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We calculate lattice renormalisation constants of local and one-link quark operators for overlap

fermions and improved gauge actions in one-loop perturbation theory. For the local operators we

stout smear the SU(3) links in the fermionic action. Using the popular tadpole improved Lüscher-

Weisz actions at β = 8.45 and β = 8.0 we present numerical values for the Z factors in the MS

scheme (partly as function of the stout smearing strength). We compare various levels of mean

field (tadpole) improvement which have been applied to our results.

XXIIIrd International Symposium on Lattice Field Theory
25-30 July 2005
Trinity College, Dublin, Ireland

∗Speaker.
†Supported by DFG under contract FOR 465.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80770058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


P
o
S
(
L
A
T
2
0
0
5
)
2
3
8

Perturbative renormalisation of quark bilinear operators H. Perlt

1. Introduction

Lattice calculations at small quark masses require an action with good chiral properties. The
same is true for calculations of matrix elements of certain operators, which otherwise mix with
operators of opposite chirality. Ginsparg-Wilson fermions [1] have an exact chiral symmetry on the
lattice [2], and thus are well suited for these tasks. A further advantage is that they are automatically
O(a) improved [3]. Overlap fermions [4, 5, 6] provide a four-dimensional realisation of Ginsparg-
Wilson fermions.

It is well known that computer simulations with overlap fermions suffer from large computa-
tional costs due to the large condition number. One possibility to reduce this number is by using
improved gauge actions [7] and hence there is a need for the corresponding perturbative calcula-
tions. In this paper we use the tadpole improved Lüscher-Weisz action [8, 9, 10]

ST ILW
G =

6
g2

[

c0 ∑
plaquette

1
3

ReTr(1−Uplaquette) + c1 ∑
rectangle

1
3

ReTr(1−Urectangle)

+c3 ∑
parallelogram

1
3

ReTr(1−Uparallelogram)

]

. (1.1)

The parameters c1 and c3 weight the contributions of the corresponding six-links loops. It is cus-
tomary to impose the normalisation condition

c0 +8c1 +8c3 = 1. (1.2)

Defining the lattice coupling β by

β =
6
g2 c0 (1.3)

we choose in accordance with numerical simulations performed by the QCDSF collaboration [11,
12] the following values [13]

β c1 c3

8.45 −0.154846 −0.0134070

8.0 −0.169805 −0.0163414

(1.4)

A further step to reduce the computational costs consists of smearing the gauge link variables
in the fermionic action. The resulting fat links tend to reduce the density of eigenmodes speeding
up the inversion of the fermion Dirac operator [14]. Morningstar and Peardon [15] have proposed
an analytic smearing method (stout link method) which can be applied in Hybrid Monte Carlo
(HMC) simulations. As by construction the stout links remain in the SU(3) group, this enables the
force term in the equations of motion for HMC to be easily determined.

The calculations which we will present in the next sections have been performed for r = 1
and the overlap parameter ρ = 1.4 (for the definition see [16]). The influence of stout links is
investigated for local operators only.
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2. Renormalisation

To obtain continuum results from lattice calculations of hadron matrix elements, the under-
lying operators have to be renormalised. A non-perturbative determination of the corresponding
renormalisation factors would be preferable. However, often perturbative renormalisations are done
first. Especially, if this calculation is performed analytically it provides useful information about
the intrinsic singular structure and possible complicated mixing properties. We use a Mathematica
program which has been developed for one-loop lattice perturbative calculations [17] and has been
extended to overlap fermions with improved gauge actions.

We define renormalised operators O by

O
S (µ) = ZS

O (a,µ)O(a) , (2.1)

where S denotes the renormalisation scheme. ZS
O

(a,µ) is the renormalisation factor connecting
the lattice operator O(a) with the renormalised operator OS (µ) at scale µ . We use the MOM
scheme by computing the amputated Green function ΛO of the operator O and define the ZO via

ZMOM
O

(a,µ)

ZMOM
ψ (a,µ)

ΛO

∣

∣

p2=µ2 = Λtree
O + other Dirac structures , (2.2)

where ZMOM
ψ (a,µ) is the quark wave function renormalisation factor. The renormalisation con-

stants can be converted to the MS scheme,

ZMS
ψ,O(a,µ) = ZMS,MOM

ψ,O ZMOM
ψ,O (a,µ) , (2.3)

where the conversion factors ZMS,MOM
ψ,O are calculable in continuum perturbation theory.

3. One-link operators

Let us first consider the one-link operators

Oµν =
i
2

ψ̄(x)γµ
↔

Dν ψ(x)− traces , (3.1)

O
5
µν =

i
2

ψ̄(x)γµγ5
↔

Dν ψ(x)− traces , (3.2)

which are related to the first moments of unpolarised and polarised nucleon structure functions,
where

↔

Dν is the left-right covariant lattice derivative. The chiral properties of overlap fermions
imply that matrix elements of Oµν and O5

µν give identical results. Therefore, we restrict our calcu-
lations to the unpolarised case, i.e. to Oµν . For a detailed discussion see [18].

The amputated one-loop Green function Λµν obtained from (3.1) has the form

Λµν(a, p) = γµ pν +
g2CF

16π2

{[(

1
3

+ξ
)

log(a2 p2)−4.29201ξ +b1

]

γµ pν

+

[

4
3

log(a2 p2)+
1
2

ξ +b2

]

γν pµ +

[

−
2
3

log(a2 p2)−
1
2

ξ +b3

]

δµν 6p

+b4 δµνγν pν +

(

−
4
3

+ξ
)

pµ pν

p2 6p

}

, (3.3)
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with ξ as gauge parameter (Feynman gauge: ξ = 0) and CF = 4/3. The constants bi are linear
combinations of finite lattice integrals [17] and depend on the used lattice fermionic and gauge
actions. For the chosen actions and parameters we obtain

Action b1 b2 b3 b4 bΣ

β = 8.45 −5.6115 −3.8336 2.7793 0.3446 −16.180

β = 8.0 −5.2883 −3.7636 2.7310 0.3331 −15.733

(3.4)

In (3.4) we have added the contribution of the quark self energy bΣ which is needed for the calcu-
lation of the wave function renormalisation.

From (2.2), (2.3) and (3.3) we determine the Z factors in the MS scheme for the commonly
used representations under the hypercubic group

τ(6)
3 : Ov2a ≡

1
2

(O14 +O41) , τ(3)
1 : Ov2b ≡ O44 −

1
3

(O11 +O22 +O33) .

They have the form

ZMS
vi

(a,µ) = 1−
g2CF

16π2

[

16
3

log(aµ)+Bvi(ck,ρ)

]

(3.5)

with
Bvi(ck,ρ) =

40
9

+bvi +bΣ , bv2a = b1 +b2 , bv2b = b1 +b2 +b4 . (3.6)

It is well known that the naive perturbative results suffer from lattice artefacts. Therefore,
mean field (tadpole) improvement [19] has been proposed to rearrange the perturbative series. In
case of overlap fermions the tadpole improved Z factor is given by [16]

ZT I
O = ZMF

O

(

ZO

ZMF
O

)

pert

, (3.7)

where ZMF
O

is the mean field approximation of ZO . For overlap fermions we have

ZMF
O =

ρ
ρ −4(1−u0)

, ZMF
Opert = 1+

g2
T I CF

16π2

4
ρ

kT I
u . (3.8)

Here u0 denotes the mean value of the link. The boosted parameters are chosen as [16]

g2
T I = g2/u4

0 , cTI
0 = c0 , cTI

i = u2
0 ci (i = 1,3), CT I

0 = c0 +8cT I
1 +8cT I

3 . (3.9)

kT I
u is the one-loop contribution of the perturbative expansion for u0 with cTI

i inserted for the cor-
responding gauge actions (kTI

u = 5.3625/5.0835 for β = 8.45/8.0).
In case of overlap fermions one needs to improve the quark propagator as well which leads to

a mean field improved ρ parameter

ρT I =
ρ −4(1−u0)

u0
. (3.10)

Results obtained with ρT I are denoted as fully tadpole improved (FTI). The Z factors have the form

ZT I,MS
vi

= ZMF
O

{

1−
g2

TICF

16π2

[

16
3CT I

0
log(aµ)+BTI

vi
(cTI

k ,ρ)

]}

, (3.11)
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ZFTI,MS
vi

= ZMF
O

{

1−
g2

TICF

16π2

[

16
3CT I

0
log(aµ)+BTI

vi
(cTI

k ,ρTI)

]}

. (3.12)

The following table shows numerical results for the various levels of improvement at a = 1/µ

Operator β B ZMS BTI ZT I,MS BFT I ZFT I,MS

v2a 8.45 −22.430 1.315 0.502 1.393 −0.077 1.411

v2b 8.45 −22.085 1.311 0.793 1.384 0.230 1.401

v2a 8.0 −22.036 1.310 0.603 1.390 −0.108 1.412

v2b 8.0 −21.703 1.305 0.892 1.381 0.199 1.402

(3.13)

It can be read off from Table (3.13) that the one-loop corrections B for the improved perturbative
Z factors become smaller as expected. Thus the perturbative series is better behaved. For β =

8.45 and representation v2b we can compare the perturbative Zs (bold faced numbers in (3.13))
with a quenched Monte Carlo simulation [20] giving ZMC,MS = 1.98(3). Using the stout smearing

procedure (see Section 4) the resulting factors are ZMC,MS
1−smear = 1.47(4) and ZMC,MS

2−smear = 1.34(3) with
the value of the smearing parameter ω = 0.15.

4. Local operators and stout smearing

Z factors for local fermionic operators for overlap fermions and a set of improved gauge ac-
tions have been determined in [16]. A recalculation has been performed by Ioannou and Panagopou-
los [21]. In this section we show the influence of stout smearing on the perturbative Z factors.

By construction a stout smearing step is performed on a gauge link variable Uµ(x) as [15]

U (n+1)
µ (x) = eiQ(n)

µ (U,ωµν )U (n)
µ (x), (4.1)

where n denotes the step of smearing. The parameters ωµν characterise the strength of smearing:
they are the weights of the perpendicular staples associated to the link (x,x + µ̂). For our pertur-
bative calculation we have assumed the isotropic case ωµν = ω and a small value of ω . Various
investigations suggest values of 0.1 < ω < 0.3. Therefore, we have expanded (4.1) to first order
in ω . Furthermore, we have restricted ourselves to n = 1. The resulting stout link has been in-
serted into the fermionic action modifying the corresponding Feynman rules for the quark-gluon
vertices. The corresponding results are obtained in powers of ω . As a possible choice in the tadpole
improvement we assumed that our approximate stout smearing has been done for the mean field
rescaled links (this does not change ZMF

O
and does not rescale ω).

As examples we have calculated the Z factors in MS-scheme for the scalar and axial vector
operators for the TILW action at β = 8.45 and the perturbative improvement levels discussed in
the previous section. For the scalar operator we find (a = 1/µ)

ZS = 1.168−0.248ω −0.154ω2 ,

ZT I
S = 1.309−0.488ω −0.239ω2 ,

ZFT I
S = 1.359−0.241ω −0.685ω2 .
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These numbers can be compared with ZMC obtained from a quenched MC simulation at ω = 0.15
and a single smearing [20]:

ZS = 1.127 , ZTI
S = 1.230 , ZFT I

S = 1.307; ZMC
S,0−smear = 1.36(1) , ZMC

S,1−smear = 1.13 .

The same has been done for the axial vector operator. We get in this case

ZA = 1.156−0.475ω +0.092ω2 ,

ZT I
A = 1.268−0.860ω +0.179ω2 ,

ZFT I
A = 1.303−0.560ω −0.346ω2 .

The comparison with MC gives for ω = 0.15

ZA = 1.087 , ZT I
A = 1.114 , ZFT I

A = 1.211; ZMC
A,0−smear = 1.42(1) , ZMC

A,1−smear = 1.16 .

Contrary to the non-perturbative case the perturbative stout smearing decreases only mildly the
renormalisation factors.
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