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Abstract  1 

Isolates of Burkholderia cenocepacia express a putative haem-binding protein  2 

(Mr 97kDa) which displays intrinsic peroxidase activity.  Its role has been re-3 

evaluated, and we now show that it is a bi-functional catalase-peroxidase, with 4 

activity against tetramethylbenzidine (TMB), o-dianisidine, pyrogallol, and 2,2’-azino-5 

bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS).  Both peroxidase and catalase 6 

activities are optimal at pH 5.5-6.0.  The gene encoding this enzyme was cloned and 7 

expressed in E. coli.  We have named it katG because of its similarity to other katGs 8 

including that from Burkholderia pseudomallei.  It is substantially similar to a 9 

previously described catalase-peroxidase of B. cenocepacia (katA).  Mass 10 

spectrometric analysis indicated that the initial katG translation product may be post-11 

translationally modified in B. cenocepacia to give rise to the mature 97kDa catalase-12 

peroxidase.   13 

14 



 3 

INTRODUCTION 1 

Burkholderia cenocepacia (genomovar IIIa) isolates are associated with life-2 

threatening lung infections that may progress to septicaemia (“cepacia syndrome”) in 3 

cystic fibrosis (CF) patients [1]. These bacteria were shown to express a 97kDa 4 

putative haem-binding protein [2], but more recent studies [3] showed that this 5 

protein does not bind haem dose-dependently, and is peroxidase positive even 6 

without prior exposure to exogenous iron(III) protoporphyrin IX.  These newer 7 

findings lead to the possibility that it is not a true haem-binding protein.  In the 8 

present study, we re-evaluated the properties of the 97kDa protein and demonstrated 9 

it to be a bi-functional catalase-peroxidase.  The gene encoding this protein was 10 

cloned and expressed in Esherichia coli, and a survey of its distribution in bacterial 11 

strains of the “Burkholderia cepacia complex” was undertaken. 12 

 13 

Materials and Methods 14 

Bacterial strains and growth conditions.  B. cenocepacia clonal isolates 15 

strains BC7, C5424, C6433 and J2315 (expressing the 97kDa putative haem-binding 16 

protein) were maintained by subculture on horse-blood agar.  For peroxidase and 17 

catalase studies the cells were sub-cultured three times on Columbia or M9 Minimal 18 

Salts Medium agar (Sigma Chemical Company) before growth in bulk on these solid 19 

media as lawn growths for 3 days.  Cells were harvested into and washed twice in 20 

0.14M NaCl, 0.1M Tris-HCl, pH 7.5 to remove any contaminating growth medium 21 

constituents.  For molecular genetic studies, E. coli strains were grown in Luria-22 

Bertani (LB) broth or agar, supplemented with 100µg ampicillin ml-1 where 23 

appropriate. 24 

SDS-PAGE and staining for peroxidase and catalase activity.  Cell 25 

samples of strain J2315 were solubilised in non-reducing sample buffer (37°C for 1h), 26 

electrophoresed on 10% acrylamide gels and stained with 3,3’,5,5’-27 

tetramethylbenzidine (TMB)/H2O2 [2].  Gels were counter-stained with Coomassie 28 

Blue [3] to precisely identify the positions of peroxidase bands.  Chromogenic 29 

peroxidase substrates o-dianisidine (3,3’-dimethoxybenzidine), pyrogallol (1,2,3-30 

trihydroxybenzene), 4-chloronaphthol, guaiacol (2-methoxyphenol), and ABTS [2,2’-31 

azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (all at 6.3mM) were also tested 32 

using the same procedure as for TMB above.   Catalase activity was detected in 33 
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samples as above using the K3Fe(CN)6/FeCl3-H2O2 method of Katsuwon and 1 

Anderson [4], in which catalase-positive bands appear as clear zones against a dark 2 

brown background.   3 

Effect of pH on the peroxidase and catalase activities.  Replicate gel 4 

tracks of cell samples (strain J2315; 25µg protein) were incubated, after 5 

electrophoresis, in 0.14M NaCl buffered at pH 9.0, 8.5, 8.0, or 7.5 with 0.1M Tris-HCl, 6 

or at pH 7.0, 6.5, 6.0, or 5.5, buffered with 0.1M sodium acetate/acetic acid, for 1h.  7 

The gel strips were developed in K3Fe(CN)6/FeCl3-H2O2 or TMB-H2O2 to reveal 8 

catalase and peroxidase bands, respectively.   9 

pH-activity profiles for whole cell catalase and peroxidase.  Peroxidase 10 

activity was measured by monitoring A645nm after incubation of cell suspensions 11 

(J2315; 250µg protein ml-1) in the above  buffers at 20°C with 6.3 mM TMB plus 12 

10mM H2O2 [5].   Catalase activity was measured at 20°C in the above suspensions 13 

by monitoring A240nm [6], using 8mM H2O2 as substrate.  Catalase and peroxidise 14 

activities were expressed as either pmole H2O2 degraded or pmole TMB oxidised per 15 

minute.    16 

Protein separation and mass spectrometry.  Protein bands from 17 

Coomassie Blue-stained 1D gels were excised and destained and dehydrated by 18 

incubation with 50% acetonitrile/50mM ammonium bicarbonate for 1h at room 19 

temperature, followed by vacuum drying in a SpeedVac (Eppendorf).  The gel pieces 20 

were rehydrated in 50mM ammonium bicarbonate containing 40ng/µL modified 21 

trypsin (Promega) and incubated for 16h at 37oC.  Peptides were extracted from the 22 

gel by incubation with 2 changes of 60% acetonitrile/1% trifluoroacetic acid, and the 23 

resulting supernatants were again dried in a SpeedVac.  The extracts were desalted 24 

using C18 ZipTips according to the manufacturer’s instructions (Millipore), and were 25 

reconstituted in a final volume of 30µL 5% acetonitrile/0.1% trifluoroacetic acid.  26 

Aliquots of 0.5µL sample were spotted onto a MALDI target plate together with an 27 

equal volume of 5mg/mL α-cyano-4-hydroxycinnamic acid (LaserBiolabs, France) in 28 

50% acetonitrile/0.1% trifluoroacetic acid. Peptide mass fingerprints were acquired 29 

either on a Voyager DE Pro MALDI (Applied Biosystems, California, USA) or a 30 

M@LDI (Micromass , Manchester, UK) instrument in positive ion reflector mode.  31 

Data were submitted for screening via the Mascot search engine (Matrix Science, 32 

London). The mass tolerance was set to 100ppm, and 1 missed cleavage and no 33 
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modifications were allowed. For LC-MS/MS analysis, aliquots of 5µL sample were 1 

delivered into a QSTAR Pulsar i hybrid mass spectrometer (Applied Biosystems) by 2 

automated in-line liquid chromatography (integrated LCPackings System, 5mm C18 3 

nano-precolumn and 75μm x 15cm C18 PepMap column (Dionex, California, USA)) 4 

via a nano-electrospray source head and 10μm inner diameter PicoTip (New 5 

Objective, Massachusetts, USA).  A gradient from 5% acetonitrile/0.05% TFA (v/v) to 6 

48% acetonitrile/0.05% TFA (v/v) in 60mins was applied at a flow rate of 300nL/min, 7 

and MS and MS/MS spectra were acquired automatically in positive ion mode using 8 

information-dependent acquisition (IDA) (Analyst, Applied Biosystems).  Database 9 

searching was carried out using Mascot with mass tolerances set to 1.2Da for MS 10 

and 0.6Da for MS/MS, and with deamidation as a variable modification.   11 

Cloning of the catalase-peroxidase (katG) gene from B. cenocepacia 12 

strain J2315.  Genomic DNA was amplified by PCR using the primers 13 

CACCATGTCGAACGAAGGGCAGT and CGATGTACCACCGCTTTT.  PCR was 14 

performed with an initial denaturation step at 94°C for 5 min, followed by 35 cycles 15 

each of 1 min at 94°C, 1 min at 58°C, 3.5 min at 72°C, and a final extension step at 16 

72°C for 5 min.  PCR products were electrophoresed on a 1% (w/v) agarose gel and 17 

visualised using ethidium bromide to confirm a single product of the correct size 18 

before cloning into pET-100/D-TOPO (Invitrogen) to produce pKatG and 19 

transformation of One Shot  TOP 10 chemically competent E. coli cells (Invitrogen).  20 

Successful insertion of the gene in the correct orientation was confirmed by 21 

restriction analysis. 22 

Sequencing of katG.  The katG was sequenced from pKatG plasmid DNA 23 

using multiple overlapping IRD-700-labelled forward and reverse primers (MWG-24 

Biotech Ltd., UK; details on request) and employing the SequiThermEXCELTM II DNA 25 

Sequencing Kit-LC (Epicentre Technologies) in a LI-COR 4200S auto-sequencer.  26 

The sequencing data were viewed using the LI-COR Base ImagIRTM software in 27 

conjunction with the Sequencher programme (http://www.genecodes.com).  28 

Expression analysis.  BL21 StarTM One Shot E. coli cells were transformed 29 

with the pKatG plasmid and induction of expression was undertaken by growth at 30 

37°C in the presence of 0.1M isopropyl -D-thioglucopyranoside (IPTG; Sigma).  31 

Pelleted cells were electrophoresed as above and assessed for catalase and 32 

peroxidase activity by in-gel staining.   33 

 34 
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Results 1 

As previously reported [2], a major peroxidase-positive protein of 97kDa was 2 

seen for B. cenocepacia strain J2315 (Fig. 1, tracks b and h). The 97kDa enzyme 3 

also showed peroxidase specificity towards o-dianisidine, ABTS and pyrogallol (Fig. 4 

1, tracks c, e, and g), but guaicol (methoxyphenol) and 2-chloronaphthol were not 5 

peroxidised (Fig. 1, tracks d and f).   Using in-gel K3Fe(CN)6/FeCl3/H2O2 staining, the 6 

97kDa peroxidase protein was also shown to display catalase activity (Fig 1, track a), 7 

a phenomenon also demonstrated by the clonal isolates BC7, C5424 and C6433 8 

(data not shown).  The catalase activity of the 97kDa enzyme of strain J2315 was not 9 

inhibited by pre-exposure of the cells for 1h to the specific mono-functional catalase 10 

inhibitor 3-amino-1, 2, 4-triazole (20mM).  Peroxidase activity against substrates 11 

TMB, ABTS and o-dianisidine was also unaffected by the inhibitors isonicotinic acid 12 

and niacinamide (all 20mM) [8] (data not shown).  In general, the catalase activity 13 

visualised by the in-gel assay was stronger than the peroxidase staining. 14 

Both catalase and peroxidase activities were observed in SDS-PAGE gels 15 

over the pH range 5.5 to 8.5, whilst little or no activity was seen at pH 9.0 (Fig. 2).  16 

Both enzyme activities were generally low at alkaline pHs, and highest over the acid 17 

pH range, and scanning densitometry confirmed maximal catalase and peroxidase 18 

activities at pH 6.0 and 5.5, respectively.  Peroxidase activity of suspensions of whole 19 

cells of strain J2315 against TMB was not detected at neutral or alkaline pHs, but 20 

maximal activity was seen at pH 6.0 (Fig. 3a).  In contrast, low levels of catalase 21 

activity of whole cells were observed at alkaline pH, rising in the acid pH range to a 22 

maximum at pH 6.0 (Fig 3b).   23 

Masses of tryptic peptides of the 97kDa catalase-peroxidase were obtained by 24 

MALDI-TOF mass spectrometry and matches were obtained to the KatG catalase-25 

peroxidases of Burkholderia pseudomallei [9] and Mycobacterium tuberculosis [10], 26 

and to an archeal catalase-peroxidase of Haloarcula marismortui  [11].  This genomic 27 

data was aligned with the sequence of the J2315 strain 28 

(http://www.sanger.ac.uk/Projects/B_cenocepacia/) and used to design primers to a 29 

putative open reading frame (ORF) of 2211 bases (768 amino acids) on chromosome 30 

2 which was cloned and re-sequenced (accession number DQ112341).  This ORF 31 

was subsequently identified in the published B. cenocepacia genome (Sanger 32 

Institute) and was calculated to have a size of 80.5kDa.  A second ORF was also 33 
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identified at 3612912-3615098 on chromosome 1, which possessed 73% identity and 1 

81% similarity to the first catalase-peroxidase gene at the amino acid level and may 2 

represent another catalase-peroxidase protein. 3 

Paired amino acid alignments (BLASTP) revealed a high degree of homology 4 

between the B. cenocepacia catalase-peroxidase and the minor catalase-peroxidase 5 

described by Lefebre et al. [12], those of other selected bacterial species including 6 

the cell-surface catalase-peroxidase of B. pseudomallei (KatG), and the 77kDa iron 7 

(III) protoporphyrin IX monomer binding protein (accession number DQ114424; 8 

Smalley et al., 2005) (Table 1).  Multiple sequence alignment analysis using 9 

CLUSTALW revealed striking similarities between the B. cenocepacia catalase-10 

peroxidase and the other selected enzymes in both the C- and N-terminal regions.  11 

These included the conserved amino acid triad Arg104-Trp107-His108, and the second 12 

haem ligand (His270 ) of M. tuberculosis KatG  [13].   Because of the similarities of the 13 

catalase-peroxidase to these well-characterised KatG proteins, the gene encoding 14 

the B. cenocepacia enzyme was named katG.      15 

IPTG induction of the E. coli BL21Star cells carrying the 80.5kDa catalase-16 

peroxidase gene resulted in a protein product which electrophoresed on 10% gels as 17 

a single band with an apparent molecular mass of ~ 80kDa (Fig 4).   The 18 

recombinant protein stained positively for both peroxidase and catalase showing the 19 

gene product to be functionally active (Fig 4).  To confirm the identity of the 20 

recombinant enzyme expressed in E. coli as the product of katG, MS/MS analysis 21 

was performed after SDS-PAGE and trypsin digestion.  On 7% acrylamide gels it was 22 

found that the recombinant protein was separated into two bands with calculated 23 

molecular masses of  79 and 83kDa, denoted R1 and R2, respectively (Fig 5), both 24 

of which were positive for peroxidase (data not shown).  The observation of the band 25 

R2 is in keeping with the expected size of an initial translation product based on the 26 

vector system employed which results in the addition of 36 amino acids to the N-27 

terminus of the expressed protein.  We speculate that the lower molecular weight 28 

band R1 arises as a result of proteolytic cleavage of the initial translation product.  In 29 

addition to proteins R1 and R2, a very faint Coomassie Blue stained band of 30 

approximately 97kDa (denoted R3) was observed which was not expressed by E. coli 31 

cells carrying the empty plasmid.  This band was peroxidase positive as revealed by 32 

TMB staining for a longer time period (data not shown).  MS/MS analysis of these 33 

three proteins showed them to match B. cenocepacia KatG (Table 2).  Taken 34 
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together these data confirmed that the product of katG was the bifunctional catalase-1 

peroxidase.  The presence of a higher molecular weight form of the enzyme suggests 2 

that the initial translation product may be post-translationally modified to give the 3 

mature 97kDa catalase-peroxidase.   4 

 5 

Discussion 6 

We have re-evaluated the role of the 97kDa putative haem-binding protein of 7 

B. cenocepacia [2].  This protein shows peroxidase specificity towards 8 

tetramethylbenzidine, o-dianisidine, pyrogallol, and 2,2’-azino-bis(3-9 

ethylbenzthiazoline-6-sulphonic acid (ABTS), but not against 4-chloronaphthol and 2-10 

methoxyphenol (guaicol).  It also has catalase activity, but is not inhibited by the 11 

specific mono-functional catalase inhibitor 3-amino-1,2,4,-triazole.  This protein does 12 

not show dose-dependent binding of iron(III) protoporphyrin IX in either the 13 

monomeric or µ-oxo oligomeric form [3], and does not bind to haem-agarose 14 

(Smalley et al., unpublished findings).  Collectively, these data show this component 15 

is not a true haem-binding protein, but a bi-functional catalase-peroxidase, in contrast 16 

to the 77- and 149kDa iron(III) protoporphyrin IX-binding, outer-membrane 17 

components which do not possess intrinsic catalase activity, and which are only 18 

peroxidase-positive after exposure to, and binding of, iron(III) protoporphyrin IX 19 

monomers [3].   20 

 Multiple amino acid alignment analysis of the translated B. cenocepacia 21 

catalase-peroxidase gene revealed a strong homology with other bacterial catalase-22 

peroxidases, and supported the above biochemical observations.  It possessed the 23 

Arg88-Trp91-His92 triad which is conserved among all known catalase-peroxidases 24 

[14], and displayed the greatest cross-species amino acid homology (70.7% identity 25 

and 79% similarity) to that of B. pseudomallei KatG, a homo-dimer of subunit size 26 

81.6kDa [15, 16], which plays a role in protecting against hydrogen peroxide [17].  27 

For this reason, the B. cenocepacia catalase-peroxidase gene was named katG.   28 

A catalase-peroxidase gene katA (accession number AF317697) has recently been 29 

described in B. cenocepacia strain C5424 by Lefebre et al.  [12], which is similar to 30 

the gene identified herein.   31 

MS/MS analysis clearly demonstrated that the recombinant catalase-32 

peroxidase was the product of katG.  The detection of a higher molecular weight 33 

enzyme matching KatG shows that expression of katG in E. coli is also accompanied 34 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=12620401
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some post-translational processing and suggests that this step may be more efficient 1 

in B. cenocepacia, giving rise to the mature 97kDa catalase-peroxidase.  At present 2 

however, the nature of any post-translational modifications is unclear.  The 3 

electrophoretic mobility of the native 97kDa enzyme from B. cenocepacia does not 4 

change upon reduction with dithiothreitol, nor does it react with phosphoprotein stains 5 

or periodic acid-Schiff reagent (data not shown).   6 

Recent B. cenocepacia J2315 sequence database releases indicate that the 7 

katG gene (BCAM2107) may actually be extended by 20 amino acids at the N 8 

terminus to give a 756 amino acid, 82.6kDa, protein.  This, together with other 9 

sequence differences that we have noted between our data, the B. cenocepacia 10 

J2315 database sequence and the katA gene of Lefebre et al. [12], may indicate that 11 

the ORF is not yet correctly identified.  Lefebre et al. [12] also demonstrated a 12 

second catalase-peroxidase gene in B. cenocepacia J2315.  We confirm the 13 

presence of this second gene (BCAL3299) and observe that it is 73% identical and 14 

81% similar to our B. cenocepacia katG at the amino acid level.    15 

 B. cenocepacia katA mutants are sensitive to H2O2 and katA also appears to 16 

contribute to the normal functioning of the TCA cycle [12], but the extent to which the 17 

catalase-peroxidase described herein contributes to growth and survival in vivo is not 18 

clear.  Although the pH of the liquid surface layer of the lung in health is  6.9 [18], 19 

endo-bronchial pHs of around 6.5 have been recorded.    In addition, respiratory 20 

mucins, to which B. cenocepacia binds specifically [19], are highly sulphated, 21 

especially those produced by CF patients [20, 21, 22], and this also contributes to the 22 

acidity of the secretions.  The pH is also reduced as a result of defective 23 

transmembrane conductance regulator function [23] and the mucopurulent secretions 24 

formed in the CF lung during infection also have an acid pH [24, 25].  In view of the 25 

above and the acid pH optima of the catalase-peroxidase, it is likely that bacterial 26 

cells expressing this enzyme would be advantaged in enduring attack by 27 

macrophage-derived H2O2 in the slightly acidic conditions prevailing in the lung 28 

during chronic infection and inflammation.  Although members of the “B. cepacia 29 

complex” display catalase and peroxidase activities [8], we have generally found that 30 

these activities in other species of the complex are very low compared to B. 31 

cenocepacia strains [26].     Bacterial catalase-peroxidases display wide substrate 32 

specificities [14, 27], but it is not known which compounds represent natural 33 

peroxidase substrates for the B. cenocepacia enzyme or whether it plays any role in 34 
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attacking and degrading other host (macro)molecules for defensive or nutritive 1 

purposes.   2 

 3 

ACKNOWLEDGEMENT   4 

We would like to thank the Cystic Fibrosis Trust (Grant number CF RS 22) and the 5 

MRC Proteomics Initiative for financial support.  6 

 7 

8 



 11 

References 1 

[1] Hart CA & Winstanley C (2002) Persistent and aggressive bacteria in the lungs of 2 

cystic fibrosis children. Brit Medical Bull 61: 81-96. 3 

 4 

[2] Smalley JW, Charalabous P, Birss AJ & Hart CA (2001) Detection of heme-5 

binding proteins in epidemic strains of Burkolderia cepacia. Clin Diag Lab Immunol 8: 6 

509-514. 7 

[3] Smalley JW, Charalabous P, Hart CA & Silver J (2003). Transmissible 8 

Burkholderia cepacia genomovar IIIa strains bind and convert monomeric iron(III) 9 

protoporphyrin IX into the µ-oxo oligomeric form.  Microbiology 149: 843-853.  10 

 11 

[4] Katsuwon J & Anderson AJ (1992)  Characterisation of catalase activities in a 12 

root-colonizing isolate of Pseudomonas putida. Can J Microbiol  38: 1026-1032.  13 

 14 

[5] Josephy PD, Eling T & Mason RP (1982)  The horseradish peroxidase-catalyzed 15 

oxidation of 3,5,3’, 5’-tetramethylbenzidine: Free radical and charge-transfer 16 

intermediates. J Biol Chem 257: 3669-3675. 17 

 18 

[6] Beers RF & Sizer IW (1952) A spectrophotometric assay for measuring the 19 

breakdown of hydrogen peroxide by catalase. J Biol Chem 196: 133-140. 20 

 21 

[7] Southern EM (1975) Detection of specific sequences among DNA fragments 22 

separated by gel electrophoresis. J Mol Biol 98: 503-517. 23 

 24 

[8] Lefebre MD & Valvano MA (2001) In vitro resistance of Burkholderia cepacia 25 

complex isolates to reactive oxygen species in relation to catalase and superoxide 26 

dismutase production. Microbiology 147: 97-109.  27 

 28 



 12 

[9] Donald LJ, Krokhin OV, Duckworth HW, Wiseman B, Deemagarn T, Singh R, 1 

Switala J, Carpena X, Fita I & Loewen P (2003)  Characterization of the catalase-2 

peroxidase KatG from Burkholderia pseudomallei by mass spectrometry. J Biol 3 

Chem 278: 35687-35692.  4 

 5 

[10] Sonnenberg MG & Belisle JT (1997) Definition of Mycobacterium tuberculosis 6 

culture filtrate proteins by two-dimensional polyacrylamide gel electrophoresis, N-7 

terminal amino acid sequencing and electrospray mass spectrometry. Infect Immun 8 

65: 4515-4524. 9 

 10 

[11] Cannac-Caffrey V, Hudry-Clergeon G, Petillot Y, Gagnon J, Zaccai G & Franzetti 11 

B (1998) The protein sequence of an archaeal catalase-peroxidase. Biochimie 80: 12 

1003-1011. 13 

 14 

[12] Lefebre MD, Flannagan R S & Valvano MA (2005) A minor catalase/peroxidase 15 

from Burkholderia cenocepacia is required for normal aconitase activity. Microbiology 16 

151: 1975–1985. 17 

 18 

 [13] Zamocky M, Janecek S & Koller F (2000) Common phylogeny of catalase-19 

peroxidases and ascorbate peroxidases. Gene 256: 169-182. 20 

 21 

[14] Zamocky M, Regelsberg G, Jakopitsch C & Obinger C (2001) The molecular 22 

peculiarities of catalase-peroxidases. FEBS Lett 492: 177-182. 23 

 24 

[15] Carpena X,  Switala J, Loprasert S, Mongkolsuk S, Fita I & Loewen PC (2002) 25 

Crystallisation and preliminary X-ray analysis of the catalase-peroxidase KatG from 26 

Burkholderia pseudomallei. Acta Crystallogr D Biol Crystallogr 58: 2184-2186. 27 

 28 

[16] Carpena X, Loprasert S, Mongkolsuk S, Switala J, Loewen PC & Fita I (2003)  29 

Catalase-peroxidase KatG of Burkholderia pseudomallei at 1.7A resolution. J Mol 30 

Biol 327: 475-489. 31 

 32 



 13 

[17] Loprasert S, Whangsuk W, Sallabhan R & Mongkolsuk S (2003) 1 

Regulation of the katG-dpsA operon and the importance of KatG in survival of 2 

Burkholderia pseudomallei exposed to oxidative stress. FEBS Lett 542: 17-21. 3 

[18] Jayaraman S, Song Y & Verkman AS (2001) Airway surface liquid pH in well-4 

differentiated airway epithelial cell cultures and mouse trachea. Am J Cell Physiol 5 

281: C1504-C1511.  6 

[19] Sajjan US, Corey M, Karmali MA & Forstner JF (1992) Binding of Pseudomonas 7 

cepacia to normal intestinal and respiratory mucin from patients with cystic fibrosis.  J 8 

Clin Invest 89: 648-656. 9 

[20] Chace KV, Leahy DS, Martin R, Carubelli R, Flux M & Sachdev P (1983) 10 

Respiratory mucous secretions in patients with cystic fibrosis: relationship between 11 

levels of highly sulfated mucin component and severity of the disease. Clin Chim 12 

Acta 132: 143-155. 13 

 14 

[21] Chace KV, Flux M & Sachdev P (1985). Comparisons of physicochemical 15 

properties of purified mucus glycoproteins isolated from respiratory secretions of 16 

cystic fibrosis and asthmatic patients.  Biochem 24: 7334-7341.  17 

 18 

[22] Cheng PW, Boat TF, Cranfill K, Yankaskas JR & Boucher RC (1989) Increased 19 

sulfation of glycoconjugates by cultures of nasal epithelial cells from patients with 20 

cystic fibrosis.  J Clin Invest 84: 68-72. 21 

[23] Coakley RD & Boucher RC (2001) Regulation and functional significance of 22 

airway surface liquid pH. J Pancreas (Online) 2: 294-300.  23 

[24] Yoon SS, Coakley R, Lau GW, Lymar SV, Gaston B, Karabulut AC, Hennigan 24 

RF, Hwang SH, Buettner G, Schurr MJ, Mortensen JE, Burns JL, Speert D, Boucher 25 

RC & Hassett DJ. (2006) Anaerobic killing of mucoid Pseudomonas aeruginosa by 26 

acidified nitrite derivatives under cystic fibrosis airway conditions.  J Clin Invest 116: 27 

436-446. 28 

 29 



 14 

[25] Bodem CR, Lampton L.M, Miller DP, Tarka EF & Everett ED (1983) 1 

Endobrochial pH relevance to aminoglycoside activity in gram-negative bacillary 2 

pneumonia. Am Rev Respir Dis 127: 39-41. 3 

 4 

[26] Charalabous, P. (2004).  Catalase-peroxidases of Burkholderia cenocepacia.  5 

PhD Thesis, The University of Liverpool, Liverpool, UK. 6 

 7 

 [27] Marcinkeviciene JA, Magliozzo RS & Blanchard JS (1995) Purification and 8 

characterisation of the Mycobacterium smegmatis catalase-peroxidase involved in 9 

isoniazid activation. J Bacteriol 270: 22290-22295. 10 

  [28] Long S & Salin M L (2001)  Molecular cloning, sequencing analysis and 11 

expression of the catalase-peroxidase gene from Halobacterium salinarum. DNA 12 

Sequencing 12: 39-51. 13 

 14 

  [29] Heym B, Alzari P M, Honore N & Cole ST (1995) Missense mutations in the 15 

catalase-peroxidase gene, katG, are associated with isoniazid resistance in 16 

Mycobacterium tuberculosis. Mol Microbiol 15: 235-245.  17 

 18 

  [30] Menendez MC, Ainsa JA, Martin C & Garcia MJ (1997) katGI and katGII 19 

encode two different catalases-peroxidases in Mycobacterium fortuitum. J Bacteriol 20 

179: 6880-6886.  21 

 22 

  [31] Morris SL, Nair J & Rouse DA (1992) The catalase-peroxidase of 23 

Mycobacterium intracellulare: nucleotide sequence analysis and expression in 24 

Escherichia coli. J Gen Microbiol 138: 2363-2370. 25 

 26 
  [32] Heym B, Zhang Y, Poulet S, Young D & Cole ST (1993) Characterization of the 27 

katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of 28 

Mycobacterium tuberculosis. J Bacteriol 175: 4255-4259. 29 

 30 

  [33] Triggs-Raine BL, Doble BW, Mulvey MR, Sorby PA & Loewen PC (1988) 31 



 15 

Nucleotide sequence of katG, encoding catalase HPI of Escherichia coli. J Bacteriol 1 

170: 4415-4419. 2 

 3 

  [34] Brunder W, Schmidt H & Karch H (1996) KatP, a novel catalase-peroxidase 4 

encoded by the large plasmid of enterohaemorrhagic Escherichia coli O157:H7.  5 

Microbiology 142: 3305-3315. 6 

 7 

[35] Bandyopadhyay P & Steinman HM (1998) Legionella pneumophila catalase-8 

peroxidases: cloning of the katB gene and studies of KatB function. J Bacteriol 180: 9 

5369-5374. 10 

 11 

[36]  Loewen PC & Stauffer GV (1990) Nucleotide sequence of katG of Salmonella 12 

typhimurium LT2 and characterization of its product, hydroperoxidase I. Mol Gen 13 

Genetics 224: 147-151. 14 

 15 

[37] Zou P, Borovok I, Ortiz de Orue Lucana D, Muller D & Schrempf H (1999) The 16 

mycelium-associated Streptomyces reticuli catalase-peroxidase, its gene and 17 

regulation by FurS. Microbiology 145: 549-559.  18 

 19 

[38] Garcia E, Nedialkov Y A, Elliott J, Motin V L & Brubaker R R (1999) Molecular 20 

characterization of KatY (antigen 5), a thermoregulated chromosomally encoded 21 

catalase-peroxidase of Yersinia pestis. J Bacteriol 181: 3114-3122.  22 

 23 

 [39] Loprasert S, Sallabhan R, Whangsuk W & Mongkolsuk S (2002) The 24 

Burkholderia pseudomallei oxyR gene: expression analysis and mutant 25 

characterization.  Gene 296: 161-169. 26 

 27 

28 



 16 

Table 1 1 

 2 

Amino acid homology analysis of the B. cenocepacia catalase-peroxidase KatG 3 

(GenBank accession DQ112341) with bacterial and archaeal catalase-peroxidases 4 

using paired alignment comparisons performed in BLASTP.  Accession numbers are 5 

from GenBank (gb) or Swiss-Prot (sp).   6 

 7 

 8 

 9 

 10 

11 

Organism Accession 
no. 

Reference  % 

Identity 

 % 

Similarity 

Haloarcula 
marismortui 

gbY16851 Cannac-Caffrey et al. 
[11] 

56.8 69.4 

Halobacterium 
salinarum 

gbAF069761 Long & Salin [28] 56.4 68.9 

Mycobacterium 
bovis 

spP46817 Heym et al. [29] 60.0 71.8 

Mycobacterium 
fortuitum 

gbY07865 Menendez et al. [30] 58.1 65.9 

Mycobacterium 

intracellulare 

spQ04657 Morris et al. [31] 58.6 69.3 

Mycobacterium 
tuberculosis 

spQ08129 Heym et al. [32] 59.9 71.6 

Escherichia 
coli 

spP13029 Triggs-Raine et al. [33] 59.9 71.8 

E. coli 
(0157: H7) 

gbX89017 Brunder et al. [34] 55.2 66.2 

Legionella 
pneumophila 

gbAF078110 Bandyopadhyay & 
Steinman [35] 

57.1 69.3 

Salmonella 
typhimurium 

spP17750 Loewen & Stauffer [36] 60.6 71.9 

Streptomyces 
reticuli 

gbY14317 Zou et al. [37]  64.0 74.0 

Yersinia pestis gbAF135170 Garcia et al. [38] 55.6 67.0 

Burkholderia 
pseudomallei 

gbAAK72466 Loprasert et al. [37]  70.7 79.0 

Burkholderia 
cenocepacia 

gbDQ114424 Smalley et al. (2005) 71.0 79.0 

Burkholderia 
cenocepacia 

gbAF317697 Lefebre et al. [12] 94.0  94.0 
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Table 2 1 
Masses of tryptic peptides derived from the recombinant protein.  Analysis was performed 2 
with one missed cleavage allowed and deamidation as the only variable modification.  A 3 
mass tolerance of 1.2Da was allowed for MS and of 0.6Da for MS/MS analysis. R1, R2, and 4 
R3 refer to the arrowed bands on Figure 5; m/z, mass/charge; Mr(calc.), calculated relative 5 
molecular masses of the sequenced tryptic peptides;  (D), deamidation. 6 
 7 

Protein Position m/z Mr(calc.) Sequence 

  29 - 38       564.3347 1126.5982 R.LDLLSQHSSK.T   

  39 - 61      1277.6446 2553.2023 K.TDPLDPGFNYAEAFNSLDLDALR.K   

  273 - 299      901.4813 2701.3095 K.THGAGPADNVGLEPEAAGLEQQGLGWK.N   

R1 333 - 343      700.3453 1398.6819 K.NLFGYEWELTK.S   

Overall 383 - 389      449.2351 896.4279 R.FDPVYEK.I   

Mascot 520 - 532      681.8758 1361.6575 R.IQGEFNSTQPGGK.K 

Score = 534 - 553      955.5686 1909.0883 K.ISLADLIVLAGGAGIEQAAK.R   

875 555 - 567      661.3781 1320.6938 R.AGHDVVVPFAPGR.M   

  598 - 609      643.9088 1285.7281 K.FAVPAEALLIDK.A   

  639 - 655     1005.0381 2007.9690 K.HGVFTDQPETLTVDFFR.N   

  690 - 701      645.8812 1288.7139 R.VDLVFGSNAVLR.A   

  702 - 715      705.8608 1409.6674 R.ALSEVYASADGEAK.F   

  29 - 38 564.3241 1126.5982 R.LDLLSQHSSK.T   

  39 - 61      1277.6765 2553.2023 K.TDPLDPGFNYAEAFNSLDLDALR.K   

  113 - 127      851.9246 1701.8362 R.FAPLNSWPDNVSLDK.A   

R2 273 - 299      901.4947 2702.2935 K.THGAGPADNVGLEPEAAGLEQQGLGWK.N (D) 

Overall 333 - 343      700.3926 1398.6819 K.NLFGYEWELTK.S   

Mascot 383 - 389      449.2540 896.4279 R.FDPVYEK.I   

Score = 534 - 553      955.5824 1909.0883 K.ISLADLIVLAGGAGIEQAAK.R   

871 555 - 567      661.3666 1320.6938 R.AGHDVVVPFAPGR.M   

  598 - 609      643.8862 1285.7281 K.FAVPAEALLIDK.A   

  639 - 655     1005.0239 2007.9690 K.HGVFTDQPETLTVDFFR.N   

  690 - 701      645.8698 1288.7139 R.VDLVFGSNAVLR.A   

  702 - 715      705.8490 1409.6674 R.ALSEVYASADGEAK.F   

  29 - 38       564.3127 1126.5982 R.LDLLSQHSSK.T   

  39 - 61 852.4210 2553.2023 K.TDPLDPGFNYAEAFNSLDLDALR.K   

  253 - 272     1032.0497 2060.9659 R.MAMNDEETVALIAGGHAFGK.T   

  273 - 299      901.4964 2701.3095 K.THGAGPADNVGLEPEAAGLEQQGLGWK.N   

R3  355 - 368      757.3829 1512.7321 K.NAEPTIPHAHDPSK.K 

  370 - 382      737.4313 1472.8272 K.LLPTMLTTDLSLR.F   

Overall 393 - 407      876.8862 1751.7725 R.HFMDNPDVFADAFAR.A   

Mascot 520 - 532      681.8408 1361.6575 R.IQGEFNSTQPGGK.K   

Score = 534 - 553 955.5983 1909.0883 K.ISLADLIVLAGGAGIEQAAK.R   

964 555 - 567      661.3550 1320.6938 R.AGHDVVVPFAPGR.M   

  598 - 609      643.8859 1285.7281 K.FAVPAEALLIDK.A   

  610 - 628      977.5799 1953.1081 K.AQLLTLTAPQMTALVGGLR.V   

  639 - 655     1004.9840 2008.9530 K.HGVFTDQPETLTVDFFR.N (D)  

  690 - 701      645.3592 1288.7139 R.VDLVFGSNAVLR.A   

  702 - 715      705.8491 1409.6674 R.ALSEVYASADGEAK.F   

8 
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Figure legends 1 

 2 

Figure 1:  Catalase and peroxidase specificity of the 97kDa protein of B. cenocepacia 3 

strain J2315 as shown after SDS-PAGE under non-reducing conditions.  Catalase 4 

activity was demonstrated using the potassium ferricyanide/ ferric chloride-H2O2 5 

method (track a), whilst peroxidase activity was assessed against (b) TMB,  (c) o-6 

dianisidine, (d) 2-methoxyphenol, (e) ABTS, (f) 4-chloronaphthol, and (g) pyrogallol.  7 

Track h, Coomassie Blue counterstaining for protein following the peroxidase 8 

reaction.  See Methods for details. 9 

 10 

Figure 2:  Effect of pH on the activity of the bi-functional catalase-peroxidase as 11 

shown after SDS-PAGE under non-reducing conditions.  Peroxidase activity (a) was 12 

revealed using tetramethylbenzidine-H2O2  whilst catalase was assayed using the 13 

K3Fe(CN)6/FeCl3-H2O2 staining method (b).  Gel loadings were 25µg protein per 14 

track.  15 

 16 

Figure 3:  pH activity profile of catalase and peroxidase activities of suspensions of 17 

whole cells of B. cenocepacia strain J2315 grown on M9 Minimal Salts Medium agar.  18 

Peroxidase was measured using tetramethylbenzidine as substrate (shown as 19 

A645nm).  Catalase activity was assayed by UV absorbance (shown as A240nm).  The 20 

reactions were carried out at 20°C.  21 

 22 

 Fig 4: SDS-PAGE on 10% polyacrylamide gels of BL21Star E. coli cells expressing 23 

the catalase-peroxidase, after growth in the presence of 0.1M IPTG.  C, catalase; 24 

Per, peroxidase; Prot, protein staining; M, molecular weight markers.  The in-gel 25 

catalase staining was performed at pH 6.0 in 0.5M sodium acetate.   26 

 27 

Fig 5:  SDS-PAGE of the recombinant B. cenocepacia KatG catalase-peroxidase 28 

enzyme on a 7% polyacrylamide gel.  Recombinant protein bands R1, R2 and R3 29 

gave mass matches to KatG after trypsinisation and MS/MS analysis (see Table 2).  30 

The gel was stained with Coomassie Blue.   31 
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