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On the n → 0 limit of γgg(a) in QCD
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Abstract. We consider the n → 0 limit of the DGLAP splitting function γgg(a) at all orders in
the strong coupling constant, a, by analysing the leading order large Nf form of the associated
d-dimensional critical exponent. We show that for unpolarized scattering the pole at n = 0
which appears in successive orders in perturbation theory is absent in the resummed expression.
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The DGLAP equation, [1], is widely used to evolve the parton structure functions of the
nucleon constituents over a large range of energy scales. Central to the equation are the splitting
functions which depend on the variable x which represents the fraction of the momentum carried
by that parton in the nucleon. Alternatively one can work with the anomalous dimension of the
underlying twist-2 operators built out of the quark and gluon fields of QCD which depend on the
variable n. They are related to the splitting functions via a Mellin transform restricted to the unit
interval in x. It is generally accepted that the solution of the DGLAP evolution which effectively
represents perturbative QCD, fits the data extremely well. See, for example, [2]. Moreover, it
appears to transcend the region where the perturbative approximation ought not to be valid.
Therefore, one would hope that either by resumming perturbation theory in some fashion or
developing non-perturbative methods, such as the BFKL formalism [3], it might be possible to
begin to explore phenomena in the more extreme non-perturbative regions. One recent issue, [4],
has been the problem of understanding the n → 0 behaviour of the DGLAP splitting functions
in QCD. It is known that in perturbation theory each term of the expansion of the operator
anomalous dimensions in the strong coupling constant has successively higher order poles at
n = 0, [5, 6, 7]. However, other considerations suggest that the function is finite at n = 0, [4, 8],
though there is some disagreement with this point of view, [9]. In this letter we provide some
more insight into the n→ 0 limit of the gluon-gluon splitting function, γgg(a), where a = αs/(4π)
is the strong coupling constant. This is achieved by examining the large Nf result for γgg(a)
which has been computed in [10] where Nf is the number of quark flavours. Essentially the 1/Nf

expansion sums a different set of Feynman diagrams from those which are ordinarily computed
in the loop or coupling constant expansion of perturbation theory. Moreover, the resummation
is to all orders in a. This technique has been used in [11, 12, 10, 13] to determine the anomalous
dimensions of all the twist-2 operators used in deep inelastic scattering for both unpolarized and
polarized processes at O(1/Nf ). The all orders results are expressed as a function of d, where d
is the dimension of spacetime, known as critical exponents. The coefficients of the corresponding
renormalization group function are deduced from knowledge of the d-dimensional fixed point of
the QCD β-function and properties of the critical renormalization group equation. The results
have been shown to be in agreement with all known explicit two and three loop perturbative
results, [5, 6, 7, 14, 15], which puts the validity of the large Nf results in relation to deep inelastic
scattering on a firm footing. Hence, in this letter we will examine the n → 0 limit of the singlet
gluon splitting function at O(1/Nf ) and all orders in a.

First, we recall the basic formalism of the problem. As the flavour singlet gluonic twist-2
operator mixes with the fermionic operator under renormalization in perturbation theory, one
has to deal with a matrix of anomalous dimensions, γij(a). Since we will be considering it in
the large Nf expansion we define the coefficients of its perturbative expansion formally by

γij(a) =

(

γqq(a) γgq(a)
γqg(a) γgg(a)

)

(1)

where

γqq(a) = a1a+ (a21Nf + a22)a
2 + (a31N

2
f + a32Nf + a33)a

3 +O(a4)

γgq(a) = b1a+ (b21Nf + b22)a
2 + (b31N

2
f + b32Nf + b33)a

3 +O(a4)

γqg(a) = c1Nfa+ c2Nfa
2 + (c31N

2
f + c32Nf + c33)a

3 +O(a4)

γgg(a) = (d11Nf + d12)a+ (d21Nf + d22)a
2 + (d31N

2
f + d32Nf + d33)a

3 +O(a4) . (2)

The explicit values of the coefficients to two loops as a function of n are given in [5, 6, 7] and
exact values for the low operator moments at three loops are found in [14, 15]. In particular we
note

d11 =
4

3
T (R) (3)
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where T (R) is given by tr(T aT b) = T (R)δab and T a are the generators of the colour group whose
structure constants are fabc. In [10] it was argued that the set of coefficients of the C2(G) sector

of γgg(a) at leading order in 1/Nf , corresponding to d
C2(G)
l1 at the lth loop, could be written

compactly in the critical exponent form as

λ
C2(G)
+,1 (ac) =

[

[32µ5n2 + 32µ5n+ 32µ5 + 8µ4n4 + 16µ4n3
− 120µ4n2

− 128µ4n

− 160µ4
− 32µ3n4

− 64µ3n3 + 160µ3n2 + 192µ3n+ 316µ3

+ 48µ2n4 + 96µ2n3
− 78µ2n2

− 126µ2n− 306µ2
− 31µn4

− 62µn3

+ 31µn+ 146µ+ 7n4 + 14n3 + 7n2
− 28]Γ(n + 2 − µ)Γ(µ)

/[8n(µ− 1)3(n+ 2)(n2
− 1)Γ(2 − µ)Γ(µ+ n)]

− [32µ5n2 + 32µ5n+ 32µ5
− 144µ4n2

− 144µ4n− 160µ4
− 4µ3n4

− 8µ3n3 + 240µ3n2 + 244µ3n+ 316µ3 + 16µ2n4 + 32µ2n3

− 180µ2n2
− 196µ2n− 306µ2

− 20µn4
− 40µn3 + 59µn2

+ 79µn+ 146µ+ 8n4 + 16n3
− 6n2

− 14n− 28]

/[8n(µ− 1)3(n+ 2)(n2
− 1)]

+ 2(µ− 1)S1(n)

]

µC2(G)ηo1
(2µ− 1)(µ− 2)T (R)

(4)

where Sl(n) =
∑

∞

r=1 1/rl, d = 2µ, facdf bcd = C2(G)δab and

ηo1 =
(2µ− 1)(µ− 2)Γ(2µ)

4Γ2(µ)Γ(µ+ 1)Γ(2 − µ)
. (5)

We recall that a feature of the large Nf approach to computing information on the perturbative
coefficients of (2) was that the anomalous dimensions of the eigen-operators of (1) at criticality
were determined and denoted by λ±(ac) =

∑

∞

i=1 λ±,i(ac)/N
i
f , [10]. That eigen-operator which

was predominantly gluonic in content corresponds to the eigen-critical exponent λ+(ac) whilst
λ−(ac) corresponds to the dimension of the mainly fermionic eigen-operator. The location of
the fixed point, ac, is given by the non-trivial zero of the d-dimensional QCD β-function and in
the present notation, [16, 17, 18, 19, 20],

ac =
3ǫ

4T (R)Nf

+
1

T 2(R)N2
f

[

33

16
CAǫ −

(

27

16
CF +

45

16
CA

)

ǫ2 +

(

99

64
CF +

237

128
CA

)

ǫ3

+

(

77

64
CF +

53

128
CA

)

ǫ4 −

3

1024
[(288ζ(3) + 214)CF + (480ζ(3) − 229)CA] ǫ5 + O(ǫ6)

]

(6)

to O(1/N3
f ) in the large Nf expansion where d = 4 − 2ǫ and ζ(r) is the Riemann zeta function.

From (4) and (6), we find, for instance,

d
C2(G)
51 =

128[9n4 + 18n3 + 79n2 + 70n + 32]S3(n)

243(n + 2)(n+ 1)2(n− 1)n2

+
256[9n4 + 18n3 + 79n2 + 70n + 32]S3

1(n)

243(n + 2)(n + 1)2(n− 1)n2

−

128[63n6 + 189n5 + 821n4 + 1327n3 + 1176n2 + 544n + 96]S2
1(n)

243(n + 2)(n + 1)3(n− 1)n3

3



− 256[4n10 + 20n9 + 17n8
− 52n7

− 414n6
− 976n5

− 1521n4
− 1516n3

− 930n2
− 320n − 48]S1(n)/[243(n + 2)(n + 1)4(n− 1)n4]

−

2048[n2 + n+ 1]ζ(4)

27(n + 2)(n2
− 1)n

+
1024S1(n)ζ(4)

27
−

10240S1(n)ζ(3)

243

+
128[3n6 + 9n5 + 307n4 + 599n3 + 746n2 + 448n + 96]ζ(3)

243(n + 2)(n + 1)2(n− 1)n2

+ 4[155n12 + 930n11 + 1455n10
− 1250n9

− 9879n8
− 21786n7

− 47107n6
− 80550n5

− 97392n4
− 78336n3

− 40000n2

− 11776n − 1536]/[243(n + 2)(n + 1)5(n− 1)n5] . (7)

This illustrates earlier remarks in that this coefficient clearly has a fifth order pole at n = 0
which is a degree larger than the previous loop order, [10]. Clearly to all orders this degree of
divergence will increase. However, since (4) encodes the structure of this particular coefficient of
γgg(a) to all orders in the coupling constant in leading order in 1/Nf as a function of n, we can
examine the form of the exponent for n = 0. In other words prior to making the connection with
explicit perturbation theory. Therefore setting n = 0 in (4) we can determine if the expression is
divergent which would indicate that such a pole persists in γgg(a) or if it is finite. The latter case
would indicate consistency with the supposition from more general principles, [4, 8]. First, by
inspection of (4) the S1(n) independent terms each have simple poles in n. However, by careful
examination of the numerators of each term and in particular their n-independent terms, it is
evident that the residue at n = 0 is the same for both whilst the relative sign between the terms
means that overall the residue is zero for the simple pole at n = 0. Also for the term involving
S1(n) one writes

Sl+1(n) =
(−1)l

l!

[

ψ(l)(n + 1) − ψ(l)(1)
]

(8)

for general l, which vanishes in the limit n → 0 where ψ(x) is the derivative of the logarithm of
the Euler Γ-function. Hence the exponent (4) is in fact finite at n = 0. This is consistent with the
resummed splitting function being non-singular at this point. However, it is important to recall
that we have only demonstrated this property for that part of the series which is leading order
in the 1/Nf expansion. Moreover that this part is not inconsistent with general considerations
is, we believe, an important observation and the central result of this article. Furthermore, we
record that when n = 0 the exponent (4) is

λ
C2(G)
+,1 (ac)

∣

∣

∣

n=0
=

[

[16µ4
− 64µ3 + 94µ2

− 59µ+ 14](µ − 1)(µ − 2)[ψ(µ − 1) − ψ(3 − µ)]

+ µ(8µ4
− 26µ3 + 23µ2

− 4)

]

µC2(G)ηo1
8(2µ − 1)(µ − 1)3(µ− 2)2

. (9)

For completeness, we also comment on the n → 0 limit of the critical exponents of the other
twist-2 operators at O(1/Nf ). We recall that, [12],

λ−,1(ac) =
4µ(µ− 1)C2(R)ηo1

(2µ− 1)(µ − 2)T (R)Nf

[

(µ− 1)(n − 1)(2µ + n− 2)

2µ(µ+ n− 1)(µ+ n− 2)
+ [ψ(µ− 1 + n) − ψ(µ)]

−

Γ(n− 1)Γ(2µ)

4(µ+ n− 1)(µ+ n− 2)Γ(2µ− 1 + n)

×

[

(n2 + n+ 2µ− 2)2 + 2(µ− 2)(n(n − 1)(2µ− 3 + 2n) + 2(µ− 1 + n))
]

]

(10)
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for the flavour singlet fermionic operator where T aT a = C2(R). The critical exponent for the
non-singlet operator dimension corresponds to the first two terms of (10) and it is clear that in
the limit we are interested in that that exponent is finite. In particular

λ
non-singlet
−,1 (ac)

∣

∣

∣

n=0
= −

4(2µ2
− 4µ+ 1)C2(R)ηo1

(2µ− 1)(µ− 2)2T (R)Nf

. (11)

By contrast, the singlet fermionic eigen-operator, which in perturbation theory corresponds to
the combination of coefficients (al1−bl1c1/d11) at lth loop, diverges at n = 0 having the behaviour

λ−,1(ac) ∼

4µ(µ− 1)(2µ − 3)C2(R)ηo1
n(µ− 2)2T (R)Nf

(12)

as n → 0 with the singularity arising from the final term of (10) which corresponds to Feynman
diagrams with the operator inserted in a closed quark loop.

To conclude with we have demonstrated that for unpolarized scattering the behaviour of
γgg(a) at n = 0 at leading order in the large Nf expansion is consistent with the function being
finite at this point. However, it is worth putting this result in context with other observations
from the BFKL formalism which has also been used to study the anomalous dimensions discussed
here. In [21] it was shown that the C2(G) sector of γgg(a) in the BFKL approach not only does
not contain any poles in n but has in fact three branch points. Indeed this does not appear to
be just a feature of QCD. If one examines the toy model of scalar φ3 theory in six dimensions
the complete analogous anomalous dimension was resummed at leading order without reference
to the small x limit and again only branch points and no poles were observed, [22]. For other
anomalous dimensions in QCD, the non-singlet and polarized dimensions also do not have poles
at n = 0 but branch points, [23]. (For a recent review of these issues see, for example, [24].)
Therefore it is reassuring that our large Nf observation is also not inconsistent with the BFKL
formalism. In light of this it would be interesting to go beyond our leading order 1/Nf analysis
to confirm the absence of the n = 0 pole at next order as well as being able to understand the
branch point structure in the large Nf point of view. To compute the O(1/N2

f ) correction to
λ+(ac), though, would involve the evaluation of a large set of 1/Nf graphs which contain, for
example, several six loop diagrams and is therefore, we believe, not attainable in the near future.
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