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Abstract 

While previous studies have determined the prevalence of meticillin resistant 

Staphylococcus aureus (MRSA) and antimicrobial resistant (AMR) Escherichia coli 

in canine populations, few have included sufficiently large sample sizes and fewer 

still have characterised the isolates or investigated risk factors that might be 

associated with their carriage. 

The main aims of the work presented in this thesis were; to determine the nasal 

prevalence of MRSA and other AMR staphylococci and the faecal prevalence of 

AMR E. coli in faeces in the canine population of mainland UK. The study also 

aimed to characterise the bacteria isolated using molecular techniques in order for 

comparisons to be made with isolates of human origin, and to determine the presence 

of potential risk factors associated with faecal carriage of AMR E. coli.  

These objectives were achieved by carrying out two studies. The first study used 

frozen canine faecal samples collected during a cross sectional study of a semi-rural 

community in Cheshire to determine the prevalence of AMR E. coli. The second 

study collected faecal and nasal swabs from dogs visiting veterinary practices across 

mainland UK. Antimicrobial resistance of the isolates obtained from both studies 

were characterised using disc diffusion methods and PCR assays. In addition, isolates 

collected during the second study were subjected to multi-locus sequence typing and 

DNA micro array analysis of resistance and virulence genes. For antimicrobial 

resistant E. coli, risk factors associated with carriage were investigated. 

The prevalence of MRSA in the canine population was found to be low at 1% and all 

isolates were identical to EMRSA-15, the main human endemic strain in many UK 

hospitals. The overall S. aureus prevalence was 7.5%, with a higher prevalence of 

11.0% of S. pseudintermedius, in which no meticillin resistance was found. 

Meticillin resistant coagulase negative Staphylococcus spp. was found in 5.5% of 

dogs. AMR in the isolates varied between species; however resistance to fusidic acid 

was consistently high.  

AMR E. coli was common in both studies (29.0% in community study and 44.8% in 

nationwide study). Resistance to ampicillin (24.0% and 37.2%), tetracycline (19.7% 

and 30.0%), trimethoprim (16.9% and 23.8%) and resistance to three or more 

antimicrobial classes (15.3% and 18.1%) was found to be high in both studies 

(community and nationwide respectively), while resistance to augmentin, 

chloramphenicol, ciprofloxacin and nalidixic acid was below 10% in both studies. A 

variety of genes responsible for resistance to expanded spectrum β-lactams was 

identified; including blaCTX-M-15 and blacmy2, both of which have previously been 

identified in humans and dogs. A number of variables were found to be associated 

with resistance to antimicrobials, with previous prescription of antimicrobials and 

consumption of raw poultry meat remaining in the final model of more than one 

resistance outcome.  

The carriage of MRSA and antimicrobial resistant E. coli could pose a potential 

problem both in terms of the welfare of the dogs carrying such bacteria as well as the 

zoonotic potential of the bacteria and resistance determinants. 
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1.1 Dog ownership 

Pets, particularly dogs, have been a valued companion of humans for many years, 

and dog ownership has been suggested to have numerous positive effects on both 

physical and psychological health (Serpell 1991; Wells 2007). Conversely, there are 

also numerous hazards associated with dog ownership including potential 

development of allergies, bites and infectious diseases (Plaut, Zimmerman et al. 

1996).  

In the UK in 2010, it was estimated that 23% of households owned a dog with an 

approximate total population of 8 million (Pet Food manufacturers Association, “Pet 

ownership trends” http://www.pfma.org.uk/statistics). This suggests that the 

population of dogs in the UK has increased since 2004, when the estimation was 6.8 

million. It is difficult to comment on whether the increase in population is related to 

an increase in the proportion of dog owning households since this data was not 

reported in the 2004 study. Studies in other countries have shown the percentage of 

dog owning households to be slightly higher, including in the USA (37.2%) 

(American Veterinary Medical Association, “US Pet Ownership – 2007” 

http://www.avma.org/reference/marketstats/ownership.asp) and Ireland (35.6%) 

(Downes, Canty et al. 2009). With such a high population and the close bond many 

people share with their pets, it is highly likely that bacteria can transfer between dogs 

and their owners, and this has sparked concerns that dogs may act as reservoirs for 

zoonotic bacteria, in particular antimicrobial resistant bacteria and resistance 

determinants (Guardabassi, Schwarz et al. 2004; Stenske, Bemis et al. 2009). 

1.2 Use of antimicrobials in dogs 

Given the close relationship shared between owners and their dogs, the issue of pet 

welfare has become very important and, with this, a predictable increase in the use of 

antimicrobials in companion animal medicine has been observed. Often, 

antimicrobials are prescribed in the absence of confirmatory laboratory testing 

(Hughes, Williams et al. 2012), which may result in the inappropriate use of 

antimicrobial agents in small animal medicine. While many countries publish data on 

http://www.pfma.org.uk/statistics
http://www.avma.org/reference/marketstats/ownership.asp
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the use of antimicrobials in animals, the majority focus on their use is in food 

producing animals, with very little information relating to their use in companion 

animals being made available. In the UK, the Veterinary Medicines Directorate 

(VMD) publish such data annually, relating to sales of antimicrobials in both food 

producing and non-food producing animals. In 2009 (VMD 2009), sales of 

antimicrobials for use in non-food producing animals increased to 38 tonnes (of 

active ingredient) compared to 29 tonnes in 2004. It is not possible to break this 

down into sales for each individual animal species. However, the report does indicate 

that products for use only in the treatment of dogs to have increased from 4976 kg in 

2004 to 12454 Kg in 2008. A report from Denmark also showed that sales of 

antimicrobials for use in pet animals has increased, with the highest sales being 

associated with the penicillins, especially in combination with a β-lactamase inhibitor 

(DANMAP 2009). In a retrospective case study of prescription records carried out in 

the USA (Wayne, McCarthy et al. 2011), amoxicillin-clavulanic acid was also the 

most frequently prescribed antimicrobial. It is also interesting to note that this study 

reported that 38% and 44.1% of prescriptions were given when there was no 

evidence of infection or any suspected infection, respectively. Conversely, data from 

Sweden shows a decreasing trend in sales of all antimicrobials used in dogs with the 

exception of macrolides and lincosamides (SVARM 2008).  The report attributes this 

fall in sales to increased awareness after the first isolation of meticillin resistance 

Staphylococcus aureus and S. pseudintermedius, which led to increased media 

coverage, seminars and a revision of guidelines for use of antimicrobials in small 

animals.  

Exposure of dogs to such high volumes of antimicrobials, as in humans can have 

important consequences. The commensal flora present in the animal may be 

disrupted, allowing for more pathogenic bacteria to occupy such niches and cause 

further disease. In addition, the pressures exerted upon commensal bacteria by 

antimicrobials may result in selection of resistance.  
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1.3 Antimicrobial resistance 

Antimicrobial resistance is not a new phenomenon. In the same way that many of the 

antimicrobials are naturally occurring, so too are some of the mechanisms involved 

in resistance. It has been suggested that many antimicrobials are produced as a result 

of secondary metabolism (Vining 1990); with their toxic effect being more of a 

consequence than their specific function. They may however, provide producing 

organisms with an advantage over competitors occupying the same environmental 

niche. In order to avoid auto toxicity, many strategies are employed by the 

antimicrobial producing organism (Cundliffe 1989), including not producing the 

antimicrobial when undergoing rapid growth, modification of the antimicrobial 

targets, inactivation of intracellular antimicrobial and excretion of the antimicrobial 

into the extracellular environment. Bacteria living in the same niche as the 

antimicrobial producer will therefore be under a selection pressure to become 

resistant.  

Even before the widespread use of penicillin, an enzyme capable of inactivating it 

was identified (Abraham and Chain 1940). It is also known that some resistance 

mechanisms may have had other functions, for example efflux pumps capable of 

transporting a wide range of substrates such as bile acids out of the cell, but are also 

able to actively pump out antimicrobials (Ma, Cook et al. 1995; Oethinger, Kern et 

al. 1998; Piddock 2006; Piddock 2006). 

Resistance to antimicrobials can involve a number of different mechanisms and the 

specific details are reviewed later when discussing the individual antimicrobials and 

bacterial species. In broad terms, there are four main mechanisms by which bacteria 

can overcome the effect of antimicrobials: 

1. Drug inactivation or modification e.g. β-lactamases responsible for penicillin 

resistance. 

2. Alteration of the target of the antimicrobial e.g. mutations in the gyrA and 

parC genes encoding topoisomerase/gyrase the target of quinolones. 
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3. Alteration of a metabolic pathway or e.g. the utilization of preformed folic 

acid rather than its precursor para-aminobenzoic acid (PABA) in 

sulphonamide resistance.  

4. Reduced drug accumulation by either decreased uptake of the antimicrobial 

or by removal of the antimicrobial via efflux pumps. 

Antimicrobial resistance can be either intrinsic (inherent) or acquired (Normark and 

Normark 2002). Intrinsic resistance represents a trait associated with all bacteria of a 

species or genus because of a lack of the bacterial target or the inability to 

accumulate the antimicrobial to sufficient levels. An example of this is the resistance 

of Gram negative bacteria to vancomycin due to the impermeability of the outer 

membrane to such large antimicrobial molecules (Hawkey 1998). Acquired 

resistance occurs in bacteria that are normally susceptible to the antimicrobial, either 

by mutations within the bacterial genome or by horizontal gene transfer via mobile 

genetic elements such as plasmids, integrons and transposons.  

1.4 Escherichia coli 

Escherichia coli was first described by the German paediatrician Theobold Escherich 

in 1885 (Escherich 1989) as intestinal bacteria of infants as “short plump rods”.         

E. coli is Gram negative, rod shaped, a facultative anaerobe and usually motile. The 

bacteria can possess many virulence factors enabling it to cause numerous diseases 

including urinary tract infections, sepsis, neonatal meningitis and gastrointestinal 

infections. E. coli can be classified in to six distinct groups, five of which are 

associated with gastrointestinal disease; enterotoxigenic E. coli (ETEC), 

enterohemorrhagic E. coli  (EHEC), enteroaggregative E. coli (EAEC), 

enteropathogenic E. coli (EPEC) and enteroinvasive E. coli (EIEC) (Nataro and 

Kaper 1998; Clarke 2001), and one that is responsible for infections at other sites, 

extra-intestinal pathogenic E. coli (ExPEC) (Russo and Johnson 2000; Johnson and 

Russo 2002). ExPEC can be further sub-divided into E. coli responsible for urinary 

tract infections (UPEC), meningitis/ bacterial sepsis (MNEC) and avian infections 

(APEC).  
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As well as many strains being pathogenic, E. coli is also ubiquitously found in the 

gastrointestinal tract of many warm blooded animals, including dogs (Clapper and 

Meade 1963), and provides the host with some health benefits (Berg 1996). E. coli in 

the gut are responsible for the production of vitamin K; they prime the host immune 

system to facilitate a speedier response in the event of infection by pathogenic 

bacteria and may competitively exclude pathogenic bacteria competing for the same 

intestinal niche. However, the intestine is a prime location to be exposed to any 

antimicrobials that may be orally ingested or excreted into the intestinal lumen, and 

this exerts a tremendous selection pressure upon bacteria to develop or acquire 

resistance in order to survive. As such, commensal bacteria, specifically E. coli have 

been identified as providing a good indication of the prevalence and spread of 

antimicrobial resistance (van den Bogaard and Stobberingh 2000). In addition, due to 

the ever-present nature of E. coli in the canine intestine, comparisons of the strains of 

E. coli and the carriage of resistance can be made between different individuals. 

Development of antimicrobial resistance by commensal flora may have an impact not 

only for the individual dogs concerned, but also for the humans in close contact with 

them by either transfer of the resistant bacteria to humans, potentially leading to 

opportunistic infections that are difficult to treat, or transfer of the resistance 

determinants they have acquired to other, more pathogenic species (Guardabassi, 

Schwarz et al. 2004; Stenske, Bemis et al. 2009).  

A number of antimicrobials, previously effective against infections caused by E. coli 

are no longer efficacious, with many mechanisms involved in resistance. The details 

of the antimicrobials commonly used to treat infections caused by E. coli and the 

mechanisms of resistance involved are discussed below. 

1.4.1 β-lactam antibiotics 

Penicillin and its related compounds (cephalosporins, monobactams and 

carbapenams) all possess a β-lactam ring and act by inhibiting cell wall synthesis. 

These antimicrobials bind to proteins, so-called penicillin binding proteins (PBPs), 

within the cell wall and prevent cross linkage of peptidoglycan strands thus 

compromising cell wall integrity. 
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β-lactam resistance in E. coli  

In E. coli, resistance to β-lactam antibiotics is mediated by the production of a 

diverse group of hydrolytic enzymes capable of inactivating the β-lactam ring. These 

β-lactamases were first described in 1940 (Abraham and Chain 1940), notably a few 

years prior to the first clinical use of penicillin.  

Classification of β-lactamases 

A number of different methods for β-lactamase classification have been proposed, 

however two have been used predominantly. Ambler (Ambler 1980) proposed a 

scheme that is based on the amino acid sequence of the enzymes and the most recent 

description of the system comprises four classes. Class A enzymes (which includes 

the TEM and SHV β-lactamases) have a serine active site, as do the class C (AmpC 

β-lactamases) and D (including OXA β-lactamases) enzymes, while class B (metallo 

β-lactamases) enzymes utilize a metal cofactor, most often zinc, in substrate 

hydrolysis (Payne 1993). The second scheme, proposed by Bush and others is based 

on functional classification of β-lactamases (Bush 1989; Bush, Jacoby et al. 1995; 

Bush and Jacoby 2010). Group 1 (cephalosporinases) comprises the molecular class 

C enzymes and has two subgroups (1 and 1e). Group 2 (serine β-lactamases) 

enzymes are a large collection incorporating molecular classes A and D and is 

divided into six subgroups depending on substrate profiles and their resistance to 

inhibitors (2a to 2f), some of which are further divided. Finally, group 3 (metallo β-

lactamases) comprises the molecular class B enzymes. 

In most genera of bacteria, including E. coli, genes encoding β-lactamases are 

located on transferrable plasmids, allowing these genes to be disseminated amongst 

many bacterial species.    

TEM and SHV β-lactamases 

The first plasmid mediated β-lactamase to be described was identified in a clinical 

isolate of E. coli from a patient in the 1960s, and was called TEM-1 after the name of 
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the affected patient, Temoneira (Anderson and Datta 1965). It was not long before 

the gene encoding TEM-1, blaTEM, had spread and this gene is now common in many 

bacteria including E. coli, Pseudomonas aeruginosa and other members of the 

Enterobacteriaceae (Wiedemann, Kliebe et al. 1989). A second β-lactamase is TEM-

2, which is the result of a single amino acid substitution at position 39 (glutamate for 

lysine) (Barthelemy, Peduzzi et al. 1985). Both TEM-1 and TEM-2 were shown to be 

resistant to penicillins and some early cephalosporins, such as cephalothin and β-

lactamase inhibitors are effective against these two enzymes. At least 12 other TEM 

enzymes with this narrow spectrum of resistance have been described 

(http://www.lahey.org/Studies/) and are classified as molecular class A, functional 

group 2b. 

Following extensive spread of the blaTEM-1 andblaTEM-2 genes, newer drugs that were 

not susceptible to these β-lactamases were developed. Such antimicrobials included 

the oxyimino-cephalosporins or third generation cephalosporins (for example 

ceftazidime, ceftriaxone and cefotaxime), which have an expanded spectrum of 

activity against bacteria compared to penicillin and its derivatives. It was not long, 

however, before β-lactamases capable of inactivating the newer drug were reported. 

These enzymes were found to be mutated derivatives of the group 2b enzymes 

(TEM-1 and TEM-2) and, while retaining the substrate profile of the original 

enzymes and being susceptible to β-lactamase inhibitors, are also capable of 

hydrolysing the oxyimino-cephalosporins. The first to be described was named 

TEM-3 (Sougakoff, Goussard et al. 1988) and was the result of two amino acid 

substitutions of TEM-2. These mutations resulted in opening up of the catalytic site, 

thus extending the substrate profile of the enzyme. In subsequent years, the number 

of derivatives of the original enzymes has increased, each with substitutions at a 

relatively limited number of positions, resulting in subtle differences in substrate 

profiles. To date over 150 TEM-1 and TEM-2 derivatives have been described 

(http://www.lahey.org/Studies/). Due to their hydrolytic activity against the expanded 

spectrum β-lactam antibiotics, the collective name for these types of enzymes is 

extended spectrum β-lactamases (ESBL). ESBLs are molecular class A, functional 

group 2be enzymes (Ambler 1980; Bush and Jacoby 2010). In addition, some of the 
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derivatives from the original enzymes are also resistant to β-lactamase inhibitors and 

have been classified in a separate functional group to the ESBL enzymes, group 2br.  

 In Klebsiella pneumoniae, a different closely related β-lactamase is more common, 

but it has also been identified, to a lesser extent than TEM-1 and TEM-2, in E. coli. 

The enzyme is called SHV-1 (sulphydryl variable) and shares some degree of 

sequence homology with TEM-1 (68%) (Barthelemy, Peduzzi et al. 1986). SHV-1 

and 30 other SHV variants (http://www.lahey.org/Studies/) are classified as 

molecular class A, functional group 2b enzymes (Ambler 1980; Bush and Jacoby 

2010). The first SHV variant to display the ESBL phenotype, SHV-2 was found in a 

clinical isolate of K. ozaenae (Knothe, Shah et al. 1983; Kliebe, Nies et al. 1985), 

and was found to be the result of mutation of SHV-1 at amino acid position 238 

(glycine for serine) (http://www.lahey.org/Studies/)(Barthelemy, Peduzzi et al. 

1988), which is located around the active site of the enzyme. Like the TEM type 

ESBLs, many variants of the original narrow spectrum enzymes now exist 

(http://www.lahey.org/Studies/), including at least six that are resistant to 

inactivation by β-lactamase inhibitors.  

CTX-M β-lactamases 

CTX-M enzymes are so called for their higher levels of activity against cefotaxime 

rather than ceftazidime (Bauernfeind, Grimm et al. 1990; Bonnet 2004), the latter is 

the preferred substrate hydrolysed by the ESBL TEM and SHV variants. They are 

plasmid mediated β-lactamases, which are believed to have escaped from the 

chromosomal DNA of members of the genus Kluyvera (Bonnet 2004; Rodriguez, 

Power et al. 2004; Olson, Silverman et al. 2005). Currently, five clusters of CTX-M 

β-lactamases, grouped by similarity of amino acid sequence, have been described. 

These clusters are CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9 and CTX-M-25. 

Within each cluster there is >94% identity compared with ≤90% identity between 

clusters (Bonnet 2004). To date over 110 enzymes of unique amino acid sequence 

have been described (http://www.lahey.org/Studies/) and they have been found in a 

number of different bacterial genera including E. coli, Salmonella spp, Klebsiella spp 

and Enterobacter spp. These enzymes are classified as molecular class A, functional 
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group 2be (Ambler 1980; Bush and Jacoby 2010) and all are susceptible to β-

lactamase inhibitors. 

Plasmid mediated AmpC β-lactamases 

Most Gram negative bacteria, including E. coli carry a chromosomally mediated 

cephalosporinase (Sanders 1987; Jacoby 2009). In wild type bacteria, these AmpC β-

lactamases can be either constitutively expressed at levels too low to be clinically 

relevant due to loss a regulatory gene (as in E. coli) (Honore, Nicolas et al. 1986), or 

are induced by the presence of the β-lactam antibiotic (as in Citrobacter freundii and 

Enterobacter cloacae) (Minami, Yotsuji et al. 1980; Lindberg, Westman et al. 1985; 

Lindberg and Normark 1987). β-lactam antibiotics vary in their ability to induce such 

genes, thus some can still be effective in these bacteria. However, mutational events 

in the chromosome can occur, which causes de-repression of the AmpC β-lactamase 

gene, and therefore expression of the enzyme at sufficiently high levels to inactivate 

β-lactam antibiotics that may have been effective in the wild type bacteria (Lindberg, 

Lindquist et al. 1987).      

In the 1980’s plasmids encoding AmpC β-lactamases were reported (Bauernfeind, 

Chong et al. 1989; Philippon, Arlet et al. 2002) and sequence analysis showed these 

enzymes to be closely related to the chromosomally encoded enzymes of C. freundii, 

P. aeruginosa and E. cloacae (Bauernfeind, Stemplinger et al. 1996). Bacteria 

harbouring plasmid mediated AmpC β-lactamases are typically more broadly 

resistant than classical ESBLs, with substrate profiles that may include the oxyimino-

cephalosporins, cephamycins and β-lactamase inhibitors such as clavulanic acid, but 

not the carbapenams (Philippon, Arlet et al. 2002). AmpC β-lactamases belong to 

molecular class C, functional group 1 enzymes (Ambler 1980; Bush and Jacoby 

2010). 

Epidemiology of ESBLs 

In human medicine, the prevalence and specific type of ESBL or plasmid mediated 

AmpC β-lactamase varies from country to country and can vary between individual 
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hospitals. Before 2003, the predominant types of ESBL were almost exclusively 

variants of the TEM and SHV enzymes from clinical isolates of hospital origin 

(Bradford 2001). However, after 2003, an increasing number of ESBL producing 

isolates were submitted from within the community, and CTX-M type ESBLs 

became more dominant both in the hospital and wider community settings (Munday, 

Whitehead et al. 2004; Woodford, Ward et al. 2004; Livermore and Hawkey 2005; 

Pitout, Gregson et al. 2005; Potz, Hope et al. 2006). While there is some degree of 

variation of the types of ESBLs that predominate, a certain few specific variants have 

spread worldwide. A very good example of this is the clonal spread of CTX-M-15, 

which can now be found in many countries worldwide (Baraniak, Fiett et al. 2002; 

Moubareck, Daoud et al. 2005; Nicolas-Chanoine, Blanco et al. 2008; Pitout, 

Gregson et al. 2009) including the UK (Lau, Kaufmann et al. 2008). Successful 

spread of specific gene variants have been shown to be linked to specific insertion 

sequences and transposons, (for example, CTX-M-9 and ISCR1(Novais, Canton et 

al. 2006), however, this is not the case with CTX-M-15, which has been shown to be 

mainly due to spread of epidemic clones carrying the blaCTX-M-15 gene, specifically  

E. coli sequence type ST-131 by multi-locus sequence typing (Coque, Novais et al. 

2008; Nicolas-Chanoine, Blanco et al. 2008; Blanco, Alonso et al. 2009; Woodford, 

Carattoli et al. 2009).  

ESBL and β-lactamase producing E. coli in dogs 

In dogs, β-lactam antimicrobials are indicated for treatment of a wide range of 

bacterial infections, such as pyoderma and respiratory and gastrointestinal tract 

infections, due to their broad spectrum of activity. Thus, they are widely used in 

veterinary practice. 

There is a limited amount of data regarding the prevalence of ESBL and β-lactamase 

producing E. coli in dogs, with most studies relating to isolates obtained from clinical 

samples and very few investigating the prevalence in healthy dogs. Even fewer data 

are available relating to the genetic background of the ESBL/ AmpC phenotype. 

Table 1.1 below summarises the reports of ESBL producing E. coli isolated from 

dogs in different countries. The data show that often the specific gene identified is 
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that circulating within isolates of human origin, including blaCTX-M-15 (Pomba, da 

Fonseca et al. 2009; Ewers, Grobbel et al. 2010).  
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Table 1.1 Reports of ESBL producing E. coli isolated from dogs 

Year Country Type of samples 
β-lactamase genes 

detected 
Reference 

2000 Spain Recurrent UTI blaSHV-12 

(Teshager, 

Dominguez et 

al. 2000) 

2002 Portugal Uropathogenic E. coli blaSHV, blaAmpC 

(Feria, 

Ferreira et al. 

2002) 

2004 Portugal 
Healthy animal faecal 

samples 
blaCTX-M-1, blaTEM-52 

(Costa, Poeta 

et al. 2004) 

2005 Italy Healthy and sick animals 
blaCMY-2, blaSHV-12, blaCTX-

M-1 

(Carattoli, 

Lovari et al. 

2005) 

2006 Australia Clinical isolates blaTEM, blaCMY-7 

(Sidjabat, 

Townsend et 

al. 2006) 

2008 Portugal 
Healthy animal faecal 

samples 
blaCTX-M-1, blaOXA-30 

(Costa, Poeta 

et al. 2008) 

2008 Chile 

dogs and cats treated/ 

untreated with 

enrofloxacin 

blaCTX-M-1, blaCTX-M-14 

(Moreno, 

Bello et al. 

2008) 

2008 
Hong 

Kong 
Stray dogs 

blaCTX-M-3, blaCTX-M-13, 

blaCTX-M-14, blaCTX-M-15, 

blaCTX-M-27, blaCTX-M-28, 

blaCTX-M-55.  

(Ho, Chow et 

al. 2011) 

2009 Canada 
Healthy animal faecal 

samples 
blaCMY-2  

(Murphy, 

Reid-Smith et 

al. 2009) 

2010 China Healthy and sick animals 

blaCTX-M-3, blaCTX-M-9, 

blaCTX-M-14, blaCTX-M-15, 

blaCTX-M-24, blaCTX-M-27, 

blaCTX-M-55, blaCTX-M-64, 

blaCTX-M-65 

(Sun, Zeng et 

al. 2010) 

2010 USA Urinary Tract Infections 
blaSHV-12, blaCTX-M-14, 

blaCTX-M-15 

(O'Keefe, 

Hutton et al. 

2010) 

2010 Europe Clinical isolates blaSHV-12, blaCTX-M-15 

(Ewers, 

Grobbel et al. 

2010) 
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1.4.2 Quinolone antimicrobials 

Quinolones and fluoroquinolones inhibit DNA replication by binding to DNA gyrase 

and topoisomerase IV. Nalidixic acid was the first quinolone to be described and was 

approved for clinical use in 1967 (Lesher, Gruett et al. 1962; Emmerson and Jones 

2003). However, its use was limited due to its inability to be efficiently absorbed, 

and newer, fluorinated compounds were developed and introduced, which were 

shown to have a wider spectrum of activity and better oral absorption. Examples of 

such fluoroquinolones include ciprofloxacin (2
nd

 generation), levofloxacin (3
rd

 

generation) and moxifloxacin (4
th

 generation).       

Quinolone and fluoroquinolones resistance 

Spontaneous chromosomal mutations can result in resistance by one of three 

mechanisms (Piddock 1998). Firstly, mutations in the genes encoding the subunits of 

DNA gyrase (gyrA and gyrB) or topoisomerase IV (parC and parE) (Sato, Inoue et 

al. 1986; Yamagishi, Yoshida et al. 1986; Heisig 1996) means that the antimicrobial 

can no longer bind to these target proteins with the same affinity. Studies have shown 

that mutations of these genes largely occur in a highly conserved region known as 

the quinolone resistance determining region (QRDR) (Hopkins, Davies et al. 2005), 

and that accumulation of mutations results in a higher degree of resistance (Bagel, 

Hullen et al. 1999). Mutations resulting in the reduced expression of porins on the 

bacterial cell membrane can also cause resistance to quinolones and fluoroquinolones 

since the drug cannot readily enter the cell and build up to sufficient concentrations. 

Finally, over expression of efflux pumps prevents the accumulation of the drug 

within the cell. Resistance mediated by the mechanisms discussed above, can only be 

spread by vertical or clonal transmission to the progeny of the resistant bacteria, and 

is not transferrable to other bacteria. However, plasmid mediated quinolone 

resistance has also been described, and this can spread between bacteria of different 

species and genera.  

Plasmid mediated quinolone resistance (PMQR) has been shown to confer only low 

level transferable resistance to quinolones and fluoroquinolones to a broad host 

range, but it provides sufficient resistance to facilitate the selection of high level 
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resistance (Martinez-Martinez, Pascual et al. 1998).  Tran and Jacoby demonstrated 

that the plasmid quinolone resistance gene, qnr, encoded a protein which protects 

DNA gyrase from inhibition by these antimicrobials (Tran and Jacoby 2002) and 

subsequent studies have shown that bacteria carrying PMQR generate chromosomal 

quinolone resistant mutants at a higher rate then those lacking in PMQR (Martinez-

Martinez, Pascual et al. 1998). Three distinct families, each differing in nucleotide 

sequence by 40% or more, have been identified; qnrA, qnrB and qnrS. Within each 

family are numerous alleles differing by no more than 10% in nucleotide sequence 

(Jacoby, Cattoir et al.). To date there are 7, 31 and 4 qnrA, qnrB and qnrS alleles, 

respectively (http://www.lahey.org/qnrstudies/), which have been identified in many 

different genera of bacteria including E. coli, Klebsiella spp and Enterobacter spp. 

Recently, two further plasmid mediated quinolone resistance genes have been 

identified (qnrC and qnrD) in Proteus mirabilis and Salmonella enterica respectively 

(Cavaco, Hasman et al. 2009; Wang, Guo et al. 2009), but are currently rare and have 

not yet been reported in E. coli.          

A variant of the aminoglycoside acetyltransferase (responsible for resistance to 

kanamycin, tobramycin and amikacin) also able to confer low level resistance to 

certain fluoroquinolones, AAC(6’)-Ib-cr, was first described in 2006 (Robicsek, 

Strahilevitz et al. 2006) and reduces the activity of the antimicrobial by N-acetylation 

of the piperazinyl substituent of ciprofloxacin and norfloxacin. It was found to be 

acting in synergy with qnrA, which was also carried by the bacterial strains, but the 

aac(6’)-Ib-cr gene has also since been found to confer resistance in the absence of 

qnrA (Park, Robicsek et al. 2006). Carriage of the aac(6’)-Ib-cr gene has been found 

to be associated with carriage of blaCTX-M genes, in particular blaCTX-M-15 (Karisik, 

Ellington et al. 2006; Machado, Coque et al. 2006). 

A final mechanism of resistance to fluoroquinolones is the plasmid mediated efflux 

pump QepA, which was first described in a clinical E. coli isolate from Japan 

(Yamane, Wachino et al. 2007) and confers resistance by actively pumping the 

antimicrobial from the cytoplasm of the bacteria. 

http://www.lahey.org/qnrstudies/
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Quinolone resistance in E. coli isolated from dogs 

Quinolones are generally prescribed to dogs in cases where the first line 

antimicrobial drugs are not appropriate (Guardabassi, Schwarz et al. 2004). Baytril® 

(Bayer Healthcare, Leverkusen, Germany) (enrofloxacin) is a fluoroquinolone 

antimicrobial licensed for use in various animal species including dogs and is 

indicated for the treatment of bacterial infections of numerous sites in particular 

urinary tract infections. Resistance to quinolones and fluoroquinolones has been 

reported in E. coli isolated from both healthy and sick dogs with prevalences ranging 

from 0-20% (Cohn, Gary et al. 2003; Carattoli, Lovari et al. 2005) including in the 

UK (Normand, Gibson et al. 2000). Mechanisms of fluoroquinolone resistance in 

bacteria isolated from dogs include mutations in the gyrase and topoisomerase IV 

genes (Saenz, Zarazaga et al. 2003), and plasmid mediated quinolone resistance 

determinants (Ma, Zeng et al. 2008; Pomba, da Fonseca et al. 2009).   

1.4.3 Tetracyclines 

Tetracyclines bind to the acceptor (A) site of the bacterial 30S ribosome preventing 

aminoacyl tRNA molecules from binding to this region, thus inhibiting protein 

synthesis. They are a broad spectrum bacteriostatic antimicrobial. The first 

generation tetracyclines, oxytetracycline and chlortetracycline, were discovered in 

the 1940’s as products of Streptomyces spp. Increasing resistance to these 

antimicrobials led to the development of the second generation tetracyclines, 

minocycline and doxycycline and later the third generation tetracyclines, glycycline 

and tigecycline, which were derived from the original tetracyclines by chemical 

alteration (Chopra and Roberts 2001). 

Tetracycline resistance 

Genes found on mobile transferable elements such as plasmids confer resistance to 

tetracycline by one of three described mechanisms (Chopra and Roberts 2001; 

Roberts 2005; Thaker, Spanogiannopoulos et al. 2010). The genes can encode efflux 

pumps (for example, TetM), which actively remove the drug from the cell, ribosomal 

protection proteins (RPP) (for example, TetA) that protect the bacterial ribosome 
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from binding to tetracyclines or, less commonly, enzymes which inactive the drug 

(for example, TetX). In E. coli, the most common mechanism of resistance described 

is the expression of the RPPs.  

Tetracycline resistance in E. coli isolated from dogs 

Oxytetracycline is  prescribed  for the treatment of infections in dogs including those 

caused by Staphylococcus aureus and Streptococcus spp. Tetracycline resistance has 

been reported in dogs with prevalences as high as 45% in some studies (Carattoli, 

Lovari et al. 2005; Authier, Paquette et al. 2006). The tetA and tetB gene have been 

reported in E. coli isolated from healthy dogs (Bryan, Shapir et al. 2004; Costa, Poeta 

et al. 2008).    

1.4.4 Trimethoprim  

Trimethoprim is a broad spectrum bacteriostatic antimicrobial agent that inhibits 

folic acid synthesis. It is a competitive inhibitor of the enzyme dihydrofolate 

reductase (DHFR), which is involved in the synthesis of tetrahydrofolate, a precursor 

in synthesis of DNA nucleotide thymidine.  

Trimethoprim resistance 

Numerous mechanisms of resistance are described (Huovinen 2001) including 

chromosomal mutations in the bacterial DHFR gene resulting in a reduced affinity 

for the antimicrobial, chromosomal mutations in the promoter region of the gene 

causing an increased concentration of the DHFR enzyme (Flensburg and Skold 1987) 

and reduction in accumulation of the antimicrobial by increased expression of efflux 

pumps or reduced expression of porins. Acquisition of a DHFR enzyme with reduced 

sensitivity or affinity for trimethoprim, encoded by dfr genes, typically associated 

with gene cassettes, has also been described (Amyes and Smith 1974; Heikkila, 

Skurnik et al. 1993; Gibreel and Skold 1998; Cocchi, Grasselli et al. 2007).  
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Trimethoprim resistance in E. coli isolated from dogs 

Trimethoprim, used in combination with sulfamethoxazole (co-trimoxazole), another 

antimicrobial, which, like trimethoprim, acts by inhibiting part of the folic acid cycle, 

is prescribed to dogs for the treatment of skin, eye and ear infections and urinary and 

gastrointestinal tract infections caused by both Gram positive and negative 

infections.  

Resistance to trimethoprim has been reported, ranging from 3% in  faecal bacteria 

from healthy canines to 34% in canine clinical isolates (Normand, Gibson et al. 

2000; Carattoli, Lovari et al. 2005; Murphy, Reid-Smith et al. 2009) and dfr genes 

have also been reported, including dfrA12 (Costa, Poeta et al. 2008) and dfrA17 

(Sanchez, Stevenson et al. 2002).   

1.5 Staphylococcus spp 

Bacteria of the genus Staphylococcus are Gram positive, facultative anaerobes that 

form irregular clusters of cocci when viewed under the microscope. They are mostly 

harmless, commensal residents of the skin and mucosal membranes of humans and 

other animals (Clapper and Meade 1963; Williams 1963; Biberstein, Jang et al. 

1984). However, a small number of species are regarded as important pathogens and 

it can often be the host’s own commensal strains that, once past the protective skin 

barrier, are the cause of opportunistic infections (Casewell 1998). Staphylococci can 

be split into two distinct groups, based on their ability to produce the enzyme 

coagulase. Most attention is given to the coagulase positive staphylococci, which are 

typically regarded as being the more virulent and clinically important of the two.  

1.5.1 Coagulase positive staphylococci 

In humans, S. aureus is the most commonly isolated species, and is found 

consistently in the nares of around 25% of healthy humans, but varies depending on 

the study and population demographics (Kluytmans, vanBelkum et al. 1997; Abudu, 

Blair et al. 2001; Grundmann, Tami et al. 2002; Mainous, Hueston et al. 2006; 

Gorwitz, Kruszon-Moran et al. 2008). It is spread from one person to another by 
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contact with pus from infected wounds, skin to skin contact with an infected person, 

from the nares of healthy non symptomatic individuals and has been shown to persist 

on inanimate objects provided the right conditions to prevent desiccation are 

achieved (Neely and Maley 2000; Tolba, Loughrey et al. 2007). S. aureus can cause 

a wide range of infections including localised skin infections such as boils and 

abscesses, impetigo, endocarditis, septicaemia, toxic shock syndrome, gastroenteritis 

and scalded skin syndrome in infants  

While S. aureus infections are of clinical importance in canine medicine,                   

S. pseudintermedius is the most common coagulase positive species isolated from 

dogs (Clapper and Meade 1963; Devriese and Depelsmaecker 1987; Cox, Hoskins et 

al. 1988) and is an important causative agent of infections, in particular pyoderma 

and otitis (Hoekstra and Paulton 2002; Penna, Varges et al. 2010). Until 2007, such 

isolates from dogs were identified as the closely related S. intermedius (Devriese, 

Vancanneyt et al. 2005). However, after the first description of S. pseudintermedius, 

and subsequent reclassification of a group of clinical isolates from dogs (Sasaki, 

Kikuchi et al. 2007), it became widely accepted that all historical isolates of canine 

origin were in fact the new species S. pseudintermedius and that S. intermedius was 

found only in pigeons. S. pseudintermedius has also rarely been implicated in human 

infections (Van Hoovels, Vankeerberghen et al. 2006) in particular dog bite wounds 

(Talan, Staatz et al. 1989; Lee 1994).  

1.5.2 Coagulase negative staphylococci 

Coagulase negative staphylococci are found in abundance on the skin and mucosal 

surfaces of many animals. Due to their ubiquitous nature, coagulase negative 

staphylococci isolated from clinical samples were often dismissed as commensal 

contaminants, but with the increasing use of indwelling medical devices and the 

ability of coagulase negative staphylococci to form biofilms on such devices, their 

clinical significance has increased (Huebner and Goldmann 1999). Coagulase 

negative staphylococci have also been implicated as serving as a reservoir of 

resistance determinants for the coagulase positive species, in particular meticillin 

resistance (Silva, Mattos et al. 2001; Hanssen, Kjeldsen et al. 2004; Ziebuhr, Hennig 

et al. 2006).  
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In humans, the most commonly isolated species are S. epidermidis and S. hominis 

(Kleeman, Bannerman et al. 1993; Jarlov, Hojbjerg et al. 1996; Nagase, Sasaki et al. 

2002)¸ while in dogs very little investigation has been carried out. Mostly, reports go 

no further than to describe them as coagulase negative staphylococci. However, some 

of the species that have been isolated from dogs include S. epidermidis, S. simulans, 

S. haemolyticus, S. saprophyticus, S. sciuri and S. xylosus (Cox, Hoskins et al. 1988; 

Lilenbaum, Veras et al. 2000; Stepanovic, Dimitrijevic et al. 2001).   

1.5.3 Meticillin resistance in S. aureus 

Resistance to penicillin was first identified in S. aureus in the 1940s and was due to 

the production of an enzyme called penicillinase, which breaks down the β-lactam 

ring of penicillin and its related compounds (Kirby 1944; Kirby 1945). Meticillin 

(previously methicillin) was shown to be less susceptible to inactivation by the 

penicillinases of S. aureus (Knox and Smith 1963). This drug was first used in 

clinical medicine in the 1950s to treat penicillin resistant staphylococcal infections, 

but very shortly after its introduction resistance to meticillin was described (Lane 

1962; Jevons, Coe et al. 1963). Meticillin resistant S. aureus (MRSA) was shown to 

produce a alternative penicillin binding protein (PBP) compared to its meticillin 

sensitive counterparts (Hartman and Tomasz 1981) and later studies attributed its 

production to expression of a gene called mecA (Archer and Niemeyer 1994). The 

mecA gene is located on the staphylococcal cassette chromosome mec (SCCmec) 

(Katayama, Ito et al. 2000). This PBP (PBP2’) has a lower affinity for the binding of 

β-lactam antibiotics and therefore, when the antimicrobial has inactivated the 

primary PBP, cross linkage of peptidoglycan can still take place and the organism 

can survive.  

S. aureus is thought to have acquired meticillin resistance via horizontal transfer of 

the mecA gene and initial studies suggested only one such event in a single isolate of 

S. aureus (Kreiswirth, Kornblum et al. 1993). However, later studies support the 

theory that S. aureus acquired the mecA gene on a number of occasions (Enright, 

Robinson et al. 2002; Robinson and Enright 2003) and even now, new variants are 

being reported. For example, most recently, the new mecA gene variant isolated from 
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human and bovine populations in the UK and Denmark (Garcia-Alvarez, Holden et 

al. 2011) and in humans in Germany(Cuny, Layer et al. 2011). 

SCCmec 

In S. aureus, there are currently eight different types of SCCmec elements described 

(Ito, Katayama et al. 2001; Ma, Ito et al. 2002; Ito, Ma et al. 2004; Berglund, Ito et 

al. 2008; Ito, Hiramatsu et al. 2009; Zhang, McClure et al. 2009). SCCmec elements 

are characterised based on the composition of two main components (Ito, Hiramatsu 

et al. 2009). The mec gene complex comprises the mecA gene, its regulatory genes 

(which may be truncated) and insertion sequences. The ccr gene complex comprises 

a combination of different allotypes of ccrA and ccrB or an unaccompanied ccrC 

gene. SCCmec types can be further sub-divided based on the major characteristics of 

the joining (J) regions.   
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Figure 1.1 below illustrates the basic structures of the eight SCCmec types currently 

described (Ito, Hiramatsu et al. 2009).  
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Figure 1.1 Basic structure of representative SCCmec cassettes. (Ito, 

Hiramatsu et al. 2009) 
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SCCmec typing is commonly used in combination with multi-locus sequence typing 

of MRSA and one study suggests an association between the SCCmec type and 

virulence; for example the toxic shock toxin gene was significantly associated with 

SCCmec type II while the toxin gene sea was most often associated with SCCmec 

type III (Kim, Song et al. 2006). In addition, certain SCCmec types have been 

associated with hospital or community-acquired strains of MRSA as discussed 

below. 

Healthcare associated MRSA 

MRSA first became a problem in healthcare settings in the 1980s, when the first 

epidemic strains were described (Witte, Kresken et al. 1997), and is now endemic in 

many hospitals in many central European countries, Australia and parts of USA , 

often the result of acquisition of the mecA gene by already successful MSSA clones 

circulating within the hospital (Enright, Robinson et al. 2002; Robinson and Enright 

2003). In Europe, there is a high degree of variation in the proportion of MRSA 

causing bacteraemia based on surveillance data submitted to the European 

Antimicrobial Surveillance System (EARSS) (Tiemersma, Bronzwaer et al. 2004), 

and this may be associated with “search and destroy” tactics employed in some 

northern European countries to screen patients on admission to hospital and 

subsequent isolation and decolonisation if MRSA is identified 

(VandenbrouckeGrauls 1996; Wertheim, Vos et al. 2004).  

Many risk factors are recognised to be associated with acquisition of HA-MRSA 

including recent or prolonged hospitalisation, previous use of antimicrobials and 

surgery (Millar, Loughrey et al. 2007; McCarthy, Sullivan et al. 2010). Table 1.2 

below summarises the main characteristics of HA-MRSA and its comparison to CA-

MRSA. As well as the successful spread of specific clones within a hospital, some 

clones have also emerged to pandemic proportions, often being associated with many 

countries across more than one continent. Evidence for this is provided by large 

collections of HA-MRSA isolates from many different countries of origin being of a 

limited number of sequence types (Enright, Robinson et al. 2002). SCCmec types 

most commonly associated with HA-MRSA are I, II, III and IV. Some multi locus 
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sequence types have only been found to be associated with one SCCmec type, for 

example, ST22 has only been found to harbour SCCmec type IV. Conversely, other 

sequence types have been found to be associated with more than one SCCmec type, 

for example ST8, which can carry SCCmec type I, II, III and IV.  

Community associated MRSA 

In recent years, the number of cases of MRSA infections affecting individuals with 

no apparent exposure to health care settings and none of the risk factors associated 

with HA-MRSA has increased (Collignon, Gosbell et al. 1998; Okuma, Iwakawa et 

al. 2002; Saiman, O'Keefe et al. 2003; Maltezou and Giamarellou 2006) and has 

included populations such as athletes, prison inmates, children in day care facilities 

and military personnel (Adcock, Pastor et al. 1998; Stacey, Endersby et al. 1998; 

Zinderman, Conner et al. 2004; Cohen 2005). The Centres for Disease control and 

Prevention (CDC) defines these so called community-associated MRSA (CA-

MRSA) as being isolated from a person within 48 hours of hospital admission or as 

an outpatient, who has no prior history of MRSA infection or colonization and no 

medical history in the last year of hospitalisation, dialysis, surgery or admission to a 

nursing home or hospice and has no in-dwelling catheters or other medical devices 

that penetrate the skin barrier (http://www.cdc.gov/MRSA/diagnosis/index.html#vs,). 

CA-MRSA are generally more susceptible to antimicrobials other than penicillins, 

and this may be linked to the fact that the most common SCCmec cassettes 

associated with CA-MRSA are the smaller SCCmec type IV and type V, which do 

not carry any other resistance genes (Baba, Takeuchi et al. 2002) (unlike some of 

those associated with SCCmec cassette found in HA-MRSA isolates (Hiramatsu, 

Katayama et al. 2002). CA-MRSA in the UK is typically susceptible to ciprofloxacin 

(Otter and French 2008). However, some isolates can be more virulent than HA-

MRSA (Baba, Takeuchi et al. 2002). One such virulence factor that is often 

associated with CA-MRSA is Panton-Valentine leukocidin (PVL) (Vandenesch, 

Naimi et al. 2003), a cytotoxin responsible for tissue necrosis and destruction of 

leucocytes, which results in severe disease such as necrotising fascitis and 

necrotising pneumonia. The definitions that differentiate CA-MRSA from HA-

MRSA have, however, begun to blur, since reports of CA-MRSA being responsible 

http://www.cdc.gov/mrsa/diagnosis/index.html#vs
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for outbreaks in hospitals (O'Brien, Pearman et al. 1999; Saiman, O'Keefe et al. 

2003; Maree, Daum et al. 2007; Popovich, Weinstein et al. 2008).  

Table 1.2 Comparison of HA and CA-MRSA infections 

 HA-MRSA CA-MRSA 

Population most at risk 

Hospital patients 

Nursing homes 

Immunocompromised 

People in the community 

with no known contact or 

risk factors associated with 

healthcare settings 

Prisons 

Military 

Sports/athletes 

Risk factors 

Recent hospitalisation 

Antimicrobial use 

In dwelling catheters 

Close contact 

Poor hygiene 

 

Types of infections 

Surgical wound infections 

Bacteraemia and septicaemia 

Infections of implants/ 

prostheses 

Mostly skin and soft tissue 

infections 

Rarely severe bacteraemia 

and septicaemia 

Commonly associated 

sequence types 

ST8, ST22, ST30, ST45, 

ST250 

ST1, ST30, ST59, ST80, 

ST398 

SCCmec types Mainly I, II, III and IV Mainly IV, V and VII 

Association with pvl gene Rarely Often 

Resistance to other 

antimicrobials 
Multi-drug resistant Rarely multi-drug resistant 

 

Meticillin resistance in other staphylococci 

Meticillin resistance in other staphylococci is also mediated by the presence of the 

same SCCmec elements found in MRSA, along with many that largely cannot be 

typed using the scheme for MRSA SCCmec typing methods (Wisplinghoff, Rosato et 

al. 2003; Ruppe, Barbier et al. 2009; Garza-Gonzalez, Lopez et al. 2010). Coagulase 

negative staphylococci have been proposed as possible donors of the mecA 

determinant (Wielders 2001; Wu, de Lancastre et al. 2001; Wisplinghoff, Rosato et 

al. 2003), and this may account for the apparent diversity of SCCmec types since 

comparably fewer SCCmec elements have been identified in S. aureus.  
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1.5.4 Typing methods of staphylococci 

In addition to typing the SCCmec of meticillin resistant isolates, molecular typing of 

both meticillin resistant and meticillin sensitive staphylococci is also important, 

particularly for the purposes of epidemiology and tracing of hospital outbreaks and 

subsequent infection control. There are a number of techniques available to type 

staphylococci, which are briefly discussed below with some of the major advantages 

and disadvantages discussed. 

Pulsed field gel electrophoresis 

Pulsed field gel electrophoresis is a techniques used to separate large DNA fragments 

following digestion of the bacterial genome using restriction enzymes (typically 

SmaI in S. aureus) (Schwartz and Cantor 1984; Tenover, Arbeit et al. 1995). 

Different strains of S. aureus differ slightly in their genome sequence, and therefore 

the number of restriction sites varies between strains. As a result, each strain will 

differ in the number and sizes of fragments produced by restriction. Separation of 

these bands by electrophoresis results in patterns of banding specific to strains 

allowing differentiation of different bacterial isolates. This technique is of particular 

use for epidemiological studies and investigation of outbreaks (Blanc, Struelens et al. 

2001), but is timely, expensive and often difficult to compare results between 

different labs that might use slightly different methodology. Also, the livestock 

associated strain ST398 cannot be typed by this method due to lack of SmaI 

restriction sites (Bens, Voss et al. 2006).   

Multi-locus sequence typing 

Multi locus sequence typing (MLST) is a highly discriminatory technique first 

described in the 1990s (Maiden, Bygraves et al. 1998; Spratt 1999; Enright, Day et 

al. 2000), which involves sequencing of internal fragments of seven housekeeping 

genes. Each gene sequence is assigned an allele number and the combination of the 

seven different allele numbers relates to a specific allelic profile or sequence type 

(ST). Unlike PFGE, MLST allows for higher reproducibility and easier comparison 

between laboratories. 
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Spa typing  

This method sequences the polymorphic X region of the Staphylococcus surface 

protein A (Harmsen, Claus et al. 2003; Strommenger, Braulke et al. 2008). Protein A 

is a virulence factor associated with binding of immunoglobulin molecules in 

particular IgG (Forsgren and Sjoquist 1966; Patel, Nowlan et al. 1987) and helps the 

bacteria evade phagocytic engulfment. Spa typing is a fast, reproducible method, 

used worldwide. Standardisation of nomenclature and the online database of spa 

types (http://www.spaserver.ridom.de), allows comparison of isolates from different 

countries, but, while inference of the ST of isolates from the spa type is possible, the 

information in the database may not be sufficient and can therefore result in further 

testing being necessary to allow sufficient discrimination between isolates.  

1.5.5 Meticillin resistance in staphylococci isolated from dogs 

MRSA 

 Isolation of MRSA from clinical canine samples was reported as early as 1972 

(Olaojo 1972), but it is only in the past 10 to 15 years, since its clinical significance 

in veterinary medicine has increased, that a greater level of interest has been paid 

(Pak, Han et al. 1999; Tomlin, Pead et al. 1999). In the past few years, a number of 

studies have reported the incidence of MRSA isolated from mainly clinical isolates 

submitted for diagnostic purposes, dogs that were admitted to hospital, or healthy 

dogs visiting the veterinary practice. Table 1.4 below summarises the findings of 

these studies. Of those that have investigated healthy dogs, prevalences ranging from 

0 – 3% (Rich and Roberts 2006; Vengust, Anderson et al. 2006; Bagcigil, Moodley 

et al. 2007; Boost, O'Donoghue et al. 2008; Griffeth, Morris et al. 2008; Kottler, 

Middleton et al. 2008; Abbott, Leggett et al. 2010; Morris, Boston et al. 2010; 

Gingrich, Kurt et al. 2011) and even as high as 7.8% in a rescue kennel (Loeffler, 

Pfeiffer et al. 2011) have been reported, but many have involved a limited number of 

samples from dogs. In clinical canine samples, reported prevalences have ranged 

from 0.2-7% (Loeffler, Boag et al. 2005; O'Mahony, Abbott et al. 2005; Ruscher, 

Lubke-Becker et al. 2009; Abbott, Leggett et al. 2010). A limited number of studies 

http://www.spaserver.ridom.de/
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have further characterised the MRSA isolated from both healthy and clinical canine 

samples, but all have found the strains circulating in the canine population to be the 

same as or similar to those endemic in the human hospitals in the country (Malik, 

Coombs et al. 2006; Moodley, Stegger et al. 2006). For example, in the United 

Kingdom, the dominant strain endemic in human hospitals is EMRSA-15, which has 

been identified among dogs and staff  in a veterinary teaching hospital (Loeffler, 

Boag et al. 2005). In Ireland, MRSA has been isolated from dogs that were found to 

be indistinguishable by PFGE to those recovered from both veterinary personnel and 

human hospitals (O'Mahony, Abbott et al. 2005). A later study identified the 

predominant MRSA strain found in Irish hospitals, a strain similar to EMRSA-15, to 

also be isolated from both healthy and sick dogs (Abbott, Leonard et al. 2010).      

Meticillin resistant Staphylococcus pseudintermedius 

Isolation rates of meticillin resistant S. pseudintermedius (MRSP), and until its 

reclassification meticillin resistant S. intermedius (MRSI) (Sasaki, Kikuchi et al. 

2007), has been reported be higher than that of MRSA (where studies have 

investigated both the prevalence of MRSA and MRSP) and ranges from 0.8-16.7% in 

healthy dogs (Vengust, Anderson et al. 2006; Epstein, Yam et al. 2009) and as high 

as 29.8% from nasal samples of sick dogs (Sasaki, Kikuchi et al. 2007) (Table 1.3). 

However, despite many reports suggesting a higher prevalence of MRSP in dogs 

compared to MRSA, studies in the United Kingdom and Canada isolated no MRSP 

(Loeffler, Pfeiffer et al. 2011) (Rubin and Chirino-Trejo 2011). 
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Table 1.3 Summary of studies investigating meticillin resistant staphylococci in dogs 

Animal 
Healthy/ clinical 

samples 

Percentage of 

samples * (Total 

tested)  

Year Country Reference 

Dog Referral hospital 

Nose and mouth 

Total staphylococci – 

91%(45) 

MRSA– 4% (45) 

 UK (Loeffler, Boag et al. 

2005) 

Dog/ horse/ cat/ 

rabbit/ seal 

Clinical MRSA – 0.7% (3400) 

 

January 2003 – 

October 2004 

Ireland (O'Mahony, Abbott et 

al. 2005) 

Dog Healthy MRSA – 0% (200) 

MRSI – 1.5% (200) 

MR-CNS – 11.5% 

(200) 

March – June 2005 Slovenia (Vengust, Anderson 

et al. 2006) 

Dog Healthy (vet visiting) MRSA – 0.4% (255) 2005 UK (Rich and Roberts 

2006) 

Dog Healthy (vet visiting)  MRSA – 0% (100) 

MR-CNS – 13% 

(100) 

April – November 

2005 

Denmark (Bagcigil, Moodley et 

al. 2007) 

Dog Nasal swabs of 

inpatients and 

outpatients 

SA – 8.8% (57) 

MRSA – 1.8% (57) 

MRSP – 29.8% (57) 

January –March 2006 Japan (Sasaki, Kikuchi et al. 

2007) 

Cat/ dog Healthy SA – 13.1% (601) 

MRSA – 3% (601) 

 United States (Kottler, Middleton et 

al. 2008) 

Dog Healthy SA – 8.8% (830) 

MRSA – 0.7% (830) 

 Hong Kong (Boost, O'Donoghue 

et al. 2008) 



31 

 

Animal 
Healthy/ clinical 

samples 

Percentage of 

samples * (Total 

tested)  

Year Country Reference 

Dog Healthy (vet visiting) CPS – 74% (50)  

MSSA – 12% (50) 

No MRSA 

SI – 68% (50) 

MRSI – 2% (50) 

July 2005 – August 

2006 

Pennsylvania , USA (Griffeth, Morris et al. 

2008) 

Dogs w/ 

inflammatory skin 

disease 

MSSA – 8.5% (59) 

MRSA – 1.7% (59) 

MSSI – 81% (59) 

MRSI – 6.8% (59) 

 Stray  SA – 0% (30)    

Dog Clinical MRSA – 0.2%(7490) 

MRSP – 0.8% (7490) 

2007 Germany (Ruscher, Lubke-

Becker et al. 2009) 

Dog Rescue dogs 

(Apparently healthy 

SA – 0 (36) 

MRSI – 16.7% (36) 

 Hong Kong (Epstein, Yam et al. 

2009) 

Dog Pet therapy No MRSA isolated 

One report of MRSA 

after investigator 

petted a pug 

June – August 2007 Canada (Lefebvre and Weese 

2009) 

Dog Rescue Kennel 

(apparently healthy) 

MRSA – 7.8 (129) December 2008 – 

January2009 

UK  (Loeffler, Pfeiffer et 

al. 2010) 

Dog Rescue kennel 

(apparently healthy) 

MRSA – 0.7% (302) 

MRSP – 0% (302) 

January 2007 – 

October 2008 

UK (Loeffler, Pfeiffer et 

al. 2011) 
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Animal 
Healthy/ clinical 

samples 

Percentage of 

samples * (Total 

tested)  

Year Country Reference 

Vet visiting MRSA – 3.2% (402) 

MRSP – 0% (402) 

Dog Healthy MRSA – 0.8% (258) 

MRSP – 6.2% 

MRSS – 0.8% 

 USA (Morris, Boston et al. 

2010) 

Dog Clinical canine 

samples 

MRSA – 1.1% (2864) 2003-2006 Ireland (Abbott, Leggett et al. 

2010) 

Healthy (vet visiting) MRSA – 0.8% (133) October 2005 – May 

2006 Clinical samples MRSA – 7% (143) 

Dog Animal shelter 

(apparently healthy 

stray and adoptions) 

MRSA – 0.5% (200) 

MRSP –  3% (200) 

May – August 2009 USA (Gingrich, Kurt et al. 

2011) 

Dog Small animal hospital 

prior to admittance 

MRSP – 7.4% (814) September 2007 – 

January 2009 

Germany (Nienhoff, Kadlec et 

al. 2011) 

Dog Healthy  SP – 87.4% (175) 

MRSP – 0% (175) 

May – November 

2008 

Canada (Rubin and Chirino-

Trejo 2011) 

* MRSA meticillin resistant S. aureus, MRSI meticillin resistant S. intermedius, MR-CNS meticillin resistant coagulase negative 

Staphylococcus spp, SA S. aureus, CPS coagulase positive Staphylococcus spp, MSSA meticillin sensitive S. aureus, MSSI meticillin 

sensitive S. intermedius, MRSP meticillin resistant S. pseudintermedius, SP Staphylococcus pseudintermedius.. 
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1.5.6 Significance of carriage of MRSA and meticillin resistant staphylococci in 

dogs to public health 

Suggestions that dogs may act as a reservoir for infections and re-infections of 

MRSA and other meticillin resistant staphylococci for humans and other animals 

have been made as a result of case reports and studies (Duquette and Nuttall 2004; 

Epstein, Yam et al. 2009; Loeffler and Lloyd 2010).  Therefore, while dogs may not 

be a primary reservoir of MRSA for humans, they do present an important secondary 

reservoir for re-infection or re-colonisation of humans.  
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Table 1.4 below summarises some case reports and studies investigating the role of 

the dog as a reservoir of MRSA. While some of these studies suggest a possible 

direction of transmission, this relates only directly to the specific 

infection/colonisation episode and it is impossible to identify, with any degree of 

certainty, the primary carrier. As discussed above, the strains of MRSA found in 

dogs are characteristic of the strains isolated in human hospitals (Baptiste, Williams 

et al. 2005; Loeffler, Boag et al. 2005; O'Mahony, Abbott et al. 2005; Malik, 

Coombs et al. 2006; Moodley, Stegger et al. 2006), and this makes the most likely 

scenario to be transfer of MRSA strains from humans to their pets or other animal 

contacts and subsequent colonisation or infection of the dog. Therefore, while dogs 

may not be a primary reservoir of MRSA for humans, they do present an important 

secondary reservoir for re-infection or re-colonisation of humans.  
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Table 1.4 MRSA in humans associated with carriage/infections in dogs 

Year Case details Reference 

1994 Re-infection of two nurses following initial decolonisation 

(Cefai, 

Ashurst et al. 

1994) 

2000 

A nurse repeatedly identified as a MRSA carrier shortly after 

decolonisation and suffering from psoriasis. Pet dog nasally 

colonised with an identical strain 

(van 

Duijkeren, 

Wolfhagen et 

al. 2004) 

2000-

2001 

Recurrent infection in a patient with diabetes and his wife of an 

MRSA strain indistinguishable by PFGE to that isolated from their 

pet dog 

(Manian 

2003) 

2000-

2004 

Infection or colonisation of identical MRSA strains in household 

pets and human contact (household members and veterinary 

personnel)  

(Weese, Dick 

et al. 2006) 

2002 

Recurrent infection of a human patient with a PVL positive MRSA 

strain identical to that isolated from other household members 

including their pet dog 

(van 

Duijkeren, 

Wolfhagen et 

al. 2005) 

2005 
A pet therapy dog found to carry MRSA after visiting a  nursing 

home in which MRSA was known to be circulating 

(Enoch, Karas 

et al. 2005) 

2007 
Pet dog euthanized following infection of MRSA found to be 

identical to a strain isolated from skin biopsies of owner 

(Rutland, 

Weese et al. 

2009) 

 

1.6 Importance of antimicrobial resistance in dogs 

As discussed above, dogs play an important role in the lives of many people. 

Understanding the role that dogs may play in the spread and carriage of antimicrobial 

resistant E. coli and staphylococci is very important. Most studies have focused on 

clinical isolates; however, of equal if not higher importance is the situation in the 

healthy dog population where there is more opportunity for contact with people. 

Small studies have been conducted on healthy dog populations, but none in the UK 

and very few are on a large national scale. It would also be of use to gain an 

understanding of what factors might be associated with the carriage of antimicrobial 

resistant E. coli.  
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1.7 Aims and approaches 

The overall aim of this work was to determine the prevalence of and risk factors for 

the carriage of antimicrobial resistant E. coli and staphylococci in healthy dogs in the 

UK. Genes responsible for such resistance were investigated and the strains types of 

some isolates, in order to allow comparison with those genes/strains prevalent in 

human isolates. To achieve these aims, two studies were carried out: 

 A community based study of the prevalence of antimicrobial resistant E. coli 

in the faeces of dogs. (Chapter 3). This study made use of archived samples 

collected from a previous study investigating the prevalence of 

Campylobacter spp (Westgarth, Porter et al. 2009). 

 A nationwide, cross sectional study of the faecal prevalence of antimicrobial 

resistant E. coli and nasal prevalence of staphylococci. (Chapters 4, 5 and 6). 

This study recruited dogs visiting vet practices during the study period and 

nasal and faecal swabs were collected from the dogs, as well as a 

questionnaire administered to allow statistical analysis of risks associated 

with carriage of antimicrobial resistant E. coli.   
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Chapter Two 

General Materials and Methods 
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2.1 Sample collection 

2.1.1 Collection of faecal samples for investigation of the prevalence of AMR     E. 

coli in a semi-rural community in Cheshire 

Details of the sample population and faecal sample collection from dogs in a semi-

rural community in Cheshire have been described previously (Westgarth, Pinchbeck 

et al. 2007; Westgarth, Porter et al. 2009). Briefly, in a census based study of 1278 

households, 260 were identified as dog owning. Owners were asked to provide a 

fresh faecal sample from their dog and complete a short questionnaire relating to 

medical history (for example recent history of vomiting, diarrhoea and antimicrobial 

use). In total, faecal samples were obtained from 183 healthy dogs over a period 

from August to November 2005. A faecal homogenate was prepared as described in 

section 2.2 below, and the samples stored at -70°C. 

2.1.2 Collection of faecal and nasal samples from dogs visiting veterinary practice 

in the UK 

Selection of veterinary practices 

Dogs attending veterinary surgeries were recruited to the study. Practices were 

randomly selected from the Royal College of Veterinary Surgeons (RCVS) register 

and were contacted by telephone to identify the most appropriate member of staff to 

discuss the project with. An information sheet was then faxed to each practice. A 

follow up telephone call was made to the identified member of staff to find out if the 

practice would be willing to take part. If the person could not be contacted after four 

attempts, or the practices declined to take part, another practice was randomly 

selected from the register. Initially 50 practices agreed to take part, but due to a low 

return of samples, a further 37 were recruited. 

Owner recruitment 

A recruitment protocol was sent to each practice. Owners were recruited by 

veterinary staff during consultation; an owner information sheet was given owners 
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who agreed to take part, and an informed consent form was completed by both owner 

and veterinary staff.   

Sample collection 

For isolation of staphylococci, nasal swabs were taken by the veterinary staff and 

posted, along with the signed consent form, for processing. The owner was given a 

faecal sampling pot with a scoop and gloves to collect a fresh faecal sample from 

their dog at a convenient time. Owners were also given a questionnaire with 

questions relating to signalment, previous medical treatments, and previous 

antimicrobial use for both the dog and all other members of the household. The 

completed questionnaire and faecal sample were posted for processing.   

Copies of all forms relating to veterinary practice and owner recruitment and data 

collection are included in Appendix One. 

Ethical approval 

Ethical approval for this study was sought and granted by the University of Liverpool 

Committee on Research Ethics in January 2008 (Reference Number: RETH000118) 

and by the Department for Environment, Food and Rural Affairs (Defra). 

2.2 Processing of faecal samples for microbiological testing 

On arrival, an equal volume of the faecal sample was added to 5 ml of brain heart 

infusion broth containing 5% glycerol (BHIG). After thorough mixing, the 

homogenate was processed for the isolation of antimicrobial resistant and extended 

spectrum β-lactamase (ESBL) producing E. coli as described below. The remainder 

of the homogenate was poured into a cryovial (Alpha Laboratories, Hampshire, UK) 

for long-term storage at -70°C, In addition, the neat faecal sample was also frozen. 

2.3 Isolation of E. coli from the faecal homogenate 

The faecal homogenate was directly plated, using a sterile swab, onto MacConkey 

agar and eosin methylene blue agar (all media LabM Ltd, Lancashire, UK) as 
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previously described (Bartoloni, Benedetti et al. 2006). The two plates were 

inoculated with the following antimicrobial discs (all discs Mast Group Ltd, 

Merseyside, UK), with potencies in parentheses: ampicillin (10 μg), augmentin (30 

μg), chloramphenicol (30 μg), ciprofloxacin (1 μg), nalidixic acid (30 μg), 

tetracycline (30 μg) and trimethoprim (2.5 μg). After overnight incubation at 37°C, 

colonies growing around the discs (one per disc) and characteristic of E. coli were 

selected for antimicrobial disc susceptibility testing. 

2.4 Isolation of ESBL producing E. coli from faecal homogenate 

The faecal homogenate was streaked onto two EMBA plates, one supplemented with 

ceftazidime (1 μg/ml) and the other with cefotaxime (both antimicrobials supplied by 

Sigma-Aldrich Company Ltd, Dorset, UK) (1 µg/ml). The plates were incubated 

overnight at 37°C, after which one colony typical of E. coli was selected for 

antimicrobial disc susceptibility testing. In addition, for the nationwide study, to 

improve isolation of ESBL producing E. coli, 0.5 ml of the faecal homogenate was 

added to 3 ml of buffered peptone water (BPW) and incubated at 37°C overnight 

(Liebana, Batchelor et al. 2006). If no growth was observed on the initial ESBL 

screening plates, the BPW was plated onto the same media and incubated as above.  

2.5 Antimicrobial disc susceptibility testing of E.coli  

 Agar disc diffusion testing was performed using the guidelines of the British Society 

for Antimicrobial Chemotherapy (Andrews 2007). Colonies less than 24 hours old 

were suspended in 3 ml of sterile distilled water (dH2O), to a McFarland’s standard 

of 0.5. After being vortexed, 0.5 ml of this suspension was added to 4.5 ml of sterile 

dH2O. This suspension was used to inoculate the surface of an ISO Sensitest agar 

plate using a sterile swab. For all isolates, the susceptibility to seven antimicrobial 

agents was determined: ampicillin (10 μg), augmentin (30 μg), chloramphenicol (30 

μg), ciprofloxacin (1 μg), nalidixic acid (30 μg), tetracycline (30 μg) and 

trimethoprim (2.5 μg). For those isolates suspected of ESBL production, a further 

panel of antimicrobial agents were tested: aztreonam (30 µg), ceftazidime (30 µg), 

ceftriaxone (30 µg), cefoxitin (30 µg), cefuroxime (30 µg), cephalexin (30 µg), 

trimethoprim/sulfamethoxazole (25 µg) and tazobactam (10 µg)/piperacillin (75 µg). 
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E. coli ATCC 25922 was used as a fully susceptible control in testing. Following 

overnight incubation at 37°C, the zone of inhibition around each disc was measured 

in mm and recorded. An isolate was considered resistant if a zone less than 10mm 

was recorded.    

2.6 Double disc diffusion test for production of ESBL enzymes 

Those isolates that were selected from the cephalosporin containing EMBA plates 

were tested for the production of classical ESBLs using MAST extended β-lactam ID 

discs (M'Zali, Chanawong et al. 2000). Fresh colonies of no more than 24 hours were 

suspended in 3 ml of sterile dH2O to an inoculum density of 0.5 McFarland. An ISO 

Sensitest agar plate was inoculated, using a sterile swab, and three pairs of 

cephalosporin discs (with and without clavulanic acid) were placed on the surface. 

The discs used were ceftazidime (30 µg) and ceftazidime (30 µg) plus clavulanic 

acid (10 µg), cefotaxime (30 µg) and cefotaxime (30 µg) plus clavulanic acid (10 µg) 

and cefpodoxime (30 µg) and cefpodoxime (30 µg) plus clavulanic acid (10 µg). All 

plates were incubated overnight at 37°C. The zones of inhibition around the discs 

were measured in mm and recorded. ESBL production was confirmed when the zone 

around the cephalosporin disc is expanded by a minimum of 5 mm in the presence of 

clavulanic acid. No expansion in zone size by clavulanic acid suggests the presence 

of either an AmpC β-lactamase, an inhibitor resistant ESBL variant or both an ESBL 

and an AmpC β-lactamase. 

2.7 Isolation of staphylococci from nasal swabs 

Prior to isolation of staphylococci, an enrichment step was carried out. Swabs were 

inoculated into nutrient broth supplemented with 6% sodium chloride (NaCl) and 

incubated overnight at 37°C. Samples were then streaked out onto mannitol salt agar 

(MSA) supplemented with aztreonam (20 μg/ml) (LabM Ltd, Lancashire, UK) for 

isolation of total staphylococci and on oxacillin-resistance screening agar (ORSA) 

supplemented with 2 µg/ml oxacillin (LabM Ltd, Lancashire, UK) and 25 units/ml 

polymyxin B (LabM Ltd, Lancashire, UK) for isolation of meticillin resistant 

staphylococci. Following incubation for 24 hours for MSA and up to 48 hours for 
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ORSA at 37°C, yellow colonies on MSA, blue colonies on ORSA and a selection of 

other isolates typical of staphylococci were selected for further investigation.  

2.8 Antimicrobial disc susceptibility testing of staphylococci  

Antimicrobial disc susceptibility testing was carried out using the same technique as 

described above for E. coli (Section 2.5). Columbia blood agar containing 2% NaCl 

was used and the following antimicrobial discs applied to the surface of the agar: co-

trimoxazole (25 μg), ciprofloxacin (1 μg), fusidic acid (10 μg), gentamicin (10 μg), 

meticillin (5 μg), mupirocin (5μg), rifampicin (2 μg), teicoplanin (30 μg), 

tetracycline (10 μg) and vancomycin (5 μg). Agar plates were incubated at 30°C 

overnight for coagulase positive isolates and for up to 48 hours for coagulase 

negative isolates.  

2.9  Biochemical identification of E .coli and staphylococci 

2.9.1 Gram staining 

A thin smear of one or two bacterial colonies was prepared on a glass slide by 

mixing with a loop full of dH20. After drying in air and heat fixing using a Bunsen 

flame, the smear was stained. The slide was first flooded with crystal violet for one 

minute and washed in water. Grams Iodine was then added and left for 30 seconds. 

After washing in water, the slide was flooded with acetone (Fisher Scientific, 

Loughborough, UK) for a few seconds, and then washed a third time with water. 

Finally, the slide was flooded with safranin (all stains supplied by ProLab 

Diagnostics Inc, Cheshire, UK) for one minute before a final wash with water. After 

being allowed to dry, the smear was overlaid with immersion oil and viewed under 

X100 magnification.  

2.9.2 Oxidase Test 

A rapid test to determine the presence of the bacterial enzyme cytochrome oxidase 

was carried out. One drop of Test Oxidase
TM

 reagent (ProLab Diagnostics Inc, 

Cheshire, UK) was placed onto a piece of Whatman filter paper. A thin smear was 

produced using one or two fresh bacterial colonies. The presence of cytochrome 
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oxidase results in oxidation of the oxidase reagent and a colour change from 

colourless to blue. E. coli is oxidase negative. 

2.9.3 Catalase test 

Isolates were examined for the presence of the catalase enzyme, which breaks down 

hydrogen peroxide (H2O2) to prevent intracellular accumulation. A drop of H2O2 

(Sigma-Aldrich Company Ltd, Dorset, UK) was placed on a sterile plate or glass 

slide and one or two fresh bacterial colonies was added. The production of oxygen 

bubbles is indicative of the presence of catalase. Both E. coli and          

Staphylococcus spp. are catalase positive.   

2.9.4 Test for lactose fermentation 

A fresh colony of the test isolate was streaked onto a quarter of a MacConkey agar 

plate and incubated overnight at 37°C. Bacteria able to ferment the sugar lactose in 

the medium produce lactic acid, lowering the pH of the medium resulting in red/pink 

colonies. E. coli can ferment lactose and therefore appear red/pink on MacConkey 

agar. 

2.9.5 Indole production 

A tryptone soya agar (TSA) plate was streaked with fresh bacterial colonies and 

incubated overnight at 37°C. To test for the production indole, a piece of Whatman 

filter paper impregnated with Kovac’s reagent (Sigma-Aldrich Company Ltd, Dorset, 

UK) was placed onto the agar surface. Presence of indole results in a colour change 

of the reagent to pink/red. E. coli is indole positive.      

2.9.6 Citrate utilization  

A Simmon’s citrate agar plate was streaked with a fresh bacterial colony. After 

incubation at 37°C for 24-48 hours, the plates were examined. Bacteria with the 

enzyme citrase are able to utilize citrate, the sole carbon source in this medium. The 

pH of the medium is raised which results in a colour change of the medium from 

green to blue. Citrate negative bacteria, including E. coli, are unable to grow on this 

medium.  
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2.9.7 Tube coagulase test 

Isolates were tested for the presence of the enzyme coagulase using rabbit coagulase 

plasma (Pro-Lab diagnostics, UK). One loop full of between two and four fresh 

colonies was emulsified into 0.5 ml of the reconstituted rabbit coagulase plasma and 

mixed gently. Isolates were incubated at 37°C and for between 4 and 24 hours. Every 

hour for the first four hours, samples were examined for coagulation by gently 

tipping the tube. If after four hours, there was no coagulation, the samples were re-

incubated and examined again after 24 hours. S. aureus NTCC 25923 was included 

as a positive control for this test. 

2.9.8 Staphylase test 

Staphylococci were subjected to the Prolex Staph Latex kit (ProLab Diagnostics Inc, 

Cheshire, UK), which detects the presence of clumping factor A produced by           

S. aureus. One drop of staph test latex reagent was placed on a white test card and 

inoculated with one or two fresh colonies. The suspension was mixed and observed 

for no more than 20 seconds for signs of agglutination of the human fibrinogen. If a 

positive result is observed, the process is repeated using the negative control latex 

reagent. An isolate which possesses clumping factor will display rapid agglutination 

with the test reagent but not when the negative reagent is used. S. aureus NTCC 

25923 was included as a positive control for this test. 

2.10  Long term storage of isolates 

Isolates were stored at -70°C on Microbank™ beads (ProLab Diagnostics, Cheshire, 

UK). A large loop full of the freshly grown isolate was added to the Microbank vial. 

After shaking to mix thoroughly, the excess liquid was removed using a sterile 

pastette. 

2.11 Preparation of bacterial lysates for genotypic testing by PCR 

2.11.1 E. coli  

One or two fresh bacterial colonies were added to 500 µl of sterile dH2O in an 

eppendorf. After thorough mixing, the sample was placed in a heat block at 100°C 

for 20 minutes before being allowed to cool. Cell lysates were stored at 4°C. 
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2.11.2 Staphylococci  

One or two fresh colonies were added to an eppendorf containing 10 µl of 

lysostaphin (1 mg/ml)(Sigma-Aldrich Company Ltd, Dorset, UK) and 90 µl of sterile 

dH2O and then incubated for 10 minutes at 37°C to allow the cell wall to be broken 

down, followed by 10 minutes at 100 °C. After cooling, 400 µl of sterile dH2O was 

added. Cell lysates were stored at 4°C. 

2.12  Polymerase chain reaction (PCR) 

All PCR reactions were carried out using a thermocycler (Applied Biosystems, 

California, USA) in either 96 well plates, eight strip tubes or individual 0.2 μl PCR 

tubes depending on the size of the batch. Thermo Scientific (UK) supplied all 

reagents required for PCR. For PCRs used for identification purposes, a Reddy PCR 

master mix containing 1.5mM MgCl2, 0.625 U ThermoPrime Taq DNA polymerase, 

75mM Tris-HCl, 20mM (NH4)2SO4, 0.2mM of each dNTP and red dye for 

electrophoresis. If the PCR products were to be used for other procedures, for 

example sequencing or digestion with restriction enzymes, a PCR master mix with 

the same composition as stated above, excluding the red dye, was used. Unless 

otherwise stated, primers were used at a concentration of 1.25 µM and the reaction 

was carried out in a total volume of 25 µl containing 24 µl of Reddy PCR master mix 

and 1 µl of bacterial cell lysate prepared as described above (section 2.11). A 

negative control (molecular grade H2O only) was included in every PCR batch. All 

primers for PCR were supplied by IDT DNA technologies, UK. The sequences of 

each of the primers, the expected amplicon size of each and the reaction conditions 

for each PCR are described in Appendix Two.  

2.12.1 Β-D-glucuronidase uidA gene PCR for the identification of E. coli 

Isolates identified as E. coli by biochemical testing (section 2.9) were further 

confirmed by the presence of the uidA gene. The primers used were uidAf and uidAr 

as previously described (McDaniels, Rice et al. 1996). E. coli ATCC 25922 was used 

as a positive control for the above PCR. 
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2.12.2 blaTEM 

PCR to detect the presence of the blaTEM gene was carried out using the following 

primers, TEMbF and TEMbR (Essack, Hall et al. 2001). A bacterial isolate known to 

carry the blaTEM-1 variant of the gene, obtained from an in house culture collection, 

was used as a positive control for this PCR reaction. 

Sequencing of blaTEM genes 

For the purposes of sequencing, the same primers were used to produce a template 

using the master mix without the red dye in a total volume of 50 μl containing 2 μl of 

bacterial cell lysate. The PCR product was cleaned-up and sent for sequencing as 

described in section 2.13 below. In addition to the primers used for PCR reaction, the 

PCR product was also sequenced using three internal primers (described in Appendix 

Two) to ensure adequate sequencing of the middle section of the gene. 

2.12.3 blaSHV 

PCR to detect the presence of the blaSHV gene was carried out using the following 

primers, SHVbF and SHVbR (Essack, Hall et al. 2001). A bacterial isolate known to 

carry the blaSHV-12 variant of the gene, obtained from an in house culture collection, 

was used as a positive control for this PCR reaction. 

2.12.4 blaCTX-M 

PCR to detect the presence of the blaCTX-M gene was carried out using the following 

primers, CTX-MU1 and CTX-MU2 (Boyd, Tyler et al. 2004). A bacterial isolate 

known to carry the blaCTX-M-12 variant of the gene, obtained from an in house culture 

collection, was used as a positive control for this PCR reaction. 

Sub-typing of blaCTX-M genes 

Isolates found to carry a blaCTX-M gene were subjected to further PCR assays to 

assign the gene to a group. Simplex PCR reactions were carried out using the 

following primers: CTX-M-1f and CTX-M-1r for group 1, CTX-M-2f and CTX-M-
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2r for group 2, and CTX-M-9f and CTX-M-9r for group 9 (Batchelor, Hopkins et al. 

2005; Hopkins, Batchelor et al. 2006). 

Sequencing of blaCTX-M genes 

For the purposes of sequencing, the appropriate CTX-M grouping PCR was repeated 

with the PCR master mix without the red dye in a total volume of 50 μl containing 2 

μl of the bacterial cell lysate. The PCR template was clean-up and sent for 

sequencing as described in section 2.13 below.  

2.12.5 Multiplex PCR to detect the presence of blaampC genes 

The presence of blaampC genes was investigated using a multiplex PCR containing six 

sets of ampC specific primers, which produce different sized amplicons, allowing 

easy differentiation of the specific families of the plasmid mediated ampC genes. The 

primers used were MOXMf, MOXMr, CITMf, CITMr, DHAMf, DHAMr, ACCMf, 

ACCMr, EBCMf, EBCMr, FOXMf, and FOXMr (Perez-Perez and Hanson 2002).  

The reaction was carried out in a total volume of 25 µl containing 1.5 mM of MgCl2, 

20 mM of Tris-HCl, 0.2 mM of each of the deoxynucleoside triphosphates and 1.25 

U of ThermoPrime Taq DNA polymerase. The primers were included at the 

following concentrations, 0.6 µM of primers MOXMf, MOXMr, CITMf, CITMr, 

DHAMf and DHAMr, 0.5 µM of primers , ACCMf, ACCMr, EBCMf and EBCMr, 

and 0.4 µM of primers FOXMf, and FOXMr. Positive controls for each of the primer 

pairs (excluding MOXM) were included in each reaction.   

PCR for amplification of the full cmy gene for sequencing 

For samples where a product of band size 462 bp was observed, which corresponds 

to product amplified by the CTIM primer pair, the full blaCMY gene was amplified 

using primers cmy25f and cmy2Dr (Liebana, Gibbs et al. 2004) and sent for 

sequencing (described in Section 2.13). The reaction was carried out in a total 

volume of 50 µl containing 48 µl of the master mix and 2 µl of bacterial cell lysate. 
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For sequencing of blaCMY genes, internal primers (detailed in Appendix Two) were 

also used to obtain the middle portion of the gene sequence. 

2.12.6 Plasmid mediated quinolone resistance (qnr) genes 

All E. coli isolates resistant to ciprofloxacin and/or nalidixic acid were subjected to a 

multiplex PCR to detect qnrA, qnrB and qnrS genes. The primers used were qnrAf, 

qnrAr, qnrBf, qnrBr, qnrSf and qnrSr (Robicsek, Strahilevitz et al. 2006). Bacterial 

isolates known to carry each of the three gene variants, obtained from an in house 

culture collection, were used as positive controls for this PCR reaction. 

2.12.7 dfr genes 

Isolates resistant to trimethoprim were subjected to a number of PCR assays to detect 

the presence of certain variants of dihydrofolate reductase (dfr) genes (Gibreel and 

Skold 1998; Lee, Oh et al. 2001). Multiplex PCRs were carried out for the detection 

of dfrA1 and dfrA9 (multiplex 1) and dfrA7, dfrA12, dfrA13 and dfrA17 (multiplex). 

dfrA8 detection was carried out using a simplex PCR, while one set of primers was 

used for the detection of both dfrA5 and dfrA14. All primers were used at a 

concentration of 2 µM. Control strains known to carry dfrA1, dfrA12 or dfrA14 were 

included in the relevant assay. The presence of restriction sites in dfrA13 (EcoRV), 

dfrA14 (EcoRI) and dfrA17 (PstI) allowed differentiation between these and dfrA12, 

dfrA5 and dfrA17 respectively.  

The restriction enzyme reaction was carried out in a total volume of 25 µl which 

comprised 12.5 µl of the PCR product, 2.5 µl of the appropriate SuRE/Cut buffer 

(Roche Diagnostics, Sussex, UK) and 1 U of restriction enzyme (Roche Diagnostics, 

Sussex, UK). Following incubation at 37°C for an hour, DNA fragments were 

visualized by agarose gel electrophoresis (Section 2.12.14). The presence of two 

different sized bands demonstrated restriction of the PCR product by the enzyme. 

2.12.8 Multiplex PCR for the identification of tet genes 

Multiplex PCR reactions were carried out to detect the presence of tetracycline 

resistance genes in those isolates with phenotypic resistance to tetracycline (Ng, 

Martin et al. 2001). Multiplex assay A detected the presence of tet(A), tet(E) and 
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tet(G), and multiplex assay B detected the presence of tet(B), tet(C) and tet(D). 

Primers were used at the following concentrations, 0.5 µM or tetAf, tetAr, tetEf, 

tetEr, tetGf and tetGr, 0.2 µM of tetBf, tetBr, tetCf and tetCr, and 0.2 µM of tetDf 

and tetDr.  

2.12.9 PCR for the detection of the mecA gene responsible for meticillin resistance 

Isolates suspected of meticillin resistance were subjected to PCR to detect the 

presence of the mecA gene. The primers used were mecAf and mecAr (Vannuffel, 

Gigi et al. 1995). A MRSA isolate, EMRSA-15, obtained from an in house culture 

collection, was used as a positive control for this PCR reaction.  

2.12.10PCRs for the identification of S. aureus 

Isolates identified as S. aureus by phenotypic tests, as described above (Section 2.9), 

were subject to PCRs to detect the presence of the S. aureus specific femA (Francois, 

Pittet et al. 2003) and nuc (Brakstad, Aasbakk et al. 1992) genes. A bacterial isolate 

confirmed as S. aureus was included as a positive control for each of the PCR 

reactions below.  

2.12.11PCR for identification of Coagulase positive staphylococci (CoPS) 

PCR-restriction fragment length polymorphism approach for identification of            

S. pseudintermedius 

The primers for this PCR assay detects the gene encoding phosphoacetyltransferase 

(pta),  ptaF1 and ptaR1 (Bannoehr, Franco et al. 2009).  This PCR reaction was 

carried out using the PCR master mix, without the red dye, in a total volume of 50 μl 

containing 2 μl of the bacterial cell lysate.  

Following completion of the PCR reaction, 25 μl was incubated with 5U of the 

restriction enzyme MboI (New England Biolabs, Massachusetts, USA) at 37°C for 2 

hours before being run on agarose gel alongside the undigested PCR product. When 

incubated with MboI, all S. pseudintermedius isolates produced two different sized 

restriction fragments of 213 and 107 base pairs (bp). Two bands were also present in 

S.aureus isolates, but these were of 156 and 164 bp, and therefore appeared as one 
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single band. The pta genes of other members of the Staphylococcus intermedius 

group (SIG) contained no restriction site, and therefore only one band of 310 bp was 

present in both digested and undigested samples.  

Multiplex PCR for identification of CoPS 

Any CPS that was not identified as either S. aureus or S. pseudintermedius by 

previous methods were subjected to a multiplex PCR in order to assign them to one 

of the seven CPS. The primers used were au-F3 and au-nucR, for identification of 

S.aureus; in-F and in-R3, for the identification of S. intermedius; sch-F and sch-R, 

for the identification of S. schleiferi; dea-F and dea-R, for the identification of         

S. delphini group A; deb-F and deb-R, for the identification of S. delphini group B; 

hy-F1 and hy-R1, for the identification of S. hyicus; and pse-F2 and pse-R5, for the 

identification of S. pseudintermedius (Sasaki, Tsubakishita et al. 2010).  

Staphylococcal 16s rRNA PCR and sequencing 

For any isolates that were unable to be assigned to species using the methods 

described above, the 16S rRNA gene was amplified using universal primers PA and 

PH* (Edwards, Rogall et al. 1989) and sequenced to allow identification.  

Following amplification of the 16S rRNA gene, the samples were sent directly to 

Source BioScience for clean-up and sequencing. The obtained sequences were 

checked and edited as necessary using Chromas Pro (Technelysium Pty Ltd) to 

produce a contiguous sequence, and alignment to other 16S rRNA sequences was 

investigated using the Basic Local Alignment Search Tool (BLAST, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi).  A 16S rRNA sequence similarity of >98% 

was used to identify isolates at the species level. 

2.12.12Spa gene PCR and sequencing for typing of S. aureus 

The X region of the Staphylococcus protein A (spa) gene was amplified using 

primers 1113f and 1514r (Harmsen, Claus et al. 2003). The obtained sequence 

chromatograms were uploaded into the Ridom StaphType program (Ridom GmbH, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Germany), which automatically checks the sequences for quality, detects any spa 

repeats and assigns a spa type. 

2.12.13SCCmec cassette typing of MRSA 

The specific SCCmec type carried by the meticillin resistant staphylococci was 

investigated using a modified version of the method reported by (Oliveira and de 

Lencastre 2002). The primers corresponding to loci G and H, which differentiate 

variant I from IA and II from IIA respectively, were excluded from the assay. Two 

separate multiplex PCRs were performed to allow better differentiation between PCR 

products of similar size. Table 2.1 below summarizes the primers used in each 

multiplex and which SCCmec type the presence of a particular product corresponds 

to. Primers were used at a concentration of 0.2 µM. 

Table 2.1 Multiplex PCRs for typing of SCCmec cassettes of meticillin resistant 

staphylococci 

PCR Primer SCCmec type 

A 

 

 

KDP F1 

KDP R1 

II 

MECI P2 

MECI P3 

II, III 

RIF5 F10 

RIF5 R13 

III 

B 

 

 

CIF2 F2 

CIF2 R2 

I 

DCS F2 

DCS R1 

I, II, IV 

RIF4 F3 

RIF4 R9 

III 

 

2.12.14Visualization of PCR products by agarose gel electrophoresis 

PCR products were visualized on 1.5-2% (w/v) agarose gels. The gel was made using 

high pure low EEO agarose (Biogene Ltd, UK) and 1X Tris acetate EDTA (TAE) 

buffer (Sigma-Aldrich, UK). Ethidium bromide (Sigma Aldrich, UK) at a 

concentration of 0.25-0.4µg/µl was added to the gel prior to begin poured into the 

mould. When the Reddy PCR master mix was used, 12.5 µl of each sample was 



52 

 

added to each well. If the PCR product was to be used for sequencing or for 

restriction enzyme digestion, 5 µl of the product was added to 1 µl of 6X loading dye 

(AbGene, Epsom, UK) before being added to the wells. The first well of each gel 

contained 6 μl of Gel pilot 100bp Plus Ladder (AbGene, Epsom, UK) to allow 

accurate sizing of the PCR products. The gels were run in an electrophoresis tank at 

120V for 25 minutes for small gels, while large gels were run for 75 minutes. 

Visualization and photography of the PCR products was under ultra violet (UV) light 

using an UVItech transilluminator and UVI Pro MW (UVI Tech, UK). 

2.13  Sequencing of blaTEM, blaCTX-M, blacmy, genes 

All PCR reactions for preparation of templates for sequencing were carried out as 

described above for each specific gene. Following confirmation that the gene was 

successfully amplified by agarose gel electrophoresis (section 2.12.14), the product 

was purified by either PEG precipitation (Appendix Two), or the Wizard™ sv gel 

and PCR clean-up system (Promega, UK) following the manufacturer’s instructions.  

Either Source BioScience or Eurofins MWG Operon sequenced the purified products 

on both strands, with the same primers used for template preparation and internal 

primers as described above. The obtained sequences were viewed and checked using 

ChromasPro (Technelysium Pty Ltd). A contiguous sequence was constructed and 

compared with those in GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to obtain 

the specific gene variants.  

  

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Chapter Three 

The prevalence of antimicrobial resistant 

Escherichia coli among dogs in a cross 

sectional, community based study 
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3.1 Introduction 

Antimicrobial resistance (AMR) is a commonly encountered problem in both human 

and animal medicine. It can lead to failures in treatment, increased morbidity and 

mortality, and a greater financial burden on healthcare services. Use of 

antimicrobials may exert a selection pressure upon, and therefore select for bacteria 

that have acquired resistance. Such resistance can be acquired either by mutation of 

chromosomal DNA; or by horizontal transfer of resistance determinants via 

transmissible elements, such as plasmids. One particular mechanism of AMR is the 

production of extended spectrum β-lactamases (ESBL), enzymes capable of 

hydrolysing third generation cephalosporins (Livermore 2008). A further important 

resistance mechanism, due to their broad spectrum of resistance to β-lactams and the 

ineffectiveness of β-lactamase inhibitors, are plasmid mediated AmpC enzymes 

(Philippon, Arlet et al. 2002).  

Escherichia coli can be readily isolated from the gastrointestinal tract of many 

animal species, including humans and dogs, and are therefore a good indicator of 

reservoirs of AMR (van den Bogaard and Stobberingh 2000). The presence of E. coli 

in the intestinal tract of humans, dogs and most animal species, results in its exposure 

to any antimicrobial agents that are administered and which enter the gastrointestinal 

tract. This exposure can select for E. coli which have acquired resistance 

determinants or mutations encoding antimicrobial resistance. In addition, there is the 

potential for AMR E. coli to act as a reservoir of resistance determinants for 

pathogenic bacteria (Guardabassi, Schwarz et al. 2004).  

A significant quantity of antimicrobials sold in the UK is for veterinary use (VMD 

2000). Since 2002, total veterinary sales of therapeutic antimicrobials have decreased 

(440 tonnes in 2002 to 387 tonnes in 2008), however, the total sales of drugs 

indicated for use in non food producing animals only, has increased, with a notable 

rise in sales of therapeutic antimicrobials licensed for use in dogs only (4.5 tonnes in 

2002 to 7.3 tonnes in 2008) (VMD 2009). Increased use of antimicrobials in dogs, 

coupled with selection pressures for resistance may result in higher carriage of AMR 

bacteria. 
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Humans and dogs are often in close contact and as a result, there is a risk of transfer 

of bacteria, resistant or otherwise, from one to the other, which may influence the 

success of antimicrobial treatment required by the individual if such bacteria cause 

disease. AMR E. coli have been isolated from clinical samples from dogs (Normand, 

Gibson et al. 2000; Normand, Gibson et al. 2000) and other animals (Lanz, Kuhnert 

et al. 2003). In addition, faeces from healthy dogs (De Graef, Decostere et al. 2004; 

Costa, Poeta et al. 2008) and various other animals  (Moyaert, De Graef et al. 2006) 

have been shown to harbour AMR E. coli. ESBL producing E. coli have been 

isolated from both healthy dogs and those with clinical infections (Moreno, Bello et 

al. 2008). However, with one exception in Sweden (SVARM 2006), previous studies 

investigating AMR E. coli in healthy dogs have been limited in their sample size, and 

in some countries, including the United Kingdom no such studies have been 

published. 

The aim of the current study was to determine the prevalence of AMR E. coli and 

ESBL producing E. coli in the faeces from healthy dogs in a census-based, cross 

sectional study of a community in Cheshire, UK. 

3.2 Materials and Methods 

3.2.1 Collection of faecal samples 

Details of the sample population and faecal sample collection from dogs in a semi-

rural community in Cheshire have been previously described (Westgarth, Pinchbeck 

et al. 2007; Westgarth, Porter et al. 2009). Briefly, in a census based study of 1278 

households, 260 were identified as dog owning. Owners were asked to provide a 

fresh faecal sample from their dog and complete a short questionnaire relating to 

medical history (for example recent history of vomiting, diarrhoea and antimicrobial 

use). Faecal samples were obtained from 183 healthy dogs over a period from 

August to November 2005. The fresh faecal samples were mixed with an equal 

volume of Brain Heart Infusion broth with 5% glycerol (BHIG) and the homogenate 

stored below -70°C. These faecal homogenates were thawed and processed as 

described below.  
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3.2.2 Isolation and identification of E. coli 

AMR E. coli were detected using the direct plating method previously described 

(Bartoloni, Cutts et al. 1998; Bartoloni, Benedetti et al. 2006). The thawed faecal 

homogenate was plated directly onto MacConkey Agar and Eosin Methylene Blue 

Agar (EMBA) using a plain cotton swab and the following antimicrobial discs 

(MAST Group LTD), were applied; ampicillin (10µg); augmentin (30µg); 

chloramphenicol (30µg); ciprofloxacin (1µg); nalidixic acid (30 µg); tetracycline 

(30µg); and trimethoprim (2.5µg). After overnight incubation at 37°C, those colonies 

growing within the zone of inhibition around each disc on both sets of plates and 

whose morphology resembled E. coli, were selected for subsequent investigation. To 

screen for ESBL producing E.coli, the faecal homogenates were directly streaked 

onto EMBA containing ceftazidime (1µg/ml) and EMBA containing cefotaxime 

(1µg/ml), supplied by Sigma-Aldrich, (Liebana, Batchelor et al. 2006). In addition, 

to allow for non-selective isolation of E.coli Faecal homogenates were also directly 

streaked onto EMBA containing no antimicrobials. Three isolates from this plate 

were selected for subsequent antimicrobial testing. Presumptive E. coli resistant to at 

least one antimicrobial were confirmed by biochemical testing (Gram stain and 

testing for catalase production, lack of oxidase, lactose fermentation, indole 

production and inability to utilise citrate as a carbon source) and uidA PCR 

(McDaniels, Rice et al. 1996). All media were supplied by Lab M (IDG). 

3.2.3 Antimicrobial susceptibility testing 

Antimicrobial disc diffusion testing was performed in accordance with BSAC 

guidelines (Andrews 2007). The following antimicrobial discs were used: ampicillin 

(10µg); augmentin (30µg); chloramphenicol (30µg); ciprofloxacin (1µg); nalidixic 

acid (30µg); tetracycline (30µg); and trimethoprim (2.5 µg). For those isolates 

suspected of ESBL production, a further panel of nine antimicrobial agents were also 

tested; aztreonam (30µg), ceftazidime (30µg), ceftriaxone (30µg), cefoxitin (30µg), 

cefuroxime (30µg), cephalexin (30µg), trimethoprim-sulfamethoxazole (25µg), 

gentamicin (10µg) and tazobactam (10µg)/piperacillin (75µg). The reference strain 

E. coli ATCC 25922 was used for quality control during testing. 
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3.2.4 Phenotypic confirmation of ESBL production 

Those isolates which were selected from the cephalosporin containing EMBA plates, 

and therefore suspected of ESBL production, were tested using the MAST double 

disc diffusion method previously described (M'Zali, Chanawong et al. 2000). Briefly, 

an Iso-Sensitest agar plate was inoculated with the isolate and three pairs of 

cephalosporin discs (with and without clavulanic acid), were placed on the surface of 

the agar plate; ceftazidime (30µg) and ceftazidime (30µg) plus clavulanic acid 

(10µg); cefotaxime (30µg) and cefotaxime (30µg) plus clavulanic acid (10µg); and 

cefpodoxime (30µg) and cefpodoxime (30µg) plus clavulanic acid (10µg). The plates 

were incubated aerobically at 37°C for 18-24 hours and zone diameters around each 

disc were measured. ESBL production was confirmed when the zone around the 

cephalosporin disc was expanded in the presence of the clavulanic acid by a 

minimum of 5mm according the manufacturer’s instructions (MAST Group Ltd). 

The AmpC phenotype was suggested when the presence of clavulanic acid did not 

result in a decrease in the zone of inhibition.  

3.2.5 Characterisation of antimicrobial resistance genes 

PCR assays were carried out on all isolates suspected of ESBL production for the 

presence of blaSHV, blaTEM, blaCTX-M, blaAmpC and qnr genes (Essack, Hall et al. 2001; 

Perez-Perez and Hanson 2002; Boyd, Tyler et al. 2004; Robicsek, Strahilevitz et al. 

2006). For isolates showing resistance to ampicillin, the presence of blaTEM and 

blaSHV genes was tested. Those isolates resistant to trimethoprim were examined by 

PCR for the presence of dfrA1, dfrA5, dfrA7, dfrA8, dfrA9, dfrA12, drfA13, dfrA14 

and dfrA17 genes (Gibreel and Skold 1998; Lee, Oh et al. 2001). In addition, the 

presence of qnrA, qnrB and qnrS genes were tested by PCR in all isolates. Finally, 

isolates resistant to tetracycline were screened by PCR for the following genes: 

tet(A), tet(B), tet(C), tet(D), tet(E) and tet(G) (Ng, Martin et al. 2001). Conditions 

and references for each PCR assay are detailed in Appendix Two. A positive control 

(an isolate known to carry the gene under investigation) was included in each PCR 

assay. 



58 

 

3.2.6 Sequencing of blaCMY and blaTEM genes 

For sequencing of the blaCMY gene, oligonucleotide primers were used to amplify the 

entire gene.(Liebana, Gibbs et al. 2004) For blaTEM sequencing, the amplicon was 

obtained using the primers for initial detection. The amplicons were cleaned using 

the Wizard SV gel and PCR clean-up system (Promega), and sequenced on both 

strands with additional primers used for the internal sequence (two for blaCMY 

sequencing and three for blaTEM sequencing). The sequences were compared with 

those in GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to obtain the specific 

blaCMY and blaTEM gene variants. 

3.3 Results 

A total of 69 unique AMR E. coli isolates were collected from the faeces of 53 (29%, 

95%CI 22.4-35.5) of the 183 dogs tested in this study. Thirteen dogs were found to 

harbour more than one unique isolate of E. coli whose antimicrobial resistance 

profiles differed. The susceptibility of isolates to seven antimicrobial agents is shown 

in Table 3.1 below.  

Table 3.1 Frequency of antimicrobial resistance of E. coli from 183 dog faecal 

samples 

Antimicrobial agent Total isolates Number
* 

Percentage* 95% CI 

Ampicillin 54 44 24.0 17.9-30.2 

Augmentin 10 (+4 intermediate) 7 3.8 1.0-6.6 

Chloramphenicol 5 5 2.7 0.4-5.1 

Ciprofloxacin 4 (+2 intermediate) 4 2.2 0.1-4.3 

Nalidixic acid 6 6 3.3 0.7-5.9 

Tetracycline 46 36 19.7 13.9-25.4 

Trimethoprim 33 31 16.9 11.5-22.4 

MDR 30 28 15.3 10.4-20.5 
*
 Number and percent of dogs carrying an isolate with resistance to at least one 

antimicrobial 

Twenty-four percent of dogs (95%CI 17.9-30.2) harboured at least one isolate with 

ampicillin resistance, 19.7% (95%CI 13.9-25.4) with tetracycline resistance, and 

16.9% (95%CI 11.5-22.4) had resistance to trimethoprim. The percentage of dogs 

with E. coli with resistance to the other antimicrobials tested was less than 4%. 
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Twenty eight (15.3%, 95%CI 10.4-20.5) of the 183 dogs sampled harboured at least 

one multidrug resistant (MDR, resistant to three or more antimicrobial classes) 

isolate. Thirty (44%) of the 69 AMR E. coli isolates were shown to be MDR and 19 

(28%) were resistant to two antimicrobial classes. The resistance profiles of the 69 

isolates are shown in Table 3.2 below.  

Table 3.2 Profile of resistance among the 69 E. coli faecal isolates from dogs 

Resistance profile
 

Number of isolates (%) 

AMP, TET, TMP 18 (26.1) 

TET 9 (12.9) 

AMP 9 (12.9) 

AMP, TMP 7 (10.1) 

AMP, TET 7 (10.1) 

AMP, AMC, TET 4 (5.8) 

TET, TMP 2 (2.9) 

AMP, TMP, TET, CHL 2 (2.9) 

AMP, AMC, CIP, NAL 2 (2.9) 

AMP, AMC 2 (2.9) 

TMP 1 (1.4) 

NAL, TMP 1 (1.4) 

NAL, TET 1 (1.4) 

CIP, NAL, TET 1 (1.4) 

AMP, TMP, CHL 1 (1.4) 

AMP, AMC, CHL, TET 1 (1.4) 

AMP, AMC, CHL, CIP, NAL, TET, 

TMP 
1 (1.4) 

AMC Augmentin, AMP Ampicillin, CHL Chloramphenicol, CIP Ciprofloxacin, NA 

Nalidixic acid, TET Tetracycline, TMP Trimethoprim. 

The most common resistance profile was ampicillin-tetracycline-trimethoprim 

resistance, which was found in 26% of the isolates; followed by ampicillin only and 

tetracycline only resistance; both of which were found in 13% of isolates each; and 

ampicillin-trimethoprim and ampicillin-tetracycline resistance, which were each 

found in 10% of isolates.  

Only one dog, which was found not to carry AMR E. coli, was recorded as being on 

a course of antimicrobials when the faecal sample was collected. Of 15 dogs reported 

to have had a course of antimicrobials in the previous month, five (33%) carried 



60 

 

AMR E. coli. This was also true of nine of 37 (24%) dogs whose owners reported 

antimicrobial use in the previous year. A similar prevalence however was observed 

among the dogs with no reported antimicrobial use.    

The presence of dfr genes were investigated in those isolates resistant to 

trimethoprim, and of 33 trimethoprim resistant isolates, 11 were found to harbour 

dfrA1, 8 had dfrA5 and 3 possessed dfrA14 genes. The remaining 11 trimethoprim 

resistant isolates were negative for these genes in addition to dfrA7, A8, A9, A12, A13 

and A17. Of the 45 isolates resistant to tetracycline, 12 were found to harbour tet(B), 

and none of the tet genes tested (tetA, B, C, D, E and G) could be detected in the 

remaining 33 isolates. Of the 54 ampicillin resistant isolates, 39 were found to 

harbour a blaTEM gene. None were positive for the detection of a blaSHV gene. No qnr 

genes were detected in any of the isolates tested, including those resistant to nalidixic 

acid.   

The results relating to the nine E. coli isolates selected from the plates screening for 

ESBL production are in Table 3.3 below. Only one isolate was confirmed using the 

MAST double disc diffusion method as an ESBL-producer. A variety of resistance 

phenotypes were observed in these isolates, with only two sharing the same 

resistance profile. The nine isolates were tested for the presence of β-lactamase 

enzymes. A blaTEM gene was detected in two isolates, which were identified as 

blaTEM -1 by sequencing. In seven isolates, blaAmpC was detected and were all 

identified as the blaCMY-2 gene. No blaCTX-M or blaSHV genes were amplified from any 

of the isolates. A blaCMY-2 gene was found in the only isolate to test positive for 

ESBL production, but no other genes tested were found. 
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Table 3.3 Characteristics of nine isolates recovered by ESBL screening methods 

(The shaded row indicates the isolate positive for ESBL production.) 

Isolate ID 

(CAZ+CA
*
)-

CAZ 

(mm) 

(CPD+CA)-

CPD 

(mm) 

(CTX+CA)-

CTX 

(mm) 

Genes amplified by 

PCR 
Resistance profile 

066B(CFX) 0 0 -1 blaCMY-2, blaTEM-1, 

tet(B) 

AMP, LEX, CXM, FOX, CAZ, CRO, TET 

084B -5 0 -6 blaCMY-2 AMP, AMC, LEX, CXM, FOX, CAZ, CRO 

084F 0 1 -2 blaCMY-2, blaTEM-1 AMP, AMC, LEX, CXM, FOX, CAZ, CRO, CIP, NA, TMP, 

SXT, TET, CHL 

091E 0 0 -1 blaCMY-2 AMP, AMC, LEX, CXM, FOX, CRO, ATM, CIP, NA 

141D 1 0 -4 none AMP, TET 

156A 0 1 5 blaCMY-2 AMP, AMC, LEX, CXM, FOX, CAZ, CRO, TET 

157A 0 1 -5 blaCMY-2 AMP, AMC, LEX, CXM, FOX, CAZ, CRO, TET 

157C 0 0 -4 blaCMY-2 AMP, AMC, LEX, CXM, FOX, CAZ, CRO, ATM, TET 

172G 0 0 4 none GEN, AMP, AMC, TZP, LEX, CRO 

AMC Augmentin, AMP Ampicillin, ATM Aztreonam, CAZ ceftazidime, CHL Chloramphenicol, CIP Ciprofloxacin, CRO Ceftriaxone, CXM 

Cefuroxime, FOX Cefoxitin, GEN Gentamicin, LEX Cefalexin, NA Nalidixic acid, SXT Trimethoprim-sulfamethoxazole, TET Tetracycline, 

TMP Trimethoprim, TZP Tazobactam-piperacillin. 

*
Disc contained both the cephalosporin and the β-lactamase inhibitor clavulanic acid.
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3.4 Discussion 

This study aimed to estimate the prevalence of AMR E. coli carriage in a community 

of healthy dogs and found that AMR carriage was widespread in the dogs sampled 

(29%). MDR E. coli was also found in these dog samples (15.3%). The most 

common antimicrobials the isolates were resistant to were ampicillin, tetracycline 

and trimethoprim. This is also reflected in the most common resistance phenotype 

observed and might reflect the mobile nature of the genes responsible for these 

resistance phenotypes, and that there are numerous variants of these resistance genes.  

The prevalence observed for ampicillin resistance was higher than previously 

reported in  healthy dogs in Portugal (Costa, Poeta et al. 2008), but similar to a study 

investigating, among others, healthy cat populations (Moyaert, De Graef et al. 2006). 

Resistance to other antimicrobials (augmentin, chloramphenicol, quinolones, 

tetracycline, and trimethoprim) is comparable across all three studies. The resistances 

observed in the present study are much higher than reported in a study of healthy 

dogs in Sweden (SVARM 2006), which may reflect differences in methodology. It is 

important to note that the dogs sampled in the present study were considered healthy 

based on questionnaire responses made by the owner, which may differ from other 

studies’ definitions of healthy.  When compared to studies investigating clinical 

isolates,  the prevalence of resistance to ampicillin (Normand, Gibson et al. 2000) 

and tetracycline (De Graef, Decostere et al. 2004) was lower in the current 

population. Resistance to other antimicrobials was similar. In clinical canine isolates 

of E. coli in Denmark, the prevalence of AMR was comparable for all antimicrobials 

with the exception of nalidixic acid which was higher in the Danish study (12.5% 

compared to 3.3%) (Pedersen, Jensen et al. 2007). Differences in the prevalence of 

resistance observed may be due differences in the interpretation of the zone sizes or 

MICs observed or differences in how intermediate measurements were classified. 

This highlights how difficult it can be to compare different studies when a variety of 

methodologies and guidelines of interpretation are used and emphasises the need for 

more standardised methods. This may prove difficult to achieve both on an 

international level and between the human and veterinary profession. However it is 

likely that, compared to isolates from clinical cases, that apparently healthy, 
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household dogs sampled in the current study will have had less exposure to 

antimicrobials and hospital environments both of which have been shown previously 

to increase the prevalence of AMR (Dunowska, Morley et al. 2006; Moreno, Bello et 

al. 2008).  

The gene responsible for conferring trimethoprim resistance could be determined in 

only 22 of the 33 isolates tested, the genes encoding dfrA1, dfrA5 and dfrA14 were 

detected and have been previously described in E. coli isolates of animal origin 

(Saenz, Brinas et al. 2004; Cocchi, Grasselli et al. 2007) and also from human 

isolates (Lee, Oh et al. 2001). Only tet(B) was detected in the tetracycline resistant 

isolates, which has been found in other isolates from animals (Saenz, Brinas et al. 

2004; Costa, Poeta et al. 2008; Enne, Cassar et al. 2008). Those isolates that were 

negative for the genes tested are likely to harbour other genes or chromosomal 

mutations responsible for trimethoprim, and tetracycline resistance that were beyond 

the scope of this study and not tested. 

The qnrA, qnrB and qnrS genes were not detected in any isolates. These genes are 

responsible for low level resistance to quinolones (Martinez-Martinez, Pascual et al. 

1998). In addition to the qnr genes, other mechanisms of quinolone resistance may 

be involved to give higher levels of resistance, for example, mutations in the genes 

encoding the subunits of DNA gyrase (gyrA and gyrB) or topoisomerase IV (parC 

and parE) (Piddock 1998). 

In total, nine suspected ESBL producing isolates were recovered. Subsequent testing 

only confirmed one of these to be positive for ESBL production, but as shown in 

table 4, the only gene found by PCR was a blaCMY-2 gene. It is possible that the 

isolate carried a type of ESBL not tested in this study, for example, an OXA type 

ESBL. In the eight other isolates, two carried blaTEM-1 genes, and six carried the 

plasmid mediated AmpC blaCMY-2 gene. BlaCMY genes have previously been reported 

in isolates from dogs (Sidjabat, Townsend et al. 2006; Sidjabat, Hanson et al. 2007).  

In summary, this study demonstrates a common occurrence of AMR, in particular 

MDR, among the faecal E. coli of healthy dogs living in the community, with a 

variety of mechanisms responsible for resistance. This is of concern, given the close 
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and frequent contact dogs have with humans and could pose a risk for spread of 

resistant bacteria or resistance genes. Larger studies are required to more accurately 

estimate the prevalence of AMR E. coli in healthy dogs and thus fully understand 

both the risk factors for such resistance and any risk posed to humans. It would also 

be prudent to carry out longitudinal studies to investigate if such antimicrobial 

resistance is maintained over time and how this relates to antimicrobial prescribing 

practices. 
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Chapter Four 

Prevalence of Staphylococcus spp carriage 

in dogs 
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4.1 Introduction 

Staphylococci are widely recognised as being present on the mucosal surfaces of 

healthy humans and animal species, but are also important opportunistic pathogens. 

In dogs, the two most clinically important species are the coagulase positive 

Staphylococcus aureus and S. pseudintermedius (formerly S. intermedius) (Devriese, 

Vancanneyt et al. 2005; Sasaki, Kikuchi et al. 2007), which are commonly associated 

with pyoderma, wound sepsis, and otitis. Coagulase negative staphylococci (CNS) 

have also been isolated from clinical samples (Lilenbaum, Veras et al. 2000). 

Extensive use of antimicrobials in the past has, inevitably resulted in the 

development and spread of resistance among staphylococcal species, in particular, 

resistance to meticillin, which can, in human medicine, be  associated with a higher 

rate of negative outcomes of treatment (Cosgrove, Sakoulas et al. 2003).  

Resistance to meticillin is most often mediated by the mecA gene, which encodes an 

alternative penicillin binding protein (PBP2a) that has a lower binding affinity for the 

β-lactams and confers resistance to these antibiotics including penicillins and 

cephalosporins.(Archer and Niemeyer 1994) The mecA gene is located on the 

staphylococcal cassette chromosome mec (SCCmec) (Katayama, Ito et al. 2000). 

Furthermore, resistance to other antimicrobial classes can often be associated with 

meticillin resistance (MR) (Kim, Song et al. 2006), which further complicates 

treatment, therefore increasing morbidity, mortality and financial burden on human 

healthcare (Cosgrove 2006).  

Meticillin resistant S. aureus (MRSA) was reported as early as 1999 from clinical 

samples from dogs (Pak, Han et al. 1999; Tomlin, Pead et al. 1999), and reports of 

both clinical isolates of both MRSA and MR S. pseudintermedius (MRSP) have since 

increased in frequency (van Duijkeren, Box et al. 2004; Jones, Kania et al. 2007; 

Griffeth, Morris et al. 2008; Ruscher, Lubke-Becker et al. 2009; Schwartz, Boettcher 

et al. 2009). 

While the reporting of meticillin resistant staphylococci in canine clinical samples is 

important in order to monitor trends, the study of non-symptomatic carriage in 

healthy dog populations is equally worthwhile. Given the close relationship dogs 
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have with their owners, there is the potential for dogs to act as a reservoir for both 

MRSA and other resistant staphylococci (van Duijkeren, Wolfhagen et al. 2004; Van 

Hoovels, Vankeerberghen et al. 2006; Jones, Kania et al. 2007). Genetic 

characterisation of MRSA isolated from dogs also suggests transmission between 

humans and pets, since they carry the same strains that are prevalent in humans 

(Baptiste, Williams et al. 2005; Loeffler, Boag et al. 2005; O'Mahony, Abbott et al. 

2005; Weese, Dick et al. 2006), but the direction of transmission is not clear. 

Sampling of healthy dog populations has shown the prevalence of MRSA to be very 

low, ranging from 0% in studies from Europe (Vengust, Anderson et al. 2006; 

Bagcigil, Moodley et al. 2007) and Canada (Lefebvre and Weese 2009), to 0.4-4% in 

the UK (Rich 2005; Loeffler, Pfeiffer et al. 2010) and 0.7-0.8% in Hong Kong 

(Boost, O'Donoghue et al. 2008) and the USA (Morris, Boston et al. 2010). Studies 

have shown the prevalence of MRSP to be higher than that of MRSA in dogs in the 

USA (2-6.2%) (Griffeth, Morris et al. 2008; Morris, Boston et al. 2010) and Europe 

(1.5%) (Vengust, Anderson et al. 2006), however a recent study in the UK identified 

no MRSP (Loeffler, Pfeiffer et al. 2010). Carriage of MR-CNS in healthy dogs is 

also higher (11.5-13%) (Vengust, Anderson et al. 2006; Bagcigil, Moodley et al. 

2007). 

Although previous studies have reported the prevalence of meticillin resistance of 

staphylococci in healthy dog populations, including a large one in the London area of 

the UK (Loeffler, Pfeiffer et al. 2010), there have been few comprehensive studies to 

investigate the prevalence of MRS, including MRSA in the vet visiting dog 

population.  

The aim of this study was to estimate the prevalence of nasal carriage of 

antimicrobial resistant, staphylococci, including meticillin resistance in vet visiting 

dogs in mainland UK. Antimicrobial resistance was investigated for all coagulase 

positive staphylococci (CPS) and MRCNS and the molecular characteristics of all 

MRSA and a subset of S. aureus isolates was investigated using DNA microarray 

analysis to determine carriage of virulence and antimicrobial resistance genes.  
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4.2 Methods 

4.2.1 Study population 

Dogs visiting veterinary practices in mainland UK were recruited for this study. 

Veterinary practices were randomly selected from the practices in the 2006 Royal 

College of Veterinary Surgeons (RCVS) register who indicated that they treated 

dogs. To estimate the prevalence of MRSA based on a prevalence of 2%, with a 

precision of 1% and 95% confidence intervals, it was calculated that a minimum of 

753 dogs was required. Initially 50 practices were recruited and asked to sample 28 

dogs (a total of 1400 samples) to take into account non-returns and a compliance rate 

of 70%. Figure 4.1 below shows the locations of the practices recruited into the 

study. Only dogs visiting the practice for consultations were included in this study, 

omitting any hospitalised dogs that may have become a carrier due to exposure in the 

hospital environment. Ethical approval for this study was obtained from the 

University of Liverpool Committee on Research Ethics in January 2008. 
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Figure 4.1 Distribution of veterinary practices recruited to collect samples for 

nationwide study

 

 

4.2.2 Nasal sample collection 

Following informed consent from the owner, the attending veterinary personnel took 

nasal samples from the dog. A single swab (eSwab, Copan Italia SpA) was used to 

sample both nostrils, and the swab stored in AIMES transport medium. All samples 

were returned to the University of Liverpool by first class post. 

4.2.3 Isolation of Staphylococcus spp 

On arrival at the lab, swabs were enriched by overnight incubation in nutrient broth 

supplemented with 6.5% sodium chloride (NaCl) at 37°C. Using a 5 l loop, the broth 
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was streaked out onto mannitol salt agar (MSA) with aztreonam (20 μg/ml) for 

isolation of any staphylococci and on oxacillin-resistance screening agar (ORSA), 

with 2 µg/ml meticillin and 50 units/ml polymyxin B, for isolation of meticillin 

resistant staphylococci. Plates were incubated aerobically at 37°C for 24 hours and 

checked for growth, with ORSA plates incubated for a further 24 hours if no blue 

colonies were present. Colonies morphologically consistent with staphylococci were 

selected for further investigation, from MSA (up to two) and ORSA (one per 

sample). Staphylococci were presumptively identified on the basis of Gram stain, 

tube coagulase test using rabbit coagulase plasma (ProLab Diagnostics Inc), 

staphylase test (ProLab Diagnostics Inc), and a positive catalase test. Bacterial DNA 

was extracted from all isolates by digestion with lysostaphin (Sigma-Aldrich 

Company Ltd, Dorset, UK) for 10 minutes at 37
o
C followed by incubation at 95°C 

for 10 minutes. 

4.2.4 Assignment to species 

Isolates were confirmed as S. aureus by PCR assays for the femA and nuc genes. 

(Brakstad, Aasbakk et al. 1992; Francois, Pittet et al. 2003) Isolates of                       

S. pseudintermedius were confirmed by a PCR assay for the pta gene, which encodes 

the enzyme phosphoacetyltransferase, and subsequent digestion of the amplicon by 

MboI (New England Biolabs) to give two different sized bands (Bannoehr, Franco et 

al. 2009). All other CPS isolates were assigned to species using a multiplex PCR, 

which distinguishes between all seven CPS species (Sasaki, Tsubakishita et al. 

2010). For those CPS isolates that could not be assigned to species using the 

multiplex PCR, a 16S ribosomal DNA PCR was performed with subsequent analysis 

of the gene by sequencing (Edwards, Rogall et al. 1989). 

4.2.5 Determination of antimicrobial resistance profile 

Antimicrobial susceptibility testing was performed on all meticillin resistant 

staphylococci and all CPS by the Kirby Bauer method following the British Society 

for Antimicrobial Chemotherapy (BSAC) guidelines (Andrews 2007). Briefly, a 

Columbia blood agar (CAB) plate supplemented with 2% NaCl was inoculated for 

semi-confluent bacterial growth and the following antimicrobial discs were applied: 

co-trimoxazole (25 μg), ciprofloxacin (1 μg), fusidic acid (10 μg), gentamicin (10 
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μg), meticillin (5 μg), mupirocin (5 μg), rifampicin (2 μg), teicoplanin (30 μg), 

tetracycline (10 μg) and vancomycin (5 μg). The reference strain S. aureus ATCC 

25923 was used as a fully susceptible control. All media was supplied by LabM-IDG 

(Bury, UK) and all antimicrobial discs by Mast Ltd (Liverpool, UK). 

4.2.6 Determination of resistance to meticillin 

Resistance to meticillin was investigated on those isolates selected from the ORSA 

plates.  Isolates were streaked onto CAB supplemented with 2% NaCl with an 

oxacillin disc (1 µg) placed on the surface and MR was confirmed by PCR for the 

presence of the mecA gene (Vannuffel, Gigi et al. 1995). 

4.2.7 Characterisation of SCCmec cassette type of MRSA isolates 

SCCmec types were determined using a modified version of the method described by 

Oliveira et al (Oliveira and de Lencastre 2002). 

4.2.8 Spa gene typing of S. aureus isolates 

The variable region of the staphylococcus protein A (spa) gene, a virulence factor 

associated with interaction with IgG and evasion of phagocytosis,  was amplified, as 

described previously (Harmsen, Claus et al. 2003) and sequenced by a commercial 

laboratory. Analysis of the sequence was carried out using Ridom StaphType 

software (Ridom GmbH, Germany), which assigned the isolate to a spa type. 

Associations of the assigned spa type with multi-locus sequence type (MLST) were 

determined using the Ridom spa server database (http://spaserver.ridom.de/).  

4.2.9 Array analysis of MRSA and MSSA isolates 

All MRSA isolates and a selection of MSSA isolates were subjected to DNA micro 

array based chip analysis using Identibac MRSA according to the manufacturer’s 

instructions (Identibac, Surrey, UK). The array detects the presence of genes or gene 

groups associated with virulence (including staphylococcal enterotoxins, leukocidins 

and haemolysins), antimicrobial resistance (including aminoglycosides, β-lactams, 

chloramphenicol and vancomycin) and accessory gene regulators. 

http://spaserver.ridom.de/
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4.3 Results 

4.3.1 Sample collection 

Initially, 50 practices were recruited to the study and each asked to collect 28 

samples. However, due to low compliance by veterinary practices, a further 37 

practices were recruited to increase the number of samples collected to allow a more 

reliable estimate of the prevalence of carriage of antimicrobial resistant 

staphylococci. Of 87 veterinary practices, 14 failed to return any samples and only 

four returned all samples requested. Most practices returned between one and five 

samples each.  

4.3.2 Staphylococcus carriage in dogs  

A total of 724 nasal swabs were collected from dogs across mainland UK, of which 

559 (77.2%) returned a completed questionnaire.  
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Table 4.1 shows a breakdown of the prevalence of staphylococci and total number of 

isolates collected. In total, 439 Staphylococcus isolates were obtained from 339 

(55.1% (95% CI 51.5-58.7) dogs. Two hundred and seventy five (38.0% (95% CI 

34.4-41.5) dogs were positive for carriage of at least one CNS and 140 (19.3% (95% 

CI 16.5-22.2) carried at least one CPS. More than one unique staphylococci isolate, 

with either different phenotypic characteristics or differing antimicrobial resistance 

profiles, was obtained from 39 (5%)  samples, 16 (2%) of which carried a mixture of 

both CPS and CNS and one sample carried three different staphylococci.  
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Table 4.1 Summary of staphylococci isolated from nasal swabs of 724 dogs in 

mainland UK 

 

Number of dogs 

(total unique 

isolates) 

Prevalence (%) 

(95%CI) 

Staphylococci 399 (439) 55.1 (51.5, 58.7) 

CoNS 275 (297) 38.0 (34.4, 41.5) 

MR-CoNS 40 (40) 5.5 (3.9, 7.2) 

CoPS 140 (142) 19.3 (16.5, 22.2) 

S. aureus 54 (54) 7.5 (5.5, 9.4) 

MRSA 7 (7) 1.0 (0.3, 1.7) 

S. pseudintermedius 80 (81) 11.0 (8.8, 13.3) 

MRSP 0 (0) 0 

Other CoPS 7 (7) 1.0 (0.3, 1.7) 

CoNS = Coagulase negative staphylococci, MR-CoNS = Meticillin resistant CoNS, 

CoPS = Coagulase positive staphylococci, MRSA = Meticillin resistant S. aureus, 

MRSP = Meticillin resistant S. pseudintermedius. 

4.3.3 Coagulase negative Staphylococcus species 

In total 297 unique CNS isolates were archived. Twenty-two dogs carried two CNS 

isolates with differing resistance phenotypes, of which 17 dogs carried both MR-

CNS and one MS-CNS. MR-CNS was detected in 58 samples; however, only 40 

isolates (5.5% of dogs) were confirmed to be meticillin resistant by amplification of 

the mecA gene.  All 40 mecA positive CNS isolates underwent antimicrobial disc 

susceptibility testing. Table 4.2 summarises the prevalence of resistance for these 40 

isolates. Two isolates (5.0%) were resistant to meticillin only, and resistance to 

fusidic acid (n=38, 95% of MR-CNS) and ciprofloxacin (n=27, 67.2%) were most 

common among MR-CNS. Multidrug resistance (MDR, resistance to three or more 

antimicrobials was observed in 35 isolates (87.5%).  
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Table 4.2 Percentage of antimicrobial resistance in the 182 staphylococci isolates tested 

Antimicrobial 

Agent 

MR-CoNS 

(n=40) 

CoPS 

(n=142) 

S. aureus 

(n=54) 

S. pseudintermedius 

(n=81) 

 Number 

resistant 

% Number 

resistant 

% Number 

resistant 

% Number 

resistant 

% 

Ciprofloxacin 27 37.5 28 19.7 22 40.7 4 4.9 

Co-trimoxazole 9 22.5 13 9.2 1 1.9 12 14.8 

Fusidic Acid 38 95.0 62 43.7 29 53.7 29 35.8 

Gentamicin 4 10.0 43 30.3 29 53.7 14 17.3 

Meticillin 40 100.0 9 6.3 8 14.8 1 1.2 

Mupirocin 8 20.0 1 0.7 1 1.9 0 0 

Rifampicin 15 37.5 21 14.8 10 18.8 10 12.3 

Teicoplanin 3 7.5 4 2.8 2 3.7 1 1.2 

Tetracycline 11 27.5 27 19.0 1 1.9 24 29.6 

Vancomycin 0 0 0 0 0 0 0 0 

MDR 35 87.5 31 21.8 19 35.2 11 13.6 

MR-CoNS = Meticillin resistant coagulase negative staphylococci, CoPS = Coagulase positive 

staphylococci, MDR = Multidrug resistance; resistance to three or more antimicrobials 



76 

 

4.3.4 Coagulase positive Staphylococcus species 

One hundred and forty dogs (19.3%) carried a total of 142 CPS isolates ( 
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Table 4.1). S. aureus was isolated from 54 (7.5%) dogs, with 80 (11.0%) dogs 

carrying at least one S. pseudintermedius isolate. One isolate was identified as S. 

schleiferi and six could not be assigned to species using the multiplex PCR. 

Sequencing of 16s ribosomal DNA of these six isolates identified two as S. 

haemolyticus, and one each as S. schleiferi, S. saprophyticus and S. devriesei. S. 

haemolyticus, S. saprophyticus and S. devriesei are regarded as coagulase negative 

species, but in this study some were found to be coagulase positive by the tube 

coagulase test.  One remaining isolate could not be identified due to too many 

ambiguities in the obtained DNA sequence. One dog carried two S. pseudintermedius 

isolates, which differed by resistance phenotype, while another dog carried both a S. 

aureus and a S. schleiferi isolate.  

S. aureus  

Antimicrobial disc susceptibility testing was carried out for all 54 S. aureus 

(including MRSA) isolates and the susceptibility results are shown in Table 4.2. 

Resistance to at least one antimicrobial was observed in 30 isolates (55.6%). 

Resistance to both fusidic acid and gentamicin (both n=29, 53.7% of S. aureus) was 

most commonly observed, followed by ciprofloxacin resistance (n=22, 40.7%). 

MDR was observed in 19 isolates (35.2%). A subset of 20 MSSA isolates underwent 

spa typing and 18 previously described spa types were identified in single isolates. 

Two isolates were of unknown spa types.  

Meticillin resistant S. aureus 

Meticillin resistance was observed in eight S. aureus isolates and the presence of the 

mecA genes was confirmed in seven of these (1% of dogs). All seven confirmed 

MRSA isolates carried a SCCmec cassette type IV and were resistant to 

ciprofloxacin in addition to meticillin. In addition, resistance to gentamicin was 

observed in four isolates, fusidic acid in five isolates and rifampicin in four isolates. 

Five isolates were assigned to spa type t032, one to t022 and one to t3213, all of 

which are associated with ST22 and the human UK epidemic hospital associated 

strain EMRSA-15.  
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S. pseudintermedius 

One S. pseudintermedius isolate was phenotypically resistant to meticillin, but was 

found to be mecA negative by PCR. The prevalence of antimicrobial resistance in the 

81 S. pseudintermedius isolates is shown in Table 4.2. Twenty-five isolates (30.9%) 

were resistant to at least one antimicrobial and the most common resistance observed 

in these isolates was to fusidic acid (29 isolates, 35.8% of S. pseudintermedius) and 

tetracycline (24 isolates, 39.6%). Eleven isolates (13.6%) were resistant to three or 

more antimicrobials. 

4.3.5 Array analysis of MRSA and MSSA isolates 

All seven MRSA and a selection of MSSA isolates were subjected to DNA 

microarray analysis (26 in total) and the results are summarised in Figure 4.2. 

Regarding antimicrobial resistance, all MRSA isolates and 15 MSSA isolates 

harboured genes encoding resistance to β-lactams (blaZ) and two isolates (one 

MRSA and one MSSA) harboured genes encoding resistance to trimethoprim (dfrA). 

Two MRSA isolates harboured genes encoding resistance to macrolide-lincosamide-

streptogrammin B antibiotics (ermA and ermB) and one MRSA isolate harboured 

genes encoding resistance to streptothricin (sat). The mecA gene was detected in all 

MRSA isolates and none of the MSSA isolates. None of the isolates tested harboured 

genes encoding resistance to either vancomycin (vanA or vanB) or mupirocin 

(mupR); however, one MSSA isolate did show resistance to mupirocin in 

antimicrobial disc susceptibility testing. Furthermore, no isolates harboured genes 

encoding resistance to tetracycline (tetK and tetM), but one MSSA strain displayed 

phenotypic resistance to tetracycline. Genes encoding staphylococcal enterotoxins 

were identified in all isolates, with seX and seY being most common (25 of 26 

isolates); seG, seI and seN were also common, each being identified in 22 isolates. 

All isolates harboured genes encoding staphylococcal exotoxins. Most common were 

set3, set6 and set12 (all isolates), with only set2 and set21 being identified in less 

than 20 isolates (14 and 4 respectively). In addition, leukocidins were identified in all 

isolates, with lukX and lukY being most common (all isolates). lukF and lukS were 

also common (25 and 23 isolates respectively). In no strains were lukF-PV or lukS-

PV genes detected, therefore all isolates were negative for PVL.  Cluster analysis 
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(Figure 4.3) shows that all seven MRSA isolates formed a group with two of the 

MSSA isolates. The remaining MSSA isolates formed four separate groups.   

 

 

Figure 4.2 Presence of antimicrobial resistance and virulence factor genes 

among 28 MRSA and MSSA isolates by DNA microarray analysis 

Figure 4.3 Dendrogram showing relatedness of S. aureus isolates clustered 

by DNA microarray resistance and virulence genes 

Isolates enclosed in boxes are MRSA isolates. CCN – culture collection number 

assigned to each isolate prior to archiving of isolates  
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4.4 Discussion 

The aim of this study was to estimate the prevalence of staphylococci carriage from 

nasal samples of dogs across mainland UK. The prevalence of total staphylococci 

observed in this study (55.1%) is less than the reported total staphylococci 

prevalence by Loeffler at al (91%) (Loeffler, Boag et al. 2005). However, the latter 

study took samples from a limited number of hospitalised dogs. In contrast, the 

present study investigated the prevalence in the larger, vet visiting dog community, 

omitting any hospitalised dogs, which may provide a closer representation of the UK 

population. Very few studies have reported the overall staphylococci prevalence, so 

it is difficult to make comparisons between different populations and countries. 

Carriage of CNS among dogs in this study (38.0%) is similar to the reported nasal 

carriage of another study of hospitalised dogs in the UK (Loeffler, Boag et al. 2005). 

The prevalence of MR-CNS (5.5%) is lower than that reported in Denmark 

(Bagcigil, Moodley et al. 2007) and Slovenia (Vengust, Anderson et al. 2006). In the 

latter study, both nasal and anal mucosal samples were collected, which may explain 

why the prevalence reported was higher than we report here. 

It is reassuring that a low prevalence of MRSA was observed in this study, and this is 

the case with many other published studies in healthy dogs (Rich and Roberts 2006; 

Vengust, Anderson et al. 2006; Bagcigil, Moodley et al. 2007; Boost, O'Donoghue et 

al. 2008). The spa types of the MRSA isolates in this study have been found to be 

associated with MLST type ST22 (Shore, Rossney et al. 2010), from which the most 

prevalent MRSA clone circulating in UK hospitals comes (Johnson, Pearson et al. 

2005; Ellington, Hope et al. 2010). This study therefore provides evidence that 

EMRSA-15 is present within the healthy dog population of the United Kingdom 

albeit at a very low level, which has been previously reported in hospitalised dogs in 

the UK (Baptiste, Williams et al. 2005; Loeffler, Boag et al. 2005).  

The MSSA isolates were all identified as being of different spa types, and a number 

of these spa types have been shown to be associated with multi-locus sequence types 

(ST-5, ST-30 and ST-45) that are believed to be the MSSA precursors to many of the 

most successful MRSA clones circulating in both human hospitals and the 
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community (Robinson and Enright 2003). This again suggests sharing of the 

genotypes of S. aureus between dogs and humans. 

Previous studies have shown that dogs are more likely to carry S. pseudintermedius 

than S. aureus (Biberstein, Jang et al. 1984; Griffeth, Morris et al. 2008; Epstein, 

Yam et al. 2009) and the current study found a higher prevalence of                           

S. pseudintermedius in the canine population. However, no MRSP was identified in 

any of the samples, which was unexpected given that many other studies have found 

the MRSP prevalence to be higher than that of MRSA regardless of the type of 

population sampled (Vengust, Anderson et al. 2006; Griffeth, Morris et al. 2008; 

Epstein, Yam et al. 2009; Ruscher, Lubke-Becker et al. 2009). This lack of 

identification of MRSP in the present study is, however, in agreement with a recent 

study in the UK (Loeffler, Pfeiffer et al. 2010). In total, 20 isolates, which 

phenotypically displayed resistance to meticillin, were found not to carry the mecA 

gene. Non-mecA mediated meticillin resistance has been reported previously and a 

possible explanation for this could be due to hyper-production of β-lactamases 

(Mcdougal and Thornsberry 1986; Tomasz, Drugeon et al. 1989). 

A high frequency of resistance was observed among the Staphylococcus isolates, 

with more than half (54.4%) of all isolates tested displaying resistance to at least one 

antimicrobial other than meticillin.  High levels of resistance to fusidic acid (95.0% 

and 19.7%), ciprofloxacin (37.5% and 19.7%) and tetracycline (27.5% and 19.0%) 

was observed in both coagulase negative and positive isolates respectively. It is 

important to note, however, that only meticillin resistant coagulase negative 

staphylococci were subjected to antimicrobial susceptibility testing, which will cause 

the results observed to be disproportionately high in comparison to the observed 

prevalences in the coagulase positive staphylococci. It is possible, as suggested in 

other studies (Vengust, Anderson et al. 2006; Bagcigil, Moodley et al. 2007), that 

resistant coagulase negative staphylococci carriage in dogs may constitute an 

important reservoir for isolates capable of causing disease in both dogs and humans; 

or resistance determinants which may transfer to S. aureus. When comparing           

S. aureus and S. pseudintermedius, differences in antimicrobial resistance profiles 

were observed. For example, more S. aureus isolates were resistant to ciprofloxacin 
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and gentamicin, while more S. pseudintermedius isolates were resistant to co-

trimoxazole. Resistance to fusidic acid was high in both species, but over 50% in      

S. aureus. These results are in agreement with studies of clinical isolates from dogs 

(Lilenbaum, Veras et al. 2000; Penna, Varges et al. 2010) and demonstrates the 

differences in antimicrobial resistance patterns in different staphylococcal species. 

DNA microarray analysis showed that these isolates carry many virulence factors, 

which highlights their potential for pathogenicity. While all MRSA isolates clustered 

together, more variation was apparent between the MSSA isolates, which shows the 

higher level of diversity among the isolates compared to those with resistance to 

meticillin. The microarray results identified the presence or absence of resistance 

determinants which were not investigated by antimicrobial disc susceptibility testing, 

and this highlights the advantages of this approach and allows for higher 

discrimination between isolates.   

Six coagulase positive isolates were unable to be assigned to species using the 

multiplex PCR (Sasaki, Tsubakishita et al. 2010) and 16s ribosomal DNA 

sequencing was carried out. Following this, four were identified as species more 

commonly found to be coagulase negative (S. haemolyticus, S. saprophyticus and      

S. devriesei), and one could not be identified at the species level. This highlights the 

difficulties associated with identification of staphylococci. Sequencing of 16s 

ribosomal DNA relies on variations in the sequences of bacterial species for 

identification, which can make it a difficult method when species of the same genus 

are so closely related and have very similar, conserved 16s sequences, as is the case 

with Staphylococcus spp. 

It is possible that a degree of selection bias is present in this study. Anecdotal 

evidence, after discussions with participating veterinary practice, suggests that 

smaller breeds, whose nasal passages might be difficult to swab, were avoided. In 

addition, if the veterinary personnel felt the dog would not cooperate, they did not 

approach the owner for recruitment of their dog. It is not likely, however, that either 

of the issues would have substantially affected the results. 
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Since only a nasal swab was taken from each dog at the time of consultation, the 

carrier status of the dogs cannot be assessed. Swabs taken from a number of different 

sites, as in other studies (Loeffler, Boag et al. 2005; Vengust, Anderson et al. 2006; 

Griffeth, Morris et al. 2008) would provide more data relating to the dog as a whole. 

Additionally, this study does not take into account that a proportion of the population 

could be transient carriers as in the case of people (Kluytmans, vanBelkum et al. 

1997), and may not continually carry staphylococci; thus were negative at the time of 

sampling. A longitudinal study investigating the population structure of 

staphylococci, in particular those isolates with antimicrobial resistance may be 

indicated to assess the importance of transient carriage.   

This study provides further evidence that carriage of MRSA in healthy dogs is low 

and is in agreement with other studies that the same MRSA strains isolated from 

hospitalised dogs in the UK also circulate within the healthy population. The dogs in 

this study were found to carry MSSA strains commonly isolated from humans and 

the prevalence of resistance among the staphylococci was high. This therefore 

suggests that dogs in the community could be acting as a reservoir for both MSSA 

and resistant staphylococci.    
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Chapter Five 

Prevalence and risk factors for 

carriage of antimicrobial resistant 

Escherichia coli in dogs 
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5.1 Introduction 

Antimicrobial resistance is widely recognised as a common and increasing problem 

in the healthcare setting and within the community both in people and animals. 

Resistance to antimicrobials provides bacteria with an advantage over susceptible 

variants and could ultimately result in failure of treatment regimens. The result is 

higher rates of morbidity and mortality, but also an increased financial burden.  

Antimicrobial resistant bacteria, for example Escherichia coli, isolated from 

veterinary samples are also commonly reported, in particular in dogs and other 

companion animals (Normand, Gibson et al. 2000). Pathogenic E. coli, are a 

common cause of gastro-intestinal infections, but the vast majority of humans, dogs 

and other warm blooded mammals carry commensal E. coli within the gut. However, 

such commensal bacteria may also cause opportunistic disease if outside their normal 

niche, for example in the urinary tract (Russo and Johnson 2000; Johnson and Russo 

2002). Furthermore, the location of commensal E. coli means that exposure to 

antimicrobials prescribed orally to the individual is common, and, as a result, there is 

a selection pressure exerted upon the bacteria to develop resistance. This can be 

achieved either by chromosomal mutations in genes encoding the targets of the 

antimicrobials, or by acquisition of transferrable resistance genes from other 

members of the gut flora or transient bacteria passing through the gut. These bacteria 

may then themselves act as a reservoir for such resistance determinants 

(Guardabassi, Schwarz et al. 2004; Stenske, Bemis et al. 2009). As such, E. coli 

isolated from faecal samples can provide a good indication of the reservoir of 

resistance in the gut flora (van den Bogaard and Stobberingh 2000).  

One resistance mechanism that is of particular concern is that mediated by extended 

spectrum β-lactamases (ESBL), which are capable of hydrolysing third generation 

cephalosporins, such as ceftazidime, cefotaxime, cefpodoxime and ceftiofur 

(Livermore 2008). E. coli harbouring such ESBL genes have become, in recent 

years, increasingly prevalent in hospitals and in the community in people (Munday, 

Whitehead et al. 2004; Pitout, Nordmann et al. 2005), as well as from clinical 

samples of canine origin (Ewers, Grobbel et al. 2010). Plasmid mediated AmpC 

enzymes, which also have a broad spectrum of resistance and are resistant to β-
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lactamase inhibitors (Philippon, Arlet et al. 2002), have also been documented in 

dogs (Carattoli, Lovari et al. 2005; Sidjabat, Townsend et al. 2006).  

Dogs have long been a companion of humans and a cross sectional study in 2007 

indicated that 31% of households owned a dog with the estimate of total UK dog 

population to be 10.3 million (Murray, Browne et al. 2010). With such a large 

population and the close and frequent contact many people have with their pets, it is 

likely that bacteria are transferred between them, and this has sparked concerns that 

dogs may act as reservoirs for resistant bacteria and resistance determinants 

(Guardabassi, Schwarz et al. 2004; Damborg, Top et al. 2009; Johnson, Miller et al. 

2009; Stenske, Bemis et al. 2009). 

While antimicrobial resistant E. coli from clinical samples from dogs is often 

reported (Teshager, Dominguez et al. 2000; Pedersen, Jensen et al. 2007), it is the 

bacteria present in the faeces of dogs that the general human population are more 

likely to be exposed to. It is therefore important to gain an understanding of the 

prevalence of antimicrobial resistance among the E. coli resident in the healthy 

canine gut. Such studies have been carried out in both European countries (De Graef, 

Decostere et al. 2004; SVARM 2006; Costa, Poeta et al. 2008) and in Canada 

(Murphy, Reid-Smith et al. 2009). However, few have investigated the risk factors 

that might be associated with carriage of antimicrobial resistant E. coli by dogs in the 

community. Furthermore, the presence of antimicrobial resistant E. coli could also 

have a significant impact on the health and welfare of the dog. For example, 

transference of resistance determinants to bacteria that cause canine disease could 

result in difficult to treat infections the individual.  

The aim of this study was to determine the faecal prevalence of antimicrobial 

resistant E. coli, including ESBL and AmpC β-lactamase producing E. coli, in the 

vet-visiting dog community of mainland UK. In addition, risk factors associated with 

carriage of antimicrobial resistance were investigated.  
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5.2 Methods 

5.2.1 Study population 

Dogs from mainland UK visiting veterinary practices were recruited for this study. 

Veterinary practices were randomly selected from the practices listed in the 2006 

RCVS directory of veterinary practices who indicated that they treated dogs. Only 

dogs visiting the practice for consultations were included in this study, omitting any 

hospitalised animals. Sample size calculations were estimated based on an expected 

carriage rate of antimicrobial resistant E. coli of 50% (to give the largest sample size) 

with a precision of 5% and 95% confidence intervals. Assuming a conservative 

cluster variance of 0.01 between veterinary practices, then 555 faecal samples would 

be required from 50 veterinary practices. In addition to collection of faecal samples, 

nasal samples were also collected to determine the prevalence of MRSA, and is 

discussed in chapter four. Consequently, to allow for the higher number of samples 

required for investigation of prevalence of MRSA in nasal samples and a compliance 

rate of 70%, the 50 practices were asked to recruit 28 dogs each (a total of 1400). 

Ethical approval for this study was granted by the University of Liverpool 

Committee on Research Ethics.  

5.2.2 Faecal sample collection and processing 

Recruitment of the owners was carried out by the attending veterinary practice 

personnel during consultation. Following informed written consent, the owner was 

asked to provide a faecal sample from their dog at the next convenient opportunity. 

They were also requested to complete a six-page questionnaire comprising both tick 

box and free text questions. The questionnaire was designed using Cardiff TeleForm 

data capture software and piloted in-house and with the sample collection methods, 

at a veterinary practice, which did not participate in the main study. The 

questionnaire included questions relating to signalment, medical history of the dog 

over the previous three months (including antimicrobial use), use of antimicrobials 

by other household members (including other pets), and diet. The faecal sample and 

completed questionnaire were returned by first class post and processed immediately 

on receipt. 
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An equal volume of the faecal sample was added to 5ml of brain heart infusion broth 

with 5% glycerol (BHIG) and thoroughly mixed to create a faecal homogenate. A 

portion of this was stored below -70°C and the remainder used for the isolation of 

antimicrobial resistant E. coli.  Isolation of both antimicrobial resistant E. coli and 

ESBL-producing E. coli have been described previously (Bartoloni, Benedetti et al. 

2006; Liebana, Batchelor et al. 2006). Briefly, for antimicrobial resistant E. coli, the 

faecal homogenate was plated directly onto MacConkey and eosin methylene blue 

agar (EMBA) and antimicrobial discs (MAST group Ltd) applied to the surface: 

ampicillin (10 µg); augmentin (30 µg); chloramphenicol (30 µg); ciprofloxacin (1 

µg); nalidixic acid (30 µg); tetracycline (30 µg); and trimethoprim (2.5 µg). 

Following overnight incubation at 37°C, colonies were selected if they were within 

the zone of inhibition around the antimicrobial discs and morphologically consistent 

with E. coli. For screening of samples for ESBL producing E. coli, two EMBA 

plates, one containing cefotaxime (1 μg/ml) and the other ceftazidime (1 μg/ml), 

were streaked with the faecal homogenate. If present, at least one isolate 

morphologically consistent with E. coli was selected from each plate. If no growth 

consistent with E. coli occurred, further EMBA plates were streaked with faecal 

homogenate following enrichment overnight in buffered peptone water. In addition, 

to allow for non-selective isolation of E. coli, an EMBA plate containing no 

antimicrobials was streaked with the faecal homogenate. Three isolates 

morphologically consistent with E. coli were selected for antimicrobial susceptibility 

testing.  

Presumptive E. coli were confirmed by both biochemical testing (Gram stain, 

catalase production, lack of oxidase, fermentation of lactose, production of indole 

and inability to utilise citrate as a carbon source) and a PCR assay to detect the uidA 

gene (McDaniels, Rice et al. 1996). 

5.2.3 Antimicrobial susceptibility testing 

Antimicrobial disc susceptibility testing following British Society for Antimicrobial 

Chemotherapy (BSAC) guidelines (Andrews 2007) was performed on all isolates 

using the same antimicrobial discs as used for the isolation of E. coli above. The 
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reference strain E. coli ATCC 25922 was used as a fully sensitive control in all 

testing. Following overnight incubation at 37°C, the zone sizes in mm were recorded. 

5.2.4 Phenotypic confirmation of ESBL production  

The paired disc diffusion test (M'Zali, Chanawong et al. 2000) (MAST Group Ltd) 

was performed on isolates suspected of ESBL production, which were selected from 

the EMBA plates containing ceftazidime or cefotaxime. Three sets of antimicrobial 

discs were placed on an ISO-Sensitest agar plate inoculated for semi-confluent 

growth: ceftazidime (30µg) and ceftazidime/clavulanic acid (30μg/10µg); cefotaxime 

(30µg) and cefotaxime/clavulanic acid (30μg/10µg); and cefpodoxime (30µg) and 

cefpodoxime/clavulanic acid (30μg/10µg). Following overnight incubation, the zone 

sizes in mm were recorded. Production of an ESBL by an isolate was confirmed if 

the zone size was expanded by at least 5mm in the presence of clavulanic acid. A 

difference in zone size less than 5mm suggested the production of an AmpC β-

lactamase or both an ESBL and an AmpC β-lactamase.  

5.2.5 Confirmation of the presence of ESBL and AmpC β-lactamase genes by PCR 

All isolates, suspected of harbouring either ESBL genes or blaAmpC genes were 

subjected to PCR testing for the presence of blaTEM, blaSHV, blaCTX-M and blaAmpC 

genes (Essack, Hall et al. 2001; Perez-Perez and Hanson 2002; Boyd, Tyler et al. 

2004). 

5.2.6 Statistical analysis 

Questionnaire responses and antimicrobial resistance results were entered into an 

access database (Microsoft Office 2007) and exported to Stata (Version 9) for both 

univariable and multivariable analysis. In total, 11 different outcomes (any 

resistance, individual resistance to each of the seven tested antimicrobials, multidrug 

resistance (resistance to three or more antimicrobials), carriage of an ESBL 

producing E. coli and carriage of a blaAmpC gene) were tested for associations with 

any explanatory variables (questionnaire responses) using univariable binary logistic 

regression. Associations were considered statistically significant if P<0.05.  

Multivariable logistic regression analyses were carried out. A multivariable model 

was built by step-wise elimination, initially including all variables with P<0.3 in 
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univariable analysis. Variables with P>0.05 in the model were sequentially removed 

(from highest P value to lowest) and a likelihood ratio test (LRT) carried out to 

compare the two models (with and without the variable). The variable remained in 

the model only if its removal resulted in a LRT P-value less than 0.05. Where the 

final model included more than two variables, tests for interactions between the 

variables were carried out. A LRT P-value of less than 0.05 suggested interaction 

between the two variables being tested and was retained in the final model.  

5.3 Results 

5.3.1 Study population and sample collection 

Initially, 50 practices were recruited to the study and each asked to collect 28 

samples. However, due to an unexpectedly low compliance by veterinary practices, a 

further 37 practices were recruited to increase the number of samples collected. 

These later practices were sent ten sample packs in the first instance with further 

packs sent out when all ten had been returned.  Sixteen practices failed to return any 

faecal samples, with the median number of samples per practice returned being five 

(range 1.5-9).  

In total, 581 faecal samples were returned, of which 574 also included the completed 

questionnaire. The median age of dogs recruited was 5 years (range 6 weeks to 17 

years) and 64 different pure breeds were represented, with the most common type of 

dog being cross-breed (n=123, 21.4%), followed by Labrador (n=90, 15.7%). 

5.3.2 Prevalence of antimicrobial resistance 

At least one E. coli was isolated from 561 (96.6%) of the 581 faecal samples, with 

antimicrobial resistant E. coli being isolated from 260 (44.8%) faecal samples. A 

total of 436 unique E. coli isolates (up to nine per sample) were recovered based on 

their antimicrobial susceptibility profile. Table 5.1 below shows both the sample and 

isolate level prevalence of faecal carriage of antimicrobial resistant E. coli.  
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Table 5.1 The prevalence of antimicrobial resistant E. coli isolated from faecal 

samples of dogs visiting veterinary practices in mainland United Kingdom 

 

Sample prevalence %  

(95% confidence 

interval) 

n=581 

Isolate prevalence % 

(95% confidence 

interval) 

n=436 

Any resistance 44.8% (40.7-48.8)  

Multidrug resistance 18.1% (14.9-21.2) 31.9% (27.5-36.3) 

Ampicillin 37.2% (33.2-41.1) 72.9% (68.8-77.1) 

Augmentin 7.1% (5.0-9.1) 10.6% (7.7-13.4) 

Chloramphenicol 9.1% (5.7-10.1) 13.5% (10.53-16.7) 

Ciprofloxacin 5.0% (3.2-6.8) 8.0% (5.5-10.6) 

Nalidixic acid 7.9% (5.7-10.1) 13.8% (10.5-17.0) 

Tetracycline 30.0% (26.2-33.7) 62.8% (58.3-67.4) 

Trimethoprim 23.8% (20.3-27.2) 41.3% (36.7-45.9) 

ESBL mediated resistance 4.1% (2.5-5.7) 5.7% (3.6-7.9) 

AmpC mediated resistance 7.1% (5.0-9.1) 9.6% (6.9-12.4) 

 

 

The most common resistances observed were to ampicillin (37.2% of dogs), 

tetracycline (30.0%) and trimethoprim (23.8%). Resistance to augmentin, 

chloramphenicol, ciprofloxacin and nalidixic acid was observed in less than 10% of 

dogs. Multidrug resistance (resistance to three of more different antimicrobial 

classes) was observed in 18.1% of dogs. ESBL producing E. coli were isolated from 

4.1% of dogs and an AmpC β-lactamase producing E. coli from 7.1% of dogs.  

Figure 5.1 below compares the prevalences of resistance in the two study 

populations. The prevalences of resistance to each of the antimicrobials is observed 

to be higher than those observed in the community population described in chapter 

three. 
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Figure 5.1 Comparison of prevalence of resistance to antimicrobials observed in 

dogs in a semi-rural community and vet visiting dogs in mainland Great 

Britain. 

 

5.3.3 Univariable logistic regression analysis 

Univariable analysis was carried out on the 574 samples with completed 

questionnaires for all 11 outcomes (Table 5.2 to Table 5.12 and Appendix Three).  A 

total of 30 different variables were found be associated with one or more of the 

possible outcomes tested. Four variables were found to be associated with more than 

half of the eleven outcomes.  
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Table 5.2 Univariable analysis of factors associated with carriage of any 

antimicrobial resistant E. coli in dogs for variables with p<0.05 

Variable - (n) + (n) Coefficient SE OR 95% CI P Value 

Prescribed any 

antibiotic in previous 

three months 

      0.003 

No 237 159 0  1  0.004* 

Yes 83 95 0.53 0.18 1.71 1.19-2.44  

Allowed off lead during 

walks 
      0.005 

No 77 37 0  1  0.006* 

Yes 238 212 0.62 0.22 1.85 1.20-2.86  

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      0.006 

No 254 180 0  1  0.009* 

Yes 47 61 0.59 0.22 1.80 1.17-2.76  

Working Dog       0.02 

No 292 218 0  1  0.02* 

Yes 19 29 0.72 0.31 2.04 1.12-3.74  

Regular contact with 

wild or farm animals 

during walks 

      0.04 

No 249 177 0  1  0.04* 

Yes 65 70 0.42 0.20 1.51 1.03-2.23  

Fed raw poultry meat       0.04 

No 309 239 0  1  0.05* 

Yes 8 15 0.89 0.45 2.42 1.01-5.81  

Medication prescribed 

during most recent visit 
      0.04 

No 210 149 0  1  0.05* 

Yes 103 104 0.35 0.18 1.42 1.01-2.01  

*Fishers exact test statistic 
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Table 5.3 Univariable analysis of factors associated with carriage of multidrug 

resistant E. coli in dogs for variables with p<0.05 

Variable - (n) + (n) Coefficient SE OR 95% CI P Value 

Fed raw poultry meat     
  

0.001 

No 455 93 0  1 
 

0.003* 

Yes 13 10 1.33 0.44 3.76 1.60-8.84 
 

Breed Size     
  

0.002 

Small 62 11 0  1 
  

Medium  116 17 -0.19 0.42 0.83 0.36-1.87 
 

Large 153 54 0.69 0.36 1.99 0.98-4.06 
 

Not specified 140 21 -0.17 0.33 0.85 0.38-1.86 
 

Given dog treats     
  

0.02 

Never/ rarely 94 32 0  1 
 

0.03* 

Sometimes/ often 367 71 -0.57 0.24 0.57 0.35-0.91 
 

Number of other dogs in 

household 
    

  
0.04 

0 264 49 0  1 
  

1 97 23 0.24 0.28 1.28 0.74-2.21 
 

2 42 9 0.14 0.40 1.15 0.53-2.52 
 

3 7 6 1.53 0.58 4.62 1.49-14.33 
 

4+ 11 5 0.90 0.56 2.45 0.82-7.36 
 

Own a cat      
  

0.04 

No 349 67 0  1 
 

0.05* 

Yes 114 35 0.47 0.23 1.60 1.01-2.53 
 

Breed Group       0.05 

Working 13 7 0  1   

Gundog 151 46 -0.57 0.50 0.57 0.21-1.50  

Hound 27 7 -0.73 0.63 0.48 0.14-1.66  

Terrier 52 4 -1.95 0.70 0.14 0.04-0.56  

Utility 26 4 -1.25 0.71 0.29 0.07-1.16  

Pastoral 35 7 -0.99 0.63 0.37 0.11-1.27  

Toy 28 7 -0.77 0.63 0.46 0.13-1.60  

Cross 106 17 -1.21 0.54 0.30 0.10-0.85  

Not specified 33 4 -1.49 0.71 0.23 0.06-0.90  

*Fisher’s exact test statistic 
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Table 5.4 Univariable analysis of factors associated with carriage of ampicillin 

resistant E. coli in dogs for variables with p<0.05 

Variable - (n) + (n) Coefficient SE OR 95% CI P Value 

Prescribed any 

antibiotic in previous 

three months 

      0.001 

No 268 128 0  1  0.001* 

Yes 95 83 0.60 0.18 1.83 1.27-2.63  

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      0.004 

No 288 146 0  1  0.005* 

Yes 55 53 0.62 0.22 1.87 1.22-2.86  

Breed Size       0.004 

Small 50 23 0  1   

Medium  98 35 -0.25 0.32 0.78 0.41-1.45  

Large 114 95 0.57 0.29 1.77 1.01-3.12  

Not specified 101 60 0.26 0.30 1.29 0.72-2.33  

Neutered       0.02 

No 85 69 0  1  0.02* 

Yes 276 142 -0.46 0.19 0.63 0.43-0.92  

Medication prescribed 

during most recent visit 
      0.02 

No 239 120 0  1  0.02* 

Yes 117 90 0.43 0.18 1.53 1.08-2.18  

Given titbits       0.02 

Never 29 31 0  1   

Rarely 124 52 -0.94 0.31 0.39 0.22-0.72  

Sometimes 150 95 0.52 0.29 0.59 0.34-1.05  

Often 49 30 -0.56 0.35 0.57 0.29-1.13  

Antibiotic prescribed 

during most recent visit 
      0.04 

No 297 159 0  1  0.05* 

Yes 58 49 0.46 0.22 1.58 1.03-2.42  

Own a rodent       0.04 

No 324 200 0  1  0.04* 

Yes 32 9 -0.79 0.39 0.46 0.21-0.97  

Fed raw poultry meat       0.05 

No 350 198 0  1  0.08* 

Yes 10 13 0.83 0.43 2.30 0.99-5.34  

*Fisher’s exact test statistic  
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Table 5.5 Univariable analysis of factors associated with carriage of augmentin 

resistant E. coli in dogs in the community for variables with p<0.05 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      0.004 

No 411 23 0  1  0.009* 

Yes 93 14 0.99 0.36 2.69 1.33-5.43  

Medication prescribed 

during most recent visit 
      0.007 

No 341 18 0  1  0.01* 

Yes 184 23 0.86 0.33 2.37 1.25-4.50  

Prescribed any 

antibiotic in previous 

three months 

      0.01 

No 375 21 0  1  0.01* 

Yes 158 20 0.82 0.33 2.26 1.19-4.29  

Other animals in 

household 
      0.01 

No 288 30 0  1  0.01* 

Yes 237 10 -0.90 0.38 0.41 0.19-0.85  

Given titbits       0.02 

Never 53 7 0  1   

Rarely 170 6 -1.32 0.58 0.27 0.09-0.83  

Sometimes 221 24 -0.20 0.46 0.82 0.34-2.01  

Often 76 3 -1.21 0.71 0.30 0.07-1.21  

Own a cat        0.04 

No 381 35 0  1  0.04* 

Yes 144 5 -0.97 0.49 0.38 0.15-0.98  

Source of dog       0.04 

Breeder 262 17 0  1   

Rescue Kennel/ stray 116 10 0.28 0.41 1.33 0.59-2.99  

Newspaper/ word of 

mouth/ internet 
41 3 0.12 0.65 1.13 0.32-4.02  

Family/friend 79 4 -0.25 0.57 0.78 0.26-2.39  

Pet shop 5 0      

Other 15 1 -0.03 1.06 1.03 0.13-8.25  

Self breed 9 4 1.92 0.65 6.85 1.91-24.53  

*Fisher’s exact test statistic 
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Table 5.6 Univariable analysis of factors associated with carriage of 

chloramphenicol resistant E. coli in dogs in the community for variables with 

p<0.05 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Own a cat        <0.001 

No 390 26 0  1  <0.001* 

Yes 124 25 1.11 0.30 3.02 1.68-5.43  

Number of other dogs in 

household 
      <0.001 

0 292 21 0  1   

1 109 11 0.34 0.39 1.40 0.62-3.01  

2 46 5 0.41 0.52 1.51 0.54-4.21  

3 8 5 2.16 0.61 8.69 2.61-28.91  

4+ 12 4 1.53 0.62 4.63 1.38-15.62  

Fed raw poultry meat       <0.001 

No 505 43 0  1  <0.001* 

Yes 14 9 2.02 0.46 7.55 3.09-18.45  

Working Dog       <0.001 

No 471 39 0  1  0.001* 

Yes 36 12 1.39 0.37 4.03 1.94-8.36  

Other animals in 

household 
      0.001 

No 301 17 0  1  0.001* 

Yes 213 34 1.04 0.31 2.83 1.51-5.19  

Given dog treats       0.003 

Never 25 8 0  1   

Rarely 82 11 -0.87 0.52 0.42 0.15-1.16  

Sometimes 250 15 -1.67 0.49 0.19 0.07-0.49  

Often 155 18 -1.01 0.48 0.36 0.14-0.92  

Own  any other animal 

or livestock 
      0.005 

No 467 40 0  1  0.01* 

Yes 47 11 1.01 0.37 2.69 1.31-5.68  

Given dog treats       0.01 

Never/ rarely 107 19 0  1  0.01* 

Sometimes/ often 405 33 -0.78 0.31 0.46 0.25-0.84  

Fed dry mixer       0.01 

No 414 49 0  1  0.009* 

Yes 105 3 -1.42 0.60 0.24 0.07-0.79  

Source of dog       0.02 

Breeder 244 35 0  1   

Rescue Kennel/ stray 121 5 -1.24 0.49 0.29 0.11-0.75  

Newspaper/ word of 

mouth/ internet 
43 1 -1.82 1.03 0.16 0.02-1.21  

Family/friend 78 5 -0.81 0.50 0.45 0.17-1.18  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Pet shop 5 0      

Other 14 2 -0.004 0.78 1.00 0.22-4.57  

Self breed 10 3 0.74 0.68 2.09 0.55-7.97  

Other dogs in household       0.02 

No 292 21 0    0.03* 

Yes 222 31 0.66 0.30 1.94 1.09-3.47  

Breed Size       0.036 

Small 70 3 0     

Medium  123 10 0.64 0.68 1.90 0.51-7.12  

Large 179 28 1.29 0.62 3.65 1.08-12.39  

Not specified 150 11 0.54 0.67 1.71 0.46-6.33  

*Fisher’s exact test statistic 
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Table 5.7 Univariable analysis of factors associated with carriage of 

ciprofloxacin resistant E. coli in dogs in the community for variables with 

p<0.05 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Fed raw poultry meat       <0.001 

No 525 23 0  1  0.004* 

Yes 18 5 1.85 0.55 6.34 2.16-18.58  

Medication prescribed 

in the last three months 

(excluding most recent 

visit) 

      0.002 

No 339 10 0  1  0.004* 

Yes 190 18 1.17 0.40 3.21 1.45-7.10  

Number of other dogs in 

household 
      0.006 

0 302 11 0  1   

1 116 4 -0.05 0.59 0.95 0.30-3.03  

2 46 5 1.09 0.56 2.98 0.99-8.98  

3 11 2 1.91 0.83 4.99 0.99-25.28  

4+ 13 3 1.85 0.71 6.34 1.57-25.49  

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      0.008 

No 417 17 0  1  0.01* 

Yes 96 11 1.03 0.40 2.81 1.28-6.19  

Own a cat        0.008 

No 402 14 0  1  0.01* 

Yes 136 13 1.01 0.40 2.74 1.26-5.98  

Given titbits       0.02 

Never/ rarely 230 6 0  1  0.03* 

Sometimes/ often 302 22 1.03 0.47 2.79 1.11-7.00  

Prescribed any 

antibiotic in previous 

three months 

      0.03 

No 382 14 0  1  0.04* 

Yes 164 14 0.85 0.39 2.33 1.09-5.00  

Breed Size       0.03 

Small 71 2 0  1   

Medium  127 6 0.52 0.83 1.68 0.33-8.53  

Large 190 17 1.16 0.76 3.18 0.72-14.10  

Not specified 158 3 -0.39 0.92 0.67 0.11-4.12  

Sex       0.03 

Male 271 8 0  1  0.03* 

Female 275 20 0.90 0.43 2.46 1.07-5.69  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Breed Group       0.03 

Working 16 4 0  1   

Gundog 185 12 -1.35 0.63 0.26 0.07-0.90  

Hound 32 2 -1.39 0.92 0.25 0.04-1.51  

Terrier 55 1 -2.62 1.15 0.07 0.01-0.70  

Utility 27 3 -0.81 0.83 0.44 0.09-2.25  

Pastoral 40 2 -1.61 0.92 0.20 0.03-1.20  

Toy 34 1 -2.14 1.16 0.12 0.01-1.14  

Cross 120 3 -2.30259 
0.80

8803 
0.10 0.02-0.49  

Not specified 37 0      

Received any veterinary 

treatment (excluding 

most recent visit)in the 

last three months 

      0.03 

No 304 10 0  1  0.03* 

Yes 230 18 0.87 0.40 2.38 1.08-5.25  

Given titbits       0.03 

Never 57 3 0  1   

Rarely 173 3 -1.11 0.83 0.33 0.06-1.68  

Sometimes 231 14 0.14 0.65 1.15 0.32-4.14  

Often 71 8 0.76 0.70 2.14 0.54-8.44  

Anyone in the household 

work with farm animals 
      0.05 

No 496 23 0  1  0.06* 

Yes 40 5 0.99 0.52 2.70 0.97-7.47  

*Fisher’s exact test statistic 
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Table 5.8 Univariable analysis of factors associated with carriage of nalidixic 

acid resistant E. coli in dogs in the community for variables with p<0.05 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Fed raw poultry meat       <0.001 

No 511 37   1  <0.001* 

Yes 15 8 2.00 0.47 7.37 2.93-18.5  

Number of other dogs in 

household 
      0.001 

0 294 19   1   

1 114 6 -0.21 0.48 0.81 0.32-2.09  

2 43 8 1.06 0.45 2.88 1.19-6.98  

3 10 3 1.54 0.70 4.64 1.18-18.29  

4+ 12 4 1.64 0.62 5.16 1.52-17.52  

Working Dog       0.003 

No 476 34   1  0.007* 

Yes 39 9 1.17 0.41 3.23 1.45-7.22  

Sex       0.01 

Male 265 14   1  0.02* 

Female 264 31 0.80 0.33 2.22 1.16-4.27  

Medication prescribed 

during most recent visit 
      0.02 

No 338 21   1  0.02* 

Yes 183 24 0.75 0.31 2.11 1.14-3.90  

Breed Size       0.035 

Small 69 4   1   

Medium  124 9 0.22 0.62 1.25 0.37-4.22  

Large 182 25 0.86 0.56 2.37 0.80-7.6  

Not specified 154 7 -0.24 0.64 0.78 0.22-2.77  

Given titbits       0.04 

Never/ rarely 224 12   1  0.04* 

Sometimes/ often 292 32 0.72 0.35 2.05 1.03-4.06  

Breed Group       0.04 

Working 15 5   1   

Gundog 178 19 -1.14 0.57 0.32 0.10-0.98  

Hound 31 3 -1.24 0.80 0.29 0.06-1.38  

Terrier 55 1 -2.91 1.13 0.05 0.01-0.50  

Utility 27 3 -1.10 0.80 0.33 0.07-1.59  

Pastoral 38 4 -1.15 0.74 0.32 0.07-1.34  

Toy 32 3 -1.27 0.79 0.28 0.06-1.33  

Cross 116 7 -1.71 0.65 0.18 0.05-0.64  

Not specified 37 0      

*Fisher’s exact test statistic 
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Table 5.9 Univariable analysis of factors associated with carriage of tetracycline 

resistant E. coli in dogs in the community for variables with p<0.05 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Regular contact with 

wild or farm animals 

during walks 

      0.003 

No 315 111 0  1  0.005* 

Yes 82 53 0.61 0.21 1.83 1.22-2.76  

Fed raw poultry meat       0.004 

No 392 156 0  1  0.008* 

Yes 10 13 1.18 0.43 3.27 1.40-7.61  

Working Dog       0.004 

No 366 144 0  1  0.008* 

Yes 25 23 0.85 0.31 2.34 1.29-4.25  

Number of other dogs in 

household 
      0.02 

0 232 81 0  1   

1 82 38 0.28 0.23 1.33 0.84-2.10  

2 29 22 0.78 0.31 2.17 1.18-4.00  

3 5 8 1.52 0.58 4.58 1.46-14.41  

4+ 11 5 0.26 0.55 1.30 0.44-3.86  

Not specified 38 15 0.12 0.33 1.13 0.59-2.16 0.7 

        

Breed Size       0.01 

Small 53 20 0  1   

Medium  100 33 -0.13 0.33 0.87 0.46-1.67  

Large 129 78 0.47 0.30 1.60 0.89-2.88  

Not specified 123 38 -0.20 0.32 0.82 0.44-1.54  

Other dogs in household       0.02 

No 232 81 0  1  0.03* 

Yes 165 88 0.42 0.18 1.53 1.06-2.19  

Prescribed any 

antibiotic in previous 

three months 

      0.02 

No 291 105 0  1  0.02* 

Yes 114 64 0.44 0.19 1.56 1.07-2.27  

Own a fish       0.04 

No 382 167 0  1  0.05* 

Yes 15 1 -1.88 1.04 0.15 0.02-1.16  

Own  any other animal 

or livestock 
      0.04 

No 363 144 0  1  0.05* 

Yes 34 24 0.58 0.28 1.78 1.02-3.11  

*Fisher’s exact test statistic 
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Table 5.10 Univariable analysis of factors associated with carriage of 

trimethoprim resistant E. coli in dogs in the community for variables with 

p<0.05 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Fed raw poultry meat       0.005 

No 425 123 0  1  0.01* 

Yes 12 11 1.15 0.43 3.17 1.36-7.35  

Regular contact with 

wild or farm animals 

during walks 

      0.05 

No 335 91 0  1  0.06* 

Yes 95 40 0.44 0.22 1.55 1.00-2.40  

*Fisher’s exact test statistic 

Table 5.11 Univariable analysis of factors associated with carriage of an ESBL 

(TEM or CTX-M) producing E. coli in dogs in the community for variables with 

p<0.05 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Fed raw poultry meat       <0.001 

No 530 18 0  1  <0.001* 

Yes 17 6 2.34 0.53 10.39 3.66-29.48  

Number of other dogs 

in household 
      0.005 

0 301 12 0  1   

1 117 3 -0.44 0.65 0.60 0.18-2.32  

2 49 2 0.02 0.78 1.02 0.22-4.71  

3 10 3 2.02 0.72 7.52 1.83-30.93  

4+ 14 2 1.28 0.81 3.58 0.73-17.57  

Prescribed any 

antibiotic in previous 

three months 

      0.01 

No 385 11 0  1  0.02* 

Yes 165 13 1.01 0.42 2.76 1.21-6.28  

Own a cat        0.02 

No 404 12 0  1  0.03* 

Yes 138 11 0.99 0.43 2.68 1.16-6.22  

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      0.03 

No 421 13 0  1  0.05* 

Yes 99 8 0.96 0.46 2.62 1.06-6.48  

*Fisher’s exact test statistic 
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Table 5.12 Univariable analysis of factors associated with carriage of an E. coli 

harbouring a blaAmpC gene in dogs in the community for variables with p<0.05 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Antibiotic prescribed 

during most recent visit 
      <0.001 

No 433 23 0  1  <0.001* 

Yes 90 17 1.27 0.34 3.56 1.83-6.93  

Prescribed any 

antibiotic in previous 

three months 

      <0.001 

No 383 13 0  1  <0.001 

Yes 151 27 1.66 0.35 5.27 2.65-10.48  

Medication prescribed 

during most recent visit 
      <0.001 

No 346 13 0  1  <0.001* 

Yes 180 27 1.38 0.35 3.99 2.01-7.93  

Length of prescription 

of antibiotic given at 

most recent visit 

      <0.001 

One off prescription 5 1 0  1   

Up to 5 days 28 5 -0.11 1.20 0.89 0.09-9.35  

Up to 10 days 39 6 -0.26 1.18 0.77 0.08-7.77  

Up to 2 weeks 11 2 0.10 1.34 0.91 0.07-12.52  

Up to 3 weeks 2 2 1.61 1.48 5.00 0.27-91.52  

Over 3 weeks 1 1 1.61 1.79 5.00 
0.15-

166.60 
 

Don’t know 4 0   1   

None prescribed 433 23 -1.33 1.12 0.27 0.03-2.37  

Length of prescription 

of antibiotic given in the 

last three months 

(excluding most recent 

visit) 

      <0.001 

One off prescription 7 0      

Up to 5 days 27 5 0  1   

Up to 10 days 30 6 0.08 0.66 1.08 0.30-3.95  

Up to 2 weeks 11 6 1.08 0.70 2.95 0.74-11.69  

Up to 3 weeks 4 1 0.30 1.22 1.35 0.12-14.73  

Over 3 weeks 7 0      

Don’t know 2 0   1   

None prescribed 416 18 -1.45 0.54 0.23 0.08-0.68  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      <0.001 

No 416 18 0  1  <0.001* 

Yes 88 19 1.61 0.35 4.99 2.52-9.89  

Medication prescribed 

in the last three months 

(excluding most recent 

visit) 

      0.007 

No 333 16 0  1  0.009* 

Yes 186 22 0.90 0.34 2.46 1.26-4.80  

Received any veterinary 

treatment (excluding 

most recent visit)in the 

last three months 

      0.007 

No 333 16 0  1  0.009* 

Yes 186 22 0.95 0.35 2.60 1.30-5.19  

Neutered       0.02 

No 137 17 0  1  0.03* 

Yes 395 23 -0.76 0.005 0.47 0.24-0.90  

Other animals in 

household 
      0.03 

No 289 29 0  1  0.03* 

Yes 236 11 0.77 0.36 0.46 0.23-0.95  

*Fisher’s exact test statistic 

The consumption of raw poultry meat was found to be associated with nine 

resistance outcomes, increasing the risk in all cases; resistance to nalidixic acid 

(P<0.001), resistance to ciprofloxacin (P<0.001), resistance to chloramphenicol 

(P<0.001), ESBL mediated resistance (P<0.001), multidrug resistance (P= 0.001), 

resistance to tetracycline (P=0.004), resistance to trimethoprim (P=0.005),  resistance 

to ampicillin (P=0.05)  and resistance to any antimicrobial (P=0.05). 

Being prescribed any antimicrobial in the three months prior to the veterinary visit 

was found to be associated with six outcomes, with an increased risk for all 

outcomes; AmpC mediated resistance (P<0.001), resistance to ampicillin (P=0.001), 

resistance to any antimicrobial (P=0.003), resistance to tetracycline (P=0.02), 

resistance to ciprofloxacin (P=0.03) and ESBL mediated resistance (P=0.01). 
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Being prescribed any antimicrobial during any previous consultations (excluding the 

most recent one) was associated with six outcomes; AmpC mediated resistance 

(P<0.001), resistance to ampicillin (P=0.004), resistance to augmentin (P=0.004), 

resistance to any antimicrobial (P=0.006), resistance to ciprofloxacin (P=0.008) and 

ESBL mediated resistance (P=0.03). 

Similarly, breed size was also associated with six outcomes; multidrug resistance 

(P=0.002), resistance to ampicillin (P=0.004), resistance to tetracycline (P=0.01), 

resistance to nalidixic acid (P=0.03), resistance to ciprofloxacin (P=0.03) and 

resistance to chloramphenicol (P=0.04).  For the first three outcomes, compared to 

small dogs, the risk is lower for medium dogs and higher for large dogs.  However, 

for the last three outcomes, the risks increase as the size of the dog increases. 

5.3.4 Multivariable logistic regression analysis 

Multivariable logistic regression analysis was carried out for all 11 outcomes and the 

final models are shown in Table 5.13 to Table 5.22. Only raw poultry remained in 

the model for resistance to trimethoprim.  
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Table 5.13 Multivariable model of variables associated with resistance to any 

antimicrobial in  557 dogs (17 missing values). Hosmer-Lemeshow P=1.0 

Variable Coefficient SE OR 95% CI P-Value 

Allowed off lead during 

walks 
     

No 0  1   

Yes 0.48 0.23 1.62 1.03-2.53 0.04 

Fed raw poultry meat      

No 0  1   

Yes 0.92 0.46 2.51 1.02-6.16 0.05 

Regular contact with wild 

or farm animals during 

walks 

     

No 0  1   

Yes 0.43 0.21 1.52 1.01-2.29 0.05 

Prescribed any antibiotic in 

previous three months 
     

No 0  1   

Yes 0.64 0.19 1.89 1.31-2.75 0.001 

 

Table 5.14 Multivariable model of variables associated with multi-drug 

resistance in 571 dogs (3 missing values). Hosmer-Lemeshow P=1.0 

Variable Coefficient SE OR 95% CI P-Value 

Fed raw poultry meat      

No 0  1   

Yes 1.37 0.45 3.93 1.63-9.44 0.002 

Breed size      

Small 0  1   

Medium -0.27 0.42 0.76 0.33-1.74 0.5 

Large 0.63 0.37 1.87 0.91-3.83 0.09 

Not specified -0.23 0.41 0.79 0.36-1.75 0.6 
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Table 5.15 Multivariable model of variables associated with resistance to 

ampicillin in 539 dogs (35 missing values). Hosmer-Lemeshow P=0.8 

Variable Coefficient SE OR 95% CI P-Value 

Breed size      

Small 0  1   

Medium -0.28 0.34 0.76 0.39-1.47 0.4 

Large 0.6 0.30 1.86 1.03-3.38 0.04 

Not specified 0.41 0.32 1.50 0.80-2.80 0.2 

Neutered      

No 0  1   

Yes -0.52 0.21 0.60 0.40-0.90 0.01 

Antibiotic prescribed in the 

last three months 

(excluding most recent 

visit) 

     

No 0  1   

Yes 0.59 0.22 1.80 1.16-2.79 0.009 

 

Table 5.16 Multivariable model of variables associated with resistance to 

augmentin in 522 dogs (22 missing values). Hosmer-Lemeshow P=0.9 

Variable Coefficient SE OR 95% CI P-Value 

Prescribed any antibiotic in 

previous three months 
     

No 0  1   

Yes 1.03 0.35 2.80 1.42-5.50 0.003 

Other animals in household      

No 0  1   

Yes -1.06 0.39 0.35 0.16-0.74 0.006 

Regular contact with wild 

or farm animals during 

walks 

     

No 0  1   

Yes 0.85 0.38 2.34 1.12-4.91 0.002 
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Table 5.17 Multivariable model of variables associated with chloramphenicol 

resistance in 550 dogs (24 missing values). Hosmer-Lemeshow P=0.4 

Variable Coefficient SE OR 95% CI P-Value 

Working dog      

No 0  1   

Yes 1.21 0.50 3.47 1.29-9.29 0.01 

Own a cat       

No 0  1   

Yes 1.10 0.34 3.00 1.52-5.89 0.001 

Own a cat       

Working dog no cat 0  1   

Working dog with cat -0.24 0.89 0.79 0.14-4.51 0.8 

Fed raw poultry meat      

No 0  1   

Yes 1.80 0.53 6.03 2.12-17.14 0.001 

Fed dry mixer      

No 0  1   

Yes -1.20 0.62 0.30 0.09-1.01 0.05 

Explanation of interaction term 

Not working dog no cat Odds ratio =1 

Not working dog with a cat Odds ratio = 3.00 

Working dog no cat Odds ratio = 3.47 

Working dog with a cat odds ratio = 3.00* 3.47*0.79 = 8.22 
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Table 5.18 Multivariable model of variables associated with resistance to 

ciprofloxacin1 in 527 dogs (47 missing values). Hosmer-Lemeshow P=0.6 

Variable Coefficient SE OR 95% CI P-Value 

Breed Size      

Small 0  1   

Medium  1.31 1.13 3.71 0.40-31.17 0.2 

Large 2.38 1.08 10.80 1.31-89.38 0.03 

Not specified 0.51 1.21 1.66 0.16-17.73 0.7 

Given titbits      

Never/ rarely 0  1   

Sometimes/ often 1.58 0.56 4.88 1.61-14.75 0.005 

Antibiotic prescribed 

during most recent visit 
     

No 0  1   

Yes 1.14 0.49 3.12 1.21-8.06 0.02 

Medication prescribed in 

the last three months 

(excluding most recent 

visit) 

     

No 0  1   

Yes 1.55 0.47 4.70 1.86-11.85 0.001 

Medication prescribed in 

the last three months 

(excluding most recent 

visit) 

     

No 0  1   

Yes 1.16 0.46 3.18 1.30-7.81 0.01 

Anyone in the household 

work with farm animals 
     

No 0  1   

Yes 1.33 0.62 3.78 1.11-12.83 0.03 

Fed dry complete      

No 0  1   

Yes -1.49 0.52 0.23 0.08-0.62 0.004 

Fed tinned or packet wet 

food 
     

No 0  1   

Yes -1.06 0.56 0.35 0.12-1.04 0.06 
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Table 5.19 Multivariable model of variables associated with resistance to 

nalidixic acid in 566 dogs (8 missing values). Hosmer-Lemeshow P=0.8 

Variable Coefficient SE OR 95% CI P-Value 

Fed raw poultry meat      

No 0  1   

Yes 2.04 0.49 7.68 2.93-20.16 <0.001 

Sex      

Male 0  1   

Female 0.97 0.33 2.64 1.38-5.05 0.003 

Medication prescribed 

during most recent visit 
     

No 0  1   

Female 0.85 0.35 2.33 1.18-4.59 0.01 

 

Table 5.20 Multivariable model of variables associated with resistance to 

tetracycline in 561 dogs (13 missing values). Hosmer-Lemeshow P=1.0 

Variable Coefficient SE OR 95% CI P-Value 

Regular contact with wild 

or farm animals during 

walks 

     

No 0  1   

Yes 0.56 0.22 1.75 1.12-2.70 0.01 

Fed raw poultry meat      

No 0  1   

Yes 0.37 0.62 1.45 0.43-4.86 0.5 

Regular contact with wild 

or farm animals during 

walks X Fed raw poultry 

meat 

     

Animal contact no raw 

poultry 
0  1   

Animal contact with raw 

poultry 
2.40 1.24 11.03 

0.97-

124.86 
0.05 

Any antibiotic in last 3 

months 
     

No 0  1   

Yes 0.59 0.20 1.80 1.21-2.68 0.004 

Explanation of interaction term 

No animal contact no raw poultry Odd ratio = 1 

No animal contact with raw poultry Odds ratio = 1.45 

Animal contact no raw poultry Odds ratio = 1.75 

Animal contact with raw poultry Odds ratio= 1.45*1.74*11.03 = 27.99 
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Table 5.21 Multivariable model of variables associated with carriage of an 

ESBL (TEM or CTX-M) producing E. coli in 569 dogs (5 missing values). 

Hosmer-Lemeshow P=1.0 

Variable Coefficient SE OR 95% CI P-Value 

Prescribed any antibiotic in 

previous three months 
     

No 0  1   

Yes 1.36 0.46 1.88 1.59-9.48 0.003 

Fed raw poultry meat      

No 0  1   

Yes 2.88 0.60 17.81 5.53-57.36 <0.001 

Neutered      

No 0  1   

Yes 3.38 2.06 1.22 1.02-11.13 0.05 

 

Table 5.22 Multivariable model of variables associated with AmpC β-lactamase 

mediated resistance in 527 dogs (47 missing values). Hosmer-Lemeshow P=0.6 

Variable Coefficient SE OR 95% CI P-Value 

Medication prescribed 

during most recent visit 
     

No 0  1   

Yes 1.12 0.37 3.06 1.49-6.31 0.002 

Other animals in household      

No 0  1   

Yes -0.97 0.41 0.38 0.17-0.84 0.02 

Antibiotic prescribed in the 

last three months 

(excluding most recent 

visit) 

     

No 0  1   

Yes 1.50 0.36 4.46 2.20-9.06 <0.001 

 

Figure 5.2 below summarises the variables that remained in the final models of each 

outcome to allow comparison.  
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Figure 5.2 Summary of variables in the final models of all outcomes 

 Consumption of raw poultry was included in the final models of seven outcomes; 

resistance to any antimicrobial, multidrug resistance, resistance to tetracycline, 

resistance to nalidixic acid, resistance to chloramphenicol, resistance to trimethoprim 

and ESBL mediated resistance. Having received any antimicrobial in the previous 

three months was also commonly included in the final multivariable model; 

resistance to any antimicrobial, resistance to tetracycline, resistance to augmentin, 

and ESBL mediated resistance.  

Following testing for interaction between variables, two of the final multivariable 

models included interaction terms. Interaction between consumption of raw poultry 

and contact with animals during walks was found to be significant in the final model 

of carriage of tetracycline resistant E. coli. Either eating raw poultry or having 

contact with animals during walks increases the risks only marginally (OR 1.45 and 

1.75 respectively), however the risk is increased significantly if the dog both eats raw 

poultry and has contact with wild or farm animals during walks (OR 27.99). 
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In the final model for resistance to chloramphenicol, there was found to be 

interaction between having a cat in the household and dog being an actively working 

dog. Being both and working dog and owning a cat increased the risk significantly 

(OR 8.22) when compared to the effect of only either being a working dog or owning 

a cat (OR 3.00 and 3.47 respectively).  

5.4 Discussion 

This study found the prevalence of antimicrobial resistant E. coli to be common 

among the vet-visiting dog (44.7%) with the most common resistances being 

observed to ampicillin, tetracycline and trimethoprim. This supports previous studies, 

which also found these to be among the most common resistance phenotypes 

observed (De Graef, Decostere et al. 2004; Carattoli, Lovari et al. 2005; SVARM 

2006; Costa, Poeta et al. 2008; Murphy, Reid-Smith et al. 2009), although at a higher 

prevalence in this study. This may be attributed to the ability of the numerous 

resistance determinants responsible being readily transmissible, or higher level of use 

of these and related drugs in animals due to their broad-spectrum action (VMD 

2009). The observed levels of resistance to other individual antimicrobials in this 

study of vet visiting dogs appeared to be higher than in some previously reported 

studies (Carattoli, Lovari et al. 2005; Costa, Poeta et al. 2008; Murphy, Reid-Smith 

et al. 2009), including the findings discussed in chapter three, which investigated the 

prevalence in the community. This difference may be due to the type of population 

sampled (dogs in the community in chapter three compared to the vet visiting 

population). Furthermore, some of the dogs in this study reported recent use of 

antimicrobials and other studies excluded animals with any history of antimicrobial 

use. In addition, the sampling method in the current study used both selective and 

none selective methods to isolate antimicrobial resistant. Therefore, in general, a 

large number of isolates were screened (up to 17 per sample) and as many as six 

phenotypically resistant unique E. coli isolates were obtained from samples, with one 

per sample on average. Fewer resistant isolates may have been identified if only one 

or two isolates had been selected, which is the methodology adopted in some other 

studies. Multi-drug resistant isolates were found in 18.4% of dogs, however, it is 
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difficult to compare this with other studies since the definition of multi-drug 

resistance differs between studies and many studies do not report this. 

Carriage of AmpC β-lactamase producing E. coli was higher (7.1%) than the 

prevalence of ESBL producing E. coli (4.1%), and these have both previously been 

reported in studies of healthy dogs (Costa, Poeta et al. 2004; Carattoli, Lovari et al. 

2005; Sidjabat, Townsend et al. 2006; Sidjabat, Hanson et al. 2007). This may be 

attributed to the common use of amoxicillin and clavulanic acid (synulox™) in 

veterinary medicine (Escher, Vanni et al. 2011; Hughes, Williams et al. 2012), 

although this would need further investigation. 

This study makes efforts to determine risk factors associated with carriage of 

antimicrobial resistant E. coli in the UK dog population. The finding that receiving 

antimicrobials in the last 3 months was associated with the carriage of antimicrobial 

resistant E. coli, remaining in four of the final models, is not surprising given the 

selection pressure this would exert upon commensal bacteria, however little is known 

in respect of how long after treatment such effects remain. A previous study found 

that administration of antimicrobials,  specifically fluoroquinolones, to be associated 

with an increased risk of carriage of MDR E. coli in dogs (Gibson, Morton et al. 

2011) and a longitudinal study of humans, investigating risk factors for selection 

quinolone resistance, also identified previous antimicrobial use as a risk factor for 

carriage of quinolone resistant E. coli on admission to hospital, with the prevalence 

in the study population increasing in the group prescribed quinolones (Yagci, Yoruk 

et al. 2009). In a study investigating the prevalence of antimicrobial resistant E. coli 

in faecal samples from horses, a similar association between carriage and use of 

antibiotics in the previous 10 days was evident (Maddox, Pinchbeck et al. 2011). 

Further work in this area may provide greater understanding of the lasting effects of 

short and long term antimicrobial use on the gut flora of dogs and carriage of 

resistant bacteria.  

Eating raw poultry was also identified as a risk factor, remaining in the final model 

of many outcomes. Chickens have previously been identified as a potential reservoir 

for resistant bacteria and determinants (Costa, Vinue et al. 2009) and it is possible 

that ingestion of raw poultry could result in transfer of these to commensal bacteria. 

A study in Canada observed a high prevalence of antimicrobial resistant Salmonella 
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in raw food dog diets (Finley, Reid-Smith et al. 2008), further demonstrating an 

increased risk of carriage of antimicrobial resistant bacteria when dogs are exposed 

to raw meat. Based on these findings, it would be advisable for owners not to allow 

their dogs to eat raw poultry to reduce the risk associated with its consumption.  

The presence of a household member who works with farm animals was found to be 

associated with an increased risk of carriage of ciprofloxacin resistant E. coli. Farm 

animals have been identified as a potential reservoir of antimicrobial resistance and 

determinants for the human population (Costa, Vinue et al. 2009; Checkley, 

Campbell et al. 2010; Smet, Martel et al. 2010; Ajayi, Oluyege et al. 2011), so it is 

not wholly surprising that exposure of household members to farm animals could 

result in an increased risk of carriage to the dogs by transfer from the household 

member to the dog. It is also possible and perhaps more likely, that dogs may have 

direct contact with the animals or they reside on the farm premises.  

Being fed dry mixer, dry complete or tinned or packet wet food all had a protective 

effect in all cases where they remained in final model and this may further suggest 

that a cooked, pre prepared diet may be of more benefit, possibly by reducing their 

exposure  to antimicrobial resistant E. coli, when compared to a raw diet.  

Age of the dog was not included in the final model of any of the outcomes. 

Two of the final models included interaction terms between two of the variables. In 

the final model for chloramphenicol resistance, the risk of carriage is only slightly 

increased by consumption of raw poultry or contact with animals during walk when 

considered alone, but the risk is markedly increased when the dog both consumes 

raw poultry and is allowed contact with animals during walks. It could be expected 

that these two variables may increase the risk of carriage of antimicrobial resistant      

E. coli, but any biological reasons why the two would interact to increase the risks 

further is not obvious. 

The sampling method adopted in this study may have introduced some selection bias. 

For example, during busy periods owners may not have been approached for 

recruitment. However, the large numbers of animals recruited may have limited this. 

Other limitations of the study include collection of faecal samples on only one 

occasion. This study gives the prevalence of carriage of antimicrobial E. coli at a 

single time point, and it may be possible that this is transient in nature. Studies 
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involving sample collection on multiple occasions could provide a more complete 

assessment of the carriage rates of antimicrobial resistant E. coli in faecal samples of 

dogs, however such studies would require large resources or similar. Many of the 

dogs sampled were found to harbour antimicrobial resistant E. coli, which may have 

implication for public health specifically in relation to dogs being a potential 

reservoir for resistant bacteria and determinants. This also has important implications 

for the welfare of the individual dogs with respect to future treatments. In addition, 

several potential risk factors associated with the carriage of antimicrobial E. coli by 

dogs in the community and knowledge of such risk factors will allow better 

education for both owners and veterinary surgeons on how to minimise these risks.  
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Chapter Six 

Molecular characterisation of 

antimicrobial resistant Escherichia 

coli isolated from the faeces of vet 

visiting dogs in mainland UK 
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6.1 Introduction 

Antimicrobials are regularly used to treat infections in both human and animal 

medicine. Antimicrobial use, however, exerts a selection pressure that may drive the 

development of resistance and spread of resistance genes. Resistance to expanded 

spectrum β-lactams, particularly the third generation cephalosporins, is of increasing 

importance, with the limited treatment options make managing infections with these 

resistant bacteria very challenging. Resistance to third and fourth generation 

cephalosporins is mediated by either genes encoding extended spectrum β-lactamases 

(ESBLs) (Bradford 2001; Livermore and Hawkey 2005) or AmpC β-lactamases 

(Philippon, Arlet et al. 2002), and these genes are often found in Escherichia coli and 

other Enterobacteriaceae.  

While most E. coli isolated from the gastrointestinal tract of warm blooded animals 

are members of the commensal gut flora, many are also capable of causing disease. 

E. coli can cause diarrhoea, but is also associated with urinary tract infections, 

septicaemia, meningitis, and skin and soft-tissue infections. Pathogenic E. coli have 

acquired specific virulence factors that enhance their disease causing potential by a 

variety of mechanisms (Mcdaniel, Jarvis et al. 1995; Russo, McFadden et al. 2002; 

Kaper, Nataro et al. 2004; Johnson, Wannemuehler et al. 2008), and the virulence 

factors associated with enteric disease are different to those associated with extra-

intestinal disease. 

Dogs have regular close contact with people, and, there is potential for transfer of 

bacteria in both directions. Dogs are potential reservoirs for E. coli, and have been 

shown to carry the same strains as humans (Stenske, Bemis et al. 2009). More 

importantly, they have been implicated as possible reservoirs for pathogenic E. coli 

(Johnson, Johnston et al. 2008), particularly those that may cause extra-intestinal 

disease (Johnson, Stell et al. 2001; Starcic, Johnson et al. 2002) and that are 

antimicrobial resistant (van den Bogaard and Stobberingh 2000; Guardabassi, 

Schwarz et al. 2004; Lloyd 2007). In addition, ESBL producing E. coli have recently 

become an increasing clinical problem in canine medicine (Steen and Webb 2007; 
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Ewers, Grobbel et al. 2010; Ewers, Grobbel et al. 2011; Timofte, Dandrieux et al. 

2011).  

In a previous study investigating the prevalence of antimicrobial resistant E. coli 

carriage in the vet visiting dog population of the mainland UK (chapter five), we 

screened 581 faecal samples for ESBL or AmpC β-lactamase producing E. coli. 

Fifty-eight isolates from 56 dogs (9.6%) were identified as either ESBL or AmpC 

producers by phenotypic testing and PCR. The aim of this study was to characterise 

the full antimicrobial susceptibility profile, strain types and carriage of virulence and 

resistance genes of these 58 isolates, and compare the results to isolates of human 

origin. 

6.2 Methods 

6.2.1 Isolation of ESBL and AmpC β-lactamase producing E. coli 

Faecal samples were collected from dogs visiting veterinary practices in the 

mainland UK, as discussed in chapter five. Briefly, presumptive ESBL and AmpC β-

lactamase producing E. coli were isolated using eosin methylene blue agar (LabM-

IDG, Bury, UK) supplemented with either ceftazidime (1µg/ml) or cefotaxime 

(1µg/ml) (Liebana, Batchelor et al. 2006). If no growth was observed, the method 

was repeated using faecal samples enriched overnight in buffered peptone water. At 

least one isolate morphologically consistent with E. coli (if present) was selected per 

plate. E. coli were confirmed using both biochemical methods (Gram stain, catalase 

production, lack of oxidase, fermentation of lactose, production of indole and 

inability to utilise citrate as a carbon source) and PCR to detect the presence of the 

uidA gene (McDaniels, Rice et al. 1996). 

6.2.2 Double disc diffusion testing for presence of ESBL and AmpC β-lactamases 

The paired disc diffusion method was used as previously described (M'Zali, 

Chanawong et al. 2000) (Mast Group Ltd, Merseyside, UK) for phenotypic 

confirmation of the presence of β-lactamase enzymes. Three pairs of antimicrobial 

discs (ceftazidime, cefpodoxime and cefotaxime at 30 μg) with and without 

clavulanic acid (10 μg) were applied to an ISO-Sensitest agar plate (LabM-IDG, 
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Bury, UK) inoculated for semi-confluent growth. After incubation overnight at 37°C, 

the zones of inhibition around the plates were measured and recorded. Production of 

ESBL enzymes is inferred if the presence of the clavulanic acid increased the zone 

size by at least 5mm, while the presence of an AmpC β-lactamase is suggested when 

the clavulanic acid has no effect on the zone size.  

6.2.3 Antimicrobial disc susceptibility testing 

Antimicrobial disc susceptibility testing following British Society for Antimicrobial 

Chemotherapy guidelines(Andrews 2007) was performed. The following 

antimicrobial discs were used: ampicillin (10µg), augmentin (30µg), aztreonam 

(30µg), ceftazidime (30µg), ceftriaxone (30µg), cefoxitin (30µg), cefuroxime (30µg), 

cefalexin (30µg), chloramphenicol (30µg), ciprofloxacin (1µg), nalidixic acid 

(30µg), tazobactam (10µg), piperacillin (75µg), tetracycline (30µg), trimethoprim 

(2.5 µg) and trimethoprim-sulfamethoxazole (25µg). Plates were incubated overnight 

at 37°C and the zones of inhibition around each disc were recorded. The reference 

strain E. coli ATCC 25922 was used as a fully susceptible control. 

6.2.4 Characterisation of extended spectrum β-lactamase and blaAmpC genes 

PCR was used to detect the presence of blaTEM, blaSHV, blaCTX-M and blaAmpC genes 

using previously described methods (Essack, Hall et al. 2001; Perez-Perez and 

Hanson 2002; Boyd, Tyler et al. 2004; Batchelor, Hopkins et al. 2005), and the 

specific blaCTX-M or blaCMY gene variant was determined by sequence analysis. 

Following assignment of the specific blaCTX-M gene group, PCR primers specific to 

each group were used (  
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Table 6.1) (Boyd, Tyler et al. 2004; Batchelor, Hopkins et al. 2005) to sequence the 

PCR product on both strands using an ABI 3730 DNA sequence analyser. The 

sequences of the PCR products were compared to sequences published on GenBank 

(http://www.ncbi.nlm.nih.gov/genbank/). 

 

 

  

http://www.ncbi.nlm.nih.gov/genbank/
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Table 6.1 Primers used for sequencing analysis of blaCTX-M genes 

CTX-M 

group 

Primer 

Name 
Forward primer (5’-3’) 

Annealing 

Temperature 

(°C) 

1 
Ctxmgrp1F CCCATGGTTAAAAAATCACTGC 

60 
Ctxmgrp1R CAGCGCTTTTGCCGTCTAAG 

2 
Ctxmgrp2F ATGATGACTCAGAGCATTCGC 

55 
Ctxmgrp2R TCAGAAACCGTGGGTTACGAT 

3 
Ctxmgrp9F ATGGTGACAAAGAGAGTGCAAC 

60 
Ctxmgrp9R TTACAGCCCTTCGGCGATG 

 

For isolates identified as positive for blaCMY genes using multiplex PCR (Perez-Perez 

and Hanson 2002), the entire gene was amplified (Liebana, Gibbs et al. 2004) and 

sequenced to determine the specific blaCMY gene present. An additional set of 

primers (those used in the multiplex, CITMf and CITMr) were used to obtain the 

internal sequence of the gene. All sequences were compared to those submitted to 

GenBank (http://www.ncbi.nlm.nih.gov/genbank/). 

6.2.5 DNA array analysis of E. coli 

E. coli isolates were subjected to DNA micro array based chip analysis using 

Identibac E. coli and Identibac AMR–ve according to the manufacturer’s instructions 

(Identibac, Surrey, UK). Identibac E. coli detects the presence of virulence genes 

associated with E. coli, which include toxins, secretion systems and adherence 

factors. Identibac AMR-ve detects the presence of genes responsible for resistance to 

a selection of antimicrobials including the quinolones, sulphonamides, tetracyclines, 

aminoglycosides, chloramphenicol, trimethoprim, β-lactams and erythromycin in 

Gram negative bacteria. This work was carried out at the Animal Health and 

Veterinary Laboratories Agency (AHVLA). 

6.2.6 Multi-Locus Sequence Typing analysis of E. coli 

Typing of the isolates was performed at the VLA by multi-locus sequence typing 

(MLST)by sequencing of internal fragments of seven housekeeping genes; adk 

(adenylate kinase), fumC (fumarate hydratase), gyrB (DNA gyrase), icd 

(isocitrate/isopropylmalate dehydrogenase), mdh (malate dehydrogenase), purA 

(adenylosuccinate dehydrogenase) and recA (ATP/GTP binding motif) (Wirth, 

http://www.ncbi.nlm.nih.gov/genbank/
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Falush et al. 2006). Sequences were compared to those in the E. coli MLST database 

(http://mlst.ucc.ie/mlst/dbs/Ecoli) and an allele number assigned for each loci, with 

novel sequences submitted to the database and a sequence type assigned.  

6.3 Results 

6.3.1 Antimicrobial disc susceptibility testing 

Antimicrobial disc susceptibility testing of the 58 isolates showed that there was a 

high degree of variation (Figure 6.1 below). Thirty-nine different resistance profiles 

were observed with the most common being resistance to ampicillin, cephalexin and 

cefoxitin (10 isolates). As expected, all isolates were resistant to ampicillin (1). Fifty-

four of 58 isolates were resistant to cefalexin and 43 of 58 to cefoxitin, which 

included all the AmpC β-lactamase producing isolates. All ten CTX-M producing 

isolates were resistant to cefalexin and cefuroxime. All isolates were susceptible to 

tazobactam and piperacillin, while all but one isolate was susceptible to aztreonam. 

Multi-drug resistance was observed in 56 of 58 isolates with resistance to three or 

four antimicrobial classes being most common (17 and 18 isolates respectively). 
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6.3.2 Characterisation of ESBL and AmpC β-lactamase genes 

Of the 58 isolates, 21 were found to carry a blaTEM gene. Ten carried a blaCTX-M gene, 

most of which were found to be of CTX-M group 1 (five blaCTX-M-1, two blaCTX-M-15 

and one blaCTX-M-3). One isolate carried blaCTX-M-14/18 (CTX-M group 9) and one 

blaCTX-M-20 (CTX-M group 2). A blaAmpC gene was found in 42 isolates, which were 

all identified as blaCMY-2.  No isolates carried a blaSHV gene. Table 6.2 below 

summarises the genes identified in the isolates and the phenotype of resistance 

observed. 
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Table 6.2 Prevalence of resistance among 58 E. coli isolates from canine faecal samples 

Genes detected Full antimicrobial resistance phenotype* Number of isolates 

blaTEM, blacmy2 Pen, 1st Gen, 2nd Gen, 3rd Gen 1 

blaTEM, blacmy2 Pen, Chl, Q, Tet, Tm, 1st Gen, 2nd Gen 1 

blaTEM, blacmy2 Pen, Q, Tet, Tm, 1st Gen, 2nd Gen 3 

blaTEM, blacmy2 Pen, Tet, 1st Gen, 2nd Gen 1 

blaTEM, blacmy2 Pen, Tet, Tm, 1st Gen, 2nd Gen 1 

blaTEM, blacmy2 Pen, Tm, 1st Gen, 2nd Gen 1 

blaTEM, blacmy2 Pen, Tm, 1st Gen, 2nd Gen, 3rd Gen 1 

blacmy2 Pen, 1st Gen 1 

blacmy2 Pen, 1st Gen, 2nd Gen 16 

blacmy2 Pen, 1st Gen, 2nd Gen, 3rd Gen 12 

blacmy2 Pen, Tet, 1st Gen, 2nd Gen 2 

blacmy2 Pen, Tet, 1st Gen, 2nd Gen, 3rd Gen 2 

blaTEM, blaCTX-M-1 Pen, Q, Tet, Tm, 1st Gen, 2nd Gen 1 

blaTEM, blaCTX-M-1 Pen, Tet, Tm, 1st Gen, 2nd Gen 1 

blaTEM, blaCTX-M-3 Pen, Tet, Tm, 1st Gen, 2nd Gen, 3rd Gen 1 

blaTEM, blaCTX-M-15 Pen, Q, Tet, Tm, 1st Gen, 2nd Gen, 3rd Gen 1 

blaTEM, blaCTX-M-1 Pen, Tet, Tm, 1st Gen, 2nd Gen 1 

blaTEM, blaCTXM14/18 Pen, Chl, Tet, Tm, 1st Gen, 2nd Gen, 3rd Gen 1 

blaTEM Pen 1 

blaTEM Pen, Chl, Q, Tm, 1st Gen 1 

blaTEM Pen, Q, Tet, Tm, 1st Gen 1 

blaTEM Pen, Tet, Tm, 1st Gen 1 

blaTEM Pen, Tet, Tm, 1st Gen, 2nd Gen 1 



128 

 

Genes detected Full antimicrobial resistance phenotype* Number of isolates 

blaTEM Pen, Tm, 1st Gen 1 

blaCTX-M-1 Pen, Tet, 1st Gen, 2nd Gen, 3rd Gen 1 

blaCTX-M-1 Pen, Tet, Tm, 1st Gen, 2nd Gen 1 

blaCTX-M-1 Pen, Tm, 1st Gen, 2nd Gen, 3rd Gen 1 

blaCTX-M-15 Pen, Q, Tet, Tm, 1st Gen, 2nd Gen, 3rd Gen, Mon 1 

*1
st
 Gen cephalexin, 2

nd
 Gen cefuroxime/ cefoxitin, 3

rd
 Gen ceftazidime/ ceftriaxone, Chl chloramphenicol, Mon aztreonam, Pen ampicillin/ 

augmentin, Q ciprofloxacin/ nalidixic acid, Tet tetracycline, Tm trimethoprim/ co-trimoxazole.  



129 

 

6.3.3 Microarray analysis of E. coli 

A subset of 30 isolates also underwent microarray analysis. Isolates were chosen due 

to their resistance to multiple classes of antimicrobials including all isolates positive 

for carriage of a blaCTX-M gene and a selection of those found to carry either a blaTEM 

or blaAmpC genes. The results observed using the DNA microarray analysis show 

good agreement with in vitro testing of antimicrobial susceptibility (Figure 6.2). Of 

the 30 isolates tested, 23 harboured genes encoding resistance to tetracycline (tetA 

and tetB) and 20 harboured genes encoding resistance to trimethoprim (dfrA1, dfrA7, 

dfr12, dfrA17 and dfrV). Genes encoding resistance to aminoglycosides were also 

identified in 25 isolates (aadA1, aadA2, aadA4, aac3Iva, aac6lb, strA and strB), 

whilst 24 isolates harboured genes encoding resistance to sulphonamides (sul1 and 

sul2). Seven isolates were found to harbour genes encoding resistance to 

chloramphenicol (catA1, catB3 and floR). Erythromycin resistance genes (ereA and 

ermB) were identified in a single isolate and no genes encoding resistance to 

streptogrammins were detected.  
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A-quinolone resistance, B-sulphonamides, C-tetracyclines, D-aminoglycosides, E-

chloramphenicol, F-trimethoprim, G-β-lactamases, H- erythromycin, I- 

streptogrammin. 
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Twenty-three different genes associated with virulence were detected (Figure 6.3). 

The most common virulence factor identified was iss (22 isolates), which is involved 

in increased resistance to serum, followed by iroN (14 isolates), which is involved in 

iron uptake. A number of genes associated with the locus of enterocyte effacement 

(LEE) were detected in eight isolates.  

 

Cluster analysis (Figure 6.4), based on the presence or absence of virulence and 

antimicrobial resistance genes revealed seven groups. Four of these groups contained 

only isolates which harboured a blacmy2 gene, with one single blacmy2 carrying isolate 

clustering separately from the rest. Furthermore, when considering the specific CTX-

M enzyme produced, isolates carrying blaCTX-M-1 did not appear to cluster. 
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6.3.4 Multi-Locus Sequence Typing 

The 30 isolates studied by microarray also underwent multi-locus sequence typing, 

although seven could not be typed due to poor sequence or because no amplicon 

could be obtained. In total, 19 different sequence types (STs) were identified. Sixteen 

occurred only once and three (ST-1684, ST-1710 and ST-1832) were novel sequence 

types. The most commonly identified STs were ST-963 (three isolates), ST-88 (two 

isolates) and ST-1670 (two isolates). With the exception of the three ST-963 isolates, 

which were all found to carry the blaCMY gene, no patterns relating to ST and 

Figure 6.4 Dendrogram of E. coli clustered by DNA microarray 

resistance and virulence genes. Red dots indicate presence of blaCTX-M 

gene. Black dots indicate presence of blacmy2 gene 
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carriage of specific blaCTX-M or blaCMY genes were evident.  Additionally, with the 

exception of two of the ST-963 isolates clustering together, no patterns were evident 

when clustering was based on the presence of virulence and resistance genes. The 

two isolates that carried blaCTX-M-15 were found to be ST-410 and ST-448 and not the 

UK pandemic clone ST-131.    

6.4 Discussion 

This is the first study to report a detailed analysis and comparison of antimicrobial 

resistant E. coli isolates from dogs. The findings demonstrate that E. coli isolated 

from dog faeces show highly variable antimicrobial resistance, virulence and 

sequence type. Overall, however, the range of antimicrobial resistance and virulence 

factors was similar to that seen in human isolates.   

The most common blaCTX-M genes were from group one. Half of the isolates positive 

for this gene carried blaCTX-M-1, which has previously been identified in isolates from 

healthy canine faecal samples from Portugal and Chile (Costa, Poeta et al. 2004; 

Costa, Poeta et al. 2008; Moreno, Bello et al. 2008). However, MLST data revealed 

that the isolates carrying blaCTX-M-15 were not ST-131, which is the human epidemic 

clone associated with CTX-M-15 in the UK (Lau, Kaufmann et al. 2008) and has 

been isolated from canine clinical isolates in Portugal (Pomba, da Fonseca et al. 

2009) and across Europe (Ewers, Grobbel et al. 2010). Three novel sequence types 

were identified during this study; ST1684, ST1710 and ST1832, which were shown 

not be highly related with regards to presence of virulence factors and resistance 

genes. These isolates may suggest the emergence of new ST specifically capable of 

colonisation of dogs, or simply that isolates of these STs have not yet been identified 

in humans. With the increasing number of isolates submitted to the MLST database, 

it is possible that E. coli of human or other animal origin with these STs may be 

identified in future.   

The only gene associated with the AmpC β-lactamase phenotype identified from our 

isolates was blaCMY-2, which has previously been identified in E. coli from canine 

clinical samples in Italy and Canada (Sanchez, Stevenson et al. 2002; Carattoli, 
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Lovari et al. 2005), and healthy dogs from the USA (Murphy, Reid-Smith et al. 

2009). This suggests that carriage of blaCMY-2 may be widespread among canine       

E. coli isolates, and thus dogs may present an important reservoir for human 

infection, particularly in the USA, where this gene has been increasingly associated 

with Salmonella (Dunne, Fey et al. 2000; Winokur, Brueggemann et al. 2000; 

Winokur, Vonstein et al. 2001), but also in the UK (Woodford, Reddy et al. 2007). 

The reason for the high frequency of this one variant of the plasmid mediated AmpC 

β-lactamases in canine isolates is unknown, but it may be due to spread of a few 

specific plasmids(Hopkins, Liebana et al. 2006). One other possibility is the 

integration of the blaCMY-2 gene into many diverse plasmids facilitating widespread 

dissemination (Carattoli, Tosini et al. 2002). It is also possible that the extensive 

global use of amoxicillin-clavulanic acid in veterinary medicine may have selected 

for this type of resistance. 

Microarray analysis of antimicrobial resistance genes showed that many isolates 

harboured genes encoding resistance to a wide range of antimicrobials. These 

antimicrobial resistance genes are also commonly identified in isolates of human 

origin (Frye, Jesse et al. 2006; Walsh, Cooke et al. 2010; Leverstein-van Hall, 

Dierikx et al. 2011). The predominant genes and mechanisms of resistance for each 

of the antimicrobials tested concur with other studies of resistance genes in canine 

isolates (Lanz, Kuhnert et al. 2003; Costa, Poeta et al. 2008). This provides further 

evidence that antimicrobial resistance in bacteria isolated from dogs is often 

mediated by the same mechanisms as those of human origin.     

The virulence array detected a wide variety of genes associated with virulence, but 

by far the most commonly identified were those associated with extra-intestinal 

pathogenic E. coli (ExPEC) in human isolates (Russo, McFadden et al. 2002; 

Johnson, Wannemuehler et al. 2008). It has been suggested that dogs may be a 

potential reservoir for this pathotype (Johnson, Stell et al. 2001; Johnson, Johnston et 

al. 2008). It is also interesting to note that a number of isolates harboured virulence 

genes associated with the locus of enterocyte effacement (LEE), which are found in 

enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) (Mcdaniel, 

Jarvis et al. 1995; Kaper, Nataro et al. 2004; Anjum, Mafura et al. 2007). These are 
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important pathogens in human enteric disease, and, again, dogs may be a potential 

reservoir for zoonotic colonisation and infection. 

There were a number of discrepancies between the microarray results and 

antimicrobial disc diffusion susceptibility. For example, one isolate, which harboured 

tetA showed no resistance to tetracycline in vitro. Furthermore, one isolate showed 

resistance to chloramphenicol, but no resistance genes were identified, while five 

isolates harboured genes encoding resistance to chloramphenicol but showed no 

associated resistance in vitro. This could be explained by silencing of the resistance 

genes (Enne, Delsol et al. 2006), the absence of effective promoter sequences or 

insufficient expression to result in observable resistance. Finally, one isolate was 

found to harbour the plasmid mediated quinolone resistance gene qnrS during 

microarray testing, but no such genes were detected during PCR testing (see chapter 

five).  

It is difficult to draw firm conclusions from the sequence typing data, as only 30 of 

the 58 isolates were typed, and this wasn’t successful in seven of these. Typing all 58 

isolates may have provided evidence of some common sequence types, but 

nevertheless there was a high degree of diversity among ESBL and AmpC β-

lactamase producing isolates from these dogs. It is not possible to comment on the 

whole picture of antimicrobial resistance in healthy dogs as this study focused only 

on isolates with resistance to third generation cephalosporins. It would therefore be 

worthwhile to study other isolates, including antimicrobial susceptible isolates, to 

determine any relationship between virulence, sequence type and antimicrobial 

resistance on a larger scale.  

In conclusion, this study shows that dogs can carry E. coli isolates have a similar 

range of virulence and antimicrobial resistance genes to those isolated from human 

clinical samples. In particular, virulence factors were associated with the ExPEC 

pathotype. Dogs could therefore act as reservoirs of pathogenic bacteria, and 

resistance and virulence genes. However, given the increasing significance of these 

isolates causing disease in dogs, these findings also highlight the importance of better 

understanding the role of these isolates.   
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Chapter Seven 

Final Discussion 
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7.1 General discussion 

Antimicrobial resistance in the canine population has, in recent years, become an 

issue of increasing importance. As pets are often integral family members, the 

welfare of dogs, including treatment of infections, is of importance. In addition, 

given this close bond shared between dogs and their owners and other contacts 

(family, friends, veterinary professionals), the issue of public health with regards to 

antimicrobial resistance and transmission of bacteria of clinical importance (for 

example MRSA) has gained greater recognition (Seguin, Walker et al. 1999; van den 

Bogaard and Stobberingh 2000; Winokur, Vonstein et al. 2001; Duquette and Nuttall 

2004; Weese, Dick et al. 2006). Therefore, knowledge of the burden of antimicrobial 

resistance on the canine population is of great significance. The work presented in 

this thesis had three main aims which were to determine the prevalence of meticillin 

resistant Staphylococcus aureus (MRSA) and antimicrobial resistant E. coli and 

within the canine population in mainland UK, to assess their molecular 

characteristics and to identify any possible risk factors associated with carriage. 

These aims have been largely accomplished and in the case of carriage of 

antimicrobial resistant E. coli the prevalence of two different dog populations, 

namely those within the community and the vet visiting, has been estimated.  

The prevalence of MRSA within the vet visiting dog population of mainland UK was 

found to be quite low (1%), which is in agreement with the prevalences reported in 

many other studies in the UK (0%-4%) and worldwide (Rich and Roberts 2006; 

Vengust, Anderson et al. 2006; Bagcigil, Moodley et al. 2007; Boost, O'Donoghue et 

al. 2008). This study found a higher, although not significantly, prevalence of           

S. pseudintermedius (11.0%) than S. aureus (7.5%), a finding mirrored in other 

studies (Griffeth, Morris et al. 2008; Gingrich, Kurt et al. 2011). S. aureus and 

MRSA are most suitably adapted to colonisation of the human or bovine mucosal 

surfaces, and the findings of this study provide further evidence that S. aureus is 

perhaps less well adapted than S. pseudintermedius to the colonisation of dogs. 

Given such a low prevalence in the population studied, the risks for humans posed by 

these dogs could be considered very low. However, the risks to humans posed by 

populations with higher prevalences (hospitalised dogs or dogs with recurrent 
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infections such a pyoderma) should not be taken lightly (Loeffler, Boag et al. 2005; 

Griffeth, Morris et al. 2008). Analysis of risk factors could not be undertaken as a 

result of the low prevalence in the population studied. This study also confirmed that 

the strains of MRSA carried by dogs (characterised by sequence type, spa type and 

SCCmec type) are identical to those endemic within the human hospital setting 

(Baptiste, Williams et al. 2005; O'Mahony, Abbott et al. 2005; Coelho, Torres et al. 

2011). No meticillin resistant S. pseudintermedius were isolated during this study, a 

similar finding to another study in the UK (Loeffler, Pfeiffer et al. 2010), but 

different from other studies elsewhere that have found the prevalence of MRSP to be 

higher than MRSA (Sasaki, Kikuchi et al. 2007; Griffeth, Morris et al. 2008; 

Ruscher, Lubke-Becker et al. 2009; Morris, Boston et al. 2010). Some of these 

studies, however, investigated prevalences in clinical samples and dogs with pre-

existing inflammatory skin disease, which may account in part for the differences 

observed. Staphylococcus pseudintermedius (formally S. intermedius) has been 

identified as a common commensal of dogs (Sasaki, Kikuchi et al. 2007) and MRSP 

is now emerging as an important pathogen in dogs associated with pyoderma and 

otitis  (Weese and van Duijkeren 2010), often also harbouring genes conferring 

resistance to other antimicrobials (Perreten, Kadlec et al. 2010). 

Antimicrobial resistance testing was carried out on all coagulase positive 

staphylococci and all meticillin resistant coagulase negative staphylococci (MR-

CNS), which has been rarely undertaken in other studies. High levels of resistance 

were found to certain antimicrobials such as, fusidic acid (43.7%), gentamicin 

(30.3%), ciprofloxacin (19.7%) and tetracycline (19.0%). Furthermore, carriage of 

multidrug resistant staphylococci was found in (21.8%) of dogs. The prevalence of 

resistance did vary depending on the specific staphylococcal species. It is possible 

that these bacteria may provide an important source of resistance determinants for 

other, more pathogenic bacteria. Carriage of such resistance determinants might also 

provide the bacteria with an advantage as an opportunistic pathogen in the host dog. 

In contrast to the low prevalence of MRSA, the prevalence of antimicrobial resistant 

E. coli in the UK vet visiting dog population was high (44.8%), with the most 

prevalent resistances being to antimicrobials commonly used in canine medicine, 
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such as ampicillin, tetracycline and trimethoprim (24.0%, 19.7% and 16.9% 

respectively in the community; and 37.2%, 30.0% and 23.8% respectively in the vet 

visiting population). Carriage of antimicrobial resistance at such a high level, in 

particular multidrug resistance (15.3% in the community and 18.1% in the vet 

visiting population), emphasises that dogs may be a potential reservoir of both 

resistant enteric bacteria and resistance determinants. It also raises an important issue 

with regards to potential treatment options for the individual dogs in the future, 

should such bacteria cause an infection.  

A subset of the E. coli, selected for their carriage of blaCTX-M, blaTEM or blacmy2 and 

their resistance to numerous antimicrobials, were subjected to MLST and micro array 

analysis of virulence and resistance genes. A great deal of variation in both sequence 

type (ST) and genotypic resistance and virulence factors was evident. This is the first 

such study to characterise in such detail E. coli isolated from healthy dogs and 

provides valuable information regarding the genetic background of antimicrobial 

resistance, particularly ESBL-producing E. coli. Two of the ten isolates that carried 

blaCTX-M genes were identified to carry blaCTX-M-15, but none were found to be        

ST-131, the highly successful human pandemic strain (Lau, Kaufmann et al. 2008; 

Nicolas-Chanoine, Blanco et al. 2008), responsible for the worldwide clonal spread 

of blaCTX-M. E. coli  of this ST have previously been identified in companion animals 

in several European countries (Pomba, da Fonseca et al. 2009; Ewers, Grobbel et al. 

2010), but not at the time of writing in the UK. 

This study also provides important information relating to statistical analysis of the 

potential risk factors associated with carriage of antimicrobial resistant E. coli 

including recent prescription of antimicrobials and being fed raw poultry.  As would 

be expected, previous use of antimicrobials regularly remained significant in the final 

models of resistance outcomes. This supports the careful and rational use of 

antimicrobials in dogs (Ungemach, Muller-Bahrdt et al. 2006; Escher, Vanni et al. 

2011). In some models, the diet of the dog was significantly associated and this 

shows how the types of food eaten can have a great impact on the flora of an animal. 

Owning another animal, particularly a cat was found to be associated with 

antimicrobial resistance of E. coli found in the faecal samples, as well as having 
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contact with farm and wild animals during walks. This may provide an indication as 

to possible sources of either antimicrobial resistant E. coli or, perhaps more likely, 

specific resistance determinants from environmental sources. 

This study does have some limitations, both in relation to the study design and 

methods. As with many cross sectional studies, there is a degree of unavoidable bias. 

Practices were recruited by random selection from the Royal College of Veterinary 

Surgeons register and contacted by phone. Each practice was asked to recruit 28 dogs 

to the study. However, veterinary personnel may not have had time or consciously 

chosen not to ask all owners depending on how cooperative the dog may have been. 

Also, using veterinary surgeries to recruit owners for the nationwide cross sectional 

study meant that only dogs visiting the vet were recruited. A different approach 

could have been to contact owners directly for recruitment by use of mailing 

information to vet patient lists. This would however prove very expensive and 

logistically difficult.  

Isolation of antimicrobial resistant E. coli from the dogs in the community was 

carried out on previously frozen faecal samples. This may have had an impact on the 

recoverability of E. coli and may have lowered the prevalence observed in this 

population. In a study investigating recovery of faecal flora from frozen faecal 

samples (Bonten, Nathan et al. 1997), a decrease in recovery after freezing for up to 

four weeks was shown. However, the authors did find that storage in glycerol, in 

which the community faecal samples were stored, improved recovery rates compared 

to other methods tested.  

An aim of this study was to carry out analysis of some of the molecular 

characteristics of the isolates obtained. DNA microarray analysis was carried out to 

investigate the presence of certain antimicrobial resistance and virulence 

determinants among the isolates, which showed that many of the isolates carried 

genes detected in isolates of human origin. For example virulence genes associated 

with ExPEC , EPEC and EHEC, all common pathogens of humans. This supports 

other studies which suggest a fair amount of overlap between isolates of human and 

animal origin with regards to virulence determinants (Johnson, Stell et al. 2001; 

Johnson, Stell et al. 2001; Johnson, Johnston et al. 2008). 
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This study only took samples from the dogs at a single point in time. However, with 

Staphylococcus in particular, some individuals may be only intermittent carriers. At 

the point of sampling, these individuals may have been negative, but this does not 

mean that they have never been carriers or that they will not be in the future. A more 

complete estimation of prevalence could be achieved by collecting samples at 

multiple, regular time points in a longitudinal study. 

7.2 Further work 

While this study has gone to great lengths to estimate the prevalence of antimicrobial 

resistant bacteria in the canine population of mainland UK and has taken steps to 

characterise many of the isolates collected, there is still a significant amount of 

information that the study could provide. Multi-locus sequence typing (MLST) was 

carried out on all blaCTX-M and a selection of blacmy2 or blaTEM carrying E. coli. In 

addition, all MRSA and a selection of MSSA were subjected to MLST. While, this 

has provided valuable data relating to the strains of bacteria carried by dogs, it is 

highly likely that some of the isolates that did not undergo MLST may be different to 

those already identified in this study and provide a more comprehensive 

representation of the bacteria carried by dogs and how these relate to those of human 

and other animal origin. In addition, three of the E. coli were found to be of a novel 

ST, it is therefore possible that further novel STs would be identified if MLST was 

carried out on more isolates.  

As mentioned in chapter four, the prevalence of MRSA was too low for any 

meaningful statistical analysis to be carried out. A larger, possibly multi-laboratory 

study, would allow for a higher number of dogs to be sampled, thus allowing 

identification of risk factors associated with carriage of MRSA to be carried out. 

However, the information this would provide would not be worth the expense and 

time needed to execute such a study. Nonetheless, it is possible that the prevalence of 

S. aureus and S. pseudintermedius is sufficiently high enough for some statistical 

analysis, but how useful this would be remains to be seen. 
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Given the number of journal articles and case studies where animals have been 

identified as maintaining MRSA in the household (Cefai, Ashurst et al. 1994; 

Manian 2003; Weese, Dick et al. 2006; Nienhoff, Kadlec et al. 2009) and relatedness 

of isolates between family members (Boost, O'Donoghue et al. 2008), a study that 

follows a number of households in which all family members (both human and 

animal) are sampled this could provide important information about the persistence 

of MRSA within the family as a whole rather than just considering the individuals. 

From this kind of research, it may be possible to gain substantial evidence regarding 

source attribution,  identify the index case within the household and what factors 

may contribute to acquisition and maintenance of MRSA. A small study has been 

carried out (Faires, Tater et al. 2009), however since this only involved 22 

households at a single time point, only limited information could be obtained. 

Therefore a larger scale, longitudinal study could provide a more detailed picture of 

MRSA in the household.   

7.3  Final conclusions 

The findings of this study clearly indicate a high prevalence of carriage of 

antimicrobial resistant E. coli, in dogs with a number of factors associated with its 

carriage including previous use of antimicrobials (further supporting the prudent use 

of antimicrobials in dogs) and consumption of raw poultry meat. The molecular 

characteristics of the isolates were diverse, as well as the profiles of antimicrobial 

resistance. MRSA carriage is reassuringly low in the dog population studied and 

those that were isolated were all found to be identical to those commonly isolated 

from UK hospitals. This clearly suggests transmissions between species, although 

this study does not offer any indication of the direction. Carriage of antimicrobial 

resistant bacteria by dog is just one increasingly important aspect of a much wider 

issue both with respect to canine welfare and the zoonotic potential.  
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Detection of antibiotic resistant bacteria in 
animal faecal and nasal swab samples. 
 
 

 
Dear Colleague, 
 
Thank you for your agreement to take part in this study being carried out to 
investigate the prevalence of antibiotic resistant bacteria in dogs in the community. 
This study principally aims to investigate staphylococcal species and Escherichia 
coli in the nose and gastrointestinal tract, respectively. 
 
You are one of many veterinary practices across the country who is being asked to 
obtain samples from 28 dogs each. We are seeking samples from only one dog from 
each household and the dogs that you sample can be healthy, visiting for routine 
appointments or sick dogs. We do, however, request that you do not recruit dogs 
that have been admitted to the hospital. Please note that due to the high volume of 
samples we aim to obtain, we will be unable to provide you with individual results. 
 
For this study, we will require you, with the signed consent of the owner, to obtain a 
nasal swab from their dog during the consultation and ask the owner to provide us 
with a faecal sample when the dog next defecates. We will provide you with a 
sampling pack, which contains everything you will need to swab the nose and give 
to the owner for collection of the faeces. Also included will be an informed consent 
form, a questionnaire for the owner to complete and two pre paid envelopes; one for 
you to return the nasal swab and signed consent form, and one to give to the owner 
to return the faecal sample pot and questionnaire.  We will in addition provide 
information letters for owners to read telling them of the study and asking for their 
participation. These can be handed out to clients in the waiting room to read to avoid 
delay during the consultation.  
 
For the nasal swab 
Using the sterile swab provided, insert the cotton end about 1cm into the nasal 
passage and move around the inside of the nostril. Repeat this with the other nostril 
using the same swab. Place the swab back into its container. On the label, enter the 
date of the sample, dog and owner information and, using the prepaid return 
envelope, return it to us with the signed consent form. 
 
For the faecal swab 
The faecal sample will need to be collected by the owner when their dog next 
defecates, so please provide the owner with the faecal sample pack. 
 
Questionnaire 
We will also be asking the owners to fill out a short questionnaire, which contains 
questions relating to the dog’s current and previous health, veterinary treatment, 
diet, environment and contact with other animals. We are also asking owners if they 
would be willing to participate in the second phase of the investigation involving a 
longitudinal study for which we would deal with the owner directly.  This completed 
questionnaire should be returned with the faecal sample by the owner.  
 
Samples returned to us will be subjected to a number of analytical tests to 
characterise the isolated bacteria. Such tests will include antibiotic resistance 
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profiling, biochemical testing, polymerase chain reaction (PCR) to identify genes 
responsible for resistance to antimicrobials. We will also be able to perform 
epidemiological analysis on the data when we relate this back to the information 
provided on the questionnaires and identify potential risk factors associated with 
carriage of antibiotic resistant bacteria in dogs. 
 
Of what benefit is this study to Small Animal Veterinary medicine? 
Antimicrobial resistant bacteria pose a huge problem to veterinary medicine as the 
number of antibiotics available to treat infections caused by them is severely 
reduced. Furthering our knowledge of how antibiotic resistance develops, is spread 
and understanding the epidemiology of antimicrobial resistance will help us to 
prevent further development and expansion of resistance to ensure the efficacy of 
the already limited antimicrobials available. 
 
Thank you again for agreeing to take part in this study and in advance for collection 
of the samples. Should you have any further questions about this work, please feel 
free to contact us on 0151 794 6027 or at antibiotic.resistance@liverpool.ac.uk. 
 
Yours sincerely 
 
 
Amy Wedley BSc (Hons) 
University of Liverpool 
Veterinary Clinical Sciences Department 
Leahurst 
CH64 7TE 
0151 7946027 
antibiotic.resistance@liverpool.ac.uk 
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Detection of antibiotic resistant bacteria in 

animal faecal and nasal swab samples.- 

Protocol for Vets. 

 

 

 

  

During or before consultation, ask dog owner whether they might be interested in 

taking part in study. 

If they are interested give the owner the information sheet to read. If they have any 

questions, answer them if you feel happy to or refer them to the contact details 

provided on the information sheet. 

If owner agrees to participate, ask them to read and sign the consent form provided at 

the front of the sample pack.  Please ask them to initial each box on the consent form. 

After consent form has been signed, take sterile nasal swab insert the cotton end about 

1cm into the nasal passage and move around the inside of the nostril. Repeat this with 

the other nostril using the same swab. Place the swab into its container, break off and 

seal the container. This should already be numbered with the same unique 

identification number as the paperwork and faecal sample pot. 

Place nasal swab and completed consent form in the empty pre-paid envelope, seal and 

post back to the University of Liverpool for processing.  

Give the owner the pre-paid envelope containing questionnaire, faecal sample pot and 

glove.  

Explain to the owner that they need to fill in the questionnaire as accurately as possible 

and collect a fresh faecal sample in the pot provided when their dog next defecates. 

They then need to send the completed questionnaire and sample to the University of 

Liverpool in the envelope provided. 

Many thanks for your time and 

help. 
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Detection of antibiotic resistant bacteria in 
animal faecal and nasal swab samples:   
Information Sheet 
 

 
 
 
Dear dog owner, 
 
Your veterinary surgeon has kindly agreed to help the University of Liverpool 
Veterinary School with a new study looking at antibiotic resistant bacteria. As part of 
this, you and your dog are invited to take part. We would be very grateful if you 
would allow us to take some samples from your dog and ask you some questions.  
 
Please read the following information carefully and please ask if you would like more 
information or if there is anything you do not understand. Your vet may be able to 
answer some questions; otherwise my contact details are at the end of this letter. 
We would like to stress that you do not have to accept this invitation and should only 
agree to take part if you want to. If you decide not to participate this will not affect 
the veterinary treatment of your animal 
 
 

Why are we getting these samples? 
All animals carry bugs (such as bacteria) in their guts and nasal passages (and 
other places too), and most of them cause no problem. Bacteria which are not killed 
by antibiotics (antibiotic resistant bacteria) are now becoming more of a concern in 
animal and human medicine. We are trying to see how much antibiotic resistance 
there is in the normal bacteria which animals carry. This will allow us a greater 
understanding of how antibiotic resistance occurs and hopefully can lead to the 
development of new ways to combat the problem. It will also give us more 
information so that we can develop ways to combat the spread of resistance, so that 
in the future we will not run out options for treating infections. 
 
What samples are we collecting? 
If you agree to take part, your vet will take a swab from your dog’s nose (nasal 
swab). This is a routine procedure with very little to risk to your animal. It does not 
hurt and will not cause distress to your dog. Your vet will also provide you with a 
sample pot and a pair of gloves to collect a sample of your dog’s poo (faecal 
sample) when he or she next produces fresh faeces. You will be provided with a 
pre-paid envelope to send the sample back to us. 
 

Anything more involved? 
We would also like to know a bit about your dog and the household it lives in, so we 
have a short questionnaire for you also. Your vet will give you the questionnaire for 
you to fill in and send back with your dog’s faecal sample. It is important that you 
answer all questions to the best of your knowledge to provide us with accurate 
information. 

 
Further information 
Samples and information obtained from the questionnaire may be retained for up to 
six years and possibly used in future projects. All data will be stored in a secured 
database only accessible by people working on the project. If you decide you want 
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to withdraw from the study you may do so without explanation, and any information 
you have given can be destroyed. 
 
All answers from the questionnaire will be kept strictly confidential. Results from the 
study will be printed in veterinary journals and also in the non-veterinary animal 
press, but no-one will be identifiable from any published work. 
 

 
What next? 
If you are happy to allow your dog to become involved, then please read and sign 
the consent form, and the vet can start getting the samples. Please note, 
unfortunately due to the large number of samples, we will not be able to give you 
back any individual results from your dog. 
 
 
Many thanks, 
 
 
Amy Wedley BSc (hons) 
 
University of Liverpool 
Veterinary Clinical Sciences Department 
Leahurst Campus 
CH64 7TE 
0151 794 6027 
antibiotic.resistance@liverpool.ac.uk 
 
 
 
 
 
 
 
 

If there are any problems, please let us know by contacting Amy Wedley on 
0151 794 6027, and we will try to help. If you remain unhappy or have a 

complaint which you feel you cannot come to us with then you should contact 
the Research Governance Officer on 0151 794 8290 (ethics@liv.ac.uk). When 

contacting the Research Governance Officer, please provide details of the 
name or description of the study (so that it can be identified), the 

researcher(s) involved, and the details of the complaint you wish to make. 
 

 

 

  

mailto:antibiotic.resistance@liverpool.ac.uk
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Detection of antibiotic resistant bacteria in 
animal faecal  samples:   Informed Consent 
Form 
 

Please read the following information carefully. You may also request a copy 
for yourself. 

 

Research Study: “Detection of antibiotic resistant bacteria in animal faecal 
and nasal swab samples.” 

 
Researcher: Amy Wedley 

Please initial box 

 
If you agree with the above-stated conditions please sign below:- 
 
 

          
Participant Name                                                Date                   Signature 
 
 

                 
       Name of Person taking consent                         Date                  Signature 
 
 
       
       Researcher                                                         Date                   Signature 
 

The contact details of lead Researcher are:   Amy Wedley 
       National Centre for Zoonosis Research 
       Leahurst Campus 

University of Liverpool 
Neston 

       CH64 7TE 
               0151 795 6027   
       antibiotic.resistance@liverpool.ac.uk 

1. I confirm that I have read and have understood the information 
sheet dated December 2009 for the above study. I have had the 
opportunity to consider the information, ask questions and have had 
these answered satisfactorily.   

 

 

2. I understand that my participation is voluntary and that I am free to 
withdraw at any time without giving any reason, without my rights 
being affected. If I do not participate this will not affect the 
veterinary treatment of my animal. 
 

 

3. I understand that, under the Data Protection Act,  I can at any time 
ask for access to the information I provide and I can also request 
the destruction of that information if I wish. I understand that I may 
refuse to answer particular questions and individual privacy will be 
maintained in all published and written data from the study. 

 

 
4. I allow participation of myself and my animal in the above study.    

 

 

mailto:antibiotic.resistance@liverpool.ac.uk
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Appendix Two  

PCR primers and expected size of amplicons 

PCR reaction conditions 

PEG precipitation protocol 
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 PCR primers and expected size of amplicons 

Target Gene Primer name Primer (5’-3’) Expected 

amplicon 

size(bp) 

Reference 

uidA uidAf CCAAAAGCCAGACAGAGT 623 (McDaniels, Rice et al. 1996) 

uidAr GCACAGCACATCAAAGAG 

blaTEM tembf ATGAGTATTCAACATTTCCGTG 861 (Essack, Hall et al. 2001) 

tembr TTACCAATGCTTAATCAGTGAG 

 temiA (internal)
+ 

TTCTGTGACTGGTGAGTACT   

 temiB (internal)
+
 GAGTAAGTAGTTCGCCAGTT   

 temiC (internal)
+
 CTGCAGCAATGGCAACAAC   

blaSHV shvbf ATGCGTTATATTCGCCTGTG 865 (Essack, Hall et al. 2001) 

shvbr GTTAGCGTTGCCAGTGCTCG 

blaCTX-M CTX-MU1 ATGTGCAGYACCAGTAARGTKATGGC 593 (Boyd, Tyler et al. 2004) 

CTX-MU2 TGGGTRAARTARGTSACCAGAAYCAGCGG 

blaCTX-M 

 group 1 

CTX-M-1f  ATGGTTAAAAAATCACTGCG 876 (Batchelor, Hopkins et al. 2005) 

CTX-M-1fr TTACAAACCGTCGGTGAC 

blaCTX-M 

 group 2 

CTX-M-2f  ATGATGACTCAGAGCATTCGC 893 (Hopkins, Batchelor et al. 2006) 

CTX-M-2r TCAGAAACCGTGGGTTACGAT 
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Target Gene Primer name Primer (5’-3’) Expected 

amplicon 

size(bp) 

Reference 

blaCTX-M  

group 9 

CTX-M-9f  ATGGTGACAAAGAGAGTGCAAC 876 (Batchelor, Hopkins et al. 2005) 

CTX-M-9fr TTACAGCCCTTCGGCGATG   

blaAmpC 

(Multiplex) 

MOXMf GCTGCTCAAGGAGCACAGGAT 520 (Perez-Perez and Hanson 2002) 

MOXMr CACATTGACATAGGTGTGGTGC 

CITMf (internal)* TGGCCAGAACTGACAGGCAAA 462 

CITMr (internal)* TTTCTCCTGAACGTGGCTGGC 

DHAMf AACTTTCACAGGTGTGCTGGGT 405 

DHAMr CCGTACGCATACTGGCTTTGC 

ACCMf AACAGCCTCAGCAGCCGGTTA 645 

ACCMr TTCGCCGCAATCATCCCTAGC 

EBCMf TCGGTAAAGCCGATGTTGCGG 302 

EBCMr CTTCCACTGCGGCTGCCAGTT 

FOXMf AACATGGGGTATCAGGGAGATG 190 

FOXMr CAAAGCGCGTAACCGGATTGG 

cmy (sequencing) cmy25f CAATGTGTGAGAAGCAGTC 1146 (Liebana, Gibbs et al. 2004) 

cmy2dr CGCATGGGATTTTCCTTGCTG 
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Target Gene Primer name Primer (5’-3’) Expected 

amplicon 

size(bp) 

Reference 

qnrA qnrAf ATTTCTCACGCCAGGATTTG 516 (Robicsek, Strahilevitz et al. 2006) 

qnrAr GATCGGCAAAGGTTAGGTCA 

qnrB qnrBf GATCGTGAAAGCCAGAAAGG 469 

qnrBr ACGATGCCTGGTAGTTGTCC 

qnrS qnrSf ACGACATTCGTCAACTGCAA 417 

qnrSr TAAATTGGCACCCTGTAGGC 

dfrA1 D1 ACGGATCCTGGCCTGTTGGTTGGACGC 254 (Gibreel and Skold 1998; Lee, Oh 

et al. 2001) D2 CGGAATTCACCTTCCGGCTCGATGTC 

dfrA9 dfr9F ATGAATTCCCGTGGCATGAACCAGAAGAT 398 

dfr9R ATGGATCCTTCAGTAATGGTCGGGACCTC 

dfrA5/14 D3 GTTGCGGTCCAGACATAC 253 

D4 CCGCCACCAGACACTA 

dfrA8 D5 TCGAGCTTCATGCCATTT 453 

D6 TCTTCCATGCCATTCTGC 

dfrA12/13 D7 CCGTGGGTCGATGTTTGATG 485 

D8 GCATTGGGAAGAAGGCGTCAC 

dfrA7/17 D9 GTCGCCCTAAAACAAAGTTA 195 

D10 CGCCCATAGAGTCAAATGT 
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Target Gene Primer name Primer (5’-3’) Expected 

amplicon 

size(bp) 

Reference 

tetA TetAf GCTACATCCTGCTTGCCTTC 210 (Ng, Martin et al. 2001) 

TetAr CATAGATCGCCGTGAAGAGG 

tetB TetBf TTGGTTAGGGGCAAGTTTTG 659 

TetBr GTAATGGGCCAATAACACCG 

tetC TetCf CTTGAGAGCCTTCAACCCAG 418 

TetCr ATGGTCGTCATCTACCTGCC 

tetD TetDf AAACCATTACGGCATTCTGC 787 

TetDr GACCGGATACACCATCCATC 

tetE TetEf AAACCACATCCTCCATACGC 278 

TetEr AAATAGGCCACAACCGTCAG 

tetG TetGf GCTCGGTGGTATCTCTGCTC 468 

TetGr AGCAACAGAATCGGGAACAC 

mecA mecAf TGGCTATCGTGTCACAATCG 310 (Vannuffel, Gigi et al. 1995) 

mecAr CTGGAACTTGTTGAGCAGAG 

femA femAf TGCCTTTACAGATAGCATGCCA 703 (Francois, Pittet et al. 2003) 

femAr AGTAAGTAAGCAAGCTGCAATGACC 

nuc nuc1 GCGATTGATGGTGATACGGTT 279 (Brakstad, Aasbakk et al. 1992) 

nuc2 AGCCAAGCCTTGACGAACTAAAGC   
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Target Gene Primer name Primer (5’-3’) Expected 

amplicon 

size(bp) 

Reference 

pta ptaF1 AAAGACAAACTTTCAGGTAA 320 (Bannoehr, Franco et al. 2009) 

ptaF2 GCATAAACAAGCATTGTACCG 

(nuc)  

S. aureus 

au-F3 TCGCTTGCTATGATTGTGG 359 (Sasaki, Tsubakishita et al. 2010) 

au-nucR  GCCAATGTTCTACCATAGC 

(nuc)  

S. intermedius 

in-F CATGTCATATTATTGCGAATGA 430 

in-R3  AGGACCATCACCATTGACATATTGAAACC 

(nuc)  

S. schleiferi 

sch-F  AATGGCTACAATGATAATCACTAA 526 

sch-R CATATCTGTCTTTCGGCGCG 

(nuc)  

S. delphini group A 

dea-F  TGAAGGCATATTGTAGAACAA 661 

dea-R  CGRTACTTTTCGTTAGGTCG 

(nuc)  

S. hyicus 

hy-F1  CATTATATGATTTGAACGTG 793 

hy-R1  GAATCAATATCGTAAAGTTGC 

(nuc)  

S.pseudintermedius 

pse-F2  TRGGCAGTAGGATTCGTTAA 926 

pse-R5  CTTTTGTGCTYCMTTTTGG 

(nuc)  

S.delphini Group B 

deb-F GGAAGRTTCGTTTTTCCTAGAC 1135 

deb-R4  TATGCGATTCAAGAACTGA 

16s PA AGAGTTTGATCCTGGCTCAG ~1530 (Edwards, Rogall et al. 1989) 

PH* AAGGAGGTGATCCAGCCGCA 
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Target Gene Primer name Primer (5’-3’) Expected 

amplicon 

size(bp) 

Reference 

spa 1113f TAAAGACGATCCTTCGGTGAGC variable (Harmsen, Claus et al. 2003) 

1514r CAGCAGTAGTGCCGTTTGCTT 

SCCmec typing CIF2 F2 TTCGAGTTGCTGAGAAGAAGG 495 (Oliveira and de Lencastre 2002) 

 CIF2 R2 ATTTACCACAAGGACTACCAGC   

 KDP F1 AATCATCTGCCATTGGTGATGC 284  

 KDP R1 CGAATGAAGTGAAAGAAAGTGG   

 MECI P2 ATCAAGACTTGCATTCAGGC 209  

 MECI P3 GCGGTTTCAATTCACTTGTC   

 DCS F2 CATCCTATGATAGCTTGGTC 342  

 DCS R1 CTAAATCATAGCCATGACCG   

 RIF4 F3 GTGATTGTTCGAGATATGTGG 243  

 RIF4 R9 CGCTTTATCTGTATCTATCGC   

 RIF5 F10 TTCTTAAGTACTCGCTGAATCG 414  

 RIF5 R13 GTCACAGTAATTCCATCAATGC   

*Primers used as internal primers for sequencing of full blacmy gene 

+Primers used for internal sequencing of whole blaTEM gene 
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PCR product clean-up (PEG precipitation) 

1. Aliquot 60 μl 20% (w/v) PEG8000, 2.5M NaCl per well, using a multichannel 

pipette, seal wells with adhesive film, vortex and spin briefly spin the plate at 

500 rcf to ensure mix is at the bottom of the wells. Incubate the plates for 

either 15 min at 37 °C, 30 min at 20 °C or overnight at 4 °C. (Longer 

incubations do not have a detrimental effect on the clean up procedure). 

 

2. Spin at 2750 rcf at 4 °C for 60 min. 

 

3. To remove PEG, place folded blue tissue into the bottom of the centrifuge 

plate holders and gently invert the plate onto the blue tissue. Spin at 500 rpm 

for 6 sec. 

 

4. Wash pellet twice with 150 μl 70% ice-cold ethanol. i.e add 150 μl per well 

and spin at 2750 rcf for 10 min. Remove ethanol by inversion of plate onto 

blue tissues, and then spin the inverted plate on folded clean blue at 500 rpm 

for 60 sec. Repeat. 

 

5. Air dry plate on bench for 10 min. 

 

6. Re-suspend the pellet in STERILE milliQ water. Re-suspension volume is 

dependent on intensity of PCR product observed following PCR e.g. Barely 

visible products are re-suspended in 5 μl with more intense products re-

suspended in volumes of up to 50 μl. Seal lid carefully, vortex and spin 

briefly. 

 

7. Resuspended products can be stored long-term at -20 °C, or short term at 4 

°C. 
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Appendix Three 

Full results of univariable analyses 
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Full univariable results for carriage of E. coli with resistance to any antimicrobials 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Age       0.8 

<1 31 25 0     

1 44 34 -0.04 0.35 0.96 0.48-1.91  

2 19 14 -0.09 0.44 0.91 0.38-2.18  

3 26 15 -0.33 0.42 0.72 0.31-1.63  

4 195 166 0.05 0.29 1.06 0.60-1.86  

Breed       0.8 

Pedigree 241 194 0    0.8* 

Cross 70 53 -0.06 0.21 0.94 0.63-1.41  

Breed Group       0.4 

Working 9 11 0     

Gundog 103 94 -0.29 0.47 0.75 0.30-1.88  

Hound 20 14 -0.56 0.57 0.57 0.19-1.75  

Terrier 37 19 -0.87 0.53 0.42 0.15-1.19  

Utility 21 9 1.05 0.60 0.35 0.11-1.14  

Pastoral 22 20 0.30 0.55 0.74 0.26-2.17  

Toy 20 15 0.49 0.56 0.61 0.20-1.86  

Cross 70 53 0.48 0.48 0.62 0.24-1.60  

Not specified 18 19 -0.15 0.56 0.86 0.29-2.57  

Breed Size       08 

Small 44 29 0     

Medium  88 45 -0.25 0.30 0.78 0.43-1.4  

Large 99 108 0.50 0.28 1.66 0.96-2.85  

Not specified 89 72 0.20 0.29 1.23 0.70-2.15  

Neutered       0.07 

No 76 78 0    0.07* 

Yes 242 176 -0.34 0.19 0.71 0.49-1.03  

Working Dog       0.02 

No 292 218 0    0.02* 

Yes 19 29 0.72 0.31 2.04 1.12-3.74  

Given dog treats       0.6 

Never 17 16 0     

Rarely 47 46 0.04 0.41 1.04 0.47-2.30  

Sometimes 148 117 -0.17 0.37 0.84 0.41-1.73  

Often 102 71 0.30 0.38 0.74 0.35-1.56  

Given titbits       0.1 

Never 28 32 0     

Rarely 110 66 -0.64 0.30 0.53 0.29-0.95  

Sometimes 131 114 -0.27 0.29 0.76 0.43-1.34  

Often 42 37 -0.26 0.34 0.77 0.39-1.51  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Given dog treats       0.2 

Never/ rarely 64 62 0    0.2* 

Sometimes/ often 250 188 -0.25 0.20 0.78 0.52-1.15  

Given titbits       0.2 

Never/ rarely 138 98 0    0.23* 

Sometimes/ often 173 151 0.21 0.17 1.23 0.88-1.72  

Reason for visit       0.1 

Vaccination/ worming 132 81 0     

Presenting complaint 140 125 0.38 0.19 1.46 1.01-2.10  

Check up 13 11 0.32 0.43 1.38 0.59-3.22  

Work at clinic 9 10 0.59 0.48 1.81 0.71-4.65  

Vaccination/ presenting 

comp 
7 15 1.25 0.48 3.49 1.37-8.93  

Vaccination/ check up 1 0      

Presenting comp/ check 

up 
3 2 0.08 0.92 1.09 0.18-6.64  

Other 6 7 0.64 0.57 1.90 0.62-5.86  

Medication prescribed 

during most recent visit 
      0.04 

No 210 149 0    0.05* 

Yes 103 104 0.35 0.18 1.42 1.01-2.01  

Antibiotic prescribed 

during most recent visit 
      0.2 

No 259 197 0    0.2* 

Yes 53 54 0.29 0.22 1.34 0.88-2.04  

Length of prescription 

of antibiotic given at 

most recent visit 

      0.6 

One off prescription 4 2 0     

Up to 5 days 14 19 1.00 0.93 2.71 0.43-16.96  

Up to 10 days 23 22 0.65 0.92 1.91 0.32-11.52  

Up to 2 weeks 7 6 0.54 1.03 1.71 0.23-12.89  

Up to 3 weeks 1 3 1.79 1.44 6.00 0.35-12.89  

Over 3 weeks 1 1 0.69 1.66 2.00 0.08-51.60  

Don’t know 3 1 -0.41 1.44 0.67 0.04-11.29  

None prescribed 259 197 0.42 0.87 1.52 0.28-8.39  

Prescribed any 

antibiotic in previous 

three months 

      0.3 

No 237 159 0    0.4* 

Yes 83 95 0.53 0.18 1.71 1.19-2.44  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Received any veterinary 

treatment (excluding 

most recent visit)in the 

last three months 

      0.098 

No 184 130 0    0.1* 

Yes 128 120 0.28 0.17 1.33 0.95-1.86  

Medication prescribed 

in the last three months 

(excluding most recent 

visit) 

      0.1 

No 203 146 0    0.1* 

Yes 107 101 -0.33 0.18 1.31 0.93-1.85  

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      06 

No 254 180 0    09* 

Yes 47 61 0.59 0.22 1.80 1.17-2.76  

Length of prescription 

of antibiotic given in the 

last three months 

(excluding most recent 

visit) 

      0.07 

One off prescription 4 3 0     

Up to 5 days 11 21 0.93 0.85 2.55 0.48-13.46  

Up to 10 days 17 19 0.40 0.83 1.49 0.29-7.63  

Up to 2 weeks 6 11 0.89 0.92 2.44 0.40-14.75  

Up to 3 weeks 2 3 0.69 1.19 2 0.19-20.61  

Over 3 weeks 4 3 -165.00 1.08 1 0.12-8.31  

Don’t know 2 0      

None prescribed 254 180 -0.57 0.77 0.94 0.21-4.27  

Left at veterinary 

premises 
      0.7 

No 239 187 0    0.8* 

Yes 24 21 0.11 0.31 1.12 0.60-2.07  

Allowed close contact 

with other dogs during 

walks 

      0.7 

No 69 51 0    0.8* 

Yes 245 197 0.08 0.21 1.09 0.72-1.64  

Regular contact with 

wild or farm animals 

during walks 

      0.04 

No 249 177 0    0.04* 
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Yes 65 70 0.42 0.20 1.51 1.03-2.23  

Allowed off lead during 

walks 
      05 

No 77 37 0    06* 

Yes 238 212 0.62 0.22 1.85 1.20-2.86  

Other dogs in household       0.2 

No 180 133 0    0.3* 

Yes 133 120 0.20 0.17 1.22 0.87-1.70  

Number of other dogs in 

household 
      0.3 

0 180 133 0     

1 67 53 0.07 0.22 1.07 0.70-1.64  

2 24 27 0.42 0.30 1.52 0.84-2.76  

3 4 9 1.11 0.61 3.05 0.92-10.10  

4+ 9 7 0.05 0.52 1.05 0.38-2.90  

Not specified        

Other animals in 

household 
      0.9 

No 177 141 0    0.9* 

Yes 136 111 0.02 0.17 1.02 0.73-1.43  

Own a cat        0.8 

No 232 184     0.8* 

Yes 81 68 0.06 0.18 1.06 0.73-1.54  

Own a bird       0.9 

No 290 233 0    1.0* 

Yes 23 19 0.03 0.32 1.03 0.55-1.93  

Own a  rabbit       1.0 

No 293 236 0    1.0* 

Yes 20 16 -68027.00 0.35 0.99 0.50-1.96  

Own a rodent       0.2 

No 286 238 0    0.2* 

Yes 27 14 -0.47 0.34 0.62 032-1.22  

Own a reptile or 

amphibian 
      0.2 

No 309 245 0    0.2* 

Yes 4 7 0.79 0.63 2.21 0.64-7.63  

Own a fish       0.3 

No 302 247 0    0.3* 

Yes 11 5 -0.59 0.55 0.56 0.19-1.62  

Own  any other animal 

or livestock 
      0.8 

No 282 225 0     

Yes 31 27 0.09 0.28 1.09 0.63-1.88  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Where the dog usually 

sleeps 
      0.7 

Outside 10 13 0     

Downstairs 162 132 -0.47 0.44 0.63 0.27-1.48  

Upstairs 125 100 -0.49 0.44 0.62 0.26-1.46  

Whole house 14 8 -0.82 0.61 0.44 0.13-1.46  

Outside and downstairs 1 1 -0.26 1.48 0.77 0.04-13.87  

Anyone in the household 

work with farm animals 
      0.2 

No 289 230 0    0.23* 

Yes 21 24 0.36 0.31 1.44 0.78-2.64  

Anyone in the household 

taken antibiotics 
      0.3 

No 257 215 0    0.4* 

Yes 56 37 -0.24 0.23 0.79 0.50-1.24  

Who took antibiotics       0.8 

No 30 20 0     

Yes 19 16 0.23 0.45 1.26 0.53-3.02  

No one/ not specified 257 214 0.22 0.30 1.25 0.69-2.26  

Anyone in the household 

work in healthcare 
      0.7 

No 223 177 0    0.8* 

Yes 91 77 0.06 0.18 1.07 0.74-1.53  

Healthcare setting       0.6 

Human 27 26 0     

Animal 61 51 -0.14 0.34 0.87 0.45-1.67  

Both 2 0      

Not specified 1 0      

Does not work in 

healthcare 
223 177 -0.14 0.33 0.82 0.46-1.46  

Anyone in the household 

attended hospital in last 

month 

      0.2 

No 223 192 0    0.3* 

Yes 90 62 -0.22 0.19 0.80 0.55-1.17  

Reason for hospital visit       0.6 

Admission 12 12 0     

Visit 10 8 -0.23 0.63 0.80 0.23-2.73  

Outpatient/ A&E 67 41 -0.49 0.45 0.61 0.25-1.49  

Other/ not specified 1 1 194.00 1.47 1.00 0.06-17.90  

No attendance 223 192 -0.15 0.42 0.86 0.38-1.96  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Source of dog       0.5 

Breeder 156 123 0     

Rescue Kennel/ stray 75 51 -0.15 0.22 0.86 0.56-1.32  

Newspaper/ word of 

mouth/ internet 
27 17 -0.22 0.33 0.80 0.42-1.53  

Family/friend 45 38 0.07 0.25 1.07 0.65-1.75  

Pet shop 3 2 -0.17 0.92 0.85 0.14-5.15  

Other 7 9 0.49 0.52 1.63 0.59-4.50  

Self breed 4 9 1.05 0.61 2.85 0.86-9.49  

Fed tinned or packet wet 

food 
      0.4 

Yes 210 159 0    0.4* 

No 107 95 0.16 0.18 1.17 0.83-1.66  

Fed dry mixer       0.5 

No 254 209 0    0.5* 

Yes 63 45 -0.14 0.22 0.87 0.57-1.33  

Fed dry complete       0.1 

No 68 68 0    0.1* 

Yes 249 186 -0.29 0.20 0.75 0.51-1.10  

Fed raw poultry meat       0.04 

No 309 239 0    0.05* 

Yes 8 15 0.89 0.45 2.42 1.01-5.81  

Fed cooked poultry 

meat 
      0.2 

No 247 209 0    0.2* 

Yes 70 45 -0.27 0.21 0.76 0.50-1.15  

Fed raw red meat       0.3 

No 311 246 0    0.4* 

Yes 6 8 0.52 0.55 1.69 0.58-4.92  

Fed cooked red meat       1.0 

No 307 246 0    1.0* 

Yes 10 8 -16273.00 0.48 1.00 0.39-2.57  

Sex       0.9 

Male 155 124     0.9* 

Female 165 130 -0.02 0.17 0.98 0.71-1.37  
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Full univariable results for carriage of multidrug resistant E. coli 

 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Age       0.5 

<1 49 7 0     

1 66 12 0.24 0.51 1.27 0.47-3.47  

2 29 4 -0.04 0.67 0.97 0.26-3.58  

3 32 9 0.68 0.55 1.97 0.67-5.82  

4 290 41 0.54 0.43 1.71 0.74-3.94  

Breed       0.2 

Pedigree 352 83 0    0.2* 

Cross 106 17 -0.39 0.29 0.68 0.39-1.20  

Breed Group       0.05 

Working 13 7 0     

Gundog 151 46 -0.57 0.50 0.57 0.21-1.50  

Hound 27 7 -0.73 0.63 0.48 0.14-1.66  

Terrier 52 4 -1.95 0.70 0.14 0.04-0.56  

Utility 26 4 -1.25 0.71 0.29 0.07-1.16  

Pastoral 35 7 -0.99 0.63 0.37 0.11-1.27  

Toy 28 7 -0.77 0.63 0.46 0.13-1.60  

Cross 106 17 -1.21 0.54 0.30 0.10-0.85  

Not specified 33 4 -1.49 0.71 0.23 0.06-0.90  

Breed Size       02 

Small 62 11 0     

Medium  116 17 -0.19 0.42 0.83 0.36-1.87  

Large 153 54 0.69 0.36 1.99 0.98-4.06  

Not specified 140 21 -0.17 0.33 0.85 0.38-1.86  

Neutered       0.4 

No 123 31 0    0.5* 

Yes 346 72 -0.19 0.24 0.83 0.52-1.32  

Working Dog       0.1 

No 422 88 0    0.1* 

Yes 35 13 0.58 0.35 1.78 0.91-3.50  

Given dog treats       0.06 

Never 22 11 0     

Rarely 72 21 -0.54 0.44 0.58 0.24-1.39  

Sometimes 223 42 -0.98 0.41 0.38 0.17-0.83  

Often 144 29 -0.92 0.42 0.40 0.18-0.92  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Given titbits       1.0 

Never 48 12 0     

Rarely 145 31 -0.16 0.38 0.86 0.41-1.80  

Sometimes 20 45 -0.11 0.36 0.90 0.44-1.83  

Often 65 14 -0.15 0.44 0.86 0.37-2.03  

Given dog treats       0.02 

Never/ rarely 94 32 0    0.03* 

Sometimes/ often 367 71 -0.57 0.24 0.57 0.35-0.91  

Given titbits       1.0 

Never/ rarely 193 43 0    1.0* 

Sometimes/ often 265 59 0 0.22 1.00 0.65-1.54  

Reason for visit       0.3 

Vaccination/ worming 186 27 0     

Presenting complaint 209 56 0.61 0.26 1.85 1.12-3.04  

Check up 19 5 0.59 0.54 1.81 0.63-5.26  

Work at clinic 14 5 0.90 0.56 2.46 0.82-7.38  

Vaccination/ presenting 

comp 
16 6 0.95 0.82 2.58 0.93-7.17  

Vaccination/ check up 1 0      

Presenting comp/ check 

up 
4 1 0.54 1.14 1.79 0.19-15.99  

Other 10 3 0.73 0.69 2.07 0.53-7.99  

Medication prescribed 

during most recent visit 
      0.2 

No 299 60 0    0.3* 

Yes 164 43 0.27 0.22 1.31 0.85-2.02  

Antibiotic prescribed 

during most recent visit 
      0.2 

No 378 78 0    0.2* 

Yes 83 24 0.34 0.26 1.40 0.84-2.35  

Length of prescription 

of antibiotic given at 

most recent visit 

      0.4 

One off prescription 5 1 0     

Up to 5 days 24 9 0.63 1.16 1.87 0.19-18.32  

Up to 10 days 37 8 0.08 1.16 1.08 0.11-10.56  

Up to 2 weeks 9 4 0.80 1.25 2.22 0.19-25.72  

Up to 3 weeks 2 2 1.61 1.48 5.00 0.27-91.52  

Over 3 weeks 2 0      

Don’t know 4 0      

None prescribed 378 78 0.31 1.10 1.03 0.12-8.95  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

        

Prescribed any 

antibiotic in previous 

three months 

      0.5 

No 328 68 0    0.5* 

Yes 143 35 0.17 0.23 1.18 0.75-1.86  

Received any veterinary 

treatment (excluding 

most recent visit)in the 

last three months 

      1.0 

No 258 56 0    1.* 

Yes 204 44 -0.01 0.22 0.99 0.64-1.54  

Medication prescribed 

in the last three months 

(excluding most recent 

visit) 

      0.8 

No 286 63 0    0.9* 

Yes 172 36 -0.05 0.23 0.95 0.61-1.49  

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      1.0 

No 357 77 0    1.0* 

Yes 88 19 0 0.28 1.00 0.58-1.74  

Length of prescription 

of antibiotic given in the 

last three months 

(excluding most recent 

visit) 

      0.3 

One off prescription 7 0      

Up to 5 days 29 3 0     

Up to 10 days 26 10 1.31 0.71 3.72 0.92-15.00  

Up to 2 weeks 14 3 0.78 0.88 2.07 0.37-11.60  

Up to 3 weeks 4 1 0.88 1.27 2.42 0.20-29.23  

Over 3 weeks 4 3 1.98 0.98 7.25 1.07-49.03  

Don’t know 2 0      

None prescribed 357 77 0.73 0.62 2.08 0.62-7.02  

Left at veterinary 

premises 
      0.2 

No 349 77 0    0.3* 

Yes 40 5 -0.57 0.49 0.57 0.22-1.48  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

        

Allowed close contact 

with other dogs during 

walks 

      0.9 

No 98 22 0    0.9* 

Yes 363 79 -0.03 0.27 0.97 0.57-1.63  

Regular contact with 

wild or farm animals 

during walks 

      0.09 

No 356 70 0    0.1* 

Yes 104 31 0.42 0.24 1.52 0.94  

Allowed off lead during 

walks 
      0.2 

No 98 16 0    0.2* 

Yes 364 86 0.37 0.30 1.45 0.81-2.58  

Other dogs in household       0.08 

No 264 49 0    0.1* 

Yes 199 54 0.38 0.22 1.46 0.95-2.24  

Number of other dogs in 

household 
      0.04 

0 264 49 0     

1 97 23 0.24 0.28 1.28 0.74-2.21  

2 42 9 0.14 0.40 1.15 0.53-2.52  

3 7 6 1.53 0.58 4.62 1.49-14.33  

4+ 11 5 0.90 0.56 2.45 0.82-7.36  

Not specified        

Other animals in 

household 
      0.2 

No 267 51 0    0.12* 

Yes 196 51 0.31 0.22 1.36 0.89-2.09  

Own a cat        0.04 

No 349 67 0    0.05* 

Yes 114 35 0.47 0.23 1.60 1.01-2.53  

Own a bird       0.9 

No 429 94 0    0.8* 

Yes 34 8 0.07 0.41 1.07 0.48-2.39  

Own a  rabbit       0.8 

No 433 96 0    1.0* 

Yes 30 6 -0.10 0.46 0.90 0.37-2.23  

Own a rodent       0.2 

No 426 98 0    0.2* 
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Yes 37 4 -0.76 0.54 0.47 0.16-1.35  

        

        

Own a reptile or 

amphibian 
      1.0 

No 454 100 0    1.0* 

Yes 9 2 0.01 0.79 1.01 0.21-4.74  

Own a fish       0.06 

No 447 102 0    0.09* 

Yes 16 0      

Own  any other animal 

or livestock 
      0.1 

No 420 87 0    0.1* 

Yes 43 15 0.52 0.32 1.68 0.90-3.17  

Where the dog usually 

sleeps 
      0.5 

Outside 18 5 0     

Downstairs 240 54 -0.21 0.53 0.81 0.29-2.28  

Upstairs 188 37 -0.34 0.54 0.71 0.25-2.03  

Whole house 16 6 0.30 0.70 1.35 0.34-5.28  

Outside and downstairs 1 1 1.28 1.50 3.60 0.19-68.34  

Anyone in the household 

work with farm animals 
      0.8 

No 425 94 0    0.7* 

Yes 36 9 0.12 0.39 1.13 0.53-2.43  

Anyone in the household 

taken antibiotics 
      0.3 

No 390 82 0    0.4* 

Yes 73 20 0.26 0.28 1.30 0.75-2.26  

Who took antibiotics       0.9 

Family member 39 11 0     

Pet 27 8 0.05 0.53 1.05 0.37-2.96  

No one/ not specified 389 82 -0.29 0.36 0.75 0.37-1.52  

Anyone in the household 

work in healthcare 
      0.7 

No 326 74 0    0.8* 

Yes 139 29 -0.08 0.24 0.92 0.57-1.48  

Healthcare setting       0.9 

Human 42 11 0     

Animal 94 18 -0.31 0.43 0.73 0.32-1.68  

Both 2 0      

Not specified 1 0      
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Does not work in 

healthcare 
326 74 -0.14 0.36 0.87 0.43-1.76  

        

        

Anyone in the household 

attended hospital in last 

month 

      0.3 

No 335 80 0    0.3* 

Yes 129 23 -0.29 0.26 0.75 0.45-1.24  

Reason for hospital visit       0.4 

Admission 18 6 0     

Visit 17 1 -1.73 1.13 0.18 0.02-1.62  

Outpatient/ A&E 92 16 -0.65 0.54 0.52 0.18-1.51  

Other/ not specified 2 0      

No attendance 335 80 0.33 0.49 0.72 0.28-1.86  

Source of dog       0.5 

Breeder 221 58 0     

Rescue Kennel/ stray 109 17 -0.52 0.30 0.59 0.33-1.07  

Newspaper/ word of 

mouth/ internet 
37 7 -0.33 0.44 0.72 0.31-1.70  

Family/friend 72 11 -0.54 0.36 0.58 0.29-1.17  

Pet shop 4 1 -0.05 1.13 0.95 0.10-8.69  

Other 12 4 0.33 0.60 1.27 0.40-4.08  

Self breed 10 3 0.13 0.67 1.14 0.30-4.29  

Fed tinned or packet wet 

food 
      0.3 

Yes 307 62 0    0.3* 

No 161 41 0.23 0.22 1.26 0.81-1.95  

Fed dry mixer       0.3 

No 376 87 0    0.4* 

Yes 92 16 -0.29 0.30 0.75 0.42-1.34  

Fed dry complete       0.3 

No 107 29 0    0.3* 

Yes 361 74 -0.28 0.25 0.76 0.47-1.22  

Fed raw poultry meat       01 

No 455 93 0    03* 

Yes 13 10 1.33 0.44 3.76 1.60-8.84  

Fed cooked poultry meat       0.6 

No 372 84 0    0.7* 

Yes 96 19 -0.13 0.28 0.88 0.51-1.51  

Fed raw red meat       0.3 

No 455 102 0    0.5* 
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Yes 13 1 -0.07 1.04 0.34 0.04-2.65  

Fed cooked red meat       0.4 

No 452 101 0    0.8* 

Yes 16 2 -0.58 0.76 0.56 0.13-2.47  

Sex       0.08 

Male 237 42 0    0.08* 

Female 234 61 0.39 0.22 1.47 0.95-2.27  
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Full univariable results for carriage of E. coli with resistance to ampicillin 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Age       0.4 

<1 37 19      

1 52 26 -0.03 0.37 0.97 0.47-2.01  

2 22 11 -0.27 0.46 0.97 0.39-2.42  

3 30 11 -0.34 0.45 0.71 0.29-1.73  

4 217 144 0.26 0.30 1.29 0.71-2.34  

Breed       0.7 

Pedigree 274 161     0.8* 

Cross 80 43 -0.09 0.21 0.91 0.60-1.39  

Breed Group       0.2 

Working 12 8      

Gundog 116 81 0.05 0.48 1.08 0.51.2.68  

Hound 22 12 -0.20 0.58 0.82 0.26-2.55  

Terrier 42 14 -0.69 0.55 0.50 0.17-1.47  

Utility 24 6 -0.98 0.65 0.38 0.11-1.33  

Pastoral 25 17 0.02 0.55 1.02 0.34-3.02  

Toy 22 13 -0.12 0.58 0.89 0.29-2.74  

Cross 80 43 -0.22 0.49 0.51 0.31-2.12  

Not specified 20 17 0.24 0.56 1.27 0.42-3.84  

Breed Size       0.004 

Small 50 23     0.001* 

Medium  98 35 -0.25 0.32 0.78 0.41-1.45  

Large 114 95 0.57 0.29 1.77 1.01-3.12  

Not specified 101 60 0.26 0.30 1.29 0.72-2.33  

Neutered       0.02 

No 85 69     0.02* 

Yes 276 142 -0.46 0.19 0.63 0.43-0.92  

Working Dog       0.6 

No 325 185     0.6* 

Yes 29 19 0.14 0.31 1.15 0.63-2.11  

Given dog treats       0.4 

Never 22 11      

Rarely 52 41 0.46 0.42 1.58 0.69-3.62  

Sometimes 170 95 0.11 0.39 1.12 0.52-2.40  

Often 113 60 0.06 0.40 1.06 0.48-2.34  

Given titbits       0.02 

Never 29 31      

Rarely 124 52 -0.94 0.31 0.39 0.22-0.72  

Sometimes 150 95 0.52 0.29 0.59 0.34-1.05  

Often 49 30 -0.56 0.35 0.57 0.29-1.13  

Given dog treats       0.2 

Never/ rarely 74 52     0.2* 



207 

 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Sometimes/ often 283 155 0.25 0.21 0.78 0.52-1.17 0 

Given titbits       0.4 

Never/ rarely 153 83     0.4* 

Sometimes/ often 199 125 0.15 0.18 1.16 0.82-1.64  

Reason for visit       0.09 

Vaccination/ worming 151 62      

Presenting complaint 158 107 0.50 0.20 1.65 1.12-2.42  

Check up 13 11 0.72 0.44 2.06 0.88-4.85  

Work at clinic 10 9 0.78 0.48 2.19 0.85-5.66  

Vaccination/ presenting 

comp 
11 11 0.89 0.45 2.44 1.00-5.91  

Vaccination/ check up 1 0      

Presenting comp/ check 

up 
3 2 0.48 0.93 1.62 0.26-9.96  

Other 6 7 1.04 0.58 2.84 0.92-8.79  

Medication prescribed 

during most recent visit 
      0.02 

No 239 120     0.02* 

Yes 117 90 0.43 0.18 1.53 1.08-2.18  

Antibiotic prescribed 

during most recent visit 
      0.04 

No 297 159     0.05* 

Yes 58 49 0.46 0.22 1.58 1.03-2.42  

Length of prescription 

of antibiotic given at 

most recent visit 

      0.1 

One off prescription 4 2      

Up to 5 days 15 18 0.88 0.93 2.40 0.38-14.97  

Up to 10 days 26 19 0.38 0.92 1.46 0.24-8.82  

Up to 2 weeks 7 6 0.54 1.03 1.71 0.23-12.89  

Up to 3 weeks 1 3 1.79 1.44 6.00 
0.35-

101.57 
 

Over 3 weeks 1 1 0.69 1.66 2.00 0.08-51.60  

Don’t know 4 0      

None prescribed 297 159 0.07 0.87 1.07 0.19-5.91  

Prescribed any 

antibiotic in previous 

three months 

      0.001 

No 268 128     0.001* 

Yes 95 83 0.60 0.18 1.83 1.27-2.63 0.001 

Received any veterinary 

treatment (excluding 

most recent visit)in the 

last three months 

      0.1 

No 207 107     0.1* 
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Yes 148 100 0.27 0.18 1.31 0.93-1.85  

Medication prescribed 

in the last three months 

(excluding most recent 

visit) 

      0.2 

No 229 120     0.2* 

Yes 124 84 0.26 0.18 1.29 0.91-1.84  

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      0.004 

No 288 146     0.005* 

Yes 55 53 0.62 0.22 1.87 1.22-2.86  

Length of prescription 

of antibiotic given in the 

last three months 

(excluding most recent 

visit) 

      0.1 

One off prescription 4 3 0.00     

Up to 5 days 16 16 0.29 0.84 1.33 0.26-6.94  

Up to 10 days 18 18 0.29 0.83 1.33 0.26-6.83  

Up to 2 weeks 7 10 0.64 0.91 1.90 0.32-11.31  

Up to 3 weeks 3 2 -0.12 1.19 0.88 0.08-9.16  

Over 3 weeks 4 3  1.08 1 0.12-8.31  

Don’t know 2 0      

None prescribed 288 146 -0.39 0.77 0.68 0.14-3.06  

Left at veterinary 

premises 
      1.0 

No 271 155     1.0* 

Yes 29 16 -0.04 0.33 0.96 0.51-1.83  

Allowed close contact 

with other dogs during 

walks 

      0.8 

No 75 45     0.8* 

Yes 281 161 -0.05 0.21 0.95 0.63-1.45  

Regular contact with 

wild or farm animals 

during walks 

      0.422 

No 275 151     0.5* 

Yes 82 53 0.16 0.20 1.18 0.79-1.75 0 

Allowed off lead during 

walks 
      0.06 

No 81 33     0.07* 

Yes 277 173 0.43 0.23 1.53 0.98-2.40  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Other dogs in household       0.8 

No 198 115     0.9* 

Yes 158 95 0.03 0.17 1.04 0.73-1.46  

Number of other dogs in 

household 
      0.9 

0 198 115      

1 76 44 0.00 0.22 1.00 0.64-1.54  

2 32 19 0.02 0.31 1.02 0.55-1.89  

3 7 6 0.39 0.57 1.48 0.48-4.50  

4+ 9 7 0.29 0.52 1.34 0.49-3.69  

Not specified        

Other animals in 

household 
      0.6 

No 197 121     0.6* 

Yes 159 88 -0.10 0.18 0.90 0.64-1.27  

Own a cat        0.9 

No 263 153     0.9* 

Yes 93 56 0.03 0.20 1.04 0.70-1.52  

Own a bird       0.9 

No 330 193     0.9* 

Yes 26 16 0.05 0.33 1.05 0.55-2.01  

Own a  rabbit       0.9 

No 333 196     1.0* 

Yes 23 13 -0.04 0.36 0.96 0.48-1.94  

Own a rodent       0.04 

No 324 200     0.04* 

Yes 32 9 -0.79 0.39 0.46 0.21-0.97  

Own a reptile or 

amphibian 
      0.2 

No 351 203     0.3* 

Yes 5 6 0.73 0.61 2.07 0.63-6.88  

Own a fish       0.1 

No 343 206     0.2* 

Yes 13 3 -0.96 0.65 0.38 0.11-1.36  

Own  any other animal 

or livestock 
      0.5 

No 317 190     0.6* 

Yes 39 19 -0.21 0.29 0.81 0.46-1.45  

Where the dog usually 

sleeps 
      0.9 

Outside 14 9      

Downstairs 187 107 -0.12 0.44 0.89 0.37-2.13  

Upstairs 138 87 -0.02 0.45 0.98 0.41-2.36  

Whole house 15 7 -0.32 0.63 0.73 0.21-2.48  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Outside and downstairs 1 1 0.44 1.48 1.56 0.09-28.15  

Anyone in the household 

work with farm animals 
      1.0 

No 335 194     1.0* 

Yes 28 17 0.02 0.32 1.02 0.54-1.91  

Anyone in the household 

taken antibiotics 
      0.6 

No 295 177     0.6* 

Yes 61 32 -0.13 0.24 0.87 0.55-1.39  

Who took antibiotics       0.6 

No 34 16      

Yes 20 15 0.47 0.46 1.59 0.65-3.90  

No one/ not specified 295 176 0.24 0.32 1.27 0.68-2.36  

Anyone in the household 

work in healthcare 
      0.5 

No 248 152     0.6* 

Yes 109 59 -0.12 0.19 0.88 0.61-1.29  

Healthcare setting       0.4 

Human 33 20      

Animal 73 39 -0.13 0.35 0.88 0.45-1.74  

Both 2 0      

Not specified 1 0      

Does not work in 

healthcare 
248 152 0.01 0.30 1.01 0.56-1.83  

Anyone in the household 

attended hospital in last 

month 

      0.2 

No 254 161     0.2* 

Yes 102 50 -0.26 0.20 0.77 0.52-1.14  

Reason for hospital visit       0.2 

Admission 12 12      

Visit 11 7 -0.45 0.63 0.64 0.18-2.20  

Outpatient/ A&E 78 30 -0.96 0.46 0.38 0.16-0.95  

Other/ not specified 1 1 0.00 1.47 1.00 0.06-17.90  

No attendance 254 161 -0.45 0.42 0.63 0.28-1.45  

Source of dog       0.3 

Breeder 174 105      

Rescue Kennel/ stray 87 39 -0.29 0.23 0.74 0.47-1.16  

Newspaper/ word of 

mouth/ internet 
29 15 -0.15 0.34 0.86 0.44-1.67  

Family/friend 52 31 -0.01 0.26 0.99 0.60-1.64  

Pet shop 4 1 -0.88 1.12 0.41 0.05-3.76  

Other 8 8 0.51 0.52 1.66 0.60-4.55  

Self breed 5 8 0.98 0.58 2.65 0.85-8.32  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Fed tinned or packet wet 

food 
      0.3 

Yes 238 131     0.4* 

No 122 80 0.18 0.18 1.19 0.84-1.70  

Fed dry mixer       0.5 

No 289 174     0.6* 

Yes 71 37 -0.14 0.22 0.87 0.56-1.34  

Fed dry complete       0.1 

No 78 58     0.1* 

Yes 282 153 -0.32 0.20 0.73 0.49-1.08  

Fed raw poultry meat       0.05 

No 350 198     0.075* 

Yes 10 13 0.83 0.43 2.30 0.99-5.34 0.053 

Fed cooked poultry meat       0.5 

No 284 172     0.5* 

Yes 76 39 -0.17 0.22 0.85 0.55-1.30  

Fed raw red meat       0.1 

No 354 203     0.2* 

Yes 6 8 0.84 0.55 2.33 0.80-6.80  

Fed cooked red meat       0.5 

No 350 203     0.6* 

Yes 10 8 0.32 0.48 1.38 0.54-3.55  

Sex       0.9 

Male 176 103     1.0* 

Female 187 108 -0.01 0.17 0.99 0.70-1.39  
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Full univariable results for carriage of E. coli with resistance to augmentin 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Age       0.2 

<1 54 2      

1 75 3 0.08 0.93 1.08 0.17-6.69  

2 20 3 0.99 0.94 2.70 0.43-17.07  

3 40 1 -0.39 1.24 0.68 0.06-7.71  

4 329 32 0.97 0.74 2.63 0.61-11.28  

Breed       0.9 

Pedigree 405 30     0.8* 

Cross 114 9 0.06 0.39 1.07 0.49-2.31  

Breed Group       1.00 

Working 19 1      

Gundog 182 15 0.45 1.06 1.57 0.20-12.52  

Hound 32 2 0.17 1.26 1.19 0.10-13.9  

Terrier 51 5 0.62 1.13 1.86 0.20-16.99  

Utility 28 2 0.31 1.26 1.36 0.11.16.05  

Pastoral 40 2 -0.05 1.26 0.95 0.08-11.14  

Toy 34 1 -0.58 1.44 0.56 0.03-9.45  

Cross 114 9 0.41 1.08 1.50 0.18-12.53  

Not specified 33 4 0.83 1.15 2.30 0.24-22.13  

Breed Size       0.6 

Small 68 5      

Medium  127 6 -0.44 0.62 0.64 0.19-2.18  

Large 190 17 0.20 0.53 1.22 0.43-3.43  

Not specified 148 13 0.18 0.55 1.19 0.41-3.48  

Neutered       0.3 

No 140 14     0.3* 

Yes 391 27 -0.37 0.34 0.69 0.35-1.35  

Working Dog       0.7 

No 474 36     0.8* 

Yes 44 4 0.18 0.55 1.20 0.41-3.52  

Given dog treats       0.3 

Never 30 3      

Rarely 85 8 -0.06 0.71 0.94 0.23-3.78  

Sometimes 252 13 -0.66 0.67 0.52 0.14-1.91  

Often 157 16 0.02 0.66 1.02 0.28-3.72  

Given titbits       0.02 

Never 53 7      

Rarely 170 6 -1.32 0.58 0.27 0.09-0.83  

Sometimes 221 24 -0.20 0.46 0.82 0.34-2.01  

Often 76 3 -1.21 0.71 0.30 0.07-1.21  

Given dog treats       0.4 

Never/ rarely 115 11     0.4* 
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Sometimes/ often 409 29 -0.30 0.37 0.74 0.36-1.53  

Given titbits       0.2 

Never/ rarely 223 13     0.2* 

Sometimes/ often 297 27 0.44 0.35 1.56 0.79-3.09  

Reason for visit       0.9 

Vaccination/ worming 198 15      

Presenting complaint 246 19 0.02 0.39 1.02 0.51-20.6  

Check up 22 2 0.18 0.79 1.20 0.26-5.60  

Work at clinic 19 0      

Vaccination/ presenting 

comp 
20 2 0.28 0.79 1.32 0.28-6.19  

Vaccination/ check up 1 0      

Presenting comp/ check 

up 
4 1 1.19 1.15 3.30 0.35-31.41  

Other 12 1 0.10 1.07 1.10 0.13-9.04  

Medication prescribed 

during most recent visit 
      0.007 

No 341 18     0.01* 

Yes 184 23 0.86 0.33 2.37 1.25-4.50  

Antibiotic prescribed 

during most recent visit 
      0.08 

No 427 29     0.1* 

Yes 95 12 0.62 0.36 1.86 0.92-3.78  

Length of prescription 

of antibiotic given at 

most recent visit 

      0.1 

One off prescription 5 1      

Up to 5 days 31 2 -1.13 1.32 0.32 0.02-4.26  

Up to 10 days 39 6 -0.26 1.18 0.77 0.08-7.77  

Up to 2 weeks 12 1 -0.88 1.51 0.42 0.02-8.05  

Up to 3 weeks 3 1 0.51 1.59 1.67 0.07-37.73  

Over 3 weeks 1 1 1.61 1.79 5.00 
0.15-

166.59 
 

Don’t know 4 0      

None prescribed 427 29 -1.08 1.11 0.34 0.04-3.00  

Prescribed any 

antibiotic in previous 

three months 

      0.01 

No 375 21     0.01* 

Yes 158 20 0.82 0.33 2.26 1.19-4.29 0.01 

Received any veterinary 

treatment (excluding 

most recent visit)in the 

last three months 

      0.2 

No 297 17     0.2* 
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Yes 227 21 0.48 0.34 1.62 0.83-3.13  

Medication prescribed 

in the last three months 

(excluding most recent 

visit) 

      0.3 

No 328 21     0.4* 

Yes 191 17 0.33 0.34 1.39 0.72-2.70  

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      0.004 

No 411 23     0.009* 

Yes 93 14 0.99 0.36 2.69 1.33-5.43  

Length of prescription 

of antibiotic given in the 

last three months 

(excluding most recent 

visit) 

      0.06 

One off prescription 7 0      

Up to 5 days 28 4 REF     

Up to 10 days 32 4 -0.13 0.75 0.88 0.20-3.83  

Up to 2 weeks 13 4 0.77 0.78 2.15 0.47-9.99  

Up to 3 weeks 5 0      

Over 3 weeks 6 1 0.15 1.21 1.17 0.11-12.38  

Don’t know 3 0      

None prescribed 411 23 -0.94 0.58 0.39 0.13-1.211  

Left at veterinary 

premises 
      0.2 

No 399 27     0.2* 

Yes 40 5 0.61 0.51 1.85 0.67-5.06  

Allowed close contact 

with other dogs during 

walks 

      0.6 

No 110 10     0.7* 

Yes 411 31 -0.19 0.38 0.83 0.39-1.74  

Regular contact with 

wild or farm animals 

during walks 

      0.2 

No 398 28     0.3* 

Yes 122 13 0.42 0.35 1.51 0.76-3.01  

Allowed off lead during 

walks 
      0.8 

No 105 9     0.8* 

Yes 418 32 -0.11 0.39 0.89 0.41-1.93  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Other dogs in household       0.6 

No 292 21     0.6* 

Yes 233 20 0.18 0.32 1.19 0.63-2.25  

Number of other dogs in 

household 
      0.5 

0 292 21      

1 112 8 -0.01 0.43 0.99 0.43-2.31  

2 44 7 0.79 0.47 2.21 0.89-5.51  

3 12 1 0.15 1.07 1.16 0.14-9.34  

4+ 15 1 -0.08 1.06 0.93 0.12-7.36  

Other animals in 

household 
      0.01 

No 288 30     0.01* 

Yes 237 10 -0.90 0.38 0.41 0.19-0.85  

Own a cat        0.04 

No 381 35     0.04 

Yes 144 5 -0.97 0.49 0.38 0.15-0.98  

Own a bird       0.5 

No 485 38     0.8* 

Yes 40 2 -0.45 0.74 0.64 0.15-2.74  

Own a  rabbit       0.09 

No 489 40     0.1 

Yes 36 0      

Own a rodent       0.6 

No 486 38     0.8* 

Yes 39 2 -0.42 0.74 0.66 0.15-2.82  

Own a reptile or 

amphibian 
      0.8 

No 515 39     0.6* 

Yes 10 1 0.28 1.06 1.32 0.16-10.58  

Own a fish       0.2 

No 509 40     0.6* 

Yes 16 0      

Own  any other animal 

or livestock 
      0.6 

No 472 35     0.6* 

Yes 53 5 0.24 0.50 1.27 0.48-3.39  

Where the dog usually 

sleeps 
      0.4 

Outside 20 3      

Downstairs 277 17 -0.89 0.67 0.41 0.11-1.51  

Upstairs 207 18 -0.55 0.67 0.58 0.16-2.14  

Whole house 19 3 0.05 0.88 1.05 0.19-5.87  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Outside and downstairs 2 0      

        

Anyone in the household 

work with farm animals 
      0.3 

No 483 36     0.4* 

Yes 40 5 0.52 0.50 1.68 0.62-4.51  

Anyone in the household 

taken antibiotics 
      0.4 

No 436 36     0.67* 

Yes 88 5 -0.37 0.49 0.69 0.26-1.80  

Who took antibiotics       0.2 

No 49 1      

Yes 31 4 1.84 1.14 6.32 0.68-59.21  

No one/ not specified 435 36 1.40 1.02 4.06 0.54-30.23  

Anyone in the household 

work in healthcare 
      0.5 

No 373 27     0.5* 

Yes 154 14 0.23 0.34 1.26 0.64-2.46  

Healthcare setting       0.8 

Human 50 3      

Animal 101 11 0.60 0.67 1.82 0.48-6.80  

Both 2 0      

Not specified 1 0      

Does not work in 

healthcare 
373 27 0.19 0.69 1.21 0.35-4.12  

Anyone in the household 

attended hospital in last 

month 

      0.5 

No 383 32     0.6* 

Yes 143 9 -0.28 0.39 0.75 0.35-1.62  

Reason for hospital visit       0.7 

Admission 23 1      

Visit 18 0      

Outpatient/ A&E 100 8 0.61 1.09 1.84 0.22-15.45  

Other/ not specified 2 0      

No attendance 383 32 0.65 1.04 1.92 0.25-14.69  

Source of dog        

Breeder       0.04 

Rescue Kennel/ stray 262 17      

Newspaper/ word of 

mouth/ internet 
116 10 0.28 0.41 1.33 0.59-2.99  

Family/friend 41 3 0.12 0.65 1.13 0.32-4.02  

Pet shop 79 4 -0.25 0.57 0.78 0.26-2.39  

Other 5 0      

Self breed 15 1 -0.03 1.06 1.03 0.13-8.25  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

 9 4 1.92 0.65 6.85 1.91-24.53  

        

Fed tinned or packet wet 

food 
      0.9 

Yes 343 26     0.9* 

No 187 15 0.06 0.34 1.06 0.55-2.05  

Fed dry mixer       0.4 

No 432 31     0.4* 

Yes 98 10 0.35 0.38 1.42 0.67-3.00  

Fed dry complete       0.6 

No 125 11     0.7* 

Yes 405 30 -0.17 0.37 0.84 0.41-1.73  

Fed raw poultry meat       0.8 

No 509 39     0.7* 

Yes 21 2 0.22 0.76 1.24 0.28-5.50  

Fed cooked poultry 

meat 
      0.2 

No 420 36     0.2* 

Yes 110 5 -0.63 0.49 0.53 0.20-1.38  

Fed raw red meat       0.3 

No 516 41     0.6* 

Yes 14 0      

Fed cooked red meat       0.2 

No 512 41     0.6* 

Yes 18 0      

Sex       0.3 

Male 256 23     0.3* 

Female 277 18 -0.32 0.33 0.72 0.38-1.37  
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Full univariable results for carriage of E. coli with resistance to chloramphenicol  

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Age       0.8 

<1 49 7      

1 73 5 -0.74 0.61 0.48 0.14-1.60  

2 31 2 -0.79 0.83 0.45 0.09-2.32  

3 37 4 -0.28 0.66 0.76 0.21-2.78  

4 327 34 -0.32 0.44 0.73 0.31-1.73  

Breed       0.3 

Pedigree 393 42     0.4* 

Cross 115 8 -0.43 0.40 0.65 0.30-1.43  

Breed Group       0.2 

Working 18 2      

Gundog 171 26 0.31 0.77 1.37 0.30-6.24  

Hound 29 5 0.44 0.89 1.55 0.27-8.86  

Terrier 55 1 -1.81 1.25 0.16 0.01-1.91  

Utility 27 3 0.00 0.96 1.00 0.15-6.59  

Pastoral 39 3 -0.37 0.96 0.69 0.11-4.51  

Toy 34 1 -1.33 1.26 0.26 0.02-3.12  

Cross 115 8 -0.47 0.83 0.63 0.12-3.19  

Not specified 34 3 -0.23 0.96 0.79 0.12-5.2  

Breed Size       0.04 

Small 70 3      

Medium  123 10 0.64 0.68 1.90 0.51-7.12  

Large 179 28 1.29 0.62 3.65 1.08-12.39  

Not specified 150 11 0.54 0.67 1.71 0.46-6.33  

Neutered       0.5 

No 138 16     0.5* 

Yes 382 36 -0.21 0.32 0.81 0.44-1.51  

Working Dog       <0.001 

No 471 39     0.001* 

Yes 36 12 1.39 0.37 4.03 1.94-8.36  

Given dog treats       0.003 

Never 25 8      

Rarely 82 11 -0.87 0.52 0.42 0.15-1.16  

Sometimes 250 15 -1.67 0.49 0.19 0.07-0.49  

Often 155 18 -1.01 0.48 0.36 0.14-0.92  

Given titbits       0.1 

Never 53 7      

Rarely 165 11 -0.68 0.51 0.50 0.19-1.37  

Sometimes 223 22 -0.29 0.46 0.75 0.30-1.84  

Often 67 12 -0.30 0.51 1.36 0.50-3.68  

Given dog treats       0.01 

Never/ rarely 107 19     0.01* 
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Sometimes/ often 405 33 -0.78 0.31 0.46 0.25-0.84  

Given titbits       0.2 

Never/ rarely 218 18     0.3* 

Sometimes/ often 290 34 0.35 0.30 1.42 0.78-2.58  

Reason for visit       0.5 

Vaccination/ worming 198 15      

Presenting complaint 237 28 0.44 0.33 1.56 0.81-3.00  

Check up 21 3 0.63 0.67 1.89 0.50-7.05  

Work at clinic 15 4 1.26 0.62 3.52 1.04-11.94  

Vaccination/ presenting 

comp 

21 1 -0.46 1.06 0.63 0.08-5.00  

Vaccination/ check up 1 0      

Presenting comp/ check 

up 

5 0      

Other 12 1 0.10 1.07 1.10 0.13-9.04  

Medication prescribed 

during most recent visit 

      0.5 

No 328 31     0.5* 

Yes 186 21 0.18 0.30 1.19 0.67-2.14  

Antibiotic prescribed 

during most recent visit 

      0.4 

No 416 40     0.5* 

Yes 95 12 0.27 0.35 1.31 0.66-2.60  

Length of prescription 

of antibiotic given at 

most recent visit 

      0.7 

One off prescription 5 1      

Up to 5 days 29 4 -0.37 1.22 0.69 0.06-7.51  

Up to 10 days 39 6 -0.26 1.18 0.77 0.08-7.77  

Up to 2 weeks 13 0      

Up to 3 weeks 3 1 0.51 1.59 1.67 0.07-37.73  

Over 3 weeks 2 0      

Don’t know 4 0      

None prescribed 416 40 -0.73 1.11 0.48 0.05-4.22  

Prescribed any 

antibiotic in previous 

three months 

      0.4 

No 363 33     0.4* 

Yes 159 19 0.27 0.30 1.31 0.73-2.38  

Received any veterinary 

treatment (excluding 

most recent visit)in the 

last three months 

      0.3 

No 282 32     0.4* 

Yes 229 19 -0.31 0.30 0.73 0.40-1.32  



220 

 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Medication prescribed 

in the last three months 

(excluding most recent 

visit) 

      0.3 

No 314 35     0.3* 

Yes 193 15 -0.36 0.32 0.70 0.37-1.31  

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      0.9 

No 395 39     0.9* 

Yes 97 10 0.04 0.37 1.04 0.50-2.17  

Length of prescription 

of antibiotic given in the 

last three months 

(excluding most recent 

visit) 

      0.9 

One off prescription 7 0      

Up to 5 days 29 3 Ref     

Up to 10 days 31 5 0.44 0.77 1.56 0.34-7.11  

Up to 2 weeks 16 1 -0.50 1.20 0.60 0.06-6.30  

Up to 3 weeks 5 0      

Over 3 weeks 6 1 0.48 1.24 1.61 0.14-18.26  

Don’t know 2 0      

None prescribed 395 39 0.05 0.63 0.95 0.28-3.28  

Left at veterinary 

premises 

      0.56 

No 387 39     0.8* 

Yes 42 3 -0.34 0.62 0.71 0.21-2.39  

Allowed close contact 

with other dogs during 

walks 

      0.5 

No 111 9     0.6* 

Yes 399 43 0.28 0.38 1.33 0.63-2.81  

Regular contact with 

wild or farm animals 

during walks 

      0.06 

No 392 34     0.09* 

Yes 117 18 0.57 0.31 1.77 0.97-3.26  

Allowed off lead during 

walks 

      0.2 

No 107 7     0.3* 

Yes 405 45 0.53 0.42 1.70 0.74-3.87  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Other dogs in household       0.02 

No 292 21     0.03* 

Yes 222 31 0.66 0.30 1.94 1.09-3.47  

Number of other dogs in 

household 

      <0.001 

0 292 21      

1 109 11 0.34 0.39 1.40 0.62-3.01  

2 46 5 0.41 0.52 1.51 0.54-4.21  

3 8 5 2.16 0.61 8.69 2.61-28.91  

4+ 12 4 1.53 0.62 4.63 1.38-15.62  

Other animals in 

household 

      0.001 

No 301 17     0.001* 

Yes 213 34 1.04 0.31 2.83 1.51-5.19  

Own a cat        <0.001 

No 390 26     <0.001* 

Yes 124 25 1.11 0.30 3.02 1.68-5.43  

Own a bird       0.7 

No 475 48     1.000* 

Yes 39 3 -0.27 0.62 0.76 0.23-2.56  

Own a  rabbit       0.3 

No 483 46     0.4* 

Yes 31 5 0.53 0.51 1.69 0.63-4.57  

Own a rodent       09 

No 477 47     0.8* 

Yes 37 4 927453.00 0.55 1.10 0.37-3.21  

Own a reptile or 

amphibian 

      1.0 

No 504 50     1.0* 

Yes 10 1 0.01 1.06 1.01 0.13-8.04  

Own a fish       0.2 

No 498 51     0.4* 

Yes 16 0      

Own  any other animal 

or livestock 

      0.005 

No 467 40     0.01* 

Yes 47 11 1.01 0.37 2.69 1.31-5.68  

Where the dog usually 

sleeps 

      0.2 

Outside 20 3      

Downstairs 264 30 -0.28 0.65 0.76 0.21-2.70  

Upstairs 209 16 -0.67 0.67 0.51 0.14-1.90  

Whole house 20 2 -0.41 0.97 0.67 0.10-4.43  

Outside and downstairs 1 1 1.90 1.54 6.67 0.32-137.41  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Anyone in the household 

work with farm animals 

      0.3 

No 473 46     0.3* 

Yes 39 6 0.46 0.46 1.58 0.64-3.94  

Anyone in the household 

taken antibiotics 

      0.9* 

No 429 43     1.0* 

Yes 85 8 -0.06 0.40 0.94 0.43-2.07  

Who took antibiotics       0.9 

No 46 4      

Yes 31 4 0.39 0.74 1.48 0.35-6.38  

No one/ not specified 482 43 0.14 0.55 1.16 0.40-3.34  

Anyone in the household 

work in healthcare 

      0.07 

No 369 31     0.08* 

Yes 147 21 0.53 0.30 1.70 0.95-3.06  

Healthcare setting       0.6 

Human 44 9      

Animal 100 12 -0.53 0.48 0.59 0.23-1.49  

Both 2 0      

Not specified 1 0      

Does not work in 

healthcare 

369 31 -0.89 0.41 0.41 0.18-0.92  

Anyone in the household 

attended hospital in last 

month 

      0.2 

No 373 42     0.3* 

Yes 142 10 -0.47 0.37 0.63 0.31-1.28  

Reason for hospital visit       0.4 

Admission 21 3      

Visit 18 0      

Outpatient/ A&E 101 7 -0.72 0.73 0.49 0.12-2.03  

Other/ not specified 2 0      

No attendance 373 42 -0.24 0.64 0.79 0.23-2.75  

Source of dog       0.02 

Breeder 244 35      

Rescue Kennel/ stray 121 5 -1.24 0.49 0.29 0.11-0.75  

Newspaper/ word of 

mouth/ internet 

43 1 -1.82 1.03 0.16 0.02-1.21  

Family/friend 78 5 -0.81 0.50 0.45 0.17-1.18  

Pet shop 5 0      

Other 14 2 0.00 0.78 1.00 0.22-4.57  

Self breed 10 3 0.74 0.68 2.09 0.55-7.97  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Fed tinned or packet wet 

food 

      0.9 

Yes 335 34     1.0* 

No 184 18 -0.04 0.31 0.96 0.53-1.75  

Fed dry mixer       0.01 

No 414 49     0.009* 

Yes 105 3 -1.42 0.60 0.24 0.07-0.79  

Fed dry complete       0.8 

No 123 13     0.9* 

Yes 396 39 -0.07 0.34 0.93 0.48-1.80  

Fed raw poultry meat       <0.001 

No 505 43     <0.001* 

Yes 14 9 2.02 0.46 7.55 3.09-18.45  

Fed cooked poultry 

meat 

      0.6 

No 416 40     0.6* 

Yes 103 12 0.19 0.35 1.21 0.61-2.39  

Fed raw red meat       08 

No 506 51     1.0* 

Yes 13 1 -0.27 1.05 0.76 0.10-5.95  

Fed cooked red meat       0.8 

No 503 50     0.7* 

Yes 16 2 0.23 0.76 1.26 0.28-5.63  

Sex       0.1 

Male 259 20     0.1* 

Female 263 32 0.45 0.30 1.58 0.88-2.83  
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Full univariable results for carriage of E. coli with resistance to ciprofloxacin 

Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

Age       0.2 

<1 54 2      

1 77 1 -1.05 1.24 0.35 0.03-3.97  

2 33 0      

3 39 2 0.33 1.02 1.38 0.19-10.26  

4 338 23 0.61 0.72 1.38 0.42-8.01  

Breed       0.1 

Pedigree 410 25     0.2* 

Cross 120 3 -0.89 0.62 0.41 0.12-1.38  

Breed Group       0.03 

Working 16 4      

Gundog 185 12 -1.35 0.63 0.26 0.07-0.90  

Hound 32 2 -1.39 0.92 0.25 0.04-1.51  

Terrier 55 1 -2.62 1.15 0.07 0.01-0.70  

Utility 27 3 -0.81 0.83 0.44 0.09-2.25  

Pastoral 40 2 -1.61 0.92 0.20 0.03-1.20  

Toy 34 1 -2.14 1.16 0.12 0.01-1.14  

Cross 120 3 -2.30 0.81 0.10 0.02-0.49  

Not specified 37 0      

Breed Size       0.03 

Small 71 2      

Medium  127 6 0.52 0.83 1.68 0.33-8.53  

Large 190 17 1.16 0.76 3.18 0.72-14.10  

Not specified 158 3 -0.39 0.92 0.67 0.11-4.12  

Neutered       0.5 

No 145 9     0.5* 

Yes 399 19 -0.27 0.42 0.77 0.34-1.73  

Working Dog       0.06 

No 488 22     0.07* 

Yes 43 5 0.95 0.52 2.58 0.93-7.15  

Given dog treats       0.3 

Never 31 2      

Rarely 85 8 0.38 0.82 1.46 0.29-7.25  

Sometimes 256 9 -0.61 0.80 0.54 0.11-2.64  

Often 164 9 -0.16 0.81 0.85 0.18-4.13  

Given titbits       0.03 

Never 57 3      

Rarely 173 3 -1.11 0.83 0.33 0.06-1.68  

Sometimes 231 14 0.14 0.65 1.15 0.32-4.14  

Often 71 8 0.76 0.70 2.14 0.54-8.44  
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Given dog treats       0.08 

Never/ rarely 116 10     0.1* 

Sometimes/ often 420 18 -0.70 0.41 0.50 0.22-1.11  

Given titbits       0.02 

Never/ rarely 230 6     0.03* 

Sometimes/ often 302 22 1.03 0.47 2.79 1.11-7.00  

Reason for visit       0.5 

Vaccination/ worming 207 6      

Presenting complaint 248 17 0.86 0.48 2.36 0.92-6.11  

Check up 22 2 1.14 0.85 3.14 0.60-16..49  

Work at clinic 17 2 1.40 0.85 4.06 0.76-21.67  

Vaccination/ presenting 

comp 
21 1 0.50 1.10 1.64 0.19-14.30  

Vaccination/ check up 1 0      

Presenting comp/ check 

up 
5 0      

Other 13 0      

Medication prescribed 

during most recent visit 
      0.1 

No 345 14     0.2* 

Yes 193 14 0.58 0.39 1.79 0.83-3.83  

Antibiotic prescribed 

during most recent visit 
      0.07 

No 437 19     0.08* 

Yes 98 9 0.75 0.42 2.11 0.93-4.81  

Length of prescription 

of antibiotic given at 

most recent visit 

      0.3 

One off prescription 6 0      

Up to 5 days 29 4 Ref     

Up to 10 days 42 3 -0.66 0.80 0.52 0.11-2.49  

Up to 2 weeks 11 2 0.28 0.94 1.32 0.21-8.25  

Up to 3 weeks 4 0      

Over 3 weeks 2  0      

Don’t know 4 0      

None prescribed 437 19 -1.15 0.58 0.32 0.10-0.99  

Prescribed any 

antibiotic in previous 

three months 

      0.03 

No 382 14     0.04* 

Yes 164 14 0.85 0.39 2.33 1.09-5.00 0.03 
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Received any 

veterinary treatment 

(excluding most recent 

visit)in the last three 

months 

      0.03 

No 304 10     0.03* 

Yes 230 18 0.87 0.40 2.38 1.08-5.25  

Medication prescribed 

in the last three months 

(excluding most recent 

visit) 

      0.002 

No 339 10     0.004* 

Yes 190 18 1.17 0.40 3.21 1.45-7.10  

Antibiotic prescribed 

in the last three months 

(excluding most recent 

visit) 

      0.008 

No 417 17     0.01* 

Yes 96 11 1.03 0.40 2.81 1.28-6.19  

Length of prescription 

of antibiotic given in 

the last three months 

(excluding most recent 

visit) 

      0.5 

One off prescription 7 0      

Up to 5 days 29 3 Ref     

Up to 10 days 30 6 0.66 0.75 1.93 0.44-8.47  

Up to 2 weeks 16 1 -0.50 1.20 0.60 0.06-6.30  

Up to 3 weeks 5 0      

Over 3 weeks 6 1 0.48 1.24 1.61 0.14-18.26  

Don’t know 3 0      

None prescribed 417 17 -0.93 0.66 0.39 0.11-1.42  

Left at veterinary 

premises 
      0.9 

No 408 18     1.0* 

Yes 43 2 0.05 0.76 1.05 0.24-4.70  

Allowed close contact 

with other dogs during 

walks 

      0.6 

No 113 7     0.6* 

Yes 422 20 -0.27 0.45 0.77 0.32-1.85  
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Regular contact with 

wild or farm animals 

during walks 

      0.2 

No 408 18     0.3* 

Yes 126 9 0.48 0.42 1.62 0.71-3.69  

Allowed off lead during 

walks 
      0.8 

No 109 5     1.0* 

Yes 427 23 0.16 0.50 1.17 0.44-3.16  

Other dogs in 

household 
      0.08 

No 302 11     0.1* 

Yes 236 17 0.68 0.40 1.97 0.91-4.30  

Number of other dogs 

in household 
      0.006 

0 302 11      

1 116 4 -0.05 0.59 0.95 0.30-3.03  

2 46 5 1.09 0.56 2.98 0.99-8.98  

3 11 2 1.91 0.83 4.99 0.99-25.28  

4+ 13 3 1.85 0.71 6.34 1.57-25.49  

Other animals in 

household 
306 12     0.2* 

No 232 15 0.50 0.40 1.65 0.76-3.59  

Yes        

Own a cat  402 14     0.01 

No 136 13 1.01 0.40 2.74 1.26-5.98  

Yes        

Own a bird 498 25     1.0* 

No 40 2 0.00 0.75 1.00 0.23-4.36  

Yes        

Own a  rabbit 504 25     0.7* 

No 34 2 0.17 0.76 1.19 0.27-5.22  

Yes        

Own a rodent 497 27     0.2* 

No 41 0      

Yes        

Own a reptile or 

amphibian 
      0.5 

No 528 26     0.4* 

Yes 10 1 0.71 1.07 2.03 0.25-16.47  

Own a fish       0.4 

No 517 27     1.0* 

Yes 16 0      



228 

 

Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Own  any other animal 

or livestock 
      0.4 

No 484 23     0.5* 

Yes 54 4 0.44 0.56 1.56 0.52-4.98  

Where the dog usually 

sleeps 
      0.1 

Outside 20 3      

Downstairs 281 13 -1.18 0.68 0.31 0.08-1.17  

Upstairs 216 9 -1.28 0.71 0.28 0.07-1.11  

Whole house 19 3 0.05 0.88 1.05 0.19-5.87  

Outside and downstairs 2 0      

Anyone in the 

household work with 

farm animals 

      0.05 

No 496 23     0.06* 

Yes 40 5 0.99 0.52 2.70 0.97-7.47  

Anyone in the 

household taken 

antibiotics 

      0.4 

No 447 25     0.6* 

Yes 90 3 -0.52 0.62 0.60 0.18-2.02  

Who took antibiotics       0.8 

No 48 2      

Yes 34 1 -0.35 1.25 0.71 0.06-8.10  

No one/ not specified 446 25 0.30 0.75 1.35 0.31-5.86  

Anyone in the 

household work in 

healthcare 

      0.8 

No 381 19     0.8* 

Yes 159 9 0.13 0.42 1.14 0.50-2.56  

Healthcare setting       1.0 

Human 50 3      

Animal 106 6 -0.06 0.73 0.94 0.23-3.93  

Both 2 0      

Not specified 1 0      

Does not work in 

healthcare 
381 19 -0.18 0.64 0.83 0.24-2.91  

Anyone in the 

household attended 

hospital in last month 

      0.8 

No 394 21     1.0* 

Yes 145 7 -0.10 0.45 0.91 0.38-2.18  
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Reason for hospital 

visit 
      1.0 

Admission 23 1      

Visit 17 1 0.30 1.45 1.35 0.08-23.20  

Outpatient/ A&E 103 5 0.11 1.12 1.12 0.12-10.02  

Other/ not specified 2 0      

No attendance 394 21 0.20 0.10 1.23 0.16-9.52  

Source of dog       0.09 

Breeder 264 15      

Rescue Kennel/ stray 121 5 -0.32 0.53 0.73 0.26-2.05  

Newspaper/ word of 

mouth/ internet 
42 2 -0.18 0.77 0.84 0.18-3.80  

Family/friend 81 2 -0.83 0.76 0.43 0.10-1.94  

Pet shop 5 0      

Other 15 1 0.16 1.07 1.17 0.15-9.49  

Self breed 10 3 1.66 0.71 5.28 1.31-21.22  

Fed tinned or packet 

wet food 
      0.1 

Yes 347 22     0.2* 

No 196 6 -0.73 0.47 0.48 0.19-1.21  

Fed dry mixer       0.5 

No 439 24     0.6* 

Yes 104 4 -0.35 0.55 0.70 0.24-2.07  

Fed dry complete       0.3 

No 127 9     0.4* 

Yes 416 19 -0.44 0.42 0.64 0.28-1.46  

Fed raw poultry meat       <0.001 

No 525 23     0.004* 

Yes 18 5 1.85 0.55 6.34 2.16-18.58  

Fed cooked poultry 

meat 
      0.8 

No 433 23     1.0* 

Yes 110 5 -0.16 0.50 0.86 0.32-2.30  

Fed raw red meat       0.4 

No 529 28     1.0* 

Yes 14 0      

Fed cooked red meat       0.9 

No 526 27     0.6* 

Yes 17 1 0.14 1.05 1.15 0.15-8.93  

Sex       0.03 

Male 271 8     0.03* 

Female 275 20 0.90 0.43 2.46 1.07-5.69  
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Full univariable results for carriage of E. coli with resistance to nalidixic acid 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Age       0.1 

<1 52 4      

1 75 3 -0.65 0.78 0.52 0.11-2.42  

2 33 0      

3 39 2 -0.41 0.89 0.37 0.12-3.83  

4 325 36 0.36 0.55 1.44 0.49-4.21  

Breed       0.3 

Pedigree 397 38     0.3* 

Cross 116 7 -0.46 0.42 0.63 0.27-1.45  

Breed Group       0.04 

Working 15 5      

Gundog 178 19 -1.14 0.57 0.32 0.10-0.98  

Hound 31 3 -1.24 0.80 0.29 0.06-1.38  

Terrier 55 1 -2.91 1.13 0.05 0.01-0.50  

Utility 27 3 -1.10 0.80 0.33 0.07-1.59  

Pastoral 38 4 -1.15 0.74 0.32 0.07-1.34  

Toy 32 3 -1.27 0.79 0.28 0.06-1.33  

Cross 116 7 -1.71 0.65 0.18 0.05-0.64  

Not specified 37 0      

Breed Size       0.04 

Small 69 4      

Medium  124 9 0.22 0.62 1.25 0.37-4.22  

Large 182 25 862681.00 0.56 2.37 0.80-7.6  

Not specified 154 7 -0.24 0.64 0.78 0.22-2.77  

Neutered       0.3 

No 139 15     0.3* 

Yes 388 30 -0.33 0.33 0.72 0.37-1.37  

Working Dog       0.003 

No 476 34     0.007* 

Yes 39 9 1.17 0.41 3.23 1.45-7.22  

Given dog treats       0.6 

Never 29 4      

Rarely 84 9 -0.25 0.64 0.78 0.22-2.71  

Sometimes 247 18 -0.64 0.59 0.53 0.17-1.67  

Often 159 14 -0.45 0.60 0.64 0.20-2.08  

Given titbits       0.1 

Never 57 3      

Rarely 167 9 0.02 0.68 1.02 0.27-3.91  

Sometimes 223 22 0.63 0.63 1.87 0.54-6.48  

Often 69 11 1.01 0.68 2.75 0.72-10.49  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Given dog treats       0.3 

Never/ rarely 113 13     0.3* 

Sometimes/ often 406 32 -0.38 0.35 0.69 0.35-1.35  

Given titbits       0.04 

Never/ rarely 224 12     0.04* 

Sometimes/ often 292 32 0.72 0.35 2.05 1.03-4.06  

Reason for visit       0.6 

Vaccination/ worming 201 12      

Presenting complaint 238 27 0.64 0.36 1.90 0.94-3.85  

Check up 22 2 0.42 0.80 1.52 0.32-7.25  

Work at clinic 17 2 0.68 0.80 1.97 0.41-9.54  

Vaccination/ presenting 

comp 
20 2 0.52 0.80 1.67 0.35-8.02  

Vaccination/ check up 1 0      

Presenting comp/ check 

up 
5 0      

Other 13 0      

Medication prescribed 

during most recent visit 
      0.02 

No 338 21     0.02* 

Yes 183 24 0.75 0.31 2.11 1.14-3.90  

Antibiotic prescribed 

during most recent visit 
      0.3 

No 423 33     0.3* 

Yes 96 11 0.38 0.37 1.47 0.72-3.01  

Length of prescription 

of antibiotic given at 

most recent visit 

      0.643 

One off prescription 6 0      

Up to 5 days 28 5 Ref     

Up to 10 days 41 4 -0.60 0.71 0.55 0.13-2.22  

Up to 2 weeks 11 2 0.02 0.91 1.02 0.17-6.05  

Up to 3 weeks 4 0      

Over 3 weeks 2 0      

Don’t know 4 0      

None prescribed 423 33 -0.83 0.52 0.44 0.16-1.21  

Prescribed any 

antibiotic in previous 

three months 

      0.2 

No 369 27     0.2* 

Yes 160 18 0.43 0.32 1.54 0.82-2.87  

Received any veterinary 

treatment (excluding 

most recent visit)in the 

last three months 

      0.3 
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

No 292 22     0.4* 

Yes 225 23 0.31 0.31 1.36 0.74-2.50   

        

Medication prescribed 

in the last three months 

(excluding most recent 

visit) 

      0.1 

No 326 23     0.1* 

Yes 186 22 0.52 0.31 1.66 0.91-3.09  

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      0.1 

No 403 32     0.1* 

Yes 94 13 0.55 0.35 1.74 0.88-3.44  

Length of prescription 

of antibiotic given in the 

last three months 

(excluding most recent 

visit) 

      0.02 

One off prescription 7 0      

Up to 5 days 29 3 Ref     

Up to 10 days 30 6 0.66 0.75 1.93 0.44-8.47  

Up to 2 weeks 16 1 -0.50 1.20 0.60 0.06-6.30  

Up to 3 weeks 5 0      

Over 3 weeks 4 3 1.98 0.98 7.25 1.07-49.03  

Don’t know 3 0      

None prescribed 402 32 -0.26 0.63 0.77 0.22-2.66  

Left at veterinary 

premises 
      0.7 

No 394 32     0.8* 

        

Allowed close contact 

with other dogs during 

walks 

      0.5 

No 109 11     0.6* 

Yes 409 33 -0.22 0.36 0.80 0.39-1.63  

Regular contact with 

wild or farm animals 

during walks 

      0.9 

No 393 33     0.9* 

Yes 124 11 0.05 0.36 1.06 0.52-2.15  

Allowed off lead during 

walks 
      0.7 

No 106 8     0.8* 
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Yes 413 37 0.17 0.40 1.19 0.54-2.62  

        

        

Other dogs in household       0.07 

No 294 19     0.09* 

Yes 227 26 0.57 0.31 1.77 0.96-3.28  

Number of other dogs in 

household 
      0.001 

0 294 19      

1 114 6 -0.21 0.48 0.81 0.32-2.09  

2 43 8 1.06 0.45 2.88 1.19-6.98  

3 10 3 1.54 0.70 4.64 1.18-18.29  

4+ 12 4 1.64 0.62 5.16 1.52-17.52  

Other animals in 

household 
      0.6 

No 295 23     0.6* 

Yes 226 221 0.18 0.31 1.19 0.64-2.21  

Own a cat        0.1 

No 388 28     0.2* 

Yes 133 16 0.51 0.33 1.67 0.87-3.18  

Own a bird       0.9 

No 482 41     1.0* 

Yes 39 3 -0.10 0.62 0.90 0.27-3.05  

Own a  rabbit       0.6 

No 487 42     1.0* 

Yes 34 2 -0.38 0.75 0.68 0.16-2.94  

Own a rodent       0.05 

No 48 44     0.06* 

Yes 41 0      

Own a reptile or 

amphibian 
      0.9 

No 511 43     0.6* 

Yes 10 1 0.05 1.06 1.05 0.13-8.41  

Own a fish       0.8 

No 506 43     1.0* 

Yes 15 1 -0.24 1.04 0.78 0.10-6.08  

Own  any other animal 

or livestock 
      0.4 

No 469 38     0.4* 

Yes 52 6 0.35 0.46 1.42 0.57-3.53  

Where the dog usually 

sleeps 
      0.4 

Outside 19 4      

Downstairs 273 21 1.01 0.59 0.37 0.11-1.17  

Upstairs 208 17 -0.95 0.61 0.39 0.12-1.27  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Whole house 19 3 -0.29 0.83 0.75 0.15-3.81  

Outside and downstairs 2 0      

        

Anyone in the household 

work with farm animals 
      0.2 

No 480 39     0.2* 

Yes 39 6 0.64 0.47 1.89 0.76-4.75  

Anyone in the household 

taken antibiotics 
      0.6 

No 433 39     0.7* 

Yes 87 6 -0.27 0.45 0.77 0.31-1.86 0 

Who took antibiotics       0.5 

No 45 5      

Yes 34 1 -1.33 1.12 0.26 0.03-2.37  

No one/ not specified 432 39 0.21 0.50 0.81 0.30-2.17  

Anyone in the household 

work in healthcare 
      0.8 

No 369 31     0.9* 

Yes 154 14 0.08 0.34 1.08 0.56-2.09  

Healthcare setting       0.7 

Human 47 6      

Animal 104 8 -0.51 0.57 0.60 0.20-1.83  

Both 2 0      

Not specified 1 0      

Does not work in 

healthcare 
369 31 -0.42 0.47 0.66 0.26-1.66  

Anyone in the household 

attended hospital in last 

month 

      0.5 

No 380 35     0.6* 

Yes 142 10 -0.27 0.37 0.76 0.37-1.58  

Reason for hospital visit       0.9 

Admission 22 2      

Visit 17 1 -0.44 1.27 0.65 0.05-7.75  

Outpatient/ A&E 101 7 -0.27 0.84 0.76 0.15-3.92  

Other/ not specified 2 0      

No attendance 380 35 0.01 0.76 1.01 0.23-4.49  

Source of dog       0.2 

Breeder 257 22      

Rescue Kennel/ stray 115 11 0.11 0.39 1.12 0.52-2.38  

Newspaper/ word of 

mouth/ internet 
42 2 -0.59 0.76 0.56 0.13-2.45  

Family/friend 80 3 -0.83 0.63 0.44 0.13-1.50  

Pet shop 4 1 1.02 1.14 2.92 0.31-27.27  

Other 14 2 0.51 0.79 1.67 0.36-782  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Self breed 10 3 1.25 0.69 3.50 0.90-13.68  

        

        

Fed tinned or packet 

wet food 
      0.5 

Yes 338 31     0.6* 

No 188 14 -0.21 0.33 0.81 0.42-1.56  

Fed dry mixer       0.3 

No 424 39     0.4* 

Yes 102 6 -0.45 0.45 0.64 0.26-1.55  

Fed dry complete       0.1 

No 121 15     0.1* 

Yes 405 30 -0.51 0.33 0.6 0.31-1.15  

Fed raw poultry meat       <0.001 

No 511 37     <0.001* 

Yes 15 8 2.00 0.47 7.37 2.93-18.5  

Fed cooked poultry 

meat 
      0.7 

No 419 37     0.8* 

Yes 107 8 -0.17 0.40 0.85 0.38-1.87  

Fed raw red meat       0.3 

No 512 45     0.6* 

Yes 14 0      

Fed cooked red meat       0.7 

No 509 44     1.0* 

Yes 17 1 -0.38 1.04 0.68 0.09-5.23 0.7 

Sex       0.01 

Male 265 14     0.02* 

Female 264 31 0.80 0.33 2.22 1.16-4.27  
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Full univariable results for carriage of E. coli with resistance to tetracycline 

Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

Age       0.9 

<1 39 17      

1 57 21 -0.17 0.39 0.85 0.40-10.80  

2 24 0 -0.15 0.49 0.86 0.33-2.23  

3 27 14 0.17 0.44 1.19 0.50-2.81  

4 253 108 -0.02 0.31 0.98 0.53-1.81  

Breed       0.1 

Pedigree 299 136     0.1* 

Cross 94 29 -0.39 0.24 0.68 0.43-1.08  

Breed Group       0.3 

Working 11 9      

Gundog 128 69 -0.42 0.47 0.66 0.26-1.67  

Hound 23 11 -0.54 0.58 0.58 0.19-1.82  

Terrier 43 13 -1.00 0.55 0.37 0.13-1.09  

Utility 22 8 -0.81 0.61 0.44 0.13-1.47  

Pastoral 31 11 -0.84 0.57 0.43 0.14-1.33  

Toy 25 10 -0.72 0.58 0.49 0.16-1.54  

Cross 94 29 -0.98 0.50 0.38 0.14-1.00  

Not specified 28 9 -0.93 0.59 0.39 0.12-1.25  

Breed Size       0.01 

Small 53 20      

Medium  100 33 -0.13 0.33 0.87 0.46-1.67  

Large 129 78 0.47 0.30 1.60 0.89-2.88  

Not specified 123 38 -0.20 0.32 0.82 0.44-1.54  

Neutered       0.2 

No 102 52     0.2* 

Yes 301 117 -0.27 0.20 0.76 0.51-1.13  

Working Dog       0.004 

No 366 144     0.008* 

Yes 25 23 0.85 0.31 2.34 1.29-4.25  

Given dog treats       0.2 

Never 18 15      

Rarely 65 28 -0.66 0.42 0.52 0.23-1.17  

Sometimes 186 79 -0.67 0.37 0.51 0.24-1.06  

Often 127 46 -0.83 0.39 0.43 0.20-0.93  

Given titbits       1.0 

Never 43 17      

Rarely 124 52 0.06 0.33 1.06 0.55-2.03  

Sometimes 171 74 0.09 0.32 1.09 0.59-2.04  

Often 57 22 -0.02 0.38 0.98 0.46-2.06  
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Given dog treats       0.2 

Never/ rarely 83 43     0.2* 

Sometimes/ often 313 125 -0.26 0.22 0.77 0.51-1.18  

Given titbits       0.9 

Never/ rarely 167 69     0.9* 

Sometimes/ often 228 96 0.02 0.19 1.02 0.71-1.47  

Reason for visit       0.2 

Vaccination/ worming 160 53      

Presenting complaint 182 83 0.32 0.21 1.38 0.92-2.06  

Check up 16 8 0.41 0.46 1.51 0.61-3.73  

Work at clinic 11 8 0.79 0.49 2.20 0.84-5.75  

Vaccination/ 

presenting comp 
11 11 1.10 0.45 3.02 1.24-7.36  

Vaccination/ check up 1 0      

Presenting comp/ 

check up 
4 1 -0.28 1.13 0.75 0.08-6.90  

Other 8 5 0.63 0.59 1.89 0.59-6.02  

Medication 

prescribed during 

most recent visit 

      0.3 

No 257 102     0.3* 

Yes 140 67 0.19 0.19 1.21 0.83-1.75  

Antibiotic prescribed 

during most recent 

visit 

      0.2 

No 326 130     0.2* 

Yes 70 37 0.28 0.23 1.33 0.85-2.07  

Length of 

prescription of 

antibiotic given at 

most recent visit 

      0.7 

One off prescription 5 1      

Up to 5 days 20 13 1.18 1.15 3.25 0.34-31.08  

Up to 10 days 30 15 0.92 1.14 2.50 0.27-23.36  

Up to 2 weeks 8 5 1.14 1.23 3.12 0.28-35.16  

Up to 3 weeks 2 2 1.61 1.48 5.00 0.27-91.52  

Over 3 weeks 2 0      

Don’t know 3 1 0.51 1.59 1.67 0.07-37.73  

None prescribed 326 130 0.69 1.10 1.99 0.23-17.23  

Prescribed any 

antibiotic in previous 

three months 

      0.02 

No 291 105     0.02* 
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

Yes 114 64 0.44 0.19 1.56 1.07-2.27  

Received any 

veterinary treatment 

(excluding most 

recent visit)in the last 

three months 

      0.1 

No 230 84     0.1* 

Yes 166 82 0.30 0.19 1.35 0.94-1.95  

Medication 

prescribed in the last 

three months 

(excluding most 

recent visit) 

      0.06 

No 256 93     0.07* 

Yes 137 71 0.36 0.19 1.43 0.98-2.07  

Antibiotic prescribed 

in the last three 

months (excluding 

most recent visit) 

      0.07 

No 314 120     0.08* 

Yes 68 39 0.41 0.23 1.50 0.96-2.35  

Length of 

prescription of 

antibiotic given in the 

last three months 

(excluding most 

recent visit) 

      0.09 

One off prescription 7 0      

Up to 5 days 18 14      

Up to 10 days 22 14 -0.20 0.49 0.82 0.31-2.15  

Up to 2 weeks 9 8 0.13 0.60 1.14 0.35-3.72  

Up to 3 weeks 3 2 -0.15 0.98 0.86 0.13-5.85  

Over 3 weeks 4 3 -0.04 0.84 0.96 0.18-5.03  

Don’t know 2 0      

None prescribed 314 120 -0.71 0.37 0.49 0.24-1.02  

Left at veterinary 

premises 
      0.3 

No 304 122     0.4* 

Yes 29 16 0.32 0.33 1.37 0.72-2.62  

Allowed close contact 

with other dogs 

during walks 

      0.8 

No 84 36     0.8* 

Yes 315 127 -0.06 0.23 0.94 0.60-1.46  
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Regular contact with 

wild or farm animals 

during walks 

      0.003 

No 315 111     0.005* 

Yes 82 53 0.61 0.21 1.83 1.22-2.76  

Allowed off lead 

during walks 
      0.09 

No 88 26     0.1* 

Yes 311 139 0.41 0.25 1.51 0.94-2.45  

Other dogs in 

household 
      0.02 

No 232 81     0.03* 

Yes 165 88 0.42 0.18 1.53 1.06-2.19  

Number of other dogs 

in household 
      0.02 

0 232 81      

1 82 38 0.28 0.23 1.33 0.84-2.10  

2 29 22 0.78 0.31 2.17 1.18-4.00  

3 5 8 1.52 0.58 4.58 1.46-14.41  

4+ 11 5 0.26 0.55 1.30 0.44-3.86  

Other animals in 

household 
      0.5 

No 227 91     0.5* 

Yes 170 77 0.12 0.19 1.13 0.79-1.62  

Own a cat        0.6 

No 295 121     0.6* 

Yes 102 47 0.12 0.21 1.12 0.75-1.68  

Own a bird       0.6 

No 366 157     0.7* 

Yes 31 11 -0.19 0.36 0.83 0.41-1.69  

Own a  rabbit       0.3 

No 369 160     0.4* 

Yes 28 8 -0.42 0.41 0.66 0.29-1.48  

Own a rodent       0.3 

No 365 159     0.3* 

Yes 32 9 -0.44 0.39 0.65 0.30-1.38  

Own a reptile or 

amphibian 
      0.2 

No 391 163     0.3* 

Yes 6 5 0.69 0.61 2.00 0.60-6.64  

Own a fish       0.04 

No 382 167     0.05* 

Yes 15 1 -1.88 1.04 0.15 0.02-1.16  
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Own  any other 

animal or livestock 
       0.04 

No 363 144     0.05* 

Yes 34 24 0.58 0.28 1.78 1.02-3.11  

Where the dog 

usually sleeps 
      0.4 

Outside 13 10      

Downstairs 202 92 -0.52 0.44 0.59 0.25-1.40  

Upstairs 166 59 -0.77 0.45 0.46 0.19-1.11  

Whole house 15 7 -0.50 0.62 0.61 0.18-2.05  

Outside and downstairs 1 1 0.26 1.48 1.30 0.07-23.43  

Anyone in the 

household work with 

farm animals 

      0.1 

No 368 151     0.1* 

Yes 27 18 0.49 0.32 1.62 0.87-3.0  

Anyone in the 

household taken 

antibiotics 

      0.6 

No 334 138     0.6* 

Yes 63 30 0.14 0.24 1.15 0.71-1.86  

Who took antibiotics       0.7 

No 33 17      

Yes 23 12 0.01 0.46 1.01 0.41-2.52  

No one/ not specified 333 138 -0.22 0.32 0.80 0.43-1.49  

Anyone in the 

household work in 

healthcare 

      0.3 

No 276 124     0.4* 

Yes 123 45 -0.21 0.21 0.81 0.54-1.22  

Healthcare setting       0.7 

Human 39 14      

Animal 81 31 0.06 0.38 1.07 0.51-2.23  

Both 2 0      

Not specified 1 0      

Does not work in 

healthcare 
276 124 0.22 0.33 1.25 0.66-2.39  

Anyone in the 

household attended 

hospital in last month 

      0.2 

No 285 130     0.2* 

Yes 113 39 -0.28 0.21 0.76 0.50-1.15  
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Reason for hospital 

visit 
      0.6 

Admission 17 7      

Visit 14 4 -0.37 0.72 0.69 0.17-2.86  

Outpatient/ A&E 81 27 -0.21 0.50 0.81 0.30-2.16  

Other/ not specified 1 1 0.88 1.48 2.43 0.13-44.50  

No attendance 285 130 0.10 0.46 1.11 0.45-2.74  

Source of dog       0.3 

Breeder 189 90      

Rescue Kennel/ stray 100 26 -0.61 0.25 0.55 0.33-0.92  

Newspaper/ word of 

mouth/ internet 
31 13 -0.13 0.35 0.88 0.44-1.76  

Family/friend 59 24 -0.16 0.27 0.85 0.50-1.46  

Pet shop 4 1 -0.64 1.13 0.53 0.06-4.77  

Other 10 6 0.23 0.53 1.26 0.44-3.57  

Self breed 8 5 0.27 0.58 1.31 0.42-4.13  

Fed tinned or packet 

wet food 
      0.4 

Yes 264 105     0.4* 

No 138 64 0.15 0.19 1.17 0.80-1.69  

Fed dry mixer       0.4 

No 322 141     0.4* 

Yes 80 28 -0.22 0.24 0.80 0.50-1.28  

Fed dry complete       0.1 

No 89 47     0.2* 

Yes 313 122 -0.30 0.30 0.74 0.49-1.11  

Fed raw poultry meat       0.004 

No 392 156     0.008* 

Yes 10 13 1.18 0.43 3.27 1.40-7.61  

Fed cooked poultry 

meat 
      0.6 

No 319 137     0.7* 

Yes 83 32 -0.11 0.23 0.90 0.57-1.41  

Fed raw red meat       0.3 

No 394 163     0.4 

Yes 8 6 0.59 0.58 1.81 0.62-5.31  

Fed cooked red meat       0.9 

No 389 164     1.0* 

Yes 13 5 -0.09 0.53 0.91 0.32-2.60  

Sex       0.6 

Male 200 79     0.6* 

Female 205 90 0.11 0.18 1.11 0.78-1.59  
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Full univariable results for carriage of E. coli with resistance to trimethoprim 

Variable - (n) + (n) Coefficient SE OR 95% CI 
P-

value 

Age       0.8 

<1 43 13      

1 61 17 -0.08 0.42 0.92 0.41-2.09  

2 28 5 -0.53 0.58 0.59 0.19-1.84  

3 30 11 0.19 0.47 1.21 0.48-3.07  

4 273 88 0.06 0.34 1.07 0.55-2.07  

Breed       0.7 

Pedigree 335 100     0.8* 

Cross 93 30 0.08 0.24 1.08 0.68-1.73  

Breed Group       0.5 

Working 13 7      

Gundog 144 53 -0.38 0.50 0.68 0.26-1.81  

Hound 27 7 -0.73 0.63 0.48 0.14-1.66  

Terrier 49 7 -1.33 0.62 0.27 0.08-0.89  

Utility 24 6 -0.77 0.65 0.46 0.13-1.67  

Pastoral 33 9 -0.68 0.60 0.51 0.16-1.64  

Toy 28 7 0.77 0.63 0.46 0.13-1.60  

Cross 93 30 -0.51 0.51 0.60 0.22-1.64  

Not specified 29 8 -0.67 0.62 0.51 0.15-1.71  

Breed Size       0.09 

Small 60 13      

Medium  109 24 0.02 0.38 1.02 0.48-2.14  

Large 148 59 0.61 0.34 1.84 0.94-3.60  

Not specified 123 38 0.35 0.36 1.43 0.71-2.85  

Neutered       0.5 

No 115 39     0.5* 

Yes 323 95 -0.14 0.22 0.87 0.56-1.33  

Working Dog       0.2 

No 396 114     0.2* 

Yes 33 15 0.46 0.33 1.58 0.83-3.01  

Given dog treats       0.2 

Never 21 12      

Rarely 68 25 -0.44 0.43 0.64 0.28-1.50  

Sometimes 203 62 -0.63 0.39 0.53 0.25-1.15  

Often 139 34 -0.85 0.41 0.43 0.19-0.95  

Given titbits       1.0 

Never 47 13      

Rarely 135 41 0.09 0.36 1.10 0.54-2.23  

Sometimes 186 59 0.14 0.35 1.15 0.58-2.26  
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Variable - (n) + (n) Coefficient SE OR 95% CI 
P-

value 

Often 59 20 0.20 0.41 1.23 0.55-2.72  

        

        

Given dog treats       0.08 

Never/ rarely 89 37     0.1* 

Sometimes/ often 342 96 -0.39 0.23 0.68 0.43-1.05  

Given titbits       0.7 

Never/ rarely 182 54     0.7* 

Sometimes/ often 245 79 0.08 0.20 1.09 0.73-1.61  

Reason for visit       0.2 

Vaccination/ worming 175 38      

Presenting complaint 196 69 0.48 0.23 1.62 1.04-2.53  

Check up 18 6 0.43 0.50 1.54 0.57-4.12  

Work at clinic 14 5 0.50 0.55 1.64 0.56-4.84  

Vaccination/ presenting 

comp 
13 9 1.16 0.47 3.19 1.27-8.00  

Vaccination/ check up 1 0      

Presenting comp/ check up 3 2 1.12 0.93 3.07 0.50-19.01  

Other 9 4 0.72 0.63 2.05 0.60-7.00  

Medication prescribed 

during most recent visit 
      0.3 

No 279 80     0.3* 

Yes 153 54 0.21 0.20 1.23 0.83-1.83  

Antibiotic prescribed 

during most recent visit 
      0.5 

No 351 105     0.5* 

Yes 79 28 0.17 0.25 1.18 0.73-1.92  

Length of prescription of 

antibiotic given at most 

recent visit 

      0.6 

One off prescription 5 1      

Up to 5 days 25 8 0.47 1.17 1.60 0.16-15.80  

Up to 10 days 33 12 0.60 1.15 1.82 0.19-17.19  

Up to 2 weeks 8 5 1.14 1.23 3.12 0.28-35.16  

Up to 3 weeks 2 2 1.61 1.48 5.00 0.27-91.52  

Over 3 weeks 2 0      

Don’t know 4 0      

None prescribed 351 105 0.40 1.10 1.50 0.17-12.94  

Prescribed any antibiotic 

in previous three months 
      0.2 

No 310 86     0.2* 

Yes 130 48 0.29 0.21 1.33 0.88-2.00  
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Variable - (n) + (n) Coefficient SE OR 95% CI 
P-

value 

        

        

        

Received any veterinary 

treatment (excluding 

most recent visit)in the 

last three months 

      0.1 

No 249 65     0.1* 

Yes 183 65 0.31 0.20 1.36 0.92-2.02  

Medication prescribed in 

the last three months 

(excluding most recent 

visit) 

      0.4 

No 272 77     0.5* 

Yes 156 52 0.16 0.21 1.18 0.79-1.76  

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      0.3 

No 336 98     0.4* 

Yes 78 29 0.24 0.25 1.27 0.79-2.06  

Length of prescription of 

antibiotic given in the 

last three months 

(excluding most recent 

visit) 

      0.3 

One off prescription 7 0      

Up to 5 days 24 8 Ref     

Up to 10 days 23 13 0.53 0.54 1.70 0.59-4.85  

Up to 2 weeks 12 5 0.22 0.67 1.25 0.34-4.65  

Up to 3 weeks 4 1 -0.29 1.19 0.75 0.07-7.73  

Over 3 weeks 4 3 0.81 0.87 2.25 0.41-12.28  

Don’t know 2 0      

None prescribed 336 98 -0.13 0.42 0.88 0.38-2.01  

Left at veterinary 

premises 
       0.7 

No 329 97     0.9* 

Yes 36 9 -0.16 0.39 0.85 0.39-1.82  

Allowed close contact 

with other dogs during 

walks 

      0.6 

No 94 26     0.6* 

Yes 336 106 0.13 0.25 1.14 0.70-1.85  
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Variable - (n) + (n) Coefficient SE OR 95% CI 
P-

value 

        

        

        

Regular contact with 

wild or farm animals 

during walks 

      0.05 

No 335 91     0.06* 

Yes 95 40 0.44 0.22 1.55 1.00-2.40  

Allowed off lead during 

walks 
      0.2 

No 93 21     0.2* 

Yes 339 111 0.37 0.27 1.45 0.86-2.44  

Other dogs in household       0.4 

No 243 70     0.4* 

Yes 189 64 0.16 0.20 1.18 0.80-1.73  

Number of other dogs in 

household 
      0.4 

0 243 70      

1 93 27 0.01 0.26 1.01 0.61-1.67  

2 39 12 0.07 0.36 1.07 0.53-2.15  

3 7 6 1.09 0.57 2.98 0.97-9.14  

4+ 11 5 0.46 0.56 1.58 0.53-4.69  

Other animals in 

household 
      0.06 

No 253 65     0.07* 

Yes 180 67 0.37 0.20 1.45 0.98-2.14  

Own a cat        0.1 

No 326 90     0.1* 

Yes 107 42 0.35 0.22 1.42 0.93-2.18  

Own a bird       0.4 

No 403 120     0.4* 

Yes 30 12 0.30 0.36 1.34 0.67-2.70  

Own a  rabbit       0.3 

No 408 121     0.3* 

Yes 25 11 0.39 0.38 1.48 0.71-3.10  

Own a rodent       0.5 

No 400 124     0.7* 

Yes 33 8 -0.25 0.41 0.78 0.35-1.74  

Own a reptile or 

amphibian 
      0.8 

No 425 129     0.7* 

Yes 8 3 0.21 0.68 1.24 0.32-4.73  

Own a fish       0.3 

No 419 130     0.4* 
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Variable - (n) + (n) Coefficient SE OR 95% CI 
P-

value 

Yes 14 2 -0.78 0.76 0.46 0.10-2.05  

        

        

Own  any other animal 

or livestock 
      0.3 

No 392 115     0.3* 

Yes 41 17 0.35 0.31 1.41 0.77-2.58  

Where the dog usually 

sleeps 
      0.7 

Outside 16 7      

Downstairs 222 72 -0.30 0.47 0.74 0.29-1.87  

Upstairs 177 48 -0.48 0.48 0.62 0.24-1.59  

Whole house 16 6 -0.15 0.66 0.86 0.24-3.12  

Outside and downstairs 1 1 0.83 1.49 2.29 0.12-41.99  

Anyone in the household 

work with farm animals 
      0.4 

No 398 121     0.5* 

Yes 32 13 0.29 0.34 1.34 0.68-2.63  

Anyone in the household 

taken antibiotics 
      1.0 

No 361 111     1.0* 

Yes 71 22 0.01 0.27 1.01 0.60-1.70  

Who took antibiotics       0.9 

No 38 12      

Yes 26 9 0.09 0.51 1.10 0.40-2.97  

No one/ not specified 360 111 -0.24 0.35 0.98 0.49-1.93  

Anyone in the household 

work in healthcare 
      0.6 

No 303 97     0.6* 

Yes 131 37 -0.13 0.22 0.88 0.57-1.36  

Healthcare setting       0.9 

Human 40 13      

Animal 88 24 -0.18 0.39 0.84 0.39-1.82  

Both 2 0      

Not specified 1 0      

Does not work in 

healthcare 
303 97 -0.02 0.34 0.99 0.51-1.92  

Anyone in the household 

attended hospital in last 

month 

      0.7 

No 315 100     0.7* 

Yes 118 34 -0.10 0.23 0.91 0.58-1.41  
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Variable - (n) + (n) Coefficient SE OR 95% CI 
P-

value 

        

        

        

Reason for hospital visit       0.8 

Admission 17 7      

Visit 14 4 -0.37 0.72 0.69 0.17-2.86  

Outpatient/ A&E 85 23 -0.42 0.51 0.66 0.24-1.77  

Other/ not specified 2 0      

No attendance 315 100 -0.26 0.46 0.77 0.31-1.91  

Source of dog       0.3 

Breeder 211 68      

Rescue Kennel/ stray 100 26 -0.21 0.26 0.81 0.48-1.34  

Newspaper/ word of 

mouth/ internet 
36 8 -0.37 0.41 0.69 0.31-1.56  

Family/friend 67 16 -0.30 0.31 0.74 0.40-1.36  

Pet shop 4 1 -0.25 1.13 0.78 0.09-7.06  

Other 9 7 0.88 0.52 2.41 0.87-6.73  

Self breed 8 5 0.66 0.59 1.94 0.61-6.13  

Fed tinned or packet wet 

food 
      0.5 

Yes 286 83     0.5* 

No 151 51 0.15 0.20 1.16 0.78-1.74  

Fed dry mixer       0.3 

No 350 113     0.3* 

Yes 87 21 -0.29 0.27 0.75 0.44-1.26  

Fed dry complete       0.6 

No 102 34     0.6* 

Yes 335 100 -0.11 0.23 0.90 0.57-1.40  

Fed raw poultry meat       0.005 

No 425 123     0.01* 

Yes 12 11 1.15 0.43 3.17 1.36-7.35  

Fed cooked poultry meat       0.3 

No 345 111     0.4* 

Yes 92 23 -0.25 0.26 0.78 0.47-1.29  

Fed raw red meat       0.6 

No 427 130     0.7* 

Yes 10 4 0.27 0.60 1.31 0.41-4.26  

Fed cooked red meat       0.5 

No 422 131     0.8* 

Yes 15 3 -0.44 0.64 0.64 0.18-2.26  

Sex       0.2 

Male 221 58     0.2* 

Female 219 76 0.28 0.20 1.32 0.90-1.95  
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Full univariable results for carriage of ESBL (TEM or CTX-M) producing E. coli 

Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

Age       0.2 

<1 53 3      

1 77 1 -1.47 1.14 0.23 0.02-2.27  

2 33 0      

3 41 0      

4 341 20 0.04 0.64 1.04 0.30-3.61  

Breed       0.2 

Pedigree 414 21     0.3* 

Cross 120 3 -0.71 0.63 0.49 0.14-1.68  

Breed Group       0.6 

Working 18 2      

Gundog 186 11 -0.63 0.81 0.53 0.11-2.59  

Hound 33 1 -1.30 1.26 0.27 0.02-3.22  

Terrier 54 2 -1.10 1.04 0.33 0.04-2.54  

Utility 28 2 -0.44 1.04 0.64 0.08-4.98  

Pastoral 41 1 -1.52 1.26 0.22 0.02-2.58  

Toy 33 2 -0.61 1.04 0.55 0.07-4.20  

Cross 120 3 -1.49 0.95 0.23 0.04-1.44  

Not specified 37 0      

Breed Size       0.2 

Small 71 2      

Medium  127 6 0.52 0.83 1.68 0.33-8.53  

Large 194 13 0.87 0.77 2.38 0.52-10.80  

Not specified 158 3 -0.39 0.92 0.67 0.11-4.12  

Neutered       0.2 

No 150 4     0.3* 

Yes 398 20 0.63 0.56 1.88 0.63-5.60  

Working Dog       1.0 

No 489 21     1.0* 

Yes 46 2 0.01 0.76 1.01 0.23-4.45  

Given dog treats       0.3 

Never 30 3      

Rarely 87 6 -0.37 0.74 0.69 0.16-2.93  

Sometimes 255 10 -0.94 0.69 0.39 0.10-1.50  

Often 168 5 -1.21 0.76 0.30 0.07-1.31  

Given titbits       0.5 

Never 56 4      

Rarely 167 9 -0.28 0.62 0.75 0.22-2.55  

Sometimes 238 7 -0.89 0.64 0.41 0.12-1.46  

Often 75 4 -0.29 0.73 0.75 0.18-3.12  
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Given dog treats       0.07 

Never/ rarely 117 9     0.08* 

Sometimes/ often 423 15 -0.77 0.43 0.46 0.20-1.08  

Given titbits       0.2 

Never/ rarely 223 13     0.3* 

Sometimes/ often 313 11 -0.51 0.42 0.60 0.27-1.37  

Reason for visit       0.2 

Vaccination/ worming 208 5      

Presenting complaint 250 15 0.91 0.52 2.50 0.89-6.98  

Check up 24 0      

Work at clinic 17 2 1.59 0.87 4.89 0.88-27.13  

Vaccination/ presenting 

comp 
22 0      

Vaccination/ check up 1 0      

Presenting comp/ check 

up 
4 1 2.34 1.21 10.40 

0.98-

110.59 
 

Other 12 1 1.24 1.13 3.47 0.37-32.06  

Medication prescribed 

during most recent 

visit 

      0.3 

No 346 13     0.4* 

Yes 196 11 0.40 0.42 1.49 0.66-3.40  

Antibiotic prescribed 

during most recent 

visit 

      0.07 

No 440 16     0.1* 

Yes 99 8 0.80 0.45 2.22 0.93-5.34  

Length of prescription 

of antibiotic given at 

most recent visit 

      0.2 

One off prescription 6 0      

Up to 5 days 32 1 REF     

Up to 10 days 40 5 1.39 1.12 4.00 0.44-35.98  

Up to 2 weeks 11 2 1.76 1.27 5.82 0.48-70.62  

Up to 3 weeks 4 0      

Over 3 weeks 2 0      

Don’t know 4 0      

None prescribed 440 16 0.15 1.05 1.16 0.15-9.06  

Prescribed any 

antibiotic in previous 

three months 

      0.01 

No 385 11     0.02* 

Yes 165 13 1.01 0.42 2.76 1.21-6.28  
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Received any 

veterinary treatment 

(excluding most recent 

visit)in the last three 

months 

      0.06 

No 306 8     0.08* 

Yes 234 14 0.83 0.45 2.29 0.94-5.55  

Medication prescribed 

in the last three 

months (excluding 

most recent visit) 

      0.06 

No 340 9     0.07* 

Yes 196 12 0.84 0.45 2.31 0.96-5.59  

Antibiotic prescribed 

in the last three 

months (excluding 

most recent visit) 

      0.03 

No 421 13     0.05* 

Yes 99 8 0.96 0.46 2.62 1.06-6.48  

Length of prescription 

of antibiotic given in 

the last three months 

(excluding most recent 

visit) 

      0.1 

One off prescription 7 0      

Up to 5 days 2 4 Ref     

Up to 10 days 34 2 -0.89 0.90 0.41 0.07-2.42  

Up to 2 weeks 15 2 -0.69 0.92 0.93 0.15-5.70  

Up to 3 weeks 5 0      

Over 3 weeks 7 0      

Don’t know 2 0      

None prescribed 421 13 -1.53 0.60 0.21 0.07-0.71  

Left at veterinary 

premises 
      0.8 

No 410 16     0.7* 

Yes 43 2 0.18 0.77 1.19 0.27-5.36  

Allowed close contact 

with other dogs during 

walks 

      0.1 

No 112 8     0.2* 

Yes 426 16 -0.64 0.45 0.53 0.22-1.26  
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Regular contact with 

wild or farm animals 

during walks 

      0.7 

No 407 19     0.8* 

Yes 130 5 -0.19 0.51 0.82 0.30-2.25  

Allowed off lead 

during walks 
      0.2 

No 107 7     0.3* 

Yes 434 16 -0.57 0.47 0.56 0.23-1.40  

Other dogs in 

household 
      0.6 

No 301 12     0.7* 

Yes 241 12 0.22 0.42 1.25 0.55-2.83  

Number of other dogs 

in household 
      0.005 

0 301 12      

1 117 3 -0.44 0.65 0.60 0.18-2.32  

2 49 2 0.02 0.78 1.02 0.22-4.71  

3 10 3 2.02 0.72 7.52 1.83-30.93  

4+ 14 2 1.28 0.81 3.58 0.73-17.57  

Other animals in 

household 
      0.4 

No 307 11     0.5* 

Yes 235 12 0.35 0.43 1.43 0.62-3.29  

Own a cat        0.02 

No 404 12     0.03* 

Yes 138 11 0.99 0.43 2.68 1.16-6.22  

Own a bird       0.8 

No 502 21     0.7* 

Yes 40 2 0.18 0.76 1.20 0.27-5.28  

Own a  rabbit       0.6 

No 508 21     0.67* 

Yes 34 2 0.35 0.76 1.42 0.32-6.32  

Own a rodent       0.2 

No 501 23     0.4* 

Yes 41 0      

Own a reptile or 

amphibian 
      0.5 

No 531 23     1.0* 

Yes 11 0      

Own a fish       0.4 

No 526 23     1.0* 

Yes 16 0      
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Own  any other animal 

or livestock 
      0.3 

No 485 22     0.5* 

Yes 57 1 -0.95 1.03 0.39 0.05-2.92  

Where the dog usually 

sleeps 
      0.5 

Outside 23 0      

Downstairs 279 15 Ref     

Upstairs 218 7 -0.52 0.47 0.60 0.24-1.49  

Whole house 20 2 0.62 0.79 1.86 0.40-8.71  

Outside and downstairs 2 0      

Anyone in the 

household work with 

farm animals 

      0.1 

No 499 20     0.1* 

Yes 41 4 0.89 0.57 2.43 0.79-7.46  

Anyone in the 

household taken 

antibiotics 

      0.6 

No 451 21     0.8* 

Yes 90 3 -0.33 0.63 0.72 0.21-2.45  

Who took antibiotics       0.6 

Family member  49 1      

Pet 33 2 1.09 1.25 2.97 0.26-34.09  

No one/ not specified 450 21 0.83 1.03 2.29 0.30-17.37  

Anyone in the 

household work in 

healthcare 

      1.0 

No 383 17     1.0* 

Yes 161 7 -0.21 0.46 0.98 0.40-2.41  

Healthcare setting       1.0 

Human 51 2      

Animal 107 5 0.18 0.85 1.19 0.22-6.35  

Both 2 0      

Not specified 1 0      

Does not work in 

healthcare 
383 17 0.12 0.76 1.13 0.25-5.04  

Anyone in the 

household attended 

hospital in last month 

      0.5 

No 399 16     0.5* 

Yes 144 8 0.33 0.44 1.39 0.58-3.31  
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Variable 
- 

(n) 

+ 

(n) 
Coefficient SE OR 95% CI P-value 

        

Reason for hospital 

visit 
      0.9 

Admission 23 1      

Visit 17 1 0.30 1.45 1.35 0.08-23.20  

Outpatient/ A&E 102 6 0.30 1.10 1.35 0.16-11.79  

Other/ not specified 2 0      

No attendance 399 16 -0.08 1.05 0.92 0.12-7.26  

Source of dog       0.4 

Breeder 265 14      

Rescue Kennel/ stray 123 3 -0.77 0.65 0.46 0.13-1.64  

Newspaper/ word of 

mouth/ internet 
43 1 -0.82 1.05 0.44 0.06-3.43  

Family/friend 80 3 -0.34 0.65 0.71 0.20-2.53  

Pet shop 5 0      

Other 15 1 0.23 1.07 1.26 0.16-10.25  

Self breed 11 2 1.24 0.82 3.44 0.70-17.04  

Fed tinned or packet 

wet food 
      0.5 

Yes 352 17     0.7* 

No 195 7 -0.30 0.46 0.74 0.30-1.82  

Fed dry mixer       0.4 

No 442 21     0.6* 

Yes 105 3 -0.51 0.63 0.60 0.18-2.05  

Fed dry complete       0.5 

No 129 7     0.6* 

Yes 418 17 -0.29 0.46 0.75 0.30-1.85  

Fed raw poultry meat       <0.001 

No 530 18     <0.001* 

Yes 17 6 2.34 0.53 10.39 3.66-29.48  

Fed cooked poultry 

meat 
      0.9 

No 437 19     1.0* 

Yes 110 5 0.04 513820.00 1.05 0.38-2.86  

Fed raw red meat       0.4 

No 533 24     1.0* 

Yes 14 0      

Fed cooked red meat       0.4 

No 529 24     1.0* 

Yes 18 0      

Sex       0.9 

Male 267 12     1.0* 

Female 283 12 -0.06 0.42 0.94 0.42-2.14  
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Full univariable results for carriage of AmpC β-lactamase producing E. coli 

Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Age       0.5 

<1 51 5 0     

1 73 5 -0.36 0.66 0.70 0.19-2.54  

2 33 0      

3 39 2 -0.65 0.86 0.52 0.10-2.84  

4 333 28 -0.15 0.51 0.86 0.32-2.32  

Breed       0.4 

Pedigree 404 31 0    0.5* 

Cross 117 6 -0.40 0.46 0.67 0.27-1.64  

Breed Group       0.4 

Working 20 0      

Gundog 181 16 0     

Hound 32 2 -0.35 0.77 0.71 0.16-3.22  

Terrier 50 6 0.31 0.50 1.36 0.50-3.65  

Utility 28 2 -0.21 0.78 0.81 0.18-3.71  

Pastoral 38 4 0.17 0.59 1.19 0.38-3.76  

Toy 35 0      

Cross 117 6 -0.54 0.49 0.58 0.22-1.53  

Not specified 33 4 0.32 0.59 1.37 0.43-4.36  

Breed Size       0.8 

Small 68 5 0     

Medium  125 8 -0.14 0.59 0.87 0.27-2.76  

Large 190 17 0.20 0.53 1.22 0.43-3.43  

Not specified 151 10 -0.10 0.57 0.90 0.30-2.74  

Neutered       0.02 

No 137 17 0    0.03* 

Yes 395 23 -0.76 0.00 0.47 0.24-0.90  

Working Dog       0.8 

No 473 37 0    1.0* 

Yes 45 3 -0.16 0.62 0.85 0.25-2.87 0.8 

Given dog treats       0.7 

Never 32 1 0     

Rarely 88 5 0.60 1.11 1.82 0.20-16.16  

Sometimes 245 20 0.96 1.04 2.61 0.34-20.13  

Often 159 14 1.04 1.05 2.82 0.36-22.20  

Given titbits       0.05 

Never 52 8 0     

Rarely 170 6 -1.47 0.56 0.23 0.08-0.69  

Sometimes 226 19 -0.60 0.45 0.55 0.23-1.32  

Often 72 7 -0.46 0.55 0.63 0.22-1.85  

Given dog treats       0.2 

Never/ rarely 120 6 0    0.3* 
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

Sometimes/ often 404 34 0.52 0.45 1.68 0.69-4.10  

Given titbits       0.3 

Never/ rarely 222 14 0    0.4* 

Sometimes/ often 298 26 0.32 0.34 1.38 0.71-2.71 0 

Reason for visit       0.5 

Vaccination/ worming 202 11 0     

Presenting complaint 241 24 0.60 0.38 1.83 0.87-3.82  

Check up 22 2 0.51 0.80 1.67 0.35-8.02  

Work at clinic 19 0      

Vaccination/ presenting 

comp 
20 2 0.61 0.90 1.84 0.38-8.87  

Vaccination/ check up 1 0      

Presenting comp/ check 

up 
4 1 1.52 1.16 4.59 0.47-44.61  

Other 13 0      

Medication prescribed 

during most recent visit 
      <0.001 

No 346 13 0    <0.001* 

Yes 180 27 1.38 0.35 3.99 2.01-7.93  

Antibiotic prescribed 

during most recent visit 
      <0.001 

No 433 23 0    <0.001* 

Yes 90 17 1.27 0.34 3.56 1.83-6.93  

Length of prescription 

of antibiotic given at 

most recent visit 

      <0.001 

One off prescription 5 1 0     

Up to 5 days 28 5 -0.11 1.20 0.89 0.09-9.35  

Up to 10 days 39 6 -0.26 1.18 0.77 0.08-7.77  

Up to 2 weeks 11 2 0.10 1.34 0.91 0.07-12.52  

Up to 3 weeks 2 2 1.61 1.48 5.00 0.27-91.52  

Over 3 weeks 1 1 1.61 1.79 5.00 0.15-166.60  

Don’t know 4 0      

None prescribed 433 23 -1.33 1.12 0.27 0.03-2.37  

Prescribed any 

antibiotic in previous 

three months 

      <0.001 

No 383 13 0    <0.001* 

Yes 151 27 1.66 0.35 5.27 2.65-10.48  

Received any veterinary 

treatment (excluding 

most recent visit)in the 

last three months 

      0.007 

No 333 16 0    0.009* 

Yes 186 22 0.95 0.35 2.60 1.30-5.19  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Medication prescribed 

in the last three months 

(excluding most recent 

visit) 

      0.007 

No 333 16 0    0.009* 

Yes 186 22 0.90 0.34 2.46 1.26-4.80  

Antibiotic prescribed in 

the last three months 

(excluding most recent 

visit) 

      <0.001 

No 416 18 0    <0.001* 

Yes 88 19 1.61 0.35 4.99 2.52-9.89  

Length of prescription 

of antibiotic given in the 

last three months 

(excluding most recent 

visit) 

      <0.001 

One off prescription 7 0      

Up to 5 days 27 5 0     

Up to 10 days 30 6 0.08 0.66 1.08 0.30-3.95  

Up to 2 weeks 11 6 1.08 0.70 2.95 0.74-11.69  

Up to 3 weeks 4 1 0.30 1.22 1.35 0.12-14.73  

Over 3 weeks 7 0      

Don’t know 2 0      

None prescribed 416 18 -1.45 0.54 0.23 0.08-0.68  

Left at veterinary 

premises 
      0.5 

No 400 26 0    0.5* 

Yes 41 4 0.41 0.56 1.50 0.50-4.51  

Allowed close contact 

with other dogs during 

walks 

      0.3 

No 109 11 0    0.3* 

Yes 414 28 -0.40 0.37 0.67 0.32-1.39  

Regular contact with 

wild or farm animals 

during walks 

      0.9 

No 396 30 0    1.0* 

Yes 126 9 -0.06 0.39 0.94 0.44-2.04  

Allowed off lead during 

walks 
      0.7 

No 107 7 0    0.8* 

Yes 418 32 0.16 0.43 1.17 0.50-2.72  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Other dogs in household       0.1 

No 286 27 0    0.1* 

Yes 240 13 -0.56 0.35 0.57 0.29-1.14  

Number of other dogs in 

household 
      0.3 

0 286 27 0     

1 114 6 -0.58 0.46 0.56 0.22-1.39  

2 46 5 0.14 0.51 1.15 0.42-3.14  

3 13 0      

4+ 16 0      

Other animals in 

household 
      0.03 

No 289 29 0    0.03* 

Yes 236 11 0.77 0.36 0.46 0.23-0.95  

Own a cat        0.2 

No 383 33 0    0.3* 

Yes 142 7 -0.56 0.43 0.57 0.25-1.32  

Own a bird       0.2 

No 484 39 0    0.3* 

Yes 41 1 -1.20 1.03 0.3 0.04-2.26  

Own a  rabbit       0.3 

No 490 39 0    0.5* 

Yes 35 1 -1.02 1.03 0.36 0.05-2.69  

Own a rodent       0.2 

No 485 39 0    0.3* 

Yes 40 1 -1.17 1.03 0.31 0.04-2.32  

Own a reptile or 

amphibian 
      0.4 

No 514 40     1.0* 

Yes 11 0      

Own a fish       0.3 

No 509 40     0.6* 

Yes 16 0      

Own  any other animal 

or livestock 
      0.3 

No 469 38 0    0.4 

Yes 56 2 -0.82 0.74 0.44 0.10-1.88  

Where the dog usually 

sleeps 
      0.8 

Outside 21 2 0     

Downstairs 274 20 -0.27 0.78 0.77 0.17-3.50  

Upstairs 210 15 -0.29 0.79 0.75 0.16-3.51  

Whole house 19 3 0.51 0.97 1.66 0.25-11.02  

Outside and downstairs 2 0      
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Anyone in the household 

work with farm animals 
      0.2 

No 480 39 0    0.4* 

Yes 44 1 -1.27 1.02 0.28 0.04-2.09  

Anyone in the household 

taken antibiotics 
      0.5 

No 437 35 0    0.7* 

Yes 88 5 -0.34 0.49 0.71 0.27-1.86  

Who took antibiotics       0.6 

Family member 48 2 0     

Pet 32 3 0.81 0.94 2.25 0.36-14.23  

No one/ not specified 436 35 0.66 0.74 1.92 0.45-8.26  

Anyone in the household 

work in healthcare 
      0.5 

No 370 30 0    0.6* 

Yes 158 10 -0.25 0.38 0.78 0.37-1.64  

Healthcare setting       0.9 

Human 49 4 0     

Animal 106 6 -0.37 0.67 0.69 0.19-2.57  

Both 2 0      

Not specified 1 0      

Does not work in 

healthcare 
370 30 -0.01 0.55 0.99 0.34-2.94  

Anyone in the household 

attended hospital in last 

month 

      0.5 

No 384 31 0    0.6* 

Yes 143 9 -0.25 0.39 0.78 0.36-1.68  

Reason for hospital visit       1.0 

Admission 23 1 0     

Visit 17 1 0.30 1.45 1.35 0.08-23.20  

Outpatient/ A&E 101 7 0.47 1.09 1.59 0.19-13.60  

Other/ not specified 2 0      

No attendance 384 31 0.62 1.04 1.86 0.24-14.21  

Source of dog       0.6 

Breeder 258 21 0     

Rescue Kennel/ stray 118 8 -0.18 0.43 0.83 0.36-1.94  

Newspaper/ word of 

mouth/ internet 
41 3 -0.11 0.64 0.90 0.26-3.15  

Family/friend 80 3 -0.77 0.63 0.46 0.13-1.58  

Pet shop 5 0      

Other 14 2 0.56 0.79 1.76 0.37-8.24  

Self breed 11 2 0.80 0.80 2.23 0.46-10.75  
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Variable - (n) + (n) Coefficient SE OR 95% CI P-value 

        

Fed tinned or packet wet 

food 
      1.00 

Yes 343 26 0    1.0* 

No 188 14 -0.02 0.34 0.98 0.50-1.93  

Fed dry mixer       0.5 

No 432 31 0    0.5* 

Yes 99 9 0.24 0.39 1.27 0.58-2.75  

Fed dry complete       0.6 

No 125 11 0    0.6* 

Yes 406 29 -0.21 0.37 0.81 0.39-1.67  

Fed raw poultry meat       0.2 

No 508 40     0.4* 

Yes 23 0      

Fed cooked poultry 

meat 
      0.7 

No 425 31 0    0.7* 

Yes 106 9 0.15 0.39 1.16 0.54-2.52  

Fed raw red meat       0.3 

No 519 38 0    0.3* 

Yes 12 2 0.82 0.78 2.28 0.49-10.54  

Fed cooked red meat       0.1 

No 516 37 0    0.1* 

Yes 15 3 1.03 0.65 2.79 0.77-10.07  

Sex       0.1 

Male 255 24 0    0.1* 

Female 279 16 -0.50 0.33 0.61 0.32-1.17  
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Appendix Four 

Published paper - Wedley, A. L., T. W. Maddox, C. Westgarth, K. P. Coyne, G. L. 

Pinchbeck, N. J. Williams and S. Dawson (2011).  

Prevalence of antimicrobial-resistant Escherichia coli in dogs in a cross-sectional, 

community-based study. 

Veterinary Record 168(13): 354. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




