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Nathan RyderSkein based invariants and the Kau�man polynomialAbstratThis thesis uses Kau�man skein theory to give several new results. We showa orrespondene between Kau�man and Homy satellite invariants with oef-�ients modulo 2, when we take ertain patterns from the respetive skeins ofthe annulus. Using staked tangles we onstrut a polynomial time algorithmfor alulating the Kau�man polynomial of links, and then extend the theoryto give a new polynomial time algorithm for alulating the Homy polyno-mial. We show that the Kau�man polynomials of genus 2 mutants an di�er,and improve on existing examples showing the non-invariane of the Homypolynomial under genus 2 mutation. By expressing twists as single rossingsand smoothings in the Kau�man skein we develop an algorithm for alulatingthe Kau�man polynomial of pretzel links. Finally we onsider the result ofsome alulations in the Kau�man skein of the annulus.
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Introdution
The work of this thesis is entred around various results onerning the Kau�-man polynomial invariant for links. The results over a range of aspets andappliations, and all are related to the Kau�man polynomial in some way.While the work of Chapter 4 is an algorithm for alulating the Homy poly-nomial, it is motivated by the work of Chapter 3 related to the Kau�manpolynomial.We begin in Chapter 1 by introduing some of the bakground material thatis neessary for the new material ontained in the thesis. We begin with thepreliminary notation for knots and links, disussing Reidemeister moves andpresentations for links, as well as the onepts of satellite links and mutation ofknots. I give the skein relations that I will take for the Kau�man and Homypolynomial invariants throughout this thesis, exept where noted otherwise.Chapter 2 ontains a proof of a reent onjeture [39℄ whih is itself anextension of a muh earlier result [54℄. The result onerns a orrespondenebetween the Kau�man and Homy polynomials of ertain satellites of links.This is proved by onsidering branhing rules of basis elements in the Kau�manand Homy skeins of the annulus. These are eigenvetors of meridian maps,and it is by onsidering them in this manner that we are able to prove the mainresult (Theorem 2.14):\Deorate eah omponent Li of a framed unoriented link L by y�(i). Thesquare of the Kau�man polynomial of this deorated link with oeÆients inZ2[v�1; s�1℄ is equal to the Homy polynomial of L when eah Li is deoratedby Q�(i);�(i) with oeÆients in Z2[v�1; s�1℄, with the empty diagram taking the1



normalisation of 1 for both invariants."In Chapter 3 we onstrut an algorithm for alulating the Kau�man poly-nomial of a link. We start with staked k-tangles and represent them as k-sequenes. We onsider how braid generators at on k-sequenes; the oneptof ompatibility of braid generators with k-sequenes allows us to derive on-ditions, Propositions 3.2 and 3.3 that ensure that a k-sequene is ompatiblewith a generator. Subsequently we show that it is possible to express an inom-patible k-sequene as a linear ombination of Kau�man equivalent k-sequenes(Proposition 3.8). This is the foundation of an algorithm for alulating theKau�man polynomial of a link presented as a k-plait. This algorithm works inpolynomial time; while it was previously known that suh a polynomial timealgorithm was possible in priniple [49℄, the algorithm presented in this thesisappears to be the �rst algorithm to do so.Chapter 4 details an extension to the theory of Chapter 3, whereby weextend the onstrution of staked k-tangles to oriented staked k-tangles, al-lowing us to onstrut a polynomial time algorithm for alulating the Homypolynomial of a link presented as a plait. While this is not the �rst algorithmthat allows polynomial time alulation of the Homy polynomial of a link, un-like previous algorithms it does so without needing to work from losed braidpresentation of the link. We show several sets of examples whose Homy poly-nomial ould not be alulated using previous algorithms (owing to their braidindex being too large). We end the hapter by onsidering extensions to thework of both hapters. Some ideas related to improving the algorithms areonsidered, as well as onsidering other situations where the priniples of thealgorithm ould be developed.In Chapter 5 we show the non-invariane of the Kau�man polynomial undergenus 2 mutation of knots. The work of this hapter was motivated by a reentpaper [15℄, and the results that we show in the hapter have been submittedfor publiation [44℄. The non-invariane of the Kau�man polynomial for genus2 mutants was assumed to be true, but was hard to show with spei� exam-ples owing to the general diÆulty of alulating the Kau�man polynomial for2



ompliated knots. We take knots presented in genus 2 handlebodies, whihgive us a onstrutive environment for developing examples. We show throughan indiret method that pairs of genus 2 mutants exist whih have di�erentKau�man polynomials: we give expliit examples, most notably those of The-orems 5.6 and 5.8. In doing so we also obtain new and more simple examplesthat show non-invariane of the Homy polynomial under genus 2 mutation.We also reord some interesting features about Vassilliev invariants for theseexamples.Chapter 6 is an aount of an algorithm for alulating the Kau�man poly-nomial of pretzel links. The method omes diretly from onsidering the regularstruture of pretzel links with respet to the Kau�man skein. The key result,Theorem 6.8, shows that we an take a pretzel and express its Kau�man poly-nomial as a linear ombination of the Kau�man polynomials of muh simplerdiagrams. I give details of the algorithm and how it ould be implemented inMaple based both on the reurrene relations that I develop and generatingfuntions that arise from these.In Chapter 7 I present some alulations in the Kau�man skein of theannulus whih are motivated by previous results in the Homy skein of theannulus [38℄. We explore a family of examples, onsisting of losed braids inthe annulus with two boundary points. The results obtained are from expliitalulations for the �rst examples in the family, but unfortunately I was notable to realise a more general result for the family. However, I o�er a onjeture(Conjeture 7.10) on the general result.I onlude with several appendix hapters. Appendix A ontains listingsfor the Maple implementations that I have reated in relation to algorithmsfor alulating the Kau�man and Homy polynomials of k-plaits. There aresubstantial omments for the ode in both ases. In Appendix B I give plaitpresentations for all of the knots up to 10 rossings: while there are manyresoures for knots presented as braids I have not ome aross a list of plaitpresentations in all of the literature that I have seen.
3
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Chapter 1Bakground Material
1.1 IntrodutionIn this hapter we introdue most of the basi de�nitions in knot theory thatwe will be using within the rest of this thesis. We begin with fundamentalonepts, suh as what we de�ne a knot or a link to be. Following a disussionof Reidemeister moves and framing, we look at presentations for knots in termsof braid and plait diagrams. We onsider polynomial knot invariants as ways ofdistinguishing knots, and give de�nitions for the Kau�man and Homy invari-ants. Finally we give the de�nition of mutation of knots, and the onstrutionfor reating satellites of knots.1.2 Knots and LinksMany of the de�nitions given in this hapter are inuened by de�nitions givenin [14℄ and [29℄.De�nitionA knot, K, is a smooth embedding of S1 in R3 (or S3). We an alsoonsider it as a simple, losed urve without intersetions in R3 (or S3).

5



De�nitionA link, L, of l omponents is an embedding of l opies of S1 in R3 (orS3); as with a knot, we an also onsider it as l simple, losed urves withoutintersetions in R3 (or S3).There will be instanes when we are partiularly onerned with links ofmore than one omponent, or of stritly one omponent; in these ases we willdraw spei� attention to the number of omponents involved. Unless otherwisestated, we will use the term knot to enompass links in general.The unknot, in the ontext de�ned above, is a urve that is the boundaryof an embedded pieewise linear dis in R3 (or S3).The fundamental problem in knot theory is being able to state whether ornot two knots K1 and K2 are di�erent objets, or whether K2 is some suitablydistorted version of K1. For our purposes an initial de�nition of equivalenethat we an give is as follows.De�nitionKnots K1 and K2, as de�ned previously, are equivalent if there is anorientation-preserving homeomorphism f : S3 ! S3 suh that f(K1) = K2.De�nitionA diagram of a knot K is a generi projetion of the urve in R3 to theplane with the information of how ars ross learly indiated, i.e., we do notmark the rossing of two ars with a singularity, but distinguish how they ross.We allow no tangenies or intersetions of three strands.There are in�nitely many possible diagrams of a knot K, depending on theprojetion and on the embedding of the urve. The simplest diagram of a knotis the most simple diagram of the unknot, as seen in Figure 1.1.De�nitionA knot is given an orientation by hoosing a diretion that the urvedesribing the knot travels. We orient a link by hoosing a diretion for eahomponent of the link. 6



Figure 1.1: The unknot
Hene for an l omponent link there are 2l ways that it an be presented asan oriented link.For our purposes, it is onvenient to onsider a diagram of a knot as beingequivalent to the knot itself. As we will be onsidering diagrams of knots weneed to explore what onditions must be satis�ed in order for two diagrams tobe equivalent.The diagrams in Figure 1.2 are equivalent; in the next setion we onsiderthe basi moves that allow us to relate diagrams of knots in the plane.

Figure 1.2: Two diagrams of the trefoil
1.2.1 Reidemeister MovesThere are three Reidemeister moves [51℄, whih we see in Figure 1.3. Theserelate diagrams of knots in the plane.The Type I move, to the left in the �gure, allows us to add or remove a\kink" in the diagram. The Type II move, in the entre of the �gure, showsthat we an separate two ars where one rosses over the other in two plaes.The Type III move, to the right of the �gure, is the only one of the Reidemeister7



Figure 1.3: The Reidemeister Movesmoves where the number of rossings of the diagram is preserved; appliationsof Type I and Type II moves neessarily derease or inrease the number ofrossings in the diagram.The Reidemeister moves are essential tools as they provide the frameworkfor deiding if two knot diagrams are equivalent.Theorem 1.1 (Reidemeister [51℄) Two links L1 and L2 are equivalent ifand only if a diagram of L2 an be obtained by applying a �nite number ofReidemeister moves to a diagram of L1.An equivalent statement of this theorem is to say that any two diagrams of alink are related by a �nite sequene of Reidemeister moves.This is an important theorem, but at the same time it provides no insightas to how one should go about applying Reidemeister moves in order to showthat two knots are equivalent.For two di�erent knots there will be no sequene of Reidemeister movesthat takes a diagram of one to a diagram of the other, but if we do not alreadyknow that they are di�erent objets how an we show that they are di�erentpurely by onsidering Reidemeister moves?In due ourse we will introdue some of the properties that are used todistinguish knots. Ideally one would want a property that is easily alulable,is invariant under appliation of Reidemeister moves, and able to distinguishall knots; however, the tools that we possess at present do not satisfy this wishlist. 8



1.2.2 Framed LinksFramed links are obtained by speifying a parallel urve in the neighbourhoodof eah omponent of a link; eah parallel urve an be spei�ed by an integerthat is the linking number of the parallel with the original omponent.A framed knot is related to a ribbon diagram by onsidering the knot tobe desribed by a at ribbon rather than a urve, with the two boundaries ofthe ribbon representing the original knot and its parallel. The framing of theknot is the linking number of the image of the ribbon with the knot, and wean extend this idea to onsider framed links.By drawing a link lying in the plane with the parallel running beside it weobtain the framing that is referred to as the blakboard framing. We an onsiderthe blakboard framing as being obtained by onverting eah omponent to aribbon lying at on the plane. The Type I Reidemeister move hanges theblakboard framing as it hanges the number of twists in a ribbon. Type IIand Type III Reidemeister moves do not hange the blakboard framing.1.3 PresentationsThere are advantages to be found by onsidering knots and links in a partiularform or format. Expressing a diagram of a knot in a ertain way an sometimesbe enough to distinguish it from another knot. In this setion we onsider twotypes of presentation that will be used several times in this thesis, as well assome of the onsequenes of their de�nition.1.3.1 BraidsArtin gave the �rst de�nitions of the braid group ([3℄, [4℄), although Gausshad previously onsidered braids as an interesting and useful way to reordinformation about knotted ars.Geometrially we onsider a word in the braid group on n strings to be nmonotonially desending urves that ross over eah other freely. Consider9



the example of Figure 1.4: this is representative of any braid in that we see noturnbaks and if we were to make a horizontal ut through the braid at anypoint we would meet eah string only one.
Figure 1.4: A braid on 4 stringsWe denote the braid group on n strings by B n , and onsider a generator�i to geometrially be the ith string rossing over the (i + 1)th string as inFigure 1.5. We onsider inverses ��1i to be the (i + 1)th string rossing overthe ith string.

1 i i+ 1 n� � � � � �Figure 1.5: Braid generator �iThus the braid group on n strings has n � 1 generators, �1; : : : ; �n�1, andthe group has relations�i�j = �j�i ji� jj > 1�i�i+1�i = �i+1�i�i+1 1 � i � n� 2:The seond relation orresponds to a Type III Reidemeister move. We losea word in the braid group by taking the endpoints at the top of the diagramto their orresponding endpoints at the bottom of the braid. The losure of aword in the braid group gives us a link (see Figure 1.6).This leads to the following theorem.10



�� � �� � �Figure 1.6: Braid losure for � 2 B nTheorem 1.2 (Alexander [1℄) Every link an be expressed as the losure ofsome word in the braid group B n for some n.De�nitionThe braid index of a link, br(L), is the minimum number of stringsrequired to express it as the losure of an element in a braid group.There are various methods for putting a diagram of a link in to a braidpresentation; some of these an be diÆult to implement when we onsiderthe diagram that we start with. Also, these methods do not guarantee thatthe resulting word from a braid group will be a word on a minimal number ofstrings for the link. Expressing a link as a braid risks inreasing the number ofrossings in the diagram, and sometimes dramatially so ([36℄, [60℄, [61℄).Many soures state that the orientation of braid strings should be the samein a braid presentation. Orientation is important when we onsider some ofthe invariants for knots, and will have some importane for some of the newresults that we present, but we will for the most part think of braids purely interms of how the strings lie relative to eah other.We will not onsider braid presentations diretly in this thesis, but we willborrow the terminology of braids for other purposes. The following format ofpresentation uses braid notation. 11



1.3.2 PlaitsThe foundation of a plait presentation is the same as that for a braid presen-tation, namely a braid word.De�nitionA k-plait is a braid word � 2 B 2k , losed o� with k aps at the top and kups at the bottom, aording to the diagram in Figure 1.7.
� � � �
� � �Figure 1.7: Plait presentation for � 2 B 2kOther authors have used the term \2k-plat" to represent the same objetwe desribe here; see [6℄ and [7℄ for some examples.Theorem 1.3 Every link has a k-plait presentation, for some k.ProofTake loal maxima and minima in a diagram, and drag these to the top andbottom of the piture respetively. It is possible that this will add extra ross-ings to the diagram due to Type II Reidemeister moves. If neessary, we ombthe struture in between maxima and minima so that ars are monotoni.At times I desribe a k-plait as being a plait presentation with width k. Aswith braid presentations, plait presentations of links are not unique. The mainadvantage of plait presentations is that they are generally easier to obtain thanbraid presentations.Briey we need to onsider bridge presentations and how they relate to plaitpresentations. 12



De�nitionWe an arrange a knot so that it lies ompletely in the plane exept for a�nite number of bridges { ars whose projetion to the plane result in disjointstraight lines rossing over the ars in the plane. An embedding suh as this isalled a bridge presentation.See Figure 1.8 for a bridge presentation of the trefoil. The original on-strution of bridge presentations is due to Shubert [56℄.
Figure 1.8: Bridge presentation of the trefoilDe�nitionThe bridge number of a bridge presentation is the number of bridges inthe diagram. We de�ne the bridge index as the minimum number of bridgesrequired over all presentations for the knot.Note that I give a slight di�erene in my de�nitions to other writers; othersuse the terms bridge number and bridge index to denote the same onept.Lemma 1.4 ([9℄, 145 { 146) A knot with a k-plait presentation an be pre-sented as a diagram with bridge number k.This leads to a very neat result about the width of plait presentations.Corollary 1.5 The width of a plait presentation of a knot K is an upper boundon the bridge index of K.An easy example of this is the knot 62, whih an be seen in Figure 1.9. Thishas an obvious 3-plait presentation, but has bridge index 2; in this ase one13



an obtain a 2-plait presentation with little diÆulty, but for more ompliatedknots this might not be so lear.
Figure 1.9: The knot 62Of ourse, giving a plait presentation of a knot with minimal width doesnot guarantee that it will have minimal rossing number.The work of Chapter 3 and Chapter 4 draws on the ideas of plait presen-tations in order to alulate ertain knot invariants, whih we now need todisuss.1.4 Knot InvariantsThe main approah that has been taken in the development of tools for distin-guishing knots has been to �nd properties of knots, partiularly properties thatare invariant aross all diagrams of a knot. Some of the early knot invariantsand properties are relatively easy to de�ne and obtain, but do not distinguishbetween many knots.De�nitionThe rossing number of a knot, (K), is the minimal number of rossingsover all diagrams of a knot.We have already stated that showing two diagrams represent the same knotis generally a hard problem, as is showing that two diagrams are of di�erentdiagrams. Imagine a diagram of a very ompliated knot; we an ount thenumber of rossings that the diagram has, but all that this gives us is a boundon (K).The number of knots with rossing number n grows rapidly as n inreases,14



as we an see in Table 1.1. The knot tables are a great resoure [52℄; however,even if we have a diagram of a knot with minimal rossing number it may beradially di�erent from the diagram reorded in one of the knot tables.Crossing number Number of knots< 9 8410 16511 55212 217613 998814 4697215 253293Table 1.1: Number of knots with a ertain rossing numberIf we are to de�ne a property to help us distinguish between knots thenideally we need a property that is invariant aross all possible diagrams for aknot K. In order for this ondition to be satis�ed we need a property that doesnot vary under appliation of Reidemeister moves to diagrams.The lass of invariants that we will onsider in this thesis are polynomialinvariants. We take a diagram of a knot and apply a method to produe apolynomial for that knot. As these properties are invariant, they do not dependon the diagram that we begin with in order to alulate the property.Stated more formally, let p be an invariant property based on diagrams ofknots; if K1 and K2 are diagrams of the same knot then p(K1) = p(K2). How-ever the onverse is not always, or often, true; all of the polynomial invariantsthat we will disuss have examples where p(K1) = p(K2) for diagrams K1, K2that are not equivalent. A truly valuable invariant for knots would be one suhthat K1 � K2 if and only if p(K1) = p(K2), and where the property is readilyalulable in priniple: however, the omplexity of a diagram might in itselfimpose some restrition on the ease of alulation for a property.15



1.5 Polynomial Invariants1.5.1 HistoryThe �rst polynomial invariant for knots was developed by Alexander [2℄. TheAlexander polynomial is a property for oriented links in one variable. It annotdistinguish between reetions of knots.Although Conway developed a polynomial invariant in the 1960s this wasin fat the Alexander polynomial in another guise [12℄. In the mid 1980s Jonesdisovered a one-variable polynomial invariant for knots that wasn't related toAlexander [22℄; this was known almost immediately beause it distinguishedthe left- and right-handed trefoils.The Jones polynomial (for oriented links) was quikly followed by the two-variable Homy ([17℄, [50℄) and Kau�man ([24℄, [25℄) polynomials.In this thesis we are onerned with new results for the Kau�man andHomy polynomials. We take a skein theoreti approah to alulating them,and give partiular sets of skein relations for eah of the invariants that weonsider.1.5.2 HomyThere are many di�erent ways that one an de�ne the Homy polynomial.There are some variations on skein relations whih give the same invariant buthave di�erent algebrai properties, and we will disuss some of these as andwhen the need arises.
L+ L� L0Figure 1.10: Diagrams for the Homy skeinWe onsider three related diagrams, L+, L� and L0, whih are diagrams for16



oriented links that are idential exept in the neighbourhood of a single rossing;in that neighbourhood we have oriented ars as indiated in Figure 1.10.The skein relations for the Homy polynomial P 0, and for the other knotpolynomials, work by relating the knot polynomials of related diagrams whihdi�er only in the neighbourhood of a single rossing. One set of skein relationsfor the Homy polynomial, in variables z and v, arev�1P 0(L+)� vP 0(L�) = zP 0(L0);with the value of the unknot set to be 1.For our purposes it will be onvenient to use the skein relations for theframed Homy polynomial [24℄. As before, this is a polynomial in two variablesz and v, and we relate the polynomials of the links L+, L� and L0 with therelation P (L+)� P (L�) = zP (L0):We set the Homy polynomial of the regular unknot diagram to be 1, andremove a simple loop, using a Type I Reidemeister move, at the expense ofmultiplying by a power of v�1, aording to Figure 1.11. We remove a disjointunknot from a diagram by multiplying by Æ = v�1�vz .= v�1 = v
Figure 1.11: Type I Reidemeister moves in the Homy skeinWe use these framed skein relations for our alulations with plait pre-sentations in Chapter 4. In Chapters 2, 5 and 6 we will onsider taking thepolynomial in terms of variables s and v, where z = s� s�1.If we take the diagram of a link L (that we wish to alulate the Homypolynomial of) to be one of L+ and L� then we have a way of relating theHomy polynomial of L in terms of the Homy polynomials of two other links.17



By repeating this proess and removing kinks we will end up with a linearombination of unknots, whih, having value 1, give us the Homy polynomialof the original link L as the sum of the oeÆients.At the end of this setion we onsider problems with alulating polynomialinvariants in this way; before onsidering the Kau�man polynomial we givesome results for the Homy polynomial that will be alled on later in thethesis.Lemma 1.6 Reversing the orientations of all of the omponents of a link Lleaves the Homy polynomial invariant.ProofThis an be observed simply by noting that the skein relations for Homy areunhanged by reversing the orientation of the rossings.Lemma 1.7 ([17℄, [28℄, [50℄) We an reover both the Alexander and Jonespolynomials by making a substitution of variables in the Homy polynomial.For Alexander we see that�(t) = P (v = 1; z = t 12 � t� 12 )and we reover Jones with the substitutionV (t) = P (v = t; z = t 12 � t� 12 ):In some sense then the Homy polynomial is a parent invariant of both theAlexander polynomial and the Jones polynomial.Theorem 1.8 ([16℄, [35℄) Let E be the largest power of v in the Homy poly-nomial of a link, and e be the smallest power of v. Then the braid index of thelink, br(L), is bounded in the following way:br(L) � 12(E � e) + 1:Theorem 1.8 will be of use in Chapter 4 when we look at a bound on the braidindex of ertain examples.We move on to onsider the polynomial invariant that we will be onsideringfor most of this thesis. 18



1.5.3 Kau�manWe de�ne the Kau�man two-variable polynomial from skein relations. Thisis an invariant for unoriented links, and the skein relations relate diagrams offour links. In this thesis we refer to the Dubrovnik relations for the Kau�manpolynomial as in [25℄ and [28℄.We de�ne four links whih are idential exept in the neighbourhood of asingle rossing; one takes a right-handed rossing (L+, whih we onsider with-out orientation in this setting), one a left-handed rossing (L�) and the othertwo take the two possible kinds of smoothing (L0 and L1) as in Figure 1.12.
L+ L� L0 L1Figure 1.12: Diagrams for the Kau�man skeinThe Kau�man polynomial of a link, D(L) is a polynomial in two variablesz and v. The value of the unknot is normalised as 1 and the main Kau�manskein relation is D(L+)�D(L�) = z(D(L0)�D(L1)):One again we remove simple loops at the expense of multiplying by a power ofv�1, aording to Figure 1.13. As with the Homy polynomial we an remove a= v�1 = v

Figure 1.13: Type I Reidemeister moves in the Kau�man skeindisjoint unknot from a diagram at the expense of multiplying by Æ = v�1�vz +1.19



1.5.4 The Kau�man Skein ModuleDe�nitionLet F be an orientable surfae. The Kau�man skein module of F � I,denoted by K(F � I), is the Z[z�1; v�1℄-module freely generated by isotopylasses of blakboard framed links in F � I inluding the empty link modulothe Kau�man skein relations.In the ase that F has a boundary with distinguished points, K(F � I) isthe Z[z�1; v�1℄-module freely generated by isotopy lasses of blakboard framedlinks and framed ars onneting the distinguished points, modulo the Kau�-man skein relations.In this thesis there will be three settings that we work in. In the generalsetting that we have already laid out we onsider F = S2. In Chapter 3, whenonsidering staked k-tangles we will onsider F as a retangle with 2k points.In Chapter 7 we will onsider some alulations in the skein of the annulus,and in partiular when F is the annulus with two boundary points, one pointon eah boundary. Elements in this skein module are omposed by plaing oneannulus inside the other and onneting endpoints. This omposition is learlyommutative.1.5.5 Calulating Polynomial InvariantsIn general, when alulating either the Homy or Kau�man polynomial of aknot we begin by onsidering one diagram, and express it as a linear ombina-tion of the invariant of two or three other diagrams. We repeat the proess foreah of the diagrams that we have obtained, repeating again and again untilwe have a linear ombination of disjoint unknots.There will be situations where we an use the Type I Reidemeister moveto simplify a diagram, at the expense of multiplying by a power of v, but ingeneral we will not be able to redue many rossings in a diagram this way.While we might be able to use the Type I move and some other tools to make thealulations easier, we are still faed with an approah that takes exponentially20



longer with eah extra rossing that the starting diagram has.Another approah that one might take is to use a table of invariants for knotsup to a ertain number of rossings, and then when our alulations reah aertain point using the previous method we an express the invariant in termsof the previously alulated invariants. However, there are over three hundredthousand knots with less than 16 rossings and this only inludes objets withone omponent. Not only would any system working in this way need to beable to reognise whih knot is being represented by a diagram, but we wouldalso have to have a large resoure that we are able to all on ontaining thealulated invariants.When alulating polynomial knot invariants, even those of one variable,we reah a point where we annot make alulations by hand. Owing to theexponential nature of the methods outlined, no matter how powerful a omputerwe use to aid us in our alulations we will always reah a point where we simplyannot do any more due to the number of rossings in a diagram. Perhaps thisis not something that an be avoided, owing to the nature of the skein relations.However, as we shall see in Chapters 3 and 4, by restriting the setting thatwe work in, we an give polynomial time methods for alulating polynomialinvariants of ertain lasses of knots.1.6 MutationThere are many di�erent ways that we an de�ne families of knots, i.e., knotsthat have some relation between them. In terms of braid diagrams, for example,we ould say that the losures of braids �m for some braid � 2 B n and m 2 Zform an in�nite family of links. We will onsider some examples of this typelater in the thesis.One of the most well known onepts for a family of knots are knots thatare related by mutation [12℄.De�nitionConsider two knots K and K 0. Take a ball in S3, T , suh that K meets21



the boundary of T in exatly four plaes equally plaed around the equator.Remove T and rotate it through � radians around an axis and then replae it.If by performing this ation we obtain the knot K 0 then K and K 0 are said tobe related by mutation.If K and K 0 are related by mutation we say that K 0 is a mutant of K.The most well known pair of mutant knots are those of Kinoshita-Teresaka andConway, whih we see in Figure 1.14. These are the �rst knots in the knot
Figure 1.14: Kinoshita-Teresaka and Conway knotstable related by mutation. Mutants are an important lass of knots, primarilybeause of the following result.Theorem 1.9 ([28℄) Links related by mutation have idential Homy and Kau�-man polynomials. Hene they will also have the same Alexander and Jonespolynomials.Conway �rst observed that the Alexander polynomial was unhanged by muta-tion; the observation of Likorish is on the same priniple [28℄. Whihever skeinrelations we are using, the expression of the diagram ontained in T as a linearombination of basis elements is unhanged by any of the three rotations. Theontribution outside of T is unhanged, and hene K and K 0 will share Homyand Kau�man polynomials.We onsider mutation in Chapter 5 in the ontext of genus 2 mutation andhow the Homy and Kau�man polynomials are e�eted by that ation.22



1.7 SatellitesAn interesting area of study in knot theory is that of satellites of knots andlinks, �rst introdued in [55℄. In Chapter 2 we onsider some interesting newresults regarding knot polynomials and satellites, but �rst we de�ne what wemean by the satellite of a knot.De�nitionTake a framed knotK in the plane and also a framed knot P in the annulus.The knot K � P is a satellite of K with pattern P , de�ned by embedding thepattern P into the neighbourhood of the urve of K.See Figure 1.15 for an example of patterning the trefoil with a simple knot-ted urve from the annulus.
Figure 1.15: Creating a satellite of the trefoilThis is the standard way to de�ne the satellite of a knot.De�nitionThe m-parallel of a knot K is the satellite link obtained when the patternP onsists of the losed identity braid on m strings in the annulus.De�nitionThe reverse parallel of a knot K is the oriented satellite link obtainedwhen the pattern P onsists of the losed identity braid on 2 strings, with thestrings oriented in di�erent diretions.See Figure 1.16 for examples of these patterns. In Chapter 2 we onsider23



� � �
Figure 1.16: Patterns for m-parallels and reverse parallelsindexing patterns in a ertain way, as linear ombinations of links in the an-nulus. We also onsider patterning a link by running di�erent patterns aroundeah of the omponents in the link.1.7.1 Distinguishing MutantsAs well as giving interesting families of knots to onsider, satellite knots alsoallow us to make some headway in distinguishing knots that are related bymutation. While the Homy polynomials of two mutant knots K and K 0 areidential, for a suitable pattern P it an be seen that K � P and K 0 � P havedi�erent Homy polynomials. The di�erene in Homy polynomials betweenK � P and K 0 � P is due to the geometri di�erene between K and K 0, andso polynomial invariants of satellites an be used to distinguish knots relatedby mutation. Invariants of 2-parallels of knots will not distinguish mutants([30℄, [48℄), as the basis of the rotated tangle will not be hanged by the ationof the rotation, even if there are 2-parallels running through.The rotation of the basis of these tangles will be di�erent for m-parallelsfrom m = 3 onwards [46℄, and there are results where ertain 3-parallels dis-tinguish mutant pairs. This gives the �rst opportunity for a di�erene in in-variants, and hene a hane to distinguish mutant knots. However, there arealso examples where mutant knots are not distinguished by 3-parallels and wemust use more parallel urves in order to distinguish them with satellites [40℄.24



Alexander polynomials of satellites of mutants do not di�er, and so annotbe used to distinguish the knots; likewise, the Jones polynomials of ables ofmutants do not di�er.As we have stated previously, many approahes to alulating polynomialinvariants are exponential algorithms by nature. An undeorated m-parallel ofa knot with  rossings gives a diagram with m2 rossings. The �rst instanethat we an use this tehnique of satellites to distinguish mutants is with 3-parallels, meaning that we have to onsider alulating invariants of knots with9 rossings. Reall that the �rst instane of mutant knots are the Kinoshita-Teresaka and Conway knots, eah of whih have 11 rossings. A 99-rossingknot is too omplex for most knot polynomial algorithms that alulate from ageneral diagram of a knot; while there are programs and methods whih havesome suess with satellite knots, in its general form it is a diÆult problem.
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Chapter 2
Homy and Kau�man SatelliteInvariants
2.1 IntrodutionIn this hapter we prove a onjeture of Morton on a relationship between theKau�man polynomial of a satellite of a link and the Homy polynomial of areverse parallel satellite of a link [39℄. This is a generalisation of a result ofRudolph whih showed a ertain orrespondene between the Kau�man poly-nomial of a link and the Homy polynomial of the reverse parallel of the linkwhen we onsider oeÆients modulo 2 [54℄.The bakground theory for the patterns for the satellites ome from resultsin the Homy skein of the annulus ([18℄, [19℄) and the Kau�man skein of theannulus ([5℄, [31℄). The patterns for the satellites are indexed by partitions,and so we begin the hapter by onsidering some de�nitions of partitions. Wealso show a few results (Lemmas 2.1 and 2.2) in establishing the sizes of ertainsets of partitions that will be of importane in later results.We develop the branhing rules in both skeins, as these ultimately allow usto show a diret omparison between elements in the two skeins. We show byusing produts of meridian maps and eigenvalues that we an obtain expliitonstrutions for patterns in the Kau�man skein of the annulus (Lemma 2.3);27



we then develop similar methods in the ase of the Homy skein of the annulus(Theorem 2.6), whih we re�ne further when onsidering elements modulo 2(Lemmas 2.11, 2.12 and 2.13).This ulminates in the proof of Conjeture 2.10 (later restated as Theo-rem 2.14). Throughout the hapter we develop results step-by-step so that wean then show the main result as learly as possible.2.1.1 NoteThroughout this hapter we onsider polynomials with integer oeÆients invariables v and s. We allow negative powers of these, and also denominatorsof produts of sr � s�r for r 2 Z n f0g. It is not immediately obvious thatpolynomials of this type form a ring, but in Setion 2.5 we show that this isthe ase. We denote the ring of these polynomials as Z[v�1; s�1℄.We will also onsider polynomials in variables v and s with integer oeÆ-ients modulo 2 (and with the same possible powers and denominators) whihwe will denote Z2[v�1; s�1℄. We denote the omparison between the two ringssimply as \mod 2" (impliitly there is a homomorphism ating here, whih wemention in Setion 2.5).2.2 PartitionsMost of the de�nitions of partitions were taken from the exellent introdutorysetions in [33℄.De�nitionA partition � of a positive integer n is a sequene of natural numbers(�1; : : : ; �k) with all the �i � 0 and satisfying the following onditions:�1 � �2 � : : : � �k�1 + �2 + : : : + �k = n = j�j
28



A partition � = (�1; : : : ; �k) is said to have k parts. One way of representinga partition � is with a Young diagram. This is a olletion of n ells arrangedin rows, with �1 ells in the �rst row, �2 ells in the seond row and so on (forexample, Figure 2.1).
Figure 2.1: The partition (4; 3; 2) Figure 2.2: (3; 2; 2) � (4; 3; 2)With a slight abuse of notation we denote both the partition and its Youngdiagram by �. The Young diagram for j�j = 0 is the empty diagram.For the purposes of omparing two partitions we an add a �nite numberof zeros to the number sequenes. A partition � = (�1; : : : ; �k) is ontained ina partition � = (�1; : : : ; �k), denoted � � �, if �i � �i; 1 � i � k. We seethis onept by onsidering Young diagrams for � and �, as in the example ofFigure 2.2.De�nitionFor a partition � de�ne the following sets of partition:�+ = f� : � � �; j�j = j�j+ 1g�� = f� : � � �; j�j = j�j � 1gClearly � 2 �+ , � 2 ��.Lemma 2.1 For a partition �, j�+j = j��j+ 1.ProofLet k be the number of distint parts of �. An element of �� is obtained byremoving a ell from �, and with k distint parts we have k ells that ould beremoved. Hene j��j = k. 29



An element of �+ is obtained by adding a ell to �. � has k distint partsand so there are k+1 loations where a ell ould be added. Hene j�+j = k+1.Thus j�+j = j��j+ 1.De�nitionFor a partition � de�ne the following two sets:�� = �[ !�; ! 2 �+	 ; �� = �[  +;  2 ��	 :Lemma 2.2 �� � ��.ProofIf ! 2 ��, � 2 �+ and ! 2 ��, � 2 �+, then either � = � or ! = �. If ! 6= �then its Young diagram has exatly one ell that is not in �, and � has exatlyone ell that is not in !. Thus if ! 2 �� then either ! = � or ! has exatlyone ell in its Young diagram that is not in the Young diagram of �, and thereis exatly one ell in � that is not in !.If  2 +,  2 �� and  2 �+, � 2 ��, then either  = � or  = �. If 6= � then its Young diagram has exatly one ell that is not in �, and � hasexatly one ell that is not in  . Then if  2 �� either  = � or  has exatlyone ell in its Young diagram that is not in the Young diagram of �, and thereis exatly one ell in � that is not in  .Elements in �� satisfy the same onditions as elements in ��, and hene�� � ��.It follows immediately from Lemma 2.2 that �� n f�g � �� n f�g.De�nitionThe ontent of a ell x in position (i; j) of the Young diagram of a partitionis (x) = j � i.Content values are onstant down diagonals in Young diagrams.2.3 The Kau�man Skein of the AnnulusThe initial de�nition of basis elements and their branhing rules are due to [5℄,while the eigenvalues of the meridian map are due to [31℄.30



2.3.1 Basis Elements of the AnnulusIn the Kau�man skein of the annulus, K, we have elements y� whih are indexedby partitions �, and form a basis of the Kau�man skein of the annulus. They� are eigenvetors of the meridian map �K : K ! K with eigenvalues� = (s� s�1) v�1Xx2� s2(x) � vXx2� s�2(x)!+ v�1 � vs� s�1 + 1:Clearly the eigenvalues are all distint, i.e. � � � = 0, � = �.The meridian map relation for �K is illustrated in Figure 2.3. We onsiderthe meridian as being plaed around the annulus.y� y� y��K = = �
Figure 2.3: The meridian map �K

2.3.2 Branhing RuleThe element y1 is a single string in the skein of the annulus. Multipliation isonsidered as a omposition of two elements in the annulus, one annulus beingplaed outside the other. For example, onsider the omposition of y� and y1in Figure 2.4. This ation is ommutative.The branhing rule for the basis elements isy�y1 = X�2�+[�� y�:For a partiular � 2 �+ we an break up the branhing rule to give the followingexpression: y�y1 = y� + X�2�+[��nf�g y�: (2.1)31



y�
Figure 2.4: Composition of y� and y1De�nitionFor partitions �, � with � 2 �+ de�ne polynomial RK(t; �; �) byRK(t; �; �) = Y�2�+[��nf�g(t� �):This de�nition, ombined with the branhing rule, now allows us to give aonstrution for a partiular element y� as a linear ombination of meridiansand longitudes based around y� for � 2 �+.Lemma 2.3 For partitions �, � with � 2 �+y� = RK(�K; �; �)RK(�; �; �) (y�y1):ProofApply RK(�K; �; �) to both sides of the branhing rule in expression 2.1. Thesum in y� will be anelled, as for eah y� there will be a oeÆient �K � �whih will evaluate to � � � = 0. ThusRK(�K; �; �)(y�y1) = RK(�K; �; �)0�y� + X�2�+[��nf�g y�1A= RK(�K; �; �)(y�)) RK(�K; �; �)(y�y1) = RK(�; �; �)y�sine (�K � �)(y�) = (� � �)y� by de�nition.32



Eigenvalues � are all distint, and so RK(�; �; �) 2 Z[v�1; s�1℄ is non-zero.Hene we an divide both sides of the expression by RK(�; �; �), giving theresult required.Note y� an be expressed as a linear ombination of some y� (for some � ��; j�j = j� j+1). Thus any y� an be expressed as a linear ombination of linkedup longitudes and meridians with oeÆients from the Kau�man skein of theannulus.We will later onsider oeÆients modulo 2, and we need to show thatertain eigenvalues are distint modulo 2. We show a more general result andthen show the required result by orollary.Theorem 2.4 For partitions � and �,� � � � 0 mod n, � = �; n 2 N ; n � 2:ProofClearly � = �) � � � � 0 mod n.Take two partitions � = (�1; : : : ; �k); � = (�1; : : : ; �l) suh that � � � �0 mod n. Let z�� be the ell in position (k; 1) in the Young diagram of � (seeFigure 2.5) and z�� be the ell in position (l; 1) in the Young diagram of �.Content values proeed along diagonals in Young diagrams so (z��) and (z��)
z��Figure 2.5: Loation of ell z�� in partition �are unique in � and � respetively. In partiular(z��) = 1� k < (x) 8x 2 � n z��(z��) = 1� l < (x) 8x 2 � n z��33



By the de�nition of  and sine �� � � 0 mod n it must be that the ontri-butions from these ontent values anel, hene (z��) = (z��) ) l = k. Thus� = (�1; : : : ; �k); � = (�1; : : : ; �k), i.e., the Young diagrams have the samenumber of rows.De�ne �(i) = (�i+1; : : : ; �k), �(i) = (�i+1; : : : ; �k) with �(0) = �, �(0) = �.De�ne x��i to be the ell in position (i; �i) in � and x��i to be the ell in position(i; �i) in �, i.e., the last ells in eah of these rows. (x��i) and (x��i) are byde�nition unique in their respetive rows, and by similar onsiderations topreviously we see (x��i) = �i � i > (x) 8x 2 �(i�1) n x��i(x��i) = �i � i > (x) 8x 2 �(i�1) n x��iClearly (x��1) = �1 � 1 > (x) 8x 2 � n x��1(x��1) = �1 � 1 > (x) 8x 2 � n x��1 ;and sine the ontribution of these ontents are unique in their partitions, inorder to have � � � � 0 mod n it must be the ase that (x��1) = (x��1) )�1 = �1. Proeeding by indution on �(i) and �(i) and onsidering (x��i) and(x��i) we see that � � � � 0 mod n) �i = �i; 1 � i � k ) � = �.Corollary 2.5 The expression RK(�; �; �) is non-zero mod 2.ProofThe expression RK(�; �; �) is a produt of terms of the form (� � �) with� 6= �. By Theorem 2.4, all of these terms will be non-zero mod 2, heneRK(�; �; �) is non-zero mod 2.2.4 The Homy Skein of the AnnulusThe branhing rules for the Homy skein of the annulus are due to [18℄, whilethe eigenvalues of the meridian maps are due to [19℄.34



2.4.1 Basis Elements of the AnnulusIn the Homy skein of the annulus we have elements Q�;� whih are indexed bypairs of partitions (�; �) and form a basis for the Homy skein of the annulus.These elements are also eigenvetors of the meridian maps �C, with eigenvalues�;� = (s� s�1) v�1Xx2� s2(x) � vXx2� s�2(x)!+ v�1 � vs� s�1for �C, and eigenvalue s�;� for the meridian map �C (Figure 2.6). As with theeigenvalues of the meridian map �K, the eigenvalues s�;� are all distint.Q�;� Q�;� Q�;��C = = s�;� Q�;� Q�;� Q�;��C = = s�;�
Figure 2.6: Meridian maps �C and �CNote that � = s�;� + 1. We say that Q�;� is reversible if � = �.2.4.2 Branhing RulesBy work of Hadji we have branhing rules for Q�;� [18℄:Q�;�Q1;; = X�2�+Q�;� +X�2��Q�;�Q�;�Q;;1 = X�2��Q�;� +XÆ2�+Q�;ÆAs with the Kau�man branhing rules we onsider omposition of two elementsas diagrams in two annuli being plaed one within the other. This ation isommutative.In general we want to onsider Q�;�Q1;1 where Q1;1 is Q1;;Q;;1 � Q;;;, andwhere Q;;; is the identity element, the empty diagram in the annulus. The35



element Q1;1 an also be understood as the pattern for the reverse parallelsatellite, as seen in Figure 1.16.We are partiularly interested in de�ning an analogous relation to thebranhing rule for y�y1.By symmetry we know thatQ�;�Q1;1 =Xf�g a�;�Q�;� + Xf(�;�)g�6=� a�;�(Q�;� +Q�;�);where a�;�, a�;� 2 N . With the next theorem we show expliitly the branhingrule for Q�;�, and the values of a�;� and a�;�.Theorem 2.6 For � 2 �+ we have the following relation between Q�;� andQ�;�: Q�;�Q1;1 = Q�;� + X�2�+[��n�Q�;� + Xf(�;�)g�6=� (Q�;� +Q�;�) + 2j��jQ�;�:ProofWe begin by applying the branhing rules:Q�;�Q1;1 = Q�;�(Q1;;Q;;1 � id)= Q�;�Q1;;Q;;1 �Q�;�= 0�X�2�+Q�;� + X�2��Q�;�1AQ;;1 �Q�;�= X�2�+Q�;�Q;;1 + X�2��Q�;�Q;;1 �Q�;�= X�2�+0�X�2�+Q�;� + X!2��Q!;�1A+ X�2��0�X�2��Q�;� + X!2�+Q�;!1A�Q�;�= X�;�2�+Q�;� + X�;�2��Q�;� + X!2��;�2�+ Q!;� + X!2�+;�2�� Q�;! �Q�;�By de�nition, � 2 �+ and so Q�;� is a term in the sum of Q�;� over �+. For the36



sums over �+ and �� we extrat terms where the partitions are the same:X�;�2�+Q�;� + X�;�2��Q�;� = Q�;� + X�2�+[��nf�gQ�;�+ X�;�2�+�6=� (Q�;� +Q�;�) + X�;�2���6=� (Q�;� +Q�;�)A onsequene of Lemma 2.2 is that �� n f�g � �� n f�g. We use this result tosplit up the other sums of terms:X!2��;�2�+ Q!;� = X!2��nf�gQ!;� + j�+jQ�;�X!2�+;�2�� Q�;! = X!2��nf�gQ�;! + j��jQ�;�Combining these two equations and using the result of Lemma 2.1 we anrearrange the remainder of the expression for Q�;�Q1;1:X!2��;�2�+ Q!;� + X!2�+;�2�� Q�;! �Q�;� = X!2��nf�gQ!;� + j�+jQ�;� + X!2��nf�gQ�;! + j��jQ�;� �Q�;�= X!2��nf�g(Q!;� +Q�;!) + (j�+j+ j��j � 1)Q�;�= X!2��nf�g(Q!;� +Q�;!) + 2j��jQ�;�:Thus we express Q�;�Q1;1 in the format desired,Q�;�Q1;1 = Q�;� + X�2�+[��nf�gQ�;� + X�;�2�+�6=� (Q�;� +Q�;�)+ X�;�2���6=� (Q�;� +Q�;�) + X!2��nf�g(Q!;� +Q�;!) + 2j��jQ�;�:
37



2.4.3 NoteIn the proof of Theorem 2.6 we obtained the expliit details of the sets that thesums of pairs of elements are taken over. The details of these are not of greatonsequene in the proof of the main result of this hapter: the importane ofTheorem 2.6 is showing the general relation between Q�;� and Q�;� for � 2 �+,and showing that other terms are in the form of pairs Q�;� +Q�;�.2.5 ResultsIn this setion we introdue the theorem that motivates this hapter; this givesa orrespondene between the Homy and Kau�man polynomials of ertainrelated links. We state the onjeture made in [35℄, the proof of whih is thework of the remainder of this hapter. We give several other results that willbe essential in this proof.2.5.1 Rings of polynomialsIt is lear that Z[v; s℄ and Z2[v; s℄ are both rings, and that a map f between thetwo of them that takes integer oeÆients modulo 2 is a ring homomorphism.Our situation is di�erent beause we have to aount for the possibility ofnegative powers of v and s and also for produts of denominators of the formsr � s�r; we must verify that the inlusion of these elements still gives a ring.Fortunately there is a result given in [21℄ that guarantees this. We need togive two de�nitions before we an state the theorem.De�nitionFor a ring R, M is a multipliatively losed subset not ontaining 0 ifM � R, 1 2M , 0 =2M and M is losed under multipliation.Let Z(M) be the set fr 2 R : rm = 0 for some m 2Mg.We are now in a position to give the theorem that will allow us to on�rmthat the objets we wish to work with are rings.38



Theorem 2.7 ([21℄ p.247) Let M � R be a multipliatively losed subset,and assume that Z(M) = 0. Then there exists a unique overring S � R suhthat every element of M is a unit in S and every element of S has the formrm�1 for some r 2 R, m 2M .We use this theorem in the proof of the following proposition to on�rmthat Z[v�1; s�1℄ is a ring.Proposition 2.8 The set f asr�s�r : a 2 Z[v�1; s�1℄; r 2 Z n f0gg is a ring.ProofWe know R = Z[v; s℄ is a ring. Take a subset M of R de�ned asM = fvmsn kYi=0(sri � s�ri) : m;n 2 Z; ri 2 Z n f0g; k 2 Ng:Clearly M is losed under multipliation, and 1 2 M , 0 =2 M , hene by Theo-rem 2.7 there is an overring S suh that every element has the form rm�1 forsome r 2 Z[v; s℄, m 2M . ThenS = frm�1 : r 2 Z[v; s℄; m 2 Mg= f asr � s�r : a 2 Z[v�1; s�1℄; r 2 Z n f0gg:S is the objet we have previously denoted as Z[v�1; s�1℄. Similarly, we anshow that the objet we have denoted Z2[v�1; s�1℄ is a ring.A map f : Z[v�1; s�1℄ ! Z2[v�1; s�1℄ where the integer oeÆients of thepolynomial are redued modulo 2 is learly a homomorphism between the rings.Having leared up the status of the rings that we will work in, we nowonsider some other important results that we will need in the main proof ofthis hapter. We begin with the result of Rudolph whih motivates the moregeneral result that we wish to show. 39



2.5.2 Satellites and patternsTheorem 2.9 (Rudolph [54℄) The Kau�man polynomial of a link with sub-stitution v; s ! v2; s2 and taking oeÆients from Z2[v�1; s�1℄ is the same asthe Homy polynomial of its reverse parallel satellite taking oeÆients fromZ2[v�1; s�1℄, with the empty diagram taking the normalisation of 1 for bothinvariants.Note that for this result and for others in this hapter we take a di�erentnormalisation to those given in Chapter 1.Morton's onjeture [35℄ o�ers a muh greater generalisation of this theorem,by allowing us a muh greater degree of freedom in deorating the omponentsof the link. Reall that in Setion 1.7 we de�ned deorating a knot with apattern from the annulus. In the ase of Conjeture 2.10 we (potentially)deorate eah link omponent with a di�erent pattern.Conjeture 2.10 (Morton [35℄) Deorate eah omponent Li of a framedunoriented link L by y�(i). The Kau�man polynomial of this deorated link withsubstitution v; s ! v2; s2 and taking oeÆients from Z2[v�1; s�1℄ is the sameas the Homy polynomial of L when eah Li is deorated by Q�(i);�(i) takingoeÆients from Z2[v�1; s�1℄, with the empty diagram taking the normalisationof 1 for both invariants.In light of this onjeture we restate Theorem 2.9 as follows:Restatement of Theorem 2.9 Deorate eah omponent Li of a framed un-oriented link L by y1. The Kau�man polynomial of this deorated link withsubstitution v; s ! v2; s2 and taking oeÆients from Z2[v�1; s�1℄ is the sameas the Homy polynomial of L when eah Li is deorated by Q1;1 taking oef-�ients Z2[v�1; s�1℄, with the empty diagram taking the normalisation of 1 forboth invariants.Before onsidering the branhing rules in the Homy skein of the annulusagain, there is one more result that we need for our proof of Conjeture 2.10.For satellites of deorated by ertain linear ombinations of patterns from the40



Homy skein of the annulus, we show that we are able to dispose of ertainparts of the pattern without a�eting the invariant modulo 2.Lemma 2.11 Deorate eah omponent Li of a link L with linear ombinationsof patterns from the Homy skein of the annulus of the formPi = Xf(�i;�i)g(Q�i;�i +Q�i;�i) +Xf�ig Q�i;�i:With oeÆients from Z2[v�; s�℄, the Homy polynomial of L where eah om-ponent Li deorated by Pi is the same as the Homy polynomial of L whereeah omponent Li deorated byPi0 =Xf�ig Q�i;�i:ProofConsider a pair of partitions (�i�; �i�) 2 f(�i; �i)g and write Pi asPi = Q�i�;�i� +Q�i�;�i� + Xf(�i;�i)g(�i;�i)6=(�i�;�i�)(Q�i;�i +Q�i;�i) +Xf�ig Q�i;�i:Fix patterns Pj on all other omponents Lj of the link L. The Homy polyno-mial of L with deorations Pj on omponents Lj and the deoration Pi on Li isequal to the sum of the Homy polynomials of L with deorations Pj on Lj andeah term in Pi ounted separately on Li. Consider the Homy polynomial ofL with Pj on Lj and Q�i�;�i� on Li. By Lemma 1.6, reversing orientations of allomponents leaves the Homy polynomial unhanged and leaves the patternsPj unhanged, but the pattern on Li beomes Q�i�;�i�.Hene the Homy polynomial of L with patterns Pj on omponents Lj andQ�i�;�i� on Li is equal to the Homy polynomial of L with patterns Pj on41



omponents Lj and Q�i�;�i� on Li. ThusPi = Xf(�i;�i)g(Q�i;�i +Q�i;�i) +Xf�ig Q�i;�i= Xf(�i;�i)gQ�i;�i + Xf(�i;�i)gQ�i;�i +Xf�ig Q�i;�i= Xf(�i;�i)gQ�i;�i + Xf(�i;�i)gQ�i;�i +Xf�ig Q�i;�i= 2 Xf(�i;�i)gQ�i;�i +Xf�ig Q�i;�i� Xf�ig Q�i;�i mod 2� Pi0 mod 2where mod 2 denotes taking oeÆients from Z2[v�1; s�1℄.2.6 More in the Homy Skein of the AnnulusWe return to onsidering the multipliation Q�;�Q1;1. By Theorem 2.6 we haveevaluated this asQ�;�Q1;1 = Q�;� + X�2�+[��nf�gQ�;� + Xf(�;�)g(Q�;� +Q�;�) + 2j��jQ�;�:As with the expression for y� we wish to eliminate the sum of terms in Q�;�from the expression.De�nitionFor partitions � and �, � 2 �+, de�ne the polynomial RC(t; �; �) byRC(t; �; �) = Y�2�+[��nf�g(t� (s�;�2 � 1)):Let �C�C�1 be the map �1;1; elements Q;� andQ�; have eigenvalue s;�s�;�1for �1;1.Lemma 2.12 For partitions �, �, � 6= �RC(�1;1; �; �)(Q�;� +Q�;�) = RC(s�;�s�;� � 1; �; �)(Q�;� +Q�;�):42



ProofRC(�1;1; �; �)(Q�;� +Q�;�) = RC(�1;1; �; �)(Q�;�) +RC(�1;1; �; �)(Q�;�)= RC(s�;�s�;� � 1; �; �)Q�;�+RC(s�;�s�;� � 1; �; �)Q�;�= RC(s�;�s�;� � 1; �; �)(Q�;� +Q�;�):Lemma 2.12 shows that the oeÆient of eah element in a sum Q�;� + Q�;�remains equal after we apply RC(�1;1; �; �).The next step in our onstrution is to apply RC(�1;1; �; �) to the relationwe have already derived from the branhing rules.Lemma 2.13RC(�1;1; �; �)(Q�;�Q1;1) = RC(s2�;� � 1; �; �)Q�;� + 2j��jRC(s2�;� � 1; �; �)Q�;�+ Xf(�;�)gRC(s�;�s�;� � 1; �; �)(Q�;� +Q�;�):ProofThis follows almost immediately from applying RC(�1;1; �; �) to the relationfrom Theorem 2.6. The sum of elements Q�;� over �+[��nf�g is anelled outby applying RC(�1;1; �; �). Using Lemma 2.12 on the sum of terms Q�;� +Q�;�and the remaining terms gives the oeÆients indiated.By the symmetry we observed earlier we note that0� Xf(�;)g(Q�; +Q;� )1AQ1;1 = Xf(�;�)g(Q�;� +Q�;�);i.e., multiplying a sum of terms Q�; +Q;� by Q1;1 results in a similar sum ofterms. 43



2.7 Proving Conjeture 2.10We prove the onjeture by indution, and use the onstrutions that we havealready noted for y�, Q�;�, RK(t; �; �) and RC(t; �; �) to draw out orrespon-denes between the two sets of branhing rules when we onsider oeÆientsfrom Z2[v�1; s�1℄.ProofTake a link L with l omponents L1; : : : ; Ll. Let L(�(1); : : : ; �(l)) denote thelink L with eah omponent Li paired with a partition �(i).Let N = lXi=1 (j�(i)j � 1) ; j�(i)j � 1;and we use this to base our indution on. By de�nition N � 0 and the only asewhen N = 0 is when j�(i)j = 1 for all i. This is the situation when the patternsdeorating eah omponent are y1 in the Kau�man skein of the annulus andQ1;1 in the Homy skein of the annulus. By Theorem 2.9 we know that thease N = 0 satis�es the onditions of the onjeture, and thus provides a basisfor our proof by indution.Assume that for all N � n � 1 the onjeture is true. For any ase whenN = n we know that only one partition �(i) is di�erent from some ase whenN = n� 1, and it is di�erent by the addition of only one ell to that partition,�(i). Without loss of generality, we an assume that the partition that hashanged is attahed to omponent Ll. E�etively the di�erene between thetwo links resulting from the attahed partitions is �(l) paired with Ll whenN = n� 1 and �(l) paired with Ll when N = n.As the di�erene between �(l) := � and �(l) := � is one ell then we know� � �, j�j = j�j + 1. Thus, when we deorate the link either in the Kau�manor Homy skein we an use the branhing rules to �nd expressions for y� andQ�;� in terms of y� and Q�;� respetively.By Lemma 2.3 we know that y� an be expressed as a ertain linear om-bination of longitudes and meridians, but we now need to show that this is inalignment under the onditions of the onjeture with the more ompliated44



expression that we have for the Homy ase.Due to the way that we are building up patterns we must (at least at thisstage) inlude the possibility that there are pairs of patterns (as we have de�nedthem previously) whih are also going to be multiplied by Q1;1. However, bythe note that we made before, this will itself only ontribute another sum overpairs of patterns in the branhing rule. By Theorem 2.6 and Lemma 2.13 theexpression that we need to onsider isRC(�1;1; �; �)0�0�Q�;� + Xf(�;)g(Q�; +Q;� )1AQ1;11A= RC(s2�;� � 1; �; �)Q�;� + 2j��jRC(s2�;� � 1)Q�;�+ Xf(�;�)gRC(s�;�s�;� � 1; �; �)(Q�;� +Q�;�):There are di�erenes in the skeins between the branhing rules for y� and Q�;�.If we work modulo 2 and with the substitution v; s! v2; s2 for Kau�man thereis no immediate hange that we an observe.However, working modulo 2 for Homy we simplify the expression that wehave for Q�;�: the term of Q�;� on the right hand side obviously vanishes mod2. The sums of pairs of patterns anel by Lemma 2.11 sine all of the otheromponents in the link L are being deorated by patterns Q�(j);�(j) for �xedpartitions �(j). Hene mod 2 we haveRC(�1;1; �; �)0�0�Q�;� + Xf(�;)g(Q�; +Q;� )1AQ1;11A = RC(s2�;� � 1; �; �)Q�;�in the Homy skein of the annulus. We an go a step further and eliminate thesum of pairs on the left hand side of the expression to giveRC(�1;1; �; �)(Q�;�Q1;1) = RC(s2�;� � 1; �; �)Q�;�:From similar onsiderations to Theorem 2.4 and Corollary 2.5 it an beshown that RC(s2�;� � 1; �; �) is non-zero mod 2, and hene we an give thefollowing onstrution for elements in the Homy skein of the annulus when we45



onsider oeÆients mod 2:Q�;� = RC(�1;1; �; �)RC(s2�;� � 1; �; �)(Q�;�Q1;1):There is learly a parallel between the expressions for the two branhing rules.By the assumption of the indutive argument the deoration of Q�;� and y�agree, and by the result of Rudolph we know that Q1;1 and y1 agree.To prove the onjeture we must show that RC(�1;1; �; �) and RK(�K; �; �)agree, and that RC(s2�;��1; �; �) and RK(�; �; �) agree under the onditions ofthe onjeture. ReallRK(t; �; �) = Y�2�+[��nf�g(t� �)RC(t; �; �) = Y�2�+[��nf�g(t� (s�;�2 � 1))whih are both de�ned as produts over the same set of partitions, with thedi�erene being the fators in eah. A typial fator in RK(t; �; �) is (t � )and a typial fator in RC(t; �; �) is (t � (s;2 � 1)). In the �rst instane weneed to ompare  and s;2 � 1 under the onditions of the onjeture.For the Kau�man polynomial D(v; s) the substitution v; s! v2; s2 modulo2 is equivalent to squaring the polynomial modulo 2, i.e.,D(v2; s2) � (D(v; s))2 mod 2:We noted previously that  = s; +1. Under the substitution  is equivalentto 2 mod 2. Then 2 � (s; + 1)2 mod 2� s;2 + 2s; + 1 mod 2� s;2 � 1 mod 2;as required. Thus RC(s2�;� � 1; �; �) � RK(�; �; �) under the onditions of theonjeture, and for RC(�1;1; �; �) and RK(�K; �; �) we need only note that�1;1 = �C�C � 1 = �K �Q1;146



and so the meridian maps and oeÆients from eigenvalues of the meridianmaps agree, as required.Owing to the fat that D(v2; s2) � (D(v; s))2 mod 2 we an then state thetheorem as follows:Theorem 2.14 Deorate eah omponent Li of a framed unoriented link Lby y�(i). The square of the Kau�man polynomial of this deorated link withoeÆients in Z2[v�1; s�1℄ is equal to the Homy polynomial of L when eah Liis deorated by Q�(i);�(i) with oeÆients in Z2[v�1; s�1℄, with the empty diagramtaking the normalisation of 1 for both invariants.There is a fairly neat orollary that we an give to Theorem 2.14, for thesituation that we want to take linear ombinations of patterns when we deorateour links. Before stating and proving it, it is in our best interests to introduesome notation so that we an give the orollary and proof as simply as possible.De�nitionLet L(�(1); : : : ;�(l)) denote the link L with eah omponent Li pairedwith a set of partitions �(i) = f�(i1); : : : ; �(ij)g, where j = j�(i)j.Then let LK(�(1); : : : ;�(l)) denote the link L with eah omponent Li de-orated by a linear ombination of patternsY�(i) = y�(i1) + : : :+ y�(ij)and let LC(�(1); : : : ;�(l)) denote the link L with eah omponent Li deoratedby a linear ombination of patternsS�(i) = Q�(i1);�(i1) + : : :+Q�(ij);�(ij ):Finally, take D(LK(�(1); : : : ;�(l))) to denote the Kau�man polynomial ofLK(�(1); : : : ;�(l)), and let P (LC(�(1); : : : ;�(l))) denote the Homy polyno-mial of LC(�(1); : : : ;�(l)).Corollary 2.15 D(LK(�(1); : : : ;�(l)))2 � P (LC(�(1); : : : ;�(l))) mod 2, i.e.,taking oeÆients Z2[v�1; s�1℄, and with the empty diagram taking the normal-isation of 1 for both invariants. 47



ProofThe Kau�man polynomial of a satellite deorated by a linear ombination ofpatterns is equal to the sum of the Kau�man polynomials of the link if it isdeorated by eah pattern separately; a similar statement an be made aboutthe Homy polynomial of satellites deorated in suh a way.In the ase that we are onsidering, as a �rst step we an state the following:D(LK(�(1); : : : ;�(l))) = D(LK(�(11); : : : ;�(l))) + : : :+D(LK(�(1j); : : : ;�(l)))= j�(1)jXk=1 D(LK(�(1k); : : : ;�(l)))= lXm=1 j�(m)jXk=1 D(LK(: : : ; �(mk); : : :)):Then with oeÆients in Z2[v�1; s�1℄,D(LK(�(1); : : : ;�(l)))2 � D(LK(�(1); : : : ;�(l)))jv!v2s!s2� lXm=1 j�(m)jXk=1 D(LK(: : : ; �(mk); : : :))jv!v2s!s2� lXm=1 j�(m)jXk=1 P (LC(: : : ; �(mk); : : :))� P (LC(�(1); : : : ;�(l))):
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Chapter 3
Staked k-tangles and theKau�man Polynomial
3.1 IntrodutionIn this hapter we give details of an algorithm for alulating the Kau�manpolynomial of a link. As noted previously, alulating knot polynomials fromskein relations generally gives an exponential time algorithm based on the num-ber of rossings in the diagram that we start with.Przytyki showed that a polynomial time algorithmwas possible in priniplefor the Kau�man polynomial [49℄, although the method he gave only alulatesa part of the oeÆients for the Kau�man polynomials. The work of thishapter presents the �rst omplete polynomial time algorithm for alulatingthe Kau�man polynomial.We explore k-tangles and staked k-tangles, and how we ompose a stakedk-tangle with a word from the braid group B 2k . By representing staked k-tangles as k-sequenes, and then exploring onditions that guarantee a desiredoutome we obtain the foundation of the algorithm that we onstrut (leadingto Proposition 3.8). 49



3.2 Staked k-tanglesTangle diagrams are often given in terms of inputs and outputs to a box, withthe ars inside being knotted somehow.De�nitionAn (m;n)-tangle is a box with m inputs at the top of the box and noutputs at the bottom, where m + n = 2l for some l. Conneting the m + npoints are l ars, and these an be freely knotted inside the box. We also allowlosed omponents in the tangle box.De�nitionA k-tangle onsists of k ars onneted to 2k points on a line, with arslying in the upper half spae and eah having a single loal maximum. Thereare no restritions on how the ars lie relative to eah other, but we do notallow losed omponents within the tangle.Essentially, a k-tangle is a (0; 2k)-tangle with unknotted ars and the extraondition not allowing losed omponents. A onsequene of the de�nitionof a k-tangle is that the ars are all individually knotted. See Figure 3.1 forexamples of 3- and 4-tangles.
Figure 3.1: Examples of 3- and 4-tanglesA k-tangle an be drawn as a 2k braid with a plait losure of k aps at thetop.We now give the most important de�nition of the next two hapters; themethods that we will begin to outline shortly depend on this de�nition and itsonsequenes. 50



De�nitionA staked k-tangle is a k-tangle suh that ars do not wind around eahother, i.e., no two ars are linked.Figure 3.2 shows some examples of staked 4-tangles, and as before note thatwe do not allow the possibility of losed omponents in the staked tangles.
Figure 3.2: Examples of staked 4-tanglesA variation on this de�nition was originally given in [41℄.As the ars are staked, we an onsider them as being in separate layers,and then give a numbering to these ars. The top-most ar is numbered 1, andthe bottom-most is numbered k, with the ars inbetween numbered aordingto the rule that an overrossing ar has a lower number than the ar it rossesover. For example, we number the staked 4-tangle to the left in Figure 3.2 asin Figure 3.3. 1 2 3 4

Figure 3.3: Numbering ars of a staked 4-tangleThere is not neessarily a unique numbering for the ars of a diagram; it islear that we an have staked k-tangles whih have two or more ars in thesame layer. In this ase we need only give the ars a numbering so that theyrespet whatever ars might lie above or below them in the diagram.51



Consider the staked 4-tangle to the right of Figure 3.2: this has two possiblenumberings, as an be seen in Figure 3.4.123 4 124 3
Figure 3.4: A staked 4-tangle without a unique numberingBy onsidering the numbers of the endpoints of the ars of a staked tanglewe see that this information determines the diagram. Reading these numbersfrom left to right we use the number sequene to represent the staked tangle.De�nitionA k-sequene is a sequene of numbers representing the endpoints of thears of a staked k-tangle; the k-sequene determines the staked k-tangle.For example, the 4-sequene for the staked 4-tangle in Figure 3.3 is (12314234),and the two possible number sequenes for the staked 4-tangle in Figure 3.4are (32134214) and (42143213).As there are staked k-tangles without unique k-sequenes determiningthem, it is lear that the number of k-sequenes will be greater than the numberof staked k-tangles for k � 2.Proposition 3.1 The set of k-sequenes has (2k)!2k elements.ProofThe number of elements in the set of k-sequenes is easily alulable from simpleombinatoris. We permute 2k objets { but there are k distint objets, eahof whih ours twie. Hene the number of elements is (2k)!2k .Calulating the size of the set of staked k-tangles is more ompliated, and itis less lear if there is a simple way to do this in general. We will onsider thisproblem further in Setion 3.8. 52



3.3 Multiplying staked tangles by braidsOur aim in this setion is to express a general k-tangle as a linear ombinationof staked k-tangles with respet to the Kau�man skein relations. We work inthe Kau�man skein module of staked k-tangles.As stated previously, a k-tangle an be expressed as a 2k braid with aplait losure at the top. We an also onsider a k-tangle as a staked k-tangleomposed from below with a word from B 2k . In both ases we do this in anobvious way, by pulling the ars, lengthening the diagram until we an see astaked k-tangle omposed with a braid.We onsider this idea in the example of Figure 3.5, whih is taken from the3-tangle of Figure 3.1.

Figure 3.5: Multiplying a staked 3-tangle by a braidBy onsidering diagrams of this type we begin to examine what we meanby multiplying a staked tangle by a braid word in the skein. We onsider thisas the ation of the braid group B 2k on the Kau�man skein module of stakedk-tangles.We start by onsidering what happens when we multiply a staked tangleby a braid generator. In order to give a onsistent system for this, we giveonditions for when multipliation by a braid generator results in a stakedtangle. 53



De�nitionA staked k-tangle t1 is ompatible with a braid generator �i if the ationof multiplying t1 by �i results in another staked k-tangle t2 or t1 multiplied bya salar v. Similarly, a staked k-tangle t1 is ompatible with an inverse ��1i ifthe ation of multiplying by the inverse results in another staked k-tangle t2or t1 multiplied by a salar v�1.We use k-sequenes to represent staked k-tangles and so must give a statementas to how we onsider ompatibility with respet to k-sequenes.De�nitionA k-sequene s is ompatible with a generator �i if the staked k-tanglede�ned by s is ompatible with �i. Similarly, s is ompatible with an inverse��1i if the staked k-tangle de�ned by s is ompatible with ��1i .The following proposition gives onditions that ensure a k-sequenes is om-patible with a given generator.Proposition 3.2 If the number at position i in a k-sequene s is greater thanor equal to the number at position i+ 1 then s is ompatible with �i.ProofLet s(j) stand for the number at position j in the k-sequene. If s(i) = s(i+1)then s is ompatible with �i as the two positions in s represent the two ends ofone ar. This ar results in the original staked k-tangle being multiplied by vin order to remove a kink by a Type I Reidemeister move.If s(i) > s(i + 1) then this means that the ar whih has an endpoint ats(i + 1) is numbered in suh a way that it is onsidered to be above the arwhih has an endpoint at s(i). Thus, s is ompatible with �i as the ation ofthe generator brings the lower-numbered ar aross the higher-numbered.We an state something similar when dealing with inverses.Proposition 3.3 If the number at position i in a k-sequene s is less than orequal to the number at position i+ 1 then s is ompatible with ��1i .54



For the purpose of onstruting the algorithm, in all following referenes toompatibility we assume that we desribe k-sequenes that satisfy the ondi-tions of Propositions 3.2 and 3.3.3.3.1 RenumberingWe have previously noted that a staked k-tangle an have more than one validk-sequene that de�nes it.De�nitionLet s and s0 be k-sequenes. We say that s is equivalent by renumbering tos0 if and only if s0 arises from a valid numbering for the same staked k-tanglethat s determines.We will onsider renumbering as an essential relation for the purpose ofobtaining k-sequenes whih satisfy the ompatibility onditions of Proposi-tions 3.2 and 3.3. The following results give the foundation for showing whenrenumbering is possible.Proposition 3.4 Let 1 � a � k � 1 and b = a+ 1. Consider two k-sequeness1 and s2, suh that for 1 � p < q < r < t � 2ks1(p) = a s1(q) = a s1(r) = b s1(t) = bs2(p) = b s2(q) = b s2(r) = a s2(t) = aand s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.ProofIn the staked k-tangle determined by s1 we would onsider the ar numbered aas being immediately \above" ar b. Regardless of how the other ars lie relativeto a and b, we onsider a and b as in the left-hand diagram in Figure 3.6, i.e.,they do not ross. The numbering of s2 would result in the same situation, andhene s1 and s2 are related by renumbering.55



Proposition 3.5 Let 1 � a � k � 1 and b = a+ 1. Consider two k-sequeness1 and s2, suh that for 1 � p < q < r < t � 2ks1(p) = a s1(q) = b s1(r) = b s1(t) = as2(p) = b s2(q) = a s2(r) = a s2(t) = band s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.ProofAs with the previous proof, regardless of how the other ars in the stakedk-tangle de�ned by s1 lie relative to a and b, we onsider a and b as in theright-hand diagram in Figure 3.6, i.e., they do not ross. The numbering ofs2 would result in the same situation, and hene s1 and s2 are related byrenumbering.
Figure 3.6: Non-rossing arsWe say that a and b are adjaent where 1 � a � k � 1 and b = a + 1.3.3.2 RearrangementConsider the diagram of Figure 3.7. This shows the staked 3-tangle given by

Figure 3.7: (121323) multiplied by �13-sequene (121323) being multiplied by a generator �1 that is inompatible.56



De�nitionA k-sequene s is Kau�man equivalent to P aisi, a linear ombination ofk-sequenes with oeÆients from the Kau�man skein module, if and only ifa linear ombination of staked k-tangles orresponding to the linear ombina-tion of k-sequenes an be obtained from the staked k-tangle de�ned by s byapplying the Kau�man skein relation.We say that we use a rearrangement ation when applying Kau�man skeinrelations in order to obtain a Kau�man equivalent linear ombination of k-sequenes.It follows that two k-sequenes equivalent by renumbering are Kau�manequivalent.Proposition 3.6 Let 1 � a � k� 1 and b = a+1. Consider four k-sequeness1; s2; s3; s4 suh that for 1 � p < q < r < t � 2ks1(p) = a s1(q) = b s1(r) = a s1(t) = bs2(p) = b s2(q) = a s2(r) = b s2(t) = as3(p) = a s3(q) = a s3(r) = b s3(t) = bs4(p) = a s4(q) = b s4(r) = b s4(t) = aand for all other 1 � i � 2k s1(i) = s2(i) = s3(i) = s4(i).Then s1 is Kau�man equivalent to s2 � zs3 + zs4.ProofWe onsider the ourrenes of a and b within the four k-sequenes as 2-sequenes. We an write these ass01 = (abab) s02 = (baba) s03 = (aabb) s04 = (abba)and by onsidering the staked 2-tangles that they determine and the mainKau�man skein relation we an state s01 is Kau�man equivalent to s02�zs03+zs04.By omparing this with the k-sequenes that we started with, and beausethis rearrangement will not e�et the other ars in the staked k-tangles that57



lie above or below ars a and b we an thus state that s1 is Kau�man equivalentto s2 � zs3 + zs4.Note that the terms s03 and s04 an be renumbered, and hene the largerk-sequenes s3 and s4 an be renumbered.Proposition 3.7 A k-sequene s with the number r at position j, where 2 �r � k is Kau�man equivalent to a linear ombination of k-sequenes eah withr � 1 at position j.ProofIf the numbers r and r� 1 in s represent ars whih do not ross then Proposi-tions 3.4 and 3.5 guarantee that there is a k-sequene s0 suh that s0(j) = r�1.If the numbers r and r�1 in s represent ars whih ross then Proposition 3.6allows us to express s as a linear ombination of three k-sequenes, s01; s02; s03,suh that s01(j) = s02(j) = s03(j) = r � 1.In order to be onsistent let us say that we always at to redue the numberof a larger numbered endpoint in a k-sequene in an e�ort to make it satisfythe onditions of Proposition 3.2 or 3.3.Proposition 3.8 A k-sequene s that is inompatible with a generator or in-verse ��1i is Kau�man equivalent to a linear ombination of k-sequenes om-patible with ��1i .ProofThis follows from Proposition 3.7 by repeated appliation of the result on therelevant position j in the linear ombination of k-sequenes.For example, onsider again the diagram of Figure 3.7, whih we an rep-resent as (121323) being multiplied by �1. We need to rearrange the adjaentars 1 and 2 aording to the relation we de�ned. Hene, by Proposition 3.6(212313)� (121323) = z((112323)� (122313)):The �nal term does not satisfy Proposition 3.7, but we renumber the 3-sequeneas ars 1 and 2 in the diagram it determines do not ross, and hene obtain the58



following linear ombination of 3-sequenes for (121323) that are ompatiblewith �1, (121323) = (212313)� z(112323) + z(211323)and thus (121323)�1 = (212313)�1 � z(112323)�1 + z(211323)�1= (122313)� vz(112323) + z(121323):Consider the diagram in Figure 3.8. This an (only) be represented as the
Figure 3.8: (132132) multiplied by �13-sequene (132132) multiplied by �1. We annot renumber the 3-sequene sowe must rearrange. In this ase we need to redue the seond number in thesequene, and have to perform two sets of rearrangement; the �rst involves ars2 and 3, and the seond involves possibly several rearrangement ations on ars1 and 2. Some of the resulting 3-sequenes from the �rst rearrangement willonly require renumbering so that they are ompatible.This example underlines the fat that we an require several ats of rear-rangement and renumbering in order to express an inompatible k-sequene asa linear ombination of ompatible k-sequenes.Before we move on to onsider the algorithm, let us formally state therelation between the k-sequenes and the staked k-tangles now that we haveintrodued struture from the renumbering and Kau�man equivalene.Proposition 3.9 The module of k-sequenes modulo renumbering and Kau�-man equivalene relations is isomorphi to the Kau�man skein module of stakedk-tangles. 59



ProofThis follows immediately from the de�nitions of equivalene by renumberingand Kau�man equivalene.3.4 AlgorithmIn the previous setions we have disussed how we might express a general k-tangle with respet to the Kau�man skein relations. We begin by expressingthe k-tangle as a staked k-tangle multiplied by a braid word from B 2k .We represent staked k-tangles by k-sequenes, and onsider multiplyingthem by the braid word, onsidered one generator at a time. By Proposi-tions 3.2 and 3.3 we impose onditions to ensure that k-sequenes are ompat-ible with a braid generator or inverse; if these are not met then we use theations of renumbering and rearrangement to express the k-sequene in termsof a linear ombination of k-sequenes that are ompatible.We provide a rigorous system for making rearrangements and renumberingsso that we do not needlessly pass oeÆients to and from k-sequenes. We wantto give as simple a system as possible, and not perform unneessary operations;the aim of our e�orts is to de�ne an algorithm for alulating the Kau�manpolynomial of a k-plait, and de�ne it in suh a way that it an be implementedwithout diÆulty in a omputer language.The following desription of this algorithm follows the ow diagram of Fig-ure 3.10 up to the last deision box (after whih we have the onluding partfor alulating the Kau�man polynomial of a k-plait).We onsider expressions involving a linear ombination of k-sequenes. With-out loss of generality, take the ase when we multiply by a generator �i. Theproess of this algorithm is to ensure that we have a linear ombination ofk-sequenes that are ompatible with a generator, in partiular that the on-ditions of Proposition 3.2 (respetively Proposition 3.3 in the ase of inverses)are met following a proess of rearrangement and renumbering.In order that we do not perform unneessary operations, we begin by on-60



sidering k-sequenes that are not ompatible with �i and have number k inthe (i + 1)th position. By Proposition 3.7 we guarantee that we an performations on inompatible k-sequenes with number k in the (i+1)th position toexpress them as linear ombinations of k-sequenes with k� 1 in that position.We repeat the proedure for all k-sequenes whih have k � 1 in positioni + 1 but whih are not ompatible, and so on, repeating the proess until�nally we have performed rearrangements and renumberings for inompatiblek-sequenes with a 2 in position i + 1. By reduing numbers in inompatiblek-sequenes in this way, we remove the possibility of any dupliation of workand ensure that we do not miss any inompatible k-sequenes.There is a similar set of steps for the situation that we are multiplying by��1i , in whih ase we will be onerned with the number in the k-sequene atposition i. After ompleting this series of operations we have a linear ombi-nation of k-sequenes that are ompatible with the generator (or inverse) byProposition 3.2 (or Proposition 3.3 for an inverse). Due to the way that weensure ompatibility, multipliation involves swithing the numbers in the iand (i+ 1)th plae in the k-sequenes, and multiplying the oeÆient of thosek-sequenes whih have the same number in positions i and i+1 by v (or v�1).After this the linear ombination of k-sequenes is ready to be multiplied bythe next generator (or inverse) in the braid word, and so we repeat the proessoutlined above. When the end of the braid word is reahed, the staked k-tanglemultiplied by the braid word will have been expressed as a linear ombinationof k-sequenes (representing staked k-tangles) in the Kau�man skein.3.4.1 Calulating the Kau�man polynomial of a k-plaitIn order to alulate the Kau�man polynomial of a k-plait we must onsiderthe losure at the bottom of the k-plait struture. Thus, we have to onsiderhow we might alulate the Kau�man polynomial of a staked k-tangle that islosed o� by k ups in the manner for k-plaits. Consider Figure 3.9, where wesee the staked 4-tangle given by (12314234) losed o�.In this ase it is not diÆult to evaluate the diagram's Kau�man polynomial61



Figure 3.9: Closure of staked 4-tangle given by 4-sequene (12314234)(it has value v), but for a suÆiently ompliated diagram and large enough kthe losure of a staked k-tangle ould be a non-trivial knot, or even a link.In general we need a di�erent approah. Consider the left-most up thate�ets the �rst two endpoints. If we pull this above the line, and use a TypeI Reidemeister move to remove the kink (multiplying by a salar of v) we seethat we now have a staked 3-tangle with 3-sequene (213123).De�nitionA staked k-tangle is losure-ompatible if the introdution of a up tothe two left-most endpoints results in a staked (k � 1)-tangle multiplied by asalar from the set f1; v; v�1; Æg.De�nitionA k-sequene, s, is losure-ompatible if the staked k-tangle de�ned by sis losure-ompatible.As before, we show a ondition that ensures losure-ompatibility for a k-sequene.Proposition 3.10 If the �rst two numbers of a k-sequene, s(1) and s(2), aresuh that js(1)� s(2)j � 1 then s is losure-ompatible.ProofIf s(1) = s(2) then the introdution of a up to the staked k-tangle representedby s results in a disjoint unknot that we remove by multiplying by Æ, leaving astaked (k � 1)-tangle that we an represent as a (k � 1)-sequene.62



For the remaining ases we will de�nitely be able to lose o� to valid stakedk-tangles, and hene obtain valid k-sequenes, as the two ars are adjaent andthus the losure will not e�et the relative ordering of the other ars. We mustonsider the pattern that the values of s(1) and s(2) have in the k-sequene.If js(1) � s(2)j � 1 then the values of s(1) and s(2) are adjaent, so eithers(1) = a and s(2) = b or s(1) = b and s(2) = b for 1 � a � k� 1 and b = a+1.If s(1) = a and s(2) = b then the two possible patterns in the k-sequene are(abba) and (abab): for the pattern (abba) it is not diÆult to see that this willresult that losure will result in some (k� 1)-sequene multiplied by 1 as thereis no twisting. For the pattern (abab) we will be able to �nd a (k� 1)-sequeneafter we remove a twist by multiplying by v.If s(1) = b and s(2) = b then the two possible patterns in the k-sequeneare (baab) and (baba): for the pattern (baab) we will one again obtain some(k� 1)-sequene multiplied by 1. For the pattern (baba) we will obtain a valid(k � 1)-sequene after removing a twist by multiplying by v�1.We now disuss k-sequenes as being losure-ompatible by satisfying theonditions of Proposition 3.10, following the approah that we took previouslywhen we onsidered onditions ensuring ompatibility with braid generators.As before we perform ations on a linear ombination of k-sequenes. Againwe take advantage of the result of Proposition 3.7 to ensure that our ationsproeed in an organised way. In the �rst instane we at on all k-sequenesthat have a k in one of the �rst two positions and whih are not losure-ompatible. We perform renumbering or rearrangement to redue k to k � 1,and perform similar redution operations in subsequent yles. This di�ersfrom the previous proedure in that the onditions for losure-ompatibility aredi�erent from the onditions for ompatibility. We have to perform fewer ylesthrough the linear ombination of k-sequenes, as after we have performed thehek for the number 3 we an guarantee that all of the k-sequenes will belosure-ompatible.Closing o� from k-sequenes and (k�1)-sequenes involves observing wherethe two numbers lie relative to eah other in the k-sequene as explored in63



Proposition 3.10. Using these results we an determine the salar requiredwhen we lose to a (k � 1)-sequene.The simplest way that we an relate the numbers of ars represented in ak-sequene and the (k � 1)-sequene that it loses to is by removing the �rsttwo numbers in the k-sequene, then subtrating 1 from all of the numbers inthe new sequene that are greater than the minimum of the two numbers weremoved from the k-sequene. This gives a valid (k � 1)-sequene, though asbefore there may not be a unique (k�1)-sequene for the staked (k�1)-tanglethat is being represented.We ontinue in this manner, losing o� from linear ombinations of m-sequenes to linear ombinations of (m� 1)-sequenes, until we lose o� from2-sequenes to the 1-sequene, (11). The oeÆient of (11) is the Kau�manpolynomial of the losure of the staked k-tangle (represented as a k-sequene)that we began with.Hene, by ombining this with the algorithm for representing a staked k-tangle multiplied by a word from the braid group B 2k , we an alulate theKau�man polynomial of a k-plait. We �rst express the k-plait as a k-sequenemultiplied by a braid word, and then use the main algorithm outlined previouslyto express it as a linear ombination of k-sequenes. We then lose these o�using the method desribed in this setion, with the �nal oeÆient of the1-sequene (11) giving us the Kau�man polynomial of the k-plait.A ow diagram to illustrate the algorithm an be seen in Figure 3.10.3.5 ComplexityThe number of k-sequenes for a �xed k is (2k)!2k (Proposition 3.1). Immediatelythen we an state that the algorithm is not exponential with respet to , thenumber of rossings, for a �xed k, in the sense of the general algorithm outlinedin Setion 1.5.5. Rather than produe an inreasing number of diagrams as eahrossing is onsidered, we are able to limit the number of objets by representingstaked k-tangles as k-sequenes. 64
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Figure 3.10: Flow diagram showing algorithm for alulating the Kau�manpolynomial. At box 1 we look to see if the k-sequene is inompatible withan r at the relevant point; at box 2 we hek if we are onsidering the lastk-sequene in the set or not; box 3 heks to see if r is now equal to 1; box 4heks to see if the end of the input has been reahed.65



Proposition 3.11 The number of k-sequenes satisfying Proposition 3.2 orProposition 3.3 for a given generator or inverse ��1i isk2 (2(k � 1))!2k�1 :ProofConsider �rst of all the ase for a generator �i. There are (2k)!2kk k-sequenes withthe value r at position i, 1 � r � k. A k-sequene s whih is not ompatiblewith �i is suh that s(i + 1) > s(i). There are k � r hoies for the value ofs(i+ 1), thus we enumerate the number of inompatible k-sequenes with r inposition i as (k � r)(2(k � 1))!2k�2 :Taken over all r we an then evaluate the number of k-sequenes ompatiblewith �i askXr=1 �(2k)!2kk � (k � r)(2(k � 1))!2k�2 � = (2k)!2k � (2(k � 1))!2k�2 kXr=1(k � r)= (2k)!2k � (2(k � 1))!2k�2 � k(k � 1)2= (2(k � 1))!2k�1 �2k(2k � 1)2 � k(k � 1)�= k2 (2(k � 1))!2k�1 :The same method shows that the value holds for inverses.From this bound it follows that there is a limit to the number of ationsof renumbering and rearrangement required to ensure ompatibility. Of oursethere is growth in terms of the number of operations performed; the number ofoperations performed to ensure ompatibility for the �rst rossing will be lessthan the number performed to ensure ompatibility for the tenth rossing. Fora suÆiently long braid word we will reah a point where our linear ombinationontains the maximum number of k-sequenes. For eah suessive rossing thenumber of operations required to ensure ompatibility will remain more or lessonstant, and from this point we ould onsider the amount of work performedby the main algorithm to be linear with respet to .66



As there is growth in terms of the number of operations performed be-fore this point, we state that the main work of the algorithm is performed inpolynomial time, degree 2.The growth of the oeÆients of the k-sequenes is not exponential either.k � 1 passes are made through the set of k-sequenes during a sequene ofrearrangements, and so at most the spread of z will inrease by k � 1. Thespread of v only inreases (potentially) during the multipliation stage of thealgorithm, and does so by 1 at most as we multiply relevant k-sequenes by v orv�1 depending on whether we multiply by a generator or an inverse. Hene, foroeÆients we have linear growth in z and linear growth in v, giving quadratigrowth overall in oeÆients.As the ation of the main algorithm is polynomial, degree 2, and the growthof oeÆients is polynomial degree 2 (all with respet to  for a �xed k) then thealgorithm as a whole is a polynomial time algorithm of degree 4. However, onethe number of k-sequenes reahes a ertain bound the number being ated onby subsequent will be onstant with only minor utuations. As the numberof operations performed is bounded the main algorithm beomes linear withrespet to . Hene the overall algorithm will e�etively, from that point on,be polynomial degree 3 with respet to  for a �xed k.3.6 ImplementationThe algorithm desribed in this hapter lends itself to implementation in aomputing language. Although the algorithm works in polynomial time, aswith other algorithms for alulating polynomial invariants of knots it is tooompliated to allow any serious alulation by hand.In Appendix A.2 we give a listing for a Maple proedure that implements thealgorithm developed in this hapter. The ode is doumented in that appendix,but there are a few points that are worth touhing on here.The �rst is to note that we use the \permute" ommand in Maple to gen-erate the set of k-sequenes at the start of a alulation. We use this ommand67



on the numbers in the string equivalent to the k-sequene (1122: : :kk), whihhas the e�et of reating a list with a very regular ordering that we an exploit.The ations of rearrangement and renumbering are performed by looking inrelevant plaes within k-sequenes, and seeing how adjaent numbers lie relativeto eah other. By onsidering a few simple ases and fators we determine theappropriate ourse to take, i.e., rearrangement or renumbering.There are two main arrays of information kept in memory by the program.One is the array holding the set of k-sequenes, and the other is the table ofoeÆients that are paired with the k-sequenes. The ations of rearrangement,renumbering and multipliation are performed by altering oeÆients in theseond array to reet hanges in the linear ombination of k-sequenes.I have not found a ommand in Maple that simply gives the index of a k-sequene in the �rst array, so I reated a simple routine that allows us to narrowthe list of entries that we searh through. SeqIndex is listed in Appendix A.1,and exploits the regular ordering that the permute ommand gives the list ofk-sequenes.3.7 Plait PresentationsIn Appendix B we give tables of plait presentations of all knots up to tenrossings; while plait presentations are fairly well known (as \2k-plats") it seemsthat there is no reord of the braid words for plait presentations. These tablesreord presentations for all knots up to ten rossings. The soure diagrams aredue to the Rolfsen Knot Table as reorded at the Knot Atlas [52℄, with someadditional diagrams from KnotInfo [26℄.While plait presentations of knot diagrams are not in priniple diÆult toobtain, it an be diÆult to �nd presentations of minimal width; of ourse, aplait presentation might not have the minimal number of rossings for the linkpresented. All of the presentations that I give have minimal width, as eah hasa width equal to the knot's bridge index, but it remains to be seen whethersome of them ould have the number of rossings improved, i.e., by reduing68



the length of the braid word that we lose-o� in the plait format.3.8 DisussionThere are some questions that the work of this hapter raises; there are possibleextensions that we an make to the theory as well, but we will examine thosein detail in the following hapter.3.8.1 The number of staked k-tanglesThere are (2k)!2k k-sequenes, and the implementation of the algorithm that Ihave given for this operates on a spanning set whih is the entire set of k-sequenes. There are lots of interesting questions that we an ask regardingspanning sets for the spae of k-sequenes and for staked k-tangles.For example, we an begin by giving the size of a basis for the k-sequenesin the Kau�man skein.Lemma 3.12 A basis for the spae of k-sequenes ontains Qkr=1(2r � 1) ele-ments.ProofLet S be the set of k-sequenes suh that the numbers in a k-sequene in Sour in ounting order as the sequenes are examined from left to right.We an perform renumbering and rearrangement operations on any k-sequeneto express it as a linear ombination of k-sequenes from the set S by Propo-sition 3.7. The set S is thus a spanning set of the spae of k-sequenes.We alulate the size of S as follows: there is a 1 in the �rst plae of thesequene, and there are 2k � 1 possible plaes where the other 1 ould be. Byremoving these we have a sequene of length 2k� 2 with a 2 at the start; thereare 2k � 3 plaes that we an plae the other 2. We ontinue in this way, andsee that the number of possible sequenes of this format is the produt of all69



of the odd numbers from 1 to 2k � 1, orjSj = kYr=1(2r � 1):We annot remove any element of S and express it as a linear ombination ofthe others, hene the elements of S form a basis of the spae of k-sequenes.A problem that I have not been able to answer is the question of how manystaked k-tangles there are for a given k. For k = 2 and k = 3 there arefew enough k-sequenes that we an enumerate the set of staked k-tanglesby inspetion. For k = 4 we have 2520 diagrams to onsider and the taskbeomes too diÆult to onsider simply by omparing all of the staked 4-tangle diagrams.By onsidering relative positions of neighbouring ars in the set of 4-sequeneswe an eliminate dupliate sequenes that represent staked 4-tangles whih donot have unique numberings. This argument, however, does not guarantee thatthe 4-sequenes it obtains aount for all of the dupliate opies of staked 4-tangles, and it unfortunately also produes \false positives." In the absene offurther results, the quoted number of 550 must remain an upper bound, witha lower bound provided by the number of staked 4-tangles in a basis. Wedisplay these with the values for k = 2 and k = 3 in Table 3.1.k jfStaked k-tanglesgj2 43 354 x; 105 < x � 550Table 3.1: Size of sets of staked k-tanglesIt is possible that a ombinatorial answer exists in [10℄; however, to date,I have not been able to understand all of the terminology and results in thepaper in order to fully deide whether an answer to the problem exists there.Now that the upper bound has been redued from 2520 to 550 it is possiblethat the remaining work has been redued enough to on�rm by inspetion the70



size of the set of staked 4-tangles. However, this approah will be too time-onsuming for alulating the size of the set of staked k-tangles in general.3.8.2 Improving the algorithmThe natural question that one might ask is whether or not an even better, moreeÆient algorithm exists for alulating the Kau�man polynomial. While thisquestion is muh too broad to answer in general, there are some points that wean note for the ase of alulating the Kau�man polynomial of a k-plait.In Chapter 6 we show results for repeated twists on two strings in a braidand how these an be expressed in the Kau�man skein. These results mayhave some appliation here, either in simplifying diagrams before a run of thealgorithm or by supplementing the algorithm.One thought that I have examined is the possibility of working from abasis of the spae of k-sequenes. While it is true that we an express anylinear ombination of k-sequenes as a linear ombination of basis elementsit does not follow that these basis elements will be ompatible with a givengenerator or inverse. Extending this idea, we might onsider working withtwo bases, and rearranging from expressions in one basis to another to obtainompatibility; however, a little experimentation shows that two bases will notbe enough to ensure ompatibility, and ombined with the extra operationsthat an implementation would be required to perform it is not lear that wewould be reduing the work performed.In the extensions setion of the next hapter we disuss how one mightalulate a 2-parallel of a k-plait, and how we an use the methods of thishapter in order to redue the work needed in those ases. These are basedaround situations where the braid word gives a long ar rossing over (or under)other braid strings. In this ase we perform rearrangements to allow the ar toross over (or under) all of these strings in the at of one multipliation, ratherthan in several stages. This a�ords a redution of the amount of work done inomparison. 71



3.8.3 Numbering ars in layersOne problem with the algorithm that we have outlined is that it performs op-erations to ensure ompatibility (Propositions 3.2 and 3.3), rather than simplyperforming operations on k-sequenes that are inompatible.Consider the example of multiplying (11442233) by �2, whih is not inom-patible. The algorithm that we have outlined would tell us to use renumberingations to rearrange 4 and 3, then 3 and 2, and then 2 and 1 before the multi-pliation ould be performed. In this ase, all of the ars in the staked 4-tangleare in the same layer, and so the numbering that we give them is arbitrary insome respet.An improvement to the algorithm would be to onsider the numbering ofars whih are in the same layer as being irrelevant. The diÆulty with thisapproah is that essentially we are onsidering the staked k-tangle diagramsrather than representations. The mahinery of any suh implementation woulddoubtless be inreased dramatially to allow for these possibilities.
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Chapter 4
Staked k-tangles and theHomy Polynomial
4.1 IntrodutionWe extend the de�nition of staked k-tangles to allow oriented ars, and sub-sequently develop a method for alulating polynomial invariants for orientedlinks; the example that we give is for alulating the Homy polynomial of linksgiven as plait presentations. The steps leading to this algorithm are similar tothe work of the previous hapter, and so we state many of the results withoutproof. These lead to Proposition 4.8 whih is the key result for the algorithm.As with the previous algorithm for alulating the Kau�man polynomialfor knots presented as plaits, we show that this algorithm is a polynomial timealgorithm for a �xed k with respet to the number of rossings . There areexisting polynomial time algorithms for alulating the Homy polynomial, butthese are based on braid presentations [45℄. After searhing through the liter-ature I believe that the algorithm given in this hapter is the �rst polynomialtime algorithm not based around presentations for losed braids.We onlude the hapter by onsidering some extensions to the generaltheory of alulating polynomial invariants by representing staked k-tanglesas k-sequenes (oriented or unoriented). We investigate several possibilities for73



reduing the amount of work that our existing algorithm performs. We onsiderthis with respet to alulating the Homy polynomial of a reverse parallel of aknot; this generalises to m-parallels in general (for Homy and Kau�man). Webriey onsider a possible appliation by shifting from words in a braid groupto onsidering words written in terms of band generators [8℄, [23℄.4.2 Oriented staked k-tanglesAs the Homy polynomial is an invariant for oriented links, we must nowonsider tangles with oriented ars. We use the k-tangle from the previoushapter as our starting point.De�nitionAn oriented k-tangle is a k-tangle with eah ar oriented.See Figure 4.1 for examples of oriented k-tangles.
Figure 4.1: Examples of oriented 3- and 4-tanglesDe�nitionAn oriented staked k-tangle is a staked k-tangle with eah ar ori-ented.In Figure 4.2 we see two examples of oriented staked 4-tangles; these are thetwo examples from the previous hapter with ars now oriented.We give a numbering to the ars of oriented staked k-tangles in exatly thesame way as we did previously for unoriented staked k-tangles. Diagrammat-ially we see numbered ars with the orientation indiated on the ars (as inthe example of Figure 4.3, showing a numbering for the left-hand example of74



Figure 4.2: Examples of oriented staked 4-tanglesFigure 4.2). The orientation is extra information that we have to pass to theanalogue of k-sequenes for this oriented ase.1 2 3 4
Figure 4.3: An oriented staked 4-tangle with numbered arsDe�nitionAn oriented k-sequene is a sequene of numbers, �i; 1 � i � k, rep-resenting the endpoints of ars of an oriented staked k-tangle. The absolutevalue of the number indiates the ar and we take the onvention that theorientation of the ar runs in the diretion from �i to +i.For example the oriented staked 4-tangle given in Figure 4.3 has oriented4-sequene (�1 �2 3 1 �4 2 �3 4). As in the previous hapter, the set of orientedk-sequenes is larger than the set of oriented k-tangles.Proposition 4.1 The set of oriented k-sequenes has (2k)! elements.ProofThis follows immediately as we permute 2k di�erent numbers.75



4.3 Ation of braid generatorsIn Setion 3.3 of the previous hapter we showed that it was possible to express ak-sequene as a linear ombination of k-sequenes satisfying ertain onditions.We did this spei�ally with the aim of showing that one ould express astaked k-tangle omposed with a braid word from B 2k as a linear ombinationof staked k-tangles. In this setion we show that similar results an be obtainedfor Homy.We begin by returning to ompatibility, de�ning the onept for orientedstaked k-tangles and oriented k-sequenes.De�nitionAn oriented staked k-tangle t1 is ompatible with a generator or inverse��1i if the result of multiplying t1 by ��1i gives another oriented staked k-tanglet2, or t1 multiplied by a salar v�1.De�nitionAn oriented k-sequene s is ompatible with a generator or inverse ��1i ifthe oriented staked k-tangle determined by s is ompatible with ��1i .As orientation is kept with the ars in the tangle, we an see that orientationdoes not have a diret bearing on ompatibility. We an impose the followingonditions to ensure ompatibility as we did with Propositions 3.2 and 3.3 inthe previous hapter.Proposition 4.2 If the absolute value of the number at position i in an ori-ented k-sequene s is greater than or equal to the absolute value of the numberat position i+ 1 then s is ompatible with �i.Proposition 4.3 If the absolute value of the number at position i in an ori-ented k-sequene s is less than or equal to the absolute value of the number atposition i+ 1 then s is ompatible with ��1i .The proofs of Propositions 4.2 and 4.3 are essentially the same to those ofPropositions 3.2 and 3.3. 76



We now move on to show that similar onepts of renumbering and rear-rangement an be applied in the Homy skein module of oriented k-sequenes,respeting operations in the Homy skein module of oriented staked k-tangles.4.3.1 RenumberingDe�nitionLet s and s0 be oriented k-sequenes. We say that s is equivalent by renum-bering to s0 if and only if s0 arises from a valid numbering for the same orientedstaked k-tangle that s determines.The following two propositions mirror the propositions related to renumber-ing in the previous hapter, Propositions 3.4 and 3.5. There are four parts toeah, owing to the four di�erent possibilities for orientation in oriented staked2-tangles. We state them without proof.Proposition 4.4 Let 1 � a � k � 1 and b = a + 1.1. Consider two oriented k-sequenes s1 and s2, suh that for 1 � p < q <r < t � 2k s1(p) = a s1(q) = �a s1(r) = b s1(t) = �bs2(p) = b s2(q) = �b s2(r) = a s2(t) = �aand s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.2. Consider two oriented k-sequenes s1 and s2, suh that for 1 � p < q <r < t � 2k s1(p) = a s1(q) = �a s1(r) = �b s1(t) = bs2(p) = b s2(q) = �b s2(r) = �a s2(t) = aand s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.77



3. Consider two oriented k-sequenes s1 and s2, suh that for 1 � p < q <r < t � 2k s1(p) = �a s1(q) = a s1(r) = b s1(t) = �bs2(p) = �b s2(q) = b s2(r) = a s2(t) = �aand s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.4. Consider two oriented k-sequenes s1 and s2, suh that for 1 � p < q <r < t � 2k s1(p) = �a s1(q) = a s1(r) = �b s1(t) = bs2(p) = �b s2(q) = b s2(r) = �a s2(t) = aand s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.Proposition 4.5 Let 1 � a � k � 1 and b = a+ 1.1. Consider two oriented k-sequenes s1 and s2, suh that for 1 � p < q <r < t � 2k s1(p) = a s1(q) = b s1(r) = �b s1(t) = �as2(p) = b s2(q) = a s2(r) = �a s2(t) = �band s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.2. Consider two oriented k-sequenes s1 and s2, suh that for 1 � p < q <r < t � 2k s1(p) = a s1(q) = �b s1(r) = b s1(t) = �as2(p) = b s2(q) = �a s2(r) = a s2(t) = �band s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.78



3. Consider two oriented k-sequenes s1 and s2, suh that for 1 � p < q <r < t � 2k s1(p) = �a s1(q) = b s1(r) = �b s1(t) = as2(p) = �b s2(q) = a s2(r) = �a s2(t) = band s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.4. Consider two oriented k-sequenes s1 and s2, suh that for 1 � p < q <r < t � 2k s1(p) = �a s1(q) = �b s1(r) = b s1(t) = as2(p) = �b s2(q) = �a s2(r) = a s2(t) = band s1(i) = s2(i) for all other 1 � i � 2k.Then s1 is related to s2 by renumbering.4.3.2 RearrangementDe�nitionAn oriented k-sequene s is Homy equivalent to P aisi, a linear ombi-nation of oriented k-sequenes with oeÆients from the Homy skein module,if and only if a linear ombination of oriented staked k-tangles orrespond-ing to the linear ombination of oriented k-sequenes an be obtained fromthe oriented staked k-tangle determined by s by applying the Homy skeinrelation.We say that we use a rearrangement ation when applying Homy skeinrelations in order to obtain a Homy equivalent linear ombination of orientedk-sequenes.It follows that two oriented k-sequenes that are equivalent by renumberingare Homy equivalent.Whereas in the ase of Kau�man equivalene we had one relation thatwe showed for adjaent ars, in the ase of Homy equivalene there are four79



relations that we must make lear. We state them in the next two propositions,whih are proved in a similar way to the proof of Proposition 3.6.Proposition 4.6 Let 1 � a � k � 1 and b = a+ 1.1. Consider three oriented k-sequenes s1; s2; s3 suh that for 1 � p < q <r < t � 2k s1(p) = a s1(q) = �b s1(r) = �a s1(t) = bs2(p) = b s2(q) = �a s2(r) = �b s2(t) = as3(p) = a s3(q) = �a s3(r) = �b s3(t) = band for all other 1 � i � 2k s1(i) = s2(i) = s3(i).Then s1 is Homy equivalent to s2 � zs3.2. Consider three oriented k-sequenes s1; s2; s3 suh that for 1 � p < q <r < t � 2k s1(p) = �a s1(q) = b s1(r) = a s1(t) = �bs2(p) = �b s2(q) = a s2(r) = b s2(t) = �as3(p) = �a s3(q) = a s3(r) = b s3(t) = �band for all other 1 � i � 2k s1(i) = s2(i) = s3(i).Then s1 is Homy equivalent to s2 � zs3.Proposition 4.7 Let 1 � a � k � 1 and b = a+ 1.1. Consider three oriented k-sequenes s1; s2; s3 suh that for 1 � p < q <r < t � 2k s1(p) = a s1(q) = b s1(r) = �a s1(t) = �bs2(p) = b s2(q) = a s2(r) = �b s2(t) = �as3(p) = a s3(q) = b s3(r) = �b s3(t) = �aand for all other 1 � i � 2k s1(i) = s2(i) = s3(i).Then s1 is Homy equivalent to s2 + zs3.80



2. Consider three oriented k-sequenes s1; s2; s3 suh that for 1 � p < q <r < t � 2k s1(p) = �a s1(q) = �b s1(r) = a s1(t) = bs2(p) = �b s2(q) = �a s2(r) = b s2(t) = as3(p) = �a s3(q) = �b s3(r) = b s3(t) = aand for all other 1 � i � 2k s1(i) = s2(i) = s3(i).Then s1 is Homy equivalent to s2 + zs3.Having given these statements we are in a position to give a result thatmirrors Proposition 3.7, whih was the ornerstone of the algorithm that weoutlined for alulating the Kau�man polynomial of k-plaits.Proposition 4.8 An oriented k-sequene s with number r at position j where2 � r � k is Homy equivalent to a linear ombination of oriented k-sequeneseah with r � 1 at position j.An oriented k-sequene s with number �r at position j where 2 � r � kis Homy equivalent to a linear ombination of oriented k-sequenes eah with�(r � 1) at position j.ProofThis follows from Propositions 4.4 - 4.7 by similar onsiderations to the proofof Proposition 3.7.Proposition 4.9 An oriented k-sequene s that is inompatible with a gener-ator or inverse ��1i is Homy equivalent to a linear ombination of orientedk-sequenes ompatible with ��1i .ProofThis follows from Proposition 4.8. 81



4.4 AlgorithmIn this setion we outline the ways in whih this algorithm di�ers from thatof the previous hapter. Most of these onsiderations are due to how we makeallowanes for dealing with the orientation information enoded in orientedk-sequenes.We begin with a k-plait presentation represented as a staked k-tangle mul-tiplied by a braid word from B 2k losed o� by k ups at the bottom of thepresentation. We assign an orientation, or orientations if dealing with a link,and determine the initial orientations of the ars in the staked k-tangle.Proposition 4.8 shows that the signs of numbers in oriented k-sequenesdo not hange as we perform operations. As a result, we an use the set of(unoriented) k-sequenes along with one sequene to reord the orientations ofthe ars that the k-sequenes represent. In this way the algorithm operatesonsidering a muh smaller set of objets: we return to onsidering the (2k)!2kk-sequenes plus a sequene of 1s and �1s that ontain the information for theorientation of ars.The previous algorithm for alulating the Kau�man polynomial worked intwo stages: �rst we performed a series of renumberings and rearrangements inorder to ensure that k-sequenes were ompatible with the next generator in thebraid word. Then we multiplied the k-sequenes in our linear ombination, es-sentially swithing the two numbers at the appropriate point in the k-sequenesor multiplying oeÆients by v�1 if the endpoints represented belonged to thesame ar.Thus the algorithm for alulating the Homy polynomial of a knot pre-sented as a plait presentation funtions in the same way as that for the Kau�-man polynomial: we perform operations on k-sequenes, rearranging the linearombination at eah stage so that all of the k-sequenes are ompatible withthe next generator. The rearrangements are deided by how adjaent-numberedars are related in the k-sequene and from the sequene of 1s and �1s thatarry the orientation information.As with the algorithm of Chapter 3, we proeed at eah stage by ensuring82



that generators and inverses satisfy the ompatibility onditions of Proposi-tions 4.2 and 4.3. We onsider k-sequenes with the number k in the a�etedposition, and work to redue this number by renumbering or rearrangement tok � 1 if the onditions for ompatibility are not met; we then work in turn onk-sequenes with k� 1 in that position and so on. Renumbering is the same asbefore, as that operation on the oriented k-sequene reets the fat that twoars are in the same layer in the oriented staked k-tangle.Rearrangement in the Homy ase is not as straight-forward as the Kau�-man ase as we have additional information given by the orientation. Theorientation of adjaent ars has a bearing on the appliation of the skein rela-tions, partiularly the oriented k-sequene representing the smoothing. Whilethis is extra information to onsider in our appliation of the algorithm, it isnot something that is extremely diÆult to resolve, and there are only a verylimited number of ases to be onsidered. The relationships for all of these anbe seen in Propositions 4.6 and 4.7.One we have ompleted a series of renumbering and rearrangements wehave a linear ombination of oriented k-sequenes (by ombining the k-sequenesand the information of the sequene of signs) that are ompatible with the re-quired generator or inverse; we multiply and then move on to the next gener-ator or inverse. In this way we express an oriented k-sequene omposed witha braid word from B 2k as a linear ombination of oriented k-sequenes. In al-ulating the Homy polynomial of a k-plait these ations take us to the pointof onsidering losure by k ups muh as it did in the ase of the algorithm foralulating the Kau�man polynomial.The ation of losing o� proeeds in the same manner as for the algorithmof the previous hapter. We will not disuss this in detail here as the proedureis so similar: we perform rearrangements and renumberings on the linear om-bination of k-sequenes (with information from the sequene of signs) to satisfyan analogous ondition to Proposition 3.10 ensuring losure-ompatibility.83



4.5 ComplexityThe algorithm outlined in this hapter di�ers from the algorithm of the previoushapter, but only in the respet that a rearrangement operation now expressesa k-sequene as a linear ombination of two other k-sequenes, whereas inthe algorithm for alulating the Kau�man polynomial a rearrangement ationexpressed it as a linear ombination of three k-sequenes. This does not hangethe order of omplexity of the algorithm.The size of oeÆients in v and z grow quadratially with respet to  asin the previous algorithm. Hene, onsidered together, the algorithm works inpolynomial time, degree 4, with respet to  for a �xed k.As with the algorithm for the Kau�man polynomial, after a ertain pointthe algorithm will essentially perform the same amount of work with eahsubsequent rossing. From this point we an view the algorithm as a whole asbeing polynomial degree 3. Eah generator in the braid word after the ritialpoint has been reahed will at on a set of roughly the same size. It is possiblethat terms an ombine and redue the number of k-sequenes in an expression,but it will not vary greatly.The main area that the omplexity neessarily di�ers in is the fat that rear-rangement in the algorithm for Homy is expressed in terms of two k-sequenesrather than three. There are fewer terms in a rearrangement operation and sothe growth of the number of terms in the linear ombination of k-sequenes isless rapid. As we use the k-sequenes plus a sequene of signs the number ofk-sequenes ompatible with a given generator or inverse will be the same as inthe ase for the Kau�man algorithm under the onditions of Proposition 3.11.4.6 ImplementationIn Appendix A.3 we give the listing of the ode for this algorithm, implementedone again in Maple; it is well doumented and ommented, and so we will nowbriey onsider the few areas where it deviates from the algorithm for Kau�manin Appendix A.2. 84



As before we use the \permute" ommand to obtain the full set of k-sequenes. If we were to onsider the expliit set of oriented k-sequenes weould generate them in the same way. The problem with using the set of ori-ented k-sequenes to keep trak of oeÆients is that there are substantiallymore oriented k-sequenes than there are (unoriented) k-sequenes. We arefortunate that we have the observation about the signs of endpoints so thatwe an use the set of k-sequenes plus one other sequene whih stores theinformation about the signs of endpoints. This drastially redues the numberof elements that we must keep in memory and searh through.One again we use the subroutine SeqIndex (Appendix A.1) in order toobtain the index of a k-sequene that we require, either for renumbering, rear-rangement or multipliation. In the absene of a diret ommand whih ouldtake us to a desired k-sequene this is a useful routine to have.The only advantage we would have in using the oriented k-sequenes is thatwe ould have extended SeqIndex to obtain the index of a desired k-sequene:as any oriented k-sequene is a permutation of 2k distint symbols, and giventhat we know how Maple permutes elements in a list, we an derive a systemfor �nding one of these elements.The implementation that we give operates under the assumption that theorder of signs in the starting sequene is (�1; 1;�1; 1; : : :;�1; 1). This is easyenough to fore using Type I Reidemeister moves, but if this is inonvenientthen the program ould be easily altered so that it takes the starting on�gu-ration of the sequene of signs as another argument.
4.7 DisussionIn this setion we disuss ways in whih the work of the last two hapters anbe extended, either to look at problems that arise from the theory we havedisussed or to look at ways in whih we an improve on what I have outlined.85



4.7.1 Reverse parallel satellitesIn Chapter 2 we onsidered an extension to the result of Rudolph regardingHomy polynomials of reverse parallels of knots [54℄. When we onsider thereverse parallel of a k-plait with  rossings, we are essentially onsidering aplait of width 2k (although the losure is not immediately that of a plait as wehave de�ned it) with 4 rossings.A 2-parallel of a braid word from B 2k is a word from the braid group B 4k ,and words are mapped by their generators aording to the following map:� : ��1i ! ��12i ��12i+1��12i�1��12i :We move from onsidering linear ombinations of k-sequenes to linear om-binations of 2k-sequenes. This dramatially inreases both the number of se-quenes onsidered and the number of sequenes that will be ompatible witha partiular generator or inverse. Given that we will be onsidering four timesas many rossings, we need to do everything that we an in order to redue theamount of work performed by the algorithm.We onsider the ation of multipliation and onditions that ensure om-patibility in order to redue the amount of work performed by the algorithm.Consider the diagram of a 2-parallel of generator �i in Figure 4.4.s(2i� 1) s(2i) s(2i+ 1) s(2i+ 2)

Figure 4.4: 2-parallel of generator �i, �2i�2i+1�2i�1�2iProposition 4.10 A 2k-sequene s with s(2i�1) = s(2i) or s(2i+1) = s(2i+2) is ompatible with �2i�2i+1�2i�1�2i, the 2-parallel of a generator �i 2 B 2k .86



ProofThe staked 2k-tangle determined by the 2k-sequene in this ase would have anar joining one of the two possible adjaent positions, and the four generatorsin the 2-parallel of the single rossing would swith the loation of the joinedarea. See Figure 4.5 for an illustration.
Figure 4.5: Exeptional ompatibilityIf the onditions of Proposition 4.10 are met then we say that the 2k-sequenehas exeptional ompatibility with the 2-parallel of �i.Proposition 4.11 If a 2k-sequene s is suh thats(2i+ 1) � minfs(2i� 1); s(2i)g and s(2i+ 2) � minfs(2i� 1); s(2i)gthen s is ompatible with �2i�2i+1�2i�1�2i, the 2-parallel of a generator �i 2 B 2k .ProofIn order to satisfy Proposition 4.2 it must be the ase that s(2i+1) � s(2i�1)and s(2i + 1) � s(2i), and also s(2i + 2) � s(2i� 1) and s(2i + 2) � s(2i), asthese reet overrossing ars in the staked 2k-tangle. However, it annot betrue that both s(2i + 1) = s(2i � 1) and s(2i + 1) = s(2i) (and similarly fors(2i+ 2)). Hene to satisfy ompatibility onditionss(2i+ 1) � minfs(2i� 1); s(2i)g and s(2i+ 2) � minfs(2i� 1); s(2i)g:Our approah then is to use renumbering and rearrangement as before sothat these onditions are satis�ed and ompatibility is ensured. In the approah87



we an exlude any 2k-sequenes that satisfy exeptional ompatibility, andfous on those that still need attention.In the following disussion we refer to the 2-parallel of a braid generator;similar statements an be made for the 2-parallel of an inverse.As we need both s(2i + 1) and s(2i + 2) to be less than or equal to theminimum of fs(2i � 1); s(2i)g it makes sense as a �rst step to perform initialrearrangements and renumberings on values s(2i � 1), s(2i); the nature ofthese operations is to perform two passes, the �rst of whih ats to inrease anourrene of a 1 to a 2, and then to inrease an ourrene of a 2 to a 3 ineither of s(2i� 1) or s(2i). This guarantees that neither s(2i� 1) or s(2i) takethe minimum value.We perform the usual yle of renumbering and rearrangement on the valueof endpoint s(2i + 1). In this ase we are performing these operations only tothe point that s(2i+ 1) � minfs(2i� 1); s(2i)g.Upon ompletion of this series of operations, we at on the endpoint s(2i+2),and repeat the yle of operations so that s(2i + 2) � minfs(2i � 1); s(2i)g.When this is satis�ed for all 2k-sequenes in the linear ombination we have anexpression that is ompatible with the 2-parallel of a single rossing, and weperform multipliation in the usual way (at the 2k-sequene level, by movingnumbers in the sequene and multiplying by v if neessary).For 2k-sequenes that have been involved in rearrangements and renum-berings to ensure ompatibility for s(2i + 1) it an be seen that less work isperformed to then ensure ompatibility for s(2i+ 2) also. At most we performtwo full yles of rearrangement and renumbering, and inrease some values ofs(2i�1) and s(2i). Considering the situation of Figure 4.4 in the usual mannerwould involve performing four yles of rearrangements and renumberings toensure ompatibility, as well as intermediate multipliation steps.E�etively we have halved the amount of work done in terms of the numberof operations performed than if we had simply onsidered this as a 2k-plaitwith 4 rossings. Given that the set of 2k-sequenes is muh larger than theset of k-sequenes the bound on the number of operations that have to be88



performed in order to ensure regular ompatibility is muh larger; but we stillhave a saving in the amount of work that must be done in order to performmultipliation. This equates to roughly the amount of work done in alulatingthe polynomial for a 2-rossing 2k-plait with the normal losure, as opposedto this 4-rossing 2k-plait that has a \doubled" losure.If the initial sign sequene for the k-plait presentation is one of alternating+1s and �1s then the sign sequene for the reverse parallel will also be alternat-ing +1s and �1s. As multipliation by the four generators from the doublingup of a single rossing swaps two pairs of numbers, we an easily see that thesign sequene will remain onstant throughout the operation of the algorithm.The sign sequene for the reverse parallel an be reovered by onsidering theposition of an endpoint in the sequene: endpoints in positions 2n; 1 � n � 2khave sign +1, while endpoints in positions 2n� 1; 1 � n � 2k have sign �1.This example was motivated by an example for the Homy polynomial, butthe priniple of reduing the work of the main algorithm applies equally toalulating the Kau�man polynomial of 2-parallels.4.7.2 Band-generatorsAnother possible extension to the general priniple is to onsider the ase ofband-generator style presentations ([8℄ and [23℄).A generator ats, in band-generator notation, reets a potentially long wordin Artin braid presentations, withats = (�t�1�t�2 : : : �s+1)�s(��1s+1 : : : ��1t�2��1t�1)for 1 � s < t � 2k � 1 when taken from the braid group B 2k . The featurethat we are interested in are the parts of the band-generator in standard braidnotation of the form �r�r�1�r�2 : : : �r�a, i.e., one string rossing over manystrings.Rearrangements and renumberings ould be performed to ensure that thelinear ombination of k-sequenes is ompatible with the word �r�r�1�r�2 : : : �r�a,89



rather than by onsidering eah generator in turn. As with the reverse par-allel ase, we perform rearrangements and renumberings so that s(r + 1) �minfs(r); s(r� 1); : : : ; s(r� a)g; there will also be onditions for k-sequeneswith exeptional ompatibility, in a similar manner to how it was onsideredpreviously.While I have not examined this idea in detail, I believe that there areinteresting questions that ould be explored at a later date. The main questionthat ould be explored is whether band-generator presentations for knots anbe used in onjuntion with the approah that I have outlined for alulatingpolynomial invariants, in order to redue the work performed by the algorithm.A more tehnial question is whether an implementation (in some program-ming language) as we have previously desribed it ould bene�t from notiingsequenes of generators suh as �r�r�1�r�2 : : : �r�a, and whether this wouldthen allow a saving in work performed and alulation time rather than on-sidering eah of the generators in turn.4.7.3 Subsets of k-sequenesThe size of the set of k-sequenes grows drastially as k grows. As noted inChapter 1 it might often be easier to obtain a plait presentation with widthgreater than the bridge index. However, any alulations using the algorithmsthat we have outlined would be performing operations on a large set of objets;for k = 6 there are over seven million 6-sequenes to onsider.One strategy might be to begin with the starting sequene, (1122: : :kk), andfrom that generate the k-sequenes that are in use, i.e., those with non-zerooeÆients. In this way we restrit ourselves to only having a subset of thek-sequenes (and any oeÆients) in memory; for presentations that are wideand short, i.e., with relatively large k and small number of rossings , thisould be an asset in allowing omputation when generation and managementof the entire set of k-sequenes in memory would be impratial.Of ourse, this strategy would not be pratial in general for large valuesof  as the growth of the number of k-sequenes being stored might be too90



rapid to allow alulation. Also, we would not be able to optimise the searhroutines for the operations requiring us to move oeÆients unless we added yetmore struture and proedures to an implementation to order the k-sequenesin memory.4.7.4 Morse link presentationsConsider the two diagrams in Figure 4.6. The diagram on the left is a 4-plait

Figure 4.6: Presentations of the Kinoshita-Teresaka knotpresentation of the Kinoshita-Teresaka knot; the diagram on the right showsthe same presentation altered to show one important feature. The original plaitpresentation given has width 4, but the right-hand diagram has width 3 for themost part; we lose o� one up (to the left-most strings) and introdue anotherap and strings on the opposite side of the presentation, and ontinue with therest of the presentation as width 3, then width 2.While the presentation on the right of Figure 4.6 is not stritly a plaitpresentation it does o�er advantages for alulation if we onsider our methods.91



Calulating a polynomial invariant of a 4-plait involves performing operationson the set of 4-sequenes, whih has 2520 elements. The set of 3-sequeneshas only 90 elements, and these are all that we would need to onsider for the�rst half of the braid word. We ould then lose o� and pass oeÆients to anappropriate linear ombination of 3-sequenes as we introdue another ap.While it is true that there is a �xed �nite number of operations required toalulate a polynomial invariant for a 4-plait with  rossings, the orrespondingnumber for a 3-plait with  rossings will be muh smaller. The implementationsthat we have outlined operate by performing yles of operations on the set ofk-sequenes, and must yle through the entire set k � 1 times in order tohek onditions for ompatibility. If instead we are able to at on the set of(k� 1)-sequenes we are ating in a muh smaller set of elements, and we alsohave to perform fewer yles.A set of lear notation for the style of diagram to the left of Figure 4.6 wouldbe a valuable adaptation of the plait presentation format. If we were then ableto implement this in a programming language we ould make drasti savings onthe amount of work done by a program, and hene redue the time that it takesto omplete a alulation. One possibility is to use Morse link presentations(similar notation an be seen in [59℄); an instane of the information of thispresentation being used for omputing purposes an be seen in [34℄. Whilethere is always going to be some work involved in �rst obtaining a diagrammatipresentation for a knot as a plait or Morse link presentation, and in writing outhow the information of suh a presentation may be enoded, it will always bemore simple to do so than to alulate a polynomial invariant of the diagramby hand.4.7.5 Implementation in a ompiled languageWe have onsidered algorithms for both the Kau�man polynomial and theHomy polynomial, and implemented both of them in Maple. While this isuseful to show that the algorithm an be implemented in a omputing language,Maple is not without its aws for running the kinds of operations used in the92



approah that I have shown.While the ode that has been written is designed to work for a plait ofwidth k, Maple's own apabilities make it unlikely that it ould ope with anexample beyond k = 4 for an implementation that onsiders operations on thewhole set of k-sequenes. An implementation of the algorithm in a ompiledprogramming language like C++ ould o�er a lot.Firstly, a better method for organising the storage of the set of k-sequenesould be found, so that loating a k-sequene in memory might be an easiertask than it urrently is. More importantly, we ould improve the managementand storage of the oeÆients that are passed from one k-sequene to anotherthrough the various operations that are performed. One reason why the alu-lation slows down (in the Maple implementations) is that it is a diÆult proessto store all of the oeÆients, as well as organise the way that they are movedaround in memory. This leads to the program slowing down for larger valuesof , a situation whih ould be improved by implementing the algorithm in aompiled language.4.8 ExamplesThe alulations in this setion were performed on a omputer with an AMDDuron 1:59GHz proessor with 480MB of RAM, and using Maple 11 runningon the University of Liverpool Managed Windows Servie.4.8.1 Alternating 3-plait familyWe alulate the Homy polynomials of a family of alternating links basedaround the presentation�2�3�1�4�5�1(�1�1�2�3�1�4�5�1)2n�1�1�2�3�1�4for n 2 N . See Table 4.1 for results of the alulations. We list the numberof rossings in the presentation, the time taken by the program h_plait to93



alulate the Homy polynomial and the bound on the braid index as given byTheorem 1.8.These alulations and the alulations for the next example are importantbeause of the bound on the braid index that we obtain (from Theorem 1.8).Previous polynomial time algorithms for the alulation of the Homy poly-nomial have been based around a braid presentation of the knot. The braidindex of the larger examples we alulate here are substantially greater thanprevious programs ould handle.Other programs exist that are based on general diagrams of knots, but theseare limited in terms of the number of rossings that a diagram an have. Again,examples in the family of links that we have generated and alulated invariantsfor have substantially more rossings than previous programs ould deal with.4.8.2 Alternating 4-plait familyWe alulate the Homy polynomials of a family of alternating links basedaround the presentation�2�1�3�4�1�5�6�1�7(�1�2�1�3�4�1�5�6�1�7)2m�1�2�1�3�4�1�5�6�1for n 2 N . See Table 4.2 for results of the alulations. We list the numberof rossings in the presentation, the time taken by the program h_plait toalulate the Homy polynomial and the bound on the braid index.
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n  Calulation time MFW0 8 0.240 31 18 0.161 62 28 0.501 83 38 1.141 114 48 2.453 145 58 4.076 166 68 8.413 197 78 15.752 228 88 15.312 249 98 22.372 2710 108 31.345 3011 118 39.697 3212 128 52.905 3513 138 80.776 3814 148 104.471 4015 158 158.418 43Table 4.1: Calulation times and braid index bounds for alternating 3-plaits
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m  Calulation time MFW0 12 1.272 41 26 3.405 72 40 11.467 113 54 30.113 154 68 66.616 185 82 105.022 216 96 172.437 257 110 277.690 298 124 502.713 329 138 539.627 3510 152 780.252 39Table 4.2: Calulation times and braid index bounds for alternating 4-plaits
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Chapter 5
Genus 2 Mutation
5.1 IntrodutionThe work of this hapter appeared in a slightly di�erent form in the paper\Invariants of genus 2 mutants" [44℄, and was inspired by a talk that I attendedgiven by Alexander Shumakovith, one of the authors of [15℄.Genus 2 mutation of knots was introdued by Ruberman in a general 3-manifold [53℄. Cooper and Likorish gave an aount of an equivalent on-strution for knots in S3 using genus 2 handlebodies [13℄; it is this onstrutionthat we use here.Genus 2 mutant knots allow us to ompare knot invariants; it an be shownthat they share a ertain olletion of invariants, and thus any invariant onwhih some mutant pair di�ers must be ompletely independent of the sharedolletion. This proedure an be re�ned by restriting further the lass ofgenus 2 mutants under onsideration, so as to inrease the shared olletion,and then looking for invariants whih di�er on some restrited mutants.A survey of some of the known results about shared invariants for genus2 mutants is given in [15℄. The authors also give an example of a pair ofgenus 2 mutants with 75 rossings with di�erent Homy polynomials. Theseare smaller examples than the known satellites of the Conway and Kinoshita-Teresaka knots [42℄. 97



The authors onjetured that their pair of knots did not share Kau�manpolynomials, but alulations for knots of this omplexity are out of range ofurrent programs. In the absene of a alulation for their own knots they askedfor examples of genus 2 mutants whih do not share the Kau�man polynomial.In this hapter we desribe a pair of 55-rossing genus 2 mutant knots withdi�erent Homy polynomials, and show without performing a diret alulationthat they have di�erent Kau�man polynomials. We show other interestingresults for these examples regarding their Vassiliev invariants and quantumsl(3) invariants. We note also a distintion between general genus 2 mutantsand those arising as satellites of Conway mutant knots. Our 55-rossing pairof genus 2 mutants di�er on a degree 7 Vassiliev invariant, while the workof [11℄ showed that satellites of Conway mutants share all Vassiliev invariantsof degree � 8. This was more reently extended by Jun Murakami [47℄, whoshowed that satellites of Conway mutants share all Vassiliev invariants up todegree 10.We summarise the other examples of [44℄, giving some details of their Homyand Kau�man polynomials, as well as their Vassiliev invariants. Finally we referto a reent example of Stoimenow and Tanaka [57℄.5.2 Genus 2 mutationIn Chapter 1 we de�ned mutation of knots and links in the standard sense. Wenow give a onstrution for genus 2 mutation, due to Ruberman [53℄.De�nitionTake a framed oriented urve P in the standard genus 2 handlebody W (Pis framed as we use the framed Homy relations).Embed W in R3 by h : W ! R3 , to get a urve h(P ) � R3 .The �-rotation � : W !W , illustrated in Figure 5.1, has 6 �xed points on�W , where it restrits to the hyperellipti involution with quotient S2. This liesin the entre of the mapping lass group of �W and is unique up to onjugationby a homeomorphism isotopi to the identity.98



Apply � to P to get another urve �(P ) � W . The urves h(P ) and h(�(P ))are alled genus 2 mutants.
W �

Figure 5.1: The rotation �Theorem 5.1 ([44℄) Satellites of genus 2 mutants are themselves genus 2 mu-tants.Theorem 5.2 ([44℄) Genus 2 mutants have the same Jones polynomial.Theorem 5.2 then shows, by Theorem 5.1, that satellites of genus 2 mutantsannot be distinguished by their Jones polynomials.5.2.1 Genus 2 embeddings following a 2-tangleIn this setion we establish the framework in whih we onsider many of theexamples in this hapter. We will onsider diagrams of a ertain type (seeFigure 5.7) in order to separate the urve P and the embedding for the knot,and use these to study genus 2 mutation.We distinguish two types of oriented 2-tangle:1. A pure tangle, where the ars join the two bottom points to the orre-sponding top points on the same side.2. A transposing tangle, where the ars join the two bottom points to thetop points on opposite sides. 99



We now show how to use a framed oriented 2-tangle F to de�ne an embed-ding h :W ! R3 in suh a way that we an readily ompare the framed urvesh(P ) and h(�(P )).Let W be the thikening, S � I, of a standard surfae S, and de�ne h bythikening a map from S to SF .To speify h we assume that F has a framing, that is eah ar has a spei�edribbon neighbourhood. De�ne a surfae SF in R3 onsisting of a square plustwo ribbons following the framing of F . Figure 5.2 shows an example with thetangle from the Conway/Kinoshita-Teresaka knots.
Figure 5.2: The surfae following a framed tangleOur hoie of S, and hene the desription of h, depends on the nature ofthe tangle F . When F is a pure tangle the surfae SF is a dis with 2 holes.Take S to be the square with two ribbons in Figure 5.3 and map S to SF bytaking the square to the square, and the two ribbons to the ribbons around thears of F .

Figure 5.3: The dis with 2 holesWhen F is a transposing tangle the surfae SF is a torus with one hole.Take S to be the square with two ribbons in Figure 5.4 and again map S to SFby mapping the square to the square, and the ribbons around the ars of F .100



=
Figure 5.4: The torus with one holeWe say that h has been onstruted by following the tangle F . An embeddedhandlebody in R3 always arises by following some tangle F , although the hoieof F is not unique.
h(W ) = F

Figure 5.5: The handlebody following a tangle FWe an get a good view of the pair of mutants onstruted from a urveP � W by following a tangle F . The map � : W ! W is a thikened mapfrom S to S, whih maps the square and eah ribbon to itself.In the ase of pure tangles, � is �-rotation about the horizontal x-axis,whih we write as �1 when restrited to the square. For transposing tangles,� is �-rotation about the z-axis orthogonal to the plane of the square, and wewrite �2 for this rotation restrited to the square. These rotations are indiatedin Figure 5.6.Draw P as a diagram on the surfae S, so that its framing is the blakboardframing from S. We an assume that P runs through eah ribbon of S in anumber of parallel urves, possibly with di�erent orientations.101



�1 = , �2 = .Figure 5.6: Rotations of the squareSuppose that there are m1 urves in one ribbon and m2 in the seond,numbered from the attahment to the top edge of the square. The rest of theurve P determines a framed m-tangle T in the square, with m = m1 +m2.For a pure tangle F , the knot h(P ) has a diagram as shown in Figure 5.7,where F (m1;m2) is the (m1; m2) parallel of the framed tangle F with appropriateorientations, and the tangle T lies in the square. For a transposing tangle F ,the knot h(P ) has a diagram as shown in Figure 5.8, where F (m1;m2) is the(m1; m2) parallel of the framed tangle F with appropriate orientations, andthe tangle T lies in the square.Proposition 5.3 When h follows a pure tangle, the genus 2 mutant knoth(�(P )), has �1(T ) in plae of T , with all orientations in F (m1;m2) reversed.When h follows a transposing tangle, the genus 2 mutant knot h(�(P )) has�2(T ) in plae of T .ProofFor a pure tangle, �1 is the appropriate rotation applied to T . Reversing ori-entations does not e�et the Homy polynomial, and ensures that orientationsare aligned orretly.For a transposing tangle, �2 is the appropriate rotation applied to T .5.2.2 Conway mutantsIn setion 1.6 we introdued the idea of mutation of knots, as �rst introduedby Conway [12℄. We give a slightly di�erent de�nition here, formally de�ningthe rotations of the tangles.De�nitionFor an oriented tangle T write �1(T ) and �2(T ) for the �-rotations of T102



T F (m1;m2)m1 m2
Figure 5.7: The diagram for a knot following a pure tangle F

T F (m1;m2)m1 m2
Figure 5.8: The diagram for a knot following a transposing tangle F
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about the x-axis and z-axis respetively, as used above. Then �3(T ) = �1�2(T )is the �-rotation of T about the y-axis, so that�1(T ) = T , �2(T ) = T , �3(T ) = T ,Figure 5.9: Rotations for Conway mutationA knot K an be deomposed into two oriented 2-tangles F and G as inFigure 5.10. Any knot K 0 formed by replaing the tangle F with the tangleF 0 = �i(F ); i = 1; 2; 3, reversing its string orientations if neessary is alled amutant of K, or a Conway mutant of K.
K = F G K 0 = �i(F ) G

Figure 5.10: A knot with mutantsThe two 11-rossing knots in Figure 5.11 are the best-known example of apair of mutant knots; these knots were presented with di�erent diagrams inFigure 1.14.5.2.3 Conway mutants as genus 2 mutantsAny knot K made up of two 2-tangles F and G as in Figure 5.10 lies in twogenus 2 handlebodies, one following F and the other following G. Eah ofthese handlebodies de�nes a genus 2 mutant of K. We all them KF and KGrespetively. 104



F = ; G = ; F 0 = �3(F ):
Figure 5.11: The Conway and Kinoshita-Teresaka mutant pair, and their on-stituent tanglesSine K is a knot, spei�ally a link of one omponent, one of the tanglesof F and G is pure and the other is transposing. Suppose that F is pure. ThenKF and KG have diagrams as shown in Figure 5.12.

KF = F �1(G) KG = �2(F ) G
Figure 5.12: Genus 2 mutants of KWe an repeat the onstrution on these knots. The knot KF lies in thehandlebody following �1(G). Sine �1(G) is transposing we get a genus 2 mutantKF�1(G). The same knot KG�2(F ) = KF�1(G) arises as a genus 2 mutant of KGfrom the handlebody following �2(F ), shown in Figure 5.13.Proposition 5.4 Up to a hoie of string orientation the three knots KF ; KGand KF�1(G) are the three Conway mutants of K given by replaing F with�1(F ); �2(F ) or �3(F ) respetively. 105



KF�1(G) = �2(F ) �1(G) = KG�2(F )
Figure 5.13: A further genus 2 mutant, ompleting the Conway mutants of KProofBy omparing the diagrams with those resulting from the rotations of F it islear that they are the Conway mutants.It follows that satellites of Conway mutants, with this orientation onven-tion, are related by genus 2 mutation.5.3 Homy polynomials of genus 2 mutantsWe use the framed version of the Homy polynomial based on the skein relationsgiven in subsetion 1.5.2 with the substitution z = s� s�1.The Homy polynomial of a link in R3 is unhanged if the orientations ofall its omponents are reversed (Lemma 1.6). The Homy skein of the annulusC is unhanged when the annulus is rotated by �, reversing its ore orientation,and at the same time all string orientations are reversed [19℄.Thus in order to ompare the Homy polynomials of two genus 2 mutantsh(P ) and h(�(P )), or indeed any satellite of them, it is enough to onsiderh(�(P )) with orientation reversed.Given a framed oriented urve P in W we may regard W as the thikenedsurfae S whih is the dis with 2 holes in Figure 5.3, and ompare P with �(P )after reversing the orientation of �(P ). If we an present P as an (m1 +m2)-tangle in the square with m1 and m2 urves following the two ribbons then wean write P in the skein of the twie-puntured dis S as a linear ombination106



of simpler urves, eah presented by a tangle with at most this number of urvesin the ribbons.Even if our urve P has originally been drawn in a piture following atransposing tangle, with m1 and m2 urves around the ribbons there, it an beredrawn as a urve following a pure tangle with the same numbers m1 and m2.If m1 = m2 = 1 then the genus 2 mutants are Conway mutants, and byTheorem 1.9 their Homy polynomials agree.In the asem1; m2 � 2 the urve P redues in the skein of S to a ombinationof urves in the skein of S whih are unhanged by the rotation � with reversalof string orientation. This is essentially the result of Likorish and Lipson [30℄.There are a ouple of ases depending on the relative orientation of the urvesin the two ribbons. This argument overs the ase of any 2-string satellite ofa pair of Conway mutants, as these an be presented as genus 2 mutants withm1 = m2 = 2.The existene of 3-string satellite knots around the Conway and Kinoshita-Teresaka mutant pair with di�erent Homy polynomials [42℄ (following earlieralulations by Morton and Trazyk) shows that there are genus 2 mutants withm1 = m2 = 3, onstruted by following the onstituent tangle G in Figure 5.10,whih have di�erent Homy polynomials.Take, for example, the tangle T to be the 3-parallel F (3;3) of the tangle Fin Figure 5.10 omposed with the braid �1�2 and follow the tangle G to give aknot with 101 rossings. This is in fat a satellite of the Conway knot, whosegenus 2 mutant has �2(T ) in plae of T .5.4 Kau�man polynomials of genus 2 mutantsThe pair of 75 rossing genus 2 mutants given in [15℄ were shown to havedi�erent Homy polynomials, and the oeÆients were given expliitly in thepaper. The authors of [15℄ were unable to alulate the Kau�man polynomialsfor their 75 rossing examples, onstruted following the pure 7-rossing tangleDG shown in Figure 5.14. 107



DG =
Figure 5.14: The 7-rossing tangle DGAs noted previously, it is a omputationally diÆult task to alulate knotpolynomials; the Kau�man polynomial is more diÆult to alulate in generalthan the Homy polynomial.However, given the Homy polynomials of two knots, there is an indiretmethod that we an potentially use to show that their Kau�man polynomialsdi�er, and in partiular we an use this method in the ase of genus 2 mutation.Denote the onstant part of the Homy polynomial of a knot by P0(v) (i.e.,the oeÆient in v of z0). Similarly denote the onstant part of the Kau�manpolynomial of a knot by D0(v). The following result will be very useful for theexamples we give in the rest of this hapter.Lemma 5.5 ([28℄) For any knot, P0(v) = D0(v).If P0(v) di�ers for a pair of knots thenD0(v) di�ers also and hene the Kau�manpolynomials di�er. Hene if P0(v) di�ers for a pair of genus 2 mutants thenD0(v) di�ers also and hene the Kau�man polynomials of the genus 2 mutantsdi�er. This argument ould not be used for the pair of knots in [15℄, as theHomy polynomials of their knots had the same P0(v) term.The remainder of the work of this hapter is given to examples of pairsof genus 2 mutants with di�ering Kau�man polynomials; in all of these aseswe have shown indiretly that the Kau�man polynomials of the pairs di�erbeause their P0(v) terms di�er.We also give some details of the Vassiliev invariants of our examples, andsome information on their quantum sl(3) invariants.108



5.5 Main ResultInspired by the ombinatorial interpretations of the v = s3 substitution inHomy leading to the Kuperberg skein of the twie-puntured dis [43℄, we havefound a pair of examples following DG with m1 = 3; m2 = 2 and orientations+ +� and +�. The urve P is shown in Figure 5.15 as a diagram in the diswith two holes, S, along with the resulting 5-tangle T .P = T =
Figure 5.15: The urve P in the standard handlebody, and related tangle TWe onstrut two 55-rossing genus 2 mutants from P by following thetangle DG, to give the knot S55, shown in Figure 5.16. Its mutant partner S 055is given by a rotation of the tangle T .

S55 = S 055 =
Figure 5.16: Two 55-rossing genus 2 mutants with di�erent Homy and Kau�-man polynomialsTheorem 5.6 The genus 2 mutant knots S55 and S 055 have di�erent Homyand Kau�man polynomials. 109



ProofThe oeÆients for the Homy polynomials of S55 and S 055 are shown in Ta-bles 5.1 and 5.2. They were alulated using the program of Imafuji andOhiai [20℄, sine the knots are not readily expressed as losed braids.S55 v�4 v�2 1 v2 v4 v6 v8 v10 v121 �36 122 �143 67 �23 32 �23 5z2 �276 986 �1199 550 �148 223 �172 34 3z4 �757 3003 �3884 1811 �345 567 �478 75 20z6 �1048 4688 �6531 3158 �400 718 �690 76 45z8 �827 4243 �6360 3217 �253 499 �585 39 34z10 �388 2355 �3774 1985 �87 192 �302 10 10z12 �107 814 �1386 746 �15 38 �92 1 1z14 �16 171 �308 166 �1 3 �15z16 �1 20 �38 20 1z18 1 �2 1Table 5.1: CoeÆients of the Homy polynomial of S55Immediately we an see that they have di�erent Homy polynomials. The�rst row of oeÆients in eah table gives the value P0(v), and so Lemma 5.5shows that S55 and S 055 have di�erent Kau�man polynomials.Corollary 5.7 The Homy polynomials of S55 and S 055 still di�er after thesubstitution v = s3, and their Vassiliev invariants di�er at degree 7.ProofWe an look at sl(3) invariant information as a Laurent polynomial in s bymaking the substitutions z = s� s�1, v = s3. The di�erene is:s�24 �s4 � s2 + 1� �s4 + s3 + s2 + s+ 1� �s4 � s3 + s2 � s+ 1� �s8 + 1��s6 + s5 + s4 + s3 + s2 + s+ 1� �s6 � s5 + s4 � s3 + s2 � s+ 1��s2 + s+ 1�2 �s2 � s+ 1�2 �s4 + 1�2 �s2 + 1�3 (s� 1)8 (s+ 1)8110



S 055 v�4 v�2 1 v2 v4 v6 v8 v10 v121 �38 �135 �178 �116 �58 �39 �16 1z2 257 924 1171 662 288 209 60 �34 �16z4 �687 �2591 �3205 �1587 �562 �448 �72 142 54z6 964 3913 4779 2080 566 509 24 �226 �73z8 �782 �3530 �4260 �1623 �319 �334 10 172 43z10 377 1991 2356 766 100 126 �7 �67 �11z12 �106 �709 �814 �213 �16 �25 1 13 1z14 16 155 171 32 1 2 �1z16 �1 �19 �20 �2z18 1 1Table 5.2: CoeÆients of the Homy polynomial of S 055The fator (s� 1)8 shows that they di�er in a Vassiliev invariant of degree8 invariant arising from sl(3). However, we an obtain Vassiliev invariants forS55 and S 055 diretly as the oeÆients of powers of h in the power series givenby substituting z = eh2 � e�h2 , v = eNh2 . The lowest term in the di�erene ofthe power series for S55 and S 055 is3N(N � 1)(N � 2)(N � 3)(N + 3)(N + 2)(N + 1)h7;so these di�er in a Vassiliev invariant of degree at most 7.The 75 rossing examples from [15℄ have Vassiliev invariants that di�er atdegree 11; we alulated the di�erene at that degree to beN (N � 1) (N � 2) (N + 2) (N + 1) �13N2 + 51�h11using the same substitutions and method as previously.Their examples use a 6-tangle with m1 = m2 = 3, where the orientations ofthe three strands around one of the ribbons are + +� while around the otherthey are + + +. As with the example of our 55 rossing knots, the Homypolynomials of their 75 rossing knots remain di�erent when v = s3, however111



this was not shown in [15℄. The di�erene, as a Laurent polynomial in s, is:s�28 �s4 � s2 + 1� �s4 + s3 + s2 + s+ 1� �s4 � s3 + s2 � s+ 1��s8 + 1� �s6 + s5 + s4 + s3 + s2 + s+ 1� �s6 � s5 + s4 � s3 + s2 � s+ 1��s2 � s+ 1�2 �s2 + s+ 1�2 �s4 + 1�2 �s2 + 1�3 (s� 1)11 (s+ 1)11In the preparation of [44℄ we had originally tried to make use of the dif-ferene from the v = s3 substitution of the 75-rossing examples to show thatthe Kau�man polynomials were di�erent. We planned to argue through theomparison of the Homy polynomials of a ertain 2-string satellite at v = s4,without atually alulating this Homy polynomial, whih would be well outof range. Our aim was to make use of a omparison in [37℄ between this eval-uation of the satellite invariant and a di�erent evaluation of the Kau�manpolynomial of the original knots, knowing something of the evaluations of thesatellite invariant at v = s3.Unfortunately the di�erene in the invariants at v = s3 ontains a fator(s6 + s5 + s4 + s3 + s2 + s + 1) whih means that the agreement of the evalu-ations of the satellite at v = s4 an not be exluded. This has also proved tobe the ase in any other examples that we have found where the evaluations atv = s3 are di�erent, so there may be some underlying reason for this.5.6 Other Results5.6.1 A 72 rossing exampleTheorem 5.8 The genus 2 mutant pair of knots onstruted by following thetangle DG, with m1 = m2 = 3, using the 6-string positive permutation braid� = �1�2�1�3�2�4�3�5�4 or its reverse �1(�) as the tangle T , have di�erentKau�man polynomials.ProofThe two knots are presented as losed 9-braids with 72 rossings, so it is quiteeasy to alulate their Homy polynomials using the Morton-Short program112



based on the Heke algebras [45℄. When these are ompared they an be seento di�er in their onstant term P0(v). By Lemma 5.5 the onstant terms of theirKau�man polynomials di�er, and hene their Kau�man polynomials di�er.In the 72 rossing examples the string orientations around eah ribbon areall in the same sense + + +, and as a result the knots have the same Homyinvariant after the substitution v = s3. This is a general onsequene of theanalysis of the Kuperberg skein of the surfae S in [43℄ for the asem1 = m2 = 3in whih all the orientations around the ribbons are +.The Vassiliev invariants for our 72 rossing examples di�er at degree 7:3N(N � 1)(N � 2)(N � 3)(N + 3)(N + 2)(N + 1)h7:Consequently satellites of Conway mutants share more Vassiliev invariantsthan general genus 2 mutants, sine they have all Vassiliev invariants of degree� 10 in ommon, using the result from [42℄ that Vassiliev invariants of degree� k of a satellite K �Q are Vassiliev invariants of K of the same degree, andJun Murakami's result [47℄ about Vassiliev invariants of Conway mutants.5.6.2 A 56 rossing exampleThe pair of 56-rossing genus 2 mutants following the transposing Conwaytangle G with 6 rossings, using the 6-braid �2�3 and its rotation �2(�1�2) =�3�4 with m1 = m2 = 3, are shown in Figure 5.17. These are losed 9-braidsrelated to Conway and Kinoshita-Teresaka satellites.Like our 72-rossing examples in Theorem 5.8 it an be shown indiretlythat this pair have di�erent Kau�man polynomials, by alulating their Homypolynomials and then taking advantage of Lemma 5.5. They also di�er in adegree 7 Vassiliev invariant, but share the same value when v = s3.5.6.3 Further examplesVarious examples using the Conway tangle G as in Figure 5.17 with valuesm1 = 2 and m2 = 3 were tried in order to generate pairs of genus 2 mutants.113



Figure 5.17: Two losed 9-braid genus 2 mutants with di�erent Homy poly-nomialSome of these examples had fewer than 50 rossings, but none of the examplesthat were tried had di�ering Homy polynomials. It remains to be seen ifexamples of genus 2 mutants with di�ering Homy and Kau�man polynomialsan be found that have fewer than 55 rossings.We have been unable to ompute Kau�man diretly for any of the examplesthat we have shown, and have always relied on Lemma 5.5 and a di�ering P0(v)value in the alulated Homy polynomials.The starting point for this investigation was the example of [15℄, and ourinitial approah was to attempt to indiretly alulate the di�erene of theKau�man polynomials of the mutant pair. Using the theory of manipulatingstaked tangles in the Kau�man skein (as in Chapter 3) we were able to showa non-zero di�erene at the level of tangles by expressing T � �2(T ) as a linearombination of staked 6-tangles. While we were able to use this to expressthe di�erene of the original pair of knots as a sum of simpler diagrams, someof whih had fewer than twenty rossings, it was still not possible to diretlyalulate the values of the larger diagrams in this linear ombination.Thus while we have been able to show that the Kau�man polynomials ofgenus 2 mutants an di�er, we were unable to answer the �rst question posedin [15℄, and it is unknown whether the Kau�man polynomials of the 75-rossingexamples di�er. 114



5.7 A reent resultA reent paper of Stoimenow and Tanaka gives a pair of 56-rossing knots re-lated by genus 2 mutation with di�ering Homy and Kau�man polynomials,although the authors do not refer to them as genus 2 mutants [57℄. The ex-amples are Whitehead doubles of the 14-rossing genus 2 mutants 1441721 and1442125. The 14-rossing knots have presentations in a genus 2 handlebody withm1 = 2 and m2 = 1, and so have idential Homy and Kau�man polynomials.The authors of [15℄ also use the same pair of 14-rossing knots to show aresult in Khovanov homology, and they are referened in [44℄. The knots followthe pure tangle AB in Figure 5.18 and use the urve P , shown in Figure 5.19as a diagram in the dis with two holes along with the resulting 3-tangle T .
=

Figure 5.18: The tangle AB used in [15℄
P = T =

Figure 5.19: A urve P , and related tangle TBy Theorem 5.1 any of their satellites will be related by genus 2 mutationalso, and so the pair of knots that Stoimenow and Tanaka alulated knotpolynomials for give another example of genus 2 mutants with di�ering Homyand Kau�man polynomials. 115



The P0(v) term is idential for the two 14-rossing knots so we annotdedue indiretly that they have di�erent Kau�man polynomials: it an beshown from a skein theoreti argument that if P0(v) oinides for two knotsthen it will oinide for any satellites of those knots.The authors of [57℄ were able to alulate the Kau�man polynomials ofthe Whitehead doubles of 1441721 and 1442125 almost diretly. They showedthat the Kau�man polynomials of the 2-ables of the 14-rossing knots weredi�erent, and then by a skein theoreti argument they were able to show thatthe Kau�man polynomials of the Whitehead doubles of the knots would di�er.As with all of our examples save for S55 and S 055, there is no di�erene inthe Homy polynomials of these examples with substitution v = s3, althoughthey do di�er with the substitution v = s4. The Vassiliev invariants di�er atdegree 11 as follows:4N3 (N � 1) (N � 2) (N � 3) (N + 3) (N + 2) (N + 1)h11:5.8 DisussionThere are several areas of interest arising from the work of this hapter, andfrom the area of polynomial invariants of genus 2 mutation. The examplesof Theorem 5.6 provide 55-rossing genus 2 mutants with di�ering Homyand Kau�man polynomials. These appear to be the smallest examples in theliterature in terms of rossing number.In searhing for smaller examples we know that suh pairs of genus 2 mu-tants must have a ertain degree of omplexity. As stated earlier, genus 2mutants with m1; m2 � 2 are guaranteed to have idential Homy and Kau�-man polynomials. When m1 = 3, m2 = 2 we have the �rst instane that wean hope to see di�ering polynomials; this naturally leads to a reasonably highlower bound on the number of rossings that a knot must have for it to be oneof a pair of genus 2 mutants with di�ering Homy and Kau�man polynomi-als. In the preparation of [44℄ examples of genus 2 mutants with as few as 40rossings were examined, but they did not di�er on their Homy polynomials.116



As the P0(v) values of these smaller examples were idential an assessmentas to whether or not their Kau�man polynomials di�ered ould not be made.An interesting question that I believe is open is whether genus 2 mutants withdi�ering Homy polynomials are guaranteed to have di�ering Kau�man polyno-mials. Similarly, if a pair of genus 2 mutants have idential Homy polynomialsdoes that mean that they will have idential Kau�man polynomials?Our 55-rossing knots and the 75-rossing knots of [15℄ both have di�eringHomy polynomials after the substitution v = s3, but our other examples andthe example of [57℄ do not; both our example and the example of [15℄ have thefeature that they follow the tangle DG. Further investigation into the pure andtransposing tangles that one uses in onstruting these examples might lead toan answer.Finally, we note that our three examples di�er at degree 7 for Vassilievinvariants. This is in ontrast both to the examples of [15℄ and [57℄, whihdi�ered at degree 11, and to the general theory for Conway mutants, where itis known that Vassiliev invariants must agree up to degree 10 [47℄. Firstly, whatis di�erent about our examples ompared to the examples of [15℄ and [57℄ thatallows an earlier di�erene in Vassiliev invariants? Seondly, how do Vassilievinvariants behave in general for genus 2 mutants? The result of [47℄ guaranteesthat genus 2 mutants that result from satellites of Conway mutants must haveVassiliev invariants agreeing up to degree 10, but we know very little about theVassiliev invariants of genus 2 mutants in general.
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Chapter 6
Kau�man Polynomials ofPretzel Links
6.1 IntrodutionPretzel links are an interesting lass of links for study. They have a regularstruture, and it is easy to give notation for desribing them.Reidemeister �rst onsidered them [51℄, and pretzels have been used manytimes to show ertain properties of knots or links. Trotter used them to showthat non-invertible knots exist [58℄; Landvoy gave an easily implemented al-gorithm for alulating the Jones polynomial [27℄, and more reently Mortonused the onstrution to show some interesting results in mutation [40℄.In this hapter, we take advantage of the regular struture of pretzels toonstrut an algorithm for alulating the Kau�man polynomial of pretzel links.Theorem 6.2 starts by showing that we an express the Kau�man polynomial ofa pretzel diagram as a linear ombination of the Kau�man polynomials of muhsimpler diagrams; later in the hapter we use the term \elementary pretzel"to denote these diagrams and show that by plaing some restritions on thesediagrams we obtain a good algorithm for alulating the Kau�man polynomial.This algorithm is easily implemented in Maple, and in priniple it is moreeÆient than an algorithm that works on a naive approah on the number of119



rossings in a diagram. The algorithm operates by alulating ertain oeÆ-ients from reurrene relations; while we are able to obtain generating fun-tions from these reurrene relations we note at the end of the hapter that thegenerating funtions pose problems when implemented in Maple.6.2 Pretzel LinksDe�nitionA pretzel link is given by a sequene of half twists onneted in a ertainway, as in the example of Figure 6.1. General pretzels an be represented bya k-tuple (p1; p2; : : : ; pk), k � 3, pi 2 Z, 1 � i � k. jpij is the number of halftwists, and the sign of pi denotes whether the jpij half twists are right-handedor left-handed (L+ or L� respetively). Figure 6.2 gives this more general formof (p1; p2; : : : ; pk).
Figure 6.1: The pretzel (3; 3;�2)

p1 p2 pk� � �� � �Figure 6.2: The pretzel (p1; p2; : : : ; pk)We take k > 2, as k = 1 would give a diagram whih is a twisted unknot, andk = 2 would give a diagram whih is a losed 2-braid.120



Theorem 6.1 If k is odd and all of the pi are odd then a knot is produed. Ifk is even and all of the pi are odd then a two omponent link is produed. Elsethe number of even pi gives the number of omponents for k both even or odd.ProofThe �rst two ases an be realised by onsidering how one travels around thediagram starting from a point. The third ase an be shown simply by observingthat two even pi in a k-tuple have a link omponent between them; we an drawa irle between eah of the even pi to represent a link omponent, and if thenumber of even pi is m it is not diÆult to see that there will be m irles andhene m omponents.Hene, a k-tuple denotes a knot if and only if k is odd and all of the pi are odd,or if there is exatly one even pi. In all other ases the k-tuple gives a link.In general, permutation of the pi oding for a knot results in knots relatedby mutation, and hene these will have idential Kau�man polynomials. Per-muting the pi of a 3-pretzel always results in an isotopi link. This an beobserved simply from the struture of 3-pretzels.6.3 Twists in the Kau�man skeinThe regular struture of pretzels suggests that there might be some shortutthat we an take over the general approah that the skein relations give usfor alulating the Kau�man polynomial. The approah of this hapter is toexpress jpij half-twists as a linear ombination of single half-twists and thetwo smoothings, with oeÆients from the Kau�man skein. We an onstrutreursive formulae for the oeÆients of these linear ombinations, and thesegive a method of easily expressing n half-twists as a linear ombination of threeelements.Using these formulae on the sequenes of half-twists within a pretzel stru-ture we get a linear ombination of muh simpler diagrams: we trade onediagram with a large number of rossings for many diagrams with far fewerrossings. 121



In the following disussion we borrow the language of braid groups (withonly a few small abuses) to express the rossings in the half twists; we take �to be a single right-handed rossing, ��1 to be a single left-handed rossing,e to be the identity represented by L0 and h to be the L1 smoothing. Weonsider the following ations to be taking plae in the Kau�man skein algebraof (2; 2)-tangles.Theorem 6.2 The Kau�man polynomial of a pretzel link (p1; p2; : : : ; pk) anbe expressed as a linear ombination of the Kau�man polynomials of at most 3kdiagrams, eah with at most k rossings, with oeÆients from the Kau�manskein.ProofWe �rst show that we an express n half twists as a linear ombination of singlehalf twists and smoothings. We write the main Kau�man skein relation as� � ��1 = z (e � h);and by the Kau�man skein relation for framing we see�h = h� = v���1h = h��1 = v�1hNow onsider the following rearrangement:� � ��1 = z (e � h)� = ��1 + ze� zh�2 = ��1� + ze� � zh��2 = e + z� � vzh= z� + e� vzh:Thus we have a relation for expressing �2 in terms of �, e and h with oeÆientsin v and z from the Kau�man skein. 122



Lemma 6.3 n right-handed rossings, written �n, an be expressed as a linearombination of a single right-handed rossing � and smoothings e and h in thefollowing way �n = f1(n)� + f1(n� 1)e+ f3(n)hwhere f1 and f3 are reurrene relations de�ned byf1(n) = zf1(n� 1) + f1(n� 2) f1(0) = 0; f1(1) = 1f3(n) = v(f3(n� 1)� zf1(n� 1)) f3(1) = 0ProofFrom our result for �2 there is no doubt that we an onstrut a reursivemethod for alulating an expression for �n in terms of �, e and h, so we needonly show what form this relation takes. Initially de�ne�n = f1(n)� + f2(n)e+ f3(n)hwhere f1, f2 and f3 are reurrene relations for polynomials in v and z.Take the expression for the ase of �n�1 and multiply both sides of the ex-pression by �. We then use the result for �2 in order to evaluate the expressionfurther. �n�1 = f1(n� 1)� + f2(n� 1)e+ f3(n� 1)h�n = f1(n� 1)�2 + f2(n� 1)e� + f3(n� 1)h�= f1(n� 1)(z� + e� vzh) + f2(n� 1)� + vf3(n� 1)h= (zf1(n� 1) + f2(n� 1))� + f1(n� 1)e+ v(f3(n� 1)� f1(n� 1))h:We ompare the two expressions for �n and evaluate the reurrene relationsas f1(n) = zf1(n� 1) + f2(n� 1)f2(n) = f1(n� 1)f3(n) = v(f3(n� 1)� zf1(n� 1)):123



The relation f2(n) is in terms of f1(n), and hene the reurrene relation forf1(n) is more helpfully written asf1(n) = zf1(n� 1) + f1(n� 2):Consequently, our expression for �n an be written as�n = f1(n)� + f1(n� 1)e+ f3(n)h;and from results already known we an state the initial onditions for thesereurrene relations:f1(n) = zf1(n� 1) + f1(n� 2) f1(0) = 0; f1(1) = 1f3(n) = v(f3(n� 1)� zf1(n� 1)) f3(1) = 0From the Kau�man skein relation we obtain��2 = �z��1 + e+ v�1zh:As before we will be able to �nd an expression for ��n in terms of the expressionfor ��(n�1), and so on, bak to the expression we have for ��2. As with thease for �n we work by omparing the general ase for ��n with the expressionfor ��(n�1) multiplied by ��1. This leads us to the following result whih westate without proof.Lemma 6.4 n left-handed rossings, written ��n, an be expressed as a linearombination of a single left-handed rossing ��1 and smoothings e and h in thefollowing way ��n = g1(n)��1 + g1(n� 1)e+ g3(n)hwhere g1 and g3 are reurrene relations de�ned byg1(n) = g1(n� 2)� zg1(n� 1) g1(0) = 0; g1(1) = 1g3(n) = v�1(zg1(n� 1) + g3(n� 1)) g3(1) = 0124



With Lemma 6.3 and Lemma 6.4 we are in a position to prove Theorem 6.2.Consider the diagram of a pretzel given by (p1; : : : ; pk). By Lemma 6.3and Lemma 6.4, for eah pi, we an express the jpij half-twists as a linearombination of three di�erent diagrams. These are a single rossing (right-handed or lefthanded), and the two possible smoothings from the Kau�manskein.Applying these results to eah pi gives a linear ombination of at most threeterms. Taken over the k twists this then gives a total of at most 3k di�erentdiagrams in the sum. One diagram in the sum will have a single rossing ineah of the plaes, resulting in a diagram with k rossings. The other 3k � 1diagrams will have fewer rossings.The upper bound on the number of diagrams, 3k, is sharp if and only if jpij > 1for all 1 � i � k.It is worth noting that unless all of the pi are of the same sign, the diagramwith k rossings mentioned in the proof of Theorem 6.2 an be simpli�ed furtherusing Type II Reidemeister moves.The reurrene relations are simple to mehanise in a omputing language.It is relatively straight forward to realise some ode that will alulate theoeÆients for the terms in the expressions of �n and ��n. In general reurrenerelations an be quite intensive proedures to run, but in Maple we an add theode \option remember" whih generates a table of values as the proedureruns. We gain the illusion of speed at the expense of storing values in memory.We give some ode for alulating these oeÆients later in the hapter.6.4 Cubi RelationThere is a ubi relation that we an show for the right-handed rossing �. Wehave to rearrange to remove h from the expressions that we build up (using therearrangement h = e� 1z� + 1z��1).� = ��1 + ze� zh�2 = z� + e� vzh125



We replae h with the terms in e, � and ��1, and then take e (as an identityelement) to have value 1. Then�2 = z� + e� vzh�2 = z� + 1� vz(1� 1z � + 1z ��1)�2 = z� + 1� vz + v� � v��1and by multiplying through by � and olleting terms�3 = z�2 + � � vz� + v�2 � v�3 = (z + v)�2 + (1� vz)� � v:We take the speialisation z = s � s�1, and then rearrange to give a ubiequation in � with oeÆients in v and z:�3 � (s� s�1 + v)�2 � (1� v(s� s�1))� + v = 0:This fatorises to give�1s (�s+ 1)(�s + �)(�� + v) = 0whih has roots � = �s�1, � = s, � = v.The roots of this equation give us a way of de�ning generating funtions forthe oeÆients. However, in the method that we will outline this will not behelpful due to the elimination of the term in h. Later in the hapter we willonsider generating funtions obtained from the reurrene relations.6.5 Elementary PretzelsWe now turn our attention to the simpler diagrams that result from the appli-ation of Theorem 6.2.De�nitionAn elementary pretzel is given by a sequene r = [r1; r2; : : : ; rk℄, wherethe ri are elements from the set f+1;�1; 0;1g and represent respetively a126



righthanded rossing, a left-handed rossing, the smoothing L0 and the smooth-ing L1. The sequene r de�nes a diagram in a similar way to the k-tuples thatgive pretzel diagrams. The ri are thought of diagrammatially as being in thesame loation as the pi in the de�nition of pretzels.Consider the diagram of the elementary pretzel [+1;+1;�1;1; 0℄ as in Fig-ure 6.3. The value of this diagram in the Kau�man skein is v�1, but in generalwe ould have a more diÆult knotted struture.
Figure 6.3: Diagram for elementary pretzel [+1;+1;�1;1; 0℄Consider the rotation of Figure 6.3 through 90 degrees. If we had diagramsthat did not ontain the smoothing L0 then by rotating an elementary pretzelthrough 90 degrees we ould see easily the number of rossings that the diagramatually ontained. Due to the simple struture that suh diagrams have, theKau�man polynomial of this diagram ould be realised as a simple sum oftwisted or disjoint unknots with oeÆients provided by the reurrene relationswe have already evaluated.Proposition 6.5 n half twists, whether right-handed or left-handed, an berepresented as a linear ombination of right-handed and left-handed rossings,and the smoothing L1 represented by the element h. The oeÆients of thesethree terms an be obtained from the reurrene relations established in Lem-mas 6.3 and 6.4.ProofThe main Kau�man skein relations have four terms, and so we an always ex-press any linear ombination of these four elements in terms of at most three ofthem. Thus in expressing �n and ��n in terms of single rossings and smooth-ings we an eliminate terms in e. 127



Then �n = f1(n)� + f1(n� 1)e+ f3(n)h= f1(n)� + f1(n� 1)(z�1� � z�1��1 + h) + f3(n)h= (f1(n) + z�1f1(n� 1))� � z�1f1(n� 1)��1+(f3(n) + f1(n� 1))hand ��n = g1(n)��1 + g1(n� 1)e + g3(n)h= g1(n)��1 + g1(n� 1)(z�1� � z�1��1 + h) + g3(n)h= z�1g1(n� 1)� + (g1(n)� z�1g1(n� 1))��1+(g3(n) + g1(n� 1))h;taking the same values for the reurrene relations as de�ned previously inLemmas 6.3 and 6.4.Corollary 6.6 The Kau�man polynomial of a pretzel p = (p1; : : : ; pk) an beexpressed as a linear ombination of the Kau�man polynomials of 3k elementarypretzels of the form [r1; : : : ; rk℄ where the ri are elements of the set f+1;�1;1g.ProofApplying Proposition 6.5 to the proof of Theorem 6.2 shows this result.De�nitionLet r+ be the number of right-handed rossings in an elementary pretzelr, and r� be the number of left-handed rossings.De�nitionFor an elementary pretzel, r, without the smoothing L0 we obtain a diagramrN by rotating r through 90 degrees and viewing it as in Figure 6.4. This allowsus to see the number of rossings and the handedness of these rossings, whihwe an obtain from r as N = r� � r+.128



NFigure 6.4: Diagram rNLemma 6.7 The Kau�man polynomial of a diagram rN isD(rN) = 8>><>>: Æ N = 0f1(N)v + f1(N � 1)Æ + f3(N) N > 0g1(N)v�1 + g1(N � 1)Æ + g3(N) N < 0with relations f1, f3, g1 and g3 de�ned as previously.ProofThe diagram r0 is a pair of disjoint unknots, and so has value Æ as de�ned inSetion 1.5.3. The Kau�man polynomial of rN for N 6= 0 is easy to alulateusing the reurrene relations of Lemmas 6.3 and 6.4. Applying these formulaeto a diagram rN will result in a linear ombination of at most three diagrams,these being the unknot, a twisted unknot, and two disjoint unknots.We restate Theorem 6.2 as Theorem 6.8.Theorem 6.8 The Kau�man polynomial of a pretzel p = (p1; p2; : : : ; pk) anbe expressed as a linear ombination of the Kau�man polynomials of diagramsof the form rN , where N varies between �k and k.ProofBy Corollary 6.6 we express p as a linear ombination of 3k elementary pretzelsin the Kau�man skein. Eah of these elementary pretzels an be expressed assome diagram of the form rN . The values for N are derived from the possibleelementary pretzels of length k: we express the sum of 3k elementary pretzelsas a linear ombination of the 2k + 1 possible diagrams of the form rN whereN varies between �k and k. 129



6.6 AlgorithmWe ombine the various results that we have shown in this hapter to give analgorithm for alulating the Kau�man polynomial of pretzel links.For eah pi in a sequene for a pretzel p = (p1; : : : ; pk) we alulate theoeÆients from representing those jpij half twists as a linear ombination ofthe elements �, ��1 and h.E�etively we are obtaining the information that we need to express thediagram given by the k-tuple p as a linear ombination of 3k elementary pretzelsr = [r1; : : : ; rk℄ and whih have oeÆients from the Kau�man skein given byertain produts of the oeÆients obtained by evaluating the pi.Expressing the pi as a linear ombination of the elements �, ��1 and hmeans that the 3k elementary pretzels of Corollary 6.6 will be given by allof the possible elementary pretzels of length k where the terms ri are fromelements in the set f+1;�1;1g.The Kau�man polynomial of eah of these 3k diagrams is now easily alu-lable if we onsider them to be in the format of Figure 6.4. By alulating theKau�man polynomials of these rN we omplete the alulation of the Kau�manpolynomial of the pretzel link p = (p1; : : : ; pk).This is a simple algorithm to onsider on paper, but the oeÆients willbe muh too unwieldy to alulate invariants of any non-trivial examples byhand. The algorithm is readily implemented in a programming language. Inthe next setion we give an example of a series of Maple proedures that leadto an implementation for alulating the Kau�man polynomial of a pretzel.6.7 ImplementationThe most straight forward way to implement this algorithm, I believe, is tostart with the reurrene relations that we de�ned earlier, and then build upthe program piee by piee. We use these relations in other proedures, whihdo more and more ompliated things but ontinue to look relatively simple.Eventually we are able to give the main routine whih performs the algorithm,130



alling in the relative sub-proedures as neessary.The bene�t of this approah is that the main routine is relatively lear, andis not luttered with overly ompliated expressions and lines of ode.6.7.1 Reurrene RelationsWe begin by giving the proedures for the four reurrene relations (from Lem-mas 6.3 and 6.4). These are the foundation of the algorithm, and so are ofgreat importane in the implementation. The line of ode \option remember"in eah routine improves the speed of the proedures by reating a table ofpreviously alulated values. We gain the illusion of speed in alulation byinreasing memory use to store these values.f1 := pro(n::nonnegint)option remember:if n=1 then return 1: end if:if n=0 then return 0: end if:return expand(z * f1(n-1) + f1(n-2));end pro:f3 := pro(n::nonnegint)option remember:if n=1 then return 0: end if:return expand(v * (f3(n-1) - z * f1(n-1)));end pro:g1 := pro(n::nonnegint)option remember:if n=1 then return 1: end if:if n=0 then return 0: end if:return expand(g1(n-2) - z * g1(n-1));end pro: 131



g3 := pro(n::nonnegint)if n=1 then return 0: end if:return expand( (1/v) * (z * g1(n-1) + g3(n-1)));end pro:With these proedures we have the foundations of an implementation of thealgorithm.6.7.2 Building Up ProeduresWe reate proedures whih return triples of oeÆients for �n and ��n, whenthey are expressed as linear ombinations of �, ��1 and h.SIGMAn := pro(n::posint)loal output:output := [0,0,0℄:#output[1℄ is the oeff of {sigma}output[1℄ := expand( (1/z) * f1(n+1) ):#output[2℄ is the oeff of {sigma}^(-1)output[2℄ := expand( -(1/z) * f1(n-1) ):#output[3℄ is the oeff of houtput[3℄ := expand( f3(n) + f1(n-1) ):output;end pro:SIGMA_n := pro(n::posint)loal output:output := [0,0,0℄:#output[1℄ is the oeff of {sigma}output[1℄ := expand( (1/z) * g1(n-1) ):#output[2℄ is the oeff of {sigma}^(-1)output[2℄ := expand( - (1/z) * g1(n+1) ):#output[3℄ is the oeff of h 132



output[3℄ := expand( g3(n) + g1(n-1) ):output;end pro:Note that in both SIGMAn and SIGMA_n we ould set the values diretly as wede�ne the triple output; however, by writing the ode in the manner that Ihave given it is lear how we are arriving at these oeÆients.The entries for output[1℄ in SIGMAn and output[2℄ in SIGMA_n have beenslightly simpli�ed by onsidering the reurrene relations.The pi in a k-tuple for a pretzel an be positive or negative. Rather thanuse SIGMAn and SIGMA_n diretly in the main routine it is simpler if we have asmaller routine that will all the appropriate proedure to deliver the output.One way that we an implement this is as follows.Koeff := pro(n::integer)loal out:if n = 0 thenout := [ 1/z, -1/z, 1 ℄:elif n > 0 thenout := SIGMAn(n):elif n < 0 thenout := SIGMA_n(-n):end if:out;end pro:As we will use Koeff in the alulation of the Kau�man polynomial of dia-grams of the form rN we inlude the possibility of an input of 0.One �nal subroutine that we require is something that gives the value of Nfor a redued diagram r in the format rN .Reall that N = r� � r+. In this implementation we denote right-handedrossings with +1, lefthanded rossings by �1 and the smoothing L1 by 0, as itdoes not ontribute to the sum of rossings. Hene N is the sum of the entries133



in r multiplied by �1, and we an implement this funtion with the followingroutine.r2N := pro()loal t,i:t := 0:for i from 1 to nargs do t := t + args[i℄ end do:-t;end pro:6.7.3 The Main RoutineWith the proedures that we have built up, we are now in a position to imple-ment the omplete algorithm.I have tried to give the implementation in as simple a manner as possible,and give a short outline after the listing of the program.with(ombinat, permute):##permute required to generate the desired##possible elementary pretzels of length kpretzel := pro()loal A,L,M1,M,N,i,j,k,C,store,total:k := nargs:L := [seq(1,i=1..k), seq(-1,i=1..k), seq(0,i=1..k)℄:M1 := permute(L,k): M := Array(1..nops(M1)):for i from 1 to nops(M1) do M[i℄ := M1[i℄ end do:##M represents the set of elementary pretzels##of length k where eah r_i is a rossing or hM1 := 'M1': C := [args℄:for i from 1 to k do C[i℄ := Koeff(C[i℄) end do:total := 0:for i from 1 to ArrayNumElems(M) do##for eah elementary pretzel134



store := 0: N := r2N(op(M[i℄)): A := Koeff(N):store := expand((1/v)*A[1℄+v*A[2℄+A[3℄):##in the loop the initial assignment for store is a##alulation of the Kauffman polynomial for some##diagram r_Nfor j from 1 to k doif M[i℄[j℄ = 1 thenstore := expand(store*C[j℄[1℄):elif M[i℄[j℄ = -1 thenstore := expand(store*C[j℄[2℄):elif M[i℄[j℄ = 0 thenstore := expand(store*C[j℄[3℄):end if:end do:##the previous loop alulates the ontribution##to the oeffiient of eah of the r_i, passed from##the linear ombination of the p_itotal := expand(total+store):end do:ollet(expand(total),z);end pro:The proedure works by �rst produing a list of all of the possible sequenesr = [r1; : : : ; rk℄, where the ri are elements of the set f+1;�1;1g. Thesesequenes are the elementary pretzels we will onsider. Then the oeÆients ofexpressing eah of the pi as a linear ombination of �, ��1 and h are alulated.We sum over the set of the r we have established; we multiply by the appropriateoeÆients resulting from the alulations of the expressions of the pi andalulate the Kau�man polynomials of the redued diagrams r by onsideringthem in the format rN .As we have developed the proedure Koeff it is simpler to use this toalulate the oeÆients of the linear ombination of twisted unknots that135



result from alulating the Kau�man polynomial of a diagram rN , rather thanuse the funtion we de�ned previously in Lemma 6.7.
6.7.4 RemarkPermuting the pi for a pretzel link does not hange the Kau�man polynomial,as permuting the pi is the same as performing mutations on the link. Thus wean onsider performing alulations with the set of twists: the order is notimportant.One way that we might improve our alulations is to reorder the sequene(p1; p2; : : :; pk) so that we �rst onsider the positive pi ordered to be stritly non-dereasing, and then the negative pi so that they are stritly non-inreasing.In this manner we an build up a table of results (option remember in Maple)in an organised way to minimise the number of alulations performed.
6.8 Generating FuntionsWhile the algorithm that we have developed ertainly has its advantages overa naive approah to alulating a knot polynomial, the use of reurrene re-lations to alulate oeÆients is ineÆient. Their use in the implementationonly gives the illusion of fast alulation, and without the \option remember"lines of ode in eah of the reurrene relations the implementation would takemuh longer to ompute the Kau�man polynomial of even a relatively simpleexample.Generating funtions should allow for a muh faster alulation time. Wean derive these from the reurrene relations that we have already realised,but must use the speialisation of variables z = s� s�1.136



Theorem 6.9 For n 2 N we an obtain the following generating funtions foroeÆients from the reurrene relations of Lemmas 6.3 and 6.4f1(n) = sn � (�s�1)ns+ s�1f3(n) = v(s� s�1)(s�1 + v)(s� v)vn � v(s� s�1)s + s�1 � sns� v + (�s�1)ns�1 + v � ;and the roles of funtions g1 and g3 are �lled sinef1(�n) = f1(n)js!s�1f3(�n) = f3(n)���s!s�1v!v�1 :ProofWe derive these generating funtions from the reurrene relations by usingsome relatively simple theory, and using the speialisation z = s� s�1. We getthe generating funtions for f1 and g1 �rst, as these are involved in the expres-sions for g1 and g3 respetively. We then solve non-homogeneous reurrenerelations to obtain the generating funtions for f3 and g3. Initially, we obtainthe following funtions for the reurrene relations:f1(n) = sn � (�s�1)ns+ s�1f3(n) = v(s� s�1)s+ s�1 � 1s�1 + v (vn � (�s�1)n) + 1s� v (vn � sn)�g1(n) = (s�1)n � (�s)ns+ s�1g3(n) = v�1(s� s�1)s+ s�1 � 1s�1 � v�1 ((s�1)n � (v�1)n) + 1s + v�1 ((�s)n � (v�1)n)�We perform some rearrangements and ollet terms for f3 and g3 that makethem simpler.f3(n) = v(s� s�1)(s�1 + v)(s� v)vn � v(s� s�1)s+ s�1 � sns� v + (�s�1)ns�1 + v �g3(n) = v�1(s�1 � s)(s+ v�1)(s�1 � v�1)(v�1)n + v�1(s�1 � s)s+ s�1 � (s�1)ns�1 � v�1 + (�s)ns+ v�1�137



Comparing f1 and g1, and f3 and g3, we an easily observe that we obtain g1and g3 by making a substitution in the expressions for f1 and f3. Heneg1(n) = f1(n)js!s�1g3(n) = f3(n)���s!s�1v!v�1and thus we only need to use one set of funtions and make substitutions toobtain the output of the others, sine the reurrene relations g1 and g3 arealulating oeÆients for left-handed twisting we statef1(�n) = f1(n)js!s�1f3(�n) = f3(n)���s!s�1v!v�1 ;as required.6.8.1 RemarkThese substitutions also allow us to give a statement for the reurrene relationsfor the oeÆients. Sine s! s�1 and z = s�s�1 we note that for polynomialsin v and z f1(�n) = f1(n)jz!�zf3(�n) = f3(n)��� z!�zv!v�1 :6.8.2 ImplementationThe same approah is taken to the algorithm as before, the only di�erenebeing that we now have a di�erent method for alulating oeÆients. Ratherthan have four separate relations that we rely on, we have two funtions. Thesealulate oeÆients for the ase that we have right-handed twists and we makea simple substitution by Theorem 6.9 in order to alulate oeÆients for thease that we have left-handed twists (pi < 0).Thus the proedures for f1 and f3 are updated, and the routines SIGMAn,SIGMA_n and Koeff all have slight modi�ations. The main routine givenpreviously is only altered to give terms in s and not z.138



f1 := pro(n::nonnegint)(s^n - (-s^(-1))^n)/(s + s^(-1));end pro:f3 := pro(n::nonnegint)v*(s - s^(-1))/((s^(-1) + v)*(s - v))*v^n- v*(s - s^(-1))/(s + s^(-1))*((s^n/(s-v))+(((-s)^(-1))^n/(s^(-1)+v)));end pro:SIGMAn := pro(n::posint)loal output:output := [0,0,0℄:#output[1℄ is the oeff of {sigma}output[1℄ := expand((1/(s-s^(-1)))*f1(n+1)):#output[2℄ is the oeff of {sigma}^(-1)output[2℄ := expand(-(1/(s-s^(-1)))*f1(n-1)):#output[3℄ is the oeff of houtput[3℄ := expand(f3(n) + f1(n-1)):output;end pro:SIGMA_n := pro(n::posint)loal output:output := [0,0,0℄:#output[1℄ is the oeff of {sigma}output[1℄ := expand((1/(s-s^(-1)))*subs(s=s^(-1),f1(n-1))):#output[2℄ is the oeff of {sigma}^(-1)output[2℄ := expand(subs(s=s^(-1),(1/(s-s^(-1)))*f1(n+1))):#output[3℄ is the oeff of houtput[3℄ := expand(subs(s=s^(-1),v=v^(-1),f3(n) + f1(n-1))):output;end pro: 139



Koeff := pro(n::integer)loal out:if n = 0 thenout := [1/(s-s^(-1)), -1/(s-s^(-1)), 1℄:elif n > 0 thenout := SIGMAn(n):elif n < 0 thenout := SIGMA_n(-n):end if:out;end pro:The oeÆients previously alulated by g1 and g3 are now alulated bymaking the substitution realised in Theorem 6.9 in to the expressions alulatedby f1 and f3.As noted previously we an use a substitution to redue the number ofreurrene relations that we use in an implementation of the algorithm. Werewe to do this the only additional hanges we would need to make would be inthe routine SIGMA_n, in order to put the neessary substitutions in plae.6.8.3 Speed of alulationIn priniple, using generating funtions should give a quiker approah to alu-lating the invariant than by using an implementation that relies on reurrenerelations. As noted previously, the reurrene relations that we have imple-mented only have the illusion of fast alulation beause we reate a table ofvalues that alulations draw on in order to short iruit later alulations.Having to only perform one operation should then give generating funtions anadvantage over the reurrene relations in an implementation.Based on alulations that I have performed, the opposite seems to be true:when omparing alulation times between two implementations, one based onreurrene relations and the other based on generating funtions, we atually140



see the implementation based on reurrene relations greatly outperformingthe implementation based on generating funtions. This happens even whenomputing the Kau�man polynomial of simple pretzels with very few rossings.I believe that the reason for this is that we are now alulating a polynomialin s and v, where z = s�s�1. By doing so we are reating muh larger polyno-mials that must be stored in memory, and this is slowing down the operationof Maple in what would otherwise be a simple enough alulation thanks to thetheory that we have developed for alulating polynomial invariants for thisfamily of knots.6.8.4 NoteWhile I was writing up this hapter I beame aware of a reently publishedpaper on the Kau�man polynomials of pretzel links by Lu and Zhong [32℄.Their method is di�erent from mine, and does not approah the alulationthrough reurrene relations based on the twists in the pretzel links.
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Chapter 7
The Skein of the Annulus
7.1 IntrodutionIn this hapter I present some preliminary alulations in the Kau�man skeinof the annulus. While I was able to ahieve some suess in �nding expliitvalues, I was unable to progress to a point where I ould state a general result.We are able to make some reasonable onjetures on what might be true in amore general setting.The work in this hapter follows work of [19℄ and [38℄ in investigating theskein of the annulus with two boundary points. In both of these papers theauthors were onsidering the Homy skein of the annulus and the skein of theannulus with two boundary points. In this hapter we see preliminary resultsthat we have obtained through expliit manipulation and alulation of braidwords with respet to the main Kau�man skein relations, and relations thatwe an derive from the interation of elements in the annulus.We look at linear ombinations of losed braids on n strings in the skeinof the annulus with an ar onneting points on the boundary. We show thatertain linear ombinations of braids in this setting an be expressed as linearombinations of identity braids on n strings and fewer than n strings.143



7.2 Notation7.2.1 The annulusWe onsider elements in the annulus as in Figure 7.1. We take linear ombina-tions of braid words X from B n and lose them. We take linear ombinationswith respet to the Kau�man skein relations, and we take these skein relationsas de�ned in Setion 1.5.3.
X: : :: : :

Figure 7.1: X, linear ombination of words from B n
7.2.2 The annulus with two boundary pointsFollowing the notation of [19℄ and [38℄ we give some initial onstrutions andde�nitions for the Kau�man skein of the annulus.Denote by K the Kau�man skein of the annulus with two boundary points,one on eah boundary omponent, as indiated in Figure 7.2.The skein K beomes an algebra under the produt indued by plaing oneannulus outside the other; for this, of ourse, we require that there is one urveonneting the two points on the boundary. The identity element in the skein,whih we denote a0 2 K to avoid onfusion with the identity element of abraid, an be thought of as a single ar onneting the boundary points as inFigure 7.3.Further elements are given by single ars whih wind around the entralexluded point; the element a1 is given by an ar that winds around the entral144



Figure 7.2: K, the Kau�man skein of the annulus with two boundary points

Figure 7.3: The element a0

a1 a�1Figure 7.4: a1 and a�1
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exluded point one in a ounter-lokwise diretion as we travel along it fromthe entre of the annulus to the outer boundary. This element an be seen inFigure 7.4 along with its inverse a�1.Powers of the element a1, am for m 2 Z are given by a single ar onnet-ing the inner boundary point to the outer by winding in a ounter-lokwisediretion m times without rossing itself. We ompose two elements by plaingone annulus outside another, onneting ars and boundary points; this ationis ommutative.7.2.3 l(X) and r(X)The alulations that we wish to perform take plae in the skein of the annuluswith two boundary points. We onsider two settings, and in both of these aseswe have a linear ombination, X, of words from B n and an ar from the innerboundary to the outer boundary.De�ne the settings l(X) and r(X) as in Figure 7.5.
l(X) = X: : :: : : r(X) = X: : :: : :Figure 7.5: Settings l(X) and r(X)The notation introdued here mirrors some of the onstrutions in [38℄. Thetheory of that paper was more developed in showing results for the Homy skeinof the annulus than the results for Kau�man in this hapter; however, I believethat the results in this hapter point the way to showing that similar resultsould be obtained for Kau�man.We give a de�nition now that will make our later alulations easier toorder. 146



De�nitionFor a linear ombination, X, of braid words from B n , and for 0 � k � nwe have the family of settings rk(X) in the annulus, where k gives the numberof braid strings that the ar rosses under from the interior boundary point tothe exterior; the ar passes under k onseutive braid strings, and then passesover the remaining n� k strings.We see how the ar onnets the boundary points for rk(X) in Figure 7.6.1kk + 1n
...
...

Figure 7.6: The ar onneting boundary points in the setting rk(X)Thus r0(X) = l(x) and rn(X) = r(X).The objet of this work is to onsider expressing the elements l(X)� r(X),for some X, as a sum of elements am with m 2 Z, �n � m � n. We are goingto examine several ases of a spei� family of examples for eah n, whih willgive rise to some onjetures on the behaviour in general.7.2.4 Pn(X) and Nn(X)Two other settings that we will need to onsider in the annulus are Pn(X) andNn(X), as seen in Figure 7.7. 147



Pn(X) = X: : :: : : Nn(X) = X: : :: : :Figure 7.7: Settings Pn(X) and Nn(X)These settings are loser to the format of the elements that we wish toexpress our starting linear ombinations as, i.e., they more losely resembleelements of the form am, m 2 Z.7.2.5 YnDe�nitionWe de�ne Yn to be the linear ombination of n words from the braid groupB n expressed as�n�1 : : : �2�1 + ��1n�1 : : : �2�1 + : : :+ ��1n�1 : : : ��12 �1 + ��1n�1 : : : ��12 ��11 :Thus Y1 is simply the identity (and only) 1-braid, while Y2 is �1+ ��11 , andY3 = �2�1 + ��12 �1 + ��12 ��11 . These are the examples that we shall onsiderexpliitly in this hapter; we will make some referene to alulations for Y4and for Yn in general, but we will not onsider expliit alulations for n > 3.These examples follow on from work of Morton [38℄.7.3 Calulations for Y1 and Y2Calulations for Y1 are almost trivial. Consider l(Y1) and r(Y1) as shown inFigure 7.8.As Y1 is the identity 1-braid the only di�erene between the two diagramsis from the rossing resulting from the ar onneting the boundary points.148



l(Y1) = Y1 r(Y1) = Y1Figure 7.8: l(Y1) and r(Y1)Lemma 7.1 l(Y1)� r(Y1) = z(a1 � a�1).ProofThis follows by applying the Kau�man skein relation to l(Y1)� r(Y1).A valid intermediate point in the alulation for Y1 would be to write theexpression as z(P1(Y1) � N1(Y1)) after applying the skein relation, and thennoting that this is the same as z(a1 � a�1).The alulations for Y2 are not ompletely trivial, and they require us toonsider the diagrams that result from expressing l(Y2) � r(Y2) as a series ofdiagrams.Lemma 7.2 l(Y2)� r(Y2) = z(z2 + 4)(a2 � a�2).ProofTo begin with notel(Y2)� r(Y2) = r0(Y2)� r2(Y2)= (r0(Y2)� r1(Y2)) + (r1(Y2)� r2(Y2)):We onsider r1(Y2) as in Figure 7.9.The diagram of r1(Y2) di�ers from both r0(Y2) and r2(Y2) in exatly oneplae eah, and we use the main Kau�man skein relation on eah of the expres-sions r0(Y2)�r1(Y2) and r1(Y2)�r2(Y2). By onsidering the resulting diagramswe see the following,r0(Y2)� r1(Y2) = z(P2(�1Y2)�N2(Y2��11 ))149



Y2
Figure 7.9: r1(Y2)and r1(Y2)� r2(Y2) = z(P2(Y2��11 )�N2(�1Y2)):Then we develop our previous expression asl(Y2)� r(Y2) = r0(Y2)� r2(Y2)= (r0(Y2)� r1(Y2)) + (r1(Y2)� r2(Y2))= z(P2(�1Y2)�N2(Y2��11 )) + z(P2(Y2��11 )�N2(�1Y2))= z(P2(�1Y2 + Y2��11 )�N2(�1Y2 + Y2��11 )):Now �1Y2 + Y2��11 = �1(�1 + ��11 ) + (�1 + ��11 )��11= �21 + e + e+ ��21= �21 + ��21 + 2e:In Chapter 6 we noted �2 = z�� vzh+ e and ��2 = �z��1 + v1zh+ e and wean adapt those results in this ontext to give�21 + ��21 + 2e = z�1 � vzh1 + e� z��11 + v1zh1 + e+ 2e= z(�1 � ��11 ) + z(v�1 � v)h1 + 4e= z2(e� h1) + z(v�1 � v)h1 + 4e= (z2 + 4)e+ z2(Æ � 2)h1where Æ = v�1�vz + 1 as de�ned in Chapter 1.150



We substitute these expressions into eah of the settings to obtain the fol-lowing: P2(�1Y2 + Y2��11 ) = P2((z2 + 4)e+ z2(Æ � 2)h1)= (z2 + 4)P2(e) + z2(Æ � 2)P2(h1)= (z2 + 4)a2 + z2(Æ � 2)a0N2(�1Y2 + Y2��11 ) = (z2 + 4)N2(e) + z2(Æ � 2)N2(h1)= (z2 + 4)a�2 + z2(Æ � 2)a0Finally, we ombine these results with those previously noted to give:l(Y2)� r(Y2) = (r0(Y2)� r1(Y2)) + (r1(Y2)� r2(Y2))= z(P2(�1Y2 + Y2��11 )�N2(�1Y2 + Y2��11 ))= z((z2 + 4)a2 + z2(Æ � 2)a0)� z((z2 + 4)a�2 + z2(Æ � 2)a0)= z(z2 + 4)(a2 � a�2);as required.We will onsider how we an use the main skein relations on expressions ofthe form rk(X)� rk+1(X) in the next setion, as this will be the approah thatwe take in general to begin these alulations.7.4 A general approah for YnBefore beginning the atual alulations for Y3 it is important that we makeexpliit an approah that we an take in general for these kinds of alulations,as well as list general relations that are useful now that we are moving to asetting with more than two braid strings.For the alulations involving Y2 we took the step of rewriting the expressionthat we started with asl(Y2)� r(Y2) = (r0(Y2)� r1(Y2)) + (r1(Y2)� r2(Y2));whih we then applied the main Kau�man skein relation to in order to ulti-mately allow us to express the diagrams as a sum of elements am, m 2 Z.151



A more general statement an be made along these lines, but in order to dothat we must �rst introdue several more piees of notation and show how theyare equivalent to other objets in the skein of the annulus with two onnetedboundary points.De�nitionFor X, a linear ombination of braid words from B n , we de�ne the settingsrk;0(X) and rk;1(X) to be similar to the losure of rk(X) with the di�erenein the arrangement of the ar onneting the interior boundary point to theexterior boundary point as shown in Figure 7.10.1kk + 1n
...
...rk;0

1kk + 1n
...
...rk;1Figure 7.10: Arrangement of ars near boundary points for rk;0(X) and rk;1(X)Lemma 7.3 For X, a linear ombination of braid words from B n ,rk(X)� rk+1(X) = zPn(�n�1 : : : �k+1X��1k : : : ��11 )� zNn(�1 : : : �kX��1k+1 : : : ��1n�1)for 0 � k � n� 1.ProofBy the main Kau�man skein relations, we state thatrk(X)� rk+1(X) = z(rk;0(X)� rk;1(X)):152



From onsidering the diagrams in the annulus it is not diÆult to see thatrk;0(X) = Pn(�n�1 : : : �k+1X��1k : : : ��11 )rk;1(X) = Nn(�1 : : : �kX��1k+1 : : : ��1n�1);whih gives the required result.We obtain an extension to Lemma 7.3, whih gives us a good foundationfor the problem that we wish to takle.Lemma 7.4 For X, a linear ombination of braid words from B n ,l(X)� r(X) = zPn(�n�1 : : : �1X + �n�1 : : : �2X��11 + : : :+X��1n�1 : : : ��11 )� zNn(�1 : : : �n�1X + �1 : : : �n�2X��1n�1 + : : :+X��11 : : : ��1n�1)ProofTo begin with statel(X)� r(X) = r0(X)� rn(X)= (r0(X)� r1(X)) + (r1(X)� r2(X)) + : : :+ (rn�1(X)� rn(X)):By Lemma 7.3 we an express every ri(X)� ri+1(X) as an expression in termsof diagrams in the settings Pn and Nn multiplied by z. We work over all i from0 to n� 1, and sol(X)� r(X) = n�1Xi=0 (ri(X)� ri+1(X))= z n�1Xi=0 (ri;0(X)� ri;1(X))= z n�1Xi=0 (Pn(�n�1 : : : �i+1X��1i : : : ��11 )�Nn(�1 : : : �iX��1i+1 : : : ��1n�1))giving the required result.Lemma 7.4 is the starting point for showing the desired result for Y3; Ibelieve it is a good starting point for this type of alulation in general.153



7.4.1 Summary of relationsBefore we proeed with the alulations for Y3 we summarise relations that anbe observed in the ontexts we have disussed. Some of these are derived frompurely algebrai onsiderations, while others are obtained diretly from how wean manipulate the geometri objets in the annulus settings.(K1) �i � ��1i = z(e� hi)(K2) ��1i hi = v�1hi(R1) �2i = z�i � vzhi + e(R2) ��2i = �z��1i + v�1zhi + e(R3) �2i + ��2i = (z2 + 2)e+ z2(Æ � 2)hi(R4) ��1i hi+1��1i = ��1i+1hi��1i+1(R5) h2i = Æhi(R6a) ��1i+1��1i ��1i+1��1i = ��1i ��1i+1(R6b) ��1i ��1i+1��1i ��1i+1 = ��1i+1��1i(H1a) hi+1hihi+1 = hi+1(H1b) hihi+1hi = hiIn the result of Lemma 7.3 we impliitly used the following result, whoseproof an be observed simply from onsidering diagrams in the relevant setting.Lemma 7.5 Take a linear ombination of braid words X from B n for n � 3.Then in Pn(X) we an remove ��1k or hk for 1 � k � n � 2 at the start of aword at the expense of adding, respetively, ��1k+1 or hk+1 to the end of a word.Similarly in Nn(X) we an remove ��1k or hk for 1 � k � n� 2 at the end ofa word and in its plae add ��1k+1 or hk+1 to the start of the word.E�etively we are sliding these rossings or turnbaks around the annulus asthe setting allows; in the alulations that follow we will refer to appliationsof Lemma 7.5 as using slide moves.7.5 Calulations for Y3Theorem 7.6 l(Y3)� r(Y3) = z(z2 + 3)2(a3 � a�3) + z3(Æ � 2)(a� a�1).154



We take a �rst step and state by Lemma 7.4l(Y3)� r(Y3) = zP3(�2�1Y3 + �2Y3�1�1 + Y3�2�1�1�1)�zN3(�1�2Y3 + �1Y3�2�1 + Y3�1�1�2�1):For ease of alulation we will alulate these two terms separately, andthen bring them together afterwards.7.5.1 P3(�2�1Y3 + �2Y3�1�1 + Y3�2�1�1�1)Denote �2�1Y3 + �2Y3�1�1 + Y3�2�1�1�1 as the following for ease of referene:Y3+ := �2�1Y3 + �2Y3�1�1 + Y3�2�1�1�1:Lemma 7.7 P3(Y +3 ) = (z4 + 6z2 + 9)a3 + 2z2(Æ � 3)a1 + z2(2Æ � 6� z2)a�1 +z2(v�1r(Y1) + vl(Y1)).ProofIn the �rst instane we perform skein relations not spei� to the setting P3,i.e., we do not perform slide moves as desribed by Lemma 7.5.We begin the evaluation by expanding the expression for Y3+ in terms ofa sum of braid words, and use relations to simplify any expressions whih anobviously be simpli�ed. HeneY3+ = �2�1Y3 + �2Y3�1�1 + Y3�2�1�1�1= �2�1�2�1 + �2�1�2�1�1 + �2�1�2�1�1�1+ �2�2�1�1�1 + �2�2�1�1�1�1 + �2�2�1�1�1�1�1+ �2�1�2�1�1�1 + �2�1�1�2�1�1�1 + �2�1�1�1�2�1�1�1= �22 + �1�2 + e+ 2�1�2�1 + �2�1�2�1+ �2�1�1�1�2�1�1�1 + �2�1�2�1�1 + �2�1�1�2�1�1�1Our initial method is to take words of length four and use skein relations toexpress them as linear ombinations of words of length three or smaller. Wemay have to express them as words of length four involving hi as an intermediate155



step. We takle words in terms of generators and inverses only �rst, and thenonsider any words of length four with elements hi.We �rst �nd expressions for �2�1�2�1�1 and �2�1�1�2�1�1�1, as we an thenombine these with other words in our expression.�2�1�2�1�1 = �2�1(�2 � ze + zh2)�1= �2�1�2�1 � z�2�12 + z�2�1h2�1= �2�1�2�1 � z�2�12 + zh1�2�1�2�1�1�2�1�1�1 = �2�1(�1�1 + ze� zh1)�2�1�1�1= �2�1�1�1�2�1�1�1 + z�2�2�1�1 � z�2�1h1�2�1�1�1= �2�1�1�1�2�1�1�1 + z�2�2�1�1 � z�1h2Substituting these in to our expression for Y3+ givesY3+ = �22 + �1�2 + e + 2�1�2�1 + 2�2�1�2�1 + 2�2�1�1�1�2�1�1�1+ z(�2�2�1�1 � �2�12) + z(h1��12 � �1h2):Two terms that we need to evaluate now are �2�1�2�1 and �2�1�1�1�2�1�1�1.We use a ombination of skein relations and relations equivalent to the TypeIII Reidemeister move to simplify these expressions.�2�1�2�1 = (�2�1 + z � zh2)�1�2�1= �2�1�2�1�2 + z�1�2�1 � zh2�2�1�2= �1�2 + z�1�2�1 � vzh2�1�2�2�1�1�1�2�1�1�1 = (�2 � z + zh2)�1�1�2�1�1�1= �2�2�1�1�1�2�1 � z�1�1�2�1�1�1 + zh2�2�1�1�1�2�1= �1�1�2�1 � z�1�1�2�1�1�1 + v�1zh2�1�1�2�1156



Substituting this in to the expression for Y3+ we see the following:Y3+ = �22 + �1�2 + e + 2�1�2�1 + 2(�1�2 + z�1�2�1 � vzh2�1�2)+2(�1�1�2�1 � z�1�1�2�1�1�1 + v�1zh2�1�1�2�1)+ z(�2�2�1�1 � �2�12) + z(h1��12 � �1h2)= �22 + �1�2 + e + 2(�1�2�1 + �1�2 + �1�1�2�1)+2z(�1�2�1 � �1�1�2�1�1�1) + z(�2�2�1�1 � �2�12)+2z(v�1h2�1�1�2�1 � vh2�1�2) + z(h1��12 � �1h2)We have redued all words of length four to an expression of words of lengththree or less. Before we repeat the proess, eliminating all words of length threeand expressing them in terms of words of length two or less, we will onsiderwhat we an say so far about P3(Y +3 ).We begin by onsidering several of the terms in our expression for Y +3 , anduse slide moves to simplify them in the P3 setting.P3(�1�2�1 + �1�2 + �1�1�2�1) = P3(e+ �21 + ��21 )P3(v�1h2�1�1�2�1 � vh2�1�2) = P3(v�1�1�1h2�1�1 � v�1h2�1)P3(h1��12 � �1h2) = P3((v�1 � v)h1)ThenP3(Y +3 ) = 3P3(e+ �21 + ��21 ) + z2(Æ � 1)P3(h1) + 2zP3(�1�2�1 � �1�1�2�1�1�1)+zP3(�2�2�1�1 � �2�12) + 2zP3(v�1�1�1h2�1�1 � v�1h2�1)By one of our earlier results we an express �21 +��21 as a linear ombination ofe and h1, and in turn we an evaluate these as linear ombinations of elementsof the form am, m 2 Z; however we postpone doing that for now as we will �ndother elements to add to these.We turn our attention to the words of length three that we have in ourexpression for P3(Y +3 ). We stay in the setting P3 to take advantage of slidemoves. 157



We begin by examining the expression P3(�1�2�1 � �1�1�2�1�1�1). We usethe skein relations in a manner that mirrors our earlier proof for Lemma 7.4.P3(�1�2�1 � �1�1�2�1�1�1) = P3(�1�2�1 � �1�1�2�1)+ P3(�1�1�2�1 � �1�1�2�1�1)+ P3(�1�1�2�1�1 � �1�1�2�1�1�1)= P3((�1 � �1�1)�2�1) + P3(�1�1(�2 � �2�1)�1)+ P3(�1�1�2�1(�1 � �1�1))= zP3(�2�1 + �1�1�1 + �1�1�2�1)� zP3(h1�2�1 + �1�1h2�1 + �1�1�2�1h1)= zP3(e + �1�2 + �2�1)� zP3(h1�2�1 + �1h2�1 + �1�1h2�1):We evaluate P3(�1�1h2�1) separately as it suits our purposes to have all thesigns of elements in these words to be of the same type.P3(�1�1h2�1) = P3((�1 � ze + zh1)h2�1)= P3(�1h2�1 � zh2�1 + zh1h2�1):Then for P3(�1�2�1 � �1�1�2�1�1�1) we obtain the following expression:P3(�1�2�1 � �1�1�2�1�1�1) = zP3(e+ �1�2 + �2�1 + zh2�1)� zP3(2�1h2�1 + h1�2�1 + zh1h2�1):Substituting this in to the expression for P3(Y3+) givesP3(Y +3 ) = 3P3(e + �21 + ��21 ) + z2(Æ � 1)P3(h1) + 2z2P3(e + �1�2 + �2�1 + zh2�1)� 2z2P3(2�1h2�1 + h1�2�1 + zh1h2�1)+zP3(�2�2�1�1 � �2�12) + 2zP3(v�1�1�1h2�1�1 � v�1h2�1)We will evaluate �2�2�1�1��2�12 shortly; using quadrati relations previouslyderived we know that we will obtain words of length two or one. Thus it suits158



us to now eliminate the remaining words of length three whih ontain hi. Byonsidering these words in the setting P3 we obtain the following values:P3(�1�1h2�1�1) = a�1 P3(�1h2�1) = a�1P3(h1h2�1) = v�1P3(h1) P3(h1�2�1) = Æa1ThenP3(Y +3 ) = 3P3(�21 + ��21 ) + (2z2 + 3)P3(e) + z2(Æ � 1)P3(h1)� 2v�1z3P3(h1)+ 2z2P3(�1�2 + �2�1 + zh2�1) + zP3(�2�2�1�1 � �2�12)� 2z2Æa1 + 2z2(Æ � 3)a�1We redue the expression P3(�2�2�1�1 � �2�12) using quadrati relations. Wepresent single rossings as produts of diagrams in the annulus.P3(�2�2�1�1 � �2�12) = P3((zv�1h2 � z�2�1 + e)�1�1)� P3(�2(z�1 � zvh1 + e))= zP3(v�1h2�1�1 + v�2h1)� zP3(�2�1�1�1 + �2�1)+ (r(Y1)� l(Y1)) � a2:Making this substitution we have an expression for P3(Y3+) that ontains wordsof at most length two.P3(Y +3 ) = 3P3(�21 + ��21 ) + (2z2 + 3)P3(e) + z2(Æ � 1)P3(h1)� 2v�1z3P3(h1)+ 2z2P3(�1�2 + zh2�1) + z2P3(�2�1 � ��12 ��11 )+ z2P3(v�1h2��11 + v�2h1)+ z(r(Y1)� l(Y1)) � a2 � 2z2Æa1 + 2z2(Æ � 3)a�1We use skein relations again to remove all words of length two. For now weleave the term of P3(�21 + ��21 ). 159



We see the following expression for P3(�2�1� �2�1�1�1) following a similarmethod to before:P3(�2�1 � �2�1�1�1) = P3(�2�1 � �2�1�1) + P3(�2�1�1 � �2�1�1�1)= zP3((e� h2)�1) + zP3(�2�1(e� h1)))= zP3(�1 + �1�1 � h2�1 � �2�1h1)= z(l(Y1) + r(Y1)) � a2 � zP3(h2�1 + �2�1h1)Applying this with the quadrati relation for �i�2, and olleting terms, weobtain the following expression for P3(Y3+):P3(Y +3 ) = 3P3(�21 + ��21 ) + (4z2 + 3)P3(e) + z2(Æ � 1)P3(h1)+ z2P3(v�1h2��11 + v�2h1 + zh2�1 � z��12 h1)+ (z3 � z)(l(Y1)� r(Y1)) � a2 � 2z2Æa1 + 2z2(Æ � 3)a�1By onsidering their diagrams we an evaluate the following words of lengthtwo as follows: P3(h2�1) = l(Y1) = P3(�2h1)P3(h2�1�1) = r(Y1) = P3(�2�1h1)We make these substitutions, along with the quadrati relation for �12 + �1�2,and reall from Lemma 7.1 that l(Y1) � r(Y1) = z(a � a�1). Finally, in thesetting of P3 we observe that e evaluates to a3 and a single hi evaluates to a1.P3(Y +3 ) = 3P3((z2 + 2)e+ z2(Æ � 2)h1) + (4z2 + 3)P3(e) + z2(Æ � 1)P3(h1)+ z2(v�1r(Y1) + vl(Y1) + zl(Y1)� zr(Y1))+ (z3 � z)(l(Y1)� r(Y1)) � a2 � 2z2Æa1 + 2z2(Æ � 3)a�1= (7z2 + 9)P3(e) + z2(4Æ � 7)P3(h1)+ z2(v�1r(Y1) + vl(Y1)) + z4(a1 � a�1)+ (z4 � z2)(a1 � a�1) � a2 � 2z2Æa1 + 2z2(Æ � 3)a�1= (z4 + 6z2 + 9)a3 + 2z2(Æ � 3)a1+ z2(2Æ � 6� z2)a�1 + z2(v�1r(Y1) + vl(Y1)):160



7.5.2 N3(�1�2Y3 + �1Y3�2�1 + Y3�1�1�2�1)Denote �1�2Y3 + �1Y3�2�1 + Y3�1�1�2�1 as the following:Y3� := �1�2Y3 + �1Y3�2�1 + Y3�1�1�2�1:Lemma 7.8 N3(Y �3 ) = (z4 +6z2 +9)a�3 + z2(3Æ� 8� z2)a�1 + z2(Æ� 4)a1 +z2(v�1r(Y1) + vl(Y1)).ProofOmitted for brevity. By a similar method of manipulations to the P3(Y +3 ) asewe obtain the result. Due to the initial form that the expression takes therearrangement in this ase is easier than in the previous ase.7.5.3 Proof of Theorem 7.6ProofIn Lemmas 7.7 and 7.8 we alulatedP3(Y3+) = (z4 + 6z2 + 9)a3 + 2z2(Æ � 3)a1+ z2(2Æ � 6� z2)a�1 + z2(v�1r(Y1) + vl(Y1))N3(Y3�) = (z4 + 6z2 + 9)a�3 + z2(3Æ � 8� z2)a�1+ z2(Æ � 4)a1 + z2(v�1r(Y1) + vl(Y1)):By Lemma 7.4 we know l(Y3)� r(Y3) = z(P3(Y3+)�N3(Y3�)). ThenP3(Y3+)�N3(Y3�) = (z4 + 6z2 + 9)(a3 � a�3) + z2(2Æ � 6� Æ + 4)a1+ z2(2Æ � 6� z2 � 3Æ + 8 + z2)a�1= (z4 + 6z2 + 9)(a3 � a�3) + z2(Æ � 2)a1 + z2(2� Æ)a�1= (z2 + 3)2(a3 � a�3) + z2(Æ � 2)(a1 � a�1):Thus l(Y3)� r(Y3) = z(P3(Y +3 )�N3(Y �3 ))= z(z2 + 3)2(a3 � a�3) + z3(Æ � 2)(a� a�1);as required. 161



7.6 Yn, n > 3Following alulations for Y3 a variety of methods were used to alulate thelinear ombination of diagrams expressing l(Y4)�r(Y4), but all of them were ul-timately unsuessful. The problems in resolving these alulations was largelydue to human error. For Y +4 and Y �4 we begin with sixteen braid words onfour strings, with eah word initially being of length six. Some of these anbe simpli�ed immediately, but espeially for the alulation of P4(Y +4 ) we �ndthat we have a large number of words and a large number of intermediate stepswhen using skein relations to redue the length of braid words.It seems that for n > 3, the number of intermediate terms and steps inthe alulation of Pn(Y +n )�Nn(Y �n ) is too great to realistially be ahieved byhand. There are too many terms that an our, and too many steps that mustbe taken { both of whih ontribute to the possibility of human error.A Maple routine adapted from the algorithms of Chapter 3 gave mixedresults. CoeÆients of equivalent diagrams were olleted, and we an be on-�dent that no errors were made to this point. This left the task of having tomanually evaluate a large number of terms with the added ompliation thatsome terms that we had previously resolved with skein relations (e.g., reduingof �2�1 � ��12 ��11 ) now had only one term remaining in the expression.It is possible that an alternate form of notation might be used to simplifythings, although we have not been able to use any so far to great e�et.By performing alulations modulo the turnbak relation in the main Kau�-man skein relation we were able to eliminate elements ontaining hi for alula-tions of l(Y4)�r(Y4); while this did not allow us to make a omplete alulationfor Y4, it did allow us to on�rm the following oeÆient of (a4 � a�4):l(Y4)� r(Y4) = (z6 + 8z4 + 20z2 + 16)(a4 � a�4) modulo elements of hi:We have performed expliit alulations for only a few ases, but there aresome indiations as to what might our in general for l(Yn)� r(Yn). To losethis hapter let us state a few onjetures that we believe to be true, but havenot been able to show. 162



Proposition 7.9 We an express l(Yn) � r(Yn) as a linear ombination ofannulus diagrams am, m 2 Z, �n � m � n, with oeÆients n;m from theKau�man skein of the annulus. I.e.,l(Yn)� r(Yn) = n;nan + n;n�1an�1 + : : :+ n;�na�n:This is lear from the fat that use of the skein relations will not introdueextra ars in the annulus: ation of skein relations gives a linear ombinationof diagrams with the same or fewer ars.In [31℄, using di�erent notation, it was shown that an element in the Kau�-man skein of the annulus on n strings an be written as a linear ombinationof elements with n strings and elements with n � 2k strings (for 1 � k � n2 ,k 2 Z). This oinides with our results for Y3 (Theorem 7.6).Also, from observations in the Homy skein of the annulus, and our alula-tions for l(Y3)�r(Y3) and l(Y4)�r(Y4), we would onjeture that n;�n = �n;nfor l(Yn)�r(Yn) in general. We expet this beause the alulations that showedthe result in the Y4 ase were modulo the turnbak relation, whih is diagram-matially the same as the Homy relation (although without orientation). Itis reasonable to expet that the oeÆient of a0 would be 0 for ases of even n.From all of these observations and expetations, and oupled with the re-sult of Theorem 7.6 showing 3;�1 = �3;1 we thus make the following �nalonjeture.Conjeture 7.10 We an express l(Yn) � r(Yn) as a linear ombination ofannulus diagrams am, m 2 Z, with oeÆients n;m from the Kau�man skeinof the annulus suh thatl(Yn)�r(Yn) = n;n(an�a�n)+n;n�2(an�2�a�(n�2))+: : :+n;n�2t(an�2t�a�(n�2t))where t is the largest integer less than or equal to n2 .
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Appendix AProgram CodeIn this appendix we give annotated ode for the Maple programs SeqIndex,k_plait and h_plait that are mentioned in Chapters 3 and 4 and are devel-oped from the material of those hapters.A.1 SeqIndexThere are points in the programs k_plait and h_plait where the programsearhes through the array of k-sequenes in order to �nd a partiular sequeneto pass oeÆients to; these are for the ations of renumbering, rearrangementand multipliation. Without any other onsiderations this ould be a lengthytask as we have to searh through a list of (2k)!2k elements to �nd the elementthat we require.The program SeqIndex is designed to look through the set of k-sequenesfor a spei� k-sequene and then return the index of that sequene to the mainprogram. It does this eÆiently �rstly by taking advantage of the way that thepermute ommand works in Maple in order to reate the array of k-sequenes,and seondly by exploiting the ombinatoris of how Maple orders the list ofk-sequenes.We divide the ordered list of k-sequenes into k setions of equal size (size(2k)!2kk ), and the �rst digit of the k-sequene, T , that we wish to loate is enough165



to tell us whih setion it is loated in. Already we restrit our searh to asubset one kth the size of the set of k-sequenes.We know this due to the regularity with whih elements are permuted inMaple; beause of that regularity we an narrow the portion of the list that wewill have to searh through even further by omparing the seond digit of Twith the �rst. Then, depending on whether or not it is smaller, larger or thesame, we an subdivide the list into even smaller setions. When we searh inthis way we are e�etively searhing through all of the sequenes whih havethe same two �rst digits as T .This is a massive redution on having to searh through the entire list inorder to �nd an element, and also a great redution on searhing through a kthof the set of k-sequenes based on the �rst digit of T alone.Input for this routine is the the array to be searhed through, and thenumber sequene to be found. Output is the index for the sequene in thearray.###SeqIndex#####A proedure used to boost effiieny in the main##HOMFLY and Kauffman proedures that I've reated##Works for both HOMFLY and Kauffman with##no extra modifiations for either neededSeqIndex := pro(Ay,T)loal k, m, a, p, Ix:##In an effort to make it as flexible as possible,##the proedure finds the index of the number##sequene that is required##The index is then returned to the main program##where it is used in rearrangement routines##or for multipliation##The input is the array of number sequenes##that is being searhed, Ay,##and the desired number sequene, T166



k:=nops(T)/2: m:=ArrayNumElems(Ay):##m is obtained from the array that is brought in##I deided to obtain the value of k by halving##the number of operands in the number sequene##that we wish to find, in order to redue the number##of arguments the proedure has to take inIx:=0: p:=0:##Ix will be the index of the element we wish to find##p is a marker that halts the searh one the##sequene is found##We have three situations, T[1℄=T[2℄, T[1℄<T[2℄ or T[1℄>T[2℄##When the orret index is found Ix is set to##that value, and the searh endsif T[1℄=T[2℄ thenwhile p=0 dofor a from 1+((T[1℄-1)*m/k)+(T[1℄-1)*2*(2*(k-1))!/(2^(k-1))to ((T[1℄-1)*m/k)+(2*T[1℄-1)*(2*(k-1))!/(2^(k-1)) doif Ay[a℄=T thenIx:=a: p:=1:fi:od:od:elif T[1℄<T[2℄ thenwhile p=0 dofor a from 1+((T[1℄-1)*m/k)+(2*T[2℄-3)*(2*(k-1))!/(2^(k-1))to ((T[1℄-1)*m/k)+(2*T[2℄-1)*(2*(k-1))!/(2^(k-1)) doif Ay[a℄=T then 167



Ix:=a: p:=1:fi:od:od:elif T[1℄>T[2℄ thenwhile p=0 dofor a from 1+((T[1℄-1)*m/k)+(T[2℄-1)*2*(2*(k-1))!/(2^(k-1))to ((T[1℄-1)*m/k)+2*T[2℄*(2*(k-1))!/(2^(k-1)) doif Ay[a℄=T thenIx:=a: p:=1:fi:od:od:fi:##The proedure ends by returning Ixreturn Ix;end;
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A.2 k plaitThe omments for the program are ontained within the listing for the programitself.Input for the program is the width of the plait k, followed by a string of non-zero integers between �(k � 1) and (k � 1) indiating the braid word oflength  of the plait presentation. Output is the Kau�man polynomial of theplait presentation in variables v and z, olleting oeÆients of v against z.###k_plait############################################################Input for program is k followed by a string of positive#and negative numbers indiating rossings in the#plait presentation#########################################################Initialisation Part 1#########################################################Introdue the permute ommand outside of#the main program listing####"permute" allows us to generate the set of#k-sequenes########################################################with(ombinat,permute):#########################################################Initialisation Part 2#########################################################We initialise the program and define#the variables that we will use########################################################k_plait := pro()loal a,b,,d,f,i,j,k,l,m,n,p,r,t,w,x,y,169



A,Anow,Anext,B,Bnow,Bnext,C,Y,Ynext,depth,posn,swith,sm_plus,sm_minus,mult_temp,lose_temp,lose_mult,delta,output:#########################################################With the exeption of k, the plait number,#lower ase variables are looping variables#or flags, and oasionally temporary variables####Upper ase variables are arrays/lists#generated by the program####Variables with "names" will be explained#in ommenting in the first instane of their use#########################################################Initialisation Part 3#########################################################In the final initialisation setion we#reate the set of k-sequenes and#the array that stores oeffiients########################################################k:=args[1℄:Y:=[seq(x[i℄,i=1..2*k)℄:for a from 1 to 2*k doif type(a/2,integer) thenY[a℄:=a/2:elseY[a℄:=(a+1)/2:fi:od:##Preeding lines generate the initial170



##sequene that we then permute in##the following lines in order to give##the set of k-sequenes, whih we##store in arrays, along with an array##for the oeffiients attahed to the##sequenesC:=permute(Y,2*k):A:=Array(1..nops(C)):B:=Array(1..nops(C)):m:=ArrayNumElems(A):for a from 1 to m do A[a℄:=C[a℄: B[a℄:=0: od:B[1℄:=1:C:='C':#########################################################Initialisation omplete#########################################################Start of the real mehanisms of the program########################################################for n from 2 to nargs do #START OF MAIN LOOPi:=args[n℄: #Crossing from the plait#########################################################START OF REARRANGEMENT/RENUMBERING LOOP########################################################for r from k to 2 by -1 dofor j from 1 to m do #Looping through all A,Bif i>0 then #Case for positive rossingsif B[j℄<>0 and A[j℄[i+1℄=r and A[j℄[i℄<r thendepth:=[0,0,0,0℄: posn:=[0,0,0,0℄: w:=1:##If rearrangement is needed for a##partiular k-sequene then these##lines obtain the information171



##that allow us to determine the##k-sequene that oeffiients##will be passed to.######depth and posn store the##information for the adjaent##ars that we are performing##skein relations on######If rearrangement is needed for a##k-sequene to be ompatible##then we always need the##following lines to get key##informationwhile w<5 dofor  from 1 to 2*k doif A[j℄[℄=r-1 or A[j℄[℄=r thendepth[w℄:=A[j℄[℄: posn[w℄:=: w:=w+1:fi:od:od:##For rearrangement or renumbering##we always pass oeffiients to a##k-sequene represented by the##objet 'swith'swith:=A[j℄:for f from 1 to 2*k doif A[j℄[f℄=r-1 thenswith[f℄:=r:elif A[j℄[f℄=r thenswith[f℄:=r-1: 172



fi:od:##If we need more than the ation##of a renumbering operation we need##the following series of steps to##determine the other k-sequenes##that oeffiients are passed to######sm_plus and sm_minus are##are the two k-sequenes that##represent the smoothings in##the main skein relations######sm_plus and sm_minus are##determined by the value of##depth[1℄, along with various##posn valuesif depth[1℄=depth[3℄ thensm_plus:=A[j℄: sm_minus:=A[j℄:if depth[1℄=r thenif posn[1℄=i+1 thensm_plus[posn[1℄℄:=r-1: sm_plus[posn[2℄℄:=r-1:sm_plus[posn[3℄℄:=r: sm_plus[posn[4℄℄:=r:sm_minus[posn[1℄℄:=r-1: sm_minus[posn[2℄℄:=r:sm_minus[posn[3℄℄:=r: sm_minus[posn[4℄℄:=r-1:elsesm_plus[posn[1℄℄:=r: sm_plus[posn[2℄℄:=r:sm_plus[posn[3℄℄:=r-1: sm_plus[posn[4℄℄:=r-1:sm_minus[posn[1℄℄:=r: sm_minus[posn[2℄℄:=r-1:sm_minus[posn[3℄℄:=r-1: sm_minus[posn[4℄℄:=r:fi: 173



elif depth[1℄=r-1 thenif posn[2℄=i+1 thensm_plus[posn[1℄℄:=r: sm_plus[posn[2℄℄:=r-1:sm_plus[posn[3℄℄:=r-1: sm_plus[posn[4℄℄:=r:sm_minus[posn[1℄℄:=r-1: sm_minus[posn[2℄℄:=r-1:sm_minus[posn[3℄℄:=r: sm_minus[posn[4℄℄:=r:elsesm_plus[posn[1℄℄:=r-1: sm_plus[posn[2℄℄:=r:sm_plus[posn[3℄℄:=r: sm_plus[posn[4℄℄:=r-1:sm_minus[posn[1℄℄:=r: sm_minus[posn[2℄℄:=r:sm_minus[posn[3℄℄:=r-1: sm_minus[posn[4℄℄:=r-1:fi:fi:fi:##Having determined the k-sequenes that##we have to pass oeffiients to, we now##have the routines that move the oeffiients######SeqIndex is a alled program that finds##the index of a required k-sequeney:=SeqIndex(A,swith):B[y℄:=simplify(B[y℄+B[j℄):if depth[1℄=depth[3℄ theny:=SeqIndex(A,sm_plus):B[y℄:=simplify(B[y℄+z*B[j℄):y:=SeqIndex(A,sm_minus):B[y℄:=simplify(B[y℄-z*B[j℄):fi:B[j℄:=0:##Delete oeffiient after rearrangementfi: 174



elif i<0 then #Case for negative rossingsif B[j℄<>0 and A[j℄[abs(i)℄=rand A[j℄[abs(i)+1℄<r thendepth:=[0,0,0,0℄: posn:=[0,0,0,0℄: w:=1:while w<5 dofor  from 1 to 2*k doif A[j℄[℄=r-1 or A[j℄[℄=r thendepth[w℄:=A[j℄[℄: posn[w℄:=: w:=w+1:fi:od:od:##In this setion we have similar##piees of ode to previously; these##deal with the ase when we need##to ensure ompatibility for an##inverseswith:=A[j℄:for f from 1 to 2*k doif A[j℄[f℄=r-1 thenswith[f℄:=r:elif A[j℄[f℄=r thenswith[f℄:=r-1:fi:od:if depth[1℄=depth[3℄ thensm_plus:=A[j℄: sm_minus:=A[j℄:if depth[1℄=r-1 thenif posn[4℄=abs(i) thensm_plus[posn[1℄℄:=r-1: sm_plus[posn[2℄℄:=r:sm_plus[posn[3℄℄:=r: sm_plus[posn[4℄℄:=r-1:sm_minus[posn[1℄℄:=r: sm_minus[posn[2℄℄:=r:175



sm_minus[posn[3℄℄:=r-1: sm_minus[posn[4℄℄:=r-1:elsesm_plus[posn[1℄℄:=r: sm_plus[posn[2℄℄:=r-1:sm_plus[posn[3℄℄:=r-1: sm_plus[posn[4℄℄:=r:sm_minus[posn[1℄℄:=r-1: sm_minus[posn[2℄℄:=r-1:sm_minus[posn[3℄℄:=r: sm_minus[posn[4℄℄:=r:fi:elif depth[1℄=r thenif posn[1℄=abs(i) thensm_plus[posn[1℄℄:=r-1: sm_plus[posn[2℄℄:=r-1:sm_plus[posn[3℄℄:=r: sm_plus[posn[4℄℄:=r:sm_minus[posn[1℄℄:=r-1: sm_minus[posn[2℄℄:=r:sm_minus[posn[3℄℄:=r: sm_minus[posn[4℄℄:=r-1:elsesm_plus[posn[1℄℄:=r: sm_plus[posn[2℄℄:=r:sm_plus[posn[3℄℄:=r-1: sm_plus[posn[4℄℄:=r-1:sm_minus[posn[1℄℄:=r: sm_minus[posn[2℄℄:=r-1:sm_minus[posn[3℄℄:=r-1: sm_minus[posn[4℄℄:=r:fi:fi:fi:y:=SeqIndex(A,swith):B[y℄:=simplify(B[y℄+B[j℄):if depth[1℄=depth[3℄ theny:=SeqIndex(A,sm_plus):B[y℄:=simplify(B[y℄+z*B[j℄):y:=SeqIndex(A,sm_minus):B[y℄:=simplify(B[y℄-z*B[j℄):fi:B[j℄:=0:fi: 176



fi: #End of routine for negative rossingsod: #End of loop through A,Bod:#########################################################END OF REARRANGEMENT/RENUMBERING LOOP#########################################################By this point in the algorithm, the array#of oeffiients has been rearranged so#that the only k-sequenes whih an#have non-zero oeffiients are those#whih are ompatible with the generator#or inverse####This is ahieved after k-1 passes of the#set of k-sequenes#########################################################MULTIPLICATION PROCEDURE#########################################################This is a muh shorter proedure, there#is muh less work to do in terms#of searhing through the arrays; we have#two slightly different routines depending#on whether or not we have a positive or#negative rossing########################################################if i>0 then##Generatorfor t from 1 to m doif B[t℄<>0 and (A[t℄[abs(i)℄>=A[t℄[abs(i)+1℄) thenmult_temp:=A[t℄:mult_temp[abs(i)℄:=A[t℄[abs(i)+1℄:177



mult_temp[abs(i)+1℄:=A[t℄[abs(i)℄:if mult_temp=A[t℄ thenB[t℄:=v*B[t℄:elsey:=SeqIndex(A,mult_temp):B[y℄:=B[t℄:B[t℄:=0:fi:fi:od:elif i<0 then##Inversefor t from 1 to m doif B[t℄<>0 and (A[t℄[abs(i)℄<=A[t℄[abs(i)+1℄) thenmult_temp:=A[t℄:mult_temp[abs(i)℄:=A[t℄[abs(i)+1℄:mult_temp[abs(i)+1℄:=A[t℄[abs(i)℄:if mult_temp=A[t℄ thenB[t℄:=v^(-1)*B[t℄:elsey:=SeqIndex(A,mult_temp):B[y℄:=B[t℄:B[t℄:=0:fi:fi:od:fi:od:#########################################################END OF MAIN REARRANGEMENT AND MULTIPLICATION LOOP########################################################178



#CLOSURE ROUTINE#########################################################After all of the multipliations are omplete#we must lose off eah k-sequene beause of#the 'ups'####We perform the losure one 'up' at a time.#########################################################k is passed in, but it is only used to give a#value to the first loop whih ontrols the#overall proess and how many times#it is repeated#########################################################INITIALISING CLOSURE PROCEDURE########################################################Anow:=A: Bnow:=B:A:='A': B:='B': m:='m':m:=ArrayNumElems(Anow):delta:=1+(v^(-1)-v)/z:##Define delta, value of disjoint unknot#########################################################START CLOSURE LOOP########################################################for l from k to 2 by -1 doif (nops(Y)/2)>2 then##Don't need rearrangement for losure##of 2-sequene######Start losure rearrangement/renumberingfor r from (nops(Y)/2) to 3 by -1 dofor j from 1 to m do 179



if (Bnow[j℄<>0) and((Anow[j℄[1℄=r and Anow[j℄[2℄<(r-1))or (Anow[j℄[2℄=r and Anow[j℄[1℄<(r-1))) thendepth:=[0,0,0,0℄: posn:=[0,0,0,0℄: w:=1:while w<5 dofor  from 1 to nops(Y) doif Anow[j℄[℄=r or Anow[j℄[℄=r-1 thendepth[w℄:=Anow[j℄[℄: posn[w℄:=: w:=w+1:fi:od:od:##As before if renumbering or##rearrangement is required##we always need a k-sequene##where the numbers r and r-1##are interhangedswith:=Anow[j℄:for i from 1 to nops(Y) doif Anow[j℄[i℄=r thenswith[i℄:=r-1:elif Anow[j℄[i℄=r-1 thenswith[i℄:=r:fi:od:if depth[1℄=depth[3℄ then##Only one set of rearrangements##required.##Neighbouring ars will always be##of the form [r,r-1,r,r-1℄ if we##need to rearrangesm_plus:=Anow[j℄: sm_minus:=Anow[j℄:180



sm_plus[posn[1℄℄:=r-1: sm_plus[posn[2℄℄:=r-1:sm_plus[posn[3℄℄:=r: sm_plus[posn[4℄℄:=r:sm_minus[posn[1℄℄:=r-1: sm_minus[posn[2℄℄:=r:sm_minus[posn[3℄℄:=r: sm_minus[posn[4℄℄:=r-1:fi:y:=SeqIndex(Anow,swith):Bnow[y℄:=simplify(Bnow[y℄+Bnow[j℄):if depth[1℄=depth[3℄ theny:=SeqIndex(Anow,sm_plus):Bnow[y℄:=simplify(Bnow[y℄+z*Bnow[j℄):y:=SeqIndex(Anow,sm_minus):Bnow[y℄:=simplify(Bnow[y℄-z*Bnow[j℄):fi:Bnow[j℄:=0:fi:od:od:fi:##Now all sequenes are losure-ompatible######Need to initialise variables that will be used##for the next level of losure, i.e., to pass##to sequenes with one less arYnext:=Y[1..(nops(Y)-2)℄:##Ynext is the base generator stringC:=permute(Ynext,nops(Ynext)):Anext:=Array(1..nops(C)):Bnext:=Array(1..nops(C)):##Anext is the set of sequenes that##oeffiients will be passed to#### 181



##Bnext stores orresponding##oeffiients for Anextfor a from 1 to nops(C) doAnext[a℄:=C[a℄:Bnext[a℄:=0:od:C:='C':##Perform losurefor j from 1 to m doif Bnow[j℄<>0 thenlose_temp:=Anow[j℄[3..nops(Y)℄:##lose_temp is the sequene##that will result from the ation##of losurelose_mult:=0:if Anow[j℄[1℄=Anow[j℄[2℄ thenlose_mult:=delta*Bnow[j℄:else##The following determines the##multiplier that is arried throughdepth:=[Anow[j℄[1℄,Anow[j℄[2℄,0,0℄: w:=3:while w<5 dofor b from 3 to nops(Y) doif (Anow[j℄[b℄=Anow[j℄[1℄)or (Anow[j℄[b℄=Anow[j℄[2℄) thendepth[w℄:=Anow[j℄[b℄: w:=w+1:fi:od:od:if depth[2℄=depth[3℄ thenlose_mult:=1*Bnow[j℄:182



elif depth[2℄<depth[3℄ thenlose_mult:=(1/v)*Bnow[j℄:elif depth[2℄>depth[3℄ thenlose_mult:=v*Bnow[j℄:fi:fi:##lose_mult, by this point##is the oeffiient that is##passed to the next stage##aounting for any multiplierfor i from 1 to nops(Ynext) doif lose_temp[i℄>min(Anow[j℄[1℄,Anow[j℄[2℄) thenlose_temp[i℄:=lose_temp[i℄-1:fi:od:y:=SeqIndex(Anext,lose_temp):Bnext[y℄:=simplify(Bnext[y℄+lose_mult):fi:od:#########################################################END CLOSURE##########################################################We have to initialise Anow, Bnow,##Y and m for the next loopAnow:='Anow': Bnow:='Bnow':Anow:=Anext: Bnow:=Bnext:m:=ArrayNumElems(Anow):Anext:='Anext': Bnext:='Bnext':Y:=Ynext:#########################################################END CLOSURE 183



#########################################################END MAIN PROGRAM########################################################od:#########################################################FINAL OUTPUT STAGE########################################################output:=Bnow[1℄:##The polynomial of the k-plait presentation##has been alulated, and we output this##with oeffiients of v on zoutput:=ollet(expand(output),z):end;
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A.3 h plaitThe omments for the program are ontained within the listing for the programitself.Input for the program is the width of the plait k, followed by a string of non-zero integers between �(k � 1) and (k � 1) indiating the braid wordof length  of the plait presentation. Output is the Homy polynomial of theplait presentation in variables v and z, olleting oeÆients of v against z.As stated in Chapter 4 and the program listing, this implementation re-quires that the braid word given respet an initial orientation sequene of(�1; 1;�1; 1; :::;�1; 1). If this is not the ase then there will most likely beserious error in any alulations; an implementation ould be written so thatthe initial orientation sequene is a value that is taken from input.###h_plait############################################################IMPORTANT NOTE:#Input for program is k followed by a#string of positive and negative numbers#indiating rossings in an undireted#braid presentation (ie, monotoni#but with no orientation).####Orientation is done so that the initial#tangle with oeffiient 1 has#orientation (-1,1,-1,1,...,-1,1).####If the presentation is not arranged as suh,#then the program will not run orretly -#essentially the orientation will not be#onsistent throughout - and errors will most#ertainly our. 185



#########################################################Initialisation Part 1#########################################################Introdue the permute ommand outside of#the main program listing####"permute" allows us to generate the set of#k-sequenes########################################################with(ombinat,permute):#########################################################Initialisation Part 2#########################################################We initialise the program and define#the variables that we will use########################################################with(ombinat,permute):h_plait := pro()loal a,b,,f,i,j,k,m,n,p,r,t,w,y,mu2,A,Anow,Anext,B,Bnow,Bnext,C,Y,Ynext,S,S1,output,delta,lose_temp,lose_mult,mult_temp,swith,smooth,depth,posn,sign:#########################################################With the exeption of k, the plait number,#lower ase variables are looping variables#or flags, and oasionally temporary variables####Upper ase variables are arrays/lists#generated by the program### 186



#Variables with "names" will be explained#in ommenting in the first instane of their use#########################################################Initialisation Part 3#########################################################In the final initialisation setion we#reate the set of k-sequenes and#the array that stores oeffiients####We also have to reate the#sequene whih stores the#orientation information for#the k-sequenes########################################################k:=args[1℄:Y:=[seq(x[i℄,i=1..2*k)℄:S:=[seq(x[i℄,i=1..2*k)℄:for a from 1 to 2*k doif type(a/2,integer) thenY[a℄:=a/2: S[a℄:=1:elseY[a℄:=(a+1)/2: S[a℄:=-1:fi:od:#The preeding lines generate the#initial sequene whose entries are#permuted to give the set of k-sequenes.####We also reate the list whih holds#the orientation information of the#non-zero oeffiient k-sequenes187



C:=permute(Y,2*k):A:=Array(1..nops(C)):B:=Array(1..nops(C)):m:=ArrayNumElems(A):for a from 1 to m doA[a℄:=C[a℄: B[a℄:=0:od:B[1℄:=1:C:='C':#The preeding lines omplete the#initialisation.####The set of k-sequenes is reated#from the permutation, and arrays#are set up to hold these and the#oeffiients.####We devalue C, so that memory#is not being taken up by this#during the program's operation.#########################################################Initialisation omplete#########################################################Start of the main mehanisms of the program########################################################for n from 2 to nargs do #START OF MAIN LOOPi:=args[n℄: #Crossing from the plait#########################################################START OF REARRANGEMENT/RENUMBERING LOOP########################################################for r from k to 2 by -1 do 188



for j from 1 to m do #Looping through all A,Bif i>0 then #Case for positive rossingsif B[j℄<>0 and A[j℄[i+1℄=r and A[j℄[i℄<r thendepth:=[0,0,0,0℄: posn:=[0,0,0,0℄:w:=1: mu2:=0:##If rearrangement is needed for a##partiular k-sequene then these lines##obtain the information that allow us to##determine the k-sequene(s) that##oeffiients will be passed to.while w<5 dofor  from 1 to 2*k doif A[j℄[℄=r-1 or A[j℄[℄=r thendepth[w℄:=A[j℄[℄: posn[w℄:=: w:=w+1:fi:od:od:##If rearrangement or renumbering##is needed we always pass oeffiients##to a k-sequene represented by##the variable 'swith'swith:=A[j℄:for f from 1 to 2*k doif A[j℄[f℄=r-1 thenswith[f℄:=r:elif A[j℄[f℄=r thenswith[f℄:=r-1:fi:od:##If rearrangement for a sequene is##more than the ation of a renumbering189



##operation then we need the following##long series of lines to determine the##other sequene that oeffiients##are passed to.if depth[1℄=depth[3℄ thensmooth:=A[j℄:sign:=[S[posn[1℄℄,S[posn[2℄℄℄:if depth[1℄=r-1 then##smooth is determined by several fators:##the value of depth[1℄, the sequene 'sign'##whih is onstruted from the orientation##information stored in S, and various posn##values whih give the final plaes of the##ars r and r-1 in the new sequene.if sign[1℄=sign[2℄ thenif posn[2℄=i+1 thensmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r:elsesmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r-1:fi:mu2:=z:elif sign[1℄<>sign[2℄ thenif posn[2℄=i+1 thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r:elsesmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r-1:fi: 190



mu2:=-z:fi:##mu2 stores the value of the multiplier##for the rearrangement, whih in##this program is always z or -zelif depth[1℄=r thenif sign[1℄=sign[2℄ thenif posn[1℄=i+1 thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r-1:elsesmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r:fi:mu2:=-z:elif sign[1℄<>sign[2℄ thenif posn[1℄=i+1 thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r:elsesmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r-1:fi:mu2:=z:fi:fi:fi:##Now we have the routines that move##the oeffiients######SeqIndex is a alled program that finds191



##the index of a required number sequene,y:=SeqIndex(A,swith):B[y℄:=simplify(B[y℄+B[j℄):if mu2<>0 theny:=SeqIndex(A,smooth):B[y℄:=simplify(B[y℄+mu2*B[j℄):fi:B[j℄:=0:fi: #End of routine for positive rossingselif i<0 then #Case for negative rossingsif B[j℄<>0 and A[j℄[abs(i)℄=rand A[j℄[abs(i)+1℄<r thendepth:=[0,0,0,0℄: posn:=[0,0,0,0℄:w:=1: mu2:=0:while w<5 dofor  from 1 to 2*k doif A[j℄[℄=r-1 or A[j℄[℄=r thendepth[w℄:=A[j℄[℄: posn[w℄:=: w:=w+1:fi:od:od:##In this setion we have similar##piees of ode to previously; these##deal with the ase when we need##to ensure ompatibility for an##inverseswith:=A[j℄:for f from 1 to 2*k doif A[j℄[f℄=r-1 thenswith[f℄:=r:elif A[j℄[f℄=r then192



swith[f℄:=r-1:fi:od:if depth[1℄=depth[3℄ thensmooth:=A[j℄:sign:=[S[posn[1℄℄,S[posn[2℄℄℄:if depth[1℄=r-1 thenif sign[1℄=sign[2℄ thenif posn[4℄=abs(i) thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r-1:elsesmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r:fi:mu2:=z:elif sign[1℄<>sign[2℄ thenif posn[4℄=abs(i) thensmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r-1:elsesmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r:fi:mu2:=-z:fi:elif depth[1℄=r thenif sign[1℄=sign[2℄ thenif posn[1℄=abs(i) thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r-1:193



elsesmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r:fi:mu2:=-z:elif sign[1℄<>sign[2℄ thenif posn[1℄=abs(i) thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r-1:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r:elsesmooth[posn[1℄℄:=r: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r-1: smooth[posn[4℄℄:=r-1:fi:mu2:=z:fi:fi:fi:y:=SeqIndex(A,swith):B[y℄:=simplify(B[y℄+B[j℄):if mu2<>0 theny:=SeqIndex(A,smooth):B[y℄:=simplify(B[y℄+mu2*B[j℄):fi:B[j℄:=0:fi:fi: #End of routine for negative rossingod: #End of loop through A,Bod:#########################################################END OF REARRANGEMENT/RENUMBERING LOOP########################################################194



#By this point in the algorithm, the array#of oeffiients has been rearranged so#that the only k-sequenes whih an#have non-zero oeffiients are those#whih are ompatible with the generator#or inverse####This is ahieved after k-1 passes of the#set of k-sequenes#########################################################MULTIPLICATION PROCEDURE#########################################################This is a muh shorter proedure, there#is muh less work to do in terms#of searhing through the arrays; we have#two slightly different routines depending#on whether or not we have a positive or#negative rossing########################################################if i>0 then##Generatorfor t from 1 to m doif B[t℄<>0 and (A[t℄[i℄>=A[t℄[i+1℄) thenmult_temp:=A[t℄:mult_temp[i℄:=A[t℄[i+1℄:mult_temp[i+1℄:=A[t℄[i℄:if mult_temp=A[t℄ thenB[t℄:=simplify(v*B[t℄):elsey:=SeqIndex(A,mult_temp):B[y℄:=B[t℄: 195



B[t℄:=0:fi:fi:od:elif i<0 then##Inversefor t from 1 to m doif B[t℄<>0and (A[t℄[abs(i)℄<=A[t℄[abs(i)+1℄) thenmult_temp:=A[t℄:mult_temp[abs(i)℄:=A[t℄[abs(i)+1℄:mult_temp[abs(i)+1℄:=A[t℄[abs(i)℄:if mult_temp=A[t℄ thenB[t℄:=simplify(v^(-1)*B[t℄):elsey:=SeqIndex(A,mult_temp):B[y℄:=B[t℄:B[t℄:=0:fi:fi:od:fi:##The following lines updates##orientations of the the linear##ombination of k-sequenesS1:=S:S1[abs(i)℄:=S[abs(i)+1℄:S1[abs(i)+1℄:=S[abs(i)℄:S:='S':S:=S1:S1:='S1': 196



########################################################od:#########################################################END OF MAIN REARRANGEMENT AND MULTIPLICATION LOOP#########################################################CLOSURE ROUTINE#########################################################After all of the multipliations are omplete#we must lose off eah k-sequene beause of#the 'ups'####We perform the losure one 'up' at a time.#########################################################k is passed in, but it is only used to give a#value to the first loop whih ontrols the#overall proess and how many times#it is repeated#########################################################INITIALISING CLOSURE PROCEDURE########################################################Anow:=A: Bnow:=B:A:='A': B:='B': m:='m':m:=ArrayNumElems(Anow):delta:=((1/v)-v)/z:##Define delta, value of disjoint unknot#########################################################START CLOSURE LOOP########################################################for f from k to 2 by -1 doif (nops(Y)/2)>2 then##Don't need rearrangement 197



##for losure of 2-sequenesfor r from (nops(Y)/2) to 3 by -1 dofor j from 1 to m doif (Bnow[j℄<>0) and((Anow[j℄[1℄=r and Anow[j℄[2℄<(r-1))or (Anow[j℄[2℄=r and Anow[j℄[1℄<(r-1))) thendepth:=[0,0,0,0℄: posn:=[0,0,0,0℄:w:=1: mu2:=0:while w<5 dofor  from 1 to nops(Y) doif Anow[j℄[℄=r or Anow[j℄[℄=r-1 thendepth[w℄:=Anow[j℄[℄: posn[w℄:=: w:=w+1:fi:od:od:swith:=Anow[j℄:for i from 1 to nops(Y) doif Anow[j℄[i℄=r thenswith[i℄:=r-1:elif Anow[j℄[i℄=r-1 thenswith[i℄:=r:fi:od:##Then we have the routine that will##deide if we need rearrangement##rather than renumberingif depth[1℄=depth[3℄ thensmooth:=Anow[j℄:sign:=[S[posn[1℄℄,S[posn[2℄℄℄:if sign[1℄<>sign[2℄ thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r-1:198



smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r:mu2:=z:elif sign[1℄=sign[2℄ thensmooth[posn[1℄℄:=r-1: smooth[posn[2℄℄:=r:smooth[posn[3℄℄:=r: smooth[posn[4℄℄:=r-1:mu2:=-z:fi:fi:##Moving oeffiientsy:=SeqIndex(Anow,swith):Bnow[y℄:=simplify(Bnow[y℄+Bnow[j℄):if mu2<>0 theny:=SeqIndex(Anow,smooth):Bnow[y℄:=simplify(Bnow[y℄+mu2*Bnow[j℄):fi:Bnow[j℄:=0:fi:od:od:fi:##All sequenes are losure-ompatible######Need to initialise variables that will be used##for the next level of losure, i.e., to pass##to sequenes with one less arYnext:=Y[1..(nops(Y)-2)℄:##Ynext is the base generator stringC:=permute(Ynext,nops(Ynext)):Anext:=Array(1..nops(C)):Bnext:=Array(1..nops(C)):##Anext is the set of sequenes that199



##oeffiients will be passed to######Bnext stores orresponding##oeffiients for Anextfor a from 1 to nops(C) doAnext[a℄:=C[a℄: Bnext[a℄:=0:od:C:='C':##Perform losurefor j from 1 to m doif Bnow[j℄<>0 thenlose_temp:=Anow[j℄[3..nops(Y)℄:lose_mult:=0:if Anow[j℄[1℄=Anow[j℄[2℄ thenlose_mult:=delta*Bnow[j℄:elsedepth:=[Anow[j℄[1℄,Anow[j℄[2℄,0,0℄: w:=3:while w<5 dofor b from 3 to nops(Y) doif (Anow[j℄[b℄=Anow[j℄[1℄) or (Anow[j℄[b℄=Anow[j℄[2℄) thendepth[w℄:=Anow[j℄[b℄: w:=w+1:fi:od:od:##The following determines the##multiplier that is arried throughif depth[2℄=depth[3℄ thenlose_mult:=1*Bnow[j℄:elif depth[2℄<depth[3℄ thenlose_mult:=v*Bnow[j℄:elif depth[2℄>depth[3℄ then200



lose_mult:=(1/v)*Bnow[j℄:fi:fi:##lose_mult, by this point##is the oeffiient that is##passed to the next stage##aounting for any multiplierfor i from 1 to nops(Ynext) doif lose_temp[i℄>min(Anow[j℄[1℄,Anow[j℄[2℄) thenlose_temp[i℄:=lose_temp[i℄-1:fi:od:y:=SeqIndex(Anext,lose_temp):Bnext[y℄:=simplify(Bnext[y℄+lose_mult):fi:od:#########################################################END CLOSURE##########################################################Have to initialise Anow, Bnow,##Y and m for next loop.######We also need to remove the##first two elements of S.Anow:='Anow': Bnow:='Bnow': Y:='Y':Anow:=Anext: Bnow:=Bnext: Y:=Ynext:Anext:='Anext': Bnext:='Bnext': Ynext:='Ynext':m:=ArrayNumElems(Anow):S1:=S[3..nops(S)℄:S:='S': S:=S1: S1:='S1':########################################################201



#END MAIN PROGRAM########################################################od:#########################################################FINAL OUTPUT STAGE########################################################output:=Bnow[1℄:##The polynomial of the plait presentation##has been alulated, and we output this##with oeffiients of v on zoutput:=ollet(expand(output),z):end;
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Appendix BPlait PresentationsIn this hapter we give tables of representative words for plait presentations ofknots up to ten rossings.Unless otherwise stated the diagrams that the presentations are based onwere taken from the Knot Atlas Rolfsen tables [52℄. All presentations haveminimal plait width, but not neessarily minimal rossing number for thatwidth.
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Knot k Presentation Notes31 2 2 -1 241 2 -2 -2 3 -251 2 2 -3 -3 -3 252 2 -2 -2 1 3 -261 2 -2 -2 1 1 3 -262 2 2 -1 2 -1 -3 263 2 -2 -2 3 -2 1 -271 2 2 -1 -1 -3 -3 -3 272 2 -2 -2 1 1 3 3 -273 2 -2 -2 -2 1 1 3 -274 2 2 -1 -3 2 -1 -3 275 2 2 -1 2 2 -1 -3 276 2 2 2 -3 -3 2 -3 277 2 2 -3 2 -1 2 -3 2Table B.1: Plait presentations for knots of up to 7 rossings
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Knot k Presentation Notes81 2 -2 -2 1 1 3 3 3 -282 2 2 -1 2 -1 -3 -3 -3 283 2 -2 -2 -2 -2 1 3 3 -284 2 -2 -2 -2 1 -2 -2 -2 -285 3 -2 -4 3 3 3 5 -2 -486 2 2 -1 2 2 2 -1 -3 287 2 -2 -2 3 -2 1 1 3 -288 2 2 2 -1 -1 -1 2 -3 289 2 -2 1 3 -2 1 -2 -2 -2810 3 2 1 -4 3 -2 1 3 5 -2 -4 10 rossing811 2 2 -1 2 -3 -3 2 2 2812 2 -2 -2 1 1 -2 -2 3 -2813 2 2 -1 -3 2 -3 2 -1 2814 2 -2 -2 3 -2 3 3 -2 -2815 3 2 4 -5 4 -3 4 4 2816 3 2 4 -3 -5 4 -3 2 4817 3 2 4 -3 2 -5 4 -3 2 5 4 10 rossing818 3 -2 -4 3 -2 -4 3 -2 -4819 3 -2 -4 1 -3 2 -3 -4 -2820 3 2 4 3 2 -4 -3 -5 4 1 2 10 rossing821 3 -2 4 3 4 -2 3 -5 4 1 2 10 rossingTable B.2: Plait presentations for knots with 8 rossings
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Knot k Presentation Notes91 2 2 -1 -1 -1 -3 -3 -3 -3 292 2 -2 -2 1 1 1 3 3 3 -293 2 -2 -2 -2 1 1 1 1 3 -294 2 -2 -2 -2 -2 1 1 3 3 -295 2 -2 -2 -2 1 -2 -2 -2 -2 -296 2 2 -1 -3 -3 -3 2 2 -1 297 2 2 -1 2 2 2 2 -1 -3 298 2 2 2 -3 -3 -3 -3 2 -1 299 2 2 -1 -1 -3 2 2 -1 -3 2910 2 2 -1 -3 2 2 2 -1 -3 2911 2 -2 -2 3 3 -2 1 1 3 -2912 2 2 -3 2 -1 -1 2 2 2 2913 2 2 -3 -3 2 -1 -1 2 2 2914 2 2 -1 -1 -3 2 -1 2 -3 2915 2 -2 -2 1 3 -2 -2 -2 1 -2916 3 2 2 2 4 5 -1 -3 2 2 2 4 11 rossing917 2 -2 -2 1 -2 -2 -2 1 -2 -2918 2 2 2 2 -1 -1 2 2 -3 2919 2 -2 -2 3 -2 3 3 3 -2 -2920 2 -2 -2 3 -2 -2 3 -2 -2 -2921 2 -2 -2 -2 3 -2 3 3 -2 -2922 3 -2 1 -2 -4 3 3 3 -2 -4923 2 -2 -2 1 1 -2 1 1 -2 -2924 3 2 2 -3 4 5 -3 -3 2 2 2 4 11 rossing925 3 2 2 4 -3 2 2 -1 2 4Table B.3: Plait presentations for knots 91 to 925
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Knot k Presentation Notes926 2 -2 1 3 -2 1 -2 1 -2 -2927 2 2 -3 2 -1 2 2 -1 2 2928 3 2 -3 2 4 5 -1 -3 2 -1 2 4 11 rossing929 3 -2 4 5 3 -2 -4 3 -2 -4 3 -4 1 2 13 rossing930 3 2 2 4 -3 2 -1 2 2 4931 2 2 -3 2 -1 2 -1 2 -3 2932 3 -2 -4 3 -2 3 3 -2 -4 -4933 3 2 1 4 -3 2 4 -1 -3 2 2 4 11 rossing934 3 -2 -4 3 -2 -4 3 3 -2 -4935 3 -2 -4 1 3 3 3 5 -2 -4936 3 -2 -4 -4 1 3 3 5 -2 -4937 3 2 4 -5 4 -3 2 4 4 4938 3 2 1 4 -3 2 -5 4 -3 2 4 4 11 rossing939 3 2 4 -3 -5 4 -3 2 4 4940 3 2 4 -3 4 -3 2 -3 2 4941 3 -2 -4 3 3 5 -4 3 -2 -4942 3 -2 -4 -4 1 -3 -3 5 -2 -4943 3 -2 4 4 3 -5 4 3 -2 4944 3 -2 4 3 -2 -3 2 -1 2 4945 3 -2 -4 1 -2 3 3 -5 2 4946 3 -2 -4 1 3 3 3 -5 -2 4947 3 -2 -4 -3 -3 -2 -4 3 -2 -4948 3 2 4 -1 -3 -2 3 -2 -2 4949 3 2 4 -3 -3 -5 -4 3 2 -4Table B.4: Plait presentations for knots 926 to 949
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Knot k Presentation Notes101 2 -2 -2 1 1 1 1 1 1 3 -2102 2 2 -1 -1 -1 -1 -1 -1 2 -1 2 Knot redrawn103 2 -2 -2 -2 -2 1 1 1 1 3 -2104 2 2 -1 -1 -1 -1 -3 2 -1 -1 2 Knot redrawn105 2 -2 -2 3 -2 1 3 3 3 3 -2106 2 2 -1 2 2 2 -1 -3 -3 -3 2107 2 -2 -2 3 -2 -2 1 1 1 3 -2108 2 -2 -2 -2 -2 1 -2 -2 -2 -2 -2109 2 -2 1 1 1 3 -2 1 -2 -2 -21010 2 2 -1 -1 -1 -3 2 -3 2 -1 21011 2 2 -1 -1 -3 2 2 2 -1 -3 21012 2 -2 1 1 3 -2 -2 -2 1 -2 -21013 2 -2 1 3 3 -2 -2 1 1 -2 -21014 2 2 -1 -1 -3 2 2 -3 2 -1 21015 2 -2 1 1 3 -2 1 1 1 -2 -21016 2 -2 1 3 3 -2 1 1 -2 -2 -21017 2 -2 1 3 3 -2 1 -2 -2 -2 -21018 2 2 -1 -1 -3 2 -3 2 2 -1 21019 2 2 -1 -1 -3 2 -3 2 -1 -3 21020 2 -2 -2 -2 3 3 3 3 3 -2 -21021 2 2 2 2 -3 -3 -3 -3 2 -1 21022 2 -2 1 3 -2 -2 -2 1 -2 -2 -21023 2 -2 -2 3 -2 3 3 3 -2 -2 -21024 2 -2 1 3 -2 -2 1 1 1 -2 -21025 2 2 -1 -3 2 2 -3 -3 2 -1 2Table B.5: Plait presentations for knots 101 to 1025
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Knot k Presentation Notes1026 2 2 -1 -3 2 -1 2 2 -1 -3 21027 2 -2 -2 -2 1 1 -2 3 3 -2 -2 Knot redrawn1028 2 2 -3 2 -1 -1 -1 2 -1 -3 21029 2 2 -1 2 2 -1 -1 2 -1 -3 21030 2 -2 1 3 -2 1 1 -2 1 -2 -21031 2 -2 -2 -2 3 -2 3 3 3 -2 -21032 2 2 2 2 -3 2 -3 2 2 -1 2 Knot redrawn1033 2 -2 1 3 -2 -2 -3 -3 2 -1 -3 2 11 rossing; knot redrawn1034 2 2 -3 2 -1 -1 -1 -1 -1 2 21035 2 2 -1 2 2 -1 -1 -1 -1 2 21036 2 -2 -2 1 1 1 1 -2 1 -2 -21037 2 2 -3 2 2 2 -1 -1 -1 2 21038 2 2 2 -1 -3 2 -3 -3 -3 2 2 KnotInfo diagram1039 2 -2 -2 1 -2 -2 -2 3 3 -2 -21040 2 2 -3 2 2 -3 -3 2 -3 2 2 KnotInfo diagram1041 2 2 -1 2 -1 -1 2 -1 -1 2 21042 2 -2 1 -2 3 -2 -2 -3 -3 -3 2 2 11 rossing; KnotInfo diagram1043 2 2 2 -1 2 2 -3 -3 2 -1 21044 2 2 -1 2 -1 2 -1 -1 2 -1 21045 2 2 -1 2 -1 2 -1 2 -1 2 21046 3 -2 -4 3 3 3 5 5 5 -2 -41047 3 2 1 -4 3 -2 1 3 5 5 5 -2 -4 12 rossing1048 3 4 5 -2 -2 -2 -2 3 3 3 5 -2 -4 12 rossing1049 3 4 5 -2 -2 -2 -2 3 -4 3 5 -2 -4 12 rossing1050 3 -2 -4 3 3 3 5 -2 -4 -4 -4Table B.6: Plait presentations for knots 1026 to 1050
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Knot k Presentation Notes1051 3 -2 -4 1 3 5 -2 3 -4 -4 -4 1 2 12 rossing1052 3 -2 -4 3 3 3 -4 5 5 -2 -41053 3 -2 -4 1 3 -2 3 -4 5 5 -4 3 2 12 rossing1054 3 -2 -4 3 3 3 5 5 -2 -4 -41055 3 -2 -4 1 3 5 5 -2 3 -4 -4 1 2 12 rossing1056 3 -2 -4 3 3 3 -4 -4 5 -2 -41057 3 -2 -4 1 3 -2 3 -4 -4 5 -4 1 2 12 rossing1058 3 -2 -4 1 3 3 -2 3 5 -4 -4 1 2 12 rossing1059 3 2 1 -4 -4 3 3 5 -2 1 3 -2 -4 12 rossing1060 3 2 2 -3 4 2 -3 2 2 4 4 KnotInfo diagram1061 3 -2 -4 1 3 3 3 5 5 -2 -41062 3 -2 -4 3 3 3 5 5 -2 -2 -41063 3 2 -4 -4 3 5 -4 3 5 5 -2 3 4 12 rossing1064 3 -2 -2 -2 -4 3 3 3 5 -2 -41065 3 -2 -2 -4 3 3 3 -2 -4 -4 -41066 3 2 -4 -4 3 5 -4 3 5 -4 -4 -4 -2 12 rossing1067 3 -2 -4 3 3 3 5 -2 -2 -4 -41068 3 -2 -4 1 3 3 3 -4 5 -2 -41069 3 2 -4 -4 3 5 -4 3 5 -4 -2 3 -4 12 rossing1070 3 2 -1 4 5 3 4 -5 -2 -2 -2 19 rossing; KnotInfo diagram-1 4 -5 2 3 1 2 4 41071 3 -2 -2 -4 1 3 -2 -2 1 -2 -4 KnotInfo diagram1072 3 2 2 -3 4 -3 2 2 2 4 41073 3 2 2 4 4 -1 -1 -3 -2 -2 -2 -4 11 rossing; KnotInfo diagram1074 3 -2 3 4 5 -2 1 3 -2 -2 -2 -4 -4 12 rossing; KnotInfo diagram1075 3 -2 3 -4 -2 1 3 -2 1 -2 -4 KnotInfo diagramTable B.7: Plait presentations for knots 1051 to 1075
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Knot k Presentation Notes1076 3 2 2 2 4 -1 -5 -4 -3 2 2 2 -4 12 rossing; KnotInfo diagram1077 3 -2 -2 -4 1 1 3 -2 -2 -2 -4 KnotInfo diagram1078 3 2 -1 2 -1 -1 4 5 -3 2 -1 2 4 12 rossing1079 3 -2 -4 3 5 -4 -4 -4 2 3 2 4 -3 12 rossing1080 3 -2 -2 -2 4 5 3 -4 3 -2 -2 5 -4 12 rossing1081 3 -2 -4 -4 1 3 -2 3 -4 5 -4 1 2 12 rossing1082 3 2 4 -3 -5 -5 2 -1 2 -3 4 1 2 12 rossing1083 3 2 -1 -3 4 2 -3 2 -1 2 -3 -4 2 12 rossing1084 3 2 4 -3 4 -5 4 -3 -5 -5 -2 4 4 12 rossing1085 3 2 4 -3 2 -3 -3 -5 -5 2 41086 3 2 4 -3 4 -3 -3 4 1 2 -3 -5 4 12 rossing1087 3 2 4 4 -3 2 -3 -3 -5 2 41088 3 2 2 4 5 3 4 -5 4 -3 2 4 -3 2 4 14 rossing1089 3 -2 4 5 3 -2 3 -4 -2 1 -2 5 -4 12 rossing1090 3 -2 4 5 3 -2 -4 3 5 -2 -2 -2 -4 12 rossing1091 3 2 1 4 -3 2 4 -1 -5 -5 2 -3 1 2 4 14 rossing1092 3 2 4 4 -3 -5 2 4 4 -3 4 1 2 12 rossing1093 3 2 1 4 -3 -3 4 -5 -5 -3 -3 2 4 12 rossing1094 3 4 5 2 2 2 -3 2 4 -3 -3 2 4 12 rossing1095 3 2 -3 4 5 2 -3 2 4 -3 -3 2 4 12 rossing1096 3 2 -3 -4 -5 -3 -3 2 4 -3 -3 2 4 12 rossing1097 3 2 2 4 -3 -5 4 -3 -3 2 4 KnotInfo diagram1098 3 2 4 -3 -3 2 2 -1 -3 2 41099 3 2 1 4 -3 2 -1 -5 4 2 -3 -5 1 2 4 14 rossing10100 3 2 4 -1 -3 -5 2 -1 -3 2 4Table B.8: Plait presentations for knots 1076 to 10100
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Knot k Presentation Notes10101 3 2 -4 -4 3 -4 5 -4 3 -2 -4 3 -4 12 rossing10102 3 -2 -4 1 3 -2 -4 3 -4 -4 -4 1 2 12 rossing10103 3 2 1 -4 -4 3 -2 -4 1 5 -4 5 4 3 -2 14 rossing10104 3 2 -3 4 5 -4 -4 1 5 -2 3 -2 -4 12 rossing10105 3 2 1 -4 3 3 5 -4 3 -2 1 -2 -4 12 rossing10106 3 2 3 -4 3 -2 1 1 5 -4 3 -2 -4 12 rossing10107 3 -2 -2 4 5 3 -4 5 5 -4 3 -2 -4 12 rossing10108 3 -2 4 3 -2 1 3 3 5 -2 -410109 3 -2 -4 3 3 -2 -2 3 3 -2 -2 5 4 12 rossing10110 3 -2 4 5 3 -2 -2 -4 3 3 -2 -2 -4 12 rossing10111 3 2 1 4 4 -3 2 4 4 -5 -5 -4 -3 -4 2 14 rossing; knot redrawn10112 3 2 1 -4 3 -4 3 -2 3 -2 -2 -2 -4 12 rossing10113 3 2 4 -3 2 -1 2 -3 2 4 410114 3 -2 -4 3 3 3 -2 -4 3 -2 -410115 3 2 1 -4 3 5 -2 -4 3 -4 3 -2 -4 12 rossing10116 3 2 4 -3 -5 2 4 -3 -5 2 410117 3 -2 -4 3 -2 3 -4 3 3 1 2 -4 -4 12 rossing10118 3 -2 4 5 3 -2 3 3 5 -4 3 1 2 -4 -4 14 rossing10119 3 2 -4 3 4 -1 2 -5 4 -3 -3 2 4 12 rossing; knot redrawn10120 3 -2 -4 3 3 -2 -4 3 3 -2 -410121 3 -2 4 5 3 -2 3 -4 -2 3 5 -2 -4 12 rossing10122 3 2 4 -3 4 -3 -3 2 -3 2 410123 3 2 4 -3 2 4 -5 4 -3 2 410124 3 2 -4 3 2 3 3 2 5 5 -410125 3 -2 -4 -3 -3 -3 5 5 5 -2 -4Table B.9: Plait presentations for knots 10101 to 10125
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Knot k Presentation Notes10126 3 -2 4 3 3 3 -5 -5 -5 -2 410127 3 2 -4 -1 3 -2 3 1 2 -4 -4 -4 -4 12 rossing10128 3 -2 -4 -1 -3 2 -3 -2 -2 -2 -410129 3 -2 4 3 -5 -4 3 -4 -4 -4 -210130 3 2 -4 3 3 3 4 2 3 5 -410131 3 -2 -4 1 -3 -3 -3 -4 1 2 3 5 -4 12 rossing10132 3 -2 -4 -3 2 4 -3 5 -2 -4 -410133 3 2 -4 3 2 -1 3 2 3 -4 -410134 3 -2 4 1 3 -5 -2 -3 2 4 410135 3 2 -4 -1 3 -2 3 -4 -4 5 1 2 -4 12 rossing10136 3 -2 4 3 -2 1 -2 3 -2 4 410137 3 2 2 2 1 3 -4 5 -3 2 4 3 -2 -2 5 4 15 rossing; knot redrawn10138 3 -2 1 1 -4 -4 2 -3 4 1 2 -3 4 4 13 rossing; KnotInfo diagram10139 3 2 1 -4 -3 5 2 2 4 1 -3 -2 -4 12 rossing10140 3 2 -4 -1 3 3 3 5 5 2 -410141 3 2 4 -3 -5 -4 5 2 3 2 -410142 3 2 -4 -1 -1 3 3 3 5 2 -410143 3 2 1 -4 3 -2 1 5 -4 -5 2 3 4 1 2 14 rossing10144 3 -2 -2 -4 -3 -3 -3 -3 -2 -4 -410145 3 2 1 4 3 3 4 4 3 -2 3 2 4 12 rossing10146 3 4 -3 2 3 -5 -4 3 5 5 -4 -4 -2 12 rossing10147 3 2 4 -1 -3 -2 -1 3 -2 4 410148 3 -2 4 3 -5 -2 -4 1 -4 3 -2 5 4 12 rossing10149 3 -2 4 5 1 3 -4 -4 -2 3 1 2 -3 -5 4 14 rossing10150 3 -2 4 3 -2 4 3 5 -2 4 4Table B.10: Plait presentations for knots 10126 to 10150
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Knot k Presentation Notes10151 3 2 -1 -4 -4 3 -2 3 -4 5 -4 1 2 12 rossing10152 3 2 4 5 3 -1 -2 -4 -4 3 -5 -5 4 1 2 14 rossing10153 3 2 -4 -4 -1 -3 2 -3 -4 -4 -4 1 2 12 rossing10154 3 2 -4 -4 -1 -3 2 -3 -4 5 -4 1 2 12 rossing10155 3 -2 4 1 -3 -5 4 -3 -5 -2 410156 3 2 1 -4 -3 -4 -5 -4 2 -1 -3 2 2 5 4 14 rossing10157 3 2 1 -4 5 -3 2 -1 -4 2 -3 5 -4 1 2 14 rossing10158 3 2 4 -1 -3 -3 -2 3 -2 -2 410159 3 2 4 -3 2 -4 -4 -4 -3 2 410160 3 -2 -4 3 -4 -3 -3 2 -3 -2 -410161 3 4 5 2 3 -1 -2 -4 -4 3 5 4 -2 12 rossing10162 3 -2 4 3 -2 -1 -3 -3 5 2 410163 3 -2 -4 3 -2 -4 -3 -3 -3 -2 -410164 3 2 -4 3 -4 -3 -3 2 -3 2 410165 3 2 4 -3 -3 2 4 3 3 2 4Table B.11: Plait presentations for knots 10151 to 10165
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