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Nathan RyderSkein based invariants and the Kau�man polynomialAbstra
tThis thesis uses Kau�man skein theory to give several new results. We showa 
orresponden
e between Kau�man and Hom
y satellite invariants with 
oef-�
ients modulo 2, when we take 
ertain patterns from the respe
tive skeins ofthe annulus. Using sta
ked tangles we 
onstru
t a polynomial time algorithmfor 
al
ulating the Kau�man polynomial of links, and then extend the theoryto give a new polynomial time algorithm for 
al
ulating the Hom
y polyno-mial. We show that the Kau�man polynomials of genus 2 mutants 
an di�er,and improve on existing examples showing the non-invarian
e of the Hom
ypolynomial under genus 2 mutation. By expressing twists as single 
rossingsand smoothings in the Kau�man skein we develop an algorithm for 
al
ulatingthe Kau�man polynomial of pretzel links. Finally we 
onsider the result ofsome 
al
ulations in the Kau�man skein of the annulus.
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Introdu
tion
The work of this thesis is 
entred around various results 
on
erning the Kau�-man polynomial invariant for links. The results 
over a range of aspe
ts andappli
ations, and all are related to the Kau�man polynomial in some way.While the work of Chapter 4 is an algorithm for 
al
ulating the Hom
y poly-nomial, it is motivated by the work of Chapter 3 related to the Kau�manpolynomial.We begin in Chapter 1 by introdu
ing some of the ba
kground material thatis ne
essary for the new material 
ontained in the thesis. We begin with thepreliminary notation for knots and links, dis
ussing Reidemeister moves andpresentations for links, as well as the 
on
epts of satellite links and mutation ofknots. I give the skein relations that I will take for the Kau�man and Hom
ypolynomial invariants throughout this thesis, ex
ept where noted otherwise.Chapter 2 
ontains a proof of a re
ent 
onje
ture [39℄ whi
h is itself anextension of a mu
h earlier result [54℄. The result 
on
erns a 
orresponden
ebetween the Kau�man and Hom
y polynomials of 
ertain satellites of links.This is proved by 
onsidering bran
hing rules of basis elements in the Kau�manand Hom
y skeins of the annulus. These are eigenve
tors of meridian maps,and it is by 
onsidering them in this manner that we are able to prove the mainresult (Theorem 2.14):\De
orate ea
h 
omponent Li of a framed unoriented link L by y�(i). Thesquare of the Kau�man polynomial of this de
orated link with 
oeÆ
ients inZ2[v�1; s�1℄ is equal to the Hom
y polynomial of L when ea
h Li is de
oratedby Q�(i);�(i) with 
oeÆ
ients in Z2[v�1; s�1℄, with the empty diagram taking the1



normalisation of 1 for both invariants."In Chapter 3 we 
onstru
t an algorithm for 
al
ulating the Kau�man poly-nomial of a link. We start with sta
ked k-tangles and represent them as k-sequen
es. We 
onsider how braid generators a
t on k-sequen
es; the 
on
eptof 
ompatibility of braid generators with k-sequen
es allows us to derive 
on-ditions, Propositions 3.2 and 3.3 that ensure that a k-sequen
e is 
ompatiblewith a generator. Subsequently we show that it is possible to express an in
om-patible k-sequen
e as a linear 
ombination of Kau�man equivalent k-sequen
es(Proposition 3.8). This is the foundation of an algorithm for 
al
ulating theKau�man polynomial of a link presented as a k-plait. This algorithm works inpolynomial time; while it was previously known that su
h a polynomial timealgorithm was possible in prin
iple [49℄, the algorithm presented in this thesisappears to be the �rst algorithm to do so.Chapter 4 details an extension to the theory of Chapter 3, whereby weextend the 
onstru
tion of sta
ked k-tangles to oriented sta
ked k-tangles, al-lowing us to 
onstru
t a polynomial time algorithm for 
al
ulating the Hom
ypolynomial of a link presented as a plait. While this is not the �rst algorithmthat allows polynomial time 
al
ulation of the Hom
y polynomial of a link, un-like previous algorithms it does so without needing to work from 
losed braidpresentation of the link. We show several sets of examples whose Hom
y poly-nomial 
ould not be 
al
ulated using previous algorithms (owing to their braidindex being too large). We end the 
hapter by 
onsidering extensions to thework of both 
hapters. Some ideas related to improving the algorithms are
onsidered, as well as 
onsidering other situations where the prin
iples of thealgorithm 
ould be developed.In Chapter 5 we show the non-invarian
e of the Kau�man polynomial undergenus 2 mutation of knots. The work of this 
hapter was motivated by a re
entpaper [15℄, and the results that we show in the 
hapter have been submittedfor publi
ation [44℄. The non-invarian
e of the Kau�man polynomial for genus2 mutants was assumed to be true, but was hard to show with spe
i�
 exam-ples owing to the general diÆ
ulty of 
al
ulating the Kau�man polynomial for2




ompli
ated knots. We take knots presented in genus 2 handlebodies, whi
hgive us a 
onstru
tive environment for developing examples. We show throughan indire
t method that pairs of genus 2 mutants exist whi
h have di�erentKau�man polynomials: we give expli
it examples, most notably those of The-orems 5.6 and 5.8. In doing so we also obtain new and more simple examplesthat show non-invarian
e of the Hom
y polynomial under genus 2 mutation.We also re
ord some interesting features about Vassilliev invariants for theseexamples.Chapter 6 is an a

ount of an algorithm for 
al
ulating the Kau�man poly-nomial of pretzel links. The method 
omes dire
tly from 
onsidering the regularstru
ture of pretzel links with respe
t to the Kau�man skein. The key result,Theorem 6.8, shows that we 
an take a pretzel and express its Kau�man poly-nomial as a linear 
ombination of the Kau�man polynomials of mu
h simplerdiagrams. I give details of the algorithm and how it 
ould be implemented inMaple based both on the re
urren
e relations that I develop and generatingfun
tions that arise from these.In Chapter 7 I present some 
al
ulations in the Kau�man skein of theannulus whi
h are motivated by previous results in the Hom
y skein of theannulus [38℄. We explore a family of examples, 
onsisting of 
losed braids inthe annulus with two boundary points. The results obtained are from expli
it
al
ulations for the �rst examples in the family, but unfortunately I was notable to realise a more general result for the family. However, I o�er a 
onje
ture(Conje
ture 7.10) on the general result.I 
on
lude with several appendix 
hapters. Appendix A 
ontains listingsfor the Maple implementations that I have 
reated in relation to algorithmsfor 
al
ulating the Kau�man and Hom
y polynomials of k-plaits. There aresubstantial 
omments for the 
ode in both 
ases. In Appendix B I give plaitpresentations for all of the knots up to 10 
rossings: while there are manyresour
es for knots presented as braids I have not 
ome a
ross a list of plaitpresentations in all of the literature that I have seen.
3
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Chapter 1Ba
kground Material
1.1 Introdu
tionIn this 
hapter we introdu
e most of the basi
 de�nitions in knot theory thatwe will be using within the rest of this thesis. We begin with fundamental
on
epts, su
h as what we de�ne a knot or a link to be. Following a dis
ussionof Reidemeister moves and framing, we look at presentations for knots in termsof braid and plait diagrams. We 
onsider polynomial knot invariants as ways ofdistinguishing knots, and give de�nitions for the Kau�man and Hom
y invari-ants. Finally we give the de�nition of mutation of knots, and the 
onstru
tionfor 
reating satellites of knots.1.2 Knots and LinksMany of the de�nitions given in this 
hapter are in
uen
ed by de�nitions givenin [14℄ and [29℄.De�nitionA knot, K, is a smooth embedding of S1 in R3 (or S3). We 
an also
onsider it as a simple, 
losed 
urve without interse
tions in R3 (or S3).

5



De�nitionA link, L, of l 
omponents is an embedding of l 
opies of S1 in R3 (orS3); as with a knot, we 
an also 
onsider it as l simple, 
losed 
urves withoutinterse
tions in R3 (or S3).There will be instan
es when we are parti
ularly 
on
erned with links ofmore than one 
omponent, or of stri
tly one 
omponent; in these 
ases we willdraw spe
i�
 attention to the number of 
omponents involved. Unless otherwisestated, we will use the term knot to en
ompass links in general.The unknot, in the 
ontext de�ned above, is a 
urve that is the boundaryof an embedded pie
ewise linear dis
 in R3 (or S3).The fundamental problem in knot theory is being able to state whether ornot two knots K1 and K2 are di�erent obje
ts, or whether K2 is some suitablydistorted version of K1. For our purposes an initial de�nition of equivalen
ethat we 
an give is as follows.De�nitionKnots K1 and K2, as de�ned previously, are equivalent if there is anorientation-preserving homeomorphism f : S3 ! S3 su
h that f(K1) = K2.De�nitionA diagram of a knot K is a generi
 proje
tion of the 
urve in R3 to theplane with the information of how ar
s 
ross 
learly indi
ated, i.e., we do notmark the 
rossing of two ar
s with a singularity, but distinguish how they 
ross.We allow no tangen
ies or interse
tions of three strands.There are in�nitely many possible diagrams of a knot K, depending on theproje
tion and on the embedding of the 
urve. The simplest diagram of a knotis the most simple diagram of the unknot, as seen in Figure 1.1.De�nitionA knot is given an orientation by 
hoosing a dire
tion that the 
urvedes
ribing the knot travels. We orient a link by 
hoosing a dire
tion for ea
h
omponent of the link. 6



Figure 1.1: The unknot
Hen
e for an l 
omponent link there are 2l ways that it 
an be presented asan oriented link.For our purposes, it is 
onvenient to 
onsider a diagram of a knot as beingequivalent to the knot itself. As we will be 
onsidering diagrams of knots weneed to explore what 
onditions must be satis�ed in order for two diagrams tobe equivalent.The diagrams in Figure 1.2 are equivalent; in the next se
tion we 
onsiderthe basi
 moves that allow us to relate diagrams of knots in the plane.

Figure 1.2: Two diagrams of the trefoil
1.2.1 Reidemeister MovesThere are three Reidemeister moves [51℄, whi
h we see in Figure 1.3. Theserelate diagrams of knots in the plane.The Type I move, to the left in the �gure, allows us to add or remove a\kink" in the diagram. The Type II move, in the 
entre of the �gure, showsthat we 
an separate two ar
s where one 
rosses over the other in two pla
es.The Type III move, to the right of the �gure, is the only one of the Reidemeister7



Figure 1.3: The Reidemeister Movesmoves where the number of 
rossings of the diagram is preserved; appli
ationsof Type I and Type II moves ne
essarily de
rease or in
rease the number of
rossings in the diagram.The Reidemeister moves are essential tools as they provide the frameworkfor de
iding if two knot diagrams are equivalent.Theorem 1.1 (Reidemeister [51℄) Two links L1 and L2 are equivalent ifand only if a diagram of L2 
an be obtained by applying a �nite number ofReidemeister moves to a diagram of L1.An equivalent statement of this theorem is to say that any two diagrams of alink are related by a �nite sequen
e of Reidemeister moves.This is an important theorem, but at the same time it provides no insightas to how one should go about applying Reidemeister moves in order to showthat two knots are equivalent.For two di�erent knots there will be no sequen
e of Reidemeister movesthat takes a diagram of one to a diagram of the other, but if we do not alreadyknow that they are di�erent obje
ts how 
an we show that they are di�erentpurely by 
onsidering Reidemeister moves?In due 
ourse we will introdu
e some of the properties that are used todistinguish knots. Ideally one would want a property that is easily 
al
ulable,is invariant under appli
ation of Reidemeister moves, and able to distinguishall knots; however, the tools that we possess at present do not satisfy this wishlist. 8



1.2.2 Framed LinksFramed links are obtained by spe
ifying a parallel 
urve in the neighbourhoodof ea
h 
omponent of a link; ea
h parallel 
urve 
an be spe
i�ed by an integerthat is the linking number of the parallel with the original 
omponent.A framed knot is related to a ribbon diagram by 
onsidering the knot tobe des
ribed by a 
at ribbon rather than a 
urve, with the two boundaries ofthe ribbon representing the original knot and its parallel. The framing of theknot is the linking number of the image of the ribbon with the knot, and we
an extend this idea to 
onsider framed links.By drawing a link lying in the plane with the parallel running beside it weobtain the framing that is referred to as the bla
kboard framing. We 
an 
onsiderthe bla
kboard framing as being obtained by 
onverting ea
h 
omponent to aribbon lying 
at on the plane. The Type I Reidemeister move 
hanges thebla
kboard framing as it 
hanges the number of twists in a ribbon. Type IIand Type III Reidemeister moves do not 
hange the bla
kboard framing.1.3 PresentationsThere are advantages to be found by 
onsidering knots and links in a parti
ularform or format. Expressing a diagram of a knot in a 
ertain way 
an sometimesbe enough to distinguish it from another knot. In this se
tion we 
onsider twotypes of presentation that will be used several times in this thesis, as well assome of the 
onsequen
es of their de�nition.1.3.1 BraidsArtin gave the �rst de�nitions of the braid group ([3℄, [4℄), although Gausshad previously 
onsidered braids as an interesting and useful way to re
ordinformation about knotted ar
s.Geometri
ally we 
onsider a word in the braid group on n strings to be nmonotoni
ally des
ending 
urves that 
ross over ea
h other freely. Consider9



the example of Figure 1.4: this is representative of any braid in that we see noturnba
ks and if we were to make a horizontal 
ut through the braid at anypoint we would meet ea
h string only on
e.
Figure 1.4: A braid on 4 stringsWe denote the braid group on n strings by B n , and 
onsider a generator�i to geometri
ally be the ith string 
rossing over the (i + 1)th string as inFigure 1.5. We 
onsider inverses ��1i to be the (i + 1)th string 
rossing overthe ith string.

1 i i+ 1 n� � � � � �Figure 1.5: Braid generator �iThus the braid group on n strings has n � 1 generators, �1; : : : ; �n�1, andthe group has relations�i�j = �j�i ji� jj > 1�i�i+1�i = �i+1�i�i+1 1 � i � n� 2:The se
ond relation 
orresponds to a Type III Reidemeister move. We 
losea word in the braid group by taking the endpoints at the top of the diagramto their 
orresponding endpoints at the bottom of the braid. The 
losure of aword in the braid group gives us a link (see Figure 1.6).This leads to the following theorem.10



�� � �� � �Figure 1.6: Braid 
losure for � 2 B nTheorem 1.2 (Alexander [1℄) Every link 
an be expressed as the 
losure ofsome word in the braid group B n for some n.De�nitionThe braid index of a link, br(L), is the minimum number of stringsrequired to express it as the 
losure of an element in a braid group.There are various methods for putting a diagram of a link in to a braidpresentation; some of these 
an be diÆ
ult to implement when we 
onsiderthe diagram that we start with. Also, these methods do not guarantee thatthe resulting word from a braid group will be a word on a minimal number ofstrings for the link. Expressing a link as a braid risks in
reasing the number of
rossings in the diagram, and sometimes dramati
ally so ([36℄, [60℄, [61℄).Many sour
es state that the orientation of braid strings should be the samein a braid presentation. Orientation is important when we 
onsider some ofthe invariants for knots, and will have some importan
e for some of the newresults that we present, but we will for the most part think of braids purely interms of how the strings lie relative to ea
h other.We will not 
onsider braid presentations dire
tly in this thesis, but we willborrow the terminology of braids for other purposes. The following format ofpresentation uses braid notation. 11



1.3.2 PlaitsThe foundation of a plait presentation is the same as that for a braid presen-tation, namely a braid word.De�nitionA k-plait is a braid word � 2 B 2k , 
losed o� with k 
aps at the top and k
ups at the bottom, a

ording to the diagram in Figure 1.7.
� � � �
� � �Figure 1.7: Plait presentation for � 2 B 2kOther authors have used the term \2k-plat" to represent the same obje
twe des
ribe here; see [6℄ and [7℄ for some examples.Theorem 1.3 Every link has a k-plait presentation, for some k.ProofTake lo
al maxima and minima in a diagram, and drag these to the top andbottom of the pi
ture respe
tively. It is possible that this will add extra 
ross-ings to the diagram due to Type II Reidemeister moves. If ne
essary, we 
ombthe stru
ture in between maxima and minima so that ar
s are monotoni
.At times I des
ribe a k-plait as being a plait presentation with width k. Aswith braid presentations, plait presentations of links are not unique. The mainadvantage of plait presentations is that they are generally easier to obtain thanbraid presentations.Brie
y we need to 
onsider bridge presentations and how they relate to plaitpresentations. 12



De�nitionWe 
an arrange a knot so that it lies 
ompletely in the plane ex
ept for a�nite number of bridges { ar
s whose proje
tion to the plane result in disjointstraight lines 
rossing over the ar
s in the plane. An embedding su
h as this is
alled a bridge presentation.See Figure 1.8 for a bridge presentation of the trefoil. The original 
on-stru
tion of bridge presentations is due to S
hubert [56℄.
Figure 1.8: Bridge presentation of the trefoilDe�nitionThe bridge number of a bridge presentation is the number of bridges inthe diagram. We de�ne the bridge index as the minimum number of bridgesrequired over all presentations for the knot.Note that I give a slight di�eren
e in my de�nitions to other writers; othersuse the terms bridge number and bridge index to denote the same 
on
ept.Lemma 1.4 ([9℄, 145 { 146) A knot with a k-plait presentation 
an be pre-sented as a diagram with bridge number k.This leads to a very neat result about the width of plait presentations.Corollary 1.5 The width of a plait presentation of a knot K is an upper boundon the bridge index of K.An easy example of this is the knot 62, whi
h 
an be seen in Figure 1.9. Thishas an obvious 3-plait presentation, but has bridge index 2; in this 
ase one13




an obtain a 2-plait presentation with little diÆ
ulty, but for more 
ompli
atedknots this might not be so 
lear.
Figure 1.9: The knot 62Of 
ourse, giving a plait presentation of a knot with minimal width doesnot guarantee that it will have minimal 
rossing number.The work of Chapter 3 and Chapter 4 draws on the ideas of plait presen-tations in order to 
al
ulate 
ertain knot invariants, whi
h we now need todis
uss.1.4 Knot InvariantsThe main approa
h that has been taken in the development of tools for distin-guishing knots has been to �nd properties of knots, parti
ularly properties thatare invariant a
ross all diagrams of a knot. Some of the early knot invariantsand properties are relatively easy to de�ne and obtain, but do not distinguishbetween many knots.De�nitionThe 
rossing number of a knot, 
(K), is the minimal number of 
rossingsover all diagrams of a knot.We have already stated that showing two diagrams represent the same knotis generally a hard problem, as is showing that two diagrams are of di�erentdiagrams. Imagine a diagram of a very 
ompli
ated knot; we 
an 
ount thenumber of 
rossings that the diagram has, but all that this gives us is a boundon 
(K).The number of knots with 
rossing number n grows rapidly as n in
reases,14



as we 
an see in Table 1.1. The knot tables are a great resour
e [52℄; however,even if we have a diagram of a knot with minimal 
rossing number it may beradi
ally di�erent from the diagram re
orded in one of the knot tables.Crossing number Number of knots< 9 8410 16511 55212 217613 998814 4697215 253293Table 1.1: Number of knots with a 
ertain 
rossing numberIf we are to de�ne a property to help us distinguish between knots thenideally we need a property that is invariant a
ross all possible diagrams for aknot K. In order for this 
ondition to be satis�ed we need a property that doesnot vary under appli
ation of Reidemeister moves to diagrams.The 
lass of invariants that we will 
onsider in this thesis are polynomialinvariants. We take a diagram of a knot and apply a method to produ
e apolynomial for that knot. As these properties are invariant, they do not dependon the diagram that we begin with in order to 
al
ulate the property.Stated more formally, let p be an invariant property based on diagrams ofknots; if K1 and K2 are diagrams of the same knot then p(K1) = p(K2). How-ever the 
onverse is not always, or often, true; all of the polynomial invariantsthat we will dis
uss have examples where p(K1) = p(K2) for diagrams K1, K2that are not equivalent. A truly valuable invariant for knots would be one su
hthat K1 � K2 if and only if p(K1) = p(K2), and where the property is readily
al
ulable in prin
iple: however, the 
omplexity of a diagram might in itselfimpose some restri
tion on the ease of 
al
ulation for a property.15



1.5 Polynomial Invariants1.5.1 HistoryThe �rst polynomial invariant for knots was developed by Alexander [2℄. TheAlexander polynomial is a property for oriented links in one variable. It 
annotdistinguish between re
e
tions of knots.Although Conway developed a polynomial invariant in the 1960s this wasin fa
t the Alexander polynomial in another guise [12℄. In the mid 1980s Jonesdis
overed a one-variable polynomial invariant for knots that wasn't related toAlexander [22℄; this was known almost immediately be
ause it distinguishedthe left- and right-handed trefoils.The Jones polynomial (for oriented links) was qui
kly followed by the two-variable Hom
y ([17℄, [50℄) and Kau�man ([24℄, [25℄) polynomials.In this thesis we are 
on
erned with new results for the Kau�man andHom
y polynomials. We take a skein theoreti
 approa
h to 
al
ulating them,and give parti
ular sets of skein relations for ea
h of the invariants that we
onsider.1.5.2 Hom
yThere are many di�erent ways that one 
an de�ne the Hom
y polynomial.There are some variations on skein relations whi
h give the same invariant buthave di�erent algebrai
 properties, and we will dis
uss some of these as andwhen the need arises.
L+ L� L0Figure 1.10: Diagrams for the Hom
y skeinWe 
onsider three related diagrams, L+, L� and L0, whi
h are diagrams for16



oriented links that are identi
al ex
ept in the neighbourhood of a single 
rossing;in that neighbourhood we have oriented ar
s as indi
ated in Figure 1.10.The skein relations for the Hom
y polynomial P 0, and for the other knotpolynomials, work by relating the knot polynomials of related diagrams whi
hdi�er only in the neighbourhood of a single 
rossing. One set of skein relationsfor the Hom
y polynomial, in variables z and v, arev�1P 0(L+)� vP 0(L�) = zP 0(L0);with the value of the unknot set to be 1.For our purposes it will be 
onvenient to use the skein relations for theframed Hom
y polynomial [24℄. As before, this is a polynomial in two variablesz and v, and we relate the polynomials of the links L+, L� and L0 with therelation P (L+)� P (L�) = zP (L0):We set the Hom
y polynomial of the regular unknot diagram to be 1, andremove a simple loop, using a Type I Reidemeister move, at the expense ofmultiplying by a power of v�1, a

ording to Figure 1.11. We remove a disjointunknot from a diagram by multiplying by Æ = v�1�vz .= v�1 = v
Figure 1.11: Type I Reidemeister moves in the Hom
y skeinWe use these framed skein relations for our 
al
ulations with plait pre-sentations in Chapter 4. In Chapters 2, 5 and 6 we will 
onsider taking thepolynomial in terms of variables s and v, where z = s� s�1.If we take the diagram of a link L (that we wish to 
al
ulate the Hom
ypolynomial of) to be one of L+ and L� then we have a way of relating theHom
y polynomial of L in terms of the Hom
y polynomials of two other links.17



By repeating this pro
ess and removing kinks we will end up with a linear
ombination of unknots, whi
h, having value 1, give us the Hom
y polynomialof the original link L as the sum of the 
oeÆ
ients.At the end of this se
tion we 
onsider problems with 
al
ulating polynomialinvariants in this way; before 
onsidering the Kau�man polynomial we givesome results for the Hom
y polynomial that will be 
alled on later in thethesis.Lemma 1.6 Reversing the orientations of all of the 
omponents of a link Lleaves the Hom
y polynomial invariant.ProofThis 
an be observed simply by noting that the skein relations for Hom
y areun
hanged by reversing the orientation of the 
rossings.Lemma 1.7 ([17℄, [28℄, [50℄) We 
an re
over both the Alexander and Jonespolynomials by making a substitution of variables in the Hom
y polynomial.For Alexander we see that�(t) = P (v = 1; z = t 12 � t� 12 )and we re
over Jones with the substitutionV (t) = P (v = t; z = t 12 � t� 12 ):In some sense then the Hom
y polynomial is a parent invariant of both theAlexander polynomial and the Jones polynomial.Theorem 1.8 ([16℄, [35℄) Let E be the largest power of v in the Hom
y poly-nomial of a link, and e be the smallest power of v. Then the braid index of thelink, br(L), is bounded in the following way:br(L) � 12(E � e) + 1:Theorem 1.8 will be of use in Chapter 4 when we look at a bound on the braidindex of 
ertain examples.We move on to 
onsider the polynomial invariant that we will be 
onsideringfor most of this thesis. 18



1.5.3 Kau�manWe de�ne the Kau�man two-variable polynomial from skein relations. Thisis an invariant for unoriented links, and the skein relations relate diagrams offour links. In this thesis we refer to the Dubrovnik relations for the Kau�manpolynomial as in [25℄ and [28℄.We de�ne four links whi
h are identi
al ex
ept in the neighbourhood of asingle 
rossing; one takes a right-handed 
rossing (L+, whi
h we 
onsider with-out orientation in this setting), one a left-handed 
rossing (L�) and the othertwo take the two possible kinds of smoothing (L0 and L1) as in Figure 1.12.
L+ L� L0 L1Figure 1.12: Diagrams for the Kau�man skeinThe Kau�man polynomial of a link, D(L) is a polynomial in two variablesz and v. The value of the unknot is normalised as 1 and the main Kau�manskein relation is D(L+)�D(L�) = z(D(L0)�D(L1)):On
e again we remove simple loops at the expense of multiplying by a power ofv�1, a

ording to Figure 1.13. As with the Hom
y polynomial we 
an remove a= v�1 = v

Figure 1.13: Type I Reidemeister moves in the Kau�man skeindisjoint unknot from a diagram at the expense of multiplying by Æ = v�1�vz +1.19



1.5.4 The Kau�man Skein ModuleDe�nitionLet F be an orientable surfa
e. The Kau�man skein module of F � I,denoted by K(F � I), is the Z[z�1; v�1℄-module freely generated by isotopy
lasses of bla
kboard framed links in F � I in
luding the empty link modulothe Kau�man skein relations.In the 
ase that F has a boundary with distinguished points, K(F � I) isthe Z[z�1; v�1℄-module freely generated by isotopy 
lasses of bla
kboard framedlinks and framed ar
s 
onne
ting the distinguished points, modulo the Kau�-man skein relations.In this thesis there will be three settings that we work in. In the generalsetting that we have already laid out we 
onsider F = S2. In Chapter 3, when
onsidering sta
ked k-tangles we will 
onsider F as a re
tangle with 2k points.In Chapter 7 we will 
onsider some 
al
ulations in the skein of the annulus,and in parti
ular when F is the annulus with two boundary points, one pointon ea
h boundary. Elements in this skein module are 
omposed by pla
ing oneannulus inside the other and 
onne
ting endpoints. This 
omposition is 
learly
ommutative.1.5.5 Cal
ulating Polynomial InvariantsIn general, when 
al
ulating either the Hom
y or Kau�man polynomial of aknot we begin by 
onsidering one diagram, and express it as a linear 
ombina-tion of the invariant of two or three other diagrams. We repeat the pro
ess forea
h of the diagrams that we have obtained, repeating again and again untilwe have a linear 
ombination of disjoint unknots.There will be situations where we 
an use the Type I Reidemeister moveto simplify a diagram, at the expense of multiplying by a power of v, but ingeneral we will not be able to redu
e many 
rossings in a diagram this way.While we might be able to use the Type I move and some other tools to make the
al
ulations easier, we are still fa
ed with an approa
h that takes exponentially20



longer with ea
h extra 
rossing that the starting diagram has.Another approa
h that one might take is to use a table of invariants for knotsup to a 
ertain number of 
rossings, and then when our 
al
ulations rea
h a
ertain point using the previous method we 
an express the invariant in termsof the previously 
al
ulated invariants. However, there are over three hundredthousand knots with less than 16 
rossings and this only in
ludes obje
ts withone 
omponent. Not only would any system working in this way need to beable to re
ognise whi
h knot is being represented by a diagram, but we wouldalso have to have a large resour
e that we are able to 
all on 
ontaining the
al
ulated invariants.When 
al
ulating polynomial knot invariants, even those of one variable,we rea
h a point where we 
annot make 
al
ulations by hand. Owing to theexponential nature of the methods outlined, no matter how powerful a 
omputerwe use to aid us in our 
al
ulations we will always rea
h a point where we simply
annot do any more due to the number of 
rossings in a diagram. Perhaps thisis not something that 
an be avoided, owing to the nature of the skein relations.However, as we shall see in Chapters 3 and 4, by restri
ting the setting thatwe work in, we 
an give polynomial time methods for 
al
ulating polynomialinvariants of 
ertain 
lasses of knots.1.6 MutationThere are many di�erent ways that we 
an de�ne families of knots, i.e., knotsthat have some relation between them. In terms of braid diagrams, for example,we 
ould say that the 
losures of braids �m for some braid � 2 B n and m 2 Zform an in�nite family of links. We will 
onsider some examples of this typelater in the thesis.One of the most well known 
on
epts for a family of knots are knots thatare related by mutation [12℄.De�nitionConsider two knots K and K 0. Take a ball in S3, T , su
h that K meets21



the boundary of T in exa
tly four pla
es equally pla
ed around the equator.Remove T and rotate it through � radians around an axis and then repla
e it.If by performing this a
tion we obtain the knot K 0 then K and K 0 are said tobe related by mutation.If K and K 0 are related by mutation we say that K 0 is a mutant of K.The most well known pair of mutant knots are those of Kinoshita-Teresaka andConway, whi
h we see in Figure 1.14. These are the �rst knots in the knot
Figure 1.14: Kinoshita-Teresaka and Conway knotstable related by mutation. Mutants are an important 
lass of knots, primarilybe
ause of the following result.Theorem 1.9 ([28℄) Links related by mutation have identi
al Hom
y and Kau�-man polynomials. Hen
e they will also have the same Alexander and Jonespolynomials.Conway �rst observed that the Alexander polynomial was un
hanged by muta-tion; the observation of Li
korish is on the same prin
iple [28℄. Whi
hever skeinrelations we are using, the expression of the diagram 
ontained in T as a linear
ombination of basis elements is un
hanged by any of the three rotations. The
ontribution outside of T is un
hanged, and hen
e K and K 0 will share Hom
yand Kau�man polynomials.We 
onsider mutation in Chapter 5 in the 
ontext of genus 2 mutation andhow the Hom
y and Kau�man polynomials are e�e
ted by that a
tion.22



1.7 SatellitesAn interesting area of study in knot theory is that of satellites of knots andlinks, �rst introdu
ed in [55℄. In Chapter 2 we 
onsider some interesting newresults regarding knot polynomials and satellites, but �rst we de�ne what wemean by the satellite of a knot.De�nitionTake a framed knotK in the plane and also a framed knot P in the annulus.The knot K � P is a satellite of K with pattern P , de�ned by embedding thepattern P into the neighbourhood of the 
urve of K.See Figure 1.15 for an example of patterning the trefoil with a simple knot-ted 
urve from the annulus.
Figure 1.15: Creating a satellite of the trefoilThis is the standard way to de�ne the satellite of a knot.De�nitionThe m-parallel of a knot K is the satellite link obtained when the patternP 
onsists of the 
losed identity braid on m strings in the annulus.De�nitionThe reverse parallel of a knot K is the oriented satellite link obtainedwhen the pattern P 
onsists of the 
losed identity braid on 2 strings, with thestrings oriented in di�erent dire
tions.See Figure 1.16 for examples of these patterns. In Chapter 2 we 
onsider23



� � �
Figure 1.16: Patterns for m-parallels and reverse parallelsindexing patterns in a 
ertain way, as linear 
ombinations of links in the an-nulus. We also 
onsider patterning a link by running di�erent patterns aroundea
h of the 
omponents in the link.1.7.1 Distinguishing MutantsAs well as giving interesting families of knots to 
onsider, satellite knots alsoallow us to make some headway in distinguishing knots that are related bymutation. While the Hom
y polynomials of two mutant knots K and K 0 areidenti
al, for a suitable pattern P it 
an be seen that K � P and K 0 � P havedi�erent Hom
y polynomials. The di�eren
e in Hom
y polynomials betweenK � P and K 0 � P is due to the geometri
 di�eren
e between K and K 0, andso polynomial invariants of satellites 
an be used to distinguish knots relatedby mutation. Invariants of 2-parallels of knots will not distinguish mutants([30℄, [48℄), as the basis of the rotated tangle will not be 
hanged by the a
tionof the rotation, even if there are 2-parallels running through.The rotation of the basis of these tangles will be di�erent for m-parallelsfrom m = 3 onwards [46℄, and there are results where 
ertain 3-parallels dis-tinguish mutant pairs. This gives the �rst opportunity for a di�eren
e in in-variants, and hen
e a 
han
e to distinguish mutant knots. However, there arealso examples where mutant knots are not distinguished by 3-parallels and wemust use more parallel 
urves in order to distinguish them with satellites [40℄.24



Alexander polynomials of satellites of mutants do not di�er, and so 
annotbe used to distinguish the knots; likewise, the Jones polynomials of 
ables ofmutants do not di�er.As we have stated previously, many approa
hes to 
al
ulating polynomialinvariants are exponential algorithms by nature. An unde
orated m-parallel ofa knot with 
 
rossings gives a diagram with m2
 
rossings. The �rst instan
ethat we 
an use this te
hnique of satellites to distinguish mutants is with 3-parallels, meaning that we have to 
onsider 
al
ulating invariants of knots with9
 
rossings. Re
all that the �rst instan
e of mutant knots are the Kinoshita-Teresaka and Conway knots, ea
h of whi
h have 11 
rossings. A 99-
rossingknot is too 
omplex for most knot polynomial algorithms that 
al
ulate from ageneral diagram of a knot; while there are programs and methods whi
h havesome su

ess with satellite knots, in its general form it is a diÆ
ult problem.
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Chapter 2
Hom
y and Kau�man SatelliteInvariants
2.1 Introdu
tionIn this 
hapter we prove a 
onje
ture of Morton on a relationship between theKau�man polynomial of a satellite of a link and the Hom
y polynomial of areverse parallel satellite of a link [39℄. This is a generalisation of a result ofRudolph whi
h showed a 
ertain 
orresponden
e between the Kau�man poly-nomial of a link and the Hom
y polynomial of the reverse parallel of the linkwhen we 
onsider 
oeÆ
ients modulo 2 [54℄.The ba
kground theory for the patterns for the satellites 
ome from resultsin the Hom
y skein of the annulus ([18℄, [19℄) and the Kau�man skein of theannulus ([5℄, [31℄). The patterns for the satellites are indexed by partitions,and so we begin the 
hapter by 
onsidering some de�nitions of partitions. Wealso show a few results (Lemmas 2.1 and 2.2) in establishing the sizes of 
ertainsets of partitions that will be of importan
e in later results.We develop the bran
hing rules in both skeins, as these ultimately allow usto show a dire
t 
omparison between elements in the two skeins. We show byusing produ
ts of meridian maps and eigenvalues that we 
an obtain expli
it
onstru
tions for patterns in the Kau�man skein of the annulus (Lemma 2.3);27



we then develop similar methods in the 
ase of the Hom
y skein of the annulus(Theorem 2.6), whi
h we re�ne further when 
onsidering elements modulo 2(Lemmas 2.11, 2.12 and 2.13).This 
ulminates in the proof of Conje
ture 2.10 (later restated as Theo-rem 2.14). Throughout the 
hapter we develop results step-by-step so that we
an then show the main result as 
learly as possible.2.1.1 NoteThroughout this 
hapter we 
onsider polynomials with integer 
oeÆ
ients invariables v and s. We allow negative powers of these, and also denominatorsof produ
ts of sr � s�r for r 2 Z n f0g. It is not immediately obvious thatpolynomials of this type form a ring, but in Se
tion 2.5 we show that this isthe 
ase. We denote the ring of these polynomials as Z[v�1; s�1℄.We will also 
onsider polynomials in variables v and s with integer 
oeÆ-
ients modulo 2 (and with the same possible powers and denominators) whi
hwe will denote Z2[v�1; s�1℄. We denote the 
omparison between the two ringssimply as \mod 2" (impli
itly there is a homomorphism a
ting here, whi
h wemention in Se
tion 2.5).2.2 PartitionsMost of the de�nitions of partitions were taken from the ex
ellent introdu
toryse
tions in [33℄.De�nitionA partition � of a positive integer n is a sequen
e of natural numbers(�1; : : : ; �k) with all the �i � 0 and satisfying the following 
onditions:�1 � �2 � : : : � �k�1 + �2 + : : : + �k = n = j�j
28



A partition � = (�1; : : : ; �k) is said to have k parts. One way of representinga partition � is with a Young diagram. This is a 
olle
tion of n 
ells arrangedin rows, with �1 
ells in the �rst row, �2 
ells in the se
ond row and so on (forexample, Figure 2.1).
Figure 2.1: The partition (4; 3; 2) Figure 2.2: (3; 2; 2) � (4; 3; 2)With a slight abuse of notation we denote both the partition and its Youngdiagram by �. The Young diagram for j�j = 0 is the empty diagram.For the purposes of 
omparing two partitions we 
an add a �nite numberof zeros to the number sequen
es. A partition � = (�1; : : : ; �k) is 
ontained ina partition � = (�1; : : : ; �k), denoted � � �, if �i � �i; 1 � i � k. We seethis 
on
ept by 
onsidering Young diagrams for � and �, as in the example ofFigure 2.2.De�nitionFor a partition � de�ne the following sets of partition:�+ = f� : � � �; j�j = j�j+ 1g�� = f� : � � �; j�j = j�j � 1gClearly � 2 �+ , � 2 ��.Lemma 2.1 For a partition �, j�+j = j��j+ 1.ProofLet k be the number of distin
t parts of �. An element of �� is obtained byremoving a 
ell from �, and with k distin
t parts we have k 
ells that 
ould beremoved. Hen
e j��j = k. 29



An element of �+ is obtained by adding a 
ell to �. � has k distin
t partsand so there are k+1 lo
ations where a 
ell 
ould be added. Hen
e j�+j = k+1.Thus j�+j = j��j+ 1.De�nitionFor a partition � de�ne the following two sets:�� = �[ !�; ! 2 �+	 ; �� = �[  +;  2 ��	 :Lemma 2.2 �� � ��.ProofIf ! 2 ��, � 2 �+ and ! 2 ��, � 2 �+, then either � = � or ! = �. If ! 6= �then its Young diagram has exa
tly one 
ell that is not in �, and � has exa
tlyone 
ell that is not in !. Thus if ! 2 �� then either ! = � or ! has exa
tlyone 
ell in its Young diagram that is not in the Young diagram of �, and thereis exa
tly one 
ell in � that is not in !.If  2 
+, 
 2 �� and  2 �+, � 2 ��, then either 
 = � or  = �. If 6= � then its Young diagram has exa
tly one 
ell that is not in �, and � hasexa
tly one 
ell that is not in  . Then if  2 �� either  = � or  has exa
tlyone 
ell in its Young diagram that is not in the Young diagram of �, and thereis exa
tly one 
ell in � that is not in  .Elements in �� satisfy the same 
onditions as elements in ��, and hen
e�� � ��.It follows immediately from Lemma 2.2 that �� n f�g � �� n f�g.De�nitionThe 
ontent of a 
ell x in position (i; j) of the Young diagram of a partitionis 
(x) = j � i.Content values are 
onstant down diagonals in Young diagrams.2.3 The Kau�man Skein of the AnnulusThe initial de�nition of basis elements and their bran
hing rules are due to [5℄,while the eigenvalues of the meridian map are due to [31℄.30



2.3.1 Basis Elements of the AnnulusIn the Kau�man skein of the annulus, K, we have elements y� whi
h are indexedby partitions �, and form a basis of the Kau�man skein of the annulus. They� are eigenve
tors of the meridian map �K : K ! K with eigenvalues
� = (s� s�1) v�1Xx2� s2
(x) � vXx2� s�2
(x)!+ v�1 � vs� s�1 + 1:Clearly the eigenvalues are all distin
t, i.e. 
� � 
� = 0, � = �.The meridian map relation for �K is illustrated in Figure 2.3. We 
onsiderthe meridian as being pla
ed around the annulus.y� y� y��K = = 
�
Figure 2.3: The meridian map �K

2.3.2 Bran
hing RuleThe element y1 is a single string in the skein of the annulus. Multipli
ation is
onsidered as a 
omposition of two elements in the annulus, one annulus beingpla
ed outside the other. For example, 
onsider the 
omposition of y� and y1in Figure 2.4. This a
tion is 
ommutative.The bran
hing rule for the basis elements isy�y1 = X�2�+[�� y�:For a parti
ular � 2 �+ we 
an break up the bran
hing rule to give the followingexpression: y�y1 = y� + X�2�+[��nf�g y�: (2.1)31



y�
Figure 2.4: Composition of y� and y1De�nitionFor partitions �, � with � 2 �+ de�ne polynomial RK(t; �; �) byRK(t; �; �) = Y�2�+[��nf�g(t� 
�):This de�nition, 
ombined with the bran
hing rule, now allows us to give a
onstru
tion for a parti
ular element y� as a linear 
ombination of meridiansand longitudes based around y� for � 2 �+.Lemma 2.3 For partitions �, � with � 2 �+y� = RK(�K; �; �)RK(
�; �; �) (y�y1):ProofApply RK(�K; �; �) to both sides of the bran
hing rule in expression 2.1. Thesum in y� will be 
an
elled, as for ea
h y� there will be a 
oeÆ
ient �K � 
�whi
h will evaluate to 
� � 
� = 0. ThusRK(�K; �; �)(y�y1) = RK(�K; �; �)0�y� + X�2�+[��nf�g y�1A= RK(�K; �; �)(y�)) RK(�K; �; �)(y�y1) = RK(
�; �; �)y�sin
e (�K � 
�)(y�) = (
� � 
�)y� by de�nition.32



Eigenvalues 
� are all distin
t, and so RK(
�; �; �) 2 Z[v�1; s�1℄ is non-zero.Hen
e we 
an divide both sides of the expression by RK(
�; �; �), giving theresult required.Note y� 
an be expressed as a linear 
ombination of some y� (for some � ��; j�j = j� j+1). Thus any y� 
an be expressed as a linear 
ombination of linkedup longitudes and meridians with 
oeÆ
ients from the Kau�man skein of theannulus.We will later 
onsider 
oeÆ
ients modulo 2, and we need to show that
ertain eigenvalues are distin
t modulo 2. We show a more general result andthen show the required result by 
orollary.Theorem 2.4 For partitions � and �,
� � 
� � 0 mod n, � = �; n 2 N ; n � 2:ProofClearly � = �) 
� � 
� � 0 mod n.Take two partitions � = (�1; : : : ; �k); � = (�1; : : : ; �l) su
h that 
� � 
� �0 mod n. Let z�� be the 
ell in position (k; 1) in the Young diagram of � (seeFigure 2.5) and z�� be the 
ell in position (l; 1) in the Young diagram of �.Content values pro
eed along diagonals in Young diagrams so 
(z��) and 
(z��)
z��Figure 2.5: Lo
ation of 
ell z�� in partition �are unique in � and � respe
tively. In parti
ular
(z��) = 1� k < 
(x) 8x 2 � n z��
(z��) = 1� l < 
(x) 8x 2 � n z��33



By the de�nition of 

 and sin
e 
�� 
� � 0 mod n it must be that the 
ontri-butions from these 
ontent values 
an
el, hen
e 
(z��) = 
(z��) ) l = k. Thus� = (�1; : : : ; �k); � = (�1; : : : ; �k), i.e., the Young diagrams have the samenumber of rows.De�ne �(i) = (�i+1; : : : ; �k), �(i) = (�i+1; : : : ; �k) with �(0) = �, �(0) = �.De�ne x��i to be the 
ell in position (i; �i) in � and x��i to be the 
ell in position(i; �i) in �, i.e., the last 
ells in ea
h of these rows. 
(x��i) and 
(x��i) are byde�nition unique in their respe
tive rows, and by similar 
onsiderations topreviously we see 
(x��i) = �i � i > 
(x) 8x 2 �(i�1) n x��i
(x��i) = �i � i > 
(x) 8x 2 �(i�1) n x��iClearly 
(x��1) = �1 � 1 > 
(x) 8x 2 � n x��1
(x��1) = �1 � 1 > 
(x) 8x 2 � n x��1 ;and sin
e the 
ontribution of these 
ontents are unique in their partitions, inorder to have 
� � 
� � 0 mod n it must be the 
ase that 
(x��1) = 
(x��1) )�1 = �1. Pro
eeding by indu
tion on �(i) and �(i) and 
onsidering 
(x��i) and
(x��i) we see that 
� � 
� � 0 mod n) �i = �i; 1 � i � k ) � = �.Corollary 2.5 The expression RK(
�; �; �) is non-zero mod 2.ProofThe expression RK(
�; �; �) is a produ
t of terms of the form (
� � 
�) with� 6= �. By Theorem 2.4, all of these terms will be non-zero mod 2, hen
eRK(
�; �; �) is non-zero mod 2.2.4 The Hom
y Skein of the AnnulusThe bran
hing rules for the Hom
y skein of the annulus are due to [18℄, whilethe eigenvalues of the meridian maps are due to [19℄.34



2.4.1 Basis Elements of the AnnulusIn the Hom
y skein of the annulus we have elements Q�;� whi
h are indexed bypairs of partitions (�; �) and form a basis for the Hom
y skein of the annulus.These elements are also eigenve
tors of the meridian maps �C, with eigenvalues�;� = (s� s�1) v�1Xx2� s2
(x) � vXx2� s�2
(x)!+ v�1 � vs� s�1for �C, and eigenvalue s�;� for the meridian map �C (Figure 2.6). As with theeigenvalues of the meridian map �K, the eigenvalues s�;� are all distin
t.Q�;� Q�;� Q�;��C = = s�;� Q�;� Q�;� Q�;��C = = s�;�
Figure 2.6: Meridian maps �C and �CNote that 
� = s�;� + 1. We say that Q�;� is reversible if � = �.2.4.2 Bran
hing RulesBy work of Hadji we have bran
hing rules for Q�;� [18℄:Q�;�Q1;; = X�2�+Q�;� +X�2��Q�;�Q�;�Q;;1 = X�2��Q�;� +XÆ2�+Q�;ÆAs with the Kau�man bran
hing rules we 
onsider 
omposition of two elementsas diagrams in two annuli being pla
ed one within the other. This a
tion is
ommutative.In general we want to 
onsider Q�;�Q1;1 where Q1;1 is Q1;;Q;;1 � Q;;;, andwhere Q;;; is the identity element, the empty diagram in the annulus. The35



element Q1;1 
an also be understood as the pattern for the reverse parallelsatellite, as seen in Figure 1.16.We are parti
ularly interested in de�ning an analogous relation to thebran
hing rule for y�y1.By symmetry we know thatQ�;�Q1;1 =Xf�g a�;�Q�;� + Xf(�;�)g�6=� a�;�(Q�;� +Q�;�);where a�;�, a�;� 2 N . With the next theorem we show expli
itly the bran
hingrule for Q�;�, and the values of a�;� and a�;�.Theorem 2.6 For � 2 �+ we have the following relation between Q�;� andQ�;�: Q�;�Q1;1 = Q�;� + X�2�+[��n�Q�;� + Xf(�;�)g�6=� (Q�;� +Q�;�) + 2j��jQ�;�:ProofWe begin by applying the bran
hing rules:Q�;�Q1;1 = Q�;�(Q1;;Q;;1 � id)= Q�;�Q1;;Q;;1 �Q�;�= 0�X�2�+Q�;� + X�2��Q�;�1AQ;;1 �Q�;�= X�2�+Q�;�Q;;1 + X�2��Q�;�Q;;1 �Q�;�= X�2�+0�X�2�+Q�;� + X!2��Q!;�1A+ X�2��0�X�2��Q�;� + X!2�+Q�;!1A�Q�;�= X�;�2�+Q�;� + X�;�2��Q�;� + X!2��;�2�+ Q!;� + X!2�+;�2�� Q�;! �Q�;�By de�nition, � 2 �+ and so Q�;� is a term in the sum of Q�;� over �+. For the36



sums over �+ and �� we extra
t terms where the partitions are the same:X�;�2�+Q�;� + X�;�2��Q�;� = Q�;� + X�2�+[��nf�gQ�;�+ X�;�2�+�6=� (Q�;� +Q�;�) + X�;�2���6=� (Q�;� +Q�;�)A 
onsequen
e of Lemma 2.2 is that �� n f�g � �� n f�g. We use this result tosplit up the other sums of terms:X!2��;�2�+ Q!;� = X!2��nf�gQ!;� + j�+jQ�;�X!2�+;�2�� Q�;! = X!2��nf�gQ�;! + j��jQ�;�Combining these two equations and using the result of Lemma 2.1 we 
anrearrange the remainder of the expression for Q�;�Q1;1:X!2��;�2�+ Q!;� + X!2�+;�2�� Q�;! �Q�;� = X!2��nf�gQ!;� + j�+jQ�;� + X!2��nf�gQ�;! + j��jQ�;� �Q�;�= X!2��nf�g(Q!;� +Q�;!) + (j�+j+ j��j � 1)Q�;�= X!2��nf�g(Q!;� +Q�;!) + 2j��jQ�;�:Thus we express Q�;�Q1;1 in the format desired,Q�;�Q1;1 = Q�;� + X�2�+[��nf�gQ�;� + X�;�2�+�6=� (Q�;� +Q�;�)+ X�;�2���6=� (Q�;� +Q�;�) + X!2��nf�g(Q!;� +Q�;!) + 2j��jQ�;�:
37



2.4.3 NoteIn the proof of Theorem 2.6 we obtained the expli
it details of the sets that thesums of pairs of elements are taken over. The details of these are not of great
onsequen
e in the proof of the main result of this 
hapter: the importan
e ofTheorem 2.6 is showing the general relation between Q�;� and Q�;� for � 2 �+,and showing that other terms are in the form of pairs Q�;� +Q�;�.2.5 ResultsIn this se
tion we introdu
e the theorem that motivates this 
hapter; this givesa 
orresponden
e between the Hom
y and Kau�man polynomials of 
ertainrelated links. We state the 
onje
ture made in [35℄, the proof of whi
h is thework of the remainder of this 
hapter. We give several other results that willbe essential in this proof.2.5.1 Rings of polynomialsIt is 
lear that Z[v; s℄ and Z2[v; s℄ are both rings, and that a map f between thetwo of them that takes integer 
oeÆ
ients modulo 2 is a ring homomorphism.Our situation is di�erent be
ause we have to a

ount for the possibility ofnegative powers of v and s and also for produ
ts of denominators of the formsr � s�r; we must verify that the in
lusion of these elements still gives a ring.Fortunately there is a result given in [21℄ that guarantees this. We need togive two de�nitions before we 
an state the theorem.De�nitionFor a ring R, M is a multipli
atively 
losed subset not 
ontaining 0 ifM � R, 1 2M , 0 =2M and M is 
losed under multipli
ation.Let Z(M) be the set fr 2 R : rm = 0 for some m 2Mg.We are now in a position to give the theorem that will allow us to 
on�rmthat the obje
ts we wish to work with are rings.38



Theorem 2.7 ([21℄ p.247) Let M � R be a multipli
atively 
losed subset,and assume that Z(M) = 0. Then there exists a unique overring S � R su
hthat every element of M is a unit in S and every element of S has the formrm�1 for some r 2 R, m 2M .We use this theorem in the proof of the following proposition to 
on�rmthat Z[v�1; s�1℄ is a ring.Proposition 2.8 The set f asr�s�r : a 2 Z[v�1; s�1℄; r 2 Z n f0gg is a ring.ProofWe know R = Z[v; s℄ is a ring. Take a subset M of R de�ned asM = fvmsn kYi=0(sri � s�ri) : m;n 2 Z; ri 2 Z n f0g; k 2 Ng:Clearly M is 
losed under multipli
ation, and 1 2 M , 0 =2 M , hen
e by Theo-rem 2.7 there is an overring S su
h that every element has the form rm�1 forsome r 2 Z[v; s℄, m 2M . ThenS = frm�1 : r 2 Z[v; s℄; m 2 Mg= f asr � s�r : a 2 Z[v�1; s�1℄; r 2 Z n f0gg:S is the obje
t we have previously denoted as Z[v�1; s�1℄. Similarly, we 
anshow that the obje
t we have denoted Z2[v�1; s�1℄ is a ring.A map f : Z[v�1; s�1℄ ! Z2[v�1; s�1℄ where the integer 
oeÆ
ients of thepolynomial are redu
ed modulo 2 is 
learly a homomorphism between the rings.Having 
leared up the status of the rings that we will work in, we now
onsider some other important results that we will need in the main proof ofthis 
hapter. We begin with the result of Rudolph whi
h motivates the moregeneral result that we wish to show. 39



2.5.2 Satellites and patternsTheorem 2.9 (Rudolph [54℄) The Kau�man polynomial of a link with sub-stitution v; s ! v2; s2 and taking 
oeÆ
ients from Z2[v�1; s�1℄ is the same asthe Hom
y polynomial of its reverse parallel satellite taking 
oeÆ
ients fromZ2[v�1; s�1℄, with the empty diagram taking the normalisation of 1 for bothinvariants.Note that for this result and for others in this 
hapter we take a di�erentnormalisation to those given in Chapter 1.Morton's 
onje
ture [35℄ o�ers a mu
h greater generalisation of this theorem,by allowing us a mu
h greater degree of freedom in de
orating the 
omponentsof the link. Re
all that in Se
tion 1.7 we de�ned de
orating a knot with apattern from the annulus. In the 
ase of Conje
ture 2.10 we (potentially)de
orate ea
h link 
omponent with a di�erent pattern.Conje
ture 2.10 (Morton [35℄) De
orate ea
h 
omponent Li of a framedunoriented link L by y�(i). The Kau�man polynomial of this de
orated link withsubstitution v; s ! v2; s2 and taking 
oeÆ
ients from Z2[v�1; s�1℄ is the sameas the Hom
y polynomial of L when ea
h Li is de
orated by Q�(i);�(i) taking
oeÆ
ients from Z2[v�1; s�1℄, with the empty diagram taking the normalisationof 1 for both invariants.In light of this 
onje
ture we restate Theorem 2.9 as follows:Restatement of Theorem 2.9 De
orate ea
h 
omponent Li of a framed un-oriented link L by y1. The Kau�man polynomial of this de
orated link withsubstitution v; s ! v2; s2 and taking 
oeÆ
ients from Z2[v�1; s�1℄ is the sameas the Hom
y polynomial of L when ea
h Li is de
orated by Q1;1 taking 
oef-�
ients Z2[v�1; s�1℄, with the empty diagram taking the normalisation of 1 forboth invariants.Before 
onsidering the bran
hing rules in the Hom
y skein of the annulusagain, there is one more result that we need for our proof of Conje
ture 2.10.For satellites of de
orated by 
ertain linear 
ombinations of patterns from the40



Hom
y skein of the annulus, we show that we are able to dispose of 
ertainparts of the pattern without a�e
ting the invariant modulo 2.Lemma 2.11 De
orate ea
h 
omponent Li of a link L with linear 
ombinationsof patterns from the Hom
y skein of the annulus of the formPi = Xf(�i;�i)g(Q�i;�i +Q�i;�i) +Xf�ig Q�i;�i:With 
oeÆ
ients from Z2[v�; s�℄, the Hom
y polynomial of L where ea
h 
om-ponent Li de
orated by Pi is the same as the Hom
y polynomial of L whereea
h 
omponent Li de
orated byPi0 =Xf�ig Q�i;�i:ProofConsider a pair of partitions (�i�; �i�) 2 f(�i; �i)g and write Pi asPi = Q�i�;�i� +Q�i�;�i� + Xf(�i;�i)g(�i;�i)6=(�i�;�i�)(Q�i;�i +Q�i;�i) +Xf�ig Q�i;�i:Fix patterns Pj on all other 
omponents Lj of the link L. The Hom
y polyno-mial of L with de
orations Pj on 
omponents Lj and the de
oration Pi on Li isequal to the sum of the Hom
y polynomials of L with de
orations Pj on Lj andea
h term in Pi 
ounted separately on Li. Consider the Hom
y polynomial ofL with Pj on Lj and Q�i�;�i� on Li. By Lemma 1.6, reversing orientations of all
omponents leaves the Hom
y polynomial un
hanged and leaves the patternsPj un
hanged, but the pattern on Li be
omes Q�i�;�i�.Hen
e the Hom
y polynomial of L with patterns Pj on 
omponents Lj andQ�i�;�i� on Li is equal to the Hom
y polynomial of L with patterns Pj on41




omponents Lj and Q�i�;�i� on Li. ThusPi = Xf(�i;�i)g(Q�i;�i +Q�i;�i) +Xf�ig Q�i;�i= Xf(�i;�i)gQ�i;�i + Xf(�i;�i)gQ�i;�i +Xf�ig Q�i;�i= Xf(�i;�i)gQ�i;�i + Xf(�i;�i)gQ�i;�i +Xf�ig Q�i;�i= 2 Xf(�i;�i)gQ�i;�i +Xf�ig Q�i;�i� Xf�ig Q�i;�i mod 2� Pi0 mod 2where mod 2 denotes taking 
oeÆ
ients from Z2[v�1; s�1℄.2.6 More in the Hom
y Skein of the AnnulusWe return to 
onsidering the multipli
ation Q�;�Q1;1. By Theorem 2.6 we haveevaluated this asQ�;�Q1;1 = Q�;� + X�2�+[��nf�gQ�;� + Xf(�;�)g(Q�;� +Q�;�) + 2j��jQ�;�:As with the expression for y� we wish to eliminate the sum of terms in Q�;�from the expression.De�nitionFor partitions � and �, � 2 �+, de�ne the polynomial RC(t; �; �) byRC(t; �; �) = Y�2�+[��nf�g(t� (s�;�2 � 1)):Let �C�C�1 be the map �1;1; elements Q
;� andQ�;
 have eigenvalue s
;�s�;
�1for �1;1.Lemma 2.12 For partitions �, �, � 6= �RC(�1;1; �; �)(Q�;� +Q�;�) = RC(s�;�s�;� � 1; �; �)(Q�;� +Q�;�):42



ProofRC(�1;1; �; �)(Q�;� +Q�;�) = RC(�1;1; �; �)(Q�;�) +RC(�1;1; �; �)(Q�;�)= RC(s�;�s�;� � 1; �; �)Q�;�+RC(s�;�s�;� � 1; �; �)Q�;�= RC(s�;�s�;� � 1; �; �)(Q�;� +Q�;�):Lemma 2.12 shows that the 
oeÆ
ient of ea
h element in a sum Q�;� + Q�;�remains equal after we apply RC(�1;1; �; �).The next step in our 
onstru
tion is to apply RC(�1;1; �; �) to the relationwe have already derived from the bran
hing rules.Lemma 2.13RC(�1;1; �; �)(Q�;�Q1;1) = RC(s2�;� � 1; �; �)Q�;� + 2j��jRC(s2�;� � 1; �; �)Q�;�+ Xf(�;�)gRC(s�;�s�;� � 1; �; �)(Q�;� +Q�;�):ProofThis follows almost immediately from applying RC(�1;1; �; �) to the relationfrom Theorem 2.6. The sum of elements Q�;� over �+[��nf�g is 
an
elled outby applying RC(�1;1; �; �). Using Lemma 2.12 on the sum of terms Q�;� +Q�;�and the remaining terms gives the 
oeÆ
ients indi
ated.By the symmetry we observed earlier we note that0� Xf(�;
)g(Q�;
 +Q
;� )1AQ1;1 = Xf(�;�)g(Q�;� +Q�;�);i.e., multiplying a sum of terms Q�;
 +Q
;� by Q1;1 results in a similar sum ofterms. 43



2.7 Proving Conje
ture 2.10We prove the 
onje
ture by indu
tion, and use the 
onstru
tions that we havealready noted for y�, Q�;�, RK(t; �; �) and RC(t; �; �) to draw out 
orrespon-den
es between the two sets of bran
hing rules when we 
onsider 
oeÆ
ientsfrom Z2[v�1; s�1℄.ProofTake a link L with l 
omponents L1; : : : ; Ll. Let L(�(1); : : : ; �(l)) denote thelink L with ea
h 
omponent Li paired with a partition �(i).Let N = lXi=1 (j�(i)j � 1) ; j�(i)j � 1;and we use this to base our indu
tion on. By de�nition N � 0 and the only 
asewhen N = 0 is when j�(i)j = 1 for all i. This is the situation when the patternsde
orating ea
h 
omponent are y1 in the Kau�man skein of the annulus andQ1;1 in the Hom
y skein of the annulus. By Theorem 2.9 we know that the
ase N = 0 satis�es the 
onditions of the 
onje
ture, and thus provides a basisfor our proof by indu
tion.Assume that for all N � n � 1 the 
onje
ture is true. For any 
ase whenN = n we know that only one partition �(i) is di�erent from some 
ase whenN = n� 1, and it is di�erent by the addition of only one 
ell to that partition,�(i). Without loss of generality, we 
an assume that the partition that has
hanged is atta
hed to 
omponent Ll. E�e
tively the di�eren
e between thetwo links resulting from the atta
hed partitions is �(l) paired with Ll whenN = n� 1 and �(l) paired with Ll when N = n.As the di�eren
e between �(l) := � and �(l) := � is one 
ell then we know� � �, j�j = j�j + 1. Thus, when we de
orate the link either in the Kau�manor Hom
y skein we 
an use the bran
hing rules to �nd expressions for y� andQ�;� in terms of y� and Q�;� respe
tively.By Lemma 2.3 we know that y� 
an be expressed as a 
ertain linear 
om-bination of longitudes and meridians, but we now need to show that this is inalignment under the 
onditions of the 
onje
ture with the more 
ompli
ated44



expression that we have for the Hom
y 
ase.Due to the way that we are building up patterns we must (at least at thisstage) in
lude the possibility that there are pairs of patterns (as we have de�nedthem previously) whi
h are also going to be multiplied by Q1;1. However, bythe note that we made before, this will itself only 
ontribute another sum overpairs of patterns in the bran
hing rule. By Theorem 2.6 and Lemma 2.13 theexpression that we need to 
onsider isRC(�1;1; �; �)0�0�Q�;� + Xf(�;
)g(Q�;
 +Q
;� )1AQ1;11A= RC(s2�;� � 1; �; �)Q�;� + 2j��jRC(s2�;� � 1)Q�;�+ Xf(�;�)gRC(s�;�s�;� � 1; �; �)(Q�;� +Q�;�):There are di�eren
es in the skeins between the bran
hing rules for y� and Q�;�.If we work modulo 2 and with the substitution v; s! v2; s2 for Kau�man thereis no immediate 
hange that we 
an observe.However, working modulo 2 for Hom
y we simplify the expression that wehave for Q�;�: the term of Q�;� on the right hand side obviously vanishes mod2. The sums of pairs of patterns 
an
el by Lemma 2.11 sin
e all of the other
omponents in the link L are being de
orated by patterns Q�(j);�(j) for �xedpartitions �(j). Hen
e mod 2 we haveRC(�1;1; �; �)0�0�Q�;� + Xf(�;
)g(Q�;
 +Q
;� )1AQ1;11A = RC(s2�;� � 1; �; �)Q�;�in the Hom
y skein of the annulus. We 
an go a step further and eliminate thesum of pairs on the left hand side of the expression to giveRC(�1;1; �; �)(Q�;�Q1;1) = RC(s2�;� � 1; �; �)Q�;�:From similar 
onsiderations to Theorem 2.4 and Corollary 2.5 it 
an beshown that RC(s2�;� � 1; �; �) is non-zero mod 2, and hen
e we 
an give thefollowing 
onstru
tion for elements in the Hom
y skein of the annulus when we45




onsider 
oeÆ
ients mod 2:Q�;� = RC(�1;1; �; �)RC(s2�;� � 1; �; �)(Q�;�Q1;1):There is 
learly a parallel between the expressions for the two bran
hing rules.By the assumption of the indu
tive argument the de
oration of Q�;� and y�agree, and by the result of Rudolph we know that Q1;1 and y1 agree.To prove the 
onje
ture we must show that RC(�1;1; �; �) and RK(�K; �; �)agree, and that RC(s2�;��1; �; �) and RK(
�; �; �) agree under the 
onditions ofthe 
onje
ture. Re
allRK(t; �; �) = Y�2�+[��nf�g(t� 
�)RC(t; �; �) = Y�2�+[��nf�g(t� (s�;�2 � 1))whi
h are both de�ned as produ
ts over the same set of partitions, with thedi�eren
e being the fa
tors in ea
h. A typi
al fa
tor in RK(t; �; �) is (t � 

)and a typi
al fa
tor in RC(t; �; �) is (t � (s
;
2 � 1)). In the �rst instan
e weneed to 
ompare 

 and s
;
2 � 1 under the 
onditions of the 
onje
ture.For the Kau�man polynomial D(v; s) the substitution v; s! v2; s2 modulo2 is equivalent to squaring the polynomial modulo 2, i.e.,D(v2; s2) � (D(v; s))2 mod 2:We noted previously that 

 = s
;
 +1. Under the substitution 

 is equivalentto 

2 mod 2. Then 

2 � (s
;
 + 1)2 mod 2� s
;
2 + 2s
;
 + 1 mod 2� s
;
2 � 1 mod 2;as required. Thus RC(s2�;� � 1; �; �) � RK(
�; �; �) under the 
onditions of the
onje
ture, and for RC(�1;1; �; �) and RK(�K; �; �) we need only note that�1;1 = �C�C � 1 = �K �Q1;146



and so the meridian maps and 
oeÆ
ients from eigenvalues of the meridianmaps agree, as required.Owing to the fa
t that D(v2; s2) � (D(v; s))2 mod 2 we 
an then state thetheorem as follows:Theorem 2.14 De
orate ea
h 
omponent Li of a framed unoriented link Lby y�(i). The square of the Kau�man polynomial of this de
orated link with
oeÆ
ients in Z2[v�1; s�1℄ is equal to the Hom
y polynomial of L when ea
h Liis de
orated by Q�(i);�(i) with 
oeÆ
ients in Z2[v�1; s�1℄, with the empty diagramtaking the normalisation of 1 for both invariants.There is a fairly neat 
orollary that we 
an give to Theorem 2.14, for thesituation that we want to take linear 
ombinations of patterns when we de
orateour links. Before stating and proving it, it is in our best interests to introdu
esome notation so that we 
an give the 
orollary and proof as simply as possible.De�nitionLet L(�(1); : : : ;�(l)) denote the link L with ea
h 
omponent Li pairedwith a set of partitions �(i) = f�(i1); : : : ; �(ij)g, where j = j�(i)j.Then let LK(�(1); : : : ;�(l)) denote the link L with ea
h 
omponent Li de
-orated by a linear 
ombination of patternsY�(i) = y�(i1) + : : :+ y�(ij)and let LC(�(1); : : : ;�(l)) denote the link L with ea
h 
omponent Li de
oratedby a linear 
ombination of patternsS�(i) = Q�(i1);�(i1) + : : :+Q�(ij);�(ij ):Finally, take D(LK(�(1); : : : ;�(l))) to denote the Kau�man polynomial ofLK(�(1); : : : ;�(l)), and let P (LC(�(1); : : : ;�(l))) denote the Hom
y polyno-mial of LC(�(1); : : : ;�(l)).Corollary 2.15 D(LK(�(1); : : : ;�(l)))2 � P (LC(�(1); : : : ;�(l))) mod 2, i.e.,taking 
oeÆ
ients Z2[v�1; s�1℄, and with the empty diagram taking the normal-isation of 1 for both invariants. 47



ProofThe Kau�man polynomial of a satellite de
orated by a linear 
ombination ofpatterns is equal to the sum of the Kau�man polynomials of the link if it isde
orated by ea
h pattern separately; a similar statement 
an be made aboutthe Hom
y polynomial of satellites de
orated in su
h a way.In the 
ase that we are 
onsidering, as a �rst step we 
an state the following:D(LK(�(1); : : : ;�(l))) = D(LK(�(11); : : : ;�(l))) + : : :+D(LK(�(1j); : : : ;�(l)))= j�(1)jXk=1 D(LK(�(1k); : : : ;�(l)))= lXm=1 j�(m)jXk=1 D(LK(: : : ; �(mk); : : :)):Then with 
oeÆ
ients in Z2[v�1; s�1℄,D(LK(�(1); : : : ;�(l)))2 � D(LK(�(1); : : : ;�(l)))jv!v2s!s2� lXm=1 j�(m)jXk=1 D(LK(: : : ; �(mk); : : :))jv!v2s!s2� lXm=1 j�(m)jXk=1 P (LC(: : : ; �(mk); : : :))� P (LC(�(1); : : : ;�(l))):

48



Chapter 3
Sta
ked k-tangles and theKau�man Polynomial
3.1 Introdu
tionIn this 
hapter we give details of an algorithm for 
al
ulating the Kau�manpolynomial of a link. As noted previously, 
al
ulating knot polynomials fromskein relations generally gives an exponential time algorithm based on the num-ber of 
rossings in the diagram that we start with.Przyty
ki showed that a polynomial time algorithmwas possible in prin
iplefor the Kau�man polynomial [49℄, although the method he gave only 
al
ulatesa part of the 
oeÆ
ients for the Kau�man polynomials. The work of this
hapter presents the �rst 
omplete polynomial time algorithm for 
al
ulatingthe Kau�man polynomial.We explore k-tangles and sta
ked k-tangles, and how we 
ompose a sta
kedk-tangle with a word from the braid group B 2k . By representing sta
ked k-tangles as k-sequen
es, and then exploring 
onditions that guarantee a desiredout
ome we obtain the foundation of the algorithm that we 
onstru
t (leadingto Proposition 3.8). 49



3.2 Sta
ked k-tanglesTangle diagrams are often given in terms of inputs and outputs to a box, withthe ar
s inside being knotted somehow.De�nitionAn (m;n)-tangle is a box with m inputs at the top of the box and noutputs at the bottom, where m + n = 2l for some l. Conne
ting the m + npoints are l ar
s, and these 
an be freely knotted inside the box. We also allow
losed 
omponents in the tangle box.De�nitionA k-tangle 
onsists of k ar
s 
onne
ted to 2k points on a line, with ar
slying in the upper half spa
e and ea
h having a single lo
al maximum. Thereare no restri
tions on how the ar
s lie relative to ea
h other, but we do notallow 
losed 
omponents within the tangle.Essentially, a k-tangle is a (0; 2k)-tangle with unknotted ar
s and the extra
ondition not allowing 
losed 
omponents. A 
onsequen
e of the de�nitionof a k-tangle is that the ar
s are all individually knotted. See Figure 3.1 forexamples of 3- and 4-tangles.
Figure 3.1: Examples of 3- and 4-tanglesA k-tangle 
an be drawn as a 2k braid with a plait 
losure of k 
aps at thetop.We now give the most important de�nition of the next two 
hapters; themethods that we will begin to outline shortly depend on this de�nition and its
onsequen
es. 50



De�nitionA sta
ked k-tangle is a k-tangle su
h that ar
s do not wind around ea
hother, i.e., no two ar
s are linked.Figure 3.2 shows some examples of sta
ked 4-tangles, and as before note thatwe do not allow the possibility of 
losed 
omponents in the sta
ked tangles.
Figure 3.2: Examples of sta
ked 4-tanglesA variation on this de�nition was originally given in [41℄.As the ar
s are sta
ked, we 
an 
onsider them as being in separate layers,and then give a numbering to these ar
s. The top-most ar
 is numbered 1, andthe bottom-most is numbered k, with the ar
s inbetween numbered a

ordingto the rule that an over
rossing ar
 has a lower number than the ar
 it 
rossesover. For example, we number the sta
ked 4-tangle to the left in Figure 3.2 asin Figure 3.3. 1 2 3 4

Figure 3.3: Numbering ar
s of a sta
ked 4-tangleThere is not ne
essarily a unique numbering for the ar
s of a diagram; it is
lear that we 
an have sta
ked k-tangles whi
h have two or more ar
s in thesame layer. In this 
ase we need only give the ar
s a numbering so that theyrespe
t whatever ar
s might lie above or below them in the diagram.51



Consider the sta
ked 4-tangle to the right of Figure 3.2: this has two possiblenumberings, as 
an be seen in Figure 3.4.123 4 124 3
Figure 3.4: A sta
ked 4-tangle without a unique numberingBy 
onsidering the numbers of the endpoints of the ar
s of a sta
ked tanglewe see that this information determines the diagram. Reading these numbersfrom left to right we use the number sequen
e to represent the sta
ked tangle.De�nitionA k-sequen
e is a sequen
e of numbers representing the endpoints of thear
s of a sta
ked k-tangle; the k-sequen
e determines the sta
ked k-tangle.For example, the 4-sequen
e for the sta
ked 4-tangle in Figure 3.3 is (12314234),and the two possible number sequen
es for the sta
ked 4-tangle in Figure 3.4are (32134214) and (42143213).As there are sta
ked k-tangles without unique k-sequen
es determiningthem, it is 
lear that the number of k-sequen
es will be greater than the numberof sta
ked k-tangles for k � 2.Proposition 3.1 The set of k-sequen
es has (2k)!2k elements.ProofThe number of elements in the set of k-sequen
es is easily 
al
ulable from simple
ombinatori
s. We permute 2k obje
ts { but there are k distin
t obje
ts, ea
hof whi
h o

urs twi
e. Hen
e the number of elements is (2k)!2k .Cal
ulating the size of the set of sta
ked k-tangles is more 
ompli
ated, and itis less 
lear if there is a simple way to do this in general. We will 
onsider thisproblem further in Se
tion 3.8. 52



3.3 Multiplying sta
ked tangles by braidsOur aim in this se
tion is to express a general k-tangle as a linear 
ombinationof sta
ked k-tangles with respe
t to the Kau�man skein relations. We work inthe Kau�man skein module of sta
ked k-tangles.As stated previously, a k-tangle 
an be expressed as a 2k braid with aplait 
losure at the top. We 
an also 
onsider a k-tangle as a sta
ked k-tangle
omposed from below with a word from B 2k . In both 
ases we do this in anobvious way, by pulling the ar
s, lengthening the diagram until we 
an see asta
ked k-tangle 
omposed with a braid.We 
onsider this idea in the example of Figure 3.5, whi
h is taken from the3-tangle of Figure 3.1.

Figure 3.5: Multiplying a sta
ked 3-tangle by a braidBy 
onsidering diagrams of this type we begin to examine what we meanby multiplying a sta
ked tangle by a braid word in the skein. We 
onsider thisas the a
tion of the braid group B 2k on the Kau�man skein module of sta
kedk-tangles.We start by 
onsidering what happens when we multiply a sta
ked tangleby a braid generator. In order to give a 
onsistent system for this, we give
onditions for when multipli
ation by a braid generator results in a sta
kedtangle. 53



De�nitionA sta
ked k-tangle t1 is 
ompatible with a braid generator �i if the a
tionof multiplying t1 by �i results in another sta
ked k-tangle t2 or t1 multiplied bya s
alar v. Similarly, a sta
ked k-tangle t1 is 
ompatible with an inverse ��1i ifthe a
tion of multiplying by the inverse results in another sta
ked k-tangle t2or t1 multiplied by a s
alar v�1.We use k-sequen
es to represent sta
ked k-tangles and so must give a statementas to how we 
onsider 
ompatibility with respe
t to k-sequen
es.De�nitionA k-sequen
e s is 
ompatible with a generator �i if the sta
ked k-tanglede�ned by s is 
ompatible with �i. Similarly, s is 
ompatible with an inverse��1i if the sta
ked k-tangle de�ned by s is 
ompatible with ��1i .The following proposition gives 
onditions that ensure a k-sequen
es is 
om-patible with a given generator.Proposition 3.2 If the number at position i in a k-sequen
e s is greater thanor equal to the number at position i+ 1 then s is 
ompatible with �i.ProofLet s(j) stand for the number at position j in the k-sequen
e. If s(i) = s(i+1)then s is 
ompatible with �i as the two positions in s represent the two ends ofone ar
. This ar
 results in the original sta
ked k-tangle being multiplied by vin order to remove a kink by a Type I Reidemeister move.If s(i) > s(i + 1) then this means that the ar
 whi
h has an endpoint ats(i + 1) is numbered in su
h a way that it is 
onsidered to be above the ar
whi
h has an endpoint at s(i). Thus, s is 
ompatible with �i as the a
tion ofthe generator brings the lower-numbered ar
 a
ross the higher-numbered.We 
an state something similar when dealing with inverses.Proposition 3.3 If the number at position i in a k-sequen
e s is less than orequal to the number at position i+ 1 then s is 
ompatible with ��1i .54



For the purpose of 
onstru
ting the algorithm, in all following referen
es to
ompatibility we assume that we des
ribe k-sequen
es that satisfy the 
ondi-tions of Propositions 3.2 and 3.3.3.3.1 RenumberingWe have previously noted that a sta
ked k-tangle 
an have more than one validk-sequen
e that de�nes it.De�nitionLet s and s0 be k-sequen
es. We say that s is equivalent by renumbering tos0 if and only if s0 arises from a valid numbering for the same sta
ked k-tanglethat s determines.We will 
onsider renumbering as an essential relation for the purpose ofobtaining k-sequen
es whi
h satisfy the 
ompatibility 
onditions of Proposi-tions 3.2 and 3.3. The following results give the foundation for showing whenrenumbering is possible.Proposition 3.4 Let 1 � a � k � 1 and b = a+ 1. Consider two k-sequen
ess1 and s2, su
h that for 1 � p < q < r < t � 2ks1(p) = a s1(q) = a s1(r) = b s1(t) = bs2(p) = b s2(q) = b s2(r) = a s2(t) = aand s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.ProofIn the sta
ked k-tangle determined by s1 we would 
onsider the ar
 numbered aas being immediately \above" ar
 b. Regardless of how the other ar
s lie relativeto a and b, we 
onsider a and b as in the left-hand diagram in Figure 3.6, i.e.,they do not 
ross. The numbering of s2 would result in the same situation, andhen
e s1 and s2 are related by renumbering.55



Proposition 3.5 Let 1 � a � k � 1 and b = a+ 1. Consider two k-sequen
ess1 and s2, su
h that for 1 � p < q < r < t � 2ks1(p) = a s1(q) = b s1(r) = b s1(t) = as2(p) = b s2(q) = a s2(r) = a s2(t) = band s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.ProofAs with the previous proof, regardless of how the other ar
s in the sta
kedk-tangle de�ned by s1 lie relative to a and b, we 
onsider a and b as in theright-hand diagram in Figure 3.6, i.e., they do not 
ross. The numbering ofs2 would result in the same situation, and hen
e s1 and s2 are related byrenumbering.
Figure 3.6: Non-
rossing ar
sWe say that a and b are adja
ent where 1 � a � k � 1 and b = a + 1.3.3.2 RearrangementConsider the diagram of Figure 3.7. This shows the sta
ked 3-tangle given by

Figure 3.7: (121323) multiplied by �13-sequen
e (121323) being multiplied by a generator �1 that is in
ompatible.56



De�nitionA k-sequen
e s is Kau�man equivalent to P aisi, a linear 
ombination ofk-sequen
es with 
oeÆ
ients from the Kau�man skein module, if and only ifa linear 
ombination of sta
ked k-tangles 
orresponding to the linear 
ombina-tion of k-sequen
es 
an be obtained from the sta
ked k-tangle de�ned by s byapplying the Kau�man skein relation.We say that we use a rearrangement a
tion when applying Kau�man skeinrelations in order to obtain a Kau�man equivalent linear 
ombination of k-sequen
es.It follows that two k-sequen
es equivalent by renumbering are Kau�manequivalent.Proposition 3.6 Let 1 � a � k� 1 and b = a+1. Consider four k-sequen
ess1; s2; s3; s4 su
h that for 1 � p < q < r < t � 2ks1(p) = a s1(q) = b s1(r) = a s1(t) = bs2(p) = b s2(q) = a s2(r) = b s2(t) = as3(p) = a s3(q) = a s3(r) = b s3(t) = bs4(p) = a s4(q) = b s4(r) = b s4(t) = aand for all other 1 � i � 2k s1(i) = s2(i) = s3(i) = s4(i).Then s1 is Kau�man equivalent to s2 � zs3 + zs4.ProofWe 
onsider the o

urren
es of a and b within the four k-sequen
es as 2-sequen
es. We 
an write these ass01 = (abab) s02 = (baba) s03 = (aabb) s04 = (abba)and by 
onsidering the sta
ked 2-tangles that they determine and the mainKau�man skein relation we 
an state s01 is Kau�man equivalent to s02�zs03+zs04.By 
omparing this with the k-sequen
es that we started with, and be
ausethis rearrangement will not e�e
t the other ar
s in the sta
ked k-tangles that57



lie above or below ar
s a and b we 
an thus state that s1 is Kau�man equivalentto s2 � zs3 + zs4.Note that the terms s03 and s04 
an be renumbered, and hen
e the largerk-sequen
es s3 and s4 
an be renumbered.Proposition 3.7 A k-sequen
e s with the number r at position j, where 2 �r � k is Kau�man equivalent to a linear 
ombination of k-sequen
es ea
h withr � 1 at position j.ProofIf the numbers r and r� 1 in s represent ar
s whi
h do not 
ross then Proposi-tions 3.4 and 3.5 guarantee that there is a k-sequen
e s0 su
h that s0(j) = r�1.If the numbers r and r�1 in s represent ar
s whi
h 
ross then Proposition 3.6allows us to express s as a linear 
ombination of three k-sequen
es, s01; s02; s03,su
h that s01(j) = s02(j) = s03(j) = r � 1.In order to be 
onsistent let us say that we always a
t to redu
e the numberof a larger numbered endpoint in a k-sequen
e in an e�ort to make it satisfythe 
onditions of Proposition 3.2 or 3.3.Proposition 3.8 A k-sequen
e s that is in
ompatible with a generator or in-verse ��1i is Kau�man equivalent to a linear 
ombination of k-sequen
es 
om-patible with ��1i .ProofThis follows from Proposition 3.7 by repeated appli
ation of the result on therelevant position j in the linear 
ombination of k-sequen
es.For example, 
onsider again the diagram of Figure 3.7, whi
h we 
an rep-resent as (121323) being multiplied by �1. We need to rearrange the adja
entar
s 1 and 2 a

ording to the relation we de�ned. Hen
e, by Proposition 3.6(212313)� (121323) = z((112323)� (122313)):The �nal term does not satisfy Proposition 3.7, but we renumber the 3-sequen
eas ar
s 1 and 2 in the diagram it determines do not 
ross, and hen
e obtain the58



following linear 
ombination of 3-sequen
es for (121323) that are 
ompatiblewith �1, (121323) = (212313)� z(112323) + z(211323)and thus (121323)�1 = (212313)�1 � z(112323)�1 + z(211323)�1= (122313)� vz(112323) + z(121323):Consider the diagram in Figure 3.8. This 
an (only) be represented as the
Figure 3.8: (132132) multiplied by �13-sequen
e (132132) multiplied by �1. We 
annot renumber the 3-sequen
e sowe must rearrange. In this 
ase we need to redu
e the se
ond number in thesequen
e, and have to perform two sets of rearrangement; the �rst involves ar
s2 and 3, and the se
ond involves possibly several rearrangement a
tions on ar
s1 and 2. Some of the resulting 3-sequen
es from the �rst rearrangement willonly require renumbering so that they are 
ompatible.This example underlines the fa
t that we 
an require several a
ts of rear-rangement and renumbering in order to express an in
ompatible k-sequen
e asa linear 
ombination of 
ompatible k-sequen
es.Before we move on to 
onsider the algorithm, let us formally state therelation between the k-sequen
es and the sta
ked k-tangles now that we haveintrodu
ed stru
ture from the renumbering and Kau�man equivalen
e.Proposition 3.9 The module of k-sequen
es modulo renumbering and Kau�-man equivalen
e relations is isomorphi
 to the Kau�man skein module of sta
kedk-tangles. 59



ProofThis follows immediately from the de�nitions of equivalen
e by renumberingand Kau�man equivalen
e.3.4 AlgorithmIn the previous se
tions we have dis
ussed how we might express a general k-tangle with respe
t to the Kau�man skein relations. We begin by expressingthe k-tangle as a sta
ked k-tangle multiplied by a braid word from B 2k .We represent sta
ked k-tangles by k-sequen
es, and 
onsider multiplyingthem by the braid word, 
onsidered one generator at a time. By Proposi-tions 3.2 and 3.3 we impose 
onditions to ensure that k-sequen
es are 
ompat-ible with a braid generator or inverse; if these are not met then we use thea
tions of renumbering and rearrangement to express the k-sequen
e in termsof a linear 
ombination of k-sequen
es that are 
ompatible.We provide a rigorous system for making rearrangements and renumberingsso that we do not needlessly pass 
oeÆ
ients to and from k-sequen
es. We wantto give as simple a system as possible, and not perform unne
essary operations;the aim of our e�orts is to de�ne an algorithm for 
al
ulating the Kau�manpolynomial of a k-plait, and de�ne it in su
h a way that it 
an be implementedwithout diÆ
ulty in a 
omputer language.The following des
ription of this algorithm follows the 
ow diagram of Fig-ure 3.10 up to the last de
ision box (after whi
h we have the 
on
luding partfor 
al
ulating the Kau�man polynomial of a k-plait).We 
onsider expressions involving a linear 
ombination of k-sequen
es. With-out loss of generality, take the 
ase when we multiply by a generator �i. Thepro
ess of this algorithm is to ensure that we have a linear 
ombination ofk-sequen
es that are 
ompatible with a generator, in parti
ular that the 
on-ditions of Proposition 3.2 (respe
tively Proposition 3.3 in the 
ase of inverses)are met following a pro
ess of rearrangement and renumbering.In order that we do not perform unne
essary operations, we begin by 
on-60



sidering k-sequen
es that are not 
ompatible with �i and have number k inthe (i + 1)th position. By Proposition 3.7 we guarantee that we 
an performa
tions on in
ompatible k-sequen
es with number k in the (i+1)th position toexpress them as linear 
ombinations of k-sequen
es with k� 1 in that position.We repeat the pro
edure for all k-sequen
es whi
h have k � 1 in positioni + 1 but whi
h are not 
ompatible, and so on, repeating the pro
ess until�nally we have performed rearrangements and renumberings for in
ompatiblek-sequen
es with a 2 in position i + 1. By redu
ing numbers in in
ompatiblek-sequen
es in this way, we remove the possibility of any dupli
ation of workand ensure that we do not miss any in
ompatible k-sequen
es.There is a similar set of steps for the situation that we are multiplying by��1i , in whi
h 
ase we will be 
on
erned with the number in the k-sequen
e atposition i. After 
ompleting this series of operations we have a linear 
ombi-nation of k-sequen
es that are 
ompatible with the generator (or inverse) byProposition 3.2 (or Proposition 3.3 for an inverse). Due to the way that weensure 
ompatibility, multipli
ation involves swit
hing the numbers in the iand (i+ 1)th pla
e in the k-sequen
es, and multiplying the 
oeÆ
ient of thosek-sequen
es whi
h have the same number in positions i and i+1 by v (or v�1).After this the linear 
ombination of k-sequen
es is ready to be multiplied bythe next generator (or inverse) in the braid word, and so we repeat the pro
essoutlined above. When the end of the braid word is rea
hed, the sta
ked k-tanglemultiplied by the braid word will have been expressed as a linear 
ombinationof k-sequen
es (representing sta
ked k-tangles) in the Kau�man skein.3.4.1 Cal
ulating the Kau�man polynomial of a k-plaitIn order to 
al
ulate the Kau�man polynomial of a k-plait we must 
onsiderthe 
losure at the bottom of the k-plait stru
ture. Thus, we have to 
onsiderhow we might 
al
ulate the Kau�man polynomial of a sta
ked k-tangle that is
losed o� by k 
ups in the manner for k-plaits. Consider Figure 3.9, where wesee the sta
ked 4-tangle given by (12314234) 
losed o�.In this 
ase it is not diÆ
ult to evaluate the diagram's Kau�man polynomial61



Figure 3.9: Closure of sta
ked 4-tangle given by 4-sequen
e (12314234)(it has value v), but for a suÆ
iently 
ompli
ated diagram and large enough kthe 
losure of a sta
ked k-tangle 
ould be a non-trivial knot, or even a link.In general we need a di�erent approa
h. Consider the left-most 
up thate�e
ts the �rst two endpoints. If we pull this above the line, and use a TypeI Reidemeister move to remove the kink (multiplying by a s
alar of v) we seethat we now have a sta
ked 3-tangle with 3-sequen
e (213123).De�nitionA sta
ked k-tangle is 
losure-
ompatible if the introdu
tion of a 
up tothe two left-most endpoints results in a sta
ked (k � 1)-tangle multiplied by as
alar from the set f1; v; v�1; Æg.De�nitionA k-sequen
e, s, is 
losure-
ompatible if the sta
ked k-tangle de�ned by sis 
losure-
ompatible.As before, we show a 
ondition that ensures 
losure-
ompatibility for a k-sequen
e.Proposition 3.10 If the �rst two numbers of a k-sequen
e, s(1) and s(2), aresu
h that js(1)� s(2)j � 1 then s is 
losure-
ompatible.ProofIf s(1) = s(2) then the introdu
tion of a 
up to the sta
ked k-tangle representedby s results in a disjoint unknot that we remove by multiplying by Æ, leaving asta
ked (k � 1)-tangle that we 
an represent as a (k � 1)-sequen
e.62



For the remaining 
ases we will de�nitely be able to 
lose o� to valid sta
kedk-tangles, and hen
e obtain valid k-sequen
es, as the two ar
s are adja
ent andthus the 
losure will not e�e
t the relative ordering of the other ar
s. We must
onsider the pattern that the values of s(1) and s(2) have in the k-sequen
e.If js(1) � s(2)j � 1 then the values of s(1) and s(2) are adja
ent, so eithers(1) = a and s(2) = b or s(1) = b and s(2) = b for 1 � a � k� 1 and b = a+1.If s(1) = a and s(2) = b then the two possible patterns in the k-sequen
e are(abba) and (abab): for the pattern (abba) it is not diÆ
ult to see that this willresult that 
losure will result in some (k� 1)-sequen
e multiplied by 1 as thereis no twisting. For the pattern (abab) we will be able to �nd a (k� 1)-sequen
eafter we remove a twist by multiplying by v.If s(1) = b and s(2) = b then the two possible patterns in the k-sequen
eare (baab) and (baba): for the pattern (baab) we will on
e again obtain some(k� 1)-sequen
e multiplied by 1. For the pattern (baba) we will obtain a valid(k � 1)-sequen
e after removing a twist by multiplying by v�1.We now dis
uss k-sequen
es as being 
losure-
ompatible by satisfying the
onditions of Proposition 3.10, following the approa
h that we took previouslywhen we 
onsidered 
onditions ensuring 
ompatibility with braid generators.As before we perform a
tions on a linear 
ombination of k-sequen
es. Againwe take advantage of the result of Proposition 3.7 to ensure that our a
tionspro
eed in an organised way. In the �rst instan
e we a
t on all k-sequen
esthat have a k in one of the �rst two positions and whi
h are not 
losure-
ompatible. We perform renumbering or rearrangement to redu
e k to k � 1,and perform similar redu
tion operations in subsequent 
y
les. This di�ersfrom the previous pro
edure in that the 
onditions for 
losure-
ompatibility aredi�erent from the 
onditions for 
ompatibility. We have to perform fewer 
y
lesthrough the linear 
ombination of k-sequen
es, as after we have performed the
he
k for the number 3 we 
an guarantee that all of the k-sequen
es will be
losure-
ompatible.Closing o� from k-sequen
es and (k�1)-sequen
es involves observing wherethe two numbers lie relative to ea
h other in the k-sequen
e as explored in63



Proposition 3.10. Using these results we 
an determine the s
alar requiredwhen we 
lose to a (k � 1)-sequen
e.The simplest way that we 
an relate the numbers of ar
s represented in ak-sequen
e and the (k � 1)-sequen
e that it 
loses to is by removing the �rsttwo numbers in the k-sequen
e, then subtra
ting 1 from all of the numbers inthe new sequen
e that are greater than the minimum of the two numbers weremoved from the k-sequen
e. This gives a valid (k � 1)-sequen
e, though asbefore there may not be a unique (k�1)-sequen
e for the sta
ked (k�1)-tanglethat is being represented.We 
ontinue in this manner, 
losing o� from linear 
ombinations of m-sequen
es to linear 
ombinations of (m� 1)-sequen
es, until we 
lose o� from2-sequen
es to the 1-sequen
e, (11). The 
oeÆ
ient of (11) is the Kau�manpolynomial of the 
losure of the sta
ked k-tangle (represented as a k-sequen
e)that we began with.Hen
e, by 
ombining this with the algorithm for representing a sta
ked k-tangle multiplied by a word from the braid group B 2k , we 
an 
al
ulate theKau�man polynomial of a k-plait. We �rst express the k-plait as a k-sequen
emultiplied by a braid word, and then use the main algorithm outlined previouslyto express it as a linear 
ombination of k-sequen
es. We then 
lose these o�using the method des
ribed in this se
tion, with the �nal 
oeÆ
ient of the1-sequen
e (11) giving us the Kau�man polynomial of the k-plait.A 
ow diagram to illustrate the algorithm 
an be seen in Figure 3.10.3.5 ComplexityThe number of k-sequen
es for a �xed k is (2k)!2k (Proposition 3.1). Immediatelythen we 
an state that the algorithm is not exponential with respe
t to 
, thenumber of 
rossings, for a �xed k, in the sense of the general algorithm outlinedin Se
tion 1.5.5. Rather than produ
e an in
reasing number of diagrams as ea
h
rossing is 
onsidered, we are able to limit the number of obje
ts by representingsta
ked k-tangles as k-sequen
es. 64
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e
NY
N

N Y
Y
YN
r := r � 1

Next k-sequen
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Figure 3.10: Flow diagram showing algorithm for 
al
ulating the Kau�manpolynomial. At box 1 we look to see if the k-sequen
e is in
ompatible withan r at the relevant point; at box 2 we 
he
k if we are 
onsidering the lastk-sequen
e in the set or not; box 3 
he
ks to see if r is now equal to 1; box 4
he
ks to see if the end of the input has been rea
hed.65



Proposition 3.11 The number of k-sequen
es satisfying Proposition 3.2 orProposition 3.3 for a given generator or inverse ��1i isk2 (2(k � 1))!2k�1 :ProofConsider �rst of all the 
ase for a generator �i. There are (2k)!2kk k-sequen
es withthe value r at position i, 1 � r � k. A k-sequen
e s whi
h is not 
ompatiblewith �i is su
h that s(i + 1) > s(i). There are k � r 
hoi
es for the value ofs(i+ 1), thus we enumerate the number of in
ompatible k-sequen
es with r inposition i as (k � r)(2(k � 1))!2k�2 :Taken over all r we 
an then evaluate the number of k-sequen
es 
ompatiblewith �i askXr=1 �(2k)!2kk � (k � r)(2(k � 1))!2k�2 � = (2k)!2k � (2(k � 1))!2k�2 kXr=1(k � r)= (2k)!2k � (2(k � 1))!2k�2 � k(k � 1)2= (2(k � 1))!2k�1 �2k(2k � 1)2 � k(k � 1)�= k2 (2(k � 1))!2k�1 :The same method shows that the value holds for inverses.From this bound it follows that there is a limit to the number of a
tionsof renumbering and rearrangement required to ensure 
ompatibility. Of 
oursethere is growth in terms of the number of operations performed; the number ofoperations performed to ensure 
ompatibility for the �rst 
rossing will be lessthan the number performed to ensure 
ompatibility for the tenth 
rossing. Fora suÆ
iently long braid word we will rea
h a point where our linear 
ombination
ontains the maximum number of k-sequen
es. For ea
h su

essive 
rossing thenumber of operations required to ensure 
ompatibility will remain more or less
onstant, and from this point we 
ould 
onsider the amount of work performedby the main algorithm to be linear with respe
t to 
.66



As there is growth in terms of the number of operations performed be-fore this point, we state that the main work of the algorithm is performed inpolynomial time, degree 2.The growth of the 
oeÆ
ients of the k-sequen
es is not exponential either.k � 1 passes are made through the set of k-sequen
es during a sequen
e ofrearrangements, and so at most the spread of z will in
rease by k � 1. Thespread of v only in
reases (potentially) during the multipli
ation stage of thealgorithm, and does so by 1 at most as we multiply relevant k-sequen
es by v orv�1 depending on whether we multiply by a generator or an inverse. Hen
e, for
oeÆ
ients we have linear growth in z and linear growth in v, giving quadrati
growth overall in 
oeÆ
ients.As the a
tion of the main algorithm is polynomial, degree 2, and the growthof 
oeÆ
ients is polynomial degree 2 (all with respe
t to 
 for a �xed k) then thealgorithm as a whole is a polynomial time algorithm of degree 4. However, on
ethe number of k-sequen
es rea
hes a 
ertain bound the number being a
ted onby subsequent will be 
onstant with only minor 
u
tuations. As the numberof operations performed is bounded the main algorithm be
omes linear withrespe
t to 
. Hen
e the overall algorithm will e�e
tively, from that point on,be polynomial degree 3 with respe
t to 
 for a �xed k.3.6 ImplementationThe algorithm des
ribed in this 
hapter lends itself to implementation in a
omputing language. Although the algorithm works in polynomial time, aswith other algorithms for 
al
ulating polynomial invariants of knots it is too
ompli
ated to allow any serious 
al
ulation by hand.In Appendix A.2 we give a listing for a Maple pro
edure that implements thealgorithm developed in this 
hapter. The 
ode is do
umented in that appendix,but there are a few points that are worth tou
hing on here.The �rst is to note that we use the \permute" 
ommand in Maple to gen-erate the set of k-sequen
es at the start of a 
al
ulation. We use this 
ommand67



on the numbers in the string equivalent to the k-sequen
e (1122: : :kk), whi
hhas the e�e
t of 
reating a list with a very regular ordering that we 
an exploit.The a
tions of rearrangement and renumbering are performed by looking inrelevant pla
es within k-sequen
es, and seeing how adja
ent numbers lie relativeto ea
h other. By 
onsidering a few simple 
ases and fa
tors we determine theappropriate 
ourse to take, i.e., rearrangement or renumbering.There are two main arrays of information kept in memory by the program.One is the array holding the set of k-sequen
es, and the other is the table of
oeÆ
ients that are paired with the k-sequen
es. The a
tions of rearrangement,renumbering and multipli
ation are performed by altering 
oeÆ
ients in these
ond array to re
e
t 
hanges in the linear 
ombination of k-sequen
es.I have not found a 
ommand in Maple that simply gives the index of a k-sequen
e in the �rst array, so I 
reated a simple routine that allows us to narrowthe list of entries that we sear
h through. SeqIndex is listed in Appendix A.1,and exploits the regular ordering that the permute 
ommand gives the list ofk-sequen
es.3.7 Plait PresentationsIn Appendix B we give tables of plait presentations of all knots up to ten
rossings; while plait presentations are fairly well known (as \2k-plats") it seemsthat there is no re
ord of the braid words for plait presentations. These tablesre
ord presentations for all knots up to ten 
rossings. The sour
e diagrams aredue to the Rolfsen Knot Table as re
orded at the Knot Atlas [52℄, with someadditional diagrams from KnotInfo [26℄.While plait presentations of knot diagrams are not in prin
iple diÆ
ult toobtain, it 
an be diÆ
ult to �nd presentations of minimal width; of 
ourse, aplait presentation might not have the minimal number of 
rossings for the linkpresented. All of the presentations that I give have minimal width, as ea
h hasa width equal to the knot's bridge index, but it remains to be seen whethersome of them 
ould have the number of 
rossings improved, i.e., by redu
ing68



the length of the braid word that we 
lose-o� in the plait format.3.8 Dis
ussionThere are some questions that the work of this 
hapter raises; there are possibleextensions that we 
an make to the theory as well, but we will examine thosein detail in the following 
hapter.3.8.1 The number of sta
ked k-tanglesThere are (2k)!2k k-sequen
es, and the implementation of the algorithm that Ihave given for this operates on a spanning set whi
h is the entire set of k-sequen
es. There are lots of interesting questions that we 
an ask regardingspanning sets for the spa
e of k-sequen
es and for sta
ked k-tangles.For example, we 
an begin by giving the size of a basis for the k-sequen
esin the Kau�man skein.Lemma 3.12 A basis for the spa
e of k-sequen
es 
ontains Qkr=1(2r � 1) ele-ments.ProofLet S be the set of k-sequen
es su
h that the numbers in a k-sequen
e in So

ur in 
ounting order as the sequen
es are examined from left to right.We 
an perform renumbering and rearrangement operations on any k-sequen
eto express it as a linear 
ombination of k-sequen
es from the set S by Propo-sition 3.7. The set S is thus a spanning set of the spa
e of k-sequen
es.We 
al
ulate the size of S as follows: there is a 1 in the �rst pla
e of thesequen
e, and there are 2k � 1 possible pla
es where the other 1 
ould be. Byremoving these we have a sequen
e of length 2k� 2 with a 2 at the start; thereare 2k � 3 pla
es that we 
an pla
e the other 2. We 
ontinue in this way, andsee that the number of possible sequen
es of this format is the produ
t of all69



of the odd numbers from 1 to 2k � 1, orjSj = kYr=1(2r � 1):We 
annot remove any element of S and express it as a linear 
ombination ofthe others, hen
e the elements of S form a basis of the spa
e of k-sequen
es.A problem that I have not been able to answer is the question of how manysta
ked k-tangles there are for a given k. For k = 2 and k = 3 there arefew enough k-sequen
es that we 
an enumerate the set of sta
ked k-tanglesby inspe
tion. For k = 4 we have 2520 diagrams to 
onsider and the taskbe
omes too diÆ
ult to 
onsider simply by 
omparing all of the sta
ked 4-tangle diagrams.By 
onsidering relative positions of neighbouring ar
s in the set of 4-sequen
eswe 
an eliminate dupli
ate sequen
es that represent sta
ked 4-tangles whi
h donot have unique numberings. This argument, however, does not guarantee thatthe 4-sequen
es it obtains a

ount for all of the dupli
ate 
opies of sta
ked 4-tangles, and it unfortunately also produ
es \false positives." In the absen
e offurther results, the quoted number of 550 must remain an upper bound, witha lower bound provided by the number of sta
ked 4-tangles in a basis. Wedisplay these with the values for k = 2 and k = 3 in Table 3.1.k jfSta
ked k-tanglesgj2 43 354 x; 105 < x � 550Table 3.1: Size of sets of sta
ked k-tanglesIt is possible that a 
ombinatorial answer exists in [10℄; however, to date,I have not been able to understand all of the terminology and results in thepaper in order to fully de
ide whether an answer to the problem exists there.Now that the upper bound has been redu
ed from 2520 to 550 it is possiblethat the remaining work has been redu
ed enough to 
on�rm by inspe
tion the70



size of the set of sta
ked 4-tangles. However, this approa
h will be too time-
onsuming for 
al
ulating the size of the set of sta
ked k-tangles in general.3.8.2 Improving the algorithmThe natural question that one might ask is whether or not an even better, moreeÆ
ient algorithm exists for 
al
ulating the Kau�man polynomial. While thisquestion is mu
h too broad to answer in general, there are some points that we
an note for the 
ase of 
al
ulating the Kau�man polynomial of a k-plait.In Chapter 6 we show results for repeated twists on two strings in a braidand how these 
an be expressed in the Kau�man skein. These results mayhave some appli
ation here, either in simplifying diagrams before a run of thealgorithm or by supplementing the algorithm.One thought that I have examined is the possibility of working from abasis of the spa
e of k-sequen
es. While it is true that we 
an express anylinear 
ombination of k-sequen
es as a linear 
ombination of basis elementsit does not follow that these basis elements will be 
ompatible with a givengenerator or inverse. Extending this idea, we might 
onsider working withtwo bases, and rearranging from expressions in one basis to another to obtain
ompatibility; however, a little experimentation shows that two bases will notbe enough to ensure 
ompatibility, and 
ombined with the extra operationsthat an implementation would be required to perform it is not 
lear that wewould be redu
ing the work performed.In the extensions se
tion of the next 
hapter we dis
uss how one might
al
ulate a 2-parallel of a k-plait, and how we 
an use the methods of this
hapter in order to redu
e the work needed in those 
ases. These are basedaround situations where the braid word gives a long ar
 
rossing over (or under)other braid strings. In this 
ase we perform rearrangements to allow the ar
 to
ross over (or under) all of these strings in the a
t of one multipli
ation, ratherthan in several stages. This a�ords a redu
tion of the amount of work done in
omparison. 71



3.8.3 Numbering ar
s in layersOne problem with the algorithm that we have outlined is that it performs op-erations to ensure 
ompatibility (Propositions 3.2 and 3.3), rather than simplyperforming operations on k-sequen
es that are in
ompatible.Consider the example of multiplying (11442233) by �2, whi
h is not in
om-patible. The algorithm that we have outlined would tell us to use renumberinga
tions to rearrange 4 and 3, then 3 and 2, and then 2 and 1 before the multi-pli
ation 
ould be performed. In this 
ase, all of the ar
s in the sta
ked 4-tangleare in the same layer, and so the numbering that we give them is arbitrary insome respe
t.An improvement to the algorithm would be to 
onsider the numbering ofar
s whi
h are in the same layer as being irrelevant. The diÆ
ulty with thisapproa
h is that essentially we are 
onsidering the sta
ked k-tangle diagramsrather than representations. The ma
hinery of any su
h implementation woulddoubtless be in
reased dramati
ally to allow for these possibilities.
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Chapter 4
Sta
ked k-tangles and theHom
y Polynomial
4.1 Introdu
tionWe extend the de�nition of sta
ked k-tangles to allow oriented ar
s, and sub-sequently develop a method for 
al
ulating polynomial invariants for orientedlinks; the example that we give is for 
al
ulating the Hom
y polynomial of linksgiven as plait presentations. The steps leading to this algorithm are similar tothe work of the previous 
hapter, and so we state many of the results withoutproof. These lead to Proposition 4.8 whi
h is the key result for the algorithm.As with the previous algorithm for 
al
ulating the Kau�man polynomialfor knots presented as plaits, we show that this algorithm is a polynomial timealgorithm for a �xed k with respe
t to the number of 
rossings 
. There areexisting polynomial time algorithms for 
al
ulating the Hom
y polynomial, butthese are based on braid presentations [45℄. After sear
hing through the liter-ature I believe that the algorithm given in this 
hapter is the �rst polynomialtime algorithm not based around presentations for 
losed braids.We 
on
lude the 
hapter by 
onsidering some extensions to the generaltheory of 
al
ulating polynomial invariants by representing sta
ked k-tanglesas k-sequen
es (oriented or unoriented). We investigate several possibilities for73



redu
ing the amount of work that our existing algorithm performs. We 
onsiderthis with respe
t to 
al
ulating the Hom
y polynomial of a reverse parallel of aknot; this generalises to m-parallels in general (for Hom
y and Kau�man). Webrie
y 
onsider a possible appli
ation by shifting from words in a braid groupto 
onsidering words written in terms of band generators [8℄, [23℄.4.2 Oriented sta
ked k-tanglesAs the Hom
y polynomial is an invariant for oriented links, we must now
onsider tangles with oriented ar
s. We use the k-tangle from the previous
hapter as our starting point.De�nitionAn oriented k-tangle is a k-tangle with ea
h ar
 oriented.See Figure 4.1 for examples of oriented k-tangles.
Figure 4.1: Examples of oriented 3- and 4-tanglesDe�nitionAn oriented sta
ked k-tangle is a sta
ked k-tangle with ea
h ar
 ori-ented.In Figure 4.2 we see two examples of oriented sta
ked 4-tangles; these are thetwo examples from the previous 
hapter with ar
s now oriented.We give a numbering to the ar
s of oriented sta
ked k-tangles in exa
tly thesame way as we did previously for unoriented sta
ked k-tangles. Diagrammat-i
ally we see numbered ar
s with the orientation indi
ated on the ar
s (as inthe example of Figure 4.3, showing a numbering for the left-hand example of74



Figure 4.2: Examples of oriented sta
ked 4-tanglesFigure 4.2). The orientation is extra information that we have to pass to theanalogue of k-sequen
es for this oriented 
ase.1 2 3 4
Figure 4.3: An oriented sta
ked 4-tangle with numbered ar
sDe�nitionAn oriented k-sequen
e is a sequen
e of numbers, �i; 1 � i � k, rep-resenting the endpoints of ar
s of an oriented sta
ked k-tangle. The absolutevalue of the number indi
ates the ar
 and we take the 
onvention that theorientation of the ar
 runs in the dire
tion from �i to +i.For example the oriented sta
ked 4-tangle given in Figure 4.3 has oriented4-sequen
e (�1 �2 3 1 �4 2 �3 4). As in the previous 
hapter, the set of orientedk-sequen
es is larger than the set of oriented k-tangles.Proposition 4.1 The set of oriented k-sequen
es has (2k)! elements.ProofThis follows immediately as we permute 2k di�erent numbers.75



4.3 A
tion of braid generatorsIn Se
tion 3.3 of the previous 
hapter we showed that it was possible to express ak-sequen
e as a linear 
ombination of k-sequen
es satisfying 
ertain 
onditions.We did this spe
i�
ally with the aim of showing that one 
ould express asta
ked k-tangle 
omposed with a braid word from B 2k as a linear 
ombinationof sta
ked k-tangles. In this se
tion we show that similar results 
an be obtainedfor Hom
y.We begin by returning to 
ompatibility, de�ning the 
on
ept for orientedsta
ked k-tangles and oriented k-sequen
es.De�nitionAn oriented sta
ked k-tangle t1 is 
ompatible with a generator or inverse��1i if the result of multiplying t1 by ��1i gives another oriented sta
ked k-tanglet2, or t1 multiplied by a s
alar v�1.De�nitionAn oriented k-sequen
e s is 
ompatible with a generator or inverse ��1i ifthe oriented sta
ked k-tangle determined by s is 
ompatible with ��1i .As orientation is kept with the ar
s in the tangle, we 
an see that orientationdoes not have a dire
t bearing on 
ompatibility. We 
an impose the following
onditions to ensure 
ompatibility as we did with Propositions 3.2 and 3.3 inthe previous 
hapter.Proposition 4.2 If the absolute value of the number at position i in an ori-ented k-sequen
e s is greater than or equal to the absolute value of the numberat position i+ 1 then s is 
ompatible with �i.Proposition 4.3 If the absolute value of the number at position i in an ori-ented k-sequen
e s is less than or equal to the absolute value of the number atposition i+ 1 then s is 
ompatible with ��1i .The proofs of Propositions 4.2 and 4.3 are essentially the same to those ofPropositions 3.2 and 3.3. 76



We now move on to show that similar 
on
epts of renumbering and rear-rangement 
an be applied in the Hom
y skein module of oriented k-sequen
es,respe
ting operations in the Hom
y skein module of oriented sta
ked k-tangles.4.3.1 RenumberingDe�nitionLet s and s0 be oriented k-sequen
es. We say that s is equivalent by renum-bering to s0 if and only if s0 arises from a valid numbering for the same orientedsta
ked k-tangle that s determines.The following two propositions mirror the propositions related to renumber-ing in the previous 
hapter, Propositions 3.4 and 3.5. There are four parts toea
h, owing to the four di�erent possibilities for orientation in oriented sta
ked2-tangles. We state them without proof.Proposition 4.4 Let 1 � a � k � 1 and b = a + 1.1. Consider two oriented k-sequen
es s1 and s2, su
h that for 1 � p < q <r < t � 2k s1(p) = a s1(q) = �a s1(r) = b s1(t) = �bs2(p) = b s2(q) = �b s2(r) = a s2(t) = �aand s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.2. Consider two oriented k-sequen
es s1 and s2, su
h that for 1 � p < q <r < t � 2k s1(p) = a s1(q) = �a s1(r) = �b s1(t) = bs2(p) = b s2(q) = �b s2(r) = �a s2(t) = aand s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.77



3. Consider two oriented k-sequen
es s1 and s2, su
h that for 1 � p < q <r < t � 2k s1(p) = �a s1(q) = a s1(r) = b s1(t) = �bs2(p) = �b s2(q) = b s2(r) = a s2(t) = �aand s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.4. Consider two oriented k-sequen
es s1 and s2, su
h that for 1 � p < q <r < t � 2k s1(p) = �a s1(q) = a s1(r) = �b s1(t) = bs2(p) = �b s2(q) = b s2(r) = �a s2(t) = aand s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.Proposition 4.5 Let 1 � a � k � 1 and b = a+ 1.1. Consider two oriented k-sequen
es s1 and s2, su
h that for 1 � p < q <r < t � 2k s1(p) = a s1(q) = b s1(r) = �b s1(t) = �as2(p) = b s2(q) = a s2(r) = �a s2(t) = �band s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.2. Consider two oriented k-sequen
es s1 and s2, su
h that for 1 � p < q <r < t � 2k s1(p) = a s1(q) = �b s1(r) = b s1(t) = �as2(p) = b s2(q) = �a s2(r) = a s2(t) = �band s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.78



3. Consider two oriented k-sequen
es s1 and s2, su
h that for 1 � p < q <r < t � 2k s1(p) = �a s1(q) = b s1(r) = �b s1(t) = as2(p) = �b s2(q) = a s2(r) = �a s2(t) = band s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.4. Consider two oriented k-sequen
es s1 and s2, su
h that for 1 � p < q <r < t � 2k s1(p) = �a s1(q) = �b s1(r) = b s1(t) = as2(p) = �b s2(q) = �a s2(r) = a s2(t) = band s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.4.3.2 RearrangementDe�nitionAn oriented k-sequen
e s is Hom
y equivalent to P aisi, a linear 
ombi-nation of oriented k-sequen
es with 
oeÆ
ients from the Hom
y skein module,if and only if a linear 
ombination of oriented sta
ked k-tangles 
orrespond-ing to the linear 
ombination of oriented k-sequen
es 
an be obtained fromthe oriented sta
ked k-tangle determined by s by applying the Hom
y skeinrelation.We say that we use a rearrangement a
tion when applying Hom
y skeinrelations in order to obtain a Hom
y equivalent linear 
ombination of orientedk-sequen
es.It follows that two oriented k-sequen
es that are equivalent by renumberingare Hom
y equivalent.Whereas in the 
ase of Kau�man equivalen
e we had one relation thatwe showed for adja
ent ar
s, in the 
ase of Hom
y equivalen
e there are four79



relations that we must make 
lear. We state them in the next two propositions,whi
h are proved in a similar way to the proof of Proposition 3.6.Proposition 4.6 Let 1 � a � k � 1 and b = a+ 1.1. Consider three oriented k-sequen
es s1; s2; s3 su
h that for 1 � p < q <r < t � 2k s1(p) = a s1(q) = �b s1(r) = �a s1(t) = bs2(p) = b s2(q) = �a s2(r) = �b s2(t) = as3(p) = a s3(q) = �a s3(r) = �b s3(t) = band for all other 1 � i � 2k s1(i) = s2(i) = s3(i).Then s1 is Hom
y equivalent to s2 � zs3.2. Consider three oriented k-sequen
es s1; s2; s3 su
h that for 1 � p < q <r < t � 2k s1(p) = �a s1(q) = b s1(r) = a s1(t) = �bs2(p) = �b s2(q) = a s2(r) = b s2(t) = �as3(p) = �a s3(q) = a s3(r) = b s3(t) = �band for all other 1 � i � 2k s1(i) = s2(i) = s3(i).Then s1 is Hom
y equivalent to s2 � zs3.Proposition 4.7 Let 1 � a � k � 1 and b = a+ 1.1. Consider three oriented k-sequen
es s1; s2; s3 su
h that for 1 � p < q <r < t � 2k s1(p) = a s1(q) = b s1(r) = �a s1(t) = �bs2(p) = b s2(q) = a s2(r) = �b s2(t) = �as3(p) = a s3(q) = b s3(r) = �b s3(t) = �aand for all other 1 � i � 2k s1(i) = s2(i) = s3(i).Then s1 is Hom
y equivalent to s2 + zs3.80



2. Consider three oriented k-sequen
es s1; s2; s3 su
h that for 1 � p < q <r < t � 2k s1(p) = �a s1(q) = �b s1(r) = a s1(t) = bs2(p) = �b s2(q) = �a s2(r) = b s2(t) = as3(p) = �a s3(q) = �b s3(r) = b s3(t) = aand for all other 1 � i � 2k s1(i) = s2(i) = s3(i).Then s1 is Hom
y equivalent to s2 + zs3.Having given these statements we are in a position to give a result thatmirrors Proposition 3.7, whi
h was the 
ornerstone of the algorithm that weoutlined for 
al
ulating the Kau�man polynomial of k-plaits.Proposition 4.8 An oriented k-sequen
e s with number r at position j where2 � r � k is Hom
y equivalent to a linear 
ombination of oriented k-sequen
esea
h with r � 1 at position j.An oriented k-sequen
e s with number �r at position j where 2 � r � kis Hom
y equivalent to a linear 
ombination of oriented k-sequen
es ea
h with�(r � 1) at position j.ProofThis follows from Propositions 4.4 - 4.7 by similar 
onsiderations to the proofof Proposition 3.7.Proposition 4.9 An oriented k-sequen
e s that is in
ompatible with a gener-ator or inverse ��1i is Hom
y equivalent to a linear 
ombination of orientedk-sequen
es 
ompatible with ��1i .ProofThis follows from Proposition 4.8. 81



4.4 AlgorithmIn this se
tion we outline the ways in whi
h this algorithm di�ers from thatof the previous 
hapter. Most of these 
onsiderations are due to how we makeallowan
es for dealing with the orientation information en
oded in orientedk-sequen
es.We begin with a k-plait presentation represented as a sta
ked k-tangle mul-tiplied by a braid word from B 2k 
losed o� by k 
ups at the bottom of thepresentation. We assign an orientation, or orientations if dealing with a link,and determine the initial orientations of the ar
s in the sta
ked k-tangle.Proposition 4.8 shows that the signs of numbers in oriented k-sequen
esdo not 
hange as we perform operations. As a result, we 
an use the set of(unoriented) k-sequen
es along with one sequen
e to re
ord the orientations ofthe ar
s that the k-sequen
es represent. In this way the algorithm operates
onsidering a mu
h smaller set of obje
ts: we return to 
onsidering the (2k)!2kk-sequen
es plus a sequen
e of 1s and �1s that 
ontain the information for theorientation of ar
s.The previous algorithm for 
al
ulating the Kau�man polynomial worked intwo stages: �rst we performed a series of renumberings and rearrangements inorder to ensure that k-sequen
es were 
ompatible with the next generator in thebraid word. Then we multiplied the k-sequen
es in our linear 
ombination, es-sentially swit
hing the two numbers at the appropriate point in the k-sequen
esor multiplying 
oeÆ
ients by v�1 if the endpoints represented belonged to thesame ar
.Thus the algorithm for 
al
ulating the Hom
y polynomial of a knot pre-sented as a plait presentation fun
tions in the same way as that for the Kau�-man polynomial: we perform operations on k-sequen
es, rearranging the linear
ombination at ea
h stage so that all of the k-sequen
es are 
ompatible withthe next generator. The rearrangements are de
ided by how adja
ent-numberedar
s are related in the k-sequen
e and from the sequen
e of 1s and �1s that
arry the orientation information.As with the algorithm of Chapter 3, we pro
eed at ea
h stage by ensuring82



that generators and inverses satisfy the 
ompatibility 
onditions of Proposi-tions 4.2 and 4.3. We 
onsider k-sequen
es with the number k in the a�e
tedposition, and work to redu
e this number by renumbering or rearrangement tok � 1 if the 
onditions for 
ompatibility are not met; we then work in turn onk-sequen
es with k� 1 in that position and so on. Renumbering is the same asbefore, as that operation on the oriented k-sequen
e re
e
ts the fa
t that twoar
s are in the same layer in the oriented sta
ked k-tangle.Rearrangement in the Hom
y 
ase is not as straight-forward as the Kau�-man 
ase as we have additional information given by the orientation. Theorientation of adja
ent ar
s has a bearing on the appli
ation of the skein rela-tions, parti
ularly the oriented k-sequen
e representing the smoothing. Whilethis is extra information to 
onsider in our appli
ation of the algorithm, it isnot something that is extremely diÆ
ult to resolve, and there are only a verylimited number of 
ases to be 
onsidered. The relationships for all of these 
anbe seen in Propositions 4.6 and 4.7.On
e we have 
ompleted a series of renumbering and rearrangements wehave a linear 
ombination of oriented k-sequen
es (by 
ombining the k-sequen
esand the information of the sequen
e of signs) that are 
ompatible with the re-quired generator or inverse; we multiply and then move on to the next gener-ator or inverse. In this way we express an oriented k-sequen
e 
omposed witha braid word from B 2k as a linear 
ombination of oriented k-sequen
es. In 
al-
ulating the Hom
y polynomial of a k-plait these a
tions take us to the pointof 
onsidering 
losure by k 
ups mu
h as it did in the 
ase of the algorithm for
al
ulating the Kau�man polynomial.The a
tion of 
losing o� pro
eeds in the same manner as for the algorithmof the previous 
hapter. We will not dis
uss this in detail here as the pro
edureis so similar: we perform rearrangements and renumberings on the linear 
om-bination of k-sequen
es (with information from the sequen
e of signs) to satisfyan analogous 
ondition to Proposition 3.10 ensuring 
losure-
ompatibility.83



4.5 ComplexityThe algorithm outlined in this 
hapter di�ers from the algorithm of the previous
hapter, but only in the respe
t that a rearrangement operation now expressesa k-sequen
e as a linear 
ombination of two other k-sequen
es, whereas inthe algorithm for 
al
ulating the Kau�man polynomial a rearrangement a
tionexpressed it as a linear 
ombination of three k-sequen
es. This does not 
hangethe order of 
omplexity of the algorithm.The size of 
oeÆ
ients in v and z grow quadrati
ally with respe
t to 
 asin the previous algorithm. Hen
e, 
onsidered together, the algorithm works inpolynomial time, degree 4, with respe
t to 
 for a �xed k.As with the algorithm for the Kau�man polynomial, after a 
ertain pointthe algorithm will essentially perform the same amount of work with ea
hsubsequent 
rossing. From this point we 
an view the algorithm as a whole asbeing polynomial degree 3. Ea
h generator in the braid word after the 
riti
alpoint has been rea
hed will a
t on a set of roughly the same size. It is possiblethat terms 
an 
ombine and redu
e the number of k-sequen
es in an expression,but it will not vary greatly.The main area that the 
omplexity ne
essarily di�ers in is the fa
t that rear-rangement in the algorithm for Hom
y is expressed in terms of two k-sequen
esrather than three. There are fewer terms in a rearrangement operation and sothe growth of the number of terms in the linear 
ombination of k-sequen
es isless rapid. As we use the k-sequen
es plus a sequen
e of signs the number ofk-sequen
es 
ompatible with a given generator or inverse will be the same as inthe 
ase for the Kau�man algorithm under the 
onditions of Proposition 3.11.4.6 ImplementationIn Appendix A.3 we give the listing of the 
ode for this algorithm, implementedon
e again in Maple; it is well do
umented and 
ommented, and so we will nowbrie
y 
onsider the few areas where it deviates from the algorithm for Kau�manin Appendix A.2. 84



As before we use the \permute" 
ommand to obtain the full set of k-sequen
es. If we were to 
onsider the expli
it set of oriented k-sequen
es we
ould generate them in the same way. The problem with using the set of ori-ented k-sequen
es to keep tra
k of 
oeÆ
ients is that there are substantiallymore oriented k-sequen
es than there are (unoriented) k-sequen
es. We arefortunate that we have the observation about the signs of endpoints so thatwe 
an use the set of k-sequen
es plus one other sequen
e whi
h stores theinformation about the signs of endpoints. This drasti
ally redu
es the numberof elements that we must keep in memory and sear
h through.On
e again we use the subroutine SeqIndex (Appendix A.1) in order toobtain the index of a k-sequen
e that we require, either for renumbering, rear-rangement or multipli
ation. In the absen
e of a dire
t 
ommand whi
h 
ouldtake us to a desired k-sequen
e this is a useful routine to have.The only advantage we would have in using the oriented k-sequen
es is thatwe 
ould have extended SeqIndex to obtain the index of a desired k-sequen
e:as any oriented k-sequen
e is a permutation of 2k distin
t symbols, and giventhat we know how Maple permutes elements in a list, we 
an derive a systemfor �nding one of these elements.The implementation that we give operates under the assumption that theorder of signs in the starting sequen
e is (�1; 1;�1; 1; : : :;�1; 1). This is easyenough to for
e using Type I Reidemeister moves, but if this is in
onvenientthen the program 
ould be easily altered so that it takes the starting 
on�gu-ration of the sequen
e of signs as another argument.
4.7 Dis
ussionIn this se
tion we dis
uss ways in whi
h the work of the last two 
hapters 
anbe extended, either to look at problems that arise from the theory we havedis
ussed or to look at ways in whi
h we 
an improve on what I have outlined.85



4.7.1 Reverse parallel satellitesIn Chapter 2 we 
onsidered an extension to the result of Rudolph regardingHom
y polynomials of reverse parallels of knots [54℄. When we 
onsider thereverse parallel of a k-plait with 
 
rossings, we are essentially 
onsidering aplait of width 2k (although the 
losure is not immediately that of a plait as wehave de�ned it) with 4
 
rossings.A 2-parallel of a braid word from B 2k is a word from the braid group B 4k ,and words are mapped by their generators a

ording to the following map:� : ��1i ! ��12i ��12i+1��12i�1��12i :We move from 
onsidering linear 
ombinations of k-sequen
es to linear 
om-binations of 2k-sequen
es. This dramati
ally in
reases both the number of se-quen
es 
onsidered and the number of sequen
es that will be 
ompatible witha parti
ular generator or inverse. Given that we will be 
onsidering four timesas many 
rossings, we need to do everything that we 
an in order to redu
e theamount of work performed by the algorithm.We 
onsider the a
tion of multipli
ation and 
onditions that ensure 
om-patibility in order to redu
e the amount of work performed by the algorithm.Consider the diagram of a 2-parallel of generator �i in Figure 4.4.s(2i� 1) s(2i) s(2i+ 1) s(2i+ 2)

Figure 4.4: 2-parallel of generator �i, �2i�2i+1�2i�1�2iProposition 4.10 A 2k-sequen
e s with s(2i�1) = s(2i) or s(2i+1) = s(2i+2) is 
ompatible with �2i�2i+1�2i�1�2i, the 2-parallel of a generator �i 2 B 2k .86



ProofThe sta
ked 2k-tangle determined by the 2k-sequen
e in this 
ase would have anar
 joining one of the two possible adja
ent positions, and the four generatorsin the 2-parallel of the single 
rossing would swit
h the lo
ation of the joinedarea. See Figure 4.5 for an illustration.
Figure 4.5: Ex
eptional 
ompatibilityIf the 
onditions of Proposition 4.10 are met then we say that the 2k-sequen
ehas ex
eptional 
ompatibility with the 2-parallel of �i.Proposition 4.11 If a 2k-sequen
e s is su
h thats(2i+ 1) � minfs(2i� 1); s(2i)g and s(2i+ 2) � minfs(2i� 1); s(2i)gthen s is 
ompatible with �2i�2i+1�2i�1�2i, the 2-parallel of a generator �i 2 B 2k .ProofIn order to satisfy Proposition 4.2 it must be the 
ase that s(2i+1) � s(2i�1)and s(2i + 1) � s(2i), and also s(2i + 2) � s(2i� 1) and s(2i + 2) � s(2i), asthese re
e
t over
rossing ar
s in the sta
ked 2k-tangle. However, it 
annot betrue that both s(2i + 1) = s(2i � 1) and s(2i + 1) = s(2i) (and similarly fors(2i+ 2)). Hen
e to satisfy 
ompatibility 
onditionss(2i+ 1) � minfs(2i� 1); s(2i)g and s(2i+ 2) � minfs(2i� 1); s(2i)g:Our approa
h then is to use renumbering and rearrangement as before sothat these 
onditions are satis�ed and 
ompatibility is ensured. In the approa
h87



we 
an ex
lude any 2k-sequen
es that satisfy ex
eptional 
ompatibility, andfo
us on those that still need attention.In the following dis
ussion we refer to the 2-parallel of a braid generator;similar statements 
an be made for the 2-parallel of an inverse.As we need both s(2i + 1) and s(2i + 2) to be less than or equal to theminimum of fs(2i � 1); s(2i)g it makes sense as a �rst step to perform initialrearrangements and renumberings on values s(2i � 1), s(2i); the nature ofthese operations is to perform two passes, the �rst of whi
h a
ts to in
rease ano

urren
e of a 1 to a 2, and then to in
rease an o

urren
e of a 2 to a 3 ineither of s(2i� 1) or s(2i). This guarantees that neither s(2i� 1) or s(2i) takethe minimum value.We perform the usual 
y
le of renumbering and rearrangement on the valueof endpoint s(2i + 1). In this 
ase we are performing these operations only tothe point that s(2i+ 1) � minfs(2i� 1); s(2i)g.Upon 
ompletion of this series of operations, we a
t on the endpoint s(2i+2),and repeat the 
y
le of operations so that s(2i + 2) � minfs(2i � 1); s(2i)g.When this is satis�ed for all 2k-sequen
es in the linear 
ombination we have anexpression that is 
ompatible with the 2-parallel of a single 
rossing, and weperform multipli
ation in the usual way (at the 2k-sequen
e level, by movingnumbers in the sequen
e and multiplying by v if ne
essary).For 2k-sequen
es that have been involved in rearrangements and renum-berings to ensure 
ompatibility for s(2i + 1) it 
an be seen that less work isperformed to then ensure 
ompatibility for s(2i+ 2) also. At most we performtwo full 
y
les of rearrangement and renumbering, and in
rease some values ofs(2i�1) and s(2i). Considering the situation of Figure 4.4 in the usual mannerwould involve performing four 
y
les of rearrangements and renumberings toensure 
ompatibility, as well as intermediate multipli
ation steps.E�e
tively we have halved the amount of work done in terms of the numberof operations performed than if we had simply 
onsidered this as a 2k-plaitwith 4
 
rossings. Given that the set of 2k-sequen
es is mu
h larger than theset of k-sequen
es the bound on the number of operations that have to be88



performed in order to ensure regular 
ompatibility is mu
h larger; but we stillhave a saving in the amount of work that must be done in order to performmultipli
ation. This equates to roughly the amount of work done in 
al
ulatingthe polynomial for a 2
-
rossing 2k-plait with the normal 
losure, as opposedto this 4
-
rossing 2k-plait that has a \doubled" 
losure.If the initial sign sequen
e for the k-plait presentation is one of alternating+1s and �1s then the sign sequen
e for the reverse parallel will also be alternat-ing +1s and �1s. As multipli
ation by the four generators from the doublingup of a single 
rossing swaps two pairs of numbers, we 
an easily see that thesign sequen
e will remain 
onstant throughout the operation of the algorithm.The sign sequen
e for the reverse parallel 
an be re
overed by 
onsidering theposition of an endpoint in the sequen
e: endpoints in positions 2n; 1 � n � 2khave sign +1, while endpoints in positions 2n� 1; 1 � n � 2k have sign �1.This example was motivated by an example for the Hom
y polynomial, butthe prin
iple of redu
ing the work of the main algorithm applies equally to
al
ulating the Kau�man polynomial of 2-parallels.4.7.2 Band-generatorsAnother possible extension to the general prin
iple is to 
onsider the 
ase ofband-generator style presentations ([8℄ and [23℄).A generator ats, in band-generator notation, re
e
ts a potentially long wordin Artin braid presentations, withats = (�t�1�t�2 : : : �s+1)�s(��1s+1 : : : ��1t�2��1t�1)for 1 � s < t � 2k � 1 when taken from the braid group B 2k . The featurethat we are interested in are the parts of the band-generator in standard braidnotation of the form �r�r�1�r�2 : : : �r�a, i.e., one string 
rossing over manystrings.Rearrangements and renumberings 
ould be performed to ensure that thelinear 
ombination of k-sequen
es is 
ompatible with the word �r�r�1�r�2 : : : �r�a,89



rather than by 
onsidering ea
h generator in turn. As with the reverse par-allel 
ase, we perform rearrangements and renumberings so that s(r + 1) �minfs(r); s(r� 1); : : : ; s(r� a)g; there will also be 
onditions for k-sequen
eswith ex
eptional 
ompatibility, in a similar manner to how it was 
onsideredpreviously.While I have not examined this idea in detail, I believe that there areinteresting questions that 
ould be explored at a later date. The main questionthat 
ould be explored is whether band-generator presentations for knots 
anbe used in 
onjun
tion with the approa
h that I have outlined for 
al
ulatingpolynomial invariants, in order to redu
e the work performed by the algorithm.A more te
hni
al question is whether an implementation (in some program-ming language) as we have previously des
ribed it 
ould bene�t from noti
ingsequen
es of generators su
h as �r�r�1�r�2 : : : �r�a, and whether this wouldthen allow a saving in work performed and 
al
ulation time rather than 
on-sidering ea
h of the generators in turn.4.7.3 Subsets of k-sequen
esThe size of the set of k-sequen
es grows drasti
ally as k grows. As noted inChapter 1 it might often be easier to obtain a plait presentation with widthgreater than the bridge index. However, any 
al
ulations using the algorithmsthat we have outlined would be performing operations on a large set of obje
ts;for k = 6 there are over seven million 6-sequen
es to 
onsider.One strategy might be to begin with the starting sequen
e, (1122: : :kk), andfrom that generate the k-sequen
es that are in use, i.e., those with non-zero
oeÆ
ients. In this way we restri
t ourselves to only having a subset of thek-sequen
es (and any 
oeÆ
ients) in memory; for presentations that are wideand short, i.e., with relatively large k and small number of 
rossings 
, this
ould be an asset in allowing 
omputation when generation and managementof the entire set of k-sequen
es in memory would be impra
ti
al.Of 
ourse, this strategy would not be pra
ti
al in general for large valuesof 
 as the growth of the number of k-sequen
es being stored might be too90



rapid to allow 
al
ulation. Also, we would not be able to optimise the sear
hroutines for the operations requiring us to move 
oeÆ
ients unless we added yetmore stru
ture and pro
edures to an implementation to order the k-sequen
esin memory.4.7.4 Morse link presentationsConsider the two diagrams in Figure 4.6. The diagram on the left is a 4-plait

Figure 4.6: Presentations of the Kinoshita-Teresaka knotpresentation of the Kinoshita-Teresaka knot; the diagram on the right showsthe same presentation altered to show one important feature. The original plaitpresentation given has width 4, but the right-hand diagram has width 3 for themost part; we 
lose o� one 
up (to the left-most strings) and introdu
e another
ap and strings on the opposite side of the presentation, and 
ontinue with therest of the presentation as width 3, then width 2.While the presentation on the right of Figure 4.6 is not stri
tly a plaitpresentation it does o�er advantages for 
al
ulation if we 
onsider our methods.91



Cal
ulating a polynomial invariant of a 4-plait involves performing operationson the set of 4-sequen
es, whi
h has 2520 elements. The set of 3-sequen
eshas only 90 elements, and these are all that we would need to 
onsider for the�rst half of the braid word. We 
ould then 
lose o� and pass 
oeÆ
ients to anappropriate linear 
ombination of 3-sequen
es as we introdu
e another 
ap.While it is true that there is a �xed �nite number of operations required to
al
ulate a polynomial invariant for a 4-plait with 
 
rossings, the 
orrespondingnumber for a 3-plait with 
 
rossings will be mu
h smaller. The implementationsthat we have outlined operate by performing 
y
les of operations on the set ofk-sequen
es, and must 
y
le through the entire set k � 1 times in order to
he
k 
onditions for 
ompatibility. If instead we are able to a
t on the set of(k� 1)-sequen
es we are a
ting in a mu
h smaller set of elements, and we alsohave to perform fewer 
y
les.A set of 
lear notation for the style of diagram to the left of Figure 4.6 wouldbe a valuable adaptation of the plait presentation format. If we were then ableto implement this in a programming language we 
ould make drasti
 savings onthe amount of work done by a program, and hen
e redu
e the time that it takesto 
omplete a 
al
ulation. One possibility is to use Morse link presentations(similar notation 
an be seen in [59℄); an instan
e of the information of thispresentation being used for 
omputing purposes 
an be seen in [34℄. Whilethere is always going to be some work involved in �rst obtaining a diagrammati
presentation for a knot as a plait or Morse link presentation, and in writing outhow the information of su
h a presentation may be en
oded, it will always bemore simple to do so than to 
al
ulate a polynomial invariant of the diagramby hand.4.7.5 Implementation in a 
ompiled languageWe have 
onsidered algorithms for both the Kau�man polynomial and theHom
y polynomial, and implemented both of them in Maple. While this isuseful to show that the algorithm 
an be implemented in a 
omputing language,Maple is not without its 
aws for running the kinds of operations used in the92



approa
h that I have shown.While the 
ode that has been written is designed to work for a plait ofwidth k, Maple's own 
apabilities make it unlikely that it 
ould 
ope with anexample beyond k = 4 for an implementation that 
onsiders operations on thewhole set of k-sequen
es. An implementation of the algorithm in a 
ompiledprogramming language like C++ 
ould o�er a lot.Firstly, a better method for organising the storage of the set of k-sequen
es
ould be found, so that lo
ating a k-sequen
e in memory might be an easiertask than it 
urrently is. More importantly, we 
ould improve the managementand storage of the 
oeÆ
ients that are passed from one k-sequen
e to anotherthrough the various operations that are performed. One reason why the 
al
u-lation slows down (in the Maple implementations) is that it is a diÆ
ult pro
essto store all of the 
oeÆ
ients, as well as organise the way that they are movedaround in memory. This leads to the program slowing down for larger valuesof 
, a situation whi
h 
ould be improved by implementing the algorithm in a
ompiled language.4.8 ExamplesThe 
al
ulations in this se
tion were performed on a 
omputer with an AMDDuron 1:59GHz pro
essor with 480MB of RAM, and using Maple 11 runningon the University of Liverpool Managed Windows Servi
e.4.8.1 Alternating 3-plait familyWe 
al
ulate the Hom
y polynomials of a family of alternating links basedaround the presentation�2�3�1�4�5�1(�1�1�2�3�1�4�5�1)2n�1�1�2�3�1�4for n 2 N . See Table 4.1 for results of the 
al
ulations. We list the numberof 
rossings in the presentation, the time taken by the program h_plait to93




al
ulate the Hom
y polynomial and the bound on the braid index as given byTheorem 1.8.These 
al
ulations and the 
al
ulations for the next example are importantbe
ause of the bound on the braid index that we obtain (from Theorem 1.8).Previous polynomial time algorithms for the 
al
ulation of the Hom
y poly-nomial have been based around a braid presentation of the knot. The braidindex of the larger examples we 
al
ulate here are substantially greater thanprevious programs 
ould handle.Other programs exist that are based on general diagrams of knots, but theseare limited in terms of the number of 
rossings that a diagram 
an have. Again,examples in the family of links that we have generated and 
al
ulated invariantsfor have substantially more 
rossings than previous programs 
ould deal with.4.8.2 Alternating 4-plait familyWe 
al
ulate the Hom
y polynomials of a family of alternating links basedaround the presentation�2�1�3�4�1�5�6�1�7(�1�2�1�3�4�1�5�6�1�7)2m�1�2�1�3�4�1�5�6�1for n 2 N . See Table 4.2 for results of the 
al
ulations. We list the numberof 
rossings in the presentation, the time taken by the program h_plait to
al
ulate the Hom
y polynomial and the bound on the braid index.
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n 
 Cal
ulation time MFW0 8 0.240 31 18 0.161 62 28 0.501 83 38 1.141 114 48 2.453 145 58 4.076 166 68 8.413 197 78 15.752 228 88 15.312 249 98 22.372 2710 108 31.345 3011 118 39.697 3212 128 52.905 3513 138 80.776 3814 148 104.471 4015 158 158.418 43Table 4.1: Cal
ulation times and braid index bounds for alternating 3-plaits
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m 
 Cal
ulation time MFW0 12 1.272 41 26 3.405 72 40 11.467 113 54 30.113 154 68 66.616 185 82 105.022 216 96 172.437 257 110 277.690 298 124 502.713 329 138 539.627 3510 152 780.252 39Table 4.2: Cal
ulation times and braid index bounds for alternating 4-plaits
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Chapter 5
Genus 2 Mutation
5.1 Introdu
tionThe work of this 
hapter appeared in a slightly di�erent form in the paper\Invariants of genus 2 mutants" [44℄, and was inspired by a talk that I attendedgiven by Alexander Shumakovit
h, one of the authors of [15℄.Genus 2 mutation of knots was introdu
ed by Ruberman in a general 3-manifold [53℄. Cooper and Li
korish gave an a

ount of an equivalent 
on-stru
tion for knots in S3 using genus 2 handlebodies [13℄; it is this 
onstru
tionthat we use here.Genus 2 mutant knots allow us to 
ompare knot invariants; it 
an be shownthat they share a 
ertain 
olle
tion of invariants, and thus any invariant onwhi
h some mutant pair di�ers must be 
ompletely independent of the shared
olle
tion. This pro
edure 
an be re�ned by restri
ting further the 
lass ofgenus 2 mutants under 
onsideration, so as to in
rease the shared 
olle
tion,and then looking for invariants whi
h di�er on some restri
ted mutants.A survey of some of the known results about shared invariants for genus2 mutants is given in [15℄. The authors also give an example of a pair ofgenus 2 mutants with 75 
rossings with di�erent Hom
y polynomials. Theseare smaller examples than the known satellites of the Conway and Kinoshita-Teresaka knots [42℄. 97



The authors 
onje
tured that their pair of knots did not share Kau�manpolynomials, but 
al
ulations for knots of this 
omplexity are out of range of
urrent programs. In the absen
e of a 
al
ulation for their own knots they askedfor examples of genus 2 mutants whi
h do not share the Kau�man polynomial.In this 
hapter we des
ribe a pair of 55-
rossing genus 2 mutant knots withdi�erent Hom
y polynomials, and show without performing a dire
t 
al
ulationthat they have di�erent Kau�man polynomials. We show other interestingresults for these examples regarding their Vassiliev invariants and quantumsl(3) invariants. We note also a distin
tion between general genus 2 mutantsand those arising as satellites of Conway mutant knots. Our 55-
rossing pairof genus 2 mutants di�er on a degree 7 Vassiliev invariant, while the workof [11℄ showed that satellites of Conway mutants share all Vassiliev invariantsof degree � 8. This was more re
ently extended by Jun Murakami [47℄, whoshowed that satellites of Conway mutants share all Vassiliev invariants up todegree 10.We summarise the other examples of [44℄, giving some details of their Hom
yand Kau�man polynomials, as well as their Vassiliev invariants. Finally we referto a re
ent example of Stoimenow and Tanaka [57℄.5.2 Genus 2 mutationIn Chapter 1 we de�ned mutation of knots and links in the standard sense. Wenow give a 
onstru
tion for genus 2 mutation, due to Ruberman [53℄.De�nitionTake a framed oriented 
urve P in the standard genus 2 handlebody W (Pis framed as we use the framed Hom
y relations).Embed W in R3 by h : W ! R3 , to get a 
urve h(P ) � R3 .The �-rotation � : W !W , illustrated in Figure 5.1, has 6 �xed points on�W , where it restri
ts to the hyperellipti
 involution with quotient S2. This liesin the 
entre of the mapping 
lass group of �W and is unique up to 
onjugationby a homeomorphism isotopi
 to the identity.98



Apply � to P to get another 
urve �(P ) � W . The 
urves h(P ) and h(�(P ))are 
alled genus 2 mutants.
W �

Figure 5.1: The rotation �Theorem 5.1 ([44℄) Satellites of genus 2 mutants are themselves genus 2 mu-tants.Theorem 5.2 ([44℄) Genus 2 mutants have the same Jones polynomial.Theorem 5.2 then shows, by Theorem 5.1, that satellites of genus 2 mutants
annot be distinguished by their Jones polynomials.5.2.1 Genus 2 embeddings following a 2-tangleIn this se
tion we establish the framework in whi
h we 
onsider many of theexamples in this 
hapter. We will 
onsider diagrams of a 
ertain type (seeFigure 5.7) in order to separate the 
urve P and the embedding for the knot,and use these to study genus 2 mutation.We distinguish two types of oriented 2-tangle:1. A pure tangle, where the ar
s join the two bottom points to the 
orre-sponding top points on the same side.2. A transposing tangle, where the ar
s join the two bottom points to thetop points on opposite sides. 99



We now show how to use a framed oriented 2-tangle F to de�ne an embed-ding h :W ! R3 in su
h a way that we 
an readily 
ompare the framed 
urvesh(P ) and h(�(P )).Let W be the thi
kening, S � I, of a standard surfa
e S, and de�ne h bythi
kening a map from S to SF .To spe
ify h we assume that F has a framing, that is ea
h ar
 has a spe
i�edribbon neighbourhood. De�ne a surfa
e SF in R3 
onsisting of a square plustwo ribbons following the framing of F . Figure 5.2 shows an example with thetangle from the Conway/Kinoshita-Teresaka knots.
Figure 5.2: The surfa
e following a framed tangleOur 
hoi
e of S, and hen
e the des
ription of h, depends on the nature ofthe tangle F . When F is a pure tangle the surfa
e SF is a dis
 with 2 holes.Take S to be the square with two ribbons in Figure 5.3 and map S to SF bytaking the square to the square, and the two ribbons to the ribbons around thear
s of F .

Figure 5.3: The dis
 with 2 holesWhen F is a transposing tangle the surfa
e SF is a torus with one hole.Take S to be the square with two ribbons in Figure 5.4 and again map S to SFby mapping the square to the square, and the ribbons around the ar
s of F .100



=
Figure 5.4: The torus with one holeWe say that h has been 
onstru
ted by following the tangle F . An embeddedhandlebody in R3 always arises by following some tangle F , although the 
hoi
eof F is not unique.
h(W ) = F

Figure 5.5: The handlebody following a tangle FWe 
an get a good view of the pair of mutants 
onstru
ted from a 
urveP � W by following a tangle F . The map � : W ! W is a thi
kened mapfrom S to S, whi
h maps the square and ea
h ribbon to itself.In the 
ase of pure tangles, � is �-rotation about the horizontal x-axis,whi
h we write as �1 when restri
ted to the square. For transposing tangles,� is �-rotation about the z-axis orthogonal to the plane of the square, and wewrite �2 for this rotation restri
ted to the square. These rotations are indi
atedin Figure 5.6.Draw P as a diagram on the surfa
e S, so that its framing is the bla
kboardframing from S. We 
an assume that P runs through ea
h ribbon of S in anumber of parallel 
urves, possibly with di�erent orientations.101



�1 = , �2 = .Figure 5.6: Rotations of the squareSuppose that there are m1 
urves in one ribbon and m2 in the se
ond,numbered from the atta
hment to the top edge of the square. The rest of the
urve P determines a framed m-tangle T in the square, with m = m1 +m2.For a pure tangle F , the knot h(P ) has a diagram as shown in Figure 5.7,where F (m1;m2) is the (m1; m2) parallel of the framed tangle F with appropriateorientations, and the tangle T lies in the square. For a transposing tangle F ,the knot h(P ) has a diagram as shown in Figure 5.8, where F (m1;m2) is the(m1; m2) parallel of the framed tangle F with appropriate orientations, andthe tangle T lies in the square.Proposition 5.3 When h follows a pure tangle, the genus 2 mutant knoth(�(P )), has �1(T ) in pla
e of T , with all orientations in F (m1;m2) reversed.When h follows a transposing tangle, the genus 2 mutant knot h(�(P )) has�2(T ) in pla
e of T .ProofFor a pure tangle, �1 is the appropriate rotation applied to T . Reversing ori-entations does not e�e
t the Hom
y polynomial, and ensures that orientationsare aligned 
orre
tly.For a transposing tangle, �2 is the appropriate rotation applied to T .5.2.2 Conway mutantsIn se
tion 1.6 we introdu
ed the idea of mutation of knots, as �rst introdu
edby Conway [12℄. We give a slightly di�erent de�nition here, formally de�ningthe rotations of the tangles.De�nitionFor an oriented tangle T write �1(T ) and �2(T ) for the �-rotations of T102



T F (m1;m2)m1 m2
Figure 5.7: The diagram for a knot following a pure tangle F

T F (m1;m2)m1 m2
Figure 5.8: The diagram for a knot following a transposing tangle F
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about the x-axis and z-axis respe
tively, as used above. Then �3(T ) = �1�2(T )is the �-rotation of T about the y-axis, so that�1(T ) = T , �2(T ) = T , �3(T ) = T ,Figure 5.9: Rotations for Conway mutationA knot K 
an be de
omposed into two oriented 2-tangles F and G as inFigure 5.10. Any knot K 0 formed by repla
ing the tangle F with the tangleF 0 = �i(F ); i = 1; 2; 3, reversing its string orientations if ne
essary is 
alled amutant of K, or a Conway mutant of K.
K = F G K 0 = �i(F ) G

Figure 5.10: A knot with mutantsThe two 11-
rossing knots in Figure 5.11 are the best-known example of apair of mutant knots; these knots were presented with di�erent diagrams inFigure 1.14.5.2.3 Conway mutants as genus 2 mutantsAny knot K made up of two 2-tangles F and G as in Figure 5.10 lies in twogenus 2 handlebodies, one following F and the other following G. Ea
h ofthese handlebodies de�nes a genus 2 mutant of K. We 
all them KF and KGrespe
tively. 104



F = ; G = ; F 0 = �3(F ):
Figure 5.11: The Conway and Kinoshita-Teresaka mutant pair, and their 
on-stituent tanglesSin
e K is a knot, spe
i�
ally a link of one 
omponent, one of the tanglesof F and G is pure and the other is transposing. Suppose that F is pure. ThenKF and KG have diagrams as shown in Figure 5.12.

KF = F �1(G) KG = �2(F ) G
Figure 5.12: Genus 2 mutants of KWe 
an repeat the 
onstru
tion on these knots. The knot KF lies in thehandlebody following �1(G). Sin
e �1(G) is transposing we get a genus 2 mutantKF�1(G). The same knot KG�2(F ) = KF�1(G) arises as a genus 2 mutant of KGfrom the handlebody following �2(F ), shown in Figure 5.13.Proposition 5.4 Up to a 
hoi
e of string orientation the three knots KF ; KGand KF�1(G) are the three Conway mutants of K given by repla
ing F with�1(F ); �2(F ) or �3(F ) respe
tively. 105



KF�1(G) = �2(F ) �1(G) = KG�2(F )
Figure 5.13: A further genus 2 mutant, 
ompleting the Conway mutants of KProofBy 
omparing the diagrams with those resulting from the rotations of F it is
lear that they are the Conway mutants.It follows that satellites of Conway mutants, with this orientation 
onven-tion, are related by genus 2 mutation.5.3 Hom
y polynomials of genus 2 mutantsWe use the framed version of the Hom
y polynomial based on the skein relationsgiven in subse
tion 1.5.2 with the substitution z = s� s�1.The Hom
y polynomial of a link in R3 is un
hanged if the orientations ofall its 
omponents are reversed (Lemma 1.6). The Hom
y skein of the annulusC is un
hanged when the annulus is rotated by �, reversing its 
ore orientation,and at the same time all string orientations are reversed [19℄.Thus in order to 
ompare the Hom
y polynomials of two genus 2 mutantsh(P ) and h(�(P )), or indeed any satellite of them, it is enough to 
onsiderh(�(P )) with orientation reversed.Given a framed oriented 
urve P in W we may regard W as the thi
kenedsurfa
e S whi
h is the dis
 with 2 holes in Figure 5.3, and 
ompare P with �(P )after reversing the orientation of �(P ). If we 
an present P as an (m1 +m2)-tangle in the square with m1 and m2 
urves following the two ribbons then we
an write P in the skein of the twi
e-pun
tured dis
 S as a linear 
ombination106



of simpler 
urves, ea
h presented by a tangle with at most this number of 
urvesin the ribbons.Even if our 
urve P has originally been drawn in a pi
ture following atransposing tangle, with m1 and m2 
urves around the ribbons there, it 
an beredrawn as a 
urve following a pure tangle with the same numbers m1 and m2.If m1 = m2 = 1 then the genus 2 mutants are Conway mutants, and byTheorem 1.9 their Hom
y polynomials agree.In the 
asem1; m2 � 2 the 
urve P redu
es in the skein of S to a 
ombinationof 
urves in the skein of S whi
h are un
hanged by the rotation � with reversalof string orientation. This is essentially the result of Li
korish and Lipson [30℄.There are a 
ouple of 
ases depending on the relative orientation of the 
urvesin the two ribbons. This argument 
overs the 
ase of any 2-string satellite ofa pair of Conway mutants, as these 
an be presented as genus 2 mutants withm1 = m2 = 2.The existen
e of 3-string satellite knots around the Conway and Kinoshita-Teresaka mutant pair with di�erent Hom
y polynomials [42℄ (following earlier
al
ulations by Morton and Tra
zyk) shows that there are genus 2 mutants withm1 = m2 = 3, 
onstru
ted by following the 
onstituent tangle G in Figure 5.10,whi
h have di�erent Hom
y polynomials.Take, for example, the tangle T to be the 3-parallel F (3;3) of the tangle Fin Figure 5.10 
omposed with the braid �1�2 and follow the tangle G to give aknot with 101 
rossings. This is in fa
t a satellite of the Conway knot, whosegenus 2 mutant has �2(T ) in pla
e of T .5.4 Kau�man polynomials of genus 2 mutantsThe pair of 75 
rossing genus 2 mutants given in [15℄ were shown to havedi�erent Hom
y polynomials, and the 
oeÆ
ients were given expli
itly in thepaper. The authors of [15℄ were unable to 
al
ulate the Kau�man polynomialsfor their 75 
rossing examples, 
onstru
ted following the pure 7-
rossing tangleDG shown in Figure 5.14. 107



DG =
Figure 5.14: The 7-
rossing tangle DGAs noted previously, it is a 
omputationally diÆ
ult task to 
al
ulate knotpolynomials; the Kau�man polynomial is more diÆ
ult to 
al
ulate in generalthan the Hom
y polynomial.However, given the Hom
y polynomials of two knots, there is an indire
tmethod that we 
an potentially use to show that their Kau�man polynomialsdi�er, and in parti
ular we 
an use this method in the 
ase of genus 2 mutation.Denote the 
onstant part of the Hom
y polynomial of a knot by P0(v) (i.e.,the 
oeÆ
ient in v of z0). Similarly denote the 
onstant part of the Kau�manpolynomial of a knot by D0(v). The following result will be very useful for theexamples we give in the rest of this 
hapter.Lemma 5.5 ([28℄) For any knot, P0(v) = D0(v).If P0(v) di�ers for a pair of knots thenD0(v) di�ers also and hen
e the Kau�manpolynomials di�er. Hen
e if P0(v) di�ers for a pair of genus 2 mutants thenD0(v) di�ers also and hen
e the Kau�man polynomials of the genus 2 mutantsdi�er. This argument 
ould not be used for the pair of knots in [15℄, as theHom
y polynomials of their knots had the same P0(v) term.The remainder of the work of this 
hapter is given to examples of pairsof genus 2 mutants with di�ering Kau�man polynomials; in all of these 
aseswe have shown indire
tly that the Kau�man polynomials of the pairs di�erbe
ause their P0(v) terms di�er.We also give some details of the Vassiliev invariants of our examples, andsome information on their quantum sl(3) invariants.108



5.5 Main ResultInspired by the 
ombinatorial interpretations of the v = s3 substitution inHom
y leading to the Kuperberg skein of the twi
e-pun
tured dis
 [43℄, we havefound a pair of examples following DG with m1 = 3; m2 = 2 and orientations+ +� and +�. The 
urve P is shown in Figure 5.15 as a diagram in the dis
with two holes, S, along with the resulting 5-tangle T .P = T =
Figure 5.15: The 
urve P in the standard handlebody, and related tangle TWe 
onstru
t two 55-
rossing genus 2 mutants from P by following thetangle DG, to give the knot S55, shown in Figure 5.16. Its mutant partner S 055is given by a rotation of the tangle T .

S55 = S 055 =
Figure 5.16: Two 55-
rossing genus 2 mutants with di�erent Hom
y and Kau�-man polynomialsTheorem 5.6 The genus 2 mutant knots S55 and S 055 have di�erent Hom
yand Kau�man polynomials. 109



ProofThe 
oeÆ
ients for the Hom
y polynomials of S55 and S 055 are shown in Ta-bles 5.1 and 5.2. They were 
al
ulated using the program of Imafuji andO
hiai [20℄, sin
e the knots are not readily expressed as 
losed braids.S55 v�4 v�2 1 v2 v4 v6 v8 v10 v121 �36 122 �143 67 �23 32 �23 5z2 �276 986 �1199 550 �148 223 �172 34 3z4 �757 3003 �3884 1811 �345 567 �478 75 20z6 �1048 4688 �6531 3158 �400 718 �690 76 45z8 �827 4243 �6360 3217 �253 499 �585 39 34z10 �388 2355 �3774 1985 �87 192 �302 10 10z12 �107 814 �1386 746 �15 38 �92 1 1z14 �16 171 �308 166 �1 3 �15z16 �1 20 �38 20 1z18 1 �2 1Table 5.1: CoeÆ
ients of the Hom
y polynomial of S55Immediately we 
an see that they have di�erent Hom
y polynomials. The�rst row of 
oeÆ
ients in ea
h table gives the value P0(v), and so Lemma 5.5shows that S55 and S 055 have di�erent Kau�man polynomials.Corollary 5.7 The Hom
y polynomials of S55 and S 055 still di�er after thesubstitution v = s3, and their Vassiliev invariants di�er at degree 7.ProofWe 
an look at sl(3) invariant information as a Laurent polynomial in s bymaking the substitutions z = s� s�1, v = s3. The di�eren
e is:s�24 �s4 � s2 + 1� �s4 + s3 + s2 + s+ 1� �s4 � s3 + s2 � s+ 1� �s8 + 1��s6 + s5 + s4 + s3 + s2 + s+ 1� �s6 � s5 + s4 � s3 + s2 � s+ 1��s2 + s+ 1�2 �s2 � s+ 1�2 �s4 + 1�2 �s2 + 1�3 (s� 1)8 (s+ 1)8110



S 055 v�4 v�2 1 v2 v4 v6 v8 v10 v121 �38 �135 �178 �116 �58 �39 �16 1z2 257 924 1171 662 288 209 60 �34 �16z4 �687 �2591 �3205 �1587 �562 �448 �72 142 54z6 964 3913 4779 2080 566 509 24 �226 �73z8 �782 �3530 �4260 �1623 �319 �334 10 172 43z10 377 1991 2356 766 100 126 �7 �67 �11z12 �106 �709 �814 �213 �16 �25 1 13 1z14 16 155 171 32 1 2 �1z16 �1 �19 �20 �2z18 1 1Table 5.2: CoeÆ
ients of the Hom
y polynomial of S 055The fa
tor (s� 1)8 shows that they di�er in a Vassiliev invariant of degree8 invariant arising from sl(3). However, we 
an obtain Vassiliev invariants forS55 and S 055 dire
tly as the 
oeÆ
ients of powers of h in the power series givenby substituting z = eh2 � e�h2 , v = eNh2 . The lowest term in the di�eren
e ofthe power series for S55 and S 055 is3N(N � 1)(N � 2)(N � 3)(N + 3)(N + 2)(N + 1)h7;so these di�er in a Vassiliev invariant of degree at most 7.The 75 
rossing examples from [15℄ have Vassiliev invariants that di�er atdegree 11; we 
al
ulated the di�eren
e at that degree to beN (N � 1) (N � 2) (N + 2) (N + 1) �13N2 + 51�h11using the same substitutions and method as previously.Their examples use a 6-tangle with m1 = m2 = 3, where the orientations ofthe three strands around one of the ribbons are + +� while around the otherthey are + + +. As with the example of our 55 
rossing knots, the Hom
ypolynomials of their 75 
rossing knots remain di�erent when v = s3, however111



this was not shown in [15℄. The di�eren
e, as a Laurent polynomial in s, is:s�28 �s4 � s2 + 1� �s4 + s3 + s2 + s+ 1� �s4 � s3 + s2 � s+ 1��s8 + 1� �s6 + s5 + s4 + s3 + s2 + s+ 1� �s6 � s5 + s4 � s3 + s2 � s+ 1��s2 � s+ 1�2 �s2 + s+ 1�2 �s4 + 1�2 �s2 + 1�3 (s� 1)11 (s+ 1)11In the preparation of [44℄ we had originally tried to make use of the dif-feren
e from the v = s3 substitution of the 75-
rossing examples to show thatthe Kau�man polynomials were di�erent. We planned to argue through the
omparison of the Hom
y polynomials of a 
ertain 2-string satellite at v = s4,without a
tually 
al
ulating this Hom
y polynomial, whi
h would be well outof range. Our aim was to make use of a 
omparison in [37℄ between this eval-uation of the satellite invariant and a di�erent evaluation of the Kau�manpolynomial of the original knots, knowing something of the evaluations of thesatellite invariant at v = s3.Unfortunately the di�eren
e in the invariants at v = s3 
ontains a fa
tor(s6 + s5 + s4 + s3 + s2 + s + 1) whi
h means that the agreement of the evalu-ations of the satellite at v = s4 
an not be ex
luded. This has also proved tobe the 
ase in any other examples that we have found where the evaluations atv = s3 are di�erent, so there may be some underlying reason for this.5.6 Other Results5.6.1 A 72 
rossing exampleTheorem 5.8 The genus 2 mutant pair of knots 
onstru
ted by following thetangle DG, with m1 = m2 = 3, using the 6-string positive permutation braid� = �1�2�1�3�2�4�3�5�4 or its reverse �1(�) as the tangle T , have di�erentKau�man polynomials.ProofThe two knots are presented as 
losed 9-braids with 72 
rossings, so it is quiteeasy to 
al
ulate their Hom
y polynomials using the Morton-Short program112



based on the He
ke algebras [45℄. When these are 
ompared they 
an be seento di�er in their 
onstant term P0(v). By Lemma 5.5 the 
onstant terms of theirKau�man polynomials di�er, and hen
e their Kau�man polynomials di�er.In the 72 
rossing examples the string orientations around ea
h ribbon areall in the same sense + + +, and as a result the knots have the same Hom
yinvariant after the substitution v = s3. This is a general 
onsequen
e of theanalysis of the Kuperberg skein of the surfa
e S in [43℄ for the 
asem1 = m2 = 3in whi
h all the orientations around the ribbons are +.The Vassiliev invariants for our 72 
rossing examples di�er at degree 7:3N(N � 1)(N � 2)(N � 3)(N + 3)(N + 2)(N + 1)h7:Consequently satellites of Conway mutants share more Vassiliev invariantsthan general genus 2 mutants, sin
e they have all Vassiliev invariants of degree� 10 in 
ommon, using the result from [42℄ that Vassiliev invariants of degree� k of a satellite K �Q are Vassiliev invariants of K of the same degree, andJun Murakami's result [47℄ about Vassiliev invariants of Conway mutants.5.6.2 A 56 
rossing exampleThe pair of 56-
rossing genus 2 mutants following the transposing Conwaytangle G with 6 
rossings, using the 6-braid �2�3 and its rotation �2(�1�2) =�3�4 with m1 = m2 = 3, are shown in Figure 5.17. These are 
losed 9-braidsrelated to Conway and Kinoshita-Teresaka satellites.Like our 72-
rossing examples in Theorem 5.8 it 
an be shown indire
tlythat this pair have di�erent Kau�man polynomials, by 
al
ulating their Hom
ypolynomials and then taking advantage of Lemma 5.5. They also di�er in adegree 7 Vassiliev invariant, but share the same value when v = s3.5.6.3 Further examplesVarious examples using the Conway tangle G as in Figure 5.17 with valuesm1 = 2 and m2 = 3 were tried in order to generate pairs of genus 2 mutants.113



Figure 5.17: Two 
losed 9-braid genus 2 mutants with di�erent Hom
y poly-nomialSome of these examples had fewer than 50 
rossings, but none of the examplesthat were tried had di�ering Hom
y polynomials. It remains to be seen ifexamples of genus 2 mutants with di�ering Hom
y and Kau�man polynomials
an be found that have fewer than 55 
rossings.We have been unable to 
ompute Kau�man dire
tly for any of the examplesthat we have shown, and have always relied on Lemma 5.5 and a di�ering P0(v)value in the 
al
ulated Hom
y polynomials.The starting point for this investigation was the example of [15℄, and ourinitial approa
h was to attempt to indire
tly 
al
ulate the di�eren
e of theKau�man polynomials of the mutant pair. Using the theory of manipulatingsta
ked tangles in the Kau�man skein (as in Chapter 3) we were able to showa non-zero di�eren
e at the level of tangles by expressing T � �2(T ) as a linear
ombination of sta
ked 6-tangles. While we were able to use this to expressthe di�eren
e of the original pair of knots as a sum of simpler diagrams, someof whi
h had fewer than twenty 
rossings, it was still not possible to dire
tly
al
ulate the values of the larger diagrams in this linear 
ombination.Thus while we have been able to show that the Kau�man polynomials ofgenus 2 mutants 
an di�er, we were unable to answer the �rst question posedin [15℄, and it is unknown whether the Kau�man polynomials of the 75-
rossingexamples di�er. 114



5.7 A re
ent resultA re
ent paper of Stoimenow and Tanaka gives a pair of 56-
rossing knots re-lated by genus 2 mutation with di�ering Hom
y and Kau�man polynomials,although the authors do not refer to them as genus 2 mutants [57℄. The ex-amples are Whitehead doubles of the 14-
rossing genus 2 mutants 1441721 and1442125. The 14-
rossing knots have presentations in a genus 2 handlebody withm1 = 2 and m2 = 1, and so have identi
al Hom
y and Kau�man polynomials.The authors of [15℄ also use the same pair of 14-
rossing knots to show aresult in Khovanov homology, and they are referen
ed in [44℄. The knots followthe pure tangle AB in Figure 5.18 and use the 
urve P , shown in Figure 5.19as a diagram in the dis
 with two holes along with the resulting 3-tangle T .
=

Figure 5.18: The tangle AB used in [15℄
P = T =

Figure 5.19: A 
urve P , and related tangle TBy Theorem 5.1 any of their satellites will be related by genus 2 mutationalso, and so the pair of knots that Stoimenow and Tanaka 
al
ulated knotpolynomials for give another example of genus 2 mutants with di�ering Hom
yand Kau�man polynomials. 115



The P0(v) term is identi
al for the two 14-
rossing knots so we 
annotdedu
e indire
tly that they have di�erent Kau�man polynomials: it 
an beshown from a skein theoreti
 argument that if P0(v) 
oin
ides for two knotsthen it will 
oin
ide for any satellites of those knots.The authors of [57℄ were able to 
al
ulate the Kau�man polynomials ofthe Whitehead doubles of 1441721 and 1442125 almost dire
tly. They showedthat the Kau�man polynomials of the 2-
ables of the 14-
rossing knots weredi�erent, and then by a skein theoreti
 argument they were able to show thatthe Kau�man polynomials of the Whitehead doubles of the knots would di�er.As with all of our examples save for S55 and S 055, there is no di�eren
e inthe Hom
y polynomials of these examples with substitution v = s3, althoughthey do di�er with the substitution v = s4. The Vassiliev invariants di�er atdegree 11 as follows:4N3 (N � 1) (N � 2) (N � 3) (N + 3) (N + 2) (N + 1)h11:5.8 Dis
ussionThere are several areas of interest arising from the work of this 
hapter, andfrom the area of polynomial invariants of genus 2 mutation. The examplesof Theorem 5.6 provide 55-
rossing genus 2 mutants with di�ering Hom
yand Kau�man polynomials. These appear to be the smallest examples in theliterature in terms of 
rossing number.In sear
hing for smaller examples we know that su
h pairs of genus 2 mu-tants must have a 
ertain degree of 
omplexity. As stated earlier, genus 2mutants with m1; m2 � 2 are guaranteed to have identi
al Hom
y and Kau�-man polynomials. When m1 = 3, m2 = 2 we have the �rst instan
e that we
an hope to see di�ering polynomials; this naturally leads to a reasonably highlower bound on the number of 
rossings that a knot must have for it to be oneof a pair of genus 2 mutants with di�ering Hom
y and Kau�man polynomi-als. In the preparation of [44℄ examples of genus 2 mutants with as few as 40
rossings were examined, but they did not di�er on their Hom
y polynomials.116



As the P0(v) values of these smaller examples were identi
al an assessmentas to whether or not their Kau�man polynomials di�ered 
ould not be made.An interesting question that I believe is open is whether genus 2 mutants withdi�ering Hom
y polynomials are guaranteed to have di�ering Kau�man polyno-mials. Similarly, if a pair of genus 2 mutants have identi
al Hom
y polynomialsdoes that mean that they will have identi
al Kau�man polynomials?Our 55-
rossing knots and the 75-
rossing knots of [15℄ both have di�eringHom
y polynomials after the substitution v = s3, but our other examples andthe example of [57℄ do not; both our example and the example of [15℄ have thefeature that they follow the tangle DG. Further investigation into the pure andtransposing tangles that one uses in 
onstru
ting these examples might lead toan answer.Finally, we note that our three examples di�er at degree 7 for Vassilievinvariants. This is in 
ontrast both to the examples of [15℄ and [57℄, whi
hdi�ered at degree 11, and to the general theory for Conway mutants, where itis known that Vassiliev invariants must agree up to degree 10 [47℄. Firstly, whatis di�erent about our examples 
ompared to the examples of [15℄ and [57℄ thatallows an earlier di�eren
e in Vassiliev invariants? Se
ondly, how do Vassilievinvariants behave in general for genus 2 mutants? The result of [47℄ guaranteesthat genus 2 mutants that result from satellites of Conway mutants must haveVassiliev invariants agreeing up to degree 10, but we know very little about theVassiliev invariants of genus 2 mutants in general.
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Chapter 6
Kau�man Polynomials ofPretzel Links
6.1 Introdu
tionPretzel links are an interesting 
lass of links for study. They have a regularstru
ture, and it is easy to give notation for des
ribing them.Reidemeister �rst 
onsidered them [51℄, and pretzels have been used manytimes to show 
ertain properties of knots or links. Trotter used them to showthat non-invertible knots exist [58℄; Landvoy gave an easily implemented al-gorithm for 
al
ulating the Jones polynomial [27℄, and more re
ently Mortonused the 
onstru
tion to show some interesting results in mutation [40℄.In this 
hapter, we take advantage of the regular stru
ture of pretzels to
onstru
t an algorithm for 
al
ulating the Kau�man polynomial of pretzel links.Theorem 6.2 starts by showing that we 
an express the Kau�man polynomial ofa pretzel diagram as a linear 
ombination of the Kau�man polynomials of mu
hsimpler diagrams; later in the 
hapter we use the term \elementary pretzel"to denote these diagrams and show that by pla
ing some restri
tions on thesediagrams we obtain a good algorithm for 
al
ulating the Kau�man polynomial.This algorithm is easily implemented in Maple, and in prin
iple it is moreeÆ
ient than an algorithm that works on a naive approa
h on the number of119




rossings in a diagram. The algorithm operates by 
al
ulating 
ertain 
oeÆ-
ients from re
urren
e relations; while we are able to obtain generating fun
-tions from these re
urren
e relations we note at the end of the 
hapter that thegenerating fun
tions pose problems when implemented in Maple.6.2 Pretzel LinksDe�nitionA pretzel link is given by a sequen
e of half twists 
onne
ted in a 
ertainway, as in the example of Figure 6.1. General pretzels 
an be represented bya k-tuple (p1; p2; : : : ; pk), k � 3, pi 2 Z, 1 � i � k. jpij is the number of halftwists, and the sign of pi denotes whether the jpij half twists are right-handedor left-handed (L+ or L� respe
tively). Figure 6.2 gives this more general formof (p1; p2; : : : ; pk).
Figure 6.1: The pretzel (3; 3;�2)

p1 p2 pk� � �� � �Figure 6.2: The pretzel (p1; p2; : : : ; pk)We take k > 2, as k = 1 would give a diagram whi
h is a twisted unknot, andk = 2 would give a diagram whi
h is a 
losed 2-braid.120



Theorem 6.1 If k is odd and all of the pi are odd then a knot is produ
ed. Ifk is even and all of the pi are odd then a two 
omponent link is produ
ed. Elsethe number of even pi gives the number of 
omponents for k both even or odd.ProofThe �rst two 
ases 
an be realised by 
onsidering how one travels around thediagram starting from a point. The third 
ase 
an be shown simply by observingthat two even pi in a k-tuple have a link 
omponent between them; we 
an drawa 
ir
le between ea
h of the even pi to represent a link 
omponent, and if thenumber of even pi is m it is not diÆ
ult to see that there will be m 
ir
les andhen
e m 
omponents.Hen
e, a k-tuple denotes a knot if and only if k is odd and all of the pi are odd,or if there is exa
tly one even pi. In all other 
ases the k-tuple gives a link.In general, permutation of the pi 
oding for a knot results in knots relatedby mutation, and hen
e these will have identi
al Kau�man polynomials. Per-muting the pi of a 3-pretzel always results in an isotopi
 link. This 
an beobserved simply from the stru
ture of 3-pretzels.6.3 Twists in the Kau�man skeinThe regular stru
ture of pretzels suggests that there might be some short
utthat we 
an take over the general approa
h that the skein relations give usfor 
al
ulating the Kau�man polynomial. The approa
h of this 
hapter is toexpress jpij half-twists as a linear 
ombination of single half-twists and thetwo smoothings, with 
oeÆ
ients from the Kau�man skein. We 
an 
onstru
tre
ursive formulae for the 
oeÆ
ients of these linear 
ombinations, and thesegive a method of easily expressing n half-twists as a linear 
ombination of threeelements.Using these formulae on the sequen
es of half-twists within a pretzel stru
-ture we get a linear 
ombination of mu
h simpler diagrams: we trade onediagram with a large number of 
rossings for many diagrams with far fewer
rossings. 121



In the following dis
ussion we borrow the language of braid groups (withonly a few small abuses) to express the 
rossings in the half twists; we take �to be a single right-handed 
rossing, ��1 to be a single left-handed 
rossing,e to be the identity represented by L0 and h to be the L1 smoothing. We
onsider the following a
tions to be taking pla
e in the Kau�man skein algebraof (2; 2)-tangles.Theorem 6.2 The Kau�man polynomial of a pretzel link (p1; p2; : : : ; pk) 
anbe expressed as a linear 
ombination of the Kau�man polynomials of at most 3kdiagrams, ea
h with at most k 
rossings, with 
oeÆ
ients from the Kau�manskein.ProofWe �rst show that we 
an express n half twists as a linear 
ombination of singlehalf twists and smoothings. We write the main Kau�man skein relation as� � ��1 = z (e � h);and by the Kau�man skein relation for framing we see�h = h� = v���1h = h��1 = v�1hNow 
onsider the following rearrangement:� � ��1 = z (e � h)� = ��1 + ze� zh�2 = ��1� + ze� � zh��2 = e + z� � vzh= z� + e� vzh:Thus we have a relation for expressing �2 in terms of �, e and h with 
oeÆ
ientsin v and z from the Kau�man skein. 122



Lemma 6.3 n right-handed 
rossings, written �n, 
an be expressed as a linear
ombination of a single right-handed 
rossing � and smoothings e and h in thefollowing way �n = f1(n)� + f1(n� 1)e+ f3(n)hwhere f1 and f3 are re
urren
e relations de�ned byf1(n) = zf1(n� 1) + f1(n� 2) f1(0) = 0; f1(1) = 1f3(n) = v(f3(n� 1)� zf1(n� 1)) f3(1) = 0ProofFrom our result for �2 there is no doubt that we 
an 
onstru
t a re
ursivemethod for 
al
ulating an expression for �n in terms of �, e and h, so we needonly show what form this relation takes. Initially de�ne�n = f1(n)� + f2(n)e+ f3(n)hwhere f1, f2 and f3 are re
urren
e relations for polynomials in v and z.Take the expression for the 
ase of �n�1 and multiply both sides of the ex-pression by �. We then use the result for �2 in order to evaluate the expressionfurther. �n�1 = f1(n� 1)� + f2(n� 1)e+ f3(n� 1)h�n = f1(n� 1)�2 + f2(n� 1)e� + f3(n� 1)h�= f1(n� 1)(z� + e� vzh) + f2(n� 1)� + vf3(n� 1)h= (zf1(n� 1) + f2(n� 1))� + f1(n� 1)e+ v(f3(n� 1)� f1(n� 1))h:We 
ompare the two expressions for �n and evaluate the re
urren
e relationsas f1(n) = zf1(n� 1) + f2(n� 1)f2(n) = f1(n� 1)f3(n) = v(f3(n� 1)� zf1(n� 1)):123



The relation f2(n) is in terms of f1(n), and hen
e the re
urren
e relation forf1(n) is more helpfully written asf1(n) = zf1(n� 1) + f1(n� 2):Consequently, our expression for �n 
an be written as�n = f1(n)� + f1(n� 1)e+ f3(n)h;and from results already known we 
an state the initial 
onditions for thesere
urren
e relations:f1(n) = zf1(n� 1) + f1(n� 2) f1(0) = 0; f1(1) = 1f3(n) = v(f3(n� 1)� zf1(n� 1)) f3(1) = 0From the Kau�man skein relation we obtain��2 = �z��1 + e+ v�1zh:As before we will be able to �nd an expression for ��n in terms of the expressionfor ��(n�1), and so on, ba
k to the expression we have for ��2. As with the
ase for �n we work by 
omparing the general 
ase for ��n with the expressionfor ��(n�1) multiplied by ��1. This leads us to the following result whi
h westate without proof.Lemma 6.4 n left-handed 
rossings, written ��n, 
an be expressed as a linear
ombination of a single left-handed 
rossing ��1 and smoothings e and h in thefollowing way ��n = g1(n)��1 + g1(n� 1)e+ g3(n)hwhere g1 and g3 are re
urren
e relations de�ned byg1(n) = g1(n� 2)� zg1(n� 1) g1(0) = 0; g1(1) = 1g3(n) = v�1(zg1(n� 1) + g3(n� 1)) g3(1) = 0124



With Lemma 6.3 and Lemma 6.4 we are in a position to prove Theorem 6.2.Consider the diagram of a pretzel given by (p1; : : : ; pk). By Lemma 6.3and Lemma 6.4, for ea
h pi, we 
an express the jpij half-twists as a linear
ombination of three di�erent diagrams. These are a single 
rossing (right-handed or lefthanded), and the two possible smoothings from the Kau�manskein.Applying these results to ea
h pi gives a linear 
ombination of at most threeterms. Taken over the k twists this then gives a total of at most 3k di�erentdiagrams in the sum. One diagram in the sum will have a single 
rossing inea
h of the pla
es, resulting in a diagram with k 
rossings. The other 3k � 1diagrams will have fewer 
rossings.The upper bound on the number of diagrams, 3k, is sharp if and only if jpij > 1for all 1 � i � k.It is worth noting that unless all of the pi are of the same sign, the diagramwith k 
rossings mentioned in the proof of Theorem 6.2 
an be simpli�ed furtherusing Type II Reidemeister moves.The re
urren
e relations are simple to me
hanise in a 
omputing language.It is relatively straight forward to realise some 
ode that will 
al
ulate the
oeÆ
ients for the terms in the expressions of �n and ��n. In general re
urren
erelations 
an be quite intensive pro
edures to run, but in Maple we 
an add the
ode \option remember" whi
h generates a table of values as the pro
edureruns. We gain the illusion of speed at the expense of storing values in memory.We give some 
ode for 
al
ulating these 
oeÆ
ients later in the 
hapter.6.4 Cubi
 RelationThere is a 
ubi
 relation that we 
an show for the right-handed 
rossing �. Wehave to rearrange to remove h from the expressions that we build up (using therearrangement h = e� 1z� + 1z��1).� = ��1 + ze� zh�2 = z� + e� vzh125



We repla
e h with the terms in e, � and ��1, and then take e (as an identityelement) to have value 1. Then�2 = z� + e� vzh�2 = z� + 1� vz(1� 1z � + 1z ��1)�2 = z� + 1� vz + v� � v��1and by multiplying through by � and 
olle
ting terms�3 = z�2 + � � vz� + v�2 � v�3 = (z + v)�2 + (1� vz)� � v:We take the spe
ialisation z = s � s�1, and then rearrange to give a 
ubi
equation in � with 
oeÆ
ients in v and z:�3 � (s� s�1 + v)�2 � (1� v(s� s�1))� + v = 0:This fa
torises to give�1s (�s+ 1)(�s + �)(�� + v) = 0whi
h has roots � = �s�1, � = s, � = v.The roots of this equation give us a way of de�ning generating fun
tions forthe 
oeÆ
ients. However, in the method that we will outline this will not behelpful due to the elimination of the term in h. Later in the 
hapter we will
onsider generating fun
tions obtained from the re
urren
e relations.6.5 Elementary PretzelsWe now turn our attention to the simpler diagrams that result from the appli-
ation of Theorem 6.2.De�nitionAn elementary pretzel is given by a sequen
e r = [r1; r2; : : : ; rk℄, wherethe ri are elements from the set f+1;�1; 0;1g and represent respe
tively a126



righthanded 
rossing, a left-handed 
rossing, the smoothing L0 and the smooth-ing L1. The sequen
e r de�nes a diagram in a similar way to the k-tuples thatgive pretzel diagrams. The ri are thought of diagrammati
ally as being in thesame lo
ation as the pi in the de�nition of pretzels.Consider the diagram of the elementary pretzel [+1;+1;�1;1; 0℄ as in Fig-ure 6.3. The value of this diagram in the Kau�man skein is v�1, but in generalwe 
ould have a more diÆ
ult knotted stru
ture.
Figure 6.3: Diagram for elementary pretzel [+1;+1;�1;1; 0℄Consider the rotation of Figure 6.3 through 90 degrees. If we had diagramsthat did not 
ontain the smoothing L0 then by rotating an elementary pretzelthrough 90 degrees we 
ould see easily the number of 
rossings that the diagrama
tually 
ontained. Due to the simple stru
ture that su
h diagrams have, theKau�man polynomial of this diagram 
ould be realised as a simple sum oftwisted or disjoint unknots with 
oeÆ
ients provided by the re
urren
e relationswe have already evaluated.Proposition 6.5 n half twists, whether right-handed or left-handed, 
an berepresented as a linear 
ombination of right-handed and left-handed 
rossings,and the smoothing L1 represented by the element h. The 
oeÆ
ients of thesethree terms 
an be obtained from the re
urren
e relations established in Lem-mas 6.3 and 6.4.ProofThe main Kau�man skein relations have four terms, and so we 
an always ex-press any linear 
ombination of these four elements in terms of at most three ofthem. Thus in expressing �n and ��n in terms of single 
rossings and smooth-ings we 
an eliminate terms in e. 127



Then �n = f1(n)� + f1(n� 1)e+ f3(n)h= f1(n)� + f1(n� 1)(z�1� � z�1��1 + h) + f3(n)h= (f1(n) + z�1f1(n� 1))� � z�1f1(n� 1)��1+(f3(n) + f1(n� 1))hand ��n = g1(n)��1 + g1(n� 1)e + g3(n)h= g1(n)��1 + g1(n� 1)(z�1� � z�1��1 + h) + g3(n)h= z�1g1(n� 1)� + (g1(n)� z�1g1(n� 1))��1+(g3(n) + g1(n� 1))h;taking the same values for the re
urren
e relations as de�ned previously inLemmas 6.3 and 6.4.Corollary 6.6 The Kau�man polynomial of a pretzel p = (p1; : : : ; pk) 
an beexpressed as a linear 
ombination of the Kau�man polynomials of 3k elementarypretzels of the form [r1; : : : ; rk℄ where the ri are elements of the set f+1;�1;1g.ProofApplying Proposition 6.5 to the proof of Theorem 6.2 shows this result.De�nitionLet r+ be the number of right-handed 
rossings in an elementary pretzelr, and r� be the number of left-handed 
rossings.De�nitionFor an elementary pretzel, r, without the smoothing L0 we obtain a diagramrN by rotating r through 90 degrees and viewing it as in Figure 6.4. This allowsus to see the number of 
rossings and the handedness of these 
rossings, whi
hwe 
an obtain from r as N = r� � r+.128



NFigure 6.4: Diagram rNLemma 6.7 The Kau�man polynomial of a diagram rN isD(rN) = 8>><>>: Æ N = 0f1(N)v + f1(N � 1)Æ + f3(N) N > 0g1(N)v�1 + g1(N � 1)Æ + g3(N) N < 0with relations f1, f3, g1 and g3 de�ned as previously.ProofThe diagram r0 is a pair of disjoint unknots, and so has value Æ as de�ned inSe
tion 1.5.3. The Kau�man polynomial of rN for N 6= 0 is easy to 
al
ulateusing the re
urren
e relations of Lemmas 6.3 and 6.4. Applying these formulaeto a diagram rN will result in a linear 
ombination of at most three diagrams,these being the unknot, a twisted unknot, and two disjoint unknots.We restate Theorem 6.2 as Theorem 6.8.Theorem 6.8 The Kau�man polynomial of a pretzel p = (p1; p2; : : : ; pk) 
anbe expressed as a linear 
ombination of the Kau�man polynomials of diagramsof the form rN , where N varies between �k and k.ProofBy Corollary 6.6 we express p as a linear 
ombination of 3k elementary pretzelsin the Kau�man skein. Ea
h of these elementary pretzels 
an be expressed assome diagram of the form rN . The values for N are derived from the possibleelementary pretzels of length k: we express the sum of 3k elementary pretzelsas a linear 
ombination of the 2k + 1 possible diagrams of the form rN whereN varies between �k and k. 129



6.6 AlgorithmWe 
ombine the various results that we have shown in this 
hapter to give analgorithm for 
al
ulating the Kau�man polynomial of pretzel links.For ea
h pi in a sequen
e for a pretzel p = (p1; : : : ; pk) we 
al
ulate the
oeÆ
ients from representing those jpij half twists as a linear 
ombination ofthe elements �, ��1 and h.E�e
tively we are obtaining the information that we need to express thediagram given by the k-tuple p as a linear 
ombination of 3k elementary pretzelsr = [r1; : : : ; rk℄ and whi
h have 
oeÆ
ients from the Kau�man skein given by
ertain produ
ts of the 
oeÆ
ients obtained by evaluating the pi.Expressing the pi as a linear 
ombination of the elements �, ��1 and hmeans that the 3k elementary pretzels of Corollary 6.6 will be given by allof the possible elementary pretzels of length k where the terms ri are fromelements in the set f+1;�1;1g.The Kau�man polynomial of ea
h of these 3k diagrams is now easily 
al
u-lable if we 
onsider them to be in the format of Figure 6.4. By 
al
ulating theKau�man polynomials of these rN we 
omplete the 
al
ulation of the Kau�manpolynomial of the pretzel link p = (p1; : : : ; pk).This is a simple algorithm to 
onsider on paper, but the 
oeÆ
ients willbe mu
h too unwieldy to 
al
ulate invariants of any non-trivial examples byhand. The algorithm is readily implemented in a programming language. Inthe next se
tion we give an example of a series of Maple pro
edures that leadto an implementation for 
al
ulating the Kau�man polynomial of a pretzel.6.7 ImplementationThe most straight forward way to implement this algorithm, I believe, is tostart with the re
urren
e relations that we de�ned earlier, and then build upthe program pie
e by pie
e. We use these relations in other pro
edures, whi
hdo more and more 
ompli
ated things but 
ontinue to look relatively simple.Eventually we are able to give the main routine whi
h performs the algorithm,130




alling in the relative sub-pro
edures as ne
essary.The bene�t of this approa
h is that the main routine is relatively 
lear, andis not 
luttered with overly 
ompli
ated expressions and lines of 
ode.6.7.1 Re
urren
e RelationsWe begin by giving the pro
edures for the four re
urren
e relations (from Lem-mas 6.3 and 6.4). These are the foundation of the algorithm, and so are ofgreat importan
e in the implementation. The line of 
ode \option remember"in ea
h routine improves the speed of the pro
edures by 
reating a table ofpreviously 
al
ulated values. We gain the illusion of speed in 
al
ulation byin
reasing memory use to store these values.f1 := pro
(n::nonnegint)option remember:if n=1 then return 1: end if:if n=0 then return 0: end if:return expand(z * f1(n-1) + f1(n-2));end pro
:f3 := pro
(n::nonnegint)option remember:if n=1 then return 0: end if:return expand(v * (f3(n-1) - z * f1(n-1)));end pro
:g1 := pro
(n::nonnegint)option remember:if n=1 then return 1: end if:if n=0 then return 0: end if:return expand(g1(n-2) - z * g1(n-1));end pro
: 131



g3 := pro
(n::nonnegint)if n=1 then return 0: end if:return expand( (1/v) * (z * g1(n-1) + g3(n-1)));end pro
:With these pro
edures we have the foundations of an implementation of thealgorithm.6.7.2 Building Up Pro
eduresWe 
reate pro
edures whi
h return triples of 
oeÆ
ients for �n and ��n, whenthey are expressed as linear 
ombinations of �, ��1 and h.SIGMAn := pro
(n::posint)lo
al output:output := [0,0,0℄:#output[1℄ is the 
oeff of {sigma}output[1℄ := expand( (1/z) * f1(n+1) ):#output[2℄ is the 
oeff of {sigma}^(-1)output[2℄ := expand( -(1/z) * f1(n-1) ):#output[3℄ is the 
oeff of houtput[3℄ := expand( f3(n) + f1(n-1) ):output;end pro
:SIGMA_n := pro
(n::posint)lo
al output:output := [0,0,0℄:#output[1℄ is the 
oeff of {sigma}output[1℄ := expand( (1/z) * g1(n-1) ):#output[2℄ is the 
oeff of {sigma}^(-1)output[2℄ := expand( - (1/z) * g1(n+1) ):#output[3℄ is the 
oeff of h 132



output[3℄ := expand( g3(n) + g1(n-1) ):output;end pro
:Note that in both SIGMAn and SIGMA_n we 
ould set the values dire
tly as wede�ne the triple output; however, by writing the 
ode in the manner that Ihave given it is 
lear how we are arriving at these 
oeÆ
ients.The entries for output[1℄ in SIGMAn and output[2℄ in SIGMA_n have beenslightly simpli�ed by 
onsidering the re
urren
e relations.The pi in a k-tuple for a pretzel 
an be positive or negative. Rather thanuse SIGMAn and SIGMA_n dire
tly in the main routine it is simpler if we have asmaller routine that will 
all the appropriate pro
edure to deliver the output.One way that we 
an implement this is as follows.K
oeff := pro
(n::integer)lo
al out:if n = 0 thenout := [ 1/z, -1/z, 1 ℄:elif n > 0 thenout := SIGMAn(n):elif n < 0 thenout := SIGMA_n(-n):end if:out;end pro
:As we will use K
oeff in the 
al
ulation of the Kau�man polynomial of dia-grams of the form rN we in
lude the possibility of an input of 0.One �nal subroutine that we require is something that gives the value of Nfor a redu
ed diagram r in the format rN .Re
all that N = r� � r+. In this implementation we denote right-handed
rossings with +1, lefthanded 
rossings by �1 and the smoothing L1 by 0, as itdoes not 
ontribute to the sum of 
rossings. Hen
e N is the sum of the entries133



in r multiplied by �1, and we 
an implement this fun
tion with the followingroutine.r2N := pro
()lo
al t,i:t := 0:for i from 1 to nargs do t := t + args[i℄ end do:-t;end pro
:6.7.3 The Main RoutineWith the pro
edures that we have built up, we are now in a position to imple-ment the 
omplete algorithm.I have tried to give the implementation in as simple a manner as possible,and give a short outline after the listing of the program.with(
ombinat, permute):##permute required to generate the desired##possible elementary pretzels of length kpretzel := pro
()lo
al A,L,M1,M,N,i,j,k,C,store,total:k := nargs:L := [seq(1,i=1..k), seq(-1,i=1..k), seq(0,i=1..k)℄:M1 := permute(L,k): M := Array(1..nops(M1)):for i from 1 to nops(M1) do M[i℄ := M1[i℄ end do:##M represents the set of elementary pretzels##of length k where ea
h r_i is a 
rossing or hM1 := 'M1': C := [args℄:for i from 1 to k do C[i℄ := K
oeff(C[i℄) end do:total := 0:for i from 1 to ArrayNumElems(M) do##for ea
h elementary pretzel134



store := 0: N := r2N(op(M[i℄)): A := K
oeff(N):store := expand((1/v)*A[1℄+v*A[2℄+A[3℄):##in the loop the initial assignment for store is a##
al
ulation of the Kauffman polynomial for some##diagram r_Nfor j from 1 to k doif M[i℄[j℄ = 1 thenstore := expand(store*C[j℄[1℄):elif M[i℄[j℄ = -1 thenstore := expand(store*C[j℄[2℄):elif M[i℄[j℄ = 0 thenstore := expand(store*C[j℄[3℄):end if:end do:##the previous loop 
al
ulates the 
ontribution##to the 
oeffi
ient of ea
h of the r_i, passed from##the linear 
ombination of the p_itotal := expand(total+store):end do:
olle
t(expand(total),z);end pro
:The pro
edure works by �rst produ
ing a list of all of the possible sequen
esr = [r1; : : : ; rk℄, where the ri are elements of the set f+1;�1;1g. Thesesequen
es are the elementary pretzels we will 
onsider. Then the 
oeÆ
ients ofexpressing ea
h of the pi as a linear 
ombination of �, ��1 and h are 
al
ulated.We sum over the set of the r we have established; we multiply by the appropriate
oeÆ
ients resulting from the 
al
ulations of the expressions of the pi and
al
ulate the Kau�man polynomials of the redu
ed diagrams r by 
onsideringthem in the format rN .As we have developed the pro
edure K
oeff it is simpler to use this to
al
ulate the 
oeÆ
ients of the linear 
ombination of twisted unknots that135



result from 
al
ulating the Kau�man polynomial of a diagram rN , rather thanuse the fun
tion we de�ned previously in Lemma 6.7.
6.7.4 RemarkPermuting the pi for a pretzel link does not 
hange the Kau�man polynomial,as permuting the pi is the same as performing mutations on the link. Thus we
an 
onsider performing 
al
ulations with the set of twists: the order is notimportant.One way that we might improve our 
al
ulations is to reorder the sequen
e(p1; p2; : : :; pk) so that we �rst 
onsider the positive pi ordered to be stri
tly non-de
reasing, and then the negative pi so that they are stri
tly non-in
reasing.In this manner we 
an build up a table of results (option remember in Maple)in an organised way to minimise the number of 
al
ulations performed.
6.8 Generating Fun
tionsWhile the algorithm that we have developed 
ertainly has its advantages overa naive approa
h to 
al
ulating a knot polynomial, the use of re
urren
e re-lations to 
al
ulate 
oeÆ
ients is ineÆ
ient. Their use in the implementationonly gives the illusion of fast 
al
ulation, and without the \option remember"lines of 
ode in ea
h of the re
urren
e relations the implementation would takemu
h longer to 
ompute the Kau�man polynomial of even a relatively simpleexample.Generating fun
tions should allow for a mu
h faster 
al
ulation time. We
an derive these from the re
urren
e relations that we have already realised,but must use the spe
ialisation of variables z = s� s�1.136



Theorem 6.9 For n 2 N we 
an obtain the following generating fun
tions for
oeÆ
ients from the re
urren
e relations of Lemmas 6.3 and 6.4f1(n) = sn � (�s�1)ns+ s�1f3(n) = v(s� s�1)(s�1 + v)(s� v)vn � v(s� s�1)s + s�1 � sns� v + (�s�1)ns�1 + v � ;and the roles of fun
tions g1 and g3 are �lled sin
ef1(�n) = f1(n)js!s�1f3(�n) = f3(n)���s!s�1v!v�1 :ProofWe derive these generating fun
tions from the re
urren
e relations by usingsome relatively simple theory, and using the spe
ialisation z = s� s�1. We getthe generating fun
tions for f1 and g1 �rst, as these are involved in the expres-sions for g1 and g3 respe
tively. We then solve non-homogeneous re
urren
erelations to obtain the generating fun
tions for f3 and g3. Initially, we obtainthe following fun
tions for the re
urren
e relations:f1(n) = sn � (�s�1)ns+ s�1f3(n) = v(s� s�1)s+ s�1 � 1s�1 + v (vn � (�s�1)n) + 1s� v (vn � sn)�g1(n) = (s�1)n � (�s)ns+ s�1g3(n) = v�1(s� s�1)s+ s�1 � 1s�1 � v�1 ((s�1)n � (v�1)n) + 1s + v�1 ((�s)n � (v�1)n)�We perform some rearrangements and 
olle
t terms for f3 and g3 that makethem simpler.f3(n) = v(s� s�1)(s�1 + v)(s� v)vn � v(s� s�1)s+ s�1 � sns� v + (�s�1)ns�1 + v �g3(n) = v�1(s�1 � s)(s+ v�1)(s�1 � v�1)(v�1)n + v�1(s�1 � s)s+ s�1 � (s�1)ns�1 � v�1 + (�s)ns+ v�1�137



Comparing f1 and g1, and f3 and g3, we 
an easily observe that we obtain g1and g3 by making a substitution in the expressions for f1 and f3. Hen
eg1(n) = f1(n)js!s�1g3(n) = f3(n)���s!s�1v!v�1and thus we only need to use one set of fun
tions and make substitutions toobtain the output of the others, sin
e the re
urren
e relations g1 and g3 are
al
ulating 
oeÆ
ients for left-handed twisting we statef1(�n) = f1(n)js!s�1f3(�n) = f3(n)���s!s�1v!v�1 ;as required.6.8.1 RemarkThese substitutions also allow us to give a statement for the re
urren
e relationsfor the 
oeÆ
ients. Sin
e s! s�1 and z = s�s�1 we note that for polynomialsin v and z f1(�n) = f1(n)jz!�zf3(�n) = f3(n)��� z!�zv!v�1 :6.8.2 ImplementationThe same approa
h is taken to the algorithm as before, the only di�eren
ebeing that we now have a di�erent method for 
al
ulating 
oeÆ
ients. Ratherthan have four separate relations that we rely on, we have two fun
tions. These
al
ulate 
oeÆ
ients for the 
ase that we have right-handed twists and we makea simple substitution by Theorem 6.9 in order to 
al
ulate 
oeÆ
ients for the
ase that we have left-handed twists (pi < 0).Thus the pro
edures for f1 and f3 are updated, and the routines SIGMAn,SIGMA_n and K
oeff all have slight modi�
ations. The main routine givenpreviously is only altered to give terms in s and not z.138



f1 := pro
(n::nonnegint)(s^n - (-s^(-1))^n)/(s + s^(-1));end pro
:f3 := pro
(n::nonnegint)v*(s - s^(-1))/((s^(-1) + v)*(s - v))*v^n- v*(s - s^(-1))/(s + s^(-1))*((s^n/(s-v))+(((-s)^(-1))^n/(s^(-1)+v)));end pro
:SIGMAn := pro
(n::posint)lo
al output:output := [0,0,0℄:#output[1℄ is the 
oeff of {sigma}output[1℄ := expand((1/(s-s^(-1)))*f1(n+1)):#output[2℄ is the 
oeff of {sigma}^(-1)output[2℄ := expand(-(1/(s-s^(-1)))*f1(n-1)):#output[3℄ is the 
oeff of houtput[3℄ := expand(f3(n) + f1(n-1)):output;end pro
:SIGMA_n := pro
(n::posint)lo
al output:output := [0,0,0℄:#output[1℄ is the 
oeff of {sigma}output[1℄ := expand((1/(s-s^(-1)))*subs(s=s^(-1),f1(n-1))):#output[2℄ is the 
oeff of {sigma}^(-1)output[2℄ := expand(subs(s=s^(-1),(1/(s-s^(-1)))*f1(n+1))):#output[3℄ is the 
oeff of houtput[3℄ := expand(subs(s=s^(-1),v=v^(-1),f3(n) + f1(n-1))):output;end pro
: 139



K
oeff := pro
(n::integer)lo
al out:if n = 0 thenout := [1/(s-s^(-1)), -1/(s-s^(-1)), 1℄:elif n > 0 thenout := SIGMAn(n):elif n < 0 thenout := SIGMA_n(-n):end if:out;end pro
:The 
oeÆ
ients previously 
al
ulated by g1 and g3 are now 
al
ulated bymaking the substitution realised in Theorem 6.9 in to the expressions 
al
ulatedby f1 and f3.As noted previously we 
an use a substitution to redu
e the number ofre
urren
e relations that we use in an implementation of the algorithm. Werewe to do this the only additional 
hanges we would need to make would be inthe routine SIGMA_n, in order to put the ne
essary substitutions in pla
e.6.8.3 Speed of 
al
ulationIn prin
iple, using generating fun
tions should give a qui
ker approa
h to 
al
u-lating the invariant than by using an implementation that relies on re
urren
erelations. As noted previously, the re
urren
e relations that we have imple-mented only have the illusion of fast 
al
ulation be
ause we 
reate a table ofvalues that 
al
ulations draw on in order to short 
ir
uit later 
al
ulations.Having to only perform one operation should then give generating fun
tions anadvantage over the re
urren
e relations in an implementation.Based on 
al
ulations that I have performed, the opposite seems to be true:when 
omparing 
al
ulation times between two implementations, one based onre
urren
e relations and the other based on generating fun
tions, we a
tually140



see the implementation based on re
urren
e relations greatly outperformingthe implementation based on generating fun
tions. This happens even when
omputing the Kau�man polynomial of simple pretzels with very few 
rossings.I believe that the reason for this is that we are now 
al
ulating a polynomialin s and v, where z = s�s�1. By doing so we are 
reating mu
h larger polyno-mials that must be stored in memory, and this is slowing down the operationof Maple in what would otherwise be a simple enough 
al
ulation thanks to thetheory that we have developed for 
al
ulating polynomial invariants for thisfamily of knots.6.8.4 NoteWhile I was writing up this 
hapter I be
ame aware of a re
ently publishedpaper on the Kau�man polynomials of pretzel links by Lu and Zhong [32℄.Their method is di�erent from mine, and does not approa
h the 
al
ulationthrough re
urren
e relations based on the twists in the pretzel links.
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Chapter 7
The Skein of the Annulus
7.1 Introdu
tionIn this 
hapter I present some preliminary 
al
ulations in the Kau�man skeinof the annulus. While I was able to a
hieve some su

ess in �nding expli
itvalues, I was unable to progress to a point where I 
ould state a general result.We are able to make some reasonable 
onje
tures on what might be true in amore general setting.The work in this 
hapter follows work of [19℄ and [38℄ in investigating theskein of the annulus with two boundary points. In both of these papers theauthors were 
onsidering the Hom
y skein of the annulus and the skein of theannulus with two boundary points. In this 
hapter we see preliminary resultsthat we have obtained through expli
it manipulation and 
al
ulation of braidwords with respe
t to the main Kau�man skein relations, and relations thatwe 
an derive from the intera
tion of elements in the annulus.We look at linear 
ombinations of 
losed braids on n strings in the skeinof the annulus with an ar
 
onne
ting points on the boundary. We show that
ertain linear 
ombinations of braids in this setting 
an be expressed as linear
ombinations of identity braids on n strings and fewer than n strings.143



7.2 Notation7.2.1 The annulusWe 
onsider elements in the annulus as in Figure 7.1. We take linear 
ombina-tions of braid words X from B n and 
lose them. We take linear 
ombinationswith respe
t to the Kau�man skein relations, and we take these skein relationsas de�ned in Se
tion 1.5.3.
X: : :: : :

Figure 7.1: X, linear 
ombination of words from B n
7.2.2 The annulus with two boundary pointsFollowing the notation of [19℄ and [38℄ we give some initial 
onstru
tions andde�nitions for the Kau�man skein of the annulus.Denote by K the Kau�man skein of the annulus with two boundary points,one on ea
h boundary 
omponent, as indi
ated in Figure 7.2.The skein K be
omes an algebra under the produ
t indu
ed by pla
ing oneannulus outside the other; for this, of 
ourse, we require that there is one 
urve
onne
ting the two points on the boundary. The identity element in the skein,whi
h we denote a0 2 K to avoid 
onfusion with the identity element of abraid, 
an be thought of as a single ar
 
onne
ting the boundary points as inFigure 7.3.Further elements are given by single ar
s whi
h wind around the 
entralex
luded point; the element a1 is given by an ar
 that winds around the 
entral144



Figure 7.2: K, the Kau�man skein of the annulus with two boundary points

Figure 7.3: The element a0

a1 a�1Figure 7.4: a1 and a�1
145



ex
luded point on
e in a 
ounter-
lo
kwise dire
tion as we travel along it fromthe 
entre of the annulus to the outer boundary. This element 
an be seen inFigure 7.4 along with its inverse a�1.Powers of the element a1, am for m 2 Z are given by a single ar
 
onne
t-ing the inner boundary point to the outer by winding in a 
ounter-
lo
kwisedire
tion m times without 
rossing itself. We 
ompose two elements by pla
ingone annulus outside another, 
onne
ting ar
s and boundary points; this a
tionis 
ommutative.7.2.3 l(X) and r(X)The 
al
ulations that we wish to perform take pla
e in the skein of the annuluswith two boundary points. We 
onsider two settings, and in both of these 
aseswe have a linear 
ombination, X, of words from B n and an ar
 from the innerboundary to the outer boundary.De�ne the settings l(X) and r(X) as in Figure 7.5.
l(X) = X: : :: : : r(X) = X: : :: : :Figure 7.5: Settings l(X) and r(X)The notation introdu
ed here mirrors some of the 
onstru
tions in [38℄. Thetheory of that paper was more developed in showing results for the Hom
y skeinof the annulus than the results for Kau�man in this 
hapter; however, I believethat the results in this 
hapter point the way to showing that similar results
ould be obtained for Kau�man.We give a de�nition now that will make our later 
al
ulations easier toorder. 146



De�nitionFor a linear 
ombination, X, of braid words from B n , and for 0 � k � nwe have the family of settings rk(X) in the annulus, where k gives the numberof braid strings that the ar
 
rosses under from the interior boundary point tothe exterior; the ar
 passes under k 
onse
utive braid strings, and then passesover the remaining n� k strings.We see how the ar
 
onne
ts the boundary points for rk(X) in Figure 7.6.1kk + 1n
...
...

Figure 7.6: The ar
 
onne
ting boundary points in the setting rk(X)Thus r0(X) = l(x) and rn(X) = r(X).The obje
t of this work is to 
onsider expressing the elements l(X)� r(X),for some X, as a sum of elements am with m 2 Z, �n � m � n. We are goingto examine several 
ases of a spe
i�
 family of examples for ea
h n, whi
h willgive rise to some 
onje
tures on the behaviour in general.7.2.4 Pn(X) and Nn(X)Two other settings that we will need to 
onsider in the annulus are Pn(X) andNn(X), as seen in Figure 7.7. 147



Pn(X) = X: : :: : : Nn(X) = X: : :: : :Figure 7.7: Settings Pn(X) and Nn(X)These settings are 
loser to the format of the elements that we wish toexpress our starting linear 
ombinations as, i.e., they more 
losely resembleelements of the form am, m 2 Z.7.2.5 YnDe�nitionWe de�ne Yn to be the linear 
ombination of n words from the braid groupB n expressed as�n�1 : : : �2�1 + ��1n�1 : : : �2�1 + : : :+ ��1n�1 : : : ��12 �1 + ��1n�1 : : : ��12 ��11 :Thus Y1 is simply the identity (and only) 1-braid, while Y2 is �1+ ��11 , andY3 = �2�1 + ��12 �1 + ��12 ��11 . These are the examples that we shall 
onsiderexpli
itly in this 
hapter; we will make some referen
e to 
al
ulations for Y4and for Yn in general, but we will not 
onsider expli
it 
al
ulations for n > 3.These examples follow on from work of Morton [38℄.7.3 Cal
ulations for Y1 and Y2Cal
ulations for Y1 are almost trivial. Consider l(Y1) and r(Y1) as shown inFigure 7.8.As Y1 is the identity 1-braid the only di�eren
e between the two diagramsis from the 
rossing resulting from the ar
 
onne
ting the boundary points.148



l(Y1) = Y1 r(Y1) = Y1Figure 7.8: l(Y1) and r(Y1)Lemma 7.1 l(Y1)� r(Y1) = z(a1 � a�1).ProofThis follows by applying the Kau�man skein relation to l(Y1)� r(Y1).A valid intermediate point in the 
al
ulation for Y1 would be to write theexpression as z(P1(Y1) � N1(Y1)) after applying the skein relation, and thennoting that this is the same as z(a1 � a�1).The 
al
ulations for Y2 are not 
ompletely trivial, and they require us to
onsider the diagrams that result from expressing l(Y2) � r(Y2) as a series ofdiagrams.Lemma 7.2 l(Y2)� r(Y2) = z(z2 + 4)(a2 � a�2).ProofTo begin with notel(Y2)� r(Y2) = r0(Y2)� r2(Y2)= (r0(Y2)� r1(Y2)) + (r1(Y2)� r2(Y2)):We 
onsider r1(Y2) as in Figure 7.9.The diagram of r1(Y2) di�ers from both r0(Y2) and r2(Y2) in exa
tly onepla
e ea
h, and we use the main Kau�man skein relation on ea
h of the expres-sions r0(Y2)�r1(Y2) and r1(Y2)�r2(Y2). By 
onsidering the resulting diagramswe see the following,r0(Y2)� r1(Y2) = z(P2(�1Y2)�N2(Y2��11 ))149



Y2
Figure 7.9: r1(Y2)and r1(Y2)� r2(Y2) = z(P2(Y2��11 )�N2(�1Y2)):Then we develop our previous expression asl(Y2)� r(Y2) = r0(Y2)� r2(Y2)= (r0(Y2)� r1(Y2)) + (r1(Y2)� r2(Y2))= z(P2(�1Y2)�N2(Y2��11 )) + z(P2(Y2��11 )�N2(�1Y2))= z(P2(�1Y2 + Y2��11 )�N2(�1Y2 + Y2��11 )):Now �1Y2 + Y2��11 = �1(�1 + ��11 ) + (�1 + ��11 )��11= �21 + e + e+ ��21= �21 + ��21 + 2e:In Chapter 6 we noted �2 = z�� vzh+ e and ��2 = �z��1 + v1zh+ e and we
an adapt those results in this 
ontext to give�21 + ��21 + 2e = z�1 � vzh1 + e� z��11 + v1zh1 + e+ 2e= z(�1 � ��11 ) + z(v�1 � v)h1 + 4e= z2(e� h1) + z(v�1 � v)h1 + 4e= (z2 + 4)e+ z2(Æ � 2)h1where Æ = v�1�vz + 1 as de�ned in Chapter 1.150



We substitute these expressions into ea
h of the settings to obtain the fol-lowing: P2(�1Y2 + Y2��11 ) = P2((z2 + 4)e+ z2(Æ � 2)h1)= (z2 + 4)P2(e) + z2(Æ � 2)P2(h1)= (z2 + 4)a2 + z2(Æ � 2)a0N2(�1Y2 + Y2��11 ) = (z2 + 4)N2(e) + z2(Æ � 2)N2(h1)= (z2 + 4)a�2 + z2(Æ � 2)a0Finally, we 
ombine these results with those previously noted to give:l(Y2)� r(Y2) = (r0(Y2)� r1(Y2)) + (r1(Y2)� r2(Y2))= z(P2(�1Y2 + Y2��11 )�N2(�1Y2 + Y2��11 ))= z((z2 + 4)a2 + z2(Æ � 2)a0)� z((z2 + 4)a�2 + z2(Æ � 2)a0)= z(z2 + 4)(a2 � a�2);as required.We will 
onsider how we 
an use the main skein relations on expressions ofthe form rk(X)� rk+1(X) in the next se
tion, as this will be the approa
h thatwe take in general to begin these 
al
ulations.7.4 A general approa
h for YnBefore beginning the a
tual 
al
ulations for Y3 it is important that we makeexpli
it an approa
h that we 
an take in general for these kinds of 
al
ulations,as well as list general relations that are useful now that we are moving to asetting with more than two braid strings.For the 
al
ulations involving Y2 we took the step of rewriting the expressionthat we started with asl(Y2)� r(Y2) = (r0(Y2)� r1(Y2)) + (r1(Y2)� r2(Y2));whi
h we then applied the main Kau�man skein relation to in order to ulti-mately allow us to express the diagrams as a sum of elements am, m 2 Z.151



A more general statement 
an be made along these lines, but in order to dothat we must �rst introdu
e several more pie
es of notation and show how theyare equivalent to other obje
ts in the skein of the annulus with two 
onne
tedboundary points.De�nitionFor X, a linear 
ombination of braid words from B n , we de�ne the settingsrk;0(X) and rk;1(X) to be similar to the 
losure of rk(X) with the di�eren
ein the arrangement of the ar
 
onne
ting the interior boundary point to theexterior boundary point as shown in Figure 7.10.1kk + 1n
...
...rk;0

1kk + 1n
...
...rk;1Figure 7.10: Arrangement of ar
s near boundary points for rk;0(X) and rk;1(X)Lemma 7.3 For X, a linear 
ombination of braid words from B n ,rk(X)� rk+1(X) = zPn(�n�1 : : : �k+1X��1k : : : ��11 )� zNn(�1 : : : �kX��1k+1 : : : ��1n�1)for 0 � k � n� 1.ProofBy the main Kau�man skein relations, we state thatrk(X)� rk+1(X) = z(rk;0(X)� rk;1(X)):152



From 
onsidering the diagrams in the annulus it is not diÆ
ult to see thatrk;0(X) = Pn(�n�1 : : : �k+1X��1k : : : ��11 )rk;1(X) = Nn(�1 : : : �kX��1k+1 : : : ��1n�1);whi
h gives the required result.We obtain an extension to Lemma 7.3, whi
h gives us a good foundationfor the problem that we wish to ta
kle.Lemma 7.4 For X, a linear 
ombination of braid words from B n ,l(X)� r(X) = zPn(�n�1 : : : �1X + �n�1 : : : �2X��11 + : : :+X��1n�1 : : : ��11 )� zNn(�1 : : : �n�1X + �1 : : : �n�2X��1n�1 + : : :+X��11 : : : ��1n�1)ProofTo begin with statel(X)� r(X) = r0(X)� rn(X)= (r0(X)� r1(X)) + (r1(X)� r2(X)) + : : :+ (rn�1(X)� rn(X)):By Lemma 7.3 we 
an express every ri(X)� ri+1(X) as an expression in termsof diagrams in the settings Pn and Nn multiplied by z. We work over all i from0 to n� 1, and sol(X)� r(X) = n�1Xi=0 (ri(X)� ri+1(X))= z n�1Xi=0 (ri;0(X)� ri;1(X))= z n�1Xi=0 (Pn(�n�1 : : : �i+1X��1i : : : ��11 )�Nn(�1 : : : �iX��1i+1 : : : ��1n�1))giving the required result.Lemma 7.4 is the starting point for showing the desired result for Y3; Ibelieve it is a good starting point for this type of 
al
ulation in general.153



7.4.1 Summary of relationsBefore we pro
eed with the 
al
ulations for Y3 we summarise relations that 
anbe observed in the 
ontexts we have dis
ussed. Some of these are derived frompurely algebrai
 
onsiderations, while others are obtained dire
tly from how we
an manipulate the geometri
 obje
ts in the annulus settings.(K1) �i � ��1i = z(e� hi)(K2) ��1i hi = v�1hi(R1) �2i = z�i � vzhi + e(R2) ��2i = �z��1i + v�1zhi + e(R3) �2i + ��2i = (z2 + 2)e+ z2(Æ � 2)hi(R4) ��1i hi+1��1i = ��1i+1hi��1i+1(R5) h2i = Æhi(R6a) ��1i+1��1i ��1i+1��1i = ��1i ��1i+1(R6b) ��1i ��1i+1��1i ��1i+1 = ��1i+1��1i(H1a) hi+1hihi+1 = hi+1(H1b) hihi+1hi = hiIn the result of Lemma 7.3 we impli
itly used the following result, whoseproof 
an be observed simply from 
onsidering diagrams in the relevant setting.Lemma 7.5 Take a linear 
ombination of braid words X from B n for n � 3.Then in Pn(X) we 
an remove ��1k or hk for 1 � k � n � 2 at the start of aword at the expense of adding, respe
tively, ��1k+1 or hk+1 to the end of a word.Similarly in Nn(X) we 
an remove ��1k or hk for 1 � k � n� 2 at the end ofa word and in its pla
e add ��1k+1 or hk+1 to the start of the word.E�e
tively we are sliding these 
rossings or turnba
ks around the annulus asthe setting allows; in the 
al
ulations that follow we will refer to appli
ationsof Lemma 7.5 as using slide moves.7.5 Cal
ulations for Y3Theorem 7.6 l(Y3)� r(Y3) = z(z2 + 3)2(a3 � a�3) + z3(Æ � 2)(a� a�1).154



We take a �rst step and state by Lemma 7.4l(Y3)� r(Y3) = zP3(�2�1Y3 + �2Y3�1�1 + Y3�2�1�1�1)�zN3(�1�2Y3 + �1Y3�2�1 + Y3�1�1�2�1):For ease of 
al
ulation we will 
al
ulate these two terms separately, andthen bring them together afterwards.7.5.1 P3(�2�1Y3 + �2Y3�1�1 + Y3�2�1�1�1)Denote �2�1Y3 + �2Y3�1�1 + Y3�2�1�1�1 as the following for ease of referen
e:Y3+ := �2�1Y3 + �2Y3�1�1 + Y3�2�1�1�1:Lemma 7.7 P3(Y +3 ) = (z4 + 6z2 + 9)a3 + 2z2(Æ � 3)a1 + z2(2Æ � 6� z2)a�1 +z2(v�1r(Y1) + vl(Y1)).ProofIn the �rst instan
e we perform skein relations not spe
i�
 to the setting P3,i.e., we do not perform slide moves as des
ribed by Lemma 7.5.We begin the evaluation by expanding the expression for Y3+ in terms ofa sum of braid words, and use relations to simplify any expressions whi
h 
anobviously be simpli�ed. Hen
eY3+ = �2�1Y3 + �2Y3�1�1 + Y3�2�1�1�1= �2�1�2�1 + �2�1�2�1�1 + �2�1�2�1�1�1+ �2�2�1�1�1 + �2�2�1�1�1�1 + �2�2�1�1�1�1�1+ �2�1�2�1�1�1 + �2�1�1�2�1�1�1 + �2�1�1�1�2�1�1�1= �22 + �1�2 + e+ 2�1�2�1 + �2�1�2�1+ �2�1�1�1�2�1�1�1 + �2�1�2�1�1 + �2�1�1�2�1�1�1Our initial method is to take words of length four and use skein relations toexpress them as linear 
ombinations of words of length three or smaller. Wemay have to express them as words of length four involving hi as an intermediate155



step. We ta
kle words in terms of generators and inverses only �rst, and then
onsider any words of length four with elements hi.We �rst �nd expressions for �2�1�2�1�1 and �2�1�1�2�1�1�1, as we 
an then
ombine these with other words in our expression.�2�1�2�1�1 = �2�1(�2 � ze + zh2)�1= �2�1�2�1 � z�2�12 + z�2�1h2�1= �2�1�2�1 � z�2�12 + zh1�2�1�2�1�1�2�1�1�1 = �2�1(�1�1 + ze� zh1)�2�1�1�1= �2�1�1�1�2�1�1�1 + z�2�2�1�1 � z�2�1h1�2�1�1�1= �2�1�1�1�2�1�1�1 + z�2�2�1�1 � z�1h2Substituting these in to our expression for Y3+ givesY3+ = �22 + �1�2 + e + 2�1�2�1 + 2�2�1�2�1 + 2�2�1�1�1�2�1�1�1+ z(�2�2�1�1 � �2�12) + z(h1��12 � �1h2):Two terms that we need to evaluate now are �2�1�2�1 and �2�1�1�1�2�1�1�1.We use a 
ombination of skein relations and relations equivalent to the TypeIII Reidemeister move to simplify these expressions.�2�1�2�1 = (�2�1 + z � zh2)�1�2�1= �2�1�2�1�2 + z�1�2�1 � zh2�2�1�2= �1�2 + z�1�2�1 � vzh2�1�2�2�1�1�1�2�1�1�1 = (�2 � z + zh2)�1�1�2�1�1�1= �2�2�1�1�1�2�1 � z�1�1�2�1�1�1 + zh2�2�1�1�1�2�1= �1�1�2�1 � z�1�1�2�1�1�1 + v�1zh2�1�1�2�1156



Substituting this in to the expression for Y3+ we see the following:Y3+ = �22 + �1�2 + e + 2�1�2�1 + 2(�1�2 + z�1�2�1 � vzh2�1�2)+2(�1�1�2�1 � z�1�1�2�1�1�1 + v�1zh2�1�1�2�1)+ z(�2�2�1�1 � �2�12) + z(h1��12 � �1h2)= �22 + �1�2 + e + 2(�1�2�1 + �1�2 + �1�1�2�1)+2z(�1�2�1 � �1�1�2�1�1�1) + z(�2�2�1�1 � �2�12)+2z(v�1h2�1�1�2�1 � vh2�1�2) + z(h1��12 � �1h2)We have redu
ed all words of length four to an expression of words of lengththree or less. Before we repeat the pro
ess, eliminating all words of length threeand expressing them in terms of words of length two or less, we will 
onsiderwhat we 
an say so far about P3(Y +3 ).We begin by 
onsidering several of the terms in our expression for Y +3 , anduse slide moves to simplify them in the P3 setting.P3(�1�2�1 + �1�2 + �1�1�2�1) = P3(e+ �21 + ��21 )P3(v�1h2�1�1�2�1 � vh2�1�2) = P3(v�1�1�1h2�1�1 � v�1h2�1)P3(h1��12 � �1h2) = P3((v�1 � v)h1)ThenP3(Y +3 ) = 3P3(e+ �21 + ��21 ) + z2(Æ � 1)P3(h1) + 2zP3(�1�2�1 � �1�1�2�1�1�1)+zP3(�2�2�1�1 � �2�12) + 2zP3(v�1�1�1h2�1�1 � v�1h2�1)By one of our earlier results we 
an express �21 +��21 as a linear 
ombination ofe and h1, and in turn we 
an evaluate these as linear 
ombinations of elementsof the form am, m 2 Z; however we postpone doing that for now as we will �ndother elements to add to these.We turn our attention to the words of length three that we have in ourexpression for P3(Y +3 ). We stay in the setting P3 to take advantage of slidemoves. 157



We begin by examining the expression P3(�1�2�1 � �1�1�2�1�1�1). We usethe skein relations in a manner that mirrors our earlier proof for Lemma 7.4.P3(�1�2�1 � �1�1�2�1�1�1) = P3(�1�2�1 � �1�1�2�1)+ P3(�1�1�2�1 � �1�1�2�1�1)+ P3(�1�1�2�1�1 � �1�1�2�1�1�1)= P3((�1 � �1�1)�2�1) + P3(�1�1(�2 � �2�1)�1)+ P3(�1�1�2�1(�1 � �1�1))= zP3(�2�1 + �1�1�1 + �1�1�2�1)� zP3(h1�2�1 + �1�1h2�1 + �1�1�2�1h1)= zP3(e + �1�2 + �2�1)� zP3(h1�2�1 + �1h2�1 + �1�1h2�1):We evaluate P3(�1�1h2�1) separately as it suits our purposes to have all thesigns of elements in these words to be of the same type.P3(�1�1h2�1) = P3((�1 � ze + zh1)h2�1)= P3(�1h2�1 � zh2�1 + zh1h2�1):Then for P3(�1�2�1 � �1�1�2�1�1�1) we obtain the following expression:P3(�1�2�1 � �1�1�2�1�1�1) = zP3(e+ �1�2 + �2�1 + zh2�1)� zP3(2�1h2�1 + h1�2�1 + zh1h2�1):Substituting this in to the expression for P3(Y3+) givesP3(Y +3 ) = 3P3(e + �21 + ��21 ) + z2(Æ � 1)P3(h1) + 2z2P3(e + �1�2 + �2�1 + zh2�1)� 2z2P3(2�1h2�1 + h1�2�1 + zh1h2�1)+zP3(�2�2�1�1 � �2�12) + 2zP3(v�1�1�1h2�1�1 � v�1h2�1)We will evaluate �2�2�1�1��2�12 shortly; using quadrati
 relations previouslyderived we know that we will obtain words of length two or one. Thus it suits158



us to now eliminate the remaining words of length three whi
h 
ontain hi. By
onsidering these words in the setting P3 we obtain the following values:P3(�1�1h2�1�1) = a�1 P3(�1h2�1) = a�1P3(h1h2�1) = v�1P3(h1) P3(h1�2�1) = Æa1ThenP3(Y +3 ) = 3P3(�21 + ��21 ) + (2z2 + 3)P3(e) + z2(Æ � 1)P3(h1)� 2v�1z3P3(h1)+ 2z2P3(�1�2 + �2�1 + zh2�1) + zP3(�2�2�1�1 � �2�12)� 2z2Æa1 + 2z2(Æ � 3)a�1We redu
e the expression P3(�2�2�1�1 � �2�12) using quadrati
 relations. Wepresent single 
rossings as produ
ts of diagrams in the annulus.P3(�2�2�1�1 � �2�12) = P3((zv�1h2 � z�2�1 + e)�1�1)� P3(�2(z�1 � zvh1 + e))= zP3(v�1h2�1�1 + v�2h1)� zP3(�2�1�1�1 + �2�1)+ (r(Y1)� l(Y1)) � a2:Making this substitution we have an expression for P3(Y3+) that 
ontains wordsof at most length two.P3(Y +3 ) = 3P3(�21 + ��21 ) + (2z2 + 3)P3(e) + z2(Æ � 1)P3(h1)� 2v�1z3P3(h1)+ 2z2P3(�1�2 + zh2�1) + z2P3(�2�1 � ��12 ��11 )+ z2P3(v�1h2��11 + v�2h1)+ z(r(Y1)� l(Y1)) � a2 � 2z2Æa1 + 2z2(Æ � 3)a�1We use skein relations again to remove all words of length two. For now weleave the term of P3(�21 + ��21 ). 159



We see the following expression for P3(�2�1� �2�1�1�1) following a similarmethod to before:P3(�2�1 � �2�1�1�1) = P3(�2�1 � �2�1�1) + P3(�2�1�1 � �2�1�1�1)= zP3((e� h2)�1) + zP3(�2�1(e� h1)))= zP3(�1 + �1�1 � h2�1 � �2�1h1)= z(l(Y1) + r(Y1)) � a2 � zP3(h2�1 + �2�1h1)Applying this with the quadrati
 relation for �i�2, and 
olle
ting terms, weobtain the following expression for P3(Y3+):P3(Y +3 ) = 3P3(�21 + ��21 ) + (4z2 + 3)P3(e) + z2(Æ � 1)P3(h1)+ z2P3(v�1h2��11 + v�2h1 + zh2�1 � z��12 h1)+ (z3 � z)(l(Y1)� r(Y1)) � a2 � 2z2Æa1 + 2z2(Æ � 3)a�1By 
onsidering their diagrams we 
an evaluate the following words of lengthtwo as follows: P3(h2�1) = l(Y1) = P3(�2h1)P3(h2�1�1) = r(Y1) = P3(�2�1h1)We make these substitutions, along with the quadrati
 relation for �12 + �1�2,and re
all from Lemma 7.1 that l(Y1) � r(Y1) = z(a � a�1). Finally, in thesetting of P3 we observe that e evaluates to a3 and a single hi evaluates to a1.P3(Y +3 ) = 3P3((z2 + 2)e+ z2(Æ � 2)h1) + (4z2 + 3)P3(e) + z2(Æ � 1)P3(h1)+ z2(v�1r(Y1) + vl(Y1) + zl(Y1)� zr(Y1))+ (z3 � z)(l(Y1)� r(Y1)) � a2 � 2z2Æa1 + 2z2(Æ � 3)a�1= (7z2 + 9)P3(e) + z2(4Æ � 7)P3(h1)+ z2(v�1r(Y1) + vl(Y1)) + z4(a1 � a�1)+ (z4 � z2)(a1 � a�1) � a2 � 2z2Æa1 + 2z2(Æ � 3)a�1= (z4 + 6z2 + 9)a3 + 2z2(Æ � 3)a1+ z2(2Æ � 6� z2)a�1 + z2(v�1r(Y1) + vl(Y1)):160



7.5.2 N3(�1�2Y3 + �1Y3�2�1 + Y3�1�1�2�1)Denote �1�2Y3 + �1Y3�2�1 + Y3�1�1�2�1 as the following:Y3� := �1�2Y3 + �1Y3�2�1 + Y3�1�1�2�1:Lemma 7.8 N3(Y �3 ) = (z4 +6z2 +9)a�3 + z2(3Æ� 8� z2)a�1 + z2(Æ� 4)a1 +z2(v�1r(Y1) + vl(Y1)).ProofOmitted for brevity. By a similar method of manipulations to the P3(Y +3 ) 
asewe obtain the result. Due to the initial form that the expression takes therearrangement in this 
ase is easier than in the previous 
ase.7.5.3 Proof of Theorem 7.6ProofIn Lemmas 7.7 and 7.8 we 
al
ulatedP3(Y3+) = (z4 + 6z2 + 9)a3 + 2z2(Æ � 3)a1+ z2(2Æ � 6� z2)a�1 + z2(v�1r(Y1) + vl(Y1))N3(Y3�) = (z4 + 6z2 + 9)a�3 + z2(3Æ � 8� z2)a�1+ z2(Æ � 4)a1 + z2(v�1r(Y1) + vl(Y1)):By Lemma 7.4 we know l(Y3)� r(Y3) = z(P3(Y3+)�N3(Y3�)). ThenP3(Y3+)�N3(Y3�) = (z4 + 6z2 + 9)(a3 � a�3) + z2(2Æ � 6� Æ + 4)a1+ z2(2Æ � 6� z2 � 3Æ + 8 + z2)a�1= (z4 + 6z2 + 9)(a3 � a�3) + z2(Æ � 2)a1 + z2(2� Æ)a�1= (z2 + 3)2(a3 � a�3) + z2(Æ � 2)(a1 � a�1):Thus l(Y3)� r(Y3) = z(P3(Y +3 )�N3(Y �3 ))= z(z2 + 3)2(a3 � a�3) + z3(Æ � 2)(a� a�1);as required. 161



7.6 Yn, n > 3Following 
al
ulations for Y3 a variety of methods were used to 
al
ulate thelinear 
ombination of diagrams expressing l(Y4)�r(Y4), but all of them were ul-timately unsu

essful. The problems in resolving these 
al
ulations was largelydue to human error. For Y +4 and Y �4 we begin with sixteen braid words onfour strings, with ea
h word initially being of length six. Some of these 
anbe simpli�ed immediately, but espe
ially for the 
al
ulation of P4(Y +4 ) we �ndthat we have a large number of words and a large number of intermediate stepswhen using skein relations to redu
e the length of braid words.It seems that for n > 3, the number of intermediate terms and steps inthe 
al
ulation of Pn(Y +n )�Nn(Y �n ) is too great to realisti
ally be a
hieved byhand. There are too many terms that 
an o

ur, and too many steps that mustbe taken { both of whi
h 
ontribute to the possibility of human error.A Maple routine adapted from the algorithms of Chapter 3 gave mixedresults. CoeÆ
ients of equivalent diagrams were 
olle
ted, and we 
an be 
on-�dent that no errors were made to this point. This left the task of having tomanually evaluate a large number of terms with the added 
ompli
ation thatsome terms that we had previously resolved with skein relations (e.g., redu
ingof �2�1 � ��12 ��11 ) now had only one term remaining in the expression.It is possible that an alternate form of notation might be used to simplifythings, although we have not been able to use any so far to great e�e
t.By performing 
al
ulations modulo the turnba
k relation in the main Kau�-man skein relation we were able to eliminate elements 
ontaining hi for 
al
ula-tions of l(Y4)�r(Y4); while this did not allow us to make a 
omplete 
al
ulationfor Y4, it did allow us to 
on�rm the following 
oeÆ
ient of (a4 � a�4):l(Y4)� r(Y4) = (z6 + 8z4 + 20z2 + 16)(a4 � a�4) modulo elements of hi:We have performed expli
it 
al
ulations for only a few 
ases, but there aresome indi
ations as to what might o

ur in general for l(Yn)� r(Yn). To 
losethis 
hapter let us state a few 
onje
tures that we believe to be true, but havenot been able to show. 162



Proposition 7.9 We 
an express l(Yn) � r(Yn) as a linear 
ombination ofannulus diagrams am, m 2 Z, �n � m � n, with 
oeÆ
ients 
n;m from theKau�man skein of the annulus. I.e.,l(Yn)� r(Yn) = 
n;nan + 
n;n�1an�1 + : : :+ 
n;�na�n:This is 
lear from the fa
t that use of the skein relations will not introdu
eextra ar
s in the annulus: a
tion of skein relations gives a linear 
ombinationof diagrams with the same or fewer ar
s.In [31℄, using di�erent notation, it was shown that an element in the Kau�-man skein of the annulus on n strings 
an be written as a linear 
ombinationof elements with n strings and elements with n � 2k strings (for 1 � k � n2 ,k 2 Z). This 
oin
ides with our results for Y3 (Theorem 7.6).Also, from observations in the Hom
y skein of the annulus, and our 
al
ula-tions for l(Y3)�r(Y3) and l(Y4)�r(Y4), we would 
onje
ture that 
n;�n = �
n;nfor l(Yn)�r(Yn) in general. We expe
t this be
ause the 
al
ulations that showedthe result in the Y4 
ase were modulo the turnba
k relation, whi
h is diagram-mati
ally the same as the Hom
y relation (although without orientation). Itis reasonable to expe
t that the 
oeÆ
ient of a0 would be 0 for 
ases of even n.From all of these observations and expe
tations, and 
oupled with the re-sult of Theorem 7.6 showing 
3;�1 = �
3;1 we thus make the following �nal
onje
ture.Conje
ture 7.10 We 
an express l(Yn) � r(Yn) as a linear 
ombination ofannulus diagrams am, m 2 Z, with 
oeÆ
ients 
n;m from the Kau�man skeinof the annulus su
h thatl(Yn)�r(Yn) = 
n;n(an�a�n)+
n;n�2(an�2�a�(n�2))+: : :+
n;n�2t(an�2t�a�(n�2t))where t is the largest integer less than or equal to n2 .
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Appendix AProgram CodeIn this appendix we give annotated 
ode for the Maple programs SeqIndex,k_plait and h_plait that are mentioned in Chapters 3 and 4 and are devel-oped from the material of those 
hapters.A.1 SeqIndexThere are points in the programs k_plait and h_plait where the programsear
hes through the array of k-sequen
es in order to �nd a parti
ular sequen
eto pass 
oeÆ
ients to; these are for the a
tions of renumbering, rearrangementand multipli
ation. Without any other 
onsiderations this 
ould be a lengthytask as we have to sear
h through a list of (2k)!2k elements to �nd the elementthat we require.The program SeqIndex is designed to look through the set of k-sequen
esfor a spe
i�
 k-sequen
e and then return the index of that sequen
e to the mainprogram. It does this eÆ
iently �rstly by taking advantage of the way that thepermute 
ommand works in Maple in order to 
reate the array of k-sequen
es,and se
ondly by exploiting the 
ombinatori
s of how Maple orders the list ofk-sequen
es.We divide the ordered list of k-sequen
es into k se
tions of equal size (size(2k)!2kk ), and the �rst digit of the k-sequen
e, T , that we wish to lo
ate is enough165



to tell us whi
h se
tion it is lo
ated in. Already we restri
t our sear
h to asubset one kth the size of the set of k-sequen
es.We know this due to the regularity with whi
h elements are permuted inMaple; be
ause of that regularity we 
an narrow the portion of the list that wewill have to sear
h through even further by 
omparing the se
ond digit of Twith the �rst. Then, depending on whether or not it is smaller, larger or thesame, we 
an subdivide the list into even smaller se
tions. When we sear
h inthis way we are e�e
tively sear
hing through all of the sequen
es whi
h havethe same two �rst digits as T .This is a massive redu
tion on having to sear
h through the entire list inorder to �nd an element, and also a great redu
tion on sear
hing through a kthof the set of k-sequen
es based on the �rst digit of T alone.Input for this routine is the the array to be sear
hed through, and thenumber sequen
e to be found. Output is the index for the sequen
e in thearray.###SeqIndex#####A pro
edure used to boost effi
ien
y in the main##HOMFLY and Kauffman pro
edures that I've 
reated##Works for both HOMFLY and Kauffman with##no extra modifi
ations for either neededSeqIndex := pro
(Ay,T)lo
al k, m, a, p, Ix:##In an effort to make it as flexible as possible,##the pro
edure finds the index of the number##sequen
e that is required##The index is then returned to the main program##where it is used in rearrangement routines##or for multipli
ation##The input is the array of number sequen
es##that is being sear
hed, Ay,##and the desired number sequen
e, T166



k:=nops(T)/2: m:=ArrayNumElems(Ay):##m is obtained from the array that is brought in##I de
ided to obtain the value of k by halving##the number of operands in the number sequen
e##that we wish to find, in order to redu
e the number##of arguments the pro
edure has to take inIx:=0: p:=0:##Ix will be the index of the element we wish to find##p is a marker that halts the sear
h on
e the##sequen
e is found##We have three situations, T[1℄=T[2℄, T[1℄<T[2℄ or T[1℄>T[2℄##When the 
orre
t index is found Ix is set to##that value, and the sear
h endsif T[1℄=T[2℄ thenwhile p=0 dofor a from 1+((T[1℄-1)*m/k)+(T[1℄-1)*2*(2*(k-1))!/(2^(k-1))to ((T[1℄-1)*m/k)+(2*T[1℄-1)*(2*(k-1))!/(2^(k-1)) doif Ay[a℄=T thenIx:=a: p:=1:fi:od:od:elif T[1℄<T[2℄ thenwhile p=0 dofor a from 1+((T[1℄-1)*m/k)+(2*T[2℄-3)*(2*(k-1))!/(2^(k-1))to ((T[1℄-1)*m/k)+(2*T[2℄-1)*(2*(k-1))!/(2^(k-1)) doif Ay[a℄=T then 167



Ix:=a: p:=1:fi:od:od:elif T[1℄>T[2℄ thenwhile p=0 dofor a from 1+((T[1℄-1)*m/k)+(T[2℄-1)*2*(2*(k-1))!/(2^(k-1))to ((T[1℄-1)*m/k)+2*T[2℄*(2*(k-1))!/(2^(k-1)) doif Ay[a℄=T thenIx:=a: p:=1:fi:od:od:fi:##The pro
edure ends by returning Ixreturn Ix;end;
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A.2 k plaitThe 
omments for the program are 
ontained within the listing for the programitself.Input for the program is the width of the plait k, followed by a string of 
non-zero integers between �(k � 1) and (k � 1) indi
ating the braid word oflength 
 of the plait presentation. Output is the Kau�man polynomial of theplait presentation in variables v and z, 
olle
ting 
oeÆ
ients of v against z.###k_plait############################################################Input for program is k followed by a string of positive#and negative numbers indi
ating 
rossings in the#plait presentation#########################################################Initialisation Part 1#########################################################Introdu
e the permute 
ommand outside of#the main program listing####"permute" allows us to generate the set of#k-sequen
es########################################################with(
ombinat,permute):#########################################################Initialisation Part 2#########################################################We initialise the program and define#the variables that we will use########################################################k_plait := pro
()lo
al a,b,
,d,f,i,j,k,l,m,n,p,r,t,w,x,y,169



A,Anow,Anext,B,Bnow,Bnext,C,Y,Ynext,depth,posn,swit
h,sm_plus,sm_minus,mult_temp,
lose_temp,
lose_mult,delta,output:#########################################################With the ex
eption of k, the plait number,#lower 
ase variables are looping variables#or flags, and o

asionally temporary variables####Upper 
ase variables are arrays/lists#generated by the program####Variables with "names" will be explained#in 
ommenting in the first instan
e of their use#########################################################Initialisation Part 3#########################################################In the final initialisation se
tion we#
reate the set of k-sequen
es and#the array that stores 
oeffi
ients########################################################k:=args[1℄:Y:=[seq(x[i℄,i=1..2*k)℄:for a from 1 to 2*k doif type(a/2,integer) thenY[a℄:=a/2:elseY[a℄:=(a+1)/2:fi:od:##Pre
eding lines generate the initial170



##sequen
e that we then permute in##the following lines in order to give##the set of k-sequen
es, whi
h we##store in arrays, along with an array##for the 
oeffi
ients atta
hed to the##sequen
esC:=permute(Y,2*k):A:=Array(1..nops(C)):B:=Array(1..nops(C)):m:=ArrayNumElems(A):for a from 1 to m do A[a℄:=C[a℄: B[a℄:=0: od:B[1℄:=1:C:='C':#########################################################Initialisation 
omplete#########################################################Start of the real me
hanisms of the program########################################################for n from 2 to nargs do #START OF MAIN LOOPi:=args[n℄: #Crossing from the plait#########################################################START OF REARRANGEMENT/RENUMBERING LOOP########################################################for r from k to 2 by -1 dofor j from 1 to m do #Looping through all A,Bif i>0 then #Case for positive 
rossingsif B[j℄<>0 and A[j℄[i+1℄=r and A[j℄[i℄<r thendepth:=[0,0,0,0℄: posn:=[0,0,0,0℄: w:=1:##If rearrangement is needed for a##parti
ular k-sequen
e then these##lines obtain the information171



##that allow us to determine the##k-sequen
e that 
oeffi
ients##will be passed to.######depth and posn store the##information for the adja
ent##ar
s that we are performing##skein relations on######If rearrangement is needed for a##k-sequen
e to be 
ompatible##then we always need the##following lines to get key##informationwhile w<5 dofor 
 from 1 to 2*k doif A[j℄[
℄=r-1 or A[j℄[
℄=r thendepth[w℄:=A[j℄[
℄: posn[w℄:=
: w:=w+1:fi:od:od:##For rearrangement or renumbering##we always pass 
oeffi
ients to a##k-sequen
e represented by the##obje
t 'swit
h'swit
h:=A[j℄:for f from 1 to 2*k doif A[j℄[f℄=r-1 thenswit
h[f℄:=r:elif A[j℄[f℄=r thenswit
h[f℄:=r-1: 172



fi:od:##If we need more than the a
tion##of a renumbering operation we need##the following series of steps to##determine the other k-sequen
es##that 
oeffi
ients are passed to######sm_plus and sm_minus are##are the two k-sequen
es that##represent the smoothings in##the main skein relations######sm_plus and sm_minus are##determined by the value of##depth[1℄, along with various##posn valuesif depth[1℄=depth[3℄ thensm_plus:=A[j℄: sm_minus:=A[j℄:if depth[1℄=r thenif posn[1℄=i+1 thensm_plus[posn[1℄℄:=r-1: sm_plus[posn[2℄℄:=r-1:sm_plus[posn[3℄℄:=r: sm_plus[posn[4℄℄:=r:sm_minus[posn[1℄℄:=r-1: sm_minus[posn[2℄℄:=r:sm_minus[posn[3℄℄:=r: sm_minus[posn[4℄℄:=r-1:elsesm_plus[posn[1℄℄:=r: sm_plus[posn[2℄℄:=r:sm_plus[posn[3℄℄:=r-1: sm_plus[posn[4℄℄:=r-1:sm_minus[posn[1℄℄:=r: sm_minus[posn[2℄℄:=r-1:sm_minus[posn[3℄℄:=r-1: sm_minus[posn[4℄℄:=r:fi: 173



elif depth[1℄=r-1 thenif posn[2℄=i+1 thensm_plus[posn[1℄℄:=r: sm_plus[posn[2℄℄:=r-1:sm_plus[posn[3℄℄:=r-1: sm_plus[posn[4℄℄:=r:sm_minus[posn[1℄℄:=r-1: sm_minus[posn[2℄℄:=r-1:sm_minus[posn[3℄℄:=r: sm_minus[posn[4℄℄:=r:elsesm_plus[posn[1℄℄:=r-1: sm_plus[posn[2℄℄:=r:sm_plus[posn[3℄℄:=r: sm_plus[posn[4℄℄:=r-1:sm_minus[posn[1℄℄:=r: sm_minus[posn[2℄℄:=r:sm_minus[posn[3℄℄:=r-1: sm_minus[posn[4℄℄:=r-1:fi:fi:fi:##Having determined the k-sequen
es that##we have to pass 
oeffi
ients to, we now##have the routines that move the 
oeffi
ients######SeqIndex is a 
alled program that finds##the index of a required k-sequen
ey:=SeqIndex(A,swit
h):B[y℄:=simplify(B[y℄+B[j℄):if depth[1℄=depth[3℄ theny:=SeqIndex(A,sm_plus):B[y℄:=simplify(B[y℄+z*B[j℄):y:=SeqIndex(A,sm_minus):B[y℄:=simplify(B[y℄-z*B[j℄):fi:B[j℄:=0:##Delete 
oeffi
ient after rearrangementfi: 174



elif i<0 then #Case for negative 
rossingsif B[j℄<>0 and A[j℄[abs(i)℄=rand A[j℄[abs(i)+1℄<r thendepth:=[0,0,0,0℄: posn:=[0,0,0,0℄: w:=1:while w<5 dofor 
 from 1 to 2*k doif A[j℄[
℄=r-1 or A[j℄[
℄=r thendepth[w℄:=A[j℄[
℄: posn[w℄:=
: w:=w+1:fi:od:od:##In this se
tion we have similar##pie
es of 
ode to previously; these##deal with the 
ase when we need##to ensure 
ompatibility for an##inverseswit
h:=A[j℄:for f from 1 to 2*k doif A[j℄[f℄=r-1 thenswit
h[f℄:=r:elif A[j℄[f℄=r thenswit
h[f℄:=r-1:fi:od:if depth[1℄=depth[3℄ thensm_plus:=A[j℄: sm_minus:=A[j℄:if depth[1℄=r-1 thenif posn[4℄=abs(i) thensm_plus[posn[1℄℄:=r-1: sm_plus[posn[2℄℄:=r:sm_plus[posn[3℄℄:=r: sm_plus[posn[4℄℄:=r-1:sm_minus[posn[1℄℄:=r: sm_minus[posn[2℄℄:=r:175



sm_minus[posn[3℄℄:=r-1: sm_minus[posn[4℄℄:=r-1:elsesm_plus[posn[1℄℄:=r: sm_plus[posn[2℄℄:=r-1:sm_plus[posn[3℄℄:=r-1: sm_plus[posn[4℄℄:=r:sm_minus[posn[1℄℄:=r-1: sm_minus[posn[2℄℄:=r-1:sm_minus[posn[3℄℄:=r: sm_minus[posn[4℄℄:=r:fi:elif depth[1℄=r thenif posn[1℄=abs(i) thensm_plus[posn[1℄℄:=r-1: sm_plus[posn[2℄℄:=r-1:sm_plus[posn[3℄℄:=r: sm_plus[posn[4℄℄:=r:sm_minus[posn[1℄℄:=r-1: sm_minus[posn[2℄℄:=r:sm_minus[posn[3℄℄:=r: sm_minus[posn[4℄℄:=r-1:elsesm_plus[posn[1℄℄:=r: sm_plus[posn[2℄℄:=r:sm_plus[posn[3℄℄:=r-1: sm_plus[posn[4℄℄:=r-1:sm_minus[posn[1℄℄:=r: sm_minus[posn[2℄℄:=r-1:sm_minus[posn[3℄℄:=r-1: sm_minus[posn[4℄℄:=r:fi:fi:fi:y:=SeqIndex(A,swit
h):B[y℄:=simplify(B[y℄+B[j℄):if depth[1℄=depth[3℄ theny:=SeqIndex(A,sm_plus):B[y℄:=simplify(B[y℄+z*B[j℄):y:=SeqIndex(A,sm_minus):B[y℄:=simplify(B[y℄-z*B[j℄):fi:B[j℄:=0:fi: 176



fi: #End of routine for negative 
rossingsod: #End of loop through A,Bod:#########################################################END OF REARRANGEMENT/RENUMBERING LOOP#########################################################By this point in the algorithm, the array#of 
oeffi
ients has been rearranged so#that the only k-sequen
es whi
h 
an#have non-zero 
oeffi
ients are those#whi
h are 
ompatible with the generator#or inverse####This is a
hieved after k-1 passes of the#set of k-sequen
es#########################################################MULTIPLICATION PROCEDURE#########################################################This is a mu
h shorter pro
edure, there#is mu
h less work to do in terms#of sear
hing through the arrays; we have#two slightly different routines depending#on whether or not we have a positive or#negative 
rossing########################################################if i>0 then##Generatorfor t from 1 to m doif B[t℄<>0 and (A[t℄[abs(i)℄>=A[t℄[abs(i)+1℄) thenmult_temp:=A[t℄:mult_temp[abs(i)℄:=A[t℄[abs(i)+1℄:177



mult_temp[abs(i)+1℄:=A[t℄[abs(i)℄:if mult_temp=A[t℄ thenB[t℄:=v*B[t℄:elsey:=SeqIndex(A,mult_temp):B[y℄:=B[t℄:B[t℄:=0:fi:fi:od:elif i<0 then##Inversefor t from 1 to m doif B[t℄<>0 and (A[t℄[abs(i)℄<=A[t℄[abs(i)+1℄) thenmult_temp:=A[t℄:mult_temp[abs(i)℄:=A[t℄[abs(i)+1℄:mult_temp[abs(i)+1℄:=A[t℄[abs(i)℄:if mult_temp=A[t℄ thenB[t℄:=v^(-1)*B[t℄:elsey:=SeqIndex(A,mult_temp):B[y℄:=B[t℄:B[t℄:=0:fi:fi:od:fi:od:#########################################################END OF MAIN REARRANGEMENT AND MULTIPLICATION LOOP########################################################178



#CLOSURE ROUTINE#########################################################After all of the multipli
ations are 
omplete#we must 
lose off ea
h k-sequen
e be
ause of#the '
ups'####We perform the 
losure one '
up' at a time.#########################################################k is passed in, but it is only used to give a#value to the first loop whi
h 
ontrols the#overall pro
ess and how many times#it is repeated#########################################################INITIALISING CLOSURE PROCEDURE########################################################Anow:=A: Bnow:=B:A:='A': B:='B': m:='m':m:=ArrayNumElems(Anow):delta:=1+(v^(-1)-v)/z:##Define delta, value of disjoint unknot#########################################################START CLOSURE LOOP########################################################for l from k to 2 by -1 doif (nops(Y)/2)>2 then##Don't need rearrangement for 
losure##of 2-sequen
e######Start 
losure rearrangement/renumberingfor r from (nops(Y)/2) to 3 by -1 dofor j from 1 to m do 179



if (Bnow[j℄<>0) and((Anow[j℄[1℄=r and Anow[j℄[2℄<(r-1))or (Anow[j℄[2℄=r and Anow[j℄[1℄<(r-1))) thendepth:=[0,0,0,0℄: posn:=[0,0,0,0℄: w:=1:while w<5 dofor 
 from 1 to nops(Y) doif Anow[j℄[
℄=r or Anow[j℄[
℄=r-1 thendepth[w℄:=Anow[j℄[
℄: posn[w℄:=
: w:=w+1:fi:od:od:##As before if renumbering or##rearrangement is required##we always need a k-sequen
e##where the numbers r and r-1##are inter
hangedswit
h:=Anow[j℄:for i from 1 to nops(Y) doif Anow[j℄[i℄=r thenswit
h[i℄:=r-1:elif Anow[j℄[i℄=r-1 thenswit
h[i℄:=r:fi:od:if depth[1℄=depth[3℄ then##Only one set of rearrangements##required.##Neighbouring ar
s will always be##of the form [r,r-1,r,r-1℄ if we##need to rearrangesm_plus:=Anow[j℄: sm_minus:=Anow[j℄:180



sm_plus[posn[1℄℄:=r-1: sm_plus[posn[2℄℄:=r-1:sm_plus[posn[3℄℄:=r: sm_plus[posn[4℄℄:=r:sm_minus[posn[1℄℄:=r-1: sm_minus[posn[2℄℄:=r:sm_minus[posn[3℄℄:=r: sm_minus[posn[4℄℄:=r-1:fi:y:=SeqIndex(Anow,swit
h):Bnow[y℄:=simplify(Bnow[y℄+Bnow[j℄):if depth[1℄=depth[3℄ theny:=SeqIndex(Anow,sm_plus):Bnow[y℄:=simplify(Bnow[y℄+z*Bnow[j℄):y:=SeqIndex(Anow,sm_minus):Bnow[y℄:=simplify(Bnow[y℄-z*Bnow[j℄):fi:Bnow[j℄:=0:fi:od:od:fi:##Now all sequen
es are 
losure-
ompatible######Need to initialise variables that will be used##for the next level of 
losure, i.e., to pass##to sequen
es with one less ar
Ynext:=Y[1..(nops(Y)-2)℄:##Ynext is the base generator stringC:=permute(Ynext,nops(Ynext)):Anext:=Array(1..nops(C)):Bnext:=Array(1..nops(C)):##Anext is the set of sequen
es that##
oeffi
ients will be passed to#### 181



##Bnext stores 
orresponding##
oeffi
ients for Anextfor a from 1 to nops(C) doAnext[a℄:=C[a℄:Bnext[a℄:=0:od:C:='C':##Perform 
losurefor j from 1 to m doif Bnow[j℄<>0 then
lose_temp:=Anow[j℄[3..nops(Y)℄:##
lose_temp is the sequen
e##that will result from the a
tion##of 
losure
lose_mult:=0:if Anow[j℄[1℄=Anow[j℄[2℄ then
lose_mult:=delta*Bnow[j℄:else##The following determines the##multiplier that is 
arried throughdepth:=[Anow[j℄[1℄,Anow[j℄[2℄,0,0℄: w:=3:while w<5 dofor b from 3 to nops(Y) doif (Anow[j℄[b℄=Anow[j℄[1℄)or (Anow[j℄[b℄=Anow[j℄[2℄) thendepth[w℄:=Anow[j℄[b℄: w:=w+1:fi:od:od:if depth[2℄=depth[3℄ then
lose_mult:=1*Bnow[j℄:182



elif depth[2℄<depth[3℄ then
lose_mult:=(1/v)*Bnow[j℄:elif depth[2℄>depth[3℄ then
lose_mult:=v*Bnow[j℄:fi:fi:##
lose_mult, by this point##is the 
oeffi
ient that is##passed to the next stage##a

ounting for any multiplierfor i from 1 to nops(Ynext) doif 
lose_temp[i℄>min(Anow[j℄[1℄,Anow[j℄[2℄) then
lose_temp[i℄:=
lose_temp[i℄-1:fi:od:y:=SeqIndex(Anext,
lose_temp):Bnext[y℄:=simplify(Bnext[y℄+
lose_mult):fi:od:#########################################################END CLOSURE##########################################################We have to initialise Anow, Bnow,##Y and m for the next loopAnow:='Anow': Bnow:='Bnow':Anow:=Anext: Bnow:=Bnext:m:=ArrayNumElems(Anow):Anext:='Anext': Bnext:='Bnext':Y:=Ynext:#########################################################END CLOSURE 183



#########################################################END MAIN PROGRAM########################################################od:#########################################################FINAL OUTPUT STAGE########################################################output:=Bnow[1℄:##The polynomial of the k-plait presentation##has been 
al
ulated, and we output this##with 
oeffi
ients of v on zoutput:=
olle
t(expand(output),z):end;
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A.3 h plaitThe 
omments for the program are 
ontained within the listing for the programitself.Input for the program is the width of the plait k, followed by a string of
 non-zero integers between �(k � 1) and (k � 1) indi
ating the braid wordof length 
 of the plait presentation. Output is the Hom
y polynomial of theplait presentation in variables v and z, 
olle
ting 
oeÆ
ients of v against z.As stated in Chapter 4 and the program listing, this implementation re-quires that the braid word given respe
t an initial orientation sequen
e of(�1; 1;�1; 1; :::;�1; 1). If this is not the 
ase then there will most likely beserious error in any 
al
ulations; an implementation 
ould be written so thatthe initial orientation sequen
e is a value that is taken from input.###h_plait############################################################IMPORTANT NOTE:#Input for program is k followed by a#string of positive and negative numbers#indi
ating 
rossings in an undire
ted#braid presentation (ie, monotoni
#but with no orientation).####Orientation is done so that the initial#tangle with 
oeffi
ient 1 has#orientation (-1,1,-1,1,...,-1,1).####If the presentation is not arranged as su
h,#then the program will not run 
orre
tly -#essentially the orientation will not be#
onsistent throughout - and errors will most#
ertainly o

ur. 185



#########################################################Initialisation Part 1#########################################################Introdu
e the permute 
ommand outside of#the main program listing####"permute" allows us to generate the set of#k-sequen
es########################################################with(
ombinat,permute):#########################################################Initialisation Part 2#########################################################We initialise the program and define#the variables that we will use########################################################with(
ombinat,permute):h_plait := pro
()lo
al a,b,
,f,i,j,k,m,n,p,r,t,w,y,mu2,A,Anow,Anext,B,Bnow,Bnext,C,Y,Ynext,S,S1,output,delta,
lose_temp,
lose_mult,mult_temp,swit
h,smooth,depth,posn,sign:#########################################################With the ex
eption of k, the plait number,#lower 
ase variables are looping variables#or flags, and o

asionally temporary variables####Upper 
ase variables are arrays/lists#generated by the program### 186



#Variables with "names" will be explained#in 
ommenting in the first instan
e of their use#########################################################Initialisation Part 3#########################################################In the final initialisation se
tion we#
reate the set of k-sequen
es and#the array that stores 
oeffi
ients####We also have to 
reate the#sequen
e whi
h stores the#orientation information for#the k-sequen
es########################################################k:=args[1℄:Y:=[seq(x[i℄,i=1..2*k)℄:S:=[seq(x[i℄,i=1..2*k)℄:for a from 1 to 2*k doif type(a/2,integer) thenY[a℄:=a/2: S[a℄:=1:elseY[a℄:=(a+1)/2: S[a℄:=-1:fi:od:#The pre
eding lines generate the#initial sequen
e whose entries are#permuted to give the set of k-sequen
es.####We also 
reate the list whi
h holds#the orientation information of the#non-zero 
oeffi
ient k-sequen
es187



C:=permute(Y,2*k):A:=Array(1..nops(C)):B:=Array(1..nops(C)):m:=ArrayNumElems(A):for a from 1 to m doA[a℄:=C[a℄: B[a℄:=0:od:B[1℄:=1:C:='C':#The pre
eding lines 
omplete the#initialisation.####The set of k-sequen
es is 
reated#from the permutation, and arrays#are set up to hold these and the#
oeffi
ients.####We devalue C, so that memory#is not being taken up by this#during the program's operation.#########################################################Initialisation 
omplete#########################################################Start of the main me
hanisms of the program########################################################for n from 2 to nargs do #START OF MAIN LOOPi:=args[n℄: #Crossing from the plait#########################################################START OF REARRANGEMENT/RENUMBERING LOOP########################################################for r from k to 2 by -1 do 188



for j from 1 to m do #Looping through all A,Bif i>0 then #Case for positive 
rossingsif B[j℄<>0 and A[j℄[i+1℄=r and A[j℄[i℄<r thendepth:=[0,0,0,0℄: posn:=[0,0,0,0℄:w:=1: mu2:=0:##If rearrangement is needed for a##parti
ular k-sequen
e then these lines##obtain the information that allow us to##determine the k-sequen
e(s) that##
oeffi
ients will be passed to.while w<5 dofor 
 from 1 to 2*k doif A[j℄[
℄=r-1 or A[j℄[
℄=r thendepth[w℄:=A[j℄[
℄: posn[w℄:=
: w:=w+1:fi:od:od:##If rearrangement or renumbering##is needed we always pass 
oeffi
ients##to a k-sequen
e represented by##the variable 'swit
h'swit
h:=A[j℄:for f from 1 to 2*k doif A[j℄[f℄=r-1 thenswit
h[f℄:=r:elif A[j℄[f℄=r thenswit
h[f℄:=r-1:fi:od:##If rearrangement for a sequen
e is##more than the a
tion of a renumbering189



##operation then we need the following##long series of lines to determine the##other sequen
e that 
oeffi
ients##are passed to.if depth[1℄=depth[3℄ thensmooth:=A[j℄:sign:=[S[posn[1℄℄,S[posn[2℄℄℄:if depth[1℄=r-1 then##smooth is determined by several fa
tors:##the value of depth[1℄, the sequen
e 'sign'##whi
h is 
onstru
ted from the orientation##information stored in S, and various posn##values whi
h give the final pla
es of the##ar
s r and r-1 in the new sequen
e.if sign[1℄=sign[2℄ thenif posn[2℄=i+1 thensmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r:elsesmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r-1:fi:mu2:=z:elif sign[1℄<>sign[2℄ thenif posn[2℄=i+1 thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r:elsesmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r-1:fi: 190



mu2:=-z:fi:##mu2 stores the value of the multiplier##for the rearrangement, whi
h in##this program is always z or -zelif depth[1℄=r thenif sign[1℄=sign[2℄ thenif posn[1℄=i+1 thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r-1:elsesmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r:fi:mu2:=-z:elif sign[1℄<>sign[2℄ thenif posn[1℄=i+1 thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r:elsesmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r-1:fi:mu2:=z:fi:fi:fi:##Now we have the routines that move##the 
oeffi
ients######SeqIndex is a 
alled program that finds191



##the index of a required number sequen
e,y:=SeqIndex(A,swit
h):B[y℄:=simplify(B[y℄+B[j℄):if mu2<>0 theny:=SeqIndex(A,smooth):B[y℄:=simplify(B[y℄+mu2*B[j℄):fi:B[j℄:=0:fi: #End of routine for positive 
rossingselif i<0 then #Case for negative 
rossingsif B[j℄<>0 and A[j℄[abs(i)℄=rand A[j℄[abs(i)+1℄<r thendepth:=[0,0,0,0℄: posn:=[0,0,0,0℄:w:=1: mu2:=0:while w<5 dofor 
 from 1 to 2*k doif A[j℄[
℄=r-1 or A[j℄[
℄=r thendepth[w℄:=A[j℄[
℄: posn[w℄:=
: w:=w+1:fi:od:od:##In this se
tion we have similar##pie
es of 
ode to previously; these##deal with the 
ase when we need##to ensure 
ompatibility for an##inverseswit
h:=A[j℄:for f from 1 to 2*k doif A[j℄[f℄=r-1 thenswit
h[f℄:=r:elif A[j℄[f℄=r then192



swit
h[f℄:=r-1:fi:od:if depth[1℄=depth[3℄ thensmooth:=A[j℄:sign:=[S[posn[1℄℄,S[posn[2℄℄℄:if depth[1℄=r-1 thenif sign[1℄=sign[2℄ thenif posn[4℄=abs(i) thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r-1:elsesmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r:fi:mu2:=z:elif sign[1℄<>sign[2℄ thenif posn[4℄=abs(i) thensmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r-1:elsesmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r:fi:mu2:=-z:fi:elif depth[1℄=r thenif sign[1℄=sign[2℄ thenif posn[1℄=abs(i) thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r-1:193



elsesmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r:fi:mu2:=-z:elif sign[1℄<>sign[2℄ thenif posn[1℄=abs(i) thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r:elsesmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r-1:fi:mu2:=z:fi:fi:fi:y:=SeqIndex(A,swit
h):B[y℄:=simplify(B[y℄+B[j℄):if mu2<>0 theny:=SeqIndex(A,smooth):B[y℄:=simplify(B[y℄+mu2*B[j℄):fi:B[j℄:=0:fi:fi: #End of routine for negative 
rossingod: #End of loop through A,Bod:#########################################################END OF REARRANGEMENT/RENUMBERING LOOP########################################################194



#By this point in the algorithm, the array#of 
oeffi
ients has been rearranged so#that the only k-sequen
es whi
h 
an#have non-zero 
oeffi
ients are those#whi
h are 
ompatible with the generator#or inverse####This is a
hieved after k-1 passes of the#set of k-sequen
es#########################################################MULTIPLICATION PROCEDURE#########################################################This is a mu
h shorter pro
edure, there#is mu
h less work to do in terms#of sear
hing through the arrays; we have#two slightly different routines depending#on whether or not we have a positive or#negative 
rossing########################################################if i>0 then##Generatorfor t from 1 to m doif B[t℄<>0 and (A[t℄[i℄>=A[t℄[i+1℄) thenmult_temp:=A[t℄:mult_temp[i℄:=A[t℄[i+1℄:mult_temp[i+1℄:=A[t℄[i℄:if mult_temp=A[t℄ thenB[t℄:=simplify(v*B[t℄):elsey:=SeqIndex(A,mult_temp):B[y℄:=B[t℄: 195



B[t℄:=0:fi:fi:od:elif i<0 then##Inversefor t from 1 to m doif B[t℄<>0and (A[t℄[abs(i)℄<=A[t℄[abs(i)+1℄) thenmult_temp:=A[t℄:mult_temp[abs(i)℄:=A[t℄[abs(i)+1℄:mult_temp[abs(i)+1℄:=A[t℄[abs(i)℄:if mult_temp=A[t℄ thenB[t℄:=simplify(v^(-1)*B[t℄):elsey:=SeqIndex(A,mult_temp):B[y℄:=B[t℄:B[t℄:=0:fi:fi:od:fi:##The following lines updates##orientations of the the linear##
ombination of k-sequen
esS1:=S:S1[abs(i)℄:=S[abs(i)+1℄:S1[abs(i)+1℄:=S[abs(i)℄:S:='S':S:=S1:S1:='S1': 196



########################################################od:#########################################################END OF MAIN REARRANGEMENT AND MULTIPLICATION LOOP#########################################################CLOSURE ROUTINE#########################################################After all of the multipli
ations are 
omplete#we must 
lose off ea
h k-sequen
e be
ause of#the '
ups'####We perform the 
losure one '
up' at a time.#########################################################k is passed in, but it is only used to give a#value to the first loop whi
h 
ontrols the#overall pro
ess and how many times#it is repeated#########################################################INITIALISING CLOSURE PROCEDURE########################################################Anow:=A: Bnow:=B:A:='A': B:='B': m:='m':m:=ArrayNumElems(Anow):delta:=((1/v)-v)/z:##Define delta, value of disjoint unknot#########################################################START CLOSURE LOOP########################################################for f from k to 2 by -1 doif (nops(Y)/2)>2 then##Don't need rearrangement 197



##for 
losure of 2-sequen
esfor r from (nops(Y)/2) to 3 by -1 dofor j from 1 to m doif (Bnow[j℄<>0) and((Anow[j℄[1℄=r and Anow[j℄[2℄<(r-1))or (Anow[j℄[2℄=r and Anow[j℄[1℄<(r-1))) thendepth:=[0,0,0,0℄: posn:=[0,0,0,0℄:w:=1: mu2:=0:while w<5 dofor 
 from 1 to nops(Y) doif Anow[j℄[
℄=r or Anow[j℄[
℄=r-1 thendepth[w℄:=Anow[j℄[
℄: posn[w℄:=
: w:=w+1:fi:od:od:swit
h:=Anow[j℄:for i from 1 to nops(Y) doif Anow[j℄[i℄=r thenswit
h[i℄:=r-1:elif Anow[j℄[i℄=r-1 thenswit
h[i℄:=r:fi:od:##Then we have the routine that will##de
ide if we need rearrangement##rather than renumberingif depth[1℄=depth[3℄ thensmooth:=Anow[j℄:sign:=[S[posn[1℄℄,S[posn[2℄℄℄:if sign[1℄<>sign[2℄ thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r-1:198



smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r:mu2:=z:elif sign[1℄=sign[2℄ thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r-1:mu2:=-z:fi:fi:##Moving 
oeffi
ientsy:=SeqIndex(Anow,swit
h):Bnow[y℄:=simplify(Bnow[y℄+Bnow[j℄):if mu2<>0 theny:=SeqIndex(Anow,smooth):Bnow[y℄:=simplify(Bnow[y℄+mu2*Bnow[j℄):fi:Bnow[j℄:=0:fi:od:od:fi:##All sequen
es are 
losure-
ompatible######Need to initialise variables that will be used##for the next level of 
losure, i.e., to pass##to sequen
es with one less ar
Ynext:=Y[1..(nops(Y)-2)℄:##Ynext is the base generator stringC:=permute(Ynext,nops(Ynext)):Anext:=Array(1..nops(C)):Bnext:=Array(1..nops(C)):##Anext is the set of sequen
es that199



##
oeffi
ients will be passed to######Bnext stores 
orresponding##
oeffi
ients for Anextfor a from 1 to nops(C) doAnext[a℄:=C[a℄: Bnext[a℄:=0:od:C:='C':##Perform 
losurefor j from 1 to m doif Bnow[j℄<>0 then
lose_temp:=Anow[j℄[3..nops(Y)℄:
lose_mult:=0:if Anow[j℄[1℄=Anow[j℄[2℄ then
lose_mult:=delta*Bnow[j℄:elsedepth:=[Anow[j℄[1℄,Anow[j℄[2℄,0,0℄: w:=3:while w<5 dofor b from 3 to nops(Y) doif (Anow[j℄[b℄=Anow[j℄[1℄) or (Anow[j℄[b℄=Anow[j℄[2℄) thendepth[w℄:=Anow[j℄[b℄: w:=w+1:fi:od:od:##The following determines the##multiplier that is 
arried throughif depth[2℄=depth[3℄ then
lose_mult:=1*Bnow[j℄:elif depth[2℄<depth[3℄ then
lose_mult:=v*Bnow[j℄:elif depth[2℄>depth[3℄ then200




lose_mult:=(1/v)*Bnow[j℄:fi:fi:##
lose_mult, by this point##is the 
oeffi
ient that is##passed to the next stage##a

ounting for any multiplierfor i from 1 to nops(Ynext) doif 
lose_temp[i℄>min(Anow[j℄[1℄,Anow[j℄[2℄) then
lose_temp[i℄:=
lose_temp[i℄-1:fi:od:y:=SeqIndex(Anext,
lose_temp):Bnext[y℄:=simplify(Bnext[y℄+
lose_mult):fi:od:#########################################################END CLOSURE##########################################################Have to initialise Anow, Bnow,##Y and m for next loop.######We also need to remove the##first two elements of S.Anow:='Anow': Bnow:='Bnow': Y:='Y':Anow:=Anext: Bnow:=Bnext: Y:=Ynext:Anext:='Anext': Bnext:='Bnext': Ynext:='Ynext':m:=ArrayNumElems(Anow):S1:=S[3..nops(S)℄:S:='S': S:=S1: S1:='S1':########################################################201



#END MAIN PROGRAM########################################################od:#########################################################FINAL OUTPUT STAGE########################################################output:=Bnow[1℄:##The polynomial of the plait presentation##has been 
al
ulated, and we output this##with 
oeffi
ients of v on zoutput:=
olle
t(expand(output),z):end;
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Appendix BPlait PresentationsIn this 
hapter we give tables of representative words for plait presentations ofknots up to ten 
rossings.Unless otherwise stated the diagrams that the presentations are based onwere taken from the Knot Atlas Rolfsen tables [52℄. All presentations haveminimal plait width, but not ne
essarily minimal 
rossing number for thatwidth.
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Knot k Presentation Notes31 2 2 -1 241 2 -2 -2 3 -251 2 2 -3 -3 -3 252 2 -2 -2 1 3 -261 2 -2 -2 1 1 3 -262 2 2 -1 2 -1 -3 263 2 -2 -2 3 -2 1 -271 2 2 -1 -1 -3 -3 -3 272 2 -2 -2 1 1 3 3 -273 2 -2 -2 -2 1 1 3 -274 2 2 -1 -3 2 -1 -3 275 2 2 -1 2 2 -1 -3 276 2 2 2 -3 -3 2 -3 277 2 2 -3 2 -1 2 -3 2Table B.1: Plait presentations for knots of up to 7 
rossings
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Knot k Presentation Notes81 2 -2 -2 1 1 3 3 3 -282 2 2 -1 2 -1 -3 -3 -3 283 2 -2 -2 -2 -2 1 3 3 -284 2 -2 -2 -2 1 -2 -2 -2 -285 3 -2 -4 3 3 3 5 -2 -486 2 2 -1 2 2 2 -1 -3 287 2 -2 -2 3 -2 1 1 3 -288 2 2 2 -1 -1 -1 2 -3 289 2 -2 1 3 -2 1 -2 -2 -2810 3 2 1 -4 3 -2 1 3 5 -2 -4 10 
rossing811 2 2 -1 2 -3 -3 2 2 2812 2 -2 -2 1 1 -2 -2 3 -2813 2 2 -1 -3 2 -3 2 -1 2814 2 -2 -2 3 -2 3 3 -2 -2815 3 2 4 -5 4 -3 4 4 2816 3 2 4 -3 -5 4 -3 2 4817 3 2 4 -3 2 -5 4 -3 2 5 4 10 
rossing818 3 -2 -4 3 -2 -4 3 -2 -4819 3 -2 -4 1 -3 2 -3 -4 -2820 3 2 4 3 2 -4 -3 -5 4 1 2 10 
rossing821 3 -2 4 3 4 -2 3 -5 4 1 2 10 
rossingTable B.2: Plait presentations for knots with 8 
rossings
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Knot k Presentation Notes91 2 2 -1 -1 -1 -3 -3 -3 -3 292 2 -2 -2 1 1 1 3 3 3 -293 2 -2 -2 -2 1 1 1 1 3 -294 2 -2 -2 -2 -2 1 1 3 3 -295 2 -2 -2 -2 1 -2 -2 -2 -2 -296 2 2 -1 -3 -3 -3 2 2 -1 297 2 2 -1 2 2 2 2 -1 -3 298 2 2 2 -3 -3 -3 -3 2 -1 299 2 2 -1 -1 -3 2 2 -1 -3 2910 2 2 -1 -3 2 2 2 -1 -3 2911 2 -2 -2 3 3 -2 1 1 3 -2912 2 2 -3 2 -1 -1 2 2 2 2913 2 2 -3 -3 2 -1 -1 2 2 2914 2 2 -1 -1 -3 2 -1 2 -3 2915 2 -2 -2 1 3 -2 -2 -2 1 -2916 3 2 2 2 4 5 -1 -3 2 2 2 4 11 
rossing917 2 -2 -2 1 -2 -2 -2 1 -2 -2918 2 2 2 2 -1 -1 2 2 -3 2919 2 -2 -2 3 -2 3 3 3 -2 -2920 2 -2 -2 3 -2 -2 3 -2 -2 -2921 2 -2 -2 -2 3 -2 3 3 -2 -2922 3 -2 1 -2 -4 3 3 3 -2 -4923 2 -2 -2 1 1 -2 1 1 -2 -2924 3 2 2 -3 4 5 -3 -3 2 2 2 4 11 
rossing925 3 2 2 4 -3 2 2 -1 2 4Table B.3: Plait presentations for knots 91 to 925
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Knot k Presentation Notes926 2 -2 1 3 -2 1 -2 1 -2 -2927 2 2 -3 2 -1 2 2 -1 2 2928 3 2 -3 2 4 5 -1 -3 2 -1 2 4 11 
rossing929 3 -2 4 5 3 -2 -4 3 -2 -4 3 -4 1 2 13 
rossing930 3 2 2 4 -3 2 -1 2 2 4931 2 2 -3 2 -1 2 -1 2 -3 2932 3 -2 -4 3 -2 3 3 -2 -4 -4933 3 2 1 4 -3 2 4 -1 -3 2 2 4 11 
rossing934 3 -2 -4 3 -2 -4 3 3 -2 -4935 3 -2 -4 1 3 3 3 5 -2 -4936 3 -2 -4 -4 1 3 3 5 -2 -4937 3 2 4 -5 4 -3 2 4 4 4938 3 2 1 4 -3 2 -5 4 -3 2 4 4 11 
rossing939 3 2 4 -3 -5 4 -3 2 4 4940 3 2 4 -3 4 -3 2 -3 2 4941 3 -2 -4 3 3 5 -4 3 -2 -4942 3 -2 -4 -4 1 -3 -3 5 -2 -4943 3 -2 4 4 3 -5 4 3 -2 4944 3 -2 4 3 -2 -3 2 -1 2 4945 3 -2 -4 1 -2 3 3 -5 2 4946 3 -2 -4 1 3 3 3 -5 -2 4947 3 -2 -4 -3 -3 -2 -4 3 -2 -4948 3 2 4 -1 -3 -2 3 -2 -2 4949 3 2 4 -3 -3 -5 -4 3 2 -4Table B.4: Plait presentations for knots 926 to 949
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Knot k Presentation Notes101 2 -2 -2 1 1 1 1 1 1 3 -2102 2 2 -1 -1 -1 -1 -1 -1 2 -1 2 Knot redrawn103 2 -2 -2 -2 -2 1 1 1 1 3 -2104 2 2 -1 -1 -1 -1 -3 2 -1 -1 2 Knot redrawn105 2 -2 -2 3 -2 1 3 3 3 3 -2106 2 2 -1 2 2 2 -1 -3 -3 -3 2107 2 -2 -2 3 -2 -2 1 1 1 3 -2108 2 -2 -2 -2 -2 1 -2 -2 -2 -2 -2109 2 -2 1 1 1 3 -2 1 -2 -2 -21010 2 2 -1 -1 -1 -3 2 -3 2 -1 21011 2 2 -1 -1 -3 2 2 2 -1 -3 21012 2 -2 1 1 3 -2 -2 -2 1 -2 -21013 2 -2 1 3 3 -2 -2 1 1 -2 -21014 2 2 -1 -1 -3 2 2 -3 2 -1 21015 2 -2 1 1 3 -2 1 1 1 -2 -21016 2 -2 1 3 3 -2 1 1 -2 -2 -21017 2 -2 1 3 3 -2 1 -2 -2 -2 -21018 2 2 -1 -1 -3 2 -3 2 2 -1 21019 2 2 -1 -1 -3 2 -3 2 -1 -3 21020 2 -2 -2 -2 3 3 3 3 3 -2 -21021 2 2 2 2 -3 -3 -3 -3 2 -1 21022 2 -2 1 3 -2 -2 -2 1 -2 -2 -21023 2 -2 -2 3 -2 3 3 3 -2 -2 -21024 2 -2 1 3 -2 -2 1 1 1 -2 -21025 2 2 -1 -3 2 2 -3 -3 2 -1 2Table B.5: Plait presentations for knots 101 to 1025
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Knot k Presentation Notes1026 2 2 -1 -3 2 -1 2 2 -1 -3 21027 2 -2 -2 -2 1 1 -2 3 3 -2 -2 Knot redrawn1028 2 2 -3 2 -1 -1 -1 2 -1 -3 21029 2 2 -1 2 2 -1 -1 2 -1 -3 21030 2 -2 1 3 -2 1 1 -2 1 -2 -21031 2 -2 -2 -2 3 -2 3 3 3 -2 -21032 2 2 2 2 -3 2 -3 2 2 -1 2 Knot redrawn1033 2 -2 1 3 -2 -2 -3 -3 2 -1 -3 2 11 
rossing; knot redrawn1034 2 2 -3 2 -1 -1 -1 -1 -1 2 21035 2 2 -1 2 2 -1 -1 -1 -1 2 21036 2 -2 -2 1 1 1 1 -2 1 -2 -21037 2 2 -3 2 2 2 -1 -1 -1 2 21038 2 2 2 -1 -3 2 -3 -3 -3 2 2 KnotInfo diagram1039 2 -2 -2 1 -2 -2 -2 3 3 -2 -21040 2 2 -3 2 2 -3 -3 2 -3 2 2 KnotInfo diagram1041 2 2 -1 2 -1 -1 2 -1 -1 2 21042 2 -2 1 -2 3 -2 -2 -3 -3 -3 2 2 11 
rossing; KnotInfo diagram1043 2 2 2 -1 2 2 -3 -3 2 -1 21044 2 2 -1 2 -1 2 -1 -1 2 -1 21045 2 2 -1 2 -1 2 -1 2 -1 2 21046 3 -2 -4 3 3 3 5 5 5 -2 -41047 3 2 1 -4 3 -2 1 3 5 5 5 -2 -4 12 
rossing1048 3 4 5 -2 -2 -2 -2 3 3 3 5 -2 -4 12 
rossing1049 3 4 5 -2 -2 -2 -2 3 -4 3 5 -2 -4 12 
rossing1050 3 -2 -4 3 3 3 5 -2 -4 -4 -4Table B.6: Plait presentations for knots 1026 to 1050
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Knot k Presentation Notes1051 3 -2 -4 1 3 5 -2 3 -4 -4 -4 1 2 12 
rossing1052 3 -2 -4 3 3 3 -4 5 5 -2 -41053 3 -2 -4 1 3 -2 3 -4 5 5 -4 3 2 12 
rossing1054 3 -2 -4 3 3 3 5 5 -2 -4 -41055 3 -2 -4 1 3 5 5 -2 3 -4 -4 1 2 12 
rossing1056 3 -2 -4 3 3 3 -4 -4 5 -2 -41057 3 -2 -4 1 3 -2 3 -4 -4 5 -4 1 2 12 
rossing1058 3 -2 -4 1 3 3 -2 3 5 -4 -4 1 2 12 
rossing1059 3 2 1 -4 -4 3 3 5 -2 1 3 -2 -4 12 
rossing1060 3 2 2 -3 4 2 -3 2 2 4 4 KnotInfo diagram1061 3 -2 -4 1 3 3 3 5 5 -2 -41062 3 -2 -4 3 3 3 5 5 -2 -2 -41063 3 2 -4 -4 3 5 -4 3 5 5 -2 3 4 12 
rossing1064 3 -2 -2 -2 -4 3 3 3 5 -2 -41065 3 -2 -2 -4 3 3 3 -2 -4 -4 -41066 3 2 -4 -4 3 5 -4 3 5 -4 -4 -4 -2 12 
rossing1067 3 -2 -4 3 3 3 5 -2 -2 -4 -41068 3 -2 -4 1 3 3 3 -4 5 -2 -41069 3 2 -4 -4 3 5 -4 3 5 -4 -2 3 -4 12 
rossing1070 3 2 -1 4 5 3 4 -5 -2 -2 -2 19 
rossing; KnotInfo diagram-1 4 -5 2 3 1 2 4 41071 3 -2 -2 -4 1 3 -2 -2 1 -2 -4 KnotInfo diagram1072 3 2 2 -3 4 -3 2 2 2 4 41073 3 2 2 4 4 -1 -1 -3 -2 -2 -2 -4 11 
rossing; KnotInfo diagram1074 3 -2 3 4 5 -2 1 3 -2 -2 -2 -4 -4 12 
rossing; KnotInfo diagram1075 3 -2 3 -4 -2 1 3 -2 1 -2 -4 KnotInfo diagramTable B.7: Plait presentations for knots 1051 to 1075
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Knot k Presentation Notes1076 3 2 2 2 4 -1 -5 -4 -3 2 2 2 -4 12 
rossing; KnotInfo diagram1077 3 -2 -2 -4 1 1 3 -2 -2 -2 -4 KnotInfo diagram1078 3 2 -1 2 -1 -1 4 5 -3 2 -1 2 4 12 
rossing1079 3 -2 -4 3 5 -4 -4 -4 2 3 2 4 -3 12 
rossing1080 3 -2 -2 -2 4 5 3 -4 3 -2 -2 5 -4 12 
rossing1081 3 -2 -4 -4 1 3 -2 3 -4 5 -4 1 2 12 
rossing1082 3 2 4 -3 -5 -5 2 -1 2 -3 4 1 2 12 
rossing1083 3 2 -1 -3 4 2 -3 2 -1 2 -3 -4 2 12 
rossing1084 3 2 4 -3 4 -5 4 -3 -5 -5 -2 4 4 12 
rossing1085 3 2 4 -3 2 -3 -3 -5 -5 2 41086 3 2 4 -3 4 -3 -3 4 1 2 -3 -5 4 12 
rossing1087 3 2 4 4 -3 2 -3 -3 -5 2 41088 3 2 2 4 5 3 4 -5 4 -3 2 4 -3 2 4 14 
rossing1089 3 -2 4 5 3 -2 3 -4 -2 1 -2 5 -4 12 
rossing1090 3 -2 4 5 3 -2 -4 3 5 -2 -2 -2 -4 12 
rossing1091 3 2 1 4 -3 2 4 -1 -5 -5 2 -3 1 2 4 14 
rossing1092 3 2 4 4 -3 -5 2 4 4 -3 4 1 2 12 
rossing1093 3 2 1 4 -3 -3 4 -5 -5 -3 -3 2 4 12 
rossing1094 3 4 5 2 2 2 -3 2 4 -3 -3 2 4 12 
rossing1095 3 2 -3 4 5 2 -3 2 4 -3 -3 2 4 12 
rossing1096 3 2 -3 -4 -5 -3 -3 2 4 -3 -3 2 4 12 
rossing1097 3 2 2 4 -3 -5 4 -3 -3 2 4 KnotInfo diagram1098 3 2 4 -3 -3 2 2 -1 -3 2 41099 3 2 1 4 -3 2 -1 -5 4 2 -3 -5 1 2 4 14 
rossing10100 3 2 4 -1 -3 -5 2 -1 -3 2 4Table B.8: Plait presentations for knots 1076 to 10100
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Knot k Presentation Notes10101 3 2 -4 -4 3 -4 5 -4 3 -2 -4 3 -4 12 
rossing10102 3 -2 -4 1 3 -2 -4 3 -4 -4 -4 1 2 12 
rossing10103 3 2 1 -4 -4 3 -2 -4 1 5 -4 5 4 3 -2 14 
rossing10104 3 2 -3 4 5 -4 -4 1 5 -2 3 -2 -4 12 
rossing10105 3 2 1 -4 3 3 5 -4 3 -2 1 -2 -4 12 
rossing10106 3 2 3 -4 3 -2 1 1 5 -4 3 -2 -4 12 
rossing10107 3 -2 -2 4 5 3 -4 5 5 -4 3 -2 -4 12 
rossing10108 3 -2 4 3 -2 1 3 3 5 -2 -410109 3 -2 -4 3 3 -2 -2 3 3 -2 -2 5 4 12 
rossing10110 3 -2 4 5 3 -2 -2 -4 3 3 -2 -2 -4 12 
rossing10111 3 2 1 4 4 -3 2 4 4 -5 -5 -4 -3 -4 2 14 
rossing; knot redrawn10112 3 2 1 -4 3 -4 3 -2 3 -2 -2 -2 -4 12 
rossing10113 3 2 4 -3 2 -1 2 -3 2 4 410114 3 -2 -4 3 3 3 -2 -4 3 -2 -410115 3 2 1 -4 3 5 -2 -4 3 -4 3 -2 -4 12 
rossing10116 3 2 4 -3 -5 2 4 -3 -5 2 410117 3 -2 -4 3 -2 3 -4 3 3 1 2 -4 -4 12 
rossing10118 3 -2 4 5 3 -2 3 3 5 -4 3 1 2 -4 -4 14 
rossing10119 3 2 -4 3 4 -1 2 -5 4 -3 -3 2 4 12 
rossing; knot redrawn10120 3 -2 -4 3 3 -2 -4 3 3 -2 -410121 3 -2 4 5 3 -2 3 -4 -2 3 5 -2 -4 12 
rossing10122 3 2 4 -3 4 -3 -3 2 -3 2 410123 3 2 4 -3 2 4 -5 4 -3 2 410124 3 2 -4 3 2 3 3 2 5 5 -410125 3 -2 -4 -3 -3 -3 5 5 5 -2 -4Table B.9: Plait presentations for knots 10101 to 10125
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Knot k Presentation Notes10126 3 -2 4 3 3 3 -5 -5 -5 -2 410127 3 2 -4 -1 3 -2 3 1 2 -4 -4 -4 -4 12 
rossing10128 3 -2 -4 -1 -3 2 -3 -2 -2 -2 -410129 3 -2 4 3 -5 -4 3 -4 -4 -4 -210130 3 2 -4 3 3 3 4 2 3 5 -410131 3 -2 -4 1 -3 -3 -3 -4 1 2 3 5 -4 12 
rossing10132 3 -2 -4 -3 2 4 -3 5 -2 -4 -410133 3 2 -4 3 2 -1 3 2 3 -4 -410134 3 -2 4 1 3 -5 -2 -3 2 4 410135 3 2 -4 -1 3 -2 3 -4 -4 5 1 2 -4 12 
rossing10136 3 -2 4 3 -2 1 -2 3 -2 4 410137 3 2 2 2 1 3 -4 5 -3 2 4 3 -2 -2 5 4 15 
rossing; knot redrawn10138 3 -2 1 1 -4 -4 2 -3 4 1 2 -3 4 4 13 
rossing; KnotInfo diagram10139 3 2 1 -4 -3 5 2 2 4 1 -3 -2 -4 12 
rossing10140 3 2 -4 -1 3 3 3 5 5 2 -410141 3 2 4 -3 -5 -4 5 2 3 2 -410142 3 2 -4 -1 -1 3 3 3 5 2 -410143 3 2 1 -4 3 -2 1 5 -4 -5 2 3 4 1 2 14 
rossing10144 3 -2 -2 -4 -3 -3 -3 -3 -2 -4 -410145 3 2 1 4 3 3 4 4 3 -2 3 2 4 12 
rossing10146 3 4 -3 2 3 -5 -4 3 5 5 -4 -4 -2 12 
rossing10147 3 2 4 -1 -3 -2 -1 3 -2 4 410148 3 -2 4 3 -5 -2 -4 1 -4 3 -2 5 4 12 
rossing10149 3 -2 4 5 1 3 -4 -4 -2 3 1 2 -3 -5 4 14 
rossing10150 3 -2 4 3 -2 4 3 5 -2 4 4Table B.10: Plait presentations for knots 10126 to 10150
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Knot k Presentation Notes10151 3 2 -1 -4 -4 3 -2 3 -4 5 -4 1 2 12 
rossing10152 3 2 4 5 3 -1 -2 -4 -4 3 -5 -5 4 1 2 14 
rossing10153 3 2 -4 -4 -1 -3 2 -3 -4 -4 -4 1 2 12 
rossing10154 3 2 -4 -4 -1 -3 2 -3 -4 5 -4 1 2 12 
rossing10155 3 -2 4 1 -3 -5 4 -3 -5 -2 410156 3 2 1 -4 -3 -4 -5 -4 2 -1 -3 2 2 5 4 14 
rossing10157 3 2 1 -4 5 -3 2 -1 -4 2 -3 5 -4 1 2 14 
rossing10158 3 2 4 -1 -3 -3 -2 3 -2 -2 410159 3 2 4 -3 2 -4 -4 -4 -3 2 410160 3 -2 -4 3 -4 -3 -3 2 -3 -2 -410161 3 4 5 2 3 -1 -2 -4 -4 3 5 4 -2 12 
rossing10162 3 -2 4 3 -2 -1 -3 -3 5 2 410163 3 -2 -4 3 -2 -4 -3 -3 -3 -2 -410164 3 2 -4 3 -4 -3 -3 2 -3 2 410165 3 2 4 -3 -3 2 4 3 3 2 4Table B.11: Plait presentations for knots 10151 to 10165
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