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1 Introduction.

Quantum chromodynamics, (QCD), is widely accepted as the quantum field theory which de-
scribes the strong interactions of the nuclear constituents. Indeed at large energies the theory
behaves as if it were virtually a free field theory allowing one to apply perturbative techniques
to describe high energy parton interactions. However, a full understanding of the strong in-
teractions at lower energies scales is still sought. For example, the generation of quark masses
and quark confinement are not fully understood and are believed to be intimately related to
the infrared properties of QCD. One approach to understand such phenomena is to use effective
field theories or models which have similar properties to the original QCD Lagrangian. One
such model is the Nambu-Jona-Lasinio model, [1], which involves four quark interaction terms.
From the point of view of standard renormalization theory such terms are not renormalizable in
four space-time dimensions. This is readily apparent from a simple dimensional analysis since
the canonical dimension of such interactions is six and therefore their coupling must incorporate
a dimensionful scale to have a Lagrangian of canonical dimension four. An alternative point of
view of these operators is that at large energies where the perturbative approximation is valid,
the coupling of these operators is driven to zero and they are known as irrelevant operators.
However, it could be the case that in the approach to the infrared the coupling, or the anomalous
dimension of the operator, gains a large correction to alter the canonical dimension in such a way
that they become relevant in the infrared régime. Therefore, they would then be regarded as
sensible and important operators for understanding the phenomenology at such scales. Whilst
such operators and models or effective field theories have received wide attention the actual
connection of these models with the original QCD Lagrangian has yet to be fully established in
detail. Since one can analyse the structure of the gauge invariant composite operators of any
quantum field theory from the point of view of renormalization theory, it is the purpose of this
article to consider the operators of dimension six which one can be built in Yang-Mills theories.
The aim is to determine the basis set of dimension six operators and then to compute their
anomalous dimensions at one loop.

There are various reasons for such a study aside from those already stated. First, we will
concentrate on Yang-Mills theories with an arbitrary colour group since previous analyses of
this problem, we believe, have been incomplete. Therefore, it is appropriate to focus on the
gluonic sector of QCD before returning to the full theory in a later article. For instance, the
earlier work of [2] only considered dimension six operators which did not involve covariant
derivatives of the gluon field strength. We will demonstrate that there is an extra independent
operator which was omitted from that analysis. Second, whilst the work of [3, 4] considered such
field strength covariant derivatives, the operators were only considered at zero momentum. To
fully treat composite operators and the determination of their anomalous dimensions one must
renormalize them with a non-zero momentum flowing through them. As is well known doing
otherwise can lead to erroneous anomalous dimensions. (See, for example, [5, 6, 7].) Moreover,
we will show that one cannot readily drop operators which are total space-time derivatives of
lower dimensional operators but which are overall dimension six. These are crucial to preserving
identities similar to the Bianchi identities which are valid in the classical theory and which
must be preserved in the quantum theory. This is another reason for concentrating on Yang-
Mills theory since these technical issues can become over-complicated in QCD. Further, previous
calculations, [2, 8], were only concerned with specific unitary colour groups. We take a more
general line here by analysing Yang-Mills theory with a general Lie group which will allow
one, for instance, to understand the properties of dimension six operators in the large Nc limit.
Another reason for this is that the construction of the basis set of operators will not need
to appeal to the group tensor properties of a particular Lie group. For instance, the totally
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symmetric Casimir, dabc, only exists in the group SU(Nc) for Nc ≥ 3 and does not always have a
counterpart in other classical or exceptional Lie groups. Also, it is possible to consider various
group representations in the arbitrary case. Other motivations for considering dimension six
operators come from calculations such as [9, 10]. In [3, 4, 9], for example, dimension six operators
have been shown to be important in hadronic scattering. In [10] the structure of the mixing
matrix of anomalous dimensions plays a crucial role in the large order perturbative behaviour
of physical quantities such as the hadronic decay of the τ or e+e− annihilation into hadrons.
Essentially the operator or combination or operators which has the dominant eigenanomalous
dimension drives the structure of the perturbative series at large powers of the strong coupling
constant and is related to the Borel properties of the series. For other (gluonic) correlation
functions the dominant eigenoperator could be different and therefore it is important to have
the anomalous dimensions for the full set of dimension six operators. Finally, although we have
focused on the motivation for considering dimension six operators, we will also study dimension
eight operators at the same level. Again previous analyses in our view have not been fully
complete and therefore it is important to establish the full picture.

The paper is organised as follows. In section two, we discuss at length the background
requirements and results for constructing the basis set of dimension six operators. This is
repeated in section three for the case of dimension eight operators before discussing the one loop
renormalization of all operators in section four. Concluding remarks are given in section five.

2 Classification of dimension 6 operators.

To systematically classify dimension six and eight gauge invariant operators it is appropriate to
choose a notation where this important property is manifest. As we are dealing with Yang-Mills
operators it seems appropriate therefore to choose a group valued field strength, Gµν , and gauge
potential, Aµ, where

Gµν = Ga
µνT a , Aµ = Aa

µT a (2.1)

and T a are the usual colour group generators obeying the Lie algebra of the colour group G

[

T a, T b
]

= ifabcT c (2.2)

with structure constants fabc which satisfy the usual Jacobi identity

fabef cde + facefdbe + fadef bce = 0 . (2.3)

Moreover, the covariant derivative of a group valued object X, satisfies

DµX = ∂µX + ig[Aµ,X] (2.4)

where g is the coupling constant. Consequently, one has

[Dµ,Dν ]X = ig [Gµν ,X] (2.5)

where the field strength is defined as

Gµν = ∂µAν − ∂νAµ + igAµ ∧ Aν . (2.6)

Given the geometric nature of Gµν it satisfies the Bianchi identity

DµGνσ + DνGσµ + DσGµν = 0 (2.7)
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which is a basic symmetry property of the Yang-Mills field. In this notation, the gauge trans-
formations of the following entities are

Aµ → UAµU † +
i

g
(∂µU)U †

Gµν → UGµνU †

DµGνσ → UDµGνσU † (2.8)

where U is a group valued x-dependent unitary matrix with

UU † = U †U = 1 . (2.9)

Hence, to construct gauge invariant operators whether Lorentz scalar or otherwise one need only
consider colour group traces of objects which transform covariantly under (2.8). For Yang-Mills
theories such objects would be the field strength itself and any number of covariant derivatives
of it. Objects with a gauge potential clearly cannot lead to a gauge invariant operator. To
illustrate how one systematically constructs a set of linearly independent operators of a specific
dimension, which satisfy the criteria of the renormalization theorems, we consider dimension six
operators in detail first. Since operators can be related to each other by operators which involve
the equation of motion, then we note at the outset that in quantum gluodynamics, the equation
of motion is

DµGµν = 0 . (2.10)

Thus if an operator can be related by the symmetries of the theory to another operator plus
one which includes the object DµGµν then they are regarded as being dependent, [7]. The
method we have followed is first to write down all possible structures involving the objects Gµν ,
Dµ and ∂µ which are of dimension six, Lorentz scalars and which are gauge invariant by the
above construction. With this basic set it is straightforward to decorate all the slots for the
Lorentz indices in all possible ways, though initially dropping those operators involving DµGµν .
The ordinary derivative, ∂µ, is allowed in this construction as it has dimension one but due to
the imposition of gauge invariance it can only appear outside a trace of operators and hence it
occurs in operators with total derivatives. We will discuss their treatment later, as they will be
important, and concentrate for the moment on non-total derivative operators.

Clearly to have a colour singlet operator one must have at least two field strengths in the
trace which for dimension six operators implies only one trace operation is allowed. Therefore,
the three allowed structures are

Tr (G..G..G..) , Tr (D.G..D.G..) , Tr (G..D.D.G..) (2.11)

where the dots indicate the location of the Lorentz indices and the covariant derivative in any
string acts only on the object immediately to the right. Although one can simply enumerate all
the cases, making use of the symmetry properties reduces the amount of work. For instance, a
common object in the structures is

Dµ1
. . . Dµn

Gν1ν2 . (2.12)

However, in certain cases the following index pattern will be present

Dµ1
. . . Dµ . . . Dµn

Gµν2 , Dµ1
. . . Dµ . . . Dµ . . . Dµn

Gν1ν2 (2.13)

where we have indicated the explicit contractions. (There could be additional contractions
among the sets {µ1, . . . , µn} and {ν1, ν2} but we focus on those illustrated explicitly.) For the

4



first example, applying (2.5) recursively to move the covariant derivative to the right yields
operators with a higher number of legs together with the operator

Dµ1
. . . Dµn

DµGµν2 (2.14)

which has the same number of legs as the original operator. We define the number of legs on
an operator as the lowest number of gluon fields in any term when the field strength and the
covariant derivatives are written in terms of Aµ. Clearly, (2.14) is an operator which vanishes on
an equation of motion. Therefore, the operator we began with can be written in terms of higher
leg operators plus an operator which is ignored from the point of view of establishing linear
independence, [7]. From focusing on this particular structure embedded within an operator
an algorithm to determine the basis set of operators follows naturally. In other words using
symmetries we write as far as possible the lower leg operators in terms of higher leg ones and
equation of motion operators. These then become dependent and can be dropped from the
original set of potential operators. For the second operator of (2.13), it can be written in terms
of the first operator by commuting the covariant derivative Dµ closest to the field strength to
obtain higher leg operators plus

Dµ1
. . . Dµ . . . Dµn

DµGν1ν2 . (2.15)

Using (2.7) this is related to

Dµ1
. . . Dµ . . . Dµn

Dν1Gµν2 + Dµ1
. . . Dµ . . . Dµn

Dν2Gν1µ (2.16)

which is of the form of the first operator of (2.13). Hence any operator involving factors of
the form of (2.13) where two Lorentz indices are contracted in a string, are not independent
and depend on higher leg operators. This is a general result which is not limited to dimension
six operators. From (2.11) it is easy to see that no member of the last set of operators is
independent. For the remaining two possibilities in (2.11) the lemma implies there can be no
index contraction in D.G.. leaving the cases

Tr (DµGνσDµGνσ) , Tr (DµGνσDνGµσ) , Tr (DµGνσDσGµν) . (2.17)

The last two are related by the antisymmetry of Gµν and either can be written using the Bianchi
identity as proportional to the first which therefore means

O62 = Tr (DµGνσDµGνσ) (2.18)

remains as the only two leg independent dimension six operator. For the remaining structure of
(2.11) there is only one way of slotting the Lorentz indices non-trivially giving the independent
three leg operator

O61 = Tr (GµνGνσG µ
σ ) . (2.19)

By taking the trace explicitly this is related to

fabcGa
µνGb νσGc µ

σ (2.20)

where the term involving the symmetric tensor Tr
(

T (aT bT c)
)

vanishes by symmetry.

All that remains are the operators involving a total derivative acting on the trace of two field
strength operators. One might expect that such operators are unimportant as they would not
contribute when inserted in diagrams at zero momentum. However, it will turn out that they
are crucial for ensuring consistency in the one loop renormalization and preserving identities
which follow from the Bianchi identity or symmetries. Indeed total derivative operators are
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known to be important in QCD. For example, the renormalization of the axial vector anomaly
involves the operator GµνG̃µν where G̃µν = ǫµνσρG

σρ and ǫµνσρ is the usual totally antisymmetric
rank four pseudotensor. As is well known GµνG̃µν is the total derivative of the Chern Simons
current. To compute the anomalous dimension of the singlet axial current correctly one must
ensure the axial anomaly equation is satisfied as an operator equation quantum mechanically.
This requires the renormalization of the total derivative operator GµνG̃µν . (See, for example,
[11, 12].) Therefore, in the context of our dimension six and eight classification we also consider
such operators, though only those which are Lorentz scalar and not pseudoscalar. In addition
to the earlier lemmas, we now introduce new results which relate various operators by a total
derivative operator. For example, using the distributivity property of Dµ acting on the product
of typical objects X and Y which involve products of Gµν and its covariant derivatives, we have

Tr (XDµY ) = ∂µTr (XY ) − Tr (DµXY ) (2.21)

which implies

Tr (XDµX) =
1

2
∂µTr (XX) . (2.22)

In the first of these results it is tempting to omit the first term on the right. However, from the
renormalization theorems it, like GµνG̃µν , can have an anomalous dimension when renormalized
at non-zero momentum. Moreover, the same relation provides us with the strategy for classifying
total derivative operators. In addition to beginning with these operators with the lowest number
of legs, one considers those with the lowest number of external derivatives and rearranges them
to produce ones with a higher number. Two basic structures for dimension six emerge, which
are

∂.Tr (G..D.G..) , ∂.∂.Tr (G..G..) . (2.23)

Ignoring operators which involve the equation of motion, this gives the following candidate
operators,

∂µTr (GνσDµGνσ) , ∂µTr (GνσDνGµσ) , ∂µ∂µTr (GνσGνσ) , ∂µ∂νTr (GµσGσ
ν) . (2.24)

The first operator is related to the third by (2.22) and is thus not independent. Likewise the
second operator is related to the first through the Bianchi identity. Finally, using the results
(2.21), (2.22) and the Bianchi identity, we have

∂µTr (GµνDσGν
σ) = ∂µ∂σTr (GµνGν

σ) +
1

4
∂µ∂µTr (GνσGνσ) (2.25)

leaving the last operator, say, as the only independent dimension six one from the set of total
derivative operators, (2.24), where only the results (2.21) and (2.22) were applied. It remains to
check what relations emerge when these latter results are applied to the set of operators which
do not initially involve a total derivative. Therefore, if we consider Tr (DµGνσDµGνσ) and apply
(2.21) and (2.22) then we find,

Tr (DµGνσDµGνσ) =
1

2
∂µ∂µTr (GνσGνσ) + 2Tr (GνσDνDµGσµ) − 4igTr (GµνGνσG µ

σ ) .

(2.26)
Hence, overall we are left with only two independent dimension six operators.

3 Classification of dimension 8 operators.

The procedure to classify operators of dimension eight follows that for the dimension six case and
rather than reproduce similar arguments we will concentrate on the essential differences. First,
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with the higher dimension it is clear that more structures akin to (2.11) are possible. Moreover,
one has to consider operators built out of more than one colour group trace. Considering the
two leg operators first, like the dimension six case there is only one such operator,

O821 = Tr [(DµDνGσρ) (DµDνGσρ)] (3.1)

which is a natural generalization of (2.18). All other two leg operators either involve an equation
of motion operator or can be written as (3.1) and higher leg operators. For three leg operators
there is a similar reduction in the number of possibilities though one is left with

O831 = Tr
(

DµGνσDρGµνG σ
ρ

)

O832 = Tr
(

DµGνσDµG ν
ρ Gρσ

)

(3.2)

as the two independent operators. As there is now a trace over three group generators it might
be expected that the Feynman rule of each operator will involve dabc. For the latter operator
the antisymmetry of Gµν ensures that only fabc emerges. Whilst using the Bianchi identity on
the first operator produces

−
1

2
Tr (DσGµνDρG

µνGσρ) (3.3)

which likewise only involves fabc. For operators of the form Tr (D.D.G..G..G..) it might be
expected that our lemma could still allow for several independent operators. In other words
if there are no contracted indices on the field strength with two covariant derivatives then the
lemma is not applicable. This leaves the four cases

Tr (DρDµGνσGµνGσρ) , Tr (DρDµGνσGµρGνσ) ,

Tr (DρDµGνσGσρGµν) , Tr (DρDµGνσGνσGµρ) . (3.4)

Clearly the second and fourth operators of this set are each related to four leg operators. For
the remaining two using the Bianchi identity allows one to rewrite each as either the second or
fourth operator. Similar arguments systematically applied to the other possible structures leave
(3.2) as the only three leg dimension eight operators. Finally, for the four leg operators which
therefore involve four field strength factors and no covariant derivatives, one has the possibility
of a double group trace structure. Systematically enumerating the allowed Lorentz structures
simply leaves the eight basic operators

O841 = Tr (GµνGµνGσρG
σρ)

O842 = Tr (GµνGσρG
µνGσρ)

O843 = Tr (GµνGνσGσρG
ρµ)

O844 = Tr (GµνGσρG
νσGρµ)

O845 = Tr (GµνGµν)Tr (GσρG
σρ)

O846 = Tr (GµνGνσ)Tr (GσρG
ρµ)

O847 = Tr (GµνGσρ) Tr (GµνGσρ)

O848 = Tr (GµνGσρ) Tr (GµσGνρ) . (3.5)

The remaining operators which must be considered now involve those which are total deriva-
tives. As before if we focus on those operators which have at least one external derivative acting
on the trace of the field strengths then the possible candidates for independence are, after relating
possible operators within the same structures by, for example, the Bianchi identity,

∂ρ∂ρ∂
µ∂νTr (GµσGσ

ν) , ∂σ∂σ∂ρ∂ρTr (GµνGµν) , ∂µ∂νTr (DµGσρDνGσρ)

∂µ∂νTr (GµσGνρG
σρ) , ∂µTr (GµνGσρDνGσρ) , ∂µ∂µTr

(

GνσGσρG ν
ρ

)

. (3.6)
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Of this set the last three can be related to operators which do not involve total derivatives and
therefore they are dependent and excluded from the basis. For example, if one considers O831

and applies (2.21) we have

Tr (DµGνσDρG
µνGρσ) = − Tr (DρDµGνσGµνGρσ) − Tr (DµGνσGµνDρG

ρσ)

− ∂µTr (GµνGσρDνGσρ) − ∂µTr (GσρDνGµνGρσ) . (3.7)

The first term is related to operators which have already been shown to be independent by a
route not involving (2.21) or (2.22) whilst the second and fourth terms are equation of motion
operators. Repeating the same manipulations on O831 but integrating by parts with the other
covariant derivative first, one can relate the fourth operator of (3.7) to the fifth and therefore
neither are independent. Next by considering O832 we have

Tr
(

DµGνσDµGρνG σ
ρ

)

=
1

6
∂µ∂µTr

(

GνσGρνG σ
ρ

)

−
1

2
Tr (GνσDµDµGρνG

ρσ) (3.8)

where (2.21) has been applied twice. Therefore, to summarize the three independent dimension
eight total derivative operators are

O821t = ∂ρ∂ρ∂
µ∂νTr (GµσGσ

ν) , O822t = ∂σ∂σ∂ρ∂ρTr (GµνGµν)

O823t = ∂µ∂νTr (DµGσρDνG
σρ) . (3.9)

Whilst this completes the classification of the operators necessary for renormalizing all dimen-
sion six and eight Yang-Mills operators there are several points which still need to be addressed.
First, each of the operators we have produced only represents one in a tower of such gauge
invariant colour singlet operators. For instance, one can introduce tensor products of group
generators into each trace without spoiling gauge invariance or altering the dimension of the
operator. The former property follows from the fact that under the gauge transformations an
operator will contain products of U and U † where U is a group element. If group generators
are present the cancellation of U factors via (2.9) is obstructed. However, it is possible to show
(infinitesimally) that

UT aU † ⊗ UT aU † = T a ⊗ T a (3.10)

for all U . Moreover,

fabcUT aU † ⊗ UT bU † ⊗ UT aU † = fabcT a ⊗ T b ⊗ T c . (3.11)

Hence, one can in principle produce an infinite set of additional operators from the basic set we

have constructed. Examples include Tr
(

T aT bGµνT aGνσT bG µ
σ

)

and Tr (T aDµGνσT aDµGνσ).

However, for the latter one can easily reduce this to

(

CF − 1

2
CA

)

Tr (T aDµGνσT aDµGνσ) (3.12)

using T aT a = CF where CF is the usual rank two Casimir and CA is its value in the adjoint
representation. For the former the manipulation of the group generators would lead to other
group Casimirs, [13]. Although this increases the number of possible operators to consider for
an arbitrary gauge group, we will not classify them but regard them as derivable from the base
set. It is worth noting that in the explicit renormalization each additional operator will in
fact be generated. This is because inserting them in the Green’s function group generators are
introduced at each vertex through the use of the Lie algebra, (2.2). However, the main reason
we do not need to consider such operator generalizations is that at least for the classical Lie
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groups the tensor product T a ⊗ T a can, in principle, be decomposed by a group identity. For
instance, in SU(Nc)

T a
IJT a

KL =
1

2

[

δILδJK −
1

Nc
δIJδKL

]

. (3.13)

The other classical Lie groups have similar relations which allows one to rewrite operators with
generator strings in terms of the base set of operators. However, the relations are not necessarily
related in a group invariant way. In other words one would have to consider each set of (classical)
Lie groups separately. As we are interested in performing a calculation without reference to
particular groups we will allow for the possibility of these new operators being generated at each
loop order. Therefore, in this context we need to define extra dimension eight operators since
these will be generated in our one loop renormalization. They are

O841a = Tr (GµνGµνT aGσρG
σρT a)

O842a = Tr (GµνGσρT
aGσρGµνT a)

O843a = Tr (GµνGνσT aGσρG
ρµT a)

O844a = Tr (GµνGσρT
aGνσGρµT a) (3.14)

and their relation to (3.5) is readily determined for G = SU(Nc) using (3.13), for example.

One final consideration needs to be addressed and that is the classification of the dimension
six and eight operators which vanish on the equation of motion. This is for an important reason.
We will renormalize the operators by inserting them in a Green’s function where the external legs
are multiplied by the physical polarization vectors. However, not only will operators which we
have classified be generated but operators which vanish on the equation of motion. Not all such
operators have a zero Feynman rule when the external legs are put on-shell and therefore they
can occur with a non-zero pole with respect to the regularization. Hence, one has to classify
such operators and produce a basis of them. Once one has determined the set of operators
which a specific operator mixes into, the explicit mixing matrix of anomalous dimensions of
physical operators is determined by excluding the equation of motion operators. Given this
technical point we have also classified all dimension six and eight operators which involve the
equation of motion (2.10). In this construction we proceed as before writing down all possible
Lorentz structures and using the symmetries to remove dependent operators. However, unlike
previously we insist that the structures all contain a factor of the form DµGµν . This means
that for dimension six there are only two leg operators and dimension eight at most three leg
operators. As the procedure then parallels our previous construction we merely write down the
operators which form the basis for this sector. For dimension six we have

Tr (DσGνσDµGµν) , Tr (Gν
σDσDµGµν) (3.15)

and for dimension eight the following form the basis

Tr (GσρD
νGσρDµGµν) , Tr (Gν

σGσρDρD
µGµν) , Tr (DµGµνDρDσDρG

νσ)

Tr (DσDµGµνDρDνGσρ) , Tr (DσDµGµνDρD
σGνρ) , Tr (DσGνρD

σDρDµGµν)

Tr (GνσDσDρDρDµGµν) . (3.16)

It is worth noting that whilst these are the full set, some but not all vanish for all legs when put
in a Green’s function where the external legs are on-shell which therefore reduces the number
one has to consider for an operator to mix into.
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4 One loop renormalization.

Having established the sets of independent dimension six and eight operators which forms the
basis, we can now determine their anomalous dimensions. This is achieved by respecting the
standard renormalization theorems, [5, 6, 7]. In essence each operator is inserted in a Green’s
function with the same number of external legs as the operator itself. For gauge invariant oper-
ators this translates into the lowest number of legs in the operator since the covariant derivative
and gluon field strength involve terms with various numbers of legs. When the operator in in-
serted it has a non-zero external momentum flowing into it. If it is inserted at zero momentum
one cannot readily resolve the resulting set of operators it mixes into straightforwardly. Indeed
if one considers the simple example of the renormalization of (Ga

µν)2 as discussed in [7], an
incorrect value for the β-function would be obtained if one took the naive values for the renor-
malization which emerged. More detailed discussion of this issue has been given in [14, 15, 16].
Therefore, we will insert each operator with a non-zero momentum which means that whilst
each Green’s function has n gluon legs external, it is in fact an (n+1)-point function due to the
extra external momentum. For operators which are a total derivative this property is important.
The general structure of the Green’s function is illustrated in figure 1. In addition to inserting
at non-zero momentum we exclude the possibility of gauge variant operators emerging in the

Figure 1: Gluonic Green’s function with operator insertion.

mixing matrix by ensuring the external gluons are on-shell. Thus for the external gluon Ãa
µ(p)

in momentum space, we multiply the Green’s function by ǫµ(p), where ǫµ are the spin-1 physical
polarization vectors, and set pµpµ = 0 and ǫµ(p)pµ = 0 for each such gluon. Consequently, when
each operator is inserted the resulting output will involve a large number of terms involving
different combinations of the factors ǫiǫj, piǫj (i 6= j) and pipj (i 6= j) where 1 ≤ i,j ≤ n. To
resolve these into the operator basis we have computed the Feynman rules for each indepen-
dent operator with the same number of gluon legs as the original operator and multiplied by
ǫµ(p) subjecting them to the same restrictions as above. The full set with arbitrary coefficients
is compared with the operator output and the parameters fixed to cancel off all the one loop
divergences. Given that Yang-Mills is renormalizable and that we have a basis set of operators
then there is no redundancy or overconstraint in the computation of the parameters which are
therefore uniquely determined.

To find the pole structure of each Green’s function we have chosen to compute using dimen-
sional regularization where the space-time dimension is d = 4 − 2ǫ. The ultraviolet infinities
will emerge as simple poles in ǫ at one loop. However, since we are working with Green’s func-
tions which are at least 3-point, (in the case of a two leg operator insertion), we cannot use the
Mincer algorithm, [17], which applies only to 2-point propagator type integrals. Moreover, if
one uses massless propagators to compute, say, 4-point or higher Green’s functions then there
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is a danger of obtaining spurious infrared infinities which in dimensional regularization are in-
separable from the ultraviolet ones we seek. Instead we are forced to infrared regularize our
one loop integrals by introducing a mass m in the gluon propagator which acts as an infrared
cutoff. Recently, a similar approach has been used in [18, 19] to systematically compute anal-
ogous Green’s functions for dimension five operators in QCD. Therefore, we use for our gluon
propagator,

1

(k2 + m2)

[

ηµν − (1 − α)
kµkν

(k2 + m2)

]

(4.1)

where m appears naturally as an infrared regularization. Moreover, we use a covariant gauge
fixing with parameter α. To ensure that our renormalization procedure with such a (gauge
symmetry violating) propagator is valid, we have checked the full one loop renormalization
of Yang-Mills using (4.1) and a mass independent renormalization scheme [20, 21]. This is
important since the operators we are interested in are composite and therefore each field present
in the operator will be renormalized requiring the wave function renormalization. For example,

Tr (DµGo νσDµGνσ
o ) = ZAZDGDGTr (DµGνσDµGνσ) (4.2)

where Aµ
o = Z

1

2

AAµ and the subscript, o, denotes the bare quantity. In this expression ZA

is the usual gauge dependent gluon wave function renormalization and ZDGDG is related to
the gauge independent anomalous dimension of the particular operator which we seek, if we
ignore operator mixing for the moment. Therefore, by computing with a non-zero α we have
a check which is that the operator renormalization constants which emerge must be gauge
independent. Further, by first renormalizing Yang-Mills at one loop, this allows us to check that
the Feynman rules we use are consistent. This is important since given the nature of the operators
we are considering, whose Feynman rules can involve over four thousand terms∗, we have used
a symbolic manipulation approach. The Feynman diagrams are generated with Qgraf, [22],
and converted into a format recognizable by the language Form, [23]. We have written a
programme to convert the Qgraf output into a typical Feynman integral with propagators
and vertices substituted. The group theory for each graph is performed before the integrals are
evaluated. This is achieved by reducing each diaagram to the corresponding vacuum bubble
graph by systematically rewriting the propagators using the result, [18, 19],

1

((k − p)2 + m2)
=

1

(k2 + m2)
+

(2kp − p2)

(k2 + m2)((k − p)2 + m2)
. (4.3)

This relation is exact but for mass regularized propagators all terms bar the first involve an
external momentum in the numerator. If one continually repeats the substitution with the
termination rule that O(p4) terms, say, can be dropped due to Yang-Mills renormalizability,
then the procedure will stop leaving only one loop massive vacuum bubbles which are easily
calculated due to

∫

k

1

(k2 + m2)n
=

Γ(n − 1

2
d)

(4π)
1

2
dΓ(n)

(m2)
1

2
d−n (4.4)

for any n > 0 where
∫

k =
∫

ddk/(2π)d. We have implemented the above algorithm in Form,
[23]. Finally, for operators which mix under the renormalization there will be extra terms in
relations similar to (4.2). In general we have

Oo i = ZijOj (4.5)

∗This number represents the number of terms in the four and five legs parts of the operator O844. At one loop

the six leg part of this operator is not required for the anomalous dimension.
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which gives the mixing matrix of anomalous dimensions

γij(a) = µ
∂

∂µ
ln Zij . (4.6)

Having summarized our method and the general formalism, we now record our results. First,
for the two independent dimension six operators there is no mixing and we find that

γ61(a) = −
CA

2
a + O(a2)

γ62(a) = −
11

3
CAa + O(a2) (4.7)

where a = g2/(16π2) and the subscript on the anomalous dimension corresponds to the appro-
priate operator. The one loop expression for γ61(a) has been computed previously in [2, 8] and
we note that we get consistency with both calculations which were performed in the background
field gauge. For completeness we note that in both instances the dimension six operator which
was considered were multiplied by powers of a. Including the respective contributions from the
β-function allows one to compare the final expressions for the anomalous dimension of each
operator. The anomalous dimension for O62 is new and is the same as the one loop Yang-Mills
β-function, [24, 25].

For the dimension eight operators the full one loop mixing matrix of anomalous dimensions
partitions into blocks defined by the number of legs on the operator. Therefore, we list only the
entries in each of the blocks. First, for the single two leg operator

γ821,821(a) = −
11

3
CAa + O(a2) . (4.8)

For three legs, we find

γ831,831(a) = −
7

6
CAa + O(a2) , γ831,832(a) =

1

3
CAa + O(a2)

γ832,831(a) = O(a2) , γ832,832(a) = −
1

2
CAa + O(a2) (4.9)

so that this sub-matrix is triangular at this order. For the four leg dimension eight operators
the mixing matrix is further divided into sectors defined by the number of colour traces in the
original operator. Thus, for the single trace operators we have

γ841,841(a) = −

(

25

3
CF − 7CA

)

a + O(a2) , γ841,842(a) =
1

3
CAa + O(a2)

γ841,843(a) = − (16CF − 11CA) a + O(a2)

γ841,844(a) =

(

52

3
CF − 11CA

)

a + O(a2)

γ841,841a(a) =
23

3
CF a + O(a2) , γ841,842a(a) =

2

3
CF a + O(a2)

γ841,843a(a) = 16CF a + O(a2) , γ841,844a(a) = −
52

3
CF a + O(a2)

γ842,841(a) =

(

50

3
CF − 8CA

)

a + O(a2) , γ842,842(a) = −
4

3
CAa + O(a2)

γ842,843(a) = −

(

56

3
CF −

38

3
CA

)

a + O(a2)

γ842,844(a) = (16CF − 10CA) a + O(a2)
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γ842,841a(a) = −
2

3
CF a + O(a2) , γ842,842a(a) = − 16CF a + O(a2)

γ842,843a(a) = −
56

3
CF a + O(a2) , γ842,844a(a) = − 16CF a + O(a2)

γ843,841(a) = −

(

12CF −
47

6
CA

)

a + O(a2) , γ843,842(a) = O(a2)

γ843,843(a) =

(

34

3
CF − 6CA

)

a + O(a2) , γ843,844(a) =

(

14

3
CF − 2CA

)

a + O(a2)

γ843,841a(a) =
23

3
CF a + O(a2) , γ843,842a(a) =

13

3
CF a + O(a2)

γ843,843a(a) = −
34

3
CF a + O(a2) , γ843,844a(a) = −

14

3
CF a + O(a2)

γ844,841(a) =

(

6CF −
19

6
CA

)

a + O(a2) , γ844,842(a) = − CAa + O(a2)

γ844,843(a) = −

(

14

3
CF −

11

3
CA

)

a + O(a2)

γ844,844(a) = −

(

10

3
CF −

13

3
CA

)

a + O(a2)

γ844,841a(a) =
5

3
CF a + O(a2) , γ844,842a(a) = −

23

3
CF a + O(a2)

γ844,843a(a) =
14

3
CF a + O(a2) , γ844,844a(a) =

10

3
CF a + O(a2) . (4.10)

To simplify the expressions for the anomalous dimensions of the double colour trace operators
we have introduced the intermediate operators

O8410 = fabef cdeGa
µνGb νσGc

σρG
d ρµ

O8411 = fabef cdeGa
µνGb

σρG
c µνGd σρ (4.11)

which are not independent as they are related by

O842 = O841 − 1

2
T (R)O8411 , O844 = O843 + 1

2
T (R)O8410 (4.12)

where Tr
(

T aT b
)

= T (R)δab. Therefore, we have

γ845,845(a) =
22

3
CAa + O(a2) , γ845,846(a) = O(a2) , γ845,847(a) = O(a2)

γ845,848(a) = O(a2) , γ845,8410(a) = − 28CAa + O(a2)

γ845,8411(a) = − 2CAa + O(a2)

γ846,845(a) =
11

6
CAa + O(a2) , γ846,846(a) = O(a2) , γ846,847(a) = O(a2)

γ846,848(a) = O(a2) , γ846,8410(a) =
4

3
CAa + O(a2)

γ846,8411(a) =
11

3
CAa + O(a2)

γ847,845(a) = −
1

3
CAa + O(a2) , γ847,846(a) =

28

3
CAa + O(a2)

γ847,847(a) = −
2

3
CAa + O(a2) , γ847,848(a) = − 8CAa + O(a2)

γ847,8410(a) = −
34

3
CAa + O(a2) , γ847,8411(a) =

25

3
CAa + O(a2)

γ848,845(a) = −
1

6
CAa + O(a2) , γ848,846(a) =

14

3
CAa + O(a2)
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γ848,847(a) = − 4CAa + O(a2) , γ848,848(a) =
10

3
CAa + O(a2)

γ848,8410(a) = −
2

3
CAa + O(a2) , γ848,8411(a) =

11

3
CAa + O(a2) . (4.13)

Finally, for the total derivative operators we have

γ821t,821t(a) = γ822t,822t(a) = γ823t,823t(a) = −
11

3
CAa + O(a2) . (4.14)

Having completed the full one loop renormalization we are now in a position to examine
some of the results used in constructing the initial set of independent operators. For instance,
the operators which involve a total derivative were related via the identities (2.21) and (2.22).
By considering O62 these imply,

Tr (GνσDµDµGνσ) = ∂µTr (GνσDµGνσ) − Tr (DµGνσDµGνσ) (4.15)

which was used in [3] but with the first term on the right omitted. However, one can compute
the one loop renormalization of each operator in this result following the procedures we have
discussed previously. In particular each operator is inserted in a gluon 2-point function with
a non-zero momentum flowing through the operator. It turns out that the total derivative
operator of (4.15) has an anomalous dimension which is the same as O62 whilst their is no
renormalization of the other operator. This is consistent since it is related to operators which
vanish on the equation of motion or which involve higher legs and so has no two leg projection.
Therefore, it would appear that omitting total derivative operators in calculations could lead to
erroneous results.

5 Discussion.

We conclude with various remarks. First, we have computed the one loop anomalous dimensions
of a set of linearly independent gauge invariant dimension six and eight operators for an arbitrary

Lie group. Whilst we have reproduced results that had been derived previously we believe our
calculation is more comprehensive since the systematic classification of all operators has been
performed for the first time and operators which are total derivatives have been considered. Their
effect cannot be neglected since operators are renormalized at non-zero momentum. Further,
it transpires that there is an additional operator of dimension six which appears to have been
omitted from phenomenological considerations. Second, our study has laid the foundation for
extending the work in various directions. For instance, with the basis of independent physical
operators it ought to be possible to renormalize these operators at two loops in Yang-Mills theory.
Also, given the fact that several dimension eight operators at one loop have the same anomalous
dimensions it would be interesting to see if the degeneracy is lifted at this order. Moreover, since
there are more independent operators in the basis than would previously appear to have been
considered it would be worthwhile to extend both the dimension six and eight bases to QCD
when quark fields are included. Although at one loop previous analyses would seem to suggest
a lack of mixing between the quark and gluon sectors the extension to two loops would also be
worth pursuing since examination of the Feynman diagrams which are generated at two loops
suggest that there will be mixing. In a related context the operators we have focused on have
all been Lorentz scalars. Given the recent interest in CP -violation and the role dimension six
operators play in probing physics beyond the standard model, [26], it will be important to repeat
the one loop calculations for Lorentz pseudo-scalar operators. Indeed it would be interesting to
see if an independent analogue of O62 exists. We hope to return to these issues in future work.
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