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An estimate of the chiral condensate
from unquenched lattice QCD.
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Abstract

Using the parameters in the chiral Lagrangian obtained by MILC
from their unquenched lattice QCD calculations with 2+1 flavours of sea
quarks, I estimate the chiral condensate. I obtain the result 〈ψψ〉(2 GeV)/nf

= −(259 ± 27 MeV)3 in the MS scheme. I compare this value to other
determinations.

1 Introduction

The spontaneous breaking of chiral symmetry plays an important role in the
dynamics of low energy QCD. The non-zero value for the chiral condensate
is caused by spontaneous chiral symmetry breaking. The chiral condensate
is a basic parameter in the QCD sum rule approach to computing hadronic
quantities [1, 2] so a numerical value from lattice QCD is a valuable check on
that formalism.

There have been many quenched lattice QCD calculations that have reported
a value for the chiral condensate [3, 4, 5, 6]. The MILC collaboration [7, 8, 9]
have been performing unquenched lattice QCD calculations with the most real-
istic set of parameters used to date. The results from MILC’s lattice calculation
have been successfully compared against experiment for many quantities that are
stable to strong decay [10]. MILC’s lattice calculations use the improved stag-
gered fermion action. The method of performing unquenched calculations with
improved staggered quarks has potential problems with non-locality (see [11]
for a review), however this problem has not shown up in the comparison of re-
sults currently computed against experiment. The unquenched calculations use
2 light quarks in the sea and one sea quark fixed at approximately the strange
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quark mass. The data set from MILC has two lattice spacings (0.09 fm and
0.125 fm). All the volumes were larger than 2.5 fm. The lightest pion mass
used in MILC’s calculation is 250 MeV.

Although the data from MILC’s unquenched calculations has been used do
much important phenomenology, it has not been used to estimate a physical
value for the chiral condensate. In this paper, I estimate the chiral condensate
from the latest published MILC data.

2 Extracting the chiral condensate using chiral

perturbation theory.

In an extensive calculation [9] the MILC collaboration fitted the squared masses
of pseudo-scalar mesons and pseudo-scalar decay constants to the expressions
from chiral perturbation theory [12, 13, 14, 15]

M2

PS/(mx +my) = µ(1 + ...) (1)

where MPS is the mass of the pseudo-scalar meson made of quarks x and y with
masses mx and my respectively. In equation 1 the dots represent higher order
terms that MILC included in the fits.

Chiral perturbation theory relates the chiral condensate 〈ψψ〉/nf to µ

〈ψψ〉/nf = −
1

2
µf2 (2)

where f is the pion decay constant in the chiral limit. I use the normalisation
of the axial current such that the physical pion decay constant is 131 MeV.
When there are no correction terms in equation 1, these two equations are
known as the Gell-Mann-Oakes-Renner formulae (GMOR). Strictly speaking
the GMOR relation can only be used to extract the chiral condensate if there
are no higher order corrections to equation 1. Chiral perturbation theory is the
generalisation of GMOR to higher orders in the pion mass. The extraction of
the chiral condensate from the parameters of the chiral Lagrangian obtained by
fits to lattice data in the continuum large volume limits may be an empirical
approach, but I believe it is valuable.

In equation 2, 〈ψψ〉 is the sum of the chiral condensates for each sea quark.
In the appropriate limit where the masses of all the sea quarks go to zero in
the infinite volume limit, then the chiral condensate of each sea quark is the
same [16, 17].

Another technique to extract the chiral condensate from lattice QCD cal-
culations is to compute the scalar correlator directly [3, 5, 6]. The results are
then extrapolated to the zero quark mass limit. In a quenched lattice QCD
calculation, Bećirević and Lubicz used both the GMOR and scalar correlators
to extract a consistent result for the chiral condensate [3].
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The use of the parameters from the chiral Lagrangian that have been fitted
from lattice data to estimate the chiral condensate may miss some interesting
physics. Stern and collaborators [18, 19, 20] have proposed a scenario where
the chiral condensate for three flavours is very small, so the higher order terms
in equation 1 contribute the majority of the meson mass. The possibility that
the two flavour chiral condensate is small has been ruled out in the theory with
nf = 2 by comparison of chiral perturbation theory with ππ scattering [21].

3 Extracting the result

MILC have recently reported a fit of the numerical data for light pseudo-scalar
meson masses and decay constants to expressions derived from staggered chiral
perturbation theory [9]. A simultaneous fit was done to the data at the two
different lattice spacings. The fit functions for the masses and decay constants
used NNLO analytic terms, as well as lattice artifact terms arising from working
at fixed lattice spacing and fixed lattice volume.

I use equation 2 with the results from MILC’s extensive fits to chiral pertur-
bation theory. One important issue is the renormalisation of equation 2. The
MILC collaboration used a conserved axial current, so no renormalisation factor
is needed for the pion decay constant in the chiral limit (f). The µ term does
need to be renormalised. The µ term is renormalised with ZS that is related
to the renormalisation of the mass via ZS = 1

Zm

. The Zm renormalisation fac-
tor computed by the HPQCD, MILC, and UKQCD collaborations is reported
in [22].

Zm(Λ) =
1

u0

(

1 + α

(

b−
4

3π
−

2

π
ln(aΛ)

))

(3)

where α is the QCD coupling, b = 0.5432, and u0 is the tadpole factor. I always
quote numbers at the scale 2 GeV in the MS scheme.

The MILC analysis [9] is a combined fit to data at two lattice spacings. The
convention for the quark mass renormalisation is to convert the quark masses
to the lattice scheme on the fine lattice. Hence, the ZS factor for the quark
masses on the fine lattice must be used to convert µ into the MS scheme at
a scale of 2 GeV. Using the numbers quoted by MILC [9] I get Zm(2 GeV)
= 1.195. The two loop computation of Zm in lattice perturbation theory is
underway [23]. A non-perturbative estimate of Zm, using similar techniques to
those used by JLQCD [24] to renormalise the quark mass with Kogut-Susskind
fermions, would be useful. I use the estimate of 9% from MILC [9] for the error
due to the truncation of the perturbative series.

One advantage of the MILC collaboration’s calculation is that a consistent
lattice spacing is obtained from many different quantities that are stable against
strong decay [10]. The chiral condensate involves the third power of the lattice
spacing, so any errors in the choice of scale are amplified. I used MILC’s value [8]
r1 = 0.317(7) fm to convert the µ and f parameters into physical units.
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Fit Points Coarse Fine 〈ψψ〉(2 GeV)/nf

A 94 mx +my < 0.40m′

s mx +my < 0.54m′

s (269 ± 17 MeV)3

B 240 mx +my < 0.70m′

s mx +my < 0.80ms (250 ± 21 MeV)3

C 316 mx +my < 1.10m′

s mx +my < 1.14m′

s (249 ± 15 MeV)3

Table 1: Results for chiral condensate in the MS scheme at a scale of 2 GeV
for various fits that MILC did to their data. The coarse and fine columns
correspond to the mass ranges used in the fits with the data on the coarse and
fine lattice spacing. The m′

s is the mass of the strange sea quark in MILC’s
unquenched calculation. The points column is the number of data used in the
fit.

MILC’s analysis [22] of their data used a number of fits that included various
subsets of their data. In table 1, I compute 〈ψψ〉(2 GeV)/nf using equation 2
and the perturbative matching factor with the values for µ and f in table IV
of [9]. The results for the three main fits (called A, B and C) are in table 1. The
errors for the chiral condensate are dominated by the error on the pion decay
constant in the chiral limit (f).

MILC use combinations of the results from the fits A,B, and C to estimate
the central values and the systematic errors. I take the average of the result for
fit A and B as the central value.

〈ψψ〉(2 GeV)/nf = −0.018(5) GeV3 (4)

= −(259 ± 27 MeV)3 (5)

I now discuss the important issue as to whether 2+1=3. There are two main
possibilities, that the chiral perturbation theory analysis is sensitive to the three
flavour chiral condensate or to the two flavour chiral condensate with one sea
quark fixed at the strange quark mass. In the latter case the three flavour chiral
condensate could be extracted with the help of chiral perturbation theory [25].
In the MILC calculation the mass of the strange quark is fixed. However, the
data is analysed with three flavour chiral perturbation theory. The mass of
the strange quark was slightly incorrect on the coarse lattice, so some small
extrapolation in the data is done for the strange quark mass. It is hard to give
a definitive answer to the flavour dependence of the condensate extracted in this
paper without further analysis.

I could not find any recent calculations of the chiral condensate from un-
quenched lattice QCD calculations with two flavours of sea quarks. Early work
is reviewed in [26]. I have used the chiral perturbation theory approach to
extract the the chiral condensate from a recent unquenched lattice QCD calcu-
lation by the JLQCD collaboration [27]. This lattice calculation was done at
a fixed lattice spacing of 0.089 fm. The lightest sea quark mass was half the
strange quark mass. The axial vector current used in JLQCD’s calculation needs
to be renormalised. I used tadpole improved perturbation theory with a simple
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Group nf 〈ψψ〉(2 GeV)/nf 〈ψψ〉(2 GeV)/nf

This work, MILC 2+1 −0.017(5)GeV3 −(259 ± 27 MeV)3

This work, JLQCD 2 −0.009(1)GeV3 −(209 ± 8 MeV)3

Bećirević & Lubicz [3] 0 −(273 ± 19 MeV)3

Bećirević & Lubicz [3] 0 −(312 ± 24 MeV)3

Giusti et al. [4] 0 −0.0147(8)(16)(12) GeV3 −(245(4)(9)(7) MeV)3

Gimenez et al. [5] 0 −(265 ± 5 ± 22 MeV)3

Hernandez et al. [30] 0 −(268(12) MeV)3

DeGrand [6] 0 −(282(6) MeV)3

Giusti et al. [31] 0 −(267(5)(15) MeV)3

Blum et al. [32] 0 −(256(8) MeV)3

Table 2: Results for chiral condensate in the MS scheme at a scale of 2 GeV.

boosted coupling to estimate the required renormalisation (using the summary
of results in the appendix of [28]). The numerical value of renormalisation fac-
tor is 0.45, so some kind of non-perturbative renormalisation is required for a
definitive answer, hence the error for JLQCD estimate is unreliable. Dürr [29]
has previously noted the problems with extracting the chiral condensate from
unquenched calculations done by the CP-PACS and UKQCD collaborations.

4 Conclusion and comparison to other work

In table 2, I compare my analysis of the MILC and JLQCD data to a selection
of recent lattice results for the chiral condensate.

Giusti et al. [4] note that their numbers are comparable to estimates of
the chiral condensate from sum rules [1, 2]. The first entry in table 2 from
Bećirević & Lubicz comes from a GMOR analysis and the second is from the
pseudo-scalar vertex. Pennington [33] reviews various calculations of the chiral
condensate from lattice, and sum rules and estimates the size of the the chiral
condensate to be ∼ −(270 MeV)3. Jamin [34] obtained a value for the chiral
condensate of ∼ −(267 ± 16 MeV)3 from QCD sum rules.

From table 2, I note that the result from MILC is essentially consistent
with the other results. Descotes et al. have argued that the chiral condensate
with three sea quarks should be less than that from QCD with two light sea
quarks [19]. Given the assumptions in this analysis it does not look as though
the chiral condensate has a strong dependence on the number of quarks in the
sea. The Columbia [35, 36] group claimed to see a reduction in chiral symmetry
breaking from unquenched calculations with 0, 2, and 4 flavours of sea quarks,
but the analysis of their data was complicated by finite size effects. From lattice
QCD calculations Iwasaki et al. [37] find that the theory becomes deconfined
for nf > 6.
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From equation 1, the higher value for the chiral condensate is correlated
with smaller quark masses. This trend was noted by Gupta and Bhattacharya
in a review of lattice data before 1997 [26]. Although when higher order mass
corrections are included in equation 1 this is not so obvious.

From the same data set, the MILC, HPQCD and UKQCD collaborations [22]

have obtained the mass of the strange quark to bemMS
s (2 GeV) = 76(0)(3)(7)(0)

MeV, This value for the strange quark mass is low relative to other determi-
nations [38, 39, 40], however, this calculation is the first large scale lattice cal-
culation with 2+1 flavours of dynamical light quarks. The only other group
to have published results for the strange quark mass from unquenched lattice
QCD calculations with 2 + 1 flavours of sea quarks is the JLQCD/CP-PACS
collaboration. At a fixed lattice spacing, they obtain ms(2GeV) between 80 and
90 MeV [41]. The JLQCD/CP-PACS collaboration are planing to compute the
strange quark mass at other lattice spacings to do a continuum extrapolation.

Unfortunately, the data in table 2 are not precise enough to understand
the systematics of quark mass determinations between lattice QCD calculations
with 2 and 3 flavours of sea quarks. A reduction in the size of errors in the esti-
mates of the chiral condensate from lattice calculations with a different number
of sea quarks would help compare the results for quark masses from different
calculations.

The main theoretical concern with unquenched calculations with improved
staggered fermions is that the formalism requires taking the fourth of the de-
terminant that controls the sea quark dynamics. There have been a number of
theoretical papers on this topic [42, 43, 44, 45, 46, 47, 48] (the issues are adroitly
explained by DeGrand [11]). None of the theory papers on the locality of im-
proved staggered fermions have satisfactorily resolved the issue for QCD. One
of the main tests of the fourth root trick is comparison of the lattice data with
the results from chiral perturbation theory [9], hence it is important to fully
understand all aspects of chiral perturbation theory applied to the MILC data.
Crosschecks on the chiral perturbation theory analysis of MILC’s data are also
very valuable, because of the important phenomenology extracted from their
work. An independent computation of the magnitude of the chiral condensate
using different correlators would be a useful crosscheck [49, 50] on the estimate
from the chiral perturbation theory fits. MILC do study the chiral condensate
in their work on finite temperature [51].
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