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Abstract 

Objective 

To investigate a role for the inflammatory mediator, nitric oxide (NO) in Sjögren‟s 

syndrome, an autoimmune condition characterised by salivary and lacrimal gland 

hypofunction resulting from failure of acinar cells to secrete.  

Methods 

FURA-2 microfluorimetry was used to measure agonist evoked changes of [Ca2+]i in 

isolated mouse and human salivary acinar cells following exposure to NO donors.  

Results 

NO had a biphasic effect on salivary acinar function. Acute exposure to NO (2 

minutes) caused a cyclic GMP-dependent, ODQ-sensitive increase in the Ca2+ signal 

elicited in response to ACh stimulation, consistent with stimulation of Ryanodine 

receptors by cyclic ADP ribose. Prolonged exposure to NO (>40 minutes) 

significantly reduced the ACh-evoked Ca2+ signal by a mechanism independent of 

cyclic GMP. We found no differences between the responses of human and mouse 

acinar cells.  

Conclusion 

Our data show that chronic exposure to NO, which is known to be elevated in 

Sjögren‟s syndrome, could have a role in salivary gland hypofunction. We note a 

similarity in the response to stimulation of salivary acinar exposed to NO and that 

which we have previously reported in salivary acinar cells isolated from patients with 

Sjögren‟s syndrome. We speculate that NO mediated nitrosylation of one or more 

elements of the signal transduction pathway could underlie down-regulation of 

salivary function in Sjögren‟s syndrome. 

 



Introduction 

Sjögren‟s syndrome is an autoimmune condition in which salivary glands lose the 

capacity to secrete saliva. For many years, it has been assumed that secretion 

declined along with the physical atrophy of the glands, which is clearly apparent by 

the end stages of the disease. More recently, it has been demonstrated that the loss 

of function precedes the loss of glandular tissue and that many patients who are 

incapable of saliva production nevertheless have histologically normal acinar tissue 

that is functional in vitro [1]. Glandular hypofunction cannot be a consequence of 

atrophy in these patients as their glandular tissue has not atrophied. 

 

We have proposed an alternative, non-apoptotic model to account for glandular 

hypofunction in Sjögren‟s syndrome in which lack of function follows interaction 

between the autoimmune response and stimulus-secretion coupling [2]. Exploration 

of this model requires some understanding of the mechanisms of stimulus secretion 

coupling, the "core" elements of which are widely understood to be: (a) activation of 

Gq-protein coupled muscarinic M3 acetylcholine receptors; (b) an increased 

production of inositol 1,4,5 trisphosphate (IP3); (c) IP3 mobilisation of Ca2+ from 

intracellular stores; and (d) activation of an apical membrane Cl- channel in response 

to the increase in [Ca2+]i Fluid secretion is driven by Cl- efflux across the apical 

membrane of the acinar cells [3]. 

 

In principle, any aspect of the immune response that prevented production of IP3 and 

or Ca2+ mobilisation is a candidate for a pathogenic role in Sjögren‟s syndrome. In 

fact, the range of potential antisecretory agents is much wider, because stimulus-

secretion coupling is more complex than the simple description of the “core” 

elements would suggest [4, 5]. Effective stimulus-secretion coupling does not 

necessarily follow any Ca2+ signal, but rather requires an appropriate signal in an 



appropriate place at an appropriate time [5]. For example, whereas a small brief 

increase in [Ca2+]i at the apical pole of the cell might be sufficient to trigger secretion, 

the same signal at the basolateral pole would likely not [6]. The loss of secretory 

function seen in Sjögren‟s syndrome does not therefore necessitate a complete 

abolition of stimulation-evoked increases in either IP3 or [Ca2+]I but could rather be a 

consequence of any factor which perturbed the orderly origin and progression of the 

Ca2+ signals. 

 

One element of the signal transduction cascade with a key role in ensuring that 

increased IP3 generates an appropriate Ca2+ signal is calcium-induced calcium 

release (CICR). CICR is a positive feedback process that amplifies Ca2+ signals and 

which depends on the Ca2+ sensitivity of the intracellular Ca2+ release channels. In 

salivary acinar cells, Ca2+ release from intracellular stores is via both an IP3 receptor 

and a ryanodine receptor [4], both of which have similar Ca2+ sensitive properties. 

Whereas the IP3 receptor, activated by IP3 in response to ACh receptor stimulation, is 

the trigger for the Ca2+ signal, Ca2+ release through the ryanodine receptor is thought 

to “shape” the signal and to have a role in determining the magnitude and time 

course of the response. The contribution of the ryanodine receptors to Ca2+ signalling 

is regulated by cyclic ADP ribose concentration which is itself be regulated by cGMP 

levels [7].  

 

Any factor that regulates cGMP and or cADP ribose levels has therefore the capacity 

to alter stimulus-secretion coupling independently of any direct effect on IP3 

production or on IP3-dependent Ca2+ release. One such factor is Nitric Oxide (NO), 

which activates guanylate cyclase and stimulates cGMP production.  

 

In terms of our model for secretion, increased NO levels should amplify the ACh-

evoked Ca2+ signal and enhance fluid and electrolyte secretion. However, exactly the 



opposite has been observed in Sjögren‟s syndrome [8] where fluid and electrolyte 

secretion are inhibited despite elevation of NO levels. We have therefore mimicked 

this aspect of Sjögren's syndrome in vitro by exposing salivary acinar cells to NO so 

that we can determine whether the agonist-evoked Ca2+ signal is amplified by NO, 

the prediction of the model, or inhibited, the observation of glandular pathology. 

 

It is always much easier to perform experiments using cells from a mouse model 

rather than human cells, mouse acinar cells may easily be obtained from an age and 

sex matched population. It is possible to obtain equivalent cells from humans, but not 

easy. As a consequence, most of the previous studies modelling Ca2+ signalling and 

fluid secretion have involved mouse salivary acinar cells, and it has been assumed 

that equivalent observations could be made in human cells, were they available. We 

think it important to show directly whether there are strong qualitative similarities in 

the responses of human and mouse cells particularly as we are examining a 

pathological processes.. . In this study, we have used mouse submandibular acinar 

cells to prototype experimental protocols and then applied selected successful 

protocols to human submandibular acinar cells. We present the data from both 

mouse and human cells so that we can see how well the mouse model mimics the 

human situation.  



Methods 

Solutions 

The extracellular bathing solution contained in mM: 140 NaCl, 4.7 KCl, 1.13 MgCl2, 1 

CaCl2, 10 glucose buffered to pH 7.4 with 10mM HEPES 

The acinar cell culture medium: serum free 50:50 Dulbecco‟s MEM:F12 medium plus 

antibiotics and antimycotics (Life Technologies UK) 

Mouse Acinar cell collection 

Adult male CD1 mice were killed by cervical dislocation and submandibular acinar 

cells were isolated by collagenase (100units/ml, Worthington Diagnostic USA) 

digestion in extracellular media containing 1mM Ca2+ as described previously [9]. 

Briefly: glands were removed from the animal, stripped of surrounding capsule, 

injected with collagenase and incubated for 15-20 minutes in a shaking water bath at 

35oC. Collagenase was removed by centrifugation and cells were further dispersed 

by mechanical agitation to produce a small number of individual cells and a larger 

number of small clumps (2-8 cells). 

Human Acinar cell collection 

Following local ethical approval (Sefton LREC, EC.38.02) and informed written 

consent, small portions of human submandibular glands were collected, at the time of 

surgery, from patients undergoing submandibular gland removal as part of routine 

head and neck surgery. The small size of the gland portion collected for research did 

not interfere with the subsequent diagnosis and treatment of the patient. All collected 

samples were transported to the laboratory on ice in „acinar cell culture media‟ within 

1 hour of removal. Acinar cells were isolated from the human tissue using the same 

techniques employed to isolate mouse acinar cells [9]. 



Acinar Cell preparation 

Following dispersal, cells were suspended in „Acinar cell culture media‟ and placed 

onto circular glass coverslips (22mm diameter) coated with a thin (≈1 mm) layer of a 

basement membrane matrix (Matrigel, Becton Dickinson, UK) 25. Each coverslip was 

placed into one well of a 6 well plate and covered with „Acinar cell culture media‟ and 

kept overnight at 37oC with 5% CO2.  

Microfluorimetry 

Cells were removed from culture immediately before an experiment and loaded with 

Fura-2 by incubation for 20 minutes in the presence of 2 µM of cell permeable fura-2 

acetoxymethylester (Fura-2 AM, Molecular Probes). The acinar cell coated coverslips 

formed the base of a perfusion chamber placed on to the stage of an inverted 

microscope (TMD 100, Nikon, Kingston, Surrey, UK). All experiments were carried 

out at 24 ± 2oC. Measurements were made using 1000x magnification on single cells, 

either completely isolated or part of a small (2-8) cell clump. Cells were superfused 

continuously at 0.5 ml/min from one of several parallel superfusion pipettes. 

 

The ratio of UV light emitted at 510nm following excitation at 340nm to that emitted 

following excitation at 380nm was measured using a Cairn (Cairn Research Ltd, 

Faversham, Kent, UK) spectrophotometer (Excitation was at 96Hz, data were 

averaged online and collected at 4Hz.). Intracellular Ca2+ activity was calculated from 

this ratio using the Grynkiewiez equation and custom written software. Averaged 

changes in Ca2+ were calculated from the plateau phase of the Ca2+ signal. 

NO Donors and Inhibitors 

Cells were exposed to NO by perfusion with two chemically different donors: S-

Nitroso-N-penicillamine (SNAP, 100-200 M ) and 1-Hydroxy-2-oxo-3-(N-ethyl-2-

aminoethyl)-3-ethyl-1-triazene (NOC-12, 200 M ) each with long half-lives for NO 



release (approximately 10 hours & 5 hours at 22oC for SNAP and NOC-12 

respectively. Guanylate cyclase activity was inhibited using 1-H-

[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 1 M). Ryanodine receptor activity 

was inhibited using ryanodine (10 M) 

Statistics 

Numerical data are presented as mean ± Standard Error of the mean (number of 

observations). Significance was determined using Student‟s t test. 



Results 

We have designed a protocol to show whether exposure to NO affects the ACh-

evoked Ca2+ signal. The most easily quantifiable Ca2+ signal is a small steady-state 

increase in response to a low level of ACh stimulation. Figure 1A shows the response 

of mouse submandibular acinar cells to repeated stimulation with 50nM ACh. The 

resultant increase in Ca2+ is highly reproducible in any one cell. Figures 1B and C 

show that exposure to NO released by the donors SNAP (100 µM) and NOC-12 (200 

µM) respectively, increased the response to ACh. On average, under control 

conditions, the response to the third application of ACh was 103.7 ±  2.9 % that of the 

first (n=13). When exposed to SNAP after the second application of ACh, the 

response to subsequent stimulation rose to 226.5 ± 30.9 % of that before application 

of SNAP (n=7). Similarly, exposure to NOC-12 increased the response to 168.2 ± 

12.8 % (n=16) of that seen before application. The amplification induced by either 

NO donor was statistically significant at P <0.01. In some experiments, particularly 

those where a higher concentrations of SNAP (>=200 M, data not shown) was 

employed, baseline Ca2+ also increased, as described previously by Looms et al [10]. 

In other experiments using lower concentrations of NO donor, the Ca2+ baseline 

remained constant. 

 

Application of this protocol to human submandibular cells returned very similar 

results. Repeated application of 50nM ACh under control conditions caused some 

attenuation of the ACh-evoked Ca2+ signal in these cells (figure 2A), nevertheless a 

brief preincubation with NOC-12 (200 µM) resulted in amplification of the baseline 

response (figure 2B). On average, the third application of ACh gave an increase in 

Ca2+, 97.4 ± 6.1 % (n=7) of that seen in response to the first application of ACh. 



Following exposure to NOC-12, the increase was 127.7 ± 9.1 (n=3). Compared to 

control, the amplification induced by NOC-12 was statistically significant at P<0.05. 

 

These data show that NO amplified the ACh-evoked Ca2+ signal. We hypothesise 

that this amplification is mediated through cGMP stimulation of cADPr production 

following NO-stimulation of guanylate cyclase. Guanylate cyclase activity may be 

inhibited using 1-H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The data in 

figure 3 (mouse submandibular cells) show that, in the presence of ODQ (1 µM), 

despite exposure to NO released by either SNAP (100 µM, figure 3A) or NOC-12 

(200 µM, figure 3B) there was little amplification of the response to stimulation by 

50nM ACh. On average, incubation in the presence of ODQ reduced the 

amplification caused by SNAP to 116.9 ± 3.7 % (n=4) of that prior to exposure to 

SNAP. This value is still significantly (P<0.05) greater than that seen in the absence 

of SNAP and ODQ but also significantly (P<0.05) reduced from the amplification 

seen in the presence of SNAP alone. The smaller amplification induced by NOC-12 

was completely abolished by ODQ, where the response to NOC-12 and ODQ 

together was 106.1 ± 6.4 % (n=6) of that seen prior to application of NOC-12. This 

value is significantly (P<0.01) lower than that obtained in the presence of NOC-12 

alone. Acute application of ODQ alone (1 M, data not shown) had no detectable 

effect on the baseline Ca2+ signal. 

 

The proximate cause of NO-cADPr-mediated amplification of the ACh-evoked Ca2+ 

signal is activation of ryanodine receptors. This activation may be inhibited using 

ryanodine. The data in figure 3C (mouse submandibular cells) show that the ACh-

evoked Ca2+ signal in the following co-incubation with ryanodine (10 µM) and NOC-

12 (200 µM) was little different from that seen prior to exposure to the NO donor. The 

average response in the presence of ryanodine and NOC-12 was 129.8 ± 11.1 % 

(n=21) of that seen prior to exposure to NOC-12. This value is not significantly 



different from that seen under control conditions and it is significantly lower (P<0.05) 

from that seen in the presence of NOC-12 alone. Acute application of ryanodine 

(10 M) had no detectable effect on the baseline Ca2+ signal (data not shown) 

 

The averaged data from the sequence of experiments represented by example in 

figures 1 and 3 are summarised in figure 4 which shows that in mouse 

submandibular cells, the NO-dependent amplification of the ACh-evoked Ca2+ signal 

was inhibited by both ODQ and by ryanodine. 

 

The data in figure 5A show that repetitive application of ACh to mouse 

submandibular acinar cells produced a consistent response over an extended period 

of time (>40 minutes). Thus the protocol may be applied to investigate the effects of 

more chronic exposure of the cells to NO. As may be seen in figure 5B, in the 

continued presence of SNAP (100 µM) for 40 minutes, the initial amplification of the 

ACh-evoked Ca2+ signal (cf figure 1) was followed by a progressive loss of 

responsiveness to stimulation. A similar pattern was observed following chronic 

exposure to NOC-12 (200 µM), although a longer exposure was required to 

significantly reduce the ACh response. On average, the response to ACh alone 

following stimulation over a period of 30 minutes was 101.9 ± 15.8% (n=13) of that of 

the response to the first exposure to ACh. Over the same period, the response to 

ACh in the presence of SNAP dropped to 25.3 ± 9.5 % (n=7) of that prior to exposure 

to SNAP. Similarly, the response to ACh after a 40 minute exposure to NOC-12 was 

46.9 ± 10.1 % (n=16) of that before exposure to NOC-12 (figure 5C). The reduction in 

response to ACh stimulation was statistically significantly different (P<0.01) in the 

presence of either NO donor compared to control. The data in figure 5C also show 

significant Ca2+ mobilisation by thapsigargin stimulation, following a 65 minute 

incubation in NOC-12, even though the response to ACh had dropped almost to zero. 

This last observation was typical of 6/7 similar experiments. 



 

The response to 50nM ACh stimulation following a prolonged pre-incubation (2-5 

hours) in the presence of 200 µM NOC-12 was measured (trace not shown) and 

found to be on average 49.7 ± 24.3% (n=9) of the averaged first response to ACh 

seen without preincubation. These data cannot easily be directly compared to those 

obtained using the repetitive stimulation protocol, however it is clear that the 

response to ACh is both lower than that seen without exposure to NOC-12 and also 

that prolonged exposure to NOC-12 alone did not completely abolish the response to 

ACh. 

 

The data in figure 5D (mouse submandibular cells) show that application of the 

guanylate cyclase inhibitor ODQ (1 µM) had no effect on the inhibition of the ACh-

evoked Ca2+ signal caused by prolonged exposure to the NO donor SNAP. The 

average response to ACh following 30 a minute incubation in the presence of ODQ 

and SNAP was 5.1 ± 3.4% (n=4) of that prior to incubation. This value is lower than 

that seen in the presence of SNAP alone. Similarly, incubation with ODQ did not 

prevent the reduction in the ACh response caused by NOC-12 (200 µM). On 

average, using the repetitive stimulation protocol, the response to ACh following a 30 

minute co-incubation of NOC-12 and ODQ was 41.9 ± 15.2% (n=6) of that prior to 

incubation. We were unable to determine whether the chronic exposure to NO was 

affected by ryanodine because ryanodine itself caused significant inhibition of the 

ACh response (data not shown). We found no additive effects of ryanodine and NO 

donor together (data not shown). 

 

 

Similar experiments were performed using human submandibular acinar cells. The 

data from human cells are slightly harder to interpret than those from the mouse cells 

because of the attenuation in the response to repetitive ACh stimulation seen in the 



absence of NO donor (Figure 6A). This is most likely the result of slight 

overstimulation of these cells. Nevertheless, as may be seen in figure 6B, there was 

a more profound reduction in responsiveness induced by prolonged exposure to 

NOC-12 (200 µM). The average attenuation of the ACh response under control 

conditions was to 38.3 ± 7.7 % (n=6) of the initial response. In the presence of NOC-

12, this fell to 15.2 ± 7.1 % (n=3) which represents a significant (P<0.05) reduction in 

response.  



Discussion 

NO donors have been previously shown to stimulate Ca2+ mobilisation in salivary 

acinar cells [10], most likely by enhancing ryanodine receptor (RyR) activity. We also 

found higher concentrations of NO donor to cause spontaneous Ca2+ release, in the 

absence of agonist stimulation (data not shown). Initiation of a Ca2+ signal is not 

thought to be the physiological role of Ca2+ release via RyR in acinar cells, 

nevertheless these data are consistent with studies in which infusion of a high 

concentration of cADPr, the endogenous RyR agonist, caused Ca2+ mobilisation [4]. 

Cyclic-ADPr stimulated Ca2+ mobilisation via RyR is not directly coupled to 

extracellular receptor activation and it is thought more likely that the role of cADPr 

and RyR is to modulate the ACh-evoked Ca2+ signal [4]. Our experimental protocol 

was designed to determine whether NO could be a regulator of this physiological role 

of RyR. 

 

Our data show that, in both mouse and, for the first time, in human submandibular 

cells, exposure to NO donor enhanced the response to agonist stimulation (figures 1 

& 2). This is most likely the result of NO release, rather than an artefact of a 

particular NO donor because similar enhancement was seen using two chemically 

unrelated NO donors, SNAP and NOC-12, and also with sodium nitroprusside (data 

not shown).  

 

Inhibition by ODQ (figure 3) of the effect of the NO donor indicates that the 

enhancement was mediated through cGMP. Inhibition by ryanodine indicates 

involvement of RyR (figure 3). Together these data confirm the prediction of the 

model, that NO is able to up-regulate stimulus secretion coupling by increasing the 

contribution of Ca2+ release via RyR to the Ca2+ signal. 

 



These data would seem to make a role for NO in the aetiology of Sjögren‟s syndrome 

less likely. However, the data in figure 5, where the effect of longer exposure to NO is 

examined, indicate that this is not the case. The enhancement of the ACh-evoked 

Ca2+ signal was short lived and vanished within 20-30 minutes. Furthermore, in both 

mouse and human submandibular cells, chronic exposure to NO ultimately rendered 

the cells less sensitive to ACh stimulation. The data in figures 5 and 6 show also that 

this is not a use-dependent artefact of ACh-stimulation. Mouse submandibular acinar 

cells showed almost no use-dependence in their response to ACh over the period of 

these experiments and, although there was some use- or time- dependence in the 

response of human acinar cells to repeated ACh stimulation, the decline in the 

response was significantly greater in the presence of NO donor. These data cannot 

be accounted for by the “Model for Secretion” (see introduction) but they are 

nevertheless consistent with the observation that NO levels are elevated in Sjögren‟s 

syndrome patients [8]. We have previously shown in labial glands from patients with 

Sjögren‟s syndrome that the concentration dependence of the ACh response is 

shifted to the right, i.e. these cells are less sensitive to stimulation [1]. This is exactly 

what we have observed in cells chronically exposed to NO. 

 

The effect of chronic exposure to NO was not prevented by the guanylate cyclase 

inhibitor ODQ which suggests that the inhibitory effect is not mediated through 

cGMP. We have little evidence at present to indicate the mechanism by which NO 

inhibits stimulus-secretion coupling. The Ca2+ stores do appear to be still functional, 

inasmuch as Ca2+ may still be mobilised by the SERCA pump inhibitor thapsigargin 

after the response to ACh has diminished (figure 5C). Although, by itself a crude 

indicator, the thapsigargin data would suggest the effect of NO is not simply depletion 

of stored Ca2+. 

 



Whilst activation of soluble guanylate cyclase by NO binding to the haeme moiety of 

the enzyme remains the best understood mechanism by which NO affects cellular 

function [11], it is far from the only one. NO also contributes to both cellular 

physiology and pathophysiology through its role in triggering apoptosis, which is 

mediated through reactive nitrogen species (RNS) [12]. Furthermore, apoptosis is not 

an inevitable or even the only consequence of the production of RNS [13] and there 

is a growing body of evidence to indicate that reversible changes in the redox state of 

cysteine thiols can modulate many protein functions [14]. 

 

One protein in which the effects of nitrosylation have been extensively studied is the 

ryanodine receptor [15, 16] and it has been hypothesised that NO-mediated 

nitrosylation of RyR dubbed "redox signalling" [14, 17] could comprise an important 

regulator of the signal transduction process [18]. It is very difficult to predict with any 

certainty the impact that nitrosylation of the ryanodine receptor might have on 

stimulus-secretion coupling because the specificity with which cysteine residues are 

nitrosylated depends on many factors including the subcellular distribution of the 

target protein and the local chemical environment in which it is found [16, 18, 19]. 

Nevertheless, inhibition of RyR activity through nitrosylation could possibly account 

for our observations of an inhibition of the Ca2+ signal following prolonged exposure 

to NO donor. 

 

 

We have no direct evidence that NO is down regulating RyR function through 

nitrosylation and furthermore, RyR is not the only component of the stimulus-

secretion cascade that could be targeted by nitrosylation. Studies on RyR and many 

other proteins have identified concensus motifs likely to be nitrosylated [23, 24] and 

IP3 receptors [25] also share these motifs. Store gated Ca2+ influx is also thought to 



modified by NO [26, 27] and nitrosylation could also alter muscarinic receptor 

function by altering the distribution of receptors at the cell surface [28, 29]. 

 

Our observations are consistent with a role for NO in glandular hypofunction by a 

cGMP independent mechanism, possibly via S-nitrosylation of a key component of 

the stimulus-secretion cascade. These data could go some way towards explaining 

the right-shift in the ACh concentration dependence that we have seen in human 

labial gland cells from Sjögren‟s syndrome patients [1] because NO is known to be 

elevated in Sjögren‟s syndrome [8, 30-32]. Together these data support the concepts 

outlined in “A non-apoptotic model for Sjögren's syndrome” [2] and introduce 

mechanisms whereby not only amplification but also pathological inhibition of salivary 

secretion might be mediated by NO. 

Funding 

This work was supported by the British Sjögren‟s Syndrome Association and the 

Health Foundation [grant number 1823-2191] 

Acknowledgments 

We thank Professor Simon Rogers (consultant Maxillofacial Surgeon, Aintree 

teaching hospitals) for his continued help with the acquisition of human salivary gland 

tissue. We acknowledge the continued technical support of Dr. John Stanbury  

Disclosure Statement 

The authors have no financial interests, direct or indirect, that might affect, or be 
perceived to affect, the conduct or reporting of the work. 
 



Key Points 

1) Acute application of NO stimulates salivary secreting, most probably via 
increased cGMP and cADPribose leading to increased ryanodine receptor 
activity. 

2) Chronic application of NO inhibits salivary secretion by an unknown 
mechanism, possibly nitrosylation of some element of the stimulus-secretion 
cascade. 
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Figure Legends 

Figure 1 The effect of acute application of NO donor on the ACh-stimulated Ca2+ 

signal in mouse submandibular acinar cells. 

Intracellular [Ca2+]i measured using fura-2 microfluorimetry in mouse submandibular 

acinar cells stimulated by successive application of ACh (50nM) for periods of 

approximately 60s.  

A) In the absence of NO donor. B) Prior to application and in the presence of SNAP 

(200 µM). C) Prior to application and in the presence of NOC-12 (200 µM). The Ca2+ 

signal stimulated by ACh was amplified by exposure to either NO donor. 

 

Figure 2 The effect of acute application of NO donor on the ACh-stimulated Ca2+ 

signal in human submandibular acinar cells. 

Intracellular [Ca2+]i measured using fura-2 microfluorimetry in human submandibular 

acinar cells stimulated by successive application of ACh (50nM) for periods of 

approximately 60s.  

A) In the absence of NO donor. B) Prior to application and in the presence of NOC-

12 (200 µM). The Ca2+ signal stimulated by ACh was amplified by exposure to NO 

donor. 

 

Figure 3 The effect of acute application of NO donor, guanylate cyclase inhibitor and 

ryanodine receptor inhibitor on the ACh-stimulated Ca2+ signal in mouse 

submandibular acinar cells. 

Intracellular [Ca2+]i measured using fura-2 microfluorimetry in mouse submandibular 

acinar cells stimulated by successive application of ACh (50nM) for periods of 

approximately 60s.  

A) In the continued presence of ODQ (1 µM) and prior to and following application of 

SNAP (200 µM). B) In the continued presence of ODQ (1 µM) and prior to and 



following application of NOC-12 (200 µM). C) In the continued presence of ryanodine 

(10 µM) and prior to and following application of NOC-12 (200 µM). 

The NO donor stimulated amplification of the ACh-stimulated Ca2+ signal was 

abolished by both ODQ and ryanodine. Neither ODQ or ryanodine themselves 

caused any inhibition of the ACh-stimulated Ca2+ signal. 

 

Figure 4 Summary and averaged data showing the effects of SNAP, NOC-12, ODQ 

and ryanodine on the ACh-stimulated Ca2+ signal expressed as a percentage of the 

initial response to ACh. 

These data are the average of 13, 4, 7, 6, 16 & 21 experiments  , see text for values. 

 

Figure 5 The effect of chronic application of NO donor on the ACh-stimulated Ca2+ 

signal in mouse submandibular acinar cells. 

Intracellular [Ca2+]i measured using fura-2 microfluorimetry in mouse submandibular 

acinar cells stimulated by successive application of ACh (50nM) for periods of 

approximately 60s.  

A) In the absence of NO donor showing no use- or time- dependent change in the 

response over 40-60 minutes. B) Prior to application and in the presence of SNAP 

(200 µM). C) Prior to application and in the presence of NOC-12 (200 µM). The Ca2+ 

signal stimulated by ACh was inhibited or abolished by prolonged exposure to either 

NO donor. A Ca2+ signal was elicited by the SERCA inhibitor thapsigargin (2 µM) 

following loss of the response to ACh. D) In the continued presence of ODQ (1 µM) 

and prior to and following application of SNAP (200 µM). Inhibition of the ACh-

evoked Ca2+ signal by prolonged exposure to NO donor was not prevented by the 

guanylate cyclase inhibitor. 

 

 



Figure 6 The effect of chronic application of NO donor on the ACh-stimulated Ca2+ 

signal in human submandibular acinar cells. 

Intracellular [Ca2+]i measured using fura-2 microfluorimetry in human submandibular 

acinar cells stimulated by successive application of ACh (50nM) for periods of 

approximately 60s.  

A) In the absence of NO donor showing some use- or time- dependent change in the 

response over 40-60 minutes. B) Prior to application and in the presence of NOC-12 

(200 µM). The Ca2+ signal stimulated by ACh was inhibited or abolished by prolonged 

exposure to NO donor. 



 



 



 



 



 



 
 
 


