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Abstract

I demonstrate the existence of quasi–realistic heterotic–string models in

which all the untwisted Kähler and complex structure moduli, as well as all of

the twisted sectors moduli, are projected out by the generalized GSO projec-

tions. I discuss the conditions and characteristics of the models that produce

this result. The existence of such models offers a novel perspective on the real-

ization of extra dimensions in string theory. In this view, while the geometrical

picture provides a useful mean to classify string vacua, in the phenomenolog-

ically viable cases there is no physical realization of extra dimensions. The

models under consideration correspond to Z2 ×Z2 orbifolds of six dimensional

tori, plus additional identifications by internal shifts and twists. The special

property of the Z2 × Z2 orbifold is that it may act on the compactified di-

mensions as real, rather than complex, dimensions. This property enables an

asymmetric projection on all six internal coordinates, which enables the pro-

jection of all the untwisted Kähler and complex structure moduli.
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1 Introduction

String theory continues to serve as the most compelling framework for the unifica-
tion of all the fundamental matter and interactions. Amazingly, preservation of some
classical string symmetries necessitates the introduction of a fixed number of degrees
of freedom, beyond the observable ones. One interpretation of these additional de-
grees of freedom is as extra space–time dimensions, which clearly is in contradiction
with the observed facts and diminishes from the appeal of string theory. Thus, the
need arises to hide the additional dimensions by compactifying the superstring on a
six dimensional compact manifold. This in turn leads to the problem of fixing the
parameters of the extra dimensions in such a way that it does not conflict with con-
temporary experimental limits. Additionally, the extra dimensions give rise to light
scalar fields whose VEV parameterizes the shape and size of the extra dimensions.
This is typically dubbed as the moduli stabilization problem, and preoccupies much
of the activity in string theory [1] ever since the initial realization of its potential
relevance for particle phenomenology [2, 3].

A particular class of string compactifications that exhibit promising phenomeno-
logical properties are the so–called free fermionic heterotic–string models [4, 5, 6, 7,
8, 9, 10, 11, 12, 13]. These models are related to Z2 × Z2 orbifold compactifications
[14], and many of their appealing phenomenological properties are rooted in the un-
derlying Z2 × Z2 orbifold structure [14]. Recently, a classification of this class of
models was initiated and it was revealed that in a large class of models the reduction
to three generations necessitates the utilization of a fully asymmetric shift [15]. This
indicates that the geometrical objects underlying these models do not correspond to
the standard complex geometries that have been the most prevalent in the literature.

Furthermore, the utilization of the asymmetric shift has important bearing on
the issue of moduli fixing in string theory [16], and in this class of string compacti-
fications and in particular. The operation of an asymmetric shift can only occur at
special points in the moduli space, and results in fixation of the moduli at the special
points. It is therefore of interest to investigate this aspect in greater detail. In the
context of the free fermionic models the marginal operators that correspond to the
moduli deformations correspond to the inclusion of Thirring interactions among the
world–sheet fermions [17, 18, 19, 20]. The allowed world–sheet Thirring interactions
must be invariant under the GSO projections that are induced by the boundary con-
dition basis vectors that define the free fermionic string models. Thus, depending on
the assignment of boundary conditions in specific models, some of the world–sheet
Thirring interactions are forbidden, and their corresponding moduli are projected
from the physical spectrum. In this manner the GSO projection induced by the
boundary condition basis vectors acts as a moduli fixing mechanism.

In this paper I discuss the existence of quasi–realistic three generation free
fermionic models, in which all the untwisted Kähler and complex structure mod-
uli are projected out from the low energy effective field theory. This is a striking
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result with crucial implications for the premise of extra dimensions in physical string
vacua. This result indicates that the interpretation of the additional degrees of free-
dom needed to obtain a conformally invariant string theory as additional continuous
spatial dimensions beyond the observable ones, may in fact not be realized in the phe-
nomenologically relevant cases. Furthermore, the fact that the projection is achieved
by an asymmetric orbifold action indicates that the treatment of the moduli problem
in the low energy effective supergravity theory is inadequate. The reason being that
the effective supergravity theories relate to the additional dimensions as classical ge-
ometries, and hence necessarily as left–right symmetric. On the other hand the basic
property of string theory is that it allows for the left–right world–sheet asymmetry,
which in the context of the phenomenological free fermionic models is instrumental
in fixing the moduli.

2 General structure of free fermionic models

In the free fermionic formulation [17] of the heterotic string in four dimensions all
the world–sheet degrees of freedom required to cancel the conformal anomaly are rep-
resented in terms of free fermions propagating on the string world–sheet. In the light–
cone gauge the world–sheet field content consists of two transverse left– and right–
moving space–time coordinate bosons, Xµ

1,2 and X̄µ
1,2, and their left–moving fermionic

superpartners ψµ1,2, and additional 62 purely internal Majorana–Weyl fermions, of
which 18 are left–moving, χI , and 44 are right–moving, φa. In the supersymmetric
sector the world–sheet supersymmetry is realized non–linearly and the world–sheet
supercurrent is given by

TF = ψµ∂Xµ + fIJKχ
IχJχK , (2.1)

where fIJK are the structure constants of a semi–simple Lie group of dimension 18.
The χI (I = 1, · · · , 18) world–sheet fermions transform in the adjoint representation
of the Lie group. In the realistic free fermionic models the Lie group is SU(2)6. The
χI I = 1, · · · , 18 transform in the adjoint representation of SU(2)6, and are denoted
by χI , yI , ωI (I = 1, · · · , 6). Under parallel transport around a noncontractible loop
on the toroidal world–sheet the fermionic fields pick up a phase

f → − eiπα(f)f . (2.2)

The minus sign is conventional and α(f) ∈ (−1,+1]. A model in this construction
[17] is defined by a set of boundary conditions basis vectors and by a choice of gen-
eralized GSO projection coefficients, which satisfy the one–loop modular invariance
constraints. The boundary conditions basis vectors bk span a finite additive group

Ξ =
∑

k

nibi (2.3)
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where ni = 0, · · · , Nzi
− 1. The physical massless states in the Hilbert space of a

given sector α ∈ Ξ are then obtained by acting on the vacuum state of that sector
with the world-sheet bosonic and fermionic mode operators, with frequencies νf , νf∗

and by subsequently applying the generalized GSO projections,

{

eiπ(biFα) − δαc
∗

(
α
bi

)}

|s〉 = 0 (2.4)

with
(biFα) ≡ {

∑

real+complex
left

−
∑

real+complex
right

}(bi(f)Fα(f)), (2.5)

where Fα(f) is a fermion number operator counting each mode of f once (and if f
is complex, f ∗ minus once). For periodic complex fermions [i.e. for α(f) = 1)] the
vacuum is a spinor in order to represent the Clifford algebra of the corresponding zero
modes. For each periodic complex fermion f , there are two degenerate vacua |+〉,
|−〉, annihilated by the zero modes f0 and f ∗

0 and with fermion number F (f) = 0,−1
respectively. In Eq. (2.4), δα = −1 if ψµ is periodic in the sector α, and δα = +1 if
ψµ is antiperiodic in the sector α. Each complex world–sheet fermion f gives rise to
a U(1) ff ∗ current in the Cartan sub–algebra of the four dimensional gauge group,
with the charge given by:

Q(f) =
1

2
α(f) + F (f) . (2.6)

Alternatively, a real left–moving fermion may be combined with a real right–moving
fermion to form an Ising model operator [21, 22], in which case the U(1) generators
are projected out, and the rank of the four dimensional gauge group is reduced. This
distinction between complex and real world–sheet fermion has important bearing on
the assignment of asymmetric versus symmetric boundary conditions, and hence on
the issue of moduli fixing in the Z2 × Z2 fermionic models.

The δα in eq. (2.4) is a space–time spin statistics factor, equal to +1 for space–
time bosons and −1 for space–time fermions, and is determined by the boundary
conditions of the space–time fermions ψµ1,2 in the sector α, i.e.,

δα = eiπα(ψµ).

The

c∗
(
α
bi

)

are free phases in the one–loop string partition function. For the Neveu–Schwarz
untwisted sector we have the general result that

δNSc
∗

(
NS
b

)

= δb.
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Hence, the free phases do not play a significant role in the determination of the
untwisted moduli. The existence of the untwisted moduli in a model depends solely on
the boundary conditions. The free phases of the models will therefore be suppressed
in the following.

The boundary condition basis defining a typical realistic free fermionic heterotic
string model is constructed in two stages. The first stage consists of the NAHE set,
which is a set of five boundary condition basis vectors, {1, S, b1, b2, b3} [4, 8, 14, 13].
The gauge group induced by the NAHE set is SO(10) × SO(6)3 × E8 with N = 1
supersymmetry. The space-time vector bosons that generate the gauge group arise
from the Neveu–Schwarz sector and from the sector ξ2 ≡ 1 + b1 + b2 + b3. The
Neveu-Schwarz sector produces the generators of SO(10) × SO(6)3 × SO(16). The
ξ2-sector produces the spinorial 128 of SO(16) and completes the hidden gauge group
to E8. The NAHE set divides the internal world-sheet fermions in the following way:
φ̄1,···,8 generate the hidden E8 gauge group, ψ̄1,···,5 generate the SO(10) gauge group,
and {ȳ3,···,6, η̄1}, {ȳ1, ȳ2, ω̄5, ω̄6, η̄2}, {ω̄1,···,4, η̄3} generate the three horizontal SO(6)
symmetries. The left-moving {y, ω} states are divided into {y3,···,6}, {y1, y2, ω5, ω6},
{ω1,···,4} and χ12, χ34, χ56 generate the left–moving N = 2 world–sheet supersymme-
try. At the level of the NAHE set the sectors b1, b2 and b3 produce 48 multiplets,
16 from each, in the 16 representation of SO(10). The states from the sectors bj are
singlets of the hidden E8 gauge group and transform under the horizontal SO(6)j
(j = 1, 2, 3) symmetries. This structure is common to a large set of realistic free
fermionic models.

The second stage of the construction consists of adding to the NAHE set three
(or four) additional basis vectors. These additional vectors reduce the number of
generations to three, one from each of the sectors b1, b2 and b3, and simultaneously
break the four dimensional gauge group. The assignment of boundary conditions
to {ψ̄1,···,5} breaks SO(10) to one of its subgroups [11]. Similarly, the hidden E8

symmetry is broken to one of its subgroups, and the flavor SO(6)3 symmetries are
broken to U(1)n, with 3 ≤ n ≤ 9. For details and phenomenological studies of these
three generation string models interested readers are referred to the original literature
and review articles [23].

The correspondence of the free fermionic models with the orbifold construction
[24] is facilitated by extending the NAHE set, {1, S, b1, b2, b3}, by at least one addi-
tional boundary condition basis vector [14]

ξ1 = (0, · · · , 0| 1, · · · , 1
︸ ︷︷ ︸

ψ̄1,···,5,η̄1,2,3

, 0, · · · , 0) . (2.7)

With a suitable choice of the GSO projection coefficients the model possesses an
SO(4)3 × E6 × U(1)2 × E8 gauge group and N = 1 space-time supersymmetry. The
matter fields include 24 generations in the 27 representation of E6, eight from each
of the sectors b1 ⊕ b1 + ξ1, b2 ⊕ b2 + ξ1 and b3 ⊕ b3 + ξ1. Three additional 27 and 27
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pairs are obtained from the Neveu-Schwarz (NS) ⊕ ξ1 sector, that correspond to the
untwisted sector of the orbifold models.

To construct the model in the orbifold formulation one starts with the compacti-
fication on a torus with nontrivial background fields [25]. The subset of basis vectors

{1, S, ξ1, ξ2} (2.8)

generates a toroidally-compactified model with N = 4 space-time supersymmetry
and SO(12) × E8 × E8 gauge group. The same model is obtained in the geometric
(bosonic) language by tuning the background fields to the values corresponding to
the SO(12) lattice. The metric of the six-dimensional compactified manifold is then
the Cartan matrix of SO(12), while the antisymmetric tensor is given by

Bij =







Gij ; i > j,
0 ; i = j,
−Gij ; i < j.

(2.9)

When all the radii of the six-dimensional compactified manifold are fixed at RI =
√

2,
it is seen that the left- and right-moving momenta P I

R,L = [mi − 1
2
(Bij±Gij)nj ]e

I
i

∗

reproduce the massless root vectors in the lattice of SO(12). Here ei = {eIi } are six
linearly-independent vielbeins normalized so that (ei)

2 = 2. The eIi
∗

are dual to the
ei, with e∗i · ej = δij .

Adding the two basis vectors b1 and b2 to the set (2.8) corresponds to the Z2 ×Z2

orbifold model with standard embedding. Starting from the N = 4 model with
SO(12)×E8×E8 symmetry, and applying the Z2×Z2 twist on the internal coordinates,
reproduces the spectrum of the free-fermion model with the six-dimensional basis set
{1, S, ξ1, ξ2, b1, b2}. The Euler characteristic of this model is 48 with h11 = 27 and
h21 = 3.

The effect of the additional basis vector ξ1 of eq. (2.7), is to separate the gauge
degrees of freedom, spanned by the world-sheet fermions {ψ̄1,···,5, η̄1, η̄2, η̄3, φ̄1,···,8},
from the internal compactified degrees of freedom {y, ω|ȳ, ω̄}1,···,6. In the realistic
free fermionic models [11, 14] this is achieved by the vector 2γ [14], with

2γ = (0, · · · , 0| 1, · · · , 1
︸ ︷︷ ︸

ψ̄1,···,5,η̄1,2,3φ̄1,···,4

, 0, · · · , 0) , (2.10)

which breaks the E8 ×E8 symmetry to SO(16)× SO(16). The Z2 ×Z2 twist induced
by b1 and b2 breaks the gauge symmetry to SO(4)3 × SO(10)×U(1)3 × SO(16). The
orbifold still yields a model with 24 generations, eight from each twisted sector, but
now the generations are in the chiral 16 representation of SO(10), rather than in
the 27 of E6. The same model can be realized with the set {1, S, ξ1, ξ2, b1, b2}, by
projecting out the 16 ⊕ 16 from the ξ1-sector taking

c

[

ξ1
ξ2

]

→ −c
[

ξ1
ξ2

]

. (2.11)
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This choice also projects out the massless vector bosons in the 128 of SO(16) in the
hidden-sector E8 gauge group, thereby breaking the E6 × E8 symmetry to SO(10) ×
U(1) × SO(16). However, the Z2 × Z2 twist acts identically in the two models, and
their physical characteristics differ only due to the discrete torsion eq. (2.11). This
analysis confirms that the Z2 ×Z2 orbifold on the SO(12) lattice is at the core of the
realistic free fermionic models.

The set of real fermions {y, ω|ȳ, ω̄} correspond to the six dimensional compactified
coordinates in a bosonic formulation. The assignment of boundary conditions to this
set of internal fermions therefore correspond to the action on the internal six dimen-
sional compactified manifold. Consequently, the assignment of boundary conditions
to this set of real fermions determines many of the phenomenological properties of
the low energy spectrum and effective field theory. Examples include the determina-
tion of the number of light generations [8, 13]; the stringy doublet–triplet splitting
mechanism [26]; and the top–bottom–quark Yukawa coupling selection mechanism
[27]. In the last two cases, it is the left–right asymmetric boundary conditions that
enables the doublet–triplet splitting, as well as the Yukawa coupling selection mech-
anism [26, 27]. In this paper I discuss how the asymmetric assignment of boundary
conditions to the set of internal world–sheet fermions {y, ω|ȳ, ω̄}, also fixes the un-
twisted moduli. It is therefore found that the same condition, namely the left–right
orbifold asymmetry, is the one that plays the crucial role, both in the determination
of the physical properties mentioned above, as well as in the fixation of the moduli
parameters.

The symmetric versus asymmetric orbifold action is determined in the free
fermionic models by the pairing of the left–right real internal fermions from the
set {y, ω|ȳ, ω̄}, into real pairs, that pair a left–moving fermion with a right–moving
fermion, versus complex pairs, that combine left–left, or right–right, moving fermions.
The real pairs preserve the left–right symmetry, whereas the complex pairs allow for
the assignment of asymmetric boundary conditions, that correspond to asymmetric
action on the compactified bosonic coordinates.

The reduction of the number of generations to three is illustrated in tables [2.13]
and [2.12].

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0
β 1 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0
γ 1 0 0 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 0 0 0

y3ȳ3 y4ȳ4 y5ȳ5 y6ȳ6 y1ȳ1 y2ȳ2 ω5ω̄5 ω6ω̄6 ω1ω̄1 ω2ω̄2 ω3ω̄3 ω4ω̄4

α 1 0 0 1 0 0 1 0 0 0 0 1
β 0 0 0 1 0 1 1 0 1 0 0 0
γ 1 1 0 0 1 0 0 0 0 1 0 0

(2.12)
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ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
γ 0 0 0 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 1 1 1
2

1
2

1
2

0

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

α 1 0 0 0 0 0 1 1 0 0 1 1
β 0 0 1 1 1 0 0 0 0 1 0 1
γ 0 1 0 1 0 1 0 1 1 0 0 0

(2.13)

together with a consistent choice of one–loop GSO phases [9]. Both models produce
three generations and the SO(10) GUT gauge group is broken to SU(3) × SU(2) ×
U(1)2. The model of table [2.12] produces three pairs of SU(3) color triplets from
the untwisted sector, whereas that of table [2.13] produces the corresponding three
pairs of electroweak Higgs doublets [9, 26]. The set of boundary conditions in table
[2.12] is symmetric between the left and right movers, whereas that of table [2.13]
is asymmetric. Hence, these two models demonstrate that the reduction to three
generations in itself does not require asymmetric boundary conditions. This seems
to be in contradiction to the conclusion reached in [15]. However, I note that in
[2.12] the gauge group is broken in two stages, whereas in [15] the SO(10) symmetry
remained unbroken. In particular, the breaking pattern of the hidden gauge group
SO(16) → SO(4) × SO(12) in [2.12] was a case not considered in the classification
of [15]. This breaking pattern is, however, allowed if the SO(10) GUT symmetry is
broken to SO(6)× SO(4), as in [2.12]. The conclusion is therefore that, whereas the
classification of ref. [15] found that the reduction to three generations necessitates
the use of an asymmetric shift in the scanned space of models, more complicated
symmetry breaking patterns allow for the reduction also with symmetric actions.
Hence, it is concluded that the reduction to three generations in itself does not
necessitate the use of an asymmetric shift, in agreement with the findings of ref.
[28]. However, the distinction between the symmetric versus asymmetric boundary
conditions is manifested in the models of table [2.12] versus table [2.13] at the more
detailed level of the spectrum and the phenomenological consequences. Hence, the
world–sheet left–right symmetric model of table [2.12] produces SU(3) color triplets
and does not give rise to untwisted–twisted–twisted Standard Model fermion mass
terms, whereas the asymmetric model of table [2.13] does. As I discuss in the following
this distinction has a crucial implication also for the issue of moduli fixing in these
models.

To translate the fermionic boundary conditions to twists and shifts in the bosonic

8



formulation we bosonize the real fermionic degrees of freedom, {y, ω|ȳ, ω̄}. Defining,

ξi =

√

1

2
(yi + iωi) = eiXi, ηi = i

√

1

2
(yi − iωi) = ie−iXi (2.14)

with similar definitions for the right movers {ȳ, ω̄} and XI(z, z̄) = XI
L(z) + XI

R(z̄).
With these definitions the world–sheet supercurrents in the bosonic and fermionic
formulations are equivalent,

T intF =
∑

i

χiyiωi =
∑

i

χiξiηi = i
∑

i

χi∂Xi.

The momenta P I of the compactified scalars in the bosonic formulation are identical
with the U(1) charges Q(f) of the unbroken Cartan generators of the four dimensional
gauge group, eq. (2.6). The internal coordinates can be complexified by forming the
combinations (X = XL +XR)

Z±

k = (X2k−1 ± iX2k), ψ±

k = (χ2k−1 ± iχ2k) (k = 1, 2, 3) (2.15)

where the Z±

k are the complex coordinates of the six compactified dimensions, now
viewed as three complex planes, and ψ±

k are the corresponding superpartners.

3 Moduli in free fermionic models

The relevant moduli for our discussion here are the untwisted Kähler and com-
plex structure moduli of the six dimensional compactified manifold. Additionally, the
string vacua contain the dilaton moduli whose VEV governs the strength of the four
dimensional interactions. The VEV of the dilaton moduli is a continuous parameter
from the point of view of the perturbative heterotic string, and its stabilization re-
quires some nonperturbative dynamics, or some input from the underlying quantum
M–theory, which is not presently available. The problem of dilaton stabilization is
therefore not addressed in this paper, as the discussion here is confined to pertur-
bative heterotic string vacua. Since the moduli fields correspond to scalar fields in
the massless string spectrum, the moduli space is determined by the set of boundary
condition basis vectors that define the string vacuum and encodes its properties. The
first step therefore is to identify the fields in the fermionic models that correspond
to the untwisted moduli. The subsequent steps entail examining which moduli fields
survive successive GSO projections and consequently the residual moduli space.

The four dimensional fermionic heterotic string models are described in terms
of two dimensional conformal and superconformal field theories of central charges
CR = 22 and CL = 9, respectively. In the fermionic formulation these are repre-
sented in terms of world–sheet fermions. A convenient starting point to formulate
such a fermionic vacuum is a model in which all the fermions are free. The free
fermionic formalism facilitates the solution of the conformal and modular invariance

9



constraints in terms of simple rules [17]. Such a free fermionic model corresponds to
a string vacuum at a fixed point in the moduli space. Deformations from this fixed
point are then incorporated by including world-sheet Thirring interactions among the
world–sheet fermions, that are compatible with the conformal and modular invariance
constraints. The coefficients of the allowed world–sheet Thirring interactions corre-
spond to the untwisted moduli fields. For symmetric orbifold models, the exactly
marginal operators associated with the untwisted moduli fields take the general form
∂XI ∂̄XJ , where XI , I = 1, · · · , 6, are the coordinates of the six–torus T 6. Therefore,
the untwisted moduli fields in such models admit the geometrical interpretation of
background fields [25], which appear as couplings of the exactly marginal operators
in the non–linear sigma model action, which is the generating functional for string
scattering amplitudes [29, 30]. The untwisted moduli scalar fields are the background
fields that are compatible with the orbifold point group symmetry.

It is noted that in the Frenkel–Kac–Segal construction [31] of the Kac–Moody
current algebra from chiral bosons, the operator i∂XI is a U(1) generator of the
Cartan sub–algebra. Therefore, in the fermionic formalism the exactly marginal
operators are given by Abelian Thirring operators of the form J iL(z)J̄

j
R(z̄), where

J iL(z), J̄
j
R(z̄) are some left– and right–moving U(1) chiral currents describe by world–

sheet fermions. It has been shown that [18] Abelian Thirring interactions preserve
conformal invariance, and are therefore marginal operators. One can therefore use the
Abelian Thirring interactions to identify the untwisted moduli in the free fermionic
models. The untwisted moduli correspond to the Abelian Thirring interactions that
are compatible with the GSO projections induced by the boundary condition basis
vectors, which define the string models.

The set of Abelian Thirring operators, and therefore of the untwisted moduli
fields, is consequently restricted by progressive boundary condition basis vector sets.
The minimal basis set is given by the basis that contains only the two vectors {1, S}.

1 = {ψ1,2, χ1,...,6, y1,...,6, ω1,...,6|
ȳ1,...,6, ω̄1,...,6, ψ̄1,...,6, η̄1,2,3, φ̄1,...,8}, (3.1)

S = {ψ1,2, χ1,...,6}. (3.2)

This set generates a model with N = 4 supersymmetry and SO(44) right–moving
gauge group and correspond the a Narain model at an enhanced symmetry point.
Accordingly, we can identify the six χI with the fermionic superpartners of the six
compactified bosonic coordinates. Therefore, each pair {yI , ωI} is identified with
the fermionized version of the corresponding left–moving bosonic coordinate XI ,
i.e. i∂XI

L ∼ yIωI . The two–dimensional action for the for the Abelian Thirring
interactions is

S =
∫

d2zhij(X)J iL(z)J̄
j
R(z̄) , (3.3)

where J iL(i = 1, · · · , 6) are the chiral currents of the left–moving U(1)6 and J̄ jR(j =
1, · · · , 22), are the chiral currents of the right–moving U(1)22. The couplings hij(X),
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as functions of the space–times coordinates Xµ, are four dimensional scalar fields that
are identified with the scalar components of the untwisted moduli fields. In the sim-
plest model with the two basis vectors of eq. (3.2) the 6×22 fields hij(X) in eq. (3.3)
are in one–to–one correspondence with the 21 and 15 components of the background
metric GIJ and antisymmetric tensor BIJ (I, J = 1, · · · , 6), plus the 6 × 16 Wilson
lines AIa. The hij(X) fields therefore parameterize the SO(6, 22)/SO(6) × SO(22)
coset–space of the toroidally compactified manifold. The hij untwisted moduli fields
arise from the Neveu–Schwarz sector,

|χI〉L ⊗ |Φ̄+JΦ̄−J〉R , (3.4)

given in terms of the 22 complex right–handed world–sheet fermions Φ̄+J and their
complex conjugates Φ̄−J . The corresponding marginal operators are given as

J iL(z)J̄
j
R(z̄) ≡ : yi(z)ωi(z)(z) :: Φ̄+j(z̄)Φ̄−j(z̄) : . (3.5)

It is noted that the transformation properties of χi, which appear in the moduli (3.4),
are the same as those of yiωi, which appear in the Abelian Thirring interactions (3.5).

The next stages in the free fermionic model building consist of adding consecutive
boundary condition basis vectors. In the first instance we can add basis vectors that
preserve the N = 4 space–time supersymmetry, and with no periodic left–moving
fermions . Those that produce massless states may contain either four, or eight,
right–moving periodic fermions. At least one basis vector with eight periodic right–
moving fermions is needed to produce space–time spinors under the GUT gauge
group. The free fermionic models correspond to Z2 × Z2 orbifolds and can then be
classified into models that produce spinorial representations from one, two, or three
of the twisted planes of the Z2 × Z2 orbifold [15]. It turns out that the entire space
of models may be classified using a specific set of basis vectors, and the varying cases
are produced by the various choices of the GSO projection coefficients. This covering
basis contains two basis vectors with eight non–overlapping right–moving periodic
fermions, and all left–moving world–sheet fermions are antiperiodic. Hence, with no
loss of generality, these are the vector ξ1 in eq. (2.7) and the vector ξ2

ξ2 = (0, · · · , 0|0, · · · , 0, 1, · · · , 1
︸ ︷︷ ︸

φ̄1,···,8

) . (3.6)

where the notation introduced in section 2 has been used. We note that all the
untwisted moduli and marginal operators in eqs. (3.4) and (3.5) are invariant under
the projections induced by (2.7) and (3.6). The four dimensional right–moving gauge
group is now SO(12) ×E8 × E8.

The next step in the construction is the inclusion of the basis vectors b1 and b2
that correspond to the action of the Z2 × Z2 orbifold twists. The assignment of
boundary condition in b1 and b2 may vary [15], and one specific choice is given by

b1 = ( 1, · · · · · · · · · , 1
︸ ︷︷ ︸

ψµ,χ12,y3,...,6,ȳ3,...,6

, 0, · · · , 0|1, · · · , 1
︸ ︷︷ ︸

ψ̄1,...,5,η̄1

, 0, · · · , 0) (3.7)
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b2 = (1, · · · · · · · · · · · · · · · , 1
︸ ︷︷ ︸

ψµ,χ34,y1,2,ω5,6,ȳ1,2ω̄5,6

, 0, · · · , 0|1, · · · , 1
︸ ︷︷ ︸

ψ̄1,...,5,η̄2

, 0, · · · , 0) (3.8)

In the notation of section 2 we can write the untwisted moduli fields, eq. (3.4) in the
form

|χi〉L ⊗ |ȳjω̄j〉R , (3.9)

|χi〉L ⊗ |Φ̄+JΦ̄−J〉R , (3.10)

(3.11)

and the (3.5)

J iL(z)J̄
j
R(z̄) ≡ : yi(z)ωi(z) :: ȳj(z)ω̄j(z) : (j = 1, · · · , 6); (3.12)

J iL(z)J̄
J
R(z̄) ≡ : yi(z)ωi(z) :: Φ̄+J(z̄)Φ̄−J (z̄) : (J = 7, · · · , 22) . (3.13)

The effect of the additional basis vectors b1 and b2 is to make some of the chiral
currents, J iL or J̄ jR, antiperiodic. As a result some of the Abelian Thirring interaction
terms in eq. (3.3) are not invariant when the world–sheet fermions are parallel trans-
ported around the noncontractible loops of the world–sheet torus. The corresponding
moduli fields are projected from the massless spectrum by the GSO projections.

Under the basis vector b1 as defined above the chiral currents transform as:

J1,2
L → J1,2

L , J3,4,5,6
L → −J3,4,5,6

L (3.14)

J̄1,2
R → J̄1,2

R , J̄3,4,5,6
R → −J̄3,4,5,6

R (3.15)

and J̄ jR(j = 7, · · · , 22) are always periodic. Similarly, under b2 we have

J3,4
L → J3,4

L , J1,2,5,6
L → −J1,2,5,6

L (3.16)

J̄1,2
R → J̄3,4

R , J̄1,2,5,6
R → −J̄1,2,5,6

R (3.17)

As a consequence the only allowed Thirring interaction terms are

J1,2
L J̄1,2

R , J3,4
L J̄3,4, J5,6

L J̄5,6
R (3.18)

Correspondingly there are three sets of untwisted moduli scalars

hij = |χi〉L ⊗ |ȳjω̄j〉R =







(i, j = 1, 2)
(i, j = 3, 4)
(i, j = 5, 6) ,

(3.19)

which parameterize the moduli space

M =

(

SO(2, 2)

SO(2) × SO(2)

)3

. (3.20)
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We can define six complex moduli from the six real ones. For example, on the first
complex plane we can write,

H
(1)
1 =

1√
2
(h11 + ih21) =

1√
2
|χ1 + iχ2〉L ⊗ |ȳ1ω̄1〉R (3.21)

H
(1)
2 =

1√
2
(h12 + ih22) =

1√
2
|χ1 + iχ2〉L ⊗ |ȳ2ω̄2〉R (3.22)

These can be combined into three Kähler (Ti) structure and three complex structure
(Ui) moduli. For example, on the first complex plane we define

T1 =
1√
2
(H

(1)
1 − iH

(1)
2 ) =

1√
2
(χ1 + iχ2)|0〉L ⊗ (ȳ1ω̄1 − iȳ2ω̄2)|0〉R (3.23)

U1 =
1√
2
(H

(1)
1 + iH

(1)
2 ) =

1√
2
(χ1 + iχ2)|0〉L ⊗ (ȳ1ω̄1 + iȳ2ω̄2)|0〉R (3.24)

and similarly for T2,3 and U2,3. These span the coset moduli space

M =

[

SU(1, 1)

U(1)
⊗ SU(1, 1)

U(1)

]3

, (3.25)

which is the untwisted moduli space of the symmetric Z2×Z2 orbifold. We can write
the allowed Thirring interaction terms, for the untwisted moduli of (3.19), in terms
of the complex coordinates Z±

k . For example, for the first set we have,

∑

i,j=1,2

hijJ
i
LJ̄

j
R =

1

2

(

T1∂Z
−

1 ∂̄Z
+
1 + T̄1∂Z

+
1 ∂̄Z

−

1 + U1∂Z
−

1 ∂̄Z
−

1 + Ū1∂Z
+
1 ∂̄Z

+
)

(3.26)

where T and U are the complex fields defined in eqs. (3.23) and (3.24). The Thirring
interactions for the other two complex planes can be written similarly. The boundary
condition basis vectors b1 and b2 translate into twists of the complex planes [14]. Thus,
b1 leaves the first complex plane invariant, and twists the second and third plane,
i.e. Z1 → Z1 and Z2,3 → −Z2,3, whereas b2 leaves the second plane invariant and
twists the first and third plane. It is apparent that the Thirring terms in eq. (3.26)
are invariant under the action of the Z2 ×Z2 twists, whereas all the mixed terms are
projected out by the GSO projections. From eq. (3.26) it is seen that the T field
is associated the Kähler structure moduli, whereas the U field is associated with a
complex structure moduli. This agrees with the fact that the untwisted sector of the
Z2 × Z2 orbifold produces three complex and three Kähler structure moduli.

4 Moduli in the three generation free fermionic models

Next I turn to examine the untwisted moduli in the quasi–realistic three gener-
ation free fermionic models. As discussed in section 2 the reduction to three gen-
eration is achieved by the inclusion of three or four additional boundary condition
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basis vectors, beyond the NAHE–set. This are typically denoted in the literature
as bi (i = 4, 5, · · ·) for basis vectors that do not break the SO(10) GUT symmetry,
and by α, β, γ · · ·, for basis vectors that do. From the point of view of the untwisted
moduli beyond the NAHE–set models, the relevant boundary conditions are those of
the world–sheet fermions {y, ω|ȳ, ω̄}1,···,6.

Left–right symmetric boundary conditions cannot eliminate any additional moduli
beyond those that exist in the NAHE–set model. This is a general consequence
of the requirement that the supercurrent (2.1) is well defined under the parallel
transport of the world–sheet fermions, as well as the requirement of N = 1 space–
time supersymmetry. It is instructive to recall that the moduli of the NAHE–based
models correspond to the non–vanishing world–sheet Thirring interactions, eq. (3.18),
and are those of the Z2 × Z2 orbifold, eq. (3.26). An example of a left–right three
generation free fermionic model is given in table [2.12]. Rewriting the boundary
conditions for the internal world–sheet fermions in the notation of table [4.1]

y1ω1 ȳ1ω̄1 y2ω2 ȳ2ω̄2 y3ω3 ȳ3ω̄3 y4ω4 ȳ4ω̄4 y5ω5 ȳ5ω̄5 y6ω6 ȳ6ω̄6

α 00 00 00 00 10 10 01 01 01 01 10 10
β 01 01 10 10 00 00 00 00 01 01 10 10
γ 10 10 01 01 10 10 10 10 00 00 00 00

(4.1)

it is evident that all the Thirring interaction terms in eq. (3.18) are invariant under
the transformations in table [4.1]. As discussed in [20] and section 3 there is a one–
to–one correspondence between the Thirring terms, eq. (3.18) and the moduli fields,
eq. (3.19). Therefore, it is sufficient to examine either the moduli or the Thirring
terms, and this relation guarantees the existence, or exclusion, of the corresponding
Thirring terms/moduli fields.

Left–right symmetric boundary conditions preserve the untwisted moduli space
of the Z2 ×Z2 orbifold. To see that this is indeed a general result, and a consequence
of world–sheet, and space–time, supersymmetry, let us recall that the world–sheet
supercurrent eq. (2.1) restricts that each triplet χiyiωi must transform as ψµ∂Xµ.
The boundary conditions of each triplets are therefore restricted to be

b(ψµ) = 1 → b(χi, yi, ωi) = (1, 0, 0); (0, 1, 0); (0, 0, 1); (1, 1, 1)
b(ψµ) = 0 → b(χi, yi, ωi) = (0, 1, 1); (1, 0, 1); (1, 1, 0); (0, 0, 0) (4.2)

The requirement of N = 1 supersymmetry further restricts that

b(χ2k−1) = b(χ2k) k = 1, 2, 3 (4.3)

Symmetric boundary conditions means that the boundary condition of the left–
moving b{yi, ωi} are identical to their corresponding right–moving fields b{ȳi, ω̄i}.
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In terms of the internal conformal field theory this means that symmetric boundary
conditions correspond to the case in which all the internal left–moving world–sheet
fermions from the set {y, ω}1,···,6 are paired with 12 right–moving world–sheet real
fermions {ȳ, ω̄}1,···,6, to form 12 Ising model operators [21, 22]. Enumerating all the
possible boundary conditions for the internal fermions, subject to these restrictions
we have

b(ψµ) = 1 & b(χ2k−1 = χ2k) = 1 → b({y, ω}2k−1, {y, ω}2k) =







0 0 0 0
0 0 1 1
1 1 0 0
1 1 1 1

b(ψµ) = 1 & b(χ2k−1 = χ2k) = 0 → b({y, ω}2k−1, {y, ω}2k) =







1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

b(ψµ) = 0 & b(χ2k−1 = χ2k) = 1 → b({y, ω}2k−1, {y, ω}2k) =







1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

b(ψµ) = 0 & b(χ2k−1 = χ2k) = 0 → b({y, ω}2k−1, {y, ω}2k) =







0 0 0 0
0 0 1 1
1 1 0 0
1 1 1 1

(4.4)

i.e. there are in total four different possibilities for the transformation of the pairs
{yi, ωi}

b({yi, ωi}) = (0, 0); (1, 0); (0, 1); (1, 1) (4.5)

Using the relations (2.14) these translate to transformations of the corresponding
bosonic coordinates, i.e.

y, ω XL XR X = XL +XR

0 0 XL + π XR + π X + 2π
1 0 −XL −XR −X
0 1 −XL + π −XR + π −X + 2π
1 1 XL XR X

(4.6)

In terms of the complexified coordinates Zk, eq. (2.15) these translate into

Zk → ±Zk + δ12π + δ2i2π, (4.7)

where δ1,2 = 0; 1 signify possible shifts in the real and complex directions. Examining
the complexified Thirring terms, eq. (3.26), it is noted that these always involve pairs
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of complex coordinates that transform with the same sign, and hence are always
invariant under symmetric boundary conditions.

Relaxing the condition of N = 1 space–time supersymmetry means that we may
have

b(χ2k−1) 6= b(χ2k) (4.8)

for some k. For example, for k = 1 we may have

y1 ω1 y2 ω2

1 1 1 0
(4.9)

In this case the moduli fields h11 and h22 are retained, whereas h12 and h21 are pro-
jected out. Hence, if we break N = 1 space–time supersymmetry by the assignment
of boundary conditions we may project six additional untwisted moduli, and six will
remain.

Next, I turn to examine the presence of untwisted moduli in models with asym-
metric boundary conditions. The assignment of asymmetric boundary conditions
entails that a left–moving real fermion from the set {y, ω} is paired with another
left–moving real fermion from this set, and with which it has identical boundary con-
ditions in all basis vectors. For every such pair of left–moving fermions, there is a
corresponding pair of right–moving fermions. These combinations therefore give rise
to a global U(1)L symmetry, and a corresponding gauged U(1)R symmetry. These
complex pairings therefore allow the assignment of asymmetric boundary conditions,
with important phenomenological consequences [11, 26, 27, 13]. The simplest case is
that of table [4.10] which involves a single such complexified fermion.

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0
β 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0
γ 1 0 0 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 1 1 1
2

1
2

1
2

0

y3ȳ3 y4ȳ4 y5ȳ5 y6ȳ6 y1ȳ1 y2ȳ2 ω5ω̄5 ω6ω̄6 ω2ω3 ω1ω̄2 ω4ω̄4 ω̄2ω̄3

α 1 0 0 1 0 0 1 0 0 0 1 1
β 0 0 0 1 0 1 1 0 0 1 0 1
γ 1 1 0 0 1 1 0 0 0 0 0 1

(4.10)

With some choice of GSO projection coefficients. The model of table [4.10] was
published in [11], and the entire spectrum is given there. In this model it is easily
seen that the moduli fields,

h11, h21, h34, h44, h55, h56, h65, h66, (4.11)

and their corresponding Thirring terms, are retained in the spectrum, whereas the
moduli fields,

h12, h22, h33, h43, (4.12)
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are projected out, and the corresponding Thirring terms are not invariant under
the transformations. Using the bosonic coordinates eq. (2.15) we can translate
the transformations of the internal fermions to the corresponding action on bosonic
variables. In terms of

Zi = X2i−1 + iX2i = XL
2i−1 +XR

2i−1 + i(XL
2i +XR

2i) (i = 1, 2, 3), (4.13)

we have

Z1 Z2 Z3

α X1 + i(XL
2 −XR

2 ) + 2π + i2π −XL
3 +XR

3 − iX4 + i2π −Z3 + 2π
β −X1 + i(−XL

2 +XR
2 ) + 2π XL

3 −XR
3 − iX4 + 2π + i2π −Z3 + 2π

γ −X1 + i(−XL
2 +XR

2 ) −XL
3 +XR

3 − iX4 Z3 + 2π + i2π
(4.14)

From table [4.14] we see that the complex structure of two of the complex planes
is broken, whereas the third is retained. Furthermore, the transformations with
respect to two of the internal bosonic coordinates are asymmetric between the left–
and the right–moving part, and are therefore not geometrical. This entails that the
corresponding moduli must be projected out, and the coordinates are frozen at fixed
radii. Indeed, using the identity (3.26), and the definitions of the complex moduli
fields in eq. (3.21–3.24) we relate the projection of the moduli fields hij to constraints
on the complex and Kähler moduli of the Z2 × Z2 orbifold, Ui and Ti (i = 1, 2, 3).
Thus, in the case of the model of table [4.10], the projection of the h11, h22, h33, h43

moduli fields translate to the conditions

T1 = U1 , T2 = −U2 whereas T3; = U3 are unconstrained (4.15)

The next example is a model with two complexified left– and right–moving internal
fermions from the set {y, ω|ȳ, ω̄}. Table [4.16] provides an example of such a model.

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0
β 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0
γ 0 0 0 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 0 0 1
2

1
2

1

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω̄5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω1ω̄1 ω2ω̄2 ω3ω̄3 ω4ω̄4

α 1 0 0 0 0 0 1 1 0 0 1 0
β 0 0 1 1 1 0 0 0 1 0 0 0
γ 0 1 0 1 0 0 0 1 0 0 0 1

(4.16)

With some choice of generalized GSO coefficients. The model of table [4.16] produces
three generations from the twisted sector b1, b2 and b3, and a standard–like observ-
able gauge group. It produces Electroweak super–Higgs doublets from the first two
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untwisted planes, and a color triplet from the third. In this model it is easily seen
that the moduli fields,

h12, h22, h34, h44, (4.17)

and their corresponding Thirring terms, are retained in the spectrum, whereas the
moduli fields,

h11, h22, h33, h43, h55, h56, h65, h66, (4.18)

are projected out, and the corresponding Thirring terms are not invariant under the
transformations. In terms of the complex bosonic coordinates (4.13) we have on the
first two complex planes

Z1 Z2

α (XL
1 −XR

1 ) + iX2 + (1 + 2i)π (XL
3 −XR

3 ) + iX4 + (1 + 2i)π
β (XL

1 −XR
1 ) + iX2 + (1 + 2i)π (XL

3 −XR
3 ) + iX4 + (1 + 2i)π

γ (XL
1 −XR

1 ) + iX2 + (1 + 2i)π (XL
3 −XR

3 ) + iX4 + π

(4.19)

and on the third

Z3

α (XL
5 −XR

5 ) + i(XL
6 −XR

6 ) + (2 + i)π
β (XL

5 −XR
5 ) + i(XL

6 −XR
6 ) + iπ

γ (XL
5 −XR

5 ) + i(XL
6 −XR

6 ) + (2 + i)π

(4.20)

the projection of the moduli fields in eq. (4.18) translate in this case to the conditions

T1 = −U1 , T2 = −U2 whereas T3; = U3 = 0 (4.21)

It is seen here that the third complex plane is completely fixed, whereas on the first
and second planes X2 and X4 retain their geometrical character, and X1 and X3 do
not.

From the two examples above, and eq. (3.26) we can draw the general constraints
on the complex and Kähler moduli, which can be written for k = 1, 2, 3 as,

Uk = h2k−1 2k−1 + h2k 2k + i(h2k 2k−1 − h2k−1 2k) (4.22)

Tk = h2k−1 2k−1 − h2k 2k + i(h2k 2k−1 + h2k−1 2k). (4.23)

From the identity eq. (3.26), the vanishing of certain real Thirring terms on the
left–hand side, translate to the conditions

Tk + Uk = 0 ⇔ h2k−1 2k−1 & h2k 2k−1 are projected out. (4.24)

Tk − Uk = 0 ⇔ h2k 2k & h2k−1 2k are projected out. (4.25)

Hence, if both Tk +Uk = 0 and Tk −Uk = 0 hold, then both the Kähler and complex
structure moduli of the kth plane are projected out, and the radii and angles of the
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corresponding internal torus are frozen. In this case there is no extended geometry in
the effective low energy field theory. This situation is similar to the manner in which
gauge symmetries are broken in string theory by the GSO projections. Namely, the
gauge symmetry is not realized in the effective low energy field theory, but exists as
an organizing principle at the string theory level. That is parts of the string spectrum
obeys the symmetry, but the entire string spectrum does not.

The above two examples demonstrates the interesting possibility of correlating
between the number of complexified fermions and the surviving untwisted moduli,
which would suggest that for every complex fermion, four additional untwisted moduli
are projected out. However, in the following I show that this is not necessarily the
case, and the situation is more intricate.

The retention or projection of untwisted moduli in the case with three complex
fermions depends on the choice of pairings of the left–moving real fermions from the
set {y, ω}1,···,6. The distinction between the different choices of pairings, and some
phenomenological consequences, was briefly discussed in ref. [13]. To demonstrate
the effect on the untwisted moduli I consider the two models in tables [2.13] [9] and
[4.26] [6].

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

b4 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
α 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0
β 1 0 1 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 1 1 1
2

1
2

1
2

1

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω6 y2ȳ2 ω5ω̄5 ȳ1ω̄6 ω1ω3 ω2ω̄2 ω4ω̄4 ω̄1ω̄3

α 1 0 0 1 0 0 1 0 0 0 1 0
β 0 0 0 1 0 1 0 1 1 0 1 0
γ 0 0 1 1 1 0 0 1 0 1 0 0

(4.26)

The choice of generalized GSO projection coefficients of the model of table [4.26], as
well as the complete mass spectrum and its charges under the four dimensional gauge
group are given in ref. [6].

One of the important constraints in the construction of the free fermionic models
is the requirement that the supercurrent, eq. (2.1), is well defined. In the models
that utilize only periodic and anti–periodic boundary conditions for the left–moving
sector, the eighteen left–moving fermions are divided into six triplets in the adjoint
representation of the automorphism group SU(2)6. These triplets are denoted by
{χi, yi, ωi} i = 1, · · · , 6, and their boundary conditions are constrained as given in eq.
(4.2). In the type of models that are considered here a pair of real fermions which
are combined to form a complex fermion or an Ising model operator must have the
identical boundary conditions in all sectors. In practice it is sufficient to require that
a pair of such real fermions have the same boundary conditions in all the boundary

19



basis vectors which span a given model. In the model of table [2.13] the pairings are:

{(y3y6, y4ȳ4, y5ȳ5, ȳ3ȳ6),

(y1ω6, y2ȳ2, ω5ω̄5, ȳ1ω̄6),

(ω2ω4, ω1ω̄1, ω3ω̄3, ω̄2ω̄4)}, (4.27)

where the notation emphasizes the original division of the world–sheet fermions by
the NAHE–set [8, 13]. Note that with this pairing the complexified left-moving pairs
mix between the six SU(2) triplets of the left–moving automorphism group. That is
the boundary condition of y3y6 fixes the boundary condition of y1ω5. In this model
we find that under the α projection

J1,···,6
L → −J1,···,6

L , J̄1,···,6
R → J̄1,···,6

R . (4.28)

As a result all of the Thirring terms, and hence all the untwisted moduli are projected
out in this model. In terms of the complex bosonic coordinates (4.13) the fermionic
boundary conditions on the first two complex planes translate to

Z1 Z2

α (XL
1 −XR

1 ) + i(XL
2 −XR

2 ) + (1 + 2i)π (XL
3 −XR

3 ) + i(XL
4 −XR

4 ) + (1 + 2i)π
β (XL

1 −XR
1 ) + i(XL

2 −XR
2 ) + (1 + 2i)π (XL

3 −XR
3 ) + i(XL

4 −XR
4 ) + (1 + 2i)π

γ (XL
1 −XR

1 ) + i(XL
2 −XR

2 ) + π (XL
3 −XR

3 ) + i(XL
4 −XR

4 ) + π
(4.29)

and on the third

Z3

α (XL
5 −XR

5 ) + i(XL
6 −XR

6 ) + (2 + i)π
β (XL

5 −XR
5 ) + i(XL

6 −XR
6 ) + iπ

γ (XL
5 −XR

5 ) + i(XL
6 −XR

6 ) + (2 + i)π

(4.30)

Hence, the boundary conditions in this case correspond to asymmetric action on all
six real internal coordinates. In terms of the Kähler and complex structure fields we
have that the projection of the 12 real hij translate to

Tk + Uk = 0 and Tk − Uk = 0 for k = 1, 2, 3 . (4.31)

Therefore,
Tk = Uk = 0.

and, and all the untwisted geometrical moduli are projected out in this model.
On the other hand the pairings in the model of table [4.26] are:

{(y3y6, y4ȳ4, y5ȳ5, ȳ3ȳ6),

(y1ω6, y2ȳ2, ω5ω̄5, ȳ1ω̄6),

(ω1ω3, ω2ω̄2, ω4ω̄4, ω̄1ω̄3)} (4.32)
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Note that with this pairing the complexified left-moving pairs in Eqs. (4.32) mix
between the first, third and sixth SU(2) triplets of the left–moving automorphism
group. In this model it is easily seen that the moduli fields,

h11, h12, h21, h22, h34, h44, h55, h65 (4.33)

and their corresponding Thirring terms, are retained in the spectrum, whereas the
moduli fields,

h33, h43, h56, h66 (4.34)

are projected out, and the corresponding Thirring terms are not invariant under
the transformations. In terms of the bosonized variables the boundary conditions
translate to

Z1 Z2

α Z1 + (2 + i2)π −Z2 + i2π
β −Z1 + π −Z2 + (2 + i)π
γ −Z1 + i2π (XL

3 −XR
3 ) + iX4 + (1 + i2)π

(4.35)

and on the third
Z3

α −Z3 + 2π
β Z3 + (2 + i)π
γ −X5 + i(−XL

6 +XR
6 ) + iπ

(4.36)

Hence, in this case the asymmetric fermionic boundary conditions translate to asym-
metric action only on two of the six real bosonic coordinates, whereas the other four
retain their geometrical interpretation. In terms of the Kähler and complex structure
fields the projection of the 4 real hij fields in eq. (4.34) translate to

T1; U1 are unconstrained, T2 = −U2 , T3 = U3 (4.37)

Furthermore, with the choice of pairings in eqs. (4.32) we can construct a model
in which all the untwisted moduli are retained in the spectrum. An example of such
a model is given in table [4.38].

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
β 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1
γ 0 0 0 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 1 1 1
2

1
2

1
2

1

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω6 y2ȳ2 ω5ω̄5 ȳ1ω̄6 ω1ω3 ω2ω̄2 ω4ω̄4 ω̄1ω̄3

α 1 0 0 0 1 0 0 0 1 0 0 0
β 0 1 0 1 0 0 0 1 0 0 1 1
γ 0 0 1 1 0 0 1 1 0 0 0 1

(4.38)
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with a choice of generalized GSO projection coefficients. The model in table [4.38] is a
variant of the model of ref. [6]. This model utilizes asymmetric boundary conditions.
There are three complexified internal fermions, which are the same as those of the
model of table [4.26], and the pairing of the left–moving world–sheet fermions is iden-
tical. In terms of its phenomenological characteristics the model is a three generation
model, each arising from the sectors b1, b2 and b3. The four dimensional gauge group
is the same as that of ref. [6]. The model utilizes the doublet–triplet splitting mech-
anism of ref. [26], which arises from the asymmetric boundary condition assignments
in the basis vectors that break the observable SO(10) → SO(6) × SO(4). Similarly,
the model yields tri–level Yukawa couplings to the three +2/3 charged quarks, but
not to the −1/3 charged quarks, which is a result of the asymmetric boundary con-
dition assignment in the basis vector that breaks SO(10) → SU(5) × U(1). In the
model of table [4.38] all the untwisted moduli are left in the massless spectrum. It is
instructive to rewrite the boundary conditions of the internal fermions in this model
in the notation of table [4.1]

y1ω1 ȳ1ω̄1 y2ω2 ȳ2ω̄2 y3ω3 ȳ3ω̄3 y4ω4 ȳ4ω̄4 y5ω5 ȳ5ω̄5 y6ω6 ȳ6ω̄6

α 11 00 00 00 11 00 00 00 00 00 11 00
β 00 11 00 00 00 11 11 11 00 00 00 11
γ 00 11 00 00 00 11 00 00 11 11 00 11

(4.39)

In this notation it is apparent that despite the utilization of asymmetric boundary
conditions, the specific pairing of world–sheet fermions allows the retention of all
the untwisted moduli. In terms of the bosonized variables the boundary conditions
translate to

Z1 Z2 Z3

α Z1 + (1 + i2)π Z2 + (1 + i2)π Z3 + (2 + i)π
β Z1 + (1 + i2)π Z2 + 2π Z3 + (2 + i)π
γ Z1 + (1 + i2)π Z2 + (2 + i2)π Z3 + iπ

(4.40)

From eq. (4.40) it is evident that all three complex planes retain the complex geom-
etry, and hence the three Kähler and three complex moduli remain in the spectrum.
In this model the reduction to three generations is attained solely by the shift iden-
tifications in the real and complex directions, which are asymmetric in terms of the
fermionic boundary conditions, but symmetric in terms of the bosonic variables.

The investigation above of the moduli in the three generation free fermionic mod-
els is, of course, not exhaustive, but rather illustrative. The moduli of other models
in this class may be similarly investigated. I give here a cursory view of several
additional models. As illustrated above the determinantal factor in regard to the
untwisted moduli is the pairing of the left– and right–moving fermions from the set
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{y, ω|ȳ, ω̄}1,···,6. In the case of symmetric boundary conditions, with 12 left–moving
real fermions combined with 12 real right–moving fermions to form 12 Ising model
operators, the moduli fields always remain in the spectrum and the six compacti-
fied coordinates maintain their geometrical character. When the real fermions are
combined to form complex fermions the situation is more varied, as illustrated above.

The determination of the moduli, however, does not depend on the choice of the
observable four dimensional gauge group. To exemplify that I consider the model
of ref. [7], which utilizes the same complexification of the real fermions as that of
the model of table [4.10]. It is then found that the retained and projected moduli
in this model are those in eqs. (4.11) and (4.12), respectively. Of course, there may
be a correlation between the assignment of boundary conditions to the real fermions
{y, ω}L,R and those that determine the four dimensional gauge group. Such depen-
dence may arise because of the modular invariance constraints [17]. But typically
we may relegate this correlation to the hidden sector, and therefore the observable
sector is not affected.

In the case of three complex right–moving fermions, and their corresponding left–
moving complexified fermions, each pair being associated with a distinct complex
planes, we noted in eqs. (4.27) and (4.32), two cases of pairings, with differing conse-
quences for the untwisted moduli fields. The case of (4.32) was further investigated in
the model of table [4.38]. The moduli with the pairing of eq. (4.27) may be similarly
investigated in models that utilize this pairing. An example of such a model is the
model in table [4.41],

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
γ 0 0 0 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 1 1 1
2

1
2

1
2

0

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

α 1 1 1 0 1 1 1 0 1 1 1 0
β 0 1 0 1 0 1 0 1 1 0 0 0
γ 0 0 1 1 1 0 0 0 0 1 0 1

(4.41)

with a suitable choice of GSO projection coefficients. This model is published in [10],
and has similar features to the model of table [2.13], with the difference being that
[4.41] yields bottom–quark and tau–lepton Yukawa couplings at the quartic level of
the superpotential [10], whereas [2.13] yields such couplings only at the quintic order
[9]. In the model of table. [4.41] one finds again that all the untwisted moduli fields
are projected out. Another example of a model in this class is the model on page 14 of
[13], which utilizes the pairings of eq. (4.27). This model is a variation of the model of
table [4.41], with the boundary conditions in the vector γ chosen such that the sector
b2 produces trilevel bottom–type Yukawa coupling rather than top–type. Again in
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this model all the untwisted moduli are projected out. In fact, we may conjecture that
in general in free fermionic models that utilize the NAHE–set of boundary condition
basis vectors, and the pairing of eq. (4.27), the moduli are always projected out. The
reason is that in order to reduce the number of generations to three, one from each
of the twisted sectors, b1, b2 and b3, we have to break the degeneracy between the
complexified left–moving and right–moving fermions in each sector. This entails the
assignment of asymmetric boundary conditions with respect to these complexified
fermions, in at least one of the basis vectors, α, β or γ. In the case of the pairing of
eq. (4.27) this leads to the projection of all the untwisted moduli, as noted above,
because of the fact that this pairing mixes all the six left–moving triplets of the
SU(2)6 automorphism algebra.

5 Twisted moduli

I now turn to show that is the class of three generation string models under
consideration here moduli which arise from the twisted sectors are also projected from
the massless spectrum. To see how this comes about we start with the set of basis
vectors {1, S, ξ1, ξ2, b1, b2} [14]. This set of basis vectors generates a model with E6 ×
U(1)2×E8×SO(4)3, with 24 matter states in the 27 representation of the observable
E6 gauge group, arising from the twisted sectors. These states are decomposed in the
following way under E6 → SO(10). The spinorial 16 representations of SO(10) arise
from the sectors b1, b2 and b3, whereas the vectorial 10 representations arise from the
sectors bj +ξ1. Here, the basis vector ξ1 produces the space-time vector gauge bosons
that enhance the N = 4 observable SO(16) gauge group to E8. In addition to the
vectorial 10 representation the sectors bj + ξ1, also produce a pair of SO(10) singlets,
one of which is embedded in the 27 of E6, whereas the second is indentified with a
twisted moduli. Therefore, the models with an E6 observable gauge group contain
additional 24 twisted moduli, which matches the number of chiral matter states in
the model, as it should.

In the realistic free fermionic models the observable gauge group is broken from
E6 to SO(10) × U(1). This can be achieved in two equivalent ways. One possibility
is to replace the vector ξ1 with the vector 2γ. In this case the gauge group of the
N = 4 vacuum, generated by the subset of basis vectors {1, S, 2γ, ξ2}, is SO(12) ×
SO(16)×SO(16). The space-time vector bosons of the four dimensional gauge group
in this case are obtained from the NS sector, the sector ξ2, and the sector ξ2 + 2γ.
An equivalent way to produce the same N = 4 string vacuum is to break the E8 ×E8

gauge group by the choice of GSO phase eq. (2.11) in the one–loop string partition
function. One choice of this phase preserves the states from the sectors ξ1 and ξ2, and
therefore enhances the NS SO(16)×SO(16) gauge symmetry to E8×E8. The second
choice projects out those states. In the second case the sectors bj + 2γ, or bj + ξ1
produce states in the 16 vectorial representation of the hidden SO(16) gauge group,
whereas the vectorial states in the (5+5̄) and (1+1̄), of the observable SO(10) group,
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generated by the world–sheet fermions ψ̄1,···,5 are projected out from the spectrum.
Hence, in this case all the moduli that arise from twisted sectors are projected out.
The only states that arise from the twisted sectors in three generation models are
observable or hidden matter states.

6 Discussion and conclusions

In this paper I investigated the untwisted moduli fields in the three generation
free fermionic heterotic–string models. This class of string vacua produced some
of the most realistic string models constructed to date. Not only does it produce
three generations of chiral fermions under the Standard–Model gauge group with
potentially phenomenologically viable couplings to the electroweak Higgs doublet
fields, but it also affords the attractive embedding of the Standard Model spectrum
in SO(10) representations. This property ensures the canonical GUT normalization
of the weak hypercharge, which in turn facilitates the agreement of the heterotic–
string coupling unification with the experimental data. Thus, these models produce a
gross structure, which is compelling from a phenomenological point of view. It ought
to be emphasized that one should not regard any of the existing models as providing
a completely realistic phenomenology, but merely as providing a probe into what may
be some of the ingredients of the eventually true vacuum. From this perspective, a
vital property of the free fermionic models is their connection to Z2 × Z2 orbifold
compactifications.

The free fermionic formalism facilitated the construction of the three generation
models and the analysis of some of their phenomenological characteristics. However,
this method is formulated, a priori, at a fixed point in the moduli space and the
immediate notion of the underlying geometry of the six dimensional compactified
manifold is lost. In particular, the identification of the untwisted moduli fields, and
their role in the low energy effective theory, is encumbered. These are reincorporated
into the models by identifying the moduli fields as the coefficients of the Abelian
Thirring interactions [20]. The moduli fields in the free fermionic models are therefore
in correspondence with the Abelian Thirring terms that are invariant under the GSO
projections, induced by the basis vectors that define the models.

In this paper the issue of untwisted moduli in the realistic three generation free
fermionic models was investigated. The existence of models in which all the untwisted
Kähler and complex structure moduli are projected out by the generalized GSO
projections was demonstrated. The conditions for the projection of all the moduli
were identified, and compared to other similar models in which the untwisted moduli
are retained. The basic condition that enable the projection of all the untwisted
moduli is when the fermionic boundary conditions are such that they correspond to
left–right asymmetric boundary conditions with respect to all the six real coordinates
of the six dimensional internal manifold. Additionally, it was shown that in this class
of three generation models the E6 symmetry is broken to SO(10) × U(1) by a GSO
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projection. As a consequence all the moduli that arise from the twisted sectors are
also projected out in these models.

The existence of quasi–realistic models in which all the untwisted Kähler and
complex structure moduli are projected out is fascinating. It offers a novel perspective
on the existence of extra dimensions in string theory, and on the problem of moduli
stabilization. The untwisted moduli are those that govern the underlying geometry,
and hence the physics of the extra dimensions. Reparameterization invariance in
string theory introduces the need for additional degrees of freedom, beyond the four
space–time dimensions, to maintain the classical symmetry in the quantized theory.
These additional degrees of freedom may be interpreted as extra dimensions, which
are compactified and hidden from contemporary experimental observations. Thus,
the consistency of string theory gives rise to the notion of extra dimensions, which
in every other respect is problematic. In particular, it raises the issue of what is the
mechanism that selects and fixes the parameters of the compactified space. However,
if there exist string models in which all the untwisted moduli are projected out by the
GSO projections, it means that in these vacua the parameters of the extra dimensions
are frozen. In fact, in these string vacua the extra degrees of freedom needed for
consistency cannot be interpreted as extra dimensions, as it is not possible to deform
from their fixed values, and there is no notion of a continuous classical geometry.

The problem of moduli stabilization in string theory attracted considerable atten-
tion in the literature [1]. Most of the studies have been directed toward stabilization
of the extra dimensions in the effective low energy field theory that emerges from the
underlying string theory. The primary obstacle to this is the fact that there are no
potential terms for the moduli fields to all orders in perturbation theory. One then,
in general, has to rely on the appearance of nonperturbative potential terms, or the
utilization of internal fluxes [1]. However, the mechanism that fixes the moduli in
the free fermionic models is an intrinsically string theoretic mechanism. The reason
is that this mechanism utilizes asymmetric boundary conditions. The possibility to
separate the internal dimensions into left– and right–movers, and to assign different
transformation properties to them, is intrinsically string theoretic and is nonsensical
in the effective low energy point quantum field theories, considered to date.

String theory provides a consistent framework for perturbative quantum gravity.
In this context it provides the quantum, albeit perturbative, probe of the under-
lying geometry. The effective low energy point quantum field theory, on the other
hand, treats the underlying geometry as a classical geometry. The existence of quasi–
realistic string vacua in which all the untwisted moduli are fixed at the string level
may tell us that, although string theory requires the additional degrees of freedom
for its consistency, these degrees of freedom are not necessarily realized as extra con-
tinuous classical dimensions, in the phenomenologically viable cases. These vacua
live intrinsically in four space–time dimensions, and there is no notion of extra ge-
ometrical dimensions in the low energy effective point quantum field theory. Thus,
while the geometrical notion of the extra degrees of freedom provides a useful mean
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to classify the string vacua, these do not have a physical realization. This situation
is similar to the way in which the GUT symmetries are broken in the quasi–realistic
free fermionic heterotic–string models by the generalized GSO projections. Namely,
also in this case, while the Standard Model states fall into representations of the
underlying SO(10) symmetry, the GUT group is broken directly at the string level,
and is not realized as a gauge symmetry in the effective low energy point quantum
field theory.

The existence of quasi–realistic string vacua in which all the untwisted moduli
are projected out by the GSO projections is fascinating and intriguing. As discussed
in this paper, such string vacua exist among the so–called realistic free fermionic
models. We may then ask what are the properties of these models that enabled this
outcome, and whether it is unique to this class of models. It should be emphasized
that although the free fermionic formalism is formulated at a fixed point in the
moduli space, this does not yet entail the absence of an underlying geometry, and the
geometrical degrees of freedom are reincorporated in the form of the Abelian world–
sheet Thirring interactions. The string vacua in which all the untwisted moduli are
fixed represent a special subclass of the three generation models, and the projection
of the moduli is highly correlated with the reduction of the number of generations.
That is, it is only in the special case of the three generation models that one may
expect to find vacua in which all the untwisted moduli are projected out.

The defining property of the three generation free fermionic heterotic string mod-
els is their relation to Z2 × Z2 orbifold compactifications [14]. We may therefore ask
whether the Z2 projections, and the Z2 ×Z2 orbifold possess some special properties
that enables the projection of all the untwisted geometrical moduli, and distinguishes
it from other compactifications. Naturally, an answer to this question requires fur-
ther investigation. However, we may note that the special property of the Z2 × Z2

orbifold is that it may act on the internal dimensions as real, rather than complex,
dimensions. As discussed in section 4 it is this property that enables the projection
of all the untwisted Kähler and complex structure moduli in the free fermionic mod-
els that utilize the pairings of eq. (4.27). Whether or not similar results may be
obtained in other classes of string compactifications is an interesting question that
requires further research.

It should be emphasized that the results of this paper do not imply a complete
solution to the moduli problem in string theory. A moduli field, in general, is a field
that does not have a potential to all orders in perturbation theory, and therefore
its vacuum expectation value is unconstrained, and it does not get a mass term.
The string models contain other sources of moduli fields, aside from the perturbative
untwisted geometrical moduli, and the twisted sectors moduli. These include: the
dilaton field; and the possibility of charged moduli. Furthermore, the class of vacua
under consideration here are supersymmetric and there may exist moduli associated
with the supersymmetric flat directions. Moreover, in string theory, each continuous
coupling naively implies the existence of a moduli field, and therefore prior to fixing
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all the couplings in a given model, it seems premature to claim that the entire issue
of moduli has been addressed. The untwisted moduli fields are, however, those that
parameterize the shape and size of the underlying six dimensional compactified space.

In regard to the dilaton field, the models investigated here are perturbative het-
erotic strings. Following the string duality advances, we now know that the heterotic
string is a perturbative limit of the more fundamental quantum M–theory. At present
we have no knowledge about this quantum theory, aside from the existence of its ef-
fective limits. The heterotic limit is an expansion in vanishing string coupling, and
therefore one would not expect to be able to fix the dilaton VEV in this limit (al-
though one may entertain some nonperturbative possibilities [32]). In this paper it
was found that fixation of the other untwisted moduli is achieved by an intrinsic
string mechanism, and hence at the perturbative quantum gravity level. However, at
present the quantum M–theory is not available. The lesson from the current paper is
that the quantum M–theory may allow further possibilities to the problem of dilaton
stabilization, which are not readily gleaned in the effective low energy point quantum
field theory description.

Additional flat direction moduli and charged moduli may, in general, exist in
the string models. Their existence, or absence, in the string model is more model
dependent and requires a model by model analysis. However, the structure of the
three generation free fermionic models suggests that flat, or charged, moduli are not
interchanged with untwisted moduli, and hence an underlying continuous geometrical
manifold is not restored.

Finally, it should be emphasized that whether or not extra dimensions play a
physical role in nature would, of course, require further study and investigation.
From the discussion in sections 2 and 3 it is found that the untwisted sector of
the NAHE–based free fermionic models produces three complex and three Kähler
structure moduli. This outcome remains valid in any free fermionic model which is
left–right symmetric. As discussed in section 2 there do exist three generation free
fermionic models that are left–right symmetric. Therefore in these models the entire
set of moduli fields exist in the effective low energy field theory and the moduli remain
unfixed. However, the important point is that the free fermionic models also allow for
boundary conditions which are left–right asymmetric. Naturally, the space of models
is vast and we can construct models in which asymmetric boundary conditions are
assigned on one, two or three of the complex planes. The remarkable fact is the
existence of three generation models in which asymmetric boundary conditions are
assigned to all three complex planes. In this set of models the entire set of untwisted
moduli are projected out by the GSO projections and the untwisted moduli are
fixed. The results of this paper indicate the existence of quasi–realistic string vacua
in which the extra dimensions do not possess a classical physical realization. On the
other hand there are also three generation models in which the moduli are retained
and the geometrical description is maintained, and models in which some of the
extra dimensions are frozen whereas others are undetermined. Which, if any, of these
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possibilities is relevant to nature, would, of course, remain, for the time being, a hotly
contested issue. Moreover, the models may of course still contain additional moduli
and the role of these moduli requires more detailed investigation. We should also
remember that we are discussing here perturbative heterotic string models. In this
limit the dilaton remains unfixed, and it may be that nonperturbative effects may
give rise to additional moduli. Nevertheless, it is extremely intriguing that in the
class of three generation free fermionic models, that are constructed in the vicinity of
the self–dual point under the T–duality transformations, one finds that the models
possess the intrinsic mechanism to fix all the untwisted geometrical moduli. One
would anticipate that the self–dual point, being the symmetry point under the T–
duality transformations, plays a vital role in the vacuum selection [33]. The three
generation free fermionic models then highlight the class of Z2 × Z2 orbifolds as the
naturally relevant one. The availability, in this class, to act asymmetrically on all
the six real compactified dimensions, then affords the possibility of fixing all the
untwisted Kähler and complex structure moduli in these models.
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