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ABSTRACT

Life,  ageing  and  death  have  been  concepts  known  to  man  since  time 

immemorial. To this day, human beings have been fascinated by death and focused 

on stipulating what occurs after  the life ends.  In comparison, little attention has 

been given to ageing, which all experience daily and many take for granted. It is 

only the recent scientific movement that enabled mankind to shift its attention to 

studying ageing through the field of biology and gerontology. 

The observation that different species show different ageing phenotypes has 

intrigued many biologists. Comparative biologists, who study genetic, anatomy and 

behaviour of different species in order to understand the diversity of life, have been 

trying to explain the different ageing phenotypes through their divergence in their 

anatomy,  natural  habitat  and behaviour.  And since the expansion of the field  of 

genetics,  comparative  biologists  have  been  employing  genomics  to  study 

differences in ageing phenotypes at the genome level.

In the last few years, the number of species with their genome sequenced has 

increased  at  an  impressive  rate.  However,  the  number  of  studies  exploiting this 

wealth of data to study specific phenotypes has remained surprisingly small. Here, 

we  present  our  work  on  comparative  genomics  to  study  species  differences  in 
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ageing, that is, why many species age at different rates. We describe three projects 

which helped us 1) find a correlation between amino acid usage in mitochondrial 

proteins  and  maximal  lifespan,  2)  detect  patterns  of  selection  associated  with 

longevity increases in proteins during mammalian evolution, and 3) compare the 

genes  expression  level  in  two closely  related  mammalian  organisms,  the  naked 

mole-rat and the wild-type mouse. 

These projects led to several insights about ageing in mammals. We argue 

that the lack of detection of proteins with anti-oxidant properties in our analyses, 

coupled with a similar absence observed in other mammalian studies, suggest that 

contrary to some lower organisms, reactive oxygen species (ROS) may have a lesser 

impact  on  ageing  in  mammals.  However,  we  found  evidence  that  mammalian 

species may regulate ROS levels through the optimisation of pathways involved, for 

instance, in the actin cytoskeleton and lipid peroxidation, as well as through the 

optimisation  of  amino  acid  usage  in  mitochondrial  proteins.  Additionally,  we 

discovered that genes involved in two pathways, namely lipid metabolism genes 

and  proteasome-related  genes,  were  associated  to  ageing  in  both  the  protein 

evolution  project  and  the  genes  expression  analysis,  suggesting  that  these  two 

pathways may be important regulators of mammalian ageing. We also discovered a 

few interesting genes.  For instance,  the DNA damage-binding protein 1,  DBB1, 

which has a strong selection pattern related to  longevity  evolution in mammals. 

Additionally, we found that alpha-2-macroblobulin, A2M, is over-expressed at more 
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than few hundreds fold in the long-lived naked mole-rat and has previously been 

associated to ageing. 

All in all, we present work that is interesting not only because of the original 

approaches taken to study mammalian ageing, but also because of the significance 

of the biological implications obtained. We hope to convince the readers that some 

of the discoveries made are good candidates for further studies by giving ideas of 

possible follow up experiments.
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INTRODUCTION

Our work is mainly focused on exploiting existing computational techniques 

as  well  as  inventing  novel  algorithms  that  can  be  used  to  study  a  variety  of 

biological  phenomenon.  One  of  the  most  complex  (and,  arguably,  interesting) 

biological phenomenon that we experience daily is ageing. Of equal interest is why 

some  species  seem to  show different  phenotypes  of  ageing  when  compared  to 

others. In fact, the observation that some species show different signs of ageing was 

already made by Aristotle in 350 BC. A great number of breakthroughs have since 

been made, however the biological mechanisms underlying ageing is still unknown. 

For this reason, we embarked into a project aiming to study the phenomenon of 

ageing by using and developing computational biology algorithms. 

There  are  now hundreds  of  different  theories  of  ageing  (Bengtson  et  al. 

2008), many with experimental support yet none with sufficient evidence to rally all 

scientists  in  the  field.  What  makes  an  unified  theory  of  ageing  difficult  if  not 

impossible is the fact that certain animals seem to exhibit different phenotypes of 

ageing or senescence when compared to others (Lindström 1999). Thus, not only is 

it hard to find a single theory of ageing for all animals (and even just mammals), it 

is  also  challenging  to  find  a  proper  definition  for  ageing.  Therefore,  we  use 

Medawar's simple definition of ageing which is the collection of changes that render 

human  beings,  or  other  biological  entities,  progressively  more  likely  to  die 

(Medawar 1952). 

The speed at which new technologies were invented in the last few decades 

considerably helped biology and specifically genetics and proteomics research by 

providing the tools to collect novel types of data at an increasing rate (Tyers et al. 

2003). The invention of modern personal computer further allowed the analysis of 

this data which is used both to test old hypotheses as well as generate new ones. As 
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will be discussed in Chapter 1 and 2, the genotype of a species is thought to heavily 

influence its  ageing phenotype.  Thus,  the  very recent  technological  advances  in 

genomics  including  the  sequencing  of  multiple  model  organisms  and  second 

generation expression profiling technologies allow us to study the mechanisms of 

ageing under a new perspective. Though there is an increasing number of studies 

making use of the large amount of data available in genomics database such as 

Ensembl (Flicek et al. 2010), this number remains small and only a handful of them 

focused on elucidating the mechanisms of ageing. Here, we present three distinct, 

but complementary projects that take advantage of the early sequencing efforts of 

the 21rst century to study the genetics of why different species show different ageing 

phenotypes.

We hope to convince the reader that studying ageing through a comparative 

genomics perspective is at the same time useful and cost-effective. Experimental 

projects, especially in ageing, are generally very costly and complicated compared 

to  in silico projects.  Nevertheless, genomic comparisons are far  from trivial  and 

require significant work in statistical and algorithmic design. The bulk of our work 

consists of scripts of varying length and complexity written in the programming 

language Python. Many of these scripts are part of a pipeline for data analysis by 

gluing  software  such  as  BLAST,  GASP and  ClustalW while  others  implement 

statistical tests and randomisation algorithms. However, in order to understand the 

significance  of  our  work,  it  is  important  to  be  familiar  with  some of  the  most 

popular theories of ageing. Therefore, we will start by exploring theories of ageing 

before plunging into the computational aspect of our work. In this introduction, we 

will also explore the importance of comparative genomics in biology and ageing 

research.  We will  end  by  discussing  some of  the  classical  tools  in  comparative 

genomics in order to give an idea of the rigour of comparative genomics and of the 

interplay between biological problems and computational problems.
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Chapter 1: Biology of ageing

The  ageing  phenotype  vary  greatly  between divergent  species  and many 

researchers have been investigating species differences in their ageing process. In 

fact, even the ageing rates within mammals are markedly different from one species 

to  another.  Different  animals  likely  evolved  different  strategies  to  respond  to 

environmental  stress. They also have different life histories which can influence 

their ageing phenotype and the selection of their maximal lifespan. Though many 

differences exist, it is thought that there is a fundamental process underlying ageing 

or at least mammalian ageing in which the phenotypes are similar albeit at different 

timings (de Magalhães et al. 2002). By focusing on finding mechanistic differences 

in the ageing processes between different animals, we may be able to discover the 

main regulators of ageing.

Many  theories  of  ageing  have  been  postulated,  however  there  is  no 

consensus among researchers on which theory best fits the experimental discoveries 

that  has  been  made  thus  far.  In  this  chapter,  we present  an  overview of  a  few 

theories of ageing, but for in-depth reviews, see (Arking 2006; Weinert et al. 2003; 

Kanungo 1994). Some theories speculate that ageing results from the accumulation 

of damage in different tissues (wear and tear) while others conjecture that ageing is 

programmed.  Consequently,  theories  can  be  generally  categorised  in  two  main 

categories: damaged based and programmed. 

1.1 Free radical theory of ageing

The  free  radical  theory  of  ageing,  which  belongs  to  the  damaged  based 

category, has many proponents. It has first been developed by Denham Harman and 

discussed in  Harman (1956). The free radical  theory of ageing suggests that  the 

production of reactive oxygen species (ROS) causes different types of damage to 
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molecules  such  as  the  DNA,  proteins  and  lipids  and  the  accumulation  of  such 

damages causes ageing. For example, free radicals such as ROS can contribute to 

protein misfolding which, in turn, may cause neurodegenerative diseases (Lipton et 

al.  2007).  Furthermore,  ROS  levels  are  thought  to  be  altered  during  calorie 

restriction, the only intervention that seem to consistently delay ageing in mammals 

such as mice (Weindruch et al. 1986) and rhesus monkey (Mattison et al., 2003). In 

fact,  glucose  restriction  has  been  shown to  extend the  lifespan of  the  yeast  by 

inducing mitochondrial respiration and causing ROS formation which is followed 

by an increase in oxidative stress resistance  (Lin et al. 2002). Thus the interplay 

between ROS and ageing is unclear, but definitely present.

Another  evidence that  suggests  the involvement  of ROS in ageing is  the 

enzyme methionin  sulfoxide reductase  A (MSRA) which  catalyses  the repair  of 

methionine residues oxidised by ROS. The over-expression of MSRA has shown to 

increase the longevity in flies (Ruan et al. 2002) and its knock-out was associated 

with a decrease in longevity in mice  (Moskovitz et al. 2001). As discussed in  de 

Magalhães et al. (2006), the existence of this class of enzymes that protects the cell 

from ROS damage is  a strong indicator  that  ROS are important  and potentially 

dangerous biological molecules. However, most of the studies testing the impacts of 

ROS  on  mammals  such  as  mice  were  inconclusive  at  best.  There  are  studies 

showing  conflicting  effects  of  feeding  antioxidants  to  mice;  some  showed  an 

increased average longevity, others showed no such increase, while none showed a 

delay in ageing (Saito et al. 1998; Harman 1968). Pérez, Van Remmen, et al. (2009) 

even goes to show that the over-expression of major antioxidant enzymes does not 

extend  the  lifespan  of  mice.  One  idea  is  that  ROS are  mostly  involved  in  the 

senescence of post-mitotic cells which worms and flies are mostly composed of as 

opposed to mammals.  Interestingly,  ROS are associated to pathologies involving 

post-mitotic  cells  such  as  neurons  and  there  is  evidence  of  mitochondrial 

optimization in the human lineage to delay neurodegeneration (de Magalhães 2005). 

In sum, although ROS have been implicated in the ageing of many lower organisms 
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such as yeast, flies and worms, there is no direct evidence that ROS influence the 

ageing process in mammals. For more in-depth reviews of the free radical theory of 

ageing, see the work of Finkel et al. (2000) and Muller (2000).

1.2 Damage-linked theories of ageing

DNA  is  a  central  molecule  of  life  and  its  involvement  in  the  basic 

mechanisms of ageing would be unsurprising. The DNA damage theory (Medawar 

1952; Szilard 1959) suggests that it is the accumulation of DNA damage that causes 

ageing.  Since  DNA encodes  genes  which  may  be  important  for  a  variety  of 

biological functions, the mutation or damage in certain coding regions may be a 

cause of ageing. This is supported by the fact that many diseases with premature 

ageing phenotypes such as progeroid syndrome, Werner's syndrome, Hutchinson-

Gilford's syndrome, xeroderma pigmentosum and Cockayne syndrome are caused 

by mutations in the genes coding for DNA damage repair proteins  (Martin et al. 

2000). The lack of DNA damage repair increases the rate at which DNA molecules 

are  damaged  and  thus  may  be  the  cause  of  the  acceleration  of  some  ageing 

phenotypes  to  appear  in  individuals  with  one  of  the  aforementioned  diseases. 

Furthermore, there is evidence that DNA mutations increase with age in both mice 

and humans (Vijg 2000; Dollé et al. 1997; Martin et al. 1985). However, there is no 

convincing proof whether the mutations are the cause of ageing or simply a product 

of the ageing animal. Cell cycle and its dysregulation have also been associated 

with ageing from the observation that a deficient cell cycle control can lead to the 

unstopped replication of mutated DNA following DNA damage (Gu et al. 2005).

Another damage-linked theory of ageing stemmed from the observation that 

in  many  model  organisms  such  as  mouse  and  human,  protein  turnover  rate 

decreases as the organisms age (Chondrogianni et al. 2005). Although it is not clear 

whether this is a cause or an effect of ageing, researchers discovered that in older 

organisms,  slower  protein  turnover  rate  caused  proteins  with  post-translational 
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modifications to remain longer within the cells. Many of these post-translational 

modifications hindered the functions of the proteins and the prolonged presence of 

these damaged proteins in the cell are thought to be detrimental (Farout et al. 2008). 

Perhaps of interest, a slower proteins turnover rate may be caused by a decrease in 

proteasome activity in older organisms. The proteasome is the primary machinery 

for protein degradation in cells and its decline in activity is believed to have an 

important  role  in  ageing  and its  activity  may  the  extend of  the  damage by  the 

degradation of damaged proteins (Vernace et al. 2007).

1.3 Evolutionary theories of ageing

Many other theories of ageing exist, one important subset is the evolutionary 

theories of ageing including the disposable soma theory and antagonistic pleoitropy. 

Briefly,  the  antagonistic  pleoitropy  theory  follows  from  the  observation  that 

selection on phenotypic traits that affect the later life of an organisms, i.e. after the 

reproductive phase, becomes much weaker (Williams 1957). Therefore, traits which 

improve an organism's fitness before sexual maturation but which are deleterious 

for later life are under positive selection (de Magalhães et al. 2005). Though there 

are some evidence that such pleotropic genes with antagonistic effects exist, it is 

still unknown if this category of genes can explain why we age.

Another  evolutionary  view  stipulates  that  ageing  is  not  caused  by 

antagonistic effects of certain genes but simply by the lack of species adaptation for 

survival after sexual maturity. In his review, Rose (2009) argues that it is possible to 

extend longevity by increasing the strength of the force of selection on old animals. 

However,  simple  mutations  that  merely  increase  longevity  without  antagonistic 

effects do not exist as a longer health span translates into a better Darwinian fitness 

and natural selection would have already previously acted upon them. Indeed, Rose 

(2009) argues that in many experiments showing the mutation of a gene increasing 

the lifespan of a species, the mutations either retard the onset of maturity or are 
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deleterious in some way. For examples, studies on dietary restriction, which consists 

of  diminishing  the  intake  of  calories  while  maintaining  the  bare  minimum for 

survival, has been shown to have life-extension effects in many model organisms 

(Weindruch et  al.  1988). However,  there are reports that show a decrease in the 

effectiveness of the immune system under  calorie  restriction which may lead to 

infection and other diseases (Ayres et al. 2009). Thus, we can see a putative trade-

off between infection resistance and a longer lifespan in which infection resistance 

was selected.

There are many other evolutionary views on ageing, such as the disposable 

soma theory  (Kirkwood  1977),  which  hypothesises  that  organisms  only  have  a 

limited amount of energy that has to be divided between reproductive activities and 

the  maintenance  of  the  organism  itself  or  soma.  Damage  accumulated  in  the 

organism can be repaired by the organism, but only at the expense of reproductive 

capabilities. Thus, the disposable soma theory suggest that ageing is the result of a 

trade-off between the transmission of the genes and the survival of the individual. 

This trade-off, or equation, is then optimised according to the environment in order 

to best guarantee the survival of the species. In the next section, we will discuss 

how these theories affect our study on mammalian divergence in ageing, that is, 

why many species age at different rates.

1.4 Hypotheses on divergence in species ageing

We have  discussed  some of  the  theories  for  why we think  animals  age. 

However,  an useful  and  complete  theory  should be able  to  explain why certain 

animals  show  different  ageing  phenotype  in  addition  to  different  lifespans.  As 

reviewed by  de Magalhães et  al.  (2002),  mammals show little diversity in their 

ageing phenotype.  However, their  lifespan can vary greatly from mice living no 

longer than 4 years to humans living over 120. Thus, an interesting exercise would 

be  to  use  the  different  ageing  theories  to  speculate  on  why such a  disparity  of 
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lifespan  exists  in  mammals  without  having  to  worry  about  the  effects  of  other 

ageing phenotypes. Furthermore, since most of our research is based on hypothesis 

free computational methods, it is useful to have an idea on what we expect to find.

According to the free radical theory of ageing, the main cause of ageing is 

the destructive force of the free radicals that roam in our cells. Free radicals cause 

oxidative damage to different cellular components such as DNA, fatty acids, and 

proteins  (Harman  1956).  Consequently,  we  expect  to  find  differences  in  genes 

expression or sequence, as well as differences in pathways related to DNA repair 

and protection from free radicals. We also expect a stronger resistance to ROS in 

longer-lived mammals and some pattern of selection in processes which reduce the 

generation  of  free  radicals  either  by  the  optimisation  of  the  mitochondrial 

respiratory chain or other mitochondrial parts responsible for the generation of ROS 

(Finkel et al. 2000). In light of other damaged-link theory of ageing, we expect, in 

addition to the aforementioned pathways, a stronger signal in DNA repair,  DNA 

response and damaged protein degradation pathways optimisation in longer lived 

mammals. We expect these proteins to be differentially expressed in longer lived 

mammals and to be under positive selection in their lineages. 

Unlike damage-linked theories of ageing, evolutionary theories of ageing do 

not allow much room for predictions. They do make some predictions such that a 

species will experience delayed senescence and increased longevity when rates of 

extrinsic mortality are reduced (Shattuck et al. 2010). However, they do not provide 

any hypothesis as to which biochemical pathways are responsible for the divergence 

in  lifespans  witnessed  among  species.  In  this  sense,  any  signal  from pathways 

previously associated to ageing may be expected. We would expect, if evolutionary 

theories of ageing were to be true, that the signals of longevity evolution in specific 

pathways are weak since nature is not limited to act on these pathways to find ways 

to increase longevity.
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All in all, most scientific discoveries in the field of ageing supports one or 

more  alternative  theories  of  ageing  without  falsifying  the  others.  The  difficulty 

which ageing researchers face is that any experimental discovery in one species can 

be said to be unique to that species alone and thus not representative of ageing as an 

universal biological phenomenon. As mentioned in section 1.1, ROS seem to have a 

greater impact on the longevity of lower organisms when compared to mammals 

and  the  free  radical  theory  is  not  supported  by  strong  evidence  in  mammals. 

Furthermore, de Magalhães et al. (2002) observes that there is a great difference in 

ageing phenotypes between mammals and reptiles. All these differences make the 

study of ageing extremely tricky.

One way to  escape this  impeding predicament  is  to  restrict  our  focus to 

mammals as they appear to have a conserved mechanism of ageing. Another way 

would  be  to  use  comparative  biology  in  order  to  observe  the  differences  and 

similarities that different species possess. By finding evidence a particular pathway 

is  related  to  ageing  in  multiple  organisms,  we  can  be  more  confident  that  this 

pathway is important to the ageing process as its role is conserved across species. In 

this thesis, we use comparative biology, and more precisely comparative genomics, 

to study divergence in mammalian ageing by trying to find genes and pathways with 

longevity-associated signals in multiple mammals.
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Chapter 2: Comparative Biology

Comparative  genomics  is  a  branch  of  comparative  biology  and,  thus,  in 

order  to  exploit  it  fully,  one needs  to  be aware  of  the strengths  and caveats  of 

comparative biology.

2.1 Comparative biology and definition 

Comparative  biology  is  a  field  that  studies  species  differences  and 

similarities  in  hope  to  understand the  organismic  diversity  on Earth.  It  is  often 

coupled  with  evolutionary  biology as  the  two are  closely  intertwined  (Futuyma 

1997). Different species evolve different phenotypic traits in order to optimise their 

survival in their habitat or adapt to a changing environment (Rose 2009). One of the 

early  goals  of  comparative  and  evolutionary  biology  was  to  find  out  how  the 

different environmental constraints and settings influenced different organisms and 

their evolution. Different species age at different rates and comparative biologists 

working on ageing have tried to explain this divergence using evolutionary theories 

and by studying the different life history traits of animals. Most biologists agree that 

the rate of ageing has a strong genetic component and is under selection, however, 

the  evolutionary  adaptations  that  influence  longevity  and the  rate  of  ageing  are 

largely unknown (de Magalhães 2003).

Much of the early work on ageing was conducted by observing different 

phenotypic traits related to the ageing rate and other life history traits. For instance, 

it  has  been  found  that  larger  animals  tend  to  live  longer  than  smaller  animals 

(Knut 1984; Austad 2005). Though no one knows why a relationship between body 

size and maximal lifespan exists for sure, many believe that smaller animals tend to 

be  prone to  predation  and are  expected  to  have  higher  extrinsic  mortality  rates 

(Shattuck et al. 2010). This could imply a lack of selection of their longevity since 
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the fitness of animals having high extrinsic mortality rates do not benefit from an 

increase in longevity as much as would one with low extrinsic mortality rates. As 

discussed in section 2.5, the correlation between longevity and other traits can be a 

big  problem in  comparative  biology  studies  as  we often  cannot  be  sure  if  one 

difference observed between species with divergent lifespan is directly linked to the 

ageing mechanism or other traits that are correlated, though unrelated, to ageing 

(Speakman 2005a). Fortunately, there are established ways to minimize the effects 

of correlated traits in comparative studies. This is why species selection is crucial 

for comparative research projects specially in ageing research.

2.2 Selection of model organisms in ageing studies

It is customary for researchers to use model organisms to research ageing. 

Some examples of model organisms most commonly used in ageing research are 

yeasts, flies, worms, mice and rats (Kim 2007; Antebi 2007; Kaeberlein et al. 2007). 

Researchers also use cell lines in some ageing models (Das et al. 1978) but in vivo 

ageing studies are rare in humans. In fact, ageing studies in primates and mammals 

are rare since ageing studies are usually restricted to short-lived species because of 

the differences in the length of the studies. However, the study of mammals and 

specially  primates  and  humans  in  an  ageing  context  is  critical  as  many studies 

suggests  that  ageing models in lower model organisms are not representative of 

ageing  in  mammals  (Austad  2005;  Austad  1997).  Apart  from  common  model 

organisms, few ageing studies have looked at non-traditional model organisms such 

as certain species of long-lived clams, long-lived fish, the little brown bat and the 

naked mole-rat which we will discuss further in this thesis. These non-traditional 

organisms are used in ageing studies mainly for the reason that they either show a 

higher  resistance  to  senescence  or  a  higher  resistance  to  other  types  of  stress 

compared to closely related species or species of similar body size (Austad 2009). 

By comparing these species to related species and species of similar  body size, 

researchers  hope  to  be  able  to  extrapolate  differences  in  genes  expression  or 
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differences  in  protein  sequences  to  explain  the divergence in  ageing  phenotype. 

Furthermore, by studying closely related species with extreme lifespan divergence, 

one can minimize the effects  of correlated traits  in  comparative analyses  as  the 

signals related to the extreme longevity are expected to be much stronger than the 

signals related to correlated traits.

In  addition  to  body  mass,  researchers  in  the  field  of  ageing  study  the 

interplay between the rate of ageing and other life-history traits. In fact, the rate of 

ageing  has  been  related  to  extrinsic  mortality  rate,  gestation  period  and  age  at 

maturity  (Ricklefs  2010).  But  it  is  only  recently  that  researchers  have  looked 

directly into the genomes of different species in order to find patterns of selection 

for longevity.

2.3 Species divergence studies in ageing and the naked mole-rats

Although the mechanisms underlying the different rates at which species age 

is  poorly  understood,  researchers  have  been  successful  in  determining  several 

putative  pathways  that  may  have  contributed  to  the  longevity  of  long-lived 

mammals.  Austad (1997) suggests  four main uses of comparative assessment of 

mammalian ageing in ageing research which are (1) the formulation and evaluation 

of hypothesis, (2) the investigation of how widespread a putative ageing mechanism 

is among mammals, (3) the isolation of key physiological factors regulating ageing, 

rate and (4) the educated choice of which animal models is most appropriate for a 

particular study.

One good example of (4) is the recent work by  Pérez, Buffenstein, et al. 

(2009) which  uses  the  naked  mole-rats  (Heterocephalus  glaber)  as  model  for 

successful ageing. The naked mole-rats is the longest-lived rodent known with an 

expected lifespan of over 28.3 years (Buffenstein et al. 2002). Their natural habitat 

as well as their eusocial behaviour are some of the reasons why the naked mole-rats 
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might  have  evolved  such  an  extreme  longevity  compared  to  other  rodents  (see 

Figure 1). 
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Species Name MLSP Coverage

Human Homo sapiens 122.5 Complete

Orangutan Pongo pygmaeus 59 6X

Gorilla Gorilla gorilla 55.4 2X

Rhesus  Monkey Macaca mulatta 40 Draft

Chimp Pan troglodytes 59 6X

Bushbaby Otolemur garnettii 18.3 1.5X

Marmoset Callithrix jacchus 16.5 6X

Tarsier Tarsius syrichta 16 1.82X

Mouse Lemur Microcebus murinus 18.2 1.93X

Guinea Pig Cavia porcellus 12 6.79

Mouse Mus musculus 4 Complete

Rat  Rattus norvegicus 5 Draft

Squirrel Spermophilus  

tridecemlineatus

7.9 1.9X

Kangaroo rat Dipodomys ordii 9.9 1.85X

Microbat  Myotis lucifugus 34 1.7X

Megabat Pteropus vampyrus 20.9 2.63X

Treeshrew Tupaia belangeri 11.1 2X

Pika Ochotona princeps 7 1.93X

Rabbit Oryctolagus cuniculus 10 2X

Dog Canis familiaris 24 7.6X

Cat Felis catus 30 1.87X

Cow      Bos taurus 20 7X

Horse Equus caballus 57 6.79X

Pig      Sus scrofa 27 4X

Dolphin  Tursiops truncatus 51.6 2.59X

Rock Hyrax Procavia capensis 14.8 2.19X

Armadillo Dasypus novemcinctus 22.3 2X

Hedgehog Erinaceus europaeus 11.7 1.86X

Shrew Sorex araneus 3.2 1.9X
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Elephant Loxodonta africana 65 2X

Hedgehog 

Tenrec 

Echinops telfairi 19 2X

Sloth Choloepus hoffmanni 37 2.05X

Acalpa Lama pacos 25.8 2.15X

Table  1:  Mammalian species,  their  maximal  lifespan (MLSP) in  years and their 
genome coverage (see chapter 4) as of release 54 of the Ensembl database. 

We can see here that mammalian species have a wide range of maximal lifespan.

Naked mole-rats live underground and subterranean animals are protected 

from both climatic extremes and predation, which lower their extrinsic mortality 

rate  (Buffenstein  2005).  According  to  evolutionary  theories  of  ageing,  a  lower 

extrinsic mortality rate translates into a stronger selective pressure on the fitness of 

old organisms and thus the selection of a longer lifespan. A longer lifespan has also 

been correlated with eusocial behaviour, i.e. animals with group of social living, 

plausibly  because  of  intergenerational  transfer  of  information  and  communal 

responsibilities such as the care of the young and the foraging for food (Buffenstein 

2005).  In  contrast  to  other  rodents,  the  naked mole-rats  show small  age-related 

changes in morphology and maintain many physiological function and activity at 

old  ages  (Buffenstein  2008).  They  also  exhibit  small  age-related  changes  in 

mitochondrial  mass  and  efficiency  (Csiszar  et  al.  2007),  antioxidant  activity 

(Andziak et al. 2006), membrane composition and lipid peroxidation (Andziak et al. 

2006).

Furthermore, compared to mice, the naked mole-rats show attenuated age 

related change in protein oxidation, resistance to protein unfolding and a sustained 

proteasomal activity throughout their  lifespan.  In their  work,  Pérez et  al.  (2009) 

suggest  that  protein  stability,  turnover  and  its  resistance  to  oxidative  stress  are 

important players in the naked mole-rats' extreme longevity when compared to lab 

mice. These phenotypes, as Pérez et al. (2009) argues, may be the principal factors 
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for the mole-rat's successful ageing. 

In  addition  to  studies  on  the  mole-rats,  Salmon  et  al.  (2009) studied 

differences in protein oxidation levels between long-lived bats and mice. These bats 

have  an  extremely  long  lifespan  for  their  body  weight  and  are  used  to  model 

successful ageing in mammals.  Salmon et al. (2009) found that, relative to mice, 

Mexican  free-tailed  bats  and  cave  myotis  bats  show  lower  protein  oxidation. 

Moreover, they show that proteins in bats are more resistant to urea-induced protein 

unfolding  compared  to  mice.  Surprisingly,  they  found  that  the  ubiquitin  and 

proteasomal activity in these bat species were lower than the one found in mice and 

argue that it is a consequence of the diminished proteins damage. 

Already, we can speculate that proteasome activity has an important role in 

species  divergence  in  ageing.  However,  divergence  in  proteasome  activity  and 

efficiency  alone  cannot  explain  the  differences  in  ageing  phenotypes  that  is 

witnessed across mammals. In fact, it is likely that different long-lived mammals 
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Figure 1: Maximum lifespan as a function of body mass of rodents.
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evolved distinct mechanisms for successful ageing in line with evolutionary theories 

of ageing. For instance,  (Finch et al. 2004)  showed that ApoE is under positive 

selection  in  the  human  lineage  and  has  been  proposed  to  be  a  meat-adaptive 

candidate  protein  in  the  increase  of  human  lifespan.  ApoE is  involved  in  lipid 

metabolism  and  has  been  shown  to  impact  age-related  diseases  such  as 

neurodegeneration and myocardial infarction  (Masliah et al. 1995; Lambert et al. 

2000) and to contain polymorphisms linked to human longevity  (Schächter et al. 

1994).

In  lower  organisms,  (McCarroll  et  al.  2004) studied  genomic  expression 

patterns  in  the  nematode  Caenorhabditis  elegans and  the  fruit  fly  Drosophila 

melanogaster  and found that genes involved in mitochondrial metabolism, DNA 

repair, catabolism, peptidolysis and cellular transport tend to have common patterns 

of  change in  expression  with  age.  Moreover,  (Smith  et  al.  2008) studied  genes 

previously  associated  to  ageing  which  are  conserved  between  the  nematode  C. 

elegans  and yeast  Saccharomyces cerevisiae.  They found that many of the genes 

were  conserved  including  genes  from  Sir2-family  proteins,  insulin/IGF-like 

receptor proteins, and the target of rapamycin (TOR) kinase family which are all 

conserved in mammals. Thus, they speculate that these genes may also play a role 

in mammalian ageing.

As many other comparative studies in ageing, we are interested in finding 

the genes  and pathways that  are  responsible  for  extreme longevity  in  mammals 

which may lead to insights about the mechanisms of human ageing. 

2.4 Importance of the mitochondria in ageing

In chapter 1, we saw that the free radical theory of ageing stipulates that the 

main factor leading to ageing is the accumulation of free radical damage over time 

(Harman 1956;  Hekimi  et  al.  2003).  In  recent  years,  many comparative  studies 
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exploring  the  evolution  of  mitochondrial  DNA-coded  proteins  and  a  possible 

relationship with oxidative stress and lifespan. This provided a good opportunity to 

test this theory of ageing. Although correlation between longevity and the evolution 

of  mitochondrial  DNA-coded  proteins  has  already  been  reported  (Rotcritenberg 

2006),  it  is  not  clear  whether  free  radicals  and  their  detrimental  effects  on 

mitochondrial proteins can explain this correlation. A relationship between lifespan, 

oxidative  damage  and  specific  protein  residues  is  highlighted  in  the  work  of 

Stadtman (Levine et al. 1996; Stadtman 2006) which suggests that methionine and 

cysteine  may  act  as  antioxidants  in  proteins  due  to  the  reversibility  of  their 

oxidation. Stadtman found that the expression level of Msr, a reductase capable of 

reversing the oxidation of Met to MetO, is positively correlated with resistance to 

oxidative damage and maximal lifespan. In this line of work, however, a negative 

relationship between the residue composition of proteins affected by oxidation and 

lifespan was reported by (Kitazoe et al. 2008) and also by (Moosmann et al. 2008).

In  their  recent  work,  Moosmann  and Behl  conducted  a  meta-analysis  of 

genome sequences from 248 animal species spanning 10 different phyla in which 

they report a negative correlation between cysteine encoded in the mitochondrial 

DNA and longevity. Moosmann and Behl propose that it is the detrimental capacity 

of cysteine thiyl  radicals and their  potential  to initiate irreversible protein cross-

linking  that  caused  a  selection  against  cysteine  in  mitochondrial  DNA-coded 

proteins. Moreover, they suggest that the uncontrolled oxidation by reactive oxygen 

species  leads to  dysfunctional  proteins,  which results  in  cellular  senescence and 

organismal ageing. Although the analyses of Moosmann and Behl demonstrate that 

mitochondrial amino acids can vary widely in closely related species, no correlation 

between mitochondrial cysteine usage and longevity in mammals was reported. In 

chapter 5, we will discuss our method to test whether the hypothesis that cysteine or 

methionine is indeed correlated with the maximal lifespan of mammals. For now, 

we should note from the discussed studies that the mitochondria and its proteins 

seem to have at least some role in ageing.
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2.5  Correlation  of  different  traits  with  maximal  longevity  and  phylogenetic  

dependence

One  major  difference  between  an  experimental  based  project  and  a 

computational based project  in biology is the fact  that,  more often than not, the 

experimental based project tests a biological hypothesis that is possibly true (Barnes 

2007). On the other hand, a computational based project  does not usually test a 

hypothesis, but rather aims to discover facets of the biology hidden in the data that 

were previously unknown. This makes the interpretation of the results much harder 

to validate.

In section 1.1, we saw that the longevity of a species or its ageing rate is 

correlated to many different traits. Studies using comparative biology in ageing will 

detect  correlations  between  traits  and  ageing  which  are,  in  reality,  not  directly 

related to ageing  (Speakman 2005a). For instance, a comparative genomics study 

between a long-lived mammal and a short-lived one may result in the detection of 

many genes associated to body size  (Speakman 2005b). Furthermore, when using 

multiple  species,  a  statistical  analysis  may  be  biased  by  the  phylogenetic 

dependence between species since species that are evolutionarily closer tend to have 

similar ageing phenotype and other phenotypes or genotypes  (Speakman 2005a). 

Thus,  one  can  virtually  associate  any  phenotype  or  genotype  with  statistical 

significance by choosing the right set of species for the analysis.

While it is hard to control for many of the correlated traits, there are few 

solutions to the aforementioned problems such as the careful selection of the species 

under  study,  the  correction  for  body  mass  and  the  correction  for  phylogenetic 

dependence. As the selection of species in ageing research was covered earlier, we 

will focus on methods for body mass and phylogenetic dependence correction in 

Chapter 4.
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Chapter 3: Computational biology

The  focus  of  our  work  is  in  comparative  genomics.  Though  some other 

computational biology fields could be of interest to researchers in ageing, we found 

comparative genomics to be the most suitable choice to study species divergence in 

ageing. In this chapter, we highlight the importance of computational biology as a 

supporting field  for  biology research and explore some of the ways it  can help 

researchers in the biology of ageing. 

3.1 Computational biology is an emerging field

We define computational biology as the use of computational techniques in 

the  general  field  of  biology.  To  us,  a  complete  computational  biology  project 

consists of three main parts. First, there must be an underlying  biological problem. 

Next,  the biological problem must be translated into a well-structured and well-

defined  mathematical  problem.  And  finally,  the  mathematical  problem must  be 

solved in an efficient or at least tractable way. Paraphrasing Dr. Mathieu Blanchette, 

the challenge of computational biology is to find an interesting biological question, 

to formulate it clearly within a mathematical framework and to use or invent an 

algorithm able to solve it.  By formulating a biological problem in a well-defined 

mathematical fashion, one can pinpoint the weaknesses of the approaches as well as 

adjust parameters correctly in an informed way. It is also useful to have a clear 

mathematical  framework  as  it  can  also  help  understanding  the  output  of  the 

computational analyses.

We believe computational biology to be a new and exciting interdisciplinary 

area of research. Computational biology has recently found a place in most major 

universities both as a field of its own and as a supporting field for many biology 

research  groups.  Since  its  first  use  in  the  mid  twentieth  century,  computational 
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biology has evolved into a gigantic field comprising of everything from prediction 

of protein structures to systems biology; from comparative genomics to population 

genetics. The exponential growth of computational biology has been fuelled by the 

success of the Human Genome Project in the early twenty-first century along with 

the impressive speed at which new breakthrough technologies allow researchers to 

harvest an enormous quantity of data. In fact, computational biology tools are used 

in  virtually  all  genetics  labs  and  they  often  help  to  guide  research  projects  in 

addition to help in analysing experimental results (Pevsner 2009). 

 

Indeed, computational biology not only serves as a tool to help validating 

biological hypotheses but also used to generate new ones and guide research. With 

innovations  making  high-throughput  biology  available  to  almost  all  research 

institutions, computational biology makes the concurrent analysis of thousands of 

genes  possible.  The  community studying  the biology of  ageing  has  gathered  an 

impressive  amount  of  data,  but  many  questions  remain  unanswered.  As  is,  the 

relevance of computational algorithms that are able to extract useful information 

from this huge amount of experimental results is evident. These includes algorithms 

for  restriction  sites  mapping,  structural  prediction  for  a  range  of  molecules, 

culminating to the assembly of the 3 million base pair human genome (Waterman 

1995). It is however after the year 2000 that computational biology really exploded 

in breadth and depth. 

3.2 The multiple subfields of computational biology 

Computational biology offers a wide range of techniques and algorithms to 

study biological  data.  There  exists  three  main  classes  of  computational  biology 

methods classified according to the type of data they can analyse (input) or the type 

of results it can produce (output). A comprehensive discussion of these subfields 

can  be  found  in  any  standard  bioinformatics  textbook  Cristianini  et  al.  2007; 

Pevsner 2009). These classes include computational biomodelling,  computational 
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structural biology and computational genomics. Computational biomodelling is the 

part of computational biology that deals with mathematical and computer models of 

biology  (Swedlow  et  al.  2006).  It  usually  includes  the  broad  field  of  systems 

biology and mathematical biology. The main scope of computational biomodelling 

is to produce computational models to represent biological systems or processes by 

usually  describing  them  as  mathematical  entities  like  a  set  of  equations  with 

mathematical variables representing quantitative biological measures  (Sauer et al. 

2007).  Computational  biomodelling  has  a  great  potential  to  be  used  in  ageing 

research, for instance, the Kirkwood group focuses on systems biology models of 

different pathways thought to be related to ageing (Kirkwood 2008; McAuley et al. 

2009). Unfortunately, modelling biological pathways is far from trivial and the lack 

of data and complexity of  the biology of ageing make the state of the art models 

mediocre at best.

Computational structural biology is another important part of computational 

biology.  As  its  name  indicates,  computational  structural  biology  deals  with  the 

prediction of molecule structures such as proteins, mRNA and DNA (Cozzetto et al. 

2008). Some researchers have used structural algorithm methods in order to model 

mutations in proteins thought to be important to cellular function (Medvedev et al. 

2009). Others have use these techniques for drug discovery and design  (Weigelt 

2010).  However,  these  methods  remain  low throughput  as  they  are  not  reliable 

enough without the curating of experts and thus fail to exploit the vast amount of 

sequence data available.

In our work, we focus on computational genomics which has been arguably 

the most successful part of computational biology in the recent years. This is mainly 

due to the advances in genomics technologies such as microarrays and sequencing 

technologies  allowing  ChIP-seq  (Pepke  et  al.  2009;  Park  2009),  RNA-seq 

(Marguerat et al. 2010) and genome assembly of short reads (Li, Hu, et al. 2010). 

Computational  genomics  is  the  collection  of  techniques  used  to  analyse  the 
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genotype of different species. Since a species' phenotype is thought to be largely 

dependent on its genotype (de Magalhães 2003), the ultimate goal of computational 

genomics is to assign biological functions or phenotypes to the different genes of a 

species or individual within a species which first major hallmark was witnessed in 

the Human Genome Project (Watson 1990) and subsequent analyses (Lander et al. 

2001). In the same line of reasoning, computational genomics go so far as to try to 

predict  the  effect  of  a  single  nucleotide  polymorphism on  the  phenotype  of  an 

individual  (Rosenberg et  al.  2010). The genome of a species provides us with a 

wealth of data and a lot to work with. Coupled with the recent technological boom, 

it  is  our  belief  that  computational  genomics  is,  amongst  other  subfields  of 

computational biology, the most likely to help the biology of ageing researchers in 

the near future.

3.3 Comparative genomics and how it can help research in ageing

It is clear that genetics has a major role in the ageing process of any species 

(de  Magalhães  2003;  Austad  2005).  In  fact,  there  are  over  hundreds  of  genetic 

manipulations that extends the lifespan in model organisms. Comparative genomics 

studies exploit the fact that different species show different phenotypes of a certain 

trait. Since ageing is tightly linked with the genome of an individual, by studying 

the genome of species with different ageing phenotypes, we may be able to find 

genes  or  functional  regions  involved  in  the  molecular  mechanisms  of  ageing. 

Researchers in ageing have already recognised the importance of exploiting the vast 

amount  of  data  available  in  the  literature  by  constructing  the  Human  Ageing 

Genomic Resource (de Magalhães, Budovsky, et al. 2009), a collection of databases 

and tools to help researches understand the genetics of human ageing, including a 

database  of ageing- and longevity-associated genes in model organisms (GenAge) 

and  a  compilation  of  data  on  ageing,  longevity,  and  life  history  in  over  4,000 

species  (AnAge).  Comparative  genomics  studies  in  ageing  are  increasing  in 

number, but we believe that it has the potential to grow much more. 
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One of the most recent and exciting studies in comparative genomics are 

genome wide association studies (GWAS) (Ku et al. 2010). In essence, GWAS are 

high-throughput hypothesis-free studies that examine genetic variation across the 

genome in order to associate genetic variations to phenotypic traits  (Hunter et al. 

2008). These studies usually involve two groups of the same species one with a 

certain phenotypic trait, commonly a disease, and the other without this trait. After 

analysing  the  genome  of  the  individuals  in  each  of  the  two  groups,  one  can 

construct  a  set  of  markers  such as  single  nucleotide  polymorphisms (SNPs)  for 

which  one  variation  is  significantly  enriched  in  members  of  one  group.  These 

genetic variations are then considered as a pointers to which region of the genome 

are responsible for the trait differences and may then be further analysed. GWAS 

were successful in identifying genes associated to numerous diseases. For instance, 

in 2007 researchers have identified genes associated to type II diabetes in the first 

major GWAS study  (Sladek et al. 2007). Also in 2007, the  Wellcome Trust Case 

Control Consortium carried out genome-wide association studies for seven common 

diseases including bipolar  disorder,  coronary artery disease,  Crohn's  disease and 

type 1 and type 2 diabetes  (WTCCConsortium 2007). The success of GWAS led 

ageing researchers to carry out their own and targeted genetic differences between 

centenarians and control individuals. So far, GWAS on centenarians have revealed 

few lipoproteins associated to long life in humans  (Bergman et al. 2007), and the 

usage  of  SNPs  could  predict  with  up  to  77%  accuracy  exceptional  longevity 

(Sebastiani et al. 2010). Although there is still a lot of work to be done, the initial 

results  obtained from GWAS on centenarians  are  encouraging.  Although GWAS 

show great potential to discover genes responsible for ageing divergence within a 

single specie, we were more interested in discovering genes responsible for ageing 

divergence across multiple species and in particular across mammals.

More in line with our interests are Ka/Ks approaches which considers the 

evolutionary pressure on different coding regions of the genome across multiple 
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species. The Ka/Ks ratio is a proxy for the selective pressure on a protein coding 

gene  and  is  defined  by  the  ratio  between  the  number  of  non-synonymous 

substitutions and the number of synonymous substitutions for a gene. A high Ka/Ks 

ratio  suggests  a  selective  pressure  and  a  low  one  suggests  purifying  selection. 

Studies screen the whole genome in order to find genes with significantly higher or 

lower Ka/Ks ratio compared to a control orthologous gene and attribute these genes 

with the evolution of new traits or involvement in an important, well-conserved, 

pathway. This type of method was used in many studies such as a genome-wide 

survey  of  pseudogenes  (Torrents  et  al.  2003) and  the  detection  of  of  rapidly 

evolving genes in human (Wang et al. 2003) among others. To study the evolution 

of ageing,  (de Magalhães and Church 2007) used a Ka/Ks approach on human-

chimpanzee orthologous gene pairs and reported that genes associated with ageing 

in  non-mammalian  model  organisms  and  cellular  systems  appear  to  be  under 

stronger evolutionary constraints than those associated with ageing in mammal and 

also provided evidence suggesting the rapid evolution of Werner syndrome gene in 

the  hominids.  Though  Ka/Ks  is  a  good  indicator  of  selective  pressure  at  the 

sequence level, Ka/Ks based approaches cannot detect changes in the expression of 

genes nor account for the different type of amino acid substitutions. 

Fortunately,  it  is  possible  to  use  other  proxies  for  evolutionary  selection 

based on substitution matrices that do take into account of the types of amino acid 

substitutions. The evolutionary landscape of a genome varies greatly from region to 

region and although the  substitution rates  for  two neutrally  evolving  regions  of 

sequence  are  usually  well  correlated,  this  correlation  decreases  rapidly  as  the 

genomic distance between the regions increases (Gaffney et al. 2005). Indeed, the 

rate of sequence mutation can depend on multiple factors such as the location of the 

region and the nucleotide composition of neighbouring sites (Hardison et al. 2003). 

Because of this, comparison of evolutionary rates within a single genome can be 

difficult. Rather, one usually compares the loci of multiple orthologs in a range of 

species in order to determine the relative mutational rates of the loci as a common 
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phylogenetic relationship and divergence times can be assumed for orthologs. This 

is  the  reason  why  most  studies  are  based  on  the  alignments  of  orthologous 

sequences.  Needless  to  say,  for these kind of  analyses,  constructing an accurate 

orthologous  mapping of  regions  in  different  species  is  of  critical  importance  in 

order to avoid biases due to sequence location and composition. 

3.4 Genes expression profiling

One other  important  area  of  comparative  genomics  is  mRNA expression 

profiling.  The  DNA is  arguably  the  most  important  molecule  in  life,  but  its 

transcription and the regulation of its transcription are as essential. The expression 

activities of the genes in the genome is a key component of the link between the 

genotype  of  a  species  and  its  phenotypes.  In  addition, gene  expression  profiles 

represent the primary level of integration between environmental factors and the 

genome,  providing  the  basis  for  protein  synthesis  which  ultimately  guides  the 

implementation of complex phenotypes such as morphology and behaviour (Renn et 

al.  2004). Therefore,  by comparing  gene  expression  profiles,  one can  study the 

molecular basis of phenotypic variation. 

As evidence of the importance of mRNA expression profiling, a PubMed 

search  for  the  term  “microarray”,  which  is  one  method  for  genes  expression 

profiling amongst many  (Schena et al. 1995), yields over  38,000 hits. In mRNA 

expression profiling, the mRNA levels of two different individuals or species are 

measured  and  then  compared  in  order  to  find  differentially  expressed  genes 

responsible  for  divergent  traits  or  states  (diseased versus  healthy). In  fact,  gene 

expression  profiling  has  been  crucial  to  the  identification  of  important  genes 

involved in a number of disease such as many types of cancers  (Cooper 2001). 

Other  types  of  studies  explore  the  differences  in  genes  expression  in  different 

tissues  in  order  to  discover  the  key  differences  in  protein  composition.  Genes 

expression  analyses  can  also  be  used  to  study  genes  regulation  and  signalling 

26



pathways  such  as  the  IKB signalling  pathways  (Rao  et  al.  2010),  to  study  the 

function  of  microRNA  (Guo  et  al.  2010) and  a  wide  range  of  biological 

phenomenon. 

Within the biology of ageing community, differentially expressed genes have 

been studied in the context of calorie restriction (Lee et al. 1999), the ageing human 

brain (Lu et al. 2004), and many other ageing tissues in multiple organisms such as 

human T cells  (Remondini et al.  2010), mouse  bone marrow mesenchymal stem 

cells (Wilson et al. 2010) among many others. In addition, meta-analyses have also 

been conducted such as in de Magalhães, Curado, et al. (2009) and the importance 

of  gene  expression  analysis  is  highlighted  by  the  creation  of  gene  expression 

database for ageing mice AgeMap (Zahn et al. 2007) and by the success of the Gene 

ageing Nexus, a microarray data repository and data mining tools (Pan et al. 2007).

Like  computational  biology,  comparative  genomics  is  often  used  as  an 

exploratory tool in a hypothesis-free fashion (Barnes 2007). Its scope is generally to 

find species differences at  a genome level in order to explain differences at  the 

phenotype level.  For some studies,  researchers  start  with a good idea about  the 

biological  phenomenon  at  hand  and  the  results  can  be  used  to  confirm  their 

hypotheses. However, in many ageing studies, researchers are looking to refine the 

scope of their research by first identifying candidate genes or pathways to study. 

That said, comparative genomics is often a good way to start studying a particular 

biological  phenotype  which  little  is  known.  For  example,  by  using  different 

comparative  genomics  approaches,  ageing  researchers  were  able  to  study  SNPs 

association  with  exceptional  longevity  in  humans,  selective  pressure  on  genes 

associated with ageing in different lineages as well as genes expression differences 

in  many age-related  diseases.  Still,  there  are  many more  uses  of  computational 

biology and specially comparative genomics to study species divergence in ageing.
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Chapter 4: Principles of comparative genomics 

So far, we gave a brief summary of the theories of ageing and highlighted 

the field of computational biology. We also discussed some of the potential role of 

computational biology and comparative genomics in ageing research. Now, we will 

go through some of the principles of comparative genomics tools that are used in 

our own analyses.

4.1 Substitution matrices

Substitution  matrices  in  comparative  genomics  are  ubiquitous.  They  can 

describe the rate at which one nucleotide or amino acid changes into another over 

time. They can also represent the physiochemical difference or any other distance 

metric from one amino acid or nucleotide to another. For instance, in a matrix M, 

the entry M(A,T) could represent the likelihood that A is substituted by T over a 

period of  time.  Another  example  could be  that  for  another  matrix  M(C,  T)  can 

represent the physiochemical difference between cysteine and threonine. There are 

many possibilities for substitution matrices and each have their particular use and 

advantages. 

Indeed, the choice of the matrix should entirely depend on the its use. For 

instance, point accepted mutation (PAM) matrices are calculated by observing the 

differences in closely related proteins (Dayhoff 1965). As such, PAM matrices often 

perform poorly when used to align proteins from evolutionarily distant species. The 

Block  substitution  matrix  (BLOSUM)  are  computed  by  looking  at  blocks  of 

conserved sequences found in multiple protein alignments and has been shown to 

work  better  than  PAM  matrices  when  aligning  evolutionarily  divergent  protein 

sequences  (Henikoff et  al.  1992). Other matrices such as the Grantham matrices 

uses  amino  acid  physiochemical  properties  in  order  to  determine  the  distances 
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(Grantham 1974), whereas the Naor matrices (Naor et  al.  1996) use amino acid 

interchangeability at spatially, locally conserved regions to define a distance.

4.2 Sequence alignment tools

At  the  base  of  the  majority  of  comparative  genomics  studies  lies  an 

alignment between homologous sequences. Aligning DNA or protein sequences is 

important for three main reasons. Firstly, in an evolutionary point of view, since any 

two species is thought to have a common ancestor, DNA sequences that are similar 

may be orthologous to each other which is to say that they stem from the same 

ancestral  DNA sequence.  In  this  perspective,  aligned nucleotides  are  thought  to 

have evolved from the same position in the ancestral sequence either after mutations 

or conservation and nucleotides  that  are  aligned to gaps  are  either  insertions  or 

deletions in the other lineage. Secondly, DNA and protein sequences that are similar 

may  share  the  same  functions  or  structure.  Thirdly,  coding  DNA regions  are 

transcribed into mRNA and may then be translated into proteins.  Given mRNA 

sequences,  one  can  construct  local  alignments  in  order  to  find  out  from which 

coding region or genes the mRNA come from; which is crucial in genes expression 

profiling  studies.  Thus  it  is  clear  that  sequence  aligners  have  a  crucial  role  in 

genomics  and  comparative  genomics.  As  with  other  algorithms  presented, 

understanding how sequence alignments are generated with different parameters can 

be of importance to their interpretation in particular when divergence occurs.

There  are  two  general  approaches  in  sequence  aligners.  There  are  local 

aligners and global aligners. When performing a local alignments, one wants to find 

all regions in the sequences that are similar according to some metric of similarity. 

The sequences aligned can be much smaller than the initial sequences and they need 

not be in any particular order. In comparison, when performing a global alignment, 

the entire sequences are aligned in the same order as the initial sequences with the 

addition of gaps. Which approach is the best depends greatly on the context of the 
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initial sequences and the scope of the alignment.

The  Needleman-Wunsch  algorithm  is  a  pairwise  global  DNA alignment 

sequencing tool which takes two DNA sequences as input and outputs the optimal 

alignments for these 2 sequences according to some parameters. The Needleman-

Wunsch algorithm, like many algorithms in computational biology and comparative 

genomics,  aims  to  maximise  an  objective  function  characterising  the  biological 

significance of the sequence alignment. Since sequence alignments can be used for 

different tasks, there exists different objective functions which are mostly based on 

the different substitution matrices plus extra parameters. In the Needleman-Wunsch 

case, the parameters are the nucleotide substitution matrix plus the gap opening and 

extending  score  and  can  be  tweaked  when  aligning  sequences  with  different 

evolutionary distances. For more details and an in depth analysis of the statistics 

behind aligners, see (Needleman et al. 1970) and (Waterman 1995).

Many of the newer alignment tools are derived from Needleman-Wunsch, 

Smith-Waterman is an immediate derivative of Needleman-Wunsch and is used for 

optimal local alignments (Smith et al. 1981). One can even extend the Needleman-

Wunsch to iteratively compute an optimal multiple sequence alignment by defining 

an extended substitution matrix and objective function. Unfortunately, even with the 

computational power available now, optimal alignments tools are too slow when 

used for multiple sequence alignments with many sequences or when used in local 

alignments with whole genome input. This led to a variety of suboptimal alignment 

algorithms with different heuristics to improve running speed. Perhaps the two most 

famous algorithms are ClustalW and BLAST. 

ClustalW is a multiple sequence aligner which is suboptimal in the sense 

that  it  does  not  guarantee  to  output  the  multiple  sequence  alignment  which 

maximises a specific objective function. ClustalW does a pairwise alignment first 

with the input  sequences  and creates  a  phylogenetic  tree  based on the pairwise 
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alignment. It then uses the phylogenetic tree in order to iteratively construct the 

whole  multiple  sequence  alignment  by  going  from the  leaves  to  the  root.  The 

heuristics  here is  that  ClustalW assumes that  the initial  pairwise  alignment  will 

yield the correct (or nearly correct) phylogenetic tree; once the phylogenetic tree is 

constructed, it will remain unchanged for the rest of the alignments and thus may 

produce alignment errors due to the wrongly inferred phylogeny.

BLAST is another algorithm using a heuristic which makes the algorithm 

suboptimal. BLAST takes a DNA sequence as input and aligns it to another DNA 

sequence which is often a big database containing gigabytes of DNA sequences. For 

each  database,  BLAST has  a  dictionary  of  seeds  sequences  of  varying  length  (

l≥4 )  with  their  location  within  the  DNA sequences,  it  then  matches  the 

stretches of the input DNA sequence to the seeds and tries to extend the alignments 

in  order  to  find  the  stretch  of  DNA in  the  database  which  obtains  the  highest 

alignment  score  with  respect  to  the  input  sequence,  extremely  similar  to 

Needleman-Wunsch. The trade-off is between seed size and speed as each seed of 

length 4 is located on expectation N / 44 times in the database (where N is the size 

of the database in nucleotides or amino acids) which would slow down considerably 

the alignment whereas BLAST with a seed length of 20 would not be able to align a 

sequence with one mutation (compared to the sequences in the database) every 20 

nucleotides  (Waterman 1995).  Most  comparative  genomics  algorithms  are  fairly 

sensitive  to  parameters  and  it  is  often  crucial  to  know the  type  of  relationship 

between the sequences that are to be aligned.

4.3 Ancestral genome reconstruction

As mentioned earlier,  comparative biology relies on the fact that any two 

species share a common ancestor. Ancestral reconstruction algorithms have scope to 

find the DNA or protein sequence of the ancestral species according to the protein 
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sequence of extant species. As such, ancestral reconstruction is an important part of 

comparative genomics. Ancestral reconstruction algorithms generally take as input 

orthologous multiple sequences alignment and a phylogenetic tree, and outputs the 

predicted sequences at each node of the phylogenetic tree. 

Existing methods for ancestral sequence reconstruction fit in two categories 

which use a maximum parsimony (MP) or  a maximum likelihood (ML) approach. 

MP approaches do not take into consideration branch lengths when reconstructing 

the ancestral  sequence nor the non-uniform distribution of nucleotide or residue 

substitutions.  For  these  reasons,  ML approaches  are  generally  better  than  MP 

approaches.  ML ancestral  reconstruction  approaches  take  advantage  of  DNA or 

protein substitution models such as the Hasegawa, Kishino and Yano (HKY) model 

for DNA (Hasegawa et al. 1985) and the PAM for proteins in order to predict the 

most  likely  ancestral  sequence  (Dayhoff  et  al.  1978).  Both  the  HKY and PAM 

model take into consideration branch lengths and types of substitutions. However, 

ML approaches  normally  do not  support  gaps  in  alignments  while  MP offers  a 

simple and elegant way of supporting gapped alignments.

The  MP approach  is  an  optimisation  algorithm  on  the  parsimony  of  a 

phylogenetic  tree  and  the  sequences  on  their  node.  Given  a  tree  structure  and 

sequences at the leaves of the tree, the maximum parsimony is achieved when the 

sum of the numbers of substitutions along all branches of the tree is the smallest. It 

is thus easy to see that the MP approach is very dependent on the tree structure and 

does not take into consideration branches length or substitution types, but it is also 

clear that by extending the DNA or amino acid alphabet with the gap character, we 

can handle alignments with gaps.

The ML approach uses evolutionary models such as the HKY which models 

nucleotide substitutions. Over a long time span, the nucleotide at a given site might 

change and the HKY models the change in frequency of a nucleotide substitution 
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with respect to time. Indeed, depending on the evolutionary time, the substitution 

probabilities change and can be modelled as a Markov chain. The ML algorithm is 

an maximisation algorithm as it maximises the likelihood of the the sequences at the 

inner nodes of the tree given the tree structure and the sequences at the leaves. This 

likelihood is defined as the probability of getting the sequences at the leaves given 

the substitution model, the tree structure and the sequences at the inner nodes. For 

each  two branches  with  different  lengths,  the  substitution  matrices  will  also  be 

different according to the evolutionary model. As such, ML approaches generally 

perform better than MP approaches on simulated datasets, however,  as opposed to 

in MP approaches, it is not straightforward to analyse insertions and deletions in a 

ML fashion.  For  a  much  more  detailed  discussion  about  these  two  estimation 

approaches, see (Li 1997).

4.4 Alignments of short reads

With the advent of second generation sequencing, the cost of sequencing has 

drastically decreased but so has the length of each DNA sequence read. By using 

second generation  sequencing,   a  tradeoff  between  read  length  and coverage  is 

made. While Illumina Solexa and ABI SOLiD offer high output short read lengths, 

Roche 454 offers lower output with longer read lengths. The decision on which 

platform to perform sequence often depends on the end goal of the project.  For 

instance, for de novo genome assembly in eukaryotes, researchers usually use 454 

sequencing as it is extremely hard to handle genome repeats when using short reads. 

On the other hand, when a good reference genome is available, Illumina Solexa and 

ABI Solid are preferable as it is generally straightforward to map shorter reads to a 

good reference genome. One can use the extra few order of magnitude reads to 

conduct stronger statistical analyses for SNPs discovery, genes expression profiling 

through RNA-seq or transcription factor activity sites localisation with ChIP-seq 

(Shendure et al. 2008).
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A typical Illumina Solexa run outputs several millions short reads varying 

from 36bp to over 70bp, it is thus impractical to use local aligners such as Smith-

Waterman because of the sheer number of alignments that has to be made. BLAST 

is too slow for many projects and its sub-optimality also makes it unusable. For this 

reason, a new wave of algorithms specially designed to map short reads have been 

invented including MAQ (Li, Ruan, et al. 2008), Eland, SOAP (Li, Li, et al. 2008) 

and bowtie  (Langmead et al. 2009). Most of the new algorithms make trade-offs 

between  speed  and  quality.  Here,  we  discuss  MAQ as  it  is  arguably  the  most 

successful short read aligner and is also the one we use.

To have an idea of how MAQ aligns short reads from Illumina Solexa, one 

first  needs to  be aware of the outputs of Illumina Solexa sequencing.   Illumina 

Solexa typically outputs millions of reads of the same length which usually vary 

from over 30 to over 70 base pairs. Along with each read, a quality score for each 

base pair is included. This quality score, also known as the Phred quality score, 

measures the probability that base call, i.e. the estimate of the true nucleotide, is 

wrong. For instance, a Phred score of 10 translates into a base call accuracy of 90% 

while a score of 40 translates into an accuracy of 99.99%. Much like the Phred 

score, MAQ assigns a mapping score to each read which estimates the probability 

that the read is misaligned. To do that, MAQ first maps the reads onto the reference 

genome by dividing the read into multiple seeds much like BLAST and finding 

these seeds in a  hash to speed up the process. The use of the pigeon-hole principle 

allows a guarantee mapping reads with 3 mismatches or less as there can be 4 non-

overlapping seeds in a read and at least one of these seeds will be error free. Then, 

MAQ considers  all  alignments  to  compute  the  mapping qualities.  The  mapping 

qualities  has  the  properties  such  that  reads  falling  in  repetitive  regions  of  the 

reference  get  very  low  mapping  qualities  as  the  reads  align  to  many  different 

regions  and  low  quality  base  calls  lead  to  low  mapping  qualities  as  the  read 

sequence may be wrong. Furthermore, a read alignment mapping quality of 30 or 

over (Phred scale) usually implies that the quality of the base call is good, that the 
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best alignment has few mismatches and that the read does not map well to multiple 

different locations.

As MAQ depends heavily on the reference genome, it is important to make 

sure that a close reference genome is available. MAQ cannot handle insertions nor 

deletions with unpaired reads and can only guarantee to find an alignment to a read 

if there are 3 mismatches or less within the 32 first base pairs of the read. It is also 

important to note that the quality of the reference also influence MAQ's alignment 

score  and  sometimes  in  a  paradoxical  way.  For  instance,  a  reference  genome 

constructed from short reads cannot efficiently handle repeats that are longer than 

the length of the reads yielding a lower quality reference genome. Yet, using such 

reference genome improves the alignment scores for reads coming from the repeat 

regions. Therefore, one must show care when comparing the results of mappings on 

two reference genomes of different qualities specially when reads from repeat or 

common functional sequences are present.

4.5 Phylogenetic independence contrasts and other corrections

Closely  related  species,  in  an  evolutionary  sense,  share  more  similar 

phenotypes than species that are evolutionarily distant. In fact, for any two animals, 

we can go up the phylogenetic tree and find a common ancestor. Thus, whenever we 

find a correlation between two phenotypes in comparative studies involving more 

than two species, we need to make sure that this is independent from phylogeny, i.e. 

that phylogeny does not play a role in this correlation. For example, de Magalhães, 

Costa, et al. (2007) analyses the relationships between metabolism, developmental 

schedules  and  longevity  and  used  a  statistical  method  called  phylogenetic 

independent contrasts in order to make sure that the correlations they report were 

not due to phylogeny. 

Briefly, phylogenetic independent contrasts is a statistical algorithm in order 

35



to  transform  the  set  of  variables  in  a  comparative  studies  into  another  set  of 

variables that are statistically independent and identically distributed. For any two 

adjacent leaves in a phylogenetic tree, we can transform their values into one value 

that is drawn from a normal distribution with mean 0 and known variance that is 

independent  from any other  two  adjacent  leaves  (assuming  a  Brownian  motion 

governs the evolution of the values from each node to their children). After this 

step, it is possible to obtain values for inner nodes of the tree by iterating the steps 

using the new values as leaves values. Once all the values have been computed for 

both phenotypes under study, one can use the new corrected values for correlation 

or regression analyses. For more details, see (Felsenstein 1985).

Phylogeny is one type of confounding variable that may alter the result of a 

regression in comparative biology.  However, there are other confounding factors 

that need to be addressed when studying ageing. As we saw in chapter 2, body size 

strongly correlates to longevity. Therefore, any phenotype correlated to body size 

will  be  also  correlated  to  maximal  lifespan  without  any  real  biochemical 

connection.  Consequently,  there  is  a  need  to  factor  out  body  size  from  the 

correlation.

Fortunately, this task has been studied extensively in the field of statistics. 

To  solve  this  problem,  one  can  set  experimental  controls  such  as  case-control 

studies, cohort studies and stratification methods in order to limit the effect of the 

confounding  variables.  However,  in  many  comparative  biology  studies,  it  is 

impossible to decide on the experimental conditions as the data are often obtained 

from collaborators or online databases. In the latter case, one can use methods in 

covariate  statistics  in  order  to  factor  out  variables  that  may  be  confounding 

(Hennekens et al. 1987).
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AIMS

The  aim  of  our  work  was  two-fold.  First,  our  goal  was  to  produce 

comparative genomics algorithms and tools to help biologists discover interesting 

patterns in the genomic data that is now available and that will be available in the 

near future. The amount of data is growing exponentially with the advent of new 

sequencing technologies and we had this in mind when working on our algorithms. 

The large quantity of data requires the algorithms to be efficient and also designed 

in such a way that errors or outliers in the data can be detected without causing too 

many false positives. All these tools use data generated from two or more species in 

order to capture differences in their genes and proteins sequences or differences in 

genes expression that may explain phenotypical differences under study.

Our second goal was to use these techniques in order to study a concrete 

biological phenomenon which is the molecular mechanisms of ageing in mammals. 

Since the phenotypes in mammalian ageing are largely similar with exception of its 

timing (de Magalhães et al. 2002), we thought that studying mammals with different 

maximal lifespans would be feasible as well  as representative of the phenotypic 

differences that exist in mammalian ageing. By using genomic and expression data 

in three different contexts, we hoped to discover a common signal which will point 

to genes or pathways important in the evolution of mammalian ageing. These genes 

or pathways could give ageing researchers insights about the mechanisms of ageing 

in mammals and could be putative targets for future experimental studies.

As such, the remainder of this thesis will be divided into two major parts. 

The “Methods and Results” section will discuss the dataset, methods and algorithm 

development as well as present some raw results while the “Discussion” section will 

describe our interpretation of the results in the context of mammalian ageing.
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METHODS AND RESULTS

In the introduction, we discussed computational biology and how it has been 

used  to  help  researchers  in  ageing  provide  new  insights  about  the  underlying 

mechanisms of ageing. We also outlined some of the basic principles on which most 

computational techniques is built upon. In this chapter, we describe the comparative 

genomics methods based on these basic principles that we employed and original 

results which provide novel clues about mammalian species divergence in ageing. 

This chapter will be separated into three parts each consisting of a different project. 

We will first start with our analyses of residue frequencies in mitochondrial protein. 

Though the analyses involved in our first project are relatively simple, there are few 

considerations that will highlight the intricacies of comparative genomics studies. 

Next, we will explore the detection of signatures of selection in proteins of long-

lived  mammals  showcasing  how  to  exploit  the  large  amount  of  genomic  data 

available for ageing research. And finally, we end by discussing our work on cross-

species comparison of mRNA levels using next-generation sequencing without the 

reference genome of one of the two species which is, as far as we know, the first of 

its kind.
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Chapter  5:   Residue  frequencies  in  mammalian  mitochondrial 

proteins

In section 2.4, we saw that the mitochondria might have an important role in 

the regulation of ageing. Recent reports suggest correlations between residue usage 

in mitochondrial-coded proteins and longevity in multiple species. However, it is 

important to  bear in  mind that mitochondial  DNA (mt-DNA) only codes for 13 

proteins,  a  very  small  subset  of  mitochondrial  proteins.  Furthermore,  previous 

studies did not focus on mammalian species. Thus, we wanted to test the hypothesis 

that some protein residues are correlated with maximal lifespan by looking at all the 

mitochondrial  proteins  of  mammals  with  different  lifespans.  We  wanted  to  see 

whether  the  hypothesis  that  mitochondrial  coded  protein  cysteine  content  is 

negatively correlated with maximal longevity from  (Moosmann et  al.  2008) still 

holds when only considering mammals or when phylogeny is taken into account, 

and whether this correlation extends to all mitochondrial proteins (not only those 

who are encoded in the mitochondria). 

By using simple computational genomics techniques, one can compare the 

residues of a set of proteins to the residues of one or many orthologous sets and 

search for correlation between the residue composition and lifespan. Since residues 

with antioxidant properties are likely to impact on lifespan by acting as a protective 

buffer  against  oxidative damage,  we wanted to  test  whether  the composition  of 

antioxidant  residues  such  as  cysteine  and  methionine  in  mitochondrial  genes  is 

correlated with lifespan in mammals. To test this, we analysed residues composition 

in mitochondrial proteins classified in three different sets and used a group of non-

mitochondrial  proteins  as  control  set.  The  first  set  consists  of  the  13  proteins 

encoded in the mitochondrial genome, the second set consists of 52 well conserved 

mitochondrial  inner membrane proteins,  while the third set  consists of 243 well 

conserved polypeptides that are encoded by nuclear genes and are imported into the 
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mitochondrion,  lastly the fourth set  consists of the collection of all  7512 highly 

conserved non mitochondrial proteins used as a control (see Appendix 1.3).

To  be  precise,  we  based  our  analyses  on  10  mammalian  species  with 

significantly different lifespans and whose genome has been sequenced at a high 

coverage.  These  species  included  4  primates  (Pan  troglodytes,  Homo  sapiens, 

Pongo  pygmaeus and  Macaca  mulatta),  3  rodents  (Mus  musculus,  Rattus 

norvegicus and  Cavia  porcellus),  along  with  Canis  familiaris,  Bos  Taurus and 

Equus caballus. The orthologous genes set were constructed using InParanoid, a 

comprehensive database of eukaryotic orthologs (Ostlund et al. 2010) by combining 

pairwise  orthology  maps  while  the  protein  sequence  data  was  obtained  from 

ENSEMBL. Next, different mitochondrial proteins were classified with their Gene 

Ontology annotations (Ashburner et al. 2000) into the four aforementioned sets. We 

then constructed the multiple sequence alignments for all proteins using ClustalW. 

Only proteins sharing at  least  50% identity with the human sequence,  including 

gaps,  were  considered  as  valid  orthologs  and  were  considered  well  conserved. 

Proteins  with  less  than  50%  identity  or  proteins  with  missing  orthologs  were 

removed from the analysis.

The next step was to compute cysteine and methionine frequencies in the 10 

mammalian species. After doing that, we constructed a phylogenetic tree for the 10 

mammals  using  the  work  of  Miller  et  al.  (2007)  and  applied  phylogenetic 

independent contrasts (PIC) to correct for phylogenetic dependence. No correlation 

between  cysteine  and  maximal  lifespan  has  been  found.  However,  we  report  a 

negative correlation between methionine content and (log) maximal lifespan in the 

first set consisting of proteins encoded in the mtDNA (Pearson's coefficient: -0.685, 

p-value:  0.086)  and  second  set  of  proteins  located  in  the  mitochondrial  inner 

membrane (Pearson: -0.561, p-value: 0.058). The correlation between methionine 

usage and MLSP were not significant in the set of mitochondrial protein encoded in 

the  nucleus  (Pearson:  -0.229,  p-value:  0.217)  and  non  mitochondrial  proteins 
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(Pearson: 0.024, p-value: 0.476). We then found that, as expected, methionine usage 

in mtDNA-encoded proteins (6.03% ± 0.59% SD) was much higher than any other 

protein  group.  Interestingly,  we also  found that  within  the  set  of  mitochondrial 

proteins encoded by the nucleus (2.39%  ± 0.04% SD), proteins classified in the 

inner  mitochondrial  membrane  set  showed  a  significantly  higher  methione 

frequencies  (2.61% ± 0.05%,  p  <  10-8,  t-test).  Methionine  content  seems  to  be 

significantly higher in the mitochondrial proteins than in non mitochondrial proteins 

(p < 10-12). In our joint work with Aledo et al. (Unpublished), they present an even 

more general  correlation  extending our  initial  results  using 10 mammals  to  168 

mammals  including  24  different  orders.  In  addition,  they  invented  their  own 

statistical  method to test  phylogenetic effects  and correct  them along with basal 

metabolic  rates.  Furthermore,  they  analysed  spatial  disposition  of  methionyl 

residues in mitochondrial proteins to investigate the correlation between differential 

methionine  usages  and  maximal  lifespan,  and  found  that  mitochondrial  DNA 

encoded subunit from the short-lived mouse seems to accumulate methionine on the 

surface of cytochrome b when compared to the one in the long-lived human. 

Following  the  suggestion  of  an  anonymous  reviewer,  we  tested  whether 

methionine  was  enriched  in  mitochondrial  proteins  was  higher  than  any  other 

protein group when taking under consideration the facts that 1) there is a higher 

proportion  of  mitochondrial  genes  that  code  for  membrane  proteins  than  non-

mitochondrial genes and 2) membrane proteins tend to have a higher proportion of 

hydrophobic residues which methionine is. Interestingly, we found that even under 

such consideration, mitochondrial proteins were still significantly more enriched in 

methionine than non-mitochondrial proteins. Moreover, we found that methionine 

residue increased much more,  about 15%, in membrane proteins than any other 

residue.  Also  following  the  suggestion  of  the  reviewer,  Aledo  et  al.  further 

developed new statistical techniques examining methionine addition and removal in 

short-lived and long-lived species respectively in order to test the hypothesis that 

the  adaptation  (methionine  gain)  occurred  in  short-lived  species.  They  also 
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performed analyses to determine whether AUA methionine codon was correlated 

with longevity. They found that methionine gain in short-lived species supported the 

experimental  data better  and that AUA methionine codon was indeed negatively 

correlated with longevity. As discussed in our joint manuscript with Aledo et al. and 

in chapter 8, this supports our speculation that methionine has antioxidant role in 

the mitochondria. Also in chapter 8, we discuss that apart from a putative role in 

prevention  against  ROS,  the  antioxidant  properties  of  methionine  may  have  a 

functional role in mammalian lifespan.
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Chapter 6: Accelerated protein evolution analysis reveals genes and 

pathways associated with the evolution of mammalian longevity

Thus far,  we have discussed our  10 species comparative genomics study 

which  studied  the  composition  of  certain  amino  acid  residues  in  mitochondrial 

proteins and their correlation with maximal lifespan. However, there are now more 

than 30 mammalian species with whole genome sequences finished at over 1.5X 

coverage and many more are on the way. This provides researchers the opportunity 

of  doing  genome-wide comparative  studies  across  a  large  number  of  species  to 

identify  genes  and  processes  associated  with  the  evolution  of  longevity  (de 

Magalhães et al. 2010). Few successful comparative genomics studies in ageing (de 

Magalhães et al. 2007; Jobson et al. 2009) has exploited this wealth of data which 

provided new insights on the evolution of human and mammalian longevity. Here, 

we look for selection patterns in genes of lineages in which longevity evolved. 

To  identify  candidate  genes  and  processes  underlying  the  evolution  of 

longevity in mammals, we undertook a phylogenetic based comparative genomics 

study involving over 30 mammalian species. More precisely, our approach is based 

on  the  analysis  of  accelerated  protein  evolution  in  different  lineages  where 

longevity evolved. Our results reveal genes and functional groups that are candidate 

targets of selection in mammalian lineages where lifespan evolved. These include 

DNA repair genes and the ubiquitin pathway and thus provide evidence that at least 

some repair systems were optimized in long-lived species.

Since  species  divergence  in  lifespan  and  ageing  phenotype  is  largely 

determined  by  genetics,  one  can  expect  to  find  proteins  involved  in  species 

difference in ageing under positive selection in lineages where longevity evolved. 

Moreover,  we  expect  these  proteins  to  be  under  stronger  selective  pressure  in 

lineages  where  longevity  increased  (MLI  lineages  or  branches)  compared  to 
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lineages where longevity remained the same (MLS lineages or branches). In MLS 

branches,  it  is reasonable to believe that the selective pressure on most proteins 

contributing to species difference in ageing do not show departure from the neutral 

rate of sequence evolution. Thus, proteins with a pattern of selectivity specific to 

MLI branches are candidate proteins responsible for species divergence in ageing. 

Accordingly,  our approach aims to detect proteins that  have undergone selective 

pressure with high specificity to the lineages where longevity evolved. 

To find genes and functional groups under selective pressure in phylogenetic 

branches  where  maximal  lifespan  increased  (which  we  call  MLI  branches) 

compared to branches maximal lifespan did not increase (MLS branches), ortholog 

mappings of proteins of 36 mammalian species to  Homo sapiens were obtained 

from ENSEMBL resulting in 15,350 proteins with at least one 1:1 ortholog. These 

36 species were used to infer the most accurate ancestral protein sequence and few 

were  no  longer  used  in  downstream  analysis.  The  phylogenetic  tree  used  was 

obtained from Miller et al. (2007) and completed with the work of Murphy et al. 

(2007)  for  the  Myotis  lucifugus and  Pteropus  vampyrus branches.  Using  these 

mappings  and  proteins  multiple  sequence  alignments  along  with  a  reference 

phylogenetic  tree,  ancestral  protein  sequences  for  the  15,350  proteins  were 

predicted  using  Gapped  Ancestral  Sequence  Prediction  (GASP)  (Edwards  et  al. 

2004). GASP uses a likelihood method to fix gap position in the given phylogenetic 

tree and uses substitution matrices to assign ancestral amino acids. Though GASP 

has been shown to be less accurate than more sophisticated tools using likelihood 

estimation,  it  can  handle  gapped  alignments  and  was  suited  for  our  studies  as 

proteins  with  divergent  regions  were  discarded.  In  fact,  since  any phylogenetic 

approach aiming to detect selection is highly sensitive to wrongly annotated splice 

variants, proteins orthologs with more than 10 substitutions out of a sliding window 

of 20 residues were removed. After this scan, 15,312 proteins had at least one other 

ortholog.
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We then  computed  an  evolutionary  pressure  score  for  all  proteins  in  all 

branches  of the phylogenetic  tree based on the type and number of  amino acid 

substitutions  in  each  branch.  These  evolutionary  pressure  scores  measure  the 

strength of the selective pressure on a protein in each lineage.

6.1 Detecting longevity specific selection in proteins

To  detect  proteins  that  underwent  higher  selective  pressure  in  branches 

where maximal longevity significantly increased, AnAge (de Magalhães and Costa 

2009) was used as  reference for  animal  maximal  lifespan and 9 closely related 

species  pairs  for  which  their  maximal  lifespans  are  significantly  different  were 

constructed (see Table 2). In addition to this, 7 control pairs consisting of 2 species 

with similar maximal lifespans were constructed. That is, the 9 experimental pairs 

each correspond to species resulting from one MLI lineage and one MLS lineage 

stemming from a common ancestor and the control pairs to species resulting from 

two MLS lineages also stemming from a common ancestor. We wanted to detect 

proteins that have undergone stronger selective pressure in MLI lineages compared 

to MLS lineages in experimental pairs while exhibiting the same selective pressure 

in both MLS lineages in control pairs. 

For  each  of  the  15,312  proteins,  substitutions  scores  based  on  the 

physicochemical  properties  of  the  residue  substitutions  (Grantham  1974) was 

computed in each branch as a proxy for selective pressure akin to  (Zhang et al. 

2002) where  they  use  the  number  of  residue  substitutions  as  a  measure  for 

evolutionary pressure. It should be noted here that the use of similar matrices as 

Grantham  did  not  alter  the  results  obtained.  For  each  protein  and  branch,  the 

expected value of the number of residue substitutions was computed according to 

the empirical distribution of the residue substitutions in the branch in all proteins.
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Longevity 

divergent pairs 

(Experimental 

pairs)

Lineages where 

longevity 

evolved

MLSP Lineages where 

longevity did not 

evolved

MLSP

Choloeapus 

hoffmanni

37 Dasypus 

novemcinctus

22.3

Equus caballus 57 Canis Familiaris 24

Myotis lucifugus 34 Pteropus vampyrus 20.9

Loxodonta 

africana

65 Procavia capensis 14.8

Cavia Porcellus 12 ancestor of Mus 

Musculus and Rattus  

Norvegicus

4*

Tursiops  

truncatus

51.6 Bos Taurus 20

Homo sapiens 122.5 Pongo pygmaeus 59

Macaca mulatta 40 Callithrix jacchus 16.5

Erinaceus 

europaeus

11.7 Sorex araneus 3.2

Control pairs Tarsius syrichta 16 Callithrix jacchus 16.5

Procavia 

capensis

14.8 Echinops telfairi 19

Vicugna pacos 25.8 Sus scrofa 27

Oryctolagus 

cuniculus

10 Ochotona princeps 7

Rattus 

norvegicus

5 Mus musculus 4

Spermophilus  

tridecemlineatus

7.9 Dipodomys ordii 9.9

Otolemur 

garnettii

18.3 Microcebus murinus 18.2
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Table 2: Experimental and control pairs used in the computation of the longevity 
specific scores. The maximal lifespan (MLSP) is measured in years.

*: minimum of MLSP (in years) of  Mus Musculus and Rattus Norvegicus

6.2 Normalisation of evolutionary scores

Since different lineages have different evolutionary rates, one cannot simply 

compare the number of residue substitutions or the scores computed based on the 

number  of  substitutions  alone  between  two  lineages  sharing  the  same  ancestor. 

Thus,  to  compare  the  evolutionary  scores  between  two  lineages,  we  had  to 

normalise the evolutionary scores specifically  for each experimental  and control 

pairs.

 

In order to normalise the scores properly, let us assume that we are comparing the 

evolutionary pressure on genes or proteins in two branches ( A  and B ) with 

different evolutionary rate. We would like to be able to detect whether one gene or 

protein is under heavier positive pressure in one branch compared to the other.  Let 

SPA p and SPB p denote a measure of selective pressure in branch A and 

B  respectively  for  a  protein  p .  In  our  case,  it  is  the  sum of  Grantham 

measure of all substitutions between the predicted ancestral sequence and each of 

the extant species. Since the two lineages represented by the branches may have 

different  evolutionary rate,  we can  expect  a  higher  measure in  one branch,  e.g.

SPA p higher SPB p , for any protein p . Thus, comparing  SPA p to 

SPB p directly  would  heavily  bias  the  analysis  as  proteins  with  high 

evolutionary  pressure  in  branch A are  more  likely  to  be  detected  as  having  a 

significantly higher score than in branch B . 

Instead,  we  need  to  capture  this  difference  in  evolutionary  rate  and 

47



normalise the two scores SPA p and SPB p .  The most simple and elegant 

solution  we  found  was  to  normalise  both  scores  by  the  expected  number  of 

substitutions  each  ancestral  protein  sequences  given  the  protein  sequence  and 

linage.  We  first  computed  for  each  lineage  A and  B,  the  empirical  probability 

distribution of amino acid residue substitutions using all the proteins with ancestral 

sequence prediction.  Then, we normalised the selective pressure scores for each 

protein.  Although this expected value is an under-estimate of the true number of 

substitutions due to the possibility of multiple substitutions at a single residue site, 

this  effect  is  minimal  as  the  lineages  used  are  short  and  the  proteins  are  well 

conserved.

In mathematical  terms,  let  E A , B be the set  of all  ancestral  sequences 

predicted  for  species  A and  B.   The  empirical  probability  that  amino acid  R is 

substituted for another amino acid in branch A is:

P R ; A , B=
∑

p∈E A, B
∑

i

1{aaancestral  p ; i =R ,aaA p ; i ≠R}

∑
p∈EA , B 

∑
i

1{aaancestral  p ; i =R }

where the first summation runs through all predicted ancestral sequences for species 

A and B while the second summation runs through the amino acid in each protein. 

aaancestral p ;i   is the amino acid in the ancestral protein sequence p at position i of 

the alignment and aa Ai   is the amino acid sequence of the descendant of protein p 

of species A at position i. 

Thus,  the expected number of substitutions the ancestral protein sequence of 

a protein p=aa1 aa2 ... aan  will have in lineage A is 
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N A p=∑
i=1

n

E {1aaancestral  p ;i ≠aaA p ; i }=∑
i=1

n

P aaancestral  p ;i ; A , B

while the expected number of substitutions the ancestral protein sequence will have 

in lineage B is 

N B  p=∑
i=1

n

P aaancestral  p ; i ; B , A

Thus, by normalising  SPA p by  N B p/N A p , we can compare the 

corrected evolutionary pressure scores SPA p⋅N B p /N A p and SPB p to 

infer in which lineage protein p was under heavier selection.

6.3 Selectivity criteria and longevity selectivity scores

 This expected value was used to normalize the protein score for each branch 

in order to minimize the effects of different branch length and protein length. After 

all  scores have been normalized, for each of the pairs of species with divergent 

lifespan (for which an ortholog exist in both branch) and each of the control pairs, a 

p-value was calculated to  measure the relative selective pressure in  one lineage 

versus the other by the binomial test: 

pScoreMLIc , ScoreMLSc = ∑
x=1

Score MLIc

ScoreMLIScoreMLS2c
x  1

2


Score MLIScore MLS2c

Where  scoreMLI  is  the  substitution  score  (evolutionary  pressure  score)  for  the 

protein in the MLI branch in the pair, scoreMLS  is the substitution score for same 

orthologous protein in the MLS branch of the pair and c is a pseudo-count (c = 3 in 

this study) which has been chosen by trial and error so that p is stable for conserved 
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proteins. For the control pairs where both branches (A and  B) are MLS branches, 

only the smallest p-value is kept:

pcontrol=min {p ScoreAc ,ScoreBc , pScoreBc ,ScoreAc }

The lower the p-value from the binomial test is, the stronger the selective 

pressure  on  the  protein  in  one  lineage  is  compared  to  the  other.  Since  well 

conserved proteins may also be responsible for species divergence in ageing, we 

defined 3 different p-value thresholds to account for the weak selective pressure 

they show. In other words, the different p-values, 0.05, 0.1 and 0.2, reflect different 

levels  of  evolutionary  pressure  on  proteins.  For  example,  proteins  undergoing 

higher evolutionary pressure tend to have species pairs satisfying the 0.05 threshold 

as their evolutionary pressure scores tend to fluctuate, whereas proteins that are well 

conserved tend to have low evolutionary pressure scores which are less likely to 

fluctuate  between  lineages.  Although  well  conserved  proteins  tend  to  have  less 

experimental pairs satisfying the thresholds, they also tend to have less control pairs 

satisfying  them.  To  see  this,  consider  a  well  conserved  protein  with  a  weak 

signature of selectivity specific to MLI branches. Under the stringent cut-off, this 

protein  will  show  no  signature  of  selectivity  in  any  branch  at  all.  Conversely, 

consider a protein that exhibits a signature of selectivity in many different branches 

but  much stronger in  MLI branches.  The variability  of  the strength of  selective 

pressure is big and so many branches will be considered to be under selection with 

respect  to  a  relaxed  cut-off  hence  yielding  a  low score  because  of  the  lack  of 

specificity  to  MLI  branches. We  used  this  fact  to  define  a  “longevity-specific 

selectivity” for  each  proteins  and each thresholds.  By using  different  selectivity 

criteria, we were able to detect proteins showing different levels of selection with 

high  specificity  towards  MLI  branches.  The  longevity-specific  selectivity  score 

does not measure how rapid the evolution a protein has undergone in MLI branches. 
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Rather, it measures the specificity of this selection in MLI lineages compared to 

MLS lineages. That is to say, proteins with high LSS score may be under positive 

selection in MLI branches (but not in MLS branches) or under purifying selection in 

MLS branches (but not in MLI branches). Whether it is the former or latter case, a 

high LSS score translates into a protein with a signature of longevity selectivity.

Indeed,  the  fact  that  different  proteins  are  under  different  evolutionary 

pressure was taken into consideration by considering 3 thresholds for significance (t 

= 0.05 (stringent), 0.1 (moderate), 0.2 (relaxed)). And therefore, to assess whether a 

particular protein is associated to ageing, the number of pairs,  N MLI , where the 

proteins has a p-value such that p < t is recorded. The number of pairs, N MLS , such 

that 1− p<t  is also recorded as well as the number of control pairs, N control , such 

that pcontrol <t .  With these numbers, a normalized “longevity-specific selectivity” 

score for each protein can be computed as follows:

LSS'=N divpair[ N MLI

N divpair

−
N MLS +N control 

 N divpair +N contpair  ]

Where N divpair is the number of pairs with divergent lifespans for which a protein 

ortholog exists in both branches, N contpair  is  the number of control pairs for which 

a  protein  ortholog  exists  in  both  branches.  Therefore  N MLI /N divpair is  the 

percentage  of  MLI  branches  in  which  the  protein  is  selected  and 

N MLS +N control / N diver +N contpair   is the percentage of MLS branches in which the 

protein  is  selected.  It  can  be  seen  that  0≤N MLI /N divpair≤1  and   

0≤N MLS +N control / N diver +N contpair ≤1  so that   −N divpair≤LSS'≤N divpair  also 

holds with equality when the either (1) the protein is selected in all MLI branches 

and no MLS branch or (2) the protein is selected in all MLS branches in pairs with 
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divergent lifespans and in 1 branch in all  control pairs. Moreover,  assuming we 

have a threshold of t = 1, both N MLI /N divpair  and N MLS +N control / N+N contpair   

would be 1 and  LSS'  would equal 0.   In this  study,  only proteins  that  have a 

selection specificity towards MLI branches are of interest so  LSS=max 0, LSS'   

was used as the “longevity-specific selectivity” score. It follows that any protein 

with negative LSS' has a LSS  of 0, i.e. no longevity-specific selectivity. Thus the 

LSS score measures the specificity of the selection in MLI branches.

In sum, we gave each protein three “longevity-specific selectivity” scores 

computed according to the number of experimental  pairs  where the protein was 

under stronger selective pressure in MLI branches, the number of both experimental 

and control pairs where the protein was under stronger selective pressure in MLS 

branches,  and  the  total  number  of  divergent  lifespan  species  and  control  pairs 

considered.  As  such,  the  “longevity-specific  selectivity”  score  encapsulates  how 

specific the selection of the protein is to lineages where maximal lifespan increased 

(MLI branches) with regard to an arbitrary criteria of stronger selection. 

The proteins were then sorted according to their scores separately for each of 

the  three  levels  of  selective  pressure  defined  and  we  were  able  to  analyse  the 

proteins  showing  the  highest  specificity  towards  MLI  branches.  The  geometric 

mean does not have any intrinsic meaning, but we used it in order to summarise the 

data  into  one  single  table.  For  this  ranking,  no statistical  significance test  were 

performed as a random model for protein residue evolution at a genome-wide level, 

taking into consideration multiple species pairs, was outside the scope of this study. 

Instead, we focused on the top 25 proteins as candidate proteins related to species 

difference in ageing with regard to the three cut-offs which correspond the top 0.5% 

of all proteins analysed.

52



6.4 Proteins with longevity-specific selectivity

After computing the “longevity-specific selectivity” score for each of the 

15,312 proteins in all three selectivity categories, we found that proteins generally 

obtained a low score with most proteins  scoring 0.  When applying the relaxed 

selectivity threshold, 10,182 proteins out of the 15,312 had a score of 0 with only 

598 proteins scoring 2 or more and a mere 31 scoring 4 or more, the highest score 

of 6.0 was attained by only one protein, FAM126B. A typical high scoring protein 

has a selectivity pattern like DDB1 (rank 9; see fig. 2). Likewise, when applying the 

moderate selectivity threshold, 10,216 proteins had a score of 0, 339 had a score of 

2.0 or more and 6 with a score of 4.0 or more with CPNE5, NUP85 and RSAD2 

sharing  the  top  score  of  5.0.  Lastly,  when  applying  the  stringent  selectivity 

threshold, 10,723 proteins had a score of 0, 166 had a score of 2.0 or more. The 

highest  score  was  obtained  by  the  protein  IWS1 scoring  the  highest  with  4.33, 

followed by HERC4 which shares the score of 4.00 with 7 other proteins.  Though 

some overlap between categories exists as expected, 9 proteins are ranked highly 

(top 20) in two categories and only one protein, FAM126B, is highly ranked in all 3. 

Though this ranking bears no statistical significance in itself, the scoring is a rank-

order of all proteins and these highly ranked proteins represent the most promising 

candidates for selection in long-lived species.

6.5 Detecting longevity specific selection in functional categories

After computing the “longevity-specific selectivity” scores for all proteins, 

GO categories annotation  (Ashburner et al. 2000) were obtained in order to score 

each  GO categories  by adding  the “longevity-specific  selectivity” score of  each 

protein within the category. To compute the significance of each GO category, the 

empirical  distribution  of  the  LSS scores  was  obtained,  the  proteins  scores  were 

shuffled and the scores for the GO categories were recomputed 2,000 times. The p-

value  for  each  category  was  computed  as  the  number  of  times  the  simulation 
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yielded a score for a GO category that is larger than the its actual score divided by 

2,000  (permutation  test).  Again,  for  each  GO  category,  we  obtained  three 

enrichment  p-values,  one  for  each  level  of  selective  pressure,  and  analyzed the 

categories with lowest p-values.

In  the  analysis  of  GO  categories,  the  high  score  of  one  protein  could  largely 

influence the p-value of a small GO category thus we only included categories with 

at  least  3  proteins  showing  specificity  of  selection  towards  MLI  branches.  For 

instance,  in  the  GO category  proteasomal  ubiquitin-dependent  protein  catabolic 

process  we  have  5  proteins  showing  specificity  at  the  relaxed  selectivity  level 

including  FAF1  (1.85),  RAD23A (0.20),  TRIM63  (2.80),  RAD23B  (0.67)  and 

CD2AP  (4.86).  These  5  proteins  give  the  GO  category  a  “longevity-specific 

selectivity” score of 10.38 while the expected score is 3.00. 
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Figure 2:  DDB1 under selection in longevity specific lineages.

 Longevity drastically increased in red lineages compared to blue lineages. Protein 
substitution scores are labelled next to branches when available. DDB1 selection 
was not specific in the lineage leading to Sorex araneus.



We then sorted all  categories  according to  the geometric  mean of the p-

values  for  the  three  thresholds  of  selectivity.  Out  of  15,551  GO  categories 

considered, 4,180,  4,396 and 4,443 categories had a non-zero score with respect to 

stringent,  moderate  and  relaxed  selectivity  pressure  criteria  respectively.  3,267 

categories had non zero scores with respect to all three criteria, 1,147 with respect 

to two and 924 had a non zero score with respect to one. We obtained around 150 

GO  categories  with  significant  p-value  with  respect  to  at  least  one  selectivity 

criteria.  This  represents  less  than  1% of  all  functional  groups  and many of  the 

categories  are  closely  related  to  one  another  (see  Appendix  1.2).  Because  no 

statistical  correction were applied for the multiple testing of GO categories, this 

ranking, although based on p-values, is a rank order without a specific statistical 

cut-off. Like in the case of proteins ranking, a mere ranking of functional categories 

can lead to false positives, however, the categories with lowest p-value represent 

categories  which  show the  most  longevity  specific  selectivity  regardless  of  the 

statistical  significance.  Out  of  the  top  150  GO categories  with  respect  to  each 

selectivity criteria, 33 categories are in the top 150 with respect to all 3, and 76 with 

respect  to  2.  Furthermore,  many of  the  top  categories  are  related  to  each  other 

without  necessarily  sharing  a  common  proteins  with  high  “longevity-specific 

selectivity” score. Thus they are likely to be biologically relevant and we grouped 

these categories into different classes. 

Three major classes of functional categories were detected within the highly 

ranked GO terms  in  at  least  one  threshold  of  selectivity.  Within  the  first  class, 

proteins involved in muscle development along with brain development showed the 

most  significant  enrichment  in  high  “longevity-specific  selectivity”  scores  when 

using threshold for moderate and stringent evolutionary pressures. However, when 

we use a lower threshold for selective pressure, the evolutionary pressure specific to 

MLI  branches  were  not  considered  significant  any  more.  Another  GO category 

related  to  development  was  spermatid  development  which  was  enriched  in 

“longevity-specific  selectivity”  scores  with  respect  to  the  three  thresholds,  but 

56



particularly when the threshold was medium or low. Next, we found that proteins 

involved in lipid process were also among the statistically  significant categories 

along with cholesterol catabolic process which only show significance at  a high 

selectivity  threshold.  The  last  class  of  proteins  comprise  of  four  functional 

categories  involved  in  the  proteasome-ubiquitin  system  which  are  protein 

ubiquitination  during  ubiquitin-dependent  protein  catabolic  process,  proteasomal 

ubiquitin-dependent  protein  catabolic  process,  ATP-dependent  peptidase  activity 

and lysosome organization. More surprisingly, the proteins with positive “longevity-

specific selectivity” scores detected in these categories were non-overlapping.

We  also  detected  other  GO  categories  with  unusually  high  “longevity-

specific selectivity” but with few highly ranked related categories. As such, they are 

more likely to be false positives. Both actin binding and actin cytoskeleton proteins 

were  ranked  highly  with  regards  to  all  cutoffs.  In  addition,  we  found  that  1-

phosphatidylinositol-3-kinase activity, phosphoinositide 3-kinase complex, response 

to food and circadian rhythm were all highly ranked with respect to at least one 

selectivity criteria. 

6.6 Checking computational bias

To see whether our approach was biased towards some unwanted protein 

properties, we looked at the distribution of protein lengths and no correlation with 

score was found. Furthermore, we looked among the top proteins in each category 

and found that  none of  them had an obvious splice variant  causing bias  in  our 

approach.  Many phylogenetic approaches using othologs mappings like ours are 

highly sensitive to proteins with misannotated orthologs, thus we used an aggressive 

weeding strategy to remove proteins sequences that are putative splice variants by 

removing any proteins with more than 10 mismatch in a sliding window of size 20 

when  compared  to  its  closest  ancestral  protein  sequence  prediction.  Moreover, 

phylogenetic  approaches  need  to  take  into  consideration  the  phylogenetic 
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dependence within the species considered (Felsenstein 1985), however, our method 

is unaffected by this dependence as we defined disjoint longevity divergent species 

pairs with no common evolutionary branch. To further test our approach, we wanted 

to verify that our selection of parameters did not drastically influence our results. 

We  found  that  using  a  different  scoring  matrix  yielded  similar  results  and  no 

significant  differences  were  observed  within  the  proteins  and  GO  categories 

reported when we used different thresholds for selectivity including 0.01, 0.15 and 

0.25.

It  is  important  to  note  that  there  is  no  obvious  statistical  model  for  the 

distribution of longevity selectivity score (LSS) among proteins. We will discuss in 

the next chapter how this affects the significance of the results and why we believe 

that our results are interesting despite the fact that we did not show deviation from a 

random model.
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Chapter  7:  Genes  expression  profiling  using  2nd  generation 

sequencing in non-traditional model organism

So far,  we have looked at  amino acid composition and protein evolution 

across mammalian species.  However,  it  is  probable that  the mechanisms behind 

species divergence in ageing lies in non protein coding regions of the genome. For 

example, the decline in activity of proteasome in many mammals through its life is 

thought to be a cause for ageing (Friguet et al. 2000; Farout et al. 2008). Among the 

non  protein  coding  regions  of  the  genome  are  regulatory  elements  such  as 

promoters  and  enhancers  that  can  influence  the  expression  of  genes.  The 

mechanism  of  genes  regulation  is  an  extremely  complex  topic,  specially  in 

eukaryotes, worthy of an entire field of researchers. Thankfully, it is not necessary 

to the mechanisms of genes regulation in order to study genes expression. In this 

project, we used second generation sequencing data from wild-type mice and naked 

mole-rats in order to screen for differentially expressed genes in the naked mole-rats 

that could, at least partly, explain its exceptional longevity.

As mentioned in the introduction, there a few parameters to consider when 

choosing a model organisms for ageing studies. Due to the relationship between 

maximal  longevity  and  body  size,  a  good  model  organism  should  have  an 

exceptional  long  lifespan  for  its  size.  This  is  the  case  for  the  naked  mole-rats 

(NMR). Indeed, the naked mole-rat has a much longer lifespan than expected for its 

relative small body size. In fact, the naked mole-rat (Heterocephalus glaber) has a 

record longevity of over 30 years which makes it the longest-lived rodent and thus a 

prime candidate  for comparative genomics as the genomic information of many 

other  rodents  such  as  mouse,  rat  and  guinea  pig  are  presently  available. 

Furthermore,  the naked mole-rats  have been shown to be extremely resistant  to 

neoplesia.  Due to these remarkable differences between the naked mole-rats and 

their  rodent  cousins,  we hypothesized  that  the  differential  expression  of  certain 
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genes may be able to explain these different phenotypes.

Since the naked mole-rat genome is unavailable and its closest sequenced 

genome is the one of the guinea pig, gene expression analyses using micro-arrays 

are  impossible.  To  design  micro-arrays,  one  needs  to  have  the  DNA or  RNA 

sequences  of  the  targets  under  study.  However,  without  a  very  close  reference 

genome,  micro-arrays  technology could  be  too  noisy to  be  of  any interest.  The 

solution  to  this  problem  is  to  use  second,  or  next-generation,  sequencing 

technologies which can directly sequence a pre-constructed library. The decreasing 

costs of sequencing allowed us to utilise this cost-effective technology for genes 

expression analysis.

For this study, we were able to obtain Illumina Solexa 39bp and 76bp reads 

from naked mole rat and wild-type mouse liver mRNA library constructed using a 

PMAGE like approach (Kim et al. 2007), see Figure 3. The naked mole-rats liver 

tissues were provided by Dr. Buffenstien of the Barshop Institute for longevity and 

Aging studies in San Antonio while the experiments were done by Dr. Chuanfei Yu 

from the Church lab at Harvard Medical School. The choice of liver tissue was 

made because of the ease if its harvest and its homogeneity, however, one study 

shows that liver genes expression levels remain constant throughout age and may be 

a  tissue  that  do  not  show  many  ageing  phenotypes  (Zahn  et  al.  2007).  This, 

however,  is  unlikely  to  affect  our  analyses  as  we  are  comparing  the  genes 

expression level of a young naked mole-rat and a young mice. Both naked-mole rats 

and wild-type mice were in their young adulthood when the tissues were harvested. 

The scope of this project  was to determine genes differentially expressed in the 

naked  mole-rat  compared  to  the  wild-type  mouse.  However,  since  there  is  no 

reference genome for the naked mole-rat, we first had to establish a reliable method 

to map the NMR reads to their correct genes orthologs.  
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Figure 3: Construction of the mRNA library (done by Dr. Chuanfei Yu)

7.1 Mapping short Solexa sequencing reads

To do that, we have obtained a low coverage assembly of the naked mole-rat 

transcriptome  generated  by  454  sequencing  complemented  by  Solexa,  from Dr. 

Platzer group in Jenna, consisting of 77086 contigs. We mapped the 9.2M 39bp and 

21.2M 76bp NMR Solexa reads to the 77086 contigs using MAQ. Out of the 21.2M 
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76bp reads, 10.7M reads (50.2%) mapped successfully and 6.8M had good mapping 

scores, i.e. a MAQ quality score of over 30 (see Supplemental Material), which can 

be explained by many poly-T and poly-A reads generated by the PMAGE protocol 

and the low coverage of the reference. Due to this low coverage, we cannot be sure 

whether a putative under-expressed genes in the naked mole-rats is under-expressed 

because of the poor alignments, thus, our plan was to detect genes over-expressed in 

naked mole-rats. 

To  determine  from  which  gene  a  NMR  read  came  from,  we  employed 

BLAST to map the contigs of the assembly onto the mouse cDNA and kept the 

unambiguous mappings.  The mapping of 33286 contigs out  of the initial  77086 

were judged to be unambiguous. We define a mapping to be unambiguous if its 

BLAST map is either unique and less than 0.05 or the mapping e-value is 10 orders 

of magnitude smaller than the one with the second smallest. Out of the 6.8M reads 

with good mapping quality,  5.9M could be assigned to an orthologous genes in 

mouse or guinea pig.

After these two steps, we obtained a list of genes with their reads number for 

the naked mole rat Solexa data. We then constructed a reference library for mouse 

consisting of the 3' end of all mouse cDNA transcript. The wild type mouse solexa 

reads were then mapped to this reference library and the expression levels of the 

two were compared after  normalisation.  After this step,  11.1M out of the initial 

24.3M mouse  76bp  Solexa  reads  where  successfully  mapped  with  high  quality 

score.

7.2 Normalisation of the read counts

Since two sequencing runs can have a different  number of reads output and 

two samples can have different bias depending on how a library is prepared before 

sequencing,  one needs to normalise the data before being able to tell  whether a 
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genes is over or under expressed in either samples.  Many studies simply use as 

normalisation the ratio of the output of the two sequencing runs, e.g. 21.2M:24.3M 

in our case or take into account read length for RNA-seq methods. However, it has 

been shown that these normalisation methods may not work well when a sample has 

a different mRNA composition. Because we are comparing the genes expression 

levels of two different species, we wanted a more reliable normalisation constant. 

To  this  end,  we  used  a  simple,  yet  intuitive,  method  based  on 

(Robinson et al. 2010) to normalise the reads count between naked mole-rats and 

mouse samples. The method is based on the crucial assumptions that most genes are 

not differentially expressed, e.g. more than 70%. In mathematical terms, if  X g
1

and X g
2 are random variables denoting the expression level of genes g in detected 

in  sample  1  and  sample  2  (e.g.  naked  mole-rats  and  mice)  respectively,  the 

assumption  is  that  X g
1 and  X g

2 are  identically  independently  distributed  for 

most genes  g. Both X g
1 and X g

2 depend on sample composition as well as the 

number of total reads generated by each Solexa run and thus they are not absolute 

measures of expression.  In other terms, the following equation holds:

X g
1

X g
2 ≈c

This ratio is  also known as the fold differential  expression of gene  g and since 

neither has been corrected, c is the correction factor so that 

X g
1

c
/ X g

2⋅c ≈1

when the genes g is expressed at the same level in the two samples. The problem is 

to find c in order to normalise the read counts so we can compared them across the 

63



samples. In order to do that, we minimise the following:

minc∑g∈G' ∣log 
X g

1

X g
2 −log c∣

where  G'  is the set of genes that are not differentially expressed. By solving the 

minimisation problem, we find the constant  c such that the sum of the differences 

between c and the real ratios of genes expression levels is smallest. That is, c is our 

estimate of the ratio X g
1
/X g

2 for all genes that are not differentially expressed and 

thus our normalisation constant. It can be shown (see Appendix 1.1) that c is equal 

to the median of the real ratios of the genes not differentially expressed, i.e.  the 

median of {X g
1
/ X g

2 : g∈G ' } .

It now remains to find out what  G', the set of genes whose expression are 

similar, consists of. This task is the trickiest part since if we knew which genes was 

in G', it would be extremely easy to find the normalising constant. One way we can 

construct G' is by first guessing a constant c and start removing the genes for which 

X g
1
/ X g

2
⋅c  is very large or very small (compared to 1) and then re-estimate  c 

and  go  on  until  c converges.  This  class  of  methods  is  called  expectation 

maximization (EM) algorithms and are useful when estimating unknown parameters 

when data is incomplete or has many outliers, for an introduction see (Russell et al. 

1995). To get a good idea of the data we are dealing with, we first constructed a 

histogram of the log expression ratios between mice and naked mole-rats genes. 

Since we are use log expression ratios, we added pseudo-count of 50 to the reads 

count of each genes.
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From figure 4, a clear bias towards mouse genes can be seen. It turns out 

that many of those genes have no naked mole-rats read count, possibly because the 

contigs did not cover the orthologous regions in the naked mole-rats or because the 

contigs of those genes were not mapped successfully. We thus remove all genes for 

which no count was observed in one or the other species. The resulting histogram 

looks much more balanced which indicates that when there is at least one Solexa 

read mapping to a naked mole-rat contig, the contig is at the right 3' location of the 

orthologous gene and most of the other naked mole-rats Solexa reads are able to be 

mapped. We expect the graph to have a normal distribution as because of both the 

stochasticity  in  genes  expression  level  at  the  biological  level  and  at  the 

technological level (sequencing technologies).
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Figure 4: Log expression ratio between naked mole-rats and mouse genes. 

We can see a clear bias towards mouse genes. And thus we expect c to be less than 1.



After correction, we can make two main observations. First, the distribution 

of log ratios seems to be symmetrical with mean close to 0. That is, the mean ratio 

is close to 1. Recall that the absolute output of the naked mole-rats sample is 21.1 

compared to 24.3 of the wild-type mice which makes a ratio of around 0.87. The 

second observation is that number of genes is considerably lesser than without any 

correction. The shape of the graph was a bit suspicious and we suspected this was 

the effect of many low count genes for which the log ratio had very high variance 

compared to high count genes. Thus, we also tried removing all genes which had 

less than 50 reads in either of the samples which yield the following histogram.
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Figure 5: Log expression ratio between naked mole-rats and mouse genes after 
removing genes where no reads was found in either of the species' sample. 

The bias is much smaller compared to the uncorrected data.



Though the distribution seems to peak near 0, we can see that the right side 

of  the  curve  seems  to  be  heavier.  After  weeding  out  15%  of  the  top  outliers 

according to the aforementioned expectation-maximisation algorithm, we found that 

c converges near 1.19 which is quite different from our first estimate of 0.87. The 

histogram after correction looks as follows.
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Figure 6: Log expression ratio between naked mole-rats and mouse genes after 
removing genes where less than 50 reads in either of the species' sample. 

The distribution looks more normal now.



To  normalise,  we  simply  used  the  following  equation  to  compute  the 

expression  fold  differences  of  each  genes  g  where X g
1 and  X g

2 are  the 

expression of the naked mole rats and wild type mice respectively:

X g
1
/ X g

2
⋅c 

7.3 Functional analysis of genes over-expressed in the naked mole-rats

We  then  assigned  genes  to  two  different  categories.  The  first  category 

consists of all genes, but with a pseudo-count of 50 added to each read count in 

order to limit the effects of the high variance when read counts are low. Adding a 

pseudo-count has similar effect as using the binomial where two genes with a big 
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Figure 7:  Log expression ratio between naked mole-rats and mouse genes after 
removing genes where less than 50 reads in either of the species' sample and 
removing the top 15% outliers



count and big fold expression difference scores a lower p-value than two genes with 

small  count  and  the  same  big  fold  expression  difference.  The  second  category 

consists of genes where the genes has less than 50 counts in wild-type mouse. Using 

the first genes category, we were interested in finding a global trend in genes over-

expressed in the naked mole-rats. For the second genes category, we were interested 

in finding about genes that are unexpressed in wild-type mice but expressed in the 

naked mole-rats, thus we removed all genes with more than 50 reads in wild-type 

mouse and added a smaller pseudo count of 5. 

We then ranked all genes according to their expression fold differences and 

looked at at the top 50 in each of the two genes categories for interesting candidates 

(see Table 3). Next, to identify pathways and biological functions that tend to be 

overexpressed in the naked mole-rats, we chose the arbitrary cut-off for expression 

fold difference of 15 and looked at all the genes with over-expression fold bigger 

than 15.  In the end,  we obtained 273 genes over-expressed 15-fold or over for 

genes from the first category and 898 for genes from the second category and used 

the Database for Annotation, Visualization and Integrated Discovery (DAVID) to 

find out genes functional enrichment. To compute statistical enrichment p-values, 

one of DAVID's strategy is to use a hyper-geometric distribution on the genes in a 

provided test dataset against a background dataset (Huang et al. 2007).

Using DAVID and the genes in our analysis as background, we found that in 

the  first  genes  category,  genes  were  enriched  in  acetylation  (p  =  2.9E-14), 

mitochondrion (3.3E-13), transit peptide (3.3E-10), oxidoreductase (1.1E-10), fatty 

acid metabolism (2.6E-6), and others (see Supplemental Material). We also found 

oxidation reduction (9.1E-9), generation of precursor metabolites and energy (2.8E-

8)  enriched  in  genes  sharing  GO  terms.  For  the  pathways  analysis,  we  found 

Parkinson's disease (3.4E-5), oxidative phosphorylation (1.5E-4) and Huntington's 

disease (1.1E-3) and few others with significant enrichment. Unsurprisingly, for the 

second category of genes, we found very similar results. Lipid biosynthetic process 
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(8.3E-9) was highly enriched among GO terms and Proteasome (1.5E-4) was found 

to be the most enriched in our pathway analysis.

Rank Corrected 

Fold 

difference

Nmr 

count

Mouse 

count

Gene Name Description

1 1070.36 72553 7 Rpl26 ribosomal protein L26 (Silica-

induced gene 20 protein)

2 636.0894   42339 6 Rps9 40S ribosomal protein S9

3 2063.14 188996 27 A2m Alpha-2-macroglobulin-P 

Precursor

4 609.57 40572 6 Tbrg4 Transforming  growth  factor 

beta regulator 4

5 515.71 34317 6 Gsta2 Glutathione S-transferase A2

6 584.39 40980 9 Pafah1b3 Platelet-activating  factor 

acetylhydrolase  IB  subunit 

gamma 

7 300.30 19962 6 Igfbp2 Insulin-like  growth  factor-

binding protein 2 Precursor

8 329.54 22303 7 D2Bwg133

5e 

DNL-type zinc finger protein

9 234.32 15565 6 Cth Cystathionine gamma-lyase

10 247.56 16742 7 Sc4mol C-4 methylsterol oxidase

11 271.28 18674 8 Hrsp12 Ribonuclease  UK114  (Heat-

responsive protein 12) 

12 224.02 15145 7 Igfbp4 Insulin-like  growth  factor-

binding protein 4 Precursor

13 246.49 16963 8 Crym Mu-crystallin homolog 

14 793.86 88751 44 Apoc2 Apolipoprotein C-II Precursor

15 353.41 26866 14 Cyp3a16 Cytochrome P450 3A16

Table 3: Table showing the genes with highest fold expression differences between 
naked mole-rats and wild-type mice. 
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The ratio is computed with 50 pseudo-counts added to both counts. The top genes 
for the first genes category are almost identical to the ones of the second category.

7.4 Validation of results using microarray data

To validate some of the most interesting candidates found in our study for 

follow  ups,  we  retrieved  expression  data  from  the  mouse  expression  database 

GeneAtlas (http://www.geneatlas.org/). The database contains microarray intensity 

of genes expression in many different tissues. For candidate genes, we summarised 

the  expression  level  data  of  each  gene  by  using  a  k-NN approach  in  order  to 

compare  the  expression  level  of  the  particular  gene  in  liver  compared  to  other 

tissues.  If  the  read  counts  for  wild-type  mouse  is  very  small,  we  expect  the 

expression level of this particular gene in liver to be small compared to other tissue 

or small in absolute term. The k-NN approach is better than summarising the data 

by  a  ranking  with  respect  to  expression  in  different  tissue  as  a  gene  might  be 

expressed  at  a  low  level  in  all  tissues.  On  the  other  hand,  using  the  absolute 

intensity of expression in liver alone might not be accurate because the genes at 

hand may be expressed highly in all tissues and may thus suffer from normalisation 

problems.

71

http://www.geneatlas.org/


DISCUSSION 

In  the results  and methods part,  we looked at  the comparative genomics 

methods used in order to study species divergence in ageing and highlighted some 

of the findings. Here, we discuss the biological significance of the results in more 

depth. We also discuss the biological limitations of comparative studies in ageing. 

We argue that contrary to research on ROS in lower organisms, the effects of ROS 

on longevity seem to be lesser in mammals. On the other hand, our results coupled 

with  previous  studies  strongly  suggest  that  proteasome-ubiquitin  proteins  are 

involved  mammalian  differences  in  the  ageing  phenotype.  Akin  to  proteasome-

ubiquitin proteins, our results also seems to indicate that proteins involved in lipid 

metabolism  are  important  in  the  mammalian  evolution  of  longevity  both  at  a 

genotypic level and at an expression level. We show evidence that DNA damage 

repair and response proteins are important to the evolution of ageing in mammals as 

well as discuss other pathways that can be of interest for follow up experiments. 

Proteins  related  to  longevity  in  model  organisms  appear  to  be  well 

conserved and might even tend to be better conserved than expected by chance, 

suggesting the genetic mechanisms for longevity regulation within species are not 

the same that determine species differences in longevity (de Magalhães and Church 

2007). Therefore, we wanted to use comparative genomics tools to study differences 

in the genome of different species as well as genes expression differences across 

different  mammals.  In  our  first  project,  we decided to  look at  residue usage  in 

mitochondrial  protein  and  found  an  interesting  negative  correlation  between 

methionine  and maximal  lifespan.  For  our  second project,  we wanted  to  detect 

selection  in  proteins  with  different  evolutionary  rates  but  having  a  specificity 

towards phylogenetic branches where maximal longevity drastically increased (MLI 

branches). And for our last project,  we looked for genes with different levels of 
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expression between the wild-type mouse and the naked mole-rat.

The analysis of biological functions enrichment may give us a good idea of 

the  regulatory  and  expression  differences  underlying  the  phenotypic  differences 

between the long-lived naked mole-rat and the shorter lived wild-type mouse.
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Chapter 8: Mitochondrial and antioxidant proteins in mammalian 

ageing

Contrary to findings in lower organisms, we found no strong evidence that 

supports the idea that ROS causes the divergence in ageing phenotypes observed in 

mammals. The past work of Moosman and Behl along with the work of Stadtman 

(Moosmann et al. 2008; Stadtman 2006) suggested a putative correlation between 

maximal  longevity  and  methionine  or  cysteine  usage  in  mitochondrial  proteins. 

Briefly,  their  idea  was that  since  methionine and cysteine  are  thought  to  act  as 

antioxidants in proteins (due to the reversibility of their oxidation), an enrichment in 

methionine  or  cysteine  residue  should  translate  into  a  stronger  resistance  to 

oxidative  damage.  Stadtman  thus  hypothesised  the  existence  of  a  positive 

correlation  between  the  usage  of  these  two  residues  and  maximal  longevity. 

However,  Moosmann  and  Behl  found  a  negative  correlation  between  cysteine 

encoded  in  mtDNA and maximal  lifespan  of  248 species  spanning  10  different 

phyla and proposed that cysteine thiyl radicals can initiate irreversible protein cross-

linking  which  caused  the  selection  against  cysteine  residues  in  mtDNA-coded 

proteins in long lived species.

8.1 Residue usage and maximal longevity

In our analysis, among mitochondrial inner membrane proteins, we found no 

correlation between cysteine residue content and maximal longevity while we found 

that methionine residue content was negatively correlated with maximal longevity 

in mammals. In our joint work with Aledo et al. (Unpublished), in contrast with 

Moosmann and Behl's hypothesis, we proposed that the negative correlation was 

caused by a selection of methionine residues in mtDNA-coded proteins in short-

lived species. In fact, supplementary analyses that Aledo et al. conducted showed 

that  the  addition  of  methionine  residue  in  short-lived  species  correlates  with 
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longevity whereas the removal of methionine residue in long-lived species did not 

which  supports  our  hypothesis  that  there  was  an  accumulation  of  methionine 

residue in the mitochondrial proteins of short-lived mammals which are subject to 

high levels of oxidative stress.

Aledo  et  al.  also  showed  that  AUA methionine  codon,  but  not  AUG 

methionine codon correlates with longevity. This, coupled with the work of Bender 

et al. (2008), which suggests that the recoding of AUA from ileucine to methionine 

is an adaptive antioxidant response, provide further evidence for the interpretation 

that the accumulation of methionine in mitochondrial protein was adaptive in the 

context  of  oxidative  stress.  Moreover,  we found that  mitochondrial  proteins  are 

enriched  in  methionine  residue  compared  to  non  mitochondrial  proteins  which 

seems to indicate that methionine residues have a protective role against oxidative 

damage. This apparent protective role also supports our hypothesis.

While the correlation between methionine content in mitochondrial proteins 

and maximal longevity seems to be real, we found no evidence and do not believe 

that altering the residue content of mitochondrial proteins will result in a longer 

lifespan  in  mammals.  We  hypothesise  that,  unlike  lower  organisms,  mammals 

evolved  alternative  mechanisms  of  defence  against  oxidative  stress,  e.g. 

cytoskeleton optimisation, or more sophisticated response pathways to molecular 

damage from other sources. For example, as will be discussed in section 11.5, we 

discovered  that  DBB1,  a  protein  of  paramount  importance  to  proper  damage 

response and repair after UV damage to the DNA, has been targeted for selection in 

many mammalian lineages. 

8.2 Evolution of  actin cytoskeleton may implicate  ROS in species divergence in  

ageing 

We found that proteins involved in actin cytoskeleton and acting binding 
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tended to show a pattern of selection in lineages where longevity evolved.  Actin 

cytoskeleton  proteins  serve  as  a  physiological  regulator  of  ROS  release  from 

mitochondria as well as a key component in the activation of cell death pathways 

while mutations in actin binding proteins can change cell fate (Gourlay et al. 2005). 

In yeast, the increase of actin dynamics resulting from a specific actin allele or a 

deletion of a gene encoding SCP1P, an actin-bundling protein, can increase lifespan 

by over 65%. Furthermore, this increase is reported to be due to the mutant cells 

producing lower than wild-type levels of ROS (Gourlay et al. 2004).  In yeast, the 

increase of actin dynamics which is influenced by the actin-bundling protein SCP1P 

increases  maximal  lifespan.  Furthermore,  the  mammalian  homologue of  SCP1P, 

SM22,  was  identified  in  senescence  screens  by  Toussaint  et  al.  (2000) which 

suggests a well-conserved role of actin in cellular ageing as discussed by Gourlay et 

al.  (2004).  The  patterns  of  longevity  specific  selection  in  actin  related  proteins 

coupled with the fact that actin dynamics might be regulator of ROS production and 

of cellular senescence (Gourlay et al. 2005) suggests that the selection for a tighter 

control of ROS production through an optimization of the actin cytoskeleton might 

be involved in the evolution of longevity in several mammalian lineages. 

8.3  The  effects  of  ROS  in  mammalian  divergence  in  ageing  remains  to  be  

determined

Still, it is unclear whether mitochondrial proteins have an important role in 

the regulation of ageing in mammals. Mitochondrial genes were strongly enriched 

among the genes over-expressed in the naked mole-rats compared to the short-lived 

wild-type  mice.  Unsurprisingly,  oxidation  reduction  and generation  of  precursor 

metabolites  and  energy  were  also  found  as  significantly  enriched  functional 

categories  in  over-expressed  genes  in  naked  mole-rats.  However,  we  found  no 

indication  that  the  over-expression  of  mitochondrial  genes  was  related  with 

oxidative stress prevention rather than with, for example, an optimisation of energy 

production. 
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In sum, the effect of ROS on mammalian divergence of ageing seems to be 

limited as we would otherwise expect proteins with antioxidant properties to be 

selected or expressed at a higher level in long-lived mammals. On the contrary, we 

found that methionine usage was higher in the mitochondrial proteins of the shorter 

lived mammals.  Moreover, as in  de Magalhães and Church (2007), we failed to 

detect any significant acceleration in the evolution of proteins in the antioxidant 

category. It seems, by and large, that either ROS is not a big player in the ageing of 

mammals or most mammalian species already have mechanisms to deal with ROS 

efficiently. 
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Chapter 9: Candidate proteins and functional categories related to 

longevity

9.1 Detection of longevity-specific selectivity can be caused by longevity correlated 

traits

As we have discussed in the introduction,  a caveat of using comparative 

studies alone in ageing research is that  one can almost never be sure whether a 

finding is directly linked to the mechanism of ageing or rather a trait that is itself 

correlated to ageing without any mechanistic role. Ageing is a complex phenotype 

and  the  signals  that  we  detect  from  comparative  studies  and  specially  high 

throughput studies are generally noisy. Furthermore, there are traits such as body 

weight that are highly correlated to maximal longevity, thus the combination of the 

noisy data  and the existence of many confounding variables makes  comparative 

studies extremely hard to interpret.

For example, in our study of mitochondrial residue usage in mammals, we 

found that methionine usage is inversely correlated with maximal longevity. Our 

interpretation, though controversial as we will discuss later, is that since short-lived 

animals tend to exhibit higher metabolism and thus suffer from an increased ROS 

level, the increase of methionine, a residue with antioxidant property, may be an 

evolutionary  adaptation  to  this  high  level  of  ROS  compared  to  longer  lived 

mammals.  The  connection  between  methionine  usage  in  mitochondrion  and  the 

ageing process is thus contingent on the connection between ROS and the ageing 

process, while a different interpretation might instead strengthen the link between 

ROS and ageing.

The results of our protein evolution analysis were also open to interpretation. 

There are few possible reasons why some proteins undergo accelerated selection in 
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lineages where maximal longevity increased compared to lineages where it stayed 

the same. In our analysis, we found many proteins involved in development and 

growth resulting in functional categories such as  muscle development, postynaptic 

density and spermatid development. These results among many others in our list 

(see Supplemental  Materials)  are open to interpretation as proteins in functional 

categories that are selected for phenotypes strongly correlated to ageing will also 

tend  to  show  high  selection  specificity  towards  MLI  branches.  For  example, 

maximal longevity is well known to be strongly correlated to body size  (Austad 

2009; de Magalhães et al. 2007; Speakman 2005)  ergo a radical increase in lifespan 

in a particular lineage may very well translate into proteins involved in growth and 

body size to be undergoing a high evolutionary pressure. Studies have successfully 

identified phenotypes such as brain size  (Sacher 1959; Allman et al.  1993)  and 

energy metabolism to be correlated with mammalian maximal longevity (Speakman 

2005b). As discussed by Ricklefs (2010), many of the correlations found between 

rates of development and longevity are weak when age at maturity is included and 

although  there  have  been  attempts  to  find  mechanistic  explanations  to  the 

correlations,  there  exists  no  strong  evidence  showing  a  causality  relationship. 

Correlation without causation, as  Speakman (2005a) warns us, will remain a big 

caveat of comparative studies and phylogenetic approaches to study ageing. 

Lastly, in our comparison of expression between wild-type mice and naked 

mole-rats, the problems with confounding traits correlated with longevity vanishes 

as there are only 2 species. However, any phenotypic difference other than maximal 

lifespan or ageing can be the cause of the observed genes differential expression. 

For  example,  the  naked  mole-rat  has  been  shown  to  be  extremely  resistant  to 

cancerous growth (Liang et al. 2010). There exists an intricate relationship between 

cancer and ageing (Finkel et al. 2007) which makes the interpretation of the results 

of our analysis even harder. Due to these aforementioned problems, we urge the 

reader to exert caution when interpreting our results. Nevertheless, we follow with a 

discussion concerning the possible links between our findings and the divergence of 
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ageing mechanisms in mammals.

Despite  the  previously  discussed  caveats  of  comparative  approaches,  we 

found, in our search for pattern of selection for longevity among proteins, proteins 

with high “longevity-specific selectivity” scores that might have contributed to the 

evolution of longevity.

9.2 Protein evolution analysis reveals proteins with longevity specific selection

In  the  protein  evolution  analysis,  many  of  the  top  proteins  were  poorly 

annotated including IWS1 (rank 1; stringent) which, as far as we know, has not been 

studied in mammals. A recent study in Arabidopsis shows that IWS1 is involved in 

plant steroid hormone and a loss of function mutations in AtIWS1 lead to overall 

dwarfism (Li, Ye, et al. 2010) thus may have been detected due to a putative role in 

the evolution of body size. Examples with a score of ``longevity specific score” of 

4.0   (see  section  6.3)  include  LGALS3  which  has  been  associated  with  early 

embryogenesis (Fukushi et al. 2004), HERC4 a probable E3 ubiquitin-protein ligase 

by sequence similarity  (Wu et al. 2006) and NUP85 a component of the nuclear 

pore complex thought to be required for nuclear pore complex assembly (Harel et 

al. 2003) and maintenance and to play a role in spindle assembly during mitosis 

(Orjalo  et  al.  2006) as  well  as  in   phosphatidyl-inositol-3-kinase  dependent 

pathways (Terashima et al. 2005).

CPNE5  (rank  1;  medium)  is  a  poorly  studied  protein  which  exhibits 

calcium-dependent phospholipid binding properties by similarity  (Wu et al. 2006) 

while  RSAD2 (rank  1;  moderate)  is  involved  in  antiviral  defence  (Wang  et  al. 

2007). DDHD1 was another high scoring protein, scoring 4.36 (rank 5; medium), 

and is a probable phospholipase that hydrolyzes phosphatidic acid by similarity (Wu 

et al., 2006). CAPNS1, scoring 4.0 (rank 7; moderate), belongs to a well-conserved 

family of calcium-dependent, cysteine proteases whose link to cellular senescence 
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and  DNA damage  response  has  been  studied  in  (Demarchi  et  al.  2007) and 

(Demarchi et al. 2010).

COL3A1 (rank 4; relaxed) is a collagen type protein whose expression is 

significantly decrease with age (de Magalhães, Curado, et al. 2009). Next, TAOK3 

(rank 7; relaxed) is a serine/threonine-protein kinase thought to inhibit basal activity 

of JNK/SAPK (Tassi et al. 1999) and its over-expression may activate ERK1/ERK2 

and  JNK/SAPK  (Zhang  et  al.  2000). Furthermore,  TAOK3  is  thought  to  be 

phosphorylated upon DNA damage possibly by ATM or ATR (Dephoure et al. 2008; 

Matsuoka  et  al.  2007). And  finally,  the  damage-specific  DNA binding  protein 

DDB1 (rank 11; relaxed) is a well studied protein and is a subunit of the  DDB1-

CUL4-X (DCX) box which can form many different complexes that are involved in 

different DNA damage response pathways.  

Other examples of high scoring proteins comprise of PIK3C2A, scoring 3.0 

(rank 26; stringent),  and SMC1A, scoring 2.77 (rank 74; stringent). PIK3C2A is a 

protein belonging to the PI3/PI4-kinase family and is believed to play a role in the 

EGF signaling pathway  (Arcaro et al. 2000). Moreover,  Didichenko et al. (2003) 

showed that  Homo Sapiens PIK3C2A is phosphorylated upon exposure of cells to 

UV irradiation and is also target of stress-induced phosphorylation during the G2/M 

transition of  cell  cycle  by the JNK/SAPK pathway.  They further  found that  the 

phosphorylation  seems  to  lead  to  the  proteasome-dependent  degradation  of 

PIK3C2A.  SMC1A is  a  protein  involved  in  chromosome  cohesion  during  cell 

division as well as in DNA repair. More precisely, SMC1A is related to the cohesion 

between sister chromatids during DNA replication and, at least in yeast, the cohesin 

complex also has  functions  in  DNA repair  and is  essential  for efficient  double-

strand break repair in mitotic cells (Sjögren et al. 2001).  

9.3 Few over-expressed genes in the naked mole-rats are candidate regulators of  
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ageing

One of the most over-expressed genes in the naked mole-rat is the serum 

pan-protease  inhibitor,  alpha2-macroglobulin  (A2M).  While  A2M is  only  barely 

expressed in  wild-type  mice  liver  (27  reads  out  of  24.3M),  we detected  almost 

190,000 (out of 21.2M) reads in naked mole-rats liver which makes it the third most 

over-expressed gene. Interestingly, A2M is listed as a candidate protein relevant to 

the human ageing process in GenAge  (de Magalhães,  Budovsky, et  al.  2009),  a 

database of ageing and longevity associated genes identified in model organism. 

A2M  is  known  to  interact  with  ApoE  and,  unsurprisingly,  is  associated  with 

Alzheimer's disease (Blacker et al. 1998). It has been found that in a study on long 

lived individuals in Germany that a particular allele in A2M, which was previously 

associated with AD, was depleted (Flachsbart et al. 2010). Furthermore, A2M was 

determined to be a biomarker for ageing in vivo as its mRNA expression level was 

showed to be positively correlated with age (Ma et al. 2004). Though the exact role 

of A2M in the mechanism of ageing is unknown, it seems that perhaps, like ApoE 

as  discussed  by  Christensen  et  al.  (2006),  A2M  is  mainly  related  through  its 

association  with  age-related  disease  such  as  AD  and  other  neurodegenerative 

diseases. Yet, we believe that the  function of A2M as proteinase inhibitor is of 

further interest in the context of protein turnover regulation in the naked mole-rats 

which  Pérez,  Buffenstein,  et  al.  (2009) think  may  be  a  key  contributor  to  the 

extreme longevity of the naked mole-rats.

Two  other  genes  over-expressed  in  the  naked  mole-rats  that  caught  our 

attention was SAT1 (3142 versus 6 reads in naked mole-rats and wild-type mice 

liver respectively; rank 72) and SAT2 (1769 reads versus 8; rank 177) which are 

spermidine/spermine  N1-acetyltransferases.  SAT1  and  SAT2  have  been  both 

associated to ageing through its interaction with hypoxia-inducible factor 1. It has 

been  shown  that  both  SAT1  and  SAT2  binds  to  HIF-1alpha  and  promotes  its 

ubiquitination and degradation through 2 different but complementary mechanisms 
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(Baek  et  al.  2007) while  HIF-1  modulates  dietary  restriction-mediated  lifespan 

extension and its deficiency results in extended lifespan (Chen et al. 2009). Thus, it 

is not impossible that the over-expression in SAT1 and SAT2 in the naked mole-rats 

translates into the degradation of HIF-1 and its  deficiency,  resulting in  a longer 

lifespan compared to the mice. Like A2M, the study of SAT1 and SAT2 in naked 

mole-rats  could  be of  interested,  this  time,  in  the  context  of  HIF-1  and dietary 

restriction.

The insulin-like growth factor-binding protein 2 and 4 precursor, IGFPBG-2 

(19962 reads versus 6; rank 9) and IGFPBG-4 (15145 reads versus 7; rank 17), have 

been shown to be involved in bone density.  Amin et al. (2004) found that higher 

levels  of  IGFBP-2 are  associated  with  lower  bone  mineral  density.  In  humans, 

IGFBP-2 is known to be increasing with age and, like all insulin-like growth factor-

binding protein, binds to IGFs to modulate their action. Among others, IGFBP-2 

and IGFBP-4 were shown to inhibit IGF action by binding to them and preventing 

the binding of IGFs to IGF receptors (Jones et al. 1995). In another study, Mohan et 

al.  (1995) showed that  IGFBP-4 also increased with age and stipulates that  this 

increase could be a factor of bone conditions such as osteoporosis  seen in aged 

individuals.  Another less direct  link between IGFPBG and ageing is  through its 

interaction  with  IGF.  It  is  known that  insulin-like growth  factor-1,  or  IGF-1,  is 

related to ageing. According to (Shimokawa et al. 2002), mutations that lower IGF-

1 levels in mice can extend lifespan. Furthermore, (Bonafè et al. 2003) reports that 

IGF-1  response  pathway  genes  such  as  IGF-IR  (IGF-I  receptor)  and  PI3KCB 

(phosphoinositol 3-kinase) among others play a role in human longevity. We believe 

that the interaction between IGFPBG-2, IGFPBG-4 and IGF-1 may be of interest to 

future research on ageing in the naked mole-rats.

In fact, a possible follow up experiment could be to increase the expression 

level of these genes in mouse cell lines and look for changes in markers for ageing. 

By the transfection of plasmids containing the target gene as done by Yáñez et al. 
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(2002),  one  can  increase  the  expression  of  this  gene  in  transfected  cell  lines. 

Conversely, in the naked-mole rats cell lines, one can reduce the protein levels of a 

target gene by introducing exogenous double-stranded RNA as  Montgomery et al. 

(1998) describes or by using RNAi as  Seluanov et  al.  (2009) did.  In these two 

models, we can study the effects of certain differentially expressed genes on ageing 

phenotypes.  For instance,  one can analyse the effect  of  reducing the expression 

level  of  SAT1 and SAT2 in naked mole-rat  cell  lines  on  HIF-1alpha  levels.  If, 

indeed, a connection is found between SAT1, SAT2 and HIF-1alpha in naked mole-

rats, then we would strengthen our hypothesis  that the differential  expression of 

these genes are related to the ageing process.

9.4 Comparative studies reveals candidate functional categories related to ageing

 It  is  not  unexpected  that  few  proteins  have  evidence  of  being  under 

selection in all long-lived lineages. Rather, it would be surprising if the evolution of 

longevity in all mammalian lineages could be explained by the positive selection or 

the over-expression of the same few proteins. A more intuitive explanation of the 

evolution of longevity is the selection or over-expression of proteins in common 

pathways and biological processes. In fact, we found functional categories,  which 

have been previously associated to ageing, showing specificity of selection in MLI 

branches such as actin cytoskeleton  (Gourlay et al. 2005; Gourlay et al. 2004),  1-

phosphatidylinositol-3-kinase activity, phosphoinositide 3-kinase complex, response 

to food and circadian rhythm . For example, recent  work from Wyse et al. (2010) 

established a connection between circadian rhythm and lifespan in laboratory mouse 

strains and in other mammals. Furthermore, 1-phosphatidylinositol-3-kinase activity 

is thought to play a critical role in DNA repair and cell cycle checkpoint. In fact, 

both mTOR and ATM show 1-phosphatidylinositol-3-kinase activity and are two 

proteins  implicated  in  the  molecular  mechanism of  ageing.  Phosphoinositide  3-

kinase has been studied in relation with the IGF response pathways and ageing by 

Bonafè et al. (2003).
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However, as discussed in section 9.1, these categories might all have been 

detected in our analysis because of their involvement with a phenotypic trait that is 

associated  to  maximal  longevity  but  is  not  related  to  the  cellular  mechanism 

underlying  the  ageing  process.  We  present,  in  the  next  two  chapters,  the  other 

functional  categories  that  specially  caught  our  attention.  First,  the  proteasome-

ubiquitin system and then, cellular response to damage and repair pathways. While 

these  categories  also  suffer  from  the  possibility  that  their  selection  was  not 

biochemically or physiologically related to the ageing process, we discuss what we 

believe are the most logical interpretations of their patterns of selectivity.
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Chapter 10: Lipid metabolism, ubiquitin-proteasome and damage 

response  pathways  differences  may  be  able  to  explain  a  large 

portion of mammalian divergence in ageing

Apart from the pathways and functional categories discussed in chapter 9, 

we found pathways that are far more interesting and that are present in both our 

protein  evolution  and  differential  expression  analyses.  In  fact,  our  finding  of 

phospholipid  metabolic  process  proteins  corroborates  the  findings  of  a  similar 

protein  evolution  study  by  Jobson  et  al.  (2009).  Interestingly,  both  fatty  acid 

metabolism and  lipid biosynthetic process functional groups figured among the top 

categories  enriched  in  the  oxer-expressed  genes  of  naked  mole-rats.  This  may 

emphasise the importance of these functional groups in mammalian divergence of 

ageing  as  we  witnessed  a  marked  change  in  both  protein  sequences  and  genes 

expression between species with significantly different lifespans.

10.1  Putative  links  between  lipid  metabolism,  cholesterol  catabolism  and  age-

related degeneration

According to Hulbert (2008), membrane fatty acid composition is correlated 

with the maximal lifespans of mammals through the reduction of oxidative damage 

caused by products of lipooxidation. Proteins belonging to the lipid biosynthetic 

process were also identified in our analysis which  Jobson et al. (2009) link to the 

peroxidative damage via increased saturation and to the control of mitochondrial 

ROS production by reducing membrane potential and increasing the efficiency of 

ETC  uncoupling  (Kua  2006).  Moreover,  cholesterol  catabolic  process  related 

proteins were also identified and these findings fit studies of the  apolipoprotein E 

(ApoE) well. 

Although  the  protein  ApoE does  not  show longevity  specific  selectivity, 
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Finch (2010) highlights the importance of ApoE in the clearance of triglycerid-rich 

lipoprotein components  as  well  as  its  importance  in  cholesterol  transport  in  the 

brain.  In addition, ApoE and its role on the cholesterol catabolic process was shown 

to  influence  Alzheimer's  disease  (AD)  progression  (Evans  et  al.  2004).  In  fact, 

Christensen  et  al.  (2006) observed that  human  genetic  studies  have  shown that 

common polymorphisms in ApoE influence lifespan, probably mainly through their 

association  with  disease  such  as  AD.  Interestingly,  we found in  our  expression 

analysis that over-expressed genes in the naked mole-rats were enriched in genes 

involved in AD. The connection between the extreme longevity of naked mole-rats, 

ApoE and  the  over-expression  of  genes  involved  in  AD is  hard  to  understand. 

However, there are speculations concerning the effects of the evolution of ApoE in 

the human longevity. The evolutionary pressure detected on proteins involved in 

lipid metabolic process and cholesterol catabolism along with the over-expression 

of genes involved in AD and fatty acid metabolism in the naked mole-rats lead us to 

believe that lipid metabolism and cholesterol catabolism may have been important 

players in the evolution of longevity in other mammalian lineages.

These results suggest that it may be worthwhile to investigate the levels of 

lipid peroxidation in each experimental pairs of the protein evolution analysis. One 

can do this by using a lipid peroxidation assay such as the one used by Garcia et al. 

(2005). A link between lipid peroxidation levels and longevity selection in lineages 

could  provide  a  stronger  evidence  that  lipid  peroxidation  is  involved  in  ageing 

specially if  the levels  of lipid oxidation is lesser in species for which longevity 

evolved  compared  to  their  paired  species.  In  contrast  to  the  discovery  that  an 

increase in methionine usage is an evolutionary adaptation to high oxidative stress 

in  short-lived  species  by  Aledo  et  al.  (Unpublished),  the  evolutionary  pressure 

detected on genes involved in lipid metabolism processes could be an adaptation to 

oxidative  damage  by  the  optimisation  of  lipid  metabolism  or  other  cellular 

components such as the actin cytoskeleton. Since we compare the levels of lipid 

peroxidation of species in our experimental pairs, the oxidative stress should be a 
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fixed variable and a decrease in lipid peroxidation may entail a better mechanism 

for lipid peroxidation protection.

10.2 Many proteasome related genes are over-expressed in the naked mole-rats and  

proteins involved in the proteasome-ubiquitin show pattern of longevity-associated 

selection.

 

We found that genes involved in proteasome are over-expressed in the naked 

mole-rat  and  proteins  involved  in  the  proteasome-ubiquitin  system  have  high 

“longevity-specific  selectivity”  scores.  More  precisely,  we  found  that  genes 

involved  in  the  proteasome  pathway  were  enriched  in  the  set  of  genes  over-

expressed in the naked mole-rat while not expressed (less than 50 reads) in the wild-

type mice.  These genes  include many proteasome subunit  such as  PSME3 (323 

reads  in  the  naked mole  rats  versus  6  in  wild-type  mice),  PSMD1 (3174 reads 

versus 7), PSMD4 (236 versus 7), PMSD6 (322 versus 9), PSMD13 (417 versus 6), 

PSMA1 (600  versus  6),  PSMA7 (1047  versus  7)  among  others.  In  the  protein 

evolution  analysis,  we  found  4  highly  ranked  GO  categories  related  to  the 

proteasome-ubiquitin  system  which  are  protein  ubiquitination  during  ubiquitin-

dependent  protein  catabolic  process,  proteasomal  ubiquitin-dependent  protein 

catabolic  process,  ATP-dependent  peptidase  activity  and  lysosome  organization. 

Interestingly, these GO categories do not share a single protein that contributed to 

their  score  which  provides  strong  evidence  that  the  system  was  the  target  of 

evolutionary pressure in lineages where longevity increased.

The proteasome-ubiquitin system operates in 2 steps by first selecting and 

labelling  proteins  for  degradation  via  ubiquitylation  by  a  serial  of  enzymatic 

reactions (E1 to E3 ubiquitin ligase) and then by degradation in the proteasome 

complex. The proteasome has been linked to ageing time and again, for instance, 

oxidative  damage  in  proteins  is  believed  to  be  a  causal  mechanism  of  ageing 

(Levine et al. 2001) and the proteasome may limit the extend of the damage by 
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degrading damaged proteins.  Further  evidence from  Chondrogianni et  al.  (2000) 

and  Friguet  et  al.  (2000) connect  proteasome decline  with  the  accumulation  of 

damage and in ageing. Interestingly,  Pérez, Buffenstein, et al. (2009) found that, 

compared  to  mice,  naked  mole-rats  show  resistance  to  protein  unfolding  and 

attenuated  accumulation  of  ubiquitinated  proteins  and  a  sustained  proteasomal 

function during ageing.  Pérez, Buffenstein, et al. (2009) further propose that these 

mechanistic differences may contribute to species divergence in ageing and that the 

maintenance of protein stability is of great importance to successful ageing. The 

over-expression of genes involved in the proteasome pathways may be related to 

this observed phenotype.

The importance of the proteasome and the resistance of the naked mole rats 

to oxidative stress hypothesised by Pérez, Buffenstein, et al. (2009) is supported by 

their observation that naked mole-rats show higher levels of lipid peroxidation and 

DNA oxidative damage compared to mice even at a young age despite their much 

longer  lifespan.  Our  results  show  that  many  proteasome  sub-units  are  over-

expressed in the naked mole-rats liver compared to the wild-type mice during young 

adulthood. As discussed in section 9.1, it may also be interesting to experimentally 

increase the expression these proteasome sub-units and observe the protein turnover 

rates in senescent cell lines.

10.3 Proteasome may be involved in DNA damage response and repair activity

Proteasome activity was also shown to participate in DNA repair at different 

levels reviewed by Brégégère et al. (2006), one of which is through the response of 

UV-mediated  DNA damage.  The  degradation  of  the  replication  factor  CDT1 

(Kondo  et  al.  2004),  repair  factor  repressor  ZBRK1  (Yun  et  al.  2003) and  the 

transcription factor p21 are thought to help UV damage repair  (Bendjennat et al. 

2003) and may be critical to proper cellular response to DNA damage by activating 

DNA repair mechanisms or cell cycle arrest. The evolutionary significance of the 
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proteasome-ubiquitin  system  to  DNA  damage  response  and  repair  is  further 

strengthened  by  the  strong  pattern  of  selection  exhibited  by  DDB1 in  lineages 

where longevity evolved.  In sum, the ubiquitination process and the proteasome 

complex are active components of cellular response to stress and damage and their 

evolutionary selection might have contributed to a lifespan increase in mammals. 

10.4 The protein evolution analysis reveals that many proteins related to damage 

response and repair are selected in long-lived lineages

Though, we have found no obvious genes or categories related to damage 

response and repair pathways in our analysis of differentially expressed genes. We 

found many  proteins  with  signature  of  longevity-associated  selection  which  are 

involved in damage response and repair pathways.

In our protein evolution analysis, many high ranked proteins were involved 

in cellular response to damage at different levels of selection. With respect to the 

stringent cutoff, PIK3C2A (rank 26) and SMC1A (rank 74) are two proteins thought 

to be sensitive to external stress or DNA damage. PIK3C2A is phosphorylated in 

response  to  to  UV irradiation  and  is  involved  in  UV-induced  damage  response 

(Didichenko et al. 2003),  PIK3C2A is part of the phosphoinositide-3-kinase family 

which also has been associated to ageing in the context of IGF-1 regulation (Bonafè 

et al. 2003). What is interesting about SMC1 is that it has been shown that it is an 

essential component of the IR ATM DNA damage response network  (Yazdi et al. 

2002).  Experimental  evidence  indicates  that  ATM  responds  to  IR  damage  by 

activating the S-phase checkpoint which slows down the DNA replication in two 

different pathways one of which depending on SMC1. A defect in SMC1A can thus 

result in radioresistant DNA synthesis, or a defective S-phase checkpoint, which has 

been  identified  in  cancer-prone  patients.  Though  newer  evidence  show  that 

radioresistant  DNA synthesis  does  not  cause  ataxia  telangiectasia  (Sasaki  et  al. 

1994), a disease some argue is characterised by signs of premature ageing (Pesce et 
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al.), radioresistant DNA synthesis has been shown to be tightly coupled with ataxia 

telangiectasia (Painter 1981; Mohamed et al. 1986). It is thus possible that SMC1A 

is related to some of the premature ageing phenotype witnessed in patients with 

ataxia telangiectasia.

The identification of CAPNS1 caught our attention as it has been connected 

to  DNA damage response.  Indeed,  Demarchi  et  al.  (2010) shows that  CAPNS1 

depletion  is  coupled  to  a  reduction  in  DNA damage  induced  histone  H2AX 

phosphorylation, a well-established marker of DNA damage response (Hanasoge et 

al. 2007). It is possible that in response to DNA damage, CAPNS1 mediates the 

phosphorylation of H2AX which helps in opening stretches of DNA to DNA repair 

proteins. Demarchi et al. (2010) also provides evidence that CAPNS1 is necessary 

for a lasting phosphorylation of H2AX triggered by oncogenic Ras and genotoxic 

stress. Furthermore, the phosphorylation of H2AX has been associated with genome 

stability (Chanoux et al. 2009).

10.5 The DNA damage-binding protein, DDB1, show strong pattern of longevity-

associated selection

In the relaxed cutoff category, we have TOAK3 (rank 7) and DDB1 (rank 9; 

fig. 2) which have been shown to respond to DNA damage in some way. However, 

we were most  interested in  DDB1 and the  DDB1-CUL4-X (DCX) box as  it  is 

involved in many distinct DNA response and DNA repair pathways. For example, 

DC(DDB2)  ubiquitinates  histone  H2A at  the  sites  of  UV lesions  in  a  DDB2-

dependent manner which has been shown to be important for proper UV damage 

response  (Guerrero-Santoro et al. 2008; Sugasawa et al. 2005). DC(ERCC8) also 

known  as  the  Cockayne  syndrome  A complex  is  thought  to  play  a  role  in 

transcription-coupled repair (Groisman et al. 2003) and DC(ROC1) has been shown 

to be a histone ubiquitin ligase that participates in the cellular response to DNA 

damage by the ubiquitylation of H3 and H4 histones (Wang et al. 2006). DDB1 also 
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binds to SKP2 and plays a role in the ubiquination of CDKN1B, a cyclin-dependent 

kinase inhibitor  (Nishitani et al. 2006) and  may recruit nucleotide excision repair 

proteins in order to repair DNA damage  (Li et al. 2006). Deficiency in DDB1 is 

strongly associated to xeroderma pigmentosum  (Hwang et al. 1996; Hwang et al. 

1998; Kapetanaki et al. 2006) which is marked by signs of premature skin ageing 

(Andrews et al. 1978).  Mutational inactivation of DDB1 is also associated to the 

Cockayne syndrome  (Groisman et al. 2003) which is characterized by premature 

and accelerated ageing in addition to neurodegeneration (Weidenheim et al. 2009). 

All  this  seem to  suggest  that  our  approach was able  to  detect  proteins  that  are 

connected to the ageing process. We speculate that  the evolutionary pressure on 

proteins involved in DNA repair or DNA damage response could be an optimization 

leading to a better regulation of damage, cell cycle and genome stability and hence 

to a longer lifespan.

Since we have a poor assembly of the naked mole-rat complementary DNA, 

we can possibly predict the protein sequence of DDB1 in the naked-mole rats. We 

can then determine whether DDB1 has been selected in the naked-mole rats. Since 

DDB1 is  strongly  associated  to  UV-dependent  DNA damage response,  a  strong 

selection in the naked-mole rats  lineage could suggest that  DDB1 has a  role  in 

mammalian  ageing  in  a  UV-independent  pathways  as  the  naked-mole  rats  live 

underground  (Buffenstein et  al.  1991),  perhaps through its  role in  the ubiquitin-

proteasome pathway.  Other  putative  genes  or  proteins  related  to  ageing  can  be 

analysed in the context of the extreme longevity difference between naked mole-rats 

and wild-type mice. In fact, the de Magalhães lab and the Church lab among others 

are collaborating in a project which aims to clone genes from the naked mole-rats 

and use homologous recombination techniques in order to replace a wild-type mice 

version of a genes by its orthologous version from the naked mole-rat in embryonic 

stem cell. One of their long-term project is to develop a high-throughput method for 

homologous recombination of genes across species and upon its completion, it will 

be possible to test many putative ageing genes predicted via computational methods 
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in cell lines or in vivo.
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CONCLUSIONS

In  this  thesis,  we  presented  three  original  projects  in  which  we  use 

comparative genomics in order to exploit the wealth of genome data available to 

researchers in biology. We showed that not only is it possible to discover simple 

correlations such as residue usage and maximal lifespan, but it is also possible to 

detect  more  complex  patterns  of  longevity-specific  accelerated  evolution  at  the 

protein level. The analysis of protein evolution used many fundamental techniques 

of  comparative  genomics  such  as  ancestral  genome  reconstruction  as  well  as 

sequence divergence estimation.  Although these techniques are widely used,  our 

method is significantly novel in the way it glues the different algorithms together 

and the way it uses control pairs for outliers detection. 

We also showed that it is possible to make use of second generation data in 

order to study non-traditional organisms for which no annotated reference genome 

is available. We believe that this line of research paves the way for many future 

research projects using non-traditional model organisms of great interest to the field 

of ageing.

Our  work  allowed  us  to  discover  many  interesting  evolutionary  trends 

related to species divergence of ageing and longevity. Our findings supports the idea 

that ROS exert a lesser influence in mammalian ageing than in lower organisms, 

perhaps  due to  new mechanisms  dealing  with oxidative  stress  in  mammals.  We 

identified  many  pathways  that  might  be  of  importance  to  ageing  such  as  lipid 

metabolism, proteasome-ubiquitin, damage response and damage repair pathways, 

the optimisation of which might have contributed to an increase in maximal lifespan 

in several mammals. Furthermore, both lipid metabolism and proteasome systems 

were  among  the  top  hits  in  two  of  our  independent  studies.  Indeed,  both  lipid 

metabolism  and  proteasome  systems  were  enriched  in  proteins  with  longevity-
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specific  selection  and enriched in  genes  over-expressed  in  the  long-lived  naked 

mole-rats.

Finally, perhaps of greater interest, we have identified single candidate genes 

that are of interest for future studies in the context of ageing. The DNA damage-

binding 1, DDB1, shows a strong signature of longevity-specific selection and has 

been  associated  with  many  diseases  associated  with  ageing  such  as  xeroderma 

pigmentosum  and  the  Cockayne  syndrome.  CAPNS1,  another  protein  with 

longevity-specific  selection,  has  been  implicated  in  DNA damage  response  by 

phosphorylating H2AX which helps in opening stretches of DNA to DNA repair 

proteins.  We found A2M, SAT1, SAT2, IGFBP2, IGFBP4 and GSTA2 to be over-

expressed in  the  liver  of  naked mole-rats  when compared to  wild-type  mice.  It 

would be of great interest  for future experiments  to test  the effect  of mutations 

within these genes on the lifespan of mice. It would also be interesting to observe 

the effects of replacing the mice promoters of genes over-expressed in the naked 

mole-rats by its naked mole-rat ortholog on biomarkers of ageing.

At  this  point,  we  hope  to  have  convinced  the  reader  that  comparative 

genomics is not only an useful tool for research in biology and ageing, but it can 

stand as a field on its own by both both generating hypotheses and testing them.
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APPENDIX

Supplemental Material

1.1 c=median {log
X g

1

X g
2 : g∈G ' }  is the solution to minc∑g∈G' ∣log 

X g
1

X g
2 −c∣ .

Proof: Let Y g=log
X g

1

X g
2 , Ac={g∈G ' :Y gc } and B c={g∈G ' :Y gc } . 

Then we have, ∑g∈G'
∣Y g−c∣=∑g∈A c

c−Y g∑g∈B c
Y g−c and taking the 

derivative with respective to  c yields ∑g∈Ac
1∑g∈B c

−1 , which is 0 when 

∣Ac∣=∣Bc ∣ , this happens when c is the median of {Y g : g∈G ' } . Since the 

function  f c =∑g∈G ' ∣log 
X g

1

X g
2 −c∣  is bounded below by 0 and is monotone 

decreasing when c is such that ∣Ac∣∣Bc ∣ and monotone increasing when c is 

such that  ∣Ac∣∣Bc ∣ ,  f(c)  must only have one local (and global) minimum, 

thus   the  solution  of f ' c=0 which  is c=median {log
X g

1

X g
2 : g∈G ' } is  the 

solution to minc∑g∈G' ∣log 
X g

1

X g
2 −c∣ . QED.
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1.2 Table of GO categories enriched in proteins with high longevity-selectivity 

scores.

1.3 Website supplemental data

www.cs.mcgill.ca/~yli142/thesis_supplementary.tar
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Table 4: GO categories and their longevity-specific selection significance

S ta t is t ic a l c u to f f 0 .05 0 .1 0 .2

G O  c a t eg o ries (a ) (b ) (c ) (d ) (a ) (b ) (c ) (d ) (a ) (b ) (c ) (d )

p os ts y na p t ic  m em b ra n e                                                                                .0 01 4 0 . 0 002 4 . 1 004 7 .3 11. 0 01 46 . 00 028 .40 05 9 .84 6. 00 1 46 . 00 03 1 .40 06 1 .54 7

s y n ap s e                                                                                              .0 01 5 6 . 0 004 0 . 0 006 3 .3 80. 0 01 69 . 00 047 .10 08 3 .79 1. 00 1 64 . 00 05 2 .00 08 4 .17 7

s pe rm a t id  de v e lo pm en t                                                                                .0 40 9 . 0 00 5 . 7 00 1 0 .2 58. 0 06 12 . 00 0 6 .70 0 1 5 .40 6. 00 3 12 . 00 0 7 .40 0 1 7 .92 3

res po n s e  to  foo d                                                                                     .0 53 3 . 0 00 1 . 7 00 4 .0 83 . 0 07 4 . 00 0 2 .00 0 7 .16 7 . 00 3 5 . 00 0 2 .20 0 8 .58 3

a c t in  b ind ing                                                                                        .0 04 5 4 . 0 003 6 . 6 005 3 .1 91. 0 40 51 . 00 043 .10 05 6 .04 5. 00 7 53 . 00 04 7 .60 06 8 .86 1

p ho s p h o lip id  m e ta bo lic  p ro c es s                                                                       .0 26 1 1 . 0 00 4 . 5 00 9 .6 11 . 0 26 9 . 00 0 5 .30 0 1 1 .08 3. 00 2 12 . 00 0 5 .90 0 1 7 .47 1

p os ts y na p t ic  d en s i ty                                                                                 .0 07 1 7 . 0 001 0 . 5 001 9 .6 75. 0 09 17 . 00 012 .40 02 2 .78 6. 05 2 15 . 00 01 3 .70 02 1 .37 9

fa t ty  ac id  b e ta -o x id a t io n                                                                            .0 04 6 . 0 00 3 . 7 00 1 0 .0 00. 0 06 9 . 00 0 4 .30 0 1 1 .77 9. 15 3 7 . 00 0 4 .80 0 7 .50 9

A T P -de p en de n t  pe p t id as e  a c t iv it y                                                                     .0 21 6 . 0 00 2 . 0 00 5 .7 67 . 0 04 5 . 00 0 2 .30 0 8 .16 2 . 04 4 3 . 00 0 2 .60 0 6 .20 0

m u s c le  d e v e lo p m e n t                                                                                   .0 04 2 1 . 0 001 3 . 6 002 5 .5 23. 0 08 21 . 00 016 .00 02 7 .08 7. 16 2 15 . 00 01 7 .70 02 2 .86 4

1 -p ho s ph a t id y lin os ito l-3 -k in as e  a c t iv ity                                                             .0 09 4 . 0 00 1 . 4 00 5 .1 88 . 0 34 4 . 00 0 1 .70 0 4 .65 0 . 01 8 4 . 00 0 1 .80 0 5 .95 7

p ho s p h o in os it id e  3 -k in as e  c om p lex                                                                    .0 11 5 . 0 00 1 . 7 00 5 .5 52 . 0 16 5 . 00 0 2 .00 0 6 .01 3 . 04 3 4 . 00 0 2 .20 0 5 .95 7

p ep t id a s e  ac t iv a to r ac t iv it y                                                                         .0 67 2 . 0 00 .9 0 0 2 .4 00 . 0 02 3 . 00 0 1 .00 0 5 .60 0 . 06 8 3 . 00 0 1 .10 0 3 .16 4

p ro t ea s o m a l u b iq u i t in -d ep en d en t  p ro t e in  c a ta bo lic  p ro c e s s                                            .1 85 6 . 0 00 2 . 3 00 3 .6 73 . 0 30 7 . 00 0 2 .70 0 6 .47 7 . 00 4 5 . 00 0 3 .00 0 1 0 .37 0

p ro t e in  u b iqu it in a t ion  du rin g  u b iq u it in -d e p e nd en t  p ro t e in  c a ta bo lic  p ro c e s s                          .0 39 3 . 0 00 2 . 3 00 5 .4 17 . 0 15 5 . 00 0 2 .70 0 7 .16 7 . 04 2 4 . 00 0 3 .00 0 6 .89 3

c on de n s e d  c h rom os om e  k in e t o c h o re                                                                     .0 07 1 0 . 0 00 6 . 2 00 1 4 .0 04. 0 12 8 . 00 0 7 .30 0 1 4 .96 5. 45 2 7 . 00 0 8 .10 0 8 .54 1

c irc ad ia n  rhy th m                                                                                     .0 42 8 . 0 00 5 . 4 00 9 .8 45 . 0 10 10 . 00 0 6 .30 0 1 3 .59 6. 09 6 9 . 00 0 7 .00 0 1 1 .21 4

lip id  b io s y n th e t ic  p ro c es s                                                                           .1 07 5 . 0 00 4 . 0 00 6 .6 51 . 0 16 7 . 00 0 4 .70 0 1 0 .87 3. 03 6 6 . 00 0 5 .20 0 1 0 .45 7

(a )  p -v a lu e , (b ) n u m b e r o f  p ro te in s  w ith  L S S  sc o re  b ig g e r th a n  0  (c )  e x p e c te d  su m  o f L S S  s c o re  (d ) a c tu a l su m  o f L S S  sc o re
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