
THE UNIVERSITY of LIVERPOOL

Multi-objective Optimisation using Learning Automata and its

Applications in Power Systems

Thesis submitted in accordance with the

requirements of the University of Liverpool

for the degree of Doctor of Philosophy

in

Electrical Engineering and Electronics

by

Huilian Liao, B.Sc.(Eng.), M.Sc.(Eng.)

September 2011

Multi-objective Optimisation using Learning Automata and its Applications in

Power Systems

by

Huilian Liao

Copyright 2011

ii

Acknowledgements

I would like to give my heartfelt thanks to my supervisor, Professor Q. H. Wu,

whose encouragement, guidance and support enabled me to develop a deep under-

standing of my work. Without his consistent and illuminating instruction, my re-

search work and my life could not proceed to this stage. The research skill, writing

skill and presenting skill he taught me will benefit me throughout my life, as well as

his inspiring insight into life philosophy and poetry.

I would like to show my gratitude to Dr. L. Jiang, my second supervisor, for

his kind guidance with his knowledge of power systems. I would also like to thank

Overseas Research Students Awards Scheme for the financial support it provided

for my research work at the University of Liverpool.

I offer my regards and blessings to all of the members of the Intelligence En-

gineering and Industrial Automation Research Group, the University of Liverpool,

especially to Dr. W.H. Tang, Dr. M.S. Li, Dr. D.Y. Shi, Dr. T.Y. Ji, Dr. J. Buse, Mr.

L. Wang, and Dr. W.J. Tang. Special thanks also go to my friends, Lesley, Louis,

Tony, Nick, and a precious couple Trevor and Ning, for their support and friendship.

My thanks also go to the Department of Electrical Engineering and Electronics at

the University of Liverpool, for providing the research facilities that made it possible

for me to carry out this research.

Last but not least, my thanks go to my beloved family for their loving consider-

ations and great confidence in me through these years.

iii

Abstract

Learning automata are a major branch of machine learning designed to find the

optimal action to a learning task in a random environment. Interactions with en-

vironment and repetitive learning of a number of individual units, which are in-

dependent and structurally simple, enable the learning automata to tackle complex

learning problems. Systems built with learning automata have been successfully em-

ployed in many difficult learning situations over the years. They have also been in-

vestigated in solving optimisation problems. However, the performance of the learn-

ing automata in solving complex optimisation problems, such as high-dimensional

optimisation problems and multi-objective optimisation problems, has not been fully

investigated. Therefore, this thesis is devoted to exploring the potential of learning

automata in solving complex optimisation problems. In the thesis, Function Optimi-

sation by Learning Automata (FOLA) and Multi-objective Optimisation by Learn-

ing Automata (MOLA) have been developed for single and multi-objective complex

optimisation problems respectively.

In FOLA, the search domain of a complex optimisation problem is divided into

cells and represented by cell values. Each automaton of FOLA conducts dimen-

sional search actions according to the path values which are calculated based on the

cell values situated on the searching path. During the optimisation process, cell val-

ues are continuously updated using the values of the automata states, and stored in

memory. In this way, the information obtained prior to the current state can be col-

lected and efficiently used. With these approaches, FOLA is able to undertake search

in continuous states and achieve accurate solutions efficiently. To fully analyse the

performance of FOLA, it has been tested based on twenty-two benchmark functions

[1], which represent a wide range of challenging optimisation problems. FOLA has

iv

been compared with ten Evolutionary Algorithms (EAs), which are widely used for

solving complex optimisation problems nowadays, and four newly-proposed EAs

which have been reported to solve the same benchmark functions promisingly in lit-

erature. The experimental results have demonstrated the superiority of FOLA over

the other EAs for most benchmark functions, in terms of the convergence rate and

accuracy of finding optimal solutions. FOLA has shown its capability to solve high-

dimensional multi-modal problems. The experiment also shows that FOLA is able

to greatly reduce computation time, especially for high-dimensional functions.

Most optimisation problems existing in the real world have more than one objec-

tive. These problems aim to find evenly distributed Pareto fronts which are the plots

of the objective function values of the optimal solutions [2]. They can be tackled

by combining the multiple objectives into one single objective function that can be

solved by a single-objective optimisation algorithm. However, this method suffers

from the drawback of large computation load, and has difficulty in finding non-

convex Pareto fronts. Therefore, it is important to develop alternative optimisers

that can be used for complex multi-objective problems. Based on FOLA, MOLA is

proposed to solve complex multi-objective optimisation problems. MOLA mainly

comprises two processes: the process of searching and the process of learning from

neighborhood. The process of searching is carried out through a tournament that is

held between Pareto global search and Pareto local search. This tournament can

lead to a better trade-off between exploitation and exploration, which is a criti-

cal factor in finding the optimal solution. In the process of learning, the relation-

ship of neighborhood among the non-dominated solutions is investigated, as it is

believed that useful information that can benefit the search is embeded in neigh-

borhood. Based on the relationship, non-dominated solutions are updated based

on their neighbors. Through these processes, MOLA is able to find evenly dis-

tributed Pareto fronts for complex optimisation problems. MOLA has been com-

pared with two popular weighted-sum based algorithms, Multi-Objective Genetic

Algorithm (MOGA) and Multi-Objective Particle Swarm Optimiser (MOPSO), on

four multi-objective benchmark functions that comprise low and high-dimensional

models, convex and non-convex models, and continuous and discontinuous models

v

respectively. Besides, MOLA has been also compared with the latest developments

of Pareto front-based multi-objective algorithms, Multi-Objective Evolutionary Al-

gorithm based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic

Algorithm II (NSGA-II), on the basis of thirteen widely used multi-objective func-

tions [3], which comprise complex Pareto set shapes. The simulation results have

shown that MOLA greatly exhibits its superiority over the other algorithms, as it can

find accurate and evenly distributed non-dominated solutions, and its Pareto fronts

are wider than those obtained by the other algorithms. Besides, MOLA consumes

less computation time, whilst finding more accurate non-dominated solutions.

In the thesis, the application of FOLA and MOLA in solving optimal power

flow problems of power systems has been investigated. Optimal power flow prob-

lems are very important in power system operation and planning, especially eco-

nomic power system dispatch and voltage stability enhancement problems, which

have attracted more and more attention around the world. FOLA has also been

applied to solve the power flow problems which concern with fuel cost minimisa-

tion, voltage profile improvement and voltage stability enhancement, based on the

IEEE 30-bus and IEEE 57-bus systems. FOLA is fully compared with improved

Particle Swarm Optimisation (PSO) and Genetic Algorithm (GA). The simulation

results have demonstrated that FOLA is able to offer more accurate solutions with

shorter computation times, in comparison with the improved PSO and GA, particu-

larly on the IEEE 57-bus system. FOLA is also applied to solve the optimal power

flow problems in the power systems where the operation condition varies for a short

period time. Although the varying operation condition is considered here, these

problems are considered as static problems in a short period of time. In this case,

the fluctuating power output will affect the power flow calculation, and it can cause

instability which results in severe detriments in the power systems. In this case,

an algorithm which can provide security to the power systems is highly demanded.

Simulation studies have been carried out among FOLA, the improved PSO and GA,

based on the modified IEEE 30-bus and 57-bus systems, which are embedded with

time-varying power outputs. The simulation results have demonstrated that FOLA

is able to track the changes of the power system configuration more rapidly and

vi

accurately than the improved PSO and GA, particularly when voltage stability is

involved in the objective function. Besides, FOLA is able to offer more accurate

solutions with shorter computation time, in comparison with PSO and GA. FOLA is

also compared with two recently-proposed EAs, Comprehensive Learning Particle

Swarm Optimiser (CLPSO) and Cooperative Particle Swarm Optimisation (CPSO),

based on the IEEE 118-bus system. Advantages of FOLA have been demonstrated

by the fact that FOLA reduces the fuel cost greatly and enhances the voltage stabil-

ity of the power system. Nowadays, wind power is expected to be largely increased

in power systems, due to its inexhaustible and nonpolluting merits. However, it

brings new challenges to power system operation when wind power is connected

to the grid of power systems. The study is undertaken on the modified IEEE 30-

bus power system and new England test power system, which are incorporated with

fixed-speed and variable-speed wind generators respectively. MOLA has been fully

compared with MOEA/D and NSGA-II in solving the multi-objective optimisation

problem, which aims to reduce the operational cost and enhance voltage stability

simultaneously. The simulation results have demonstrated that MOLA performs

better than MOEA/D and NSGA-II, as MOLA can find wider and evenly distributed

Pareto fronts, and obtain more accurate Pareto optimal solutions efficiently. Addi-

tionally, MOLA consistently finds larger hypervolume and smaller diversity metric

than MOEA/D and NSGA-II under different circumstances. MOLA has presented

its superiority by finding wider Pareto fronts than MOEA/D and obtaining more ac-

curate solutions than NSGA-II, while using much less function evaluations. MOLA

has also been applied to solve the multi-objective optimisation problem in deregu-

lated market, which aims to maximise the social benefit and enhance voltage sta-

bility in the IEEE 30-bus power system. MOLA greatly increases the social benefit

and improves the voltage stability. It can find wide and evenly distributed Pareto

fronts, and obtain accurate Pareto optimal solutions efficiently.

vii

Declaration

The author hereby declares that this thesis is a record of work carried out in the

Department of Electrical Engineering and Electronics at the University of Liverpool

during the period from October 2008 to September 2011. The thesis is original in

content except where otherwise indicated.

viii

Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Motivations and Objectives . 1

1.2 Optimisation Algorithms . 4

1.2.1 Classical optimisation algorithms 5

1.2.2 Evolutionary Algorithms 5

1.3 Introduction to Learning Automata 13

1.3.1 Basic elements . 14

1.3.2 Several learning automata methods 19

1.4 Overview of this Thesis . 25

1.5 Contributions of the Research . 27

1 Developments of Learning Automata-based Optimisation
Algorithms 31

2 Functional Optimisation by Learning Automata 32

2.1 Introduction . 32

2.2 The FOLA Method . 33

2.2.1 An automaton and its reinforcement scheme 35

2.2.2 The pseudocode of FOLA 40

2.2.3 Search behaviors of FOLA 41

2.3 Compared with Classical EAs . 43

2.3.1 Benchmark functions . 43

2.3.2 Evaluation on 30-dimensional functions 44

2.3.3 Evaluation on 300-dimensional functions 48

2.3.4 Discussion . 50

2.4 Compared with Recently-proposed EAs 54

2.4.1 Benchmark functions . 54

2.4.2 Compared with CLPSO and CPSO 55

ix

2.4.3 Compared with GS-SOMA, OLPSO, SOPEN and SamACO 60

2.5 Conclusions . 65

3 Multi-objective Optimisation by Learning Automata 67

3.1 Introduction . 67

3.2 The MOLA Method . 70

3.2.1 An automaton and its reinforcement scheme 71

3.2.2 Forming the Pareto set . 72

3.2.3 The process of searching and learning 73

3.2.4 The implementation of MOLA 78

3.3 Compared with Weighted-sum Based Algorithms 79

3.3.1 Benchmark functions . 79

3.3.2 Simulation results . 80

3.3.3 Remarking . 84

3.4 Compared with Pareto Front-based Algorithms 87

3.4.1 Performance metrics . 87

3.4.2 Simulation results . 91

3.5 Conclusions . 114

2 Power System Applications Using Learning Automata-based
Optimisation Algorithms 121

4 The Application of FOLA on Optimal Power Flow Problems 122

4.1 Introduction . 122

4.2 Evaluation on Dispatch and Voltage Stability Enhancement Problems 124

4.2.1 Problem formulation . 124

4.2.2 Simulation results . 129

4.3 Evaluation in Dynamic Wind Power Penetrated Systems 135

4.3.1 Problem formulation . 135

4.3.2 Simulation results . 137

4.4 Conclusions . 145

5 The Application of MOLA in Multi-objective Optimal Power Flow Prob-

lems 148

5.0.1 Introduction . 148

5.1 Evaluation on Power Systems with Fixed-speed Wind Generators . . 150

5.1.1 Problem formulation . 150

5.1.2 Simulation studies . 151

5.2 Evaluation on Power Systems with Variable-speed Wind Generators 157

5.2.1 Problem formulation . 157

5.2.2 Simulation studies . 161

5.3 Evaluation in Deregulated Power Market 169

x

5.3.1 Problem formulation . 170

5.3.2 Simulation studies . 171

5.4 Conclusions . 173

6 Conclusions and Future Work 175

6.1 Conclusions . 175

6.2 Suggestions for Future Work . 178

A Benchmark Functions 180

A.1 Unimodal Benchmark Functions 180

A.2 Multimodal Benchmark Functions 181

A.3 Multimodal Benchmark Functions with Rotation and Shift 183

A.4 Multi-objective Benchmark Functions for Weighted-sum Based Al-

gorithms . 186

A.5 Multi-objective Benchmark Functions for Pareto front-based Algo-

rithms . 187

B Notations in Thesis 193

B.1 Notations in PSO and LA . 193

B.2 Notations in FOLA and MOLA 195

B.3 Notations in Power Systems . 197

B.4 List of Abbreviations and Notations 199

References 201

xi

List of Figures

1.1 Block diagram of the interaction between a Learning Automaton

and environment . 14

1.2 The three aspects of LA . 15

1.3 The illustration of an automaton 15

2.1 The structure of learning automata for FOLA 34

2.2 The two possible paths taken by a search starting at dimensional

state xi on the ith dimension . 36

2.3 The illustration of the search behavior of automata 43

2.4 The comparison of convergence rates among PSO, GA, FEP and

FOLA on the 30-dimensional benchmark functions F8(x)∼F13(x) . 52

2.5 The comparison of convergence rates among FOLA, CLPSO and

CPSO on the nine benchmark functions, Frs1(x)∼Frs6(x) 58

2.6 The comparison of convergence rates among FOLA, CLPSO and

CPSO on the nine benchmark functions, Frs7(x)∼Frs9(x) 59

2.7 The comparison of computation time consumed by FOLA, CLPSO

and CPSO with respect to different dimensionality, on benchmark

functions Frs1(x) and Frs2(x) . 61

3.1 Dominance relation in multi-objective problems 68

3.2 The illustration of finding F ∗ . 75

3.3 The illustration of X’s neighborhood 77

3.4 The flowchart of one cycle of the tournament 79

3.5 Pareto fronts obtained by MOGA, MOPSO and MOLA on Function

I: (a) 2 dimensions; (b) 30 dimensions 81

3.6 Pareto fronts obtained by MOGA, MOPSO and MOLA on Function

II: (a) 2 dimensions; (b) 30 dimensions 82

3.7 Pareto fronts obtained by MOGA, MOPSO and MOLA on Function

III . 83

3.8 Pareto fronts obtained by MOGA, MOPSO and MOLA on Function

IV . 84

3.9 The computation time consumed by MOGA, MOPSO and MOLA

in solving multi-objective Function I with different dimensions. . . . 85

xii

3.10 Pareto fronts obtained by MOGA, MOPSO and MOLA on 50-dimensional

Function I . 86

3.11 Pareto front obtained by MOLA on Function I when wc and Nfemax

are set to different values . 87

3.12 Illustration of weighted-sum methods 88

3.13 The illustration of hypervolume 89

3.14 The illustration of the diversity metric 90

3.15 The illustration of s.a.s. (a) Attainment surfaces of three indepen-

dent runs; (b) s.a.s. obtained from the three runs 92

3.16 s.a.s. obtained by MOEA/D, NSGA-II and MOLA on Fun1-1 95

3.17 s.a.s. obtained by MOEA/D, NSGA-II and MOLA on Fun1-2 96

3.18 s.a.s. obtained by MOEA/D, NSGA-II and MOLA on Fun1-3 97

3.19 s.a.s. obtained by MOEA/D, NSGA-II and MOLA on Fun2-1 100

3.20 s.a.s. obtained by MOEA/D, NSGA-II and MOLA on Fun2-2 101

3.21 s.a.s. obtained by MOEA/D, NSGA-II and MOLA on Fun2-3 102

3.22 s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun3 107

3.23 s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun4 108

3.24 s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun5 109

3.25 s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun6 110

3.26 s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun7 111

3.27 s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun8 112

3.28 s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun9 113

3.29 s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun10 116

3.30 s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun11 117

3.31 s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun12 118

3.32 s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun13 119

4.1 Diagram of an electrical system 125

4.2 Single-line diagram of the IEEE 30-bus system 130

4.3 Single-line diagram of the IEEE 57-bus system 133

4.4 Simplified equivalent circuit of asynchronous generator 135

4.5 The performance comparison among PSO, GA and FOLA in solv-

ing case 1 on the modified IEEE 30-bus system 139

4.6 The performance comparison among PSO, GA and FOLA in solv-

ing case 2 on the modified IEEE 30-bus system 140

4.7 The performance comparison among PSO, GA and FOLA in solv-

ing case 1 on the modified IEEE 57-bus system 142

4.8 The performance comparison among PSO, GA and FOLA in solv-

ing case 2 on the modified IEEE 57-bus system 142

4.9 Single-line diagram of the IEEE 118-bus system 144

4.10 The performance comparison among FOLA, CLPSO and CPSO on

the IEEE 118-bus power system: (a) for case 1; (b) for case 2 145

xiii

5.1 Pareto fronts obtained by MOEA/D, NSGA-II and MOLA on the

IEEE 30-bus wind power penetrated system 152

5.2 Pareto fronts (in separate subfigures) obtained by MOEA/D, NSGA-

II and MOLA on the IEEE 30-bus wind power penetrated system . . 152

5.3 Single-line diagram of the modified new England wind power pen-

etrated system . 154

5.4 Pareto fronts obtained by MOEA/D, NSGA-II and MOLA on the

modified new England wind power penetrated system 154

5.5 The relationship between wind speed and real power output 160

5.6 Pareto fronts obtained by MOEA/D, NSGA-II and MOLA on the

IEEE 30-bus power system with wind power penetration 162

5.7 Pareto fronts (in separate subfigures) obtained by MOEA/D, NSGA-

II and MOLA on the IEEE 30-bus power system with wind power

penetration . 163

5.8 Convergence characteristics of MOEA/D, NSGA-II and MOLA on

the IEEE 30-bus power system with wind power penetration 165

5.9 Pareto fronts obtained by MOEA/D, NSGA-II and MOLA on the

modified new England wind power penetrated system 166

5.10 Convergence characteristics of MOEA/D, NSGA-II and MOLA on

the new England wind power penetrated system penetrated with

wind power . 168

5.11 The values of PV P obtained by MOEA/D, NSGA-II and MOLA . 170

5.12 Pareto fronts obtained by MOEA/D, NSGA-II and MOLA on the

IEEE 30-bus power system . 171

5.13 Details of the Pareto fronts obtained by MOEA/D, NSGA-II and

MOLA on the IEEE 30-bus power system 172

5.14 Pareto fronts obtained by MOEA/D, NSGA-II and MOLA (in sub-

figures) on the IEEE 30-bus power system 173

xiv

List of Tables

2.1 The setting ofNfemax for 30-dimensional benchmark functionsF1∼F13 45

2.2 Comparison among FOLA and the other eight algorithms on 30-

dimensional benchmark functions F1∼F7: Average fitness value /

(Standard deviation) / (Rank) . 47

2.3 Comparison among FOLA and the other eight algorithms on 30-

dimensional benchmark functions F8∼F13: Average fitness value /

(Standard deviation) / (Rank) . 48

2.4 Comparison among FOLA, GA, PSO, EP and ES on 300-dimensional

benchmark functions F8(x)∼F13(x): Average fitness value / (Stan-

dard deviation) / (Rank) . 50

2.5 Computation time (s) consumed by PSO, GA, PSO and FOLA when

solving the 30-dimensional benchmark functions F8(x)∼F13(x) . . 53

2.6 The average fitness values obtained with different wc and Nfemax . . 54

2.7 Comparison among FOLA, CLPSO and CPSO on 30-dimensional

benchmark functions Frs1∼Frs9, including Average fitness value,

Standard deviation and t-test . 56

2.8 Computation time (s) consumed by FOLA, CLPSO and CPSO when

solving the benchmark functions, Frs1(x)∼Frs9(x) 59

2.9 Comparison between FOLA and GS-SOMA on functions Frs5, Frs6

and Frs8 . 62

2.10 Comparison between FOLA and OLPSO on four functions 63

2.11 Comparison between FOLA and SOPEN on 30- and 100-dimensional

functions Frs1 and Frs4 without shift and bias 64

2.12 Comparison between FOLA and SOPEN on 100-dimensional func-

tions Frs1 and Frs4 without shift and bias 64

2.13 Comparison between FOLA and SamACO on five benchmark func-

tions . 65

3.1 The setting of Nfemin for solving Function I with different dimen-

sionality . 85

3.2 The number of non-dominated solutions obtained by MOLA when

wc and Nfemax are set to different values 86

xv

3.3 The setting of reference solution and extreme solutions; HV and

∆ obtained by MOEA/D, NSGA-II and MOLA on Fun1 (including

mean and standard deviation) . 94

3.4 The setting of reference solution and extreme solutions; HV and

∆ obtained by MOEA/D, NSGA-II and MOLA on Fun2 (including

mean and standard deviation) . 99

3.5 D̃, HV and ∆ obtained by MOEA/D, NSGA-II and MOLA on

Fun3-Fun9 (including mean and standard deviation) 106

3.6 D̃ obtained by NSGA-II, MOEA/D and MOLA on Fun10-Fun13

(including mean and standard deviation) 115

4.1 The performance comparison among FOLA, PSO and GA in case 1

on the IEEE 30-bus system . 131

4.2 The performance comparison among FOLA, PSO and GA in case 2

on the IEEE 30-bus system . 131

4.3 The performance comparison among FOLA, PSO and GA in case 3

on the IEEE 30-bus system . 132

4.4 The computation time (s) consumed by FOLA, PSO and GA on the

IEEE 30-bus system . 132

4.5 The performance comparison among FOLA, PSO and GA in case 1

on the IEEE 57-bus system . 134

4.6 The performance comparison among FOLA, PSO and GA in case 2

on the IEEE 57-bus system . 134

4.7 The performance comparison among FOLA, PSO and GA in case 3

on the IEEE 57-bus system . 134

4.8 The computation time (s) consumed by FOLA, PSO and GA on the

IEEE 57-bus system . 135

4.9 The parameters setting of induction generators 138

4.10 The maximum real power output (MW) of the wind generator in

multiple time periods . 138

4.11 The computation time (s) consumed by FOLA, PSO and GA on the

IEEE 30-bus system . 141

4.12 The computation time (s) consumed by FOLA, PSO and GA on the

modified IEEE 57-bus system . 143

4.13 The minimum fitness values obtained by FOLA, CLPSO and CPSO

in different time periods . 146

4.14 Computation time (s) consumed by FOLA, CLPSO and CPSO . . . 146

5.1 The setting of reference solution and extreme solutions; HV and ∆
obtained by MOEA/D, NSGA-II and MOLA on the modified IEEE

30-bus power system (including mean and standard deviation) . . . 153

xvi

5.2 The setting of reference solution and extreme solutions; HV and ∆
obtained by MOEA/D, NSGA-II and MOLA on the modified new

England test system (including mean and standard deviation) 155

5.3 Load demand (MW) at bus 10 . 155

5.4 Wind speed . 156

5.5 The minimum objective fitness values derived by MOEA/D, NSGA-

II and MOLA in the dynamic environment 156

5.6 The setting of reference solution and extreme solutions; HV and ∆
obtained by MOEA/D, NSGA-II and MOLA in dynamic environ-

ment: Hours 1-12 (including mean and standard deviation) 158

5.7 The setting of reference solution and extreme solutions; HV and ∆
obtained by MOEA/D, NSGA-II and MOLA in dynamic environ-

ment: Hours 13-24 (including mean and standard deviation) 159

5.8 The wind speed and number of wind turbines in the wind farms . . . 162

5.9 The setting of reference solution and extreme solutions; HV and ∆
obtained by NSGA-II, MOEA/D and MOLA on the modified IEEE

30-bus power system (including mean and standard deviation) . . . 164

5.10 Load demand (MW) at bus 10 . 164

5.11 Wind speed for the dynamic IEEE 30-bus power system 164

5.12 The wind speed and number of wind turbines in the wind farms . . . 166

5.13 The setting of reference solution and extreme solutions; HV and ∆
obtained by NSGA-II, MOEA/D and MOLA on the modified new

England test system (including mean and standard deviation) 167

5.14 Wind speed for dynamic new England wind power penetrated system 168

5.15 The computation time (s) consumed by MOEA/D, NSGA-II and

MOLA on the IEEE 30-bus power system 173

xvii

List of Abbreviations and Notations

xviii

Chapter 1

Introduction

1.1 Motivations and Objectives

While the mathematics of optimisation has been studied for about a century, the

increasing complexity of real-world optimisation problems and the development of

computation capability have stimulated new interest in the topic. Classical gradient-

based optimisation algorithms have been fully investigated and applied for solving

a wide range of current engineering and public service problems [4]. However,

they are insufficient when solving the multi-model optimisation problems which are

non-differentiable and non-convex and contain many local optima. Furthermore,

their convergence is largely dependent on the initial points of search. To solve these

problems, researchers began to explore the biological evolution and animal behav-

iors in the nature, which serves as a fertile source of concepts, principles and mecha-

nisms. Biologically-inspired optimisation algorithms have thrived over the last few

decades due to their ability of solving multi-modal problems [5], especially Evo-

lutionary Algorithms (EAs), which present their applicability in solving complex

problems. However these algorithms suffer from the drawbacks of redundant com-

putation load and slow convergence rate, i.e. they can hardly achieve an accurate

solution given limited computation time. These drawbacks mainly result from their

population-based search approach, in which there is a high level of randomness and

high computational complexity. This has greatly hampered the capability of EAs’

1

1.1 Motivations and Objectives 2

application in large-scale optimisation problems, such as optimal power flow prob-

lems in power systems, routing problems in telecommunication networks and traffic

systems. Further improvement of EAs is limited. This thesis is concerned with an

alternative approach to function optimisation, based on learning automata.

Nature has presented the significance of learning ability. For instance, in the

wilderness which is full of dangers, each careless action could lead to death, thus

creatures have to learn how to select the actions which are suitable to the environ-

ment. With this inspiration, the feasibility of using a learning method for problem

solving has been explored by researchers [6], such as learning automata methods.

Learning automata methods do not belong to the class of EAs which mainly adopt

biological evolution concept. A learning automaton is considered as a system which

modifies its strategy on basis of its experience by collecting and processing informa-

tion regarding the environment, in order to achieve the desired goal or the optimal

performance in some sense. It is believed that the learning automata, which have

the ability of learning and memorization, can be connected in a way which would

be suitable for tackling complex learning problems. The learning automata methods

have made a significant impact on many areas, such as system control and pattern

classification. They have also been applied to resolve optimisation problems. In

contrast to EAs, the learning automata methods, despite having a solid theoretical

background, are less popularly applied for solving complex optimisation problems.

The objective of this thesis is to discover the potential of Learning Automata meth-

ods (LA) by developing LA-based optimisation algorithms, which can reduce the

unnecessary randomness and large computation load caused by a large number of

population adopted by EAs.

Besides the single objective optimisation mentioned above, multi-objective opti-

misation is with no doubt a very important research topic, due to the multi-objective

nature of many practical optimisation problems in the real world. Multi-objective

optimisation aims to optimise several performance attributes of the problem simul-

taneously and obtains a series of non-inferior alternative Pareto optimal solutions.

There are two standard methods for treating multi-objective problems. One is to

combine the individual objective functions into a single composite function using

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.1 Motivations and Objectives 3

the weighted-sum method or weighted Tchebycheff method. However, the problem

lies with the proper selection of the weights or utility functions to characterize the

decision-maker’s preferences. In practice, it can be very difficult to precisely and

accurately select these weights, even for someone who is familiar with the problem

domain. Small perturbations in the weights can sometimes lead to quite different

solutions [7]. Another drawback of these approaches is that they greatly increase

the computation load, as the algorithm needs to be executed many times in order

to obtain a set of Pareto optimal solutions. In addition, these weighted-objective

methods are only capable of solving convex Pareto front problems and have a dif-

ficulty in solving the multi-objective problems whose Pareto fronts are non-convex

[7]. Nonetheless, there is no way to predetermine if a problem is convex or con-

cave in many applications. Instead of using weighted-sum method, an alternative

is employing Pareto-front based methods, which apply a population of individu-

als, and each of them represents one Pareto optimal solution. These approaches are

extended from EAs, thus they suffer from the same drawbacks regarding population-

based methods, which have been mentioned above. Besides, some of these methods

employ non-dominated sorting strategy to rank the individuals of the population,

which could further increase the computational complexity. This thesis is to develop

an LA-based multi-objective optimisation algorithm, so as to increase the efficiency

of the search, through comprehensively making use of the information collected in

each function evaluation.

Another objective of the thesis is to apply the developed LA-based algorithms

to solve practical problems in power systems. Power system dispatch, environ-

mental concerns and power security are becoming more and more important in

terms of power system operation and planning. These problems are non-differential,

non-linear, high-dimensional and complicatedly constrained. As it is known that

the power system configuration (e.g. power demand, wind power outputs) changes

throughout the whole day, which leads to the varying property of the optimisation

problem. To a certain extent, the property of these problems is unknown in advance,

and it can vary widely as power configuration slightly changes. These features make

the problems hard to be resolved. The development of the algorithms which are

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.2 Optimisation Algorithms 4

suitable for this specific area has not been paid enough attention yet, though some

efforts have been made by researchers who favor EAs. With the high demand of

these problems, the application of EAs is limited in this case, due to their instability

and unpredictable computation load. To overcome this problem, this thesis is also

concerned with the application of LA-based algorithms in complex power systems.

1.2 Optimisation Algorithms

Optimisation refers to systematically finding the optimal solutions to the opti-

misation problems to be resolved, under certain constraints. There are mainly two

categories of optimisation problems, single-objective and multi-objective optimisa-

tion problems. Single-objective optimisation problems aim to finding a single best

solution, which is usually the minimal or the maximal evaluation value of the ob-

jective function. On the other hand, multi-objective optimisation problems usually

have no unique, perfect solution, but a series of non-inferior alternative solutions,

Pareto optimal solutions (or called non-dominated solutions), which represent the

possible trade-off among conflicting objectives. The Pareto optimal solutions form

a Pareto front in the objective space. The optimisation target is to find the set of

Pareto optimal solutions which are evenly distributed along the Pareto front [2].

In order to seek the solution which has the best evaluation value of the objective

functions, or a desired combination of two or more optimal fitness values of the con-

flicting objectives, a variety of optimisation algorithms have been developed in the

past century. Classical optimisation algorithms have been largely applied for solv-

ing a wide range of engineering and public service problems [4]. However, these

algorithms cannot solve complex multi-model optimisation problems desirably. Re-

searchers began to explore the nature over the past several decades, and develop var-

ious bio-inspired/nature-inspired optimisation techniques, which operate in a rather

different way from the classical methods, and allow scientists and engineers to solve

optimisation problems where the classical methods are not applicable.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.2 Optimisation Algorithms 5

1.2.1 Classical optimisation algorithms

Classical optimisation algorithms, having a solid theoretical background, are

analytical and usually make use of the techniques of differential calculus to locate

the optimum point. They assume that the function is differentiable twice with re-

spect to the design variables, and the derivatives are continuous. Since some of the

practical problems involve objective functions that are not continuous and/or dif-

ferentiable, the classical optimisation techniques have a limited scope in practical

applications. However, classical optimisation algorithms still play an important part

in the field of optimisation. For instance, simplex-based method [8] is a popular

algorithm for numerically solving linear programming problems [9]. Interior point

methods are widely used to solve linear and nonlinear convex optimisation prob-

lems [10][11], which have a convex landscape of the objective functions. In order to

improve convergence rate, many classical optimisation methods are based on evalu-

ating Hessians and gradients [4], such as Newton’s method, Quasi-Newton methods

and steepest descent, and so on. The drawback of these methods is that they increase

the computational cost of each iteration, due to the computational complexity of

evaluating gradients and Hessians.

1.2.2 Evolutionary Algorithms

Since classical optimisation algorithms cannot be used to solve complex multi-

model optimisation problems desirably, a great deal of research activities were car-

ried out from the inspiration of nature [12], and since then, a large number of new

optimisation algorithms have been developed. These methods have been used to

solve various optimisation problems. Meanwhile, these novel optimisation algo-

rithms do not need to run for a large number of times when solving multi-modal

problems, which makes their application efficient. Among these novel optimisa-

tion algorithms, EAs, which incorporate the major behaviours of a biological evolu-

tionary process and a principle of ‘the survival of the fittest’ into their algorithmic

framework [13], have been investigated comprehensively over the last twenty years

and applied widely for problem solving [14][15]. EAs use a population of individu-

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.2 Optimisation Algorithms 6

als which evolve through iterative process, in order to search for a desired location

in the solution space.

Genetic evolution-based EAs

Genetic evolution-based EAs fall into four major categories: Genetic Algorithm

(GA) [16], Evolutionary Programming (EP) [17], Genetic Programming (GP) [18]

and Evolutionary Strategy (ES) [19]. These methods share the principles of survival

of the fittest.

• The basic concept of GA was first pioneered by John Holland in the 70s [16],

and it derives from a metaphor of the evolution process in nature. To be spe-

cific, GA refers to a particular class of EAs that uses the techniques inspired by

evolutionary biology, such as inheritance, mutation, selection, and crossover

[16].

GA is implemented using a population of strings (called chromosomes), which

encode candidate solutions (called individuals) to an optimisation problem,

and evolve towards better solutions [20] [21]. Traditionally, the strings were

in the form of binary values, but later, other forms, such as real-value cod-

ing [22], are also possible [23]. The selection of the type of coding relates

to the types of the optimisation problem. General GA includes five basic op-

erations: initialisation, selection, crossover, mutation and termination [16].

During the stage of initialisation, a population of individuals are randomly

generated in the solution space. These solutions evolve as generations pro-

ceed. In each generation, the fitness value of each individual in the population

is evaluated. Individual solutions are selected through a fitness-based process,

where the solutions that have better fitness values are often more likely to be

reselected. Some selection strategies rate the fitness value of each solution

and preferentially select the best solutions. However, most selection meth-

ods adopt probability-based selection, in which the probability of reselecting

better solutions is large, and at the same time the solutions which have rel-

atively poor fitness values can also be selected, but in a smaller probability.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.2 Optimisation Algorithms 7

This strategy helps GA preserve population diversity and prevent premature

convergence. The most well-studied selection methods include roulette wheel

selection and tournament selection [24]. Through the stage of selection, an

intermediate population is obtained and used to reproduce a new population.

In this case, multiple individuals are stochastically selected from the current

population to perform operators crossover and mutation. Crossover and mu-

tation are regarded as the main causes of the efficiency of genetic algorithms.

Crossover allows the method to combine some hopeful schemata, join the

information contained in the parent chromosomes, and produce new individ-

uals. With crossover, good results can be obtained with a random matching

of the individuals [22], and thus quickly progress towards the optimal regions

of the search space. On the other hand, mutation brings the diversity among

the population, by changing the values of part of the chromosomes. With the

operations of crossover and mutation, a brand new population is generated,

and it will be used in the next generation. The algorithm either terminates

when a maximum number of generations has been produced, or stops when a

satisfactory fitness level for the population has been reached.

GA can be well extended to solve multi-objective optimisation problems. Ref-

erence [7] provides an overview and tutorial of GA which is developed specif-

ically for problems with multiple objectives. There are mainly two ways of

applying GA in solving multi-objective problems: 1) multiple objectives can

be regulated into a single objective, using weighted-sum method or Lagrange

method, before applying GA. This method is widely used, such as Weight-

Based Genetic Algorithm [25], Random Weighted Genetic Algorithm [26]

and Multi-Objective Genetic Algorithm (MOGA) [7]; 2) being a population-

based approach, a generic single-objective GA can be modified to find a set

of multiple non-dominated solutions in a single run, such as Non-dominated

Sorting Genetic Algorithm [27], Dynamic Multi-objective Evolutionary Al-

gorithm [28] and Fast Non-dominated Sorting Genetic Algorithm (NSGA-II)

[29].

The domain of GA’s utilization is very large. They have been widely studied,

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.2 Optimisation Algorithms 8

experimented and applied in many fields in engineering worlds [21][30][31][32].

A review of their implementations and some application domains can be found

in reference [33].

• EP was first proposed as an approach to artificial intelligence by Fogel in 1960

[17]. However, it was not applied with such a success to many numerical and

combinatorial optimisation problems until 1990 [34].

Similar to GA, EP seeks the optimal solution by evolving the population, in

which each individual represents a candidate solution to the problem, over a

number of generations or iterations. However, unlike other EAs, no recombi-

nation operators are applied in EP. The optimisation process can be summa-

rized into two major steps [17]: the solutions locating in the current population

are mutated; the next generation is selected from both the mutated and the cur-

rent solutions. According to survival of the fittest, the filial generation in EP

is generated from the fittest parent generation which is selected through rank-

ing strategy [35]. Mutation is used to generate new solutions (offspring). The

method of mutation could vary dramatically with respect to specific problems,

and it is a critical operation for EP, as it affects the behaviour of individuals

greatly. The contemporary variant, Fast EP (FEP), uses a Cauchy mutation

instead of Gaussian mutation. By introducing the Cauchy mutation, FEP is

more likely to generate an offspring which is far away from its parent, due

to its long flat tails. According to the experimental studies, the improvement

enhances the global search ability of EP [1]. EP does not only conduct the

mutation operation, but also capitalises on a continuous crossover operation

in the evolution process.

EP is comprehensively investigated for multi-objective problems, such as Fast

Multi-Objective Evolutionary Programming [36], which uses fuzzy rank-sum

concept and diversified selection, different multi-objective evolutionary pro-

gramming [37], which has been used for detecting computer network at-

tacks, and Multi-Objective Evolutionary Programming [38], which has been

successfully applied in combined economic emission dispatch and economic

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.2 Optimisation Algorithms 9

emission dispatch problems in complex power systems.

• GP is a type of EAs which is on basis of the evolutionary progress devel-

oped by Koza[18]. It can solve various complex optimisations and searching

problems successfully. GP is a domain-independent method that genetically

breeds a population of computer programs to solve a problem. It is an exten-

sion of the GA, but the structures of the population in GP are not fixed-length

character strings used in GA. In GP, the candidate solutions to the problem

[39] are programs, which are expressed in genetic programming as syntax

trees rather than as lines of code. Trees can be easily evaluated in a recur-

sive manner. Every tree node has an operator function, and every terminal

node has an operand, making mathematical expressions easy to evolve and

evaluate. With tree structures representing trial solutions, GP can be applied

to search for the optimal solution, and also used to search for mathematical

functions to describe an unknown model.

The genetic operators used in GP include crossover, mutation, reproduction,

gene duplication, and gene deletion. Mutation affects the population individ-

ually. If one individual is selected to perform crossover, it will simply switch

one of its nodes with another that is from another individual in the population.

With the tree-based representation, it can only replace the node’s information,

or it can replace a whole branch from the selected node. In the latter case,

the crossover is regarded as a replacement of the whole branch. These two

operators are applied to the chromosome in each generation.

• ES was invented in 1963 by Ingo Rechenberg, Hans-Paul Schwefel at the

Technical University of Berlin (TUB) while searching for the optimal shapes

of bodies in a flow [19][40]. ES is a kind of EAs where individuals are en-

coded by a set of real-valued “object variables”. For each object variable, an

individual also has a “strategy variable” which determines the degree of muta-

tion to be applied to the corresponding object variable. The strategy variables

also mutate, allowing the rate of mutation of the object variables to vary. The

simplest evolution strategy operates on a population size of two: the current

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.2 Optimisation Algorithms 10

point (parent) and the result of its mutation (child). In each generation, a

vector of object variables is created by mutating the parent with an identical

standard deviation. The fitness value of the child individual is compared with

that of its parent, and the one with the better fitness value survives. This se-

lection mechanism is identified as (1+1)-ES. However, this mechanism may

result in converging to premature results during the optimisation process, due

to a lack of diversity. To overcome this drawback, a multi-membered ES with

µ parents, (µ+1)-ES, was proposed by Rechenberg [41]. In this method, µ

parent individuals can participate in the generation of one offspring individ-

ual. This operation has a similar effect to the crossover process in GA. There

are other ES variants based on this improvement, such as (1+λ)-ES, where

λ mutants are generated from the same parent; (µ + λ)-ES, where the best

µ individuals are produced from the union of parents and offspring (i.e. the

selection operates on the joined set of parents and offspring); and (µ, λ)-ES,

where only the best µ offspring individuals are used to form the next parent

generation [42].

ES has been applied to solve practical problems in the field of engineering,

such as the optimisation problem in power plant [43].

Swarm intelligence-base EAs

With the exception of the class of EAs which adopts the biological evolutionary

progress, there are also some EAs which are based on swarm intelligence. Swarm

intelligence is the collective behavior of decentralized self-organized systems [44].

These systems are typically made up of a population of simple agents. These agents

follow very simple rules, and no centralized control structure dictates how individual

agents should behave. Although there is no centralized control or the provision of a

global model, agents interact locally with one another and with their environment.

Hence, local interactions between such agents lead to the emergence of “intelligent”

global behavior. These coherent global patterns could be unknown to the individual

agents. A certain degree of randomness is applied to the local interactions between

agents, in order to keep diversity among the swarm. Natural examples of swarm

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.2 Optimisation Algorithms 11

intelligence include bird flocking, ant colonies, animal herding, bacterial growth,

and fish schooling, etc.

• Particle Swarm Optimisation (PSO) is a stochastic optimisation technique de-

veloped by Eberhart and Kennedy [45][44]. It is inspired by computer sim-

ulations of various interpretations of the movement of organisms in a flock

of birds or a school of fishes. PSO is popular in the research field of optimi-

sation in the last decade for its simplicity of implementation, few parameters

and high convergence rate [46].

In PSO, the population is called a swarm, and each individual of the pop-

ulation is called a particle. PSO works on the social behavior of particles

in the swarm, by remembering the best location of itself and the best expe-

rience of other individuals in the swarm. The particles alter their velocities

according to their records at each iteration. Assume that the search space is

N-dimensional, and the number of particles is np. The position vector and

velocity vector of the particle i (i=1,2,. . . ,np) are denoted by Zi=(zi1,. . . ,ziN)

and Vi=(vi1, . . . ,viN) respectively. The best position of particle i and the fittest

particle found so far in the swarm are represented by Pli=(pli1,. . . ,pliN) and

Pg=(pg1,. . . ,pgN) respectively. At each iteration, every component of the ve-

locity vector of particle i is updated according to:

vn+1
ij = wvn

ij + cf1ζ1(plij − zn
ij) + cf2ζ2(pgj − zn

ij) (1.2.1)

And each component of the position vector is updated according to the fol-

lowing equation:

zn+1
ij = zn

ij + vn+1
ij (1.2.2)

where n denotes the iteration number; w is the inertia weight [47]; ζ1 and ζ2

are random numbers in the range [0,1]. Constants cf1 and cf2, called accelera-

tion factors, are used to adjust particles’ trajectory using its own previous best

position and the best solution found in the group. The velocity obtained from

(1.2.1) makes particles to some extent move towards the global optimum. The

range of vij is denoted by [vmin, vmax], while that of zij is [zmin, zmax].

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.2 Optimisation Algorithms 12

An important variant of standard PSO utilized a constriction factor, which was

proposed by Clerc [48]. By reducing the inertia weight w in each iteration,

it ensures the stability of convergence, and it leads to higher quality of the

solutions compared with the standard PSO when solving unimodal functions,

which have only one local minimum. However, an over-decreased inertia

weight reduces the velocity of particle, i.e., the particle is trapped more easily

at local optima in multimodal optimisation problems which have a number

of local optima. Other variants of the PSO have also been developed in re-

cent years, such as Particle Swarm Optimisation with Passive Congregation

[49], Unified Particle Swarm Optimisation, Fully Informed Particle Swarm

and most recently, Cooperative Particle Swarm Optimisation (CPSO) [50] and

Comprehensive Learning Particle Swarm Optimisation (CLPSO) [51]. These

algorithms have produced encouraging results in both benchmark testing and

real-world applications.

• Ant colony optimisation algorithm (ACO) is another approach which is based

on swarm intelligence [52]. It models ant colony behaviour, including ant

foraging behaviour, brood sorting, nest building, and self-assembling. Ants

wander randomly, and deposit pheromone trails on the way back to the colony

after finding food. If other ants find a pheromone path, they are more likely

to discontinue their random travel, and follow the trail until reaching the food

source. Subsequently, they reinforce the pheromone trails. The pheromone

trails evaporate with time, resulting in a reduction of the strength of attraction.

This process is simulated by ACO to find an optimal solution.

ACO has been applied to many combinatorial optimisation problems, in which

the set of feasible solutions is discrete or can be reduced to discrete. Taking

Traveling Salesman Problem (a popular combinatorial problem) as an exam-

ple, the solution obtained by ACO is much better than the one found by a GA

[53]. After more than ten years of studies, both its application effectiveness

and its theoretical background have made ACO a successful EA in the com-

binatorial optimisation domain [54]. Besides, the applications of ACO range

from quadratic assignment to protein folding and vehicles routing. A number

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.3 Introduction to Learning Automata 13

of derived methods have been adopted to solve dynamic problems, stochastic

problems, multi-targets and parallel implementations [55].

• Recently, a Group Search Optimiser (GSO) was developed at the University of

Liverpool [56], which was inspired by animal searching behaviour and group

living theory [57]. The strategies of information-sharing [58] and producer-

scrounger models [59] are employed in GSO. There are mainly three roles in

a group: producer, scrounger and ranger. Producer, regarded as the leader of

the group, is usually located in promising area, and seeks food source for the

rest of the group. There is only one producer in the group. In each iteration,

the producer is renewed and are selected from the best members. On the other

hand, scroungers follow the producer and find opportunities to share the infor-

mation found by producer and search resource uncovered by other scroungers.

Apart from the producers, 80% of the rest members are randomly selected as

scroungers, and the scroungers are renewed in each iteration as well. The re-

mainder members are rangers. They walk randomly in the searching space, by

dispersing themselves from their original positions. This behavior increases

the diversity in the group, and discourages members from being trapped in

local optima. Concepts from this framework are employed metaphorically

to design optimum searching strategies for solving continuous optimisations.

GSO is extended to solve multi-objective optimisation problems using multi-

ple producers. Scroungers search around one of the producer and one of the

non-dominated solutions. The number of the producers is equal to that of the

objective functions. This method has been successfully applied to solve the

problem of device placement in power systems [60].

1.3 Introduction to Learning Automata

The first learning automaton model was developed in mathematical psychology,

and then developed by Bush et al. [61], Atkinson et al. [62] and Tsetlin [63]. Learn-

ing automata select their current actions based on past experiences learned through

interaction with environment. In other words, learning automata should, by collect-

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.3 Introduction to Learning Automata 14

ing and processing current information regarding the environment, be capable of

changing their structure and parameters as time evolves, in order to achieve the de-

sired goal or the optimal performance. The learning automata methods have already

made a significant impact on many areas of system control and pattern classification,

such as power system control [64][65], vehicle suspension control [66] and noise-

tolerant learning of hyperplane classification [67], etc. They have also been inves-

tigated in solving optimisation problems. For instance, the method of continuous-

action learning automata has been applied for stochastic optimisation [68][69]; the

algorithm of genetic learning automata was proposed to resolve function optimi-

sation problems [70][71]. However, few literature has reported that the learning

automata methods, despite having a solid theoretical background, can outperform

EAs in solving complex optimisation problems, particularly for high-dimensional

optimisation problems. In addition, they have also been applied to solve multi-

objective optimisation problems [72], but only limited in low-dimensional multi-

objective problems.

1.3.1 Basic elements

A general block diagram of the interaction between environment and an automa-

ton is provided in Fig. 1.1.

Environment

Learning Automaton

ReinforcementAction

Figure 1.1: Block diagram of the interaction between a Learning Automaton and

environment

The learning process of learning automata can be simply described as follows

[73]: during the interaction with environment, the automaton randomly selects an

action from the action set that includes the possible actions the automaton can take

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.3 Introduction to Learning Automata 15

at its current state, based on a probability distribution. The probabilities of select-

ing the actions are the same initially. Then the environment generates a response to

the action, named reinforcement signal. According to the response, the automaton

updates the action probability distribution. The algorithm used to update the action

probabilities is called the learning algorithm or reinforcement scheme. Afterwards,

a new action is selected according to the updated probability distribution. Regarding

this action, a response is elicited by the environment, and the procedure is repeated.

It can be seen that the implementation of learning automata mainly concentrates

on three aspects: how to select actions, learning algorithm and reinforcement sig-

nal, as given in Fig. 1.2. Unlike EAs that mainly apply the concept of biological

evolutionary concept, learning automata methods are based on action selection and

probability distribution.

LA

Action
selection

Learning
algorithm

Reinforcement
signal

Figure 1.2: The three aspects of LA

The automaton

 The state X
X={X�,X�,�,X��}

Input set R
R={r�,r�,�,r��}

or {(′ ′)}
Output set A

A={a�,a�,�,a��}

Transition Function F

Output function G

Figure 1.3: The illustration of an automaton

A learning automaton is an adaptive decision-making unit situated in a random

environment. The learning automaton learns the optimal action through repeated

interactions with its environment. The illustration of an automaton is given in Fig.

1.3. Being an adaptive discrete machine, an automaton can be described as:

{X,A,R, P ,F,G,T} (1.3.1)

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.3 Introduction to Learning Automata 16

These entities are described precisely as follows:

• The state of the automaton at instant n, denoted by X(n), is an element of the

finite set:

X = {X1, X2, . . . , XXN} (1.3.2)

• The output or action of an automaton at instant n, denoted by a(n), is an

element of the finite set:

A = {a1, a2, . . . , aaN} (1.3.3)

• The input to an automaton at instant n, denoted by r(n), is an element of a set

R, which could be either a finite set or an infinite set, such as an interval on

the real line. Thus,

R = {r1, r2, . . . , rrN} or R = {(α̃, β̃)} (1.3.4)

where α̃ and β̃ are real numbers.

• The probability of choosing action i at instant n, denoted by pi(n), is an ele-

ment of the finite set:

P = {p1, p2, . . . , paN} (1.3.5)

• F(·, ·) is transition function, which determines the state at instant (n + 1)

regarding the state and input at instant n:

X(n+ 1) = F[X(n), r(n)] (1.3.6)

or F is a mapping from X × R → X . F could be either deterministic or

stochastic.

• Output function G(·) determines the output of the automaton at any instant n

according to its current state:

a(n) = G[X(n)] (1.3.7)

or G is a mapping X → A. It is again either deterministic or stochastic.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.3 Introduction to Learning Automata 17

• T represents the reinforcement scheme (learning algorithm), which deter-

mines the action probabilities at instant n + 1 regarding the probabilities at

instant n:

p(n+ 1) = T[p(n)] (1.3.8)

Basically, the automaton takes in a sequence of inputs and outputs a sequence

of actions with respect to the observation time n. The working of an automaton

can be described as follows: given an initial state X(0), action a(0) is determined

by function G. Based on current state, the response generated by the environment,

r(0), and the transition function determine the next state X(1). These operations

are performed recursively, and in this way, the state sequence and action sequence

are obtained according to any given input sequence [74].

In terms of functions F and G, there are two types of automaton:

• Deterministic automaton. For this automaton, functions F and G are both

deterministic mappings. It means that with a given initial state and a given

input, the succeeding state and action are uniquely specified. The mappings

of the two functions can be represented either in the form of matrices or graphs

if the input set is finite. Corresponding to each input, the matrix or the graph

can indicate how the present state transfers to a new state. In this case, the

transition matrices consist of elements that are only either 0 or 1.

• Stochastic automaton. For this automaton, at least one of the functions F and

G is stochastic. In other words, given an initial state and an input, there is

no certainty concerning the succeeding state and action, which are associated

with probabilities. If transition function F is stochastic, given the present state

and input, the next state is at random, and F gives the conditional probabilities

(or called transition probabilities) of reaching the various states. If the output

function G is stochastic, given the present state, the action taken is at random

and is determined by the conditional probabilities provided by G.

If the conditional probabilities provided by F and G are constant, i.e. they are

independent of n and the input sequence, the stochastic automaton is referred

to as a fixed-structure stochastic automaton. In this case, the elements of the

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.3 Introduction to Learning Automata 18

transition matrix are constants which take values in the interval [0,1], and each

transition matrix is a stochastic matrix. On the other hand, if the transition

probability at instant n is updated on the basis of the input at that instant, the

automaton is called a variable-structure stochastic automaton. The elements

of the transition matrix are in [0,1], but they are no longer constants any more,

as they are updated with n.

The environment

Environment refers to the aggregate of all the external conditions and influences

which would affect the automata [74]. The role of the environment is to establish

the relationship between the actions taken by the automaton and the signal inputs

to the automaton [69]. An environment can be mathematically defined as a triple

{A,C,R}. A represents a finite input set. R represents the output set, i.e the en-

vironment’s response to the action taken by the automaton. The environment is

referred to as a P -model environment when its response belongs to the binary set

{0, 1}; the environment is named as S-model environment when its response takes

an arbitrary value in the closed segment [0,1]; Q-model environment refers to the

environment whose response is one of a finite number of values in the interval [0,1].

The environment is characterized by C, which represents the penalty probability,

i.e. the likelihood that the application of an action to the environment will result in

a penalty output. If the penalty probabilities are constant, the environment is said to

be stationary; otherwise, it is nonstationary.

Reinforcement schemes

Reinforcement schemes are the methods used to update action probabilities at

each instant. They were originally proposed to model animal learning [61], but later

it was found that they can be applied in the field of learning automata successfully.

Choosing reinforcement scheme is a crucial factor that affects the performance of

learning automata [75]. In general, a reinforcement scheme can be represented by:

p(n+ 1) = T[p(n), r(n), a(n)] (1.3.9)

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.3 Introduction to Learning Automata 19

where T is a learning operator; r(n) and a(n) represent the input to the automaton

and the action taken by the automaton at instant n, respectively.

The basic idea behind a reinforcement scheme can be described as follows: if

the automaton selects an action ai at instant n and receives a nonpenalty input, the

action probability of the action ai, i.e. pi(n), will be increased, and the probabilities

for all other actions will be decreased. In this case, the change occurring on pi(n) is

called reward. For a penalty input, pi(n) is decreased and other action probabilities

are increased. At this moment, the change applied on pi(n) is called penalty.

If pi(n + 1) is a linear function of pi(n), the reinforcement scheme can be de-

scribed as linear, such as Linear Reward-Inaction (LR−I) algorithm [74], which is

known to be very effective in many applications. The LR−I updates the action prob-

abilities as follows (assuming a(n) = ai):

pi(n+ 1) = pi(n) + λ̃r(n)(1− pi(n))

pj(n+ 1) = pj(n)− λ̃r(n)pj(n), for all j 6= i (1.3.10)

On the other hand, if pi(n + 1) is a nonlinear function of pi(n), the reinforcement

scheme is said to be nonlinear. Several non-linear schemes have been suggested by

Viswanathan and Narendra [76], Lakshmivarahan and Thathachar [77]. Sometimes,

it is advantageous to use different schemes to update pi(n), while the selection of

the reinforcement scheme depends on the intervals the value of pi(n) lies in.

1.3.2 Several learning automata methods

Although each individual of the learning automata is an independent unit in a

simple structure, a group of learning automata can be connected in a way which

would be suitable for tackling complex learning problems. Systems built with LA

have been successfully employed in many difficult learning situations over the years.

This has also led to the concept of LA being generalized in a number of directions,

in order to handle various learning problems [78].

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.3 Introduction to Learning Automata 20

Finite Action-set Learning Automaton (FALA)

The original notion of learning automaton is derived from what is called finite

action-set learning automaton (FALA) [74]. FALA is the learning automaton for

which the number of possible actions is finite, i.e. the size of the action-set is finite.

This type of learning automaton has been studied extensively.

A learning automaton is an adaptive decision-making device that learns the op-

timal action out of a set of actions through repeated interactions with a random

environment [78], as described in Section 1.3.1. There are two characteristics of the

learning automata: 1) the action choice is based on a probability distribution over

the action-set; 2) and the probability distribution is updated at each instant based on

the reinforcement feedback from the environment.

The operation of FALA consists of repetitions of the following several steps:

choosing action randomly, receiving reinforcement from environment and updating

action probability. The process can be specifically described as follows: at each

instant n, the automaton chooses an action a randomly, based on its current action

probability distribution, p(n) = (p1(n), . . . , paN (n))T , where pi(n) = prob[a(n) =

ai] and
∑aN

i=1 pi(n) = 1, ∀n. The action chosen by the automaton is the input to the

environment. The environment responds to the action with a stochastic reaction or

reinforcement, r(n), which is the input to the automaton. The higher the value of

the reinforcement signal, the more desirable the action. Let

Fi = E[r(n)|a(n) = ai], i = 1, . . . , aN (1.3.11)

Fi is often referred to as reward probability of action ai. Define an index I by

FI = max{Fi}. Then the action aI is called the optimal action. The learning

automaton has no knowledge of the reward probabilities. The automaton’s objective

is to identify the optimal action. The goal is achieved through a learning algorithm

that updates, at each instant n, the action probability distribution p, through the most

recent interaction with the environment, namely, using the pair {a(n), r(n)}.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.3 Introduction to Learning Automata 21

Continuous Action Learning Automaton (CALA)

In FALA, the action-set is always considered to be finite. However, in many ap-

plications, one needs to learn a real-valued parameter. For instance, if the problem is

to learn the ‘optimal’ parameter which maximises a performance index, the actions

of the automaton could be the possible values of the parameter. In order to use FALA

to resolve this learning task, the process of discretization is required. However, the

discretization process can result in inaccurate results or a large computation load

if finer discretization is applied. Therefore, a continuous space of actions is pre-

ferred in this case. One such model is called continuous action learning automaton

(CALA) [68].

The action-set of CALA is the real line. A real number a is chosen at instant n

based on present action probability distribution, which is a normal distribution with

mean µ(n) and standard deviation σ(n). Both µ(n) and σ(n) are updated at each

instant based on the reinforcement received from the environment. The objective of

CALA is to learn the value of a which maximises the function F (a) = E[ra | a],
which is considered as the measurement of a. The action probability distribution,

denoted as N(µ(n), σ(n)), is supposed to be able to converge to N(a∗, 0), where a∗

is the optimal solution for maximising F . However, in order to avoid the algorithm

sticking at a non-optimal point, σ(n) should converge to σL instead of 0.

The operation of CALA can be summarised as follows: at each instant n, a real

number a(n) is chosen at random based on its present action probability distribution

N(µ(n), φ(σ(n)), where φ(σ) is defined as:

φ(σ) =

{

σL for σ ≤ σL

σ for σ > σL > 0
(1.3.12)

Then, the automaton receives the reinforcement signals from the environment with

respect to actions µ(n) and a(n). Assume the two reinforcement signals are denoted

as rµ and ra respectively. Then, µ and σ of the probability distribution are updated

as follows:

µ(n+ 1) = µ(n) + λ̃
(ra − rµ)

φ(σ(n))

(a(n)− µ(n))

φ(σ(n))
(1.3.13)

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.3 Introduction to Learning Automata 22

σ(n+ 1) = σ(n) + λ̃

[(

ra − rµ

φ(σ(n))

)2

− 1

]

+ λ̃{Cp[σL − σ(n)]} (1.3.14)

where λ̃ (0 < λ̃ < 1) is the step size parameter for learning; and CP is a large posi-

tive constant. The CALA algorithm can be used for optimisation problems [79], and

the randomness in choosing the next parameter value makes the algorithm explore

better search directions.

Generalized Learning Automaton (GLA)

GLA is an extended learning automaton which accepts an extra input. In GLA,

the inputs to the automata are not only reinforcement signals from the environment,

but also a context vector, which is the state of the environment that is made available

to the learning system as an additional input. The goal of GLA is to learn an optimal

mapping which associates different context vectors with action selection. To be

specific, the action is selected in response to context vector input that is provided by

the environment, through interacting with the environment in the form of selecting

actions and receiving reinforcement signals. A single GLA can be described by the

tuple < X,A,R, S, g,T >. X is the set of all context vectors that can be input to

the GLA;A is the (finite) set of outputs or actions of GLA;R is the set of values that

the reinforcement signal can take (usually in the interval [0,1]); g is the probability

generating function; and S is the internal state which is a vector of real numbers. T

is the learning algorithm that updates S. The individual context vector, which is the

member of X , is denoted by X .

The action probabilities of GLA are generated by:

Prob[a(n) = ai | S,X] = g(X, ai, S) (1.3.15)

where ai ∈ A, function g satisfies g(X, ai, S) ≥ 0, ∀, ai, S,X , and
∑m

i=1 g(X, ai, S) =

1, ∀, S,X . At each instant n, the learning algorithm T updates S(n) based on X(n),

S(n), r(n), and the action chosen by GLA, a(n). It can be seen that the updating

process is dependent on the context vectorX(n), which is the main characteristic of

GLA.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.3 Introduction to Learning Automata 23

The motivation of defining GLA is to make it be able to tackle associative rein-

forcement learning problems directly. With the same state vector S, the probabilities

of choosing different actions can (and most often, would) be dependent on the con-

text vector. This explains why the probability generating function of GLA is also

dependent on the context vectorX , as well as the state S. In GLA, state S and func-

tion g are together determining a representation for the mapping of context vectors

to action probability distributions.

An example of the probability generating function is given as follows: suppose

that context vector X belongs to ℜN , if there are aN actions, then the internal state

can be denoted as a set of aN vectors, S = (S̄T
1 . . . S̄

T
aN)T where S̄i ∈ ℜN and

S̄i = (s̄i1, . . . , s̄iN(i))
T . The probability generating function can be described as

follows:

g(X, ai, S) =
exp(−XT S̄i)

∑

j exp(−XT S̄j)
(1.3.16)

In general, GLA is to learn the desired mapping between context vectors and

actions. In other words, the objective of learning is to map an action to S, so that the

expectation of reinforcement is the maximum. The goal can be defined as F (S) =

maxE[r | S]. The learning algorithm T can update the state S according to the

following equation [80][78]:

S̄i(n+ 1) = S̄i(n) + λ̃r(n)∂ ln g(X(n),a(n),h(S(n)))
∂S̄i

+λ̃Ki[hi(S̄i(n))− S̄i(n)]
(1.3.17)

where

h(S) = [h1(S̄1), . . . , haN(S̄aN)]T

with

hi(η) =

Li for η ≥ Li

η for |η| ≤ Li

−Li for η ≤ −Li

(1.3.18)

where λ̃ > 0 is a learning parameter; and Li, Ki > 0 are constants.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.3 Introduction to Learning Automata 24

Parameterized Learning Automaton (PLA)

One feature of GLA is the use of the internal state of the automaton, which

is a vector of real numbers updated at each instant. The probabilities of selecting

different actions are computed from the internal state, together with a given context

vector, using a probability generating function. This feature can be introduced to

FALA, even in the absence of context vectors. Then, the action probabilities, which

are updated by a learning algorithm, can be regarded as being parameterized in terms

of real numbers (i.. internal state). Such a FALA is referred to as Parameterized

Learning Automaton (PLA) [81].

PLA has an internal state vector S which is composed of real numbers. Based

on the value of S, the probabilities of selecting various actions are calculated using

a probability generating function g. For example, the probabilities of selecting the

ith action could be computed as:

pi = g(S̄, i) =
exp(S̄i)

∑aN
j=1 exp(S̄j)

(1.3.19)

where S̄i is the ith component of S. It may be noticed that in GLA, both the inter-

nal state and the context vector determine the action probability. However, in the

case of PLA, the internal state is the only parameterization of the action probability

generation function.

The goal of the learning algorithm is to maximise

F (S) = E[r|S] (1.3.20)

subject to |S̄i| ≤ Li, i = 1, . . . , aN , where Li > 0 is a constant.

To ensure convergence to the global maximum, a learning algorithm, which is

used to update the internal state, can be described below:

S̄i(n+ 1) = S̄i(n) + λ̃r(n)
∂ ln g(S̄i(n), a(n))

∂S̄i(n)
+ λ̃h′(S̄i(n)) (1.3.21)

where h′(·) is the derivative of h(·), defined as:

h(ηi) =

−K(ηi − Li)
2J for ηi ≥ Li

0 for |ηi| ≤ Li

−K(ηi − Li)
2J for ηi ≤ −Li

(1.3.22)

where K is a positive constant and J is a positive integer.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.4 Overview of this Thesis 25

1.4 Overview of this Thesis

This thesis is structured as follows:

Chapter 2 introduces a novel optimisation algorithm, Function Optimisation by

Learning Automata (FOLA). It mainly includes the following aspects em-

ployed in FOLA: dimensional search, path value, action selection, reinforce-

ment signal, cell value and state memory. FOLA has been compared with a

number of classical Evolutionary Algorithms (EAs) on 13 high-dimensional

benchmark functions, which represent a wide range of challenging optimisa-

tion problems. The simulation results presented in this chapter have shown

that FOLA is able to undertake search in continuous states and achieve ac-

curate solutions efficiently. The analysis of FOLA, in terms of convergence

characteristics, computation time and parameters, is also carried out in the

chapter. To further evaluate FOLA’s performance, it is also compared with

two popularly used EAs and four newly-proposed EAs, on 9 complex multi-

model benchmark functions. The experimental results demonstrate the supe-

riority of FOLA over other algorithms for most benchmark functions, in both

the convergence rate and the accuracy of finding optimal solutions. FOLA

is able to reduce computation time greatly, especially for high-dimensional

functions.

Chapter 3 presents a multi-objective optimisation by learning automata (MOLA).

The approaches employed in MOLA, including reinforcement scheme, form-

ing of Pareto set, and the process of searching and learning, are introduced in

detail in this chapter. MOLA has been compared with two popular weighted-

sum based multi-objective EAs on four multi-objective benchmark functions

that comprise low and high-dimensional models, convex and non-convex mod-

els, and continuous and discontinuous models respectively. The simulation

results of these algorithms have been analysed with respect to the accuracy

of the experimental results and the range of the Pareto front. MOLA is also

compared with multi-objective evolutionary algorithm based on decomposi-

tion (MOEA/D) and non-dominated sorting genetic algorithm II (NSGA-II),

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.4 Overview of this Thesis 26

on thirteen multi-objective benchmark functions, which are difficult to resolve

due to complicated Pareto set. The simulation results have presented the great

superiority of MOLA over MOEA/D and NSGA-II, as MOLA can obtain

more accurate Pareto optimal solutions, and find wider range of the Pareto

front.

Chapter 4 describes two applications of FOLA. The first concerns with the opti-

mal power system dispatch and voltage stability problem. The problem is to

reduce the fuel cost whilst enhancing the voltage stability of the power sys-

tem. Simulation studies are undertaken on the standard IEEE 30-bus and 57-

bus power systems respectively. The advantages of FOLA have been demon-

strated by comparing its performance with that of improved PSO and GA. The

second case concerns the renewable energy of wind power. Wind power pen-

etrated power systems bring new challenges to power system operation since

the dynamic nature of wind power. In the thesis, FOLA is applied to tackle

the optimal power flow problem which aims to achieve economic power dis-

patch and voltage stability enhancement in dynamic wind power penetrated

systems. FOLA is compared with the improved PSO and GA, on the modi-

fied IEEE 30-bus and 57-bus power systems respectively, which are penetrated

with time-varying wind power. The experimental results have demonstrated

that FOLA outperforms PSO and GA, as it tracks the changing system config-

uration more rapidly and accurately than the improved PSO and GA. In addi-

tion, FOLA is compared with CLPSO and CPSO based on the modified IEEE

118-bus power system. FOLA is able to minimise the fuel cost and enhances

the voltage stability of the power system more efficiently in comparison with

the other two algorithms.

Chapter 5 presents three applications of MOLA. The first two are concerned with

the increasing attention on pollutant emission and the use of wind power. The

chapter applies MOLA to solve the problem of economic emission dispatch

and voltage stability enhancement in wind power penetrated power systems,

which are incorporated with fixed-speed and variable-speed wind generators

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.5 Contributions of the Research 27

respectively. MOLA is compared with MOEA/D and NSGA-II on the mod-

ified IEEE 30-bus power system and new England test power system respec-

tively. The simulation results have demonstrated the superiority of MOLA

over NAGA-II and MOEA/D. The third application of this chapter concerns

the deregulated market. The deregulation of the power market creates more

competition and more trading mechanisms for market players. MOLA is

applied to maximise social benefit and enhance voltage stability simultane-

ously in a deregulated electricity market. MOLA has been compared with

MOEA/D and NSGA-II, based on the challenging optimisation problems on

the IEEE 30-bus power system. In this application, the simulation results have

again demonstrated the superiority of MOLA over MOEA/D and NSGA-II, as

MOLA can find wider and evenly distributed Pareto fronts, and obtain more

accurate non-dominated solutions.

Chapter 6 concludes this thesis based on the experimental results obtained in this

study. The merits of FOLA and MOLA are further discussed, as well as their

application capabilities. Additionally, this chapter includes suggestions for

future work.

Appendix gives the details of single objective and multi-objective benchmark func-

tions employed in the thesis, as well as the notations used in the thesis.

1.5 Contributions of the Research

Several contributions and outcomes made in this research are highlighted in this

section.

• A novel optimisation algorithm, FOLA, is developed in this research, by im-

proving the two main aspects of Fig. 1.2: action selection and learning al-

gorithm. FOLA consists of multiple automata, where each automaton un-

dertakes dimensional search on a selected dimension of the solution domain.

FOLA has the ability of memorising history by estimating and updating the

values of states that have been visited. With these approaches, FOLA is able

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.5 Contributions of the Research 28

to undertake search in continuous states and achieve accurate solutions effi-

ciently. In contrast to EAs which adopt population-based search, FOLA re-

duces the computation complexity by sequential dimensional search. Unlike

EAs which mainly memorise the global optimal solution and use it to guide

search, FOLA memorises the previous performance evaluations, which can

provide more information for future seach and thus increase the efficiency.

The experimental results have demonstrated that FOLA has better perfor-

mance than a number of EAs.

• Multi-objective optimisation by learning automata (MOLA) is presented to

solve complex multi-objective optimisation problems. MOLA capitalises on

the merits of the structure of multiple automata, the dimensional search, the

dividing of the dimensional search domain into cells, state memories via

which the search action is carried out, and the process of learning from the

best solution and neighboring solutions. MOLA is able to find accurate non-

dominated solutions and evenly distributed Pareto fronts, when solving the

complex optimisation problems which have complicated Pareto set. The mer-

its of MOLA have been demonstrated, in comparison with two latest develop-

ment of multi-objective EAs, i.e. MOEA/D and NSGA-II.

• The proposed FOLA has been applied to solve the power system dispatch

and voltage stability problem. This problem has received considerable at-

tention, and is widely used in power system operation and planning, due to

that power system dispatch is an important factor from the perspective of cost

in modern energy systems, and the voltage instability is a major power sys-

tem weakness resulting in severe detriments with economical, technical and

social dimensions. This problem can be formulated as a highly constrained

complex optimisation problem, which has the nature of non-differential, non-

linearity and non-convex. For this problem, the applicability of FOLA has

been investigated based on standard IEEE 30-bus and 57-bus power systems.

Comparison has been carried out among FOLA, improved GA and PSO. The

experimental results show that FOLA has superior performance over the other

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.5 Contributions of the Research 29

two algorithms.

• With the increasing demand of power nowadays and the stress of the resources

which can be used to generate power, renewable energy becomes more and

more important in many countries, especially wind energy. Wind power in-

terconnected to power systems brings new challenges to power system eco-

nomic operation. It is imperative to study how to efficiently solve optimal

power flow formulation which is integrated with wind power, so as to achieve

an optimal solution to the specific power system objective functions. The

application proposed here aims to achieve economic power system dispatch

and voltage stability enhancement in dynamic wind power integrated systems.

IEEE 30-bus, 57-bus and 118-bus power systems, which are integrated with

time-varying wind power, have been employed to evaluate the performance of

FOLA for the problem. The experimental results show that FOLA is able to

optimise the problem efficiently.

• MOLA has been applied to solve the problem of economic emission dispatch

and voltage stability enhancement in wind power integrated power systems,

due to the increasing importance of pollutant emission and wind power. The

IEEE 30-bus power system and new England test power system are modi-

fied to integrate fixed-speed and variable-speed wind power generators re-

spectively. MOLA has been applied to solve the problem, and the simulation

results have presented the superiority of MOLA over NAGA-II and MOEA/D.

• Deregulating the power market creates more competition and more trading

mechanisms for market players. However, the emergence of deregulated elec-

tricity markets poses new challenges to the solution of the optimal power flow

problem. MOLA is applied to maximise social benefit and enhance voltage

stability in deregulated electricity market simultaneously. MOLA is compared

with MOEA/D and NSGA-II, on the challenging optimisation problems on

the IEEE 30-bus power system. MOLA can obtain accurate Pareto optimal

solutions and find wider and evenly distributed Pareto fronts.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

1.5 Contributions of the Research 30

The publications produced from this research work are listed in this section as

follows:

1. Q.H. Wu and H.L. Liao. Function Optimisation by Reinforcement Learning

For Power System Dispatch and Voltage Stability. In Proc. of PES General

Meeting, pages 1-8, Minneapolis, Minnesota, USA, 2010.

2. H.L. Liao and Q.H. Wu, Multi-Objective Optimisation by Reinforcement Learn-

ing. In Proc. of IEEE World Congress on Computational Intelligence, pages

3374-3381, Barcelona, Spain, 2010.

3. Q.H. Wu and H.L. Liao. High-dimensional Optimisation by Reinforcement

Learning. In Proc. of IEEE World Congress on Computational Intelligence,

pages 2808-2815, Barcelona, Spain, 2010.

4. H.L. Liao, Q.H. Wu, and L. Jiang, Multi-Objective Optimisation by Rein-

forcement Learning for Power System Dispatch and Voltage Stability. In

Proc. of PES Conference on Innovative Smart Grid Technologies Europe,

pages 1-8, Gothenburg, Sweden, 2010.

5. H.L. Liao and Q.H. Wu. Optimal Power Flow in Wind Power Integrated Sys-

tems using Function Optimisation by Learning Automata. In Proc. of PES

General Meeting, pages 1-8, Detroit, MI USA, 2011.

6. M.S. Li, Q.H. Wu, H.L. Liao, W.J. Tang and Y.S. Xue. Optimal Power Flow

with Environmental Constraints Using Paired Bacterial Optimiser. In Proc. of

PES General Meeting, pages 1-8, Detroit, MI USA, 2011.

7. Z. Ji, J.R. Zhou, H.L. Liao and Q.H. Wu, A Novel Intelligent Single Particle

Optimiser, Chinese Journal of Computers, 33(3):556-561, 2010.

8. Z. Ji, H.L. Liao, and Q H. Wu, Particle Swarm Optimisation and Its Applica-

tions, Science Press (China), 2009.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

Part 1

Developments of Learning

Automata-based Optimisation

Algorithms

31

Chapter 2

Functional Optimisation by Learning

Automata

2.1 Introduction

Due to the increasingly complex real-world optimisation problems and the insuf-

ficiency of classical optimisation algorithms in solving multi-modal problems, bio-

logically inspired optimisation algorithms, which incorporate the behaviours of bi-

ological principle into their algorithmic framework [5], have been comprehensively

investigated over the last few decades. Notably EAs, which are introduced in Section

1.2.2, have been widely applied for problem solving over the last twenty years, rang-

ing from scientific problems to engineering applications. However, the performance

of EAs is interfered by the randomness and the large population sized applied, which

cause unexpected redundant computational load, and thus reduce the efficiency of

the algorithms in many applications [32]. Besides EAs, learning automata methods

have also been applied to resolve optimisation problems. For instance, the method

of continuous-action learning automata has been applied for stochastic optimisation

[68][69]; the genetic learning automata was proposed to solve function optimisation

problems [70]. In contrast to EAs, the learning automata methods are less popularly

applied for solving complex function optimisation problems, despite having a solid

theoretical background and having a significant impact on many areas of systems

32

2.2 The FOLA Method 33

control and pattern classification [64][66][67].

This chapter presents a novel algorithm: FOLA (Function Optimisation by Learn-

ing Automata). FOLA consists of multiple automata, in which the number of au-

tomata used is equal to the total number of dimensions of the solution domain. Each

automaton is responsible for searching on one specified dimension, and dimensional

states on this dimension are considered as the states of this automaton. Before an ac-

tion is taken, the automaton, at a dimensional state, selects a path from two possible

paths, according to the probability which is calculated from the path value that is es-

timated to indicate the potential of finding a better solution if the automaton searches

down on this path. Then an action takes place by moving on the selected path with

a certain step length. To evaluate the effectiveness of the action, a reinforcement

signal, in a scale value, is generated by the environment.

In order to avoid a large amount of computation caused by the huge number of

states involved in the continuous search domain, each dimension is divided into a

certain number of cells, and each cell is assigned with a cell value. The cell value

is updated based on its past values, and the path values and reinforcement signal

obtained when the dimensional states located in the cell are visited. FOLA has been

found capable and efficient in finding accurate solutions to complex optimisation

problems. Its merits have been demonstrated, in comparison with other EAs, by

evaluating it on a number of uni-modal or multi-modal benchmark functions re-

spectively. The experimental results have shown that FOLA outperforms the other

EAs, in terms of accuracy and efficiency, especially for solving high-dimensional

optimisation problems.

2.2 The FOLA Method

The structure of the learning automata used in FOLA is illustrated in Figure 2.1.

FOLA consists of N automata, where N is equal to the number of dimensions of

the solution domain concerned in an optimisation problem. Each automaton is con-

sidered as an independent entity situated in an environment, and it is responsible

for searching on a specified dimension. The ith learning automaton can be defined

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.2 The FOLA Method 34

as 〈χi, Ai, r, Pi,T〉, in which χi, χi = {xi}, is the set of possible states on the ith

dimension, and xi is the dimensional state on the ith dimension, xi ∈ [xmin,i, xmax,i],

where xmin,i and xmax,i represent the minimum and maximum values of the ith di-

mension respectively; Ai denotes the set of possible actions which the learning au-

tomaton can take on dimension i, and in FOLA, Ai = {al,η}, and al,η indicates a

search action taken to allow xi to move on left path (l = 1) or right path (l = 2)

by a step length η; r is a reinforcement signal in scalar value, generated by the en-

vironment to indicate the quality of the action of moving xi in a step length on the

selected path; Pi includes two probabilities, p1 and p2, where p1 denotes the proba-

bility of selecting the left path or the right path on the ith dimension, and probability

p2 determines the step length of moving xi towards the selected path; and T is a

scheme adopted to calculate the probabilities of actions, P . The detailed discus-

sion on the action selection, reinforcement signal and scheme T will be presented in

Section 2.2.1.

Automaton 1
<χ�, A�, r, P�, U>

Automaton 2
<χ�, A�, r, P�, U>

Automaton i
<χ�, A�, r, P�, U>

Automaton �
<χ	, A	, r, P	, U>

A cell

C
�
 C
�� C
� C
��C
���

C��
 C��� C�� C���C����

C��
 C��� C�� C���C����

C��
 C��� C�� C���C����

χ1

χ2

χi

χ�

x� χ�
F(X)

X=[x�,…,x]

x� χ�
x� χ�
x	 χ	

r

Figure 2.1: The structure of learning automata for FOLA

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.2 The FOLA Method 35

F (X) shown in Figure 2.1 is an N-dimensional function minimisation (or max-

imisation) problem to be resolved subject to constraints applied to F (·) or/and X ,

where F (·) is a continuous objective function used by the environment to generate

reinforcement signal r, and X is a solution in the N-dimensional space, denoted by

X = [x1, · · · , xi, · · · , xN], where xi is the dimensional state of dimension i, that is,

xi ∈ χi. Note that X is the combination of N dimensional states and denotes the

state of all automata, thus it is also called a state.

Since the dimensional states are continuous variables and the search space con-

tains an infinite number of possible solutions, it is difficult to define state values. In

order to resolve the problem of the large number of states that causes a huge amount

of computation, each dimension is divided intoD cells, in other words, χi is divided

into D subsets, and each subset consists of all the dimensional states located in the

cell. For an N-dimensional search space, there areN×D cells. Each cell is denoted

as ci,j, where i ∈ {1, 2, · · · , N}, j ∈ {1, 2, · · · , D}. The width of a cell in the ith

dimension is denoted by wc,i and wc,i = [xmax,i − xmin,i]/D. Each cell ci,j has its

cell value, denoted as V (xi)|xi∈ci,j
, which is updated by the path values and rein-

forcement signal when visiting the dimensional states located in the jth cell. The

cell values will be explained in detail in Section 2.2.1.

2.2.1 An automaton and its reinforcement scheme

Path value

Before a search action is taken, a possible path is selected to estimate the poten-

tial of finding a better solution if the automaton searches down on the path from its

dimensional state. Two estimated path values, denoted by Ll(xi), l = 1, 2, are

to be found with respect to dimensional state xi, for selecting one of two pos-

sible directions: moving on the left path or on the right path. The path values

are determined by the cell values on the path. As shown in Fig. 2.2, the esti-

mate of L1(xi) is determined by the values of k adjacent cells on the left path,

V (ci,j−1)|xi∈ci,j−1
, V (ci,j−2)|xi∈ci,j−2

, · · · , V (ci,j−k)|xi∈ci,j−k
, where k is a pre-set in-

teger; ci,j is the cell that dimensional state xi locates in; j can be formulated as

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.2 The FOLA Method 36

xi

 L1 L2

ci,j-1ci,j-k ci,j+k

ci,j+1

ci,j

χ
xi-η xi+η

i

Figure 2.2: The two possible paths taken by a search starting at dimensional state xi

on the ith dimension

j = floor((xi − xmin,i)/wc,i) and floor(y) denotes the greatest integer less than real

value y. The value of a path can be estimated as follows:

Ll(xi) = (1− λ1)
k−1
∑

m=1

λm−1
1 v∗l,m + λk−1

1 v∗l,k l = 1, 2 (2.2.1)

where v∗l,m denotes themth element of the vector in which the k cell values, locating

on path l, are reordered in descending order, and in other words, v∗l,m represents the

mth largest value among the k cell values; λ1 denotes a weight introduced for the

values of the cells on the lth path, 0 ≤ λ1 ≤ 1 and (1−λ1)
∑k−1

m=1 λ
m−1
1 +λk−1

1 = 1,

subject to (1 − λ1)λ
k−2
1 ≥ λk−1

1 , as given in [82]. It can be seen that the larger

the cell value is, the greater it influences on the path value, which is the reference

for later path selection, as discussed in Section 2.2.1. In other words, if the cells

locating on the path have larger cell values, the path will be assigned with a larger

path value, which suggests that the path is more likely to be selected for subsequent

search.

Action selection

Action selection employs two probabilities, p1 and p2. The former is used to

select a path which the current dimensional state moves to, while the latter is applied

to select the cell on the selected path. With the availability of the path values, the

left path L1 or the right path L2 is chosen with a probability given as follows:

p1(Ll(xi)) =
eLl(xi)/τ

∑2
s=1 e

Ls(xi)/τ
l = 1, 2 (2.2.2)

This probability is similar to that used for a parameterised learning automaton re-

ported in [73], apart from using τ which denotes a temperature. Temperature τ ,

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.2 The FOLA Method 37

τ > 0, is a parameter chosen to balance the exploration and exploitation [83].

A high temperature causes all paths to be equiprobable, while a low temperature

makes a greater difference in selection probability for paths that differ in path val-

ues. As τ → 0, the selection probability of the path, which has a higher path value,

approaches one, while that of the path which has a smaller value is approximately

zero. In this case, the selection strategy becomes more selective, only choosing a

path with a higher path value. Setting τ requires the knowledge of possible path val-

ues. For most of the dimensional states in FOLA, the reinforcement signal is either

0 or 1, as discussed later in Section 2.2.1, thus it would be better to set τ ≤ 1 to

make a greater difference in selection probability for the paths which have different

path values.

Suppose the right path is selected. Then a cell, which the current dimensional

state moves to, is selected, among the k cells located on the path, according to the

probability that is calculated from the cell values of the k cells as follows:

p2(V (ci,j+s)|xi∈ci,j+s
) =

eV (ci,j+s)|xi∈ci,j+s
/(2τ)

∑k
z=1 e

V (ci,j+z)|xi∈ci,j+z
/(2τ)

(2.2.3)

where s = 1, 2 · · · , k. After the cell is chosen, an action is taken by moving from

the current dimensional state to a random point of the selected cell. The step length

can be denoted as η, η = (ξ + ζ)wc,i, where ξ denotes the distance (in the form of

number of cells) between the current cell and the selected cell; ζ is a random number

and ζ ∈ (0, 1]. With this step length, current dimensional state xi moves to a new

point of the dimension, x′i, where x′i = xi − η if L1 is selected, or x′i = xi + η if L2

is chosen, as shown in Fig. 2.2.

Reinforcement scheme T, adopted by learning automata to calculate the two

probabilities, makes good use of the derived path values and the memory of cell

values, as described in (2.2.2) and (2.2.3). T ensures an efficient search, while

keeping a balance between the ability of exploration and exploitation.

Reinforcement signal

In order to evaluate the effectiveness of the selected action, it is necessary to

observe the reinforcement signal of the search action. As one automaton works,

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.2 The FOLA Method 38

state X could be denoted as X(xi), which implies that only dimensional state xi

impacts the state and all the other elements of X are unchanged. Once dimensional

state xi moves to x′i, the ith element of the current state,X(xi) is replaced byX(x′i).

The fitness value of state X(x′i) can be obtained by applying X(x′i) in the objective

function of the minimisation problem, F (·). It should be noticed that maximisation

problems can be easily transferred to minimisation problems by adding a negative

sign to the fitness value. Suppose dimensional state x′i locates in cell ci,j. Then a

reinforcement signal is assigned to cell ci,j by comparing the fitness value of X(x′i)

and that of the latest best solution, denoted by Xbest, which has the minimum fitness

value found so far in the learning process. The reinforcement signal is obtained

according to the following rule:

r(X(x′i)) =

{

1 if F (X(x′i)) ≤ F (Xbest)

0 otherwise
(2.2.4)

It can be seen that r = 1 represents a favorable response; r = 0 is unfavorable

response and no effort has been made by current dimension state. The reinforcement

signal, r(X(x′i)), is used to update the cell value as discussed in Section 2.2.1.

The relationship between state X and the latest best solution, Xbest, can be de-

scribed by the following rule, which is used to update Xbest:

Xbest ←
{

X(x′i), X(x′i) = [x1, . . . , xi−1, x
′
i, xi+1, . . . , xN] if r = 1

Xbest otherwise
(2.2.5)

Evaluation of cell values

As one of the major functions of memory, updating cell values relies on the

reinforcement signal of current dimensional state xi, i.e. r(X(xi)), and the weighted

estimates of the values of possible paths, i.e. the two path values, L1(xi) and L2(xi),

obtained according to (2.2.1). The value of cell ci,j, where the current dimensional

state xi locates, is updated as follows:

V (ci,j)|xi∈ci,j
← r(X(xi)) + αV (ci,j)|xi∈ci,j

+

(1− α)
(

(1− λ2)Lmax(xi) + λ2Lmin(xi)
)

(2.2.6)

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.2 The FOLA Method 39

where Lmax(xi) and Lmin(xi) are the two estimated path values at dimensional state

xi, while satisfying Lmax(xi) = max{L1(xi), L2(xi)} and Lmin(xi) = min{L1(xi),

L2(xi)}. It can be seen that the cell value accumulates the effort (i.e. reinforcement

signal) that has been made by the dimension states located in the cell. Additionally,

the cell value also reveals the neighboring environment of dimension state xi, as

Lmax(xi) and Lmin(xi) represent the potential of finding the better solutions on both

sides of xi. Between the two path values, Lmax(xi) has greater influence on the cell

value than Lmin(xi), therefore parameter λ2 should be given such that (1−λ2) > λ2.

Weights α and (1−α) given in (2.2.6) represent the influence of previous estimates

and neighboring environment (i.e. path values) on the new estimate, respectively. If

the reinforcement signal obtained from the same cell remains unfavorable continu-

ously for several times, the cell value will be decreased, which implies that the cell

gradually loses its favour of being selected in the future search.

The cell values are to memorize the outcome of searching on the cells when they

were visited in the past. Being regarded as past experience, the cell values are used

to guide the future search. This concept of cell values is inspired from state values

adopted in reinforcement learning [82], and is the main characteristic that differen-

tiates FOLA from other traditional learning automata methods. Hence, FOLA can

also be considered as the method in between learning automata and reinforcement

learning, rather than a conventional learning automata method [84].

Perturbation operation

In order to increase the diversity and escape from local optima, different pertur-

bations are introduced to the dimensional states of X simultaneously, according to

the following rule:

X ← X + ∆, ∆ = [∆1, . . . ,∆i, . . . ,∆N] (2.2.7)

where ∆i = sign(κ)ζ(xmax,i − xmin,i), ζ is a random variable and ζ ∈ [0, k
D

]. The

sign function is used to choose the moving direction of xi. Suppose xi is located in

cell ci,j, then the input to the sign function is the subtraction of the two adjacent cell

values of ci,j, that is, κ = (V (ci,j+1)−V (ci,j−1)). If κ ≥ 0, sign(κ) = 1, otherwise,

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.2 The FOLA Method 40

sign(κ) = −1. It can be seen that xi moves towards the direction in which the

adjacent cell has a larger cell value. Once completing the perturbation operation,

Xbest is updated according to the following equation:

Xbest ←
{

X if F (X) < F (Xbest)

Xbest otherwise
(2.2.8)

2.2.2 The pseudocode of FOLA

The computation of FOLA includes a certain number of episodes and each

episode consists of two stages:

• In the first stage, starting with the first state, by selecting automaton i, at di-

mensional state xi, a search is undertaken by calculating the values of two

possible paths using the cell values obtained in the previous iterations, as

given in (2.2.1), and then moving xi towards a path, which is selected ac-

cording to the probability calculated using the path values, as in (2.2.2), with

a step length η, which is determined by the probability calculated from the

cell values of the cells locating on the path, as in (2.2.3). A reinforcement

signal of dimensional state xi is generated using (2.2.4). The best solution,

Xbest, is updated according to (2.2.5). Then the estimates of the path values

and the reinforcement signal are used to update the cell value of ci,j, in which

dimensional state xi locates, using (2.2.6). In this case the fitness value of

the objective function is calculated once, and the cell value of V (ci,j)|xi∈ci,j

is updated to replace the cell value previously stored when any dimensional

state located in cell ci,j was visited. If the reinforcement signal is not equal

to 1, the current iteration ends and the next automaton is selected in order for

FOLA computation to continue. Otherwise searching on this path is regarded

worthy, as the cells locating on this path could be very sensitive and need more

exploitation. In order to further exploit the potential of the dimensional states

located on this path, the search action is taken continuously for Iemax times in

the same way presented in (2.2.1), (2.2.2), (2.2.3), (2.2.4), (2.2.5) and (2.2.6).

An iteration completes after the exploitation, which has updated Xbest and all

values of the cells visited, before the next automaton is selected.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.2 The FOLA Method 41

• After all automata are selected sequentially once, the episode goes to its sec-

ond stage, in which all the automata take actions simultaneously according to

(2.2.7). Then Xbest is updated using (2.2.8).

The FOLA computation proceeds in episodes, until a given maximum number

of objective function evaluations, Nfemax, is reached. The pseudocode of FOLA is

listed in Algorithm 1.

2.2.3 Search behaviors of FOLA

The search behaviors conducted by FOLA enable the automata to find accurate

solutions efficiently. To better explain FOLA’s search behaviors, an example is given

in Fig. 2.3. Let the initial F (Xbest) be an infinite value. Assume an action is taken

and the dimensional state moves to point x1. Since the fitness value is improved (i.e.

F (x1) < F (Xbest)), r = 1 and F (Xbest) = F (x1) are set according to (2.2.4) and

(2.2.5) respectively. Since r = 1, the cell value of x1 increases according to (2.2.6).

Then, as given in line 13 of Algorithm 1, Iemax actions will be performed around

point x1. After the loop of lines 13-16 is completed, another point is randomly

selected as the new dimensional state, as shown in line 5.

It should be mentioned that the cell, which the randomly selected dimensional

state locates in, is uniformly selected, in order to ensure that all cells have equal

probabilities of being chosen. If the selected point locates in different places, differ-

ent search behaviors will be conducted by the automata as follows:

• Assume the next dimensional state moves to point x2. According to (2.2.1),

the path value of the left path is larger than that of the right path, which leads

to the left path being selected with a larger probability due to (2.2.2). With

this searching rule, it is more likely that the search will be finally attracted to

cell C, according to (2.2.3).

• If the next dimensional state locates at point x4, the automaton will take only

one action, then it stop searching around this area, due to F (x4) > F (Xbest),

as shown in line 10 of Algorithm 1.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.2 The FOLA Method 42

Algorithm 1 The pseudocode of FOLA

1: Initialise a state X = [x1, · · · , xi, · · · , xN] arbitrarily; set Xbest = X; and

initialise cell values V arbitrarily at the range of [0 1]

2: Set Nfe = 0

3: while Nfe ≤ Nfemax do

4: for i = 1 to N do

5: Select a dimensional state xi randomly

6: Estimate path values Ll(xi), where l = 1, 2 according to (2.2.1)

7: Take a search action to move dimensional state xi to xi − η on path L1

(xi ← xi − η) or xi + η on path L2 (xi ← xi + η) according to (2.2.2) and

(2.2.3)

8: Calculate reinforcement signal r(X(xi)) according to (2.2.4), set Nfe =

Nfe + 1, and update Xbest according to (2.2.5)

9: Update cell value V (ci,j)|xi∈ci,j
according to (2.2.6), where j = floor((xi−

xmin,i)/wc,i), and floor(y) denotes the greatest integer less than the real

value y

10: if r(X(xi)) 6= 1 then

11: go to step 4

12: end if

13: for Ie = 1 to Iemax do

14: Use (2.2.1) and (2.2.2) to estimate path values and path probabilities,

and generate η using (2.2.3), in order to take a search action with an

alternative step length

15: Use (2.2.4), (2.2.5) and (2.2.6) again to calculate reinforcement signal

and update Xbest and V (ci,j)|xi∈ci,j
respectively

16: end for

17: end for

18: Use (2.2.7) to add perturbations to the dimensional states of X

19: Use (2.2.8) to update Xbest

20: end while

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.3 Compared with Classical EAs 43

x
� x

�
x

� x
�

C

����� �����
x

F

Figure 2.3: The illustration of the search behavior of automata

• If the next dimensional state locates at point x3, since F (x3) < F (Xbest),

more search will be performed around x3 (line 13 of Algorithm 1). Subse-

quently, the cell values of Area 2 will increase, which leads to more search

around Area 2 due to (2.2.1), i.e. the larger the cell values are, the more

exploitation the corresponding cells can attract. In this way, once the new

promising Area 2 is discovered, it will attract more exploration than Area 1

for the subsequent search. At the same time, the cell value of C will decrease

gradually due to parameter α in (2.2.6). This search behaviour can increase

the efficiency of the search.

FOLA can find promising areas efficiently, thanks to the aforementioned adaptive

search behaviors and the benefit of memorising historical estimate cell values which

are used for future search guidance.

2.3 Compared with Classical EAs

2.3.1 Benchmark functions

There are various benchmark functions used for comparison in the literature of

optimisation [1] [85]. According to No Free Lunch theorem, “for any algorithm, any

elevated performance over one class of problems is exactly paid for in performance

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.3 Compared with Classical EAs 44

over another class” [86]. We are not motivated to develop an algorithm which can

solve all functions, but are motivated to develop an algorithm that can solve a class

of benchmark functions in terms of accuracy and efficiency. Here, 13 challenging

benchmark functions selected from the set of 23 standard benchmark functions [1]

are used in the simulation. Appendixes A.1 and A.2 list the 13 benchmark func-

tions used in this section, including uni-modal functions (F1∼F7) and multi-modal

functions (F8∼F13), where the number of dimensions, N , the search range of each

dimension and the minimum value of each function are indicated. Among them,

functions F8∼F13 are regarded as difficult functions to be optimised since a large

number of local optima is found [87], and the number of the local optima increases

exponentially as the dimensionality of the problem increases.

2.3.2 Evaluation on 30-dimensional functions

EAs involved in comparison

In solving the 30-dimensional benchmark functions, F1 ∼ F13, FOLA is com-

pared with the following algorithms:

1) Evolutionary Programming based on Reinforcement Learning (RLEP) [15]

2) Mixed Strategy Evolutionary Programming (MSEP) [14]

3) Particle Swarm Optimisation (PSO) [46]

4) Genetic Algorithm (GA) [16]

5) Conventional Evolutionary Programming (CEP) [17] [88]

6) Fast Evolutionary Programming (FEP) [1]

7) Conventional Evolution Strategies (CES) [89]

8) Fast Evolution Strategies (FES) [90]

The parameters setting of RLEP and MSEP refers to [15] and [14] respectively.

The parameters of CEP and FEP follow the recommendation in [1], and those of

CES and FES refer to [90]. The parameters of PSO are given as follows: both ac-

celeration factors c1 and c2 are 2.0; a decaying inertia weight ω starting at 0.9 and

ending at 0.4 is used; the population size is 50. GA is real-coded with intermediate

crossover and Guaussian mutation. Its population size is 50, and the reproduction

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.3 Compared with Classical EAs 45

function is conducted using uniform stochastic selection. To improve the search per-

formance of GA on multi-modal optimisation problems, subpopulation is used, and

the migration rate is set to 0.1. All the control parameters, e.g. mutation rate and

crossover rate, etc., refer to default values as recommended in [91]. In this section,

the experimental results of RLEP and MSEP are adopted directly from references

[15] and [14] respectively, and the results of the rest algorithms, except for FOLA,

refer to [56]. The parameters setting of FOLA, except for wc and Nfemax, does not

affect the performance substantially when FOLA is applied to solve different opti-

misation problems, therefore the best set of these parameters is chosen empirically

and preset as follows: τ = 0.2, k = 4, α = 0.8, λ1 = 0.5, λ2 = 0.25 and Iemax = 5.

The parameters which need to be tuned carefully in FOLA are wc andNfemax, which

are listed in Table 2.1. These two parameters can be adjusted according to specific

problems, and they will be further discussed in Section 2.3.4. Following the termi-

nation criterion given in [1] and [90], the computation process stops when reaching

Nfemax. Nfemax used by these algorithms in solving the 13 benchmark functions is

tabulated in Table 2.1.

Table 2.1: The setting of Nfemax for 30-dimensional benchmark functions F1∼F13

Nfemax FOLA (wc) RLEP/MSEP PSO/GA CEP/FEP

/CES/FES

F1 150,000 (0.5) 150,000 150,000 150,000

F2 150,000 (1) 200,000 150,000 200,000

F3 150,000 (5) - 150,000 500,000

F4 150,000 (2) 500,000 150,000 500,000

F5 150,000 (1) 150,000 150,000 2,000,000

F6 150,000 (2) 150,000 150,000 150,000

F7 150,000 (0.1) 300,000 150,000 300,000

F8 150,000 (5) 900,000 150,000 900,000

F9 150,000 (0.04) 500,000 150,000 500,000

F10 150,000 (1) 150,000 150,000 150,000

F11 150,000 (5) 200,000 150,000 200,000

F12 150,000 (1) 150,000 150,000 150,000

F13 150,000 (1) 150,000 150,000 150,000

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.3 Compared with Classical EAs 46

Simulation results

FOLA is tested on the 30-dimensional uni-modal functions, F1∼F7, in com-

parison with the other eight algorithms. Fifty independent runs of the FOLA were

executed. Table 2.2 lists the mean and standard deviation of the fitness values ob-

tained by the nine algorithms and their rank. Among the benchmark functions given

in Appendixes A.1 and A.2, F3 is the only function that references [15] and [14] do

not provide any relevant results. It can be seen from Table 2.2 that FOLA generates

better results than RLEP on these functions except forF7; FOLA outperforms MSEP

in solving these benchmark functions. In comparison with other algorithms, FOLA

has significantly better performance on the seven functions except for function F3.

In solving function F3, CES has the best performance among the nine algorithms,

however, it performs much worse than others in solving the rest functions. Addi-

tionally, the standard deviation obtained by FOLA is much smaller than that of other

algorithms when solving these functions except for F3. On average, FOLA performs

better than other algorithms with respect to the accuracy of the results and the relia-

bility which is revealed by its smaller standard deviation over different independent

runs.

Functions F8∼F13 (N = 30) are regarded as difficult functions to be optimised

since a large number of local optima is found [87]. Fifty independent runs of the

FOLA were executed. The experimental results, including mean, standard deviation

and rank, are listed in Table 2.3. It is clear to see that FOLA markedly outperforms

other algorithms, especially for the functions F9 and F11 ∼ F13. For many practical

applications, e.g. the optimisation of power dispatch in power systems, etc, each

evaluation of a fitness value needs a long time. Therefore, reducing the number

of function evaluations, while achieving accurate results simultaneously, is greatly

demanded in practical applications, especially for those on-line applications where

the time for finding global optimum is limited. Regarding to this aspect, FOLA

greatly presents its superiority over RLEP and MSEP: Nfemax used by RLEP and

MSEP on function F8 is five times more than that of FOLA; RLEP and MSEP use

more than three times of the Nfemax used by FOLA in solving function F9.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.3 Compared with Classical EAs 47

T
ab

le
2

.2
:

C
o

m
p

ar
is

o
n

am
o

n
g

F
O

L
A

an
d

th
e

o
th

er
ei

g
h

t
al

g
o

ri
th

m
s

o
n

3
0

-d
im

en
si

o
n

al
b

en
ch

m
ar

k
fu

n
ct

io
n

s
F

1
∼
F

7
:

A
v
er

ag
e

fi
tn

es
s

v
al

u
e

/
(S

ta
n

d
ar

d
d

ev
ia

ti
o

n
)

/
(R

a
n

k
)

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
O

L
A

3
.5

0
×

1
0
−

4
0

4
.1

7
×

1
0
−

2
6

6
.1

3
×

1
0
−

1
1
.6

9
×

1
0
−

6
3
.0

6
×

1
0
−

1
9

0
1
.3

0
×

1
0
−

4

(2
.0

9
×

1
0
−

4
0

)
(1

.5
6
×

1
0
−

2
6

)
(4

.5
7
×

1
0
−

1
)

(1
.6

2
×

1
0
−

6
)

(5
.3

4
×

1
0
−

1
9

)
(0

)
(2

.6
0
×

1
0
−

3
)

(1
)

(1
)

(6
)

(1
)

(1
)

(1
)

(2
)

R
L

E
P

1
×

1
0
−

4
2
.5
×

1
0
−

4
-

4
.3
×

1
0
−

4
1
6
.7

0
1
.0
×

1
0
−

4

(1
.1
×

1
0
−

5
)

(1
.3
×

1
0
−

5
)

-
(5

.2
×

1
0
−

4
)

(2
0
.2

)
(0

)
(8

.5
×

1
0
−

3
)

(4
)

(3
)

(2
)

(5
)

(1
)

(1
)

M
S

E
P

1
×

1
0
−

4
4
.1
×

1
0
−

4
-

2
.7
×

1
0
−

2
2
9
.2

0
6
.1
×

1
0
−

3

(1
.3
×

1
0
−

5
)

(2
.1
×

1
0
−

4
)

-
(1

.7
×

1
0
−

2
)

(2
4
.9

)
(0

)
(1

.7
×

1
0
−

3
)

(4
)

(4
)

(4
)

(6
)

(1
)

(3
)

G
A

3
.1

7
5
.7

7
×

1
0
−

1
9
7
4
9
.9

1
7
.9

6
3
3
8
.5

6
3
.7

0
0
.1

0

(1
.6

6
)

(1
.3

1
×

1
0
−

1
)

(2
5
9
4
.9

6
)

(1
.5

1
)

(3
6
1
.5

0
)

(1
.9

5
)

(3
.6

2
×

1
0
−

2
)

(8
)

(9
)

(7
)

(9
)

(9
)

(3
)

(9
)

P
S

O
3
.6

9
×

1
0
−

3
7

2
.9

2
×

1
0
−

2
4

1
.2

0
×

1
0
−

3
0
.4

1
3
7
.3

6
0
.1

5
9
.9

0
×

1
0
−

3

(2
.4

6
×

1
0
−

3
6

)
(1

.1
4
×

1
0
−

2
3

)
(2

.1
1
×

1
0
−

3
)

(0
.2

5
)

(3
2
.1

4
)

(0
.4

2
)

(3
.5

4
×

1
0
−

2
)

(2
)

(2
)

(2
)

(7
)

(8
)

(2
)

(5
)

F
E

P
5
.7
×

1
0
−

4
8
.1
×

1
0
−

3
1
.6
×

1
0
−

2
0
.3

5
.0

6
0

7
.6
×

1
0
−

3

(1
.3
×

1
0
−

4
)

(7
.7
×

1
0
−

4
)

(1
.4
×

1
0
−

2
)

(0
.5

)
(5

.8
7
)

(0
)

(2
.6
×

1
0
−

3
)

(7
)

(6
)

(4
)

(5
)

(2
)

(1
)

(4
)

C
E

P
2
.2
×

1
0
−

4
2
.6
×

1
0
−

3
5
.0
×

1
0
−

2
2
.0

6
.1

7
5
7
7
.7

6
1
.8
×

1
0
−

2

(5
.9
×

1
0
−

4
)

(1
.7
×

1
0
−

4
)

(6
.6
×

1
0
−

2
)

(1
.2

)
(1

3
.6

1
)

(1
,1

2
5
.7

6
)

(6
.4
×

1
0
−

3
)

(5
)

(5
)

(5
)

(8
)

(3
)

(5
)

(7
)

F
E

S
2
.5
×

1
0
−

4
6
.0
×

1
0
−

2
1
.4
×

1
0
−

3
5
.5
×

1
0
−

3
3
3
.2

8
0

1
.2
×

1
0
−

2

(6
.8
×

1
0
−

4
)

(9
.6
×

1
0
−

3
)

(5
.3
×

1
0
−

4
)

(6
.5
×

1
0
−

4
)

(4
3
.1

3
)

(0
)

(5
.8
×

1
0
−

3
)

(6
)

(8
)

(3
)

(3
)

(7
)

(1
)

(6
)

C
E

S
3
.4
×

1
0
−

5
2
.1
×

1
0
−

2
1
.3
×

1
0
−

4
0
.3

5
6
.6

9
4
1
1
.1

6
3
.0
×

1
0
−

2

(8
.6
×

1
0
−

6
)

(2
.2
×

1
0
−

3
)

(8
.5
×

1
0
−

5
)

(0
.4

2
)

(1
4
.4

5
)

(6
9
5
.3

5
)

(1
.5
×

1
0
−

2
)

(3
)

(7
)

(1
)

(6
)

(4
)

(4
)

(8
)

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.3 Compared with Classical EAs 48

Table 2.3: Comparison among FOLA and the other eight algorithms on 30-

dimensional benchmark functions F8∼F13: Average fitness value / (Standard de-

viation) / (Rank)

F8 F9 F10 F11 F12 F13

FOLA -12569.5 6.33×10−11 1.43×10−5 1.76×10−10 1.02×10−11 1.13×10−11

(1.73×10−4) (3.90×10−11) (3.14×10−6) (7.65×10−11) (9.14×10−12) (1.18×10−11)

(1) (1) (1) (1) (1) (1)

RLEP -12569.5 1.0×10−5 1.6×10−3 5.6×10−4 6.9×10−7 1.1×10−5

(0) (2.3×10−6) (4.4×10−4) (1.2×10−3) (1.5×10−7) (1.3×10−6)

(1) (2) (3) (2) (2) (2)

MSEP -12569.48 2.5×10−5 1.7×10−3 8.5×10−4 7.5×10−7 1.2×10−5

(3.4×10−4) (2.1×10−5) (4.3×10−4) (2.3×10−3) (4.0×10−7) (1.1×10−5)

(2) (3) (4) (3) (3) (3)

GA -12566.1 0.65 0.87 1.00 4.36×10−2 0.17

(2.11) (0.36) (0.28) (6.75×10−2) (5.06×10−2) (7.07×10−2)

(3) (6) (7) (9) (7) (7)

PSO -9659.7 20.79 1.34×10−3 0.23 3.95×10−2 5.05×10−2

(463.78) (5.94) (4.24×10−2) (0.44) (9.14×10−2) (0.57)

(6) (7) (2) (7) (6) (6)

FEP -12554.5 4.6×10−2 1.8×10−2 1.6×10−2 9.2×10−6 1.6×10−4

(52.6) (1.2×10−2) (2.1×10−2) (2.2×10−2) (6.14×10−5) (7.3×10−5)

(5) (4) (6) (4) (4) (5)

CEP -7917.1 89.0 9.2 8.6 ×10−2 1.76 1.4

(634.5) (23.1) (2.8) (0.12) (2.4) (3.7)

(7) (9) (9) (6) (9) (9)

FES -12556.4 0.16 1.2×10−2 3.7×10−2 2.8×10−2 4.7×10−5

(32.53) (0.33) (1.8×10−3) (5.0×10−2) (8.1×10−11) (1.5×10−5)

(4) (5) (5) (5) (5) (4)

CES -7549.9 70.82 9.07 0.38 1.18 1.39

(631.39) (21.49) (2.84) (0.77) (1.87) (3.33)

(8) (8) (8) (8) (8) (8)

2.3.3 Evaluation on 300-dimensional functions

In the literature, setting benchmark functions in 30 dimensions is commonly

used for algorithm comparison. However, many real-world problems usually in-

volve hundreds of variables. Therefore, it is crucial to investigate whether FOLA

can be scaled up to handle the optimisation problems which are high-dimensional,

e.g. 300. For the multi-modal benchmark functions, F8∼F13, the number of their

local minima increases exponentially as the number of dimensions increases. In

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.3 Compared with Classical EAs 49

this case, the global minimum value of F8 should be -125,694.7, while the other

functions have the same global minimum values as those given in Appendix A.2.

EAs involved in comparison

In [92] [93], only functions F1 and F10 were tested in 300 dimensions, while

the dimensionality of other functions was set to 30. Since the results obtained by

some of the EAs presented in Section 2.3.2 in solving the 300-dimensional bench-

mark functions are not available, the following EAs which have been evaluated on

300-dimensional benchmark functions are adopted for comparison, and their results

published in [56] are directly used in this section.

FOLA is compared with the following algorithms:

1) Particle Swarm Optimisation (PSO) [46]

2) Genetic Algorithm (GA) [16]

3) Evolutionary Programming (EP) [88] [94]

4) Evolution Strategies (ES) [89]

The parameters setting of PSO, GA and FOLA is the same as that in solving

30-dimensional functions, as given in Section 2.3.2, except for Nfemax. For EP, the

population size and the tournament size for selection are 100 and 10 respectively.

The initial standard deviation of EP is 3.0, and its parameters setting is based on

[88] and [94]. ES used in our experiments is a state-of-the-art (µ, λ)-ES. The pop-

ulation, µ, is 30 and the offspring number, λ, is 200. A standard deviation of 3.0 is

adopted. A global intermediate recombination [89] is also employed in ES. Nfemax=

2,000,000 is used in FOLA for solving the 300-dimensional benchmark functions,

while Nfemax=3,750,000 is set for the other four algorithms.

Simulation results

The 300-dimensional multi-modal benchmark functions, F8∼F13, are extremely

complex with a huge number of local optima to find. Five independent runs of the

FOLA were executed. Table 2.4 lists the mean of the fitness values and the rank

of the five algorithms, and the standard deviation obtained by FOLA. The results

of the algorithms, except for FOLA, are directly adopted from reference [56]. Note

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.3 Compared with Classical EAs 50

that the standard deviation of the algorithms (expect for FOLA) is not provided, as

reference [56] reported only the mean of fitness values in solving 300-dimensional

functions. It can be seen that FOLA markedly outperforms the other algorithms on

these functions with respect to the average fitness value. In terms of computation ef-

ficiency, Nfemax used by FOLA is much smaller than that of other algorithms which

need a largeNfemax to obtain the results given in Table 2.4. The superiority of FOLA

over other algorithms is greatly enhanced by its accurate results and the use of much

smaller Nfemax.

Table 2.4: Comparison among FOLA, GA, PSO, EP and ES on 300-dimensional

benchmark functions F8(x)∼F13(x): Average fitness value / (Standard deviation) /

(Rank)

F8 F9 F10 F11 F12 F13(x)

FOLA -125,694.69 3.51×10−7 1.47×10−7 7.02×10−8 8.08×10−9 4.91×10−9

(0.19) (5.67×10−8) (1.65×10−8) (3.60×10−8) (3.79×10−9) (4.23×10−10)

(1) (1) (1) (1) (1) (1)

GA -117,275.3 121.3 6.24 0.37 52.82 178.34

- - - - - -

(2) (2) (4) (2) (2) (4)

PSO -87,449.2 427.1 3.9540 × 10−6 1.81 14.56 549.2

- - - - - -

(3) (4) (2) (3) (4) (2)

EP -78,311.9 383.3 0.2946 2.82×10−2 39.3 738.2

- - - - - -

(4) (3) (3) (4) (3) (3)

ES -66,531.3 583.2 9.6243 0.16 3093.2 2123.2

- - - - - -

(5) (5) (5) (5) (5) (5)

2.3.4 Discussion

Convergence characteristics

The convergence comparison among FOLA and other EAs is carried out on 30-

dimensional multi-modal benchmark functions, F8(x)∼F13(x). It should be men-

tioned that the experimental results of the algorithms (except for FOLA) given in

Section 2.3.2 and 2.3.3 are directly adopted from the published papers. However,

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.3 Compared with Classical EAs 51

the convergence comparison requires the evolvement of the fitness values recorded

in the optimisation process, rather than the final best fitness value. Since the codes

and toolbox of algorithms FEP, PSO and GA are publicly available, they are used

to compare with FOLA in terms of convergence rates. The parameters setting of

FEP is listed as follows: the population size is set to µ = 100; the tournament size

q = 10 is preset for selection; the initial η = 3.0; the initial population is generated

uniformly at random in the search range. The parameters of PSO are set as follows:

both acceleration factors c1 and c2 are set to 2.0; a decaying inertia weight ω starting

at 0.9 and ending at 0.4 is used; the population size is 50. The parameters setting of

GA is given as follows: the population size is set to 50; the mutation rate is 0.05; the

crossover rate is 0.8; the reproduction function applies uniform stochastic selection.

The convergence rates of PSO, GA, FEP and FOLA are presented respectively

in Fig. 2.4. GA has the slowest convergence rate among the four algorithms. It can

be seen that GA has been given enough FEs to find the optimal solution, as there is

no improvement of the convergence rate in the late stage of the optimisation. FEP

outperforms GA, but it has somewhat slower convergence rate when compared with

PSO and FOLA. At the beginning of the optimisation process, PSO converges fastest

among the four algorithms. However, around 10×104 FEs, PSO is surpassed by FEP

when solving functions F10, F11 and F12. Although FEP has a slower convergence

rate than PSO at the beginning of optimisation, it maintains a consistent convergence

rate throughout the evolution process, and overtakes PSO at the late stage of the

optimisation process. As for FOLA, it converges slower than PSO at the beginning,

due to the reason that a certain number of FEs is required to build up the memory.

However, it surpasses the other three algorithms quickly.

Computation time

FOLA is compared with FEP, PSO and GA, with respect to the computation

time, on the 30-dimensional benchmark functions F8(x)∼F13(x). The parameters

setting of these algorithms follows those given in Section 2.3.4. These algorithms

were implemented using MATLAB R2008b in a PC which has a CPU of Intel(R)

Core(TM)2 Duo 3.33GHz and a memory of 2G. Table 2.5 lists the average compu-

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.3 Compared with Classical EAs 52

0 5 10 15

x 10
4

−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

FEs

F
it
n
e
s
s
 V

a
lu

e

PSO
GA
FEP
FOLA

0 5 10 15

x 10
4

0

100

200

300

400

500

600

FEs

F
it
n
e
s
s
 V

a
lu

e

PSO
GA
FEP
FOLA

(a) F8 (b) F9

0 5 10 15

x 10
4

−5

0

5

10

15

20

25

FEs

F
it
n

e
s
s
 V

a
lu

e

PSO
GA
FEP
FOLA

0 5 10 15

x 10
4

0

200

400

600

800

1000

1200

PSO
FEP
GA
FOLA

(c) F10 (d) F11

0 5 10 15

x 10
4

0

5

10

15

20
x 10

5

FEs

F
it
n
e
s
s
 V

a
lu

e

PSO
GA
FEP

0 5 10 15

x 10
4

0

2

4

6

8

10
x 10

8

FEs

F
it
n

e
s
s
 V

a
lu

e

PSO
GA
FEP
FOLA

(e) F12 (f) F13

Figure 2.4: The comparison of convergence rates among PSO, GA, FEP and FOLA

on the 30-dimensional benchmark functions F8(x)∼F13(x)

tation time consumed by the four algorithms when solving functions F8(x)∼F13(x)

respectively. It can be seen that GA consumes much longer time than the other three

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.3 Compared with Classical EAs 53

algorithms on these six functions. PSO requires less computation time than FEP

on these functions except for F9 and F10. FOLA consumes the shortest computa-

tion time among the four algorithms on these functions except for function F10. On

average, FOLA outperforms the other algorithms in terms of computation time.

Table 2.5: Computation time (s) consumed by PSO, GA, PSO and FOLA when

solving the 30-dimensional benchmark functions F8(x)∼F13(x)

F8 F9 F10 F11 F12 F13(x)

FOLA 4.97 6.17 9.98 7.25 9.43 9.39

PSO 9.48 9.02 10.03 10.31 12.79 12.98

GA 63.58 62.71 63.57 64.69 65.97 65.25

FEP 10.39 8.76 9.93 11.60 15.90 15.95

Parameters wc and Nfemax

FOLA has two parameters, wc and Nfemax, which should be set up with some

basic knowledge of the complexity of optimisation problems, as they are related to

the accuracy of the solutions and the computation efficiency of FOLA. Investigation

on the sensitivity of optimisation results to parameters wc and Nfemax has been un-

dertaken on F9, since it has been noted that the results obtained from this function

are more sensitive than those obtained from other functions when the parameters are

set to different values. FOLA was performed for 50 runs for each set of parameters,

in order to generate the mean of the minimum fitness values for comparison.

Parameter wc is related to the resolution of dividing the dimensions to cells and

parameterNfemax is used to terminate the computation process. Parameterwc should

be set properly to ensure the accuracy of the results found by FOLA. Under the

condition that Nfemax is large enough, setting smaller wc can yield more accurate

solutions. However, a small wc requires a large Nfemax to converge. Therefore, wc is

the parameter to tradeoff between the accuracy and computation load. Table 2.6 lists

the results obtained using a range of different wc and Nfemax, which are consistent

with the analysis. Therefore, bothNfemax andwc should be set properly for a specific

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.4 Compared with Recently-proposed EAs 54

Table 2.6: The average fitness values obtained with different wc and Nfemax

wc 1 0.4 0.04 0.004 0.0004

Nfemax 4,000 65,000 150,000 150,000 150,000

F9 3.85 0.31 6.33×10−11 9.45×10−9 182.47

application so as to ensure the quality of solutions and the efficiency of computation.

2.4 Compared with Recently-proposed EAs

2.4.1 Benchmark functions

FOLA can efficiently solve the problems given in Appendixes A.1 and A.2. In

order to investigate the potential of FOLA in solving other problems and fully eval-

uate the performance of FOLA without a biased conclusion, another class of bench-

mark functions, which are rotated and shifted, are also employed for comparison.

Appendix A.3 lists the rotated benchmark functions employed in this section, to-

gether with the number of dimensions, N , the search range of each dimension and

the minimum value (Fmin) of each function. For these functions, parameters O, M

and fbias denote the shift, rotation and bias respectively.

For this type of problems, FOLA adds the concept of covariance matrix adaption

C [95] in the perturbation operation. C is to approximate inverse Hessian matrix

and thus guide the search according to the contour lines of the objective function.

Based on the mean of previous Xbest (denoted as m), a new step is taken through a

perturbation that is generated by N(0, C), the multivariate normal distribution with

zero mean and covariance matrix C. The covariance matrix is updated according to

the following equation:

C ← (1− ccov)C + ccovYiY
T
i (2.4.1)

where ccov is the learning rate of the covariance matrix; Yi = (Xbest −m)/σ; and σ

is the step-size. The setting of these parameters can refer to [95].

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.4 Compared with Recently-proposed EAs 55

Other parameters of FOLA are set as those given in 2.3.2, with the exception

of wc and Nfemax. Given the search range of each variable, wc is automatically

determined if D is preset, as aforementioned in Section 2.2. D is set to 20 for this

class of benchmark functions. As for Nfemax, it is set to the same value for all the

algorithms, in order to have a fair comparison.

2.4.2 Compared with CLPSO and CPSO

To fully evaluate the performance of FOLA in solving this class of benchmark

functions, two popular particle swarm optimisers, Comprehensive Learning Parti-

cle Swarm Optimiser (CLPSO) [51] and Cooperative Particle Swarm Optimisation

(CPSO) [50], are used for comparison. The parameters setting of CLPSO and CPSO

refers to [51] and [50] respectively. Nfemax is set to 300,000 for algorithms CLPSO,

CPSO and FOLA. For the following tables given in this section, the algorithm which

performs best in one problem will be highlighted in grey colour. It should be men-

tioned that if the gap between two algorithms’ fitness values is less than 10−5, it will

be considered that the two algorithms have the same performance, and two of them

will be highlighted if their performance is better than other algorithms.

Table 2.7 lists the mean and standard deviation of the fitness values obtained

by the three algorithms over 50 independent runs. In order to further assess the

performance of the FOLA in a stochastic search process with a consideration of

randomly distributed initial populations, a set of two-tailed t-tests were adopted [1]

[96]. The t-test assesses whether the means of two groups of results are statistically

different from each other. In this case, the statistical difference of the experimental

results between the FOLA and the other two algorithms are measured. It can be

seen from Table 2.7 that FOLA performs better than CLPSO and CPSO on functions

Frs1, Frs2 and Frs5 ∼ Frs8, in terms of the average fitness values; FOLA has the same

mean value as CLPSO on function Frs4; For functions Frs3 and Frs9, FOLA ranks

second, as CPSO has a smaller mean value on function Frs3 and CLPSO obtains

a smaller mean value on function Frs9. For t-test value, it should be mentioned

that when the value is negative, it means that FOLA outperforms the corresponding

algorithm in terms of both mean and standard deviation; and vice versa. In Table

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.4 Compared with Recently-proposed EAs 56

Table 2.7: Comparison among FOLA, CLPSO and CPSO on 30-dimensional bench-

mark functions Frs1∼Frs9, including Average fitness value, Standard deviation and

t-test

Function Algorithms Mean Std. t-test

Frs1

FOLA 390.1328875 0.727854604 N/A

CLPSO 395.5523763 5.440959418 -5.407442625

CPSO 519.2295216 59.26617602 -11.92987495

Frs2

FOLA -179.9899948 0.016086481 N/A

CLPSO 4516.288614 2.24692E-12 -1599018.322

CPSO 4516.288614 8.054E-07 -1599018.32

Frs3

FOLA -119.1245855 0.092760408 N/A

CLPSO -119.0726711 0.058042098 -2.598603419

CPSO -119.3901559 0.099867425 10.67187686

Frs4

FOLA -330.00 9.61078E-13 N/A

CLPSO -330 0 5.8312

CPSO -329.9997073 0.000950119 -1.6873

Frs5

FOLA -286.5203526 9.260629049 N/A

CLPSO -228.2075732 15.14505415 -17.99194749

CPSO 78.28110031 110.2864188 -18.05383496

Frs6

FOLA 96.45864503 6.900034916 N/A

CLPSO 115.1951748 1.613775642 -14.48218587

CPSO 126.5900006 3.363229076 -21.50014185

Frs7

FOLA 156.5560685 1001.875456 N/A

CLPSO 49532.24651 10737.6566 -25.07737303

CPSO 20260.2027 11678.15019 -9.394400183

Frs8

FOLA -129.1081878 0.249952592 N/A

CLPSO -127.8158479 0.218386132 -21.3259

CPSO -129.0842205 0.200840166 -0.4094

Frs9

FOLA -286.510075 0.347176382 N/A

CLPSO -287.3025274 0.237869463 10.31355035

CPSO -286.4389932 0.305127968 -0.84233251

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.4 Compared with Recently-proposed EAs 57

2.7, it can be seen that there are totally 18 t-test values, among which there are 15

negative values and 3 positive values. It suggests that FOLA performs better than

the other two algorithms in most of the cases.

Convergence analysis

The comparison of convergence rate among the three algorithms is also carried

out on the nine multi-modal benchmark functions, by observing the evolvement

of the fitness values recorded in the optimisation process. The convergence rates of

FOLA, CLPSO and CPSO are presented in Figs. 2.5 and 2.6, where FEs denotes the

number of function evaluations. For functions Frs1, Frs2, Frs5 and Frs7, it is obvious

that FOLA converges much faster than the other two algorithms. As for functions

Frs3 and Frs6, FOLA has a faster convergence rate in part of the whole convergence

line. For instance, in Fig. 2.5(c), FOLA converges faster at the beginning stage

of the optimisation process, until at about FEs= 5 × 104, FOLA is surpassed by

CPSO. In Fig. 2.5(f), FOLA converges faster than the other two algorithms with

the exception of a small area, where 27, 080 <FEs< 51, 230. During the whole

optimisation process, FOLA maintains a consistent convergence rate throughout the

evolution process, and overtakes CLPSO and CPSO quickly when FEs= 51, 230.

For the rest of the functions, CPSO has a faster convergence rate than FOLA on

functions Frs4 and Frs8; while CLPSO converges faster on function Frs9. It can be

seen from Figs. 2.5 and 2.6 that, on average, CLPSO has a slower convergence rate

than FOLA and CPSO.

Computation time

FOLA is also compared with CLPSO and CPSO with respect to computation

time, on functions Frs1(x)∼Frs9(x). Table 2.8 lists the average computation time

consumed by the three algorithms over 50 independent runs when solving func-

tions Frs1(x)∼Frs9(x) respectively. It can be seen that FOLA requires the shortest

computation time among the three algorithms. Taking function Frs1 as an example,

FOLA saves 42.57% computation time comparing to CLPSO, and 47.14% to CPSO.

CPSO consumes longer computation time than FOLA and CLPSO on all of these

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.4 Compared with Recently-proposed EAs 58

0 0.5 1 1.5 2 2.5 3

x 10
5

0

5

10

15

20
x 10

9

FEs

F
it
n

e
s
s
 v

a
lu

e

FOLA
CLPSO
CPSO

0 0.5 1 1.5 2 2.5 3

x 10
5

−4000

−2000

0

2000

4000

6000

8000

10000

12000

FEs

F
it
n

e
s
s
 v

a
lu

e

FOLA
CLPSO
CPSO

(a) Frs1 (b) Frs2

0 0.5 1 1.5 2 2.5 3

x 10
5

−119.5

−119

−118.5

−118

FEs

F
it
n

e
s
s
 v

a
lu

e

FOLA
CLPSO
CPSO

0 0.5 1 1.5 2 2.5 3

x 10
5

−400

−300

−200

−100

0

100

FEs

F
it
n
e
s
s
 v

a
lu

e

FOLA
CLPSO
CPSO

(c) Frs3 (d) Frs4

0 0.5 1 1.5 2 2.5 3

x 10
5

−300

−200

−100

0

100

200

300

400

500

FEs

F
it
n

e
s
s
 v

a
lu

e

FOLA
CLPSO
CPSO

0 0.5 1 1.5 2 2.5 3

x 10
5

90

100

110

120

130

140

150

160

FEs

F
it
n

e
s
s
 v

a
lu

e

FOLA
CLPSO
CPSO

(e) Frs5 (f) Frs6

Figure 2.5: The comparison of convergence rates among FOLA, CLPSO and CPSO

on the nine benchmark functions, Frs1(x)∼Frs6(x)

benchmark functions.

In order to investigate the relationship between the dimensionality of the func-

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.4 Compared with Recently-proposed EAs 59

0 0.5 1 1.5 2 2.5 3

x 10
5

0

5

10

15
x 10

5

FEs

F
it
n

e
s
s
 v

a
lu

e

FOLA
CLPSO
CPSO

0 0.5 1 1.5 2 2.5 3

x 10
5

−100

0

100

200

300

400

FEs

F
it
n
e
s
s
 v

a
lu

e

FOLA
CLPSO
CPSO

(a) Frs7 (b) Frs8

0 0.5 1 1.5 2 2.5 3

x 10
5

−287.5

−287

−286.5

−286

−285.5

−285

−284.5

−284

FEs

F
it
n

e
s
s
 v

a
lu

e

FOLA
CLPSO
CPSO

(c) Frs9

Figure 2.6: The comparison of convergence rates among FOLA, CLPSO and CPSO

on the nine benchmark functions, Frs7(x)∼Frs9(x)

Table 2.8: Computation time (s) consumed by FOLA, CLPSO and CPSO when

solving the benchmark functions, Frs1(x)∼Frs9(x)

Frs1 Frs2 Frs3 Frs4 Frs5 Frs6 Frs7 Frs8 Frs9

FOLA 34.73 35.40 30.40 28.72 35.73 184.06 54.88 63.58 76.36

CLPSO 60.47 72.65 66.67 60.95 64.35 263.94 82.52 115.95 127.26

CPSO 65.70 74.44 68.90 67.69 67.54 269.79 84.75 122.11 129.94

tions to be solved and the computation time consumed, the three algorithms are used

to solve functions Frs1 and Frs2, whose dimensionality N is set to 5, 10, 15, 20, 25,

30, 40, 50 and 60 respectively. For different dimensionality of the functions, Nfemax

used by the algorithms is set to N × 104. Fig. 2.7 illustrates the computation time

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.4 Compared with Recently-proposed EAs 60

consumed by the three algorithms as the dimensionality increases from 5 to 60. In

Fig. 2.7(a), each line can be divided into two segments according to the dimension-

ality, that is, 5 ≤ N ≤ 30 and 40 ≤ N ≤ 60. For each segment, an approximate

increasing rate can be obtained for each algorithm. When 5 ≤ N ≤ 30, the increas-

ing rates of FOLA, CLPSO and CPSO are 1.184, 2.051 and 2.2116 respectively. It

can be seen that the increasing rate of FOLA is smaller than those of CLPSO and

CPSO. In addition, FOLA saves the computation time by 51.84% on average, in

comparison with CPSO; and FOLA saves 45.69% of the computation time com-

pared with CLPSO. When 40 ≤ N ≤ 60, the increasing rate of FOLA (1.2845) is

still much smaller than those of CLPSO and CPSO, which are 3.2855 and 2.1165

respectively. For this segment, FOLA saves the computation time by 47.37% on

average compared with CPSO, and 55.37% compared with CLPSO.

In Fig. 2.7(b), each line can be also divided into two segments according to

N . When 5 ≤ N ≤ 30, the increasing rates of FOLA, CLPSO and CPSO are

1.1944, 2.4864 and 2.5448 respectively. It can be seen that the increasing rate of

FOLA is smaller than half of the increasing rates obtained by CLPSO and CPSO.

FOLA saves 53.37% of the computation time on average, in comparison with CPSO;

and FOLA saves the computation time by 51.76% compared with CLPSO. When

40 ≤ N ≤ 60, the increasing rates of FOLA, CLPSO and CPSO are 1.2515, 4.1402

and 2.9465. For this segment, FOLA saves the computation time by 55.88% on

average compared with CPSO, and 65.67% compared with CLPSO.

2.4.3 Compared with GS-SOMA, OLPSO, SOPEN and SamACO

To compare FOLA with newly-proposed optimisation algorithms on the class

of benchmark functions given in Appendix A.3, another four algorithms are also

employed for comparison in this section. They are Generalized Surrogate Single-

Objective Memetic Algorithm (GS-SOMA) [97], Orthogonal Learning Particle Swarm

Optimisation (OLPSO) [98], Self-Organizing Potential Field Network (SOPEN)

[99] and Sampling Ant Colony Optimisation (SamACO) [100]. These algorithms

were used to solve some of the benchmark functions given in Appendix A.3 (or

the modified forms of these functions). Their experimental results, which were re-

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.4 Compared with Recently-proposed EAs 61

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

 N

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

FOLA

CLPSO

CPSO

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

 N

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

FOLA

CLPSO

CPSO

(a) Frs1 (b) Frs2

Figure 2.7: The comparison of computation time consumed by FOLA, CLPSO and

CPSO with respect to different dimensionality, on benchmark functions Frs1(x) and

Frs2(x)

ported in references [97], [98], [99] and [100] respectively, are directly adopted for

comparison in this section, due to the codes of these algorithms are not available.

Comparison between FOLA and GS-SOMA

GS-SOMA adopts a generalization of surrogate-assisted evolutionary frame-

works, and uses a variety of different modeling approaches to approximate the com-

plex problem landscape [97]. Three of the benchmark functions (functions Frs5,

Frs6 and Frs8) given in Appendix A.3 were used for comparison in reference [97].

In this subsection, the comparison between FOLA and GS-SOMA is carried out

based on the three benchmark functions. In order to have a fair comparison, Nfemax

and the number of independent runs are set to the same values given in [97], i.e.

Nfemax =8,000, and the number of independent runs is 20. According to [97], the

comparison is based on the average fitness value, standard deviation, the median,

the best and the worst of the fitness values. Table 2.9 lists the experimental results

obtained by FOLA and GS-SOMA. It can be seen that FOLA finds smaller average

fitness values than GS-SOMA on benchmark functions Frs5 and Frs8. For function

Frs6, GS-SOMA find a smaller mean value.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.4 Compared with Recently-proposed EAs 62

Table 2.9: Comparison between FOLA and GS-SOMA on functions Frs5, Frs6 and

Frs8

Functions Algorithms Mean Std. Median Best Worst

Frs5

FOLA -256.3119 22.7237 -268.2107 -279.2096 -208.7800

GS-SOMA -126 16 -123 -164 -99.7

Frs6 FOLA 125.6906 3.3076 124.4483 120.2057 132.0854

GS-SOMA 119.00 3.05 119 114 124

Frs8 FOLA -115.2299 6.4369 -115.3666 -124.9800 -103.5452

GS-SOMA -112 1.05 -113 -123 -111

Comparison between FOLA and OLPSO

Reference [98] proposed algorithms OLPSO-G and OLPSO-L, which use an

orthogonal learning strategy to discover useful information. Two of the benchmark

functions given in Appendix A.3 (i.e. functions Frs1 and Frs4) were used for compar-

ison in reference [98], as well as other two functions, which derive from functions

Frs3 and Frs5 by removing the bias and shift. To distinguish from functions Frs3 and

Frs5, the two derived functions are called Frs3 and Frs5 without shift and bias. Since

there is no bias in the two derived functions, their Fmin changes to 0. According to

reference [98], Nfemax is set to 200,000, the number of independent runs is set to

25 for FOLA, and the comparison is carried out based on the average fitness value

and standard deviation. Table 2.10 lists the experimental results obtained by FOLA,

OLPSO-G and OLPSO-L. For functions Frs1 and Frs5 without shift and bias, FOLA

outperforms OLPSO-G and OLPSO-L. As for Frs4, FOLA and OLPSO-L are con-

sidered to have the same performance, as the gap between their results is less than

10−5. OLPSO-G and OLPSO-L have the same performance in solving function Frs3

without shift and bias.

Comparison between FOLA and SOPEN

Reference [99] introduced algorithm SOPEN, which is derived from the idea

of vector potential field. According to reference [99], the comparison is based on

functions Frs1 and Frs4, but without shift and bias; Fmin of the functions is 0; the

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.4 Compared with Recently-proposed EAs 63

Table 2.10: Comparison between FOLA and OLPSO on four functions

Functions Algorithms Mean Std.

FOLA 390.3189 1.1039

Frs1 OLPSO-G 424.75 34.80

OLPSO-L 415.95 23.96

FOLA -330.00 3.5E-10

Frs4 OLPSO-G -328.575 1.04

OLPSO-L -330.00 1.64E-14

FOLA 21.2618 0.1674

Frs3 without shift and bias OLPSO-G 7.69E-15 1.78E-15

OLPSO-L 4.28E-15 7.11E-16

FOLA 37.6426 6.152

Frs5 without shift and bias OLPSO-G 46.09 12.88

OLPSO-L 53.35 13.35

search range is set to [-2.048,2.047] for Frs1 without shift and bias; the search range

of Frs4 without shift and bias is [-5.12,5.11]; Nfemax is set to 75,000; the number of

independent runs is set to 20; and the comparison is carried out based on mean and

minimum of the fitness values. Table 2.11 lists the experimental results obtained by

FOLA and SOPEN. FOLA outperforms SOPEN in solving 30- and 100-dimensional

function Frs1 without shift and bias, while has the same performance as SOPEN on

30- and 100-dimensional function F4 without shift and bias.

Reference [99] also investigates the number of FEs required to reach a speci-

fied stopping criteria when solving 100-dimensional functions. Table 2.12 gives the

numbers of FEs required by FOLA and SOPEN to reach the stopping criteria. For

100-dimensional functions Frs1 and Frs4 without shift and bias, FOLA requires less

FEs, in comparison with SOPEN. This suggests that FOLA converges faster than

SOPEN in this case. Reference [99] also provides the computation time consumed

by SOPEN when solving 100-dimensional functions. However, computation time

varies according to the configuration of the computer used. Therefore the compari-

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.4 Compared with Recently-proposed EAs 64

Table 2.11: Comparison between FOLA and SOPEN on 30- and 100-dimensional

functions Frs1 and Frs4 without shift and bias

Functions Algorithms Mean Minimum

30-dimensional Frs1 without shift and bias
FOLA 0.3826 0.0127

SOPEN 23.91 18.57

30-dimensional Frs4 without shift and bias
FOLA 1.11E-10 6.9713E-011

SOPEN 0 0

100-dimensional Frs1 without shift and bias
FOLA 90.8251 88.9556

SOPEN 95.23 92.87

100-dimensional Frs4 without shift and bias
FOLA 8.4684E-010 6.0799E-010

SOPEN 0 0

son of computation time between FOLA and SOPEN is not carried out here.

Table 2.12: Comparison between FOLA and SOPEN on 100-dimensional functions

Frs1 and Frs4 without shift and bias

Functions Stopping Criterion Algorithms FEs required

100-dimensional Frs1 without shift and bias 102
FOLA 6,835

SOPEN 36,000

100-dimensional Frs4 without shift and bias 10−3
FOLA 15,639

SOPEN 28,925

Comparison between FOLA and SamACO

Reference [100] introduces algorithm SamACO, which simulates the foraging

behavior of a group of ants and focuses on continuous variable sampling. Among the

benchmark functions given in Appendix A.3, five functions, functions Frs1 ∼ Frs5,

were used for comparison in reference [100]. Nfemax is set to 300,000. The mean and

standard deviation of error values (the distance between the obtained fitness value

and Fmin) are concerned here. Table 2.13 lists the experimental results obtained by

FOLA and SamACO. It can be seen that FOLA outperforms SamACO in solving

functions Frs1, Frs2 and Frs5. FOLA and SamACO have the same performance for

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.5 Conclusions 65

function Frs4. As for function Frs3, SamACO obtains the mean value of 20, while

FOLA has the value of 20.8754.

Table 2.13: Comparison between FOLA and SamACO on five benchmark functions

Functions Algorithms Mean Std.

Frs1

FOLA 0.1329 0.7279

SamACO 126 294

Frs2

FOLA 0.010 0.0161

SamACO 0.0167 0.0146

Frs3

FOLA 20.8754 0.0928

SamACO 20.0 4.3E-3

Frs4

FOLA 1.06E-12 9.6E-13

SamACO 1.59E-14 2.6E-14

Frs5

FOLA 43.4796 9.2606

SamACO 270 86.9

2.5 Conclusions

FOLA capitalises on the merits of the structure of multiple automata, the di-

mensional search, the dividing of the dimensional search domain into cells, and the

memories of the performance evaluation of the dimensional states in a form of cell

values. By these approaches, FOLA is able to undertake search in continuous states

and achieve accurate solutions efficiently. There are two key parameters, wc and

Nfemax, to tune in FOLA when it is applied to resolve a specific application prob-

lem. The two parameters can be determined with the basic knowledge of the range

of variables involved and the solution accuracy required in the application problem.

The simulation studies have been undertaken on 13 widely used 30-dimensional

benchmark functions which include uni-modal and multi-modal problems. The ex-

perimental results have shown that FOLA is able to achieve more accurate results

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

2.5 Conclusions 66

than the other eight EAs in finding a global minimum solution, and is more reli-

able, for its standard deviation of the results over different independent runs is much

smaller than that of other algorithms. To investigate whether FOLA can be scaled up

to handle the optimisation problems which are highly dimensional, FOLA has been

applied to solve the 300-dimensional multi-modal functions which are extremely

difficult to solve due to a large number of local minima. In comparison with the

other four EAs, FOLA presents its great superiority, as it finds much more accurate

solutions, and significantly improves the efficiency and convergence rate.

In addition, FOLA has also been applied to solve nine challenging multi-modal

benchmark functions, which are rotated and shifted. In this case, FOLA is compared

with two popularly used EAs and four newly-proposed EAs. The experimental re-

sults have shown that FOLA offers better performance for most of the benchmark

functions, in terms of the accuracy of the obtained optimal solutions and the con-

vergence rate. FOLA is able to reduce the computation time greatly, especially for

high-dimensional functions.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

Chapter 3

Multi-objective Optimisation by

Learning Automata

3.1 Introduction

Many (perhaps most) real-world problems are, in fact, multi-objective optimisa-

tion problems. Unlike single-objective optimisation, whose goal is to find the global

maximum or minimum subject to an objective function, a multi-objective optimisa-

tion problem has usually no unique, perfect solution, but a series of non-inferior al-

ternative solutions, known as Pareto optimal solutions, which represent the possible

trade-off among conflicting objectives. The multi-objective optimisation problems

can be formulated as follows:

Minimise F (X) = [f1(X), f2(X), · · · , fmf
(X)] (3.1.1)

s.t. gi(x) ≤ 0, i = 1, 2, · · · , mg

whereX = [x1, x2, · · · , xN]T ∈ R
N is the vector of variables to be optimised, func-

tions gi (i = 1, 2, · · · , mg) are constraint functions of the problem, and functions

fi (i = 1, 2, · · · , mf) are mf objective functions. mf fitness values, obtained by

applying solution X in the mf objective functions, compose an objective function

vector.

67

3.1 Introduction 68

�� � � �
��
� ! " # $ % " & '# () * % + " & '# () * %

, - . * /) '0 * 1
234567895: ; (<*) " = < " #)

Figure 3.1: Dominance relation in multi-objective problems

The optimal solutions of a multi-objective optimisation problem can be de-

scribed by the concept of Pareto dominance and Pareto optimality, which are math-

ematically defined as follows [101][102]:

Definition 1 (Pareto Dominance): A vector U = [u1, u2, · · · , umf
] is said to

dominate V = [v1, v2, · · · , vmf
] if and only if U is partially less than V , i.e. ∀i ∈

{1, 2, · · · , mf}, ui ≤ vi ∧ ∃i ∈ {1, 2, · · · , mf} : ui < vi.

Definition 2 (Pareto Optimality): A solution XU is said to be Pareto optimal if

and only if there is no XV for which V = F (XV) = (v1, v2, · · · , vmf
) dominates

U = F (XU) = (u1, u2, · · · , umf
).

As an example to explain this concept, assume that a multi-objective problem

is to minimise F (Xa), a ∈ {U, V }, where U = F (XU) = (3.25, 1.76, 4.67) and

V = F (XV) = (3.15, 1.76, 4.22). In this example, objective function vector U is

dominated by V , and V is non-dominated in the objective space. XV is the Pareto

optimal solution (also called non-dominated solution) of set {XU , XV }, and V is

Pareto optimal objective function vector (also called non-dominated objective func-

tion vector). A set of all the Pareto optimal solutions is called the Pareto set, which

can be used to form a Pareto front in the objective space, as shown in Fig. 3.1.

It can be seen that the aim of multi-objective optimisation is to gain the Pareto

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.1 Introduction 69

set whose Pareto optimal objective function vectors are evenly distributed on the

Pareto front [2]. The Pareto front is evaluated through two aspects: 1) convergence

to the Pareto-optimal set and 2) maintenance of diversity among the solutions of the

Pareto-optimal set.

In order to obtain an accurate Pareto front, there are two standard methods for

treating multi-objective problems. One is to convert multi-objective problems into a

single objective problem using the weighted-sum method or weighted Tchebycheff

method; and the other one is Pareto front-based method, which applies a population

of individuals, and each of them represents one Pareto optimal solution. Based on

this concept, various algorithms have been proposed to solve multi-objective op-

timisation problems in the past few decades, such as multi-objective evolutionary

algorithms [103][104], multi-objective genetic algorithms [29][7] and group search

optimiser [60]. These multi-objective algorithms propose mathematical improve-

ments to meet the demand of solving problems. They have been comprehensively

investigated in various application areas, such as power plant [43], wireless sensor

networks [30], structural mechanics problems [105], and other engineering prob-

lem [31], and so on. The first two applications adopt the weighted-sum methods,

which are only capable of solving convex Pareto front problems but have a diffi-

culty in solving the multi-objective problems whose Pareto fronts are non-convex

[7]. Nonetheless, there is no way to predetermine if a problem is convex or concave

in many applications. The latter is an NSGA II-based method, which suffers from

the drawback of high computational complexity caused by non-dominated sorting.

This chapter presents a novel method for multi-objective optimisation by learn-

ing automata (MOLA). MOLA adopts the strategy of multiple automata, dimen-

sional search and action selection, which are similar to those in FOLA. Unlike

FOLA, the reinforcement signal adopted here is generated through comparing the

state with all the non-dominated solutions found so far. MOLA mainly comprises

two processes: the process of searching and the process of learning from neigh-

borhood. The process of searching is carried out through a tournament that is held

between Pareto global search and Pareto local search. This tournament can lead to

a better trade-off between exploitation and exploration, which is a critical factor in

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.2 The MOLA Method 70

finding the optimal solution. In the process of learning, the relationship of neighbor-

hood among the non-dominated solutions is investigated, as it is believed that useful

information that can benefit the search is embeded in neighborhood. Based on the

relationship, non-dominated solutions are updated based on their neighbors, in order

to fully explore the probability of finding the Pareto set. In the search process, an

elite list is used to keep track of the non-dominated solutions found. Once a new

non-dominated solution is found, it will be included in the elite list. Simultaneously,

the elite list will dispose the solutions that were previously stored in the list but are

no longer qualified, as they are dominated by the newly-found non-dominated solu-

tion. At the end of the optimisation process, the non-dominated solutions stored in

the elite list form a Pareto front, which is the aim of the multi-objective optimisa-

tion. MOLA has been found being capable and efficient in finding accurate solutions

of complex optimisation problems. The merits of MOLA have been demonstrated,

in comparison with both weighted-sum methods and Pareto front-based methods.

The study is undertaken on a number of complex benchmark functions, which in-

clude a wide range of multi-objective models. The simulation results have shown

that MOLA is superior over the other algorithms with respect to the accuracy of the

non-dominated solutions and the spreadout of the Pareto front.

3.2 The MOLA Method

MOLA consists ofN automata, and each automaton is responsible for searching

on a specified dimension. Similar to FOLA, the ith learning automaton of MOLA

can be defined as 〈χi, Ai, r, Pi,T〉, in which χi, Ai, r, Pi and T denote the set of

dimensional state xi, possible actions, reinforcement signal, actions probabilities

and reinforcement scheme respectively. Besides, each dimension is divided into D

cells, and the cell value of cell ci,j is denoted as V (ci,j)|xi∈ci,j
.

In MOLA, F (X) is anN-dimensional multi-objective minimisation (or maximi-

sation) problem to be resolved subject to constraints applied to F (·) or/andX , where

F (·) is composed of multiple objective functions, i.e. F (X) = [f1(X), · · · , fmf
(X)],

which will be used by the environment to generate reinforcement signal r, and X

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.2 The MOLA Method 71

is a solution in the N-dimensional space, denoted by X = [x1, · · · , xi, · · · , xN],

where xi ∈ χi. In MOLA, Pareto set obtained during the search process is stored in

an elite list, denoted as L, to keep track of all the non-dominated solutions found so

far. The updating rule of L will be given in Section 3.2.2.

3.2.1 An automaton and its reinforcement scheme

MOLA adopts the concepts of path value, cell value and path selection, which

are the same as those employed in FOLA (refer to Section 2.2.1). To better explain

MOLA, the three concepts are introduced briefly as follows:

• A path value is to estimate the potential of finding a better solution if MOLA

searches down on the path from a dimensional state. Two estimated path val-

ues, denoted by Ll(xi), l = 1, 2, are to be found with respect to dimensional

state xi. The value of a path can be estimated as follows:

Ll(xi) = (1− λ1)

k−1
∑

m=1

λm−1
1 v∗m + λk−1

1 v∗k l = 1, 2 (3.2.1)

where v∗l,m denotes the mth element of the vector in which the k cell values,

locating on path l, are reordered in descending order.

• Action selection employs two probabilities, p1 and p2. The former is used to

select a path which the current dimensional state moves to, while the latter is

applied to select the cell on the selected path. With the availability of the path

values, the left path L1 or the right path L2 is chosen with a probability given

as follows:

p1(Ll(xi)) =
eLl(xi)/τ

∑2
s=1 e

Ls(xi)/τ
l = 1, 2 (3.2.2)

Suppose the right path is selected. Then a cell, which the current dimensional

state moves to, is selected, among the k cells located on the path, according to

the probability that is calculated from the cell values of the k cells as follows:

p2(V (ci,j+s)|xi∈ci,j+s
) =

eV (ci,j+s)|xi∈ci,j+s
/(2τ)

∑k
z=1 e

V (ci,j+z)|xi∈ci,j+z
/(2τ)

(3.2.3)

where s = 1, 2 · · · , k.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.2 The MOLA Method 72

• As one of the major functions of memory, updating cell values relies on the

reinforcement signal of current dimensional state xi, i.e. r(X(xi)), and the

weighted path values of possible paths, i.e. the two path values, L1(xi) and

L2(xi), obtained according to (3.2.1). The cell value of cell ci,j, which the

current dimensional state xi locates in, is updated as follows:

V (ci,j)|xi∈ci,j
← r(X(xi)) + αV (ci,j)|xi∈ci,j

+

(1− α)
(

(1− λ2)Lmax(xi) + λ2Lmin(xi)
)

(3.2.4)

where Lmax(xi) and Lmin(xi) are the two estimated path values at dimensional

state xi, while satisfying Lmax(xi) = max{L1(xi), L2(xi)} and Lmin(xi) =

min{L1(xi), L2(xi)}.

Reinforcement signal

Similar to FOLA, a reinforcement signal of the search action should be provided

to evaluate the effectiveness of the selected action. However, the design of reinforce-

ment signal in MOLA is different from that in FOLA, due to the different nature of

objective setting. Assume the dimensional state moves from xi to x′i after an action

is taken. The fitness values of state X(x′i) can be obtained by applying X(x′i) in the

objective functions of the minimisation problem, F (·). Suppose dimensional state

x′i locates in cell ci,j. Then a reinforcement signal is assigned to cell ci,j by com-

paring X(x′i) with the non-dominated solutions found previously, according to the

following rule:

r(X(x′i)) =

{

1 if X(x′i) is non-dominated

0 otherwise
(3.2.5)

3.2.2 Forming the Pareto set

All the non-dominated solutions found in the optimisation process are stored in

the elite list L. Suppose the state moves from X(xi) to X(x′i). If the current state,

X(x′i), is not dominated by the solutions that have been stored in L previously, it will

be denoted as Xbest. The relationship between state X and Xbest can be described

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.2 The MOLA Method 73

by the following rule:

Xbest ←
{

X(x′i) if X(x′i) is non-dominated

Xbest otherwise
(3.2.6)

where X(x′i) = [x1, . . . , xi−1, x
′
i, xi+1, . . . , xN]. Then L is updated based on the

following rule:

L←
{

L ∪ {Xbest} − B if r = 1

L otherwise
(3.2.7)

where B is a set of the solutions which were stored in the elite list previously but

currently are dominated by Xbest, as formulated in the following equation:

B = {X : X ∈ L, F (X) � F (Xbest)} (3.2.8)

It can be seen that once a non-dominated solution is found, it will be included in

the elite list and labeled as Xbest. For those solutions which are dominated by Xbest,

they will be unqualified and disposed from the elite list, in order to ensure that only

non-dominated solutions are stored in the elite list. At the end of the optimisation

process, elite list L will be used to form a Pareto set.

3.2.3 The process of searching and learning

The calculation of MOLA consists of two parts: the process of searching and the

process of learning from neighborhood. They are introduced in the following two

subsections respectively.

The process of searching

The process of searching is carried out through a tournament that is held between

two types of search, Pareto global search and Pareto local search. The rule of the

tournament will be introduced in Section 3.2.4. In this subsection, Pareto global

search and Pareto local search are introduced respectively as follows:

Pareto global search (PGS): Starting with the first stateX , by selecting automa-

ton i, at dimensional state xi, a search is undertaken by calculating the path values

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.2 The MOLA Method 74

of two possible paths using the cell values obtained in the previous iterations, as

given in (3.2.1), and then moving xi towards a path, which is selected according to

the probability calculated using the path values, as in (3.2.2), with a step length η,

which is determined by the probability calculated from the cell values of the cells

locating on the path, as in (3.2.3). A reinforcement signal is generated using di-

mensional state xi, according to (3.2.5). Then the estimated path values and the

reinforcement signal are used to update the cell value of ci,j, in which dimensional

state xi locates, using (3.2.4). In this case the objective function values of the mul-

tiple objective functions are calculated once, and the cell value of V (ci,j)|xi∈ci,j
is

updated to replace the cell value that was stored previously when any dimensional

state located within cell ci,j was visited. At the same time, Xbest and elite list L are

updated according to (3.2.6) and (3.2.7) respectively. If the reinforcement signal is

not equal to 1, the current iteration ends and the next automaton is selected in order

for MOLA computation to continue. Otherwise searching on this path is regarded

worthy, as the cells locating on this path could be very sensitive and need more ex-

ploitation. In order to further exploit the potential of the dimensional states located

on this path, the search action is taken continuously for Iemax times in the same way

presented in (3.2.1), (3.2.2), (3.2.3), (3.2.5), (3.2.4), (3.2.6) and (3.2.7). An iteration

completes after the exploitation, which has updated Xbest and all values of the cells

visited, before the next automaton is selected. After all automata are sequentially

selected once, in order to increase the diversity and fully explore the probability of

finding the Pareto set, different perturbations are introduced to the non-dominated

solutions stored in the elite list, according to the following rule:

X ′ ← X + ∆ + β(Xbest −X) (3.2.9)

where ∆i = sign(κ)ζ(xmax,i − xmin,i), ζ is a random variable and ζ ∈ [0, k
D

]. The

sign function is used to choose the moving direction of xi. Suppose xi is located in

cell ci,j, then the input to the sign function is the subtraction of the two adjacent cell

values of ci,j, that is, κ = (V (ci,j+1)−V (ci,j−1)). If κ ≥ 0, sign(κ) = 1, otherwise,

sign(κ) = −1. It can be seen that xi moves towards the direction in which the

adjacent cell has a larger cell value. Once completing the perturbation operation, the

obtained solutions are used to update Xbest and L, according to (3.2.6) and (3.2.7)

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.2 The MOLA Method 75

Minimize f>
M

in
im

iz
e f

?
d@

dA
d>

dB Obtained solutions

dAC>dD
F*

Figure 3.2: The illustration of finding F ∗

respectively.

Pareto local search (PLS): PLS is similar to PGS with the exception of the fol-

lowing two aspects:

1. The perturbation operation used in PGS, i.e. (3.2.9), is not performed in PLS.

2. The calculation of reinforcement signal is different from that used in PGS. To

obtain the reinforcement signal, a target objective function vector, F ∗, which

is regarded as the aim of the PLS, should be set at the beginning of the search.

F ∗ can be determined by the following method. First, the Euclidean distance

between every two consecutive objective function vectors is calculated, as

given in Fig. 3.2, in which solid circles denote the objective function vectors

of the solutions stored in L. The pair of the two consecutive objective function

vectors, which has the largest Euclidean distance, is taken as two base vertexes

to create an isoceles triangle, in which the height is half of the base length.

Then the third vertex of the triangle is selected as F ∗, as given in Fig. 3.2.

During the process of Pareto local search, the fitness value of state X(x′i)

can be obtained by calculating the Euclidean distance between F ∗ and the

objective function vector of the solution, i.e. F (X(x′i)). For simplicity, the

Euclidean distance between F ∗ and F (X(x′i)) is denoted as d(F ∗, F (X(x′i))).

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.2 The MOLA Method 76

Then a reinforcement signal is generated by the following rule:

r(X(x′i)) =

{

1 if d(F ∗, F (X(x′i))) ≤ d(F ∗, F (Xlbest))

0 otherwise
(3.2.10)

where Xlbest (called the local best solution) denotes the latest best solution

found during the process of Pareto local search. In other words, among all the

solutions found during the process of Pareto local search, the objective func-

tion vector of solution Xlbest is closest to F ∗. It can be seen that r = 1 rep-

resents a favorable response, as the objective function vector of the obtained

solution X(x′i) is closer to F ∗ than that of Xlbest; r = 0 is an unfavorable

response.

The relationship between state X(x′i) and Xlbest can be described by the fol-

lowing equation:

Xlbest ←
{

X(x′i) if r = 1

Xlbest otherwise
(3.2.11)

where X(x′i) = [x1, . . . , xi−1, x
′
i, xi+1, . . . , xN]. In the process of Pareto local

search, Xlbest is updated according to (3.2.11), and at the same time, Xlbest is

used to update Xbest and L according to (3.2.6) and (3.2.7) respectively.

The process of learning

Suppose the current state, X , is one of the non-dominated solutions stored in

elite list L, as shown in Fig. 3.3, which plots the objective function vectors, F (·), of

the non-dominated solutions in the objective space. The solutions whose objective

function vectors locate at the adjacent area of F (X), e.g. area E1, are the neighbor-

ing solutions of X . It is believed that the neighboring solutions of X carry more

useful information that can benefit the search around X , and they can make more

contributions than remote solutions, e.g. the solutions whose F (·) locates at area E2.

Here, a method of clarifying the relationship of neighborhood among the non-

dominated solutions is given first. Then the operation of learning from neighbor-

hood can be performed based on the obtained solutions.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.2 The MOLA Method 77

EE F G HFG
H

I JK L M N OP L Q
RSTUVWXYUZ [\] ^ _` _a

b cd efg d h Oei NL g

Figure 3.3: The illustration of X’s neighborhood

• To find out the relationship among the non-dominated solutions, an uniform

spread of M weight vectors, (W1, · · · ,Wi, · · · ,WM), where Wi = [w1, · · · ,
wmf] and

∑

(W) = 1, are initialized at the beginning of the learning process

[103]. Then the Euclidean distances between any two weight vectors are cal-

culated, and the M/4 closest weight vectors to each weight vector are found

according to the Euclidean distances. Let the indexes of the M/4 closest

weight vectors to Wi be denoted as set D(i).

Each weight vector, Wi (i = 1, 2, · · · ,M), is associated with a subsolution,

denoted as X i
sub, which is selected from L according to Tchebycheff rule as

follows:

X i
sub = argminX∈L

gte(X|Wi, z∗) (3.2.12)

where Tchebycheff value is defined as:

gte(X|Wi, z∗) = max
1≤j≤mf

{wj

| fj(X)− z∗j |
fj,range

} (3.2.13)

and z∗ = (z∗1 , · · · , z∗j , · · · , z∗mf) is the reference point, i.e. z∗j = min{fj(X) |
X ∈ L}; fj,range is the estimated range of fj , i.e. fj,range = max{fj(Y) | Y ∈
L} −min{fj(X) | X ∈ L}.

After each weight vector is assigned with a subsolution, the neighboring solu-

tions of X i
sub comprise the subsolutions of the weight vectors whose indexes

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.2 The MOLA Method 78

belong to set D(i). The set of the neighboring solutions of X i
sub is denoted as

set Nei(X i
sub), and it can be formulated as:

Nei(X i
sub) = {Xj

sub | j ∈ D(i)} (3.2.14)

• With the neighborhood classification introduced above, each subsolutionX i
sub

is updated based on its neighboring solutions. Two indexes will be randomly

selected fromD(i). Suppose the two indexes are denoted as r1 and r2. Then a

new solution can be generated according to the following learning operation:

ȳ = X i
sub + 0.5× (Xr1

sub −Xr2
sub) (3.2.15)

ȳ will be used to replace X i
sub if its Tchebycheff value is smaller than that

of X i
sub. Simultaneously, ȳ will be used to update Xbest and L according to

(3.2.6) and (3.2.7) respectively if it is not dominated by any solution stored in

L.

3.2.4 The implementation of MOLA

The computation of MOLA consists of a certain number of episodes, and each

episode includes the process of searching (Section 3.2.3) and the process of learning

from neighborhood (Section 3.2.3). Within one episode, the search method can

adopt either PGS or PLS, or both of them, depending on a tournament between

PGS and PLS. In the tournament, the search method which finds more new non-

dominated solutions is regarded as the winner. The operation of selecting the winner

and the subsequent operations performed by the winner compose one cycle of the

tournament, which requires four episodes, as illustrated in Fig. 3.4. It can be seen

that both PGS and PLS are performed in the first episode, and a winner is selected

between PGS and PLS according to the number of new non-dominated solutions

they have found. For the following three episodes, only the winner is performed in

the process of searching. Then, another cycle of the tournament is performed for

the next four episodes. This cycle continues until the following condition is met:

if one of the two search methods can not find a single new non-dominated solution

continuously for five episodes, it will be withdrawn and will not be performed in

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.3 Compared with Weighted-sum Based Algorithms 79

jklmnopqrstuppsvwxyz{vx|z}~jkljk��noppsu�r�{vr{{��{vvs�qu{p~����qs��������p��������{v�up�q{w�}�w�}�p�w��}vs��s�qu�s��
noppsu�r�{vr{{��{vvs�qu{p~����qs��������p��������{v�up�q{w�}�w�}�p�w��}vs��s�qu�s��

jk���{�s��p�qrs����s{�qrsq{ovp��spq

xsv�{v��{qrxyz�p�x|z~�rs{pstuqr�{vspst����{op��{�oqu{p�u��s�s�qs���qrstuppsv s�up{ps����s{�qrsq{ovp��spq
One episode

Three episodes

Process of searching

Process of searching

Process of learning

Process of learning

Figure 3.4: The flowchart of one cycle of the tournament

the rest of the optimisation process. It means that for the following episodes, only

the other search method and the learning process are performed in one episode.

The MOLA computation proceeds in episodes, until a given maximum number of

objective function evaluations, Nfemax, is reached.

3.3 Compared with Weighted-sum Based Algorithms

As mentioned in Section 3.1, there are mainly two classes of approaches to re-

solve multi-objective problems. In this section, MOLA is compared with the first

class of approaches, i.e. the weighted-sum based methods. MOLA is fully com-

pared with two popular weighted-sum based algorithms: Multi-Objective Genetic

Algorithm (MOGA) [7] and Multi-Objective Particle Swarm optimizer (MOPSO)

[106].

3.3.1 Benchmark functions

Comparative simulation studies have been undertaken based on four benchmark

functions, which comprise low- and high- dimensional models, convex and non-

convex models, and continuous and discontinuous models respectively, as given

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.3 Compared with Weighted-sum Based Algorithms 80

in Appendix A.4. The parameters setting of MOGA follows [7], which regulates

the multi-objective problem to a single-objective one by calculating the weighted

average of the fitness functions. Taking a two-objective problem for example, the

optimisation is to find the most suitable X , so that it obtains the minimum of f(X),

which is defined as follows:

f(X) = ψ1f1(X) + ψ2f2(X); 0 < ψ1, ψ2 < 1; ψ1 + ψ2 = 1 (3.3.1)

where the step length of weights ψ1 and ψ2 is set to 0.05. For the parameters of

MOPSO, they are set as recommended in [107]. MOPSO also adopted the method

of converting the objectives into one single objective function, as given in (3.3.1).

The population size is set to 50 for MOGA and MOPSO. The parameters adopted by

MOLA are the same as those in FOLA with the exception of wc and Nfemax, which

are set by trial and error.

3.3.2 Simulation results

Function I

For this type of problem [27], the optimisation algorithms have been applied in

a low-dimensional (N = 2) and a high-dimensional benchmark function (N = 30)

respectively. In MOLA, parameter wc is set to 1 for both 2-dimensional and 30-

dimensional cases.

MOGA and MOPSO find only 21 solutions in these cases, for the step length of

the weights is set to 0.05. Thus, ψ1 and ψ2 can only take 21 different values. Conse-

quently, only 21 solutions can be obtained. Lessening the step length will certainly

lead to more solutions, however, the computation cost will increase accordingly and

it will not ameliorate the distribution of the solutions.

When the dimensionality of Function I is two, the non-dominated solutions ob-

tained by MOLA, MOGA and MOPSO are plotted in the objective space as shown

in Fig. 3.5(a). In order to distinguish the notations of different algorithms, not all

non-dominated solutions obtained by MOLA are plotted in the figures provided in

this section, but only representative solutions in the objective space are selected to

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.3 Compared with Weighted-sum Based Algorithms 81

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f1

f
2

MOGA
MOPSO
MOLA

0.5 1 1.5
0

0.5

1

1.5

2

2.5

f1

f
2

MOGA

MOPSO

MOLA

(a) (b)

Figure 3.5: Pareto fronts obtained by MOGA, MOPSO and MOLA on Function I:

(a) 2 dimensions; (b) 30 dimensions

show the intact shape of Pareto front obtained by MOLA. 3740 non-dominated so-

lutions are found by MOLA with 10,000 FEs. Performing the process 30 times, the

total number of solutions obtained by MOLA is not significantly different from each

run. The fact that MOLA finds more non-dominated solutions suggests that it can

provide more possible solutions that satisfy the optimisation targets. MOLA finds

the smooth fronts (that can be considered as the Pareto front) which have the same

shape and location in the objective space. For MOGA and MOPSO, 200 iterations

(200×50 = 10, 000 FEs) are performed for each combination of ψ1 and ψ2. MOGA

can only find solutions at the ends of the Pareto front found by MOLA, due to the

fact that the shape of the Pareto front is concave. The solutions of MOPSO gather

around the two ends of the Pareto front found by MOLA, however, MOGA does not

converge with 200 iterations. If the iterations are sufficient, the solutions obtained

by MOGA will also flock to the two ends of the Pareto front obtained by MOLA.

In the case of 30 dimensions, for MOGA and MOPSO, 300 iterations (300 ×
50 = 15, 000 FEs) are performed for each combination of ψ1 and ψ2. Similar to

the case of 2 dimensions, the solutions of MOPSO flock to the ends of the front

found by MOLA. MOGA cannot converge within 300 iterations, and its solutions

begin to flock to the ends of the front when the number of iterations is increased

to 1,000. With 15,000 FEs, MOLA finds 665 Pareto non-dominated solutions,

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.3 Compared with Weighted-sum Based Algorithms 82

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

f1

f
2

MOGA
MOPSO
MOLA

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOGA
MOPSO
MOLA

(a) (b)

Figure 3.6: Pareto fronts obtained by MOGA, MOPSO and MOLA on Function II:

(a) 2 dimensions; (b) 30 dimensions

which are much more than those obtained by MOGA and MOPSO. The attraction

of MOLA is greatly enhanced by the fact that the solutions found by MOLA can

dominate those obtained by MOGA and MOPSO, as shown in Fig. 3.5(b). MOLA

presents its superiority over the other two algorithms when the dimensionality of the

multi-objective function is large.

Function II

The problem was proposed by Fonseca et al. [108]. Both a low dimensionality

(N = 2) and a high dimensionality (N = 30) of the benchmark function have been

tested by the optimisation algorithms. In MOLA, parameter wc is set to 1 for both

cases, i.e. 2 dimensions and 30 dimensions.

This problem is a non-convex model which cannot be solved well by MOGA

and MOPSO. In the case of 2 dimensions, the solutions obtained by MOGA and

MOPSO locate at the two ends of the Pareto front in the objective space, as shown

in Fig. 3.6(a). MOLA finds 746 non-dominated solutions with 10,000 FEs.

When the dimensionality of Function II is 30, MOLA performs much better

than MOGA and MOPSO, as shown in Fig. 3.6(b). MOGA and MOPSO adopt 300

iterations for each combination of ψ1 and ψ2. MOGA can only find one solution

(1,1) in the objective space, while MOPSO finds three solutions, including (1,1) and

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.3 Compared with Weighted-sum Based Algorithms 83

0 0.2 0.4 0.6 0.8

−0.5

0

0.5

1

1.5

2

f1

f
2

MOGA
MOPSO
MOLA

Figure 3.7: Pareto fronts obtained by MOGA, MOPSO and MOLA on Function III

the other two solutions located on the two coordinates respectively. As for MOLA, it

finds 401 non-dominated solutions with 15,000 FEs, and these solutions are evenly

spread on the Pareto front.

Function III

The problem, which is a discontinuous Pareto front model, was proposed by Deb

in 1998 [102]. The true Pareto font for this problem comprises four disconnected

lines. In the case, the parameter wc is set to 0.001 for MOLA.

It can be seen from Fig. 3.7 that results obtained by MOGA and MOPSO with

400 iterations (400 × 50 = 20, 000 FEs) are far from satisfactory - only a paucity

of solutions have converged to the front, and they are centralized at the ends of the

first and fourth disconnected lines. On the second and third disconnected lines, no

non-dominated solutions have been found by MOGA and MOPSO. MOLA finds

677 non-dominated solutions with 3,000 FEs, and they are distributed evenly over

the four disconnected lines.

Function IV

This function is designed for disc break system, which is proposed by Osyczka

et al. [109] in 1995. The objectives of the design are to minimise the mass of the

brake and the stopping time. The search range of each variable is different, thus,

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.3 Compared with Weighted-sum Based Algorithms 84

0 1 2 3 4
0

5

10

15

20

f1

f
2

MOGA
MOPSO
MOLA

Figure 3.8: Pareto fronts obtained by MOGA, MOPSO and MOLA on Function IV

parameter wc of MOLA is set to different values for different variables. In this

case, each variable is divided into ten grids, thus, wc,i = [xmax,i − xmin,i]/10, where

i = 1, · · · , 4.

MOPSO and MOGA obtain 21 points respectively with 2,000 iterations. The

shape of the Pareto fronts obtained by algorithms MOGA and MOPSO is similar,

as shown in the two upper lines in Fig. 3.8. The non-dominated solutions found

by MOGA and MOPSO fall sparsely on the curve. This improvement is due to

the F (X) is convex. However, in practical applications, usually it is not known in

advance whether the target fitness function is convex or not, which is the problem

confronted by algorithms MOGA and MOPSO. With 3,660 FEs, MOLA obtains 216

non-dominated solutions, which spread evenly on the Pareto front, i.e. the bottom

curve in Fig. 3.8. It can be seen that the range of the Pareto front found by MOLA

is wider than that obtained by MOGA and MOPSO, and MOLA can find more

accurate results than other two algorithms.

3.3.3 Remarking

The computation time

In order to investigate the computation time of MOLA in comparison with MOGA

and MOPSO, they are used to optimise Function I in 10, 20, 30, 40 and 50 dimen-

sions respectively. The step length of weights ψ1 and ψ2 is set to 0.01 for MOPSO

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.3 Compared with Weighted-sum Based Algorithms 85

Table 3.1: The setting of Nfemin for solving Function I with different dimensionality

N 10 20 30 40 50

Nfemin 5,000 10,000 15,000 20,000 25,000

10 20 30 40 50
0

20

40

60

80

100

120

140

Dimensions

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

MOGA

MOPSO

MOLA

Figure 3.9: The computation time consumed by MOGA, MOPSO and MOLA in

solving multi-objective Function I with different dimensions.

and MOGA, which means that they can find 100 non-dominated solutions. Param-

eter Nfemax applied by MOLA is listed in Table 3.1; as for MOGA and MOPSO,

parameter Nfemax used for each combination of ψ1 and ψ2 is the same as that used in

MOLA. The computation time consumed by the three algorithms in solving Func-

tions I is given in Fig.3.9, which shows that the MOLA reduces the computation

time in comparison with the other two algorithms. However, when the dimensional-

ity reaches 50, the performance of MOGA and MOPSO is far from satisfactory. As

shown in Fig.3.10, the solutions found by MOPSO flock to the two ends; MOGA

cannot converge within 25,000 FEs, while MOLA can still find a smooth Pareto

front when the dimensionality is large.

The parametric analysis of MOLA

Parameter wc is related to the resolution of dividing the search space to grids

and parameter Nfemax is used to terminate the computation. Both are concerned

with the accuracy of solution. Parameter wc should be set appropriately to ensure

the accuracy of Pareto front obtained by MOLA. With smaller wc, more accurate

Pareto optimal can be obtained. However, a small wc requires a larger Nfemax for

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.3 Compared with Weighted-sum Based Algorithms 86

0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

f1

f
2

MOGA

MOPSO

MOLA

Figure 3.10: Pareto fronts obtained by MOGA, MOPSO and MOLA on 50-

dimensional Function I

Table 3.2: The number of non-dominated solutions obtained by MOLA when wc

and Nfemax are set to different values

wc 1 0.1 0.01

Nfemax 15,000 25,000 40,000

Number 525 1601 2391

MOLA to converge. Therefore, wc is the parameter to tradeoff between the quality

of Pareto front and computation load. When both parameters are set to different

values, the number of non-dominated solutions obtained by MOLA varies. A large

number of non-dominated solutions means it can provide more possible solutions

that satisfy the optimisation targets. Table 3.2 lists the number of non-dominated

solutions obtained using a range of different wc and Nfemax, which are consistent

with the analysis. The Pareto fronts obtained when wc is set to 1 (Nfemax = 15, 000)

and 0.01 (Nfemax = 40, 000) respectively are shown in Fig. 3.11. The Pareto front

that is obtained when wc = 0.01 is wider in comparison with the case when wc = 1.

Both Nfemax and wc should be set properly in a specific application so as to ensure

the quality of solution and the efficiency of computation.

Convexity of Pareto fronts and weighted-sum methods

The Pareto fronts of multi-objective problems could be convex or non-convex.

To solve the problems which have convex Pareto fronts, as illustrated in Fig. 3.1, the

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 87

0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

f1

f
2

0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

f1

f
2

 w
 c

= 1

 w
 c

= 0.01

Figure 3.11: Pareto front obtained by MOLA on Function I when wc and Nfemax are

set to different values

weighted-sum methods can be employed to find the whole Pareto front, by specify-

ing different scalar weights to the multiple objectives and then combining multiple

objectives into a single composed function, which can be solved by many single-

objective optimisation algorithms. However, the solutions obtained by these meth-

ods highly depend on the values (more precisely, the relative values) of the weights

specified. For example, as shown in Fig. 3.12, the purpose is to find the Pareto front

of the problem whose objectives are f1 and f2. The solution, obtained by employing

weights [0.5 0.5] (i.e. to minimise 0.5 × f1 + 0.5 × f2), is denoted by solid circle,

and that found by minimising 0.3× f1 + 0.7× f2 is denoted by solid square. It can

be seen that in order to find the whole Pareto front, the number of weight combi-

nations should be large enough. It may be noticed that weighted-sum methods are

essentially subjective, due to that the weights which represent one’s favor among

multiple objectives are required.

3.4 Compared with Pareto Front-based Algorithms

3.4.1 Performance metrics

If the Pareto fronts found by two algorithms are quite different, the performance

between the algorithms can be evaluated by directly observing the Pareto fronts.

However, sometimes, the Pareto fronts found by different algorithms are similar vi-

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 88

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Objective 1

O
b

je
c
ti
v
e

 2

Pareto front for objectives f
1
 and f

2

Pareto front for objectives 0.5× f
1
 and 0.5× f

2

Pareto front for objectives 0.3× f
1
 and 0.7× f

2

Pareto solution by minimizing 0.5× f
1
+0.5× f

2

Pareto solution by minimizing 0.3× f
1
+0.7× f

2

Figure 3.12: Illustration of weighted-sum methods

sually, and it is difficult to distinguish between them with bare eyes. In this case,

performance metrics are required to assist in the performance evaluation of the al-

gorithms. Four widely used performance metrics are introduced here.

Distance metric

Distance metric, denoted as D̃, measures the extent of convergence to a known

set of Pareto-optimal solutions [29]. First, a set of uniformly spaced Pareto-optimal

solutions are selected from the true Pareto front in the objective space. For each

solution, the Euclidean distances between the solution and all the Pareto-optimal

solutions selected on the true Pareto front are calculated, and the minimum Eu-

clidean distance is obtained for the solution. Then the obtained minimum Euclidean

distances of all solutions are averaged and used as the distance metric. The smaller

the value of this metric is, the better the convergence toward the Pareto front is.

Hypervolume indicator

The hypervolume indicator has been widely used in evolutionary multi-objective

optimisation to evaluate the performance of search algorithms [110]. It computes

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 89

the volume (in the objective space) covered by the non-dominated solutions of the

problems in which all objectives are to be minimised, as given in Fig. 3.13. Math-

ematically, for each solution Fi ∈ L (L denotes the set of the non-dominated solu-

tions), a hypercube vi is constructed with a reference point and the solution Fi as

the diagonal corners of the hypercube. The reference point can simply be found by

constructing a vector of the worst objective function values. Thereafter, the union of

all hypercubes is found, and its hypervolume (HV) is calculated according to [111]:

HV = volumn(

|L|
⋃

i=1

vi) (3.4.1)

Higher value of this performance indicator implies more desirable solutions. One

property of this indicator is that it measures both convergence to the true Pareto front

and diversity of the obtained solutions.

Minimize f¡M
in

im
iz

e f

¢
Obtained solutions

Reference point

Figure 3.13: The illustration of hypervolume

Diversity metric

Diversity metric △ is to measure the extent of spread among the obtained so-

lutions [29]. First, the Euclidean distances between consecutive solutions in the

obtained non-dominated set of solutions are calculated and denoted as di. Then the

average of these distances, d̄, can be calculated. Apart from these distances, the cal-

culation of this metric also involves two extreme solutions, which are the two ends

of the true Pareto front in the objective space respectively, as given in Fig. 3.14.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 90

Then, the diversity metric can be formulated as:

△ =
df + dl +

∑n−1
i=1 |di − d̄|

n+ 1
(3.4.2)

where parameters df and dl are the Euclidean distances between the two extreme

solutions and the boundary solutions of the non-dominated set; n is the number of

total non-dominated solutions obtained by the algorithm. Smaller value of diver-

sity metric △ implies wide and uniform spreadout of the obtained non-dominated

solutions.

Minimize f£M
in

im
iz

e f

¤
Extreme solution 2

Extreme solution 1

d¥
d¦d£

d§
d¨

Obtained solutions

Figure 3.14: The illustration of the diversity metric

Summary attainment surfaces

Some performance indicators do not adequately express the amount by which

one Pareto front should be judged better than another. Looking at the shape of the

obtained Pareto front can provide insight into the strengths and weaknesses of an

optimiser. Especially when the true Pareto front is known, seeing the distance away

from it and coverage along it can provide a supplement to any performance metric.

In this performance measure, the outcome of a run is not measured as a scalar, but

as an attainment surface in mf-dimensional space (where mf is the number of ob-

jectives) [112]. A summary attainment surface (s.a.s) is defined as the union of all

tightest goals that have been attained (independently) in precisely s of the runs of

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 91

a sample of n runs, for any s ∈ 1, · · · , n. This expresses the performance in terms

of the quality attained in a certain fraction of sample runs. For example, the sample

median quality is the best estimator of what one would expect to achieve in 50% of

runs. Assume three independent runs are executed, and their corresponding attain-

ment surfaces are plotted in Fig. 3.15 (a). Then, the best, median and worst s.a.s

over the three independent runs can be illustrated in Fig. 3.15. For convenience, the

corner where the line changes from vertical to horizontal is named as convex corner.

The vertex of the convex corner, named convex corner point, is corresponding to the

non-dominated solution found by the algorithm. The corner where the line transfers

from horizontal to vertical is called concave corner. The concave corner shows the

gap where the algorithm can not find any solution.

Comparing to the way of simply plotting solution points, using s.a.s can display

the outcome of multiple runs of one optimiser. With the plot of the attainment

surfaces, it is much easier to identify ‘gaps’ (i.e. concave corners) in the distribution

of solutions, hence, it is easier to interpret results correctly. It may be noticed that

the s.a.s emphasizes the distribution of solutions, and also indicates the quality of

the individual solutions.

3.4.2 Simulation results

In this section, FOLA is fully compared with two Pareto front-based algorithms,

a promising multi-objective evolutionary algorithm based on decomposition (MOEA/D)

[103], which was ranked first in the unconstrained MOEA competition [113], and

non-dominated sorting genetic algorithm II (NSGA-II) [29]. The comparison is

based on three groups of multi-objective benchmark functions, which represent a

wide range of challenging multi-objective optimisation problems. The parameter

settings of MOEA/D and NSGA-II follow the suggestions in [103] and [29] respec-

tively. The parameters of MOLA are the same as those employed in FOLA except

for D = 20, M = 50 and Nfemax.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 92

Run 1
Run 2
Run 3

Minimize f©M
in

im
iz

e f

ª

Minimize f©M
in

im
iz

e f

ª
(a)

(b)

Best summary attainment surface
Median summary attainment surface
Worst summary attainment surface

Convex corner
Concave corner

Figure 3.15: The illustration of s.a.s. (a) Attainment surfaces of three independent

runs; (b) s.a.s. obtained from the three runs

Multi-objective benchmark functions: Group 1

The first group of multi-objective benchmark functions includes two benchmark

functions and their transformed formats, as given in Appendix A.5. The perfor-

mance of MOLA in solving these functions may reflect its applicability for different

cases encountered in practise. The first set of functions, denoted as Fun1, tests the

ability of the algorithms in solving different scales of non-convex problems. Fun2

is to investigate the affect of problem characteristics (with respect to the symmetry

of the two objective functions) on the performance of the algorithms.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 93

Function 1

Fun1 [27] has three different dimensional scales: 30-dimensional Fun1-1, 50-

dimensional Fun1-2 and 70-dimensional Fun1-3, as given in Appendix A.5. For

MOEA/D and MOLA,Nfemax = 15, 000 is employed to solve Fun1-1, whileNfemax =

25, 000 is set for Fun1-2, and Nfemax = 30, 000 is set for Fun1-3. As for NSGA-II,

Nfemax = 150, 000, Nfemax = 250, 000 and Nfemax = 300, 000 are set for Fun1-1,

Fun1-2 and Fun1-3 respectively.

The extreme solutions are estimated by adopting the boundary solutions of the

estimated Pareto front which is composed of all the non-dominated solutions found

by the three algorithms. The reference point can be found by constructing a vector

of the worst objective fitness values found by the three algorithms. Table 3.3 lists

the setting of the reference solution and extreme solutions adopted, together with

the results (including the mean and standard deviation of the obtained HV and ∆)

obtained by the three algorithms in solving Fun1. Distance metric is not employed

in this case, as the true Pareto front is unknown. It can be seen that MOLA can

constantly find larger mean HV than MOEA/D and NSGA-II in solving the three

problems; additionally, MOLA can find much smaller mean ∆ than the other two

algorithms. In some sense, this fact suggests that MOLA can find more accurate

non-dominated solutions than MOEA/D and NSGA-II, and furthermore, the solu-

tions found by MOLA is widely and uniformly spread. To visually observe both the

strengths and weaknesses of the three algorithms, the best, median and worst s.a.s.

over 30 independent runs are given in Figs. 3.16, 3.17 and 3.18, which are for Fun1-

1, Fun1-2 and Fun1-3 respectively. In Fig. 3.16, MOLA finds better Pareto fronts

than MOEA/D and NSGA-II in terms of the best s.a.s. With respect to the median

s.a.s., MOLA finds better non-dominated solutions than MOEA/D when f1 < 1.1.

As for the worst s.a.s., MOEA/D obtains better Pareto front than MOLA. As the

dimensionality increases, the superiority of MOLA over MOEA/D and NSGA-II is

obvious, especially when N = 70, as given in Fig. 3.18, where MOLA outperforms

MOEA/D and NSGA-II greatly with respect to the best, median and worst s.a.s.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 94

Table 3.3: The setting of reference solution and extreme solutions; HV and ∆ ob-

tained by MOEA/D, NSGA-II and MOLA on Fun1 (including mean and standard

deviation)

Fun1-1

Setting
Reference solution Extreme solution 1 Extreme solution 2

[1.31 1.69] [0.5868 1.6696] [1.285 0.3291]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.2671 0.0035 0.0119 0.0022

NSGA-II 0.1564 0.0822 0.0146 0.0027

MOLA 0.2702 0.0262 0.0061 0.0019

Fun1-2

Setting
Reference solution Extreme solution 1 Extreme solution 2

[1.38 1.9] [0.5843 1.87] [1.3721 0.3627]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.2741 0.0146 0.0156 0.0012

NSGA-II 0.1452 0.0776 0.0178 0.0025

MOLA 0.3021 0.0250 0.0078 0.0008

Fun1-3

Setting
Reference solution Extreme solution 1 Extreme solution 2

[1.63 2.64] [0.6564 2.0305] [1.432 0.4322]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.9007 0.0328 0.0164 0.0021

NSGA-II 0.2574 0.2931 0.0252 0.0067

MOLA 1.1837 0.0490 0.0043 0.0012

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 95

0.4 0.6 0.8 1 1.2 1.4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f1

f
2

MOEA/D
NSGA−II
MOLA

(a) Best s.a.s.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f1

f
2

MOEA/D
NSGA−II
MOLA

(b) Median s.a.s.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f1

f
2

MOEA/D
NSGA−II
MOLA

(c) Worst s.a.s.

Figure 3.16: s.a.s. obtained by MOEA/D, NSGA-II and MOLA on Fun1-1

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 96

0.5 1 1.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f
2

MOEA/D
NSGA−II
MOLA

(a) Best s.a.s.

0.8 1 1.2 1.4 1.6
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f
2

MOEA/D
NSGA−II
MOLA

(b) Median s.a.s.

0.8 1 1.2 1.4 1.6
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f
2

MOEA/D
NSGA−II
MOLA

(c) Worst s.a.s.

Figure 3.17: s.a.s. obtained by MOEA/D, NSGA-II and MOLA on Fun1-2

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 97

0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

f1

f
2

MOEA/D
NSGA−II
MOLA

(a)Best s.a.s.

0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

f1

f
2

MOEA/D
NSGA−II
MOLA

(b) Median s.a.s.

0.8 1 1.2 1.4 1.6 1.8 2
0.5

1

1.5

2

2.5

3

f1

f
2

MOEA/D
NSGA−II
MOLA

(c) Worst s.a.s.

Figure 3.18: s.a.s. obtained by MOEA/D, NSGA-II and MOLA on Fun1-3

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 98

Function 2

The original form of the set of problems is Fun2-1, which was proposed by

Fonseca et al. [108]. The main feature of Fun2-2 is that its two objective functions

have different ranges of fitness values. For Fun2-3, the ranges of the two objective

functions are the same, however, the two objective functions are unsymmetric, as

one of the objective function has the power of 2, and the other has the power of

6. To solve this set of functions, Nfemax = 15, 000 is employed by MOEA/D and

MOLA, and Nfemax = 150, 000 is set for NSGA-II.

Table 3.4 lists the reference solution and extreme solutions that are employed in

calculating HV and ∆ respectively. The mean and standard deviation of HV and

∆ obtained over 30 independent runs in solving Fun2 are also listed in Table 3.4.

MOLA can find larger mean HV than both MOEA/D and NSGA-II in solving the

three cases. Besides that, MOLA can find smaller mean ∆ than MOEA/D, with the

exception of Fun2-1, in which MOLA and MOEA/D find the equivalent mean and

standard deviation of ∆.

The s.a.s. obtained by the three algorithms on Fun2-1, Fun2-2 and Fun2-3 are

given in Figs. 3.19, 3.20 and 3.21 respectively. For Fun2-1, MOLA and MOEA/D

find similar s.a.s., while the surfaces found by NSGA-II are not accurate comparing

to those obtained by MOEA/D and MOLA. As for Fun2-2, MOLA and MOEA/D

also find similar solutions when f1 > 0.6, however, the solutions obtained by

MOLA are slightly better than those found by MOEA/D when f1 < 0.6. In this

case, NSGA-II can also find acceptable solutions, but these solutions are worse than

those found by MOEA/D and MOLA. MOLA outperforms MOEA/D and NSGA-

II obviously in solving Fun2-3. It can be seen from Fig. 3.21 (a) and (b) that the

performance of MOEA/D degrades when f1 > 0.2, in terms of the accuracy and

smoothness of the obtained surfaces. MOLA can still perform well on this function,

except for the worst s.a.s., on which the non-dominated solutions found by MOLA

are slightly worse than those of MOEA/D when f1 < 0.2. For this set of functions,

the best and median s.a.s. found by NSGA-II are acceptable, however, its worst

s.a.s. deviates widely from the best s.a.s. It suggests that the results obtained by

NSGA-II vary widely over different independent runs.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 99

Table 3.4: The setting of reference solution and extreme solutions; HV and ∆ ob-

tained by MOEA/D, NSGA-II and MOLA on Fun2 (including mean and standard

deviation)

Fun2-1

Setting
Reference solution Extreme solution 1 Extreme solution 2

[0.985 0.984] [7.504×10−4 0.9821] [0.9809 0.0022]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.2948 0.0019 0.0049 0.0011

NSGA-II 0.2156 0.0340 0.0100 0.0010

MOLA 0.2972 0.0064 0.0049 0.0011

Fun2-2

Setting
Reference solution Extreme solution 1 Extreme solution 2

[0.99 2.47] [4.2805×10−4 2.4586] [0.9819 0.2025]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.6822 0.0094 0.0124 0.0004

NSGA-II 0.5146 0.1477 0.0199 0.0027

MOLA 0.7061 0.0130 0.0086 0.0021

Fun2-3

Setting
Reference solution Extreme solution 1 Extreme solution 2

[1 0.08] [2.3826×10−4 0.069] [0.9778 1.778×10−11]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.0666 0.0008 0.0106 0.0003

NSGA-II 0.0632 0.0090 0.0057 0.0018

MOLA 0.0707 0.0008 0.0072 0.0022

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 100

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

f1

f
2

MOEA/D
NSGA−II
MOLA

(a)Best s.a.s.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

f1

f
2

MOEA/D
NSGA−II
MOLA

(b) Median s.a.s.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

f1

f
2

MOEA/D
NSGA−II
MOLA

(c) Worst s.a.s.

Figure 3.19: s.a.s. obtained by MOEA/D, NSGA-II and MOLA on Fun2-1

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 101

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

f1

f
2

MOEA/D
NSGA−II
MOLA

(a) Best s.a.s.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

f1

f
2

MOEA/D
NSGA−II
MOLA

(b) Median s.a.s.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

f1

f
2

MOEA/D
NSGA−II
MOLA

(c) Worst s.a.s.

Figure 3.20: s.a.s. obtained by MOEA/D, NSGA-II and MOLA on Fun2-2

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 102

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

f1

f
2

MOEA/D
NSGA−II
MOLA

(a) Best s.a.s.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f1

f
2

MOEA/D
NSGA−II
MOLA

(b) Median s.a.s.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f1

f
2

MOEA/D
NSGA−II
MOLA

(c) Worst s.a.s.

Figure 3.21: s.a.s. obtained by MOEA/D, NSGA-II and MOLA on Fun2-3

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 103

Multi-objective benchmark functions: Group 2

This set of benchmark functions, as given in Appendix A.5, was used as multi-

objective optimisation benchmark functions for CEC special session and compe-

tition [3] [114]. These functions, having complicated Pareto sets, are applied to

investigate the impact of the Pareto set shapes on the performance of these algo-

rithms, and evaluate the abilities of the algorithms to deal with complicated Pareto

set shapes. Apart from HV and ∆, D̃ is also used to measure the performance of

MOEA/D, NSGA-II and MOLA, as the true Pareto fronts of the problems are know.

Since the ranges of the objective functions are the same for all the problems, i.e.

[0, 1], reference solution is set to [1, 1] for all the problems; and the two extreme

solutions are set to [0, 1] and [1, 0]. The same Nfemax = 300, 000 is employed by the

three algorithms.

Table 3.5 lists the mean and standard deviation of HV , ∆ and D̃ obtained by

MOEA/D, NSGA-II and MOLA in solving the benchmark functions of group 2.

Figs. 3.22-3.28 show the best, median and worst s.a.s. obtained by the three algo-

rithms in solving the functions of group 2. In these figures, the true Pareto fronts are

also provided, in order to make the comparison convenient.

In terms of the mean ofHV , MOLA performs better than MOEA/D and NSGA-

II on Fun4-Fun9, and has equal performance as MOEA/D on Fun3. In addition, the

standard deviation of HV obtained by MOLA is much smaller than that obtained

by MOEA/D and NSGA-II.

The distance metric obtained by MOLA is smaller than MOEA/D and NSGA-

II on these seven functions with the exception of Fun8, on which MOEA/D has a

smaller value. The reason that the distance metric obtained by MOLA is larger than

that of MOEA/D is because MOLA finds some non-dominated solutions above the

disconnected area of the Pareto front, as given in Fig. 3.27. These non-dominated

solutions make the distance metric obtained by MOLA larger than expected. It

can be seen from the median s.a.s. (in Fig. 3.27 (a)) that the number of the non-

dominated solutions found by MOEA/D is five, which can by counted by adding the

number of the convex corner points and the two boundary solutions. Additionally,

in Fig. 3.27, the three surfaces (including the best, median and worst s.a.s.) ob-

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 104

tained by MOLA are quite similar, while those obtained by MOEA/D and NSGA-II

vary widely. It means that the performance of MOLA is stable, in comparison with

MOEA/D and NSGA-II.

As for ∆, MOLA finds smaller mean values than NSGA-II with the exception of

Fun8. Compared with MOEA/D, MOLA performs better on these functions except

for Fun6 and Fun8. In Fig. 3.25, the Pareto front found by MOLA is not smooth

as that of MOEA/D, which explains the reason why MOLA has a larger mean value

of ∆. However, it can be seen from Fig. 3.25 that the performance of MOLA is

much better than MOEA/D in terms of the best, median and worst s.a.s., since the

surfaces found by MOLA are much closer to the true Pareto front. This also explains

why sometimes more than one performance measure is required for comprehensive

comparison. As for Fun8, as analyzed above, the two disconnected gaps result in

large values of di in (3.4.2), which makes ∆ inappropriate as performance metric in

this case.

To visually compare the performance of the three algorithms over a number of

independent runs, their s.a.s. in solving these functions (with the exception of Fun6

and Fun8 that have been discussed above) are discussed in detail as follows:

• For Fun3, it can be seen from Fig. 3.22 that MOLA and MOEA/D can find

the best and median s.a.s. which have similar shapes and location as the true

Pareto front. The worst s.a.s. found by MOLA is also very accurate compared

with the true Pareto front. As for MOEA/D, its worst s.a.s. is also very close

to the true Pareto front except for the small area where f2 > 0.8. The s.a.s.

(including the best, median, and worst ones) found by NSGA-II are not so

accurate compared with those found by MOEA/D and MOLA.

• For Fun4, as given in Fig. 3.23, the best and median s.a.s. found by MOLA are

almost the same as the true Pareto front, while the worst s.a.s. is inaccurate

when f1 > 0.9. As for MOEA/D, its best s.a.s. is close to the true Pareto

front. However, there are gaps (i.e. concave corners) existing on the median

and worst s.a.s. when f1 > 0.8. It suggests that MOEA/D cannot find any

non-dominated solution locating in this area. As for NSGA-II, its median

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 105

s.a.s. is inaccurate when f1 > 0.7, and its worst s.a.s. is inaccurate when

f1 > 0.6.

• The s.a.s. obtained by these algorithms on Fun5 are given in Fig. 3.24. The

best and median s.a.s. found by MOEA/D and MOLA are quite accurate. For

the worst s.a.s., MOLA performs better than MOEA/D. In this case, NSGA-II

can only find a limited area of the true Pareto front.

• Fun7 has a discrete Pareto front, as shown in Fig. 3.25. It can be seen that

MOLA can successfully solve this function, while MOEA/D and NSGA-II

have poor performance.

• As for Fun9, MOLA and MOEA/D perform well in terms of the best, median

and worst s.a.s., as shown in Fig. 3.28. NSGA-II can find approximately half

of the Pareto front accurately, while its performance is poor when f1 > 0.5,

as given in the Fig. 3.28 (b).

Multi-objective benchmark function: Group 3

Group 3 includes four benchmark functions, which have three objectives, as

given in Appendix A.5. The first two functions have complicated Pareto set [114],

and their dimensionality is set to 30. The latter two functions are known as functions

DTLZ1 and DTLZ2 respectively [103], and they are 10-dimensional. The same

Nfemax = 300, 000 is adopted by the three algorithms. The comparison of the three

algorithms are carried out through the performance metric of D̃. Table 3.6 lists the

mean and standard deviation of D̃. It can be seen that MOLA can constantly find

smaller mean D̃ than MOEA/D and NSGA-II.

Since D̃ cannot reveal the spreadout of the Pareto solutions, s.a.s. is also em-

ployed to observe the smoothness and spreadout of the Pareto fronts found by the

three algorithms. In order to observe the s.a.s. clearly, the coordination of f3 is re-

versed, as given in Figs. 3.29-3.32, which show the s.a.s obtained by the algorithms

when solving the benchmark functions of group 3. The s.a.s. found by NSGA-II on

Fun10-Fun12 are inacceptable. NSGA-II has better performance in solving Fun13,

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 106

Table 3.5: D̃, HV and ∆ obtained by MOEA/D, NSGA-II and MOLA on Fun3-

Fun9 (including mean and standard deviation)

D̃ HV ∆

Mean Std Mean Std Mean Std

Fun3

MOEA/D 5.8193×10−6 3.0964×10−6 0.6628 0.0011 0.0013 8.1690×10−5

NSGA-II 0.0220 0.0286 0.5516 0.0449 0.0193 0.0058

MOLA 5.1015×10−6 1.5555×10−6 0.6628 8.1822×10−4 0.0012 1.6661×10−4

Fun4

MOEA/D 1.9535×10−4 1.7043×10−4 0.6558 0.0051 0.0019 1.0105×10−4

NSGA-II 0.0011 8.4128×10−4 0.6280 0.0045 0.0113 0.0021

MOLA 7.6169×10−6 3.3100×10−6 0.6608 8.5643×10−4 0.0010 1.0690×10−4

Fun5

MOEA/D 8.4750×10−5 1.1381×10−4 0.6555 0.0102 0.0011 2.2503×10−4

NSGA-II 0.0379 0.0156 0.3868 0.0415 0.0204 0.0024

MOLA 4.0240×10−6 5.8248×10−7 0.6611 0.0014 4.6123×10−4 7.2860×10−5

Fun6

MOEA/D 0.0046 6.4575×10−4 0.2442 0.0043 0.0024 1.8647×10−4

NSGA-II 0.0069 3.4784×10−4 0.2267 0.0038 0.0143 6.7051×10−4

MOLA 4.9992×10−4 4.1571×10−5 0.2976 0.0011 0.0053 5.5715×10−4

Fun7

MOEA/D 0.0897 0.0239 0.0312 0.0237 0.0149 0.0074

NSGA-II 7.7018 4.0972 0 0 0.1047 0.0415

MOLA 8.9431×10−4 4.9639×10−4 0.4585 5.5918×10−4 0.0081 0.0013

Fun8

MOEA/D 0.0180 0.0120 0.2404 0.0630 0.0145 0.0132

NSGA-II 0.0191 0.0124 0.1519 0.0859 0.0229 0.0088

MOLA 0.0330 0.0069 0.3013 0.0132 0.0235 0.0023

Fun9

MOEA/D 1.5085×10−5 1.6198×10−5 0.4962 8.3737×10−4 0.0013 3.2527×10−4

NSGA-II 0.0214 0.0207 0.3200 0.1822 0.0185 0.0072

MOLA 3.7590×10−6 1.3175×10−6 0.4966 4.9602×10−4 8.3782×10−4 1.4161×10−4

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 107

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOEA/D: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOEA/D: Best
MOEA/D: Worst
PF

(a) Median s.a.s of MOEA/D (b) Best and worst s.a.s of MOEA/D

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

NSGA−II: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

NSGA−II: Best
NSGA−II: Worst
PF

(c) Median s.a.s of NSGA-II (d) Best and worst s.a.s of NSGA-II

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Best
MOLA: Worst
PF

(e) Median s.a.s of MOLA (f) Best and worst s.a.s of MOLA

Figure 3.22: s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun3

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 108

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOEA/D: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOEA/D: Best
MOEA/D: Worst
PF

(a) Median s.a.s of MOEA/D (b) Best and worst s.a.s of MOEA/D

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

NSGA−II: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

NSGA−II: Best
NSGA−II: Worst
PF

(c) Median s.a.s of NSGA-II (d) Best and worst s.a.s of NSGA-II

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Best
MOLA: Worst
PF

(e) Median s.a.s of MOLA (f) Best and worst s.a.s of MOLA

Figure 3.23: s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun4

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 109

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOEA/D: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOEA/D: Best
MOEA/D: Worst
PF

(a) Median s.a.s of MOEA/D (b) Best and worst s.a.s of MOEA/D

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

f1

f
2

NSGA−II: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

NSGA−II: Best
NSGA−II: Worst
PF

(c) Median s.a.s of NSGA-II (d) Best and worst s.a.s of NSGA-II

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Best
MOLA: Worst
PF

(e) Median s.a.s of MOLA (f) Best and worst s.a.s of MOLA

Figure 3.24: s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun5

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 110

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOEA/D: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOEA/D: Best
MOEA/D: Worst
PF

(a) Median s.a.s of MOEA/D (b) Best and worst s.a.s of MOEA/D

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

NSGA−II: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

NSGA−II: Best
NSGA−II: Worst
PF

(c) Median s.a.s of NSGA-II (d) Best and worst s.a.s of NSGA-II

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Best
MOLA: Worst
PF

(e) Median s.a.s of MOLA (f) Best and worst s.a.s of MOLA

Figure 3.25: s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun6

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 111

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f1

f
2

MOEA/D: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f1

f
2

MOEA/D: Best
MOEA/D: Worst
PF

(a) Median s.a.s of MOEA/D (b) Best and worst s.a.s of MOEA/D

0 1 2 3 4 5
0

1

2

3

4

5

6

7

f1

f
2

NSGA−II: Median
PF

0 1 2 3 4 5
0

1

2

3

4

5

6

7

f1

f
2

NSGA−II: Best
NSGA−II: Worst
PF

(c) Median s.a.s of NSGA-II (d) Best and worst s.a.s of NSGA-II

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Best
MOLA: Worst
PF

(e) Median s.a.s of MOLA (f) Best and worst s.a.s of MOLA

Figure 3.26: s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun7

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 112

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOEA/D: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOEA/D: Best
MOEA/D: Worst
PF

(a) Median s.a.s of MOEA/D (b) Best and worst s.a.s of MOEA/D

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

NSGA−II: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

NSGA−II: Best
NSGA−II: Worst
PF

(c) Median s.a.s of NSGA-II (d) Best and worst s.a.s of NSGA-II

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Best
MOLA: Worst
PF

(e) Median s.a.s of MOLA (f) Best and worst s.a.s of MOLA

Figure 3.27: s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun8

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.4 Compared with Pareto Front-based Algorithms 113

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOEA/D: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOEA/D: Best
MOEA/D: Worst
PF

(a) Median s.a.s of MOEA/D (b) Best and worst s.a.s of MOEA/D

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

NSGA−II: Median
PF

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

NSGA−II: Best
NSGA−II: Worst
PF

(c) Median s.a.s of NSGA-II (d) Best and worst s.a.s of NSGA-II

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Median
PF

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

MOLA: Best
MOLA: Worst
PF

(e) Median s.a.s of MOLA (f) Best and worst s.a.s of MOLA

Figure 3.28: s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun9

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.5 Conclusions 114

however, the obtained surfaces are not smooth. Since NSGA-II has poor perfor-

mance in solving this set of functions, the comparison is mainly carried out between

MOLA and MOEA/D, as discussed in the following:

• For Fun10, the true Pareto front is f 2
1 +f 2

2 +f 3
3 = 1, where 0 ≤ f1, f2, f3 ≤ 1.

Fig. 3.29 provides the best, median and worst s.a.s. found by MOEA/D,

NSGA-II and MOLA. In terms of the best and median s.a.s., MOEA/D cannot

find the solutions that locate at f1 < 0.4 and f2 < 0.6, which can be revealed

by the gaps in the figure; MOLA can find the solutions which cover the whole

true Pareto front. As for the worst s.a.s., most of the area of the true Pareto

front cannot be found by MOEA/D, while MOLA can find around half of

them.

• The true Pareto front of Fun11 includes two separate triangle surfaces: the

first triangle surface can be formulated as 0 ≤ f3 ≤ 1, 0 ≤ f1 ≤ 1
4
(1 − f3),

f2 = 1−f1−f3; while the second one is 0 ≤ f3 ≤ 1, 3
4
(1−f3) ≤ f1 ≤ 1, f2 =

1− f1− f3. For this function, both MOEA/D and MOLA can find acceptable

s.a.s., as given in Fig. 3.30. However, for the worst s.a.s., MOEA/D can only

find one of the two triangle surfaces, while MOLA can still find both of the

triangle surfaces.

• The true Pareto front of Fun12 is a big triangle surface
∑3

i=1 fi = 1 with fi ≥
0. In this case, MOLA can find smoother s.a.s.(including the best, median and

worst ones) than MOEA/D, as shown in Fig. 3.31.

• As for Fun13, its true Pareto front is
∑3

i=1 f
2
i = 1 with fi ≥ 0. It can be seen

from Fig. 3.32 that the best, median and worst s.a.s. found by MOLA are

smoother than those obtained by MOEA/D.

3.5 Conclusions

This chapter has presented a multi-objective optimisation by learning automata

(MOLA), which capitalises on the merits of the structure of multiple automata, the

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.5 Conclusions 115

Table 3.6: D̃ obtained by NSGA-II, MOEA/D and MOLA on Fun10-Fun13 (in-

cluding mean and standard deviation)

D̃

Mean Std

Fun10

MOEA/D 0.0016 6.4469×10−4

NSGA-II 3.8508 0.9978

MOLA 0.0015 6.3562×10−4

Fun11

MOEA/D 0.0167 0.0169

NSGA-II 28.0860 13.0810

MOLA 0.0035 0.0012

Fun12

MOEA/D 1.5771×10−4 4.0956×10−5

NSGA-II 2.5456×103 1.0898×103

MOLA 6.5282×10−5 9.0417×10−5

Fun13

MOEA/D 0.0076 4.8336×10−6

NSGA-II 0.0153 6.2305×10−4

MOLA 0.0048 0.0001

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.5 Conclusions 116

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
2

4
6

0

2

4

0

2

4

6

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

(a) Best s.a.s (MOEA/D); (b) Best s.a.s (NSGA-II); (c) Best s.a.s (MOLA)

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
2

4
6

0

2

4

0

2

4

6

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

(d) Median s.a.s (MOEA/D); (e) Median s.a.s (NSGA-II); (f) Median s.a.s (MOLA)

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
2

4
6

0

2

4

0

2

4

6

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

1

2

0

0.5

1

1.5

Minimize f1

Minimize f2

M
in

im
iz

e
f
3

(g) Worst s.a.s (MOEA/D); (h) Worst s.a.s (NSGA-II); (i) Worst s.a.s (MOLA)

Figure 3.29: s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun10

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.5 Conclusions 117

0

1

2

0

1

2

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
5

10
15

0

2

4

6

0

2

4

6

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

(a) Best s.a.s (MOEA/D); (b) Best s.a.s (NSGA-II); (c) Best s.a.s (MOLA)

0

1

2

0

1

2

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
5

10
15

0

2

4

6

0

2

4

6

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

(d) Median s.a.s (MOEA/D); (e) Median s.a.s (NSGA-II); (f) Median s.a.s (MOLA)

0

1

2

0

1

2

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
5

10
15

0

2

4

6

0

2

4

6

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0

1

2

0

1

2

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

(g) Worst s.a.s (MOEA/D); (h) Worst s.a.s (NSGA-II); (i) Worst s.a.s (MOLA)

Figure 3.30: s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun11

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.5 Conclusions 118

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0

50

100

0

100

200

0

20

40

60

80

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

(a) Best s.a.s (MOEA/D); (b) Best s.a.s (NSGA-II); (c) Best s.a.s (MOLA)

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0

50

100

0

100

200

0

20

40

60

80

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

(d) Median s.a.s (MOEA/D); (e) Median s.a.s (NSGA-II); (f) Median s.a.s (MOLA)

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0

50

100

0

100

200

0

20

40

60

80

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1

Minimize f2

M
in

im
iz

e
f
3

(g) Worst s.a.s (MOEA/D); (h) Worst s.a.s (NSGA-II); (i) Worst s.a.s (MOLA)

Figure 3.31: s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun12

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.5 Conclusions 119

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

2

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

(a) Best s.a.s (MOEA/D); (b) Best s.a.s (NSGA-II); (c) Best s.a.s (MOLA)

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

2

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

(d) Median s.a.s (MOEA/D); (e) Median s.a.s (NSGA-II); (f) Median s.a.s (MOLA)

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

2

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

0
0.5

1
1.5

0

0.5

1

1.5

0

0.5

1

1.5

Minimize f1
Minimize f2

M
in

im
iz

e
f
3

(g) Worst s.a.s (MOEA/D); (h) Worst s.a.s (NSGA-II); (i) Worst s.a.s (MOLA)

Figure 3.32: s.a.s obtained by MOEA/D, NSGA-II and MOLA on Fun13

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

3.5 Conclusions 120

dimensional search, the dividing of the dimensional search domain into cells, the

memories of the performance evaluation of the dimensional states in a form of cell

values, and the learning and searching process. With these approaches, MOLA is

able to undertaken search in continuous states, and achieve accurate Pareto sets and

wide Pareto fronts efficiently.

MOLA has been fully compared with two popular weighted-sum based algo-

rithms, MOGA and MOPSO, on four multi-objective benchmark functions that

comprise low and high-dimensional models, convex and non-convex models, and

continuous and discontinuous models respectively. MOLA finds more accurate non-

dominated solutions than the other two algorithms. The solutions found by MOGA

and MOPSO flock to the two ends of the Pareto fronts, when solving the problems

which have non-convex Pareto front. As the dimensionality increases, MOLA ex-

hibits great superiority over MOGA and MOPSO in terms of the quality of Pareto

fronts and computation time. With less computation time, the solutions found by

MOLA can dominate most of the solutions found by MOGA and MOPSO. MOLA

has been also compared with two Pareto front-based multi-objective algorithms,

MOEA/D and NSGA-II, on the basis of thirteen widely used multi-objective func-

tions, which comprise complex Pareto set shapes. The simulation results have shown

that MOLA greatly exhibits its superiority over MOEA/D and NSGA-II, as it can

find more accurate and evenly distributed non-dominated solutions than MOEA/D

and NSGA-II, and its Pareto fronts are wider than those obtained by MOEA/D and

NSGA-II.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

Part 2

Power System Applications Using

Learning Automata-based

Optimisation Algorithms

121

Chapter 4

The Application of FOLA on Optimal

Power Flow Problems

4.1 Introduction

In power systems, various optimisation problems are getting more attention from

researchers and engineers. For instance, power system dispatch problem has been

intensively studied and widely used in power system operation and planning [115].

Voltage stability is another important factor in power systems, as voltage instabil-

ity is a major power system weakness, which can result in severe detriments with

economical, technical and social dimensions [116]. These concerns can be catego-

rized as optimal power flow problems, which aim at achieving an optimal solution

of a specific power system objective function, for instance, minimising the fuel cost,

improving the voltage profile, and enhancing the voltage stability. The goal can be

achieved by properly adjusting control variables, such as generator bus voltage mag-

nitudes, generator real power outputs, transformer tap settings and reactive power

of capacitor banks, and so on. The optimal power flow problem is a highly con-

strained complex optimisation problem, which has the nature of non-differential,

non-linearity and non-convex. A variety of conventional methods have been ap-

plied to solve the problem, such as Nonlinear Programming [117] [118], Quadratic

Programming [119], Linear Programming [120] and the Interior Point method [121]

122

4.1 Introduction 123

[122], etc. In most cases, the traditional methods are suitable for single-peak and lin-

ear objective functions. However, for solving the optimisaton problems with com-

plex objective, these conventional methods suffer the drawback of easily trapping

in local optima, thus cannot guarantee to find the global optimum solution. Vari-

ous EAs introduced in Section 1.2.2 have attracted great attention and been applied

to solve power system dispatch and voltage control problems, due to their ability

to solve multi-modal optimisation problems [123] [124]. However EAs introduce

redundant computation into the optimisation process and limit the computational

capability, hence they are time-consuming when solving the high-dimensional opti-

misation problems, which are commonly encountered in power system applications.

In this chapter, FOLA is applied to solve the problem of optimising power system

dispatch and voltage stability.

With the increasing demand of power nowadays and the stress of the resources

which can be used to generate power, renewable energy becomes more and more

important in many countries, especially wind energy [125][126]. Wind power is

widely used in Europe, Asia, and the United States, due to it is clean, reliable and

quick to install. Although the dramatic improvements in the performance and af-

fordability of wind turbines have paved the way for mass commercialization, wind

power penetrated to power systems brings new challenges to power system eco-

nomic operation. It is imperative to study how to efficiently solve optimal power

flow problems which involve wind power, so as to achieve an optimal solution to

the specific power system objective functions. The objective of the problem con-

cerned in this chapter includes the minimisation of fuel cost and the enhancement of

the voltage stability. The solution to the problem can be achieved by properly adjust-

ing control variables such as generator real power outputs (including fuel generators

and wind generators), generator bus voltage magnitudes, transformer tap settings

and reactive power of capacitor banks. A variety of methods have been applied to

solve optimal power flow problems in wind power penetrated systems. Q. Ai et. al.

[127] applied primal-dual interior point algorithm to reduce power loss in the trans-

mission lines. However their method has only been investigated in a small-scale

power system without comparison with the most popularly used EAs, such as GA,

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.2 Evaluation on Dispatch and Voltage Stability Enhancement Problems 124

PSO, and Bacterial Foraging algorithm [128], which have been successfully applied

to solve power system dispatch and voltage control problems [123] [124]. Besides,

in [129], S. Brini et. al. have used EAs to reduce the fuel cost and the emissions

of the polluting gases. In this chapter, FOLA is presented to solve the optimisation

problems concerned with economic power system dispatch and voltage stability en-

hancement, in wind power penetrated systems whose operation condition varies for

a short period time. FOLA has been applied to solve the problems in the modified

IEEE 30-bus, 57-bus and 118-bus power systems respectively, which are penetrated

with dynamic wind power configuration which varies for a short period of time.

FOLA is fully compared with popularly-used EAs. The simulation results have

confirmed the effectiveness of FOLA in comparison with the popularly-used EAs,

as FOLA can track the changing system configuration more rapidly and accurately.

4.2 Evaluation on Dispatch and Voltage Stability En-

hancement Problems

4.2.1 Problem formulation

Optimal power flow problems (OPF)

The diagram of a typical electrical power system [130] is illustrated in Fig. 4.1.

It can be seen that the typical power system consists of three parts: generating station

generating electrical energy, transmission lines interconnecting the power system,

and customers consuming the electrical energy.

The OPF problems, intensively studied as a network-constrained economic dis-

patch problem since its introduction by Carpentier [131] in 1962, can be formulated

as a nonlinear constrained optimisation problem [115]. The problem is concerned

with minimisation of a specific power system’s objective function, by optimising

control variables, within a set of operational and physical constraints. It can be

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.2 Evaluation on Dispatch and Voltage Stability Enhancement Problems 125

Figure 4.1: Diagram of an electrical system

formulated as follows:

min f(X,U)

s.t. g(X,U) = 0; h(X,U) ≤ 0.
(4.2.1)

where g and h denote constraint functions [124][132]. X is a set of control variables

to be optimised, including generator real power outputs PG (with the exception of

the slack bus PG1), generator voltages VG, the transformer tap settings (Ti) and re-

active power generations of the capacitor bank (QCi) [133]. These control variables

can be expressed as follows:

X = {PGi : i ∈ NG, i 6= 1} ∪ {VGj : j ∈ NG}
∪{Tk : k ∈ NT} ∪ {QCl : l ∈ NC}.

(4.2.2)

where NG represents the set of numbers of generator buses; NT represents the set

of numbers of transformer branches; and NC represents the set of numbers of pos-

sible reactive power source installation bus. For a generator, the real power output

indicates the portion of power generated by the plant that averages over a complete

cycle of the AC waveform. Meanwhile, reactive power output indicates the portion

of power generated by plants returns to the source in each cycle. In the control vari-

ables, generator bus voltages indicate the voltage magnitude and angles of the bus

embedded with generator. Tap ratio indicates the voltage ratio between the input

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.2 Evaluation on Dispatch and Voltage Stability Enhancement Problems 126

and output of a transformer. Reactive power generation of var sources measures the

reactive power of an AC electric power generator.

Apart from control variables, there are still so-called dependent variables, in-

cluding generator real power outputs at slack bus PG1, load bus voltages VL, gen-

erator reactive power outputs QG and apparent power flow S. These dependent

variables can be denoted as a vector U as follows:

U = PG1 ∪ {VLi : i ∈ NL} ∪ {QGj : j ∈ NG}
∪{Sk : k ∈ NE}.

(4.2.3)

where NL denotes the set of numbers of load buses and NE is the set of numbers

of transmission lines in the system. In order to solve the power flow equations in

each iteration of the OPF process, the slack bus is chosen by assuming that the slack

bus power (including voltage magnitude and voltage phase) is known. For each

load bus, both the voltage magnitude and angle are unknown and can be solved. For

generator buses, the voltage angle can also be solved. The dependent variablesU can

be calculated through Newton-Raphson method, by solving the equality constraints,

which are formulated as nonlinear power flow equations as follows:

PGi = PDi + Vi

∑

j∈Ni
Vj(Gij cos θij +Bij sin θij)

i ∈ N0

QGi = QDi + Vi

∑

j∈Ni
Vj(Gij sin θij − Bij cos θij)

i ∈ NPQ

(4.2.4)

where PDi and QDi are demanded real and reactive power at bus i respectively;

G and B are the real and imaginary part of the admittance matrix of the system

respectively; Ni is the set of numbers of buses adjacent to bus i including bus i;

NPQ and N0 are sets of the numbers of PQ buses and total buses (excluding slack

bus) respectively. These equality constraints make the input and output real power

(or reactive power) equal at each bus.

Additionally, the optimisation problem is subject to some inequality constraints,

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.2 Evaluation on Dispatch and Voltage Stability Enhancement Problems 127

which are listed as follows:

PG
min
i ≤ PGi ≤ PG

max
i i ∈ NG

QG
min
i ≤ QGi ≤ QG

max
i i ∈ NG

VG
min
i ≤ VGi ≤ VG

max
i i ∈ NG

VL
min
i ≤ VLi ≤ VL

max
i i ∈ NL

|Si| ≤ Smax
i i ∈ NE

Tmin
i ≤ Ti ≤ Tmax

i i ∈ NT

QC
min
i ≤ QCi ≤ QC

max
i i ∈ NC

(4.2.5)

The constraints of the control variables, VGi and QGi, can be satisfied if the search

range is defined during the process of optimisation. In addition, the tap position

of transformer T and the amount of reactive power source installation QC are self-

constrainted [124]. With the exception of the control variables, the non-linear con-

strains of other variables can be satisfied using a penalty function, which is com-

monly used to transform a constrained optimisation problem into an unconstrained

one [134]. In this way, maintaining QG, in slack bus and all PV -buses, is taken

into consideration by adding a penalty term, with the inclusion of penalty factor λG.

Then the objective function can be adjusted as:

F (X,U) = J + λG

∑

i∈N lim
G

(QGi −QG
lim
i) (4.2.6)

where

QG
lim
i =

QG
max
i if QGi > QG

max
i

QG
min
i if QGi < QG

min
i .

(4.2.7)

N lim
G denotes the set of numbers of generator buses on which the injected reactive

power is beyond the limit. This way of constraining QGi also holds true for limiting

VLi, whose constraint is included in the objective function using a penalty factor,

λV.

Objectives: power system dispatch and voltage stability

The problem presented here consists of three cases, and each case has its own

objective function:

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.2 Evaluation on Dispatch and Voltage Stability Enhancement Problems 128

Case 1: Minimisation of fuel cost. The objective of this task is to minimise the

total fuel cost, which is described as:

J =

NG
∑

i=1

f̃i (4.2.8)

where f̃i is the fuel cost ($/h) of the ith generator, defined as follows:

f̃i = ai + biPGi
+ ciP

2
Gi

(4.2.9)

where ai, bi and ci are fuel cost coefficients, and PGi
is the real power output gener-

ated by the ith generator.

Case 2: Voltage profile improvement. This task aims at minimising fuel cost,

while having a flatter voltage profile. The objective function is to minimise the fuel

cost, and at the same time to improve voltage profile by minimising the load bus

voltage deviations from 1.0 per unit. The objective function can be formulated as:

J =

NG
∑

i=1

f̃i + ω
∑

i∈NL

|Vi − 1.0| (4.2.10)

where ω is the weighting factor.

Case 3: Voltage stability enhancement. This task is to minimise the fuel cost and

enhance voltage stability profile throughout the whole network. Voltage stability

assessment is carried out through a global indicator Lmax, which expresses the risk

of a voltage collapse [135]. It is defined as the maximum value of L-index, which is

the stability indicator at every bus of the system, as given in the following equation

[136][134]:

Lmax = max{Lk, k = 1, · · · , NL} (4.2.11)

and L can be calculated from the following equation:

Lj =

∣

∣

∣

∣

1 +
V0j

VLj

∣

∣

∣

∣

=

∣

∣

∣

∣

1 +
S+

j

Y +∗
jj V

2
Lj

∣

∣

∣

∣

(4.2.12)

where Y +
jj is the transformed admittance, Y +

jj = 1/Zjj; S
+
j is the transformed power

S+
j = Sj + Scor

j ; and

Scor
j =

[

∑

i∈NL

(

Z∗
ij

Z∗
ji

)

· Si

VLi

]

· VLj
(4.2.13)

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.2 Evaluation on Dispatch and Voltage Stability Enhancement Problems 129

One way of determining L is:

L = max
j∈NL

∣

∣

∣

∣

1−
∑

i∈NG
Fij · Vi

Vj

∣

∣

∣

∣

(4.2.14)

where Vj is the voltage at load bus j; Vi is the complex voltage at generate bus i; Fij

is the element of matrix [F] determined by:

[F] = − [YLL]

[YLG]
(4.2.15)

where [YLL] and [YLG] are sub-matrices of the Y -bus matrix.

The objective function can be formulated as:

J =

NG
∑

i=1

f̃i + ωLmax (4.2.16)

4.2.2 Simulation results

The control variables, including VG, PG, Ti and QCi, are initialized based on

their constraints. Simulation studies are carried out based on the IEEE 30-bus sys-

tem and IEEE 57-bus system respectively. FOLA is fully compared with improved

PSO [45] and GA [16]. In order to have a fair comparison among the algorithms,

the publicly available GA and PSO toolboxes are employed in the simulation stud-

ies. The GA algorithm, whose code is provided by the genetic algorithm optimi-

sation toolbox [137], is real-coded with heuristic crossover and uniform mutation,

and the selection function is normalized geometric ranking [137]. All the control

parameters, e.g., mutation rate and crossover rate, etc., are set to default values as

recommended in [137]. The code of PSO algorithm is provided by a particle swarm

optimisation toolbox for MATLAB [138]. The parameters adopt the default setting

in the toolbox: the acceleration factors c1 and c2 are both 2.0; and a decaying inertia

weight ω starting at 0.9 and ending at 0.4 is used. In order to compare the algorithms

fairly, the same Nfemax is set for FOLA, PSO and GA. For the three algorithms, pa-

rameters λV and λG are set to 5,100 and 0.1 respectively. The population size used

in PSO and GA is set to 48, and the maximal number of generations is limited by

parameter Nfemax. The other parameters setting of PSO and GA follows the sug-

gestions in [60][139]. The parameters setting of FOLA is the same as that given in

Section 2.3.2, with the exception of D = 5 and Nfemax.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.2 Evaluation on Dispatch and Voltage Stability Enhancement Problems 130

IEEE 30-bus system

The first test case is concerned with the IEEE 30-bus system, which consists of

48 branches and 6 generators, as shown in Fig. 4.2. Six generator buses are selected

as PV -buses and a V θ-bus as follows:

• PV -buses: Bus 2, 5, 8, 11, 13;

• V θ-bus: Bus 1.

The others are PQ-buses (i.e. load buses). FOLA, PSO and GA are applied to

8

7

5

28

2

1

27

29 30

4

6

9
11

10

13
12

3
14 15

18
19

20
16

17

21

22

24

23

2625

Figure 4.2: Single-line diagram of the IEEE 30-bus system

optimise objective function (4.2.6) by finding control variables X , which includes

five generator real power outputs, six generator voltage, four transformer tap settings

and nine reactive power generations of the capacitor bank. Parameter Nfemax used

by the three algorithms is set to 1800. The limitation of load voltage of the power

system is given as follows: VL
min
i = 0.95; VL

min
i = 1.05. The three algorithms are

used to solve the optimisation problems regarding the three cases given in Section

4.2.1.

In case 1, the objective is to minimise the total fuel cost, as given in (4.2.8). The

comparison is undertaken among the three algorithms over 30 independent runs, and

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.2 Evaluation on Dispatch and Voltage Stability Enhancement Problems 131

Table 4.1: The performance comparison among FOLA, PSO and GA in case 1 on

the IEEE 30-bus system

Algorithms Fuel cost ($/h)
∑

voltage deviations Lmax

FOLA 802.1757 1.1908 0.1367

PSO 802.4213 1.1286 0.1370

GA 806.4662 1.0993 0.1371

Table 4.2: The performance comparison among FOLA, PSO and GA in case 2 on

the IEEE 30-bus system

Algorithms Fuel cost ($/h)
∑

voltage deviations

FOLA 804.4814 0.1350

PSO 805.0015 0.1597

GA 807.9653 0.1671

the results are given in Table 4.1. In comparison with PSO, the fuel cost saved by

FOLA is 0.2456 ($/h), and the voltage stability of FOLA is enhanced. The sum of

voltage deviation of FOLA is larger than that of PSO. This is because the objective

of this case only includes the minimisation of fuel cost. It should be mentioned that

minimising the fuel cost and enhancing voltage profile are conflicting in this case.

FOLA tends to find the solutions which consume lower fuel cost, while keeping the

voltages within the range of predefined constraints. In comparison with GA, FOLA

saves the fuel cost by 4.2905 ($/h), and is able to enhance the voltage stability.

In case 2, since both fuel cost and voltage deviation are concerned in the ob-

jective function, the sum of voltage deviations is reduced by FOLA in this case, in

comparison with that in solving case 1. It can be seen from Table 4.2 that FOLA

makes a trade-off between the two objectives in this case, compared with its results

given in Table 4.1. FOLA outperforms the other two algorithms, as it reduces the

fuel cost and decreases the sum of voltage deviations.

In case 3, the objectives include the minimisation of the fuel cost and enhance-

ment of the voltage stability. Table 4.3 lists the experimental results. FOLA per-

forms better than PSO and GA in terms of the fuel cost and voltage stability.

The computation time of the three algorithms is investigated on the IEEE 30-bus

system, as given in Table 4.4. It can be seen that FOLA greatly reduces the compu-

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.2 Evaluation on Dispatch and Voltage Stability Enhancement Problems 132

Table 4.3: The performance comparison among FOLA, PSO and GA in case 3 on

the IEEE 30-bus system

Algorithms Fuel cost ($/h) Lmax

FOLA 803.2916 0.1287

PSO 805.4232 0.1293

GA 805.7327 0.1322

Table 4.4: The computation time (s) consumed by FOLA, PSO and GA on the IEEE

30-bus system

Algorithms FOLA PSO GA

Time (s) 8.4365 12.4635 14.1995

tation time. Compared with PSO, FOLA saves the computation time by 32.31%. In

comparison with GA, FOLA saves the computation time by 40.59%.

IEEE 57-bus system

The three algorithms are also evaluated on the IEEE 57-bus system, which con-

sists of 80 branches and 7 generators, as shown in Fig. 4.3. Seven buses are selected

as PV -buses and a V θ-bus as follows:

• PV -buses: Bus 2, 3, 6, 8, 9, 12.

• V θ-bus: Bus 1.

The others are PQ-buses. The power demand in the actual system is given as fol-

lows:
∑

PL = 12.508 p.u.;
∑

QL = 3.364 p.u. The voltage constraint of the system

is [0.94 1.06]. The three algorithms are applied to solve the three cases described in

Section 4.2.1, by optimising the set of control variables which include six generator

real power outputs, seven generator voltage, seventeen transformer tap settings and

three reactive power generations of the capacitor bank. Nfemax is set to 2600 for

FOLA, PSO and GA.

FOLA, PSO and GA are applied to solve the three cases on the IEEE 57-bus

system, and the experimental results obtained from the three cases are given in Table

4.5, 4.6 and 4.7 respectively. FOLA performs much better than GA in terms of the

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.2 Evaluation on Dispatch and Voltage Stability Enhancement Problems 133

8

7

5

28

2

1

27

29

30

4

6

9

11

10

13

12

3

14
15

18

19

20

1617

21
22

24

23
26

25

52 53 54 55

31 32 33

34
35

36

37

40

39

57

56 41

42 43

45

44

38

46
47
48 49 50 51

Figure 4.3: Single-line diagram of the IEEE 57-bus system

minimisation of fuel cost. FOLA saves fuel cost by 138.7483 $/h in case 1, 216.6675

$/h in case 2 and 484.3370 $/h in case 3, in comparison with GA. In this simulation

study, the voltage profile is improved by reducing the sum of voltage deviation from

0.9520 (GA) to 0.7656 (FOLA), and the voltage stability is greatly enhanced from

0.3597 (GA) to 0.2425 (FOLA). In comparison with PSO, FOLA offers much better

performance with respect to cases 2 and 3. The fuel cost saved by FOLA in IEEE

57-bus is much more than that obtained from the IEEE 30-bus system.

In addition, the computation time of the three algorithms is evaluated on the

IEEE 57-bus system, and the computation time is listed in Table 4.8. Compared

with PSO and GA, FOLA greatly reduces the computation time by saving 38.56%

than PSO and 42.10% than GA. It can be seen that the percentage of the computation

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.2 Evaluation on Dispatch and Voltage Stability Enhancement Problems 134

Table 4.5: The performance comparison among FOLA, PSO and GA in case 1 on

the IEEE 57-bus system

Algorithms Fuel cost ($/h)
∑

voltage deviations Lmax

FOLA 3183.8236 2.8113 0.2480

PSO 3190.7029 2.5768 0.2841

GA 3322.5719 3.3617 0.3547

Table 4.6: The performance comparison among FOLA, PSO and GA in case 2 on

the IEEE 57-bus system

Algorithms Fuel cost ($/h)
∑

voltage deviations

FOLA 3183.6286 0.7656

PSO 3191.1694 0.9828

GA 3400.2961 0.9520

Table 4.7: The performance comparison among FOLA, PSO and GA in case 3 on

the IEEE 57-bus system

Algorithms Fuel cost ($/h) Lmax

FOLA 3168.4892 0.2425

PSO 3175.2833 0.3037

GA 3652.8262 0.3597

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.3 Evaluation in Dynamic Wind Power Penetrated Systems 135

Table 4.8: The computation time (s) consumed by FOLA, PSO and GA on the IEEE

57-bus system

Algorithms FOLA PSO GA

Time (s) 26.389 42.948 45.580

time saved by FOLA on the IEEE 57-bus system is more than that on the IEEE 30-

bus system.

4.3 Evaluation in Dynamic Wind Power Penetrated

Systems

4.3.1 Problem formulation

The majority of wind turbine market comprises wind turbines equipped with

either fixed-speed or variable-speed converter-controlled induction generators. This

section concentrates on fixed-speed wind turbines. When wind power is penetrated

into power systems, the characteristics of the wind generators will affect the power

flow calculation. Therefore, the model of the wind generators used in the simulation

is introduced first in this section.

Wind generator model

V

1

~r
1

~x sr ~/~
2 2

~x

m
x~

Figure 4.4: Simplified equivalent circuit of asynchronous generator

Asynchronous generators are the most commonly used generators in wind gen-

erators. They absorb kinetic energy to produce electrical energy and amount of

reactive power to establish their magnetic fields. The simplified equivalent circuit

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.3 Evaluation in Dynamic Wind Power Penetrated Systems 136

of an asynchronous wind generator is shown in Fig. 4.4, where x̃m is the excitation

reactance, x̃1 and x̃2 are the stator and rotor reactance respectively, r̃2 is the rotor

resistance, r̃1 is the stator resistance which can be ignored, s̃ is the slip of the asyn-

chronous wind generator, and VWG is wind generator voltage. From this model, the

following equations can be obtained [140] [141]:

VWG =

√

−PWG(s̃2(x̃1 + x̃2)2 + r̃2
2)

r̃2s̃
(4.3.1)

QWG = −
(

V 2
WG

x̃m
+
PWG(x̃1 + x̃2)

r2
s̃

)

(4.3.2)

From (4.3.1), we can get

s̃ =

(

− V 2
WGr̃2 +

√

V 4
WGr̃

2
2 − 4PWG(x̃1 + x̃2)2r̃2

2

)

2PWG(x̃1 + x̃2)2
(4.3.3)

The Q-V character equation of the asynchronous wind generator can be obtained

by integrating (4.3.3) into (4.3.2):

QWG = f(VWG) = −V
2
WG

x̃m
+
−V 2

WG +
√

V 4
WG − 4P 2

WG(x̃1 + x̃2)2

2(x̃1 + x̃2)
(4.3.4)

where PWG denotes the active power of wind farm. If PWG is constant, according

to (4.3.4), reactive power QWG that is absorbed by asynchronous generator during

operation has a close relationship with voltage VWG.

OPF in wind power penetrated systems

The optimisation problem here is concerned with the minimisation of a spe-

cific objective function of the power system (4.2.1), by optimising control variables

within a set of operational and physical constraints, as introduced in Section 4.2.1.

Control variables consist of those given in Section 4.2.1, together with the real power

outputs provided by the wind power generators.

When the wind power is penetrated in the power system, the power flow calcula-

tion should modify the active and reactive power balance of node incorporated wind

farms, i.e. (4.2.4), with the characteristics of wind generators as given in (4.3.4).

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.3 Evaluation in Dynamic Wind Power Penetrated Systems 137

If node i is incorporated with wind farm, the maximum value of wind power gen-

erated is determined by wind velocities, which can be regarded as a constant in a

short period. To model the time-varying wind generator configuration, we use the

approximation of multiple time periods, in which the maximum wind power output

varies as the time period proceeds. In fact, a wind power output is unknown, which

requires an accurate prediction to obtain. This chapter is not concerned with power

forecasting and here the wind power output is given assuming it is known. If the

active output of the wind turbine is set, its reactive output will be regulated to meet

the voltage regulation requirement according to (4.3.4). Therefore, if calculating the

power flow of the wind power penetrated system by Newton-Raphson method, the

element ∂△QWG

∂VWG
VWG situating in the Jacobian matrix needs to be modified according

to the following equation:

∂QWG

∂VWG
= −2VWG

x̃m
+
−VWG

√

V 4
WG − 4P 2

WG(x̃1 + x̃2)2 + V 3
WG

(x̃1 + x̃2)
√

V 4
WG − 4P 2

WG(x̃1 + x̃2)2
, (4.3.5)

while the rest calculation process is the same as the traditional process based on

Newton-Raphson method [127] [142].

Objectives

Case 1: The objective of this task is to minimise the total fuel cost of (4.2.8), i.e.

J =
∑NG

i=1 f̃i.

Case 2: This task is to minimise fuel cost and enhance voltage stability through-

out the whole network, which is carried out through a global indicator Lmax. J can

be formulated as (4.2.16).

4.3.2 Simulation results

Compared with classical EAs

Simulation studies are carried out on the IEEE 30 and 57-bus power systems

respectively, which are incorporated with wind generators, whose model is provided

in Section 4.3.1. The parameters of the wind generator are listed in Table 4.9. The

time-varying configuration of the wind generator is given in Table 4.10, which lists

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.3 Evaluation in Dynamic Wind Power Penetrated Systems 138

Table 4.9: The parameters setting of induction generators

Parameter x̃1 r̃2 x̃2 x̃m s̃

Value (p.u.) 0.0100 0.1091 0.0037 3.4547 -0.0040

Table 4.10: The maximum real power output (MW) of the wind generator in multi-

ple time periods

time periods 1 2 3 4 5

IEEE 30-bus 30 50 70 100 60

IEEE 57-bus 200 300 400 500 250

the maximum real power outputs generated in different time periods. FOLA is fully

compared with the improved PSO and GA. The parameter settings of PSO and GA

are the same as those given in Section 4.2.2. The parameters of FOLA are also the

same as those given in Section 4.2.2, with the exception of D = 15 and Nfemax.

The same Nfemax is employed by algorithms FOLA, PSO and GA in the same time

period.

• The first test case is concerned with the IEEE 30-bus system, which consists

of 48 branches and 6 generators, as shown in Fig. 4.2. In the simulation,

the fuel generator locating on the 8th node is replaced with a time-varying

wind generator, whose maximum real power output varies in different time

periods, as given in Table 4.10. For each time period, the maximum number

of function evaluations,Nfemax, is set to 1,000.

FOLA, PSO and GA are applied to minimise the objective function, (4.2.6),

by optimising the control variables, which consist of five generator real power

outputs (including the fuel generators and wind generator), six generator volt-

ages, four transformer tap settings and ten reactive power generations of the

capacitor bank. The three algorithms are used to solve the two cases of prob-

lems given in Section 4.3.1.

In case 1, the objective is to minimise the total fuel cost, as given in (4.2.8).

The performance of FOLA, PSO and GA can be observed in Fig. 4.5. FOLA

is able to track the changes of the power system configuration more rapidly

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.3 Evaluation in Dynamic Wind Power Penetrated Systems 139

0 1000 2000 3000 4000 5000
400

500

600

700

800

900

FEs

F
u
e
l
C

o
s
t
($

/h
)

PSO
GA
FOLA

Figure 4.5: The performance comparison among PSO, GA and FOLA in solving

case 1 on the modified IEEE 30-bus system

and accurately than the other algorithms. As for PSO, it fails to respond to the

changes most of the time, with a constantly decreasing performance in time

periods 2-4. It is difficult for PSO to respond to this changing frequency, as the

maximum number of FEs constrained in each time period is not enough for

PSO to converge to the global minimum before the next time period comes.

Additionally, the convergence speed of PSO obtained in time period 2 is much

slower than that in time period 1. It is partly because PSO was developed del-

icately for static optimisation problems. In the case of static optimisation, the

global optimum found in each generation is used as a selection reference to

reproduce individuals of the next generation. However, in a dynamic power

system, the information of global optimum may not be necessarily useful to

guide the selection, as the real optimum of the environment varies from time

to time. Thus, the information obtained from a generation is of limited use

for the next generation in the dynamic environment. Furthermore, the infor-

mation of the previous generation could even hamper the search when the

system changes, due to PSO clings on to the previous best solution in despite

of the changing configuration of the system. In this sense, due to the lack of

appropriate diversity, the performance of PSO is not acceptable in this case.

Although GA converges faster than PSO, its solution is much worse than that

of FOLA in terms of accuracy. The gap between the fuel costs consumed by

FOLA and GA indicates that a large amount of energy can be saved if us-

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.3 Evaluation in Dynamic Wind Power Penetrated Systems 140

ing FOLA rather than GA. In addition, once the power system configuration

changes, GA produces a large fluctuation regarding the fuel cost, which to

some extent implies the instability of the power system if GA is applied.

0 1000 2000 3000 4000 5000
500

600

700

800

900

FEs

F
u
e
l
C

o
s
t
&

L

 m
a

x

PSO
GA
FOLA

Figure 4.6: The performance comparison among PSO, GA and FOLA in solving

case 2 on the modified IEEE 30-bus system

In case 2, the objective is to minimise the fuel cost and to enhance the voltage

stability, as described in (4.2.16). The performance of the three algorithms

has been presented by the three curves in Fig. 4.6. It can be observed from

Fig. 4.6 that the tracking ability of FOLA is constantly better than that of

PSO and GA as the function evaluation proceeds. PSO is not able to react to

most changes in time. The convergence speed of PSO is much slower than the

power system’s changing rate, as it cannot converge to the global minimum

before the next change occurs. As for GA, it is unable to converge to accurate

solutions. In this case, the turbulence of the objective value, caused by GA at

the changing moment, is larger than that in case I, due to the voltage stability

is also concerned in the objective. This fact reveals that GA could damage the

system if the configuration of the power system changes frequently.

The computation time of these three algorithms is investigated on the modified

IEEE 30-bus power system, as given in Table 4.11, which lists the average

computation time consumed by the three algorithms in one time period. It

can be seen that FOLA greatly reduces the computation time. Compared with

PSO, FOLA saves the computation time by 31.17%. In comparison with GA,

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.3 Evaluation in Dynamic Wind Power Penetrated Systems 141

Table 4.11: The computation time (s) consumed by FOLA, PSO and GA on the

IEEE 30-bus system

Algorithms FOLA PSO GA

Time (s) 8.685 12.618 13.754

FOLA saves the computation time by 36.85%.

• The three algorithms are also evaluated on the IEEE 57-bus system, which

consists of 80 branches and 7 generators, as shown in Fig. 4.3. To integrate

wind power in the power system, the fuel generator located at the 8th node is

replaced with a wind generator whose configuration varies in different time

periods, as provided in Table 4.10. In each time period, the maximum num-

ber of FEs is set to 1,500. The three algorithms are applied to solve the two

cases given in Section 4.3.1, by optimising the control variables which in-

clude six generator real power outputs (including the wind generator), seven

generator voltage, seventeen transformer tap settings and four reactive power

generations of the capacitor bank.

FOLA, PSO and GA are applied to solve the problem on the modified IEEE

57-bus system. The tracking ability of the three algorithms is presented in

Figs. 4.7 and 4.8, which are the results corresponding to cases 1 and 2 respec-

tively. FOLA is able to track the global minimum and constantly performs

better than the other two algorithms. The curve obtained by FOLA reveals

that the variation of its objective value is in line with the variation of the sys-

tem configuration, which is applied on the wind generator. On the modified

IEEE 57-bus system, GA completely fails to solve the problems, due to the

complexity of the problems. The performance of PSO on this system is better

than that on IEEE 30-bus system, partly because more FEs are allowed to be

used in one time period. However, compared with FOLA, PSO responds to

the changing system configuration with a serious delay, thus cannot obtain a

satisfactory tracing performance. Between Figs. 4.7 and 4.8, PSO performs

worse in the later case, which implies that the performance of PSO deterio-

rates once the voltage stability is involved in the objective.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.3 Evaluation in Dynamic Wind Power Penetrated Systems 142

0 2000 4000 6000
1000

2000

3000

4000

5000

6000

7000

FEs

F
u
e
l
C

o
s
t
($

/h
)

PSO
GA
FOLA

Figure 4.7: The performance comparison among PSO, GA and FOLA in solving

case 1 on the modified IEEE 57-bus system

0 2000 4000 6000
1000

2000

3000

4000

5000

6000

7000

8000

FEs

F
u
e
l
C

o
s
t
&

L

 m
a

x

PSO
GA
FOLA

Figure 4.8: The performance comparison among PSO, GA and FOLA in solving

case 2 on the modified IEEE 57-bus system

In addition, the computation time of these three algorithms is evaluated on the

modified IEEE 57-bus system, and their computation time is listed in Table

4.12. Comparing with PSO and GA, FOLA greatly reduces the computation

time by saving 34.39% and 37.78% respectively. It can be seen that the per-

centage of computation time saved by FOLA on the modified IEEE 57-bus

system is larger than that on the modified IEEE 30-bus system.

Compared with recently-proposed EAs

FOLA has also been compared with Cooperative Particle Swarm Optimisation

(CPSO) [50] and Comprehensive Learning Particle Swarm Optimisation (CLPSO)

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.3 Evaluation in Dynamic Wind Power Penetrated Systems 143

Table 4.12: The computation time (s) consumed by FOLA, PSO and GA on the

modified IEEE 57-bus system

Algorithms FOLA PSO GA

Time (s) 24.055 36.666 38.664

[51], in solving the optimal power flow problems in wind power penetrated power

systems. The test case here is concerned with the IEEE 118-bus power system,

in which there are 54 fuel generators, 118 buses, 186 branches, 91 load sides and

54 thermal units, as given in Fig. 4.9. Based on the IEEE 118-bus system, the

fuel generator locating at bus 8 is replaced by wind generators, whose model is

provided in Section 4.3.1. The parameters of the wind generator are the same as

those given in Table 4.9. In the simulation, the whole optimisation process is divided

into five time periods, in which the wind generators provide different maximum real

power outputs. For the five time periods, the maximum real power outputs of the

wind generator are set to 200, 500, 800, 1000, 300 MW respectively. In each time

period, Nfemax is set to 6,000 for each algorithm. The problem concerned here

has 130 control variables to be optimised, including real power outputs of both the

fuel generators and wind generators, generator voltage, transformer tap settings and

reactive power generations of capacitor banks. In other words, the dimensionality

of the problem is 130.

Each function evaluation involves one power flow calculation, which consumes

much more computation time than the algorithm itself. Therefore the number of

power flow calculation is very precious during the optimisation process. Within a

limited numbers of FEs, the efficiency and convergence rate are of great significance

for the optimal power flow problem, especially on large-scale complex power sys-

tems. The convergence characteristics obtained by FOLA, CLPSO and CPSO in

solving cases 1 and 2 can be observed in Fig. 4.10 (a) and (b) respectively.

It can be seen that FOLA is able to track the changes of the power system config-

uration more rapidly and accurately than the other two algorithms. At the beginning

of time period 5, i.e. when FEs= 2.4 × 104, the fuel cost obtained by FOLA in-

creases compared to that in time period 4, due to the real power outputs provided

by the wind generators decrease in period 5, and fuel generators have to increase

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.3 Evaluation in Dynamic Wind Power Penetrated Systems 144

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G
G

GG

G

G

G
G

G
G

G

G
G

G

G

G

G

G
G

G
G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

Figure 4.9: Single-line diagram of the IEEE 118-bus system

the real power outputs and complement this gap. The convergence speed of PSO

is much slower than the changing rate of the system configuration. It can be seen

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.4 Conclusions 145

that the maximum number of FEs constrained in each time period is not enough for

CLPSO to converge to the global minimum before the next time period comes. As

for CPSO, the fuel cost obtained by CPSO almost remains the same after 6,000 FEs,

even when the configuration of the power system has been changed. Therefore,

CPSO fails to respond to the changes of the system configuration and is trapped

in a local optimum. However, CPSO performs better than CLPSO in terms of the

convergence rate.

0 0.5 1 1.5 2 2.5 3

x 10
4

1000

1500

2000

2500

3000

3500

FEs

F
u

e
l
c
o

s
t

($
/h

)

FOLA
CLPSO
CPSO

0 0.5 1 1.5 2 2.5 3

x 10
4

1000

1500

2000

2500

3000

3500

FEs

F
u

e
l
c
o

s
t

&
 L

 m
a

x

FOLA
CLPSO
CPSO

(a) (b)

Figure 4.10: The performance comparison among FOLA, CLPSO and CPSO on the

IEEE 118-bus power system: (a) for case 1; (b) for case 2

In addition, the minimum fitness values obtained by FOLA, CLPSO and CPSO

at each time period are provided in Table 4.13. It can be seen that FOLA can obtain

smaller fitness values than CLPSO and CPSO constantly.

The computation time consumed by the algorithms is also investigated in this

case. The computation time concerned here does not include the time used for

power flow calculations. Table 4.14 lists the computation time consumed by FOLA,

CLPSO and CPSO. It can be seen that FOLA consumes less computation time than

CLPSO and CPSO.

4.4 Conclusions

In this chapter, FOLA has been used to solve optimal power flow problems. The

problems are concerned with three cases, in which the objective functions are the

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.4 Conclusions 146

Table 4.13: The minimum fitness values obtained by FOLA, CLPSO and CPSO in

different time periods

Case 1

FOLA CLPSO CPSO

Minimum in period 1 1.2085e+003 2.2379e+003 1.3653e+003

Minimum in period 2 1.1396e+003 1.7174e+003 1.2464e+003

Minimum in period 3 1.0727e+003 1.5921e+003 1.2367e+003

Minimum in period 4 1.0290e+003 1.4620e+003 1.2201e+003

Minimum in period 5 1.1849e+003 1.3825e+003 1.1858e+003

Case 2

FOLA CLPSO CPSO

Minimum in period 1 1.2776e+003 2.1717e+003 1.4295e+003

Minimum in period 2 1.2072e+003 1.8179e+003 1.3170e+003

Minimum in period 3 1.1400e+003 1.6019e+003 1.3019e+003

Minimum in period 4 1.0960e+003 1.5730e+003 1.2749e+003

Minimum in period 5 1.2530e+003 1.5262e+003 1.2578e+003

Table 4.14: Computation time (s) consumed by FOLA, CLPSO and CPSO

Computation time

FOLA CLPSO CPSO

Case 1 100.55 121.995 131.21

Case 2 118.83 149.275 169.125

combination of the following objectives: minimisation of the fuel cost, improve-

ment of the voltage profile, and enhancement of the voltage stability. Simulation

studies have been carried out on the IEEE 30-bus and 57-bus systems respectively.

The simulation results have demonstrated that FOLA is able to offer more accurate

solutions with shorter computation times, in comparison with the improved PSO

and GA, particularly on the IEEE 57-bus system.

FOLA is also applied to solve the optimal power flow problems in the dynamic

wind power penetrated systems. Simulation studies have been carried out among

FOLA, the improved PSO and GA, based on the modified IEEE 30-bus and 57-

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

4.4 Conclusions 147

bus systems, which are embedded with time-varying wind power generators. The

simulation results have demonstrated that FOLA is able to track the changes of the

power system configuration more rapidly and accurately than the improved PSO and

GA, particularly when voltage stability is involved in the objective function. Be-

sides, FOLA is able to offer more accurate solutions with shorter computation time,

in comparison with PSO and GA. FOLA is also compared with recently-proposed

EAs, CLPSO and CPSO, based on IEEE 118-bus system. Advantages of FOLA

have been demonstrated by the fact that FOLA reduces the fuel cost greatly and

enhances the voltage stability of the power system.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

Chapter 5

The Application of MOLA in

Multi-objective Optimal Power Flow

Problems

5.0.1 Introduction

In wind power penetrated systems, multi-objective problems have attracted in-

creasing attention in the last decade. Rather than focusing on one objective, the ob-

jectives can include the combination of different aspects, such as emission reduction

[143], energy loss minimisation [144], power loss minimisation in the transmission

lines [127] and fuel cost reduction [129], and so on. In the first two applications of

this chapter, two objectives are concerned, and both of them are important to sys-

tem operation in wind power penetrated systems: (1) The first objective is to reduce

the fuel cost and pollutant emission, which is widely known as economic emission

dispatch problem [145][143]. This objective is important due to economical and

environmental reasons. (2) The second objective is to enhance voltage stability, as

voltage instability is a major power system weakness resulting in severe detriments

with economical, technical and social dimensions [116][146], as aforementioned in

Section 4.2.1. This goal can be achieved by properly distributing real power outputs,

and reasonably adjusting other control variables, including wind generator parame-

ters, generator bus voltage magnitudes, transformer tap settings and reactive power

148

The Application of MOLA in Multi-objective Optimal Power Flow Problems 149

of capacitor banks. The merits of MOLA have been demonstrated, in comparison

with NSGA-II and MOEA/D. The study is undertaken on the modified IEEE 30-

bus power system and new England test power system, which are incorporated with

fixed-speed and variable-speed wind generators respectively. MOLA is applied to

reduce the operational cost and enhance the system stability simultaneously. The

simulation results have shown that: MOLA is superior over MOEA/D with respect

to finding the range of the Pareto fronts; MOLA outperforms NSGA-II in terms of

the accuracy of the non-dominated solutions.

In the chapter, MOLA is also applied in deregulated electricity market, which

creates more competition and more trading mechanisms for market players. How-

ever, the emergence of deregulated electricity markets poses new challenges to the

solution of the optimal power flow problem. In deregulated market, optimal power

flow computation is part of the core pricing mechanism for electricity trading, where

energy can be traded in bids and offers. In order to meet their legal obligations of

providing timely market settlements and to ensure market fairness and efficiency,

the Independent System Operator (ISO) is responsible for the provision of addi-

tional services that are necessary to support the transmission of electrical energy

while maintaining secure and reliable operation of the power system. ISO dis-

patches according to the bid price of each player instead of the production cost of

each generating unit. Therefore, the conventional objective of optimal power flow

has been evolved to be price-based, which is to maximise profits of the spot market

and achieve the resource scheduling. This problem has been investigated intensively

after the emergence of deregulated market [147] [148], in which the profit is defined

as customer benefit minus generator cost. Due to the increasing attention of environ-

mental pollution issue [143], reducing emission pollutants is considered important

in the deregulated market [149]. Therefore, the cost of emission is integrated into

the social profit in this section, thus the social profit is defined as customer benefit

minus generator cost and emission cost. Apart from maximising the social profit,

the enhancement of voltage stability is also concerned in the section, as voltage

instability is a major power system weakness resulting in severe detriments with

economical, technical and social dimensions [116][146].

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.1 Evaluation on Power Systems with Fixed-speed Wind Generators 150

5.1 Evaluation on Power Systems with Fixed-speed

Wind Generators

5.1.1 Problem formulation

The problem presented here is to reduce the operational cost and enhance the

voltage stability simultaneously, through optimising control variables within a set

of operational and physical constraints, which can be formulated as follows:

minF (X,U) = [f1(X,U), f2(X,U)]

s.t. g(X,U) = 0; h(X,U) ≤ 0.
(5.1.1)

where f1 and f2 are the two objective functions; g and h denote constraint functions

[150], as introduced in Section 4.2.1. The set of control variables, X , includes

real power outputs (with the exception of the slack bus), generator voltages, the

transformer tap settings and reactive power generations of the capacitor bank.

The two objective functions of (5.1.1), f1 and f2, are introduced respectively as

follows:

• The operational cost (f1) takes economical and environmental concerns into

consideration. It is the sum of two parts: the total fuel cost and the cost of

pollutant emission [143]:

f1 =

NFG
∑

i=1

f̃i +

NFG
∑

i=1

Ei (5.1.2)

where NFG represents the set of numbers of buses incorporated with fuel gen-

erators; f̃i and Ei are the fuel cost ($/h) and the cost of pollutant emission

of the ith generator respectively. f̃i can be formulated as (4.2.9). Ei can be

described as follows:

Ei = h ∗ (10−2(αEi + βEiPGi
+ γEiP

2
Gi

) + ζEi exp(λEiPGi
)) (5.1.3)

where h is price penalty factor [151] for the emission of atmospheric pol-

lutants; αEi, βEi, γEi, ζEi and λEi are the coefficients of the ith generator’s

emission characteristics.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.1 Evaluation on Power Systems with Fixed-speed Wind Generators 151

• Voltage stability assessment is carried out through a global indicator Lmax,

which expresses the risk of a voltage collapse [135]. The indicator can be

defined as equation (4.2.11), as given in Section 4.2.1.

5.1.2 Simulation studies

MOLA is fully compared with MOEA/D and NSGA-II, by solving multi-objective

optimisation problems in the modified IEEE 30-bus power system and new England

test system respectively, which are incorporated with fixed speed wind generators,

whose model is given in Section 4.3.1. The parameter settings of MOEA/D and

NSGA-II follow the suggestions in [103] and [29] respectively. The parameter set-

tings of MOLA, except for wc and Nfemax, are the same as previous settings. In

addition, the same Nfemax is used by the three algorithms when solving the same

test case. The parameter settings of the fixed-speed wind generators are listed in

Table 4.9, and the coefficients in (5.1.3) follow the suggestions given in [143].

Modified IEEE 30-bus power system

The first test case is IEEE 30-bus power system, which consists of 41 branches

and 8 generators, as shown in Fig. 4.2. Nodes 21 and 30 are embedded with wind

power generators. Control variables X include generator real power outputs, gen-

erator voltages, transformer tap settings and reactive power generations of the ca-

pacitor bank. Nfemax is set to 30,000 for MOLA, and 40,000 for both NAGA-II and

MOEA/D.

The Pareto fronts obtained by the three algorithms are presented in Fig. 5.1. It is

obvious that MOLA outperforms NSGA-II in terms of the accuracy of the obtained

solutions and the range of the Pareto fronts. Between MOEA/D and MOLA, their

non-dominated solutions overlap in the objective space. However, the range of their

Pareto fonts varies widely. To see clearly, the results of the two algorithms are plot-

ted in separate subfigures, as shown in Fig 5.2. The non-dominated solutions found

by MOEA/D flock to one end, locating at the range of [609.6, 612.4]×[0.7653,

0.7758]. Among the solutions found by MOEA/D, there is an isolated point, i.e.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.1 Evaluation on Power Systems with Fixed-speed Wind Generators 152

610 612 614 616 618 620 622
0.75

0.755

0.76

0.765

0.77

0.775

0.78

f1
f
2

MOEA/D
NSGA−II
MOLA

Figure 5.1: Pareto fronts obtained by MOEA/D, NSGA-II and MOLA on the IEEE

30-bus wind power penetrated system

610 612 614 616 618 620 622
0.75

0.76

0.77

0.78

f1

f
2

610 612 614 616 618 620 622
0.75

0.76

0.77

0.78

f1

f
2

MOEA/D

NSGA−II
MOLA

Figure 5.2: Pareto fronts (in separate subfigures) obtained by MOEA/D, NSGA-II

and MOLA on the IEEE 30-bus wind power penetrated system

(612.4, 0.7653), and a big gap exists between solutions (612.4, 0.7653) and (610.4,

0.7710), which shows that MOEA/D has difficulty in finding the solutions between

the two points. As for MOLA, its non-dominated solutions spread over the range of

[609.6, 621.7]×[0.7545, 0.7755], which is wider than that of MOEA/D. In addition,

the isolated solution obtained by MOEA/D, (612.4, 0.7653), is dominated by the

solutions found by MOLA. MOLA can find more non-dominated solutions (224)

than MOEA/D (101). The fact that MOLA finds wider Pareto front and more non-

dominated solutions than MOEA/D suggests that MOLA can provide more various

choice among the non-dominated solutions that satisfy the optimisation targets.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.1 Evaluation on Power Systems with Fixed-speed Wind Generators 153

Table 5.1: The setting of reference solution and extreme solutions; HV and ∆ ob-

tained by MOEA/D, NSGA-II and MOLA on the modified IEEE 30-bus power sys-

tem (including mean and standard deviation)

Settings
Reference solution Extreme solution 1 Extreme solution 2

[622.0000, 0.7770] [609.5526, 0.7769] [621.7029, 0.7545]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.1274 0.0045 0.7687 0.3132

NSGA-II 0.1765 0.0076 0.1918 0.1499

MOLA 0.2202 0.0028 0.0096 0.0047

The first two rows of Table 5.1 list the reference solution and extreme solutions

that are employed to calculate hypervolumeHV and diversity metric ∆ respectively.

The mean and standard deviation of HV and ∆ obtained by these algorithms over

20 independent runs are also listed in Table 5.1. It can be seen that MOLA outper-

forms MOEA/D and NSGA-II, as it finds larger hypevolume and smaller diversity

metric on average. In addition, the standard deviation of HV and ∆ obtained by

MOLA is consistently smaller than that obtained by MOEA/D and NSGA-II. This

fact presents the reliability of MOLA in solving the problem of this case.

Modified new England test system

The second test case is a reduced model of the power system in new England,

which is modified and incorporated with wind power generators, as given in Fig. 5.3,

which consists of 46 branches and 12 generators. Nodes 4 and 8 are incorporated

with wind power generators. Nfemax is set to 40,000 for MOEA/D, NSGA-II and

MOLA.

As shown in Fig. 5.4, MOLA greatly presents its superiority over MOEA/D and

NSGA-II with respect to the following facts: the non-dominated solutions found by

MOLA are much smaller than those found by MOEA/D and NSGA-II; the range of

the Pareto front found by MOLA is much wider than that of MOEA/D and NSGA-II.

It should be mentioned that MOEA/D and NSGA-II also find other solutions when

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.1 Evaluation on Power Systems with Fixed-speed Wind Generators 154

8

7

5

2

1

4

69

11 10

32

12

3

14

15

19
20

16
21

22

24

23

30

25

37 26

28 29

38

27

17

18

39

36

13

31
3334

35

Figure 5.3: Single-line diagram of the modified new England wind power penetrated

system

0 2000 4000 6000 8000
0

5

10

15

20

25

30

f1

f
2

MOEA/D
NSGA−II
MOLA

Figure 5.4: Pareto fronts obtained by MOEA/D, NSGA-II and MOLA on the modi-

fied new England wind power penetrated system

f1 > 8, 000 and f2 > 30, however, they are much worse than the solutions given in

the figure, and all of them are dominated by the solutions found by MOLA. They

are far beyond the range given in this figure, thus they are not plotted, considering

the readability of the figure.

Table 5.2 lists the reference solution, two extreme solutions, and the values of

HV and ∆ obtained by these algorithms (including mean and standard deviation

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.1 Evaluation on Power Systems with Fixed-speed Wind Generators 155

Table 5.2: The setting of reference solution and extreme solutions; HV and ∆ ob-

tained by MOEA/D, NSGA-II and MOLA on the modified new England test system

(including mean and standard deviation)

Settings
Reference solution Extreme solution 1 Extreme solution 2

[8000, 25] [725.7176, 3.7490] [1964.3, 0.4110]

Results

HV ∆

Mean Std Mean Std

MOEA/D 4.5611×104 2.0570×104 0.9462 0.2584

NSGA-II 1.1661×105 2.5979×104 0.7035 0.1217

MOLA 1.7718×105 1.6797×104 0.5687 0.1186

Table 5.3: Load demand (MW) at bus 10

Periods Hours 1-4 Hours 5-8 Hours 9-12

Load demand 2.5 3.5 5.5

Periods Hours 13-16 Hours 17-20 Hours 21-24

Load demand 4.7 5 3.8

over 20 independent runs). The results have demonstrated the superiority of MOLA

over MOEA/D and NSGA-II. MOLA finds largerHV and smaller ∆ than MOEA/D

and NSGA-II on average. The standard deviation of HV and ∆ obtained by MOLA

is consistently smaller than that obtained by MOEA/D and NSGA-II.

Variation of operation condition

The environment constraint concerned in this chapter considers more aspects of

variation than that given in Section 4.3.1. Here, the operation condition takes the

fluctuation of power demand and wind speed throughout the day into account.

The demand for electricity varies throughout the day. In order to simulate the

variation of power demand, a day is divided into six 4-hour periods. Each period

has a different power demand, as given in Table 5.3.

When a node is incorporated with the wind generator, the maximum wind power

output is determined by wind speed, which varies in different time periods, as given

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.1 Evaluation on Power Systems with Fixed-speed Wind Generators 156

Table 5.4: Wind speed

Periods Hours 1-4 Hours 5-8 Hours 9-12

Wind speed 6.0832 7.6643 8.7735

Periods Hours 13-16 Hours 17-20 Hours 21-24

Wind speed 8.2561 8.7735 7.6643

Table 5.5: The minimum objective fitness values derived by MOEA/D, NSGA-II

and MOLA in the dynamic environment

Hours 1-4 Hours 5-8 Hours 9-12

Min f1 Min f2 Min f1 Min f2 Min f1 Min f2

MOEA/D 599.60 0.772 602.43 0.766 608.66 0.766

NSGA-II 603.10 0.758 605.09 0.756 612.20 0.754

MOLA 599.61 0.756 602.42 0.754 608.66 0.753

Hours 13-16 Hours 17-20 Hours 21-24

Min f1 Min f2 Min f1 Min f2 Min f1 Min f2

MOEA/D 606.15 0.765 606.96 0.765 603.47 0.765

NSGA-II 609.71 0.754 611.19 0.754 608.01 0.754

MOLA 606.13 0.753 606.95 0.753 603.45 0.752

in Table 5.4. The mechanical power extracted by a wind turbine from the wind can

be expressed by the well-known cube law equation [152]:

Pw =
1

2
ρairAbladeCpv

3
w (5.1.4)

where ρ is the air density;Ablade, defined as π×R2
blade (Rblade is the radius of turbine

rotor blades), is the area swept by the turbine blades; Cp is turbine performance

coefficient; and vw denotes wind speed. The mechanical power extracted from the

wind is transferred to electricity power and integrated into the power system through

the wind generator model given in Section 4.3.1.

NSGA-II, MOEA/D and MOLA are applied to solve the multi-objective prob-

lem in the modified IEEE 30-bus power system which takes time-varying load de-

mand and wind speed into consideration. The minimal objective fitness values ob-

tained by these algorithms in different periods are given in Table 5.5. It can be seen

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.2 Evaluation on Power Systems with Variable-speed Wind Generators 157

that MOLA outperforms MOEA/D and NSGA-II in different situations. It can find

smaller operational cost and smaller voltage stability, with the exception of the first

period (hours 1-4), in which MOEA/D finds smaller operational cost than MOLA.

To fully compare the performance of the three algorithms in dynamic environ-

ment, the obtained values ofHV and ∆ (including mean and standard deviation) are

listed in Tables 5.6 and 5.7, as well as the settings of reference solution and extreme

solutions in different periods. The superiority of MOLA has been confirmed by the

fact that MOLA finds larger HV and smaller ∆ than MOEA/D and NSGA-II on

average.

5.2 Evaluation on Power Systems with Variable-speed

Wind Generators

5.2.1 Problem formulation

The objectives of the problem are the same as that given in Section 5.1.1. How-

ever, different type of wind generators (i.e. variable-speed wind generators) is con-

cerned in this section. The power output of a wind turbine is determined by the

wind speed at the location where it is installed. A relationship between the power

generated and the wind speed was proposed in the research of [153]. The active

power output of a wind turbine can be formulated as:

Pwt =

0 0 ≤ v < vci

a + bv3 vci < v < vra

Pra vra < v < vco

0 v > vco

(5.2.1)

(5.2.2)

a =
Prav

3
ci

v3
ci − v3

ra

(5.2.3)

b =
Pra

v3
ra − v3

ci

(5.2.4)

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.2 Evaluation on Power Systems with Variable-speed Wind Generators 158

Table 5.6: The setting of reference solution and extreme solutions; HV and ∆ ob-

tained by MOEA/D, NSGA-II and MOLA in dynamic environment: Hours 1-12

(including mean and standard deviation)

Hours 1-4

Settings
Reference solution Extreme solution 1 Extreme solution 2

[614 0.777] [599.609 0.7769] [613.9797 0.7555]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.1446 0.0143 0.8296 0.1859

NSGA-II 0.2034 0.0097 0.1172 0.1412

MOLA 0.2644 0.0058 0.0944 0.0695

Hours 5-8

Settings
Reference solution Extreme solution 1 Extreme solution 2

[616 0.777] [602.3748 0.7769] [615.6365 0.7536]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.1448 0.0056 0.7643 0.1661

NSGA-II 0.1928 0.0071 0.1041 0.1432

MOLA 0.2502 0.0053 0.0062 0.0031

Hours 9-12

Settings
Reference solution Extreme solution 1 Extreme solution 2

[622 0.777] [608.569 0.7769] [621.4634 0.7527]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.1416 0.0098 0.7091 0.3081

NSGA-II 0.1849 0.0129 0.2520 0.1513

MOLA 0.2472 0.0031 0.0055 0.0064

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.2 Evaluation on Power Systems with Variable-speed Wind Generators 159

Table 5.7: The setting of reference solution and extreme solutions; HV and ∆ ob-

tained by MOEA/D, NSGA-II and MOLA in dynamic environment: Hours 13-24

(including mean and standard deviation)

Hours 13-16

Settings
Reference solution Extreme solution 1 Extreme solution 2

[620 0.777] [606.0995 0.7769] [619.7494 0.7528]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.1348 0.0089 0.8305 0.3864

NSGA-II 0.2019 0.0130 0.1186 0.1305

MOLA 0.2504 0.0024 0.0853 0.0598

Hours 17-20

Settings
Reference solution Extreme solution 1 Extreme solution 2

[620 0.778] [606.9328 0.7778] [619.8721 0.7526]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.1355 0.0091 0.7745 0.3670

NSGA-II 0.1900 0.0120 0.1222 0.1380

MOLA 0.2439 0.0054 0.0554 0.0365

Hours 21-24

Settings
Reference solution Extreme solution 1 Extreme solution 2

[620 0.777] [603.3384 0.777] [619.6417 0.7523]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.1615 0.0213 0.8897 0.2949

NSGA-II 0.2407 0.0219 0.1199 0.1450

MOLA 0.3019 0.0131 0.0921 0.1091

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.2 Evaluation on Power Systems with Variable-speed Wind Generators 160

0 5 10 15 20 25

0

0.5

1

1.5

2

Wind speed (m/s)

R
e

a
l
p

o
w

e
r

o
u

tp
u

t
(M

W
)

Figure 5.5: The relationship between wind speed and real power output

where v is the wind speed, vci is the cut-in wind speed, vra is the rated wind speed,

vco is the cut-out wind speed, and Pra is the rated power of wind turbine. It is as-

sumed that only one type of variable-speed wind turbines is used in this experiment.

The rate power of wind turbine is set to 2 MW, the rated wind speed is set to 12.5

m/s, the cut-in and cut-out wind speed are set to 4 m/s and 20 m/s, respectively. The

relationship between wind speed and real power output is illustrated in Fig. 5.5.

When wind power is penetrated into a power system, the power flow calcula-

tion will be affected by the characteristic of the wind turbines. Generally, multiple

wind turbine generators are embedded into a power grid in the form of wind farms.

Thus, the model of wind farm which aggregates multiple wind turbine generators

(variable-speed wind turbine generators are concerned here) is required. The sim-

plest variable-speed aggregate model to construct is the one that represents the wind

farm as a single equivalent wind turbine generator. Since the aggregation proce-

dure is applied to groups of similar wind turbines in areas of the power system, the

equivalent wind turbine to the entire wind farm is a scale up of a single wind turbine,

whose wind power becomes the sum of the wind power generated by all the wind

turbines in the wind farm [154][155]. This aggregation procedures have been ex-

tensively applied to power system analysis, particularly to stability analysis of large

power systems [156].

During normal steady-state operation, the wind farm can be considered as a PQ

node or a PV node depending on the control strategy that the wind farm adopted

[157]. In this paper, assume that the wind farm system is to realize the maximum

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.2 Evaluation on Power Systems with Variable-speed Wind Generators 161

power tracking through the mechanical control on the wind turbine blade pitch angle

and the electrical control on the power converter [158]. Thus the active power output

of the aggregated model of the wind farm is determined by Pwt×Nwt, where Nwt is

the number of wind turbines in the wind farm. Besides, in the case of one-machine

equivalent, the wind farm is reactive-neutral with the entire transmission system in

the connection point [156]. This implies that there is no reactive power exchange

between the wind farm and the transmission system, with the control of reactive

power in the wind farm. With the features of maximum active power tracking and

reactive-neutral control, the wind farm embedded in the power system is considered

as PQ node during power flow calculation.

5.2.2 Simulation studies

MOLA is fully compared with MOEA/D and NSGA-II, based on the modified

IEEE 30-bus power system and new England test system, which are penetrated with

wind power. The parameters setting of MOEA/D and NSGA-II follows the sugges-

tions in [103] and [29] respectively. The parameters of MOLA do not affect the

performance substantially when MOLA is applied to solve different optimisation

problems, and they are chosen empirically and preset as follows: α = 0.8; τ = 0.2;

k = 4; Iemax = 5; λ1 = 0.5; λ2 = 0.25; M = 50; D = 15. To compare the

algorithms fairly, the same Nfemax is taken by the three algorithms when solving the

same test case. The coefficients in (5.1.3) follow the suggestions given in [143].

The problem aims to gain a set of non-dominated solutions whose objective

function vectors are evenly distributed on the Pareto front. The quality of the Pareto

front is evaluated by two widely used measures, hypervolume indicator HV and

Diversity metric△, which are introduced in Section 3.4.1.

Modified IEEE 30-bus power system

The modified IEEE 30-bus power system consists of 41 branches and 6 fuel

generators, as shown in Fig. 4.2. Nodes 7, 10, 16, 24 and 30 are incorporated with

wind farms.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.2 Evaluation on Power Systems with Variable-speed Wind Generators 162

Table 5.8: The wind speed and number of wind turbines in the wind farms

Node 7 10 16 24 30

Wind speed (m/s) 9.3 15 7.6 8.7 6.5

Number of turbines 10 5 10 5 10

Static Environment: The wind speed and the number of wind turbines operated

in the wind farms are given in Table 5.8. Control variables X include generator

real power outputs, generator voltages, transformer tap settings and reactive power

generations of the capacitor bank. Nfemax is set to 30,000.

708 710 712 714 716 718 720 722
0.09

0.092

0.094

0.096

0.098

0.1

0.102

0.104

0.106

0.108

f1

f
2

MOEA/D
NSGA−II
MOLA

Figure 5.6: Pareto fronts obtained by MOEA/D, NSGA-II and MOLA on the IEEE

30-bus power system with wind power penetration

The Pareto fronts obtained by the three algorithms are presented in Fig. 5.6.

It is obvious that MOLA outperforms NSGA-II in terms of finding accurate non-

dominated solutions and wide range of the Pareto fronts. The non-dominated solu-

tions obtained by MOEA/D and MOLA overlap in the objective space. However, the

range of their Pareto fonts varies widely. To observe clearly, the Pareto fronts found

by the two algorithms are plotted in separate subfigures, as shown in Fig 5.7. The

non-dominated solutions found by MOEA/D flock to one end, situating at the range

of [709.483, 709.97]×[0.1013, 0.1071]. Among the solutions found by MOEA/D,

there is an isolated point, i.e. (709.97, 0.1013). Besides, a big gap exists between so-

lutions (709.66, 0.1027) and (709.97, 0.1013), which implies that MOEA/D has dif-

ficulty in finding the solutions located in the gap. As for MOLA, its non-dominated

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.2 Evaluation on Power Systems with Variable-speed Wind Generators 163

708 710 712 714 716 718 720 722
0.08

0.09

0.1

0.11

0.12

f1

f
2

708 710 712 714 716 718 720 722
0.08

0.09

0.1

0.11

0.12

f1
f
2

MOEA/D

NSGA−II
MOLA

Figure 5.7: Pareto fronts (in separate subfigures) obtained by MOEA/D, NSGA-II

and MOLA on the IEEE 30-bus power system with wind power penetration

solutions spread over the range of [709.484, 721.193]×[0.0902, 0.1071], which is

much wider than that of MOEA/D. Furthermore, the non-dominated solutions found

by MOLA can dominate the isolated solution obtained by MOEA/D, i.e. (709.97,

0.1013). MOLA can find more non-dominated solutions (224) than MOEA/D (101).

The fact that MOLA finds wider Pareto front and more non-dominated solutions

than MOEA/D suggests that MOLA can provide more options of the non-dominated

solutions that satisfy the optimisation targets.

The reference solution and extreme solutions that are employed to calculateHV

and ∆ are listed in the first two rows of Table 5.9. The mean and standard deviation

of HV and ∆ obtained by these algorithms over 20 runs are also given in Table

5.9. It can be seen that MOLA outperforms MOEA/D and NSGA-II, as it finds

larger HV and smaller ∆ on average. In addition, the standard deviation ofHV and

∆ obtained by MOLA is consistently smaller than that obtained by MOEA/D and

NSGA-II. This fact presents the reliability of MOLA in solving this problem.

Dynamic Environment: The demand for electricity and wind power fluctuate

throughout the day. In order to simulate the time-varying operation condition, the

whole optimisation process is divided into six stages, in which there are different

power demand and wind speed. The fluctuating power demand is given in Table

5.10. Nodes 7, 10, 16, 24 and 30 are incorporated with wind farms, and the wind

speed of these locations is given in Table 5.11. NSGA-II, MOEA/D and MOLA

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.2 Evaluation on Power Systems with Variable-speed Wind Generators 164

Table 5.9: The setting of reference solution and extreme solutions; HV and ∆ ob-

tained by NSGA-II, MOEA/D and MOLA on the modified IEEE 30-bus power sys-

tem (including mean and standard deviation)

Settings
Reference solution Extreme solution 1 Extreme solution 2

[721.2, 0.108] [709.48, 0.107] [721.19, 0.090]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.0770 0.0041 1.0273 0.4212

NSGA-II 0.1327 0.0075 0.1263 0.2138

MOLA 0.1714 0.0027 0.1084 0.0139

Table 5.10: Load demand (MW) at bus 10

Stage 1 2 3 4 5 6

Load demand 2.5 3.5 5.5 4.7 5 3.8

are applied to solve the multi-objective problem in the modified IEEE 30-bus power

system. 20,000 FEs are allowed in each stage.

Fig. 5.8 shows the hypervolume convergence characteristics obtained by the

three algorithms, while the reference point is set to (700, 0.1). Notice that the higher

the hypervolume values are, the better the Pareto front is. Between two stages, there

is a sharp drop of the hypervolume values. This is because at the beginning of a new

stage, the power system configuration is changed, and the objective function vectors

Table 5.11: Wind speed for the dynamic IEEE 30-bus power system

Stage 1 Stage 2

Nodes 7 10 16 24 30 7 10 16 24 30

Wind speed 5.6 10.3 9.7 8.4 17 7.3 8.6 10.9 11.3 12.3

Stage 3 Stage 4

Nodes 7 10 16 24 30 7 10 16 24 30

Wind speed 10.1 6.7 12.6 10.7 10.6 12.7 5.6 9.8 8.6 9.4

Stage 5 Stage 6

Nodes 7 10 16 24 30 7 10 16 24 30

Wind speed 9.4 7.1 8.4 10.3 7.9 10.5 9.0 6.9 9.3 10.3

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.2 Evaluation on Power Systems with Variable-speed Wind Generators 165

need to be newly recorded. Besides, some of the non-dominated solutions obtained

in the previous stage are not qualified as non-dominated solutions any more, and

they are not suitable for the new operation condition. With the exploration strate-

gies employed by the algorithms, the hypervolume values could be very small at

the beginning of one stage until a larger hypervolume value is found. Among the

three algorithms, MOEA/D and NSGA-II have a more serious drop of hypervol-

ume values when a new stage occurs, which implies that the previously obtained

solutions provide less inheritable information for the new stage, in terms of find-

ing non-dominated solutions which are suitable for the new operation condition. It

can be seen from Fig. 5.8 that MOLA has a faster converge rate in the first stage,

compared with MOEA/D and NSGA-II. For the following stages, MOLA is able

to track the changes of the power system configuration more accurately than the

other two algorithms, and the hypervolume values obtained by MOLA are larger

than those obtained by MOEA/D and NSGA-II. As for MOEA/D, its hypervolume

values increase faster than NSGA-II in the first stage, and has similar performance

as NSGA-II in the second stage. However, the performance of MOEA/D is much

worse than that of NSGA-II in stages 3-6. As for NSGA-II, its convergence curve

is almost flat within one stage (with the exception of stage 1). This implies that its

search strategy applied to stages 2-6 does not take significant effect after the first

change of the operation environment.

0 2 4 6 8 10 12

x 10
4

0

0.5

1

1.5

2

2.5

FEs

H
y
p
e
rv

o
lu

m
e

MOEA/D
NSGA−II
MOLA

Figure 5.8: Convergence characteristics of MOEA/D, NSGA-II and MOLA on the

IEEE 30-bus power system with wind power penetration

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.2 Evaluation on Power Systems with Variable-speed Wind Generators 166

Table 5.12: The wind speed and number of wind turbines in the wind farms

Node 4 8 15 20 24 29

Wind speed (m/s) 7.9 11.2 10.1 9.3 8.6 16

Number of turbines 20 30 20 20 25 10

Modified New England Test System

A reduced model of the power system in new England is modified and pene-

trated with wind power, as given in Fig. 5.3. It consists of 46 branches and 10 fuel

generators. Nodes 4, 8, 15, 20, 24 and 29 are incorporated with wind farms.

Static Environment: The wind speed and the number of wind turbines operated

in the wind farms are given in Table 5.12. Nfemax is set to 40,000 for MOEA/D,

NSGA-II and MOLA.

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8

10

12

f1

f
2

MOEA/D
NSGA−II
MOLA

Figure 5.9: Pareto fronts obtained by MOEA/D, NSGA-II and MOLA on the modi-

fied new England wind power penetrated system

The Pareto fronts obtained by the three algorithms are given in Fig. 5.9. It can be

seen that MOLA greatly presents its superiority over MOEA/D and NSGA-II with

respect to the following two facts: the non-dominated solutions found by MOLA are

much smaller than those found by MOEA/D and NSGA-II; the range of the Pareto

front found by MOLA is much wider than that of MOEA/D and NSGA-II. It should

be mentioned that MOEA/D and NSGA-II also find some solutions which locate out

of the range given in the figure. However, considering the readability, they are not

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.2 Evaluation on Power Systems with Variable-speed Wind Generators 167

Table 5.13: The setting of reference solution and extreme solutions; HV and ∆ ob-

tained by NSGA-II, MOEA/D and MOLA on the modified new England test system

(including mean and standard deviation)

Settings
Reference solution Extreme solution 1 Extreme solution 2

[14844, 8.877] [722.7, 5.234] [1482, 0.176]

Results

HV ∆

Mean Std Mean Std

MOEA/D 0.7978 0.598 9.2257×103 1.859×102

NSGA-II 0.2082 0.2187 1.3742×104 7.684×103

MOLA 1.227×105 1.7295×102 107.623 11.79

plotted in the figure, as they are far beyond the range given in this figure and all of

them are dominated by the non-dominated solutions found by MOLA.

Table 5.13 lists the setting of reference solution and two extreme solutions, and

the obtained values of HV and ∆ (including mean and standard deviation over 20

runs). The results have confirmed the superiority of MOLA over MOEA/D and

NSGA-II. It can be seen that MOLA finds much larger HV and smaller ∆ than

MOEA/D and NSGA-II on average. In addition, the standard deviation of ∆ ob-

tained by MOLA is smaller than that obtained by MOEA/D and NSGA-II.

Dynamic Environment: NSGA-II, MOEA/D and MOLA are applied to solve the

multi-objective problem in the new England wind power penetrated system which

is embedded with fluctuating power demand and wind power. The power demand

of different stages is given in Table 5.10. The wind speed at nodes 4, 8, 15, 20, 24

and 29 varies according to Table 5.14. 20,000 FEs are allowed in one stage.

Fig. 5.10 provides the convergence curves of hypervolume values obtained by

MOEA/D, NSGA-II and MOLA, while the reference point is set to (20,000, 15). It

can be observed that the tracking ability of MOLA is constantly better than that of

MOEA/D and NSGA-II as the function evaluation proceeds. The curves obtained

by MOLA reveal that the variation of its hypervolume values is in line with the

variation of the power system configuration. Unlike the case of IEEE 30-bus power

system, the hypervolume values found by MOLA among different stages are similar

in this test case, due to the fact that the percentage of wind power in the power

system is much smaller and thus the variation of wind speed does not affect the

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.2 Evaluation on Power Systems with Variable-speed Wind Generators 168

Table 5.14: Wind speed for dynamic new England wind power penetrated system

Stage 1 Stage 2

Nodes 4 8 15 20 24 29 4 8 15 20 24 29

Wind speed 8.4 10.9 10.5 9.7 9.4 11.5 7.4 9.5 11.3 8.6 8.9 10.5

Stage 3 Stage 4

Nodes 4 8 15 20 24 29 4 8 15 20 24 29

Wind speed 6.7 10.3 8.4 5.3 7.4 9.9 5.7 9.7 7.4 5.9 7.1 9.3

Stage 5 Stage 6

Nodes 4 8 15 20 24 29 4 8 15 20 24 29

Wind speed 4.5 7.8 6.9 6.3 7.8 8.9 5.6 7.3 7.9 5.9 8.9 10.4

hypervolume values significantly. For this power system, it is difficult for NSGA-II

to respond to the changing frequency of the dynamic power system, as the maximum

number of FEs constrained in each stage is not enough for NSGA-II to converge to

better hypervolume values before the next stage comes. It can be seen that NSGA-II

cannot converge to acceptable solutions until at the last stage. Besides, it responds

to the changing system configuration with a serious delay in stages 1 and 2. As for

MOEA/D, it is unable to converge to accurate solutions compared with MOLA and

NSGA-II. It cannot obtain a satisfactory tracing performance.

0 2 4 6 8 10 12

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

5

FEs

H
y
p
e
rv

o
lu

m
e

MOEA/D

NSGA−II

MOLA

Figure 5.10: Convergence characteristics of MOEA/D, NSGA-II and MOLA on the

new England wind power penetrated system penetrated with wind power

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.3 Evaluation in Deregulated Power Market 169

Remarking of Voltage Profile

Unlike MOEA/D and NSGA-II that change all the control variables simultane-

ously, MOLA mainly applies sequential search, which adjusts control variables one

by one. Sequential search has the advantage of avoiding large perturbation of volt-

age, i.e. maintaining the variation of voltage profile in a reasonable range. Keeping

voltage profile stable is one of the most important constraints in terms of the im-

plementation of an optimisation algorithm in power systems. In this aspect, MOLA

has shown its superiority over MOEA/D and NSGA-II. To prove that, MOEA/D,

NSGA-II and MOLA are applied to solve the multi-objective problem on the modi-

fied IEEE 30-bus power system with wind power penetration.

In the process of optimisation, the voltage profile is evaluated through an indi-

cator of the perturbation of the voltage profile, denoted as PV P , which is defined

as the difference of voltage profile between two continuous function evaluations, as

formulated below:

PV Pi =
∑

j∈N

|Vi,j − Vi−1,j| (5.2.5)

where i denotes the index of FEs, and N denotes the set of numbers of the buses in

the power system. PV P represents the perturbation of the voltage profile between

two evaluations in the optimisation process. Smaller values of PV P imply stabler

voltage profile. The values of PV P obtained over 31 continuous power flow calcu-

lations are given in Fig. 5.11, as well as its mean value. The mean value of PV P

obtained by MOLA is 0.6133, while those of MOEA/D of NSGA-II are 0.7557 and

0.7473 respectively. It can be seen that the voltage profile obtained by MOLA is

better than that found by MOEA/D and NSGA-II on average.

5.3 Evaluation in Deregulated Power Market

MOLA is applied to solve the problem in deregulated power market. The merits

of MOLA have been demonstrated, in comparison with MOEA/D and NSGA-II.

The study is undertaken based on the IEEE 30-bus power system. MOLA is applied

to maximise social benefit and enhance the system stability simultaneously. The

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.3 Evaluation in Deregulated Power Market 170

0 5 10 15 20 25 30 35
0

1

2

FEs

 P
V

P

fo
r

M
O

E
A

/D

0 5 10 15 20 25 30 35
0

1

2

FEs

 P
V

P

fo
r

N
S

G
A

−
II

0 5 10 15 20 25 30 35
0

1

2

FEs

 P
V

P

fo
r

M
O

L
A

Mean

Mean

Mean

Figure 5.11: The values of PV P obtained by MOEA/D, NSGA-II and MOLA

simulation results have shown that MOLA is superior over MOEA/D and NSGA-II

with respect to finding the range of the Pareto fronts, the efficiency of the search,

and the accuracy of the obtained non-dominated solutions.

5.3.1 Problem formulation

The problem is concerned with the following two objectives. The first objective

is to maximise the social profit, which is defined as customer benefit minus the cost

of generators and the cost of pollutant emission [143]:

f1 = max

N
∑

t=1

{ ND
∑

j=1

B̃j(P
t
Dj

)−
NG
∑

i=1

(C̃i(P
t
Gi

) + Ei)

}

(5.3.1)

where B̃j is the benefit (or bid) function of customer j [147]; C̃i is the cost (or bid)

function of generator i; Ei is the cost of the pollutant emission generated by the ith

generator, defined as (5.1.3).

The second objective is to enhance the voltage stability which is a major power

system weakness resulting in severe detriments with economical, technical and so-

cial dimensions, as aforementioned in Section 4.2.1. Voltage stability assessment is

carried out through a global indicator Lmax, as given in (4.2.11).

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.3 Evaluation in Deregulated Power Market 171

5.3.2 Simulation studies

MOLA is fully compared with MOEA/D and NSGA-II in solving the multi-

objective optimisation problem introduced in Section 5.3.1. The parameter settings

of MOEA/D and NSGA-II follow the suggestions in [103] and [29] respectively.

The parameters of MOLA are pre-set using the same values as those given in Section

2.3.2, with the exception ofD = 20,M = 50 andNfemax. To have a fair comparison,

the same Nfemax is taken by the algorithms when solving the same test case. The

functions of bids and offers follow the suggestions in [147]. The comparison is

carried out based on the IEEE 30-bus power system which consists of 48 branches

and 6 generators, as shown in Fig. 4.2.

2.34 2.35 2.36 2.37 2.38 2.39

x 10
4

0.12

0.125

0.13

0.135

0.14

0.145

Maximize f1

M
in

im
iz

e
f
2

MOEA/D

NSGA−II

MOLA

Figure 5.12: Pareto fronts obtained by MOEA/D, NSGA-II and MOLA on the IEEE

30-bus power system

The Pareto fronts obtained by MOEA/D, NSGA-II and MOLA are shown in

Fig. 5.12, while Fig. 5.13 zooms in part of the Pareto front that locates within

[2.378×104, 2.390×104]×[0.125, 0.131]. It can be seen that MOLA performs bet-

ter than MOEA/D and NSGA-II in terms of accuracy and smoothness of the Pareto

front. In addition, the range of their Pareto fonts varies widely. To see clearly,

the results of the three algorithms are plotted in subfigures separately, as shown

in Fig 5.14. The non-dominated solutions found by MOEA/D flock to one end,

locating at the range of [2.384×104, 2.386×104]×[0.1295, 0.138]. Among the

non-dominated solutions found by MOEA/D, there is an isolated objective func-

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.3 Evaluation in Deregulated Power Market 172

tion vector, i.e. (2.384×104, 0.1295). Besides, there is a big gap between solutions

(2.384×104, 0.1295) and (2.386×104, 0.1354), which means that MOEA/D can

not find any solution between the two points. The Pareto front found by NSGA-

II spreads over [2.382×104, 2.386×104]×[0.1255, 0.1378], which is wider than

that found by MOEA/D. However, the non-dominated solutions found by MOEA/D

are more accurate than those found by NSGA-II, with the exception of the isolated

point, (2.384×104, 0.1295). As for MOLA, its non-dominated solutions spread over

the range of [2.341×104, 2.386×104]×[0.1251, 0.138], which is much wider than

that of MOEA/D and NSGA-II. Additionally, it can be seen that MOLA can find

much more non-dominated solutions than MOEA/D and NSGA-II. The fact that

MOLA finds wider Pareto front and more non-dominated solutions suggests that

MOLA can provide a variety of choices among the non-dominated solutions that

satisfy the optimisation targets.

2.378 2.38 2.382 2.384 2.386 2.388 2.39

x 10
4

0.125

0.126

0.127

0.128

0.129

0.13

0.131

Maximize f1

M
in

im
iz

e
f
2

MOEA/D

NSGA−II

MOLA

Figure 5.13: Details of the Pareto fronts obtained by MOEA/D, NSGA-II and

MOLA on the IEEE 30-bus power system

The computation time consumed by the three algorithms is also investigated on

the power system, as given in Table 5.15, which lists the computation time used by

the three algorithms. It can be seen that MOLA reduces the computation time, in

comparison with MOEA/D and NSGA-II.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.4 Conclusions 173

2.34 2.35 2.36 2.37 2.38 2.39

x 10
4

0.12

0.13

0.14

Maximize f1

M
in

im
iz

e
f
2

2.34 2.35 2.36 2.37 2.38 2.39

x 10
4

0.12

0.13

0.14

Maximize f1

M
in

im
iz

e
f
2

2.34 2.35 2.36 2.37 2.38 2.39

x 10
4

0.12

0.13

0.14

Maximize f1

M
in

im
iz

e
f
2

MOEA/D

NSGA−II

MOLA

Figure 5.14: Pareto fronts obtained by MOEA/D, NSGA-II and MOLA (in subfig-

ures) on the IEEE 30-bus power system

Table 5.15: The computation time (s) consumed by MOEA/D, NSGA-II and MOLA

on the IEEE 30-bus power system

Algorithms MOEA/D NSGA-II MOLA

Time (s) 148.462 201.243 123.514

5.4 Conclusions

In this chapter, MOLA has been fully compared with MOEA/D and NSGA-II in

solving the multi-objective optimisation problem, which aims to reduce the opera-

tional cost and enhance voltage stability, in the wind power penetrated IEEE 30-bus

power system and new England test power system respectively. The simulation re-

sults have demonstrated that MOLA performs better than MOEA/D and NSGA-II,

as MOLA can find wider and evenly distributed Pareto fronts, and obtain more ac-

curate Pareto optimal solutions efficiently. Additionally, MOLA consistently finds

larger hypervolume and smaller diversity metric than MOEA/D and NSGA-II un-

der different circumstances. MOLA has presented its superiority by finding wider

Pareto fronts than MOEA/D and obtaining more accurate solutions than NSGA-II,

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

5.4 Conclusions 174

while using much less function evaluations.

Besides, MOLA has also been applied to solve the multi-objective optimisa-

tion problem in deregulated market, which aims to maximise the social benefit and

enhance voltage stability in the IEEE 30-bus power system. The simulation re-

sults have demonstrated that MOLA greatly outperforms MOEA/D and NSGA-II,

as MOLA can find wider and evenly distributed Pareto fronts, and obtain more ac-

curate Pareto optimal solutions efficiently.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

Chapter 6

Conclusions and Future Work

This chapter concludes this thesis, summarises the major outcomes of the re-

search work presented in this thesis, and indicates possible future directions for

further investigation in terms of learning automata methods and their applications in

power systems.

6.1 Conclusions

In the literature of opitmisation, research of EAs has attracted great attention due

to their ability of solving multi-modal problems. However, based on the population-

based search approach, these algorithms have a high level of randomness and un-

predictable computational complexity. This has hampered the potential of these ap-

proaches’ application in large-scale optimisation problems, such as optimal power

flow problems in power systems. The research here is to develop an alternative ap-

proach to function optimisation, based on learning automata, instead of EAs. In this

thesis, two novel optimisation algorithms, FOLA and MOLA, have been developed.

Following the methodological studies, the developed algorithms have been applied

to resolve the optimal power flow problems in power systems. The research work

presented in this thesis can be concluded as follows.

The first part of the thesis (including Chapters 2 and 3) is devoted to the devel-

opment of the two novel learning automata-based algorithms, FOLA and MOLA.

175

6.1 Conclusions 176

In Chapter 2, FOLA is presented based on the concept of learning automata. It

adopts the structure of multiple automata, and each automaton undertakes dimen-

sional search on a selected dimension of the solution domain. FOLA capitalises on

the merits of dividing the dimensional search domain into cells, and the memories

of the performance evaluation of the dimensional states. With these approaches,

FOLA is able to undertake search in continuous states and achieve accurate solu-

tions efficiently. There are two key parameters, wc and Nfemax, to tune in FOLA

when it is applied to resolve a specific application problem. The two parameters can

be determined with the basic knowledge of the range of variables involved and the

solution accuracy required in the application problem. FOLA has been compared

with a number of EAs based on widely used 30-dimensional benchmark functions

which include uni-modal and multi-modal problems. The experimental results have

shown that FOLA is able to achieve more accurate results than other EAs in finding

a global minimum solution, and is more reliable, for its standard deviation of the re-

sults over different independent runs is much smaller than that of other algorithms.

The capability of FOLA is also investigated based on high dimensional optimisa-

tion problems, whose dimensionality is up to 300. In comparison with other EAs,

FOLA presents its great superiority, as it finds much more accurate solutions, and

significantly improves the performance in terms of efficiency, convergence rate and

computation load.

As an extension of FOLA, MOLA is presented to solve multi-objective optimi-

sation problems in Chapter 3. MOLA employs the continuous search and the pro-

cess of learning from the best solution and neighboring solutions, through which

MOLA is able to find evenly distributed Pareto front for complex optimisation

problems. MOLA has been fully compared with two popular weighted-sum al-

gorithms, MOGA and MOPSO, on four multi-objective benchmark functions that

comprise low and high-dimensional models, convex and non-convex models, and

continuous and discontinuous models respectively. MOLA finds more accurate

non-dominated solutions than the other two algorithms. The solutions found by

MOGA and MOPSO flock to the two ends of the Pareto fronts, when solving the

problems which have non-convex Pareto front. As the dimensionality increases,

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

6.1 Conclusions 177

MOLA exhibits great superiority over MOGA and MOPSO with respect to the qual-

ity of Pareto fronts and computation time. With less computation time, the solutions

found by MOLA can dominate most of the solutions found by MOGA and MOPSO.

MOLA has been also compared with two Pareto front-based multi-objective algo-

rithms, MOEA/D and NSGA-II, on the basis of thirteen widely used multi-objective

benchmark functions, which comprise complex Pareto set shapes. The simulation

results have shown that MOLA presents its superiority over MOEA/D and NSGA-

II, as it can find more accurate and evenly distributed non-dominated solutions than

MOEA/D and NSGA-II, and its Pareto fronts are wider than those obtained by

MOEA/D and NSGA-II.

The second part of the thesis (including Chapters 4 and 5) is devoted to the

applications of FOLA and MOLA in power systems. In the first application, FOLA

is applied to reduce the fuel cost and enhance the voltage stability of the power

system. Simulation studies are carried out on the standard IEEE 30-bus and 57-bus

power systems respectively. The simulation results have demonstrated that FOLA is

able to offer more accurate solutions with shorter computation times. In the second

application, FOLA is applied to solve the optimal power flow problem which aims

to achieve economic power system dispatch and voltage stability enhancement in

dynamic wind power integrated systems. FOLA is compared with both classical and

recently-proposed EAs respectively, on the basis of the modified IEEE 30-bus, 57-

bus power and 118-bus systems, which are integrated with time-varying wind power.

The experimental results have demonstrated that FOLA tracks the changing system

configuration more rapidly and accurately than other algorithms. Advantages of

FOLA have been demonstrated by the fact that FOLA reduces the fuel cost greatly

and enhances the voltage stability of the power system.

Chapter 5 demonstrated three applications of MOLA for power system optimisa-

tion: solving economic emission dispatch and voltage stability enhancement in wind

power integrated power systems, and optimising social benefit and voltage stability

in deregulated electricity market. In the first two applications, a brief introduction

to the problem formulation, followed by the experiment undertaken on the modified

IEEE 30-bus power system and the modified new England test system, which are

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

6.2 Suggestions for Future Work 178

integrated with fixed-speed and variable speed wind generators respectively. The

dynamic environment is also investigated in this case. The simulation results have

presented the superiority of MOLA over the other algorithms. In the third appli-

cation, with the emergence of deregulated electricity markets, the challenge and

modification of optimal power flow are introduced first. MOLA is applied to max-

imise social benefit and enhance voltage stability in deregulated electricity market.

MOLA is compared with MOEA/D and NSGA-II, in solving the challenging op-

timisation problems, based on IEEE 30-bus power system. The simulation results

have presented the superiority of MOLA, as MOLA can find wide and evenly dis-

tributed Pareto fronts, and obtain accurate non-dominated solutions.

Conclusively, from the successful developments of the two novel algorithms,

this thesis demonstrates the prospects of the studies of LA-based algorithms. FOLA

and MOLA provide a new vision for optimisation problems. This thesis also demon-

strates the outstanding performance of these two algorithms while they are applied

to solve power system optimisation problems.

6.2 Suggestions for Future Work

The thesis aims at the development of LA-based optimisation algorithms and

to fully explore their potential for applications in power systems. In this section,

suggestions for future work that aim at improving the algorithms and expanding

their application are provided.

• The reinforcement signals (or cell values) could be extended into multiple

dimensions, thus they can represent the information collected from differ-

ent perspectives. For instance, if the search domain is small enough, the

problem could be considered as uni-modal. It is well-known that traditional

gradient-based optimisation algorithms can solve uni-modal problems accu-

rately, therefore, the approximated gradient could be regarded as one dimen-

sion of the reinforcement signals (or cell values). In addition, the correlation

among variables can also be taken into account as one dimension. With mul-

tiple dimensions of the collected information available, learning automata can

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

6.2 Suggestions for Future Work 179

automatically combine the beneficial information to guide the search around

more prosperous areas, based on the property of the searching area. The future

work will concentrate on the investigation of the structure of multiple dimen-

sional reinforcement signals (or cell values), and then generating an automatic

strategy which can analyse the property of the searching area, and choose the

corresponding useful information as search guidance.

• Preliminary study on hierarchical systems of learning automata has shown

the merit of using the structure of multilevel hierarchy, which is attractive

to the problems which require a large number of actions [69]. The structure

has the potential ability to tackle multi-objective problems. The future work

will investigate the hierarchical system of learning automata and construct a

framework of three level hierarchy, in which the learning automata located in

the lowest level interact with the environment, the learning automata located

in the middle level are used to resolve the multiple objectives separately, and

the learning automata located in the highest level are used to make trade-off

among the multiple objectives.

• Several inspiring learning methods (or learning theories) have been developed

in the literature, for instance, reinforcement learning [82] and statistical learn-

ing. Although these methods are limited to deal with certain types of problem,

their learning behaviors will be studied, which could lead to the discovery of

potential behaviors that benefits optimisation. These learning behavior could

afterwards be modified and adopted in the proposed methods, in order to fur-

ther improve the efficiency and accuracy of the algorithms.

• This study will expand the application of FOLA and MOLA in complex op-

timisation problems in power systems. The gap between the simulation and

on-line implementation is still wide. Applying the proposed algorithms in

power systems on-line still requires a large amount of work. In further work,

the optimisation problems of power systems which required on-line imple-

mentation will be investigated and solved by the proposed algorithms.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

Appendix A

Benchmark Functions

A.1 Unimodal Benchmark Functions

Sphere Model

F1(x) =

N
∑

i=1

x2
i − 100 ≤ xi ≤ 100

min(F1) = F1(0, ..., 0) = 0

Schwefel’s Problem 2.22

F2(x) =
N
∑

i=1

|xi|+
N
∏

i=1

|xi| − 10 ≤ xi ≤ 10

min(F2) = F2(0, ..., 0) = 0

Schwefel’s Problem 1.2

F3(x) =

N
∑

i=1

(

i
∑

j=1

xj

)

− 100 ≤ xi ≤ 100

min(F3) = F3(0, ..., 0) = 0

Schwefel’s Problem 2.21

F4(x) = max
i
{|xi|, 1 < i < N} − 100 ≤ xi ≤ 100

min(F4) = F4(0, ..., 0) = 0

180

A.2 Multimodal Benchmark Functions 181

Generalised Rosenbrock’s Function

F5(x) =
N−1
∑

i=1

[100(xi+1 − x2
i)

2 + (xi − 1)]2; −5 ≤ xi ≤ 5

min(F5) = F5(1, ..., 1) = 0

Step Function

F6(x) =

N
∑

i=1

(⌊xi + 0.5⌋)2 − 100 ≤ xi ≤ 100

min(F6) = F6(0, ..., 0) = 0

Quartic Function with Noise

F7(x) =
N
∑

i=1

ix4
i + random[0, 1) − 1.28 ≤ xi ≤ 1.28

min(F7) = F7(0, ..., 0) = 0

A.2 Multimodal Benchmark Functions

Generalised Schwefel’s Problem 2.26

F8(x) =
N
∑

i=1

−xi sin(
√

|x|) − 500 ≤ xi ≤ 500

min(F8) = F8(420.9687, ..., 420.9687) = −12, 569.5

Generalised Rastrigin’s Function

F9(x) =

N
∑

i=1

[x2
i − 10 cos(2πxi) + 10]2 − 5.12 ≤ xi ≤ 5.12

min(F9) = F9(0, ..., 0) = 0

Ackley’s Function

F10(x) = −20 exp

(

− 0.2

√

√

√

√

1

N

N
∑

i=1

x2
i

)

− exp

(

1

N

N
∑

i=1

cos(2πxi)

)

+ 20 + e

−32 ≤ xi ≤ 32

min(F10) = F10(0, ..., 0) = 0

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

A.2 Multimodal Benchmark Functions 182

Generalised Girewank Function

F11(x) =
1

4000

N
∑

i=1

x2
i −

N
∏

i=1

cos

(

xi√
i

)

+ 1

−600 ≤ xi ≤ 600

min(F11) = F11(0, ..., 0) = 0

Generalised Penalised Function 1

F12(x) =
π

N
{10 sin2(πy1) +

N−1
∑

i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yN−1)
2}

+
N
∑

i=1

u(xi, 5, 100, 4),

−50 ≤ xi ≤ 50

min(F12) = F12(1, ..., 1) = 0

where yi = 1 +
1

4
(xi + 1),

u(xi, a, k,m) =

k(xi − 1)m, xi > a,

0, −a < xi < a,

k(−xi − 1)m, xi < −a.

Generalised Penalised Function 2

F13(x) = 0.1{sin2(3πx1) +
N−1
∑

i=1

(xi − 1)2[1 + sin2(3πxi+1)]

+(xN − 1)2[1 + sin2(2πxN)]}+

N
∑

i=1

u(xi, 5, 100, 4),

−50 ≤ xi ≤ 50

min(F13) = F13(1, ..., 1) = 0

where yi = 1 +
1

4
(xi + 1),

u(xi, a, k,m) =

k(xi − 1)m, xi > a,

0, −a < xi < a,

k(−xi − 1)m, xi < −a.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

A.3 Multimodal Benchmark Functions with Rotation and Shift 183

A.3 Multimodal Benchmark Functions with Rotation

and Shift

Shifted Rosenbrock’s Function

Frs1(x) =

N−1
∑

i=1

[

100(zi+1 − z2
i)

2 + (zi − 1)2
]

+ fbias

Z = X −O + 1

X = [x1, . . . , xN]

N = 30; −100 ≤ xi ≤ 100

min(Frs1) = Frs1(o1, . . . , oN) = 390

Shifted Rotated Griewank’s Function without Bounds

Frs2(x) =
1

4000

N
∑

i=1

z2
i −

N
∏

i=1

cos

(

zi√
i

)

+ 1 + fbias

Z = (X − O)×M

M = M ′(1 + 0.3|N(0, 1)|); M ′ is linear transformation matrix

N = 30; 0 ≤ xi ≤ 600

min(Frs2) = Frs2(o1, . . . , oN) = −180

Shifted Rotated Ackley’s Function with Global Optimum on Bounds

Frs3(x) = −20 exp
(

− 0.2

√

√

√

√1/N
N
∑

i=1

z2
i

)

− exp
(

1/N
N
∑

i=1

cos(2πzi)
)

+20 + e+ fbias

Z = (X − O)×M

M is linear transformation matrix

N = 30; −32 ≤ xi ≤ 32

min(Frs3) = Frs3(o1, . . . , oN) = −140

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

A.3 Multimodal Benchmark Functions with Rotation and Shift 184

Shifted Rastrigin’s Function

Frs4(x) = f4 =

N
∑

i=1

(

z2
i − 10 cos(2πzi) + 10

)

+ fbias

Z = (X − O)

N = 30; −5 ≤ xi ≤ 5

min(Frs4) = Frs4(o1, . . . , oN) = −330

Shifted Rotated Rastrigin’s Function

Frs5(x) =
N
∑

i=1

(

z2
i − 10 cos(2πzi) + 10

)

+ fbias

Z = (X − O)×M

M is linear transformation matrix

N = 30; −5 ≤ xi ≤ 5

min(Frs5) = Frs5(o1, . . . , oN) = −330

Shifted Rotated Weierstrass Function

Frs6(x) =

N
∑

i=1

(

k max
∑

k=0

[ak cos(2πbk(zi + 0.5))]) (A.3.1)

−N
k max
∑

k=0

[ak cos(2πbk · 0.5)] + fbias

a = 0.5; b = 3; kmax = 20;

Z = (X −O)×M

M is linear transformation matrix

N = 30; −0.5 ≤ xi ≤ 0.5

min(Frs6) = Frs6(o1, . . . , oN) = 90

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

A.3 Multimodal Benchmark Functions with Rotation and Shift 185

Schwefel’s Problem 2.13

Frs7(x) =
N
∑

i=1

(Ai −Bi(x))
2 + fbias

a = 0.5; b = 3; kmax = 20;

Ai =

N
∑

j=1

(aij sinα + bij cosα)

Bi(x) =

N
∑

j=1

(aij sin xj + bij cos xj)

N = 30; −π ≤ xi ≤ π

min(Frs7) = Frs7(o1, . . . , oN) = −460

Expanded Extended Griewank’s plus Rosenbrock’s Function

Frs8(x) = Ḟ (F̈ (z1, z2)) + Ḟ (F̈ (z2, z3)) + . . .+ Ḟ (F̈ (zN−1, zN))

+Ḟ (F̈ (zN , z1)) + fbias

Ḟ =
1

4000

N
∑

i=1

z2
i −

N
∏

i=1

cos

(

zi√
i

)

+ 1

F̈ =
N−1
∑

i=1

[

100(zi+1 − z2
i)

2 + (zi − 1)2
]

Z = X − O + 1

N = 30; −π ≤ xi ≤ π

min(Frs8) = Frs8(o1, . . . , oN) = −130

Expanded Rotated Extended Scaffe’s F6

Frs9(x) = Ḟ (z1, z2) + Ḟ (z2, z3) + . . .+ Ḟ (zN−1, zN) + Ḟ (zN , z1) + fbias

Ḟ (x, y) = 0.5 +
(sin2(

√

x2 + y2)− 0.5)

(1 + 0.001(x2 + y2))2

Z = (X − O)×M

M is linear transformation matrix

N = 30; −100 ≤ xi ≤ 100

min(Frs9) = Frs9(o1, . . . , oN) = −300

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

A.4 Multi-objective Benchmark Functions for Weighted-sum Based Algorithms186

A.4 Multi-objective Benchmark Functions for Weighted-

sum Based Algorithms

Multi-objective benchmark function I

f1(X) =

(

N
∑

i=1

(x2
i)

)1/8

f2(X) =

(

N
∑

i=1

(xi − 0.5)2

)1/4

−5 ≤ xi ≤ 5

Multi-objective benchmark function II

f1(X) = 1− exp

(

−
N
∑

i=1

(xi −
1√
N

)2

)

f2(X) = 1− exp

(

−
N
∑

i=1

(xi +
1√
N

)2

)

−4 ≤ xi ≤ 4

Multi-objective benchmark function III

f1(X) = x1

f2(X) = (1 + 10x2)

(

1−
(

x1

1 + 10x2

)2

− x1 sin(8πx1)

1 + 10x2

)

0 ≤ x1, x2 ≤ 1

Multi-objective benchmark function IV

f1(X) = 4.9× 10−5(x2
2 − x2

1)(x4 − 1)

f2(X) =
9.82× 106(x2

2 − x2
1)

x3x4(x3
2 − x3

1)

(x2 − x1)− 20 ≥ 0

30− 2.5(x4 + 1) ≥ 0

0.4− x3

3.14(x2
2 − x2

1)
≥ 0

2.22× 10−3x3(x
3
2 − x3

1)

(x2
2 − x2

1)
2

≤ 1

2.66× 10−2x3x4(x
3
2 − x3

1)

x2
2 − x2

1

≥ 900

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

A.5 Multi-objective Benchmark Functions for Pareto front-based Algorithms 187

A.5 Multi-objective Benchmark Functions for Pareto

front-based Algorithms

Group 1

Fun1-1

f1(X) =

(

30
∑

i=1

(x2
i)

)1/8

f2(X) =

(

30
∑

i=1

(xi − 0.5)2

)1/4

−5 ≤ xi ≤ 10

Fun1-2

f1(X) =

(

50
∑

i=1

(x2
i)

)1/8

f2(X) =

(

50
∑

i=1

(xi − 0.5)2

)1/4

−5 ≤ xi ≤ 10

Fun1-3

f1(X) =

(

70
∑

i=1

(x2
i)

)1/8

f2(X) =

(

70
∑

i=1

(xi − 0.5)2

)1/4

−5 ≤ xi ≤ 10

Fun2-1

f1(X) = 1− exp

(

−
N
∑

i=1

(xi −
1√
N

)2

)

f2(X) = 1− exp

(

−
N
∑

i=1

(xi +
1√
N

)2

)

−4 ≤ xi ≤ 4

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

A.5 Multi-objective Benchmark Functions for Pareto front-based Algorithms 188

Fun2-2

f1(X) = 1− exp

(

−
N
∑

i=1

(xi −
1√
N

)2

)

f2(X) = 2.5− 2.3× exp

(

−
N
∑

i=1

(xi +
1√
N

)2

)

−4 ≤ xi ≤ 4

Fun2-3

f1(X) = 1− exp

(

−
N
∑

i=1

(xi −
1√
N

)2

)

f2(X) = 1− exp

(

−
N
∑

i=1

(xi +
1√
N

)6

)

−4 ≤ xi ≤ 4

Group 2

Fun3

f1(X) = x1 +
2

|J1|
∑

j∈J1

[xj − sin(6πx1 +
jπ

n
)]2

f2(X) = 1−√x1 +
2

|J2|
∑

j∈J2

[xj − sin(6πx1 +
jπ

n
)]2

J1 = {j|j is odd and 2 ≤ j ≤ n}

J2 = {j|j is even and 2 ≤ j ≤ n}

n = 30; [0, 1]× [−1, 1]n−1

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

A.5 Multi-objective Benchmark Functions for Pareto front-based Algorithms 189

Fun4

f1(X) = x1 +
2

|J1|
∑

j∈J1

y2
j

f2(X) = 1−√x1 +
2

|J2|
∑

j∈J2

y2
j

J1 = {j|j is odd and 2 ≤ j ≤ n}

J2 = {j|j is even and 2 ≤ j ≤ n}

yj =

{

xj − [0.3x2
1 cos(24πx1 + 4jπ

n
) + 0.6x1] cos(6πx1 + jπ

n
) j ∈ J1

xj − [0.3x2
1 cos(24πx1 + 4jπ

n
) + 0.6x1] sin(6πx1 + jπ

n
) j ∈ J2

n = 30; [0, 1]× [−1, 1]n−1

Fun5

f1(X) = x1 +
2

|J1|
(4
∑

j∈J1

y2
j − 2

∏

j∈J1

cos(
20yjπ√

j
) + 2)

f2(X) = 1−√x1 +
2

|J2|
(4
∑

j∈J2

y2
j − 2

∏

j∈J2

cos(
20yjπ√

j
) + 2)

J1 = {j|j is odd and 2 ≤ j ≤ n}

J2 = {j|j is even and 2 ≤ j ≤ n}

yj = xj − x
0.5(1.0+

3(j−2)
n−2

)

1 , j = 2, . . . , n

n = 30; [0, 1]n

Fun6

f1(X) = x1 +
2

|J1|
(4
∑

j∈J1

h(yj)

f2(X) = 1− x2
1 +

2

|J2|
(4
∑

j∈J2

h(yj)

J1 = {j|j is odd and 2 ≤ j ≤ n}

J2 = {j|j is even and 2 ≤ j ≤ n}

yj = xj − sin(6πx1 +
jπ

n
), j = 2, . . . , n

n = 30; [0, 1]× [−2, 2]n−1

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

A.5 Multi-objective Benchmark Functions for Pareto front-based Algorithms 190

Fun7

f1(X) = x1 + (
1

2N
+ ε)| sin(2Nπx1)|+

2

|J1|
∑

j∈J1

h(yj)

f2(X) = 1− x1 + (
1

2N
+ ε)| sin(2Nπx1)|+

2

|J2|
∑

j∈J2

h(yj)

J1 = {j|j is odd and 2 ≤ j ≤ n}

J2 = {j|j is even and 2 ≤ j ≤ n}

yj = xj − sin(6πx1 +
jπ

n
), j = 2, . . . , n

h(t) = 2t2 − cos(4πt) + 1

n = 30; [0, 1]× [−1, 1]n−1

Fun8

f1(X) = x1 + max{0, 2(
1

2N
+ ε) sin(2Nπx1)}

+
2

|J1|
(4
∑

j∈J1

y2
j − 2

∏

j∈J1

cos(
20yjπ√

j
) + 2)

f2(X) = 1− x1 + max{0, 2(
1

2N
+ ε) sin(2Nπx1)}

+
2

|J2|
(4
∑

j∈J2

y2
j − 2

∏

j∈J2

cos(
20yjπ√

j
) + 2)

J1 = {j|j is odd and 2 ≤ j ≤ n}

J2 = {j|j is even and 2 ≤ j ≤ n}

yj = xj − sin(6πx1 +
jπ

n
), j = 2, . . . , n

n = 30; [0, 1]× [−1, 1]n−1

Fun9

f1(X) = 5
√
x1 + (

2

|J1|
∑

j∈J1

y2
j

f2(X) = 1− 5
√
x1 + (

2

|J2|
∑

j∈J2

y2
j

J1 = {j|j is odd and 2 ≤ j ≤ n}

J2 = {j|j is even and 2 ≤ j ≤ n}

yj = xj − sin(6πx1 +
jπ

n
), j = 2, . . . , n

n = 30; [0, 1]× [−1, 1]n−1

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

A.5 Multi-objective Benchmark Functions for Pareto front-based Algorithms 191

Group 3

Fun10

f1(X) = cos(0.5x1π) cos(0.5x2π) +
2

|J1|
∑

j∈J1

(xj − 2x2 sin(2πx1 +
jπ

n
))2

f2(X) = cos(0.5x1π) sin(0.5x2π) +
2

|J2|
∑

j∈J2

(xj − 2x2 sin(2πx1 +
jπ

n
))2

f3(X) = sin(0.5x1π) +
2

|J3|
∑

j∈J3

(xj − 2x2 sin(2πx1 +
jπ

n
))2

J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3}

J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3}

J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3}

n = 30; [0, 1]2 × [−2, 2]n−2

Fun11

f1(X) = 0.5[max{0, (1 + ε)(1− 4(2x1 − 1)2)}+ 2x1]x2

+
2

|J1|
∑

j∈J1

(xj − 2x2 sin(2πx1 +
jπ

n
))2

f2(X) = 0.5[max{0, (1 + ε)(1− 4(2x1 − 1)2)} − 2x1 + 2]x2

+
2

|J2|
∑

j∈J2

(xj − 2x2 sin(2πx1 +
jπ

n
))2

f3(X) = 1− x2 +
2

|J2|
∑

j∈J2

(xj − 2x2 sin(2πx1 +
jπ

n
))2

J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3}

J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3}

J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3}

ε = 0.1; [0, 1]2 × [−2, 2]n−2

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

A.5 Multi-objective Benchmark Functions for Pareto front-based Algorithms 192

Fun12

f1(X) = (1 + g(x))x1x2

f2(X) = 1 + g(x))x1(1− x2)

f3(X) = (1 + g(x))(1− x1)

g(x) = 100(n− 2) + 100
n
∑

i=3

{(xi − 0.5)2 − cos[20π(xi − 0.5)]}

n = 10; [0, 1]n

Fun13

f1(X) = (1 + g(x)) cos(
x1π

2
) cos(

x2π

2
)

f2(X) = (1 + g(x)) cos(
x1π

2
) sin(

x2π

2
)

f3(X) = ((1 + g(x)) sin(
x1π

2
)

g(x) =

n
∑

i=3

x2
i

[0, 1]2 × [−1, 1]n−2

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

Appendix B

Notations in Thesis

B.1 Notations in PSO and LA

N dimensionality of the search space

np number of particles in PSO

Zi position vector of particle i, and Zi=(zi1,zi2,. . . ,zij ,. . . ,ziN)

Vi velocity vector of particle i, and Vi=(vi1,vi2, . . . ,vij, . . . ,viN)

Pli the best position found by particle i, and

Pli=(pli1,pli2,. . . ,plij,. . . ,pliN)

Pg the best position found in the swarm, and

Pg=(pg1,pg2,. . . ,pgj,. . . ,pgN)

n iteration number (PSO), or time reference (LA)

w inertia weight used in PSO

ζ1, ζ2 random numbers used in PSO

cf1, cf2 acceleration factors used in PSO

X state (CALA) or context vector (GLA)

XN number of states

X set of states (CALA), or set of context vectors (GLA)

a action

A set of actions

aN number of actions

193

B.1 Notations in PSO and LA 194

r reinforcement

R set of reinforcements

rN number of reinforcements

α̃, β̃ real numbers

pi probability of choosing action ai

P set of action probabilities

F(·, ·) transition function

G(·) output function

T reinforcement scheme

C penalty probability

λ̃ step size of learning

Fi reward probability of action ai, or objective of learning

µ mean of probability distribution

σ standard deviation of probability distribution

a∗ the optimal action, or the optimal solution

I index of the optimal action

σL lower bound of σ

CP positive constant used in CALA

g probability generating function

S internal state, S = (S̄T
1 . . . S̄

T
aN)T

S̄i the ith vector in S

L,K constants

J positive integer

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

B.2 Notations in FOLA and MOLA 195

B.2 Notations in FOLA and MOLA

N number of automata, or dimensionality of the search do-

main

χi set of possible states on the ith dimension

xi dimensional state on the ith dimension

[xmin,i, xmax,i] search range of dimension i

Ai set of possible actions on dimension i

l reference number of path: left path if l = 1; right path if

l = 2

η step length

r a reinforcement signal

pl probability of selecting path l

T reinforcement scheme

F (·) objective function

X solution, or state

D number of cells on one dimension

ci,j the jth cell on dimension i

wc,i the width of the cell in dimension i

V (xi)|xi∈ci,j
cell value of ci,j

Ll path value of path l

λ1, λ2, α weights

τ temperature

ξ number of cells between the current cell and the selected

cell

ζ random number

k constant number

Xbest the latest best solution

Nfemax the maximum number of objective function evaluations

Iemax number of iterations in an episode

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

B.2 Notations in FOLA and MOLA 196

C covariance matrix

ccov learning rate of the covariance matrix

σ step-size

O, M , fbias shift, rotation and bias

Fmin the minimum value of objective function

fi the ith objective function in MOLA

mf number of objectives

L elite list

B set of the solutions which were stored in the elite list, but

currently dominated by Xbest

F ∗ target objective vector

Xlbest the latest local best solution

M number of weight vectors

W weight vector, and Wi = [w1, w2, · · · , wmf]

D(i) set of indexes

X i
sub subsolution

z∗ reference point

fj,range estimated range of fj

Nei(X i
sub) set of neighboring solutions of X i

sub

I1, I2 indexes

ψ1, ψ2 weights

HV hypervolume

D̃ distance metric

△ diversity metric

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

B.3 Notations in Power Systems 197

B.3 Notations in Power Systems

X control variables

U dependent variables

PGi
injected active power at bus i (p.u.)

VG voltage at generator buses (p.u.)

Ti tap position at transformer i

Vi voltage magnitude at bus i (p.u.)

QCi
reactive power source installation at bus i (p.u.)

NG set of numbers of generator buses

NT set of numbers of transformer branches

NC set of numbers of possible reactive power source installation

bus

VL voltage at load buses (p.u.)

QDi
demanded reactive at bus i (p.u.)

QGi
injected reactive power at bus i (p.u.)

Sk apparent power flow in branch k (p.u.)

NE set of numbers of network branches

NL set of numbers of load buses

Ni total number of buses adjacent to bus i, including bus i

θij voltage angle difference between bus i and j (rad)

Bij transfer susceptance between bus i and j (p.u.)

Gij transfer conductance between bus i and j (p.u.)

N0 total number of total buses excluding slack bus

NPQ total number of PQ buses

λGi
penalty factors of the reactive power on the ith bus

N lim
G set of numbers of generator buses on which injected reactive

power outside limits

F objective function

f̃i fuel cost of the ith bus

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

B.3 Notations in Power Systems 198

ai, bi, ci fuel cost coefficients

ω weighting factor

Li stability indicators at bus i

Lmax global risk indicator

Y +
jj transformed admittance

S+
j transformed power

x̃m excitation reactance

x̃1 stator reactance

x̃2 rotor reactance

r̃2 rotor resistance

r̃1 stator resistance

s̃ slip of the asynchronous wind generator

VWG wind generator voltage

PWG active power of wind generator

QWG reactive power of wind generator

NFG set of numbers of buses incorporated with fuel-derived

power generators

h price penalty factor

Ei cost of pollutant emission of the ith generator

ρ air density

Ablade area swept by the turbine blades

Rblade radius of turbine rotor blades

Cp turbine performance coefficient

vw wind speed

αEi, βEi, γEi coefficients of the ith generator’s emission characteristics

ζEi, λEi coefficients of the ith generator’s emission characteristics

PDi
demanded active power at bus i (p.u.)

B̃j benefit (or bid) function of customer j

C̃i cost (or bid) function of generator i

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

B.4 List of Abbreviations and Notations 199

B.4 List of Abbreviations and Notations

Abbreviations

LA Learning Automata

EAs Evolutionary Algorithms

GA Genetic Algorithm

EP Evolutionary Programming

GP Genetic Programming

ES Evolutionary Strategy

FEP Fast Evolutionary Programming

PSO Particle Swarm Optimisation

CLPSO Comprehensive Learning Particle Swarm Optimiser

ACO Ant Colony Optimisation

GSO Group Search Optimiser

FALA Finite Action-set Learning Automata

CALA Continuous Action Learning Automaton

GLA Generalized Learning Automaton

PLA Parameterized Learning Automaton

FOLA Function Optimisation by Learning Automata

RLEP Evolutionary Programming based on Reinforcement Learning

MSEP Mixed Strategy Evolutionary Programming

CEP Conventional Evolutionary Programming

CES Conventional Evolution Strategies

FES Fast Evolution Strategies

CPSO Cooperative Particle Swarm Optimisation

FEs Function Evaluations

GS-SOMA Generalized Surrogate Single-Objective Memetic Algorithm

OLPSO Orthogonal Learning Particle Swarm Optimisation

SOPEN Self-Organizing Potential Field Network

SamACO Sampling Ant Colony Optimisation

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

B.4 List of Abbreviations and Notations 200

MOLA Multi-objective Optimisation by Learning Automata

PGS Pareto Global Search

PLS Pareto Local Search

s.a.s summary attainment surface

MOEA/D Multi-Objective Evolutionary Algorithm based on Decomposition

MOPSO Multi-Objective Particle Swarm Optimiser

MOGA Multi-Objective Genetic Algorithm

NSGA-II Fast Non-dominated Sorting Genetic Algorithm

OPF Optimal Power Flow

ISO Independent System Operator

Notations

�, � vector inequality

∀ for all

∃ exist

T transpose

′ derivative

∂ partial derivative

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

References

[1] X. Yao, Y. Liu, and G. Liu. Evolutionary programming made faster. IEEE

Transaction on Evolutionary Computation, 3(2):82–102, 1999.

[2] B. Huang, P. Fery, L. Xue, and Y. Wang. Seeking the pareto front for multiob-

jective spatial optimization problems. International Journal of Geographical

Informaion Science, 22(5):507–526, 2008.

[3] H. Li and Q. Zhang. Multiobjective optimization problems with compli-

cated pareto sets, MOEA/D and NSGA-II. IEEE Transations on Evolutionary

Computation, 12(2):284–302, 2009.

[4] W. C. Davidon. Variable metric method for minimization. SIAM Journal on

Optimization, 1(1):1–17, 1991.

[5] E. Bonabeau, M. Dorigo, and G. Theraulza. Inspiration for optimisation from

social insect behaviour. Nature, 406:39–42, July 2000.

[6] A. Cassioli, D. D. Lorenzo, M. Locatelli, F. Schoen, and M. Sciandrone.

Machine learning for global optimization. Computational Optimization and

Applications, published online (2010).

[7] A. Konak, D. W. Coit, and A. E. Smith. Multi-objective optimization us-

ing genetic algorithms: A tutorial. Reliability Engineering & System Safety,

91(9):992 – 1007, 2006.

[8] K. H. Borgwardt. The Simplex Algorithm: A Probabilistic Analysis, Algo-

rithms and Combinatorics. Springer-Verlag, 1987.

201

REFERENCES 202

[9] B. Gartner and J. Matousek. Understanding and Using Linear Programming.

Springer, Berlin, German, 2006.

[10] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton,

NY, USA, 1970.

[11] M. Avriel. Nonlinear Programming: Analysis and Methods. Dover Publish-

ing, Mineola, NY, USA, 2003.

[12] D. G. Bounds. New optimization methods from physics and biology. Nature,

329(6136):215–219, 1987.

[13] R. M. Brady. Optimization strategies gleaned from biological evolution. Na-

ture, 317(6040):804–806, 1985.

[14] H. B. Dong, J. He, H. K. Huang, and W. Hou. Evolutionary programming us-

ing a mixed mutation strategy. Information Sciences, 177(1):312–327, 2007.

[15] H. X. Zhang and J. Lu. Adaptive evolutionary programming based on rein-

forcement learning. Information Sciences, 178(4):971–984, 2008.

[16] J. H. Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, Michigan, 1975.

[17] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through

Simulated Evolution. John Wiley, New York, 1966.

[18] J. R. Koza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIET Press, 1992.

[19] I. Rechenberg. Evolution Strategie: Optimieriung Rechnischer Systemenach

Prinzipien der Biologichen Evolution. Frommann-Holzboog, Stuuugart, Ger-

many, 1973.

[20] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence.

MIT Press, Cambridge, MA, USA, 1992.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 203

[21] L. N. Xing, Y. W. Chen, and K. W. Yang. Multi-population interactive co-

evolutionary algorithm for flexible job shop scheduling problems. Computa-

tional Optimization and Applications, published online (2009).

[22] M. Bessaou and P. Siarry. A genetic algorithm with real-value coding to

optimize multimodal continuous functions. Structural and Multidisciplinary

Optimization, 23:63–74, 2001.

[23] F. Herrera, M. Lozano, and J. L. Verdegay. Tackling real-coded genetic algo-

rithms: Operators and tools for behavioural analysis. Artificial Intelligence

Review, 12(4):265–319, 1998.

[24] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes

used in genetic algorithms. Foundations of Genetic Algorithms, 1:69–93,

1991.

[25] P. Hajela and C. Y. Lin. Genetic search strategies in multicriterion optimal

design. Structural and Multidisciplinary Optimization, 4:99–107, 1992.

[26] T. Murata and H. Ishibuchi. MOGA: multi-objective genetic algorithms. In

Proc. of IEEE International Conference on Evolutionary Computation, 29

1995.

[27] N. Srinivas and K. Deb. Multiobjective optimization using nondominated

sorting in genetic algorithms. Evolutionary Computation, 2, 1994.

[28] G. G. Yen and H. M. Lu. Dynamic multiobjective evolutionary algorithm:

adaptive cell-based rank and density estimation. IEEE Transactions on Evo-

lutionary Computation, 7(3):253 – 274, 2003.

[29] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multi-

objective genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary

Computation, 6(2):182–197, 2002.

[30] E. Masazade, R. Rajagopalan, P. K. Varshney, C. K. Mohan, G. K. Sendur,

and M. Keskinoz. A multiobjective optimization approach to obtain decision

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 204

thresholds for distributed detection in wireless sensor networks. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40(2):444–

457, 2010.

[31] A. Vincenti, M. R. Ahmadian, and P. Vannucci. BIANCA: a genetic algorithm

to solve hard combinatorial optimisation problems in engineering. Journal of

Global Optimization, 48(3):399–421, 2010.

[32] D. Powell and M. M. Skolnick. Using genetic algorithms in engineering de-

sign optimization with nonlinear constraints. In Proc. of International Con-

ference On Genetic Algorithms, pages 424–431, 1993.

[33] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, 1989.

[34] D. B. Fogel. System Identification through Simulated Evolution: A Machine

Learning Approach to Modeling. Ginn Press, 1991.

[35] M. S. Li. Bacteria-inspired Algorithms and Their Applications to Power Sys-

tem Optimisation. Ph.D. thesis, Liverpool University, Liverpool, UK, 2010.

[36] B. Y. Qu and P. N. Suganthan. Multi-objective evolutionary programming

without non-domination sorting is up to twenty times faster. In Proc. of IEEE

Congress on Evolutionary Computation, pages 2934 –2939, Trondheim, May

2009.

[37] K. P. Anchor, J. B. Zydallis, G. H. Gunsch, and G. B. Lamont. Differ-

ent multi-objective evolutionary programming approaches for detecting com-

puter network attacks. In Proc. of the 2nd international conference on Evolu-

tionary multi-criterion optimization, EMO’03, pages 707–721, Berlin, Hei-

delberg, 2003. Springer-Verlag.

[38] P. Venkatesh and K. Y. Lee. Multi-objective evolutionary programming for

economic emission dispatch problem. In Proc. of IEEE Power and Energy

Society General Meeting - Conversion and Delivery of Electrical Energy in

the 21st Century, pages 1–8, Pittsburgh, PA, 2008.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 205

[39] J. R. Koza and R. Poli. A genetic programming tutorial, 2003.

[40] H. P. Schwefel. Numerical Optimization of Computer Models. Wiley, Chich-

ester, 1981.

[41] T. Back. Evolutionary Algorithms in Theory and Practice: Evolution Strate-

gies, Evolutionary Programming, Genetic Algorithms. Oxford University

Press, Oxford, UK, 1996.

[42] T. Back, F. Hoffmeister, and H. P. Schwefel. A survey of evolution strate-

gies. In Proceedings of the Fourth International Conference on Genetic Al-

gorithms, 1991.

[43] Z. Song and A. Kusiak. Multiobjective optimization of temporal processes.

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

40(3):845–856, 2010.

[44] J. Kennedy, R. C. Eberhart, and Y. H. Shi. Swarm Intelligence. Morgan

Kaufmann Publishers, 2001.

[45] J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE Interna-

tional Conference on Neural Networks, pages 1942–1948, IEEE Press, Pis-

cataway, NJ, 1995.

[46] F. V. D. Bergh and A. P. Engelbrecht. A study of particle swarm optimization

particle trajectories. Information Sciences, 176(8):937–971, 2006.

[47] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In IEEE World

Congress on Computational Intelligence, IEEE International Conference on

Evolutionary Computation, IEEE Press, 1998.

[48] M. Clerc and J. Kenney. The particle swarm - explosion, stability, and con-

vergence in a multimensional complex space. IEEE Transactions on Evolu-

tionary Computation, 6(1):58–73, 2002.

[49] S. He, Q. H. Wu, J. Y. Wen, J. R. Saunders, and R. C. Paton. A particle swarm

optimizer with passive congregation. BioSystems, 78:135–147, 2004.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 206

[50] F. Bergh and A. P. Engelbrecht. A cooperative approach to particle swarm

optimization. IEEE Transactions on Evolutionary Computation, 8(3):225–

239, 2004.

[51] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar. Comprehensive learn-

ing particle swarm optimiser for global optimisation of multimodal functions.

IEEE Transactions on Evolutionary Compytation, 10(3):281–295, 2006.

[52] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed Optimization by Ant

Colonies. Elsevier Publishing, Paris, France, 1991.

[53] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence. Oxford

University Press, Oxford, UK, 1999.

[54] V. Maniezzo, L. M. Gambardella, and F. D. Luigi. Ant colony optimization.

In Optimization Techniques in Engineering, pages 101–117. Springer-Verlag,

Addison-Wesley, 2004.

[55] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a

colony of cooperating agents. IEEE Transactions on Systems, Man, and

Cybernetics–Part B, 26(1):29–41, 1996.

[56] S. He, Q. H. Wu, and J. R. Saunders. Group search optimizer - an optimiza-

tion algorithm inspired by animal searching behavior. IEEE Transaction on

Evolutionary Computation, 13(5):973–990, 2008.

[57] J. W. Bell. Searching Behaviour - The Behavioural Ecology of Finding Re-

sources, Chapman and Hall Animal Behaviour Series. Chapman and Hall,

1990.

[58] C. W. Clark and M. Mangel. Foraging and flocking strategies: information in

an uncertain environment. The American Naturalist, 123(5):626–641, 1984.

[59] C. J. Barnard and R. M. Sibly. Producers and scroungers: a general model

and its application to captive flocks of house sparrows. Animal Behaviour,

29:543–550, 1981.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 207

[60] Q. H. Wu, Z. Lu, M. S. Li, and T. Y. Ji. Optimal placement of facts devices by

a group search optimizer with multiple producers. In Proc. of IEEE Congress

on Evolutionary Computation, pages 1033–1039, 2008.

[61] R. R. Bush and F. Mosteller. Stochastic Models for Learning. Wiley, New

York, 1958.

[62] G. H. Bower R. C. Atkinson and E. J. Crothers. An Introduction to Mathe-

matical Learning Theory. Wiley, New York, 1965.

[63] M. L. Tsetlin. Automaton Theory and Modeling of Biological Systems, vol.

102 in Mathematics in Science and Engineering. Academic Press, New York,

1973.

[64] Q. H. Wu. Reinforcement learning control using interconnected learning au-

tomata. International Journal of Control, 62(1):1–16, 1995.

[65] H. E. Garcia, A. Ray, and R. M. Edwards. Reconfigurable control of power

plants using learning automata. IEEE Control Systems Magazine, 11(1):85–

922, 1991.

[66] C. Marsh, T. J. Gordon, and Q. H. Wu. Application of learning automata

to controller design in slow-active automobile suspensions. Vehicle System

Dynamics, 24(8):597–616, 1995.

[67] P. S. Sastry, G. D. Nagendra, and N. Manwani. A team of continuous-action

learning automata for noise-tolerant learning of half-spaces. IEEE Transac-

tions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40(1):19–28,

2010.

[68] H. Beigy and M. R. Meybodi. Stochastic optimization using continuous

action-set learning automata. Scientia Iranica, 12(1):14–25, 2005.

[69] A. S. Poznyak and K. Najim. Learning Automata and Stochastic Optimiza-

tion. Springer, 1997.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 208

[70] M. N. Howell, T. J. Gordon, and F. V. Brandao. Genetic learning automata for

function optimization. IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, 32(6):804–815, 2002.

[71] X. Zeng and Z. Liu. A learning automata based algorithm for optimization

of continuous complex functions. Information Sciences, 174(3-4):165 – 175,

2005.

[72] M. R. Aghaebrahimi, S. H. Zahiri, and M. Amiri. A New Method for Mul-

tiobjective Optimization Based on Learning Automata. World Academy of

Science, Engineering and Technology, 2009.

[73] M. A. L. Thathachar and P. S. Sastry. Networks of Learning Automata:

Techniques for Online Stochstic Optimization. Kluwer Academic Publishers,

2004.

[74] K. S. Narendra and M. A. L. Thathachar. Learning Automata: An Introduc-

tion. Prentice Hall, Englewood Cliffs, 1989.

[75] K. S. Narendra and M. A. L. Thathachar. Learning automata - a survey. IEEE

Transactions on Systems Man and Cybernetics, (4):323–334, 1974.

[76] R. Viswanathan and K. S. Narendra. Expedient and optimal variable-structure

stochastic automata. Technical report CT-31, Yale University, New Haven,

1970.

[77] S. Lakshmivarahan and M. A. L. Thathachar. Optimal non-linear reinforce-

ment schemes for stochastic automata. Information Sciences, 4(2):121 – 128,

1972.

[78] M. A. L. Thathachar and P. S. Sastry. Varieties of learning automata: an

overview. IEEE Transactions on Systems, Man, and Cybernetics, Part B,

32(6):711–722, 2002.

[79] H. Y. Kushner and G. G. Yin. Stochastic Approximation Algorithms and

Applications. New York: Springer-Verlag, 1997.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 209

[80] R. J. Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine Learning, 8:229–256, 1992.

[81] M. A. L. Thathachar and V. V. Phansalkar. Learning the global maximum with

parameterized learning automata. IEEE Transactions on Neural Networks,

6(2):398–406, 1995.

[82] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The

MIT Press, a Bradford Book, Cambridge, MA, 1998.

[83] J. S. Bridle. Training stochastic modal recognition algorithms as networks

can lead to maximum mutual information estimates of parameters. In Proc.

of the Advances in Neural Information Processing Systems, pages 211–217,

Morgan Kaufmann, San Mateo, CA, 1989.

[84] Q. H. Wu and H. L. Liao. Function optimisation by learning automata. In

Proc. of the WCCI 2010 IEEE World Congress on Computational Intelli-

gence, pages 1–8, Barcelona, Spain, 2010.

[85] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger, and

S. Tiwari. Problem definitions and evaluation criteria for the cec 2005 special

session on real-parameter optimization. Technical report, Nanyang Techno-

logical University, Singapore and KanGAL Report Number 2005005, 2005.

[86] D. H. Wolpert and W. G. Macready. No free lunch theorems for search. IEEE

Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[87] A. Torn and A. Zilinskas. Global optimisation, Volume 350 of Lecture Notes

in Computer Science. Springer-Verlag, Berlin, 1989.

[88] D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Ma-

chine Intelligence. IEEE Press, New York, 1995.

[89] H. P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 210

[90] X. Yao and Y. Liu. Fast Evolution Strategies, Evolutionary Programming VI,

edited by P. J. Angeline, R. G. Reynolds, J. R. McDonnell, and R. Eberhart.

Springer, Berlin, 1997.

[91] C. Houck, J. Joines, and M. Kay. A genetic algorithm for function optimiza-

tion: a matlab implementation. Technical report NCSU-IE-TR-95-09, Noth

Carolina State University, Raleigh, NC, 1995.

[92] X. Yao and Y. Liu. Scaling up evolutionary programming algorithms. In Proc.

of the Seventh Annual Conference on Evolutionary Programming (EP98),

Lecture Notes in Computer Science, pages 103–112, Springer-Verlag, Berlin,

1998.

[93] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi. Scaling up fast evolutionary pro-

gramming with cooperative coevolution. In Proc. of the 2001 Congress on

Evolutionary Computation, pages 1101–1108, IEEE Press, Piscataway, NJ,

USA, 2001.

[94] J. Biethahn and V. Nissen. Evolutionary Algorithms in Management Appli-

cations. Springer-Verlag, Berlin, 1995.

[95] N. Hansen. The CMA evolution strategy: a comparing review. In J. A.

Lozano, P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a New

Evolutionary Computation, Studies in Fuzziness and Soft Computing, pages

75–102. Springer, 2006.

[96] D. C. Montgomery. Statistical Quality Control. Wiley and Sons, New York,

1996.

[97] D. Lim, Yaochu Jin, Yew Soon Ong, and B. Sendhoff. Generalizing

surrogate-assisted evolutionary computation. IEEE Transactions on Evolu-

tionary Computation, 14(3):329–355, 2010.

[98] Z. H. Zhan, J. Zhang, Y. Li, and Y. H. Shi. Orthogonal learning particle

swarm optimization. IEEE Transactions on Evolutionary Computation (to

appear), 2011.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 211

[99] L. Xu and T. W. S. Shing. Self-organizing potential field network: a new

optimization algorithm. IEEE Transactions on Neural Network, 21:1482–

1495, September 2010.

[100] X. M. Hu, J. Z., H. S. H. Chung, Y. Li, and O. Liu. Samaco: Variable

sampling ant colony optimization algorithm for continuous optimization.

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

40(6):1555 –1566, 2010.

[101] B. T. Aharon. Characterization of pareto and lexicographic optimal solutions.

Lecture Notes in Economics and Mathematical Systems, 177(1), 1980.

[102] D. A. V. Veldhuizen and G. B. Lamont. Evolutionary Computation and Con-

vergence to a Pareto Front. Morgan Kaufmann, Stanford University, Califor-

nia, 1998.

[103] Q. F. Zhang and H. Li. MOEA/D: A multiobjective evolutionary algorithm

based on decomposition. IEEE Transactions on Evolutionary Computation,

11(6):712–731, 2007.

[104] C. Gil, A. Marquez, R. Banos, M. G. Montoya, and J. Gomez. A hybrid

method for solving multi-objective global optimization problems. Journal of

Global Optimization, 38(2):265–281, 2007.

[105] G. Avigad and A. Moshaiov. Interactive evolutionary multiobjective search

and optimization of set-based concepts. IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, 39(4):1013–1027, 2009.

[106] M. R. Sierra and C. A. C. Coello. Multi-objective particle swarm optimiz-

ers: A survey of the state-of-the-art. International Journal of Computational

Intelligence Research, 2(3):287–308, 2006.

[107] N. R. Santiago L. V. S. Quintero and C. A. C. Coello. Towards a More Ef-

ficient Multi-objective Particle Swarm Optimizer. In L. T. Bui and S. Alam,

editors, Multi-Objective Optimization in Computational Intelligence: Theory

and Practice. IGI Global, 2008.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 212

[108] C. M. Fonseca and P. J. Fleming. Multiobjective genetic algorithms made

easy: selection sharing andmating restriction. In Proc. of the First Interna-

tional Conference on Genetic Algorithms in Engineering Systems: Innova-

tions and Applications, pages 45–52, 1995.

[109] A. Osyczka and S. Kundu. A new method to solve generalized multicriteria

optimization problems using the simple genetic algorithm. Structural and

Multidisciplinary Optimization, 10:94–99, 1995.

[110] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A com-

parative case study and the strength pareto approach. IEEE Transaction on

Evolutionary Computation, 3(4):257–271, 1999.

[111] J. J. Durillo, A. J. Nebro, C. A. C. Coello, J. Garcia-Nieto, F. Luna, and

E. Alba. A study of multi-objective metaheuristics when solving param-

eter scalable problems. IEEE Transactions on Evolutionary Computation,

14(4):618–635, 2010.

[112] C. M. Fonseca and P. J. Fleming. On the performance assessment and com-

parison of stochastic multiobjective optimizers. In Lecture Notes in Computer

Science, Proc. of the 4th International Conference on Parallel Problem Solv-

ing from Nature, pages 584–593, Berlin, Germany, Springer-Verlag, 1996.

[113] http://dces.essex.ac.uk/staff/qzhang/moeacompetition09.htm. Technical re-

port, 2009.

[114] W. Liu Q. Zhang and H. Li. The performance of a new version of moea/d on

cec09 unconstrained mop test instances. Working report CES-491, School of

CS & EE, University of Essex, 2009.

[115] M. S. Bond B. Scott J. A. Momoh, R. J. Koessler and D. Sun. Challenges to

optimal power flow. IEEE Transactions on Power Systems, 12, 1997.

[116] N. G. Boulaxis, S. A. Papathanassiou, and M. P. Papadopoulos. Wind turbine

effect on voltage profile of distribution network. Renewable Energy, 25, 2002.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 213

[117] O. Alsac and B. Scott. Optimal load flow with steady state security. IEEE

Transactions on Power Apparatus and Systems, 1974.

[118] M. H. Bottero, F. D. Galiana, and A. R. Fahmideh-Vojdani. Economic dis-

patch using the reduced hessian. IEEE Transactions on Power Apparatus and

Systems, PAS-101:3679–3688, Oct. 1982.

[119] G. F. Reid and L. Hasdorf. Economic dispatch using quadratic programming.

IEEE Transactions on Power Apparatus and Systems, 1973.

[120] B. Scott and E. Hobson. Power system security control calculation using

linear programming. IEEE Transactions on Power Apparatus and Systems,

1978.

[121] J. A. Momoh and J. Z. Zhu. Improved interior point method for opf problems.

IEEE Trans on Power System, 14:1114–1120, 1999.

[122] H. Wei, H. Sasaki, J. Kubokawa, and R. Yokoyama. An interior point non-

linear programming for optimal power flow using a novel structure. IEEE

Transactions on Power System, 13, 1998.

[123] Q. H. Wu, Y. J. Cao, and J. Y. Wen. Optimal reactive power dispatch using

an adaptive genetic algorithm. International Journal of Electrical Power &

Energy Systems, 1998.

[124] B. Zhao, C. X. Guo, and Y. J. Cao. A multiagent-based particle swarm op-

timization approach for optimal reactive power dispatch. IEEE Transactions

on Power Systems, 20(2):1070–1078, 2005.

[125] Lars Kroldrup. Gains in global wind capacity reported. Technical report,

Green Inc., 2010.

[126] REN21. Renewables global status report. Technical report, 2009.

[127] Q. Ai and C. H. Gu. Economic operation of wind farm integrated system

considering voltage stability. Renewable Energy, 34(3):608–614, 2009.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 214

[128] W. J. Tang, M. S. Li, Q. H. Wu, and J. R. Saunders. Bacterial foraging algo-

rithm for optimal power flow in dynamic environments. IEEE Transactions

on Circuits and Systems I: Regular Papers, 55(8):2433–2442, 2008.

[129] S. Brini, H. H. Abdallah, and A. Ouali. Economic dispatch for power sys-

tem included wind and solar thermal energy. Leonardo Journal of Sciences,

8(14):204–220, 2009.

[130] U.S. Department of Energy. Final report on the August 14, 2003 blackout in

the united states and canada. Technical report, U.S.-Canada Power System

Outage Task Force, 2006.

[131] J. Carpentier. Contribution to the Econimoc Dispatch Problem, volume 8.

Bull. Soc. Franc. Elect., 1962.

[132] Q. H. Wu and H. L. Liao. Function optimization by reinforcement learning

for power system dispatch and voltage stability. In Proc. of IEEE Power &

Energy Society General Meeting, pages 1–8, Minneapolis, USA, 2010.

[133] J. Grainger and W. Stevenson. Power System Analysis. McGraw-Hill, New

York, 1994.

[134] S. He, E. Prempain, Q. H. Wu, J. Fitch, and S. Mann. An improved particle

swarm optimization for optimal power flow. In Proc. of IEEE 2004 Inter-

national Conference on Power System Technology, pages 21–24, The Pan

Pacific, Singapore, F1628-2E2J(1-5), 2004.

[135] H. L. Liao and Q. H. Wu. Multi-objective optimization by reinforcement

learning for power system dispatch and voltage stability. In Proc. of IEEE

PES Conference on Innovative Smart Grid Technologies Europe, pages 1–8,

Sweden, 2010.

[136] P. Kessel and H. Glavitch. Estimating the voltage stability of a power system.

IEEE Transaction on Power Delivery, 3(1):346–354, 1986.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 215

[137] K. M. Passino. http://www.ece.osu.edu/∼passino/icbook/ic code.html. Tech-

nical report.

[138] B. Birge. Psot - a particle swarm optimization toolbox for use with matlab.

In IEEE international Conference on Swarm Intelligence Symposium, pages

182–186, IEEE Press, 2003.

[139] Q. H. Wu, T. Y. Ji, M. S. Li, and Z. Lu. Group search optimizer with multiple

producers for reactive power dispatch. IEEE Transaction on Power Systems,

2008.

[140] L. T. Ha and T. K. Saha. Investigation of power loss and voltage stability lim-

its for large wind farm connections to a subtransmission network. In Proc. of

IEEE Power engineering society general meeting, pages 2251–2256, Denver,

CO, 2004.

[141] A. E. Feijdo and J. Cidris. Modeling of wind farms in the load flow analysis.

IEEE Transaction on Power Systems, 15(1):110–115, 2000.

[142] Z. Chen and E. Spooner. Grid power quality with variable speed wind tur-

bines. IEEE Transactions on Energy Conversion, 16(2):148–154, 2001.

[143] M. A. Abido. Environmental/economic power dispatch using multiobjective

evolutionary algorithms. IEEE Transactions on Power Systems, 18(4):1529–

1537, 2003.

[144] Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and R. Seethapathy. Optimal

renewable resources mix for distribution system energy loss minimization.

IEEE Transactions on Power Systems, 25(1):360–370, 2010.

[145] P. Venkatesh, R. Gnanadass, and N. P. Padhy. Comparison and application

of evolutionary programming techniques to combined economic emission

dispatch with line flow constraints. IEEE Transactions on Power Systems,

18(2):688–697, 2003.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 216

[146] E. Vittal, M. O’Malley, and A. Keane. Steady-state voltage stability analysis

of power systems with high penetrations of wind. IEEE Transactions on

Power Systems, 25(1):433–442, 2010.

[147] W. M. Lin and S. J. Chen. Bid-based dynamic economic dispatch with an

efficient interior point algorithm. International Journal of Electrical Power

& Energy Systems, 24(1):51–57, 2002.

[148] B. Zhao, C. X. Guo, and Y. J. Cao. Dynamic economic dispatch in electricity

market using particle swarm optimization algorithm. In Proc. of the Fifth

World Congress on Intelligent Control and Automation, volume 6, pages 5050

– 5054, 2004.

[149] X. Xia and A. M. Elaiw. Optimal dynamic economic dispatch of generation:

A review. Electric Power Systems Research, 80(8):975 – 986, 2010.

[150] Q. H. Wu and Y. J. Cao. Dispatching. Encyclopaedia of Electrical and Elec-

tronics Engineering, edited by John G. Webster, John Wiley & Sons Inc.,

1999.

[151] R. Bharathi, M. J. Kumar, D. Sunitha, and S. Premalatha. Optimization of

combined economic and emission dispatch problem - a comparative study.

In Proc. of IPEC 2007 International Power Engineering Conference, pages

134–139, Singapore, 2007.

[152] L. L. Freris. Wind Energy Conversion System. Prentice-Hall, Upper Saddle

River, NJ, 1990.

[153] W. Zhou, Y. Peng, and H. Sun. Probabilistic wind power penetration of

power system using nonlinear predictor-corrector primal-dual interior-point

method. In Electric Utility Deregulation and Restructuring and Power Tech-

nologies, 2008. DRPT 2008. Third International Conference on, pages 2548–

2552, 2008.

[154] J. Conroy and R. Watson. Aggregate modelling of wind farms containing

full-converter wind turbine generators with permanent magnet synchronous

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

REFERENCES 217

machines: transient stability studies. IET Renewable Power Generation,

3(1):39–52, 2009.

[155] G. Bathurst A. Shafiu, O. Anaya-Lara and N. Jenkins. Aggregated wind

turbine models for power system dynamic studies. Wind Engineering,

30(3):171–186, 2006.

[156] V. Akhmatov. An aggregated model of a large wind farm with variable-speed

wind turbines equipped with doubly-fed induction generators. Wind Engi-

neering, 28(4):479–488, 2004.

[157] I. Patnaik. Wind as a renewable source of energy. Technical Report, 2009.

[158] X. Chen, H. S. Sun, J. Y. Wen, W. J. Lee, X. F. Yuan, N. H. Li, and L. Z. Yao.

Integrating wind farm to the grid using hybrid multiterminal HVDC technol-

ogy. IEEE Transactions on Industry Applications, 47(2):965–972, 2011.

OPTIMISATION USING LEARNING AUTOMATA Huilian Liao

	List of Figures
	List of Tables
	Introduction
	Motivations and Objectives
	Optimisation Algorithms
	Classical optimisation algorithms
	Evolutionary Algorithms

	Introduction to Learning Automata
	Basic elements
	Several learning automata methods

	Overview of this Thesis
	Contributions of the Research

	1 Developments of Learning Automata-based Optimisation Algorithms
	Functional Optimisation by Learning Automata
	Introduction
	The FOLA Method
	An automaton and its reinforcement scheme
	The pseudocode of FOLA
	Search behaviors of FOLA

	Compared with Classical EAs
	Benchmark functions
	Evaluation on 30-dimensional functions
	Evaluation on 300-dimensional functions
	Discussion

	Compared with Recently-proposed EAs
	Benchmark functions
	Compared with CLPSO and CPSO
	Compared with GS-SOMA, OLPSO, SOPEN and SamACO

	Conclusions

	Multi-objective Optimisation by Learning Automata
	Introduction
	The MOLA Method
	An automaton and its reinforcement scheme
	Forming the Pareto set
	The process of searching and learning
	The implementation of MOLA

	Compared with Weighted-sum Based Algorithms
	Benchmark functions
	Simulation results
	Remarking

	Compared with Pareto Front-based Algorithms
	Performance metrics
	Simulation results

	Conclusions

	2 Power System Applications Using Learning Automata-based Optimisation Algorithms
	The Application of FOLA on Optimal Power Flow Problems
	Introduction
	Evaluation on Dispatch and Voltage Stability Enhancement Problems
	Problem formulation
	Simulation results

	Evaluation in Dynamic Wind Power Penetrated Systems
	Problem formulation
	Simulation results

	Conclusions

	The Application of MOLA in Multi-objective Optimal Power Flow Problems
	Introduction
	Evaluation on Power Systems with Fixed-speed Wind Generators
	Problem formulation
	Simulation studies

	Evaluation on Power Systems with Variable-speed Wind Generators
	Problem formulation
	Simulation studies

	Evaluation in Deregulated Power Market
	Problem formulation
	Simulation studies

	Conclusions

	Conclusions and Future Work
	Conclusions
	Suggestions for Future Work

	Benchmark Functions
	Unimodal Benchmark Functions
	Multimodal Benchmark Functions
	Multimodal Benchmark Functions with Rotation and Shift
	Multi-objective Benchmark Functions for Weighted-sum Based Algorithms
	Multi-objective Benchmark Functions for Pareto front-based Algorithms

	Notations in Thesis
	Notations in PSO and LA
	Notations in FOLA and MOLA
	Notations in Power Systems
	List of Abbreviations and Notations

	References

