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We investigate the one-loop renormalizability of a general N � 1
2 supersymmetric gauge theory

coupled to chiral matter, and show the existence of an N � 1
2 supersymmetric SU�N� �U�1� theory

which is renormalizable at one loop.
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I. INTRODUCTION

There has recently been much interest in theories de-
fined on nonanticommutative superspace [1–4]. Such theo-
ries are nonhermitian and turn out to have only half the
supersymmetry of the corresponding ordinary supersym-
metric theory—hence the term ‘‘N � 1

2 supersymmetry’’.
These theories are not power-counting renormalizable1 but
it has been argued [7–10] that they are in fact nevertheless
renormalizable, in the sense that only a finite number of
additional terms need to be added to the lagrangian to
absorb divergences to all orders. This is primarily because
although the theory contains operators of dimension five
and higher, they are not accompanied by their hermitian
conjugates which would be required to generate divergent
diagrams. This argument does not of course guarantee that
the precise form of the lagrangian will be preserved by
renormalization; nor does the N � 1

2 supersymmetry,
since some terms in the lagrangian are inert under this
symmetry. Moreover, the argument also requires (in the
gauged case) the assumption of gauge invariance to rule
out some classes of divergent structure. As we showed in
Ref. [11], there are problems with this assumption; even at
one loop, at least in the standard class of gauges, divergent
non-gauge-invariant terms are generated. However, in the
case of pure N � 1

2 supersymmetry (i.e. no chiral matter)
we displayed a divergent field redefinition which miracu-
lously removed the non-gauge-invariant terms and restored
gauge invariance. Moreover, we displayed a slightly modi-
[5,6] for other discussions of the ultraviolet prop-
theories.
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fied (but still N � 1
2 supersymmetric) version of the origi-

nal pure N � 1
2 lagrangian which had a form preserved

under renormalization. The authors of Ref. [12] obtained
the one-loop effective action for pure N � 1

2 supersym-
metry using a superfield formalism. Although they found
divergent contributions which broke supergauge invari-
ance, their final result was gauge-invariant without the
need for any redefinition. On the other hand it is hard to
make any inferences about renormalizability from their
superfield form of the one-loop result. In the present
work we consider the N � 1

2 supersymmetric action
coupled to chiral matter. The original nonanticommutative
theory defined in superfields appears to require a U�N�
gauge group [4,6]. In Ref. [11] we considered the compo-
nent form of the pure N � 1

2 supersymmetric action
adapted to SU�N�. We argued that it was only for SU�N�
that a form-invariant lagrangian could be defined;
indeed the U�N� gauge symmetry is not preserved under
renormalization. In the case with chiral matter it turns out
that the lagrangian is no longer form-invariant in the
SU�N� case either. In fact, a general N � 1

2 supersym-
metric SU�N� invariant action cannot be defined. However,
we shall demonstrate the existence of a new N � 1

2
supersymmetric SU�N� �U�1� action which is renorma-
lizable and preserves N � 1

2 supersymmetry at one
loop.

The action for an N � 1
2 supersymmetric U�N� gauge

theory coupled to chiral matter is given by [4]
S �
Z
d4x

�
tr
�
�

1

2
F��F�� � 2i �� ����D��� �D2

�
� 2igC��tr fF�� �� ��g � g2jCj2tr f� �� ���2g

�

�
�FF� i � ���D� �D� ��D��� g ��D�� i

���
2
p
g� ��� � � ���� �

���
2
p
gC��D�

�� �� ��� 

� igC�� ��F��F�
1

4
jCj2g2 �� �� ��F� ��! ~�; ! ~ ;F ! ~F;RA ! ��RA��; C�� ! �C���

��
; (1.1)
where we include a multiplet f�; ; Fg transforming ac-
cording to the fundamental representation of U�N� with
group matrices RA and, to ensure anomaly cancellation, a
multiplet f ~�; ~ ; ~Fg transforming according to its conju-
gate. The change C�� ! �C�� for the conjugate repre-
sentation is due to the fact that the anticommutation
relations for the conjugate fundamental representation dif-
fer by a sign from those for the fundamental representation.
We define
-1 © 2005 The American Physical Society
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D�� � @��� igA��; D�� � @��� ig�A�; �	;

F�� � @�A� � @�A� � ig�A�; A�	; (1.2)

(with a similar expression for D�
~�) where

A� � AA�R
A; � � �ARA; D � DARA: (1.3)

The group matrices satisfy

�RA; RB	 � ifABCRC; fRA; RBg � dABCRC; (1.4)

where dABC is totally symmetric. If one decomposes U�N�
as SU�N� �U�1� then our convention is that Ra are the
SU�N� generators and R0 the U�1� generator. Of course
then fABC � 0 unless all indices are SU�N�. The matrices
are normalised so that Tr �RARB	 � 1

2�
AB. In particular,

R0 �
�����
1

2N

q
1. We note that dab0 �

���
2
N

q
�ab, d000 �

���
2
N

q
. In

Eq. (1.1), C�� is related to the nonanticommutativity pa-
rameter C�� by

C�� � C��	�
�
��

� ; (1.5)

where
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��� �
1

4
��� ��� � �� ����; ���� �

1

4
� ����� � ������;

(1.6)

and

jCj2 � C��C��: (1.7)

Our conventions are in accord with [3]; in particular,

�� ��� � ���� � 2���: (1.8)

Properties of C which follow from Eq. (1.5) are

C�� �
1

2
	�
�����
�C��; (1.9a)

C����� _� � C�
�
�

_

�
; (1.9b)

C�� �� _��
� � �C�
 ��� _�
: (1.9c)

Upon substituting Eq. (1.3) into Eq. (1.1) and using
Eq. (1.4), we obtain the action in theU�N� case in the form:
S �
Z
d4x

�
�

1

4
F��AFA�� � i ��A ����D���

A �
1

2
DADA �

1

2
igC��dABCFA�� ��B ��C �

1

8
g2jCj2dABEdCDE� ��A ��B�� ��C ��D�

�

�
�FF� i � ���D� �D

� ��D��� g ��D�� i
���
2
p
g� ��� � � ���� �

���
2
p
gC��D�

�� �� ��� 

� igC�� ��F��F�
1

8
jCj2g2dABC ��RA ��B ��CF� ��! ~�; ! ~ ;F ! ~F;RA ! ��RA��; C�� ! �C���

��
: (1.10)

with gauge coupling g, gauge field A�, gaugino � and with

FA�� � @�A
A
� � @�A

A
� � gf

ABCAB�A
C
� ; D��

A � @��
A � gfABCAB��

C: (1.11)

However, it is clear that the U�N� action cannot be renormalizable, since for any U�N� gauge theory the gauge couplings
for the SU�N� and U�1� parts of the theory renormalize differently. To obtain a renormalizable theory one must introduce
different couplings for the SU�N� and U�1� parts of the gauge group and then the U�N� gauge-invariance is lost. This is a
trivial point but one which does not seem to have been made in other discussions of the renormalization of N � 1

2
supersymmetric gauge theory. Remarkably, we shall see that by a judicious introduction of different couplings for the
SU�N� and U�1� parts of the gauge group, we can obtain an SU�N� �U�1� theory which still has N � 1

2 supersymmetry
which is preserved under renormalization. We propose replacing Eq. (1.10) by

S �
Z
d4x

�
�

1

4
F��AFA�� � i ��A ����D���

A �
1

2
DADA �

1

2
iC��dABCeABCFA�� ��B ��C �

1

8
g2jCj2dabedcde� ��a ��b�� ��c ��d�

�
1

4N
g4

g2
0

jCj2� ��a ��a�� ��b ��b� �
�

�FF� i � ���D� �D
� ��D��� ��D̂�� i

���
2
p
� �� �̂ � � �̂���

�
���
2
p
C��D�

�� �̂� ��� � iC�� ��F̂��F�
1

8
jCj2dABC ��RA �̂�

B �̂�
C
F�

1

N

1g2

0jCj
2� ��a ��a�� ��0 ��0�

� 
2C��g�
���
2
p
D�

�� ��aRa ��� �
���
2
p

�� ��aRa ���D� � i ��Fa��RaF�

� ��! ~�; ! ~ ;F ! ~F;RA ! ��RA��; C�� ! �C���
��
; (1.12)
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FIG. 1. Diagrams with one gauge, two gaugino lines; the dot
represents the position of a C.

(a) (b) (c)

(d) (e) (f)

FIG. 3. Diagrams with four gaugino lines; the dot represents
the position of a C or jCj2.
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(j) (k) (l)

(m) (n) (o)

FIG. 2. Diagrams with two gauge and two gaugino lines; the
dot represents the position of a C.
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where 
1, 
2 are constants,

Â � � ÂA�R
A � gAa�R

a � g0A
0
�R

0; (1.13)

with similar definitions for �̂, D̂, F̂��, and now

D�� � �@� � iÂ���: (1.14)

We also have

eabc � g; ea0b � eab0 � e000 � g0; e0ab �
g2

g0
:

(1.15)

It is easy to show that Eq. (1.12) is invariant under

�AA� � �i ��A ���	

��A� � i	�DA � ����	���FA�� �
1

2
iC��eABCdABC ��B ��C	;

� ��A_� � 0; �DA � �	��D�
��A; �� �

���
2
p
	 ;

� �� � 0; � � �
���
2
p
	�F;

� � _� � �i
���
2
p
�D�

����	��� _�; �F � 0;

� �F � �i
���
2
p
D�

� ���	� 2i ��	�̂� 2C��D�� ��	��
�̂��:

(1.16)

Apart from the term with the coefficient 
1 and the group
of terms with coefficient 
2, Eq. (1.12) reduces to the
original U�N� lagrangian Eq. (1.10) derived from nonanti-
commuting superspace upon setting g0 � g. These re-
maining terms are separately invariant under N � 1

2
supersymmetry and must be included to obtain a renorma-
lizable lagrangian, as we shall see.
065002
In Ref. [11] we gave an SU�N�-invariant theory with
N � 1

2 supersymmetry in the pure gauge case. The super-
symmetry transformations in that case were essentially
-3



(a) (b) (c)
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(j)

FIG. 4. Diagrams with one gaugino, one scalar and one chiral
fermion line; the dot represents the position of a C.

(a) (b) (c)

(d) (e)

(g) (h) (i)

(j) (k)

(m) (o)

(f)

(l)

(n)

(p) (q) (r)

(s) (t) (u)

(v) (w) (x)

(y) (z) (aa)

(bb) (cc)

FIG. 5. Diagrams with one gaugino, one scalar, one chiral
fermion and one gauge line; the dot represents the position of
a C.
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obtained by striking out any 0 index in the U�N� trans-
formations. However in the general case these transforma-
tions do not close, since the gauge-field part of the���

2
p
gC��D�

�� �� ��� term produces a C�� �� ��a ��a ���� 
term which in the U�N� case is cancelled by the variation
of ���0 , a term which is absent for SU�N�. Of course
because of the g2

g0
terms, one cannot obtain the SU�N�

theory simply by setting g0 � 0 in the SU�N� �U�1�
theory.

We use the standard gauge-fixing term

Sgf �
1

2�

Z
d4x�@:A�2 (1.17)

with its associated ghost terms. The gauge propagators for
SU�N� and U�1� are both given by

��� � �
1

p2

�
��� � ��� 1�

p�p�
p2

�
(1.18)

(omitting group factors) and the fermion propagator is

�� _� �
p��

�
� _�

p2 ; (1.19)
065002
where the momentum enters at the end of the propagator
with the undotted index. The one-loop graphs contributing
to the ‘‘standard’’ terms in the lagrangian (those without a
C��) are the same as in the ordinary N � 1 case, so
anomalous dimensions and gauge �-functions are as for
N � 1. Since our gauge-fixing term in Eq. (1.17) does not
-4



(a) (b) (c)

(d) (e)

FIG. 6. Diagrams with one gauge, one scalar and one auxiliary
line; the dot represents the position of a C.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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preserve supersymmetry, the anomalous dimensions for A�
and � are different (and moreover gauge-parameter depen-
dent), as are those for � and  . However, the gauge
�-functions are of course gauge-independent. The one-
loop one-particle-irreducible (1PI) graphs contributing
to the new terms (those containing C) are depicted in
Figs. 1–8.
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 7. Diagrams with two gauge, one scalar and one auxiliary
line; the dot represents the position of a C.

(j) (k)

FIG. 8. Diagrams with two gaugino, one scalar and one aux-
iliary line; the dot represents the position of a C or a jCj2.

065002
II. RENORMALIZATION OF THE SU�N� � U�1�
ACTION

Ordinarily the divergences in one-loop diagrams should
be cancelled by the one-loop divergences in SB, obtained
by replacing the fields and couplings in Eq. (1.12) with
bare fields and couplings given by

�aB � Z
1
2
��

a; �0
B � Z

1
2

�0�0; Aa�B � Z
1
2
AA

a
�;

A0
�B � Z1=2

A0 A0
�; �B � Z1=2

� �;  B � Z1=2
  ;

gB � Zgg; g0B � Zg0
g0; 
1B � Z1;


2B � Z2; C��B � ZCC��; jCj2B � ZjCj2 jCj
2:

(2.1)
In Eq. (2.1), Z1 and Z2 are divergent contributions, in other
words we have set the renormalized couplings 
1 and 
2 to
zero for simplicity. The other renormalization constants
start with tree-level values of 1. As we mentioned before,
the renormalization constants for the fields and for the
gauge couplings g, g0 are the same as in the ordinary N �
1 supersymmetric theory and are therefore given up to one
loop by [13]:
-5
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Z� � 1� g2L�2�N � 2�;

ZA � 1� g2L��3� ��N � 2	;

Zg � 1� g2L�1� 3N�; Z� � 1� 2�1� ��LĈ2;

Z � 1� 2�1� ��LĈ2; (2.2)

where (using dimensional regularization with d � 4� 	)
L � 1

16�2	
and

Ĉ 2 � g2RaRa � g2
0R

0R0 �
1

2

�
Ng2 �

1

N
�
�

(2.3)
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with

� � g2
0 � g

2: (2.4)

(For the gauge multiplet, we have given here the renormal-
ization constants corresponding to the SU�N� sector of the
U�N� theory; those for the U�1� sector, namely Z�0 , ZA0

and Zg0
, are given by omitting the terms in N and replacing

g by g0.)
Upon inserting Eq. (2.2) into Eq. (1.12) we obtain the

one-loop contributions from SB as
S�1�B � L
Z
d4x

�
iC��

��
1

2
�3� 5��N � 2

�
g3dabc@�A

a
�

��b ��c � �3��� 1�N � 4	g2g0d
ab0@�A

a
�

��b ��0

� 2��3� ��Ng2 � g2
0	
g2

g0
d0bc@�A

0
�

��b ��c � 2g2
0d

000@�A
0
�

��0 ��0

�
�

�
3

2
�1� ��N � 1

�
idabefcdeg4C��Ac�A

d
�

��a ��b

� 2i��N � 1�d0befcdeg3g0C
��Ac�A

d
�

��0 ��b � g2jCj2
�

1

4
��3� 2��N � 1	g2dabedcde� ��a ��b�� ��c ��d�

�

�
�3� ��

g4

g2
0

�
g2

2N

�
� ��a ��a�� ��b ��b� �

Z�1�1

N
g2

0�
��a ��a�� ��0 ��0�

�
�

1

2
iZ�1�C C

��dABCeABCFA�� ��B ��C

� Z�1�
jCj2

�
1

8
g2jCj2dabedcde� ��a ��b�� ��c ��d� �

1

4N
g4

g2
0

jCj2� ��a ��a�� ��b ��b�
�

�

� ���
2
p
C������3� ��Ng2 � Z�1�2 � 2�Ĉ2�g@� �� ��aRa ��� � 2�Ĉ2g0@� �� ��0R0 ��� � Z

�1�
2 g �� ��aRa ���@� 	

� i
���
2
p
C���g2Ab� �� ��b��Z�1�2 R

aRb �
�
1

2
Ng2�9� 3�� � Z�1�2

�
RbRa � 2�Ĉ2	 ��� 

� gg0

�
1

2
Ng2�3� �� � 2�Ĉ2

�
Ab� �� ��0R0Rb ��� � gg0��3� ��Ng

2 � 2�Ĉ2�A
0
�

�� ��aRaR0 ��� 

� 2g2
0�Ĉ2A0

�
�� ��0�R0�2 ��� 	 � iC�� ����2�1� ��Ĉ2 � �3� ��Ng2 � 2Z�1�2 �g@�A

a
�Ra � 2�1� ��Ĉ2g0@�A0

�R0

� ���� 1�Ĉ2 � �3� ��Ng
2 � Z�1�2 �g

2fabcAa�A
b
�R

c	F�
1

8
jCj2���1� ��Ĉ2 � �6� 2��Ng2�g2dAbc ��RA ��b ��c

� 2��1� ��Ĉ2 � �3� ��Ng
2�g2da0c ��Ra ��0 ��c � �1� ��Ĉ2d

000 ��R0 ��0 ��0	F

� Z�1�C C
���

���
2
p
D�

�� �̂� ��� � i ��F̂��F	 �
1

8
Z�1�
jCj2
jCj2dABC ��RA �̂�

B �̂�
C
F

� ��! ~�; ! ~ ;F ! ~F;RA ! ��RA��; C�� ! �C���
��
: (2.5)
The results ��1�pole
i1PI , i � 1 . . . 8 for the one-loop divergences

from the 1PI graphs in Figs. 1–8 respectively are given in
Appendix A. It is clear that they cannot be cancelled by
Eq. (2.5), in particular since they contain contributions
involving ���� which do not appear in Eq. (2.5). As we
showed in Ref. [11], this can be remedied by field redefi-
nitions, or, to put it another way, additional nonlinear field
renormalizations. We find that a field redefinition

��A � �
1

2
NLg2C��eBACdABCcAcBdC�� ��CAB�; (2.6)

where cA � 1� �A0, dA � 1� �A0, results in a change in
the action
-6
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�S� � NLg2
Z
d4x

�
�

1

4
iC���dabcg@�Aa� ��b ��c � dabefcdeg2Ac�Ad� ��a ��b� � idabcgC��Aa� ��b ���@ ��c

�
1

2
idcdefabeg2C�Ac�A

d
�

��a ��� ��b � iC�da0cg0A
a
�

��0��� � 2 ���	@� ��c � iC��fabcdcd0gg0A
b
�A

d
�

��a ��0

�

�
1

2
i
���
2
p
g2C��dabcAb� ��Rc ��a ��� � i

���
2
p
gg0C��d0bcAb� ��Rc ��0 ��� 

� ��! ~�; ! ~ ;F ! ~F;RA ! ��RA��; C�� ! �C���
��
; (2.7)

which miraculously casts all the C-dependent terms apart from those linear in F, ~F into the correct form. Then finally
redefinitions of �F, �~F can be used to deal with the terms linear in F, ~F. Explicitly, we need

� �F� L
��
�5Ng2� 2�1���Ĉ2�g@�Aa��

�
11

4
Ng2� �1���Ĉ2

�
g2fabcAb�Ac�

�
iC�� ��Ra� 2��� 1�Ĉ2g0@�A0

�iC�� ��R0

�
1

8
jC2j���37Ng2� �63���Ĉ2�g

2dabc ��Rc ��a ��b� ��32Ng2� �31���Ĉ2�gg0d
0bc ��Rc ��0 ��b

� �31���Ĉ2g
2
0d

000 ��R0 ��0 ��0� �6Ng2� ��� 1�Ĉ2�g
2dab0 ��R0 ��a ��b	

�
(2.8)
(with a similar redefinition of �~F) which produce a change
in the action

�SF �
Z
d4x�� �FF� � �~F ~F�: (2.9)

We now find (writing for instance Z�n�C for the n-loop
contribution to ZC) that with

Z�1�C � Z�1�
jCj2
� 0; Z�1�1 � �3Ng2; Z�1�2 � �Ng

2;

(2.10)

we have

��1�pole0 �
X8

i�1

��1�pole
i1PI � �S� � �SF � S

�1�
B � 0; (2.11)

i.e. ��1�0 is finite.
This demonstrates that our theory is renormalizable and

that the N � 1
2 supersymmetry is preserved. However we

find that to obtain a renormalizable lagrangian it is vital
(since Z�1�1 ; Z

�1�
2 � 0) to include the terms involving 
1, 
2

in Eq. (1.12), which were not in the original formulation of
the theory [4] though they are independently N � 1

2
supersymmetric. This is not unexpected since in general
any terms which are not forbidden by a symmetry will be
generated under renormalization. It is therefore all the
more remarkable that we do not need to renormalize the
nonanticommutativity parameter C and that the other ��4

terms (which are also separately N � 1
2 supersymmetric)

do not require any counterterms. On the other hand
our renormalized lagrangian is no longer of the form
derived from nonanticommutative superspace. Of course
065002
this was also found in the case of the N � 1
2 Wess-Zumino

model [7].
We note here that the requirement to make a divergent

redefinition of �F is not as surprising as it may first appear
(if calculating in components with a conventional covariant
gauge). In fact, if one renormalizes the ordinary N � 1
theory in its uneliminated component form, i.e. before
eliminating the auxiliary fields, one is compelled to make
a similar nonlinear renormalization of F to render the
theory finite. This has not to our knowledge previously
been discussed, and we give the details in a forthcoming
publication [14].

III. CONCLUSIONS

We have studied the renormalizability of a general
N � 1

2 supersymmetric theory coupled to chiral matter.
The nonrenormalizability of the standard U�N� version
was apparent from the outset, and it appeared impossible
to define a general SU�N� invariant N � 1

2 supersymmet-
ric theory; however we were able to define an SU�N� �
U�1� invariant action which still possessed N � 1

2
supersymmetry, which as we showed was preserved under
renormalization. Moreover we find that the nonanticom-
mutativity parameter C is unrenormalized (at least at one
loop).

We have restored gauge invariance by a somewhat un-
conventional expedient which works rather miraculously.
One could speculate to what extent the N � 1

2 supersym-
metry and the identities Eq. (1.9) were required to make
this trick work. If one treats the action (1.1) as primordial,
ignoring its derivation from nonanticommuting super-
space, the identities Eq. (1.9) can be regarded as a conse-
quence of the self-duality ofC�� (with C�� now defined by
-7
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Eq. (1.9a)). It would be interesting to examine a theory of
the same form but in which C�� was replaced by a general
antisymmetric tensor. Moreover, suppose one considered a
theory with an action based on Eq. (1.1) but including all
the hermitian conjugate terms which are missing. The only
new diagrams would simply be the ‘‘hermitian conjugates’’
of those in Figs. 1–8. Equation (2.6) would now need to be
supplemented by its hermitian conjugate. However, the
variation of the action would now include additional un-
wanted non-gauge-invariant terms since it is now not only
the gaugino kinetic term which varies. This raises the
possibility of a theory (albeit nonrenormalizable) with
ineradicable non-gauge-invariant divergences.

An interesting feature of our results is the redefinition
(or nonlinear renormalization) of the gaugino field. As we
have mentioned, the attendant nonlinear redefinition of the
auxiliary field F has its counterpart even in the N � 1
theory, so that nonlinear field redefinitions may be an
unavoidable consequence of working in the uneliminated
component formalism with conventional gauge-fixing; as
we mentioned, no such field redefinition was required in
the N � 1

2 superfield calculation of Ref. [12].
Obviously it would be valuable to continue the renor-

malization programme beyond one loop, and also to in-
clude a superpotential. Of course we would expect that 
1B
and 
2B in Eq. (2.1) would get contributions from all loop
orders, but it would be interesting to see whether any
additional counterterms need to be introduced and further-
more whether the relation ZC � ZjCj2 � 1 persists to
higher orders. (The apparent violation of this result in the
case of the ungauged Wess-Zumino model at one and two
loops [7] occurs in a separately N � 1

2 invariant term, F3,
065002
for which we would assign a separate coupling in a similar
fashion to 
1B and 
2B.)
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APPENDIX A: RESULTS FOR ONE-LOOP
DIAGRAMS

The divergent contributions to the effective action from
the graphs in Fig. 1 are of the form:

ig2LdABCeABCC��
�
@�AA ��B�TABC1 �� � ~AABC1 ���� ��C

� AA ��B� ~TABC1 �� � AABC1 ����@� ��C
�
; (A1)

where the contributions to T1, ~T1, A1, ~A1 from the individ-
ual graphs are given in Table I.

In Table I, ga0b � gab0 � g0ab � g000 � g0 and
gabc � g.

We note here that Figs. 1(f)–1(h) correspond to both
�,  and ~�, ~ loops, which contribute identically due
to the change in sign C�� ! �C�� between the �,  
and ~�, ~ interactions in the lagrangian. Potential contri-
butions of the form gLfABCC��@�AA ��B ��� ��C,
gLfABCC��AA ��B��@� ��C cancel between �,  and ~�,
~ loops.

The divergent contributions to the effective action from
the graphs in Fig. 1 are given by
��1�pole
11PI � ig2LC��dABCeABC

�
@�AA ��B

��
��1� 2��NcAdBcC �

1

2
�5� ��NcA � �3� ��NdAcBcC � 2

gABC

eABC

�
��

�
2

3
N�cAdBcC � cAcBdC	 ���


�

��C � AA ��B
�
�

1

2
NcAdBcC��

 �
1

3
N�cAdBcC � 4cAcBdC	 ���


�
@� ��C

�

� iLC��
�
�

�
5

4
�1� 2��N � 2

�
g3dabc@�Aa� ��b ��c � �3�1� ��N � 4	g2g0dab0@�Aa� ��b ��0

� 2��3� ��Ng2 � g2
0	
g2

g0
d0bc@�A0

�
��b ��c � 2g2g0d000@�A0

�
��0 ��0 � Ng2g0da0cAa� ��0@� ��c

� Ng3dabcAa ��b ���
@� ��c � 2Ng2g0d

a0cAa ��0 ���
@� ��c	: (A2)
The divergent contributions to the effective action from the graphs in Fig. 2 are of the form:
ig3LeEAB�dABEfCDEC��TABCD2 AC�A
D
�

��A ��B � dCDEfABEC�AABCD2 AC�A
D
�

��A ��� ��B	 (A3)
where the contributions to T2, A2 from the individual graphs are given in Table II.
The contributions from Figs. 2(m)–2(o)are zero. The graphs in Fig. 2 add to
-8



TABLE I. Contributions to T1, ~T1, A1, ~A1 from Fig. 1

Graph T1
~T1

~A1 A1

1a ��3� ��NdAcBcC 0 0 0
1b �NcAdBcC 0 � 2

3Nc
AcBdC � 4

3Nc
AcBdC

1c �2�NcAdBcC 1
2 �2� ��Nc

AdBcC 2
3Nc

AdBcC � 1
3 �2� 3��NcAdBcC

1d 1
2 �5� ��Nc

A 0 0 0
1e 0 � 1

2 �3� ��Nc
AdBcC 0 �1� ��NcAdBcC

1f �gABC=eABC 0 0 � 4
3 g

ABC=eABC

1g � 1
2 g

ABC=eABC 0 0 � 2
3 g

ABC=eABC

1h � 1
2 g

ABC=eABC 0 0 2gABC=eABC

ONE-LOOP RENORMALIZATION OF GENERAL . . . PHYSICAL REVIEW D 72, 065002 (2005)
��1�pole
21PI �

1

4
ig3L�2�1� 2��NdAcB � 2�3� ��NcAcB � 3N � 2N�A0 � 4	eEABdABEfCDEC��AC�AD� ��A ��B

�
1

2
ig3NLdAcBcCcDeEABdCDEfABEC�AC�AD� ��A ��� ��B

�

�
1

4
�5� 6��N � 1

�
iLdabefcdeg4C��Ac�A

d
�

��a ��b �
1

2
iNLdcdefabeg4C�Ac�A

d
�

��a ��� ��b

� iL��1� 2��N � 2	d0befcdeg3g0C
��Ac�A

d
�

��0 ��b: (A4)
The results for Fig. 3 are of the form:

g2LjCj2�Xabcd1 � ��a ��b�� ��c ��d� � X2� ��a ��a�� ��b ��b�

� X3� ��a ��a�� ��0 ��0�	 (A5)

where the contributions to X1�3 are given in Table III.
In Table III,

dabcd � Tr �FaFbDcDd	; ~dabcd � Tr �FaDcFbDd	;

(A6)

where the matrices Fa and Da are defined in Appendix B.
These results add to
TABLE II. Contributions from Fig. 2

Graph T2 A2

2a 1
2Nd

AcB 1
3Nd

AcBcCcD

2b � 1
2 �3� ��N�

A0

2c 1
2 �3� ��Nc

AcB 0
2d 1

2 �2� ��N�
A0

2e � 1
2�Nd

AcB 1
6 �4� 3��NdAcBcCcD

2f 3
4�Nd

AcB � 1
2 �2� ��Nd

AcBcCcD

2g 3
4�Nd

AcB 1
2Nd

AcBcCcD

2h � 3
4 �1� ��N 0

2i 3
4�N 0

2j 1
2

1
3

2k 0 2
3

2l 1
2 �1

065002
��1�pole
31PI � g2LjCj2

�
1

4
��3� 2��N � 1

�
g2dabedcde� ��a ��b�


 � ��c ��d� �
1

2N

�
2�3� ��N

g4

g2
0

� g2

�


 � ��a ��a�� ��b ��b� � 3g2
0�

��a ��a�� ��0 ��0�

�
: (A7)

In obtaining these results we have made frequent use of the
Fierz identity

� ��a ��b�� ��c ��d� � � ��a ��c�� ��b ��d� � � ��a ��d�� ��b ��c� � 0

(A8)

The contributions from the graphs shown in Fig. 4 are of
the form

���
2
p
gALC

��@� �� ��AXA ��� �
���
2
p
gALC

�� �� ��AYA ���@� 

(A9)

where ga � g and XA and YA are as given in Table IV.
(Here and elsewhere there are analogous diagrams with ~�,
~ , ~F external legs which we do not show explicitly; their
contributions may easily be read off using�! ~�,  ! ~ ,
F ! ~F, RA ! ��RA��, C�� ! �C��.)

These graphs add to
-9



TABLE III. Contributions from Fig. 3

Graph Xabcd1 X2 X3

3a 1
4 �3� ��Ng

2dabedcde � 2g2dabcd � �1� ��g2dadcb � 4
N
g4

g2
0
feacfebd �3� �� g

4

g2
0

0
3b 1

2�Ng
2dabedcde 0 �2�g2

0

3c � 1
4 �1� ��Ng

2dabedcde 0 �1� ��g2
0

3d g2��2dabcd � ��� 1�dadcb � 4
N
g2

g2
0
feacfebd	 0 �3� ��g2

0

3e 1
3 g

2�~dabcd � ~dacdb� 0 �g2
0

3f 1
4 g

2dabedcde 1
2N g

2 0
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��1�pole
41PI �

���
2
p
gALC

��@� �� ��A�2�Ĉ2R
A � �2� ��Ng2cARA	 ��� �

���
2
p
NgAg

2cAC�� �� ��ARA ���@� 

� Lf�2�Ĉ2 � �2� ��Ng
2	

���
2
p
gC��@� �� ��aRa ��� � 2�Ĉ2

���
2
p
g0C

��@� �� ��0R0 ��� � N
���
2
p
g3C�� �� ��aRa ���@� g:

(A10)

The contributions from the graphs shown in Fig. 5 are of the form���
2
p
igAgBLC��AB� �� ��AZAB ��� (A11)

where in the case of Figs. 5(a)–5(v), ZAB contains the contributions shown in Table V.
The contributions from Table Va add to

i
���
2
p
gAgBLC��AB� �� ��A

�
4Ĉ2RARB � �8� 2��Ĉ2RBRA � Ng2��4RARBcA � 2RARBcB � �2� ��RBRAcA

�
1

2
�7� ��RBRAcB�

�
��� : (A12)

In the case of Figs. 5(w)–5(z), 5(aa), 5(bb), and 5(cc), the contributions to Zab are shown in Table Vb.
The contributions to Z0b from Figs. 5(w)–5(z), 5(aa), 5(bb), and 5(cc) are shown in Table V c.
The contributions to Za0 and Z00 from Figs. 5(w)–5(z), 5(aa), 5(bb), and 5(cc) are shown in Table Vd (those not shown

explicitly are zero). Adding the results from Table Va in Eq. (A12) to those from Tables Vb–d, we obtain

��1�pole
51PI � i

���
2
p
NLC���g4Ab� �� ��a

�
1

2
dabcRc � RaRb �

1

2
�7� 3��RbRa

�
��� 

� g3g0Ab� �� ��0

�
d0bcRc �

1

2
�3� ��R0Rb

�
��� � �3� ��g3g0A0

�
�� ��aRaR0 ��� 

� 2
�

N2 Ĉ2AA� �� ��BgAgBRBRA ��� 	: (A13)
TABLE IV. Contributions to XA and YA from Fig. 4

Graph XA YA

4a 3
2Ng

2cARA ��NcARA

4b �Ng2cARA �NcARA

4c �Ng2cARA 0
4d �2�Ĉ2 �

1
2Ng

2cA	RA 2�Ĉ2 �
1
2Ng

2cA	RA

4e �2�Ĉ2 �
1
2Ng

2cA	RA 0
4f ��1� 2���Ĉ2 �

1
2Ng

2cA	RA 0
4g 2�2Ĉ2 �

1
2Ng

2cA	RA 0

4h 2�2Ĉ2 �
1
2Ng

2cA	RA �2�2Ĉ2 �
1
2Ng

2cA	RA

4i 0 2�Ĉ2 �
1
2Ng

2cA	RA

4j �3Ĉ2R
A 0

065002
The contributions from Fig. 6 are of the form

iLC���gA@�A
A
�

��XRAF� gAA
A
�@� ��YRAF� (A14)

where X and Y are given in Table VI.
The contributions in Table VI add to

��1�pole
61PI � �iLC�� ��gA@�AA��4Ĉ2 � �4� ��Ng2cA	RAF

� �iLC�� ��fg�4Ĉ2 � �4� ��Ng2	@�Aa�Ra

� 4g0Ĉ2@�A
0
�R

0gF: (A15)

The contributions from Fig. 7 are of the form
-10



TABLE V. (a) Contributions to ZAB from Figs. 5(a)–5(v). (b) Contributions to ZAB from
Fig. 5(w)–5(z), 5(aa), 5(bb), and 5(cc). (c) Contributions to Z0b from Fig. 5(w)–5(z), 5(aa),
5(bb), and 5(cc). (d) Contributions to Z0b from Fig. 5(w)–5(z), 5(aa), 5(bb), and 5(cc).

Graph Ĉ2R
ARB Ĉ2R

BRA Ng2RARB Ng2RBRA g2fACEfBDERCRD

5a 0 2 �cA �cB 2cAcB

5b �2 0 cA � cB 0 �2cAcB

5c 0 0 2cB 0 �4cAcB

5d 4 0 �2�cA � cB� 0 4cAcB

5e 0 2 0 �cA 0
5f 0 0 1

2 �1� ��c
B 0 ��� 1�cAcB

5g 2 0 ��cA � cB� 0 2cAcB

5h 0 �� 0 1
2�c

B 0
5i 0 0 0 � 3

4�c
B 0

5j 0 3� � 0 � 1
4 �3� ��c

B 0
5k 0 0 � 1

4�c
B 0 1

2�c
AcB

5l 0 1� � 1
4 ��� 1�cA 1

4 ��� 1��cA � cB� 1
2 �1� ��c

AcB

5m 0 �2� �cA �cB �2�cAcB

5n 0 0 ��cA 0 2�cAcB

5o 0 � � 1
2�c

A � 1
2�c

B �cAcB

5p 0 0 � 1
4 �3� ��c

A � 1
4 �3� ��c

A 1
2 �3� ��c

AcB

5q 0 0 0 ��cA 0
5r 0 0 1

2�c
A 0 ��cAcB

5s 0 0 3
2 �1� ��c

B � 3
2 �1� ��c

B �3�1� ��cAcB

5t 0 0 0 0 �2�cAcB

5u 0 0 0 0 2�cAcB

5v 0 0 � 3
4�c

B 3
4�c

B 3
2�c

AcB

Graph Ng2RaRb Ng2RbRa 1
N �RaRb 1

N �RbRa g2�ab

5w � 1
2 �3� �� 0 ��3� �� 3� � 1

4 �3� ��
5x 0 �1 0 0 1

2
5y 0 0 0 �4 �1
5z 1

2 �2� �� 0 2� � ��2� �� � 1
4 �2� ��

5aa � 1
2� 0 � �� 1

4�
5bb 0 � 1

2 �1 �1 � 1
4

5cc 1
2� 0 �� � � 1

4�

Graph Ng2RbR0 1
N �R0Rb

5w �3� � 0
5x �2 0
5y 0 �4
5z 2� � 0
5aa �� 0
5bb �1 �2
5cc � 0

Graph �a0� �00�

g2RaR0 � 2 1
N �RaR0 g2 � 1

N2 �
5y �2 �4
5bb �1 �2
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TABLE VI. Contributions from Fig. 6

Graph X Y

6a 0 3Ng2cA

6b 0 2�2Ĉ2 � Ng
2cA	

6c ��4Ĉ2 � Ng
2cA	 ��4Ĉ2 � Ng

2cA	
6d ��5� ��Ng2cA 0
6e 2�Ng2cA �2Ng2cA

TABLE VII. Contributions from Fig. 7

Graph Z

7a � 3
4�Ng

2

7b 0
7c 0
7d 0
7e � 1

4 �2� ��Ng
2

7f 2Ĉ2 � Ng2

7g � 3
2�Ng

2

7h 3
2 �1� ��Ng

2

7i 1
4 �3� ��Ng

2

7j 1
2�Ng

2

7k � 3
4�Ng

2

7l 0

I. JACK, D. R. T. JONES, AND L. A. WORTHY PHYSICAL REVIEW D 72, 065002 (2005)
ig2LC��Aa�Ab� ��ZfabcRcF (A16)

where Z is given in Table VII.
The contributions in Table VII add to

��1�pole
71PI � ig2LC��Aa�Ab� ��

�
2Ĉ2 �

1

4
�3� 4��Ng2

�


 fabcRcF (A17)

The contributions from Fig. 8 are of the form

LgAgBjCj
2 ��A ��B ��ZABF (A18)
TABLE VIII. Contrib

Graph ab

8a 0
8b �g2�ab � 4

N �RaRb

8c 1
2 g

2�ab � 1
N �RaRb

8d ��g2NdabcRc

8e �1� ��g2NdabcRc

8f � 1
2�g

2NdabcRc

8g 0
8h 1

2�g
2NdabcRc

8i 1
4 �3� ��g

2�12Nd
abcRc � �ab	

8j 1
8�g

2NdabcRc

8k � 1
4 g

2�ab � 1
N �RaRb

065002
where the contributions to ZAB are given in Table VIII. The
contributions in Table VIII add to

��1�pole
81PI � LjCj2 ��

�
g2

�
1

8
�43� 2��Ng2 � 8Ĉ2

�
��a ��bdabcRc

� gg0

�
1

4
�19� ��Ng2 � 8Ĉ2

�
��0 ��bd0bcRc

�
1

4
�Ng4d0bcR0 ��b ��c � 4g2

0Ĉ2d
000 ��0 ��0R0

�
F:

(A19)
APPENDIX B: GROUP IDENTITIES FOR SU�N�

The basic commutation relations for SU�N� are (for the
fundamental representation):

�Ra; Rb	 � ifabcRc; fRa; Rbg � dabcRc �
1

N
�ab;

(B1)

where dabc is totally symmetric. Defining matrices Fa, Da

by �Fa�bc � fbac, �Da�bc � dbac, useful identities for
SU�N� are

Tr �FaFb	 � �N�ab;

Tr �DaDb	 �
N2 � 4

N
�ab;

Tr �FaFbDc	 � �
N
2
dabc;

Tr �FaDbDc	 �
N2 � 4

2N
fabc;

C2�R� �
N2 � 1

2N
;

Tr �FaDbFcDd	 �
N
4
�dacxdbdx � dabxdcdx � dadxdbcx�:

(B2)
utions from Fig. 8

a0 00

0 0
�

���
N
2

q
�g2 � 4

N2 �	Ra �2g2 � 2
N2 �

1
4 �

2
N�

3=2�Ra 1
2 g

2 � 1
2N2 �

��g2
�������
2N
p

Ra 0
�1� ��g2

�������
2N
p

Ra 0
� 1

2�g
2
�������
2N
p

Ra 0
0 0

1
2�g

2
�������
2N
p

Ra 0
0 0

1
8�g

2
�������
2N
p

Ra 0

� 1
4

���
N
2

q
�g2 � 4

N2 �	Ra � 1
2 g

2 � 1
2N2 �
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dacdRbRcRd �
N2 � 4

2N
RbRa; dacefbdeRcRd � i

�
�

1

2
NRaRb �

1

N
�Ra; Rb	 �

1

4
�ab

�
;

dacefbdeRdRc � i
�

1

2
NRbRa �

1

N
�Ra; Rb	 �

1

4
�ab

�
; dacdRcRbRd � �

1

N
fRa; Rbg �

1

4
�ab:

(B3)
[1] S. Ferrara and M. A. Lledo, J. High Energy Phys. 05
(2000) 008.

[2] D. Klemm, S. Penati, and L. Tamassia, Class. Quant. Grav.
20,2905 (2003).

[3] N. Seiberg, J. High Energy Phys. 06 (2003) 010.
[4] T. Araki, K. Ito, and A. Ohtsuka, Phys. Lett. B 573, 209

(2003).
[5] R. Britto, B. Feng, and S.-J. Rey, J. High Energy Phys. 07

(2003) 067; J. High Energy Phys. 08 (2003) 001.
[6] S. Terashima and J-T Yee, J. High Energy Phys. 12 (2003)

053.
[7] M. T. Grisaru, S. Penati, and A. Romagnoni, J. High

Energy Phys. 08 (2003) 003; R. Britto and B. Feng,
Phys. Rev. Lett. 91, 201601 (2003); A. Romagnoni,
J. High Energy Phys. 10 (2003) 016.
065002
[8] O. Lunin and S.-J. Rey, J. High Energy Phys. 09 (2003)
045.

[9] M. Alishahiha, A. Ghodsi, and N. Sadooghi, Nucl. Phys.
B691, 111 (2004).

[10] D. Berenstein and S.-J. Rey, Phys. Rev. D, 68, 121701
(2003).

[11] I. Jack, D. R. T. Jones, and L. A. Worthy, Phys. Lett. B 611,
199 (2005).

[12] S. Penati and A. Romagnoni, J. High Energy Phys. 02
(2005) 064.

[13] D. Gross and F. Wilcek, Phys. Rev. D 8, 3633 (1973);
D. R. T. Jones, Nucl. Phys. B87, 127 (1975).

[14] I. Jack, D. R. T. Jones, and L. A. Worthy (to be published).
-13


