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The strangeness content of the nucleon
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We evaluate the matrix element of q̄q in hadron states on a lattice. We find substantial mixing of the connected

and disconnected contributions so that the lattice result that the disconnected contribution to the nucleon is large

does not imply that the s̄s content is large. This has implications for dark matter searches.

1. INTRODUCTION

An important challenge in physics and cosmol-
ogy is to understand the nature of dark matter.
One plausible candidate is for this dark matter to
be the lightest supersymmetric particle: the neu-
tralino. In this case the dark matter can be de-
tected by scattering from nuclear targets, and ex-
perimental explorations are currently under way.
To extract a physical flux from such experiments,
one needs the appropriate cross section for scat-
tering of a neutralino off a nucleon. This has been
evaluated [1] and depends on MSSM parameters
and on the QCD matrix elements of the scalar
quark current: 〈N |q̄q|N〉. The Higgs exchange
terms are dominant and hence the scalar current
enters multiplied by the relevant quark mass. For
this reason, the strange quark contribution is ex-
pected to be especially important. Moreover the
u and d quark contributions are related to the πN
σ term and are relatively well known whereas the
strange contribution is unknown phenomenologi-
cally to within a factor of 3.

The usual way to parametrise the contribution
of the strange quark is by

y =
2〈N |s̄s|N〉

〈N |ūu + d̄d|N〉
(1)

Estimates [2] using chiral perturbation theory
suggest y = 0.2(2).

This ratio of quark matrix elements can be cal-
culated in principle using lattice methods (see [3]
for a review). The required correlations are illus-

trated in fig. 1. The disconnected contribution
D3 (numerator of y) can either be calculated by
evaluating the three-point correlator with a dis-
connected loop or using the lattice equivalent of
the Feynman-Hellman theorem to relate it to the
derivative of the nucleon mass with respect to the
sea-quark hopping parameter (see ref. [4] for a
discussion of this). Likewise the connected con-
tribution C3 can be evaluated either as a three-
point correlation or as a derivative of the nucleon
mass with respect to the valence-quark hopping
parameter. Then, in this approach we expect
y = D3/(C3 + D3).
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Figure 1. Connected and disconnected diagrams

Using Nf = 2 flavours of sea-quark, SESAM [5]
obtain y = 0.59(13) and, using the same method,
we would obtain a similar result. Using the
three-point correlator approach, it is possible to
estimate y in quenched studies and results of
around 0.6 were obtained [6] although the Ken-
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tucky group argued [7] that renormalisation ef-
fects should reduce this to around 0.36(3) (but
see criticism of this approach in ref [5]).

This large value of y obtained from lattice stud-
ies is surprising and it also has major implications
for the analysis of dark matter scattering experi-
ments. Here we discuss the status of these lattice
determinations critically and we conclude that y
is consistent with zero.

2. LATTICE ANALYSIS

The Feynman-Hellman theorem relates matrix
elements of scalar quark currents in a nucleon to
derivatives of the nucleon mass with respect to
the quark mass. These identities can be derived
both in the continuum and on the lattice. Here we
consider Wilson-like lattice fermion formulations.
The lattice equivalent of the Feynman-Hellman
theorem is that [4] the following lattice observ-
ables (here we define mb ≡ 1/(2κ)) are related:

∂(aMN )

∂mb
val

= lim
t1,(t−t1)→∞

C3(t1, t)

C(t)
(2)

∂(aMN )

∂mb
sea

= −Nf lim
t1,(t−t1)→∞

D3(t1, t)

C(t)
(3)

The input quark mass parameters can be writ-
ten in terms of the physical bare quark masses,
with an additive mass renormalisation (mA).

mb
val = mA + amval (4)

mb
sea = mA + amsea (5)

Now mA may be determined by varying the
valence quark mass and determining the critical
hopping parameter at which the pion mass (and
hence amval) becomes zero, or equivalently by
finding the critical valence hopping parameter at
which the PCAC mass becomes zero. These ex-
trapolations to determine mA are at fixed mb

sea

and hence mA will depend on mb
sea. The lat-

tice spacing a also depends on the bare sea-quark
mass parameter mb

sea. These effects can be sum-
marised by the following derivatives

X =
dmA

dmb
sea

and B =
d log a

dmb
sea

(6)

We are interested in the disconnected scalar
matrix element which is related in the continuum
to the derivative with respect to the sea quark
mass. On a lattice this disconnected scalar matrix
element is related to the derivative of the nucleon
mass with respect to the sea-quark mass parame-
ter at fixed valence-quark hopping parameter and
fixed β by eq. 5. The key observation is then that
as the sea-quark hopping parameter is varied on
the lattice, both the valence quark mass and the
lattice spacing also change. Thus one needs to
correct for these changes to obtain the derivative
of the nucleon mass at fixed valence-quark mass
which is required.

For the valence dependence, the required
derivative is directly given by the lattice observ-
able

∂MN

∂mval

=
∂(aMN )

∂mb
val

(7)

For the sea-quark derivative, however, there will
be several other factors involved as discussed
above:

∂MN

∂msea

(1 − amseaB − X) =

∂(aMN )

∂mb
sea

+ (amvalB + X)
∂(aMN)

∂mb
val

− MNB (8)

This shows that the lattice connected and dis-
connected contributions are mixed when related
to the more physical derivatives at fixed bare
quark mass and fixed scale a. There will also be
additional perturbative matching contributions
to take into account to have a precise link be-
tween lattice observables and the continuum ex-
pressions., but we do not discuss these further
here.

We evaluate the above expressions using
UKQCD data [8,9]. We mainly use data from
β = 5.2 on 16332 lattices with Nf = 2 flavours
of sea quark with κ = 0.1355 or 0.1350 and us-
ing a NP-clover formalism with CSW = 2.0171.
These hopping parameter values correspond to
quark masses around the strange quark (since the
π/ρ ratio is 0.58 and 0.70 respectively). From the
r0 values [9], we obtain B = 4.4(8) while from ex-
trapolating the PCAC masses to obtain the crit-
ical hopping parameters at these two sea quark
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masses we obtain X = −0.66(4). This implies
that there will be substantial mixing of the lat-
tice disconnected and connected contributions in
evaluating the derivative with respect to the sea-
quark mass.

Setting B = X = 0 in eq. 8 gives the naive
lattice ratio of y = 0.53(12) while including the
full mixing gives y = −0.28(33).

Since we are using finite differences to evalu-
ate the derivatives in eq. 8, we may instead use
the value of the nucleon mass in physical units
for the four cases (κsea = 0.1355, 0.1350; κval =
0.1355, 0.1350) and evaluate the quark mass in
each case from the bare quark mass (eqs. 4,5). We
prefer to use the bare quark mass here because
of the lattice Feynman-Hellman theorem, but it
would be possible to use the lattice PCAC quark
mass, extrapolate to the continuum and then use
the Feynman-Hellman relation in the continuum.
The four combinations of sea and valence quark
mass will then not lie at the corners of a rectan-
gle, but at corners of some quadrilateral. We can
then use the nucleon masses at these four values
to evaluate the required derivatives with respect
to the sea quark mass at constant valence mass
and vice versa. The result from this approach is
y = −0.30(34) which is consistent with the value
quoted above.

Note that y is expected to be positive, so the
negative value obtained is just a reflection of the
large statistical error. We have also attempted to
measure the disconnected lattice correlator using
a three point function approach. The result was
compatible with using derivatives of the nucleon
mass but the statistical errors were larger.

3. DISCUSSION

To obtain a reliable lattice determination of y,
one should use Nf = 2 flavours of light sea quark
plus a heavier (strange mass) sea quark. Then the
required disconnected diagram can be obtained
either as a derivative of the nucleon mass with
respect to the strange sea quark mass or by eval-
uating the D3 diagram with strange quarks in the
disconnected loop. In practice one will need to
extrapolate the sea and valence masses to to the
physical u and d masses. This extrapolation is

known to be non-trivial for the extraction of the
πN sigma term [10]. A continuum limit of the
lattice observables should also be taken as well as
building in perturbative matching.

Instead we use Nf = 2 flavours of sea-quark
which should be a good approximation for the
sea. Extracting the disconnected diagram as a
derivative is only possible if the quarks considered
in the disconnected loop are the sea-quarks. It is
possible to go beyond this by explicitly evaluating
D3 with different mass quarks in the disconnected
loop and this is in progress. We are also exploring
ways to reduce the large statistical errors we find.

Our main conclusion is that the current lattice
data are unable to give a determination with any
precision of y, but that the naive lattice ratio of
y ≈ 0.6 is not appropriate and the lattice result is
indeed compatible with y = 0. That y is compati-
ble with zero implies that there is no evidence for
any dependence of the nucleon mass on the sea
quark mass and this conclusion was also reached
in an earlier lattice study [4] of the sea quark de-
pendence of the meson (pseudoscalar and vector)
masses.
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