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We calculate the non-forward quark matrix elements for operators with two covariant derivatives in one-loop
lattice perturbation theory using Wilson fermions. These matrix elements are needed in the renormalisation
of the second moment of generalised parton distributions measured in lattice QCD. For some commonly used
representations of the hypercubic group we determine the sets of all mixing operators and find the matrices of
mixing and renormalisation factors.

In recent years generalised parton distributions
(GPDs) have been intensively studied both in
experiments and theoretically [1] to extend our
knowledge of hadron structure. However, the di-
rect experimental access to GPDs beyond the lim-
iting cases of distribution functions and simple
form factors is limited. Therefore, it is indispens-
able to obtain complementary information from
lattice QCD calculations.

On the lattice we can compute matrix ele-
ments of local composite operators, and mo-
ments of GPDs can be related to such matrix el-
ements taken between states of different nucleon
momenta and spins. First results for moments
of GPDs have been published recently [2], see
also [3], and soon results from improved calcu-
lations should become available.

In order to relate lattice measurements to con-
tinuum quantities we have to investigate the
renormalisation and mixing of the operators in-
volved. When non-forward matrix elements are
studied, new features arise, which make a recon-
sideration of the renormalisation problem neces-
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sary. In particular, the mixing with “external
ordinary derivatives”, i.e. with operators of the
form ∂µ∂ν · · · (ψ̄ · · ·ψ), needs to be taken into ac-
count. On the lattice the mixing patterns are
usually more complicated than in the continuum,
because covariance under the hypercubic group
H(4) imposes less stringent restrictions thanO(4)
covariance. The necessity to consider also exter-
nal ordinary derivatives enlarges the set of con-
tributing operators even further. These compli-
cations do not yet arise for operators with zero
or one covariant derivative. Hence for these mo-
ments the renormalisation factors can be taken
over from the forward case.

Here we investigate the renormalisation prob-
lem for operators with two covariant derivatives
sandwiched between off-shell quark states at dif-
ferent momenta within the framework of one-loop
lattice perturbation theory and report on first re-
sults [4]. We use the Wilson plaquette gauge ac-
tion with Wilson fermions and perform the cal-
culations in Feynman gauge.

Let us first discuss renormalisation and mixing
in general. Denote by Γj(p

′, p, µ, gR, ǫ) (with j =
1, 2, . . . , N) the dimensionally regularised ampu-
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tated vertex functions of N mixing operators Oj ,
p and p′ are the quark momenta. The correspond-
ing Born terms are denoted by ΓB

j (p′, p). The
renormalised coupling constant gR is related to
the bare coupling g by g2

R = µ−2ǫg2
(

1 +O(g2)
)

,
where µ is the renormalisation scale. In the
MS scheme the corresponding renormalised ver-
tex functions are given by

ΓRj (p′, p, µ, gR) = ΓB
j (p′, p) + g2

R

[

N
∑

k=1

(−γVjk)

× ln
(p′ + p)2

4µ2
ΓB
k (p′, p) + fj(p

′, p)
]

,

(1)

where fj is the finite one-loop contribution. All
O(g4

R) contributions are neglected.
In the absence of mixing with lower-

dimensional operators the vertex functions reg-
ularised on a lattice with lattice spacing a are

ΓLj (p′, p, a, gR) = ΓB
j (p′, p) + g2

R

[

N
∑

k=1

(−γVjk)

× ln
(

1

4
a2(p′ + p)2

)

ΓB
k (p′, p) + fLj (p′, p)

]

.

(2)

The relation between ΓLk and the MS renor-
malised vertex functions ΓRj is given by

ΓRj =

N
∑

k=1

(

δjk + g2
Rζjk

)

ΓLk , (3)

where the matrix ζ is found to be

ζjk = γVjk ln
(

a2µ2
)

− cVjk (4)

with the constants cVjk determined from

fLj (p′, p) − fj(p
′, p) =

N
∑

k=1

cVjkΓ
B
k (p′, p) . (5)

Mixing with lower-dimensional operators leads to
the appearance of additional terms on the r.h.s.
of Eq. (2), for details see [4].

The operators potentially contributing to the
mixing have to transform identically according to
a given irreducible representation of O(4) or H(4)
and should have the same charge conjugation par-
ity.

In terms of the quark wave function renormali-
sation constant Zψ and the matrix Zjk of mixing
and renormalisation coefficients, the connection
between the bare lattice vertex functions and the

MS renormalised vertex functions can be written
as

ΓRj = Z−1
ψ

N
∑

k=1

ZjkΓ
L
k . (6)

Using the known Zψ,

Zψ = 1 −
g2
R CF
16π2

[

ln
(

a2µ2
)

+ 1 + σL
]

(7)

with σL = 11.8524 for Wilson fermions, we find

Zjk = δjk −
g2
R CF
16π2

[

γjk log(a2µ2) + cjk
]

(8)

with γjk = δjk− (16π2/CF )γVjk and cjk = δjk(1+

σL) + (16π2/CF )cVjk.
The one-loop computation has been performed

symbolically, adopting and significantly extend-
ing a Mathematica program package developed
originally for the case of moments of structure
functions using Wilson [5], clover [6] and over-
lap fermions [7]. Using that approach we have
full analytic control over pole cancellation. The
Lorentz index structure of the matrix elements is
left completely free, so that we are able to con-
struct all representations of H(4) for the second
moments in the non-forward case.

We have to deal with operators of the following

general types (
↔

D=
→

D −
←

D):

O
DD
µνω = (−1/4) ψ̄γµ

↔

Dν

↔

Dω ψ ,

O
∂D
µνω = (−1/4) ∂ν

(

ψ̄γµ
↔

Dω ψ
)

,

O
∂∂
µνω = (−1/4) ∂ν∂ω

(

ψ̄γµψ
)

,

O
∂
µνω = (−i/2) ∂ω

(

ψ̄[γµ, γν ]ψ
)

(9)

and similarly for operators with γµγ5. In lattice
momentum space we realise the operators with
non-zero momentum transfer q (showing as an ex-
ample an operator with one covariant derivative)
through
(

ψ̄
↔

Dµ ψ
)

(q) =
1

a

∑

x

eiq·(x+aµ̂/2)×

[

ψ̄(x)Ux,µψ(x+ aµ̂) − ψ̄(x+ aµ̂)U †x,µψ(x)
]

.

(10)

Eq. (10) basically defines the Feynman rules in
lattice perturbation theory.

Consider now the following operator:

O1 = O
DD
{114} −

1

2

(

O
DD
{224} + O

DD
{334}

)

(11)
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cjk =

















−12.1274 1.4913 0.3685 −0.4160 0.0156 0.1498
0 20.6178 0 0 0 0

3.3060 −8.01456 −14.8516 4.3023 −0.9285 0.7380
0 0 0 20.6178 0 0
0 3.2644 0 0 0.3501 0.0149
0 3.2644 0 0 0.0050 0.3600

















Table 1
The finite mixing part for the operators O1, . . . ,O6 in (11), (13).

with charge conjugation parity C = −1 and cor-

responding to the representation τ
(8)
1 ofH(4). We

use the notations [8]:

O{ν1ν2ν3} = (1/6) (Oν1ν2ν3 + Oν1ν3ν2

+Oν2ν1ν3 + Oν2ν3ν1 + Oν3ν1ν2 + Oν3ν2ν1) ,
O‖ν1ν2ν3‖ = Oν1ν2ν3 −Oν1ν3ν2 + Oν3ν1ν2

−Oν3ν2ν1 − 2Oν2ν3ν1 + 2Oν2ν1ν3 ,
O〈〈ν1ν2ν3〉〉 = Oν1ν2ν3 + Oν1ν3ν2

−Oν3ν1ν2 −Oν3ν2ν1 .

(12)

The following operators (transforming identi-
cally) mix in one-loop order with O1:

O2 = O
∂∂
{114} −

(

O
∂∂
{224} + O

∂∂
{334}

)

/2 ,

O3 = O
DD
〈〈114〉〉 −

(

O
DD
〈〈224〉〉 + O

DD
〈〈334〉〉

)

/2 ,

O4 = O
∂∂
〈〈114〉〉 −

(

O
∂∂
〈〈224〉〉 + O

∂∂
〈〈334〉〉

)

/2 ,

O5 = O
5,∂D
||213|| , O6 = O

5,∂D
〈〈213〉〉

(13)

together with the lower-dimensional operator

O8 = O
∂
411 −

(

O
∂
422 + O

∂
433

)

/2 . (14)

An additional operator with the same symmetry
properties does not contribute in the one-loop ap-
proximation. The anomalous dimension matrix is
obtained as

γjk =

















25
6 −

5
6 0 0 0 0

0 0 0 0 0 0
0 0 7

6 −
5
6 1 −

3
2

0 0 0 0 0 0
0 0 0 0 2 −2
0 0 0 0 −

2
3

2
3

















(15)

and the finite mixing matrix part is given in Ta-
ble 1. There is an additional mixing of O1 with
the lower-dimensional operator O8 (in Born ap-
proximation):

O1

∣

∣

∣

∣

1

a
−part

=
g2
R CF
16π2

(−0.5177)
1

a
O

B
8 . (16)

This mixing leads to a contribution which poten-
tially diverges like 1/a in the continuum limit.
The operator O8 has to be subtracted non-
perturbatively from the matrix element of the op-
erator O1 which might be a difficult task in sim-
ulations.

In summary, we have presented first results for
the one-loop quark matrix elements of operators
needed for the second moments of GPDs. This
allows us to determine the mixing matrix of Z-
factors in the MS-scheme for operators commonly
used in simulations. In the case of the represen-

tation τ
(8)
1 , a sizeable mixing with operators of

the same dimension appears. Moreover, mixing
with a lower-dimensional operator has to be taken
into account. Additional results, in particular for
transversity operators, will be presented in [4].

This work has been supported by DFG un-
der contract FOR 465 (Forschergruppe Gitter-
Hadronen-Phänomenologie).
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