
ar
X

iv
:h

ep
-p

h/
03

08
23

1v
3 

 1
7 

N
ov

 2
00

3

LTH 587

hep-ph/0308231

Revised Version

Three loop soft running, benchmark points

and semi-perturbative unification

I. Jack, D.R.T. Jones1 and A.F. Kord

Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K.

We consider three-loop β-function corrections to the sparticle spectrum in the MSSM,

with particular emphasis on Snowmass Benchmark points. The three loop running has

little effect on the weakly interacting particle spectrum, but for the squark masses the

effect can be comparable to, or greater than, that of two loop running. We extend the

analysis to the semi-perturbative unification scenario, where the impact of the three loop

corrections becomes even more dramatic.
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1. Introduction

Softly broken supersymmetry remains a well motivated and popular playground for

Beyond the Standard Model practitioners. Calculations of sparticle spectra resulting from

given assumptions about the underlying theory have become increasingly refined, with

several public programs available that incorporate two-loop Renormalisation Group Equa-

tions (RGEs) and one-loop radiative corrections. For a recent comparison of the output of

some of these programs see the paper by Allanach, Kraml and Porod (AKP) [1]. Two loop

corrections are also available to, for example, the effective potential [2]. One area where

there has been considerable progress in the last few years is in the calculation of the RGE

β-functions. For an arbitrary supersymmetric theory the chiral supermultiplet anomalous

dimension γ is known to three loops[3] and the gauge β-function(s) βg to four loops [4].

For the MSSM, both βgi
and the various γs were given through three loops in Ref. [5].

The β-functions in a general theory and the MSSM for the “standard ” soft breaking

terms were given to two loops in Ref. [6] and for the “non-standard” terms also to two

loops in Ref. [7]. Recently, however, it has been realised[8] –[10] that in the case of the

“standard” terms it is possible to express the associated β-functions exactly in terms of

simple differential operators acting on βgi
and γ. It is therefore a straightforward matter

to derive the three-loop “standard” soft β-functions for the MSSM and variations thereof.

In this paper we present three-loop running results for the MSSM with the addition of n5

and n10 sets of SU5 5(5) and 10(10) representations respectively. A motive for grouping

the additional matter in this way is that complete SU5 representations do not (at one loop)

change the prediction of sin2 θW (or alternatively of g2
3(MZ)) that follows from imposing

g1,2,3 gauge unification. Also unchanged at one loop is the gauge unification scale, MX ;

but at higher loops this scale increases and can approach the string scale. (For a recent

account of unification at the string scale via the addition of incomplete SU5 multiplets,

see Ref. [11].)

At three loops each soft β-function has many terms and some of the coefficients are

quite large; given this it is worthwhile checking whether perturbation theory remains good

in the MSSM. It is generally believed that the perturbation series for QFT β-functions are

asymptotic in nature. The exact βg in the NSVZ scheme [12] for a pure (no matter) N = 1

theory is clearly an exception, but in the presence of matter the perturbation series for γ

(and hence also the one for βg) is probably asymptotic (for a discussion see Ref. [13]). It

is interesting that even for n5 = n10 = 0 we find that, for the squark masses, three loop
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running corrections are typically larger than the two loop ones. We show explicitly how

the three loop corrections affect the spectrum for some of the Snowmass benchmark points

(SPS) [14].

Another motive for the calculation and in particular for extending it to n5, n10 6= 0

is that it enables us to explore the phenomenon of “semi-perturbative unification” as de-

scribed by Kolda and March-Russell (KMR)[15]. In this scenario, the gauge couplings

increase at high energies but do not quite reach a Landau pole at gauge unification (con-

trasting with the non-perturbative unification of Maiani et al[16], where the Landau pole

occurs at MX). It is then possible to argue that there is a regime where perturbation

theory remains reliable, but the resulting physics differs markedly from that obtained in

the MSSM case.2

Our calculations improve on those of KMR by including one loop threshold corrections

and the complete three loop running corrections; we check that (for n5 = n10 = 0) our

results are consistent with those presented for the SPS points in Ref. [1] and Ref. [18]. While

we provide more precise results, we support the conclusions of KMR by demonstrating that

n5, n10 6= 0 can lead to changes which are in some cases non-negligible, but are consistent

with perturbation theory (modulo issues associated with the squark masses which we will

discuss later), and can be readily distinguished from the MSSM.

2. The Soft Beta functions

The procedure for calculating the soft β functions from βgi
and γ is described in

Ref. [8]. The only subtlety relates to the X-function which arises in the soft scalar mass

β-function; expressions for the leading and sub-leading contributions to this appear in

Ref. [9]. Armed with these results it is straightforward to calculate the three-loop MSSM

soft β-functions from the three-loop expressions for the βgi
, γ given in Ref. [5]. We have

generalised this whole calculation to n5, n10 6= 0. The resulting expressions are very

unwieldy; as an example we give the one, two and three loop results for βm2
Qt

, in the

approximation that we retain only g3 and the top quark Yukawa coupling λt (in what

follows we denote the third generation squarks as Qt, t
c, bc, the first or second generation

squarks as Qu, uc, dc, and we suppress 16π2 loop factors. ):

2 For other related work on unification at strong coupling see Ref. [17]
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β
(1)

m2
Qt

= 2λ2
t (Σt + A2

t ) − 8( 1
60g2

1M
2
1 + 3

4g2
2M

2
2 + 4

3g2
3M

2
3 ) (2.1a)

β
(2)

m2
Qt

= −20λ4
t (Σt + 2A2

t ) + 16g4
3M

2
3 (n5 + 3n10 −

8
3 )

+ 16
3 g4

3(2m2
Qt

+ m2
tc + m2

bc + (n10 + 2)(m2
uc + 2m2

Qu
) + (n5 + 2)m2

dc) (2.1b)

β
(3)

m2
Qt

= [(1280k + 20512
9 + 16n2

5 + ( 6224
9 + 320

3 k)(n5 + 3n10)

+ 96n10n5 + 144n2
10)M

2
3 + ( 320

9 − 16
3 (n5 + 3n10))(m

2
tc + m2

bc + 2m2
Qt

)

+ (2m2
Qu

+ m2
uc)( 640

9
− 32

3
n5 + 32

9
n10 −

16
3

n5n10 − 16n2
10)

+ m2
dc( 640

9 + 224
9 n5 − 32n10 − 16n5n10 −

16
3 n2

5)]g
6
3

− [(288 + 544
3

k + 48(n5 + 3n10))M
2
3 − (192 + 1088

9
k + 32(n5 + 3n10))AtM3

+ ( 272
9 k + 176

3 + 8(n5 + 3n10))(Σt + A2
t )]λ

2
t g

4
3

+ ( 160
3 + 32k)

[

M2
3 − 2AtM3 + Σt + 2A2

t )
]

λ4
t g

2
3 + (6k + 90)(Σt + 3A2

t )λ
6
t , (2.1c)

where k = 6ζ(3), and Σt = m2
Qt

+m2
2+m2

tc . For this special case, and also with n5 = n10 =

0, the three loop result, Eq. (2.1c), was given in Ref. [19], except that in the corresponding

expressions in this reference the squark masses of different generations are not clearly

distinguished (as they must be since the third generation evolves differently from the other

two). Complete results for the three loop β-functions including all three gauge couplings

and ng × ng Yukawa matrices may be obtained by application to the authors.

Note that in our analysis we do not include “tadpole” contributions, corresponding

to renormalisation of the Fayet-Iliopoulos (FI) D-term. These contributions are not ex-

pressible exactly in terms of βgi
, γ; for a discussion, and three loop results for the MSSM,

see Ref. [20]. For universal boundary conditions, the FI term is very small at low energies

if it is zero at gauge unification; in this paper we restrict ourselves to universal boundary

conditions and ignore these contributions.

3. The Running Analysis

In this section we examine the effect of the three loop corrections on the standard run-

ning analysis. We will focus on the standard treatment with universal boundary conditions

at gauge unification, often termed CMSSM or MSUGRA. Thus we assume that at MX

we have universal soft scalar masses (m0), gaugino masses (m1
2
) and A-parameters (A),

and work in the third-generation-only Yukawa coupling approximation. This is for ease
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of comparison with existing results rather than because we find the scenario particularly

compelling. In the MSSM the corrections to the dimensionless coupling running analysis

due to two and three loop corrections are comparatively small[5]. As emphasised by KMR,

however, this becomes less true for n5, n10 6= 0. In particular, for n5 + 3n10 = 6, βg3
= 0

at one loop, so that we need to consider at least two loop corrections, and also three loops

to verify that we remain within the perturbative domain.

We will present results as a function of n10 (for n5 = 0); the dependence of physical

quantities on n5 (for n10 = 0) is qualitatively similar though not identical. As remarked

by KMR, the mass scale of these additional multiplets being unknown it makes sense to

parametrise their effects by taking n5, n10 to be continuous variables.

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

α
1
,α

2
,α

3
 vs τ for SPS1a

τ

α 1,α
2,α

3

Fig.1: Gauge coupling unification for n10 = 1.7. Solid, dashed, and

dotted lines correspond to α1, α2, α3 respectively.

In Fig. 1 we show the evolution of the gauge couplings αi = g2
i /(4π) for n10 = 1.7,

using three loop β-functions for all couplings. The couplings are plotted against τ =
1
2π

ln(Q/MZ); evidently we are still in the perturbative regime. The input parameters at
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MZ correspond to a typical supersymmetric mass spectrum; specifically, the Benchmark

point SPS1a, the details of which will be given later. We adjust input parameters according

to the supersymmetric spectrum in order to account for threshold corrections in the manner

of Ref. [21] 3, and run up from MZ using the full supersymmetric β-functions; thus the

input values for the gauge couplings depend on the sparticle spectrum, and are determined

iteratively. We have set n10 = 1.7 because around this value the electroweak vacuum

fails for the SPS1a input parameters; at this value it is interesting that (see Fig. 1) the

(small) one-loop contribution to βα3
is almost precisely cancelled by the two and three-

loop ones. As already mentioned, if we have gauge coupling unification then this (and

the scale at which it occurs) is unaffected by taking n5, n10 6= 0 in the one loop running

approximation. This ceases to be true for two and three loop running, and we must

assume the existence of quite large GUT-scale threshold corrections to ensure unification.

The unification scale corresponding to Fig. 1 (defined as where α1 and α2 meet) is MU ≈

1 × 1017GeV, significantly higher than in the MSSM.

Turning to the soft parameters, note that there are some large coefficients in the ex-

pression for β
(3)

m2
Qt

in Eq. (2.1c); the coefficient of the M2
3 g6

3 term, for example is O(104),

even in the MSSM when n5 = n10 = 0. For weakly-interacting particles and the gluinos,

the three loop effects are quite small for zero or small n5, n10; but for the squark masses

the three loop β-function coefficients are (at MZ) typically (while smaller than the corre-

sponding 1-loop coefficients) larger than the corresponding two loop coefficients (even at

n5,10 = 0) if m1
2

> m0, as will be so, in fact, in the cases we shall present. One might well

be tempted to interpret this as evidence for the asymptotic nature of the β-function series,

as we mentioned in the Introduction. We will see the effects of this in the next section.

As mentioned above, we adjust the input dimensionless parameters to accommodate

threshold corrections[21]. We also incorporate the one-loop radiative corrections from this

reference. For the input top mass at the weak scale we use[22]:

mt(Q) = mtpole

[

1 −
α3

3π
(5 − 3L) − α2

3

(

0.538 −
43L

24π2
+

3L2

8π2

)

+ O(α3
3) + electroweak, sparticle contributions

]

(3.1)

3 In the first line of Eq. 37 of Ref. [21], the first term in the square bracket should read

−(m2

t̃1
+ m2

t̃2
)B0(mt̃2

, m
t̃1

, 0): i.e. it should have a minus sign. The corresponding exact result in

Eq. D49 is correct, however.
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where L = ln[mt(Q)2/Q2]. This formula is identical to one from the up-to-date version of

Allanach et al[1].

For definiteness we analyse in detail particular SPS benchmark points[14], and verify

that our results (for n5 = n10 = 0) are in accord with those obtained with existing

computational tools[1], [18].

3.1. Benchmark point SPS 1a

This point is a “typical” point in MSUGRA parameter space, with m0 = 100GeV,

m1
2

= 250GeV, A0 = −100GeV, tan β = 10 and µ > 0. In Table 1 we compare our results

for a selection of sparticle masses (at n5 = n10 = 0) with the spread of results quoted in

AKP (note our convention that the predominantly R-handed top squark is t̃2).

mass 1loop 2loops 3loops AKP

g̃ 630 615 612 594 − 626

t̃2 404 403 395 379 − 410

ũL 571 563 555 536 − 570

ũR 551 547 538 520 − 569

LSP 105 97 97 96.4 − 97.6

Table 1: Sparticle masses (in GeV) for the SPS1a point

We would expect our two loop results to correspond most closely to AKP and we

see that they are indeed consistent. The effect of inclusion of three loop running is never

greater than 2%; note, however, that the shift caused by three loop running effects is

comparable for ũL and larger for t̃2, ũR than that produced by two loop running effects.

In Fig. 2 we plot the ratio of the light stop mass to the gluino mass as a function of n10

(for n5 = 0), and we see that both two and three loop effects increase dramatically as n10

increases. (NB the increase in the squark/gluino mass ratio with n5,10 observed by KMR

applies to the squarks of the first two generations).

In Fig. 3 we plot the ratio of the LSP mass to the gluino mass as a function of n10 (for

n5 = 0). Here we see that the impact of the three loop running corrections is less marked

but still appreciable at large n10.
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Fig.2: Plot of the light stop/gluino mass ratio against n10 for SPS1a.

Solid, dashed and dotted lines correspond to one, two and three loop

running respectively.
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Fig.3: Plot of the LSP/gluino mass ratio against n10 for SPS1a. Solid,

dashed and dotted lines correspond to one, two and three loop running

respectively.
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3.2. Benchmark point SPS 5

This point differs from the previous one in having a large value of the A-parameter:

with m0 = 150GeV, m1
2

= 300GeV, A0 = −1TeV, tanβ = 5 and µ > 0. The contributions

of µ, A0 to the off-diagonal term in the stop mass matrix have the same sign, and the

magnitude of A0 is large, resulting in a light stop. For this point we obtain in the MSSM

(with n5 = n10 = 0) the results shown in Table 2.

mass 1loop 2loops 3loops AKP

g̃ 745 731 729 705 − 730

t̃2 236 250 231 232 − 248

ũL 682 674 666 642 − 681

ũR 657 655 645 622 − 681

LSP 128 120 120 118.7 − 121.1

Table 2: Sparticle masses (in GeV) for the SPS5 point

Once again the inclusion of three loop effects causes mass shifts of less than 2%, except

for the light stop where there is an effect of about 8%. The light stop mass comes from a

2× 2 matrix with large off-diagonal entries; the large three loop shift is caused essentially

by the changes in all the entries due to the comparatively large contributions to the three

loop soft β-functions, as we described earlier. The mass of the light stop is also very

sensitive indeed to the input mt(MZ), which in turn depends on the sparticle spectrum

and the input top pole mass (which we have taken to be 174.3GeV). However (for a given

mtpole
), mt(MZ) changes very little when we include the 3 loop corrections. Note that

our two loop result is slightly above the range obtained by AKP. It is also very sensitive

to n5, n10; in Figure 4 we again plot the light stop/gluino mass ratio against n10: this

time the electroweak vacuum fails for n10 ≈ 0.3. Remarkably, the three loop and two loop

corrections cancel almost exactly near n10 = 0, while at n10 ∼ 0.3 the two loop corrections

are rather small.

9



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Light stop/gluino mass ratio vs n
10

 for SPS5

n
10

Li
gh

t s
to

p/
gl

ui
no

 m
as

s 
ra

tio

Fig.4: Plot of the light stop/gluino mass ratio against n10 for SPS5.

Solid, dashed and dotted lines correspond to one, two and three loop

running respectively.
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Fig.5: Plot of the LSP/gluino mass ratio against n10 for SPS5. Solid,

dashed and dotted lines correspond to one, two and three loop running

respectively.
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In Fig. 5 we plot the ratio of the LSP mass to the gluino mass for SPS5 as a function

of n10 (for n5 = 0). Here we see that the impact of the three loop running corrections is

less marked but still appreciable as n10 increases.

4. Conclusions

We have extended typical detailed running coupling analyses for a selection of MSSM

SPS benchmark points to incorporate three loop β-function corrections for the running

masses and couplings. Generally speaking the effect of the three loop running corrections

is at most 2% and of the same size or smaller than that of the two loop corrections,

except for squark masses where it can be larger; simply because the three-loop β-function

coefficients are larger than the two-loop ones. For the light stop mass for the SPS5 point,

we see an 8% effect; this happens because this mass results from the diagonalisation of a

matrix with large off diagonal entries which all change as described above. We have also

performed the same analysis for the MSSM extended to incorporate additional matter in

the form of SU5 5 and 10 representations. As the amount of such matter is increased the

effect of two and three loop corrections becomes more dramatic, as the one-loop β-function

for α3 decreases.

Given some detail of the sparticle spectrum, it will be comparatively easy to dis-

tinguish, for example, the CMSSM and AMSB scenarios; however in the context of the

former, disentangling the possible impact of additional matter and the effect of radiative

corrections will be more difficult.

One may expect in general that two loop threshold/pole mass corrections will be

competitive with the three loop running corrections that we have described, and so for

accurate predictions one should include both. At this level one is also sensitive to the

experimental uncertainty in mt (for the light stop sometimes very sensitive, as we have

described) and the strong coupling α3(MZ). It is feasible that by the time sparticles are

discovered complete two loop threshold corrections will be available, and that both these

uncertainties will also be reduced, so that significantly more accurate sparticle spectrum

predictions will be possible. It appears, however, from the apparently asymptotic nature

of the squark mass β-functions that squark mass predictions with an accuracy greater than

around 2% will not be possible using perturbation theory.
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