
Fragment based drug discovery for SOD1-ALS 

and 

solution X-ray scattering studies on the copper 

chaperone for SOD1 (hCCS) and its functional 

complexes with SOD1

Thesis submitted in accordance with the requirements of the University of Liverpool

 for the degree of Doctor in Philosophy

by

Gareth Wright

November 2011



Amyotrophic lateral sclerosis (ALS) is a fatal disease of the nervous system. The majority 

of  ALS  cases  are  have  no  attributable  genetic  link,  however  approximately  10%  are 

familial and 20 % of these result from mutations in the SOD1 gene. How SOD1 mutation 

manifests as the ALS phenotype is not clear however the enzyme does gain an aggregative 

property characterised by SOD1 inclusions in the brain and spinal cord. Drug treatment for 

sporadic  and  familial  ALS is  currently limited  to  palliatives  and  there  is  currently no 

specific treatment for SOD1 mediated ALS. In order to find molecules that may be of use 

in the development of SOD1 therapeutics a crystallographic screening pipeline was set up 

to assess binding of small molecules to both wild-type and SOD1 mutants.

Using in silico studies and previous crystallographic work as a starting point, this method 

revealed several low molecular weight compounds (Mr 183 – 310 gMol-1) that have SOD1 

binding  activity.  These  molecules  belong  to  three  distinct  classes:  catecholamine, 

quinazoline and fluorouridine and occupy two distinct binding sites on the surface of the 

SOD1 β-barrel in an area known to be important in disease pathogenesis.

The incorporation of copper into biological macromolecules such as SOD1 is essential for 

the viability of most organisms. However, copper is toxic and therefore the intracellular 

free copper  concentration is  kept  to  an absolute  minimum. The Copper  Chaperone for 

SOD1 (CCS) is the major pathway for SOD1 copper loading and transfer of an intrasubunit 

disulphide bond known to stabilise SOD1.

Using small angle X-ray scattering combined with online size exclusion chromatography 

high quality data were acquired for both homodimeric hCCS and the functionally critical 

hCCS-SOD1 heterodimer.  SAXS measurements were made of the hCCS complex with 

wild-type SOD1 and the disease relevant L38V and I113T SOD1 mutants. A rigid body 

modelling approach enabled exploration of the conformational dynamics of each species. 

Homodimeric  hCCS  is  found  to  adopt  positions  that  would  facilitate  initial  copper 

acquisition and transfer from domain I to domain III.  This domain III is also found in 

positions that would allow disulphide and copper transfer to SOD1 in the heterodimeric 

complex. The hCCS-I113T SOD1 complex has characteristics which are convergent with a 

view of ALS initiated by improperly matured SOD1.
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Chapter I 

ALS, SOD1 and drug development

1.1 Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is an idiopathic neuropathy of humans characterised 

by death of the upper and lower motor neurons leading to muscle atrophy, paralysis and 

death 1. ALS has an incidence of 3.0 and 2.4 per 100,000 person years for men and women 

respectively in Europe 2. This is reflected in other population registries where information 

is  available 3 and  equates  to  approximately  a  1  in  500  probability  of  an  individual 

developing ALS over their life span. These figures can be compared with those pertaining 

to multiple sclerosis 4.2 per 100,000, Parkinson's disease 14 per 100,00 4 and Alzheimer's 

disease 750 per 100,000 5.

Symptoms that give rise to initial presentation are varied but can be divided roughly into 

bulbar onset and limb onset. Bulbar onset effects 42% 6 of patients and is characterised by 

dysarthria,  dysphagia or sialorrhoea  7. Limb onset ALS is seen in 58% 6 of cases and is 

associated with muscle weakness or atrophy, fasciculations and cramps 7. A small minority 

of patients present initially with respiratory weakness not associated with bulbar or limb 

symptoms  8. As the disease progresses fatigue and reduced activity become  common  9. 

Malnutrition and sialorrhoea,  arising from an inability to swallow, together with reduced 

respiratory function and uncontrolled expression of emotion  10 are observed in the later 

stages. Death usually arises from respiratory failure often associated with pneumonia 11.

ALS is inexorably progressive with 70 - 80% of patients dying within 5 years of the onset 

of symptoms 6. Although there is a slight preponderance of ALS in men rather than women 

its occurrence is largely unpredictable. Approximately 90% of ALS cases are sporadic and 

have no clearly attributable cause 12.
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1.2 Familial Amyotrophic Lateral Sclerosis and associated proteins

The remaining 10% of ALS cases have a genetic link with one of several susceptibility loci 

that have varying degrees of genetic penetrance and resultant disease severity 13. A small 

number of familial amyotrophic lateral sclerosis (fALS) cases have been observed to show 

an autosomal recessive inheritance pattern 14,15 but the majority are autosomal dominant 16-

18.

While 13 ALS loci have been discovered only 6 have a substantive pathological connection 

with known proteins. Alsin is a GTPase regulator encoded by the ALS2 gene at position 

q33 on chomosome 2 and is responsible for an early onset, recessive form of ALS resulting 

from C-terminal truncation  14,19 . The SEXT gene at 9q34 encodes the senataxin protein, 

several mutations in which have been found to determine an early onset form of ALS with 

slow disease progression  16. Mutations in the OPTN gene at locus 10p15 which encodes 

optineurin, previously implicated in open angle glaucoma, have been associated with an 

autosomal dominant ALS characterised by late onset 20. Similarly, two point mutations in 

the  VAPB  locus  at  20q13  have  been  discovered  to  be  responsible  for  an  autosomal 

dominant atypical form of ALS associated with adult onset spinal muscular atrophy 21,22.

TDP-43 (Tar  DNA Binding Protein-43)  and FUS (Fused In Sarcoma)  are  nucleic  acid 

binding  proteins  coded  for  at  loci  at  chromosomal  locations  1p36  23 and  16p11  24 

respectively.  Both  of  these  proteins  were  first  identified  through  implications  in  other 

diseases. The FUS locus was found to undergo a translocation in liposarcoma tumours that 

created a  chimeric  protein together  with the transcription regulator  CHOP  24.  Ou et  al 

discovered that TDP-43 binds to and represses transcription from the HIV long terminal 

repeat  sequence  TAR  25.  Autozygosity  mapping  subsequently  uncovered  a  direct 

connection between mutation of these two protein and fALS 18,26. Interestingly, TDP-43 had 

previously been observed to form a major component of intracellular inclusions found in 

the  brain  and  spinal  cord  of  patients  with  sporadic  ALS  and  frontotemporal  lobar 

degeneration 27. Mutations in the TDP-43 sequence were also found in cases of sALS 18.
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1.3 SOD1 genetics

Approximately 20% of familial ALS cases are associated with mutations in the superoxide 

dismutase-1  (SOD1)  encoding  gene  found  on  chromosome  21  at  location  q22.1  17. 

Mutation in the SOD1 gene therefore accounts for 1 – 2% of all ALS cases which is the 

highest proportion of any of the known causative genetic elements.

To  date  there  are  159  documented  ALS  causing  SOD1  mutations  28.  An  affected 

individual's life expectancy after initial onset of symptoms is defined, to a large extent, by 

the mutation 29,30. These mutations are diverse in nature and include amino acid deletion 31 

and insertion 32, deletion of base pairs in the 3' untranslated region 33, premature truncation 
34 and amino acid  substitution  17, the latter of which is by far the most common. These 

mutations are for the most part dominantly inherited 17 with individuals heterozygous for 

the pathogenic mutation. However, homozygous sufferers have been observed indicating a 

possible recessive inheritance pattern  35,36 which, surprisingly, in one case was associated 

with a juvenile onset and rapid disease progression 35.

1.4 Superoxide and SOD1 catalytic function

The existence of the superoxide radical (O2
-) was first postulated by Linus Pauling in 1931 

as an aside to  his work on the quantum mechanics of the chemical bond 37. It is produced 

in  vivo as  a  result  of  the  aberrant  univalent  reduction  of  dioxygen  by leaky electron 

transport in mitochondrial oxidative phosphorylation 38. Superoxide is easily converted into 

the highly toxic hydroxyl radical (•OH) and peroxynitrite (ONOO-). Up to 2% of electrons 

passing through the electron transport chain are lost to the environment so reactive oxygen 

species,  including superoxide,  would quickly render  the cell  dysfunctional  and lead  to 

necrosis  without  a  neutralisation  strategy.  The  superoxide  dismutase  class  of  enzymes 

catalyse  the  dismutation  of  superoxide  to  dioxygen  and hydrogen  peroxide  39 and  are 

employed to deal with this toxic threat.

Human SOD1 (EC 1.15.1.1) when fully mature contains one copper and one zinc ion per 

monomer 40. The redox potential of copper in the SOD1 active site enables it to efficiently 

catalyse the dismutation of the superoxide radical to dioxygen and hydrogen peroxide by 

cycling back and forth between the Cu(I) and Cu(II) oxidation states according to the two 
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step reaction 39:

O2
- + Cu2+ZnSOD → O2 + Cu1+ZnSOD

O2
- + Cu1+ZnSOD +2H+ → H2O2 + Cu2+ZnSOD

This  reaction is  very efficient  and proceeds  at  almost  the  diffusional  limit  with a  rate 

constant of 109 M-1 s-1 41 as opposed to spontaneous dismutation which operates at 105 M-1 

s-1 42.

SOD1 is a structurally conserved protein present in widely divergent species  43,44 and is 

constitutively  expressed  in  almost  all  human  cells  45 underscoring  the  biological 

importance of this enzyme. It is found predominantly in the cytosol  46 and mitochondrial 

intermembrane  spaces  of  eukaryotic  cells  47 but  also  in  the  nucleus,  peroxisomes  and 

lysosomes 48.

1.5 SOD1 structure

Human SOD1 is a 32 kDa homodimer composed of two non-covalently associated 153 

amino  acid  subunits.  The  first  structure  of  SOD1  was  that  of  the  bovine  enzyme 

determined at 2.0 Å resolution in 1982 49. The wild-type human protein was described at 

2.5 Å resolution in 1992 with a focus on designing thermally stable recombinant SOD1 

proteins for therapeutic use combating free radical mediated disease 50. This was followed 

in 2006 by a 1.07 Å atomic resolution structure of wild-type native human SOD1 51.

These studies indicated each SOD1 monomer is composed of an eight strand anti-parallel 

Greek key β-barrel  connected by seven loops of  varying length (Figure 1.1).  Loop IV 

(residues  49  -  83)  is  the  largest  and  houses  Asp83,  His63,  His71  and  His80  which 

coordinate zinc in a tetrahedral conformation (Figure 1.2). This loop, termed the zinc loop, 

extends past the metal binding sites and contains a short 1½ turn α-helix (56 – 61) that is 

anchored to the β-barrel by an intrasubunit disulphide bond between Cys57 and Cys146. 

Loop VII (120 – 143), termed the electrostatic loop, also contains a 1½ turn α-helix and at  

its N-terminus His120 coordinates copper along with His46 and His48 of strand 4 of the β-

barrel (Figure 1.2).
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Figure 1.1. The structure of human SOD1. The SOD1 β-barrel is highlighted in red. Loops are highlighted 
purple except loop IV and VII, the zinc and the electrostatic loops which are highlighted green and cyan 
respectively. The copper and zinc sites are shown withblue and grey spheres respectively. PDB ID: 2C9V 51.

When the copper ion is oxidised His63 acts as a bidentate bridging ligand between the two 

metal  ions  and copper  is  coordinated  in  an  irregular  tetrahedral  fashion.  On reduction 

copper moves 1.0 Å away from His63 and is coordinated only by the imidazole group 

nitrogens of His46, His48, and His120 in a planar triangular conformation (Figure 1.2).

Figure 1.2. Detail of the SOD1 copper and zinc binding sites. Copper coordinating histidine residues are  
shown green with the bridging histidine purple. Zinc coordinating residues are shown in orange. The change 
in the position of the copper ion when in the reduced (left) and oxidised (right) forms can be observed. Co-
ordination between copper and nitrogens is marked with a black dashed line as is co-ordination by a single 
water molecule in the Cu(II) state.
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The N and C termini of the SOD1 polypeptide form short protrusions from the β-barrel and 

together with sections of loops IV and VI comprise the dimer interface.  This region is 

stabilised largely by hydrophobic interactions between the dimer counterparts.

1.6 SOD1 fALS disease pathogenesis

fALS associated SOD1 mutations are located throughout the full length of the 153 amino 

acid SOD1 primary sequence including zinc 52,53 and copper 54,55 site substitutions (Figure 

1.3).

Figure 1.3. Distribution of fALS associated mutations throughout the SOD1 open reading frame. Mutations 
found in loop regions are coloured purple and mutations found in the β-barrel are coloured red. The height of 
each bar represents the number of novel SOD1 mutations found at that particular site.

Indeed,  81  codons  (53%)  have  one  or  more  documented  fALS  mutations.  A close 

inspection of their position indicates a 20% increased probability that a residue will have 

one or more mutations inside the β-barrel  than in a loop (0.46 and 0.66 respectively). 

However strand 3 of the β-barrel (amino acids 30 - 36) is suspiciously free of mutations 

and is the longest unmutated region. On the other hand there are obvious hotspots not only 

in the β-barrel but in loops VI and VII, the electrostatic loop.

While  each  mutation  carries  an  increased  probability  of  the  individual  following  a 

particular disease course there  is no discernible correlation between the biochemical and 

structural characteristics of mutant SOD1 and patient phenotype 30,56. For example, mutant 
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SOD1 proteins have been observed to have dismutase activities varying from approaching 

nil up to 150% of the wild-type protein. This does not correlate with disease characteristics 

such as age of onset and life span after onset of symptoms  57-59. Therefore, disruption of 

dismutase activity cannot be the root cause of SOD1 associated ALS. If human SOD1 does 

not have an unknown function, distinct from its dismutase activity, that is deleteriously 

affected by these mutations it must gain a characteristic that it does not posses in its wild-

type form.

This notion is supported by a number of observations of transgenic mice. Those expressing 

fALS-associated human SOD1 mutants develop ALS-like symptoms in early adulthood 60,61

and these symptoms result  irrespective of the presence,  absence or expression level of 

wild-type SOD1  61.  Those expressing or over-expressing only human wild-type protein 

display no ALS-like symptoms 62,63 as do those completely deficient in the enzyme 64. 

Large SOD1 filled aggregates are observed in the spinal cord neurons of fALS effected 

individuals  and  fALS associated  SOD1 mutant  transgenic  mice  65-68.  These  aggregates 

interfere with axonal transport  69,70, cause aberrant apoptosis  71, damage the mitochondria 
72 and sequester the proteasome 73. The SOD1 toxic gain of function could be the ability to 

aggregate  however  the  mechanism  which  facilitates  this  aggregation  is  not  currently 

known or the reason it specifically effects motor neurons.

At  first  glance  SOD1 aggregation  appears  counter-intuitive  given  that  wild-type  fully 

metallated SOD1 remains correctly folded at temperatures approaching boiling point  74. 

However,  introduction of fALS associated SOD1 mutations was found to decrease the 

thermal stability as determined by differential scanning calorimetry  74. Similarly,  partial 

metallation of wild-type and mutant SOD1 proteins was also found to decrease thermal 

stability  74 with  loss  of  the  zinc  ion  from  wild-type  SOD1  substantially  promoting 

monomerisation  75 and  self  organisation  into  amyloid-like  structures  76,77 and  soluble 

aggregates 78,79.

Each SOD1 monomer contains one intramolecular disulphide bond between cysteines 57 

and 146 49. This bond is transferred from CCS (Copper Chaperone for SOD1) 80 during the 

copper loading process 81 or by a CCS-independent pathway 82. In fALS associated SOD1 

mutant proteins this bond is susceptible to reduction by glutathione at near physiological 
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levels  83.  Disulphide  reduction  was  observed  to  promote  SOD1  monomerisation  83 

particularly when the protein was partially zinc metallated  75. SOD1 monomerisation has 

been shown to precede aggregation 84,85 and introduction of a inter-subunit disulphide bond 

or  a  chemical  crosslink  between  adjacent  Cys111  residues  was  observed  stabilise  the 

protein and prevent polymerisation in vitro 86,87.

Thus destabilisation of the SOD1 dimer resulting from demetallation, disulphide reduction 

or a combination of both, appears to be a central characteristic of fALS associated mutants. 

This is corroborated by structural and computational molecular dynamics data that indicate 

a change in the nature of the dimer interface 88,89, increased dimer instability 85 and a loss of 

structural integrity in the zinc binding and electrostatic loop regions  90 on reduction or 

metal removal.

1.7 Available SOD1 fALS therapeutics and review of clinical trials in progress

The relatively low incidence of ALS classifies it as an orphan disease and consequently it 

has attracted little attention in terms of therapeutics  development from traditional  drug 

development agencies. Currently, Riluzole is the only approved drug for the treatment of 

ALS. It is known to increase life expectancy for an ALS sufferer by two months on average 
91. There are currently no available drugs specifically targeted to fALS or SOD1 mediated 

fALS.

Clinical and pre-clinical trials of SOD1 mediated fALS therapeutics have met with almost 

complete  failure,  however  some  recent  studies  are  worthy  of  note.  Arimoclomol  is 

currently undergoing phase II/III clinical trials 92. It is a co-inducer of heat shock proteins 

that enables the clearing of SOD1 aggregates by over-expression of protein chaperones and 

has been observed to prolong life expectancy in fALS mouse models by 22% when used in 

pre and early symptomatic individuals 93,94. However, when this drug was tested against late 

stage ALS mouse models, that exhibit  a greater degree of similarity to human patients 

initially presenting with ALS, it did not have any life prolonging effect 95.

A second therapeutic  approach  currently in  development  silences  gene  expression  and 

reduces the target protein concentration as old protein is degraded. This could practically 

be  achieved  by  nucleic  acid  hybridisation  96 or  chemical  inhibition.  SOD1  antisense 
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oligonucleotides  able  to  bind  nascent  SOD1  mRNA,  prevent  translation  and  increase 

survival time in rat G93A models after direct infusion into the ventricular system have 

been  documented  97.  Phase  I  clinical  trials  are  ongoing  for  this  therapy  but  while 

efficacious in animal models, this delivery method has obvious penalties for future patient 

comfort  and  care.  Similarly,  antisense  expressing  viral  systems  have  successfully 

transduced the CNS although their ability to retard disease progression is disputed 98,99.

Pyrimethamine, is a common drug used for the treatment of protozoal infections such as 

malaria and toxoplasmosis. It is reported to reduce SOD1 levels in G93A SOD1 mouse 100. 

In an initial 18 week, seven person clincial trial, this compound was observed to reduce 

blood  lymphocyte  SOD1  levels  by  30  –  60%  for  non-A4V  patients  100.  Conversely, 

pyrimethamine  was  not  observed  to  reduce  SOD1  expression  in  wild-type  mice  nor 

abrogate SOD1 synthesis in cell models 101 however this compound is currently undergoing 

phase I/II clinical trials.

The lack of efficacious fALS targeted therapeutics and the inherent problems associated 

with those strategies currently in the drug development pipeline provide a clear need for a 

drug discovery program targeted to SOD1.
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Chapter II

Drug discovery and crystallographic theory

2.1 Fragment based rational drug design

A traditional approach to drug development takes a defined biological target and screens 

millions of drug-like compounds for interactions using a minaturisable assay 102. While this 

methodology has been valuable in generating many of the therapeutics discovered in the 

20th century  it  is  inherently  limited  by  the  inverse  relationship  between  molecular 

complexity and lead discovery 103, and the low success ratio of lead optimisation 104. The 

large infrastructure investment needed for the successful completion of an initial screen, 

lead optimisation and arrival at a potential drug-like compound, even before clinical or 

toxicity trials begin, is prohibitive for all but the largest pharmaceutical companies. This 

effectively stalls drug development for diseases where there are low numbers of affected 

individuals or the end market is perceived to be too small to compensate for initial outlay 
105.

An alternative  approach screens  low molecular  weight  compounds  for  relatively weak 

binding to the target  106, which may not have been identified by a  in vitro assay, using a 

structure  based  technique  such  as  NMR  or  X-ray  crystallography  107.  These  small 

molecules  are  then  grown or  linked to  produce  larger  molecules  that  have  strong site 

specific binding 108 characterised by increased ligand efficiency 109. Throughout this process 

it is possible to engineer in Lipinsky 'Rule of 5'  110 compliance including hydrophilicity, 

low number of rotatable binds, low molecular weight (<500 Da), 5 or lower hydrogen bond 

donors or acceptors and other ADMET properties which will facilitate activity.

2.2 Crystallographic fragment-based drug discovery

The relative ease with which crystallisation and single crystal X-ray diffraction structure 

determination proceeds means crystallography is an ideal tool to feed information into the 

drug development  pipeline  throughout  its  course.  Its  use  in  initial  ligand screening  107 

enables the site of interaction to be determined unambiguously at the outset and directs 
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how chemical space should be probed during optimisation 111.

2.3 Crystallisation, compound soaking and data collection

A prerequisite for crystallographic protein structure determination is diffracting crystals. 

Crystallisation is the ordered precipitation of solute from a solution by nucleation followed 

by growth.  Throughout  this  work  SOD1 was  crystallised  by the  hanging drop vapour 

diffusion method (Figure 2.1A). Protein solution at a sufficiently high concentration was 

mixed 1:1 with the a precipitant solution and suspended over a reservoir of the precipitant 

solution. Initially the concentration of precipitant, [ppt], is given by

[ ppt reservoir]=2 [ ppt drop]

As water evaporates from the drop and condenses in the reservoir solution, this becomes

[ ppt reservoir]=[ ppt drop]

with a concomitant doubling of the protein concentration in the drop. This concentration 

shift pushes the drop from the unsaturated phase to the supersaturated phase (Figure 2.1B). 

The degree of supersaturation is the key-point in crystallisation experiment and can be 

affected by temperature, pH, protein concentration and precipitant concentration. Very high 

supersaturation  will  promote  disordered  expulsion  of  protein  from solution  leading  to 

amorphous precipation however if supersaturation cannot be achieved crystal nucleation 

will  not  take  place.  Nucleation  is  often  a  very  slow  process  but  its  necessity  can 

circumvented by addition of pre-existing seed crystals. The SOD1 crystals  used in the 

following  chapter  were  grown  from  seeds  originally  acquired  from  apo-H48Q  SOD1 

crystallisation and were transferred into the drop after equilibration.

Protein crystal  production for a ligand screening program is  complicated by a need to 

produce  crystals  which  are  resistant  to  the  solvents  commonly  used  in  soaking 

experiments,  such  as  dimethyl  sulfoxide  (DMSO)  or  dimethylformamide  (DMF).  The 

crystal must also have sufficiently large solvent pores to allow movement of the small 

molecules through the crystal lattice. These two attributes can be mutually exclusive with 

less dense crystal forms more liable to dissolve in organic solvents.
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Figure  2.1  (A)  Hanging  drop  vapour  diffusion.  (B)  Phase  diagram  of  protein  crystallisation  driven  by 
precipitant concentration.

Crystallographic data collection often takes place with the crystal in a stream of nitrogen 

gas at 100 K. This reduces the effects of radiation damage and means a single crystal is 

sufficient to collect all the data necessary for structure determination. While this reduces 

the demand for protein and ligand it is essential that the ligand be included in any aqueous 

cryoprotectant solutions in order that bound ligand is not dispersed during cryoprotection.

The  data  presented  in  the  following  chapter  were  collected  at  two  crystallographic 

beamlines:  Proxima  1 at  SOLEIL,  Paris,  France  and IO3 at  DIAMOND, Oxfordshire, 

England.  Details  of  data  collection  and  processing  can  be  found in  the  Materials  and 

Methods chapter.

2.4 Crystallographic theory

The minutiae of crystallographic theory are available in numerous canonical texts and it is 

not the  purpose of this work to review available information however, what follows is a 

brief description of that which is necessary to understand the work presented in chapter III.

The distribution of electrons (ρ) at a point (x, y, z) within a unit cell (with volume V) of a 

crystal can be described as the Fourier sum of its structure factors (Fhkl).

ρ(x , y , z )= 1
V ∑

h
∑

k
∑

l
F hkl e

−2πi (hk+ky+lz)
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2.5 Data reduction, scaling & merging

The first stage in the process of creating a model of a biomolecule by X-ray diffraction 

crystallography is  data  reduction.  That  is,  indexing of reflections to  correct  h,  k and  l 

values, unit  cell  parameter refinement and assessment of the intensity of reflections by 

background subtracted integration. The outcome of this process is a data set consisting of 

the Miller indices of each reflection (hkl), its intensity (Ihkl) and standard uncertainty (σIhkl). 

Throughout this work data reduction was performed with iMOSFLM 112 or HKL2000 113.

The intensity of each reflection can be affected by the intensity of the incident beam and 

variability  in  the  beam's  path  length  through  the  crystal  as  it  is  moved  into  different 

orientations. It cannot be assumed therefore, that the intensities measured directly from the 

diffraction image are consistent across the whole data set. This problem is eliminated by 

observing reflections with known index across more than one frame and scaling the dataset 

so that identical reflections have identical intensity throughout. This task was performed 

here using the programs SCALA 114 or HKL2000.

2.6 Isomorphous phasing

As stated previously, the electron density within a crystal unit cell can be expressed as the 

equation in Section 2.4 where the structure factor amplitudes and phases are implicit in the 

term Fhkl. This equation can be reformulated as

ρ(x , y , z )= 1
V ∑

h
∑

k
∑

l
∣F hkl∣e

−2π i (hk +ky+lz−α ' hkl )

which gives  electron density at  coordinate  (x,  y,  z)  of  the real  lattice as a  function of 

measured  structure  factor  amplitudes  │Fhkl│ and  phases  (α'hkl).   The  structure  factor 

amplitude is proportional to the square root of its intensity (Ihkl
1/2) which can be directly 

measured  during  data  collection  however  the  phase  of  a  diffracted  ray arriving  at  the 

detector during an experiment cannot be directly measured. This phase information must 

be calculated for each reflection in order to derive a model of electron density from a series 

of diffraction images.
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The  phase  problem  is  a  major  hurdle  when  the  structure  of  a  new  protein  is  being 

experimentally  determined.  It  is  solved  most  frequently  by  isomorphous  replacement, 

anomalous  diffraction  or  molecular  replacement  methods.  However,  a  protein  crystal 

soaked in a putative ligand is unlikely to deviate hugely from the structure of the native 

crystal. A crystallographic approach to fragment based drug discovery necessitates that the 

structure of the target protein has already been solved. If this is the case the structure of the 

ligand-protein  complex  can  be  solved  using  phase  information  taken  from  the  native 

protein  structure  by  isomorphous  molecular  replacement  in  conjunction  with 

experimentally measured intensities from the complex.

In the following chapter the structure of SOD1 with eight ligands is presented. Each ligand 

is described bound to SOD1 in both the P21 and and C2221 space groups. These structures 

were solved using previously existing SOD1 models with PDB codes 2VOA 90 and 1UXL 
89 respectively. Four structures of L38V SOD1 were found to pack in the P212121 space 

group.  These  structures  were  solved  by isomorphous  phasing  using  a  pre-existing  but 

unpublished model of P212121 native L38V SOD1 which was itself solved by molecular 

replacement using the program MOLREP 115.

2.7 Refinement

Isomorphous phasing allows one to generate a rough electron density map of the protein-

ligand complex under investigation. At this point structure factors can be calculated from 

the model taking into account the sum of diffractive contributions from individual atoms 

(j) with elemental scattering factor (fj) at a particular position (xj, yj, zj) in the unit cell.

F hkl=∑
j=1

f j e
2Πi (hx j +ky j+lz j)

The  model  becomes  more  detailed  as  components  are  added  to  reflect  experimentally 

observed electron density. As a result the phases computed from it also improve and thus 

the subsequent model computed from the original structure factor amplitudes and latest 

phase information also improves. In this cycle of model refinement and structure factor 

recalculations  the  model  becomes  increasingly  a  mirror  of  the  real  molecule  with 
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calculated  amplitudes  │Fc│  approaching  observed  amplitudes│Fo│. The  structures 

presented in the following chapter  were constructed with successive rounds of  manual 

model building in COOT 116 and refinement with REFMAC5 117.
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Chapter III

Crystallographic screening of small molecules for SOD1 binding

3.1 SOD1 screening pipeline

Using a crystallographic approach to compound screening and lead optimisation we hope 

to find compounds that bind to and consequently change the pathogenic characteristic of 

SOD1, with the aim of producing target specific therapeutics. In practice this involves co-

crystallisation of SOD1 with a number of putative ligands and subsequent determination of 

the structure of the SOD1-ligand complex.

The screening of small molecules for SOD1 binding took place against the dimer interface 

mutant I113T. The II13T mutation was one of the first 11 SOD1 mutations implicated in 

ALS 17. It is one of the most common SOD1 gene mutations and has been reported in nine 

countries. It is by far the most common mutation in the UK 118,119 and is associated with 

extreme phenotypic variation 120,121 and incomplete penetrance 122. This mutant is known to 

be extremely prone to aggregation in vitro as a result of metal loss 78.

I113T SOD1 crystals in the P21 space group were grown from seed at pH 5. This crystal 

form is densely packed and can diffract up to atomic resolution 123,51, with 1.0 Å currently 

the  highest  documented  resolution,  and  is  resistant  to  low  concentrations  of  dimethyl 

sulfoxide  (DMSO).  If  binding  was  observed  in  the  crystal  structure  with  I113T  the 

compound was soaked into wild-type, L38V 17 and H48Q 55 SOD1 crystals at pH 5. L38V 

is located in the loop connecting strands 3 and 6 of the SOD1  β-barrel and H48Q is a 

copper site mutant. In order to discount ligand binding through crystal lattice contacts the 

compound was also tested against I113T SOD1 crystals in the C2221 space group grown at 

pH 8.  This  ligand  soaking pipeline  afforded a  robust  assessment  of  binding  against  a 

representative selection of SOD1 mutants at high resolution and at physiologically relevant 

conditions. As a result every ligand soaking experiment was repeated at least five times. A 

complete list of the compounds analysed for SOD1 binding is presented in Appendix IV.
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3.2 Small molecule library screen

An initial screen for SOD1 binding compounds met with limited success. The screen used 

was  the  Rigaku  Activesite  Library  of  384  diverse  compounds.  This  selection  of  low 

molecular  weight  compounds  is  solubilised  in  100%  DMSO.  The  crystal  soaking 

procedure must be carried out in a  buffer  solution that prevents crystals  dissolving.  In 

practice this means mixing the compound solution and the crystal soaking buffer prior to 

soaking. The majority of the compounds used in the screen were not soluble in less than 

100%  DMSO  unless  their  concentration  was  below  the  low  millimolar  range. 

Consequently, the amount of compound available for binding to SOD1 during the soaking 

experiment was also low and therefore few hits were discovered 123.
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3.3 4-(4-methyl-1,4-diazepan-1-yl)-2-(trifluoromethyl)quinazoline (MDTQ)

As part of their ongoing research into the pathogenesis and amelioration of SOD1 related 

fALS  Antonyuk et  al reported a diverse group of molecules which were found to bind 

SOD1  123.  One  of  these  compounds,  4-(4-methyl-1,4-diazepan-1-yl)-2-

(trifluoromethyl)quinazoline hereafter called MDTQ, was found to occupy a binding site 

over  the  SOD1  Trp32.  MDTQ  is  composed  of  a  quinazoline  ring  system  with  an 

homopiperazine group connected at C4 and a trifluoromethyl at C2 (Figure 3.1). MDTQ 

has good solubility in aqueous buffers removing the necessity to use strong solvents such 

as DMSO.

Figure 3.1. The structure of MDTQ (4-(4-methyl-1,4-diazepan-1-yl)-2-(trifluoromethyl) quinazoline).  The 
quinazoline numbering system is shown, Mr 310.14 g Mol-1.

In  the  structure  presented  by  Antonyuk  et  al 123, the  tri-fluromethyl  group  of  MDTQ 

interacts with L38V SOD1 through two hydrogen bonds with Glu100. The quinazolene 

double ring system was also hydrogen bonded with Ser98. MDTQ bound L38V SOD1 

with the long axis of its quinazoline ring system running parallel with the Trp32 indole 

group maximising any stacking interaction.

MDTQ was entered into the SOD1 screening pipeline in order to asses the methodology's 

efficacy, determine if MDTQ universally binds all SOD1 mutants and to characterise its 

pharmacophore properties. Table 3.1 shows the crystallographic statistics for five SOD1-

MDTQ structures.

Figure  3.2A indicates  the  position  of  MDTQ binding between strands  3  and 6  on  the 

surface of the I113T SOD1 Greek-key β-barrel. As previously reported the trifluoromethyl 

group protrudes into a cleft created by the side chains of Lys30, Glu100 and Ser98 (Figure 

3.2B). This group has possible hydrogen bonding interactions with the side chain hydroxyl 
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of  Ser98  and  the  backbone  amide  groups  of  Val31  and  Ile99  (Figure  3.2D).  Another 

hydrogen bond with the Glu100 carboxylic acid was postulated previously however in this 

structure the donor-acceptor distance is 4.6 Å. The Ser98 side chain also acts as a hydrogen 

bond donor to a MDTQ quinazoline ring nitrogen. These interactions are summarised in 

table 3.2.

SOD1 variant I113T I113T wild-type L38V H48Q

Resolution (Å) 1.29 2.00 2.20 1.45 1.59

Space group P21 C2221 P21 P212121 P21

pH 5.0 8.0 5.0 5.0 5.0

Unit cell parameters:

a (Å) 38.5 165.1 39.0 49.9 38.7

b (Å) 68.1 203.6 68.0 67.7 68.3

c (Å) 49.9 144.5 49.6 74.1 50.3

α (o) 90.0 90.0 90.0 90.0 90.0

β (o) 104.8 90.0 104.4 90.0 105.2

γ (o) 90.0 90.0 90.0 90.0 90.0

Completeness (%) 99.1 (95.6) 98.7 (98.5) 98.2 (92.0) 99.9 (99.5) 97.6 (91.5)

Redundancy 4.1 (3.5) 3.6 (3.5) 3.3 (3.0) 6.2 (5.6) 3.6 (3.6)

R-merge (%) 8.8 (65.5) 10.2 (58.9) 29.3 (45.1) 9.8 (67.6) 7.9 (24.3)

I/σ 9.54 (2.2) 9.51 (2.1) 3.1 (1.9) 9.8 (2.3) 10.1 (3.6)

Rfact / Rfree (%) 14.9 / 21.4 20.6 / 24.2 22.2 / 33.8 18.6 / 22.0 22.8 / 26.9

RMS bond (Å) 0.015 0.015 0.021 0.014 0.014

Table 3.1. Single crystal  X-ray diffraction data collection, processing and model refinement statistics for 
MDTQ bound to human recombinant SOD1.

By virtue of its dimeric nature, SOD1 contains two Trp32 binding sites per molecule. In 

the structure presented in Figure 3.2, MDTQ adopts a different conformation at each site. 

Hydrogen bonding interactions are preserved in both conformations with the exception of 

the  Ser98  hydrogen  bond  which  switches  acceptors  between  the  nitrogens  distal  and 

proximal to the MDTQ homopiperazine group (Figure 3.2B and C respectively). In both 

cases, binding is likely to be strengthened though aromatic  π-π interactions between the 

MDTQ quinazoline ring system and the indole moiety of Trp32. The homopiperazine ring 

extends into the solvent in each case. Figure 3.2B  shows good electron density around this 

group indicating a possible stabilising hydrogen bond with the Glu21 side chain carboxylic 

acid  group  although  the  donor-acceptor  distance  is  4.6  Å  (Figure  3.2D).  The  second 

conformation shows little electron density (Figure 3.2C) indicating this group is freely able 

to rotate around the N-C4 bond connecting it to the quinazoline rings.
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Figure 3.2. MDTQ bound to I113T SOD1. (A) MDTQ with respect to the SOD1 dimer in grey and light grey,  
strands 3 and 6 of the SOD1 β-barrel are coloured purple and green respectively. (B) 2Fo-Fc electron density 
map of MDTQ contoured at 1σ at the Trp32 binding site with the SOD1 surface coloured by amino acid 
hydrophobicity according Eisenberg's consensus hydrophobicity scale 124 and (C) the second conformation of 
MDTQ at the Trp32 of the opposing I113T SOD1 dimer. (D) Hydrogen bonding between I113T SOD1 and  
MDTQ shown with black dashed lines.
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Figure  3.3.  MDTQ bound to  multiple  SOD1 mutants. 2Fo-Fc electron  density maps contoured  at  1σ  of 
MDTQ bound at the Trp32 site in (A) I113T SOD1 pH 8 C2221 crystal structure (B) L38V SOD1  in the 
P212121 form, (C) wild-type SOD1 and (D) H48Q SOD1 grown at pH 5 in the P21 form.

Donor I113T wtSOD1 L38V H48Q I113T pH8 Acceptor
Ser98-OH 2.7 Å 3.0 Å 2.7 Å 2.9 Å 2.8 Å N-Quinazoline
Ser98-OH 2.7 Å 2.6 Å 2.8 Å 2.5 Å 2.5 Å F-Trifluoromethyl
Ile99-NH 3.6 Å 3.7 Å 3.4 Å 3.8 Å 3.3 Å F-Trifluoromethyl

Val31-NH 3.2 Å 3.5 Å 4.1 Å 3.3 Å 3.2 Å F-Trifluoromethyl
Glu100-COOH 4.6 Å 4.2 Å 4.7 Å 3.1 Å 3.9 Å F-Trifluoromethyl

Table 3.2. Summary of potential hydrogen bonding in between MDTQ and SOD1. In the case of the I113T 
P21 structure values indicate the canonical orientation presented in Figure 3.2B.

Figure  3.3  describes  the  binding  of  MDTQ to  three  SOD1 variants.  In  each  case  the 

MDTQ molecule is found in the published orientation. Electron density for the ligand is 

good indicating that binding to SOD1 is not pH or SOD1 mutant dependent.

To probe the nature of MDTQ binding three derivatives with modified pharmacophore 

properties were synthesised. The following two sections describe the binding of two of 

these compounds, MPQ and MDQ, to recombinant SOD1.
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3.4 4-(4-methylpiperazin-1-yl)quinazoline (MPQ)

The  quinazoline  based  compound  4-(4-methylpiperazin-1-yl)quinazoline  (MPQ)  differs 

from MDTQ in that the trifluoromethyl group at C2 is not present and the homopiperazine 

at C4 is replaced with a methylpiperazine (Figure 3.4). Table 3.3 shows crystallographic 

statistics for various SOD1 proteins complexed with MPQ.

Figure 3.4.  The structure of MPQ (4-(4-methylpiperazin-1-yl)quinazoline).  The quinazoline numbering is 
system shown, Mr 228.14 g Mol-1.

SOD1 variant I113T I113T wild-type L38V H48Q

Resolution (Å) 1.24 1.93 1.35 1.33 1.53

Space group P21 C2221 P21 P212121 P21

pH 5.0 8.0 5.0 5.0 5.0

Unit cell parameters:

a (Å) 38.7 166.3 38.8 50.1 38.6

b (Å) 68.1 203.8 68.5 67.8 68.1

c (Å) 50.0 144.5 50.0 74.4 49.6

α (o) 90.0 90.0 90.0 90.0 90.0

β (o) 104.7 90.0 104.5 90.0 104.5

γ (o) 90.0 90.0 90.0 90.0 90.0

Completeness (%) 99.9 (99.9) 99.5 (95.5) 94.1 (69.6) 95.2 (77.3) 95.2 (94.4)

Redundancy 4.1 (3.4) 3.7 (3.0) 3.47 (2.6) 6.08 (3.37) 3.7 (3.8)

R-merge (%) 8.2 (68.9) 9.2 (52.0) 5.4 (42.8) 8.4 (59.8) 7.2 (11.5)

I/σ 14.4 (1.7) 12.3 (2.0) 13.3 (2.2) 10.81 (1.73) 12.2 (3.8)

Rfact / Rfree (%) 13.9 / 17.5 17.2 / 20.4 13.6 / 18.1 17.3 / 23.3 19.4 / 23.2

RMS bond (Å) 0.014 0.015 0.013 0.013 0.014

Table 3.3. Single crystal  X-ray diffraction data collection, processing and model refinement statistics for 
MPQ bound to SOD1.

35



Figure 3.5. MPQ bound to I113T SOD1. (A) MPQ with respect to the SOD1 dimer in grey and light grey,  
strands 3 and 6 of the SOD1 β-barrel are coloured purple and green respectively. (B) 2Fo-Fc electron density 
map of MPQ contoured at  1σ at  the Trp32 binding site with the SOD1 surface coloured by amino acid 
hydrophobicity and (C) Stick diagram of MPQ bound over the I113T SOD1 Trp32.

36



Figure 3.5A shows the mode of binding of MPQ to I113T on the surface of strand 3 of the 

SOD1 β-barrel. This compound occupies roughly the same space as MDTQ roughly 3.5 Å 

above the Trp32 indole. MPQ binding at  this site differs however from that of MDTQ 

presented in the previous section in that the quinazoline nitrogen atoms are not involved in 

hydrogen bonding with SOD1 and face out from the β-barrel.  The methylpiperazine is 

positioned between the side-chains of Glu21 and Lys30, 3.5 Å from each, with a possible 

hydrogen bond between the Glu21 carboxyl and  methylpiperazine nitrogen (Figure 3.5C).

Figure 3.6.  MPQ bound to multiple SOD1 mutants. 2Fo-Fc electron density maps contoured at 1σ of  MPQ 
bound at the Trp32 site in (A) I113T SOD1 pH 8 C2221 crystal structure (B) L38V SOD1 in the P212121 form, 
(C) wild-type SOD1 and (D) H48Q SOD1 grown at pH 5 in the P21 form.

MPQ was analysed for binding against other SOD1 variants as per the screening pipeline 

described previously. In each instance, MPQ binds at the Trp32 site in the orthodox fashion 

with N1 of the quinazoline rings forming a hydrogen bond with Ser98 and a potential 

hydrogen  bond  between  MPQ's  methylpiperazine  group  and  Glu21  (Figure  3.6).  This 

hydrogen bond has length 2.9 - 3.4 Å and in the case of L38V SOD1 induces a change in  

the conformation of Glu21 drawing its side-chain carboxyl closer to the methylpiperazine 

nitrogen (Figure 3.6B).
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3.5 4-(4-methyl-1,4-diazepan-1-yl)quinazoline (MDQ)

Figure 3.7 describes the structure of 4-(4-methyl-1,4-diazepan-1-yl)quinazoline (MDQ). 

This compound is very similar to MDTQ with an unmodified homopiperazine group at C4 

but the trifluoromethyl at quinazoline ring position C2 is removed. Like the previous two 

compounds, MDQ has good solubility in aqueous buffers. This compound was entered in 

to the SOD1 screening pipeline (Table 3.4) and, as expected, was found to interact with 

SOD1 at the Trp32 site on the surface of strand 3 of the β-barrel (Figure 3.8A).

Figure 3.7. The structure of MDQ (4-(4-methyl-1,4-diazepan-1-yl)quinazoline). The quinazoline numbering 
system is shown, Mr 242.15 g Mol-1.

Figure 3.8B shows the unbiased electron density of the MDQ quinazoline rings above and 

parallel to the Trp32 indole. In contrast to MPTQ and MPQ, there is no electron density 

associated  with  the   homopiperazine  group outside  outside  the  N-C4 bond.  This  bond 

cannot  move  independently  of  the  quinazoline  system  and  allows  us  to  positively 

determine the orientation of the MDQ molecule. There are no hydrogen bonds between this 

compound and SOD1 (Figure 3.8C) indicating that the only force keeping this molecule in 

place is a hydrophobic interaction between the aromatic Trp32 indole and the quinazoline 

ring  moieties.  Repeating  this  binding  experiment  against  other  SOD1  variants  yields 

similar results (Figure 3.9B, C and D). At pH 8 however there is clear electron density 

around the homopiperazine group although there are no hydrogen bonding partners within 

a reasonable distance that could prevent this groups free rotation (Figure 3.9A).
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Variant I113T I113T wild-type L38V H48Q

Resolution (Å) 1.22 2.29 1.35 1.21 1.6

Space group P21 C2221 P21 P212121 P21

pH 5.0 8.0 5.0 5.0 5.0

Unit cell parameters:

a (Å) 38.0 165.0 38.3 50.6 38.8

b (Å) 68.2 202.9 68.1 68.1 68.3

c (Å) 49.0 144.1 49.3 74.3 50.4

α (o) 90.0 90.0 90.0 90.0 90.0

β (o) 104.1 90.0 104.3 90.0 105.4

γ (o) 90.0 90.0 90.0 90.0 90.0

Completeness (%) 97.3 (87.2) 99.4 (96.8) 95.5 (76.8) 98.1 (90.9) 96.4 (95.3)

Redundancy 3.5 (2.8) 7.1 (6.5) 3.4 (2.3) 8.9 (4.9) 3.6 (3.8)

R-merge (%) 8.0 (52.2) 14.9 (83.9) 7.1 (35.6) 9.5 (75.7) 14.0 (48.4)

I/σ 9.7 (1.9) 11.52 (2.14) 10.52 (2.14) 12.82 (2.06) 6.3 (2.3)

Rfact / Rfree (%) 12.5 / 15.9 16.4 / 21.7 16.5 / 21.8 15.7 / 20.1 25. 6 / 30.1

RMS bond (Å) 0.014 0.015 0.014 0.012 0.016

Table 3.4. Single crystal  X-ray diffraction data collection, processing and model refinement statistics for 
MDQ bound to SOD1.
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Figure 3.8. MDQ bound to I113T SOD1. (A) MDQ with respect to the SOD1 dimer in grey and light grey,  
strands 2,  3 and 6 of the SOD1  β-barrel  are coloured yellow, purple and green respectively.  (B) 2Fo-Fc 

electron density map of MDQ contoured at 1σ at the Trp32 binding site with the SOD1 surface coloured by 
amino acid hydrophobicity and (C) Stick model of I113T SOD1 with MDQ bound over Trp32.
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Figure 3.9. MDQ bound to multiple SOD1 mutants. 2Fo-Fc electron density maps contoured at 1σ of MDQ 
bound at the Trp32 site in (A) I113T SOD1 pH 8 C2221 crystal structure (B) L38V SOD1 in the P212121 form, 
(C) wild-type SOD1 and (D) H48Q SOD1 grown at pH 5 in the P21 form.
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3.6 4-(4-methylpiperazin-1-yl)-2-(trifluoromethyl)quinazoline (MPTQ)

The  compound  presented  in  Figure  3.10,  4-(4-methylpiperazin-1-yl)-2-

(trifluoromethyl)quinazoline (MPTQ)  is another quinazoline derivative which differs from 

the original MDTQ compound published by Antonyuk et al 123 only by the omission of a 

carbon  and  two hydrogens  from the  homopiperazine  moiety to  form methylpiperazine 

(Figure 3.10). This change brings about a reduction in molecular mass from 310.14 to 

296.12 gMol-1 and an increase in ClogP of 2.75 to 2.77 for MDTQ and MPTQ respectively. 

MPTQ has a much lower solubility in water than MDTQ despite such small changes in 

physical characteristics. Consequentially, this compound could not be used at the 50 mM 

crystal soaking concentration which is standard in much published ligand soaking work 

and has been used thoughout this study. In practice the maximum concentration at which 

MPTQ could be used was 1 mM as there is a trade-off between crystallisation precipitant 

and solubilising agent concentrations that can be used in the soaking buffer, in this case 

ammonium sulphate and DMSO.

Figure  3.10.  The  structure  of  MPTQ  (4-(4-methylpiperazin-1-yl)-2-(trifluoromethyl)quinazoline).  The 
quinazoline numbering system is shown, Mr 296.12 gMol-1.

The structure presented in Figure 3.11 and described in Table 3.5 is the result of one such 

experiment using low concentration MPTQ soaking in to I113T SOD1 at pH 5. While there 

is  little  density  around  both  the  quinazoline  and  methylpiperazine  groups,  the 

trifluoromethyl group can be seen in the Lys30-Ser98-Glu100 pocket. As with MDTQ, this 

compound should make hydrogen bonds with the backbone amide groups of Val31 and 

Ile99 together with the Glu100 carboxylic acid group. Low occupancy of MPTQ at the 

Trp32 site was replicated in L38V, H48Q and wild-type SOD1 crystal structures.
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Figure 3.11.  MPTQ bound to I113T SOD1. 2Fo-Fc electron density map contoured at 1σ of  MPTQ with 
partial occupancy at the Trp32 site in the P21 crystal structure I113T SOD1 at pH 5.

Variant I113T

Resolution (Å) 1.57

Space group P21

pH 5.0

Unit cell parameters:

a (Å) 30.6

b (Å) 68.0

c (Å) 50.6

α (o) 90.0

β (o) 105.6

γ (o) 90.0

Completeness (%) 98.1 (90.6)

Redundancy 3.6 (3.1)

R-merge (%) 8.6 (62.9)

I/σ 11.1 (2.1)

Rfact / Rfree (%) 17.4 / 21.5

RMS bond (Å) 0.015

Table 3.5. Single crystal  X-ray diffraction data collection, processing and model refinement statistics for 
MPTQ bound to SOD1.
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3.7 Quinazoline Summary

The quinazoline ring system is a versatile scaffold used in many therapeutic applications 

including  antibacterials  125,  antimalarials  126,  cancer  treatments  127 and  analgesics  128. 

Antonyuk et al previously documented an interaction between SOD1 and the quinazoline 

derivative  4-(4-methyl-1,4-diazepan-1-yl)-2-(trifluoromethyl)quinazoline  (MDTQ)  123. 

Here we have observed this compound binding to wild-type and fALS associated SOD1 

proteins in  different crystal  environments.  To probe the nature of this  interaction three 

similar compounds were synthesized, varying only by substitution at C2 and C4, and their 

binding to SOD1 was analysed. All three compounds occupy a similar binding site over 

Trp32 and, where compound solubility was not a problem, showed good electron density 

indicating a high level of occupancy. When the C2 trifuoromethyl group is removed these 

compounds are not locked in position by extensive hydrogen bonding the Ile99, Val31 and 

Glu100. All four compounds benefit strongly from a hydrophobic stacking interaction with 

the Trp32 indole. This maybe the only force keeping MPQ and MDQ in place, other than a 

possible hydrogen bond with the carboxyl side chain of Glu100. Substitution at C4 has 

little effect on binding and in many cases this group is able to rotate around the N-C4 

covalent bond.
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3.8 5-Fluorouridine

Fluorinated pyrimidine analogues, such as 5-fluorouracil,  are widely used as anti-tumor 

therapeutics. 5-Fluorouracil is a member of the antimetabolite class of cancer treatments 

and exerts an effect by conversion to 5-fluorouridine which is in turn phosphorylated. The 

resulting  compound  forms  a  stable  complex  with  thymidylate  synthase  inhibiting 

deoxythymidine monophosphate synthesis or is incorporated into nascent mRNA where it 

disrupts much of its normal function 129.

5-Fluorouridine is a nucleoside derivative composed of a single uracil ring substituted at 

C5 with fluorine and a ribose ring at N3 (Figure 3.12). While it is a more potent anti-tumor 

agent than 5-fluorouracil and the highly similar 5-fluoro-2'deoxyuridine it is not in clinical 

use due to strong associated side effects.

Figure 3.12. The structure of 5-fluorouridine. The pyrimidine numbering system is shown. Mr 262.02 gMol-1.

Nowak et al highlighted 5-fluorouridine as a potent inhibitor of in vitro SOD1 aggregation 
130. This group used  in silico methods to find compounds with a potential  to bind at  a 

hydrophobic pocket at the SOD1 dimer interface centred on Val7, Gly146 and Val147 from 

opposing monomers 131. By occupying this site a perceived instability in the SOD1 mutant 

dimer  that  promotes  monomerisation  was  abrogated  and  aggregation  propensity  was 

returned to a level equivalent to that seen in the wild-type protein. The uracil moiety was 

prevalent in this first group of compounds which were then further modified for greater 

specificity, activity and improved ADME properties 130. 5-Fluorouridine was a member of 

this second cohort and was observed to reduce conversion of the A4V mutant SOD1 dimer 

to  higher  molecular  weight  aggregates  to  approximately  5  %  over  a  48  hour  period 

compared with 50 % over 4 hours for A4V SOD1 solely.
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5-Fluorouridine and other compounds from both studies described above 130,131 have great 

promise as SOD1 therapeutic leads but have never been directly visualised  in situ at the 

Val7-Gly146-Val147 pocket. This compound was entered into the SOD1 screening pipeline 

not only to gain important structural information regarding its mode of binding with the 

aim of further optimisation but also to gain an improved understanding of SOD1 related 

fALS  pathogenesis.  Crystallographic  data  relating  to  this  compound  bound  to  several 

SOD1 variants are presented in Table 3.6.

Variant I113T I113T wild-type L38V H48Q

Resolution (Å) 1.06 1.95 1.28 1.24 1.53

Space group P21 C2221 P21 P212121 P21

pH 5.0 8.0 5.0 5.0 5.0

Unit cell parameters:

a (Å) 38.0 165.2 38.6 50.0 38.7

b (Å) 68.1 203.2 68.2 67.6 68.0

c (Å) 49.1 144.4 50.2 74.0 50.5

α (o) 90.0 90.0 90.0 90.0 90.0

β (o) 104.2 90.0 105.1 90.0 105.6

γ (o) 90.0 90.0 90.0 90.0 90.0

Completeness (%) 87.8 (68.2) 99.9 (99.5) 96.4 (74.5) 91.0 (56.0) 99.7 (99.7)

Redundancy 2.4 (1.6) 7.0 (6.5) 3.5 (2.5) 5.8 (2.4) 3.6 (3.6)

R-merge (%) 7.0 (41.7) 11.9 (68.1) 5.4 (47.5) 7.4 (48.7) 8.0 (26.2)

I/σ 7.5 (1.5) 12.0 (2.8) 18.7 (1.9) 12.8 (1.7) 9.7 (4.1)

Rfact / Rfree (%) 16.2 / 20.0 17.6 / 20.9 12.8 (17.8) 15.0 / 19.0 20.7 / 24.4

RMS bond (Å) 0.015 0.014 0.014 0.014 0.015

Table 3.6 Single crystal X-ray diffraction data collection, processing and model refinement statistics for 5-
fluorouridine bound to SOD1.
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Figure 3.13. The I113T dimerisation region hydrophobic pocket after crystal soaking with 5-fluorouridine. 
(A) The position of the Val7-Gly146-Val147 pocket with residues highlighted cyan and (B) 2Fo-Fc electron 
density maps contoured at 1σ of solvent in this pocket in the I113T SOD1 crystal structure after soaking with 
50 mM 5-fluorouridine for 2 hours. The pocket is shown from two angles with no sign of electron density 
corresponding to 5-fluorouridine.

Figure 3.13A shows the location of the Val7-Gly146-Val147 pocket at the SOD1 dimer 

interface. This pocket is again shown in Figure 3.13B with electron density from the solved 

crystal structure of I113T SOD1 soaked in 50 mM 5-fluorouridine for 2 hours. While there 

is an abundance of water molecules at this site there is no electron density which could 

represent 5-fluorouridine. Soaking this compound into different SOD1 variants at both pH 

5 and 8 achieved the same negative result at this site.
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Figure 3.14. 5-Fluorouridine bound to I113T SOD1. (A) 5-Fluorouridine with respect to the SOD1 dimer in 
grey  and  light  grey,  strands  2,  3  and  6  of  the  SOD1  β-barrel  are  coloured  yellow,  purple  and  green 
respectively. (B) 2Fo-Fc electron density map of 5-fluorouridine contoured at 1σ at the Trp32 binding site 
with the SOD1 surface coloured by amino acid hydrophobicity and (C) Hydrogen bonding between I113T 
SOD1 and 5-fluorouridine shown with black dashed line.
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Figure 3.15. 5-Fluorouridine bound to multiple SOD1 mutants. 2Fo-Fc electron density maps contoured at 1σ 
of 5-fluorouridine bound at the Trp32 site in (A) I113T SOD1 pH 8 C2221 crystal structure (B) L38V SOD1 
in the P212121 form, (C) wild-type SOD1 and (D) H48Q SOD1 grown at pH 5 in the P21 form.

During the course of structure refinement it became clear that 5-fluorouridine does bind 

SOD1  at  the  Trp32  site  (Figure  3.14).  This  is  not  unsurprising  given  the  ability  of 

tryptophan  to  engage  molecules  in  non-specific  stacking  interactions  however  5-

fluorouridine also potentially makes a hydrogen bond between the C2 carbonyl and the 

Ser98 side-chain (Table 3.7).

Donor I113T wtSOD1 L38V H48Q Acceptor
Ser98-OH 3.7 Å 3.9 Å 4.3 Å 4.4 Å O=C2-5-Fluorouridine

Table 3.7 Summary of potential hydrogen bonding between 5-fluorouridine and SOD1 at the Trp32 site. A 
value is not shown for 5-fluorouridine bound in the C2221 structure as the hydrogen bond distances are too 
large.

5-Fluorouridine's interaction with the I113T Trp32 site is mediated though the pyrimidine 

ring and its substituents. In the structure presented there is very little electron density that 

can be attributed to the ribose ring and there are no available bonding partners indicating it 

is freely able to rotate around N3-C bond.

Analysis of 5-fluorouridine bound at the Trp32 site in crystal structures of L38V, H48Q 
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and  wild  type  SOD1 in  the  P21 crystal  form grown at  pH 5  indicates  this  binding is 

repeatable and consistent in form (Figure 3.15B, C and D). In each case there is good 

electron density associated with the pyrimidine group, which forms two hydrogen bonds 

with the SOD1 Lys30 and Ser98 side-chains. Conversely, 5-fluorouridine binding at pH 8 

is of a slightly different character. In this case the uracil ring is rotated over Trp32 bringing 

the  C6  carbonyl  into  hydrogen  bonding  distance  (3.6  Å)  with  the  Glu21  side-chain 

carboxyl. Again the ribose group shows little electron density when contoured at 1σ.

To summarise,  5-fluorouridine was predicted to bind to SOD1 at a pocket close to the 

dimerisation  region.  This  compound  was  observed  to  effectively inhibit  SOD1 mutant 

aggregation  in vitro  130. Here we are unable to find any evidence of that this compound 

binds at the predicted site. This is despite numerous crystal soaking experiments against 

several SOD1 variants. One can however observe some electron density attributable to 5-

fluorouridine at  the Trp32 binding site described by  Antonyuk et  al 123 and explored in 

detail in the previous sections.
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3.9 Isoproteranol

Isoproteranol is a licensed sympathomimetic inotropic drug used in the treatment of several 

cardiac conditions and asthma 132 although in the latter case it has largely been superseded 

by  newer  therapeutics  due  to  complications  arising  from  dosing  133.  It  is  a  synthetic 

catecholamine and isopropyl derivative of epinephrine (Figure 3.16) which acts on the β1 

and β2 adrenergic receptor.

Figure 3.16. The structure of isoproteranol (also known as: Isoprenaline, Isuprel and Medihaler-iso). 211.3 
gMol-1.

Isoproteranol  was  also  proposed  as  a  SOD1  binding  compound  targeted  to  the  Val7-

Gly146-Val147  pocket  130.  This  is  particularly  interesting  in  light  of  recent  findings 

implicating  isoproteranol  in  effective  down regulation  of  SOD1 mRNAs in  Wistar  rat 

myocardium tissue following 7 days of repeated dosing 134. While this effect has not been 

researched in  man and may result  from a  number  possible  non-specific  processes  this 

compound is clearly worth investigation in regard to its potential interaction with SOD1. 

Isoproteranol was soaked into crystals of SOD1 and the bound structures were analysed for 

ligand binding (Table 3.8).

Figure 3.17 shows the Val7-Gly146-Val147 pocket of I113T SOD1 after crystal soaking 

with isoproteranol. The result is much the same as that described in the previous section 

dealing  with  5-fluorouridine,  while  electron  density  associated  with  ordered  water 

molecules is clearly visible there  is nothing which represents the ligand.

Isoproteranol can however be found at four other unique sites in this structure. Three of 

these are in regions where the ligand makes contacts with more than one SOD1 dimer and 

can be discounted as artefacts of crystal packing. Figure 3.17 describes the remaining site 

in a groove created by the short loop II connecting strands 2 and 3 of SOD1  β-barrel. 
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Binding is repeatable,  not SOD1 mutant specific and pH independent (Figure 3.18 and 

3.19).

Variant I113T I113T wild-type L38V H48Q

Resolution (Å) 1.45 2.2 1.34 1.53 1.53

Space group P21 C2221 P21 P21 P21

pH 5.0 8.0 5.0 5.0 5.0

Unit cell parameters:

a (Å) 37.9 165.1 38.3 38.0 38.2

b (Å) 68.0 203.5 68.0 67.8 67.9

c (Å) 49.3 144.6 50.5 49.9 49.7

α (o) 90.0 90.0 90.0 90.0 90.0

β (o) 104.0 90.0 105.3 104.6 104.4

γ (o) 90.0 90.0 90.0 90.0 90.0

Completeness (%) 98.0 (94.2) 99.7 (98.6) 98.7 (87.3) 99.7 (99.7) 99.7 (99.7)

Redundancy 3.6 (3.4) 7.4 (7.3) 3.79 (3.27) 3.5 (3.6) 3.5 (3.6)

R-merge (%) 5.3 (26.0) 14.9 (91.2) 6.8 (42.1) 11.1 (31.3) 7.1 (16.0)

I/σ 15.2 (4.3) 13.32 (2.82) 10.99 (2.60) 6.9 (3.1) 11.8 (6.1)

Rfact / Rfree (%) 15.7 / 18.8 19.5 / 23.1 18.1 / 19.7 24.3 / 30.0 20.0 / 22.8

RMS bond (Å) 0.016 0.014 0.015 0.015 0.015

Table 3.8. Single crystal  X-ray diffraction data collection, processing and model refinement statistics for 
isoproteranol bound to SOD1.

Figure 3.17. The I113T dimerisation region hydrophobic pocket after crystal soaking with isoproteranol. 2Fo-
Fc electron density map contoured at 1σ of the I113T SOD1 Val7-Gly146-Val147 pocket with solvent after 2 
hours soak in 50 mM isoproteranol.
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Figure 3.18. Isoproteranol bound to I113T SOD1. (A) Isoproteranol with respect to the SOD1 dimer in grey 
and light grey, strands 2, 3 and 6 of the SOD1 β-barrel are coloured yellow, purple and green respectively. 
(B) 2Fo-Fc electron density map of isoproteranol contoured at 1σ at the β-barrel loop II site with the SOD1 
surface  coloured  by  amino  acid  hydrophobicity and  (C)  Hydrogen  bonding  between  I113T SOD1  and 
isoproteranol shown with black dashed lines. A single water molecule is also shown as a red sphere.
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Figure 3.19. Isoproteranol bound to multiple SOD1 mutants. 2Fo-Fc electron density maps contoured at 1σ of 
the loopII/catecholamine pocket with Isoproteranol bound in (A) I113T SOD1 pH 8 C2221 crystal structure 
(B) L38V SOD1 , (C) wild-type SOD1 and (D) H48Q SOD1 grown at pH 5 in the P21 form.

Donor I113T wtSOD1 L38V H48Q I113T pH8 Acceptor
Isoproteranol C1-OH 2.4 Å 2.6 Å 2.6 Å 2.5 Å 3.6 Å COOH-Glu100
Isoproteranol C1-OH 3.4 Å 3.2 Å 3.2 Å 3.4 Å 3.4 Å O=C-Pro28
Isoproteranol C2-OH 2.8 Å 2.8 Å 2.7 Å 2.9 Å 3.1 Å O=C-Pro28
Isoproteranol C2-OH 3.1 Å 3.1 Å 3.2 Å 3.2 Å 3.4 Å O=C-Glu21
Isoproteranol C2-OH 3.3 Å 3.4 Å 3.3 Å 3.4 Å 3.3 Å H2O
Isoproteranol tail-OH 3.1 Å 3.6 Å 4.3 Å 3.1 Å 4.7 Å O=C-Glu21
Isoproteranol tail-NH 3.5 Å 3.6 Å 3.3 Å 4.1 Å 3.7 Å O=C-Glu21

Table 3.9. Summary of potential hydrogen bonding interactions between SOD1 and isoproteranol in the loop 
II binding site.

This site is close to but distinct from the Trp32 binding site and the interaction has several 

features that distinguish it from those described in the previous sections. Isoproteranol sits 

in a hydrophilic groove created by Glu21, Lys23, Pro28, Lys30 and Glu100. The catechol 

head group is an obvious hydrogen bond donor to the carboxyl and carbonyl groups of 

Glu21, Glu100 and Pro28 together with a single water molecule which fills the groove 

adjacent to Pro28 (Table 3.9). Also, the amine and hydroxyl groups of the tail interact with 

the  Glu21  carboxyl.  The  isopropyl  tail  sits  above  Trp32  and  may  benefit  from  a 
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hydrophobic interaction with the Trp32 indole however its occupancy is lower than the rest 

of the molecule indicating a degree of flexibility. In an unbound SOD1 structure the Lys30 

side-chain is able to move freely and is not visible after the β or γ carbon. Here space is 

limited by the presence of isoproteranol and the fully visible Lys30 side chain is forced to 

move towards Ser98. Other than this deformation the SOD1 dimer remains unperturbed 

with a  whole molecule RMSD of  0.26  Å compared with the atomic resolution crystal 

structure of wild-type SOD1 (2C9V) 51 (Figure 3.20).

Figure 3.20. Comparison of I113T SOD1 in the native and isoproteranol bound states. Structural alignment,  
RMSD = 0.25  Å, of I113T SOD1 with isoproteranol bound at the loop II site (blue and orange) with the  
structure of wild-type SOD1 (2C9V) (green). In each case the protein backbone is represented as a ribbon.

To summarise, we find that isoproteranol does not occupy the Val7-Gly146-Val147 pocket 

in any of the SOD1 structure presented here. In each of these structures, isoproteranol can 

be  found at  multiple  positions  some of  which  are  attributed  to  crystal  lattice  contacts 

however one site is not lattice dependent. Ligand binding at this loop II site is likely to 

create  several  hydrogen bonds with  the  protein  and each of  the  ligand's  four  possible 

hydrogen bond donor groups are involved in this interaction.

The  elucidation  of  a  catechol  binding site  at  loop II  of  the  SOD1  β-barrel  opens  the 

possibility to bind a large number of biologically relevant molecules in this position. What 

follows is a description of two such compounds; the hormones adrenaline and dopamine.
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3.10 Adrenaline

Adrenaline is a member of the biogenic amine group of excitatory neurotransmitters and 

acts on the  α  and  β adrenergic receptors. It is found in the neurons of the medulla and 

project into the thalamus and hypothalamus. Neurones that use adrenaline are found less 

frequently in the brain than those that utilise the other catecholamine neurotransmitters 135. 

Adrenaline  is  a  licensed  drug  and  used  frequently  in  the  treatment  of  asthma  136, 

bronchiolitis 137, anaphylaxis 138 and angioedema 139.

Adrenaline  is  structurally  very  similar  to  isoproteranol;  a  catechol  head  group  with 

hydroxyl and amine substitutions in the tail. In fact the only difference between these two 

drugs is the presence of an isopropyl group at the terminus of the molecules tail (Figure 

3.21).  This  similarity  ensured  that  crystal  soaking  experiments  would  be  successful 

however adrenaline has low solubility in aqueous solutions at neutral pH due to a lack of 

polarity.  This characteristic prevented an assessment of adrenaline binding to SOD1 at 

physiological pH. Crystallographic statistics for adrenaline bound in SOD1 crystals grown 

at pH 5 are presented in Table 3.10 and the related structures displayed in Figures 3.22 and 

3.23.

Figure 3.21. The structure of adrenaline (epinephrine, Twinject and Epipen). Mr 183.2 gMol-1.

Figure 3.22A and B indicate that, as expected, adrenaline binds in the same loop II groove 

as isoproteranol. Figure 3.22C and Table 3.11 describe the hydrogen bonding interactions 

between I113T SOD1 and adrenaline. Glu21, Pro28, Glu100 and the loop II ordered water 

molecule  all  act  as  hydrogen  bond  acceptors  in  partnership  with  adrenaline's  catechol 

hydroxyls. The carboxyl side-chain of Glu21 also interacts with the adrenaline's tail amine 

and hydroxyl groups. Comparison with the hydrogen bonds made by isoproteranol reveals 

these interactions are conserved with only slight changes in bond lengths discernible.
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Variant I113T wild-type L38V H48Q

Resolution (Å) 0.98 1.6 1.25 1.49

Space group P21 P21 P21 P21

pH 5.0 5.0 5.0 5.0

Unit cell parameters:

a (Å) 38.3 38.4 38.5 38.4

b (Å) 68.1 68.3 68.2 68.2

c (Å) 50.2 50.8 50.7 50.2

α (o) 90.0 90.0 90.0 90.0

β (o) 104.7 105.0 105.9 105.0

γ (o) 90.0 90.0 90.0 90.0

Completeness (%) 97.0 (71.3) 99.6 (99.6) 97.9 (89.3) 99.7 (99.0)

Redundancy 3.6 (2.0) 2.8 (2.7) 3.5 (2.7) 3.6 (3.6)

R-merge (%) 4.4 (51.7) 9.2 (44.8) 7.6 (41.4) 6.7 (15.9)

I/σ 14.7 (4.16) 6.3 (1.9) 9.4 (2.3) 13.0 (6.6)

Rfact / Rfree (%) 13.8 / 15.4 21.4 / 25.9 22.2 / 25.1 20.2 / 22.9

RMS bond (Å) 0.014 0.014 0.014 0.015

Table 3.10.Single crystal X-ray diffraction data collection, processing and model refinement statistics for  
adrenaline bound to SOD1.
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Figure 3.22. Adrenaline bound to I113T SOD1. (A) Adrenaline with respect to the SOD1 dimer in grey and 
light grey, strands 2, 3 and 6 of the SOD1 β-barrel are coloured yellow, purple and green respectively. (B) 
2Fo-Fc electron density map of adrenaline contoured at 1σ at the Trp32 binding site with the SOD1 surface 
coloured by amino acid hydrophobicity and (C) hydrogen bonding between I113T SOD1 and adrenaline 
shown with black dashed lines. A single water molecule is also shown as a red sphere.
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Figure 3.23. Adrenaline bound to multiple SOD1 mutants. 2Fo-Fc electron density maps contoured at 1σ of 
adrenaline bound at the loop II site in (A) L38V SOD1 in the P212121 form, (B) wild-type SOD1 and (C) 
H48Q SOD1 grown at pH 5 in the P21 form.

Donor I113T wtSOD1 L38V H48Q Acceptor
Adrenaline C1-OH 2.6 Å 2.5 Å 2.8 Å 2.6 Å COOH-Glu100
Adrenaline C1-OH 3.2 Å 3.1 Å 3.4 Å 3.2 Å O=C-Pro28
Adrenaline C2-OH 2.8 Å 2.7 Å 2.7 Å 2.7 Å O=C-Pro28
Adrenaline C2-OH 3.2 Å 3.2 Å 3.3 Å 3.2 Å O=C-Glu21
Adrenaline C2-OH 3.4 Å 3.3 Å 3.3 Å 3.4 Å H2O
Adrenaline tail-OH 4.0 Å 4.3 Å 2.8 Å 3.9 Å COOH-Glu21
Adrenaline tail-NH 4.0 Å 3.3 Å 3.9 Å 3.5 Å COOH-Glu21

Table 3.11. Summary of potential hydrogen bonding interactions between I113T SOD1 and adrenaline in the 
loop II binding site.
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3.11 Dopamine

Dopamine is a biogenic amine neurotransmitter and a critical intermediate in the synthesis 

of adrenaline and noradrenaline from tyrosine and L-dihydroxyphenylalanine  135. Unlike 

isoproteranol and adrenaline, dopamine acts upon specific G-protein coupled receptors in 

dopaminergic  neurones  rather  than  adrenergic  receptors.  These  neurones  are  found 

throughout the brain, where they are involved in working memory  140,  the heart,  where 

stimulation can increase myocardial contractility and cardiac output, and the kidneys where 

they effect diuresis and natriuresis 141.

The dopaminergic nervous system is implicated in a plethora of common disease states. 

These include: hypertension, obesity 141, attention deficit disorder 142, schizophrenia 143 and 

drug dependence  144.  These  neurones  are  also  critically  affected  in  Parkinson's  disease 

(PD). Analogous to ALS, PD involves the selective death of a subset of CNS neurones in 

the brain's substantia nigra. While the etiology of PD is not clearly understood there are 

indications  that  an  interaction  between  dopamine  and  α-synuclein  promotes  amyloid 

deposition and cell death 145.

Figure 3.24. The structure of dopamine. Mr 153.2 gMol-1.

Like isoproteranol and adrenaline, dopamine follows the catecholamine blueprint with a 

catechol  head  group attached  to  a  tail  substituted  with  an  amine  group (Figure  3.24). 

Dopamine does not contain a tail hydroxyl as seen in the previous two compounds and this 

reduces the number of potential hydrogen bonds between the ligand and Glu21.

Figure 3.25 shows the binding of dopamine to I113T SOD1 at the loop II groove and Table 

3.12 shows related crystallographic statistics. As expected there is good electron density 

around the catechol head group which makes typical hydrogen bonds with the Glu21 and 

Pro28 carbonyls,  the Glu100 carboxyl  and the loop II  ordered water  molecule (Figure 
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3.25C  and  Table  3.13).  Binding  is  replicated  with  slight  changes  in  conformation  in 

structures with other SOD1 variants and near physiological pH (Figure 3.26). While these 

bonds are conserved with respect to isoproteranol and dopamine, the hydroxyl hydrogen 

donor is switched in each case as the plane of the catechol group is rotated 180 o (Figure 

3.27).

Variant I113T I113T wild-type L38V H48Q

Resolution (Å) 1.00 1.90 1.89 1.53 1.55

Space group P21 C2221 P21 P21 P21

pH 5.0 8.0 5.0 5.0 5.0

Unit cell parameters:

a (Å) 38.4 165.4 38.6 38.6 38.7

b (Å) 68.0 203.4 68.2 67.1 67.9

c (Å) 49.9 144.6 50.9 52.3 50.5

α (o) 90.0 90.0 90.0 90.0 90.0

β (o) 104.8 90.0 105.8 106.7 105.7

γ (o) 90.0 90.0 90.0 90.0 90.0

Completeness (%) 96.8 (80.4) 97.0 (82.4) 92.9 (65.2) 99.8 (99.9) 99.8 (98.8)

Redundancy 3.7 (2.7) 7.0 (5.2) 2.7 (1.5) 3.6 (3.6) 3.6 (3.4)

R-merge (%) 4.7 (58.7) 11.3 (64.5) 9.9 (31.8) 16.7 (53.9) 8.0 (53.9)

I/σ 16.4 (1.6) 12.52 (1.62) 6.6 (2.0) 6.3 (2.2) 14.0 (2.1)

Rfact / Rfree (%) 15.8 / 18.2 20.0 / 23.2 23.9 (29.3) 29.8 / 34.3 19.9 / 23.7

RMS bond (Å) 0.015 0.016 0.016 0.015 0.015

Table 3.12. Single crystal X-ray diffraction data collection, processing and model refinement statistics for 
dopamine bound to SOD1.
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Figure 3.25. Dopamine bound to I113T SOD1. (A) Dopamine with respect to the SOD1 dimer in grey and 
light grey, strands 2, 3 and 6 of the SOD1 β-barrel are coloured yellow, purple and green respectively. (B) 
2Fo-Fc electron density map of dopamine contoured at 1σ at the Trp32 binding site with the SOD1 surface 
coloured by amino acid hydrophobicity and (C) hydrogen bonding between I113T SOD1 and dopamine 
shown with black dashed lines, a single water molecule is also shown as a red sphere.
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Figure 3.26. Dopamine bound to multiple SOD1 mutants. 2Fo-Fc electron density maps contoured at 1σ of the 
SOD1 loop II pocket with dopamine bound in (A) I113T SOD1 pH 8 C2221 crystal structure (B) L38V 
SOD1, (C) wild-type SOD1 and (D) H48Q SOD1 grown at pH 5 in the P21 form.

Donor I113T wtSOD1 L38V H48Q I113T pH8 Acceptor
Dopamine C1-OH 2.8 Å 2.7 Å 2.2 Å 2.9 Å 2.5 Å O=C-Pro28
Dopamine C1-OH 3.2 Å 3.0 Å 4.0 Å 3.4 Å 3.1 Å O=C-Glu21
Dopamine C1-OH 3.3 Å 3.4 Å 2.9 Å 3.3 Å 3.4 Å H2O
Dopamine C2-OH 2.6 Å 2.9 Å - 3.2 Å 2.5 Å COOH-Glu100
Dopamine C2-OH 3.3 Å 3.3 Å - 4.5 Å 3.4 Å O=C-Pro28

Table 3.13. Summary of potential hydrogen bonding interactions between SOD1 and dopamine in the loop II 
binding site.
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Figure  3.27.  Comparison  of  I113T  SOD1  structures  with  bound  catecholamines;  isoproteranol  (cyan),  
adrenaline (purple) and dopamine (orange).

The reason for this shift in orientation appears to be the lack of hydrogen bonding with the 

Glu21 carboxyl  through a tail  hydroxyl.  The dopamine tail  is  therefore untethered and 

projects into solvent away from Trp32. Electron density is, surprisingly, clearly defined for 

this part of the molecule (Figure 3.25B) possibly as a result of repulsion from Lys23 and 

Lys30 side chains.
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3.12 An in vitro assay to monitor SOD1 aggregation

While the etiology of SOD1 related fALS is currently ambiguous the disease manifests 

with  particular  phenotypic  characteristics.  Motor  neurone  cell  death  leading  to  a 

deterioration of muscle control, atrophy and ultimately death are the primary traits of all 

ALS sufferers. The knowledge that the SOD1 gene is mutated in a subset of cases 17 led to 

the observation that SOD1 protein accumulates as high molecular weight inclusions in the 

motor neurones of these individuals  68 and in mouse transgenic models  146.  In addition, 

fALS associated SOD1 mutant protein has been found to be destabilised and aggregation 

prone  in  vitro particularly when demetallated  and disulphide  reduced  78,86.  Banci  et  al 

observed that apo-I113T SOD1 undergoes a gradual but progressive disappearance of the 

dimeric form concomitant with evolution of higher molecular weight species when the 

protein was analysed by size exclusion chromatography after incubation at physiologically 

relevant concentration, pH and temperature 78. This work is recreated in Figure 3.28.

Figure 3.28. Aggregation of I113T SOD1 monitored by size exclusion chromatography. Apo-I113T SOD1 
(100 µM) in Tris-HCl 20 mM, NaCl 150 mM was incubated for the indicated time at 37 oC before 300 µl was 
was loaded onto a Superose 12 10/300 gel filtration column.
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Lansbury and co-workers have used this system to determine the effect of an intersubunit 

disulphide bond on A4V SOD1 aggregation  86 and the effect of putative SOD1 binding 

compounds  on  aggregation  130,131.  Indeed,  5-fluorouridine  and  isoproteranol  were  both 

assayed  for  aggregation  inhibition  by  quantifying  how  much  dimeric  apo-A4V SOD1 

remained after  incubation with the compound in comparison with an untreated protein 

control.  In  both  cases  more than 95 % of  A4V SOD1 was in  the dimeric  form when 

assayed. Although size exclusion chromatography is generally low though-put technique 

the small number of compounds presented in the previous sections allows their biological 

activity to be characterised using this methodology. The experimental conditions used in 

this study are explained below.

The intracellular concentration of SOD1 has been estimated to be in the low μM range 84. 

To fully represent this and in order to make valid comparisons with the work of Nowak et  

al 130 and  Banci  et  al 78 apo-SOD1 was  used  at  25  μM  and  100  μM concentrations 

thoughout. Physiological pH was maintained using Tris buffered saline and assays were 

incubated at 37 oC.

As can been seen in Figure 3.27, extensive dimer loss can be discerned after 48 hours. At 

this  time  point  a  large  peak  corresponding  to  high  molecular  weight  soluble  SOD1 

aggregates is also clearly visible. While a shorter time period (4 hours) was assessed in 

each  case,  the  extent  of  aggregation  after  such  a  short  incubation  time  prevented  an 

assessment of compound effectiveness. As a result, 48 hours was used throughout as the 

standard incubation period.

With no information concerning ligand binding affinities directly available from the crystal 

structure of a protein-ligand complex it is difficult to determine the concentration of ligand 

that should be used to measure its biological activity. Given that two of the compounds 

presented here have previously demonstrated aggregation inhibition activity at a 1:3 SOD1 

to ligand molar ratio 130, those conditions are replicated here. A 1:30 ratio is also presented 

in each case.

In order that ligands be allowed time to dock before the onset of aggregation a 15 minute 

incubation period with the ligand was effected before 5 mM EDTA was added to initiate 
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aggregation.  This  is  fully  in  accordance  with  the  previous  work of  Lansbury  and co-

workers 130,131.

As described, adrenaline has limited solubility in aqueous buffers at neutral pH. Similarly, 

4-(4-methylpiperazin-1-yl)-2-(trifluoromethyl)quinazoline  (MPTQ)  has  very  limited 

solubility without the presence of DMSO. As a result neither of these compounds were 

assayed for aggregation inhibition.

In  the  previous  sections,  I113T SOD1 was  used  as  an  screening  test  case  for  ligand 

binding.  Banci et al used I113T SOD1 to demonstrate the inherently aggregation prone 

nature  of  SOD1 mutants  78. Figures  3.29 –  3.34 A and B show  in  vitro I113T SOD1 

aggregation in the presence of each of the compounds presented in the previous section 

under  the  conditions  described  above,  with  noted  exceptions,  as  monitored  by  size 

exclusion  chromatography.  These  experiments  were  repeated  with  each  SOD1 binding 

compound using L38V SOD1 (Figures 3.29 – 3.34 C and D).

The alanine to valine amino acid substitution at position 4 of the SOD1 polypeptide is the 

most common SOD1 mutant in North America and is widely regarded to manifest with the 

severest ALS phenotype  147. The A4V mutation is found at the SOD1 dimer interface  148 

and may exert its pathogenic effect by perturbation of the interface or distortion of the 

SOD1  β-barrel.  When  isoproteranol  and  5-fluorouridine  were  previously  analysed  for 

aggregation  inhibition  they  were  assayed  against  a  recombinant  A4V protein  130.  This 

protein was expressed in E. coli as a glutathione S-transferase fusion protein from which it 

was cleaved during protein purification  86. Cleavage occurs using a derivative of human 

rhinovirus 3C protease at the site Leu-Glu-Val-Leu-Phe-Gln-Gly-Pro between glutamate 

and glycine  149. Thus, removal of the fusion protein leaves the peptide Gly-Pro-Leu-Gly-

Ser N-terminal to the SOD1 primary alanine. Given over 50 % of SOD1 amino acids are 

found to have ALS related mutations and the N-terminus of SOD1 is found close to the 

dimerisation region it  is  conceivable that  addition of extra amino acids may effect the 

protein's  properties  particularly relating  to  its  aggregation  propensity.  In  order  to  fully 

characterise the compounds presented earlier and to act as a control for aggregation assays 

using I113T and L38V SOD1 an identical construct was cloned, expressed and purified 

according to published methodology 86. This SOD1 protein, with the A4V mutation and 5 

extra  N-terminal  amino  acids,  is  hereafter  termed  A4V+ SOD1.  The 6  SOD1 binding 
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compounds tested for aggregation inhibition with I113T and L38V SOD1 were examined 

in an identical fashion with apo-A4V+ SOD1 (E and F in Figures 3.29 – 3.34).
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Figure 3.29. Aggregation of recombinant SOD1 in the presence of MDTQ monitored by SEC. apoSOD1 at  
t=0 hrs is presented in each case (red) with apoSOD1 after 48 hrs incubation at 37 oC (green) compared with 
identical  samples containing 1:3 (blue) and 1:30 (cyan) concentrations of MDTQ. (A) I113T 25  μM (B) 
I113T 100 μM (C) L38V 25 μM (D) L38V100 μM (E) A4V+ 25 μM (F) A4V+ 100 μM.
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Figure 3.30 Aggregation of recombinant SOD1 in the presence of MPQ monitored by SEC. apoSOD1 at t=0 
hrs is presented in each case (red) with apoSOD1 after 48 hrs incubation at 37  oC (green) compared with 
identical samples containing 1:3 (blue) and 1:30 (cyan) concentrations of MPQ. (A) I113T 25 μM (B) I113T 
100 μM (C) L38V 25 μM (D) L38V100 μM (E) A4V+ 25 μM (F) A4V+ 100 μM.
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Figure 3.31 Aggregation of recombinant SOD1 in the presence of MDQ monitored by SEC. apoSOD1 at t=0 
hrs is presented in each case (red) with apoSOD1 after 48 hrs incubation at 37  oC (green) compared with 
identical samples containing 1:3 (blue) and 1:30 (cyan) concentrations of MDQ. (A) I113T 25 μM (B) I113T 
100 μM (C) L38V 25 μM (D) L38V100 μM (E) A4V+ 25 μM (F) A4V+ 100 μM.
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Figure  3.32  Aggregation  of  recombinant  SOD1  in  the  presence  of  5-fluorouridine  monitored  by  SEC. 
apoSOD1 at t=0 hrs is presented in each case (red) with apoSOD1 after 48 hrs incubation at 37 oC (green) 
compared with identical samples containing 1:3 (blue) and 1:30 (cyan) concentrations of 5-fluorouridine. (A) 
I113T 25 μM (B) I113T 100 μM (C) L38V 25 μM (D) L38V100 μM (E) A4V+ 25 μM (F) A4V+ 100 μM.
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Figure 3.33 Aggregation of recombinant SOD1 in the presence of isoproteranol monitored by SEC. apoSOD1 
at t=0 hrs is presented in each case (red) with apoSOD1 after 48 hrs incubation at 37 oC (green) compared 
with identical samples containing 1:3 (blue) and 1:30 (cyan) concentrations of isoproteranol. (A) I113T 25 
μM (B) I113T 100 μM (C) L38V 25 μM (D) L38V100 μM (E) A4V+ 25 μM (F) A4V+ 100 μM.
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Figure 3.34 Aggregation of recombinant SOD1 in the presence of dopamine monitored by SEC. apoSOD1 at  
t=0 hrs is presented in each case (red) with apoSOD1 after 48 hrs incubation at 37 oC (green) compared with 
identical samples containing 1:3 (blue) and 1:30 (cyan) concentrations of dopamine. (A) I113T 25 μM (B) 
I113T 100 μM (C) L38V 25 μM (D) L38V100 μM (E) A4V+ 25 μM (F) A4V+ 100 μM.
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When apo-SOD1 is  analysed by SEC a single peak corresponding to the apo dimer is 

observed (Figures 3.29 – 3.34 red lines). Following incubation at 37 oC the height and area 

of this peak is reduced corresponding to the SOD1 dimer moving into higher molecular 

weight oligomers (Figures 3.29 – 3.34 green lines). In the case of the three quinazolene 

derivatives tested here, I113T, L38V and A4V+ SOD1 aggregation is not inhibited  by 

addition of  a 1:3 and 1:30  molar ratio (Figures 3.29 – 3.31). This is demonstrated by the 

similar dimer peak heights when comparing the apo-SOD1 control after 48 hours and those 

of containing compound. In most cases there is a slight decrease in dimer prevalence at 

high compound concentration.

Neither  isoproteranol,  5-fluorouridine  or  dopamine  (3.32  -  3.34)  exhibit  any  SOD1 

aggregation inhibition as determined by observation of the SOD1 dimer peak height and 

area. Figures 3.33 and 3.34 both exhibit strong absorbance in the 7 – 13 ml region when 

high catecholamine concentrations are used seemingly indicating an vast increase in the 

prevalence of high molecular weight SOD1 species. This is likely an artefact of strong UV 

absorption  by  catecholamine  oxidation  products  but  indicates  the  presence  of  the 

compound  in  higher  molecular  weight  species.  These  species  must  be  either  SOD1-

compound complexes or compound-compound complexes.
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Chapter IV

Discussion of small molecule SOD1 binding and the effect upon 

SOD1 aggregation in vitro

4.1 The SOD1 screening pipeline

Appendix  IV  illustrates  the  43  compounds  screened  here  for  SOD1  binding  using  a 

crystallographic  approach.  Including  the  Rigaku  ActiveSite  library  this  amounts  to 

approximately 450 compounds.  This throughput  would not  have been possible  without 

efficient protein expression and reliable protein crystallisation. The system implemented 

here allows compounds to be tested against SOD1 proteins which belong to each of the 

major  SOD1  mutation  groups;  dimer  interface,  copper  site,  loop  and  the  wild-type 

prototype.

4.2 The SOD1 tryptophan-32 binding site

4-(4-methyl-1,4-diazepan-1-yl)-2-(trifluoromethyl)quinazoline  (MDTQ)  is  patented  as  a 

modulator of ALS. This compound was found to bind to G93A SOD1 at a site over Trp32 

with its trifluoromethyl moiety embedded in a cavity created by Val31, Ser98 and Glu100 
123. Here the binding of MDTQ at this site has been confirmed by single crystal X-ray 

diffraction structure determination and found to occur in a variety of SOD1 mutants as well 

as the wild-type form.

Figure 4.1. The structures of four SOD1 binding quinazoline derivatives.
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Figure 4.1 shows the four quinazoline bases compounds found to bind SOD1 during the 

course  of  this  study.  Modification  of  two  of  the  groups  substituted  on  the  central 

quinazoline ring of MDTQ had disparate effects on its interaction with SOD1. Removal of 

a  carbon  from  the  homopiperazine  group  to  form  4-(4-methylpiperazin-1-yl)-2-

(trifluoromethyl)quinazoline (MPTQ) severely affected the compound's solubility, limiting 

its availability in soaking experiments, but did not change its mode of binding. Removal of 

the  trifluoromethyl group on C2 to form 4-(4-methylpiperazin-1-yl)quinazoline (MPQ) or 

4-(4-methyl-1,4-diazepan-1-yl)quinazoline  (MDQ)  prevents  formation  of  3  hydrogen 

bonds between this group and the protein. As can been seen in Figures 3.6 and 3.9, in both 

cases the quinazoline ring system slightly shifts position away from Ser98 perhaps in order 

to maximise the hydrophobic interaction with the Trp32 indole. This prevents formation of 

the Ser98-quinazoline N1 hydrogen bond. It seems reasonable that ablation of these bonds 

will weaken the overall interaction between ligand and protein.

Analysis  of SOD1 protein aggregation in the presence of these quinazoline derivatives 

indicated no obvious effect when compared to a control. Similarly, 5-fluorouridine was 

also found to bind at the Trp32 site and form hydrogen bonds with Lys30 and Ser98. This 

compound also had no effect on SOD1 dimer loss.

4.3 The SOD1 loop II binding site

Figure 4.2 shows the structure of the three catecholamine compounds found here to bind at 

a site in the groove created by amino acids Glu21 – Trp32 at the loop II region of the 

SOD1 β-barrel.

Figure 4.2. The structures of three SOD1 binding catecholamines.

Each of  these  compounds is  capable  of  making several  hydrogen bonding interactions 
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between the catechol head group and SOD1. One ordered water that sits in loop II is also 

important in this  regard.  Interactions between the tail  amine and hydroxyl  groups with 

Glu21 appear to dictate the conformation of the catechol head group as described in Figure 

3.26. Dopamine does not make hydrogen bonds between tail and Glu21 indicating that its 

affinity  for  the  loop  II  site  will  be  reduced  in  comparison  with  isoproteranol  and 

adrenaline.

When isoproteranol and dopamine are assayed for their effect on SOD1 aggregation we 

find that both compounds seem to promote formation of high molecular weight species as 

determined by the increased 280nm absorption at high compound concentrations in the 7 – 

13  ml  region  of  their  respective  SEC  traces.  Dopamine  shows  extraordinarily  high 

absorption  in  this  region  possibly  arising  from  the  non-specific  effects  of  dopamine 

toxicity mediated by its oxidation products dopa-quinone and indolequinones or formation 

of melanin 150.

4.4 Lansbury compounds and contrary results

The course which leads from SOD1 mutation to motor neurone cell death and ALS is not  

clearly delineated. This is despite the best efforts of many people over the course of nearly 

two decades since its first implication as causative factor in ALS. SOD1 aggregation and 

the resulting disruption of cellular process is heavily implicated in disease pathogenesis 

however  as  it  is  the  only  indisputable  and  unifying  cell  level  disease  characteristic 

preceding cell death. SOD1 polymerisation resulting from a monomerisation event leading 

to aggregation prone monomers has been proposed as the pathogenic mechanism 151.

This concept takes a lead from observation of mutant transthyretin (TTR) behaviour in the 

neurodegenerative disease familial amyloid polyneuropathy (FAP) 152. This disease initiates 

with dissociation of tetrameric TTR followed by conformational changes to the monomer 

and aggregation of these modified monomers into fibrillar oligomers  153. Small molecule 

inhibition of TTR tetramer dissociation has been shown to reduce aggregates in vitro and in 

patient trials 154.

Isoproteranol and 5-fluorouridine were identified through an in silico screen for molecules 

targeting  the  SOD1  dimer  interface  pocket  created  by  amino  acids  Val7,  Gly146  and 
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Val147  130.  These molecules  aimed to inhibit  SOD1 monomerisation by replicating the 

effect  of  an  artificial  intersubunit  disulphide  bond  created  by the  mutation  V148C  86. 

Validation  of  their  effect  was  monitored  by  observing  the  quantity  of  dimeric  SOD1 

remaining after a period of time  130. Here we find that isoproteranol and 5-fluorouridine 

bind at sites proximal but distinct in the loop II region on the surface of the SOD1 β-barrel. 

This  area  is  distant  from  the  dimerisation  region  and  the  result  questions  the 

monomerisation hypothesis as the cause of SOD1 aggregation. If both compounds exert a 

protective  effect  on  dimeric  SOD1  as  published  by  Nowak  et  al 130 and,  as  neither 

compound induces large conformational changes, that effect must exert itself at the site, or 

close to the site, at which the compound binds. As a result the protective effect is likely an 

inhibition of non-native dimer contacts that take place in the loop II region rather than 

inhibition  of  monomerisation  that  ultimately  leads  to  polymerisation.  This  strongly 

implicates the loop II region in SOD1 mediated fALS pathogenicity.

4.5 Loop II and Trp32 in SOD1 pathology and implications

The Trp32-loop II region of SOD1 (Figure 4.3) has previously been found to form one of 

three  crucial  determinants  of  SOD1  aggregation  in  vitro 155.  This  is  corroborated  by 

analysis  of the SOD1 primary sequence using tools designed to predict  regions with a 

propensity for aberrant multimerisation 156.

Figure 4.3. The SOD1 dimer (2C9V). β-strand 2 and 3 are highlighted turquoise and purple respectively and 
loop II in blue. SOD1 Trp32 is also shown in purple.

The single SOD1 tryptophan is unusually solvent exposed on the surface of the SOD1 β-
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barrel. Zhang et al noted in 2003 that bicarbonate was able to induce covalent aggregation 

of wild-type SOD1 by tryptophan oxidation  157.  Using  β-strand 3 peptide mimetics this 

group was able to determine that SOD1 Trp32 could be modified to hydroxytryptophan, 

kynurenine and N-formylkynurenine  158. This was followed by observations on wild-type 

human  SOD1  isolated  from  erythrocytes  confirming  that  oxidatively  modified  SOD1 

comprises 20 – 30 % of the total cellular pool and that Trp32 in particular can be modified 

by the addition of one or two oxygen atoms 159.

These findings are novel with respect to SOD1 biology but become especially interesting 

in light of experiments using a W32F SOD1 mutant. This amino acid substitution prevents 

the formation of covalently bonded SOD1 aggregates  in vitro 157 and prolongs the life 

expectancy  of  spinal  cord-dorsal  root  ganglia  cell  cultures.  In  the  latter  case,  cells 

transfected with a G93A/W32F double mutant expression plasmid had comparable life 

expectancies with those expressing wild-type SOD1 driven by the same system and almost 

twice that of those expressing a G93A single mutant 159. These results are corroborated by 

recent  findings  that  fALS  associated  SOD1  mutants  are  unable  to  propagate  SOD1 

misfolding in mouse transgenic models when expressed as a double mutant with W32S 160.

4.6 Affinity & NMR experiments

Affinity, efficiency, efficacy and specificity are of critical importance alongside ADMET 

properties  in  any drug development  pipeline  from initial  hit  through optimisation  to  a 

compound  that  could  be  a  candidate  for  clinical  trials.  One  method  to  ensure  that 

successive iterations of a compound are changing the compounds characteristics in the 

desired way is to measure the strength of ligand binding. The change in free entropy (ΔS) 

and enthalpy (ΔH) on ligand binding are often used as a measure of affinity 161. During the 

course of this work each of the compounds presented as binding to SOD1 were analysed 

by isothermal titration calorimetry and, in the case of isoproteranol, one-dimensional NMR 

spectroscopy. Despite good electron density in the crystal structures, high quality protein 

samples and highly pure ligand no data regarding the affinity of any of these compounds 

could be gleaned.
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4.7 Prospects and further work

The catecholamine and quinazoline compounds presented here represent excellent initial 

scaffolds upon which groups can be added in order to increase specificity and affinity. 

Each of the compounds presented has a molecular weight below 310 gMol -1 and could be 

reduced even further to those groups which appear critical to binding. The catechol head 

group and the trifluoromethyl attached to a planar aromatic moiety are the groups which 

appear to make the most contacts with the peptide. Their binding site proximity together 

with the disease importance attached to this region encourages the notion of a chimeric or 

linked  compound  to  take  advantage  of  both  sites.  Fragment  linking  is  not  without 

difficulties  however,  due  to  the  reduction  of  rotational  freedom  encountered  during 

fragment binding often the binding affinities of linked compounds are not of the expected 

strength 162.

A key factor in the growth of these compounds into SOD1 therapeutics is development of 

an assay to determine their biological effect. The SEC aggregation assay deployed in this 

work has previously been used with respect to SOD1 however the contradictory results 

obtained  here question both the results and the assay. A cell model for SOD1 toxicity has 

been developed and has been used in targeted drug development  163, as have transgenic 

mouse models  164. While these are more expensive and each has limitations in terms of 

throughput they are undoubtedly a better representation ALS neurones.
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Chapter V

An introduction to the human copper chaperone for SOD1 and 

small-angle X-ray scattering

5.1 Copper metabolism

The evolutionary shift to aerobic respiration resulted in the need for organisms to utilise an 

element with high redox potential. As the atmosphere became more oxidising this demand 

could not be filled by iron, which was converted into the insoluble iron (III) form. It could 

be fulfilled by the newly bioavailable copper which was well suited to the task  165. As a 

result of this change and the subsequent proliferation and evolution of aerobic organisms, 

copper became an essential element for the vast majority of species 166. In humans copper 

is an essential cofactor of enzymes involved in respiration, iron transport and free radical 

scavenging among others.

While copper's redox properties are a solution to one set of problems it is also the cause of 

another set. Free soluble copper is a source of oxidative stress because it generates reactive 

oxygen species through Fenton chemistry  167. Consequently, the intracellular free copper 

concentration must be kept at a minimum. It is known to be ~10 -18 M in yeast cells which 

equates to less than one free copper atom per cell 168. Under these circumstances it is very 

unlikely that a newly synthesised copper binding protein will  find an amenable copper 

cofactor.

5.2 The membrane bound copper transporter and metallochaperones

The metallochaperones are a group of soluble intracellular proteins that are responsible for 

the chelation and movement of metal ions from their  entry into the cell  to their  target 

protein  169.  Copper  metallochaperones  are  involved  in  three  pathways  i)  secretory/iron 

uptake, ii) activation of cytochrome c oxidase and iii) activation of SOD1. Each pathway 

begins with copper uptake by one of the copper transporter family (Ctr); in humans this is 

hCTR1 170. Copper then passes along an increasing affinity gradient that prevents binding 
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by  cytoplasmic  low  molecular  weight  metal  chelators  such  as  metallothionine  and 

glutathione 171.

Copper  transport  by  human  CTR1  is  inhibited  by  silver  but  not  divalent  metal  ions 

indicating that Cu(I) is the substrate 172. hCTR1 is an integral membrane protein and forms 

a homotrimer with a central pore 173. Each monomer has an extracellular N-terminus and an 

cytoplasmic C-terminus 174. This cytoplasmic region is known to exchange Cu(I) with the 

S. cerevisiae  cytoplasmic, secretory pathway metallochaperone Atx1  175.  This protein in 

turn  delivers  Cu(I)  to  the  Atx1-like  domain  of  the  membrane bound secretory vesicle 

protein Ccc2  176,177. In an analogous system, reliant on Cox17, copper is delivered to the 

intermembrane  space  of  the  mitochondria  where  it  is  shuttled  along  inner  membrane 

proteins before transfer to cytochrome c oxidase 178.

amino acid similarity: identical Strong Weak Not matching
Conserved copper binding cysteine Intramolecular disulphide bond cysteine

SOD1 metal binding ligands

Figure 5.1. Multiple protein sequence alignment CCS and SOD1 proteins. S. cerevisiae Atx1 (GI:1255959), 
yCCS/LYS7 (GI:729967), hCCS (GI:49456811), hSOD1 (GI:49456443) and ySOD1 (GI:1015812) generated 
using BLOSUM 179.

Human SOD1 is found in the cytoplasm and the mitochondrial intermembrane space 46,180. 

In each of these locations Copper Chaperone for SOD1 (hCCS) interacts  directly with 

SOD1 and can load copper into the nascent protein 181-183. hCCS was first discovered as a 

homolog of a yeast protein (Lys7/yCCS) that specifically delivered copper to yeast SOD1, 

indeed, hCCS is 26% identical to yeast yCCS (Figure 5.1) and displays similar domain 

architecture 182.

83



5.3 Domain architecture of hCCS

Domain I of both hCCS (residues 1 - 80) and yCCS shows considerable homology to the 

S.  cerevisiae Atx1 protein  (Figure  5.2A).  This  region contains  a  conserved MXCXXC 

motif seen at the N-terminal region of several copper transport proteins  184-186. This motif 

has been shown to bind Cu(I)  187,188 and other metal ions  189,190. Removal of this domain 

from the yCCS protein does not eliminate its activity as a domain II/III truncation protein 

could  effectively  complement  a  LYS7Δ  strain  191.  However,  under  copper  limited 

conditions domain I is essential for LYS7Δ complementation 191. Conversely, domain I was 

proved  essential  for  human  CCS  functioning  with  deletion  of  this  domain  ablating 

activation of SOD1 in vivo in embryonic fibroblasts 192.

Figure 5.2. Structures of the three hCCS domains. (A) NMR structure of the Atx-1 like domain I (2CRL), (B)  
crystal structure of SOD1-like domain II monomer (1DO5) and (C) the predicted structure of domain III. 
Copper-binding regions are indicated in red. Taken from Wright et al 193.

Domain II (residues 85 - 234) exhibits 50% identity to wild-type hSOD1 (Figure 5.2B). 

Similarity  between  these  proteins  extends  to  the  catalytic  copper  and  structural  zinc 

binding sites of SOD1 (Figure 5.1, purple residues). The metal coordinating amino acids 

are intact in hCCS except for the residue corresponding to histidine 120 which is replaced 
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by aspartic acid. The reverse mutation at this site bestows superoxide scavenging activity 

on yeast CCS but the native protein is not functional as a dismutase 194. This arrangement 

proposes a copper binding site in CCS similar to that of SOD1 and seems to be an obvious 

protagonist in the transfer of copper to its destination. However, these residues were not 

required for SOD1 activation when tested in the yeast system 191. Crystallographic studies 

on hCCS domain II found that this pseudo-copper site was not occupied but the zinc site 

was occupied 195. The presence of zinc in the SOD1-like site was subsequently confirmed 

by EXAFS 196.

hCCS domain II also houses two cysteine residues that align with those involved in the 

SOD1 intramolecular disulphide bond (Figure 5.1, green residues). This disulphide bond is 

present in the crystal structure and anchors strand eight of the β-barrel to the disulphide 

loop as in SOD1 195.

Domain  III  (residues  235  –  274,  Figure  5.2C)  is  very  highly  conserved  among  CCS 

proteins  from different  species  and was  proven  essential  for  yCCS function  under  all 

conditions  191.  It contains a CXC motif  that binds Cu(I) and is essential for transfer of 

copper to SOD1 191. Based on XAS data and recombinant CCS copper content, Eisses et al 

proposed this motif could interact with the MXCXXC of domain I or another domain III 

from a  CCS homodimer  partner  197.  These  interactions  are  likely to  occur  under  non-

limiting copper conditions via a di-, tri-, or tetra-nuclear copper cluster 196.

Equally  important  for  the  maturation  of  SOD1  is  the  oxidation  of  its  intramolecular 

disulphide bond 75. While formation of this bond can be catalysed by oxygen 80 and reduced 

glutathione  82, CCS is the primary catalyst for most organisms and is the only system in 

yeast 80,198. Crystallisation of a ySOD1 H48F mutant in heterodimeric complex with yCCS 

revealed a disulphide bond between ySOD1 Cys57 and yCCS domain III Cys229 199. This 

finding demonstrates a possible mechanism by which SOD1 acquires an intramolecular 

disulphide bond concomitantly with copper loading.
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Figure 5.3. The accepted mechanism of SOD1 copper loading by hCCS.

To summarise, hCCS appears to contain one zinc ion in domain II at the SOD1 analogous 

site.  The  domain  II  copper  site  is  not  necessary  for  function  and  is  not  necessarily 

occupied.  Figure  5.3  describes  the  function  of  hCCS  in  SOD1  activation.  Domain  I 

sequesters copper  from the environment or CtrI  and passes it  to domain III.  A hetero-

complex is  formed through an interaction between CCS domain II  and SOD1. Copper 

loaded domain III then forms an intermolecular disulphide bond with SOD1 Cys57 and 

transfers  copper  to  the  SOD1 active  site.  Subsequent  reorganisation  of  this  disulphide 

creates the SOD1 internal disulphide and enables separation of the hetero-complex.

5.4 X-ray scattering

X-ray scattering and X-ray crystallography are related techniques that exploit the elastic 

scattering of X-rays by electrons in matter. Both rely on measurement of the intensity and 

angle of deflection of X-rays scattered by the sample. The fundamental difference is the 

nature of the substance under investigation. Crystallography utilises the periodicity of the 

crystalline lattice and the superposition property of electromagnetic  radiation to  enable 

atomic level characterisation of the sample. X-ray scattering on the other hand measures 

isotropic scattering and does not require the sample to be crystalline. In fact scattering can 

be performed on any non-crystalline material including liquids, gasses, amorphous solid 

86



and, most importantly for protein characterisation, molecules in solution 200.

5.5 X-ray scattering by biological macromolecules in solution

Protein  in  solution  is  of  primary  interest  to  the  structural  biologist  and  although  the 

principles of X-ray scattering hold regardless of the state of the sample what follows is 

concerned  with  small  angle  X-ray  scattering  (SAXS)  from  protein  solutions.  In  a 

sufficiently large volume and concentration of such a solution all orientations of the solute 

molecule are present simultaneously. Thus scattering occurs radially around the beam and 

is  equivalent  to  the  scattering  from  a  single  particle  averaged  over  all  orientations 

according to the Debye equation 201

I (q)=∫∫
V

ρ(r 1)ρ(r2)
sin qr 12

qr12
dr1 dr 2

where r12 describes the spatial distance between scattering atoms ρ(r1) and ρ(r2) in volume 

V with q, momentum transfer, given by the equation

q=4π sinθ
λ

where, λ is wavelength and θ is half the angle between the incident and scattered radiation. 

The highest intensity (I)q is found parallel to the incident beam (2θ = 0) and decreases as 

2θ increases. A characteristic scattering profile is obtained by subtracting scattering by the 

buffer from that of the protein solution and plotting intensity against momentum transfer. 

The lowest angle part of this curve is dictated by the radius of gyration, R(g) which is the 

root  mean  squared  distance  of  each  scatterer  from  the  molecule's  centre.  At  low  q, 

scattering can be approximated by the Guinier approximation 202

I (q)= I (0)exp
(−q2 Rg

2)
3
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Thus R(g) can be calculated by

R(g )=√−3m

where m is the gradient of the Guinier plot, I(q) vs q2. Linearity of the Guinier region gives 

a good indication of sample monodispersity.

A Fourier transform of the scattering profile gives the pair distance distribution function, 

p(r). The p(r) function is given by

p (r )= 1
2π2∫

0

∞

I (q)qr sin (qr )dq

and describes the frequency of intra-atomic lengths and the scattering particle's maximum 

linear dimension  202,  Dmax.  A plot of this function is useful when appraising the overall 

shape and anisometry of a molecule.

5.6 Ab initio shape restoration from the scattering curve

While precise atomic co-ordinates cannot be gleaned from SAXS data, a representative 

three dimensional molecular envelope can be constructed from a scattering profile without 

previous knowledge of protein structure. Several algorithms have been developed for  ab 

initio shape restoration. The most widely used of these generate models using beads to fill 

a volume defined by the deduced scattering parameters in a way that produces a scattering 

profile which approaches that obtained experimentally. An inherent flaw in this approach is 

that many diverse models can be generated that  fit  the experimental data.  This can be 

overcome to some extent by repetition of the method and averaging the pool of structures.

GASBOR, the shape restoration algorithm exploited in the following chapters creates a 

three dimensional  model  by finding a chain-compatible  spatial  arrangement  of dummy 

residues that fits the scattering profile up to 0.5 Å-1 203. Dummy residues are centred on 

hypothetical Cα atoms and must  be at  most  3.8 Å from its  nearest  neighbour ensuring 

compactness and connectivity. A final model is condensed from a spherical assembly of 

dummy residues by a cyclic simulated annealing protocol until further optimisation does 
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not change a goal function which incorporates the described constraints.

5.7 Rigid body modelling

A SAXS model can be thought of as a low resolution envelope in which one can fit high 

resolution structures. For proteins with multiple domains connected by flexible linkers or 

subunits this is the aim of rigid body modelling against SAXS data and can provide more 

detailed information than space filling ab initio models solely. As with ab initio methods, 

rigid  body  modelling  attempts  to  minimise  the  difference  between  experimental  and 

theoretical  scattering  by  changing  the  relative  orientations  of  domains.  If  steric  and 

electrostatic restraints are applied to limit translation and rotational domain shifts, models 

can be generated which represent conformational variations of these mobile domains thus 

indicating possible dynamic features.

Here the programs BUNCH and CORAL 204 have been used to fit known domain structures 

against  experimentally  obtained  scattering  profiles.  These  programs  model  full-length 

proteins as rigid domains linked by flexible chains of dummy Cα atoms 204. Each rotation or 

translation of a domain changes its scattering amplitude so that the scattering intensity, I(q) 

of the complex is given by 

I (q)=〈∣∑k =1

K

A(k)(q)∣
(2)〉Ω

where  A(k)(q)  is  the  scattering  amplitude  of  the  kth rigid  body and  <  >Ω accounts  for 

spherical  averaging in reciprocal space. Each model is assessed for its goodness of fit to 

the experimental intensity, Iexp(q) by the magnitude of

χ2= 1
N−1∑j [ I exp(q j)−cI (q j)

σ(q j) ]
2

where  σ(qj)  is  the  experimental  error  at  momentum transfer  (qj),  N is  the  number  of 

experimental points and c is a scaling factor.
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5.8 Summary

While the yeast CCS homolog has been characterised structurally and biochemically hCCS 

is  still  relatively unknown. Structural information regarding this  protein is  limited to a 

2.75Å resolution crystal structure of the central SOD1-like domain 195 and a NMR structure 

of  domain  I  deposited  in  the  Protein  Data  Bank  by  the  RIKEN  structural  genomics 

initiative.  Full  length  hCCS has  never  been  directly  observed  and  the  conformational 

dynamics of this entire class of proteins are completely uncharacterised. Similarly, details 

of  the  interaction  between hSOD1 and hCCS are  sparse.  The two successive  chapters 

describe the cloning, expression and purification of recombinant hCCS from an  E. coli 

host.  This  is  followed  by characterisation  of  hCCS  in  solution  by  small  angle  X-ray 

scattering. Finally the functionally crucial heterodimeric complex formed by hCCS and 

SOD1 is characterised using SAXS and the implications of this work are discussed.
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Chapter VI 

Solution X-ray scattering studies on hCCS and SOD1

6.1 Expression of recombinant hCCS in Escherichia coli and purification

DNA coding for wild-type human CCS was amplified from an EST clone and inserted, 

using a ligation dependent cloning approach, into the pET-24d derived plasmid pETM-11 

to yield the expression plasmid pETM11-hCCS. Expression from this plasmid is driven by 

T7 RNA polymerase on induction with a suitable inducer  205. Recombinant human CCS 

expressed as described is fused with a hexa-histidine tag that facilitates purification of the 

protein by nickel affinity chromatography 206.

Expression of recombinant protein from the pETM-11 vector incorporates the amino acid 

sequence Glu-Asn-Leu-Tyr-Phe-Gln-Gly-Ala prior to its N-terminus. This sequence is the 

target site for TEV (tobacco etch virus) protease  207 and can be used to remove the extra 

amino acids which form the protein's poly-histidine tag. Cleavage takes place between the 

Gln-Gly  residues  leaving  glycine  and  alanine  N-terminal  to  the  primary  methionine. 

Recombinant hCCS can then be purified to homogeneity by removal  of the free poly-

histidine  tag  and 6His-TEV protease from the  solution  by reapplication  to  the  NiNTA 

column (Figure 6.1).

Figure 6.1. Purification of recombinant hCCS. (A) SDS-PAGE separation of fractions from the purification 
of polyhistidine tagged hCCS by nickel affinity chromatography. (B) SDS-PAGE separation of samples from 
the digestion of 6His-hCCS by TEV protease followed by reverse purification on a NiNTA column. Digestion 
was performed on ~50mg 6His-hCCS at 4oC with 100μg/ml TEV protease overnight. SDS-PAGE separation 
in both cases was performed with 12% resolving-4% stacking Tris-glycine protein gels and stained with 
coomassie stain.
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Purification of hCCS by this method yields ~90 mg/l of liquid culture and the protein can 

be concentrated over 25 mg/ml. The protein has a molecular mass of 29.168 kDa (Figure 

6.2)  which compares very well with the predicted peptide molecular mass of 29.1687 kDa. 

It  contains  a  stoichiometric  amount  of  zinc  but  negligible  copper  as  determined  by 

electrospray ionisation mass spectroscopy (ESI-MS) and inductively coupled plasma mass 

spectrometry  (ICP-MS)  respectively.  When  the  protein  is  examined  by  size  exclusion 

chromatography a dominant peak at ~60 kDa is observed indicating that hCCS produced in 

this  way  is  predominantly  dimeric  (Figure  6.3).  However  tetrameric  protein  is  also 

observed, as previously described by Winkler et al 208 and Rae et al 209.

Figure 6.2. Electrospray ionisation mass spectrometry of recombinant hCCS.
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Figure  6.3.  Size  exclusion  chromatography  profile  of  recombinant  hCCS.  Fractions  from  NiNTA 
chromatography suspected to contain hCCS were pooled, concentrated to 2 ml, loaded and separated on a  
calibrated Superdex 200 16/60 gel filtration column with an ÄKTA purifier with flow rate of 1 ml/min at 20 
oC under reducing conditions. The column was calibrated (grey) with A - aldolase 158 kDa (65.5 ml), B – 
bovine serum albumin 67 kDa (73.5 ml) and C - ovalbumin 43 kDa (80.5 ml). A characteristic peak at ~74 ml 
is observed corresponding to the hCCS dimer (black).

The structure of the apo-hCCS domain I, deposited in the Protein Data Bank by the RIKEN 

structural genomics initiative (PDB ID: 2CRL), shows no sign of oligomerisation. This 

rules out domain I as the possible dimerisation site when it is in the copper-apo form. The 

yeast CCS homolog is known to form a dimer through the interaction of its SOD1-like 

domains  210.  Similarly,  hCCS truncated to comprise only domain II  exhibited a similar 

domain interface in the crystal structure to that of SOD1 195. We can infer therefore that full 

length hCCS in the copper depleted state forms a dimer with domain II as the interface. 

This point is important to emphasise as the following sections deals with the interpretation 

of small angle scattering data where dimerisation through domain II was imposed while 

modelling hCCS in solution.
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6.2 hCCS small angle X-ray scattering and assignment of scattering parameters

Scattering experiments were performed on the SWING beamline at Synchrotron SOLEIL, 

Paris. This beamline incorporates an online size exclusion chromatography HPLC system 

for the separation of proteins immediately prior to exposure to the X-ray beam  211. This 

synthesis of techniques eliminates the contribution of higher or lower molecular weight 

species from the scattering profile of the species under investigation. This was deemed 

especially important for hCCS as tetrameric protein exists in solution and large molecular 

weight  aggregates  form  spontaneously.  These  species  would  disproportionally  affect 

deduced scattering parameters as the intensity of scattering is proportional to the square of 

the total number of electrons which constitute the scatterer.

The  apparatus  allows  the  user  to  take  numerous  exposures  over  the  course  of  protein 

elution.  Initial  analysis  of  the  hCCS elution  profile  described in  terms  of  the  forward 

scattering  intensity,  I(0),  which  is  directly  related  to  the  concentration  and  molecular 

weight of the protein, indicates a major peak corresponding to the hCCS dimer preceded 

by that of the tetramer (Figure 6.4). The radius of gyration,  R(g), attains a steady value 

over  the  dimer  peak  but  increases  sharply  moving  toward  the  tetramer  and  higher 

molecular  weights.  This  graph  confirms  the  suspicion  that  SAXS measurement  of  the 

hCCS dimer in bulk solution is impractical due to the contribution from these species. 

Deduced SAXS parameters would be an average of every species in the heterogeneous 

sample. Using this graph one can estimate the R(g) of dimeric and tetrameric hCCS to be 

approximately 30 Å and 40 Å respectively.

94



Figure 6.4. Size exclusion chromatography profile of hCCS described by radius of gyration and forward 
scattering intensity,  R(g) and  I(0). Frames 168 – 175 were averaged and used for the subsequent analysis. 
Adapted from Wright et al 193.

A region of this elution profile over the hCCS dimer peak with steady  R(g) values was 

averaged.  The  resulting  single  scattering  profile  is  shown  in  Figure  6.5.  Further 

manipulation  of  this  data  yields  the  Guinier  plot  in  Figure  6.6,  distance  distribution 

function Figure 6.7 and Kratky plot Figure 6.8.

95



Figure 6.5. Solution X-ray scattering profile of hCCS. Experimentally obtained scattering curve with errors is 
in black while the smoothed scattering profile obtained by back-transform of the p(r) (Figure 6.7) is cyan.

Figure  6.6.  Guinier  plot  of  X-ray  scattering  from  hCCS.  Data  points  (4  -  30)  used  in  the  Guinier 
approximation are highlighted cyan.
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Figure 6.7. hCCS distance distribution function, p(r). Errors are increased by a factor of 10.

Figure 6.8. hCCS Kratky plot.
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Figure  6.6  shows the  Guinier  plot  of  the  hCCS scattering  profile  at  very low  q.  The 

calculated radius of gyration R(g), related to the gradient of the linear part of the plot by 

the  Guinier  approximation,  is  30.5  ±  0.3  Å.  This  equates  well  with  the  R(g)  value, 

calculated from the  p(r)  function (Figure 6.7), of 31.5 ± 0.3 Å. The maximum particle 

dimension, Dmax, given by the intercept of the p(r) function with the x axis is 118 ± 5 Å. 

The asymmetric shape of the p(r) function, with Dmax/2 significantly larger than the peak 

maximum is indicative of an elongated molecule. A Kratky plot is a useful measure of the 

compactness of a protein. A folded protein will produce a bell-shaped plot at low angles 

that  approaches  the  abscissa  at  high  q values.  Conversely a  non-compact  or  unfolded 

protein will remain high after the initial maximum. Figure 6.8 shows the Kratky plot for 

hCCS and demonstrates  the  largely folded nature  of  hCCS as  the  trace  returns  to  the 

baseline after the primary peak.

6.3 Ab initio shape reconstruction

The  scattering  data  described  in  the  previous  section  was  used  to  construct  a  three-

dimensional model of the hCCS dimer using the  ab initio shape reconstruction program 

GASBOR. This program finds an arrangement of residues that best describes the scattering 

pattern of the studied protein starting from a random collection of residues approximated 

by spheres 203. Initial model building attempts using a two-fold symmetry axis resulted in 

higher than anticipated goodness of fit values (2.54<χ2<3.39) for the generated structures. 

When  symmetry  was  not  imposed  on  model  building  these  values  were  consistently 

improved  (1.90<χ2<3.14).  This  indicates  there  is  little  symmetry  between  the  two 

monomers  that  comprise  the  hCCS dimer  and  domain  I  and  III  appear  to  be  largely 

independent with respect to their counterparts in the other monomer. Using GASBOR, 20 

models were constructed and the structure found to be the most typical (Figure 6.9) was 

then used as the reference for averaging. Of the 20 models (Figure 6.10), one was rejected 

from the averaging process on the basis that it showed dissimilar shape compared to others 

in the cohort.
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Figure 6.9. Ab initio P1 shape reconstruction of hCCS. (A) A single reconstruction is depicted rotating 360o 

along its long axis, χ2 = 1.9. (B) The computed profile of the reconstruction with the hCCS experimental 
scattering for comparison.
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Figure 6.10. 18  ab initio P1 shape reconstructions of hCCS. The models presented have goodness-of-fit 
values 1.9<χ2< 3.1.

Figure 6.11. Consensus shape of all  ab initio non-symmetrical SAXS models of hCCS. For comparison a 
ribbon model of the crystal structure of hCCS domain II (blue, PDB: 1DO5), which closely resembles the  
SOD1 dimer is superimposed on the average 3D shape model (red). The model is shown moving through a 
180o rotation along the long axis with approximate dimensions added.
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Domain  II  forms  the  interface  between  hCCS  monomers  and  this  model  adequately 

provides volume to accommodate this interaction. In every model used to generate this 

average there are two regions of mass that are not accounted for by the central domain II. 

These areas must therefore contain domains I and III. The elongated 3D shape reflects the 

observation that the characteristic p(r) function has an asymmetric curve shape with Dmax/2 

being significantly larger than the r-value at peak maximum. Moreover the ab initio shape 

reconstruction  confirms that  the  overall  conformation of  hCCS in  solution displays  no 

obvious overall symmetry.

6.4 Rigid body modelling of hCCS

Given the multi-domains assembly with predicted flexible polypeptide segments of full-

length hCCS it is not expected to exist as a rigid, globular macromolecule in solution. It is 

more likely to exhibit conformational plasticity with domains I and III able to move freely 

with respect to domain II.  In fact this  movement is a necessity if  hCCS is  to perform 

copper transfer by the proposed mechanism. In order to explore the conformational space 

occupied by hCCS and the biologically relevant interactions between these domains their 

arrangement and positions were modelled by fitting high resolution structures (Table 6.1) 

to the experimentally determined SAXS envelope. This was performed using the program 

BUNCH  204.  The hCCS C-terminus has no associated structure in  the public  databases 

therefore an homology model was constructed using that part of the yCCS C-terminus that 

is visible in the structure of the yCCS-ySOD1 complex (PDB ID: 1JK9).

Name Amino acids Source PDB ID
Domain I Atx1-like 12 – 69 NMR 1QUP

Domain II SOD1-like 88 - 232 Crystal 1DO5
Domain III 250 – 258 Homology model

Table 6.1. The three hCCS domains used in rigid body modelling.

Each different rigid body model generated by this process is consistent with the SAXS data 

as indicated by a very good fit to the experimental scattering profile fit to the experimental 

results (Figure 6.12). These models collectively,  therefore, represent a pool of potential 
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domain arrangements hCCS can adopt in solution. By taking these models together one can 

ascertain the likelihood that a domain will be found in a particular position. Figure 6.13 

indicates that domain I forms a cloud around the central SOD1-like domain II and appears 

to be constrained by the length of the interdomain linker. In contrast however, domain III 

forms an extension into the solvent that is free to move. There is no indication of a domain 

swap between the two hCCS monomers and the possibility of a domain I-I or domain III-

III interaction is also unlikely due to their spatial separation.

Domain I is essential for hCCS mediated incorporation of copper into SOD1 192. Reversible 

copper transfer has been observed between Ctr1 and Atx1 175 and is likely to proceed in a 

similar fashion between Ctr1 and hCCS domain I. The initial stage of copper binding by 

domain I could be achieved by many of the models in Figure 6.13 where domain I is free,  

solvent exposed and receptive. These conformations would permit copper transfer to the 

Atx1-like domain from the C-terminus of hCtr1 while hCCS is in the dimer state. Initial 

acquisition  seems to  occur  independently for  each hCCS monomer  due  to  the  lack  of 

interaction between opposing domains.

C-terminal domain III is then able to acquire copper from domain I. This interaction was 

postulated by Eisses et al based on EXAFS data 197 and is necessary if hCCS is to transfer 

copper between the two  192.  Transfer is facilitated by a conformation in which the two 

domains are physically adjacent (Figure 6.14). In this model the copper binding motifs are 

up to 10 Å apart allowing sufficient space for the adoption of a large multi-nuclear copper-

sulphur cluster between the copper binding cysteines of each domain. In the absence of 

SOD1, this cluster formation presents a favourable and secure retention pocket for Cu(I) 

ions  which  may lead  to  a  conformational  change  209 that  facilitates  hCCS homodimer 

dissociation enabling realisation of the SOD1-CCS heterodimer.
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Figure  6.12  Scattering  profile  of  25  rigid  body models  of  full  length  hCCS.  The  hCCS  experimental 
scattering profile with error bars (black) with the computed profile of each individual rigid body model. The 
goodness-of-fit value (χ2) varies between 1.7 and 2.1.
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Figure 6.13. Solution structures of homodimeric hCCS. Twenty-five hCCS structures derived by rigid body 
modelling against experimental SAXS data rotated 180o around the long axis. Domain I is coloured purple, 
II-blue, III-green and copper binding motifs are depicted in red. Taken from Wright et al 193.
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Figure 6.14. Interaction between the copper binding motifs of domains I and III. (A) Detail of the rigid body 
model. (B) Fit to experimental scattering data, χ2 = 1.95. (C) Complete model.

While  the  models  of  hCCS presented  here  lend  themselves  to  a  demonstration  of  the 

feasibility  of  copper  movement  between  domains  I  and  II  they  do  not  represent  the 

complete spectrum of possible conformations. It is possible a mixture of conformations 

exist  that satisfy the experimental  data in totality but individually do not.  Thus hyper-

extended and compact structures may coexist in solution but which are not described in the 

pool of structures in Figure 6.13. Currently there is no substantiated and non-circuitous 

route with which to determine the composition of such a conformationally heterogeneous 

solution for oligomeric proteins.

6.5 Characterisation of human SOD1 by small angle X-ray scattering

Small-angle X-ray scattering has previously been used to characterise wild-type SOD1 and 

several fALS associated SOD1 mutants 89,212. Large differences between wtSOD1 and A4V 

and I113T SOD1 mutants have been reported. These differences are illustrated by highly 

variable deduced scattering parameters and unusual perturbations in the proposed structural 

models of these two SOD1 variants. These parameters may have been affected by variable 

metal content and aggregation of the sample, two factors common to SOD1. To address 

this possibility and in order to make a valid comparison between SOD1, hCCS and their 

complex,  wtSOD1  and  two  variants,  each  with  well  defined  metallation  state,  were 

analysed  by  small-angle  X-ray  scattering  in  conjunction  with  size  exclusion 

chromatography.

Figure 8.1 depicts the scattering profile of wild-type, L38V and I113T SOD1 in the copper-
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apo,  zinc-holo  state.  These  profiles  are  of  high  quality  with  little  experimental  error 

throughout the length of the curves. Comparison of each scattering profile shows little 

difference (Figure 8.2). The previously reported Rg and Dmax values for wtSOD1 are 20.6 Å 
212 and 68 Å 89 respectively which compare well with the values reported here, 20.6 Å and 

60 Å. The reported values for I113T SOD1 are however 22.9 Å and 82 Å 89 and seem to 

indicate a much less compact protein than those deduced here, 20.8 Å and 64 Å.

Hough et al reported a characteristic feature of the SOD1 scattering curve, a minimum at q 

= 0.25 Å-1 89. This feature was found to be smoothed in the case of I113T SOD1 indicating 

a loss of structural integrity. There is no evidence in Figure 8.1B and C of such an effect in 

the I113T and L38V SOD1 mutants in comparison with wild-type.

Several lines of enquiry have implicated incorrect folding or protein unfolding in SOD1 

fALS pathogenesis particularly when metal depleted 90,213,214. Figure 8.3 portrays the Kratky 

analysis for the SOD1 proteins described above. In this case, L38V and I113T have almost 

identical  Kratky plots  when compared  with  wtSOD1 indicating  that  all  three  of  these 

SOD1 proteins are equally well folded.

The  lack  of  any  gross  structural  perturbations  resulting  from  the  L38V  and  I113T 

mutations is confirmed by their  ab initio shape reconstruction models (Figure 8.4). The 

dimeric nature of wtSOD1 is clearly visible in these structures as with the two mutants. 

However  as  the  two SOD1 mutants  are  rotated along their  long axis  their  widths  and 

breadths appear to vary slightly with respect to wild-type SOD1. As the differences among 

the three scattering profiles (Figure 6.16) and structural parameters (Table 8.1) are not 

significant this is likely to result from slight variations in the shape restoration process 

rather than structural changes to the SOD1 molecules.
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Figure 6.15. The scattering profile of human SOD1. (A) wtSOD1, (B) L38V SOD1 and (C) I113T SOD1.

Figure 6.16. Comparison of the scattering profile of wild-type, L38V and I113T copper-apo zinc-holo SOD1.
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Figure 6.17. Kratky analysis of recombinant zinc loaded wild-type, L38V and I113T SOD1. The Kratky plot  
is normalised for the height of the peak maxima.

Figure 6.18. Small-angle X-ray scattering shape restoration models of human SOD1. (A) wtSOD1, (B) L38V 
SOD1 and (C) I113T SOD1. A two-fold symmetry axis was imposed on model building.
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Figure 6.19. Comparison of the experimental scattering profile of I113T SOD1 with the predicted profile  
deduced from its crystal structure (1UXL).

The solution structure of I113T SOD1 has previously been elucidated and was found to 

have  large  extensions  into  the  solvent  originating  from  each  monomer  89.  The  data 

presented here indicate that L38V and I113T SOD1 have a gross structure very similar to 

that of wild-type with no evidence of these structural perturbations. Figure 6.19 compares 

the  experimentally  obtained  scattering  profile  of  I113T SOD1 with  that  of  the  profile 

deduced  from its  crystal  structure  (1UXL).  It  can  clearly  be  seen  from this  plot  that 

experimental and deduced profiles are very similar indicating that the protein does not 

adopt a conformation in solution different from that observed in the crystal.

There are two probable contributors to the discrepancy between the results described here 

and  those  of  Hough  et  al 89.   Recombinant  SOD1  expression  in  E.  coli facilitates 

homogeneous metal loading, with the purified protein being more than 99 % copper-apo, 

zinc-holo. This results from the low copper concentration in standard LB media and the 

lack of a CCS bacterial homolog. Conversely, zinc is available and SOD1 seems able to 

bind it without the necessity of a zinc loading mechanism. The I113T SOD1 characterised 
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previously was expressed in  S. cereviseae where it is metallated in a fashion akin to the 

situation in humans. In effect this means incomplete zinc and partial copper metallation.

Secondly, SOD1 is known to be aggregation prone, especially in its apo state. The inflated 

Rg and  Dmax values previously stated for both A4V and I113T SOD1 89 are most likely a 

result  of  the presence of  larger  molecular  weight  species  than the  SOD1 dimer  in  the 

experimental  sample.  These species need only be trimers or tetramers,  for example,  in 

order to unduly effect the calculated Rg and Dmax toward larger values without giving rise to 

the  obvious  signs  of  protein  aggregation  commonly  observed  in  SAXS  experiments. 

Homogenous  metallation  and  protein  separation  immediately  prior  to  data  collection 

undoubtedly contributes to the concurrence of the scattering profiles presented here.

It must be concluded that there is no observable reorientation of the SOD1 monomers or 

large  conformational  changes  that  take  place  when  SOD1 carries  the  L38V or  I113T 

mutation  when  it  is  metallated  as  described  above.  As  SAXS  visualises  the  average 

structure present  in a solution these results  do not eliminate the possibility that  a sub-

population have perturbed and pathogenic structural features. 
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Chapter VII

Structural characterisation of the hCCS-SOD1 heterodimer by 

solution X-ray scattering

7.1 Construction of the hCCS-SOD1 heterodimer

Heterodimer formation between SOD1 and its chaperone has previously been documented 

for both yeast and human systems 208,215. Both of these experiments used artificial copper 

site mutants to promote stable complex formation. The methodology used by these groups 

was followed here for the formation of the wild-type SOD1 containing complex with the 

addition  of  an  incubation  of  SOD1  with  reductant  before  mixing  with  hCCS.  This 

incubation was necessary to reduce the SOD1 intra-subunit disulphide and 5 mM DTT at 

room temperature for a minimum of 4 hours was sufficient.

Complexation between hCCS and H46R/H48Q human SOD1 proceeds at stoichiometric 

protein ratios however yeast H48F and wild-type SOD1 require a 2 fold excess  208,215. 

Here, heterodimer formation between human I113T, L38V and wtSOD1 was most effective 

with a 1.5 molar excess of SOD1. Figure 7.1A shows analysis of the wild-type complex by 

gel filtration. The size exclusion chromatography UV absorption trace obtained from the 

separation of 100 μM hCCS mixed with 150 μM reduced wtSOD1 indicates a maximum at 

85ml. This peak is positioned between those obtained when either 100 μM hCCS (79 ml) 

or 150 μM wtSOD1 (90 ml) were loaded separately indicating the presence of a species of 

intermediate size. SDS-PAGE analysis of fractions taken over the course of this elution 

(Figure  7.1C)  show clearly the  presence  of  both  hCCS and SOD1 in this  region.  For 

comparison,  SDS-PAGE  of  fractions  taken  from  hCCS  and  SOD1  loaded  singly  is 

presented in Figure 7.1B and C.

111



Figure 7.1. Size exclusion chromatographic and SDS-PAGE analysis of the hCCS-wtSOD1 heterodimer. (A) 
SEC profiles of 100 μM hCCS, 150 μM wild-type SOD1 and the hCCS-wtSOD1 complex constructed with 
100 μM hCCS and 150 μM wtSOD1. 1 ml fraction were taken over the course of elution from 72 ml to 98 
ml. (B) SDS-PAGE analysis of fractions from SEC of 100 μM hCCS. (C) SDS-PAGE analysis of fractions 
from SEC of  hCCS-wtSOD1 heterodimer made with 100  μM hCCS and 150 μM SOD1. (D) SDS-PAGE 
analysis of fractions from SEC of 150 μM wtSOD1.
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Figure 7.2. Size exclusion chromatography of the hCCS-SOD1 complex after purification and concentration. 
Three complexation experiments represented by Figure 7.1A-blue were pooled and incubated overnight at 4 
oC before concentrating to a 1 ml volume and reapplication to a Superdex 200 16/60 column.

Figure 7.1A-blue shows two clear shoulders on the hCCS-wtSOD1 complex gel filtration 

trace at positions where the maxima for homodimeric hCCS and SOD1 are found when 

loaded  singly.  These  represent  the  native  homodimer  for  each  species  and  may  be 

attributed to  incomplete  reduction  of  the SOD1 disulphide.  An extended incubation  of 

SOD1 with increased DTT did not promote complete complex formation. This would seem 

to indicate a dynamic equilibrium with approximately 10 % of each species remaining as 

the  homodimer.  Conversely,  isolation  of  fractions  corresponding  to  the  hCCS-SOD1 

complex followed by incubation overnight at 4 oC and concentration before reapplication 

to the size exclusion chromatography column did not re-establish the equlibrium; the vast 

majority of protein remained in the heterodimeric state (Figure 7.2). A small amount of 

homodimeric hCCS is visible as a shoulder at 79 ml on this trace but this is likely to arise 

from  incomplete  separation  at  the  previous  gel  filtration  step  and  underscores  the 

importance of the SEC-SAXS methodology used in the following sections.
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7.2 SAXS data collection and assignment of structural parameters

Small-angle X-ray scattering data for the human CCS-SOD1 complex was collected at the 

SWING beamline at  synchrotron SOLEIL replicating the methodology employed when 

measuring the hCCS homodimer with the exception of the size exclusion chromatography 

column. This change, to a Superdex 200 16/60 gel filtration column, was affected in order 

to maximise separation of the two homodimers from the heterodimer of interest.

Scattering  was  recorded  from hCCS  complexed  with  wild-type  SOD1 and  two  fALS 

associated SOD1 mutants, L38V and I113T (Figure 7.3). Guinier analysis of the hCCS-

wtSOD1 scattering profile indicates a radius of gyration for the complex of 24.8 ± 0.3 Å, 

indicating a dimer of size midway between the SOD1 and the hCCS  homodimers. The 

distance distribution function indicates a maximum particle dimension (Dmax) of 89 ± 3Å 

(Figure 7.4).  A comparison of  structural  parameters  deduced from SAXS for the three 

complexes studied here is presented in Table 7.1.
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Figure 7.3. Scattering profile of hCCS complexed with SOD1. (A) hCCS-wtSOD1, (B) hCCS-L38V SOD1 
and (C) hCCS-I113T SOD1. Experimental scattering with error bars are shown in black with the regularised 
scattering profile in blue.

Figure 7.4. Distance distribution function of hCCS complexed with SOD1. (A) hCCS-wtSOD1, (B) hCCS-
L38V SOD1 and (C) hCCS-I113T SOD1.
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Complex Real space Rg (Å) Dmax (Å)
hCCS-wtSOD1 24.9 ± 0.3 89 ± 3

hCCS-L38V SOD1 24.9 ± 0.3 87 ± 3
hCCS-I113T SOD1 24.6 ± 0.3 82 ± 3

Table 7.1. Comparison of deduced scattering parameters for three hCCS-SOD1 complexes.
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7.3 Ab initio model reconstructions

The scattering profiles of hCCS complexed with wtSOD1, L38V and I113T SOD1 were 

used to create ab initio bead models for each heterodimer. As in the previous chapter, 20 

models were generated for each complex using the GASBOR algorithm  203.  Figure 7.5 

presents reconstructed three-dimensional models for the hCCS-wtSOD1 complex. For each 

complex the restored shape models were superimposed, compared and averaged (Figures 

7.6 and 7.7).

Figure 7.5. Ab initio bead models of the hCCS-wtSOD1 complex. 8.8<χ2<13.4.
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Figure 7.6. The 'most typical' hCCS-wtSOD1 complex model. This hCCS-wtSOD1 ab initio model was used 
as the reference model during averaging of those models presented in the previous figure. The goodness-of-
fit value in comparison to the experimental scattering profile is  χ2=11.4.

Figure 7.7. Averaged ab initio shape restorations of hCCS complexed with SOD1. (A) wtSOD1, (B) L38V 
SOD1 and (C) I113T SOD1.
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Ab initio shape restoration from solution X-ray scattering allows one to create a consensus 

model of the subject protein in solution. Figure 7.7 indicates that this consensus shape is 

subtly different for L38V and I113T SOD1 when compared with wtSOD1 complexed with 

hCCS.  Each  model  is  elongated  in  one  dimension,  as  dictated  by  the  p(r)  function, 

however both mutant complexes have a more globular appearance than the contoured wild-

type form. This discrepancy is not observed when comparing the three-dimensional shapes 

reconstituted from the scattering profiles of wild-type, L38V and I113T homodimers as 

described in the previous chapter. H80R and D124V SOD1 mutants have previously been 

observed to have perturbed interactions with the SOD1 copper chaperone characterised by 

abrogation  of  copper  loading  216. While  L38V and I113T are  known to  be  adequately 

copper loaded  in vivo,  assessing the state of the SOD1 intrasubunit  disulphide bond is 

difficult. hCCS catalyses oxidation of cysteines 57 and 146 to form the SOD1 disulphide 

and  improper  oxidation  is  thought  to  be  a  contributor  to  mutant  SOD1 pathogenicity. 

Perhaps  the  contrast  between  these  structures  is  a  manifestation  of  altered  interaction 

characteristics  between  hCCS  domain  II  and  mutant  SOD1.  If  this  were  the  case, 

responsibility for SOD1 instability would not be a propensity for disulphide reduction of 

the fully post-translationally modified protein but a disturbance in the SOD1 maturation 

pathway.

7.4 Rigid body modelling the hCCS-wtSOD1 complex

Complex formation between SOD1 and CCS is  known to be reliant on the SOD1-like 

domain of hCCS with domain III completing transfer of copper to the SOD1 active site. 

Using a rigid body modelling approach to curve fitting against the experimental scattering 

data presented thus far in conjunction with the domain structures of hCCS described in 

Chapter 6, Table 6.1 and crystal structures of I113T, L38V and wtSOD1 the conformational 

flexibility of the hCCS-SOD1 complex was sampled (Figure 7.8).

This composite of conformations is similar to that of homodimeric hCCS presented in the 

previous chapter. The Atx1-like domain I is mobile but forms a region of high probability 

of presence adjacent to, and curved around, one half  of the dimer interface.  Of the 20 

models  presented,  there  is  one  exception  to  this  where  domain  I  is  moved across  the 

interface. Domain III appears to have a greater degree of freedom and can be found at any 
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point surrounding the two domains that comprise the interface. The computed scattering 

profile for each hCCS-wtSOD1 rigid body model is represented in Figure 7.9 and show an 

excellent agreement with the experimental profile. 

Comparison of these models with the crystal structure of the yCCS-ySOD1 H48F complex 

(PDB ID: 1JK9 199) indicates they occupy very similar conformational space (Figure 7.10). 

The SOD1-CCS interface is tethered in the rigid body models and accordingly shows high 

structural homology between the human and yeast complexes. Most interestingly, domain I 

of the yeast complex is found within a space densely populated with multiple possible 

positions  of  domain  I  from the human solution  structures.  This  congruence effectively 

validates the modelling process used here as the initial position of domain I at the start of 

the modelling procedure was distant from this region of high probability of presence.

In the crystal structure of the yeast complex, domain III stretches across the unit cell to 

make a number of contacts with the SOD1-like domain of a second heterodimer. Domain 

III is found to be very mobile in the solution structures presented here however one model 

shows this domain in a position close to that observed in the yeast structure. This further 

indicates  an  effective  modelling  protocol  and  the  complementarity  of  differing 

experimental protocols.
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Figure  7.8.  Solution  structures  of  the  hCCS-wtSOD1  complex.  Models  were  generated  against 
experimentally  obtained  SAXS  data.  20  models  are  aligned  according  to  the  central  domain  II-SOD1 
interface and overlaid showing the varying domain arrangement of hCCS when complexed with wild-type  
SOD1. Colour  coding follows Figure 6.13 where  hCCS domain  I  is  coloured purple,  II-blue,  III-green,  
copper binding motifs are depicted in red and SOD1 is gold.
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Figure 7.9. Scattering profile for the 20 rigid body models of hCCS-wtSOD1, shown in Figure 7.8. The 
experimental scattering profile of the complex is given with error bars (black) with the computed profile of 
each individual rigid body model (multi-coloured). Their goodness of-fit-values range from 2.2<χ2<2.6.

Figure 7.10. Comparison of SAXS solution structures of the human CCS-wtSOD1 complex with the crystal  
structure of the  S. cerevisiae complex. The yCCS-ySOD1 H48F structure (PDB ID: 1JK9), represented in 
pink, is aligned with the 20 rigid body models of the human complex described in Figures 7.8 and 7.9. 
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Figure 7.11. Association of hCCS domain III with SOD1. Detail of four rigid body models showing  the  
hCCS domain III in green, the SOD1 monomer in gold. (A), (B), and (C) The copper binding motif of hCCS 
domain III is able to approach the SOD1 disulphide and active sites, (D) Domain III is wrapped around the 
SOD1 monomer.

While atomic domain models were used in the generation of these structures their atomic 

resolution is lost when they are used to ascertain global domain movements through rigid 

body modelling. Consequently the precise molecular mechanism by which hCCS domain 

III transfers copper to the SOD1 active site cannot be inferred from these structures. These 

structures do however represent a pool of possible domain arrangements hCCS-wtSOD1 

could adopt in solution. Within this cohort several structures can be found where the hCCS 

domain III is proximal to the SOD1 copper active site and the intra-subunit disulphide. 

These  structures  are  represented  individually in  Figure 7.11.  The distance between the 

SOD1  copper  centre  and  the  CXC  motif  of  hCCS  domain  III  is,  at  its  shortest, 

approximately 10  Å (Figure  7.11A).  At  first  glance  this  distance  appears  too  long for 
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effective transfer of copper.  Two factors will  enable this  distance to be bridged during 

copper transfer. Firstly, as described in the previous chapter, the copper-sulphur clusters 

utilised by hCCS are much larger  than mononuclear  copper.  Secondly,  prior  to  copper 

loading  and  disulphide  transfer  from  hCCS,  SOD1  is  immature.  In  this  state  the 

electrostatic loop and disulphide sub-loop are mobile and will not offer the steric resistance 

they exert in the rigid SOD1 structure used here. Consequently, hCCS domain III will be 

able to move into the region these loops occupy in the static crystal structure where it  

would be very close to the SOD1 active site.

7.5 Rigid body modelling the I113T and L38V SOD1-hCCS complex

Immature SOD1 is conjectured to be a crucial factor in the pathogenesis of amyotrophic 

lateral  sclerosis.  fALS associated SOD1 mutants have been observed to have activities 

ranging from nil to more than the wild-type enzyme and copper metallation which varies 

from nil  to  similar  to  wild-type  indicating  SOD1 mediated  fALS has  little  to  do with 

superoxide dismutase activity. SOD1 disulphide reduction is, however, known to heavily 

effect  the stability of  the  protein  in  vitro.  hCCS is  responsible  for  the  transfer  of  this 

stabilising intra-subunit disulphide therefore incomplete SOD1 maturation in vivo resulting 

from an atypical SOD1-CCS interaction could be an initiating factor of ALS.

In order to assess the interaction between hCCS and SOD1 mutants the complex was made 

and measured by SEC-SAXS using L38V and I113T as described in the previous sections. 

As with the wild-type complex a rigid body modelling approach was then used to probe the 

structure of these complexes. The scattering profiles of L38V and I113T SOD1 complexed 

with hCCS are presented in Figures 7.12 and 7.13.
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Figure 7.12. Scattering profile of 20 hCCS-L38V SOD1 models. Deduced scattering profiles (multicoloured) 
are superimposed on the experimental scattering profile of the complex with errors bars (black). Goodness-
of-fit values are 3.4<χ2<4.1.

Figure 7.13. Scattering profile of 20 hCCS-I113T SOD1 models. Deduced scattering profiles (multicoloured) 
are superimposed on the experimental  scattering profile of the complex overlaid with error bars (black).  
Goodness-of-fit values are 5.9<χ2<9.4
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Figures 7.14 and 7.15 show an overlay of 20 rigid body models of hCCS complexed with 

L38V and I113T SOD1 respectively. hCCS-L38V SOD1 adopts similar conformations in 

comparison with the wild-type complex.  Domain I  is  found encircling one half  of  the 

complex interface while domain III is more mobile and can be found almost anywhere 

surrounding the interface domains. The overlapping positions of these domains when all 20 

models are superimposed emphasises the possibility of an interaction between their copper 

binding motifs.

The I113T SOD1 complex is markedly different however (Figure 7.15). In this instance, 

domain III no longer forms extended protrusions into the solvent seemingly hindered only 

by  the  length  of  its  polypeptide  chain  but  congregates  close  to  the  SOD1  monomer. 

Consequently the complex appears smaller and more compact. Furthermore, there is little 

interaction between domains I and III with both forming separate, distinct regions where 

there is a high probability of their presence.
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Figure 7.14. Solution structures of the hCCS-L38V SOD1 complex. 20 models are overlaid showing the 
domain arrangement of hCCS when complexed with SOD1. Gold – SOD1, purple – hCCS Atx1-like domain 
I, blue – hCCS SOD1-like domain II, green – hCCS domain III, red – hCCS copper binding motif.
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Figure 7.15. Solution structures of the hCCS-I113T SOD1 complex. 20 models are overlaid showing the 
domain arrangement of hCCS when complexed with SOD1. Gold – SOD1, purple – hCCS Atx1-like domain 
I, blue – hCCS SOD1-like domain II, green – hCCS domain III, red – hCCS copper binding motif.
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7.6 Comparison of the solution structures of SOD1, hCCS and the hCCS-SOD1 

complex

The data presented in the preceding chapters present an unparalleled opportunity for the 

first  time to compare the solution structures  of  human CCS, SOD1 and the functional 

complex critical in the maturation of SOD1. Given the wealth of information implicating 

immature mutant SOD1 in the pathogenesis of amyotrophic lateral sclerosis this is also a 

unique opportunity to probe the structure of mutant SOD1-CCS for the crucial differences 

which may effect SOD1 maturation.

Figure 7.16A describes the scattering profile of SOD1, hCCS and the heterodimeric hCCS-

SOD1 complex. The wtSOD1 profile shows the minimum at q = 0.25 Å-1 characteristic of 

the  ellipsoidal  SOD1 shape.  While  both  homodimeric  hCCS and the  complex  show a 

comparable trait, this characteristic of the scattering curve it is less pronounced in both 

instances but its presence can be attributed to both SOD1 and the SOD1-like domain in the 

complex and homodimer respectively. There is an increase in the number of characteristic 

features present in the scattering curves of hCCS and hCCS-SOD1 compared with SOD1 

and  this  parallels  an  increase  in  the  molecular  and  conformational  complexity  of  the 

proteins.
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Figure 7.16. Scattering profiles of hCCS, SOD1 and their heterodimeric complex. (A) Scattering profile, (B) 

Distance distribution function and (C) Kratky plot. The scattering profile, P(r) function and Kratky plot are 

normalised to unity at the peak maxima.
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Complex Real space Rg (Å) Dmax (Å)
wtSOD1 20.6 ± 0.2 60 ± 2

L38V SOD1 20.7 ± 0.2 65 ± 2
I113T SOD1 20.8 ± 0.2 64 ± 2

hCCS-wtSOD1 24.9 ± 0.3 89 ± 3
hCCS-L38V SOD1 24.9 ± 0.3 87 ± 3
hCCS-I113T SOD1 24.6 ± 0.3 82 ± 3

hCCS 31.3 ± 0.3 118 ± 4

Table 7.2 Deduced scattering parameters for SOD1, hCCS and their heterodimeric complex. 

The p(r) function of wtSOD1 in Figure 7.16B is indicative of a protein comprised of two 

domains in close contact with each other and a slight elongation. Similarly the distance 

distribution  function  of  the  hCCS-SOD1  complex  can  be  equated  with  a  protein  of 

effectively  3  domains  further  indicating  that  the  third  hCCS domain  does  not  form a 

compact globular structure. Due to the number of domains present in the hCCS homodimer 

it  is  difficult  to  distinguish features in the  p(r)  function however the protein is  clearly 

elongated.  In  general  and  unsurprisingly,  as  CCS  monomers  are  added  and  SOD1 

monomers are removed the oligomer becomes more elongated and more complex. This 

notion is reflected in Table 7.2 which also describes the effect of adding mutant SOD1 

rather than the wild-type protein.

Table  7.2  highlights  a  counterintuitive  aspect  of  hCCS-SOD1  heterodimer  formation. 

Mutant homodimeric SOD1 proteins had slightly larger Dmax values the wild-type enzyme. 

On the other hand, the heterodimeric complexes they form with hCCS have smaller  Dmax 

when compared with the wild-type complex. Indeed the wild-type complex is 8 % longer 

than the complex formed with I113T SOD1.

To  draw further  contrast  between  wild-type  and  I113T SOD1 complexed  with  hCCS, 

Figure 7.17 describe the likely positions of the hCCS Atx1-like domain when complexed 

with these two SOD1 variants.
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Figure 7.17. Comparison of the positions of the hCCS Atx1-like domain I when complexed with wtSOD1 
and I113T SOD1. Grey - the central dimer interface comprised by a hCCS SOD1-like domain II and a SOD1 
monomer. Blue – the hCCS domain I when complexed with wtSOD1. Red – the hCCS domain I when 
complexed with I113T SOD1. In each case 20 models are presented aligned according to the central SOD1-
domainII interace each resulting from rigid body refinement against experimental scattering data.

132



Figure 7.18. Comparison of the positions of the hCCS Atx1-like domain I when complexed with wtSOD1 
and L38V SOD1. Grey - the central dimer interface comprised by a hCCS SOD1-like domain II and a SOD1  
monomer. Blue – the hCCS domain I when complexed with wtSOD1. Red – the hCCS domain I when 
complexed  with  L38V  SOD1.  In  each  case  20  models  are  presented  each  resulting  from  rigid  body 
refinement against experimental scattering.

Figure 7.19. Comparison of the positions of the hCCS domain III when complexed with both wtSOD1 (blue) 
and I113T SOD1 (red). The central dimer interface comprised by a hCCS SOD1-like domain II and a SOD1 
monomer is in grey.
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For both hCCS-wtSOD1 and hCCS-I113T SOD1 complexes  one can  identify a  region 

where the Atx1-like domain is found with high probability. As can be clearly seen in Figure 

7.17 these regions are found to adjoin, with some overlap, but are predominantly distinct. 

What overlap exists is fostered by the seemingly more mobile domain I of the wild-type 

complex. The hCCS-L38V complex does not undergo such a dramatic shift in the position 

of the Atx-1like hCCS domain I, therefore the distinction between wild-type and L38V 

complex is less severe with a greater degree of overlap (Figure 7.18).

The copper binding motif at the C-terminus of hCCS is essential for SOD1 copper loading 
191. Figure 7.19 compares the positions of this domain when hCCS is complexed with wild-

type and I113T SOD1. As described in the preceding sections the C-terminal domain of the 

wild-type complex is restricted only by its length and can be found surrounding the dimer 

domains. In complete contrast the hCCS C-terminus when complexed with I113T SOD1 

appears restricted to a region of high probability of presence close to the SOD1 monomer

Figure 7.20. Comparison of the X-ray scattering profiles of wild-type, L38V and I113T SOD1 complexed 
with hCCS.
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Given  that  the  SOD1  mutations  used  herein  are  single  point  mutations,  is  there  any 

justification  from the  scattering  profile  of  the  complex  for  such  a  significant  domain 

rearrangement?  Figure  7.3  shows  the  X-ray  scattering  profile  for  each  hCCS-SOD1 

complex  discussed.  A comparison  of  their  smoothed  scattering  profiles  (Figure  7.20) 

indicates that the complexes are indistinguishable by eye at low angles, q < 0.2 Å-1. In this 

region  scattering  intensity  is  determined  by  the  scatterer's  shape  and  size.  At  higher 

scattering angles, q > 0.2 Å-1, due to the use of a logarithmic scale differences in the three 

profiles become obvious. In this region scattering intensity is dictated by intramolecular 

characteristics  and  the  differences  between  the  three  profiles  infer  a  change  in  those 

characteristics.

While the low angle scattering is determined by the scatterers shape and size the higher 

angle is determined by conformations and interactions so it is reasonable infer that there 

should be differences between the complexes based on their scattering patterns.

These observations and comparisons lead to either of two conclusions. Movement of the 

Atx1-like domain into a region close to the hCCS domain II in the I113T SOD1-hCCS 

complex restrains the motility of domain III, or, retention of domain III in a region close to 

the SOD1 monomer pushes the Atx1-like domain out of the area it would normally occupy 

in the wild-type complex.
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Chapter VIII

Discussion of X-ray solution scattering based structure 

determination of SOD1, hCCS and their complex

8.1 A comparison of hCCS scattering profiles collected at different X-ray sources and 

SAXS stations

The work described here is the first structural characterisation of full-length human CCS in 

solution. hCCS has implications for both the pathogenesis of amyotrophic lateral sclerosis 

and  copper  metabolism.  This  protein  has  been  known  for  over  a  decade  and  has 

consistently rebutted structural characterisation by several respected groups. What follows 

is a review of the implications of the results in the previous chapters.

Small  angle  X-ray  scattering  is  the  choice  method  for  studying  large,  biological 

macromolecules in solution. In 2004,  Mathew et al  217 documented a combination of the 

standard SAXS technology with size exclusion chromatography apparatus. This synthesis 

facilitates  the  separation  of  impurities,  different  oligomeric  states  and   aberrant  high 

molecular weight aggregates from the species of interest, by gel filtration, directly before 

exposure to the x-ray beam  217. It also eliminates any averaging contribution from such 

species  and  prevents  buffer  mismatch  between  blank  and  sample  through  the  buffer 

exchange  effect  of  size  exclusion  chromatography.  To  date  three  X-ray  scattering 

beamlines have this capability: BioCAT at APS Chicago (US) 217, BL-10 at Photon Factory 

Tsukuba (Japan) 218 and SWING at SOLEIL St Aubin (France) 211.

Traditional, static SAXS analysis of recombinant hCCS at synchrotron SAXS stations 4-2 

at SSRL (US)  219 and BL45XU at SPring-8 RIKEN (Japan)  220 yielded incongruence in 

scattering profile (Figure 8.1) and deduced structural parameters (Table 8.1 & Figure 8.2), 

such as a substantially increased value for the radius of gyration (Rg), indicating a problem 

with sample monodispersity. The decision to use the SEC-SAXS approach, and therefore 

the SWING beamline, was a direct result of these initial experiments.
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Figure  8.1.  Comparison  of  smoothed  scattering  profiles  from  hCCS  collected  at  three  different  SAXS 

beamlines. Curves are normalised to I(q)=1 at q=0.

Figure 8.2 Comparison of Guinier plots for hCCS measured at three beamlines. Adapted from Wright et al 193.
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Synchrotron SPring-8 SSRL SOLEIL
Beamline BL45XU 220 BL4-2 219 SWING 211

Real space Rg (Å) 58.7 38.3 31.4
Dmax (Å) 174 160 118

Table 8.1. Deduced SAXS parameters for hCCS measured at three beamlines.

Figure 6.3 and 6.4 indicate the reason for these disparities. In solution the hCCS dimer 

predominates  but  is  joined  by a  small  amount  of  tetrameric  protein  and  often  higher 

molecule  weight  aggregates.  These  higher  molecular  weight  species  disproportionately 

affect  scattering  making  the  protein  appear  larger  or  less  compact  than  it  actually  is. 

Without the combined SEC-SAXS approach recording scattering from dimeric hCCS alone 

would be very inaccurate.

Similarly,  collecting  scattering  data  from  the  hCCS-SOD1  complex  would  also  be 

impossible  due  to  incomplete  formation  of  the  heterodimer.  As  scattering  from  bulk 

solutions  is  an average,  measurements  taken from the hCCS-SOD1 heterodimer would 

comprise scattering from at least three species and any deductions made as a result would 

be disputable.

8.2 The function of hCCS and its intrinsic flexibility

The domain  structure  of  hCCS is  crucial  for  the  transport  and loading of  copper  into 

SOD1.  In  both  the  homodimeric  and  heterodimeric  states  hCCS  exhibits  extensive 

conformational flexibility made possible by two disordered, glycine rich linker regions of 

11 and 17 amino acids. Indeed, hCCS domain III is largely disordered in structures of yeast 

CCS and homology structure predictions of hCCS other than a short α-helix that forms a 

long 42 amino acid flexible tail.

CCS conformational flexibility is highlighted by a comparison of the position of the Atx1-

like domain I  in  the crystal  structures  of  the yCCS homodimer and the yCCS-ySOD1 

heterodimer (Figure 8.3). The linker between domain I and II in the yeast homolog is 6 

amino  acids  long  in  comparison  with  11  found  in  hCCS.  As  a  crystal  structure  is  a 

repeating assembly of molecules in a low energy state it can be expected that human CCS 
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will therefore be considerably more plastic in solution.

This flexibility is key if hCCS is to function as the accepted model of copper transfer to 

SOD1 suggests. The sequence of this transfer has been devised and hinges on a few key 

experimental observations.

Figure 8.3 Comparison of one yCCS monomer from the crystal structures of the yCCS dimer (cyan) and the  
yCCS-ySOD1 complex  (pink).  The models  (1JK9 and 1QUP respectively)  are  aligned  according to  the 
SOD1-like domain II.

Firstly,  the  CXC motif  of  domain  III  is  essential  for  SOD1 copper  loading  under  all 

conditions  191.  This  crucial  region  is  therefore  responsible  for  the  ultimate  transfer  of 

copper to the SOD1 active site.

Secondly, domain I has 37 % identity to the yeast Atx-1 protein. The yeast Atx1 protein is 

known  to  exchange  copper  with  the  cytoplasmic  domain  of  the  membrane  copper 

transporter, Ctr1  175. By analogy one would expect hCCS to perform the same function; 

initial copper acquisition.

Deletion of the Atx1-like domain I ablates hCCS function  in vivo.  This point has been 

disputed  on  the  following  basis.  Schmidt  et  al reported  this  region  of  the  yeast  CCS 

homolog is only necessary under copper limited conditions 191. In fact the copper limited 
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conditions  used in  yeast  culture by these  experimenters  was 10  μM. While  this  is  the 

extracellular concentration, it is safe to assume the intracellular free copper concentration 

will  vastly  exceed  the  10-18 M  concentration  known  to  exist  under  regular  culture 

conditions  168.  This  copper  flood  understandably  bypasses  the  need  for  domain  I. 

Conversely,  in  vivo experiments on the human protein in  human fibroblasts  found this 

domain to be indispensable for SOD1 activation 192.

Perhaps because of this misapprehension, domain I has been proposed to function as an 

interaction mediator that would enable stable complex formation, with Ctr1 for example, 

and thus enable direct copper loading to domain III  221.  This notion is dismissed by the 

observation that domain I is able to perform its function in trans when co-expressed with a 

yCCS domain II/III truncation 191.

Thirdly, the interaction between hCCS and SOD1 is mediated by the amino acids at the 

CCS  domain  II  and  SOD1 homodimer  interfaces  and  the  SOD1 in  question  is  fully 

translated  when  loading  occurs  222. Consequently,  hCCS-SOD1  complex  formation 

necessitates monomerisation of the native dimers.

Fourthly,  the functional complex between hCCS and SOD1 is a heterodimer.  Although 

crystallisation of the yeast complex yielded a tetramer in the unit cell this was thought to 

be an artefact of crystal packing 215. As described in Chapter 8, and prior to this study 208, 

when  analysed  by size  exclusion  chromatography the  hCCS-SOD1 complex  runs  at  a 

position  between  the  hCCS  and  SOD1  homodimer  indicating  a  protein  complex  of 

intermediate size.

The commonly accepted  81,199,209 process of SOD1 activation and disulphide reduction by 

CCS can be summarised as follows:

1. Domain I recognises the Ctr1 cytoplasmic tail and is loaded with copper (Cu I).

2. The cysteines of domain I and III form a copper conjugate.

3. SOD1 and hCCS undergo monomerisation and heterodimer formation.

4. Copper  is  loaded  into  the  SOD1  active  site  by  domain  III  with  concomitant 

formation of the SOD1 disulphide.

5. The heterodimer disintegrates followed by reformation of the homodimeric species.
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This cycle of SOD1 activation and hCCS recycling is represented in Figure 5.3. Using the 

SAXS derived models presented in the previous chapters it is now possible to observe how 

the  conformational  flexibility  of  hCCS  facilitates  the  multiple  stages  that  take  place 

between copper import by Ctr1 through to SOD1 activation (Figure 8.4).

Initial transfer of copper to hCCS domain I is enabled by a conformation in which the 

whole domain is free and receptive for interactions (Figure 8.4A). The cysteines of the 

copper binding motif of the yeast Atx1 protein  188 adopt a solvent exposed conformation 

which  changes  upon  copper  binding  to  bring  the  copper  ion  into  the  molecule.  This 

conformational change is mimicked by the HAH1 human copper chaperone to a lesser 

extent 187. However the available apo structure of hCCS domain I indicates a one-in-one-

out structure with reference to the copper binding cyteines.
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Figure 8.4. The stages of copper activation of SOD1 by hCCS. (A) The Atx1-like domain I, particularly the  
cycteine rich copper-binding domain, is solvent exposed and available to interact with the copper transporter 
Ctr1. (B) Formation of a domain I-III copper conjugate . (C) hCCS domain III is able to move toward the 
SOD1 active site enabling copper transfer and disulphide transfer in the heterodimeric complex. Purple – 
hCCS domain I, blue – hCCS domain II, green – hCCS domain III, gold – SOD1 and red – copper binding 
motif.
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Both  Atx1  and  HAH1  bind  copper  in  their  monomeric  form  and  directly  load  their 

respective targets without the need for intra-molecular transfer between domains. Transfer 

by  hCCS  is  complicated  by  this  need  to  move  copper  to  domain  III  prior  to  SOD1 

activation so the differences seen at this motif may be accounted for by the need to keep 

copper in a position accessible to domain III.

Figure 8.4B shows an hCCS conformation that would enable copper conjugation by the 

cysteines of domain I and III. This step is not only a necessity to primer domain III ready 

for loading into SOD1 but may also provide a safe environment in which poly-nuclear 

copper clusters can be physically transported from the cell membrane to the places where 

SOD1 is waiting for activation 197.

Figure 8.4C shows that hCCS domain III is able to approach the SOD1 active site. The 

crystal structure of the yeast SOD1-CCS heterodimer indicated that a domain III cysteine 

formed a disulphide with cysteine 57 of a SOD1 monomer a symmetry related heterodimer. 

Here we can see for the first time hCCS domain III interacting with a SOD1 monomer in 

the same heterodimer complex. Domain III is in a position that would facilitate copper 

loading  into  the  SOD1  active  site  but  this  model  does  not  take  account  of  two 

conformational changes:  Firstly,  binding of copper to hCCS domain III  brings about  a 

conformational change which increases its resistance to trypsin digest  209.  Secondly,  the 

electrostatic and zinc binding loops of SOD1 are known to be more dynamic and less rigid 

in the disulphide reduced state. The effect of the former is not known but the latter will  

indubitably open access to the SOD1 active site enabling copper loading and has been 

shown to increase the longevity of the heterocomplex 208.

8.3 Stoichiometry of hCCS-SOD1 complex formation

Previous studies have found that heterodimer formation between CCS and SOD1 occurs in  

vitro at 1:1 and 1:2 molar ratio 208,215. In both of these cases non-natural copper site SOD1 

mutants were used and wild-type SOD1 was not found to form a stable complex. The work 

in the previous chapter elucidates the creation of a stable complex between human CCS 

and wild-type, I113T and L38V SOD1.

Figures 7.1 and 7.2 characterise the production of this complex which is most effective 
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when the hCCS to SOD1 molar ratio was 1:1.5 when first mixed. Initial complex formation 

does not go to completion and homodimeric hCCS and SOD1 can be observed as minority 

species in gel filtration experiments. An obvious cause of this inefficiency would be the 

incomplete reduction of the SOD1 disulphide however longer incubation with a higher 

concentration  of  reductant  did  not  increase  conversion  efficiency.  Conversely, 

homodimeric species did not reform from isolated heterodimer upon long incubation. One 

must conclude that there is a barrier preventing complete complexation but once formed 

the complex is stable.

8.4 The hCCS-SOD1 heterogeneity and implications for ALS

The path  from initial  protein  synthesis  to  a  mature  SOD1 dimer  is  littered  with  post-

translation  modification  events.  While  mature  SOD1  is  the  epitome  of  stability  its 

precursors are  recognised as unstable and aggregation prone with the majority of ALS 

SOD1  mutations  enhancing  this  quality  78,223-225.  The  copper  chaperone  for  SOD1  is 

responsible for two SOD1 modifications: copper loading and disulphide oxidation. The 

presence or absence of the SOD1 catalytic copper centre is not thought to contribute to 

SOD1 disease pathogenesis 226 however the intrasubunit disulphide is of crucial importance 
213,227,228. Reduction of the SOD1 disulphide removes the anchor holding the zinc loop and 

must therefore promote disorder. This may lead to a decreased affinity for the structurally 

important zinc ion  213 or exposure of hydrophobic residues in the core of the molecule 

making it prone to aggregation.

Rather than functionalising freshly translated SOD1 at the ribosome, CCS is thought to 

cycle back and forth between the cell membrane, or an intracellular copper source, and a 

pool  of  pre-existing  immature  protein  222.  hCCS is  not  the only mechanism for  SOD1 

copper activation but 50 % of SOD1 molecules are found to have a reduced disulphide 

when  CCS is  deleted  229.  Thus  disruption  of  this  routine  leads  to  an  accumulation  of 

potentially toxic immature SOD1.

The results presented in the previous chapter indicate structural differences when I113T 

and, to a much less extent L38V, SOD1 is complexed with hCCS in comparison with wild-

type SOD1 however the reasons for this are abstruse. The hCCS-I113T SOD1 heterodimer 

exhibits  a  rearrangement  of  domains  and a  much more  compact  structure.  The linkers 
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which join hCCS domain I  and III  to the central  SOD1-like domain originate  directly 

opposite SOD1 residue 113 in the dimer interface region. The I113T mutation is also found 

at the SOD1 dimer interface which it alters and induces a change in the orientation of the 

two  monomers  89.  This  reorientation  of  monomers  is  also  likely  to  occur  in  the 

heterocomplex due to the similarity of the interface region. Thus it seems that perturbation 

of the hCCS-SOD1 dimer interface precipitates a conformational change in the two copper 

binding hCCS domains perhaps by steric hindrance at the origin of their flexible linkers.

hCCS-I113T SOD1 gives the impression of a complex that is much more globular and 

conformationally less flexible than the wild-type. A close inspection of Figure 7.15 and 

7.19 indicate that hCCS domain III is exclusively found close to the SOD1 monomer in a 

position that would facilitate copper transfer and disulphide oxidation.  These structures 

could be interpreted as domain III being locked in the conformation adopted to transfer 

copper and disulphide. A result of this relatively static conformation is an increase in the 

number of contacts between domain III and SOD1 that would stabilise the heterodimeric 

complex.

In both the yeast and human systems, SOD1 mutants have previously been observed to 

promote stable complexation with hCCS. In both cases these mutations were to the copper 

active sites 208,215. The notion that stable hCCS-SOD1 complexes may prevent proper SOD1 

maturation by sequestering active hCCS has been proposed previously and hinges on the 

excess of SOD1 compared to hCCS  230. This normal imbalance would be exacerbated if 

hCCS was prevented from cycling and would effectively strand the majority of SOD1 in 

the immature, disulphide reduced form. What we see here is the extension of this paradigm 

to include the I113T mutation and by inference, all the dimer interface mutants.
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8.5 Prospects and further work

The work presented here is the first direct evidence of a perturbed interaction between 

hCCS and mutant SOD1. The X-ray scattering studies undertaken here are an important 

foot-hold in this relatively under explored area however there are two important questions 

still to be answered: does this shift in the arrangement of hCCS domains occur with all  

SOD1 mutants  and,  does  the  shift  observed  have  a  pathogenic  effect?  While  the  first 

simply necessitates repetition with a wider cross-section of SOD1 mutants the second is 

more  difficult  to  test.  hCCS-SOD1  complexes  are  notoriously  difficult  to  crystallise 

however the stability of the complexes presented here may facilitate characterisation by 

NMR  methods.  Alternatively,  labelling  either  the  SOD1  or  hCCS  component  before 

complexation may enable dissociation rates to be calculated and compared between the 

wild-type complex and SOD1 mutants.
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Chapter IX

Materials and Methods

9.1 SOD1 cloning and plasmid construction

SOD1 coding DNA was  amplified  by polymerase  chain  reaction  (PCR) using primers 

'SOD1Fwd' and 'SOD1Rev' (Appendix I) with KOD Hotstart DNA polymerase (Novagen) 

from yEP351-hSOD1 plasmid with cycling conditions:

Stage Temperature (oC) Time (s)
Initial Denaturation 95 120

30 cycles
Denaturation 95 15
Annealing 55 15
Elongation 70 15
Terminal Elongation 70 600

Table 9.1 PCR cycling conditions for SOD1 DNA amplification.

PCR products were ligated into pCR-Zeroblunt (Appendix II) plasmid using the Zero Blunt 

PCR Cloning Kit (Invitrogen). Ligation products were transformed into Omnimax2 strain 

E. coli (Appendix III), plated onto selective solid media and incubated at 37 oC overnight. 

Transformants were cultured in selective liquid LB media overnight at 37 oC. Plasmid was 

extracted by Wizard SV Minipreps DNA Purification System (Promega) and sequenced by 

DNA  terminator  reaction  at  GATC  Biotech.  The  resulting  plasmid,  pCR-hSOD1wt 

(Appendix II), was digested at 37 oC for one hour with XbaI and XhoI (NEB) restriction 

enzymes. The 474 bp fragment corresponding to the hSOD1wt DNA was extracted from a 

1% TAE agarose gel after electrophoresis at 120 V for 25 minutes in TAE buffer using 

Wizard SV Gel and PCR Clean-Up System (Promega). Purified SOD1 coding DNA was 

ligated into XbaI-XhoI digested pET303 vector (Appendix II) using T4 DNA ligase (NEB), 

transformed into Omnimax2 strain E. coli, plated onto selective solid media and incubated 

at 37  oC overnight. Transformants were grown overnight at 37  oC in selective liquid LB 

media and plasmids extracted by Wizard SV Minipreps DNA Purification System. Putative 
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pET303-hSOD1wt (Appendix II) plasmids were sequenced by GATC Biotech.

9.2 Site directed mutagenesis

Site directed mutagenesis (SDM) was carried out on pET303-hSOD1wt to introduce the 

I113T  and  L38V  mutations  using Stratagene's  QuikChange  Lightning  Site-Directed 

Mutagenesis Kit (Agilent)  and relevant DNA oligonucleotides (Appendix I). This yielded 

the expression plasmids pET303-hSOD1 I113T and pET303-hSOD1 L38V (Appendix II).

9.3 Expression of recombinant SOD1 proteins

pET303-hSOD1 expression plasmids were transformed in to BL21 (DE3) (Appendix III) 

strain  E. coli.  Transformants were then cultured in selective liquid LB media at  37  oC 

overnight.  10 ml of overnight culture was then transferred into 1 l selective LB liquid 

media and incubated at 37 oC with 220 rpm shaking. When optical density (OD600) ~ 0.5, 

Isopropyl  β-D-1-thiogalactopyranoside  (IPTG)  (Calbiochem)  was  added  to  a  final 

concentration of 0.4 mM. Cultures were then incubated at 25oC with shaking at 220rpm 

overnight.  Cultures were centrifuged at 3000 g for 20 minutes at 4  oC and the cell pellet 

separated from the culture media before freezing at -70 oC for at least 30 minutes or flash 

freezing with liquid nitrogen.

9.4 SOD1 purification

Two strategies were employed to purify recombinant human SOD1 from E. coli. In the first 

instance, cells were resuspended in phenyl-sepharose lysis buffer (KH2PO4 100mM, NaCl 

150mM, lysozyme 0.2mg/ml, DNaseI 10μg/ml, 1 in 1000 protease inhibitor cocktail set III 

(Calbiochem), pH 7.4), lysed by sonication and the soluble and insoluble cell fractions 

were separated by centrifugation at 30,000 g for 2 hours. Chilled ammonium sulphate 4 M 

solution was slowly added to the soluble cell fraction on ice and stirred for 30 minutes 

before  centrifugation  at  8000g for  20  minutes.  The  supernatant  was  then  applied  to  a 

phenyl-sepharose hydrophobic interaction chromatography column pre-equilibrated with 

lysis  buffer  containing  2  M  ammonium  sulphate.  Recombinant  SOD1  was  eluted  by 

gradually decreasing the ammonium sulphate concentration. Fractions were observed by 

SDS-PAGE.  SOD1  containing  fractions  were  pooled  and  dialysed  against  Tris-HCl 
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100mM and 150mM NaCl pH 7.4 before storage at -20oC.

Purification  of  SOD1 for  use in  complexation  experiments  with  hCCS occurred  by re 

suspension  of  bacterial  cell  pellet  in  DEAE lysis  buffer  (20  mM  Tris-HCl,  lysozyme 

0.2mg/ml, DNaseI 10μg/ml, 1 in 1000 protease inhibitor cocktail set III pH 8) with cell 

lysis  and separation  as  above.  The soluble fraction  was then  dialysed at  least  3  times 

against 20mM Tris-HCl pH 8 in 10 kDa molecular weight cut-off dialysis  tubing. The 

soluble fraction was then applied to DEAE-sepharose pre-equilibrated with 20mM Tris-

HCl pH 8. Protein elution was achieved by increasing the concentration of NaCl. SOD1 

eluted in the low millimolar range of salt concentration. Fractions were analysed by SDS-

PAGE and  those  found  to  contain  SOD1 were  pooled,  concentrated  and  applied  to  a 

Superdex 200 16/60 gel filtration column pre-quilibriated with 20 mM Tris HCl, 150 mM 

NaCl pH 7.4 operated with an ÄKTA purifyer. The peak corresponding to dimeric SOD1 

was collected, concentrated and stored at -20 oC.

9.5 Crystallisation, soaking experiments and data collection

Crystals in the P21 space group were grown at 20  oC in sodium acetate 100 mM, NaCl 

150mM pH 4.75 using 2.5 M ammonium sulphate  as  precipitant  by the hanging drop 

vapour diffusion method from a pre-existing seed. Recombinant SOD1 crystals were also 

grown in 2.5 M ammonium sulphate, NaCl 150mM, Tri-HCl 100mM pH 8. These crystals 

formed spontaneously and were not seeded.

Appendix  IV  shows  the  compounds  used  throughout  this  study.  5-Fluorouridine, 

isoproteranol,  dopamine and adrenaline were purchased from Sigma Aldrich UK. 4-(4-

methyl-1,4-diazepan-1-yl)-2-(trifluoromethyl) quinazoline (MDTQ), 4-(4-methylpiperazin-

1-yl)quinazoline  (MPQ)  and  4-(4-methyl-1,4-diazepan-1-yl)quinazoline  (MDQ)  were 

made in house in the Department of Chemistry at the University of Liverpool through a 

collaboration with Prof. P. O'Neil and Dr N. Kershaw.

Before crystal soaking, compounds were dissolved at 50 mM in a NH4SO4 2.5 M, NaCl 

150 mM, sodium acetate  100 mM pH 4.75 solution.  Those  compounds  that  were  not 

soluble  in  this  buffer  were  dissolved  in  100% DMSO  at  a  concentration  of  50  mM. 

Crystals soaked in the former group of compounds were incubated for at least 2 hours at 20 
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oC in a drop hanging over their original  reservoir solution. Compounds in the latter group 

were mixed 1:4 with 3.3 M ammonium sulphate, NaCl 200 mM, sodium acetate 130 mM 

pH 4.75. Crystals  were then incubated in  this  solution for 2 hours at  20  oC over  their 

original  reservoir  solution.  Both  sets  of  soaked  crystals  used  paratone-N  (Molecular 

Dimensions) as cryoprotectant and were frozen in liquid nitrogen. I113T crystals grown at 

pH 8 were soaked in a similar fashion however  the compounds were dissolved in 3M 

ammonium sulphate,  150mM  NaCl,  100mM  Tris-HCl  pH  8.  A cryoprotectant  of  this 

solution with 25% glycerol was used.

X-ray crystallographic data sets were collected at Diamond Light Source station I02 and 

IO3, Oxford, UK and Soleil station Proxima 1, Saint-Aubin, France. Reflection data were 

integrated and scaled using HKL2000 113, XDS 231 or iMosflm 112 and Scala 114. Cycles of 

model building and refinement used REFMAC5 117 and COOT 232. A SOD1 model derived 

from an atomic resolution structure (PDB code: 2c9v 51) was used as the starting model.

9.6 In vitro SOD1 aggregation assay

I113T  and  L38V  SOD1  were  purified  by  DEAE  sepharose  anion  exchange 

chromatography  as  described  above.  A4V  SOD1  was  cloned  expressed  and  purified 

according to Ray et al 86. Metal ions were removed from the purified proteins according to 

the method of  McCord and Fridovich 233. After metal removal at pH 3.8, proteins were 

repeatedly dialysed  against  TBS pH 7.4 which  had previously been demetallated  with 

Chelex resin (Biorad). Compounds were dissolved in demetallated TBS pH 7.4. Protein 

and compound were mixed in  each assay in a  350  μl volume and incubated at  for 15 

minutes before addition of 5 mM EDTA whereupon they were incubated at 37oC for 4 or 

48 hours. Samples (300 μl) were analysed on a Superose-12 using an ÄKTA purifier.
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9.7 hCCS cloning and expression

The human CCS coding sequence was amplified by PCR using primers 'hCCSFwd' and 

'hCCSRev'  (Appendix  I)  from  an  EST  clone  (gi:8327523)  containing  the  full  hCCS 

sequence using KOD hotstart DNA polymerase (Novagen) according to cycling conditions:

Stage Temperature (oC) Time (s)
Initial denaturation 95 120

30 cycles
Denaturation 95 15
Annealing 55 15
Elongation 70 15
Terminal elongation 70 600

Table 9.2 PCR cycling conditions for hCCS DNA amplification.

PCR products were ligated into pCR-Zeroblunt (Appendix II) plasmid using the Zero Blunt 

PCR Cloning Kit (Invitrogen). Ligation products were transformed into Omnimax2 strain 

E. coli (Appendix III), plated onto selective solid media and incubated at 37 oC overnight. 

Transformants were cultured in selective liquid LB media overnight at 37 oC. Plasmid was 

extracted by Wizard SV Miniprep DNA Purification System (Promega) and sequenced by 

DNA  terminator  reaction  at  GATC  Biotech.  The  resulting  plasmid,  pCR-hCSS 

(AppendixII), was digested at 37  oC for one hour with NcoI and XhoI (NEB) restriction 

enzymes. The 827 bp fragment corresponding to the hCSS DNA was extracted from a 1% 

TAE agarose gel after electrophoresis at 120 V for 25 minutes in TAE buffer using Wizard 

SV Gel and PCR Clean-Up System (Promega).

Purified  hCCS  coding  DNA  was  ligated  into  NcoI-XhoI  digested  pETM11  vector 

(Appendix II) using T4 DNA ligase (NEB), transformed into Omnimax2 strain  E. coli, 

plated onto selective solid media and incubated at 37  oC overnight. Transformants were 

grown overnight at 37 oC in selective liquid LB media and plasmids extracted by Wizard 

SV Minipreps DNA Purification System. Putative pETM11-hCCS (Appendix II) plasmids 

were sequenced by GATC Biotech. pETM11-hCCS was transformed into BL21 (DE3) E. 

coli (Appendix III) and plated on selective media. Colonies were then taken and cultured in 

20 ml selective LB medium overnight at 37 oC with shaking at 220 rpm. 1 litre of selective 
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LB medium was inoculated with 10ml of this starter culture and grown at 37 oC with 220 

rpm shaking until OD600 ~ 0.5 whereupon expression was induced with IPTG at a final 

concentration of 0.4 mM. Cultures were then incubated at 30  oC with 220 rpm shaking 

overnight.

Large-scale cultures were then centrifuged at 3000 g for 20 minutes at 4  oC and the cell 

pellet separated from the culture media before freezing at -70 oC for at least 30 minutes. 

Cells were then resuspended in NiNTA lysis  buffer (NaH2PO4 50 mM, NaCl 500 mM, 

imidazole 10 mM, DTT 5mM, lysozyme 0.2mg/ml, DNaseI 10μg/ml, Protease inhibitor 

cocktail set III 1:1000 (Calbiochem), pH 7.4) and lysed by sonication on ice. Fractions 

were then separated by centrifugation at 30,000g for 2 hours at 4 oC.

9.8 Purification and tag removal

Human recombinant CCS expressed using the system described is fused to a cleavable 

hexa-histidine  tag  that  facilitates  purification  by  nickel  affinity  chromatography.  The 

soluble cell fraction generated as above was filtered through a 0.22 μm syringe filter before 

application  to  a  5  ml  NiNTA HisTrap  column  (GE  Healthcare)  pre-equilibrated  with 

NiNTA binding buffer (NaH2PO4 20 mM, NaCl 500 mM, imidazole 10 mM, DTT 5 mM, 

pH 7.4). After application, the column was washed with ten column volumes of NiNTA 

binding  buffer.  The  protein  was  then  eluted  by application  of  ten  column volumes  of 

NiNTA elution  buffer  (NaH2PO4 20  mM,  NaCl  500  mM,  DTT 5  mM,  pH  7.4)  with 

gradually increasing imidazole concentration (10 mM – 500 mM).

The semi-pure protein was then dialysed against NiNTA binding buffer and TEV (Tobacco 

Etch  Virus)  protease  subsequently  added  to  a  final  concentration  of  100  μg/ml  and 

incubated at  4  oC overnight. This solution was then reapplied to a NiNTA column and 

recombinant hCCS protein was collected as the flow through. The pure protein was then 

dialysed against  storage buffer  (Tris-HCl 50 mM, NaCl 150mM, DTT 5mM,  pH 8.0) 

concentrated and applied to either a Superdex 200 10/30 or Superdex 200 16/60 column. 

Fractions were analysed by SDS-PAGE and those containing the 29.1 kDa protein were 

pooled and stored at 4 oC or frozen at -20 oC.
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9.9 hCCS-SOD1 heterodimeric complex formation

hCCS-SOD1 complex formation was carried out  roughly according to the protocols of 

Winkler et al 208 and Lamb et al 215. SOD1 and its fALS associated mutants were expressed 

and purified according to the method described in the previous sections. Before mixing 

SOD1 and hCCS,  5  mM DTT was  added to the  SOD1 buffer  and incubated  at  room 

temperature for at least 4hours. Protein were mixed in a 1:1.5 hCCS:SOD1 molar ratio. 

After mixing, the proteins were loaded on a Superdex 200 16/60 column pre-equilibriated 

with Tris-HCl 50 mM, NaCl 150 mM DTT 5 mM. Protein elution was monitored by UV 

absorption at 280 nm and 260 nm.

9.10 Small-angle X-ray data collection and processing

SAXS data for homodimeric hCCS were collected on the SWING beamline at SOLEIL 

synchrotron, St Aubin, France, using the HPLC integrated SAXS setup 211. Protein (400 μg 

in 40 μl storage buffer) was loaded onto a pre-equilibrated Shodex KW402.5-4F 150 kDa 

SEC column at a flow rate of 80 μl/min using an Agilent 1200 series HPLC at 25 oC before 

passing through the beam  with wavelength 1.03 Å. The sample to detector distance was 

set to 180 cm. 250 exposures of 2 seconds duration were taken over the course of protein 

elution  with 1 second dead time between each.  20 frames  were taken prior  to  protein 

elution for buffer subtraction purposes.

SAXS data for the heterodimeric hCCS-SOD1 complex were acquired in a similar fashion 

however  a  Superdex  200  16/60  column  was  used  for  protein  separation.  Column 

temperature was kept at 20 oC using a chilled water bath and a flow rate of 0.75 ml/min 

was established. 250 frames were taken over the course of protein elution with a 3 second 

exposure  time  separated  by 1.5 seconds  dead time.  100 frames  were taken before  the 

protein eluted for buffer subtraction. Samples of differing concentrations were loaded in a 

900 μl volume.

Scattering intensity was recorded on an AVIEX170x170 mm CCD detector over an angular 

range qmin = 0.01 Å-1 to qmax = 0.5 Å-1. Data averaging and reduction, including preliminary 

Rg and I(0) calculations, were carried out using the Foxtrot suite developed at SOLEIL for 

the SWING beamline. Further analysis was performed with PRIMUS 234 where radius of 
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gyration  values  were  determined  fulfilling  the  condition  qR(g)<1.3.  Particle  distance 

distribution function p(r) analysis was carried out using iterative cycles of GNOM 235 using 

the Guinier R(g) values as guide for refinement of Dmax. Ab initio 3-D shape reconstruction 

was then performed, without the imposition of symmetry restraints for hCCS and hCCS-

SOD1 and with an enforced two-fold symmetry axis for SOD1, using the GASBOR web 

server  (EMBL Hamburg)  203.  20  models  were  averaged  with  DAMAVER  236 and  the 

resulting structures compared in PyMOL 237.

9.11 Rigid body modelling

The published crystal structure of hCCS domain II  195 was used as a the structural model 

for the hCCS amino acid region 88 – 232 (PDB ID: 1DO5). The structure of region 12 – 69 

was  inferred  from the  NMR model  of  this  domain (PDB ID:  2CRL).  The  secondary 

structure of the short α-helix found in domain III, amino acids 250 – 258, was inferred 

using I-TASSER  238. Terminal and linker regions 1 – 11 (with the addition of two extra 

amino acids remaining from TEV cleavage of the hexa-histidine tag), 77 – 87, 233 – 249 

and 259 – 274 are predicted to be unstructured.

The  hCCS homodimer  was  modelled  using  BUNCH  204 to  generate  25  hCCS models 

constrained by the position of the SOD1-like domain II that forms the interface between 

two CCS monomers. The hCCS-SOD1 heterodimer was modelled using CORAL, a variant 

of  BUNCH  that  facilitates  analysis  of  protein  complexes.  In  both  cases,  unrestrained 

movement  of  hCCS  domain  I  and  III  together  with  the  flexible  linker  regions  was 

permitted. BUNCH and CORAL only generate Cα-atom positions for flexible structural 

segments such as linkers and peptide terminal ends. For the purposes of visualisation the 

protein backbone and sidechain positions of these flexible regions were reconstructed from 

their  Cα traces  using  the  SABBAC  web  server  239.  The  scattering  profile  of  each 

reconstructed and complete model was then computed with CRYSOL 240.
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Appendices 

Appendix I – Summary of Oligonucleotides

Name Restriction Site Sequence

SOD1Fwd XbaI 5'-TCTAGAATGGCGACGAAGGCC-3'
SOD1Rev XhoI 5'-CTCGAGTCAAAGGTGGGCAGGGGGC-3'
L38V N/A 5'-TGTGGGGAAGCATTAAAGGAGTGACTGAAGGCCT-3'
L38V-AS N/A 5'-AGGCCTTCAGTCACTCCTTTAATGCTTCCCCACA-3'
I113T N/A 5'-TCTCAGGAGACCATTGCATCACTGGCCGCACAC-3'
I113T-AS N/A 5'-GTGTGCGGCCAGTGATGCAATGGTCTCCTGAGA-3'
A4V N/A 5'-CCGCGACGAAGGTCGTGTGCGTGCT-3'
A4V-AS N/A 5'-AGCACGCACACGACCTTCGTCGCGG-3'
hCCSFwd NcoI 5'-CCATGGCTTCGGATTCGGGGAAC-3'
hCCSRev XhoI 5'-CTCGAGTCAAAGGTGGGCAGGGGGC-3'

Appendix II – Summary of Plasmids

Name Source Insert Size (bp)  Resistance

pCR-Blunt Invitrogen N/A 3512 Kanamycin

pCR-hSOD1wt N/A Human wild-type SOD1 3985 Kanamycin

pETM-11 EMBL N/A 5400 Kanamycin

pGEX6P1 GE Healthcare N/A 4984 Ampicillin

pET303 Invitrogen N/A 5369 Ampicillin

pET303-hSOD1wt N/A Human wild-type SOD1 5828 Ampicillin

pET303-hSOD1 L38V N/A hSOD1 with L38V mutation 5828 Ampicillin

pET303-hSOD1 I113T N/A hSOD1 with I113T mutation 5828 Ampicillin

pETM11-hCCS N/A Human wild-type CCS 6137 Kanamycin

pGEX6-hSOD1 A4V N/A hSOD1 with A4V mutation 5428 Ampicillin

Appendix III – E. coli Strains

Name Supplier Genotype

Omnimax 2 Invitrogen F {proAB+ lacIq lacZΔM15 Tn10(TetR) Δ(ccdAB)} mcrA Δ(mrr-hsdRMS-
mcrBC) φ80(lacZ)ΔM15 Δ(lacZYA-argF) U169 endA1 recA1 supE44 thi-1 
gyrA96 relA1 tonA panD

BL21 (DE3) Novagen F– ompT hsdSB(rB- mB-) dcm gal λ(DE3) 
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Appendix IV – Compounds
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