)
{

f p r i n t f ( b inwr i te , ”%d ” , binA1 [ j ] [ i ] ) ;
}
f p r i n t f ( b inwr ite , ”\n” ) ;

}
f c l o s e ( b inwr i t e ) ;
s e l e c tA1=bintodec ( ) ;
b inwr i t e=fopen ( ” thebinary2 ” , ”w” ) ;
for ( j =0; j <2; j++)
{

for ( i =0; i<bin upper ; i++)
{

f p r i n t f ( b inwr i te , ”%d ” , binA2 [ j ] [ i ] ) ;
}
f p r i n t f ( b inwr ite , ”\n” ) ;

}
f c l o s e ( b inwr i t e ) ;
s e l e c tA2=bintodec ( ) ;
b inwr i t e=fopen ( ” thebinary2 ” , ”w” ) ;
for ( j =0; j <2; j++)
{

for ( i =0; i<bin upper ; i++)
{

f p r i n t f ( b inwr i te , ”%d ” , binA3 [ j ] [ i ] ) ;
}
f p r i n t f ( b inwr ite , ”\n” ) ;

}
f c l o s e ( b inwr i t e ) ;
s e l e c tA3=bintodec ( ) ;

/∗−−− denormal i se −−−∗/
se l ec tA1=se l ec tA1 / 30 ∗ (mxA[0]−mnA[ 0 ] ) + mnA[ 0 ] ;
s e l e c tA2=se l ec tA2 / 30 ∗ (mxA[1]−mnA[ 1 ] ) + mnA[ 1 ] ;
s e l e c tA3=se l ec tA3 / 30 ∗ (mxA[2]−mnA[ 2 ] ) + mnA[ 2 ] ;

s e l e c t e d=fopen ( ”neww . txt ” , ”w” ) ;
f p r i n t f ( s e l e c t ed , ”%f %f %f \n” , se lectA1 , se lectA2 , se l e c tA3 ) ;
f c l o s e ( s e l e c t e d ) ;
// p r i n t f (” s e l e c t e d :\ t%f \ t%f \ t%f \n” , se lectA1 , se lectA2 , se l e c tA3 ) ;

/∗−−− FINDING OPTIMIZATION FUNCTION VALUE USING TRAINED ANN −−−∗/

/∗−−− normal i z ing −−−∗/
normatest (&se lectA1 ,& selectA2 ,& se l ec tA3 ) ;
norm=fopen ( ” f i l e o u t . txt ” , ” r ” ) ;
f s c a n f (norm , ”%f %f %f \n” ,&aa ,&bb,&cc ) ;
f c l o s e (norm) ;
p r i n t f ( ” normal i sed :\ taa = %f , bb = %f , cc = %f \n” , aa , bb , cc ) ;

/∗−−− p r ed i c t i n g value CQ −−−∗/
p r e d i c t t e s t c q (&aa ,&bb,&cc ) ;
denorm=fopen ( ” p r ed i c t . pat” , ” r ” ) ;
f s c a n f ( denorm , ”%f %f %f %f \n” ,&aaa ,&ddd,&eee ,& f f f ) ;
f c l o s e ( denorm) ;
// p r i n t f (” pred i c t ed :\ taaa = %f , ddd= %f , eee= %f , f f f=%f \n” , aaa , ddd , eee , f f f ) ;
denorma1testcq (&aaa ,&ddd,&eee ,& f f f ) ;
penalty=fopen ( ”denormed . dat” , ” r ” ) ;
f s c a n f ( penalty , ”%f %f %f %f \n” , &aaaa ,&bbbb,&dddd,&cqa ) ;
f c l o s e ( penalty ) ;
p r i n t f ( ” denormal ised CQ:\ taaaa = %f , bbbb = %f , dddd = %f , cd = %f \n” , aaaa , bbbb , dddd , cqa ) ;

/∗−−− p r ed i c t i n g value CM −−−∗/
pr ed i c t t e s t cm (&aa ,&bb,&cc ) ;
denorm=fopen ( ” p r ed i c t . pat” , ” r ” ) ;
f s c a n f ( denorm , ”%f %f %f %f \n” ,&aaa ,&ddd,&eee ,& f f f ) ;
f c l o s e ( denorm) ;
// p r i n t f (” pred i c t ed :\ taaa = %f , ddd= %f , eee= %f , f f f=%f \n” , aaa , ddd , eee , f f f ) ;
denorma1testcm (&aaa ,&ddd,&eee ,& f f f ) ;
penalty=fopen ( ”denormed . dat” , ” r ” ) ;
f s c a n f ( penalty , ”%f %f %f %f \n” , &aaaa ,&bbbb,&dddd,&cma) ;
f c l o s e ( penalty ) ;
p r i n t f ( ” denormal ised CM:\ taaaa = %f , bbbb = %f , dddd = %f , cm = %f \n” , aaaa , bbbb , dddd , cma) ;

/∗−−− p r ed i c t i n g value MDD −−−∗/
pred ic t te s tmdd (&aa ,&bb,&cc ) ;
denorm=fopen ( ” p r ed i c t . pat” , ” r ” ) ;
f s c a n f ( denorm , ”%f %f %f %f \n” ,&aaa ,&ddd,&eee ,& f f f ) ;
f c l o s e ( denorm) ;
// p r i n t f (” pred i c t ed :\ taaa = %f , ddd= %f , eee= %f , f f f=%f \n” , aaa , ddd , eee , f f f ) ;
denorma1testmdd (&aaa ,&ddd,&eee ,& f f f ) ;
penalty=fopen ( ”denormed . dat” , ” r ” ) ;
f s c a n f ( penalty , ”%f %f %f %f \n” , &aaaa ,&bbbb,&dddd,&mdda) ;
f c l o s e ( penalty ) ;
p r i n t f ( ” denormal ised MDD:\ taaaa = %f , bbbb = %f , dddd = %f , mdd = %f \n” , aaaa , bbbb , dddd ,mdda) ;

/∗−−−−−−−−−− PENALTY FOR VALUES OUTSIDE CONSTRAINTS −−−−−−−−−−∗/
cccc= 0 ;
p r i n t f ( ”%f %f %f , cccc %f \n” , aaaa , bbbb , dddd , cccc ) ;

/∗−−−−− ADD TO POOL without r e p e t i t i o n and with penalty f a c t o r added −−−−−∗/
/∗−−−−− another ve r s i on o f ADD TO POOL without r e p e t i t i o n and with penalty f a c t o r added −−−−−∗/
j =0;
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i i =1;
counter=0;
s t r cpy ( f i l ename , argv [ 2 ] ) ;
poo l read = fopen ( f i l ename , ” r+” ) ;
while ( ( j < i i ) ) /∗= getc ( input ) ) != EOF ) ∗/
{

i =0;
i i =0;
poolread1 = fopen ( f i l ename , ” r ” ) ;
while ( ( i = getc ( poolread1 ) ) != EOF)

{ungetc ( i , poo l read1 ) ;
f s c a n f ( poolread1 , ”%f %f %f %f %f %f %f \n” ,&a5a ,&b5b ,&d5d ,& f5 f ,&g5g ,&c5c ,&e5e )==7;
i i= i i +1;}

f c l o s e ( poolread1 ) ;
// p r i n t f (” i i = %d \n” , i i ) ;

f s c a n f ( poolread , ”%f %f %f %f %f %f %f \n” ,&a5a ,&d5d ,&e5e ,& f5 f ,&g5g ,&c5c ,&e5e )==7;
i f ( sq r t ( ( a5a−aaaa ) ∗( a5a−aaaa ) <0.00001) && sqr t ( ( b5b−bbbb) ∗(b5b−bbbb) <0.00001) && sqr t ( ( d5d−dddd)

∗(d5d−dddd) <0.00001) ) break ;
i f ( ( aaaa < mnA[ 0 ] ) | | ( aaaa > mxA[ 0 ] ) | | (bbbb > mxA[ 1 ] ) | | (bbbb<mnA[ 1 ] ) | | (dddd > mxA[ 2 ] ) | |

(dddd < mnA[ 2 ] ) ) break ;
// e l s e i f ( ( a5a !=aaaa ) && (b5b!=bbbb) )

else i f ( ( sq r t ( ( a5a−aaaa ) ∗( a5a−aaaa ) ) >0.00001) && ( sq r t ( ( b5b−bbbb) ∗(b5b−bbbb) ) >0.00001) && ( sq r t
( ( d5d−dddd) ∗(d5d−dddd) ) >0.00001) )

{
counter=counter+1;
i f ( ( counter == i i ) ) /∗ can inc lude or exc lude minimum f i t n e s s va lues ∗/
{ f p r i n t f ( poolread , ”%f \ t%f \ t%f \ t%f %f %f %f \n” , aaaa , bbbb , dddd , cqa , cma ,mdda , cccc ) ;}

}
j=j +1;

}
f c l o s e ( poo l read ) ;
}
return 0 ;
}

/∗−−− FUNCTION FOR THE CONVERSION TO BINARY − 6−d i g i t be f o r e decimal point , 3−d i g i t a f t e r decimal po int
−−−∗/

f loat binary func ( f loat p)
{
int div , rem , i , n , bin [ 5 ] , bindec [ 3 ] , bk , count ;
f loat f r , r , f rac , number ;
FILE ∗ b in f ;
i =0;

f r = ( int )p ;
div = p ;
while ( div > 0)

{
f r = f r /2 ;
div = f r ;
r = ( f r − div ) ∗2 ;
rem = r ;
bin [4− i ] =rem ;
i=i +1;
f r = div ;

}
i f ( i <5)

{
n = 5− i ;
while (n > 0)
{

bin [ n −1]=0;
n = n −1;

}
}

bk=bin [ 4 ] ;

/∗ f r a c t i o n part ∗/
f r a c = p − ( int )p ;
number = f r a c ;
count = 0 ;
while (number>0)
{

number = number ∗ 2 ;
bindec [ count ] = ( int ) number ;
number = number − ( int ) number ;
count = count + 1 ;
i f ( count==3) break ;

}
i f ( count<3)
{

n=count ;
while (n<3)
{

bindec [ n ]=0;
n = n + 1 ;

}
}

b in f=fopen ( ” thebinary ” , ”w” ) ;
f p r i n t f ( b inf , ”%d %d %d %d %d %d %d %d \n” , bin [ 0 ] , bin [ 1 ] , bin [ 2 ] , bin [ 3 ] , bin [ 4 ] , bindec [ 0 ] , bindec [ 1 ] , bindec

[ 2 ] ) ;
f c l o s e ( b in f ) ;
return bk ;
}

/∗−−− FUNCTION FOR THE CONVERSION OF BINARY TO DECIMAL −−−∗/

f loat bintodec (void )
{

FILE ∗binread , ∗output ;
f loat sum1 , sum2 ;
int i , val1 , val2 , bin [ 2 ] [ 8 ] ;
b inread=fopen ( ” thebinary2 ” , ” r ” ) ;
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for ( i =0; i <2; i++)
{
f s c a n f ( binread , ”%d %d %d %d %d %d %d %d\n” , &bin [ i ] [ 0 ] ,& bin [ i ] [ 1 ] ,& bin [ i ] [ 2 ] ,& bin [ i ] [ 3 ] ,& bin [ i

] [ 4 ] ,& bin [ i ] [ 5 ] ,& bin [ i ] [ 6 ] ,& bin [ i ] [ 7 ] ) ;
}
f c l o s e ( binread ) ;
sum1=0;
sum2=0;
i =0;
for ( i =0; i <5; i++)

{
val1 = bin [0 ] [4 − i ] ;
sum1 = sum1 + val1 ∗ pow(2 , i ) ;
va l2 = bin [1 ] [4 − i ] ;
sum2 = sum2 + val2 ∗ pow(2 , i ) ;

}
i =0;
for ( i =0; i <3; i++)

{
val1 = bin [0 ] [7 − i ] ;
sum1 = sum1 + val1 ∗ pow (0 . 5 , i +1) ;
va l2 = bin [1 ] [7 − i ] ;
sum2 = sum2 + val2 ∗ pow (0 . 5 , i +1) ;

}
output = fopen ( ”new . txt ” , ”w” ) ;
f p r i n t f ( output , ”%f %f \n” , sum2 , sum1) ;
f c l o s e ( output ) ;
return sum1 ;

}
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B.7 Chebyshev Parameterisation for Aerfoils

This program obtains a set of coefficients based on the Chebyshev equations from a set of data
points that can recreate the data points. The coefficients can be modified to create variants of
the aerofoil. The theory of this method is described further in Section 3.2.1 of the thesis.

/∗
∗ CHEBYSHEV PARAMETERISATION
∗ alpha i s the matrix conta in ing the c o e f f i c i e n t s to reproduce the shape .
∗ input f i l e i s coo rd ina t e s f i l e .
∗
∗/

#include<s t d i o . h>
#include<math . h>
#include<s t d l i b . h>
#include<s t r i n g . h>
#include<time . h>

main ( int argc , char ∗argv [ ] )
{
FILE ∗ input1 , ∗output ;
char f i l ename [ 1 2 8 ] ;

int i , I t , k , ktot , n o f x , j , n , c ;
n=57;
c=7;
f loat x , y , kk ,E;
f loat XPTS[ n ] , YPTS[ n ] , D[ n ] [ c ] , gamma[ n ] , T[ n ] [ c+2] , alpha [ c ] ;
f loat gE1 [ n ] , gradE [ c ] , hessE [ c ] , gE [ n ] [ c ] , hE [ n ] [ c ] , F [ n ] ;

/∗−−− OPEN AND READ INPUT FILE −−−∗/
st rcpy ( f i l ename , argv [ 1 ] ) ;
input1 = fopen ( f i l ename , ” r ” ) ; /∗ F i l e conta in ing co−o rd ina t e s o f geometry to be

parameter i sed ∗/
i =0;
while ( ( j = getc ( input1 ) ) != EOF )

{
ungetc ( j , input1 ) ;
f s c a n f ( input1 , ”%f %f \n” , &x,&y)==2;
XPTS[ i ]=x ;
YPTS[ i ]=y ;
i=i +1;
}

f c l o s e ( input1 ) ;
n o f x=i ; /∗−−− Number o f x po in t s −−−∗/
/∗−−− INITIALISE COEFFICIENTS −−−∗/
ktot=c+2;
for ( k=0;k<(ktot −2) ; k++)

{
alpha [ k ]=( f loat ) k+1;
}

/∗−−− NEW REPRESENTATION OF CURVE −−−∗/
for ( k=0;k<ktot ; k++)

{
kk=k ;
for ( i =0; i<n o f x ; i++)

{
gamma[ i ]= acos (2 ∗ sq r t (XPTS[ i ] ) −1) ;
T[ i ] [ k]= cos ( kk ∗ gamma[ i ] ) ;
}

}
for ( k=0;k<(ktot −2) ; k++)

{
for ( i =0; i<n o f x ; i++)

{
D[ i ] [ k]=T[ i ] [ k]−T[ i ] [ k+2] ;
}

}

s t r cpy ( f i l ename , argv [ 2 ] ) ; /∗−−− Output f i l e to wr i t e to −−−∗/
output = fopen ( f i l ename , ”w+” ) ;

/∗−−− ITERATIVELY CALCULATE GRADIENT AND HESSIAN −−−∗/
for ( I t =0; It <200; I t++)

{
/∗−−− I n i t i a l i s e g rad i ent and hes s i an matr i ces to 0 −−−∗/
for ( i =0; i<n o f x ; i++)

{
for ( k=0;k<(ktot −2) ; k++)

{
gE [ i ] [ k ] = 0 ;
hE [ i ] [ k ] = 0 ;
gE1 [ i ] = 0 ;
gradE [ k ] = 0 ;
hessE [ k ] = 0 ;
F [ i ] = 0 ;
E = 0 ;
}

}
/∗−−− F i l l in the matr i ces −−−∗/
for ( i =0; i<n o f x ; i++)

{
for ( k=0;k<(ktot −2) ; k++)

{
gE1 [ i ] = gE1 [ i ] + alpha [ k ] ∗ D[ i ] [ k ] ;
}

}
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for ( i =0; i<n o f x ; i++)
{
for ( k=0;k<(ktot −2) ; k++)

{
gE [ i ] [ k ] = (gE1 [ i ] − YPTS[ i ] ) ∗ D[ i ] [ k ] ;
hE [ i ] [ k ] = D[ i ] [ k ] ∗ D[ i ] [ k ] ;
}

}
for ( k=0;k<(ktot −2) ; k++)

{
for ( i =0; i<n o f x ; i++)

{
gradE [ k ] = gradE [ k ] + gE [ i ] [ k ] ;
hessE [ k ] = hessE [ k ] + hE [ i ] [ k ] ;
}

}

/∗−−− FIND NEW ALPHA −−−∗/
for ( k=0;k<(ktot −2) ; k++)

{
alpha [ k ] = alpha [ k ] − gradE [ k ] / hessE [ k ] ;
}

/∗−−− REPRODUCE NEW CURVE AND FIND ERROR −−−∗/
// I f you want to f o r c e the program to use a s e t o f c o e f f i c i e n t s , e d i t them here and uncomment
// alpha [0 ]=0 .043557 ;
// alpha [1 ]=0 .002801 ;
// alpha [2]= −0.006735;
// alpha [3]= −0.002220;
// alpha [4]= −0.002753;
// alpha [5]= −0.001562;
// alpha [6]= −0.000050;

for ( i =0; i<n o f x ; i++)
{
for ( k=0;k<(ktot −2) ; k++)

{
F[ i ] = F [ i ] + alpha [ k ] ∗ D[ i ] [ k ] ;
}

E = E + sqr t ( (F [ i ] − YPTS[ i ] ) ∗ (F [ i ] − YPTS[ i ] ) ) ;
}

}
p r i n t f ( ” e r r o r : %f \n” ,E) ;

for ( i =0; i<n o f x ; i++)
{
f p r i n t f ( output , ”%f %f \n” ,XPTS[ i ] ,F [ i ] ) ;
}

f c l o s e ( output ) ;
for ( k=0;k<(ktot −2) ; k++)

{
p r i n t f ( ”%f \n” , alpha [ k ] ) ; /∗ Write new c o e f f i c i e n t s ∗/
}

return 0 ;
}

B.7.1 Chebyshev Parameterisation for Wings

The method in B.7 can be applied to wings using the program below.

/∗ PARAMETERISATION PROGRAM
∗ This program takes 3 arguments :
∗ 1 . f i l e conta in ing wing l ead ing edge e x i s t i n g coo rd ina t e s
∗ 2 . f i l e conta in ing wing t r a i l i n g edge e x i s t i n g coo rd ina t e s
∗ 3 . f i l e to wr i t e wing coo rd ina t e s to
∗ The number o f s e c t i o n s used to de f i n e the wing can be s p e c i f i e d .
∗ The c o e f f i c i e n t s are s to r ed in f i l e s c a l l e d alpha . . . txt . These
∗ can be modi f ied manually to change the wing dimensions .
∗ The o r i g i n a l wing c o e f f i c i e n t s are obtained by running the
∗ program parameterwing . c f o r each s p e c i f i c curve .
∗ Note that the a e r o f o i l c o e f f i c i e n t s are s to red in the f i l e s :
∗ − alphasu . txt f o r the upper su r f a c e
∗ − a lpha s l . txt f o r the lower su r f a c e
∗ These are a l s o obtained from parameterwing . c which automat i ca l ly
∗ s t o r e s these c o e f f i c i e n t s in a lphas . txt .
∗ The number o f po in t s on the wing edge and on the a e r o f o i l must be
∗ s p e c i f i e d .
∗/

#include<s t d i o . h>
#include<math . h>
#include<s t d l i b . h>
#include<s t r i n g . h>
#include<time . h>

main ( int argc , char ∗argv [ ] )
{
FILE ∗ input1 , ∗output , ∗ c o e f f i c i e n t s ;
char f i l ename [ 1 2 8 ] ;

int N, i , It , k , ktot , n o f x , n o f y , j , n , c , na , ca , sec , s , div ;
n=101; /∗ No . o f po in t s on wing planform ∗/
c=4; /∗ No . o f c o e f f i c i e n t s f o r planform ∗/
na=57; /∗ No . o f po in t s on a e r o f o i l s u r f a c e ∗/
ca=7; /∗ No . o f c o e f f i c i e n t s f o r a e r o f o i l ∗/
sec =15; /∗ Number o f s e c t i o n s along span ∗/
f loat x , y , a , kk ,E, minxle , maxxle , minyle , maxyle ;
f loat minxte , maxxte , minyte , maxyte ;
f loat XPTSLE[ n ] , YPTSLE[ n ] , DLE[ n ] [ c ] , gammaLE[ n ] , TLE[ n ] [ c+1] , alphaLE [ c ] ;
f loat XPTSTE[ n ] , YPTSTE[ n ] , DTE[ n ] [ c ] , gammaTE[ n ] , TTE[ n ] [ c+1] , alphaTE [ c ] ;
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f loat YPTSa[ na ] , YPTSf [ na ] [ s ec ] , ZPTS[ na ] [ s ec ] , Da [ na ] [ ca ] , gammaa [ na ] , Ta [ na ] [ ca+1] , alphaa [ ca ] ;
f loat YPTSl [ na ] , ZPTSl [ na ] [ s ec ] , Dl [ na ] [ ca ] , gammal [ na ] , Tl [ na ] [ ca+1] , a lpha l [ ca ] ;
f loat XSECLE[ sec ] ,XSECTE[ sec ] ,FSECLE[ sec ] ,FSECTE[ sec ] ;
f loat FLE[ n ] , FTE[ n ] , Fa [ na ] , Fl [ na ] ;

div=n/ sec ;
minxle=minxte=1000;
maxxle=maxxte=−1000;
minyle=minyte=1000;
maxyle=maxyte=−1000;

/∗−−− OPEN AND READ INPUT FILE FOR LE −−−∗/
st rcpy ( f i l ename , argv [ 1 ] ) ; // o r i g i n a l wing LE f i l e
input1 = fopen ( f i l ename , ” r ” ) ;
i =0;
s=0;
while ( ( j = getc ( input1 ) ) != EOF )

{
ungetc ( j , input1 ) ;
f s c a n f ( input1 , ”%f %f \n” ,&x,&y)==2;
XPTSLE[ i ]=x ;
i f (x<minxle ) {minxle=x ;}
i f (y<minyle ) {minyle=y ;}
i f (x>maxxle ) {maxxle=x ;}
i f (y>maxyle ) {maxyle=y ;}
i=i +1;
}

f c l o s e ( input1 ) ;
/∗−−− OPEN AND READ INPUT FILE FOR TE −−−∗/
st rcpy ( f i l ename , argv [ 2 ] ) ; // o r i g i n a l wing TE f i l e
input1 = fopen ( f i l ename , ” r ” ) ;
i =0;
s=0;
while ( ( j = getc ( input1 ) ) != EOF )

{
ungetc ( j , input1 ) ;
f s c a n f ( input1 , ”%f %f \n” ,&x,&y)==2;
XPTSTE[ i ]=x ;
i f (x<minxte ) {minxte=x ;}
i f (y<minyte ) {minyte=y ;}
i f (x>maxxte ) {maxxte=x ;}
i f (y>maxyte ) {maxyte=y ;}
i=i +1;
}

f c l o s e ( input1 ) ;
p r i n t f ( ”%d %f %f %f %f \n” , i , minxle , maxxle , minyle , maxyle ) ;
n o f x=i ;
ktot=c+1;
/∗−−− NORMALISE −−−∗/
for ( j =0; j<n o f x ; j++)

{
XPTSLE[ j ]=(XPTSLE[ j ]−minxle ) /(maxxle−minxle ) ;
XPTSTE[ j ]=(XPTSTE[ j ]−minxte ) /(maxxte−minxte ) ;
}

c o e f f i c i e n t s = fopen ( ”alphasLE . txt ” , ” r ” ) ;
for ( j =0; j<c ; j++)

{
f s c a n f ( c o e f f i c i e n t s , ”%f \n” ,&a )==1;
alphaLE [ j ]=a ;
// p r i n t f (”% f \n” , a ) ;
}

f c l o s e ( c o e f f i c i e n t s ) ;
c o e f f i c i e n t s = fopen ( ”alphasTE . txt ” , ” r ” ) ;
for ( j =0; j<c ; j++)

{
f s c a n f ( c o e f f i c i e n t s , ”%f \n” ,&a )==1;
alphaTE [ j ]=a ;
// p r i n t f (”% f \n” , a ) ;
}

f c l o s e ( c o e f f i c i e n t s ) ;

/∗−−− NEW REPRESENTATION OF CURVE −−−∗/
for ( k=0;k<ktot ; k++)

{
kk=k ;
for ( i =0; i<n o f x ; i++)

{
gammaLE[ i ]= acos (2 ∗ sq r t (XPTSLE[ i ] ) −1) ;
gammaTE[ i ]= acos (2 ∗ sq r t (XPTSTE[ i ] ) −1) ;
TLE[ i ] [ k]= cos ( kk ∗ gammaLE[ i ] ) ;
TTE[ i ] [ k]= cos ( kk ∗ gammaTE[ i ] ) ;
}

}
for ( k=0;k<(ktot −1) ; k++)

{
for ( i =0; i<n o f x ; i++)

{
DLE[ i ] [ k]=TLE[ i ] [ k]−TLE[ i ] [ k+1] ;
DTE[ i ] [ k]=TTE[ i ] [ k]−TTE[ i ] [ k+1] ;
}

}

/∗−−− INITIALISE NEW CURVE −−−∗/
for ( i =0; i<n o f x ; i++)

{
FTE[ i ]=0; FLE[ i ] = 0 ;
}

/∗−−− REPRODUCE NEW CURVE −−−∗/
for ( i =0; i<n o f x ; i++)

{
for ( k=0;k<(ktot −1) ; k++)

{
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FLE[ i ] = FLE[ i ] + alphaLE [ k ] ∗ DLE[ i ] [ k ] ;
FTE[ i ] = FTE[ i ] + alphaTE [ k ] ∗ DTE[ i ] [ k ] ;
}

}
/∗−−− DENORMALISE −−−∗/
for ( i =0; i<n o f x ; i++)

{
FLE[ i ] = FLE[ i ] ∗ (maxyle − minyle ) + minyle ;
FTE[ i ] = FTE[ i ] ∗ (maxyte − minyte ) + minyte ;
XPTSLE[ i ] = XPTSLE[ i ] ∗ (maxxle − minxle ) + minxle ;
XPTSTE[ i ] = XPTSTE[ i ] ∗ (maxxte − minxte ) + minxte ;
i f ( ( ( f loat ) i /div−i / div )==0)

{XSECLE[ s ]=XPTSLE[ i ] ;
FSECLE[ s ]=FLE[ i ] ;
FSECTE[ s ]=FTE[ i ] ;
p r i n t f ( ”%d,%f ,%f ,% f \n” , s ,XSECLE[ s ] ,FSECLE[ s ] ,FSECTE[ s ] ) ;
s=s+1;}

}

n o f y=na ;
ktot=ca+1;
/∗−−−−−−−−−−−−−−− AEROFOIL CURVE −−−−−−−−−−−−−−−∗/
c o e f f i c i e n t s = fopen ( ” alphasu . txt ” , ” r ” ) ; /∗ Read c o e f f i c i e n t s upper ∗/
for ( j =0; j<ca ; j++)

{
f s c a n f ( c o e f f i c i e n t s , ”%f \n” ,&a )==1;
alphaa [ j ]=a ;
// p r i n t f (”% f \n” , a ) ;
}

f c l o s e ( c o e f f i c i e n t s ) ;
c o e f f i c i e n t s = fopen ( ” a lpha s l . txt ” , ” r ” ) ; /∗ Read c o e f f i c i e n t s lower ∗/
for ( j =0; j<ca ; j++)

{
f s c a n f ( c o e f f i c i e n t s , ”%f \n” ,&a )==1;
a lpha l [ j ]=a ;
// p r i n t f (”% f \n” , a ) ;
}

f c l o s e ( c o e f f i c i e n t s ) ;
/∗−−− Coordinates f o r a e r o f o i l evenly spaced so that order can be reve r s ed on wing −−−∗/
for ( i =0; i<n o f y ; i++)

{
YPTSa[ i ] = ( f loat ) i /( n o f y −1) ;

// p r i n t f (”% f \n” ,YPTSa [ i ] ) ;
}

/∗−−− NEW REPRESENTATION OF CURVE −−−∗/
for ( k=0;k<ktot ; k++)

{
kk=k ;
for ( i =0; i<n o f y ; i++)

{
gammaa [ i ]= acos (2 ∗ sq r t (YPTSa [ i ] ) −1) ;
Ta [ i ] [ k]= cos ( kk ∗ gammaa [ i ] ) ;
}

}
for ( k=0;k<(ktot −1) ; k++)

{
for ( i =0; i<n o f y ; i++)

{
Da [ i ] [ k]=Ta [ i ] [ k]−Ta [ i ] [ k+1] ;
}

}
/∗−−− INITIALISE NEW CURVE −−−∗/
for ( i =0; i<n o f y ; i++)

{
Fa [ i ] = 0 ; Fl [ i ] = 0 ;
}

/∗−−− REPRODUCE NEW CURVE −−−∗/
for ( i =0; i<n o f y ; i++)

{
for ( k=0;k<(ktot −1) ; k++)

{
Fa [ i ] = Fa [ i ] + alphaa [ k ] ∗ Da [ i ] [ k ] ;
Fl [ i ] = Fl [ i ] + a lpha l [ k ] ∗ Da [ i ] [ k ] ;
}

}
/∗−−− DENORMALISE −−−∗/
st rcpy ( f i l ename , argv [ 3 ] ) ; /∗−−− Output f i l e to wr i t e to −−−∗/
output = fopen ( f i l ename , ”w+” ) ;
for ( j =0; j<sec ; j++)

{
for ( i =0; i<n o f y ; i++)

{
ZPTS[ i ] [ j ]= Fa [ i ] ∗ (FSECLE[ j ]−FSECTE[ j ] ) ;
ZPTSl [ i ] [ j ]= Fl [ i ] ∗ (FSECLE[ j ]−FSECTE[ j ] ) ;
N=n of y−1− i ;
YPTSf [ i ] [ j ] = YPTSa[N] ∗ (FSECLE[ j ]−FSECTE[ j ] ) + FSECTE[ j ] ;
f p r i n t f ( output , ”%f %f %f %f \n” ,XSECLE[ j ] , YPTSf [ i ] [ j ] ,ZPTS[ i ] [ j ] , ZPTSl [ i ] [ j ] ) ;
}

}
f c l o s e ( output ) ;

return 0 ;
}
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B.8 Fuselage Parameterisation Technique

B.8.1 Program to Create New Fuselage from Parameters

This program creates a set of data points and an ICEMCFD replay file to create a fuselage
geometry. A number of options are available and many parts can be combined. It automates the
grid generation of a fuselage. Section 3.2.3 describes the technique in more detail. An example
input file is shown in Appendix B.8.3.

PROGRAM ROBIN
c
c PROGRAM to f i nd the coo rd ina t e s o f a f u s e l a g e us ing the robin body typre paramete r i sa t i on .
c From NASA paper Appendix in JAXA f o l d e r .
c
c This program a l l ows you to r o t a t e parts , f o r example the t a i l p lane etc .
c Option 0 does a l o f t i n g su r f a c e with f u l curves , Option 1 makes segmented curves .
c The number o f segments f o r a segmented su r f a c e can be s e t along with t h i s opt ion .
c Ensure that the number o f po in t s i s a mul t ip l e o f the number o f segments .
c The ends o f the body can be c l o s ed at a point or at a su r f a c e .
c∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c

INTEGER MAXSTATIONS,MAXPART,MAXSEG,MAXPOINT,PTS
PARAMETER(MAXSTATIONS=100 ,MAXPART=10,MAXSEG=12,MAXPOINT=72)
INTEGER I , J , seg ,num(MAXPART) ,K,KK, fn (MAXSEG,MAXPART) , fnv
INTEGER nseg ,M
REAL de l t a (MAXSEG,MAXPART)
COMPLEX fh , r , fhw , fw
COMPLEX hh(MAXPOINT) ,ww(MAXPOINT) , zo (MAXPOINT) ,nn(MAXPOINT)
COMPLEX yo (MAXPOINT)
REAL x , l , y , zz , phi , pi , I I , JJ
REAL H(8 ,MAXSEG,MAXPART) ,W(8 ,MAXSEG,MAXPART)
REAL Z(8 ,MAXSEG,MAXPART) ,N(8 ,MAXSEG,MAXPART)
REAL YF(8 ,MAXSEG,MAXPART)
REAL xu (MAXSEG,MAXPART) , x l (MAXSEG,MAXPART) , segm(MAXSEG,MAXPART)
REAL dx , x s t a r t (MAXPART) , xend (MAXPART)
REAL xx (MAXSTATIONS) , yy (MAXSTATIONS,MAXPOINT)
REAL zzz (MAXSTATIONS,MAXPOINT)
CHARACTER∗100 f i lenam , f i l ename (MAXPART) , f i l (MAXPART) , s ta c , pnt c
CHARACTER( len=100) : : s ta x , sta y , s ta z , s r f c , pnt cn , s ta cn , ro t ax
CHARACTER( len=100) : : rx c , ry c , r z c , ro tang c
CHARACTER( len=100) : : x st , y st , z s t , x en , y en , z en
CHARACTER( len=100) : : s ta c1 , s ta c5 , s ta c3 , s t a c f 1
CHARACTER( len=2) : :number , ax i s
INTEGER IPART, n s t a t i on s (MAXSTATIONS) ,NPARTS, opt ion (MAXPART) , I I I
INTEGER pcounter , scounter , ccounter , s tcounter , f counter , maxfcounter
INTEGER minfcounter , counter4 , mdpoint1 , mdpoint2 , nicem
INTEGER ro topt i on (MAXPART) , pntoption (MAXPART)

29 FORMAT(F4 . 8 )
c

p i =3.141592654
c
c −−− DEFINE COEFFICIENTS FOR HEIGHT, WIDTH, CAMBER, ELLIPTIC POWER −−−−−−−−−−−−−−

print ∗ , ’ Enter number o f e x i s t i n g ICEM part geometr i e s : ’
read (5 ,∗ ) nicem
WRITE( number , ’ ( i 2 ) ’ ) nicem+1
number = ad ju s t l (number)
OPEN (51 , f i l e=’ pa rame t r i c f u s e l a g e ’ // trim (number) // ’ . dat ’ ,STATUS=’

&OLD’ )
IPART=1

100 read (51 ,∗ ,END=1000) f i lenam , opt ion (IPART) , nseg ! read the body and the opt ions f o r su r f a c i n g in
ICEM
read (51 ,∗ )num(IPART) , x s t a r t (IPART) , xend (IPART) ! read the number o f segments and the s t a r t and

end x co−o rd ina t e s o f the part
READ(51 ,∗ ) ro topt i on (IPART) , rx c , ry c , r z c , axis , ro tang c
READ(51 ,∗ ) pntoption (IPART) , x st , y st , z s t , x en , y en , z en
DO J=1,num(IPART)

READ(51 ,∗ ) segm(J , IPART) , x l (J , IPART) , xu (J , IPART) , fn (J , IPART) ,
& de l t a (J , IPART) ! . . . and parameter

READ(51 ,∗ ) (H( I , J , IPART) , I =1 ,8) ! H c o e f f i c i e n t s
READ(51 ,∗ ) (W( I , J , IPART) , I =1 ,8)
READ(51 ,∗ ) (YF( I , J , IPART) , I =1 ,8)
READ(51 ,∗ ) (Z( I , J , IPART) , I =1 ,8)
READ(51 ,∗ ) (N( I , J , IPART) , I =1 ,8)

ENDDO
IPART=IPART+1
GOTO 100

1000 CLOSE (51)
NPARTS=IPART−1
print ∗ , ’NPARTS’ ,NPARTS

c
c −−− DEFINE OUTPUT FILE AND X STATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pcounter=0
ccounter=0
scounter=0
s tcounte r=0
f counte r=0

DO IPART=1,NPARTS ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−LOOP OVER PARTS
WRITE( number , ’ ( i 2 ) ’ ) nicem+IPART ! convert part number to charac t e r f o r f i l ename
number = ad ju s t l (number) ! ad jus t number so no gaps in f i l ename
f i l ename (IPART) = ’ pa r ame t r i c f u s e l a g e ou t ’ // trim (number) // ’ . dat ’ ! i c emsc r i p t part f i l ename
OPEN(61 ,FILE=f i l ename (IPART) ,ACCESS=’APPEND’ ,STATUS=’NEW’ )

x=xs t a r t (IPART) ! f i r s t s t a t i on
c

I=1
DO WHILE( x . l t . xend (IPART) ) ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−LOOP OVER STATIONS

DO J=1,num(IPART)

219



i f ( ( x . l e . xu (J , IPART) ) .AND. ( x . ge . x l (J , IPART) ) ) then
seg=segm(J , IPART)
dx=de l t a (J , IPART)
fnv=fn (J , IPART)

endif
ENDDO
xx ( I )=x

c −−− FIND COEFFICIENTS FOR DEFINING r −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c H −−−−−−−−−−−−−−−−

i f (H(4 , seg , IPART) . eq . 0 ) then
hh( I )=H(1 , seg , IPART)

else
fh=H(1 , seg , IPART)+H(2 , seg , IPART) ∗( abs ( ( x

& +H(3 , seg , IPART) ) /H(4 , seg , IPART) ) )∗∗H(5 , seg , IPART)
hh( I )=fh
i f (H(8 , seg , IPART) . eq . 0 . or . H(8 , seg , IPART) . eq . 1 ) goto 1111
hh( I )=H(7 , seg , IPART) ∗( abs ( fh ) ) ∗∗ (1 .0/H(8 , seg , IPART) )

& +H(6 , seg , IPART)
endif

1111 continue
c W −−−−−−−−−−−−−−−−

i f (W(4 , seg , IPART) . eq . 0 ) then
ww( I )=W(1 , seg , IPART)

else
fh=W(1 , seg , IPART)+W(2 , seg , IPART) ∗( abs ( ( x

& +W(3 , seg , IPART) ) /W(4 , seg , IPART) ) )∗∗W(5 , seg , IPART)
ww( I )=fh
i f (W(8 , seg , IPART) . eq . 0 . or . W(8 , seg , IPART) . eq . 1 ) goto 2222
ww( I )=W(7 , seg , IPART) ∗( abs ( fh ) ) ∗∗ (1 .0/W(8 , seg , IPART) )+

& W(6 , seg , IPART)
endif

2222 continue
c X −−−−−−−−−−−−−−−−

i f (YF(4 , seg , IPART) . eq . 0 ) then
yo ( I )=YF(1 , seg , IPART)

else
fh=YF(1 , seg , IPART)+YF(2 , seg , IPART) ∗( abs ( ( x

& +YF(3 , seg , IPART) ) /YF(4 , seg , IPART) ) )∗∗YF(5 , seg , IPART)
yo ( I )=fh
i f (YF(8 , seg , IPART) . eq . 0 . or . YF(8 , seg , IPART) . eq . 1 ) goto 5555
yo ( I )=YF(7 , seg , IPART) ∗( abs ( fh ) ) ∗∗ (1 .0/YF(8 , seg , IPART) )+

& YF(6 , seg , IPART)
endif

5555 continue
c Z −−−−−−−−−−−−−−−−

i f (Z(4 , seg , IPART) . eq . 0 ) then
zo ( I )=Z(1 , seg , IPART)

else
fh=Z(1 , seg , IPART)+Z(2 , seg , IPART) ∗( abs ( ( x

& +Z(3 , seg , IPART) ) /Z(4 , seg , IPART) ) )∗∗Z(5 , seg , IPART)
zo ( I )=fh
i f (Z(8 , seg , IPART) . eq . 0 . or . Z(8 , seg , IPART) . eq . 1 ) goto 3333
zo ( I )=Z(7 , seg , IPART) ∗( abs ( fh ) ) ∗∗ (1 .0/Z(8 , seg , IPART) )+

& Z(6 , seg , IPART)
endif

3333 continue
c N −−−−−−−−−−−−−−−−

i f (N(4 , seg , IPART) . eq . 0 ) then
nn( I )=N(1 , seg , IPART)

else
fh=N(1 , seg , IPART)+N(2 , seg , IPART) ∗( abs ( ( x

& +N(3 , seg , IPART) ) /N(4 , seg , IPART) ) )∗∗N(5 , seg , IPART)
nn( I )=fh
i f (N(8 , seg , IPART) . eq . 0 . or . N(8 , seg , IPART) . eq . 1 ) goto 4444
nn( I )=N(7 , seg , IPART) ∗( abs ( fh ) ) ∗∗ (1 .0/N(8 , seg , IPART) )+

& N(6 , seg , IPART)
endif

4444 continue
c

K =1
KK=1

c FIND r , phi , y , z −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DO J=1,MAXPOINT ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−LOOP OVER AZIMUTH

JJ=J
phi=(JJ−1)/MAXPOINT ∗ pi ∗ 2

fhw = (hh( I )∗ww( I ) /4)∗∗nn( I )
fh = abs ( ( hh( I ) /2 ∗ s i n ( phi ) ) )∗∗nn( I )
fw = abs ( (ww( I ) /2 ∗ cos ( phi ) ) )∗∗nn( I )
r=(fhw/( fh + fw ) ) ∗∗(1 . / nn( I ) ) ! r a d i a l coo rd ina t e s

c
c −−− CONVERT RADIAL TO CARTESIAN COORDINATES −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

er =0.00001
y=(r )∗ s i n ( phi )+(yo ( I ) )
zz=(r )∗ cos ( phi )+(zo ( I ) )

c −−− order ing po in t s f o r icem f i l e −−−
yy ( I , J )=y
zzz ( I , J )=zz

ENDDO ! J LOOPEND
print ∗ , ’ nn ’ , nn ( I ) , ’ hh ’ , hh ( I ) , ’ x ’ , x , ’ zz ’ , zo ( I ) , ’ r ’ , r

c −−− s e t d i s t r i b u t i o n function −−−
IF ( fnv . eq . 0 ) x=x+dx
IF ( fnv . eq . 1 ) x=x∗dx
IF ( fnv . eq . 2 ) x=x+x∗dx
IF ( fnv . eq . 3 ) x=x+x∗dx∗(1+dx )
IF ( fnv . eq . 4 ) x=x+x∗dx∗(1−dx )
IF ( fnv . eq . 5 ) x=x+dx∗(1.018−x )
I=I+1

ENDDO ! I LOOPEND
ns ta t i on s (IPART)=I−1
print ∗ , ’ n s t a t i on s ’ , n s t a t i on s (IPART)

c −−− WRITE FILE IN ORDER −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DO I=1, n s t a t i on s (IPART)

220



DO J=1,MAXPOINT
WRITE(61 ,∗ ) , xx ( I ) , yy ( I , J ) , zzz ( I , J )

ENDDO
ENDDO
CLOSE(61)

c
c −−− CREATE ICEM REPLAY FILE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f i l (IPART) = ’ i c emsc r i p t ’ // trim (number) // ’ . r p l ’ ! i c emsc r i p t part f i l ename
OPEN(71 ,FILE=f i l (IPART) ,STATUS=’unknown ’ )
write (71 ,∗ ) ’ i c s e t mesh ing params g l oba l 0 ’
write (71 ,∗ ) ’ i c undo group beg in ’
write (71 ,∗ ) ’ i c s e t mesh ing params g l oba l 0 g t t o l 0 .00001 g t r e l 1 ’
write (71 ,∗ ) ’ i c r e g e n e r a t e t r i s ’
write (71 ,∗ ) ’ i c undo group end ’
write (71 ,∗ ) ’ i c undo group beg in ’
write (71 ,∗ ) ’ i c g eo c r e g eom input /home/ c fd / cjohnson /Fuse lage /ROBI

&N/ pa rame t r i c f u s e l a g e ou t ’ // trim (number) // ’ . dat 0 .00001 input PRT
&’ // trim (number) // ’ PNTS pnt CRVS {} SURFS {} ’
write (71 ,∗ ) ’ i c b o c o s o l v e r ’
write (71 ,∗ ) ’ i c b o c o c l e a r i c o n s ’
write (71 ,∗ ) ’ i c c s y s t em d i s p l a y a l l 0 ’
write (71 ,∗ ) ’ i c c s y s t em s e t c u r r e n t g l oba l ’
write (71 ,∗ ) ’ i c boco nas t ran c sy s t em r e s e t ’
write (71 ,∗ ) ’ i c g eo new fami l y GEOM’ // trim (number) // ’ ’
write (71 ,∗ ) ’ i c b o c o s e t p a r t c o l o r GEOM’ // trim (number) // ’ ’
IF ( pntoption (IPART) . eq . 1 ) then
write (71 ,∗ ) ’ i c p o i n t {} PRT ’ // trim (number) // ’ PNTS pnt . end . 0 ’ //

&trim ( x s t ) // ’ , ’ // trim ( y s t ) // ’ , ’ // trim ( z s t ) // ’ ’
write (71 ,∗ ) ’ i c p o i n t {} PRT ’ // trim (number) // ’ PNTS pnt . end . 1 ’ //

&trim ( x en ) // ’ , ’ // trim ( y en ) // ’ , ’ // trim ( z en ) // ’ ’
ENDIF

c −−− r o t a t i ng opt ion f o r t a i l p lane or c y l i n d r i c a l hub f o r example −−−
IF ( ro topt i on (IPART) . eq . 1 ) then

c −−− f i r s t f i nd ax i s o f r o t a t i on −−−
IF ( ax i s . eq . ’ x ’ ) ro t ax = ’ 1 0 0 ’
IF ( ax i s . eq . ’ y ’ ) ro t ax = ’ 0 1 0 ’
IF ( ax i s . eq . ’ z ’ ) r o t ax = ’ 0 0 1 ’
write (71 ,∗ ) ’ i c s ave mode l f o r undo ’
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ ic move geometry point names { ’
DO I=1, n s t a t i on s (IPART)∗MAXPOINT

WRITE( pnt c , ’ ( i 5 ) ’ ) I−1
pnt c = ad j u s t l ( pnt c )
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ pnt ’ // trim ( pnt c ) // ’ ’

ENDDO
write (71 ,∗ ) ’} r o t a t e ’ // trim ( rotang c ) // ’ r o t a t e a x i s { ’ // trim (

&rot ax ) // ’} cent { ’ // trim ( rx c ) // ’ ’ // trim ( ry c ) // ’ ’ // trim ( r z c ) /
&/ ’} ’

write (71 ,∗ ) ’ i c g e o r e s e t d a t a s t r u c t u r e s ’
write (71 ,∗ ) ’ i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade s o l i d

&’
ENDIF

c −−− OPTION 1 TO CREATE LOFT SURFACE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
IF ( opt ion (IPART) . eq . 0 ) then
DO I=1, n s t a t i on s (IPART)
WRITE( s ta c , ’ ( i 5 ) ’ ) I+ccounter ! convert s t a t i on number to charac t e r f o r curvename
s t a c = ad j u s t l ( s t a c ) ! ad jus t number so no gaps in f i l ename
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ i c c u r v e point PRT ’ // trim (number)

&// ’ CRV crv . ’ // trim ( s t a c ) // ’ { ’
DO J=1,MAXPOINT

WRITE( pnt c , ’ ( i 5 ) ’ ) (J−1)+(MAXPOINT∗( I−1) )+pcounter ! convert po int number to charac t e r f o r
pointname

pnt c = ad j u s t l ( pnt c ) ! ad jus t number so no gaps in f i l ename
write (71 , ” (A) ” ,advance=’no ’ ) ’ pnt ’ // trim ( pnt c ) // ’ ’

ENDDO
i f ( I . eq . 1 ) mdpoint1=(J−1)+(MAXPOINT∗( I−1) )+pcounter−MAXPOINT/2 ! f i nd i ng midpoint to s p l i t curve

to c l o s e end su r f a c e
i f ( I . eq . n s t a t i on s (IPART) ) mdpoint2=(J−1)+(MAXPOINT∗( I−1) )+

& pcounter−MAXPOINT/2 ! f i nd i ng midpoint to s p l i t curve to c l o s e end su r f a c e
WRITE( pnt c , ’ ( i 5 ) ’ ) (1−1)+(MAXPOINT∗( I−1) )+pcounter ! convert po int number to charac t e r f o r

pointname
pnt c = ad j u s t l ( pnt c ) ! ad jus t number so no gaps in f i l ename

write (71 ,∗ ) ’ pnt ’ // trim ( pnt c ) // ’} ’
ENDDO
WRITE( s r f c , ’ ( i 5 ) ’ ) IPART+scounter ! convert po int number to charac t e r f o r pointname
s r f c = ad j u s t l ( s r f c ) ! ad jus t number so no gaps in f i l ename
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ i c g e o c r e s r f l o f t c r v s PRT ’ // trim

&(number) // ’ SRF s r f . ’ // trim ( s r f c ) // ’ 0 .00001 { ’
DO I=1, n s t a t i on s (IPART)

WRITE( s ta c , ’ ( i 5 ) ’ ) I+s tcounte r ! convert s t a t i on number to charac t e r f o r curvename
s t a c = ad j u s t l ( s t a c ) ! ad jus t number so no gaps in f i l ename
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ crv . ’ // trim ( s t a c ) // ’ ’

ENDDO
write (71 ,∗ ) ’} 4 0 1 ’
write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e po int 0 {} ’
write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e curve 0 {} ’

c −−− close ends o f part − f i r s t s p l i t , then su r f a c e −−−
WRITE( s ta c , ’ ( i 5 ) ’ ) ccounter+1
s t a c=ad j u s t l ( s t a c )
WRITE( pnt c , ’ ( i 5 ) ’ ) mdpoint1
pnt c=ad j u s t l ( pnt c )
write (71 ,∗ ) ’ i c c u r v e s p l i t GEOM crv . ’ // trim ( s t a c ) // ’ a { crv . ’ // t

&rim ( s t a c ) // ’ pnt ’ // trim ( pnt c ) // ’} ’
IF ( pntoption (IPART) . eq . 1 ) then
write (71 ,∗ ) ’ i c c u r v e point PRT ’ // trim (number) // ’ CRV crv . s t r . 0

&{pnt . end . 0 pnt ’ // trim ( pnt c ) // ’} ’
write (71 ,∗ ) ’ i c c u r v e point PRT ’ // trim (number) // ’ CRV crv . s t r . 1

&{pnt . end . 0 pnt0} ’
write (71 ,∗ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (number) // ’ SRF s r f e n

&d . ’ // trim (number) // ’ . a {0.00001 { crv . s t r . 0 crv . ’ // trim ( s t a c ) // ’ c
&rv . s t r .1}} ’

write (71 ,∗ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (number) // ’ SRF s r f e n
&d . ’ // trim (number) // ’ . a {0.00001 { crv . s t r . 0 crv . ’ // trim ( s t a c ) // ’ a
&crv . s t r .1}} ’
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ELSE
write (71 ,∗ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (number) // ’ SRF s r f e n

&d . ’ // trim (number) // ’ . a {0.00001 { crv . ’ // trim ( s t a c ) // ’ crv . ’ // trim
&( s t a c ) // ’ a}} ’

write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e po int 0 {} ’
write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e curve 0 {} ’

ENDIF

c −−− OPTION 2 TO CREATE nseg SURFACES −−−−−−−−−−−−−−−−−−−−−−−−−−−
ELSEIF( opt ion (IPART) . eq . 1 ) then
IF ( pntoption (IPART) . eq . 1 ) then
write (71 ,∗ ) ’ i c c u r v e point PRT ’ // trim (number) // ’ CRV crv . s t r . 0

&{pnt . end . 0 pnt0} ’
DO M=1 ,( nseg−1)
WRITE( pnt c , ’ ( i 5 ) ’ ) MAXPOINT/nseg∗M
pnt c=ad j u s t l ( pnt c ) ! s i n g l e po int j o ined to f i r s t

s t a t i on at 4 po int s
WRITE( s ta c , ’ ( i 5 ) ’ ) M
s t a c=ad j u s t l ( s t a c )
write (71 ,∗ ) ’ i c c u r v e po int PRT ’ // trim (number) // ’ CRV crv . s t r . ’

&//trim ( s t a c ) // ’ {pnt . end . 0 pnt ’ // trim ( pnt c ) // ’} ’
ENDDO
WRITE( pnt c , ’ ( i 5 ) ’ ) MAXPOINT∗( n s t a t i on s (IPART)−1)
pnt c=ad j u s t l ( pnt c ) ! s i n g l e po int j o ined to l a s t

s t a t i on at 4 po in t s
write (71 ,∗ ) ’ i c c u r v e point PRT ’ // trim (number) // ’ CRV crv . end . 0

&{pnt . end . 1 pnt ’ // trim ( pnt c ) // ’} ’
DO M=1 ,( nseg−1)
WRITE( s ta c , ’ ( i 5 ) ’ ) M
s t a c=ad j u s t l ( s t a c )
WRITE( pnt c , ’ ( i 5 ) ’ ) MAXPOINT∗ ns t a t i on s (IPART)−MAXPOINT/nseg∗M
pnt c=ad j u s t l ( pnt c )
write (71 ,∗ ) ’ i c c u r v e po int PRT ’ // trim (number) // ’ CRV crv . end . ’

&//trim ( s t a c ) // ’ {pnt . end . 1 pnt ’ // trim ( pnt c ) // ’} ’
ENDDO

ENDIF
DO I =1 ,( n s t a t i on s (IPART)∗nseg ) ! nseg segments , t h e r e f o r e nseg

times the curves
WRITE( s ta c , ’ ( i 5 ) ’ ) I+ccounter ! so now ccounter counts each

curve b i t
s t a c = ad j u s t l ( s t a c ) ! ad jus t number so no gaps in

f i l ename
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ i c c u r v e point PRT ’ // trim (number

&)// ’ CRV crv . ’ // trim ( s t a c ) // ’ { ’
DO J=1 ,(MAXPOINT/nseg ) ! count ony upto 1/ nseg segment

po int s
WRITE( pnt c , ’ ( i 5 ) ’ ) (J−1)+((MAXPOINT/nseg ) ∗( I−1) )+pcounter ! pcounter takes in to account part

, I takes in to account s t a t i on
pnt c = ad j u s t l ( pnt c ) ! ad jus t number so no gaps in

f i l ename
write (71 , ” (A) ” ,advance=’no ’ ) ’ pnt ’ // trim ( pnt c ) // ’ ’

ENDDO ! ∗∗∗∗ END J LOOP
IF ( ( ( J−1)+((MAXPOINT/nseg ) ∗( I−1) )+pcounter ) .NE.

& ( pcounter+( I+(nseg−1) ) /nseg∗MAXPOINT) ) then ! i f i t s not the end o f the curve ,
j o i n curve to next curve−bit ’ s 1 s t po int

WRITE( pnt c , ’ ( i 5 ) ’ ) (J−1)+((MAXPOINT/nseg ) ∗( I−1) )+pcounter
pnt c = ad j u s t l ( pnt c ) ! ad jus t number so no gaps in

f i l ename
ELSE ! i f i t i s end o f curve , j o i n i t

to s t a r t o f 1 s t curve−b i t s 1 s t po int
WRITE( pnt c , ’ ( i 5 ) ’ ) (1−1)+((MAXPOINT/nseg ) ∗( I−nseg ) )+pcounter
pnt c = ad j u s t l ( pnt c ) ! ad jus t number so no gaps in

f i l ename
ENDIF
write (71 ,∗ ) ’ pnt ’ // trim ( pnt c ) // ’} ’

ENDDO ! ∗∗∗ END I LOOP
J=0
minfcounter=fcounte r
DO WHILE( J . l t . (MAXPOINT ∗ ( n s t a t i on s (IPART)−1) ) )

WRITE( pnt c , ’ ( i 5 ) ’ ) J+pcounter ! f i r s t curve point
pnt c=ad j u s t l ( pnt c )
WRITE( pnt cn , ’ ( i 5 ) ’ ) J+pcounter+MAXPOINT ! second curve point
pnt cn=ad j u s t l ( pnt cn )
WRITE( s ta c , ’ ( i 5 ) ’ ) f counte r
s t a c = ad j u s t l ( s t a c )
write (71 ,∗ ) ’ i c c u r v e point PRT ’ // trim (number) // ’ CRV crv f . ’ /

&/trim ( s t a c ) // ’ {pnt ’ // trim ( pnt c ) // ’ pnt ’ // trim ( pnt cn ) // ’} ’ ! wr i t e l ong i tund ina l f u s e l a g e
curves
J=J+(MAXPOINT/nseg )
f counte r=fcounte r+1

ENDDO ! ∗∗∗ END WHILE LOOP
maxfcounter=fcounter −1
DO I=minfcounter , ( maxfcounter−nseg )
WRITE( s ta c , ’ ( i 5 ) ’ ) I
s t a c = ad j u s t l ( s t a c ) ! ad jus t number so no gaps in

f i l ename
WRITE( sta cn , ’ ( i 5 ) ’ ) I+nseg
s ta cn = ad j u s t l ( s t a cn ) ! ad jus t number so no gaps in

f i l ename
write (71 ,∗ ) ’ i c geo mod crv match crv c r v f . ’ // trim ( s t a c ) // ’ cr

&vf . ’ // trim ( s ta cn ) // ’ 2 1 {2 1 1 0 0} ’
i f ( I . l t . ( minfcounter+nseg ) ) then
write (71 ,∗ ) ’ i c d e l e t e g e ome t r y curve names c r v f . ’ // trim ( s t a c

&)// ’ 0 ’
write (71 ,∗ ) ’ i c g eo s e t name curve c r v f . ’ // trim ( s t a c ) // ’ . 1 cr

&vf . ’ // trim ( s t a c ) // ’ ’
endif
write (71 ,∗ ) ’ i c d e l e t e g e ome t r y curve names c r v f . ’ // trim ( s ta cn

&)// ’ 0 ’
write (71 ,∗ ) ’ i c g eo s e t name curve c r v f . ’ // trim ( s ta cn ) // ’ . 1 cr

&vf . ’ // trim ( s ta cn ) // ’ ’
ENDDO
IF ( pntoption (IPART) . eq . 1 ) then
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DO i =0 ,( nseg−1) ! match curves at s t a r t and end to
the main body

WRITE( s ta c , ’ ( i 5 ) ’ ) I
s t a c = ad j u s t l ( s t a c )
write (71 ,∗ ) ’ i c geo mod crv match crv crv . s t r . ’ // trim ( s t a c ) // ’

&c rv f . ’ // trim ( s t a c ) // ’ 2 1 {2 1 1 1 0} ’
write (71 ,∗ ) ’ i c d e l e t e g e ome t r y curve names crv . s t r . ’ // trim ( s t a

&c ) // ’ 0 ’
write (71 ,∗ ) ’ i c g eo s e t name curve crv . s t r . ’ // trim ( s t a c ) // ’ . 1 c

&rv . s t r . ’ // trim ( s t a c ) // ’ ’ ! end o f matching f o r f r on t
WRITE( s ta c , ’ ( i 5 ) ’ ) ( nseg−1)−I
s t a c = ad j u s t l ( s t a c )
WRITE( sta cn , ’ ( i 5 ) ’ ) maxfcounter−(nseg−1)+I
s ta cn = ad j u s t l ( s t a cn )
write (71 ,∗ ) ’ i c geo mod crv match crv crv . end . ’ // trim ( s t a c ) // ’

&c rv f . ’ // trim ( s ta cn ) // ’ 2 2 {2 1 1 1 0} ’
write (71 ,∗ ) ’ i c d e l e t e g e ome t r y curve names crv . end . ’ // trim ( s t a

&c ) // ’ 0 ’
write (71 ,∗ ) ’ i c g eo s e t name curve crv . end . ’ // trim ( s t a c ) // ’ . 1 c

&rv . end . ’ // trim ( s t a c ) // ’ ’
ENDDO
DO M=0 ,( nseg/2−1)
WRITE( s ta c , ’ ( i 5 ) ’ ) M
s t a c = ad j u s t l ( s t a c )
WRITE( sta cn , ’ ( i 5 ) ’ ) nseg/2+M
sta cn = ad j u s t l ( s t a cn )
write (71 ,∗ ) ’ i c geo mod crv match crv crv . s t r . ’ // trim ( s t a c ) // ’

&crv . s t r . ’ // trim ( s ta cn ) // ’ 1 1 {2 1 1 0 0} ’
write (71 ,∗ ) ’ i c geo mod crv match crv crv . end . ’ // trim ( s t a c ) // ’

&crv . end . ’ // trim ( s ta cn ) // ’ 1 1 {2 1 1 0 0} ’
ENDDO

ENDIF
counter4=0
DO I=minfcounter , ( maxfcounter )

counter4=counter4+1 ! to check i f i t s the 4 th curve
so i t l oops back to f i r s t curve

WRITE( s ta c , ’ ( i 5 ) ’ ) I
s t a c = ad j u s t l ( s t a c ) ! ad jus t number so no gaps in

f i l ename
WRITE( s ta c5 , ’ ( i 5 ) ’ ) ccounter+I−minfcounter+(nseg+1)
s t a c 5 = ad j u s t l ( s t a c 5 ) ! ad jus t number so no gaps in

f i l ename
WRITE( s ta c3 , ’ ( i 5 ) ’ ) I−(nseg−1)
s t a c 3 = ad j u s t l ( s t a c 3 ) ! ad jus t number so no gaps in

f i l ename
WRITE( s t a c f 1 , ’ ( i 5 ) ’ ) I+1
s t a c f 1 = ad j u s t l ( s t a c f 1 ) ! ad jus t number so no gaps in

f i l ename
WRITE( s ta c1 , ’ ( i 5 ) ’ ) ccounter+I−minfcounter+1
s t a c1 = ad j u s t l ( s t a c 1 ) ! ad jus t number so no gaps in

f i l ename
i f ( counter4 . ne . nseg ) then
write (71 ,∗ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (number) // ’ SRF s r f

&c . ’ // trim ( s t a c ) // ’ {0.00001 { c r v f . ’ // trim ( s t a c ) // ’ crv . ’ // trim ( s
&ta c5 ) // ’ c r v f . ’ // trim ( s t a c f 1 ) // ’ crv . ’ // trim ( s t a c1 ) // ’}} ’

else
write (71 ,∗ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (number) // ’ SRF s r f

&c . ’ // trim ( s t a c ) // ’ {0.00001 { c r v f . ’ // trim ( s t a c ) // ’ crv . ’ // trim ( s
&ta c5 ) // ’ c r v f . ’ // trim ( s t a c 3 ) // ’ crv . ’ // trim ( s t a c1 ) // ’}} ’

counter4=0
endif
write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e po int 0 {} ’
write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e curve 0 {} ’

ENDDO
c −−− make c l o s i n g su r f a c e at s t a r t o f part −−−

IF ( pntoption (IPART) . eq . 1 ) then
DO I =0 ,( nseg−1)
WRITE( s ta c , ’ ( i 5 ) ’ ) I
s t a c = ad j u s t l ( s t a c )
IF ( I . eq . ( nseg−1) ) then
WRITE( s ta cn , ’ ( i 5 ) ’ ) I−(nseg−1)
WRITE( s ta c1 , ’ ( i 5 ) ’ ) I+1

ELSE
WRITE( s ta cn , ’ ( i 5 ) ’ ) I+1
WRITE( s ta c1 , ’ ( i 5 ) ’ ) I+1

ENDIF
s t a cn = ad j u s t l ( s t a cn )
s t a c 1 = ad j u s t l ( s t a c 1 )
write (71 ,∗ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (number) // ’ SRF s r f . s

&t r . ’ // trim ( s t a c ) // ’ {0.00001 { crv . s t r . ’ // trim ( s t a c ) // ’ crv . ’ // t r
&im( s t a c1 ) // ’ crv . s t r . ’ // trim ( s ta cn ) // ’}} ’

ENDDO
ELSE
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ i c g e o c r e c r v c o n c a t PRT ’ // trim (n

&umber ) // ’ CRV crv . c . s t r 1 0.000001 { ’
DO I=1, nseg /2
WRITE( s ta c , ’ ( i 5 ) ’ ) I
s t a c = ad j u s t l ( s t a c )
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ crv . ’ // trim ( s t a c ) // ’ ’

ENDDO
write (71 ,∗ ) ’} ’
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ i c g e o c r e c r v c o n c a t PRT ’ // trim (n

&umber ) // ’ CRV crv . c . s t r 0 0.000001 { ’
DO I=nseg /2+1, nseg
WRITE( s ta c , ’ ( i 5 ) ’ ) I
s t a c = ad j u s t l ( s t a c )
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ crv . ’ // trim ( s t a c ) // ’ ’

ENDDO
write (71 ,∗ ) ’} ’
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (num

&ber ) // ’ SRF sr f end . a . ’ // trim (number) // ’ {0.00001 { crv . c . s t r 1 crv . c
&. s t r 0 }} ’

write (71 ,∗ ) ’ ’
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write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e po int 0 {} ’
write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e curve 0 {} ’

ENDIF
ENDIF

c −−− add the r i gh t count value f o r part depending on segmented or f u l l curves
IF ( opt ion (IPART) . eq . 0 ) then
pcounter=pcounter+MAXPOINT∗ ns t a t i on s (IPART)
ccounter=ccounter+ns t a t i on s (IPART)
scounter=scounter+0
s t counte r=stcounte r+ns t a t i on s (IPART)

c −−− close ends o f part − f i r s t s p l i t , then su r f a c e −−−
WRITE( s ta c , ’ ( i 5 ) ’ ) ccounter
s t a c=ad j u s t l ( s t a c )
WRITE( pnt c , ’ ( i 5 ) ’ ) mdpoint2
pnt c=ad j u s t l ( pnt c )
write (71 ,∗ ) ’ i c c u r v e s p l i t GEOM crv . ’ // trim ( s t a c ) // ’ a { crv . ’ // t

&rim ( s t a c ) // ’ pnt ’ // trim ( pnt c ) // ’} ’
IF ( pntoption (IPART) . eq . 1 ) then

WRITE( pnt c , ’ ( i 5 ) ’ ) pcounter−MAXPOINT
pnt c = ad j u s t l ( pnt c )
write (71 ,∗ ) ’ i c c u r v e po int PRT ’ // trim (number) // ’ CRV crv . end . 1

& {pnt . end . 1 pnt ’ // trim ( pnt c ) // ’} ’
WRITE( pnt c , ’ ( i 5 ) ’ ) mdpoint2
pnt c = ad j u s t l ( pnt c )
write (71 ,∗ ) ’ i c c u r v e po int PRT ’ // trim (number) // ’ CRV crv . end . 0

& {pnt . end . 1 pnt ’ // trim ( pnt c ) // ’} ’
WRITE( s ta c1 , ’ ( i 5 ) ’ ) ccounter
s t a c 1 = ad j u s t l ( s t a c 1 )
write (71 ,∗ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (number) // ’ SRF s r f . e

&nd . ’ // trim ( s t a c ) // ’ {0.00001 { crv . end . 1 crv . ’ // trim ( s t a c1 ) // ’ cr
&v . end .0}} ’

write (71 ,∗ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (number) // ’ SRF s r f . e
&nd . ’ // trim ( s t a c ) // ’ {0.00001 { crv . end . 1 crv . ’ // trim ( s t a c1 ) // ’ a c
&rv . end .0}} ’

ELSE
write (71 ,∗ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (number) // ’ SRF s r f e n

&d . ’ // trim (number) // ’ . a {0.00001 { crv . ’ // trim ( s t a c ) // ’ crv . ’ // trim
&( s t a c ) // ’ a}} ’

write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e po int 0 {} ’
write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e curve 0 {} ’
write (71 ,∗ ) ’ i c undo group end ’

ENDIF
ELSE ! i f the opt ion i s segmented curves , then nseg times the number o f s t a t i o n s per part .
pcounter=pcounter+MAXPOINT∗ ns t a t i on s (IPART)
ccounter=ccounter+nseg∗ ns t a t i on s (IPART)
s t counte r=stcounte r+nseg∗ ns t a t i on s (IPART)

c
c −−− make c l o s i n g su r f a c e at end o f part −−−

IF ( pntoption (IPART) . eq . 1 ) then
DO I =0 ,( nseg−1)

WRITE( s ta c , ’ ( i 5 ) ’ ) I
s t a c = ad j u s t l ( s t a c )
IF ( I . eq . ( nseg−1) ) then
WRITE( s ta cn , ’ ( i 5 ) ’ ) I−(nseg−1)
WRITE( s ta c1 , ’ ( i 5 ) ’ ) n s t a t i on s (IPART)∗nseg

ELSE
WRITE( s ta cn , ’ ( i 5 ) ’ ) I+1
WRITE( s ta c1 , ’ ( i 5 ) ’ ) n s t a t i on s (IPART)∗nseg−I−1

ENDIF
s t a cn = ad j u s t l ( s t a cn )
s t a c 1 = ad j u s t l ( s t a c 1 )
write (71 ,∗ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (number) // ’ SRF s r f . e

&nd . ’ // trim ( s t a c ) // ’ {0.00001 { crv . end . ’ // trim ( s t a c ) // ’ crv . ’ // t r
&im( s t a c1 ) // ’ crv . end . ’ // trim ( s ta cn ) // ’}} ’

write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e po int 0 {} ’
write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e curve 0 {} ’

ENDDO
ELSE
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ i c g e o c r e c r v c o n c a t PRT ’ // trim (n

&umber ) // ’ CRV crv . c . end1 0.000001 { ’
DO I=0, nseg/2−1
WRITE( s ta c , ’ ( i 5 ) ’ ) ccounter−I
s t a c = ad j u s t l ( s t a c )
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ crv . ’ // trim ( s t a c ) // ’ ’

ENDDO
write (71 ,∗ ) ’} ’
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ i c g e o c r e c r v c o n c a t PRT ’ // trim (n

&umber ) // ’ CRV crv . c . end0 0.000001 { ’
DO I=1, nseg /2
WRITE( s ta c , ’ ( i 5 ) ’ ) ccounter−nseg+I
s t a c = ad j u s t l ( s t a c )
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ crv . ’ // trim ( s t a c ) // ’ ’

ENDDO
write (71 ,∗ ) ’} ’
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (num

&ber ) // ’ SRF sr f end . b . ’ // trim (number) // ’ {0.00001 { crv . c . end1 crv . c
&.end0}} ’

write (71 ,∗ ) ’ ’
write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e po int 0 {} ’
write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e curve 0 {} ’

ENDIF
ENDIF
write (71 ,∗ ) ’ i c s a v e t e t i n /home/ c fd / cjohnson /Fuse lage /ROBIN/ rob in

&s c r i p t p a r t ’ // trim (number) // ’ . t i n 0 0 {} {} 0 ’
CLOSE(71)
print ∗ , ’ p ’ , pcounter , ’ c ’ , ccounter , ’ s ’ , scounter , ’ f ’ , f counter , ’ s t a t i

&on ’ , s t counte r
ENDDO ! IPARTS LOOP

c
c

END
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B.8.2 Program to Create New Fuselage from Data Points

This program is the same as the one in B.8.1 except that it reads data points directly and creates
the replay file. An example input file is given in Appendix B.8.4.

PROGRAM ROBIN
c
c PROGRAM to f i nd the coo rd ina t e s o f a f u s e l a g e us ing the robin body typre paramete r i sa t i on .
c From NASA paper Appendix in JAXA f o l d e r .
c
c Option 0 does a l o f t i n g su r f a c e with f u l curves , Option 1 makes segmented curves .
c ro topt i on a l l ows you to r o t a t e the body .
c∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c

INTEGER MAXSTATIONS,MAXPART,MAXSEG,MAXPOINT,PTS
PARAMETER(MAXSTATIONS=50,MAXPART=10,MAXSEG=4,MAXPOINT=52)
INTEGER I , J , seg ,num(MAXPART) ,K,KK, fn (MAXSEG,MAXPART) , fnv
REAL de l t a (MAXSEG,MAXPART)
COMPLEX fh , r , fhw , fw
COMPLEX hh(MAXPOINT) ,ww(MAXPOINT) , zo (MAXPOINT) ,nn(MAXPOINT)
COMPLEX yo (MAXPOINT)
REAL x , l , y , zz , phi , pi , I I , JJ
REAL H(8 ,MAXSEG,MAXPART) ,W(8 ,MAXSEG,MAXPART)
REAL Z(8 ,MAXSEG,MAXPART) ,N(8 ,MAXSEG,MAXPART)
REAL YF(8 ,MAXSEG,MAXPART)
REAL xu (MAXSEG,MAXPART) , x l (MAXSEG,MAXPART) , segm(MAXSEG,MAXPART)
REAL dx , x s t a r t (MAXPART) , xend (MAXPART)
REAL xx (MAXSTATIONS,MAXPOINT) , yy (MAXSTATIONS,MAXPOINT)
REAL zzz (MAXSTATIONS,MAXPOINT)
CHARACTER∗100 f i lenam , f i l ename (MAXPART) , f i l (MAXPART) , s ta c , pnt c
CHARACTER( len=100) : : s ta x , sta y , s ta z , s r f c , pnt cn , s ta cn , ro t ax
CHARACTER( len=100) : : s ta c1 , s ta c5 , s ta c3 , s t a c f 1 , rx c , ry c , r z c
CHARACTER( len=100) : : ro tang c
CHARACTER( len=2) : :number , ax i s
INTEGER IPART, n s t a t i on s (MAXSTATIONS) ,NPARTS, opt ion (MAXPART) , I I I
INTEGER pcounter , scounter , ccounter , s tcounter , f counter , maxfcounter
INTEGER minfcounter , counter4 , mdpoint1 , mdpoint2 , nicem , ro topt i on

29 FORMAT(E3 . 2 )
c

p i =3.141592654
c
c −−− DEFINE COEFFICIENTS FOR HEIGHT, WIDTH, CAMBER, ELLIPTIC POWER −−−−−−−−−−−−−−

print ∗ , ’ Enter number o f e x i s t i n g ICEM part geometr i e s : ’
read (5 ,∗ ) nicem
WRITE( number , ’ ( i 2 ) ’ ) nicem+1
number = ad ju s t l (number)
OPEN (51 , f i l e=’ pa r ame t r i c f u s e l a g e r e adpo i n t s ’ // trim (number) // ’ . da

&t ’ ,STATUS=’OLD’ )
IPART=1
read (51 ,∗ )num(IPART) , x s t a r t (IPART) , xend (IPART) ! read the number o f segments and

the s t a r t and end x co−o rd ina t e s o f the part
DO J=1,num(IPART)

READ(51 ,∗ ) segm(J , IPART) , x l (J , IPART) , xu (J , IPART) , n s t a t i on s (IPA
&RT) , ro topt i on

READ(51 ,∗ ) rx c , ry c , r z c
READ(51 ,∗ ) axis , ro tang c

ENDDO
IPART=IPART+1

1000 CLOSE (51)
NPARTS=IPART−1
print ∗ , ’ cent : ’ , rx c , ry c , r z c , ax i s

c
c −−− DEFINE OUTPUT FILE AND X STATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pcounter=0
ccounter=0
scounter=0
s tcounte r=0
f counte r=0
opt ion (IPART)=1

DO IPART=1,NPARTS ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−LOOP OVER PARTS
WRITE( number , ’ ( i 2 ) ’ ) nicem+IPART ! convert part number to charac t e r f o r f i l ename
number = ad ju s t l (number) ! ad jus t number so no gaps in f i l ename
print ∗ , ’ n s t a t i on s ’ , n s t a t i on s (IPART)

c
c −−− CREATE ICEM REPLAY FILE −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f i l (IPART) = ’ i c emsc r i p t ’ // trim (number) // ’ . r p l ’ ! i c emsc r i p t part f i l ename
OPEN(71 ,FILE=f i l (IPART) ,STATUS=’unknown ’ )
write (71 ,∗ ) ’ i c s e t mesh ing params g l oba l 0 ’
write (71 ,∗ ) ’ i c undo group beg in ’
write (71 ,∗ ) ’ i c s e t mesh ing params g l oba l 0 g t t o l 0 .00001 g t r e l 1 ’
write (71 ,∗ ) ’ i c r e g e n e r a t e t r i s ’
write (71 ,∗ ) ’ i c undo group end ’
write (71 ,∗ ) ’ i c undo group beg in ’
write (71 ,∗ ) ’ i c g eo c r e g eom input /home/ c fd / cjohnson /Fuse lage /ROBI

&N/ pa rame t r i c f u s e l a g e ou t pn t s ’ // trim (number) // ’ . dat 0 .00001 input
& PRT ’ // trim (number) // ’ PNTS pnt CRVS {} SURFS {} ’
write (71 ,∗ ) ’ i c b o c o s o l v e r ’
write (71 ,∗ ) ’ i c b o c o c l e a r i c o n s ’
write (71 ,∗ ) ’ i c c s y s t em d i s p l a y a l l 0 ’
write (71 ,∗ ) ’ i c c s y s t em s e t c u r r e n t g l oba l ’
write (71 ,∗ ) ’ i c boco nas t ran c sy s t em r e s e t ’
write (71 ,∗ ) ’ i c g eo new fami l y GEOM’ // trim (number) // ’ ’
write (71 ,∗ ) ’ i c b o c o s e t p a r t c o l o r GEOM’ // trim (number) // ’ ’

c −−− OPTION 2 TO CREATE 4 SURFACES −−−−−−−−−−−−−−−−−−−−−−−−−−−
DO I =1 ,( n s t a t i on s (IPART) ∗4) ! 4 segments , t h e r e f o r e 4 t imes

the curves
WRITE( s ta c , ’ ( i 5 ) ’ ) I+ccounter ! so now ccounter counts each

curve b i t
s t a c = ad j u s t l ( s t a c ) ! ad jus t number so no gaps in

f i l ename
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ i c c u r v e point PRT ’ // trim (number
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&)// ’ CRV crv . ’ // trim ( s t a c ) // ’ { ’
DO J=1 ,(MAXPOINT/4) ! count ony upto 1/4 segment

po int s
WRITE( pnt c , ’ ( i 5 ) ’ ) (J−1)+((MAXPOINT/4) ∗( I−1) )+pcounter ! pcounter takes in to account part

, I takes in to account s t a t i on
pnt c = ad j u s t l ( pnt c ) ! ad jus t number so no gaps in

f i l ename
write (71 , ” (A) ” ,advance=’no ’ ) ’ pnt ’ // trim ( pnt c ) // ’ ’

ENDDO ! ∗∗∗∗ END J LOOP
IF ( ( ( J−1)+((MAXPOINT/4) ∗( I−1) )+pcounter ) .NE.

& ( pcounter+( I+3)/4∗MAXPOINT) ) then ! i f i t s not the end o f the curve ,
j o i n curve to next curve−bit ’ s 1 s t po int
WRITE( pnt c , ’ ( i 5 ) ’ ) (J−1)+((MAXPOINT/4) ∗( I−1) )+pcounter
pnt c = ad j u s t l ( pnt c ) ! ad jus t number so no gaps in

f i l ename
ELSE ! i f i t i s end o f curve , j o i n i t

to s t a r t o f 1 s t curve−b i t s 1 s t po int
WRITE( pnt c , ’ ( i 5 ) ’ ) (1−1)+((MAXPOINT/4) ∗( I−4) )+pcounter
pnt c = ad j u s t l ( pnt c ) ! ad jus t number so no gaps in

f i l ename
ENDIF
write (71 ,∗ ) ’ pnt ’ // trim ( pnt c ) // ’} ’

ENDDO ! ∗∗∗ END I LOOP
J=0
minfcounter=fcounte r
DO WHILE( J . l t . (MAXPOINT ∗ ( n s t a t i on s (IPART)−1) ) )

WRITE( pnt c , ’ ( i 5 ) ’ ) J+pcounter ! f i r s t curve point
pnt c=ad j u s t l ( pnt c )
WRITE( pnt cn , ’ ( i 5 ) ’ ) J+pcounter+MAXPOINT ! second curve point
pnt cn=ad j u s t l ( pnt cn )
WRITE( s ta c , ’ ( i 5 ) ’ ) f counte r
s t a c = ad j u s t l ( s t a c )
write (71 ,∗ ) ’ i c c u r v e point PRT ’ // trim (number) // ’ CRV crv f . ’ /

&/trim ( s t a c ) // ’ {pnt ’ // trim ( pnt c ) // ’ pnt ’ // trim ( pnt cn ) // ’} ’ ! wr i t e l ong i tund ina l f u s e l a g e
curves
J=J+(MAXPOINT/4)
f counte r=fcounte r+1

ENDDO ! ∗∗∗ END WHILE LOOP
maxfcounter=fcounter −1
DO I=minfcounter , ( maxfcounter −4)
WRITE( s ta c , ’ ( i 5 ) ’ ) I
s t a c = ad j u s t l ( s t a c ) ! ad jus t number so no gaps in

f i l ename
WRITE( sta cn , ’ ( i 5 ) ’ ) I+4
s ta cn = ad j u s t l ( s t a cn ) ! ad jus t number so no gaps in

f i l ename
write (71 ,∗ ) ’ i c geo mod crv match crv c r v f . ’ // trim ( s t a c ) // ’ cr

&vf . ’ // trim ( s ta cn ) // ’ 2 1 {2 1 1 0 0} ’
i f ( I . l t . ( minfcounter+4) ) then
write (71 ,∗ ) ’ i c d e l e t e g e ome t r y curve names c r v f . ’ // trim ( s t a c

&)// ’ 0 ’
write (71 ,∗ ) ’ i c g eo s e t name curve c r v f . ’ // trim ( s t a c ) // ’ . 1 cr

&vf . ’ // trim ( s t a c ) // ’ ’
endif
write (71 ,∗ ) ’ i c d e l e t e g e ome t r y curve names c r v f . ’ // trim ( s ta cn

&)// ’ 0 ’
write (71 ,∗ ) ’ i c g eo s e t name curve c r v f . ’ // trim ( s ta cn ) // ’ . 1 cr

&vf . ’ // trim ( s ta cn ) // ’ ’
ENDDO
counter4=0
DO I=minfcounter , ( maxfcounter )

counter4=counter4+1 ! to check i f i t s the 4 th curve
so i t l oops back to f i r s t curve

WRITE( s ta c , ’ ( i 5 ) ’ ) I
s t a c = ad j u s t l ( s t a c ) ! ad jus t number so no gaps in

f i l ename
WRITE( s ta c5 , ’ ( i 5 ) ’ ) ccounter+I−minfcounter+5
s t a c5 = ad j u s t l ( s t a c 5 ) ! ad jus t number so no gaps in

f i l ename
WRITE( s ta c3 , ’ ( i 5 ) ’ ) I−3
s t a c 3 = ad j u s t l ( s t a c 3 ) ! ad jus t number so no gaps in

f i l ename
WRITE( s t a c f 1 , ’ ( i 5 ) ’ ) I+1
s t a c f 1 = ad j u s t l ( s t a c f 1 ) ! ad jus t number so no gaps in

f i l ename
WRITE( s ta c1 , ’ ( i 5 ) ’ ) ccounter+I−minfcounter+1
s t a c1 = ad j u s t l ( s t a c 1 ) ! ad jus t number so no gaps in

f i l ename
i f ( counter4 . ne . 4 ) then
write (71 ,∗ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (number) // ’ SRF s r f

&c . ’ // trim ( s t a c ) // ’ {0.0001 { c r v f . ’ // trim ( s t a c ) // ’ crv . ’ // trim ( s
&ta c5 ) // ’ c r v f . ’ // trim ( s t a c f 1 ) // ’ crv . ’ // trim ( s t a c1 ) // ’}} ’

else
write (71 ,∗ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (number) // ’ SRF s r f

&c . ’ // trim ( s t a c ) // ’ {0.0001 { c r v f . ’ // trim ( s t a c ) // ’ crv . ’ // trim ( s
&ta c5 ) // ’ c r v f . ’ // trim ( s t a c 3 ) // ’ crv . ’ // trim ( s t a c1 ) // ’}} ’

counter4=0
endif
write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e po int 0 {} ’
write (71 ,∗ ) ’ i c s e t do rmant p i c kab l e curve 0 {} ’

ENDDO
c −−− make c l o s i n g su r f a c e at s t a r t o f part −−−

write (71 , ’ (A) ’ ,advance=’no ’ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (numb
&er ) // ’ SRF sr f end . a . ’ // trim (number) // ’ {0.0001 { ’

DO I =1,4
WRITE( s ta c , ’ ( i 5 ) ’ ) ccounter+I
s t a c = ad j u s t l ( s t a c )
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ crv . ’ // trim ( s t a c ) // ’ ’

ENDDO
write (71 ,∗ ) ’}} ’
write (71 ,∗ ) ’ i c s e t do rman t p i c kab l e po int 0 {} ’
write (71 ,∗ ) ’ i c s e t do rman t p i c kab l e curve 0 {} ’

c −−− add the r i gh t count value f o r part depending on segmented or f u l l curves
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pcounter=pcounter+MAXPOINT∗ ns t a t i on s (IPART)
ccounter=ccounter+4∗ns t a t i on s (IPART)
s t counte r=stcounte r+4∗ns t a t i on s (IPART)

c
c −−− make c l o s i n g su r f a c e at end o f part −−−

write (71 , ’ (A) ’ ,advance=’no ’ ) ’ i c s u r f a c e 2−4crvs PRT ’ // trim (numb
&er ) // ’ SRF sr f end . b . ’ // trim (number) // ’ {0.0001 { ’

DO I =0,3
WRITE( s ta c , ’ ( i 5 ) ’ ) ccounter−I
s t a c = ad j u s t l ( s t a c )
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ crv . ’ // trim ( s t a c ) // ’ ’

ENDDO
write (71 ,∗ ) ’}} ’
write (71 ,∗ ) ’ i c s e t do rman t p i c kab l e po int 0 {} ’
write (71 ,∗ ) ’ i c s e t do rman t p i c kab l e curve 0 {} ’

c −−− r o t a t i ng opt ion f o r t a i l p lane f o r example −−−
IF ( ro topt i on . eq . 1 ) then

c −−− f i r s t f i nd ax i s o f r o t a t i on −−−
write (71 ,∗ ) ’ i c s ave mode l f o r undo ’
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ ic move geometry su r f a c e names { s r

&fend . a . ’ // trim (number) // ’ s r f end . b . ’ // trim (number) // ’ ’
DO I=1, f counte r

WRITE( s ta c , ’ ( i 5 ) ’ ) I−1
s t a c = ad j u s t l ( s t a c )
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ s r f c . ’ // trim ( s t a c ) // ’ ’

ENDDO
IF ( ax i s . eq . ’ x ’ ) ro t ax = ’ 1 0 0 ’
IF ( ax i s . eq . ’ y ’ ) ro t ax = ’ 0 1 0 ’
IF ( ax i s . eq . ’ z ’ ) r o t ax = ’ 0 0 1 ’
write (71 ,∗ ) ’} r o t a t e ’ // trim ( rotang c ) // ’ r o t a t e a x i s { ’ // trim (

&rot ax ) // ’} cent { ’ // trim ( rx c ) // ’ ’ // trim ( ry c ) // ’ ’ // trim ( r z c ) /
&/ ’} ’

write (71 , ’ (A) ’ ,advance=’no ’ ) ’ ic move geometry curve names { ’
DO I=1, ccounter

WRITE( s ta c , ’ ( i 5 ) ’ ) I
s t a c = ad j u s t l ( s t a c )
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ crv . ’ // trim ( s t a c ) // ’ ’

ENDDO
DO I=1, f counte r

WRITE( s ta c , ’ ( i 5 ) ’ ) I−1
s t a c = ad j u s t l ( s t a c )
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ c r v f . ’ // trim ( s t a c ) // ’ ’

ENDDO
write (71 ,∗ ) ’} r o t a t e ’ // trim ( rotang c ) // ’ r o t a t e a x i s { ’ // trim (

&rot ax ) // ’} cent { ’ // trim ( rx c ) // ’ ’ // trim ( ry c ) // ’ ’ // trim ( r z c ) /
&/ ’} ’

write (71 , ’ (A) ’ ,advance=’no ’ ) ’ ic move geometry point names { ’
DO I=1, pcounter

WRITE( pnt c , ’ ( i 5 ) ’ ) I−1
pnt c = ad j u s t l ( pnt c )
write (71 , ’ (A) ’ ,advance=’no ’ ) ’ pnt ’ // trim ( pnt c ) // ’ ’

ENDDO
write (71 ,∗ ) ’} r o t a t e ’ // trim ( rotang c ) // ’ r o t a t e a x i s { ’ // trim (

&rot ax ) // ’} cent { ’ // trim ( rx c ) // ’ ’ // trim ( ry c ) // ’ ’ // trim ( r z c ) /
&/ ’} ’

write (71 ,∗ ) ’ i c g e o r e s e t d a t a s t r u c t u r e s ’
write (71 ,∗ ) ’ i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade s o l i d

&’
ENDIF
write (71 ,∗ ) ’ i c s a v e t e t i n /home/ c fd / cjohnson /Fuse lage /ROBIN/ robin

& s c r i p t p a r t ’ // trim (number) // ’ . t i n 0 0 {} {} 0 ’
CLOSE(71)
print ∗ , ’ p ’ , pcounter , ’ c ’ , ccounter , ’ f ’ , f counter , ’ s t a t i on ’ , s t counte r
ENDDO ! IPARTS LOOP

c
CLOSE(61)

c
END

B.8.3 Parametric Fuselage data files for parametric fuselage.f

B.8.4 Parametric Fuselage data files for parametric fuselage separateparts.f

parametric fuselage1.dat:

MainBody 1

4 0.001 1.99

1 0.001 0.4 1 1.6

1.000 -1.000 -0.400 0.400 1.800 0.000 0.250 1.800

1.000 -1.000 -0.400 0.400 2.000 0.000 0.250 2.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.000 -1.000 -0.400 0.400 1.800 -0.080 0.080 1.800

2.000 3.000 0.000 0.400 1.000 0.000 1.000 1.000

2 0.4 0.8 0 0.1

0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Mainbody 0
4 0.001 1.99
1 0.001 0.4 1 1.6
1.000 -1.000 -0.400 0.400 1.800 0.000 0.250 1.800
1.000 -1.000 -0.400 0.400 2.000 0.000 0.250 2.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 -1.000 -0.400 0.400 1.800 -0.080 0.080 1.800
2.000 3.000 0.000 0.400 1.000 0.000 1.000 1.000
2 0.4 0.8 0 0.1
0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.8 1.9 0 0.1
1.000 -1.000 -0.800 1.100 1.500 0.050 0.200 0.600
1.000 -1.000 -0.800 1.100 1.500 0.050 0.200 0.600
0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000
1.000 -1.000 -0.800 1.100 1.500 0.040 -0.040 0.600
5.000 -3.000 -0.800 1.100 1.000 0.000 0.000 0.000
4 1.9 2.0 4 0.002
1.000 -1.000 -1.900 0.100 2.000 0.000 0.050 2.000
1.000 -1.000 -1.900 0.100 2.000 0.000 0.050 2.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Pylon 1
2 0.40001 1.01799
1 0.4 0.8 3 0.035
1.000 -1.000 -0.800 0.400 3.000 0.000 0.200 3.000
1.000 -1.000 -0.800 0.400 3.000 0.000 0.172 3.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.8 1.018 0 0.05
1.000 -1.000 -0.800 0.218 2.000 0.000 0.200 2.000
1.000 -1.000 -0.800 0.218 2.000 0.000 0.172 2.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.000 -1.000 -0.800 1.100 1.500 0.065 0.060 0.600
5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table B.1: Example input file with 2 parts : fuselage (containing 4 segments) and pylon (containing
2 segments).
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0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.8 1.9 0 0.1

1.000 -1.000 -0.800 1.100 1.500 0.050 0.200 0.600

1.000 -1.000 -0.800 1.100 1.500 0.050 0.200 0.600

0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 0.000

1.000 -1.000 -0.800 1.100 1.500 0.040 -0.040 0.600

5.000 -3.000 -0.800 1.100 1.000 0.000 0.000 0.000

4 1.9 2.0 4 0.002

1.000 -1.000 -1.900 0.100 2.000 0.000 0.050 2.000

1.000 -1.000 -1.900 0.100 2.000 0.000 0.050 2.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

parametric fuselage2.dat

Pylon 1

2 0.40001 1.01799

1 0.4 0.8 3 0.035

1.000 -1.000 -0.800 0.400 3.000 0.000 0.200 3.000

1.000 -1.000 -0.800 0.400 3.000 0.000 0.172 3.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.8 1.018 0 0.05

1.000 -1.000 -0.800 0.218 2.000 0.000 0.200 2.000

1.000 -1.000 -0.800 0.218 2.000 0.000 0.172 2.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.000 -1.000 -0.800 1.100 1.500 0.065 0.060 0.600

5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

parametric fuselage3.dat

Sponson1 0

2 0.50001 1.0001

1 0.5 0.85 0 0.02

1.000 -1.000 -0.800 0.400 2.000 0.000 0.050 0.500

1.000 -1.000 -0.800 0.400 2.000 0.000 0.050 0.500

0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-.050 1.000 0.000 0.000 0.000 0.000 0.000 0.000

5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.85 1.1 0 0.02

1.000 -1.000 -0.800 0.218 2.000 0.000 0.050 1.100

1.000 -1.000 -0.800 0.218 2.000 0.000 0.050 1.100

0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-.050 1.000 0.000 0.000 0.000 0.000 0.000 0.000

5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sponson2 0

2 0.50001 1.0001

1 0.5 0.85 0 0.02

1.000 -1.000 -0.800 0.400 2.000 0.000 0.050 0.500

1.000 -1.000 -0.800 0.400 2.000 0.000 0.050 0.500

-.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-.050 1.000 0.000 0.000 0.000 0.000 0.000 0.000

229



5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.85 1.1 0 0.02

1.000 -1.000 -0.800 0.218 2.000 0.000 0.050 1.100

1.000 -1.000 -0.800 0.218 2.000 0.000 0.050 1.100

-.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-.050 1.000 0.000 0.000 0.000 0.000 0.000 0.000

5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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B.9 BERP Tip Parameterisation

For the BERP like parameterisation, the BERP-like tip was defined by leading edge and trailing
edge planform curves and scale factors for the aerofoils to maintian linearly decreasing thickness.
Program B.9.1 creates the trailing edge planform, program B.9.2 creates the leading edge planform
and program B.9.3 combines these two curves and also creates a set of scale factors for the chords
of the aerofoils and their required thickness to create the BERP-like tip. The programs must be
run in that order. More details on how this is done and steps on how to generate the grid can be
found in the Technical Note.153 Section 3.2.2 of the thesis describes the theory.

B.9.1 Program to Create Planform Co-ordinates for Trailing Edge

/∗
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− BERP−LIKE TIP PARAMETERISATION −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ This program paramete r i s e s a BERP−l i k e ro to r t i p T.E. us ing the sweep gradient , sw , as the
∗ grad i ent o f a l i n e a r curve .
∗ Some parameters are automat i ca l ly obtained , such as the the zero grad i ent po in t s o f the
∗ sweep and the de l t a polynomial .
∗ A number o f f i l e s are r equ i r ed :
∗ 1 . The parameter . txt − conta in s the 3 parameters .
∗ 2 . The d e f i n i n g xp t s . txt − de f i n e s the x coo rd ina t e s where the parameters s t a r t and stop .
∗ 3 . The s t a t i o n s . txt − de f i n e s the x coo rd ina t e s − ( w i l l be u s e f u l when making ICEM gr id ) .
∗ 4 . An output f i l e to wr i t e the data to − t h i s i s an argument to the run command .
∗ This program must be run be fo r e the l ead ing edge de f i n e . c one as i t c r e a t e s the value yt ip
∗ which i s used in the other program .
∗ And th i s yt ip value must be de l e t ed from the d e f i n i n g xp t s . txt f i l e each time the program
∗ i s run as i t appends i t to the f i l e .
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

#include<s t d i o . h>
#include<math . h>
#include<s t d l i b . h>
#include<s t r i n g . h>
#include<time . h>

main ( int argc , char ∗argv [ ] )
{
FILE ∗ input , ∗de f ine , ∗param , ∗output ;
char f i l ename [ 1 2 8 ] ;

int i , j , j j ;
f loat x , y , xns , xne , xse , xde , dy , xne or ig , x s e o r i g , yadd , y t e t i p ;
f loat l a s tpo in t , f i r s t p o i n t , miny ,maxy ;
f loat g , sw , del , zg pt , dy1 , Area ,AR, swte ;
f loat XX[ 1 0 0 ] ,YY[ 1 0 0 ] ;

/∗−−− OPEN AND READ INPUT FILE −−−∗/
param = fopen ( ” parameters . txt ” , ” r ” ) ;
f s c a n f (param , ”g : %f \n” ,&g ) ; // grad i ent o f the notch sigmoid
f s c a n f (param , ”sw : %f \n” ,&sw) ; // grad i ent o f the l i n e a r sweep equat ion − same as f o r L .E.
f s c a n f (param , ” de l : %f \n” ,&de l ) ; // not r equ i r ed − only used in L .E.
f s c a n f (param , ” swte : %f \n” ,&swte ) ; // f a c t o r to mult ip ly the grad i ent by to change the grad i ent

compared to L .E. = movement o f t i p po int .
f c l o s e (param) ;

d e f i n e = fopen ( ” d e f i n i n g xp t s . txt ” , ” r ” ) ;
f s c a n f ( de f ine , ”notch s t a r t : %f \n” ,&xns ) ;
f s c a n f ( de f ine , ”notch end : %f \n” ,&xne ) ;
f s c a n f ( de f ine , ” de l t a y : %f \n” ,&dy ) ;
f s c a n f ( de f ine , ”sweep end : %f \n” ,&xse ) ;
f s c a n f ( de f ine , ” de l t a end : %f \n” ,&xde ) ;
// f s c a n f ( de f ine , ” y T.E. t i p : %f \n”,& y t e t i p ) ;
xse = xse −0.15;
x s e o r i g = xns ; // f o r the o r i g i n a l t ip , ( t h i s case assumed to be when g = 28) , x

coord at the s t a r t o f the notch .
xne o r i g = xne −0.1771; // f o r the o r i g i n a l t ip , ( t h i s case assumed to be when g = 28) , x

coord at the end o f the notch .
f c l o s e ( d e f i n e ) ;

j j =0;
s t r cpy ( f i l ename , argv [ 1 ] ) ;
output = fopen ( f i l ename , ”w” ) ; // f i l ename to wr i t e coord inate data to .
input = fopen ( ” s t a t i o n s . txt ” , ” r ” ) ;
while ( ( j = getc ( input ) ) != EOF )

{
ungetc ( j , input ) ;
f s c a n f ( input , ”%f \n” ,&x)==1;
i f (x<=xne )

{
y=0; // f o r po in t s be f o r e the notch ,

y = lead ing edge coord inate .
f p r i n t f ( output , ”%f %f \n” ,x , y−1) ;

}
/∗−−− SWEEP SECTION −−−∗/
i f ( ( x>xne ) && (x<=xse ) )

{
i f (x<xne o r i g ) {y = dy ;} // i f i t s behind the maximum of

the parabola , keep i t constant to notch he ight .
else
{y = −swte∗sw∗(x−xne o r i g ) ;} // maxima at 0 , t h e r e f o r e add

notch he ight to match preceed ing curve .
i f ( xne>xne o r i g ) // i f the notch end i s a f t e r the

zero grad i ent x coord . . .
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{yadd = −swte∗sw∗( xne−xne o r i g ) ; // an add i t i ona l de l t a y
must be added to keep the notch he ight the same .

y = −swte∗sw∗(x−xne o r i g )−yadd ;}
f p r i n t f ( output , ”%f %f \n” ,x , y−1) ;
l a s t p o i n t = −swte∗sw∗( xse−xne ) ; // t h i s po int i s needed to match the

curve point to the de l t a curve ’ s f i r s t po int .
}

/∗−−− END SECTION −−−∗/
i f ( ( x>xse ) && (x<=xde ) )

{
zg pt = xde−xse ; // zero grad i ent po int i s at the

t i p .
de l = swte∗sw / (3 . 5∗ ( xde−xse+zg pt ) ) ;
f i r s t p o i n t = de l ∗pow ( ( ( xde−xse )+zg pt ) , 3 . 5 ) ;
dy1 = la s tpo in t−f i r s t p o i n t ; // the d i f f in y to j o i n the

de l t a part to the swept part
y = de l ∗pow ( ( ( xde−x )+zg pt ) , 3 . 5 )+dy1 ;
f p r i n t f ( output , ”%f %f \n” ,x , y−1) ;

}
j j=j j +1;

}
y t e t i p=y ;
p r i n t f ( ” y t e t i p : %f \n” , y t e t i p ) ;
f c l o s e ( input ) ;
f c l o s e ( output ) ;

d e f i n e = fopen ( ” d e f i n i n g xp t s . txt ” , ”a” ) ;
f p r i n t f ( de f ine , ”y T.E. t i p : %f \n” , yte t ip −1) ;
f c l o s e ( d e f i n e ) ;

/∗−−− CALCULATE AREA −−−∗/
Area = 0 ;
i = 0 ;
s t r cpy ( f i l ename , argv [ 1 ] ) ;
input = fopen ( f i l ename , ” r ” ) ;
while ( ( j = getc ( input ) ) != EOF )

{
ungetc ( j , input ) ;
f s c a n f ( input , ”%f %f \n” ,&XX[ i ] ,&YY[ i ] ) ==2;
YY[ i ] = YY[ i ] − y t e t i p ;
i f ( i>=1)

{Area = Area + sq r t ( ( (XX[ i ]−XX[ i −1]) ∗(YY[ i ]+YY[ i −1]) /2) ∗ ( (XX[ i ]−XX[ i −1]) ∗(YY[ i ]+YY[ i
−1]) /2) ) ;}

i=i +1;
}

f c l o s e ( input ) ;
p r i n t f ( ”%d Area : %f \n” , i , Area ) ;
p r i n t f ( ”%d AR: %f \n” , i ,AR) ;

return 0 ;
}

B.9.2 Program to Create Planform Co-ordinates for Leading Edge

/∗
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− BERP−LIKE TIP PARAMETERISATION −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ This program paramete r i s e s a BERP−l i k e ro to r t i p L .E. us ing three parameters :
∗ 1 . Notch gradient , g − the grad i ent o f a sigmoid curve
∗ 2 . Sweep gradient , sw − the grad i ent o f a pa rabo l i c curve
∗ 3 . Delta gradient , de l − the grad i ent o f a polynomial o f order 2 . 5 .
∗ To make these independent o f each other , some other parameters are automat i ca l l y obtained ,
∗ such as the the zero grad i ent po in t s o f the sweep parabola and the de l t a polynomial .
∗ The notch he ight can be s p e c i f i e d , but i s kept constant r e g a r d l e s s o f the changes in the
∗ three parameters .
∗ A number o f f i l e s are r equ i r ed :
∗ 1 . The parameter . txt − conta in s the 3 parameters .
∗ 2 . The d e f i n i n g xp t s . txt − de f i n e s the x coo rd ina t e s where the parameters s t a r t and stop .
∗ 3 . The s t a t i o n s . txt − de f i n e s the x coo rd ina t e s − ( w i l l be u s e f u l when making ICEM gr id ) .
∗ 4 . An output f i l e to wr i t e the data to − t h i s i s an argument to the run command .
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

#include<s t d i o . h>
#include<math . h>
#include<s t d l i b . h>
#include<s t r i n g . h>
#include<time . h>

main ( int argc , char ∗argv [ ] )
{
FILE ∗ input , ∗de f ine , ∗param , ∗output ;
char f i l ename [ 1 2 8 ] ;

int i , j , j j ;
f loat x , y , xns , xne , xse , xde , dy , dx , xne or ig , x s e o r i g , yadd , xtet ip , yte t ip , a r e a o r i g ;
f loat l a s tpo in t , f i r s t p o i n t , miny ,maxy ;
f loat g , sw , del , zg pt , dy1 , Area ,AR, AR orig ;
f loat XX[ 1 0 0 ] ,YY[ 1 0 0 ] ;

/∗−−− OPEN AND READ INPUT FILE −−−∗/
param = fopen ( ” parameters . txt ” , ” r ” ) ;
f s c a n f (param , ”g : %f \n” ,&g ) ; // grad i ent o f the notch sigmoid
f s c a n f (param , ”sw : %f \n” ,&sw) ; // grad i ent o f the sweep parabola
f s c a n f (param , ” de l : %f \n” ,&de l ) ; // grad i ent o f the de l t a sweep d e f i n i t i o n curve − only used as an

i n i t i a l guess − not a parameter
f c l o s e (param) ;

d e f i n e = fopen ( ” d e f i n i n g xp t s . txt ” , ” r ” ) ;
f s c a n f ( de f ine , ”notch s t a r t : %f \n” ,&xns ) ;

232



f s c a n f ( de f ine , ”notch end : %f \n” ,&xne ) ;
f s c a n f ( de f ine , ” de l t a y : %f \n” ,&dy ) ;
f s c a n f ( de f ine , ”sweep end : %f \n” ,&xse ) ;
f s c a n f ( de f ine , ” de l t a end : %f \n” ,&xde ) ;
f s c a n f ( de f ine , ”y T.E. t i p : %f \n” ,& yt e t i p ) ;

dx=2∗4.584/g ; // obtained to s t a r t the sweep from when the grad i ent i s 0 .001 or
something .

xns = xne−dx ; // so xne i s when the grad i ent o f the sigmoid curve becomes
0 . 0 0 1 .

x s e o r i g = 11 . 1172 ; // f o r the o r i g i n a l t ip , ( t h i s case assumed to be when g = 40) , x
coord at the s t a r t o f the notch .

xne o r i g = 11 . 500 ; // f o r the o r i g i n a l t ip , ( t h i s case assumed to be when g = 40) , x
coord at the end o f the notch .

a r e a o r i g = 16 .238148 ; // o r i g i n a l Area − c a l cu l a t ed
AR orig = 13 .7143 ; // o r i g i n a l Aspect Ratio − from paper
p r i n t f ( ”dx : %f , xns %f \n” ,dx , xns ) ;
f c l o s e ( d e f i n e ) ;

j j =0;
s t r cpy ( f i l ename , argv [ 1 ] ) ;
output = fopen ( f i l ename , ”w” ) ; // f i l ename to wr i t e coord inate data to .
input = fopen ( ” s t a t i o n s . txt ” , ” r ” ) ;
while ( ( j = getc ( input ) ) != EOF )

{
ungetc ( j , input ) ;
f s c a n f ( input , ”%f \n” ,&x)==1;
i f (x<xns )

{
y=0; // f o r po in t s be f o r e the notch ,

y = lead ing edge coord inate .
f p r i n t f ( output , ”%f %f \n” ,x , y ) ;

}
/∗−−− NOTCH SECTION −−−∗/
i f ( ( x>=xns ) && (x<=xne ) )

{
miny = 1/(1+exp(−g∗( xns−xns−dx/2) ) ) ;
maxy = 1/(1+exp(−g∗( xne−xns−dx/2) ) ) ;
y = 1/(1+exp(−g∗(x−xns−dx/2) ) ) ; // normal i sed sigmoid curve
y = (y−miny ) /(maxy−miny )∗dy ; // denormal ised to notch height ,

dy
f p r i n t f ( output , ”%f %f \n” ,x , y ) ;

}
/∗−−− SWEEP SECTION −−−∗/
i f ( ( x>xne ) && (x<=xse ) )

{
i f (x<xne o r i g ) {y = dy ;} // i f i t s behind the maximum of

the parabola , keep i t constant to notch he ight .
else
{y = −sw∗(x−xne o r i g ) ∗(x−xne o r i g )+dy ;} // maxima at 0 , t h e r e f o r e add

notch he ight to match preceed ing curve .
i f ( xne>xne o r i g ) // i f the notch end i s a f t e r the

zero grad i ent x coord . . .
{yadd = −sw∗( xne−xne o r i g ) ∗( xne−xne o r i g ) ; // an add i t i ona l de l t a y must be

added to keep the notch he ight the same .
y = −sw∗(x−xne o r i g ) ∗(x−xne o r i g )+dy−yadd ;}
f p r i n t f ( output , ”%f %f \n” ,x , y ) ;
l a s t p o i n t = −sw∗( xse−xne o r i g ) ∗( xse−xne o r i g )+dy ; // t h i s po int i s needed to match

the curve point to the de l t a curve ’ s f i r s t po int .
}

/∗−−− DELTA SECTION −−−∗/
i f ( ( x>xse ) && (x<=xde ) )

{
zg pt = pow(( (2∗ sw∗( xse−xne o r i g ) ) / (2 .5∗ de l ) ) , 0 . 667 ) ; // f i nd zero grad i ent po int

o f pow 2 .5 curve that matches grad i ent o f sweep parabola .
f i r s t p o i n t = −de l ∗pow ( ( ( xse−xse )+zg pt ) , 2 . 5 ) ;
dy1 = la s tpo in t−f i r s t p o i n t ; // the d i f f in y to j o i n

the de l t a part to the swept part
de l = −(ytet ip−dy1 ) /pow ( ( ( xde−xse )+zg pt ) , 2 . 5 ) ;
zg pt = pow(( (2∗ sw∗( xse−xne o r i g ) ) / (2 .5∗ de l ) ) , 0 . 667 ) ; // f i nd zero grad i ent po int

o f pow 2 .5 curve that matches grad i ent o f sweep parabola .
f i r s t p o i n t = −de l ∗pow ( ( ( xse−xse )+zg pt ) , 2 . 5 ) ;
dy1 = la s tpo in t−f i r s t p o i n t ; // the d i f f in y to j o i n

the de l t a part to the swept part
y = −de l ∗pow ( ( ( x−xse )+zg pt ) , 2 . 5 )+dy1 ;
i f ( xne>xne o r i g ){y = y − yadd ;}
i f ( y >= yte t i p )
{ f p r i n t f ( output , ”%f %f \n” ,x , y ) ;}
x t e t i p = pow ( ( ( dy1 − y t e t i p ) / de l ) , 0 . 4 )−zg pt+xse ;

}
j j=j j +1;

}
f p r i n t f ( output , ”%f %f \n” , xtet ip , y t e t i p ) ;

f c l o s e ( input ) ;
f c l o s e ( output ) ;

/∗−−− CALCULATE AREA −−−∗/
Area = 0 ;
i = 0 ;
s t r cpy ( f i l ename , argv [ 1 ] ) ;
input = fopen ( f i l ename , ” r ” ) ;
while ( ( j = getc ( input ) ) != EOF )

{
ungetc ( j , input ) ;
f s c a n f ( input , ”%f %f \n” ,&XX[ i ] ,&YY[ i ] ) ==2;
YY[ i ] = YY[ i ] − y t e t i p ;
i f ( i>=1)

{Area = Area + sq r t ( ( (XX[ i ]−XX[ i −1]) ∗(YY[ i ]+YY[ i −1]) /2) ∗ ( (XX[ i ]−XX[ i −1]) ∗(YY[ i ]+YY[ i
−1]) /2) ) ;}

i=i +1;
}

f c l o s e ( input ) ;
AR = AR orig − (Area − a r e a o r i g ) ;
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p r i n t f ( ”%d o r i g a r e a %f Area : %f \n” , i , a r ea o r i g , Area ) ;
p r i n t f ( ”%d o r i g AR %f AR: %f \n” , i , AR orig ,AR) ;

return 0 ;
}

B.9.3 Program to Obtain Scaling Factor for Chord of Sections at the BERP
Tip

/∗
∗ −−−−−−−−−−−−−−−−−−−−−−−−− BERP−LIKE TIP PARAMETERISATION SCALING −−−−−−−−−−−−−−−−−−−−−−−−−−
∗ This program uses the output from the planform programs , ’ d e f i n e . c ’ and ’ d e f i n e l owe r . c ’ to
∗ determine the chord and the p ropo r t i ona l th i ckne s s o f the s e c t i o n s so that the th i ckne s s i s
∗ l i n e a r l y blended towards the t i p .
∗ 2 inputs and 1 output are r equ i r ed .
∗ input 1 = the l ead ing edge coord inate data e . g . data . txt
∗ input 2 = the t r a i l i n g edge coord inate data e . g . data lower . txt
∗ output = f i l e to wr i t e the chord and th i ckne s s data e . g . da ta th i ck . txt
∗ I t a l s o p r i n t s out a f i l e c a l l e d ’ a e r o f o i l t h i c k n e s s . dat ’ which s e c t i o n along the APACHE
∗ blade has the r i gh t th i ckne s s so that when i t i s s c a l ed up in chord f o r the BERP tip , i t
∗ s t i l l a l l ows a l i n e a r l y blending th i ckne s s towards the t i p .
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗/

#include<s t d i o . h>
#include<math . h>
#include<s t d l i b . h>
#include<s t r i n g . h>
#include<time . h>

main ( int argc , char ∗argv [ ] )
{
FILE ∗ input1 , ∗ input2 , ∗output ;
char f i l ename [ 1 2 8 ] ;

int i , j , j j , n ;
f loat x , y , x s e o r i g , AR orig , thk or ig , thk t ip , x or i g , reqx , r eq th ;
n = 500 ;
f loat X[ n ] ,YLE[ n ] ,YTE[ n ] , th i ck [ n ] , a c tua l thk [ n ] , xx [ n ] , thk [ n ] ;
double chord [ n ] ;

/∗−−− CONSTANTS −−−∗/
x s e o r i g = 11 . 3672 ; // BERP t ip beg ins
thk o r i g = 9 . 6 ; // HH02 a e r o f o i l t h i ckne s s ( inboard )
thk t i p = 6 ; // NACA 64A−006 a e r o f o i l t h i ckne s s ( t i p )
AR orig = 13 .7143 ; // o r i g i n a l Aspect Ratio − and Radius o f r o to r

/∗−−− FIND POSITION TO CUT TO GET REQUIRED THICKNESS SECTION −−−∗/
output = fopen ( ” a e r o f o i l t h i c k n e s s . dat” , ”w” ) ;
for ( i =0; i<n ; i++)
{

x o r i g =12.6172; // o r i g i n a l APACHE’ s sweep s t a r t l o c a t i o n ( r /R) .
xx [ i ] = ( AR orig−x o r i g ) / n ∗ i ;
thk [ i ] = ( thk t ip−t hk o r i g ) /( AR orig−x o r i g )∗xx [ i ] + thk o r i g ;
xx [ i ]=xx [ i ]+ x o r i g ;
f p r i n t f ( output , ”%f \ t%f \n” , xx [ i ] , thk [ i ] ) ;

}
f c l o s e ( output ) ;

/∗−−− OPEN AND READ INPUT FILE −−−∗/
j j =0;
s t r cpy ( f i l ename , argv [ 1 ] ) ;
input1 = fopen ( f i l ename , ” r ” ) ; // f i l ename with l ead ing edge planform coord ina t e s .
while ( ( j = getc ( input1 ) ) != EOF )

{
ungetc ( j , input1 ) ;
f s c a n f ( input1 , ”%f %f \n” ,&X[ j j ] ,&YLE[ j j ] ) ==2;
j j=j j +1;
}

f c l o s e ( input1 ) ;
j j =0;
s t r cpy ( f i l ename , argv [ 2 ] ) ;
input2 = fopen ( f i l ename , ” r ” ) ; // f i l ename with t r a i l i n g edge planform coo rd ina t e s .
while ( ( j = getc ( input2 ) ) != EOF )

{
ungetc ( j , input2 ) ;
f s c a n f ( input2 , ”%f %f \n” ,&X[ j j ] ,&YTE[ j j ] ) ==2;
j j=j j +1;
}

f c l o s e ( input2 ) ;

/∗−−− CALCULATE CHORD LENGTH −−−∗/
st rcpy ( f i l ename , argv [ 3 ] ) ;
output = fopen ( f i l ename , ”w” ) ;
f p r i n t f ( output , ”X\ t\tYLE\ t\tYTE\ t\ tchord\ t\ t t h i c k \ t\ t a e r o t \ t\ t t ∗c\ t\ tx\ t\ tthk\n” ) ;
for ( i =0; i< j j ; i++)

{
chord [ i ]=YLE[ i ]−YTE[ i ] ;
i f (X[ i ]>=xs e o r i g )
{ th i ck [ i ]=( thk t ip−t hk o r i g ) /( AR orig−x s e o r i g ) ∗(X[ i ]− x s e o r i g ) + thk o r i g ;} // o r i g i n a l r o to r

th i ckne s s va r i a t i on .
else { th i ck [ i ]= thk o r i g ;}
ac tua l thk [ i ]= th i ck [ i ] / chord [ i ] ; // chord va r i a t i on means we a c tua l l y need t h i s th i ckne s s

value f o r the a e r o f o i l .
j =0;
while ( j<n)
{

i f ( sq r t ( ( a c tua l thk [ i ]−thk [ j ] ) ∗( a c tua l thk [ i ]−thk [ j ] ) ) >0.005)
{ j=j +1;}
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else { reqx = xx [ j ] ; r eq th = thk [ j ] ; break ;}
}
f p r i n t f ( output , ”%f \ t%f \ t%f \ t%l f \ t%f \ t%f \ t%f \ t\%f \ t%f \n” ,X[ i ] ,YLE[ i ] ,YTE[ i ] , chord [ i

]∗0.9999126196031187 , th i ck [ i ] , a c tua l thk [ i ] , a c tua l thk [ i ]∗ chord [ i ] , reqx , r eq th ) ;
}

f c l o s e ( output ) ;

return 0 ;
}

B.10 ICEMCFD Grid Script for Three Segment Wing

The script below automatically creates a grid geometry for a wing of three segments at fixed locations along
the span, i.e. 4 aerofoils can be specified at 4 locations - the root, midchord 1 (M1), midchord 2 (M2) and
the tip, in that order. All the remaining points, curves and surfaces are related to these points, in terms
of ratios. The only points that are specified independently are the farfield points and symmetry surface
points.
First all the points on the aerofoils and the aerofoil curves are imported. Note that the curves are imported
because the first line in the aerofoil point file contains the number of points making half the curve and the
number of curves to make plus one. So for example if the aerofoil is made up of 256 points and you would
like to generate a single curve joining all the points, the first line would read:

128 2

The ICEM environment is as in Figure B.1(a). Once the points and curves are available, the points

(a) (b)

Figure B.1: (a)Imported points of aerofoils. (b) Points around the aerofoil to which vertices will be
assosciated to.

to associate the blocking vertices around the wing are specified in the format shown in Figure B.1(b).
These are given as ratios of the distance between a point on the chord line and a point on the aerofoil
curve. This is done for each section at which vertices are going to be associated. Where there are no
curves imported and where vertices are required, a curve is created as a parameteric cut in the surface and
points are generated along this curve. Then the curves and surfaces around the wing are generated (Figure
B.2(a)). An important point to remember when creating ICEM scripts is to match the curves at a point
(also make sure tolerances are 10-6 or lower at all stages). Also the matching should be done to a single
curve or have a hierarchy so that the curves do not simply shift from one ‘side’ to the other leaving gaps
in the surface.
The full flow field is shown in Figure B.3(a). The other important points are the ones around the tip of

the blade. There is a slight expansion in size of the blocking at the tip towards the far field. To capture this
expansion, scaling of the assosciation points about the quarter chord point was carried out. This can lead
to slight morphing of the general aerofoil shape as shown in Figure B.3(b). This can be manually tweaked
to get a good geometry, or perhaps it may be better to scale this from the far field side.

B.10.1 Example of ICEMCFD script for wing

These replay files only create the geometry of the wing. Once they are run, a blocking file is required to
associate the geometry with and then the mesh is generated.

i c s e t mesh ing params g l oba l 0
i c undo group beg in
i c s e t mesh ing params g l oba l 0 g t t o l 0 .000001 g t r e l 1 ### th i s s e t s the toerance value
i c r e g e n e r a t e t r i s
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(a) (b)

Figure B.2: (a) Curves around the wing. (b) Surface around the wing.

(a) (b)

Figure B.3: (a)Full flow field. (b) Blocking and points around the wing tip.

i c g eo c r e g eom input /home/ c fd / cjohnson /NLF2/NACA23012aerofoil / naca23012 1222c . txt 0.000001 input PNTS
pnt CRVS crv SURFS {} ### th i s reads the input f i l e s

i c b o c o s o l v e r
i c b o c o c l e a r i c o n s
i c c s y s t em d i s p l a y a l l 0
i c c s y s t em s e t c u r r e n t g l oba l
i c boco nas t ran c sy s t em r e s e t
i c g eo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .00 {pnt0 pnt127} ### crea t e a curve between pt 0 and pt 127
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .00 { crv .00 0 .5}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .01 {pnt64 pnt .00}
i c g e o d e l e t e f am i l y GEOM
ic geo c r e g eom input /home/ c fd / cjohnson /NLF2/NACA23012aerofoil /N23012 M1p94 M2p52 aboutLE/

naca23012 1222c midchord1 p94 BACK0 . txt 0.000001 input PNTS pnt CRVS crv SURFS {}
i c b o c o s o l v e r
i c b o c o c l e a r i c o n s
i c c s y s t em d i s p l a y a l l 0
i c c s y s t em s e t c u r r e n t g l oba l
i c boco nas t ran c sy s t em r e s e t
i c g eo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .02 {pnt255 pnt128}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .01 { crv .02 0 .5}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .03 {pnt192 pnt .01}
i c g e o d e l e t e f am i l y GEOM
ic geo c r e g eom input /home/ c fd / cjohnson /NLF2/NACA23012aerofoil /N23012 M1p94 M2p52 aboutLE/

naca23012 1222c midchord2 p52 BACK0 . txt 0.000001 input PNTS pnt CRVS crv SURFS {}
i c b o c o s o l v e r
i c b o c o c l e a r i c o n s
i c c s y s t em d i s p l a y a l l 0
i c c s y s t em s e t c u r r e n t g l oba l
i c boco nas t ran c sy s t em r e s e t
i c g eo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .04 {pnt256 pnt383}
i c g e o d e l e t e f am i l y GEOM
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i c g eo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .02 { crv .04 0 .5}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .05 {pnt320 pnt .02}
i c g e o d e l e t e f am i l y GEOM
ic geo c r e g eom input /home/ c fd / cjohnson /NLF2/NACA23012aerofoil /naca23012 1222c tipchord p4511m BACKp25c .

txt 0 .000001 input PNTS pnt CRVS crv SURFS {}
i c b o c o s o l v e r
i c b o c o c l e a r i c o n s
i c c s y s t em d i s p l a y a l l 0
i c c s y s t em s e t c u r r e n t g l oba l
i c boco nas t ran c sy s t em r e s e t
i c g eo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .06 {pnt511 pnt384}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .03 { crv .06 0 .5}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .07 {pnt448 pnt .03}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .08 {pnt384 pnt256}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .09 {pnt .02 pnt .03}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .10 {pnt511 pnt383}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .11 {pnt320 pnt448}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .12 {pnt320 pnt192}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .13 {pnt192 pnt64}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .14 {pnt256 pnt128}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .15 {pnt .02 pnt .01}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .16 {pnt383 pnt255}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .17 {pnt128 pnt0}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .18 {pnt .01 pnt .00}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
ic cu r v e point PNTS crv .19 {pnt255 pnt127}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .04 { crv .01 0.25}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .04 a { crv .01 0 .1} ### crea t e a po int on curve crv .01 at 0 .1 from i t s

s t a r t i n g point
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .05 { crv .03 0.25}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .05 a { crv .03 0 .1}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .06 { crv .05 0.25}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .06 a { crv .05 0 .1}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .07 { crv .07 0.25}
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i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .97 { crv .07 0.15}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .98 { crv .07 0 .1}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .08 { crv .07 0 .7}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .09 { crv .05 0 .7}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .10 { crv .03 0 .7}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t c rv par PNTS pnt .11 { crv .01 0 .7}
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .23 a pnt .98+( pnt459−pnt . 9 8 ) ∗10
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .15 a pnt .98+( pnt437−pnt . 9 8 ) ∗6 ### crea t e a point between point 98 and 437 at a

r a t i o o f 0 .6 from pnt 98
i c g e o d e l e t e f am i l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .12 pnt .04+( pnt43−pnt . 0 4 ) ∗5
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .12 pnt .04+( pnt43−pnt . 0 4 ) ∗5
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .16 pnt .11+( pnt23−pnt . 1 1 ) ∗9
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .13 a pnt .05+( pnt171−pnt . 0 5 ) ∗5
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .14 pnt .06+( pnt299−pnt . 0 6 ) ∗5
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .15 pnt .07+( pnt427−pnt . 0 7 ) ∗5
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .18 pnt .09+( pnt279−pnt . 0 9 ) ∗9
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .19 pnt .08+( pnt407−pnt . 0 8 ) ∗9
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .28 pnt .04+( pnt64−pnt . 0 4 ) ∗2.5
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .29 pnt .05+( pnt192−pnt . 0 5 ) ∗2.5
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .30 pnt .06+( pnt320−pnt . 0 6 ) ∗2.5
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .31 pnt .07+( pnt448−pnt . 0 7 ) ∗2.5
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .32 pnt .11+( pnt .00−pnt . 1 1 ) ∗2.5
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .33 pnt .10+( pnt .01−pnt . 1 0 ) ∗2.5
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .34 pnt .09+( pnt .02−pnt . 0 9 ) ∗2.5
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .35 pnt .08+( pnt .03−pnt . 0 8 ) ∗2.5
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .36 pnt .12+( pnt .16−pnt . 1 2 ) ∗2
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
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i c p o i n t {} PNTS pnt .17 a pnt .10+( pnt151−pnt . 1 0 ) ∗9
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .37 pnt .13 a+(pnt .17 a−pnt .13 a ) ∗2
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .38 pnt .14+( pnt .18−pnt . 1 4 ) ∗2
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .39 pnt .15+( pnt .19−pnt . 1 5 ) ∗2
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .20 pnt .04+( pnt85−pnt . 0 4 ) ∗9
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .20 a pnt .04 a+(pnt75−pnt .04 a ) ∗10
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .12 a pnt .04 a+(pnt53−pnt .04 a ) ∗6
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .21 a pnt .05 a+(pnt203−pnt .05 a ) ∗10
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .13 aa pnt .05 a+(pnt181−pnt .05 a ) ∗6
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .22 a pnt .06 a+(pnt331−pnt .06 a ) ∗10
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .14 a pnt .06 a+(pnt309−pnt .06 a ) ∗6
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .24 pnt .11+( pnt105−pnt . 1 1 ) ∗12
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .42 pnt .20+( pnt .24−pnt . 2 0 ) ∗1.9
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .21 pnt .05+( pnt213−pnt . 0 5 ) ∗9
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .25 pnt .10+( pnt233−pnt . 1 0 ) ∗12
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .43 pnt .21+( pnt .25−pnt . 2 1 ) ∗1.9
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .22 pnt .06+( pnt341−pnt . 0 6 ) ∗9
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .26 pnt .09+( pnt361−pnt . 0 9 ) ∗12
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .44 pnt .22+( pnt .26−pnt . 2 2 ) ∗1.9
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .23 pnt .07+( pnt469−pnt . 0 7 ) ∗9
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .27 pnt .08+( pnt489−pnt . 0 8 ) ∗12
i c g e o d e l e t e f am i l y GEOM
ic geo new fami l y GEOM
i c b o c o s e t p a r t c o l o r GEOM
i c p o i n t {} PNTS pnt .45 pnt .23+( pnt .27−pnt . 2 3 ) ∗1.9
i c g e o d e l e t e f am i l y GEOM
i c p o i n t {} GEOM pnt .47 −17000 ,0 ,0 ### crea t e a point at xyz coo rd ina t e s
i c p o i n t {} GEOM pnt .50 25000 ,0 ,0
i c p o i n t {} GEOM pnt .51 25000 ,18000 ,0
i c p o i n t {} GEOM pnt .52 25000 ,−18000 ,0
i c p o i n t {} GEOM pnt .58 −2500 ,−18000 ,0
i c p o i n t {} GEOM pnt .59 −2500 ,18000 ,0
i c c u r v e point GEOM crv .20 {pnt .50 pnt .51}
i c c u r v e point GEOM crv .21 {pnt .50 pnt .52}
i c p o i n t {} GEOM pnt .60 25000 ,2000 ,0
i c p o i n t {} GEOM pnt .61 25000 ,−2000 ,0
i c c u r v e point GEOM crv .22 {pnt .50 pnt .32}
i c c u r v e point GEOM crv .23 {pnt .60 pnt .36}
i c c u r v e point GEOM crv .24 {pnt .61 pnt .42}
i c c u r v e point PNTS crv .25 {pnt .42 pnt .32}
i c c u r v e point PNTS crv .26 {pnt .32 pnt .36}
i c p o i n t {} GEOM pnt .64 3500 ,18000 ,0
i c p o i n t {} GEOM pnt .64 a 5500 ,18000 ,0
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i c p o i n t {} GEOM pnt .65 3500 ,−18000 ,0
i c p o i n t {} GEOM pnt .65 a 5500 ,−18000 ,0
i c p o i n t {} GEOM pnt .66 pnt .59+( pnt .64−pnt . 5 9 ) ∗0.5
i c p o i n t {} GEOM pnt .67 pnt .58+( pnt .65−pnt . 5 8 ) ∗0.5
i c c u r v e point GEOM crv .34 {pnt .64 pnt .51}
i c c u r v e point GEOM crv .35 {pnt .65 pnt .52}
i c c u r v e point GEOM crv .36 {pnt .64 pnt .36}
i c c u r v e point GEOM crv .37 {pnt .64 pnt .66}
i c c u r v e point GEOM crv .38 {pnt .66 pnt .16}
i c c u r v e point GEOM crv .39 {pnt .66 pnt .59}
i c c u r v e point GEOM crv .40 {pnt .59 pnt .12}
i c c u r v e point GEOM crv .41 {pnt .65 pnt .42}
i c c u r v e point GEOM crv .42 {pnt .65 pnt .67}
i c c u r v e point GEOM crv .43 {pnt .67 pnt .24}
i c c u r v e point GEOM crv .44 {pnt .67 pnt .58}
i c c u r v e point GEOM crv .45 {pnt .58 pnt .20}
i c c u r v e point PNTS crv .46 {pnt .36 pnt .16}
i c c u r v e point PNTS crv .47 {pnt .16 pnt .12}
i c c u r v e point PNTS crv .48 {pnt .42 pnt .24}
i c c u r v e point PNTS crv .49 {pnt .24 pnt .20}
i c c u r v e point PNTS crv .50 {pnt .32 pnt .00}
i c c u r v e point GEOM crv .51 {pnt .47 pnt .28}
i c c u r v e point PNTS crv .52 {pnt .28 pnt64}
i c c u r v e arc GEOM crv .53 {pnt .59 pnt .47 pnt .58}
i c g e o c r e c r v c o n c a t GEOM crv .54 0.0000001 { crv .35 crv .42 crv .44} j o i n curves toge the r
i c d e l e t e g e ome t r y curve names { crv .35 crv .42 crv .44}
i c g e o c r e c r v c o n c a t GEOM crv .55 0.0000001 { crv .34 crv .37 crv .39}
i c d e l e t e g e ome t r y curve names { crv .34 crv .37 crv .39}
i c g e o c r e c r v c o n c a t GEOM crv .56 0.0000001 { crv .20 crv .21}
i c d e l e t e g e ome t r y curve names { crv .20 crv .21}
i c s u r f a c e 2−4crvs GEOM s r f . 00 {0.0001 { crv .54 crv .56 crv .55 crv .53}} ### crea t e new su r f a c e
i c s e t do rman t p i ckab l e po int 0 {}
i c s e t do rman t p i ckab l e curve 0 {}
i c s u r f a c e 2−4crvs PNTS s r f . 01 {0.0001 { crv .17 crv0 crv .19 crv1 }}
i c s e t do rman t p i ckab l e po int 0 {}
i c s e t do rman t p i ckab l e curve 0 {}
i c geo mod crv match crv crv .17 crv .00 2 1 {0 1 1 1 0}
i c d e l e t e g e ome t r y curve names crv .17 0
i c geo s e t name curve crv . 1 7 . 1 crv .17
ic geo mod crv match crv crv .17 crv0 2 1 {0 1 1 1 0}
i c geo mod crv match crv crv .19 crv0 2 2 {0 1 1 1 0}
i c d e l e t e g e ome t r y curve names crv .19 0
i c geo s e t name curve crv . 1 9 . 1 crv .19
ic geo mod crv match crv crv .00 crv .19 2 2 {0 1 1 1 0}
i c d e l e t e g e ome t r y curve names crv .00 0
i c geo s e t name curve crv . 0 0 . 1 crv .00
ic geo mod crv match crv crv .00 crv .17 1 2 {0 1 1 1 0}
i c geo mod crv match crv crv .16 crv1 2 2 {0 1 1 1 0}
i c d e l e t e g e ome t r y curve names crv .16 0
i c geo s e t name curve crv . 1 6 . 1 crv .16
ic geo mod crv match crv crv .14 crv1 2 1 {0 1 1 1 0}
i c d e l e t e g e ome t r y curve names crv .14 0
i c geo s e t name curve crv . 1 4 . 1 crv .14
ic geo mod crv match crv crv .02 crv .14 2 2 {0 1 1 1 0}
i c d e l e t e g e ome t r y curve names crv .02 0
i c geo s e t name curve crv . 0 2 . 1 crv .02
ic geo mod crv match crv crv .02 crv .16 1 2 {0 1 1 1 0}
i c geo mod crv match crv crv .08 crv2 2 1 {0 1 1 1 0}
i c d e l e t e g e ome t r y curve names crv .08 0
i c geo s e t name curve crv . 0 8 . 1 crv .08
ic geo mod crv match crv crv .10 crv2 2 2 {0 1 1 1 0}
i c d e l e t e g e ome t r y curve names crv .10 0
i c geo s e t name curve crv . 1 0 . 1 crv .10
ic geo mod crv match crv crv .04 crv .10 2 2 {0 1 1 1 0}
i c d e l e t e g e ome t r y curve names crv .04 0
i c geo s e t name curve crv . 0 4 . 1 crv .04
ic geo mod crv match crv crv .04 crv .08 1 2 {0 1 1 1 0}
i c geo mod crv match crv crv .08 crv3 1 1 {0 1 1 1 0}
i c geo mod crv match crv crv .10 crv3 1 2 {0 1 1 1 0}
i c geo mod crv match crv crv .06 crv .10 1 1 {0 1 1 1 0}
i c d e l e t e g e ome t r y curve names crv .06 0
i c geo s e t name curve crv . 0 6 . 1 crv .06
ic geo mod crv match crv crv .06 crv .08 2 1 {0 1 1 1 0}
i c s u r f a c e 2−4crvs PNTS s r f . 01 {0.0001 { crv .08 crv2 crv .10 crv3 }}
i c s e t do rman t p i ckab l e po int 0 {}
i c s e t do rman t p i ckab l e curve 0 {}
i c s u r f a c e 2−4crvs PNTS s r f . 02 {0.0001 { crv .08 crv .04 crv .10 crv .06}}
i c s e t do rman t p i ckab l e po int 0 {}
i c s e t do rman t p i ckab l e curve 0 {}
i c geo mod crv match crv crv .17 crv1 1 1 {0 1 1 1 0}
i c geo mod crv match crv crv .19 crv1 1 2 {0 1 1 1 0}
i c geo mod crv match crv crv .17 crv0 2 1 {0 1 1 1 0}
i c geo mod crv match crv crv .19 crv0 2 2 {0 1 1 1 0}
i c s u r f a c e 2−4crvs PNTS s r f . 03 {0.0001 { crv .17 crv0 crv .19 crv1 }}
i c s e t do rman t p i ckab l e po int 0 {}
i c s e t do rman t p i ckab l e curve 0 {}
i c s u r f a c e 2−4crvs PNTS s r f . 04 {0.0001 { crv .02 crv .17 crv .00 crv .19}}
i c s e t do rman t p i ckab l e po int 0 {}
i c s e t do rman t p i ckab l e curve 0 {}
i c geo mod crv match crv crv .14 crv1 2 1 {0 1 1 1 0}
i c geo mod crv match crv crv .16 crv1 2 2 {0 1 1 1 0}
i c geo mod crv match crv crv .14 crv2 1 1 {0 1 1 1 0}
i c geo mod crv match crv crv .16 crv2 1 2 {0 1 1 1 0}
i c geo mod crv match crv crv .04 crv .14 1 1 {0 1 1 1 0}
i c d e l e t e g e ome t r y curve names crv .04 0
i c geo s e t name curve crv . 0 4 . 1 crv .04
ic geo mod crv match crv crv .04 crv .16 2 1 {0 1 1 1 0}
i c s u r f a c e 2−4crvs PNTS s r f . 05 {0.0001 { crv .14 crv1 crv .16 crv2 }}
i c s e t do rman t p i ckab l e po int 0 {}
i c s e t do rman t p i ckab l e curve 0 {}
i c s u r f a c e 2−4crvs PNTS s r f . 06 {0.0001 { crv .04 crv .14 crv .02 crv .16}}
i c s e t do rman t p i ckab l e po int 0 {}
i c s e t do rman t p i ckab l e curve 0 {}
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i c g e o s e t p a r t su r f a c e { s r f . 02 s r f . 01 s r f . 06 s r f . 05 s r f . 04 s r f .03} WING 0
i c g e o dup l i c a t e s e t f am and da t a su r f a c e s r f . 00 s r f . 0 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .54 crv . 5 4 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .41 crv . 4 1 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .45 crv . 4 5 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .43 crv . 4 3 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .53 crv . 5 3 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .51 crv . 5 1 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .40 crv . 4 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .55 crv . 5 5 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .38 crv . 3 8 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .36 crv . 3 6 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .56 crv . 5 6 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .23 crv . 2 3 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .22 crv . 2 2 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .24 crv . 2 4 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .48 crv . 4 8 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .50 crv . 5 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .25 crv . 2 5 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .26 crv . 2 6 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .46 crv . 4 6 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .47 crv . 4 7 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .49 crv . 4 9 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .52 crv . 5 2 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a curve crv .01 crv . 0 1 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .65 pnt . 6 5 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .65 a pnt .65 a . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .67 pnt . 6 7 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point GEOM.67 GEOM.6 7 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .47 pnt . 4 7 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point GEOM.68 GEOM.6 8 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .66 pnt . 6 6 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .59 pnt . 5 9 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .64 pnt . 6 4 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .64 a pnt .64 a . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point GEOM.81 GEOM.8 1 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point GEOM.69 GEOM.6 9 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .51 pnt . 5 1 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .61 pnt . 6 1 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .50 pnt . 5 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .60 pnt . 6 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point GEOM.82 GEOM.8 2 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point GEOM.70 GEOM.7 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .52 pnt . 5 2 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .58 pnt . 5 8 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .32 pnt . 3 2 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .36 pnt . 3 6 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .16 pnt . 1 6 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .12 pnt . 1 2 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .42 pnt . 4 2 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .24 pnt . 2 4 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .20 pnt . 2 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .28 pnt . 2 8 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .11 pnt . 1 1 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .04 pnt . 0 4 . 0 {} 0
i c s ave mode l f o r undo
ic move geometry su r f a c e names s r f . 0 0 . 0 t r a n s l a t e {0 0 20000}
ic move geometry curve names { crv . 5 4 . 0 crv . 4 1 . 0 crv . 4 5 . 0 crv . 4 3 . 0 crv . 5 3 . 0 crv . 5 1 . 0 crv . 4 0 . 0 crv . 5 5 . 0 crv

. 3 8 . 0 crv . 3 6 . 0 crv . 5 6 . 0 crv . 2 3 . 0 crv . 2 2 . 0 crv . 2 4 . 0 crv . 4 8 . 0 crv . 5 0 . 0 crv . 2 5 . 0 crv . 2 6 . 0 crv . 4 6 . 0 crv

. 4 7 . 0 crv . 4 9 . 0 crv . 5 2 . 0 crv . 0 1 . 0} t r a n s l a t e {0 0 20000}
ic move geometry point names {pnt . 6 5 . 0 pnt .65 a . 0 pnt . 6 7 . 0 GEOM.6 7 . 0 pnt . 4 7 . 0 GEOM.6 8 . 0 pnt . 6 6 . 0 pnt . 5 9 . 0

pnt . 6 4 . 0 pnt .64 a . 0 GEOM.8 1 . 0 GEOM.6 9 . 0 pnt . 5 1 . 0 pnt . 6 1 . 0 pnt . 5 0 . 0 pnt . 6 0 . 0 GEOM.8 2 . 0 GEOM.7 0 . 0 pnt
. 5 2 . 0 pnt . 5 8 . 0 pnt . 3 2 . 0 pnt . 3 6 . 0 pnt . 1 6 . 0 pnt . 1 2 . 0 pnt . 4 2 . 0 pnt . 2 4 . 0 pnt . 2 0 . 0 pnt . 2 8 . 0 pnt . 1 1 . 0 pnt
. 0 4 . 0} t r a n s l a t e {0 0 20000}

i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
i c c u r v e point GEOM crv .57 {GEOM.82 pnt . 5 2 . 0}
i c c u r v e point GEOM crv .58 {pnt . 6 1 . 0 pnt .61}
i c c u r v e point GEOM crv .59 {pnt .50 pnt . 5 0 . 0}
i c c u r v e point GEOM crv .60 {pnt . 6 0 . 0 pnt .60}
i c c u r v e point GEOM crv .61 {GEOM.81 pnt . 5 1 . 0}
i c c u r v e point GEOM crv .62 {pnt . 6 4 . 0 pnt .64}
i c c u r v e point GEOM crv .62 a {pnt .64 a . 0 pnt .64 a}
i c c u r v e point GEOM crv .63 {pnt .66 pnt . 6 6 . 0}
i c c u r v e point GEOM crv .64 {pnt . 5 9 . 0 GEOM.68}
i c c u r v e point GEOM crv .65 {pnt .47 pnt . 4 7 . 0}
i c c u r v e point GEOM crv .66 {pnt . 6 5 . 0 pnt .65}
i c c u r v e point GEOM crv .66 a {pnt .65 a . 0 pnt .65 a}
i c c u r v e point GEOM crv .67 {pnt .67 pnt . 6 7 . 0}
i c c u r v e point GEOM crv .68 {GEOM.67 . 0 GEOM.67}
i c s u r f a c e 2−4crvs GEOM s r f . 07 {0.0001 { crv . 5 6 . 0 crv .61 crv .56 crv .57}}
i c s e t do rman t p i ckab l e po int 0 {}
i c s e t do rman t p i ckab l e curve 0 {}
i c s u r f a c e 2−4crvs GEOM s r f . 08 {0.0001 { crv .54 crv .57 crv . 5 4 . 0 crv .68}}
i c s e t do rman t p i ckab l e po int 0 {}
i c s e t do rman t p i ckab l e curve 0 {}
i c s u r f a c e 2−4crvs GEOM s r f . 09 {0.0001 { crv . 5 5 . 0 crv .61 crv .55 crv .64}}
i c s e t do rman t p i ckab l e po int 0 {}
i c s e t do rman t p i ckab l e curve 0 {}
i c s u r f a c e 2−4crvs GEOM s r f . 10 {0.0001 { crv .64 crv .53 crv .68 crv . 53 . 0}}
i c s e t do rman t p i ckab l e po int 0 {}
i c s e t do rman t p i ckab l e curve 0 {}
i c g e o s e t p a r t su r f a c e s r f . 00 SYMM 0
i c g e o s e t p a r t su r f a c e { s r f . 09 s r f . 07 s r f . 08 s r f .10} FF 0
i c g e o s e t p a r t su r f a c e s r f . 0 0 . 0 FF 0
i c d e l e t e g e ome t r y point names {pnt . 1 6 . 0 pnt . 1 2 . 0 pnt . 3 6 . 0 pnt . 3 2 . 0 pnt . 4 2 . 0 pnt . 2 4 . 0 pnt . 2 0 . 0 pnt . 1 1 . 0

pnt . 0 4 . 0 pnt . 2 8 . 0} 0 1
i c s e t do rman t p i ckab l e po int 0 {}
i c d e l e t e g e ome t r y curve names { crv . 4 9 . 0 crv . 4 8 . 0 crv . 2 5 . 0 crv . 2 6 . 0 crv . 4 6 . 0 crv . 4 7 . 0 crv . 0 1 . 0 crv . 5 0 . 0

crv . 5 2 . 0} 0 1
i c s e t do rman t p i ckab l e curve 0 {}
i c p o i n t {} GEOM pnt .69 2000 ,0 ,20000
i c p o i n t {} GEOM pnt .69 a 2000 ,400 ,20000
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i c p o i n t {} GEOM pnt .69 aa 2000 ,−400 ,20000
i c p o i n t {} GEOM pnt .70 2500 ,0 ,20000
i c p o i n t {} GEOM pnt .71 2500 ,1000 ,20000
i c p o i n t {} GEOM pnt .72 2500 ,−1000 ,20000
i c p o i n t {} GEOM pnt .73 1500 ,−1000 ,20000
i c p o i n t {} GEOM pnt .74 1500 ,1000 ,20000
i c p o i n t {} GEOM pnt .75 1500 ,0 ,20000
i c p o i n t {} GEOM pnt .75 a 1500 ,400 ,20000
i c p o i n t {} GEOM pnt .75 aa 1500 ,−400 ,20000
i c p o i n t {} GEOM pnt .76 500 ,0 ,20000
i c p o i n t {} GEOM pnt .76 a 500 ,400 ,20000
i c p o i n t {} GEOM pnt .76 aa 500 ,−400 ,20000
i c p o i n t {} GEOM pnt .77 500 ,1000 ,20000
i c p o i n t {} GEOM pnt .78 500 ,−1000 ,20000
i c p o i n t {} GEOM pnt .79 −1000 ,0 ,20000
i c p o i n t {} GEOM pnt .80 −300 ,0 ,20000
i c p o i n t {} GEOM pnt .80 a −600 ,400 ,20000
i c p o i n t {} GEOM pnt .80 aa −600 ,−400 ,20000
i c p o i n t {} GEOM pnt .80 a1 −2000 ,0 ,20000
i c p o i n t {} GEOM pnt .80 a2 −1200 ,1000 ,20000
i c p o i n t {} GEOM pnt .80 a3 −1200 ,−1000 ,20000
i c p o i n t c rv par GEOM pnt .83 { crv .53 0 .6}
i c p o i n t c rv par GEOM pnt .83 a { crv .53 0 .9}
i c p o i n t c rv par GEOM pnt .84 { crv .53 0 .4}
i c p o i n t c rv par GEOM pnt .84 a { crv .53 0 .1}
i c p o i n t c rv par GEOM pnt .85 { crv . 5 3 . 0 0 .4}
i c p o i n t c rv par GEOM pnt .85 a { crv . 5 3 . 0 0 .1}
i c p o i n t c rv par GEOM pnt .86 { crv . 5 3 . 0 0 .6}
i c p o i n t c rv par GEOM pnt .86 a { crv . 5 3 . 0 0 .9}
i c p o i n t pro jcurv GEOM pnt .87 {pnt .28 crv .65}
i c p o i n t pro jcurv GEOM pnt .88 {pnt .29 crv .65}
i c p o i n t pro jcurv GEOM pnt .89 {pnt .30 crv .65}
i c p o i n t pro jcurv GEOM pnt .90 {pnt .31 crv .65}
i c c u r v e point GEOM crv .69 {pnt .86 pnt .83}
i c c u r v e point GEOM crv .69 a {pnt .86 a pnt .83 a}
i c c u r v e point GEOM crv .70 {pnt .85 pnt .84}
i c c u r v e point GEOM crv .70 a {pnt .85 a pnt .84 a}
i c p o i n t pro jcurv GEOM pnt .91 {pnt .90 crv .70}
i c p o i n t pro jcurv GEOM pnt .92 {pnt .89 crv .70}
i c p o i n t pro jcurv GEOM pnt .93 {pnt .88 crv .70}
i c p o i n t pro jcurv GEOM pnt .94 {pnt .90 crv .69}
i c p o i n t pro jcurv GEOM pnt .95 {pnt .89 crv .69}
i c p o i n t pro jcurv GEOM pnt .96 {pnt .88 crv .69}
i c g e o dup l i c a t e s e t f am and da t a point pnt .31 pnt . 3 1 . 0 {} 0 ### make a copy o f a po int − used to

t r a n s l a t e a copied point
i c g e o dup l i c a t e s e t f am and da t a point pnt .15 pnt . 1 5 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .19 pnt . 1 9 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .39 pnt . 3 9 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .35 pnt . 3 5 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .45 pnt . 4 5 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .27 pnt . 2 7 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .23 pnt . 2 3 . 0 {} 0
i c s ave mode l f o r undo
ic move geometry point names {pnt . 3 1 . 0 pnt . 1 5 . 0 pnt . 1 9 . 0 pnt . 3 9 . 0 pnt . 3 5 . 0 pnt . 4 5 . 0 pnt . 2 7 . 0 pnt . 2 3 . 0}

t r a n s l a t e {0 0 500} ### t r an s l a t e copied point
i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
i c g e o dup l i c a t e s e t f am and da t a point pnt .98 pnt .101 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .07 pnt .102 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .08 pnt .105 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt407 pnt407 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt489 pnt489 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt427 pnt427 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt469 pnt469 . 0 {} 0
ic move geometry point names {pnt .101 pnt .102 pnt .105 pnt407 . 0 pnt489 . 0 pnt427 . 0 pnt469 .0} t r a n s l a t e {0 0

500}
i c p o i n t {} GEOM pnt .100 pnt .102+( pnt .101−pnt . 102 ) ∗1.8
i c p o i n t {} GEOM pnt .107 pnt .101+( pnt .105−pnt . 101 ) ∗1.7
i c p o i n t {} GEOM pnt427a pnt .102+( pnt427 .0−pnt . 102 ) ∗0.8
i c g e o dup l i c a t e s e t f am and da t a point pnt .107 pnt .107up {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .107 pnt .107dw {} 0
ic move geometry point names pnt .107up t r a n s l a t e {0 20 0}
ic move geometry point names pnt .107dw t r an s l a t e {0 −20 0}
i c g e o dup l i c a t e s e t f am and da t a point pnt .15 a pnt .15 a . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .23 a pnt .23 a . 0 {} 0
ic move geometry point names {pnt .15 a . 0 pnt .23 a .0} t r a n s l a t e {0 0 500}
i c g e o r e s e t d a t a s t r u c t u r e s
i c p o i n t {} PNTS pnt .118 pnt .105+( pnt489 .0−pnt . 105 ) ∗1.5
i c p o i n t {} PNTS pnt .119 pnt .105+( pnt407 .0−pnt . 105 ) ∗1.5
i c p o i n t {} GEOM pnt437a pnt .119+( pnt427a−pnt . 119 ) ∗1.4
i c p o i n t {} GEOM pnt459a pnt .118+( pnt469 .0−pnt . 118 ) ∗1.4
i c p o i n t {} PNTS pnt .120 pnt .45 .0+( pnt .39.0− pnt . 4 5 . 0 ) ∗0.45
i c d e l e t e g e ome t r y point names {pnt407 . 0 pnt489 .0} 0 1
i c s e t do rman t p i ckab l e po int 0 {}
i c g e o s e t p a r t po int {pnt .04 a pnt .07 pnt .12 a pnt .16 pnt .20 a pnt23 pnt43 pnt53 pnt64 pnt75 pnt85 pnt .98

pnt .100 pnt .101 pnt .102 pnt .105} IMP PTS 0
i c g e o s e t p a r t po int {pnt105 pnt151 pnt171 pnt181 pnt203 pnt213 pnt233 pnt279 pnt299 pnt309 pnt320

pnt331 pnt341} IMP PTS 0
i c g e o s e t p a r t po int {pnt . 1 0 5 . 0 pnt .107up pnt .107dw pnt .107 pnt .118 pnt .119 pnt192 pnt361 pnt407 pnt489

pnt427 pnt427a pnt437 pnt437a pnt448 pnt459 pnt459a pnt469 pnt469 .0} IMP PTS 0
i c g e o s e t p a r t po int {pnt .15 pnt .15 a pnt .19 pnt .23 pnt .23 a pnt .27 pnt .31 pnt .35 pnt .39 pnt .45 } IMP PTS

0
i c g e o s e t p a r t po int {pnt . 1 5 . 0 pnt .15 a . 0 pnt . 1 9 . 0 pnt . 2 3 . 0 pnt .23 a . 0 pnt . 2 7 . 0 pnt . 3 1 . 0 pnt . 3 5 . 0 pnt . 3 9 . 0

pnt . 4 5 . 0 } IMP PTS 0
i c d e l e t e g e ome t r y point names pnt .120 0 1
i c s e t do rman t p i ckab l e po int 0 {}
i c g e o dup l i c a t e s e t f am and da t a point pnt .15 a . 0 pnt .15 a . 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .23 a . 0 pnt .23 a . 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt459a pnt459a . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt437a pnt437a . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt469 . 0 pnt469 . 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt427a pnt427a . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .119 pnt . 1 1 9 . 0 {} 0
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i c g e o dup l i c a t e s e t f am and da t a point pnt .118 pnt . 1 1 8 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .107 pnt . 1 0 7 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .107dw pnt .107dw.0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .107up pnt .107up . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .105 pnt . 1 0 5 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .102 pnt . 1 0 2 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .101 pnt . 1 0 1 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .100 pnt . 1 0 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt . 2 7 . 0 pnt . 2 7 . 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt . 4 5 . 0 pnt . 4 5 . 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt . 3 5 . 0 pnt . 3 5 . 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt . 3 9 . 0 pnt . 3 9 . 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt . 1 9 . 0 pnt . 1 9 . 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt . 1 5 . 0 pnt . 1 5 . 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt . 3 1 . 0 pnt . 3 1 . 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt . 2 3 . 0 pnt . 2 3 . 0 . 0 {} 0
i c s ave mode l f o r undo
ic move geometry point names {pnt .15 a . 0 . 0 pnt .23 a . 0 . 0 pnt459a . 0 pnt437a . 0 pnt469 . 0 . 0 pnt427a . 0 pnt . 1 1 9 . 0

pnt . 1 1 8 . 0 pnt . 1 0 7 . 0 pnt .107dw.0 pnt .107up . 0 pnt . 1 0 5 . 0 pnt . 1 0 2 . 0 pnt . 1 0 1 . 0 pnt . 1 0 0 . 0 pnt . 2 7 . 0 . 0 pnt
. 4 5 . 0 . 0 pnt . 3 5 . 0 . 0 pnt . 3 9 . 0 . 0 pnt . 1 9 . 0 . 0 pnt . 1 5 . 0 . 0 pnt . 3 1 . 0 . 0 pnt . 2 3 . 0 . 0} t r a n s l a t e {0 0 1000}

i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
ic move geometry point names {pnt .15 a . 0 . 0 pnt .23 a . 0 . 0 pnt459a . 0 pnt437a . 0 pnt469 . 0 . 0 pnt427a . 0 pnt . 1 0 7 . 0

pnt .107dw.0 pnt .107up . 0 pnt . 1 0 1 . 0 pnt . 1 0 0 . 0 pnt . 2 7 . 0 . 0 pnt . 4 5 . 0 . 0 pnt . 3 5 . 0 . 0 pnt . 3 9 . 0 . 0 pnt . 1 9 . 0 . 0
pnt . 1 5 . 0 . 0 pnt . 3 1 . 0 . 0 pnt . 2 3 . 0 . 0} s c a l e {1.2 1 .6 1} cent {pnt . 102 . 0}

ic move geometry point names {pnt . 1 1 9 . 0 pnt . 1 1 8 . 0 } s c a l e {1.05 0 .50 0} cent {pnt . 105 . 0}
i c s ave mode l f o r undo
ic move geometry point names {pnt . 1 5 . 0 . 0 pnt . 1 9 . 0 . 0 pnt . 3 9 . 0 . 0} t r a n s l a t e {0 100 0}
i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
i c s ave mode l f o r undo
ic move geometry point names {pnt . 4 5 . 0 . 0 pnt . 2 7 . 0 . 0 pnt . 2 3 . 0 . 0} t r a n s l a t e {0 −100 0}
i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
i c s ave mode l f o r undo
ic move geometry point names pnt . 3 1 . 0 . 0 t r a n s l a t e {70 0 0}
i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
i c s ave mode l f o r undo
ic move geometry point names pnt . 3 1 . 0 . 0 t r a n s l a t e {−70 0 0}
i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
i c s ave mode l f o r undo
ic move geometry point names pnt . 3 1 . 0 . 0 t r a n s l a t e {−70 0 0}
i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
i c s ave mode l f o r undo
ic move geometry point names {pnt . 3 9 . 0 . 0 pnt . 3 5 . 0 . 0 pnt . 4 5 . 0 . 0} t r a n s l a t e {100 0 0}
i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
i c s ave mode l f o r undo
ic move geometry point names {pnt . 119 . 0} t r a n s l a t e {0 50 0}
i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
i c s ave mode l f o r undo
ic move geometry point names {pnt . 118 . 0} t r a n s l a t e {0 −50 0}
i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
i c g e o dup l i c a t e s e t f am and da t a point pnt .91 pnt . 9 1 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .90 pnt . 9 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .94 pnt . 9 4 . 0 {} 0
i c s ave mode l f o r undo
ic move geometry point names {pnt . 9 1 . 0 pnt . 9 0 . 0 pnt . 9 4 . 0} t r a n s l a t e {0 0 500}
i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
i c g e o dup l i c a t e s e t f am and da t a point pnt .91 pnt . 9 1 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .90 pnt . 9 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .94 pnt . 9 4 . 0 {} 0
i c s ave mode l f o r undo
ic move geometry point names {pnt . 9 1 . 1 pnt . 9 0 . 1 pnt . 9 4 . 1} t r a n s l a t e {0 0 1000}
i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
i c g e o dup l i c a t e s e t f am and da t a point pnt .91 pnt . 9 1 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .90 pnt . 9 0 . 0 {} 0
i c g e o dup l i c a t e s e t f am and da t a point pnt .94 pnt . 9 4 . 0 {} 0
i c s ave mode l f o r undo
ic move geometry point names {pnt . 9 1 . 2 pnt . 9 0 . 2 pnt . 9 4 . 2} t r a n s l a t e {0 0 1500}
i c g e o r e s e t d a t a s t r u c t u r e s
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
i c d e l e t e g e ome t r y point names {pnt . 9 1 . 1 pnt . 9 0 . 1 pnt . 9 4 . 1} 0 1
i c s e t do rman t p i ckab l e po int 0 {}
i c p o i n t pro jcurv GEOM pnt .126 {pnt .32 crv .59} ### pro j e c t a po int to a curve
i c p o i n t pro jcurv GEOM pnt .127 {pnt .33 crv .59}
i c p o i n t pro jcurv GEOM pnt .128 {pnt .34 crv .59}
i c p o i n t pro jcurv GEOM pnt .129 {pnt .35 crv .59}
i c p o i n t pro jcurv GEOM pnt .130 {pnt . 3 5 . 0 crv .59}
i c p o i n t pro jcurv GEOM pnt .131 {pnt . 3 5 . 0 . 0 crv .59}
i c p o i n t pro jcurv GEOM pnt .132 {pnt .131 crv .60}
i c p o i n t pro jcurv GEOM pnt .133 {pnt .130 crv .60}
i c p o i n t pro jcurv GEOM pnt .134 {pnt .129 crv .60}
i c p o i n t pro jcurv GEOM pnt .135 {pnt .128 crv .60}
i c p o i n t pro jcurv GEOM pnt .136 {pnt .127 crv .60}
i c p o i n t pro jcurv GEOM pnt .137 {pnt .131 crv .58}
i c p o i n t pro jcurv GEOM pnt .138 {pnt .130 crv .58}
i c p o i n t pro jcurv GEOM pnt .139 {pnt .129 crv .58}
i c p o i n t pro jcurv GEOM pnt .140 {pnt .128 crv .58}
i c p o i n t pro jcurv GEOM pnt .141 {pnt .127 crv .58}
i c s u r f a c e 2−4crvs CRVS s r f . 11 {0.0001 { crv3 crv .06}}
i c s e t do rman t p i ckab l e po int 0 {}
i c s e t do rman t p i ckab l e curve 0 {}
i c g e o s e t p a r t su r f a c e s r f . 11 WING 0
i c g e o c r e c r v i s o c r v WING crv .71 s r f . 05 0 .5 1 0 0
i c g e o c o n f i g u r e o n e a t t r i b u t e su r f a c e shade wire
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i c p o i n t c rv par WING pnt .1142 { crv .71 0.0196078431373} ### crea t e a point at a r a t i o o f a curve .
i c p o i n t c rv par WING pnt .1143 { crv .71 0.0392156862746}
i c p o i n t c rv par WING pnt .1144 { crv .71 0.0588235294119}
i c p o i n t c rv par WING pnt .1145 { crv .71 0.0784313725492}
i c p o i n t c rv par WING pnt .1146 { crv .71 0.0980392156865}
i c p o i n t c rv par WING pnt .1147 { crv .71 0.117647058824}
i c p o i n t c rv par WING pnt .1148 { crv .71 0.137254901961}
i c p o i n t c rv par WING pnt .1149 { crv .71 0.156862745098}
i c p o i n t c rv par WING pnt .1150 { crv .71 0.176470588236}
i c p o i n t c rv par WING pnt .1151 { crv .71 0.196078431373}
i c p o i n t c rv par WING pnt .1152 { crv .71 0.21568627451}
i c p o i n t c rv par WING pnt .1153 { crv .71 0.235294117648}
i c p o i n t c rv par WING pnt .1154 { crv .71 0.254901960785}
i c p o i n t c rv par WING pnt .1155 { crv .71 0.274509803922}
i c p o i n t c rv par WING pnt .1156 { crv .71 0.294117647059}
i c p o i n t c rv par WING pnt .1157 { crv .71 0.313725490197}
i c p o i n t c rv par WING pnt .1158 { crv .71 0.333333333334}
i c p o i n t c rv par WING pnt .1159 { crv .71 0.352941176471}
i c p o i n t c rv par IMP PTS pnt .1160 { crv .71 0.372549019609}
i c p o i n t c rv par WING pnt .1161 { crv .71 0.392156862746}
i c p o i n t c rv par WING pnt .1162 { crv .71 0.411764705883}
i c p o i n t c rv par WING pnt .1163 { crv .71 0.431372549021}
i c p o i n t c rv par WING pnt .1164 { crv .71 0.450980392158}
i c p o i n t c rv par WING pnt .1165 { crv .71 0.470588235295}
i c p o i n t c rv par WING pnt .1166 { crv .71 0.490196078433}
i c p o i n t c rv par WING pnt .1167 { crv .71 0.50980392157}
i c p o i n t c rv par WING pnt .1168 { crv .71 0.529411764707}
i c p o i n t c rv par WING pnt .1169 { crv .71 0.549019607844}
i c p o i n t c rv par WING pnt .1170 { crv .71 0.568627450982}
i c p o i n t c rv par WING pnt .1171 { crv .71 0.588235294119}
i c p o i n t c rv par WING pnt .1172 { crv .71 0.607843137256}
i c p o i n t c rv par IMP PTS pnt .1173 { crv .71 0.627450980394}
i c p o i n t c rv par WING pnt .1174 { crv .71 0.647058823531}
i c p o i n t c rv par WING pnt .1175 { crv .71 0.666666666668}
i c p o i n t c rv par WING pnt .1176 { crv .71 0.686274509806}
i c p o i n t c rv par WING pnt .1177 { crv .71 0.705882352943}
i c p o i n t c rv par WING pnt .1178 { crv .71 0.72549019608}
i c p o i n t c rv par WING pnt .1179 { crv .71 0.745098039217}
i c p o i n t c rv par WING pnt .1180 { crv .71 0.764705882355}
i c p o i n t c rv par WING pnt .1181 { crv .71 0.784313725492}
i c p o i n t c rv par WING pnt .1182 { crv .71 0.803921568629}
i c p o i n t c rv par WING pnt .1183 { crv .71 0.823529411767}
i c p o i n t c rv par WING pnt .1184 { crv .71 0.843137254904}
i c p o i n t c rv par WING pnt .1185 { crv .71 0.862745098041}
i c p o i n t c rv par WING pnt .1186 { crv .71 0.882352941179}
i c p o i n t c rv par WING pnt .1187 { crv .71 0.901960784316}
i c p o i n t c rv par WING pnt .1188 { crv .71 0.921568627453}
i c p o i n t c rv par WING pnt .1189 { crv .71 0.94117647059}
i c p o i n t c rv par WING pnt .1190 { crv .71 0.960784313728}
i c p o i n t c rv par WING pnt .1191 { crv .71 0.980392156865}
i c p o i n t i n t e r s e c t IMP PTS pnt .17 aa { crv .71 crv .12} t o l 0 .0000001
i c p o i n t c rv par WING pnt .1192 { crv .71 0}
i c p o i n t c rv par WING pnt .1193 { crv .71 1}
i c c u r v e point WING crv .72 {pnt .1193 pnt .1192}
i c p o i n t c rv par WING pnt .1194 { crv .72 0 .5}
i c c u r v e point WING crv .20 aa {pnt .17 aa pnt .1194}
i c p o i n t c rv par WING pnt .17 q { crv .20 aa 0.25}
i c p o i n t c rv par WING pnt .17 q3 { crv .20 aa 0 .7}
i c p o i n t c rv par WING pnt .17 p1 { crv .20 aa 0 .1}
i c p o i n t {} IMP PTS pnt . sup1 pnt .17 q+(pnt .1160−pnt .17 q ) ∗5
i c p o i n t {} IMP PTS pnt . slw1 pnt .17 q+(pnt .1173−pnt .17 q ) ∗9
i c p o i n t c rv par IMP PTS pnt . su2 { crv .71 0.14}
i c p o i n t c rv par IMP PTS pnt . s l 2 { crv .71 0.86}
i c p o i n t {} IMP PTS pnt . slw2 pnt .17 q3+(pnt . s l2−pnt .17 q3 ) ∗12
i c p o i n t {} IMP PTS pnt . sup2 pnt .17 q3+(pnt . su2−pnt .17 q3 ) ∗9
i c p o i n t {} IMP PTS pnt . stup pnt . sup1+(pnt . sup2−pnt . sup1 ) ∗1.9
i c p o i n t {} IMP PTS pnt . s t lw pnt . slw1+(pnt . slw2−pnt . slw1 ) ∗1.8
i c p o i n t c rv par IMP PTS pnt . su1 { crv .71 0.46}
i c p o i n t {} IMP PTS pnt . s lup pnt .17 p1+(pnt . su1−pnt .17 p1 ) ∗6
i c p o i n t c rv par IMP PTS pnt . s l 1 { crv .71 0.545}
i c p o i n t {} IMP PTS pnt . s l lw pnt .17 p1+(pnt . s l1−pnt .17 p1 ) ∗10
i c p o i n t {} IMP PTS pnt . s l e pnt .17 q+(pnt .17 aa−pnt .17 q ) ∗2.5
i c p o i n t {} IMP PTS pnt . s t e pnt . stup+(pnt . stlw−pnt . stup ) ∗0.5
i c p o i n t pro jcurv IMP PTS pnt .17 f f {pnt . s l e crv .65}
i c p o i n t pro jcurv IMP PTS pnt .17 f f u {pnt .17 f f crv .70}
i c p o i n t pro jcurv IMP PTS pnt .17 f f l {pnt .17 f f crv .69}
i c p o i n t pro jcurv IMP PTS pnt .17 f f b {pnt . s t e crv .59}
i c p o i n t pro jcurv IMP PTS pnt .17 f fbu {pnt .17 f f b crv .60}
i c p o i n t pro jcurv IMP PTS pnt .17 f f b l {pnt .17 f f b crv .58}
i c p o i n t pro jcurv IMP PTS pnt . b1 . 1 {pnt .05 crv .68}
i c p o i n t pro jcurv IMP PTS pnt . b1 . 2 {pnt .17 q crv .68}
i c p o i n t pro jcurv IMP PTS pnt . b1 . 3 {pnt .06 crv .68}
i c p o i n t pro jcurv IMP PTS pnt . b1 . 4 {pnt .07 crv .68}
i c p o i n t pro jcurv IMP PTS pnt . b1 . 5 {pnt .102 crv .68}
i c p o i n t pro jcurv IMP PTS pnt . b1 . 6 {pnt . 1 0 2 . 0 crv .68}
i c p o i n t pro jcurv IMP PTS pnt . b2 . 1 {pnt .05 crv .67}
i c p o i n t pro jcurv IMP PTS pnt . b2 . 2 {pnt .17 q crv .67}
i c p o i n t pro jcurv IMP PTS pnt . b2 . 3 {pnt .06 crv .67}
i c p o i n t pro jcurv IMP PTS pnt . b2 . 4 {pnt .07 crv .67}
i c p o i n t pro jcurv IMP PTS pnt . b2 . 5 {pnt .102 crv .67}
i c p o i n t pro jcurv IMP PTS pnt . b2 . 6 {pnt . 1 0 2 . 0 crv .67}
i c p o i n t pro jcurv IMP PTS pnt . b3 . 1 {pnt .05 crv .66}
i c p o i n t pro jcurv IMP PTS pnt . b3 . 2 {pnt .17 q crv .66}
i c p o i n t pro jcurv IMP PTS pnt . b3 . 3 {pnt .06 crv .66}
i c p o i n t pro jcurv IMP PTS pnt . b3 . 4 {pnt .07 crv .66}
i c p o i n t pro jcurv IMP PTS pnt . b3 . 5 {pnt .102 crv .66}
i c p o i n t pro jcurv IMP PTS pnt . b3 . 6 {pnt . 1 0 2 . 0 crv .66}
i c p o i n t pro jcurv IMP PTS pnt . b4 . 1 {pnt . b3 . 1 crv .57}
i c p o i n t pro jcurv IMP PTS pnt . b4 . 2 {pnt . b3 . 2 crv .57}
i c p o i n t pro jcurv IMP PTS pnt . b4 . 3 {pnt . b3 . 3 crv .57}
i c p o i n t pro jcurv IMP PTS pnt . b4 . 4 {pnt . b3 . 4 crv .57}
i c p o i n t pro jcurv IMP PTS pnt . b4 . 5 {pnt . b3 . 5 crv .57}
i c p o i n t pro jcurv IMP PTS pnt . b4 . 6 {pnt . b3 . 6 crv .57}
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i c p o i n t pro jcurv IMP PTS pnt . b5 . 1 {pnt . b3 . 1 crv .66 a}
i c p o i n t pro jcurv IMP PTS pnt . b5 . 2 {pnt . b3 . 2 crv .66 a}
i c p o i n t pro jcurv IMP PTS pnt . b5 . 3 {pnt . b3 . 3 crv .66 a}
i c p o i n t pro jcurv IMP PTS pnt . b5 . 4 {pnt . b3 . 4 crv .66 a}
i c p o i n t pro jcurv IMP PTS pnt . b5 . 5 {pnt . b3 . 5 crv .66 a}
i c p o i n t pro jcurv IMP PTS pnt . b5 . 6 {pnt . b3 . 6 crv .66 a}
i c p o i n t pro jcurv IMP PTS pnt . t1 . 1 {pnt .05 crv .64}
i c p o i n t pro jcurv IMP PTS pnt . t1 . 2 {pnt .17 q crv .64}
i c p o i n t pro jcurv IMP PTS pnt . t1 . 3 {pnt .06 crv .64}
i c p o i n t pro jcurv IMP PTS pnt . t1 . 4 {pnt .07 crv .64}
i c p o i n t pro jcurv IMP PTS pnt . t1 . 5 {pnt .102 crv .64}
i c p o i n t pro jcurv IMP PTS pnt . t1 . 6 {pnt . 1 0 2 . 0 crv .64}
i c p o i n t pro jcurv IMP PTS pnt . t2 . 1 {pnt .05 crv .63}
i c p o i n t pro jcurv IMP PTS pnt . t2 . 2 {pnt .17 q crv .63}
i c p o i n t pro jcurv IMP PTS pnt . t2 . 3 {pnt .06 crv .63}
i c p o i n t pro jcurv IMP PTS pnt . t2 . 4 {pnt .07 crv .63}
i c p o i n t pro jcurv IMP PTS pnt . t2 . 5 {pnt .102 crv .63}
i c p o i n t pro jcurv IMP PTS pnt . t2 . 6 {pnt . 1 0 2 . 0 crv .63}
i c p o i n t pro jcurv IMP PTS pnt . t3 . 1 {pnt .05 crv .62}
i c p o i n t pro jcurv IMP PTS pnt . t3 . 2 {pnt .17 q crv .62}
i c p o i n t pro jcurv IMP PTS pnt . t3 . 3 {pnt .06 crv .62}
i c p o i n t pro jcurv IMP PTS pnt . t3 . 4 {pnt .07 crv .62}
i c p o i n t pro jcurv IMP PTS pnt . t3 . 5 {pnt .102 crv .62}
i c p o i n t pro jcurv IMP PTS pnt . t3 . 6 {pnt . 1 0 2 . 0 crv .62}
i c p o i n t pro jcurv IMP PTS pnt . t4 . 1 {pnt . t3 . 1 crv .61}
i c p o i n t pro jcurv IMP PTS pnt . t4 . 2 {pnt . t3 . 2 crv .61}
i c p o i n t pro jcurv IMP PTS pnt . t4 . 3 {pnt . t3 . 3 crv .61}
i c p o i n t pro jcurv IMP PTS pnt . t4 . 4 {pnt . t3 . 4 crv .61}
i c p o i n t pro jcurv IMP PTS pnt . t4 . 5 {pnt . t3 . 5 crv .61}
i c p o i n t pro jcurv IMP PTS pnt . t4 . 6 {pnt . t3 . 6 crv .61}
i c p o i n t pro jcurv IMP PTS pnt . t5 . 1 {pnt . t3 . 1 crv .62 a}
i c p o i n t pro jcurv IMP PTS pnt . t5 . 2 {pnt . t3 . 2 crv .62 a}
i c p o i n t pro jcurv IMP PTS pnt . t5 . 3 {pnt . t3 . 3 crv .62 a}
i c p o i n t pro jcurv IMP PTS pnt . t5 . 4 {pnt . t3 . 4 crv .62 a}
i c p o i n t pro jcurv IMP PTS pnt . t5 . 5 {pnt . t3 . 5 crv .62 a}
i c p o i n t pro jcurv IMP PTS pnt . t5 . 6 {pnt . t3 . 6 crv .62 a}
i c p o i n t pro jcurv IMP PTS pnt . ct . 1 {pnt . 9 0 . 2 crv .70 a}
i c p o i n t pro jcurv IMP PTS pnt . ct . 2 {pnt .88 crv .70 a}
i c p o i n t pro jcurv IMP PTS pnt . ct . 3 {pnt .17 f f crv .70 a}
i c p o i n t pro jcurv IMP PTS pnt . ct . 4 {pnt .89 crv .70 a}
i c p o i n t pro jcurv IMP PTS pnt . ct . 5 {pnt .90 crv .70 a}
i c p o i n t pro jcurv IMP PTS pnt . ct . 6 {pnt . 9 0 . 0 crv .70 a}
i c p o i n t pro jcurv IMP PTS pnt . cb . 1 {pnt . 9 0 . 2 crv .69 a}
i c p o i n t pro jcurv IMP PTS pnt . cb . 2 {pnt .88 crv .69 a}
i c p o i n t pro jcurv IMP PTS pnt . cb . 3 {pnt .17 f f crv .69 a}
i c p o i n t pro jcurv IMP PTS pnt . cb . 4 {pnt .89 crv .69 a}
i c p o i n t pro jcurv IMP PTS pnt . cb . 5 {pnt .90 crv .69 a}
i c p o i n t pro jcurv IMP PTS pnt . cb . 6 {pnt . 9 0 . 0 crv .69 a}
i c s a v e t e t i n /home/ c fd / cjohnson /NLF2/NACA23012aerofoil /N23012 M1p94 M2p52 aboutLE/script NACA23012 . t i n 0

0 {} {} 0 ### save geometry

B.11 Elliptic and Load Distribution Calculation for a Wing

/∗ PROGRAM TO FIT AND COMPARE A PARABOLIC DISTRIBUTION OF CL OVER A WING ∗/

/∗ This program reads a CL d i s t r i b u t i o n f i l e , norma l i s e s i t and f i t s a parabola through i t and then
∗ denormal i s e s i t .
∗ t o t a l load or CT.
∗ 2 arguments are needed : 1) The CL f i l e to read the span and CL va lues from them .
∗ 2) The f i l e to wr i t e a parabola to .
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

#include<s t d i o . h>
#include<math . h>
#include<s t d l i b . h>
#include<s t r i n g . h>
#include<time . h>

struct { /∗ s t r u c tu r e ∗/
f loat CL; /∗ CL value ∗/
f loat B; /∗ span value ∗/
} curve [ 1 0 0 0 ] ;

main ( int argc , char ∗argv [ ] )
{

f loat Error ; /∗ Di f f e r en c e between parabola and CL curve ∗/
int i , j , j j ; /∗ counters ∗/
f loat CL, b , c l ; /∗ Load va r i a b l e s ∗/
f loat minCL ,maxCL, minspan , maxspan ; /∗ Normal is ing l im i t s ∗/
f loat x [ 1 0 00 ] , y [ 1 0 0 0 ] ,E [ 1 0 0 0 ] ; /∗ Parabola po in t s matr i ces ∗/
char f i l ename [ 1 2 8 ] ;
FILE ∗ input , ∗out ;

/∗−−− ALL CL READ AND FIT PARABOLA −−−∗/
st rcpy ( f i l ename , argv [ 1 ] ) ;
input = fopen ( f i l ename , ” r ” ) ;
j j =0;
maxCL = −1000; minCL = 1000;
maxspan = −1000; minspan = 1000;
while ( ( j = getc ( input ) ) != EOF )

{
ungetc ( j , input ) ;
f s c a n f ( input , ”%f %f \n” ,&b,& c l )==2;
curve [ j j ] . CL=c l ;
curve [ j j ] . B=b ;
i f ( curve [ j j ] . CL >= maxCL) {maxCL = curve [ j j ] . CL;}
i f ( curve [ j j ] . CL <= minCL) {minCL = curve [ j j ] . CL;}
i f ( curve [ j j ] . B <= minspan ) {minspan = curve [ j j ] . B;}
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i f ( curve [ j j ] . B >= maxspan ) {maxspan = curve [ j j ] . B;}
j j=j j +1;

}
f c l o s e ( input ) ;
/∗−−− NORMALISE −−−∗/
for ( i =0; i< j j ; i++)
{

x [ i ] = ( curve [ i ] . B − minspan ) / (maxspan − minspan ) ;
curve [ i ] . CL = ( curve [ i ] . CL − minCL) / (maxCL − minCL) ;

}

/∗−−− PARABOLA −−−∗/
st rcpy ( f i l ename , argv [ 2 ] ) ;
out=fopen ( f i l ename , ”w” ) ;
for ( i =0; i< j j ; i++)
{

y [ i ]=1−x [ i ]∗ x [ i ] ;
f p r i n t f ( out , ”%f %f \n” ,x [ i ] ∗ (maxspan − minspan ) + minspan , y [ i ] ∗ (maxCL − minCL) + minCL) ;

}
Error = 0 ;
for ( i =1; i< j j ; i++)
{

E[ i ]=(y [ i ] − curve [ i ] . CL) ∗ ( y [ i ] − curve [ i ] . CL) / ( curve [ i ] . CL ∗ curve [ i ] . CL) ;
Error= Error+E[ i ] ;

}
p r i n t f ( ”Error = %f \n\n” , Error ) ;
f c l o s e ( out ) ;
return 0 ;
}
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B.12 Korn’s Method to Find Drag Divergence Mach Number

/∗
∗ KORN’S METHOD TO FIND DRAG DIVERGENCE MACH NUMBER.
∗ The Technology Factor used here i s 0 . 9 5 .
∗
∗/

#include<s t d i o . h>
#include<math . h>
#include<s t d l i b . h>
#include<s t r i n g . h>

main ( int argc , char ∗argv [ ] )
{
FILE ∗ input ,∗ output ;

char f i l ename [ 1 2 8 ] ;

f loat A1 ,A2 ,A3 ,CL, x , t ,MDD;
int j j , j ;

/∗ open f i l e s ∗/
j j =0;
s t r cpy ( f i l ename , argv [ 2 ] ) ;
output = fopen ( f i l ename , ”w” ) ;
s t r cpy ( f i l ename , argv [ 1 ] ) ;
input = fopen ( f i l ename , ” r ” ) ;
f s c a n f ( input , ”A1\ t\tA2\ t\tA3\ t\tCL\ t\tmaxt xcoord\ t t /c\ t\tMDD\n” ) ;
while ( ( j = getc ( input ) ) != EOF )

{
ungetc ( j , input ) ;
f s c a n f ( input , ”%f %f %f %f %f %f \n” ,&A1,&A2,&A3,&CL,&x,& t )==6;
MDD = 0.95 − CL/10 − t ;
f p r i n t f ( output , ”%f %f %f %f \n” ,A1 ,A2 ,A3 ,MDD) ;
j j=j j +1;

}

f c l o s e ( input ) ;
f c l o s e ( output ) ;
return 0 ;
}

B.13 UH60-A Parameter Modification Program

/∗
∗ PROGRAM TO FIND THE COORDINATES TO MODIFY THE UH60 TIP WITH SWEEP.
∗ See Figure f o r s p e c i f i c d e f i n t i o n s .
∗/

#include<s t d i o . h>
#include<math . h>
#include<s t d l i b . h>
#include<s t r i n g . h>

main ( int argc , char ∗argv [ ] )
{
f loat pi , Area , span , tipR , sweep , x , r ,T1 ,T2 ,C,C1 , theta , z , z1 , z2 , anh ;
p i =3.141592654;

/∗−−− DEFINE CONSTANTS −−−∗/
Area = 1.111672518 ;
span = 1 . 0737 ;
tipR = 14 .4025 ;

p r i n t f ( ”Enter sweep and anhedral ang le in deg :\n” ) ;
s can f ( ”%f %f ” ,&sweep ,&anh ) ;
sweep = sweep /180 ∗ pi ;
anh = anh /180 ∗ pi ;

/∗−−− CALCULATE −−−∗/
x = sqr t (2 − 2 ∗ cos ( sweep ) ) ;
r = x ∗ cos ( sweep /2) ;
T1 = x ∗ s i n ( sweep /2) ;
T2 = ( span −r ) ∗ tan ( sweep ) ;
C = (2∗Area − sweep + r − span ) / span ;
C1 = ( (C−1) ∗ r / span ) + 1 ;
theta = 3.76696895 ∗ pow( ( tipR + r ) ,2) − 110.837065731 ∗ ( tipR + r ) + 823 .338742751 ; // t i p tw i s t
z = − 0.0196387563 ∗ pow( ( tipR + r ) ,2) + 0.537139079948 ∗ ( tipR + r ) − 3 .67093898682 ; // inherent

anhedral
z1 = r ∗ tan ( anh ) ;
z2 = span ∗ tan ( anh ) ;

p r i n t f ( ”sweep :\ t%f \n” , sweep ∗ 180/ pi ) ;
p r i n t f ( ”x :\ t\ t%f \n” , x ) ;
p r i n t f ( ” r ( pos ) :\ t\ t%f \n” , r ) ;
p r i n t f ( ”T1( inner ) :\ t\ t%f \n” ,T1) ;
p r i n t f ( ”T2 ( t i p ) :\ t\ t%f \n” ,T2) ;
p r i n t f ( ”C ( t i p ) :\ t\ t%f \n” ,C) ;
p r i n t f ( ”C1 ( inner ) :\ t\ t%f \n” ,C1) ;
p r i n t f ( ” theta at r :\ t\ t%f \n” , theta ) ;
p r i n t f ( ”z at r :\ t\ t%f \n” , z ) ;
p r i n t f ( ” z1 at r :\ t\ t%f \n” , z1 ) ;
p r i n t f ( ” z2 at t i p :\ t\ t%f \n” , z2 ) ;

return 0 ;
}
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Appendix C

Other Related Data

C.1 ROBIN Fuselage

The ROBIN (ROtor Body INteraction) body was created to investigate the rotor wake-fuselage
interaction104 . It is a simplified geometry representing a helicopter fuselage albeit, more stream-
lined than is typically found. The shape of the fuselage is determined mathematically by a set
of parameters that make up super-ellipsoid equations105 . These equations create a curve at a
cross-section along the length of the fuselage. By varying these parameters along the length of
the fuselage, the shape can be modified. Different parts can be made and positioned together,
such as the doghouse and the main fuselage of the ROBIN body. This is described in more detail
in Section 3.2.3.

The grid size was approximately 3 million cells and needed 144 blocks. The conditions for CFD
were a Mach number of 0.062 and a Reynold’s number of approximately 3 million. Figure C.1
shows the CP comparison with experimental data for the isolated fuselage obtained from Berry
and Althoff105 . The results are well matched until the doghouse, after which deterioration in the
comparison with the experiments begins to occur especially after the dog house region. This may
be due to the fact that the hub was not modelled for the CFD simulation. This same conclusion
was drawn in the report by Berry and Althoff105 .
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x/L = 0.0517 x/L = 0.094 x/L = 0.145

x/L = 0.2007 x/L = 0.3498 x/L = 0.4669

x/L = 0.6003 x/L = 0.8809 x/L = 1.0007

x/L = 1.162 x/L = 1.346 x/L = 1.53

Figure C.1: ROBIN fuselage compare Cp with experimental data. Mach number = 0.062, Re = 3×10-6.
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C.2 ROBIN-mod7 Fuselage

The ROBIN-mod7 is a modification of the original ROBIN (ROtor Body INteraction) fuselage.
It was part of a joint effort by the United States and France to analyse and study fuselage drag
reduction10 since a significant amount of the power used to overcome drag is used to overcome
fuselage drag. Experimental work was carried out in a wind tunnel and RANS based calculations
were made using a number of different turbulence models on the isolated fuselage. Active flow
control was employed to reduce the drag at the rear ramp of the fuselage where separation occurs.
The experiment was conducted at a Mach number of 0.1 and a fuselage-length based Reynold’s
number of 1.6 million. Computations were carried out using OVERFLOW developed by NASA
and elsA developed by ONERA. It was found that the inclusion of the sting and windtunnel in
the CFD model, made little difference to the separation. The fuselage was analysed at two angles
of attack, 0 and 5 degrees. Mach 0.1 was selected here because CD was constant above Mach
0.09. Figure C.2 shows the HMB solution along with the experimental data for this fuselage at
0 degrees angle of attack and free stream Mach number of 0.1. The calculation was run with
a CFL number of one (although this could be increased comfortably) and the κ − ω turbulence
model. The grid size was approximately 3 million cells. The total drag coefficient obtained was
approximately 0.012 based on the front view cross-sectional area of the fuselage with a negligible
lift coefficient. Figure C.3 shows how the rear ramp gradient can be changed by modifying the
parameters, showing a possible problem suitable for optimisation. The pressure contours and
streamlines are also shown depicting separation at the rear of the fuselage.

Figure C.2: ROBIN-mod7 fuselage Cp comparison from Schaeffler et al. at 0 degrees angle of attack and
Mach number 0.110
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(a)

(b)

(c)

(d)

Figure C.3: ROBIN-mod7 fuselage (a) with varying rear-ramp gradient, (b) with surface pressure contours,
(c) with Cp distributions along the fuselage main axis (d) with Reynolds turbulence and streamlines showing
separated region.
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C.3 HARTII

The aim of the HART-II (Higher harmonic control Aeroacoustics Rotor Test) rotor test was to
investigate rotor wake measurements using PIV techniques and obtaining data about airloads,
acoustics and blade deflection108 . The rotor test stand, called ROTEST, was used to support
the rotor (shown in Figure C.4). The test facility, consists of the drive system, the rotor balance,
the control system, and the measuring system. It is designed for model rotors and contains all
the test systems while causing the least interference acoustically and aerodynamically as possible.
(www.dlr.de/ft/en/desktopdefault.aspx/tabid− 1387/1915read− 3372//r/)

The test was carried out at a free stream Mach number of 0.2 and Reynold’s number of 2 million
with an angle of attack of -6 degrees155 . The grid size was approximately 2 million cells. The CL

obtained was 0.002838 and the CD was 0.163, 79% of which was pressure drag.

Figure C.4: HARTII test showing ROTEST system.
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Figure C.5: HARTII fuselage at angle of attack -6 degrees, Mach 0.1 and Reynold’s number 1 million.
The contours are pressure contours.
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Figure C.6: HARTII fuselage at angle of attack -6 degrees, Mach 0.1 and Reynold’s number 1 million.
Slices showing the pressure curves along the longitudinal axis.

x = 1.6 x = 1.8 x = 2.0

Figure C.7: HARTII fuselage at angle of attack -6 degrees, Mach 0.1 and Reynold’s number 1 million.
Pressure contours and streamlines showing sdeparated regions.
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Appendix D

CD Contents

PhD thesis

Publications:
Journal Papers:
Optimisation of Aspects of Rotor Blades in Forward Flight, Int. J. Engineering Systems
Modelling and Simulation, 2012.
A Framework for Optimising Aspects of Rotor Blades, The Aeronautical Journal, 2011.
A Framework for the Optimisation of a BERP-like Blade, Journal of Aircraft (review).
Papers in Conference Proceedings:
Optimisation of Aspects of Helicopter Rotor Blades and Fuselage, 37th ERF, 2011.
Optimising Aspects of Rotor Blades in Forward Flight, 49th AIAA, 2011.
Rotor Tip Optimisation in Forward Flight, 46th Symposium of AARB (ERF), 2011.
Development of a Framework for Optimising Aspects of Rotor Blades, 66th AHS, 2010.

ICEMCFD Projects
BERP-like tip: Forward flight, hover grids and ICEM replay files.
UH60-A: Forward flight, hover grids for optimum UH60-A blade.
Rectangular Blade: Hover grid for the NACA 0012 blade.

Fuselage:
ROBIN: replay script, geometry and blocking files with additional parts.
ROBIN-mod7: replay script, geometry and blocking for 3 versions of ROBIN-mod7.
JAXA JMRTS: replay script, geometry and blocking, program files for modification.

Aerofoils:
NACA example: NACA 0009.
RAE 2822.

Wing Planform: geometry, blocking, grid and replay file.

Poster : Optimisation of Rotor Blades using Computational Fluid Dynamics, C.S. John-
son and G.N. Barakos.
Internal Reports
TN10-013: A Parametric Mesh Generation for HMB, containing an example.
TN12-003: Actuator Disk Models in HMB.
TN10-022: A Metamodel and Optimisation Procedure for HMB, containing an ANN,
Kriging and Genetic Algorithm Package.
TN10-BERP: BERP tip Grid Generation Technique in ICEMCFD.
TN10-UH60: Parameterisation Technique for the UH60-A blade.
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