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Abstract

We explore the decay of a vector meson to two pseudoscalar mesons on

the lattice with Nf = 2 flavours of sea quark. Although we are working

with quark masses that do not allow a physical decay, we show how the

transition rate can be evaluated from the amplitude for ρ→ ππ and from

the annihilation component of ππ → ππ. We explore the decay amplitude

for two different pion momenta and find consistent results. The coupling

strength we find is in agreement with experiment. We also find evidence

for a shift in the ρ mass caused by mixing with two pion states.

1 Introduction

The study of hadronic decays using lattice techniques has long been known to
be feasible in principle [1, 2]. Pioneering attempts were made to study glueball
decay [3] and ρ meson decay [4] in quenched QCD where no actual decay takes
place. This underlines the approach: one can study the mixing of hadronic
states on a lattice, provided that the energies of the states are close (see ref [5,
6] for quantitative analysis). Indeed string breaking has been explored this
way [7, 8] as has scalar meson mixing [5] and hybrid meson decay [6]. The
common feature of these examples is that there is little experimental knowledge
of the relevant transition matrix elements. Here we rectify this by studying ρ
meson decay. Another motivation is that non-leptonic weak decays (K → ππ
especially) are very important to understand from non-perturbative QCD and
a study of simpler purely hadronic decays will be a useful step in this direction.

On a lattice many features are different from in the real world. The most
significant for our purposes is that periodic spatial boundary conditions are
imposed. Note that the continuum limit in such a finite volume is defined and,
if the spatial extent is L, the momentum is discrete in units of 2π/L. This
implies that the two particle spectrum is discrete. For decay of a vector meson
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in the centre of mass, in a P-wave (actually the T−−

1 representation of the cubic
rotation group), the decay momentum must be non-zero and hence the lightest
ππ state will be with momentum 1 and -1 in these units. For the lattices we
will use, the energy levels neglecting interactions are illustrated in fig. 1. As has
been noted before [4], a closer match in energy can be achieved by considering
the decay of a moving vector meson, see also fig. 1, since this effectively allows
a relative momentum in the centre of mass of π/L. Note that in neither case is
the ρ meson unstable.

Figure 1: The energy spectrum (in lattice units with a ≈ 0.11 fm) on a lattice
of the ρ meson and two pion states considered here. Here k is the overall
momentum and the suffixes are the components (in units of 2π/L) of momentum
of the mesons. The energy values come from UKQCD fit [9] central values for
zero momentum states.

As an illustration, consider the transfer matrix with two states, a ρ meson
with energy m − ∆/2 and a ππ state with energy m + ∆/2 with a transition
amplitude x = 〈ρ|ππ〉:

e−ma

(

e−a∆/2 ax
ax ea∆/2

)

(1)
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b)a)

c) d)

Figure 2: The quark diagrams studied here, where (a) is ρ propagation, (b) is
ρ → ππ, (c) and (d) are the direct and ‘box’ components of ππ → ππ. The
valence quarks are shown by a double line and the quark-antiquark pair created
in the decay by a single line, although in this work both quarks are taken as
having the mass of the sea quark (approximately of strange quark mass). As
described in the text, we take the P-wave component by antisymmetrizing on
exchange of the final state pions. Note that the crossed quark diagram ( X )does
not contribute.

This transfer matrix has eigenvalues λ = e−Ea with

E ≈ m ± (∆2/4 + x2)1/2 (2)

which is larger than the unmixed splitting by a shift of ǫ = (∆2/4+x2)1/2−∆/2
up (assuming ∆ > 0) of the two pion state and down for the ρ state.

We expect the lightest state with the relevant quantum numbers (isospin
1, T−−

1 representation) to be dominantly created by a local (or fuzzed) quark
antiquark operator, as conventionally used to study the ρ meson. Likewise,
the lightest two pion state is expected to be dominantly created by a lattice
operator made of two pion operators. These statements are qualitative, and
Lüscher has emphasised [2] that a quantitative description can be based on a
careful measurement of the two-particle energy levels (using in principle any
lattice operators whatsoever) for different sizes L. To determine this energy
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shift accurately is a challenging task. As well as attempting to determine it
directly, we measure the mixing x = 〈ρ|ππ〉 which allows us to estimate the
energy shift from eq. 2, as well as to estimate the transition amplitude directly.

The essence of the determination of this transition amplitude is that when
the energies of the two hadronic states (ρ meson and ππ system with the same
quantum numbers) are close (specifically when t∆ ≪ 5) then the exponentials
in t corresponding to the two energy states conspire to give a linear dependence
(see ref.[5] for a discussion). The transition measured on a lattice then gives
access [5, 6] to the required matrix element since for large t (specifically (E′ −
E)t ≫ 1 with E′ − E the energy gap to the first excited state),

〈ρ(0)|π(t)π(t)〉
〈ρ(0)|ρ(t)〉1/2〈π(0)π(0)|π(t)π(t)〉1/2

= xt + const (3)

provided that the transition rate is not too large, namely xt ≪ 1.
A further cross check [5, 6] is also possible from the box diagram (see fig. 2d)

under similar conditions, since

〈π(0)π(0)|π(t)π(t)〉box

〈π(0)π(0)|π(t)π(t)〉direct

=
1

2
x2t2 + O(t) (4)

Here the notation π(t), ρ(t), etc refers to creating a state with those quantum
numbers from the vacuum at that time on the lattice. The denominators are
to normalise the states to unity. To relate the matrix element x to the usual
continuum large volume formalism, one has to relate this unit normalisation
condition to the usual relativistic one - see ref [2, 10, 11] for a full discussion.
One simple way to do this is by considering the formula for the decay width,
though we must emphasise that no actual decay takes place in our case because
of the unrealistic quark masses. Then first order perturbation theory (Fermi’s
Golden Rule) implies a transition rate Γ = 2π〈x2〉ρ(E) where the angle brackets
indicate that an average over spatial directions will be needed. For a decay
from the centre of mass with relative momentum k, the density of states ρ(E) =
L3kE/(8π2).

We use the mixing we establish on the lattice to evaluate the mass shift ǫ
of the two-particle state. This mass shift turns out to be too small to measure
accurately by a direct determination for the two-pion state, but we are able
determine this shift from a study of the ρ mass. From our estimate of the
energy shift, we are able to use Lüscher’s formalism to determine the ρ decay
parameters, obtaining results in agreement with the method described above.

Here we present our preliminary study of this problem. We establish methods
that give a good signal on a lattice and discuss the cross-checks that can be made.
Our analysis is restricted to mesons made of quarks of mass close to the strange
quark mass. We discuss the phenomenological implications. Overall we find
that lattice study of hadronic transitions is feasible and we find good agreement
between our determinations and the expectations from experiment. The vector
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meson transition to two pseudoscalar mesons is actually rather strong and our
methods will apply even better to weaker transitions, such as hybrid meson
decay [6].

2 Lattice results

We use the UKQCD data set with Nf = 2 flavours of sea quarks with a NP
clover fermionic action and Wilson glue at β = 5.2 and CSW = 2.0171, κsea =
κvalence = 0.1355, volume 163 × 32 and configurations separated by 40 trajecto-
ries [9]. This corresponds [9] to a quark mass for which mπ/mρ = 0.578+13

−19 which
is approximately the strange quark mass, with a lattice spacing a = 0.110(4)
fm.

We define ρ and ππ states as being in a given T−−

1 representation of the
cubic group in the centre of mass. We consider the ρ meson state as having
polarisation in a given direction (eg using q̄γzq to create it). We shall consider
ρ+ → π+π0 so that the pions are distinguishable and this has contributions from
two triangle quark diagrams (see fig. 2(b)) with uū and dd̄ creation respectively:
each with factors of 1/

√
2 from the π0. We normalise the P-wave ππ state with

relative momentum k in the centre of mass as [π+(k)π0(−k)−π+(k̄)π0(−k̄)]/
√

2
where k̄ has the z-component of k reversed. In the cases we will consider, k only
has a z-component, so k̄ = −k. In order to have a smaller relative momentum,
we also consider transitions from a ρ with nonzero momentum (where we take
the polarisation along the momentum direction). In that case we define x as
〈ρ1|π1π0 − π0π1〉/

√
2, also the z-axis is now privileged and we study the A−

2

representation of the symmetry group D4h.
For the three and four-point correlators, we use a stochastic method to

evaluate them from every space-time point on each lattice. Because of this
volume averaging, we are able to get results from only 10 lattice configurations.
The stochastic sources are Gaussian on one timeslice only [12] and extended
propagator techniques are used to evaluate 3 and 4-point correlators. This
study of the three and four-point correlators involved 2880 inversions which is
comparable to the number of inversions needed to evaluate propagators from one
space-time point on 208 configurations (as used for the two-point correlators [9]).

We find that the ππ → ππ P-wave amplitude is dominated by the product of
two two-point pion correlators (see fig. 2c) which is accurately known, whereas
the correlations between the pions and the box contributions are more noisy.
Thus we choose to normalise by the two-point pion correlators. Moreover, in
order to suppress contributions from excited states we normalise by the ground
state contributions to the (ρ and π) two-point correlators as determined by 2-
state fits to the UKQCD correlator data [9] (with local and fuzzed sources and
sinks) for a t-range of 4-12.

We present our results for three-point correlators from eq. 3 in fig. 3. Note
that the relevant ratio is quite large, becoming comparable to unity at larger
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t. The requirements of our method should be satisfied for 3 ≪ t ≪ 12 for
ρ1 → π1π0, since we require xt ≪ 1, ∆t ≪ 5 where a∆ = 0.14 and (E′−E)t ≫ 1
where E′ − E ≈ 0.3. The results in this case have quite small errors and do
show well the required linear dependence on t in this region. The curve is from
the two-state transfer matrix model with ax = 0.06. The departure at small t
is presumably due to excited state contributions to the three-point correlator.
These cannot produce a linear dependence on t, however, although they can
contribute a constant even at large t. Since such constant contributions from
excited states are allowed in principle, we show in fig. 4 the slope of the correlator
ratio of eq. 3. This is consistent with constant at ax = 0.06 in this region, for
both local and non-local ρ sources.

Figure 3: Normalised three and four particle correlators versus t/a. For the
three particle (ρ → ππ) case, the crosses(fancy crosses) are for relative momen-
tum 2π/L with local(fuzzed) operators while the diamonds(small diamonds)
are for π/L with local(fuzzed) ρ operators. The curves are with transition am-
plitudes ax = 0.12 (upper) and ax = 0.06 (lower) as described in the text.
For the P-wave annihilation component of the four particle pion correlator (the
‘box diagrams’) with pion relative momentum π/L, the results are shown by
squares(fancy squares) for local pion operators (one pion fuzzed). The model
curve is shown here for ax = 0.08.

As emphasised before [5], a cross check is available from the box diagram
(eq. 4). Note that we need to evaluate this for both the momentum direct
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(10 → 10) and crossed (10 → 01). These contributions are computationally
difficult to measure and we have chosen t values of 4, 6, 8 and 10 here, as
illustrated in fig. 3, again normalising by the ground state two-point correlators,
where a comparison is made with the two-state transfer matrix model with
ax = 0.08. Since excited state contributions can produce both constant and
linear terms for this quantity, we form the linear combination of three adjacent
t-values that eliminates them and so determine x by comparing with the two-
state transfer matrix model. The resulting values are shown in fig. 4 where they
are seen to be compatible with those from the three particle analysis.

Figure 4: The matrix element ax versus t/a for the transition ρ1 → π1π0. These
results come from finite differences to remove excited state contaminations in the
data of fig. 3. The squares and fancy-squares are from the three-point analysis
(with local and fuzzy ρ operator respectively) with a finite difference taken over
two t intervals. The diamond (small diamond) is from the Box diagram with
all local π operators (one fuzzed) evaluated by subtracting linear and constant
terms using t/a = 4 − 8, and 6 − 10.

Thus we conclude that we do have a consistent lattice determination of
ax = 0.06+2

−1 for this momentum combination. From this determination of the
transition amplitude, we can determine an energy shift, as given by eq. 2, as-
suming that only the two nearest levels mix. This yields a shift of aǫ = 0.022+17

−7

- up for the π1π0 state and down for the ρ1 state.
For the ρ meson, a general investigation of the energy shift due to two pion
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Figure 5: The ratio of two-point ρ correlators with momentum 2π/L and po-
larisation parallel (P) or perpendicular (A) to the momentum. These are for
sources/sinks as shown from UKQCD [9] configurations with Nf = 2 (upper)
and quenched (lower with similar quark masses at β = 5.93 and κ = 0.1339).
If there were no mixing between these ρ states and the nearby π0π1 state, the
ratio should be (E/m)2 (shown as a line) for the ground state and nearer to 1.0
for heavier excited states. Thus we would expect the ratio to reach a plateau at
t > 6 where the ground state dominates. Instead for the dynamical quark data,
we see a significantly higher ratio and the line shows the slope obtained from
the mass splitting ǫ we find in fitting. For quenched lattices the ratio just rises
to (E/m)2 (shown dotted) at larger t but does not cross it.

intermediate states is complicated by the need to regulate the sum over pion
momenta. Here we are interested primarily in shifts arising from significant mix-
ing with nearly degenerate energy levels in a finite volume. One signature [14]
of such a shift is that the cubic invariance will be broken: the energy of a ρ
meson with momentum 2π/L will be different when it is polarised in the mo-
mentum direction or perpendicular to it. We have explored this energy shift
directly from the study of 2-point ρ correlators with momentum 2π/L. When
the polarisation is along the momentum, there will be mixing with the nearby
π1π0 state for dynamical simulations (but not for the quenched case), while
when the polarisation is perpendicular there will be no such mixing. From fits
to the correlations (using 207 configurations with local and fuzzed sources at
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4 time-points and requiring the excited state mass to be the same for the two
fits to the t-range 4-12), we see a significant mass shift: namely the parallel ρ is
aǫ = 0.026(7) lighter than the perpendicular. We illustrate this in fig. 5. This
value is in excellent agreement with the mass shift we deduced above by mixing
arguments. We measured this mass shift for other sea quark masses, but have
a significant signal only for the case (κ = 0.1355) studied here. Note that this
directly observed mass-shift for the ρ state should not be present in a quenched
study and it is not, see fig. 5, so we have here one of the few observables that
directly come from the sea-quark contributions.

An even more useful result would be a direct determination of the energy
shift for the ππ state. The optimum way to determine the energies of the two
close levels would be by a joint fit (or variational analysis) of the matrix of ρ and
ππ correlations. For this we need the 4-point ππ correlator, for which the ratio
of contributions to the product of 2-point pion correlators at t = 8 is 1.07(4) for
the direct term, -0.04(4) for the momentum-swapped direct term and 0.35(6)
for the box terms. The relative error on the total 4-point correlator at t = 8 is
6%. From fitting the matrix of correlators for t from 8 to 12 with two states,
we form the combination orthogonal to the ground state, so selecting the first
excited (ie mainly ππ) state. From this we evaluate the ‘un-binding energy’,
the ππ energy difference from the sum of pion energies, finding aǫ = 0.02(2).
This value is in excellent agreement with our values obtained from the mixing
analysis and from the ρ mass shift. The error, however, is still extremely large
and a major increase in computational resource would be needed to determine
this energy shift directly with sufficient precision.

For the case when ρ0 → π1π1, the energies are further apart, the next excited
state is closer (see fig. 1) and the expected value of x is twice as big since it
increases like the relative momentum k for a P-wave decay. We estimate that
4 ≪ t ≪ 8 is required in this case. As shown in fig. 3, the values of the
three-point correlator obtained for this case are approximately twice as large,
but there is no longer a region showing linear behaviour. We show the result
from the two-state transfer matrix model with the expected larger energy gap
(a∆ = 0.47 in this case) and normalised by the unmixed π two-point correlators
(as we have used in the figures) and this gives the curve shown in the figure
for ax = 0.12. This value is close to twice the value obtained with half of the
relative momentum above, as expected. In this latter case, however, we do not
have substantial cross-checks and this is qualitative rather than quantitative.

The method we have used to determine x depends on eliminating excited
state contributions that appear at subleading powers of t. It is impossible to
exclude that a combination of such terms do modify our results significantly.
However, the cross checks that we have available are strong: we see consistent
values for x from local or fuzzed sources from 3-point correlators, from the box
contribution to the 4-point correlator and from the 3-point correlator with larger
momentum release. We also see consistent evidence for the energy shift of the
ρ meson with different polarisation directions.
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3 Phenomenology

We have evaluated the transition ρ → ππ at an unrealistic quark mass (approx-
imately the strange quark mass), in a finite volume (of size 16a ≈ 1.76fm) and
with Nf = 2 flavours of sea quark. Note that the lattice technique enables the
transition to be measured off the energy-shell.

For the ρ1 → π1π0 case, the relative momentum in the centre of mass (with
boost given by γ = 1.156 to the lattice frame) corresponds to ka = π/Lγ, hence
305 MeV/c which is close to the experimental momentum of 358 MeV/c for
ρ → ππ.

We have normalised the P-wave ππ state so that relative momentum k and k̄
are identified which reduces the density of states by 0.5. Since we have evaluated
x for momentum aligned with the polarisation, there will be an angular average
contributing a factor of 1/3. Hence we expect

Γ = x2L3kE/(24π) (5)

Our lattice determination is most precise for the transition ρ1 → π1π0 which
is not in the centre of mass. We proceed first by evaluating the decay width
in the lattice frame. We use the expression of eq. 5 with k = π/L, the relative
momentum between the pions in the lattice frame. There are additional factors
of γ from the phase space and from transforming the width to the centre of
mass frame. Then, defining a dimensionless coupling constant directly from
the reduced width as ḡ2 = ΓME/k3 (corresponding to g2/(6π) where g is the
conventional definition of the coupling constant), we find a value of ḡ = 1.40+47

−23

from ax = 0.06+2
−1, where we have used our best estimates of the centre of mass

values E and k as discussed below.
One can relate the lattice frame to centre of mass frame by considering

the boost of the two pions to the centre of mass (with K = 2π/L and γ =
(1−K2/E2)−1/2 = 1.156). Then in the centre of mass, the cubic spatial volume
is modified by L → γL in the direction of K (taken as the z-axis here). Moreover
in this extended cube, pion momenta k = 2πn/γL are allowed with nz half-
integral, coming from anti-periodic spatial boundary conditions in the relative
pion z-coordinate. Although this boost (by γ) reduces the two pion system to
the centre of mass, the ρ will not have zero momentum. This arises since energy
is not conserved in the lattice frame, as we measure t-directed correlations,
which implies that momentum is not conserved in the centre of mass. So our
estimate above is uncertain by factors of γ(ππ)/γ(ρ) = 1.156/1.264. As the
energy gap between the ρ and its decay products gets smaller, this problem
will decrease. The transition ρ0 → π1π1 is in the centre of mass, which avoids
the above problem, and ax = 0.12 corresponds to ḡ = 1.57 which is consistent,
although systematic errors in this case are large.

A more rigorous approach is to focus on the two pion energy as in the Lüscher
formalism [2]. This has been generalised [13] to non-zero overall momentum
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ḡ q(sea) q(val) method

1.40+47
−23 s s eqs.3,5

1.56+21
−13 s s ǫ(ρ), eq.6

1.39 n n ρ → ππ
1.44 n n/s K∗ → Kπ
1.52 n s φ → K̄K

1.46 − 1.74 s n ρK̄K Regge

Table 1: The vector-pseudoscalar-pseudoscalar coupling ḡ

by considering the boost to the centre of mass. Although we are unable to
determine the energy shift ǫ directly for the two-pion state, if we assume that
two levels only dominate the mixing, then we can use our results from the ρ
meson energy shift and from the shift deduced through mixing from our value of
x. Taking aǫ = 0.26(7) yields an energy shift in the centre of mass frame of ǫγ
(since E2

L = E2
cm + K2). Then the phase shift for ππ scattering in the centre of

mass is tan δ = −L2Eγǫ/48 to leading order in L−1 which yields a central value
tan δ = −0.109 (including the known higher order corrections [13] in L−1 gives
tan δ = −0.131). Now, for a nearby particle pole at E = mρ, one can describe
the phase shift δ by using the expression for elastic ππ scattering dominated by
this pole:

tan δ =
Γ(k)

2(mρ − E)
(6)

where the phase shift is negative because the pole is below the two body energy.
Here Γ(k) is the decay width parametrised as ḡ2k3/(Emρ) and evaluated with
decay momentum k and energy E. Using amρ = 0.508, Ea = 0.709 and ka =
0.198, this gives a coupling of ḡ = 1.56+21

−13 which is similar to the value from
our simple analysis above. Indeed in the limit of a weak transition and nearly
degenerate energy levels, the two approaches would give exactly the same result.

Experimental data exist for the decays ρ → ππ, K∗ → Kπ and φ → KK̄
which all involve the creation of a light quark pair. This gives us some infor-
mation on the dependence of the coupling strength on quark mass as shown in
table 1 (here the coupling ḡ is normalised to the quark diagrams present in ρ de-
cay). In the limit of a heavy spectator quark (as for B∗ → Bπ for example), ḡ2

is expected to increase like mQ which is the heavy quark mass. This implies that
the coupling does indeed increase with spectator quark mass. We also quote in
table 1 the evidence for the ρ → KK̄ coupling coming from Regge analyses [16]
which bears on the spectator quark dependence. It will be interesting to use
lattice studies to explore this further.
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4 Conclusions

The lattice measurement passes all cross-checks: three different estimates of the
transition amplitude x are presented, of which the three-point analysis of ρ1 →
π1π0 is the most comprehensive, yielding a coupling ḡ = 1.40+47

−23. The energy
shift of the ρ state with momentum 2π/L for different polarisation directions is
seen directly which is a powerful cross-check and yields a coupling ḡ = 1.60+21

−13.
These values are close to the experimental value (for light quark pair creation)
of 1.5.

Our result is in a finite volume and it would be appropriate to test it by
using a larger volume, consistent with having the same relative momentum:
this implies doubling the lattice spatial dimension in at least one direction.
Alternatively it is possible to explore ρ0 → π1/2π1/2 using antiperiodic spatial
boundary conditions [15] which could give a cross check. These avenues require
new dynamical quark simulations so are a major computational endeavour. A
further step needed would be to extract the continuum limit of this lattice
result. This needs finer lattice spacing and the same physical volume: so again
substantial resources. We note that we have used a NP clover formulation which
does remove order a corrections.

Even though our method can be affected by excited state contamination, the
many cross checks we have made are convincing evidence that they are under
control. The systematic errors are still very difficult to estimate since we have
not made a continuum extrapolation or explored increasing the lattice volume.
Moreover we have not extrapolated in sea quark mass, which is possibly the
biggest source of systematic error. Our result is for quark pair production with
quarks of mass approximately that of strange quarks.

Since we find a strong transition for ρ → ππ, in the sense that xt is big com-
pared to unity, we have to rely on a mixing model to estimate most accurately
the coupling strength. This would not be the case for a weaker decay. Even
though the mixing is strong, our estimate of the ππ energy shift is that it is 0.02
in lattice units, which will be very difficult to measure accurately.

We have shown that hadronic transitions can be explored in lattice QCD and
the result obtained is consistent with phenomenological values. This supports
previous studies of unknown phenomena (eg. hybrid meson decay) and will
allow studies of scalar meson decays which will help to untangle the confusing
experimental situation.
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