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We present here the latest results from the QCDSF collaboration for (moments of) structure functions and
generalized form factors in full QCD with Nf = 2 O(a)-improved Wilson fermions based on simulations closer to
the chiral and continuum limit.

1. INTRODUCTION

Understanding the internal structure of hadrons
in terms of quarks and gluons (partons), and in
particular how these provide the binding and spin
of the nucleon, is one of the outstanding problems
in particle physics.

Matrix elements of the light cone operator

O(x) =

∫
dλ

4π
eiλx q(−

λ

2
n) 6n (1)

Pe
−ig

∫ λ/2

−λ/2
dα n·A(αn)

q(
λ

2
n)

measured in deep-inelastic scattering experiments
provide a wealth of information regarding the
quark and gluon content of the nucleon.

Expanding O(x) in terms of local operators
via the operator product expansion generates the
tower of twist-2 operators

O{µ1···µn} = q i γ{µ1

↔

D
µ2

· · ·
↔

D
µn}

q , (2)
∗Talks presented by D. Pleiter and J. Zanotti

where
↔

D= 1
2 (
−→
D −

←−
D) and {· · · } indicates sym-

metrization of indices and removal of traces. The
(non-)forward matrix elements of Eq. (2) specify
the (n−1)th moments of the (generalized) parton
distributions.

Parton distributions measure the probability
|ψ(x)|2 of finding a parton with fractional longi-
tudinal momentum x in the fast moving nucleon
at a given transverse resolution 1/Q. General-
ized parton distributions (GPDs) [1,2] describe
the coherence of two different hadron wave func-
tions ψ†(x+ ξ/2)ψ(x− ξ/2), one where the par-
ton carries fractional momentum x+ ξ/2 and one
where this fraction is x− ξ/2, from which further
information on the transverse distribution of par-
tons can be drawn [3,4]. In the limit where the
momentum transfer ∆ to the nucleon is purely
transverse, i.e. ∆ = (0, ~∆⊥) and ξ = 0, GPDs
regain a probabilistic interpretation [4]. In the
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forward limit (∆ = 0), these distributions reduce
to the Feynman parton distributions.

Moments of GPDs are amenable to lattice cal-
culations [5,6,7]. Thus, they offer a promising
way to link phenomenological observations to first
principle theoretical considerations. In this talk
we report on recent unquenched results obtained
by the QCDSF collaboration.

2. SIMULATION DETAILS

We simulate with Nf = 2 dynamical config-
urations generated with Wilson glue and non-
perturbatively O(a) improved Wilson fermions.
For five different values β = 5.20, 5.25, 5.26,
5.29, 5.40 and up to three different kappa values
per beta we have in collaboration with UKQCD
generated O(2000 − 8000) trajectories. Lattice
spacings and spatial volumes vary between 0.075-
0.123 fm and (1.5-2.2 fm)3 respectively.

Correlation functions are calculated on config-
urations taken at a distance of 5-10 trajecto-
ries using 8-4 different locations of the fermion
source. We use binning to obtain an effective dis-
tance of 20 trajectories. The size of the bins has
little effect on the error, which indicates auto-
correlations are small. This work improves on
previous calculations by adding one more sink
momentum, ~p2, and polarization, Γ1. We use
~p0 = (0, 0, 0), ~p1 = (p, 0, 0), ~p2 = (0, p, 0)
(p = 2π/LS) and Γunpol = 1

2 (1 + γ4), Γ1 =
1
2 (1 + γ4) iγ5γ1, Γ2 = 1

2 (1 + γ4) iγ5γ2.

3. QUARK DISTRIBUTIONS

The moments of the F2 structure function
〈xn−1〉 are determined by calculating the matrix
elements

〈N(~p)|
[
O{µ1···µn}

q − Tr
]
|N(~p)〉S =

2v(q)S
n (gS(M)) [pµ1 · · · pµn − Tr], (3)

and corresponding Wilson coefficients in a renor-
malization scheme S (eg. MS) and at a scale M
(e.g. 2 GeV). See [8] for the operators to use on
the lattice. To eliminate O(a) terms in the matrix
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Figure 1. Bare results for the lowest moment of
F2 at (β, κsea) = (5.4, 0.13560), t = 17. The fat
horizontal lines are obtained from a fit to the data.
v2a and v2b refer to different lattice versions of
the same operator.

elements, these operators need to be improved.
For the lowest moment, i.e. v2, this amounts to re-

placing Oγ
µν by (1+amqc0) O

γ
µν +

∑2
i=1 a ci O

(i)
µν .

The improvement coefficient c0 is only known per-
turbatively, while the other coefficients are un-
known. Since the corresponding operator ma-
trix elements turn out to be negligible we will
set c1 = c2 = 0. For the higher moments an ad-
ditional problem arises: the operators may mix
with operators with total derivatives [9]. How-
ever, the corresponding operators are again found
to be small and are therefore neglected here.

Matrix elements are determined from the ratio
of three-point to two-point correlation functions

R(t, τ ; ~p ′, ~p;O) =
CΓ(t, τ ; ~p ′, ~p,O)

C2(t, ~p ′)
(4)

×

[
C2(τ, ~p

′)C2(t, ~p
′)C2(t− τ, ~p )

C2(τ, ~p )C2(t, ~p )C2(t− τ, ~p ′)

] 1

2

where C2 is the unpolarized baryon two-point
function with a source at time 0 and sink at time
t, while the unpolarized three-point function CΓ
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Figure 2. Finite size analysis for vRGI
2b (~p =

(0, 0, 0)) at (β, κsea) = (5.29, 0.13550) on V =
243 × 48, 163 × 32, 123 × 32 lattices.
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Figure 3. Results from a fit to Eq. (6) with
Λχ = 0. The upper plot shows the chiral extra-
polation vRGI

2b (r0,mPS)−c2b(a/r0)
2 and the lower

plot the continuum extrapolation vRGI
2b (r0,mPS)−

F v2b(r0mPS).

has an operator O insertion at time τ . For the
matrix elements vn we have ~p = ~p ′, i.e. the last
term of Eq. (4) is equal to 1. To improve our sig-
nal for non-zero momentum we average over the
results for CΓ and C2 for both momenta before
we calculate the ratio R. In Fig. 1 we compare
the results for the different ways of obtaining the
lowest moment. Within errors the results are con-
sistent.

The bare matrix elements must be renor-
malized. While non-perturbatively determined
renormalization factors are known in quenched
QCD [10], the situation for dynamical sim-
ulations is still under investigation. Here
we use tadpole-improved renormalization-group-
improved boosted perturbation theory [11] to
convert our lattice results to RGI.

Before we examine the quark mass and lattice
spacing behaviour of our results, we first check
for finite size effects. In Fig. 2 we present the
first results of a finite size analysis for v2b. Here
we plot v2b as a function of inverse spatial lattice
extent for three different volumes V = 243 × 48,
163 × 32, 123 × 32 at (β, κsea) = (5.29, 0.13550).
This preliminary analysis reveals that the finite
size effects for v2b are small.

Finally, the discretization effects and quark
mass dependence need to be investigated. The
commonly accepted procedure is to first extrap-
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Figure 4. Same as Fig. 3 but for Λχ = 1 GeV.

olate to the continuum limit then to the chiral
limit. Since the currently available data does
not allow us to perform both extrapolations sep-
arately, we make the following ansatz for a simul-
taneous chiral and continuum extrapolation:

vRGI
n (r0,mPS) = F vn(r0mPS) +

cn

(
a

r0

)2

+ dn ar0m
2
PS. (5)

The terms proportional to cn and dn take dis-
cretization errors ∝ a2 and residual effects ∝ amq

into account (we fix dn = 0). The first term corre-
sponds to a chiral extrapolation. To incorporate
chiral physics into the extrapolation taking into
account the effects due to the ‘pion cloud’ sur-
rounding the nucleon, the ansatz

F vn(x) = vRGI
n

(
1− cx2 ln

x2

x2 + r20Λ
2
χ

)
+anx

2

(6)

has been proposed [12], where c ≈ 0.663 and
Λχ is a free parameter, usually taken to be of
O(1 GeV). Setting Λχ = 0 reduces Eq. (6) to a
linear extrapolation in (r0mPS)2.

In Fig. 3, we plot the results for vRGI
2b (r0,mPS)−

c2b(a/r0)
2 as calculated from Eq. (5) with Λχ = 0

(χ2/d.o.f = 2) and plotted as a function of m2
PS

for the isovector u − d. We see here that al-
though our data at heavy quark masses agree
very well with a linear extrapolation, the pre-
dicted value in the chiral limit is roughly twice



4

0

0.2

0.4

v
3

(u-d) RGI

0 0.02 0.04 0.06

(a / r
0
)
2

0

0.2

0.4

v
4

(u-d) RGI

Figure 5. Continuum extrapolation of v3 and v4.

the experimental value. A fit using Eq. (5) with
Λχ = 1 GeV and the result in the chiral limit
constrained to the experimental value does not
describe our data equally well (χ2/d.o.f = 5).
However, as can be seen from Fig. 4 any disagree-
ment is not significant since all of the curvature of
the fit occurs in the light quark mass region where
there is no data. Even at our lightest quark mass
(mPS ≈ 500MeV) we are not yet into the region
where curvature is expected to occur.

Turning our attention now to discretization ef-
fects, in the bottom figure of Fig. 4 we plot
vRGI
2b (r0,mPS) − F v2b(r0mPS) as a function of

(a/r0)
2. Here we observe a very small depen-

dence on the lattice spacing, indicating that not
only is our O(a) improvement program working,
but also that O(a2) effects are small.

For the higher moments we only perform a chi-
ral extrapolation linear in (r0mPS)

2. The results
for v3 and v4 from the combined chiral and con-
tinuum extrapolation are shown in Fig. 5.

4. GENERALIZED PARTON DISTRI-

BUTIONS

Non-forward matrix elements of the twist-2 op-
erators in Eq. (2) yield the moments of general-
ized parton distributions

∫ 1

−1

dxxn−1Hq(x, ξ,∆
2) = Hqn(ξ,∆2)

∫ 1

−1

dxxn−1 Eq(x, ξ,∆
2) = Eqn(ξ,∆2) (7)

Figure 6. Generalized form factors Au−d
20 , Bu−d

20

and Cu−d
2 , together with a dipole fit.

where [2]

Hqn(ξ,∆2) =

n−1

2∑

i=0

Aqn,2i(∆
2)(−2ξ)2i (8)

+ Mod(n+ 1, 2)Cqn(∆2)(−2ξ)n

Eqn(ξ,∆2) =

n−1

2∑

i=0

Bqn,2i(∆
2)(−2ξ)2i

− Mod(n+ 1, 2)Cqn(∆2)(−2ξ)n

and the generalized form factors Aq
n,2i(∆

2),

Bq
n,2i(∆

2) and Cq
n(∆2) for the lowest three mo-

ments are extracted from the nucleon matrix el-
ements 〈p′|O{µ1···µn}|p〉 [2]. For the lowest mo-
ment, A10 and B10 are just the Dirac and Pauli
form factors F1 and F2, respectively. We also ob-
serve that in the forward limit (∆2 = ξ = 0),
the moments of Hq reduce to the moments of the
unpolarized parton distribution An0 = 〈xn−1〉.

In order to extract the non-forward matrix ele-
ments we compute ratios of three- and two-point
function as in Eq. (4) with ~p 6= ~p ′.

In Fig. 6 we show, as an example, the general-
ized form factors A20, B20 and C2 for the non-
singlet, u−d, on a 243×48 lattice at β = 5.40 and
κsea = κval = 0.13500 corresponding to a lattice
spacing, a r0 = 6.088 and mPS ≈ 970 MeV.

The generalized form factors A20, B20 are well
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Figure 7. Generalized form factors Au−d
10 , Au−d

20

and Au−d
30 , together with a dipole fit. All form

factors have been normalized to unity.

described by the dipole ansatz

Aq
n(∆2) =

Aq
n(0)

(
1−∆2/M2

n

)2 , (9)

while Cu−d
2 is consistent with zero.

Burkardt [4] has shown that the spin-
independent and spin-dependent generalized par-
ton distributions H(x, 0,∆2) and H̃(x, 0,∆2)
gain a physical interpretation when Fourier trans-
formed to impact parameter space

q(x,~b⊥) =

∫
d2∆⊥

(2π)2
e−i~b⊥·~∆⊥H(x, 0,−∆2

⊥) , (10)

(and similar for the polarized ∆q(x,~b⊥)) where

q(x,~b⊥) is the probability of finding a quark with
longitudinal momentum fraction x and at trans-
verse position (or impact parameter) ~b⊥.

Burkardt [4] also argued that H(x, 0,−∆2
⊥) be-

comes ∆2
⊥-independent as x → 1 since, physi-

cally, we expect the transverse size of the nucleon
to decrease as x increases, i.e. limx→1 q(x,~b⊥) ∝

δ2(~b⊥). As a result, we expect the slopes of the
moments of H(x, 0,−∆2

⊥) in ∆2
⊥ to decrease as

we proceed to higher moments. This is also true
for the polarized moments of H̃(x, 0,−∆2

⊥), so
from Eq. (9) with ξ = 0, we expect that the
slopes of the generalized form factors An0(∆

2)

and Ãn0(∆
2) should decrease with increasing n.

Figure 8. Same as Fig. 7 but for Ãu−d
n0 .

In Figs. 7 and 8, we show the ∆2-dependence
of An0(∆

2) and Ãn0(∆
2), respectively for n =

1, 2, 3. The form factors have been normalized to
unity to make a comparison of the slopes easier
and as in Fig 6 we fit the form factors with a
dipole form as in Eq. (9). We note here that the
form factors for the unpolarized moments are well
separated and that their slopes do indeed decrease
with increasing n as predicted. For the polarized
moments, we observe a similar scenario, however
here the change in slope between the form factors
is not as large. This is to be compared with the
results from Ref. [7] which reveal no change in
slope between the n = 2 and n = 3 polarized
moments.

Although fitting the form factors with a dipole
is purely phenomenological, it does provide us
with a useful means to measure the change in
slope of the form factors by monitoring the ex-
tracted dipole masses (M1, M2, M3) as we pro-
ceed to higher moments. We have calculated
these generalized form factors on a subset of our
full complement of (β, κ) combinations and have
extracted the corresponding dipole masses. We
plot these dipole masses in Fig. 9 as a function
of m2

PS. Included for comparison are previous
quenched results for the first [13] and second [5]
moments. The new unquenched results indicate
that quenching effects are small for form factors.

The important feature to note in Fig. 9 is
the distinct separation between (and increase in
magnitude of) the dipole masses as we move to
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Figure 9. Dipole masses for the first three mo-
ments of H(x, 0,−∆2

⊥) as a function of m2
PS, to-

gether with a linear extrapolation to the physical
pion mass.

higher moments (x → 1). Although the data
available for M3 is limited, the behaviour of all
dipole masses appears to be linear with m2

PS.
Consequently, we perform individual linear ex-
trapolations of the dipole masses M1, M2, M3 to
the physical pion mass, although the findings of
Ref. [14] suggest that the chiral extrapolation of
the dipole masses of the electromagnetic form fac-
tors may be non-linear.

If the dipole behavior Eq. (9) continues to hold
for the higher moments as well, and if we as-
sume that the dipole masses continue to grow in
a Regge-like fashion, we may write

∫ 1

−1

dxxn−1Hq(x, 0,∆
2) =

〈xn−1
q 〉

(1−∆2/M2
n)2

, (11)

with M2
l = const. + l/α′, where const. ≈ −0.5

GeV2 and 1/α′ ≈ 1.1 GeV2. This is sufficient
to compute Hq(x, 0,∆

2) by means of an inverse
Mellin transform [15].

Having done so, the desired probability distri-
bution of finding a parton of momentum fraction
x at the impact parameter ~b⊥ can then be ob-
tained by the Fourier transform of Eq. (10).

5. CONCLUSION

We presented an update on our results for
〈xn−1〉 in full QCD. While data closer to the chi-

ral and continuum limit became available, the lin-
ear behaviour observed previously [16] still holds.
Finally, we have shown preliminary results for the
first 3 moments of the GPDs. Our data confirms
the expected flattening going to higher moments.
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13. M. Göckeler et al., hep-lat/0303019.
14. J.D. Ashley et al., hep-lat/0308024.
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