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Abstract

We discuss joint temporal and contemporaneous aggregation of N independent copies
of strictly stationary INteger-valued AutoRegressive processes of order 1 (INAR(1)) with
random coefficient « € (0,1) and with idiosyncratic Poisson innovations. Assuming that
a has a density function of the form ¢ (x)(1— )%, z € (0,1), with limg4 ¥ (2) = €
(0,00), different limits of appropriately centered and scaled aggregated partial sums are
shown to exist for 5 € (—=1,0), =0, 8 € (0,1) or 8 € (1,00), when taking first
the limit as N — oo and then the time scale n — oo, or vice versa. In fact, we give
a partial solution to an open problem of Pilipauskaité and Surgailis [23] by replacing the
random-coefficient AR(1) process with a certain randomized INAR(1) process.

1 Introduction

The aggregation problem is concerned with the relationship between individual (micro) behavior
and aggregate (macro) statistics. There exist different types of aggregation. The scheme of
contemporaneous (also called cross-sectional) aggregation of random-coefficient AR (1) models
was firstly proposed by Robinson [28] and Granger [10] in order to obtain the long memory
phenomena in aggregated time series. See also Gongalves and Gouriéroux [9], Zaffaroni [36],
Oppenheim and Viano [22], Celov et al. [5] and Beran et al. [4] on the aggregation of more
general time-series models with finite variance. Puplinskaité and Surgailis [26], 27] discussed
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aggregation of random-coefficient AR(1) processes with infinite variance and innovations in the
domain of attraction of a stable law. Related problems for some network traffic models were
studied in Willinger et al. [35], Taqqu et al. [33], Gaigalas and Kaj [8] and Dombry and Kaj
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[6], where independent and centered ON/OFF processes are aggregated, in Mikosch et al. [19],
where aggregation of M/G/oo queues with heavy-tailed activity periods are investigated, in
Pipiras et al. [25], where integrated renewal or renewal-reward processes are considered, or in
Igl6i and Terdik [I1], where the limit behavior of the aggregate of certain random-coefficient
Ornstein—Uhlenbeck processes is examined. On page 512 in Jirak [I3] one can find a lot of
references for papers dealing with the aggregation of continuous time stochastic processes.

The present paper extends some of the results in Pilipauskaité and Surgailis [23], which
discusses the limit behavior of sums
N |nt]
(1.1) S =3"N"xY teln,00),  Nme{l2..}

=1 k=1

where (X lgj ))ke{071,...}a j€{1,2,...}, areindependent copies of a stationary random-coefficient
AR(1) process

(12) Xy =aXp_1+ €k, ke {1,2,...},

with standardized independent and identically distributed (i.i.d.) innovations (ex)refi2,.}
having E(e;) =0 and Var(e;) =1, and a random coefficient a with values in [0,1), being
independent of (ej)ref1,2,.; and admitting a probability density function of the form

(1.3) Y(z)(1 — x)”, r€10,1),

where [ € (—1,00) and 1 is an integrable function on [0,1) having a limit lim,4 ¢(x) =
1 > 0. Here the distribution of X, 1is chosen as the unique stationary distribution of
the model (L2). Its existence was shown in Puplinskaité and Surgailis [26, Proposition 1].
We point out that they considered so-called idiosyncratic innovations, i.e., the innovations
(6,(3))%@, j € N, belonging to (X,gj))kez+7 j € N, are independent. In [23] they derived
scaling limits of the finite dimensional distributions of (A]}}nséN’n))te[o,oo), where Ay, are
some scaling factors and first N — oo and then n — oo, or vice versa, or both N and n
increase to infinity, possibly with different rates. Very recently, Pilipauskaité and Surgailis [24]
extended their results in [23] from the case of idiosyncratic innovations to the case of common
innovations, i.e., when (5,(€j))kez+ = (5,(61));462“ jeN.

The aim of the present paper is to extend the results of Pilipauskaité and Surgailis [23)
Theorem 2.1] concerning iterated scaling limits to the case of certain randomized first-order
Integer-valued AutoRegressive (INAR(1)) processes. The theory and application of integer-
valued time series models are rapidly developing and important topics, see, e.g., Steutel and
van Harn [31] and Wei8 [34]. The INAR(1) process is among the most fertile integer-valued
time series models, and it was first introduced by McKenzie [I8] and Al-Osh and Alzaid [IJ.

An INAR(1) time series model is a stochastic process (Xj)refo,1,.} satisfying the recursive

equation
Xk—1

(1.4) Xp=> Gyten ke{l2,..}
j=1



where (ex)keq1,2,.3 areii.d. non-negative integer-valued random variables, (k)i jef1,2,..) are
i.i.d. Bernoulli random variables with mean « € [0, 1], and X, is a non-negative integer-valued
random variable such that Xo, (&kj)kjeqi2,..) and (ex)reqi2,.} are independent. By using
the binomial thinning operator «o due to Steutel and van Harn [31], the INAR(1) model in
(C4) can be written as

(15) X =aoXp_1+ ¢y, ke {1,2,...},

which form captures the resemblance with the AR model. We note that an INAR(1) process can
also be considered as a special branching process with immigration having Bernoulli offspring
distribution.

Leonenko et al. [16] introduced the aggregation Zj‘;l X of a sequence of independent
stationary INAR(1) processes XV, j € N, where X,gj) =aW o X,gj_)l + 8,(3), keZ, jeN.
Under appropriate conditions on o), j € N, and on the distributions of ¢%), j € N, they
showed that the process Zj‘;l X is well-defined in L?-sense and it has long memory.

We will consider a certain randomized INAR(1) process (Xj)rez, with randomized thinning
parameter «, given formally by the recursive equation

(16) Xk:OéOXk_1+€k, ke {1,2,...},

where « is a random variable with values in (0,1) and X, is some appropriate random vari-
able. This means that, conditionally on «, the process (Xj)rez, isan INAR(1) process with
thinning parameter «. Conditionally on «, the i.i.d. innovations (5k)k€{1,2,...} are supposed
to have a Poisson distribution with parameter A € (0,00), and the conditional distribution of
the initial value Xy given « is supposed to be the unique stationary distribution, namely, a
Poisson distribution with parameter A/(1—a«). For a rigorous construction of this process, see
Section @l Here we only note that (Xj)iez, is a strictly stationary sequence, but it is not even
a Markov chain (so it is not an INAR(1) process) if « is not degenerate, see Appendix [Al Let
us also remark that the choice of Poisson-distributed innovations serves a technical purpose.
It allows us to calculate and use the explicit stationary distribution and the joint generator
function given in (24]). The authors are planning to try releasing this assumption and giving
more general results in future research.

Note that there is another way of randomizing the INAR(1) model (LH]), the so-called
random-coefficient INAR(1) process (RCINAR(1)), proposed by Zheng et al. [37] and Leonenko
et al. [16]. It differs from (LO), namely, it is a process formally given by the recursive equation

Xy =apo Xg_1+ ¢, ]{76{1,2,...},

where  (og)geq12,.} is an ii.d. sequence of random variables with values in [0,1]. An
RCINAR(1) process can be considered as a special kind of branching processes with immigration
in a random environment, see Key [15], where a rigorous construction is given on the state space
of the so-called genealogical trees.



In the paper first we examine a strictly stationary INAR(1) process (LE]) with deterministic
thinning and Poisson innovation, and in Section [2] an explicit formula is given for the joint
generator function of (Xg, Xy,..., X)), k& € {0,1,...}. In Section Bl we consider indepen-
dent copies of this stationary INAR(1) process supposing idiosyncratic Poisson innovations.
Applying the natural centering by the expectation, in Propositions B.1] and in Theorem
B3, we derive scaling limits for the contemporaneously, the temporally and the joint tempo-
rally and contemporaneously aggregated processes, respectively. In Section Ml first we give a
construction of the stationary randomized INAR(1) process (L6]). Considering independent
copies of this randomized INAR(1) process, we discuss the limit behavior of the temporal and
contemporaneous aggregation of these processes, both with centering by the expectation and
by the conditional expectation, see Propositions [4.JH4.4l Then, assuming that the distribution
of « has the form (L3]), we prove iterated limit theorems for the joint temporally and con-
temporaneously aggregated processes in case of both centralizations, see Theorems L 7THALT3
As a consequence of our results, we formulate limit theorems with centering by the empirical
mean as well, see Corollary T4l Note that we have separate results for the different ranges
of 5 (namely, 5 € (=1,0), =0, € (0,1) and S € (1,00)), the different orders of the
iterations, and the different centralizations. The case 3 =1 is not covered in this paper, nor
in Pilipauskaiteé and Surgailis [23] for the random coefficient AR(1) processes. We discuss this
case for both models in Nedényi and Pap [21]. Section [ contains the proofs. In the appendices
we discuss the non-Markov property of the randomized INAR(1) model, some approximations
of the exponential function and some of its integrals, and an integral representation of the
fractional Brownian motion due to Pilipauskaité and Surgailis [23]. We consider three kinds
of centralizations (by the conditional and the unconditional expectations and by the empirical
mean). In Pilipauskaité and Surgailis [23] centralization does not appear since they aggregate
centered processes. In Jirak [I3] the role of centralizations by the conditional and the uncondi-
tional expectations is discussed, where an asymptotic theory of aggregated linear processes is
developed, and the limit distribution of a large class of linear and nonlinear functionals of such
processes are determined.

All in all, we have similar limit theorems for randomized INAR(1) processes that Pili-
pauskaité and Surgailis [23, Theorem 2.1] have for random coefficients AR(1) processes. On
page 1014, Pilipauskaité and Surgailis [23] formulated an open problem that concerns possible
existence and description of limit distribution of the double sum ([I.T]) for general i.i.d. processes
(X,g(j))teR+, j € N. We solve this open problem for some randomized INAR(1) processes. Since
INAR(1) processes are special branching processes with immigration, based on our results, later
on, one may proceed with general branching processes with immigration. The techniques of
our proofs differ from those of Pilipauskaité and Surgailis [23] in many cases, for a somewhat
detailed comparison, see the beginning of Section



2 (Generator function of finite-dimensional distributions
of Galton—Watson branching processes with immigra-
tion

Let Z,, N, R, R,, and C denote the set of non-negative integers, positive integers, real
numbers, non-negative real numbers, and complex numbers, respectively. The Borel o-field
on R is denoted by B(R). Every random variable in this section will be defined on a fixed
probability space (2, .A,P).

For each k,j € Z,, the number of individuals in the k" generation will be denoted
by Xg, the number of offsprings produced by the ;' individual belonging to the (k — 1)%
generation will be denoted by & ;, and the number of immigrants in the k™ generation will
be denoted by e;. Then we have

Xk—1

Xk: ng7j+5k7 ]{?EN,
j=1

where we define Z?Zl := 0. Here {XO, Sk €k ik, j € N} are supposed to be independent
nonnegative integer-valued random variables. Moreover, {{;; : k,j € N} and {e, : k € N}
are supposed to consist of identically distributed random variables, respectively.

Let us introduce the generator functions
Fi(z) = E(z), keZ,, G(z) == E(z5), H(z) =E(z")
for z € D:={z € C:|z| < 1}. First we observe that for each k € N, the conditional

generator function E(z;f" | Xx—1) of Xj given Xj_; takes the form

X1

Xp—1
L 5 ’j+€ € i o
(1) EG 1% =B S X)) = B [ BGE) = Hiz) Gz
j=1

for z, € D, where we define H?zl :=1. The aim of the following discussion is to calculate
the joint generator functions of the finite dimensional distributions of (Xj)gez,. Using (2.1)),
we also have the recursion

Fiy(2) = B(E(=* | X,_1)) = B(H(2) G(2)¥1) = H(:) E(G(2)%) = H(2) Fe(G(2))
for z€ D and ke N. Put Gq(z):=2 and G(z) = G(2) for z € D, and introduce
the iterates Gp41)(2) == G)(G(2)), z € D, k€ N. The above recursion yields

k—1

Fi(z) = H(2) H(G(2)) - - H(G1—1)(2)) Fo(G iy (2)) = Fo(Giy (2) [ [ H(G ()

=0

for z € D and k € N. Supposing that E(&,) = G'(1-) <1, 0 < P(&, = 0) < 1,
0 <P =1 and 0 < P(e; = 0) < 1, the Markov chain (Xj)rez, 1is irreducible and

bt



aperiodic. Further, it is ergodic (positive recurrent) if and only if >~,7, log(¢)P(e; = ¢) < oo,
and in this case the unique stationary distribution has the generator function

=[[H (G (= zeD,
7=0

see, e.g., Seneta [29, Chapter 5] and Foster and Williamson [7, Theorem, part (iii)].

Consider the special case with Bernoulli offspring and Poisson immigration distributions,
namely,

P(gl,l = 1) =a=1- P(fm = 0)7
f' '

with a € (0,1) and A € (0,00). With the special choices ([2.2), the Galton-Watson process
with immigration (Xj)gez, is an INAR(1) process with Poisson innovations. Then

(2.2)

P(€1:£> = €€Z+,

— 2\ —A A(z—1)
G(z)=1—a+az, H(z) = e e , z €C,
=0

hence
G(j)(z)zl—ozj—l—ozjz, zeC, jeN

Indeed, by induction, for all j € Z,,
Gi+1(2) =G(Gy(2) =aGp(z)+1—a=a(l—d +dd2)+ 1 —a=1—a/" + /T2

Since E(&1) = G'(1-) = a € (0,1), P51 =0)=1-a € (0,1), P(§1=1) =a >0,
P(e; =0)=e*€(0,1), and

= Moy e N
Zlog(ﬁ)ﬂe_ < Zﬁﬁe_ =E(e1) = A < o0,
=1

the Markov chain (Xj)rez, has a unique stationary distribution admitting a generator function
of the form

_ Heaa‘)\(z_n _ e(l—a)ﬂ)\(z—l)7 2z €C,
j=0

thus it is a Poisson distribution with expectation (1 —a)7tA.

Suppose now that the initial distribution is a Poisson distribution with expectation (1 —
a)~'A, hence the Markov chain (Xj)kez, is strictly stationary and

(2.3) Fy(z) = E(z0) = =)Ao= o0 e

By induction, one can derive the following result, formulae for the joint generator function of
(Xo, X1,...,Xy), k€Z,.



2.1 Proposition. Under (2.2) and supposing that the distribution of X, is Poisson distribu-
tion with expectation (1 — )7\, the joint generator function of (Xo, X1,...,Xs), k € Z,,
takes the form

Fo, k(205 26) == E<beozf(1"'21§k)
(2.4) A -
= €Xp 1—o Z o (2 — D)ziga - zj-1(z — 1)
0<i<j<k
forall k€N and zy,...,zx € C, where, for © = 73, the term in the sum above is z; — 1.

Alternatively, one can write up the joint generator function as

(2.5) Fo..1(20,...,2k) = exp {)\ Z (1 — )Xk (224 - 25 — 1)} :
0<i<j<k
where
-1 if 1=0 and j=k,
0 ifi=0 and 0<j<k—1,
Kijk =

<
1 if 1<i<j<k—1.

2.2 Remark. Under the conditions of Proposition 2] the distribution of (Xj, X;) can be
represented using independent Poisson distributed random variables. Namely, if U, V and W
are independent Poisson distributed random variables with parameters A(1 — ) a, A and

A, respectively, then (X, X;) Z (U+V,U+W). Indeed, for all zy,z € C,

E(zg ™) = E((2021) 20 21") = E((2021)") Bz ) E(2")

_ e)\(l—oz)*loz(zozl—l)e)\(zo—l)e)\(zl—1)7
as desired. Further, note that formula (Z3) shows that (Xy,..., X)) has a (k+ 1)-variate
Poisson distribution, see, e.g., Johnson et al. [14, (37.85)]. O

3 Iterated aggregation of INAR(1) processes with Pois-

son innovations

Let (Xi)rez, be an INAR(1) process with offspring and immigration distributions given in
[(22) and with initial distribution given in (Z3]), hence the process is strictly stationary. Let
X0 = (X,gj))keh, j € N, be a sequence of independent copies of the stationary INAR(1)

process (Xj)rez, -

First we consider a simple aggregation procedure. For each N € N, consider the stochastic
process SOV) = (S,EN))%@ given by
N
(3.1) SV =X -B(X),  kez,

Jj=1



where E(X ,gj)) =XNl—a)™, k€ Z,, jeN, since the stationary distribution is Poisson
with expectation (1 —a)™'A. We will use 2 or Dy-lim  for the weak convergence of the

finite dimensional distributions, and L. for the weak convergence of stochastic processes
with sample paths in D(R,,R), where D(R,,R) denotes the space of real-valued cadlag
functions defined on R,. The almost sure convergence is denoted by —=3.

3.1 Proposition. We have
_1 (N) D¢
N725YW — X as N — oo,
where X = (Xk)kez . s a stationary Gaussian process with zero mean and covariances

k
(3.2) E(XpX,) = Cov(Xo, X3) = IAO‘Q, keZ,.

3.2 Proposition. We have

—%%Sa) (1 %(X(” _E(x™Y) o, VAt
! g teR " g g teR l -«
+ +

as n — oo, where B = (By)cr, 1is a standard Brownian motion.

Note that Propositions Bl and are about the scaling of the space-aggregated process

SM)and the time-aggregated process (ZWJ Sy (1) ) respectively.

teRy )

For each N,n € N, consider the stochastic process SNV = (St(N’"))teR . given by
N \_nt] '
(3.3) = E(XY)), teR,.
j=1 k:l

3.3 Theorem. We have

A1
Dy-lim Di-lim (nN)” 250N = D lim Dy- lim. (nN)~2. 8N — VAML+a)

n—00 n—00 11—«

B,

where B = (By)ier, 1s a standard Brownian motion.

4 TIterated aggregation of randomized INAR(1) pro-

cesses with Poisson innovations

Let A € (0,00), and let P, be a probability measure on (0,1). Then there exist a
probability space (£2,.A,P), arandom variable a with distribution P, and random variables



{Xo, &, €k : k,j € N}, conditionally independent given a on (2, .4,P) such that

(41) P(e; =1]a)=a=1-P(&,;=0]a), kjeN,
P
(4.2) Plep ={|a) = ﬁe_)‘, teZ,, ke N,
A (1—a)™tx
(43) ]P)(XQ =/ | Oé) = me 5 (e Z+.

(Note that the conditional distribution of &5, does not depend on «.) Indeed, for each
n € N, by Ionescu Tulcea’s theorem (see, e.g., Shiryaev [30, II. §9, Theorem 2|), there exist
a probability space (Q,,A,,P,) and random variables o™, Xé"), 51(:) and 5,(:]) for
k,je{l,...,n} on (Q,,A,,P,) such that

P,(a™ € B, X" =0, e =4, fgfj) =y, forall k,je{l,...,n})
_ /B Pu (@, 70, ()1, (25)7 1) Palda)

for all B € B(R), wo € Zy, (lk)j—y € Z7, (wrj)f j=1 € {0,1}™", with

n n Ao —(1—a)~ 1 - )\Ek _ To s PO
Pu (@ 20, (C)i—ys (21 ))F jor) = me (A H e g H a™i (1 —a)t="k,
: k=1 K k=1

since the mapping (0,1) 3 a — py, (a, 20, (Ce)i—y, (2x)—1) is Borel measurable for all
r0 € Ly, (Uk)jey €21, (wr5)f j=1 € {0,1}™", and

Z{pn (a0, (e)izrs (Th5)i =) * W0 € Lo, (Gh)imy € 25, (wrg)i = € {0, 1}nxn} =1

for all @ € (0,1). Then the Kolmogorov consistency theorem implies the existence of a
probability space (£,.A,P) and random variables «a, X, ¢; and & ; for k,7 € N on
(Q, A, P) with the desired properties (A1), (£2) and (&3)), since for all n € N, we have

Z{pn-i-l (CL, o, (gk)Zi%a (xk,])Z:;il)
gt € Ly, (Tngrg) =1y (Trmi) )i € {0,137, Zngimp € {0,1}}
= DPn (CL, Lo, (gk)Z:la (xk,j)z,jzl) :

Define a process (Xj)kez, by

Xk—1

X, = thj—'—&k, k € N.

J=1

By Section [, conditionally on ¢, the process (Xi)rez, Iis a strictly stationary INAR(1)
process with thinning parameter o and with Poisson innovations. Moreover, by the law of

9



total probability, it is also (unconditionally) strictly stationary but it is not a Markov chain (so
it is not an INAR(1) process) if « is not degenerate, see Appendix [Al The process (Xj)rez,
can be called a randomized INAR(1) process with Poisson innovations, and the distribution of
« is the so-called mixing distribution of the model. The conditional generator function of X
given « € (0,1) has the form

Filzo| @) = E(5°| @) = o0 0D, e

and the conditional expectation of Xy given « is E(Xy|a)= (1 —a) *A. Here and in the
sequel conditional expectations like E(z° |a) or E(X,|a) are meant in the generalized sense,
see, e.g., in Stroock [32, §5.1.1]. The joint conditional generator function of Xy, Xy,..., X}
given « will be denoted by Fy  x(z0,...,2k| @), 20,...,2; € C.

Let a¥), j € N, be a sequence of independent copies of the random variable «, and
let (X} G) Jkez,, J € N, be a sequence of independent copies of the process (Xj)rez . with
idiosyncratic innovations (i.e., the innovations (6;(6))kez+, Jj € N, belonging to (X,g ))keZ =
j € N, are independent) such that (X ,gj )>k€Z . conditionally on o) is a strictly stationary
INAR(1) process with thinning parameter o) and with Poisson innovations for all j € N.

First we consider a simple aggregation procedure. For each N € N, consider the stochastic
process SOV) = (S,EN))%@ given by

N

N
_ | A
SN =3 (x — E(x} §_ ( - a(])> ke Z,.

j=1
4.1 Proposition. If E(ﬁ) < 00, then
N—%§<N>ﬂ>? as N — oo,
where (ﬂ)kez . 15 a stationary Gaussian process with zero mean and covariances

~ =~ A A k
(44) E(yoyk):COV (Xo_jan_ ) :AE(la >’ kelZ,.

1 11—« -«

4.2 Proposition. We have

fS _ (n S —E ) 2 VAT
teR -\ e teR l—a
+ +

k=1

as n — oo, where B = (By)wcr, s a standard Brownian motion, independent of «.

In the next two propositions, which are counterparts of Propositions B.1] and 3.2, we point
out that the usual centralization leads to limit theorems similar to Propositions [4.1] and 4.2
but with an occasionally different scaling and with a different limit process. We use again
the notation SW) = (S,EN))%Z . given in B for the simple aggregation (with the usual
centralization) of the randomized process.

10



4.3 Proposition. If E((l_la)z) < 00, then

N_%S(N)&y as N — oo,

where Y = (Vi )rez . 5 a stationary Gaussian process with zero mean and covariances

E(Vod) = Cov(Xo, X,) = AE(loikO) + A2 Var (1 ! a) . kez,.
4.4 Proposition. If E(ﬁ) < 00, then
(5} (oS -en) 2 (2 a(2))
k=1 ' teR k=1 ' ' teR I-a I-a teR ¢

as n — oQ.

In Proposition 4] the limit process is simply a line with a random slope.

In the forthcoming Theorems LTHLI3 we assume that the distribution of the random
variable «, i.e., the mixing distribution, has a probability density of the form

(4.5) () (1 — )P, z € (0,1),

where 1 is a function on (0,1) having a limit lim,y ¢¥(z) = ¢, € (0,00). Note that
necessarily § € (—1,00) (otherwise fol Y(x)(1—2)? dz = o), the function (0,1) > x — ¥ (z)
is integrable on (0, 1), and the function (0,1) > z + 1 (z)(1 —2)” is regularly varying at the
point 1 (i.e., (0,00) 2z + (1 — %) x77 is regularly varying at infinity). Further, in case of
Y(r) = %x“, x € (0,1), with some a € (—1,00), the random variable « is Beta
distributed with parameters a+ 1 and [+ 1. The special case of Beta mixing distribution
is an important one from the historical point of view, since the Nobel prize winner Clive W. J.
Granger used Beta distribution as a mixing distribution for random coefficient AR(1) processes,

see Granger [10].

4.5 Remark. Under the condition (fH), for each ¢ € N, the expectation E(ﬁ) is
finite if and only if 5 > ¢ — 1. Indeed, if g > ¢ — 1, then, by choosing ¢ € (0,1) with
SUDge(1-2,1) ¥ (@) < 2tb1, we have E(ﬁ) = I1(e) + Iz(e), where

Ii(e) = /01_€¢(a)(1 —a)’fda < /Ol_ew(a) da < oo,

1 1 B—L+1
b(e) = | (a1~ )" da < 2 / (=0 o= % <00

Conversely, if < {—1, then, by choosing ¢ € (0,1) with sup,cq_. )¢ (a) = 11/2, we have
1 ! B—t (2 ! B—t _
E(l—— | > Y(a)(1—a)’"da > — (1 —a)"""da = oo.
(1 o O‘)Z 1—e 2 1—e

11



This means that in case of 8 € (—1,0], the processes S™™ = (S§N’"))teR+, N,n € N, given
in (B3] are not defined for the randomized INAR(1) process introduced in this section with
mixing distribution given in ([LH). Moreover, the Propositions ET], 2] and [L.4] are valid in

case of 8 >0, f>—1, f>1 and [ >0, respectively. O
For each N,n € N, consider the stochastic process SWn) — (§§N’n))te[& . given by
N [nt]
=Y Y (XY -EX o),  teR..
=1 k=1

4.6 Remark. If 5 > 0 then the covariances of the strictly stationary process (X —
E(Xk | a))kez, = (Xi — )keZ+ exist and take the form

Aok

11—«

Cov (Xo — E(Xo | a), X — E(X; | a)) :E( ) , keZy,

see (0.3). Further,

Z‘COVXO— E(Xo|a), Xy — E(X, | a)) ‘_ZE<)\O/;):)\E<1EQ§:O/€>

=% (q=ap)

which is finite if and only if § > 1, see Remark [A.5l This means that the strictly stationary
process (X —E(X}|a))gez, has short memory (i.e., it has summable covariances) if > 1,
and long memory if 8 € (0,1] (i.e., it has non-summable covariances). O

For B € (0,2), let (B, 5(t))icr, denote a fractional Brownian motion with parameter
2
1 — /2, that is a Gaussian process with zero mean and covariance function

20270 by — 2P
2 b

(46) COV(Bl_g(tl),Bl_g(tg)) = t1,to € Ry
In Appendix [C] we recall an integral representation of the fractional Brownian motion
(B,_5(t))ter, due to Pilipauskaité and Surgailis [23] in order to connect our forthcoming
2
results with the ones in Pilipauskaité and Surgailis [23] and in Puplinskaité and Surgailis [26],

[21].
The next three results are limit theorems for appropriately scaled versions of S ) first

taking the limit N — oo and then n — oo in the case € (—1,1), which are counterparts
of (2.7), (2.8) and (2.9) of Theorem 2.1 in Pilipauskaité and Surgailis [23], respectively.

4.7 Theorem. If € (0,1), then

B Cfm o1 L (N 201 I'(B)
Dr-lim Dy-lim 0=z N7 S \/(2—5)(1—5)81—5’

12



4.8 Theorem. If p € (—1,0), then

De-lim Dy ]\}lm n N~ TR G(Nm) = (Vag+p)t)ier,

n—o0

where Vaipy is a symmetric 2(1 4 3)-stable random variable (not depending on t) with

characteristic function
- —K4|0]20+8)
E(e20+0)) = Kol g e R,

A\ 1+BF _
wen(}) 5D

where

4.9 Theorem. If =0, then

D¢-lim Dy ]\}lm n~'(Nlog N)_% SNm) — (Wi t)er., 5

n— o0

where Wiy, s a normally distributed random variable with mean zero and with variance Ai;.

The next result is a limit theorem for an appropriately scaled version of SV ) first taking
the limit n — oo and then N — oo in the case § € (—1,1), which is a counterpart of (2.10)
of Theorem 2.1 in Pilipauskaité and Surgailis [23].

4.10 Theorem. If B € (—1,1), then

Ds- hm De-lim N~ TEp 2 SN = Vits,
n—oo
where Y15 = (y1+5 = /Ya+8)2 Bt)teR is a (14 f)-stable Lévy process. Here Y(14p)/
148
1S a positive HB -stable random variable with Laplace transform E(e %Ya+s)/2) = e=ks? >

0 eR,, and wzth characteristic function

E(ewY(Hﬁ)/z) = exp { k5|9|_ —isign(f) == (Hﬁ) } s RS R7

@)Y (1-8
A F( 2 )

and (Bi)ier, is an independent standard Wiener process.

where

Next we show an iterated scaling limit theorem where the order of the iteration can be
arbitrary in the case € (1,00), which is a counterpart of Theorem 2.3 in Pilipauskaité and

Surgailis [23].
4.11 Theorem. If € (1,00), then

Di-lim Dj-lim (nN N) 280 = . lim Dy-lim (nN)~ 250 = 5B,

n—o0 n—o0

where o® = AE((1+a)(1 —a)™?) and (Bi)er, is a standard Wiener process.

13



By Remark [5] if 5 > 1, then E(( L ) < 0o, and hence ¢? < oo, where ¢? is given

in Theorem .11}

In the next theorems we consider the usual centralization with E(X ,gj )) in the cases f €
(0,1) and g > 1. These are the counterparts of Theorems [.7] .10 and .11l Recall that, due

to Remark L5, the expectation E(X,) =E(:2-) is finite if and only if 8 >0, so Theorems

and L9 can not have counterparts in this sense.

4.12 Theorem. If B € (0,1), then
De-lim Dy- lim n~IN" e S — = Ds- hm D;-lim n N~ 5 (Vi) — (Z1+5t)teR+,

n—00 N—oo —00 n— 00

where Zyy5 is a (1 + B)-stable random variable with characteristic function E(e%%1+8) =

e“("lw“’ﬁ(‘)), 0 eR, where
1
wﬁ(e) — wlr(l — 5))‘ +Be—i7rsign(9)(1+ﬁ)/2
—B(1+ )
4.13 Theorem. If € (1,00), then
D;-lim D;- hm nIN"250m) — D;- hm Di-lim n IN~ 2 GNm) — (W2 var((1—a)-1) t)ter, »

n—oo — 00 n—oo

, 0 €R.

where  Wievar((1—a)-1) 5 a normally distributed random variable with mean zero and with
variance A? Var((1 —a)™1).

In case of Theorems [4.8| [£.9] 4.12] and .13 the limit processes are lines with random slopes.

We point out that the processes of doubly indexed partial sums, S®™ and SN contain
the expected or conditional expected values of the processes X, j € N. Therefore, in a
statistical testing, they could not be used directly. So we consider a similar process

. Z§ [X(]) ZL;X:SJ)] ’ teR,,
j=1 k=1
which does not require the knowledge of the expectation or conditional expectation of the
processes X j € N. Note that the summands in §t(N’") have 0 conditional means with
respect to «, so we do not need any additional centering. Moreover, SV g related to the
two previously examlned processes in the following way: in case of 5 € (0,00) (which ensures
the existence of E(X )), ke€Z.), we have
g _ anﬂ [ X0 _ m(xW) _ > (X~ E(Xéj)))] _ gt _ Lot govm.

=1 k=1

and in case of [ € (—1,00),

N el n () NN
. ) , ) (X E(X,” |V ~(N.n nt] 5(Nn
t(N, ) 2 :2 : [X,g]) E(X,g]) | a(J)) Ze_l( Ji ( Ji | ))] St(M ) LnJ SfN’ )

n
j=1 k=1
for every t € R,. Therefore, by Theorem [4.7, Theorem [4.I0, and Theorem K1l using
Slutsky’s lemma, the following limit theorems hold.

14



4.14 Corollary. If g€ (0,1), then

Bt 1 _1+§ _% S(N,n) _ 2)\¢1F(ﬁ) .
Dr-lim Dy-lim n™"2N"2 5 \/ 2_8)1-5) (B =18 5)

where the process B, s is given by (AH).
2
If pe(=1,1), then

Dy-lim Dy-lim N A0 SO = (Vyys(t) — tV145(1)) e,

n—o0
where the process Yiyp is given in Theorem[{.10,
If pe(l,00), then

Dg-lim Dy ]\}lm (nN )_%g = Ds- hm Ds-lim (nN)™ 25 = o(By — tB1)ser, ,
n—o0 n—oo
where o2 and the process B are given in Theorem [[11]

In Corollary 14l the limit processes restricted on the time interval [0,1] are bridges in
the sense that they take the same value (namely, 0) at the time points 0 and 1, and especially,
in case of f € (1,00), it is a Wiener bridge. We note that no counterparts appear for the rest
of the theorems because in those cases the limit processes are lines with random slopes, which
result the constant zero process in this alternative case. In case of 5 € (—1,0], by applying
some smaller scaling factors, one could try to achieve a non-degenerate weak limit of SW.m)
by first taking the limit N — oo and then that of n — oc.

5 Proofs

Theorem [L.7is a counterpart of (2.7) of Theorem 2.1 in Pilipauskaité and Surgailis [23]. We will
present two proofs of Theorem 7] and we call the attention that both proofs are completely
different from the proof of (2.7) in Theorem 2.1 in Pilipauskaité and Surgailis [23] (suspecting
also that their result in question might be proved by our method as well). Theorems [1.8 and
are counterparts of (2.8) and (2.9) of Theorem 2.1 in Pilipauskaité and Surgailis [23]. The
proofs of these theorems use the same technique, namely, expansions of characteristic functions,
and we provide all the technical details. Theorem is a counterpart of (2.10) of Theorem 2.1
in Pilipauskaité and Surgailis [23]. We give two proofs of Theorem the first one is based
on expansions of characteristic functions (as the proof of (2.10) of Theorem 2.1 in Pilipauskaité
and Surgailis [23]), the second one reduces to show that ’\(Ha belongs to the domain of normal

(—a
1+5 -stable law of Y1+a Theorem [A.11] is a counterpart of Theorem 2.3 in

attraction of the
Pilipauskaité and Surgalhs [23]. The proof of Theorem [A.T1] is based on the multidimensional
central limit theorem and checking convergence of covariances of some Gaussian processes.

The notations O(1) and | O(1)| stand for a possibly complex and respectively real sequence
(ax)ren that is bounded and can only depend on the parameters A, v, 3, and on some fixed
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m €N and 6q,...,0,, € R. Further, we call the attention that several O(1)-s (respectively
| O(1)|-s) in the same formula do not necessarily mean the same bounded sequence.

Proof of Proposition 2.1l First we prove (2.4)) by induction. Note that by (2.3) the statement
holds for k£ = 0. We suppose that it holds for 0,...,k, and show that it is also true for k+1.
Using (2.0)) it is easy to see that

Fo,..ek+1(20s - 2k 2hp1) = E <Z§(O : kazli{ff)
:E<zg<0- E( k+1|X0,...,Xk>>:E<g<O- E( k“\Xk))

=K <ng0 . .z]fke’\(z’““_l)(l —a+ ozzkH)X’“) .
On the one hand, for any 2, ...,2x11 € C, by the assumption of the induction,

Fo, k(20,0 2k 2is1) = @GV E (o 21, z6(1 — o+ azgy))

:exp{ﬁ[(l—a)(zkﬂ—l)—i- ST @i — D alz — 1)

a 0<i<j<k—1
+ Sumy + 2,(1 — a4+ azpyq) — 1} },

with

Sum,; = Z "z = 1) 24 - Zg—1|ze(l — a4+ azpyr) — 1.
0<i<k—1

On the other hand, the right hand side of (2.4]) for &+ 1 has the form

A o
exp {m [ Z oz — D)zigr -+ zj—1(2; — 1) + Sumgy + Sum3] },

0<i<j<k—1

where
um2 Z Oé i — 1 Zz—i—l Zk—l(zk — 1)
0<ikk
=(z— 1)+ Z oz = Dzigr -+ 21 (2 — 1),
0<i<k—1
and
Sum3 = Z Oék—H Z - 1)ZZ+1 k(Zk—l—l — 1)
0<i<k+1
= (zpr1 — ) +alzy — D (zke1 — 1) Z a1 (25— Dzigr - 2r(Zrpr — 1).
0<i<k—1
Since
Sum; = Z oz = Vzigr - 21 (26 — 1) + Z Tz — Dz - 2k (2e0 — 1),
0<i<k—1 0<i<k—1

16



in order to show (2.4) for k+ 1, it is enough to check that

(1 - Oé)(Zk.H - 1) + Zk(l -+ OéZ]H_l) —1= (Zk — 1) + (Zk—i—l — 1) + Oé(Zk — 1)(Zk+1 — 1),
which holds trivially.

Now we prove (Z3]). In formula ([2.4)), for fixed indices 0 < i < j < k the term in the sum
gives

(zi = Dziga - zj-a(z — 1)
= (25— 1) = (52— 1) = (zipr 75 — 1) + (2 2520 — 1),

meaning that the sum consists of similar terms as in (23). We only have to show that the
coefficients coincide in the formulas ([20) and (24). In ([23) the coefficient of z;---z; — 1 1is
A1 — a)Biikqi=%  In ([Z4) this term may appear multiple times, depending on the indices i
and j. If i=0 and j =k, then it only appears once, with coefficient Aa’~%/(1 — «), that

is the same as in (23]). However, if i =0 and 0 < j < k—1 in (23], then the term also
appears when the indices are ¢ and j+ 1 in (Z4]), meaning that the coefficient is

-t it o
— N\t
A ( — =\’

11—« 11—«

which is the same as in (2.H). Similarly, if 1 <i<k and j=Fk in (23), then the term also
appears when the indices are ¢ —1 and j in (24]), meaning that the coefficient is

j—i —(i—1
) ( ot ( )) et

11—« 11—«

which is the same as in (23). If 1 <i<j<k—1 in (27), then the term appears three more
times, for the index pairs (i — 1,7), (i,7+ 1), (i — 1,7+ 1) in (24), resulting the coefficient

aj_i aj_(i_l) a(j'l'l)_i a(j""l)_(i_l) . 1 — 2a _I_ a2 L
)\ _ _ = )\ v = >\ J=t 1 -
(1—& 1 -« I—a  1-a ) “ -« (1 =),
which is the same as in (Z3]). This completes the proof. O

Proof of Proposition 3.1 The distribution of X, is a Poisson distribution with parameter
(1 —a)™'), thus Cov(Xy, Xo) = Var(Xy) = (1 — a)~'A. By ([Z4), we have

FO,k($Oa flfk) — E(Ig(ol.fk) — F07,,,7]<;(l'(), 1’ o 1’ xk‘) — e(l—a)*l)\[ak(xo—l)(xk—1)+(x0—1)+(xk—l)]

for all xg,z, € R and k € N. Consequently,

P Fy(xo, x PV 22
00Tk |(zg,2)=(1,1) a (1-a)
since
O*Fo (o, 21) A2 . i -
A = — —1 1 —1 1)+ F .
Doty Fo (o, z1) = a)2(a (o )+ 1) (o™ (zg )+ 1) + For(zo, 71) — aa
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Hence we obtain the formula for Cov(Xy, Xj). The statement follows from the multidimen-

sional central limit theorem. Due to the continuous mapping theorem, it is sufficient to show
the convergence N_l/z(SéN), SfN), . S,EN)) SN (Xo, Xi,...,X) as N — oo forall keZ,.

For all k € Z,, the random vectors (Xo(j) — ﬁ,Xl(J) -2 ..,X,gj) -2, jEN, are
independent, identically distributed having zero expectation vector and covariances
@) 50) 0 +0) Aokt 4
COV(XZI ’XZQ ):COV(XO ’X‘Zz—éﬂ):ﬁ’ ] EN, €1,€2 6{0,1,...,]{3},
following from the strict stationarity of X and from the form of Cov(Xgy, Xz). a

Proof of Proposition It is known that

My = Xp, = E(Xp | Fily) = Xi — (X1 E(611) +E(e1)) = Xp —aXes — A, keN,
are martingale differences with respect to the filtration FiX := o0(Xy,..., Xs), k € Z, with
(5.1) E(M; | FX,) = Xg—1 Var(&11) + Var(er) = a1 — @) Xp—1 + A, k€ N.

The functional martingale central limit theorem can be applied, see, e.g., Jacod and Shiryaev
[12, Theorem VIII.3.33]. Indeed, by ergodicity, for each t € R,, we have

1 A
=S EME|FL) 25 (a1 - )
" k=1

—

+)\>t:(1+a))\t as n — oo.

Moreover, the conditional Lyapunov condition holds, namely, again by ergodicity,

Lnt)
ZE(Mﬂ]—",f_l)ﬁ)O as n — oo,
k=1

1

n2

since there exists a second order polynomial P such that E(M}|F,_1) = P(Xy_1), k € N,
see Nedényi [20, Formula (8)], or Barczy et al. |2, Lemma A.2, part (ii)] together with the

decomposition M = Zj{:’ﬂfl(&ﬂ’j —E(&;)) + (e, —E(ey)), k€ N. Hence we obtain

Lnt)
1
(—ZMO 2 VA1 +a)B as n — oo.

We have Xy = aXp 1+ My + X\, k€N, thus E(X;) =aE(Xy_1)+ A, k€N, and hence
Xi — E(Xy) = a(Xp1 — E(Xg_1)) + My, k€N, yielding

k
Xy, — E(X}) = o*(Xo —E(Xo)) + Y _o*M;,  keN

j=1

18



Consequently, for each n € N and t € R,

[nt] [nt] [nt] Kk

%;Mrwm) Z= (X0~ E(X) DM ;ZIWM

qlntl+ 1 [nt] [nt] .
= (X, E(XO))(l_a)\/_ \/_ZM Za
a— almt! amqﬂ 1 Lnt] olntl=i+1

implying the statement using Slutsky’s lemma. Indeed, n~'/2 Z}th alPl=I 1)L converges in
L; and hence in probability to 0 as n — oo, since, by (B.1),

E(1M;1) < \/E \/O‘(l_a)E(Xj—O—'—)\: A1+ @),
and hence,
[nt] |nt) §
Z Lt} JHM m Z lnt]—j+1 _ AMl+a) a(l - al tJ) -0
\/_ N4 l1—a
as n — 00. .

Proof of Theorem For all N,m €N and all t¢,...,t, € R., by Proposition and
by the continuity theorem, we have

L( gVm) gy D,

N
\/ 1+Oé B(]
R )
v

T—a t1>-' as n — 0o,

j=1
where BU) = (B,Fj ))teR ., j€{l,...,N}, are independent standard Wiener processes. Since

1 .
\/—_Z 9D BYE(B,,...,B.,), NEeN,

we obtain the first convergence.

For all n € N and for all ¢,...,t, € Ry with ¢; <... <t,, m €N, by Proposition
B and by the continuous mapping theorem, we have

1 ) (N [ntq | [ntm |
N1/2(St1,n7"' t”nn <ZXk,...,ZXk)
k=1
nt1J |_7lth
2N, (0 Var(z Xioon Y Xk>> N — o0,
k=1
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where (A})rez, is the stationary Gaussian process given in Proposition 3.1l and

[nt1 | [ntm | [nt; ] [nt;]
Var(Z X, ..., Z Xk> = (1 ZZQM k') .
k=1 - i,je{l,....m}

k=1 ¢=1  /ije{t,.,
By the continuity theorem, for all 6,...,0,, € R, m € N, we conclude
. . n—1/2 A7—1/2 o(N,n)
&%E<exp{129]n N=/25 })
j=1

m m [nti ] [nt;]
_exp{ 2n 1—a ZZGZGJZ lé—k}

i=1 j=1 k=1 (=1
1—|—Oé m m
wor aap L L)
as n — oco. Indeed, for all s,t € R, with s <t, we have

LnsJ [nt] LnsJ k—1 Ins| |nt]

DML WL

k=1 (=1 = = T ik
LnsJ [ns] _
a—aF ns 1 a — qlntl=k+1
B ST
11—« n 11—«
k=1
(5.2) 1

1 — qlnsl
a ) N |ns|

:m(wa-a )

Lo (Lnsja _ atntJ—LnsJHﬂ)

n(l —a) -«
1+ a [ns| a _ I+
_ . 1 [nt|—|ns] 1 — [ns] —
l—a n (1—a)2n( e J1 =) 1—a’

as n — oco. This implies the second convergence.

Proof of Proposition .1l We have

1&«:(){,€—1A ):1{~«:.[If<:i(x,€—1A ’a)}:o, keZ,,

— —

and hence, for all k€ Z,,

1ia)(X’f_ 1ia>]
= {E(6 - 20 (%20 o]} =577

Il
=
—
=
|

(5.3)




where we applied ([B.2). Now the statement follows from the multidimensional central limit
theorem in the same way as in the proof of Proposition B.11 O
Proof of Proposition For each n € N and each t € R,, put

[t

T(n 1 (1)
- L350,
VS

For each m € N, each ty,...,t,, € R,, and each bounded continuous function ¢:R™ — R,
we have

1
E(g(T", ..., T{M)) = / E(g(T", ..., T\") | a = a) Py(da)

1 [nt1] [ntm |
1 A 1 A
(A ) S )
[E(o(m o (e 2) g 2 (e
Proposition 3.2 the portmanteau theorem and the boundedness of ¢ justify the usage of the
dominated convergence theorem, and we obtain

lim E(g(T,", ..., T)) = /01E<g <7WBH, o 7”(”“)3%)) P, (da)

a=a) Puda)

n—00 1—a
- AlE<g<7\w3tl, o 7WBW) a= a) Po(da)

:E<g<7vi<i+o‘>3tl,...,7“<l+o‘)3tm)),

-«
hence we obtain the statement by the portmanteau theorem. O

Proof of Proposition 4.3l For all k € Z,, by the strict stationarity of (Xj)rez, and (B.3),
we have

Cortx 30 -2 (x0-8(122)) (5 -2 (25) )]
w2 (2] e (e ()
:AE(lfka) +>\2Var<1ia),
(20 (2= (2)]
s fe(n20) (2= ()
s (2B () ) e (e
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forall ke Z,.

The statement follows from the multidimensional central limit theorem as in the proof of
Proposition Bl Indeed, for all k € Z,, the random vectors

. 1 : 1 : 1
- sn () - se(i ). e

are independent, identically distributed having zero expectation vector and covariances

1
11—«

for j €N and f,0, €{0,1,...,k}, following from the strict stationarity of X and from
the form of Cov(Xy, X;) given in (5.4). O

Proof of Proposition 4.4l We have a decomposition S,gl) = §,§1) + R,(fl), ke Z,, with

, , . . |[b2—£1]
COV(Xéf),Xg)) = COV(XO(]),X|(£]2)_£1‘) =\E (Oi ) + A% Var (

—

A

Rﬁ;:megwam)—anﬁ)—---—E( A

C1—a® 1—a®

1 Lt) R(l) . Lntj A E A
EZ k N n \1—a® 1 —al®
k=1 teR L teR4
= (=)
11—« 11—« teRy

as n — oo. Moreover, by Proposition @2, Dy-limy, o (n~ "/ Zgﬂ glil))

), keZ,.

We have

1R, exists, hence

Lot .
—ZS,(QI) 50 as n — 00,
n k=1 t€R+

implying that for all m € N and all t;,...,t, € R, , we have
SIS e
— Sy — S — 0 — 00.
- ; PRI ; s as n — 0o

By Slutsky’s lemma we conclude the statement. O

First proof of Theorem @.7. By Remark I3, condition £ € (0,1) implies E(;1-) < oc.
Hence, by Proposition 1] and the continuous mapping theorem, it suffices to show that

Lnt)
N o)
55) el ( = Zy’“) o \/ 2 g0 B F

n k=1
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We are going to apply Theorem 4.3 in Beran et al. [3] with m =1 for the strictly stationary
Gaussian process (j}k/ Var()%)) , where, by (@4,
ke€Zy

k

1 a

11—«

Var(Jp) = AE . Cov(Ye, M) = AE
() (

Cov o ’ N2 :ﬁ’
V) vagy) B

In order to check the conditions of Theorem 4.3 in Beran et al. [3], first we show that

kelZ
1__(1) ) S +>

hence

&=

keZ,.

—

(5.6) K E <1a—k) =k’ /1 a®(1 —a)’~'(a) da — ¥, T(B) as k — oo,
0

meaning that the covariance function of the process (37k) kez, 1is regularly varying with index
—pB. First note that, by Stirling’s formula,

KPT(k +1)

1
Jim kﬁ/o a*(1 = a)? ¢y da = Jim ¢1m I'(B)
L L k+p8
=wnl(8) lim 4[5 (k ¥ B) & = hil(e).

Next, for arbitrary ¢ € (0,v4), there exists ¢ € (0,1) such that |¢(a) — 4| < 0 for all
a€[l—e 1), and hence

1 1
kB/ a®(1 = a)’"'ap(a) — 11| da < Ssup kﬁ/ a"(1—a)’'da
1—¢ keN 0

can be arbitrary small. Further, observe

kﬁ(l —-€)k 1—¢
f/(] (1 —a)’y(a)da

kP (1—¢e)k
£

kP /1_E a"(1 — a)*"4p(a) da <
0

<UD appiaaa=

€

— 0 as k — oo.

In a similar way, we have

I—e 1—¢
kﬁ/ a®(1 —a)’ 'y da < KO (1 — 5)'“/ (1—a)da
0 0

KA (1 —e)k
5

— 0 as k — oo,

1
<ok -2 [(1-a tda=uy
0

hence .
l{;B/ a®(1 —a)’"ap(a) — 1| da — 0 as k — oo,
0
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implying (5.6). Applying (5.6]), we conclude

~ _ o
; SRR WL C) RN
k" Cov — — — k . o
\/Val"(yo) \/Var(yo) (E) Ta)
as k — 0o. Consequently, by Theorem 4.3 in Beran et al. [3],
[nt]

1 Vi D D
— Z B = B
nl_ng(n)lﬁ Z )\E( a) Li=5 1

B, as n — oo,
2
teRy

where Z, , s is the Hermite-Rosenblatt process defined in Definition 3.24 of Beran et al. [3],
’ 2

e iT(B) 2
1 . -
E(ﬁ)Cb n €N, with Cl_(l—ﬁ)(Q—ﬁ)'

The fact that the Hermite-Rosenblatt process Z 8 coincides in law with B, _ s is shown

Ll (n) =

in Beran et al. [3], see Definition 3.23, the representatlon in formula (3.111), and page 195 of
[3] for details. Hence we obtain the statement. O

Second proof of Theorem [4.7. As in the first proof of Theorem (A7 it suffices to show
(55). As for every n € N the process n~!*7/2 Z,Eit{ V., t€R,, is Gaussian, so is the limit
process. Also, it is clear that both processes have zero mean. Therefore, it suffices to show that
the covariance function of n~1*+#/2 Z,Eit{ ﬁk, t € Ry, converges to that of the limit process
in (55). By (B4), the covariance function of n= 23"yt e R, for any t1,1, € Ry
takes the form

nt1J LTLtQJ nt1J ’ntzJ ‘k) ZI
Cov <n—l+ﬁ/2 § y n—l-‘rﬁ/? § y) —2+B>\E< E E . )
—

k=1 (=1

By ([£2), for time points 0 < t; < tp, we get

[nt1] [ntz | 2) LntlJ — (1 o aLntzJ _ aLntlj + aLntzJ—LntlJ)

l—azz o Z|_ (1—a)p

k=1 (=1
(7)  _oal"™ -1+ (1 -a?)/2  al™ —1) + [0t (1 - a?)/2
(1—-a) (1—a)?
_ a(atntzJ—LntlJ — 1) + (|nts] — [nt )1 — a?)/2
(1—a) '

We are going to show that for any 0 <t <ty we get

g (1) 1) 1 ([nty] — [ty )(1 — 0?)/2
BE( 1oy )

n

i T'(B)

_ 2-p
PR A

— ¢1/ (== — 14 y(ts — 1)) y*dy =
0
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as n — 0o, where the equality follows with repeated partial integration. This will imply that
the limit of the sequence of the covariance functions in question is

2AD(B) 67+t — [ty — 1>
(2-8)(1-58) 2 ’

that is the covariance function of a fractional Brownian motion with parameter 1 — /3/2 mul-
tiplied by /2 A1 I'(8)/((2 — B8)(1 — B)), as desired.

By substituting a =1 —y/n we get that

e (@ 1) 4 (nt] — ot )(1 a?))2
v G—a) )

L o(glntz)=Intr] _ nty | — |nty —q?
e [ 0+ ot ==V gy

e [y (-5 )
= (=033 ()70 0=

= /On Dy (y) dy

with

o = [(1-2) (1) 1) L (- ] 1

for y € [0,n]. First note that, for any ¢ € (0,1) and n > 1/, we have

/T:Dn(y)dy‘ </n: (1-2+ (tz—tl‘i‘%) y) Yy (1—%> dy

< /nn(l 2y + (2=t + gy (1-2) dy

€

(5.8) = (to —t1 + 3)/0 B (n(1 - a))ﬁ_Qw(a)n da
= (ts—t; +3)n"! / 1_5(1 —a)""%Y(a) da

1
< (ty —t1 + 3)nﬁ_15_2/ (1 —a)’y(a)da — 0, n — oo.
0
We are going to show that
/ Dn(y) dy — wl/ (e — 14 y(ty—t1))y"*dy,  n— oo
0 0
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The pointwise convergence is evident, and we can give a dominating integrable function proving
the above convergence.

Note that

(1 - g)tntzJ—Lntﬂ 1 (Inty] — [t )Y+ L"t2Jz—:Lnt1J <|_nt2J ; |_nt1J> (_g>k’

n n
k=2

SRS

where for any y € [0,1] we have

Lnt2§”m (Lntﬂ ; Lntlj) (_E)k

k=2

LTLtQJ — Lntlj

, =2 (Inty| — [nt ) - (Inty]| — |0ty | — k+1
Zyk!(LJLJ) %JLJ )

SY
k=2

2 (ty — t + 1)F -
< y2 Z ( 2 kl' ) — y2et2 t1+1‘
k=0 )

Choose ¢ € (0,1) such that for every = € (1 —¢,1) we have (z) < 2¢;. Then for any
n > 1/e, applying Bernoulli’s inequality, we obtain

/01 | Dn(y)| dy = /01 {(1 _ Q)L%J—Lntd — 1+ (|nts) — le)g}

n n

(=)t

n n 2n

1
. ty—t; +1 )
</ (yze” ““+%(y(tz—t1+1)+y72 21 ))yﬁ K (1—%> dy
0

1
< 2 (> L2ty — 1y + 1))/ Pl dy < oo,
0

v Kl _pyin_y wllnta) = an)}

Similarly to (B.8), for any n > 1/¢, one gets

[ i< [t nsne (- 2)
1 1

n
<(ty—ti+ 3)2¢1/ YAy < (to — by + 3)2%/ Y72 dy < oo
1 1
So the function

le(eh_tﬁ—l + 2(t2 — tl + 1))yﬁ_11[071)(y) + (tQ — tl + 3)2w1yﬁ_2]].[1’00) (y)

can be chosen as a dominating integrable function. O
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Proof of Theorem [4.8. To prove this limit theorem it is enough to show that for any n € N,
Df_]\}im N_m S — (L”tJ%(lJrB))tem'
—00

For this, by the continuous mapping theorem, it is enough to verify that for any m € N,

) A G _ A D
2(1+ﬁ)Z<X l—a() e, X = a0 —>V2(1+5)(1,...,1)

as N — oo. So, by the continuity theorem, we have to check that for any m € N and
01,...,0, € R the convergence

7j=1 k=1
m A N
—|E i N~ 2058) -
<exp {lN Zek (Xk 1—04)})]
k=1
— E (el Z?:l 6kV2(1+ﬂ)> = e_Kﬂ‘ZZL:I 6k|2(1+ﬂ) as N — 00

holds. Note that it suffices to show

1-E (exp {iN_Q(lirﬁ) Z@k (Xk — 1 i\a) })] — KB Zé’k
k=1 k=1

as N — oo, since it implies that (1 — Oy /N)N — e Kol Zi 0™ o N 5 0o, By
applying (2.4]) to the left hand side, we get

2(148)
@N =N

@N—NE[l _FO...m—1< iN 2(1#6)91 iN 20+B8) g ‘ ) iN 20+8) A s~ 1%}
:NE[l—el s N/ 1—e1 aAN(“)> Y(a)(1 —a)’ da,
where Fy. mo1(20,. -, Zm_1 | @) == B(z)02" - -zn)i”ﬁf |la), 20,y 2m-1 € C, and
i(61+ - 4 O
Ay(a) = 0t )
N2G+8)
+ Z it (eiN’w}*ﬂ)ez _ 1)eiN’2<1}*ﬂ) (9H1+--~+9j71>(eiN”“}H”@j —1)
1<U<j<m
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for @ € [0,1]. Let us show that for any e € (0,1) we have sup,cq i) |NAn(a)] — 0 as
N — oo. Using (B.2), for any ¢ € (0,1) we get

m 1

Z(eiN 2(1+8) g, — 1= 1N_2(++ﬁ)9k)

k=1

sup N|Ay(a)|= sup N

a€(0,1—¢) a€(0,1—¢)

_ 1 _ 1 _ 1
4 }: ot <eiN 0+B g, 1)eiN 205 (ppy+-+0;_1) <eiN B g, 1)

I<l<gj<m

m 92 mog 2
<N (ZN_ﬁEk—i- N_ﬁ“gg”ejo :N%M =0

k=1 1<l<j<m

as N — oo, since /(14 3) < 0. Therefore, by Lemma [B.2] substituting a =1 — 2 1IN,
the statement of the theorem will follow from

1
] — eToaAN(@)

limsup N (1—a)’da

N—oo 1—e

(o]
= limsup/ .
N—oo E*1N7m

for all € € (0,1) and

(5.9)

1— e,\zNﬁAN(l—zle’ﬁ) = 28) 42 <« 00

1
lim lim sup ‘N/ (1 — eli_aAN(a))(l —a)?da — I‘
1—¢

el Nooo
(5.10) - 1 1
= lim lim sup / <1 _ MNP AN (1_21N1+ﬁ))z_(2+6) dz—1|=0
E‘LO N—oo 5*1N7ﬁ
with
> Az m 2
= / (1 — e‘?(Zkzl (’k) )Z—(2+B) dz
0
NE 2\ 1th - m |20148)
o G N I AR B e ST A
k=1 0 k=1

where the last equality is justified by Lemma 2.2.1 in Zolotarev [3§] (be careful for the misprint
in [38]: a negative sign is superfluous) or by Li [I7, formula (1.28)]. Next we check (59) and

G.10).

By Taylor expansion,
L
N IO _ | — {NTEER G, + NTTE O(1) = NI O(1),

1 2
N FTI0 N g, — _N—ﬁ% + NTT O(1)

28



for all ¢€ {1,...,m}, resulting

1 ) (T ) L 2001 o)

(5.11) AzNT5 Ay (1 - ) = 1 :
zNT+B 2 Nz@®  NTB

1 _1
for z > N" 5. Indeed, for z > N 7, we have

1
()
zN1+8

m 1
. 1
§ :(EIN 2(1+8) ¢, 1 iN_WQk)

j—t 1 1 1
iN 2(1+58) iN_ 2(1+8) 0 iN 2004+8) g
+ § < ) (elN 0, 1) elN (Opg1+-+05-1) (elN 0; _ 1)

1<l<j<m

. ( 0; o) )
= —— t 3
—1 QN+ N20+A)

i6 O(1 O(1 10 ; O(1
B0 S ) (- 2)
*NT+B N 20+8) N1+8 N 20+8) N 20+8) N1+8

ZNlJrB

1<l<j<m
X 0() Xacem b O(1) O(1)
— 1 + 3 - 1 + + 2
IN T N 20+8) N1+8 N2<1+a) 2NT+B

2

_(Zk_ll k) + (1 ) + O( 2)

2NT+5 NIFH  ZNT
since by Bernoulli’s inequality

1\
(-mw) -
zNT+B

1\ O(1
(IS
zNT+8 N T+

By (BI1)), for z € [1,00) and for large enough N we have
A2k ) (1_ ReO(l)) . ReO(1)
2 NT

Y

+\
|

<

yielding that

AzNT# Re Ay (1 — 2 'N"m) = —

N
m 2
S o)
4 Nits

hence we obtain
[e.9] 1 1
/ '1 o eAzNWANu—z*lN W)‘ 5~ (B+2) 4,
1

(5.12) . 1 1 .
< / (1 + e)\sz ReAN(l—lem)) Z—(B+2) dz < 2/ Z—(B+2) dz < 0.
1 1
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Again by (B.I0), for € € (0,1), z € (5_1N_ﬁ, 1] and for large enough N, we have

m 2
NeNT A (1 _ Z—IN—ﬁ)‘ < 2= 0" A 0] O]
2 N 2(+58) N1+8

. Z(A(Z%l Or)? n |O(ﬂ tel 0(1)|) < 2| O(1)] < 0(1)],
N 20+8)

o . :
since N™ T < ze. Hence, using (B.3), we obtain

1 _1 1
/ 1— N AN(I‘le ”B) 5= (2+8) 4,
Ele*ﬁ
! L —1 pAr—is ’\ZNﬁAN(l_Zleiﬁ)‘ —(248)
< . )\ZNHﬂAN(l—z N 1+/3)‘e z dz
e—IN TP

1
< |O(1)|eo(1)|/ 2~ 4z < oo,
0

which, together with (512)), imply (&.9).
Now we turn to prove (B.10). By (B.), we have

1 1
eTINTTI+B eTIN TR m 2
/ (1= e ¥ ERan) - g < / M(Zk; Ok)° —een) g,
0 0

= )‘(Zzlzl Or)* /alNHB 2~ (H8) 4 = )\(ZZ; Ox) < 1 )_ﬁ —0
0 2(_ﬁ) 5Nﬁ

2
as N — oo, hence (B.I0) reduces to check that lim. o limsupy_, In. =0, where

o0 1 1
]Na = / ) [e)\sz‘AN(l—zle m‘) . e_%(zztzl gk)Q] Z_(2+B) Az
7 e~ 1IN 1+B

Applying again (5.11]), we obtain

[e.e]
_ Az m 2
\IN,5|</ e~ 7 (k=1 %) e
15

_ 1 _ 1
zN 20+8) O(1)+N B O(1) _ 1
71N7ﬁ‘

2~ @+B) 4z,

Here, for € € (0,1) and z € (5_1N_ﬁ, o0), we have
[2N"2m O(1) + N~77 O(1)| < 2(N 2059 +£)| O(1)],
and hence, by (B.3), we get
eszm O(+N T o) _ 1’ < }zN_ﬁ O(1) + N7 O(1)] e}zf\fm O()+N " T O(1)

< (VT 4 e) o) (VT ) 1ow,
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Consequently, for large enough N and small enough ¢ € (0, 1),

S > o1
[Ine| < (N7 4)|O(1)] . o= ¥ (i 00 +2 (N T 1) |0 —(146) g,
e~IN T+B

< ( ~ SRy 4+ |O |/ T (k=1 06)7 = (48) 5

that gets arbitrarily close to zero as N approaches infinity and ¢ tends to 0, since the
integral is finite due to the fact that

B

m 2
k=1

is the density function of a Gamma distributed random variable with parameters —pg and

AT, 0)?/4. This yields (5.10) completing the proof. 0
Proof of Theorem Similarly as in the proof of Theorem [4.§] it suffices to show that for
any m €N and #,...,0,, € R we have the convergence

N

P A My (&)
s (oo g e (v 29 ) - (B

as N — oo. By applying ([24), the left hand side equals

01 i0m _iAO1++0m)
m—1 <e‘/NlogN’ . ’e‘/NlogN ’ a) e (1—a)y/Nlog N

-----

1
= NE[1—ema™@] =N [ (1 -7 @) y(a) da
0

with

“ __10y 0,
BN(CL) = Z (em -1 7Wg]\f)

. i0 '(@ 0 ) i0.:
- Z aj_z(eﬁ — 1)e1 Rl A (e a2 1), a€[0,1].

1<l<j<m

Just like in the proof of Theorem L8 it is easy to see that for any ¢ € (0,1) we have

m 2
sup |NBN(a)\ < M

—0
ae(0,1—¢) 2log N

as N — oo. Therefore, by Lemma [B.2] substituting a = 1 — z/N, the statement of the
theorem will follow from

1 eN
(5.13) limsup N 1 —emaB®| dq = lim sup/
0

N—oo 1—¢ N—oo
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and

1 eN
(5.14)  lim N (1—efﬂhw»da:1M1 (1—e¥BMP%de=%
l—e 0

N—o0 N—oo

for all € € (0,1). Next we check (BI3) and (&.I4).

Using Taylor expansions, similarly as in the proof of Theorem (.8 we get

AN 2\ M 6)? O(1) O(1)
(5.15) —ﬁﬂ“ﬁy“'%mN‘UMWmmw Nlog N

Indeed, for z € [0, N] we have

k=1

10, i(0p11++0;_1) 0,
+ Z (1 — _> (GW _ 1) e Nlog N (e Nlog N — 1)

1<l<j<m

Ms

(QM%N(N&%W)

) 0, 0(1)
+1<;<m<1+ N )(x/NlogN * NlogN)
O(1) i0; O(1)
8 <1+ \/NlogN> <\/NlogN * NlogN)

_2?:1‘91% 4 0(1) Zl<€<j<meéej n O(1) 20(1)

2Nlog N (Nlog N)3/2 Nlog N (Nlog N)3/2 ~ N2log N

RO =0
2NlogN  (NlogN)3/2 = N?logN’

since, by Bernoulli’s inequality;,

z\I¢ z
1——) 1 _nZ <m
yielding that
zZ\J ¢ z
1——) —1+ 2 0().
(-5 5 oW
By (GI5), for =z € (0, logl ~) and for large enough N we have

iﬁ%&xy_g:_&;&@£<b_Mom)+Ram>

N 2zlog N VN log N Nlog N
CAGSIL 0, (O] MEEL 6 10(1)
4zlog N NlogN 4 Nlog N’
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hence we obtain

/IOgN ‘1 —e z A By (1-%)

1
ds < /logN (1 + e% ReBN(l—%)> dz
0

(5.16) ,
AL 00° 0]
< 1 — — N .
logN( +exp{ 1 +NlogN — 0 as N — oo
Note that
loge + log N + loglog N
1 —dz = 1 N
(5.17) og N L z log N — as N — oo,
_ eNlogN -1

5.18 = 1 N :
( ) logN 5NlogN ~ s e

By (EI3), for all 2z € (@,5]\7), we have

M (1- 2| < MEia oWl 100

1 = .
(5.19) N 2z1log N zN1/2(log N)3/2 ~ Nlog N 10

Thus, by (B.3) and (&.I7), we get

eN
limsup/ ’1 — e%BN(l_%)‘ dz

N—oo loglN
N -
< limsup/ )\—BN(l ;) ol BN (1=3)] 4,
N—oo loglN
eN m 2
- AT O) [0(1) 10(1)
<1 |o<1>|/ het L
lzréfipe 1 2zlog N + ZN12(log N)32 " Nlog N Z S0,

log N

which, together with (5.I0]), imply (5.13).
Now we turn to prove (5.14)). By (E.I0), the convergence (5.I4) reduces to prove that

/1N (1—ezBN )dz— (2%19’“)2

log N

— 0 as N — oco.

Using (5.I7), it is enough to check that

eN m 9
(ekzNBN( ¥ 14 )\(Zk—=19’f)> dz

— 0 N — .
1 2zlog N s >

log N
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By applying (B.4)), (513) and (E19), for large enough N we get

/EIN [(eAZNBNa—) ) A (e O) ]dz

L 2zlog N
og
N m 2
: AN N Y AT 60
< —|—B (1——) ol 25BN (1-%))| _B (1__> AA\Lk=17k) g
/loglN 2‘ L N N + N) T T2z log N i

r 2
(ML (A" o) O]\ Jouw
S |2 22log N zN1/2(log N)3/2 * Nlog N

log N

owl  jomi ],
zN1/2(log N)3/2 ~ Nlog N

3 _low) 101 1O O] O]
S /; [5 <z2(logN)2 * 22N (log N)3 * N2(logN)2) + 2NY2(log N)3/2 + NlogN] dz

log N

which converges to 0 as N — oo using (5.17) and (5.I8). This yields (5.14]) completing the
proof. O

First proof of Theorem [4.10. By Proposition [£.2] we have

LX) 1) Ml+a)
Di-lim (n72 Y (X —E(X"|aD)) - Y B,

n—00 11—«
k=1 teRy

where (B})icr . 1s a standard Wiener process and « is a random variable having a density
function of the form (@A) with 5 € (—1,1) and ¢ € (0,00), and being independent of B.
Let Wt = )1\(_1;_&)

to prove that

B, te Ry, and (Wt(i))tg[[g+, 1 € N, be its independent copies. It remains

N
__1 i
el (NEIA) =

teR 4

Using the continuity theorem and the continuous mapping theorem, it is enough to prove that
for all m € N, 91,...,9m€R and 0 =:ty <ty <ty < e < g,

el ) ek )
<exp{1293 Viss(t; yl—l—ﬁ(tj—l))}) <GXP{ Z Yays /2 — B, )})

1+8

1 1 <& 2 148
E( { —}/il+5 )/2 Z (9 }) = exp{—kg <§ Z sz(t] - tj—l)) } = e_kﬁ w2
j=1
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as N — oo, where w:= Z] 1 ]( tj_1). Note that, using the independence of a and

B, it suffices to show
1-E <e:><;p{i]\f_ﬁ Z 0;(Wy, — Wtjl)}>]
j=1

1-— E(exp{—%]\f_ﬁ)\(l +a)(1—a)? i@?(tj — tj_l)})]

J=1

\IIN =N

=N

1 __2
_ N/ <1 _ e wN +5 ,\(1+a)(1—a)*2>¢(a)(1 _ a)ﬁ da — l{:gw#
0

145
as N — oo, since it implies that (1 — Wy/N)Y — e %« * as N —oo. Forall € (0,1),
sup ‘—Nu)N 1+ﬂ(1 +a)(l—a) = WN 55 (2—e) =0

a€c(0,1—¢)

as N — oco. Therefore, by Lemma [B.2 substituting a =1— N _ﬁy, the statement of the
theorem will follow from
1

lim sup N 1-— e“"Niﬁ’\(1“”)(1_“)72 (1—a)’da
N—o0 1—¢
(5.20) e
eNTHB o
= lim sup/ ‘1 — e WA=N Py )yﬂ dy < oo,
N—oo 0
and
1 __2
lim N (1 — TN P ’\(H“)(l_“)ﬁ) (1—a)’da
N—oo 1—e
(5.21) L
eN1+B 1+ﬂ s
=t (e =it

for all € € (0,1). Next we prove (5.20) and (E.21)).
Forall N €N and € (0,1), using (B.l), we have

< / ’1 . e—2w)\y*2 ’yﬁ dy
0

1 o)
</ yﬁdy+2m/ y? 72 dy < oo,
0 1

5N1+ﬁ 1
—wA(2—N~ 1HB8 y)y—2
/ ‘1 —° ( ) 4
0

hence we obtain (5.20).
Now we turn to prove (B.21]). For all ¢ € (0,1), we have

- - > 2w
N <1 ey Z)yﬁ dy‘ < 20))\/ ) y6—2 dy = L(ENﬁ)B—l 0
NT+B cNTTA 1—5

(5.22)
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as N — oo. Further, using (B.3),

1

aNﬁT -1 2 N ?
/ (1 N S >y5 dy — / <1 — e T )yﬁ dy
; 0

5]\[@ 1
—wA(2—N T+By)y—2 —2why 2
</ ‘ew( Yy 2wy ‘yﬁdy
0

1

eNT+B 1
_ -2 TTHB Y1
— / e 2wy ‘ew)\N Yy 1‘ yﬁ dy
0

L eN1+8 1

- _ -2 TI1FB 4,1 _

gw)\N 1+ﬁ/ e 2wy ew)\N y yﬁ 1dy
0

N1+8)8 BN 13
— WAN 145 (e ) :w)\g — 0 as N — oo,
g g
hence, using (5.22)), we conclude
_1
eN1+8 0 .
Nlim <1 —eTWAN Ty ) Pdy = / <1 — e )yﬁ dy

1

=3 (2wA) 2 =R / (1-— e_“)u_# du = ¥y kg w#,
0

where the last equality follows by Lemma 2.2.1 in Zolotarev [3§], thus we obtain (5.21]). For
the characteristic function of Y{i44)/2, see the second proof. O

Second proof of Theorem [4.10. By Proposition 1.2, we have

n—0o00 1l -«

Lnt] (1) (1) )\(1 -+ Oé)
Dy-lim (n_l/QZ(Xk — E(X, |a<1>))) - Y B,
k=1 teR L

where (B;)ier, is a standard Wiener process and « is a random variable having a density
function of the form (L5) with g € (—1,1) and 1 € (0,00), and being independent of B.
Hence it remains to prove that

Df— hm ( te]R+ = (th)teR ’

where

N
A1 (J .
T VAU+aY) p6) 4 cR..  NeN,

l—a
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and o), jeN, and BY, jeN, areindependent copies of a and B, respectively, being
independent of each other as well. By the continuous mapping theorem, it is enough to show
that for all m e N and 0=:ty <t; <ty < -+ <t,,

N N N N D ~r K~
(7—;(1 ) - Czjt(() )’ ]_Yt(m) jjt(mf)1> —> ( }/(1+B)/2(Bt1 - BtO)’ M w}/*(14‘5)/2(Btm - Btmfl))

as N — oo. By the portmanteau theorem, it is enough to check that for all m € N,
0=ty <ty <ty <---<t,, and for all bounded and continuous functions ¢g:R™ — R,

N N N N

m—1

—E (g ( V Y(1+5)/2(Btl - Bto)v RN, Y(1+5)/2(Btm - Btm71)))

as N — oo. Since

E(g(r -1V, T - 1)

tm—1

_ N .
2 M1+ aW)) ~ ~
=K h(N 1+62m73t17---73tm

where (Et)teR . is a standard Wiener process independent of a9, j € N, and h:R™! — R
is an appropriate bounded and continuous function. Hence it is enough to prove that

N .
1 AM1+a) p
5.23 E — — Y| as N — oo,
(5:23) Ntz = (1—al))? e

i.e., it suffices to show that 2\1(1_26)2 belongs to the domain of normal attraction of the HB -stable

law of Y(144)/2. Indeed, then, by the continuity theorem,

2 = A1+ a? ) ~ D = =
(N o Z (1 —au))z "Btm> — Va2 Bus -5 Br,) - as N = o0,

7j=1

where we additionally suppose that (Et)te]R . is independent of Y1452 as well. Hence, using
again the portmanteau theorem,

N .
2 M1+ o) ~ ~
h(N 1+ﬁzm,3tl,...,3tm

=1

|:h' (1+8) /27Bt17"'7§tm)i|

=B [9< Yaem2(Bo = By), - \/Yieoy2(B, — Et’”*l))}
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as N — 0o, as desired. Note that

lim |x|1+ﬁ (M < :L') =0,

T——00 (l—a)2
and
e (A1 + ) (20
e P(m g "””) T

Indeed, the first convergence follows immediately due to the positivity of E\l(i';‘g), and using
that ,
A1
Ad+a) _ 22\ LN
(1—a)? l—a 4 16
and —— >1, we have for all z >0,
Al 1 ~
H>x = a>1———— =1-h(\ 1),
— 1 T 1
ity Tt
and hence
A1 !
T E P(LCMQ) > x) — gt (1 —a)’y(a)da
(1-a) 1=h(0ne)
VZh(\z) V3N 22) 148
= a (1 — i) dy — / fdy ACO —
/0 Yy Jz) Y (o Y 155 as x — 00,

as desired. Indeed, one can use the dominated convergence theorem, since there exists ¢ € (0, 1)
such that |¢(x) — | < 2y for all = € (1 —¢,1), and if y € (0,y/xh()\ x)), then
1— % € (1 —h(\ z),1) and hence, for large enough x, we get

v(1-5) <30 e (0. VaR0 )

Since Th(\z) < V2X, © € Ry, this yields that 3¢1y51[0,\/§](y), y € Ry, serves as
an integrable dominating function for large enough z. Consequently (B23]) holds, see, e.g.,
Puplinskaité and Surgailis [27, Remark 2.1]. Indeed, the characteristic function of the random
variable Y{(i,g)/2 takes the form

E(eYa+s/2)

- {_|9| L1 F(12_ TT;) ¢1§2i‘);6 <Cos (M) — isign(#) sin (M)) }

R (e 552) a2

_ { k0] F e —1s1gn<>"<”‘”}, 3
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This can be also seen using, for example, Theorem C.3 in Zolotarev [3§] (with the choices
a:%,ﬁzl,vzo and A = kg). O

Proof of Theorem E.11]l Since E(ﬁ) < 00, by Proposition €1l we have

1 ~ -
W) &y as N — o0,

VN

where the strictly stationary Gaussian process (ij)kez . is given in Proposition .1l Conse-
quently, by the continuous mapping theorem, for all n € N, we get

[t
Dy-lim (nN)" 280 = <n—1/zzyk) ,
t€R+

N—o0
k=1

and hence it remains to prove that

[nt]
(n_1/2 Z yk) &) cB as n — oo.
k=1 teR4

. _ t| 3 .
Since the processes (n 1/2 ,L;i{ yk) er.» P €N, and oB are zero mean Gaussian processes,
= +

it suffices to show that the covariance function of (n_l/ 2 ,ﬁ{ 37k)
that of 0B as n — oco. Forall 0<1t; < to,

lnt1] [nt2] A\ [nt1] [nt2] alk=l
con(i 551035 50) < 2354
k=1 k=1

k=1 (=1

ter, COLVerges pointwise to

1+«
(1—a)?
since one can use the decomposition (B.7) together with
[nta]|—nt1] _ _ — o2
(D) )
as n — 0o0. Indeed, by the dominated convergence theorem,
1 <a(aW2J_L”tlJ —1)

— AE( ) min(ty,te) = Cov(oBy,,0By,) as n — o9,

)—)O as n — oo,

n (1—a)3
where the pointwise convergence follows by
a(alrt2l=lrt] 1) ‘ 1
(1—a) T (-

and (to —t; + 1)ﬁ serves as an integrable dominating function, since, by Remark 1]

E (ﬁ) < 00, and

1 |a(alrtl=lrt] 1) a(l +a+a?+ -+ alrtl-lnt]-1)
n (1—a) ‘_ n(l — a)?
af|nty] — |nt
collnb = lnh)) o)

n(l— a)? (1—a)?
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For the second convergence, first note that, by Proposition [1.2] we have

[nt]

: 1 1) 1, A1+ «)
Dy-lim ( § :X( E(X | aM) -y TR
n—00 \/_ ek, 11—«

where (B)icr . 1s a standard Wiener process and « is a random variable having a density
function of the form (A3 with S € (1,00) and ; € (0,00), and being independent of B.
Hence it remains to prove that

Di- lim Z VAL +ab _ B,
N—o0 \/_ 1 — b

where o), j €N, and BU), j €N, are independent copies of o and B, respectively,
being independent of each other as well. Similarly to the second proof of Theorem [L10 it is
enough to show that

N 2 1= a2 — 0 as N — oo.
7=1
This readily follows by the strong law of large numbers, since E(E\I(IJ;')I)) < 0o due to Remark
4.0l O

Proof of Theorem [4.12l We have a decomposition
(5.24) S — pNm | giVm) e R

with
[nt]

. i E(XY |aW) Z”t2(1_a N <1—La(])))

J=1 k:l =1
for t € Ry. By Theorem [4.7, for each n € N, De-limpy o0 N—2S(Nm) exists, hence

(5.25) Di-lim N~ 7550 = D lim  N20m N—3 G = g

N—o0 N—o0

The distribution of the random variable A(1 —a)™' —E(A(1 —a)™!) belongs to the domain of
attraction of an (1 4 [)-stable distribution. Indeed, we have

lim 2t P L—IE A >
r—00 1-0& 1-0&

1
= lim ' P 1-
P (O‘ T T N+ E(( - a)—l))

1 1
~ lim 7/ ¥(a)(1 = a)? da
z—o0 g~ (1+6) -7 lz4E((1-a)~1)) 71

gy —P0 - AT E(( - ) ) DA e A B((L - a)Th)TPEATE AT
oo —(1 + 6)1’_(1+6)_1 ] + ﬁ
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by L’Hopital’s rule. Further, using that P(A(1 —a)™! > 0) =1

Y

lim |a:|1+ﬁIP)( A —E( A )ga:): lim |z .0 =0.

T——00 1—a 11—« T——00

Consequently, for each n € N,
. __1 (Nn) _
Df—]\}l_l;[;o N TR = (LntJ Zl"‘ﬂ)teﬁh’

see, e.g., Puplinskaité and Surgailis [27, Remark 2.1]. Indeed, the characteristic function of the
random variable Z;;3 takes the form

E(eiGZlﬂg)

oo T (1) i (1£21))

= exp { - |9|1+5F(1 _56) wl)\lgﬁe—isign(e)w}

- exp{ - \e\lwwﬁ(e)}, 3

Together with (5.25]), we obtain the first convergence.
By Theorem 410, for each N € N, D¢-lim,, o n~3 S0 exists and hence

Ds- lim ntgWm) — Ds-lim n"2n 2 GNm — 0,
n—00 n—o00

and

al A A
- -1 (an): - _ -
Dr-lim n™'R (ti%(l_a(j) E(l_a(j)))>
]:

Based on the above considerations, using the decomposition (5.24]) as well, we obtain the second
convergence. O

Proof of Theorem 4.13] First note that, since 3 > 1, by Remark[E5 Var((1—a)™!) < oo.
Hence, by the central limit theorem, for each n € N,

teRy

. _1 Nn) _
Df—]\}l_IgON 2 RNm) — (Lnt] Wiz var((1-a)-1))

teR4 :
Consequently,

. . Al n
Ds-lim Df—]\}l_rgo n~IN"z RV = (W)\QVar((l—a)*l)t)teRJr-

n—oo
By Theorem 11l Dy-lim,, 0o Di-limy o (RN )_%g (N:n) - exists, hence
Dr-lim Dy- lim n"IN-3GWm) — Ds-lim Dy- lim n_%(nN)_%g(N’") = 0.
n—00 N—o0 n—00 N—oo

Using the decomposition (5.24]), we have the first convergence.
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Similarly, for each N € N,

A A
Bt —1p(N,n) _ 2 A AN
Dfnh—l;lolon R _< (1—@()) E(l—a(])))t) ’
teR 4

7j=1
and, by the central limit theorem,

. . 1Al n
Df‘}\}l_f)I;o Di-lim n ' N72 RV = (Wi vr((1—a)-1)t)ier, -

n—oo

By Theorem [A.11], we also have

Di- lim Dy-lim n'N-250") — ¢
N—o0

n—oo

which yields the second convergence using the decomposition (5.24]) as well. O

Appendices

A Non-Markov property of the randomized INAR(1)
model
The aim of this appendix is to show that the randomized INAR(1) process (X)rez, defined

in Section [ does not have the Markov property provided that « is non-degenerate. We show
that if « is non-degenerate, then

PXo=0|X1=1,X0=0)#P(Xy=0|X; =1),

implying our statement. By the strict stationarity of (Xj)gez,, the conditional independence
of &1, &1 and X, given «, and (EI)-(E3), we have

P(X;=0,Xo=1) P(&1=0e=0X,=1
P(X;=0|X,=1)=P(X;=0|Xo=1) = (IlP’(Xo:i) ) _ Pleu P(XZID 0=1)

_ fol P11 =0,61=0,Xo=1|a=a) P,(da)
[iP(Xo =1]a = a) P,(da)

_ i P& =0]la=a)P(s; =0]a=a)P(Xy=1|a = a) Py(da)
JiP(Xo =1|a = a) Py(da)

Jil—a)e e T7 Py(da)  [le e Py(da)

fol 2 e 17 Py(da) B fol = e 170 Po(da)
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Similarly, we have

]P)(XQZO,Xlzl,XQZO) P(§21:O,€2:0,€1:1,X0:O)
(Xe = 0] =1, X =0) P(X, =1,X, =0) P(e, = 1, X, = 0)

S —a)e re e Ta P,(da) _ (- a)e 1% Py (da)
[l xere 0 Py(da) e T Py(da)

By Cauchy—Schwarz’s inequality, we have

(/Ole-ﬁ Pa(da))

and equality holds if and only if there exists some positive constant C' > 0 such that (1 —

2

1 1
</ (1— a)e s Pa(da)/ L 75 p,(da),

a)e_ﬁ = CleTs P,-almost every a € (0,1), which is equivalent to the fact that there

T—a
exists C € (0,1) such that P, is the Dirac measure concentrated on the point 1 — /C.
Consequently, P(X; =0|X; =1,Xy =0) > P(Xy, =0|X; = 1) and equality holds if and
only if P, is a Dirac measure concentrated on some point in (0,1), ie., a is degenerate.
Hence if o is non-degenerate, then the randomized INAR(1) process (Xj)rez, does not have
the Markov property. If « is degenerate, then (Xj)rez, is a usual INAR(1) model being a
Markov chain.

B Approximations of the exponential function and some
of its integrals

In this appendix we collect some useful approximations of the exponential function and some
of its integrals.

We will frequently use the following the well-known inequalities:
(B.1) 1—-e "<z, z € R,

(B.2) le™ — 1| < |ul, le™ — 1 —iu| < u?/2, u€R.

The next lemma is about how the inequalities in (B.2)) change if we replace u € R by an
arbitrary complex number.

B.1 Lemma. We have

(B.3) le* — 1] < |z|e!, z e C,

2
(B.4) le* —1—2| < %ez, z e C.
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Proof. For any z € C we have

1l — 2 2 < 1 2 ks
le* — 1] z+§+§+ <7 +§+?+...
s E
|‘ 1+—+7+ \z|ez
e —1—z| = Z—2+z—3+... <ﬁ 1+H+—‘Z|Q+...
2 3! 2 3 34
|2* 2| | J2? 21
<L+ B4 B = Bl el
> T T 2 ©
since 3-4---(n+2)>n! forany neN. O

B.2 Lemma. Suppose that (0,1) >z ¢(z)(1 —2)° is a probability density, where v is a
function on (0,1) having a limit lim, ¢(x) =1 € (0,00) (and necessarily [ € (—1,00)).
For all a € (0,1), let (z2n(a))nen be a sequence of complex numbers such that

(B.5) lim sup |[Nzy(a)|=0 for all € €(0,1),

N—=00 4¢(0,1—¢)

1

limsup N 1 — erma*N(® (1—a)’da < oo for some ¢y € (0,1),

N—oo 1—¢ep

1
hmhmsup‘N/ (1—61 aZN(“)> (l—a)ﬁda—l‘:()
el Nooo 1—

with some I € C. Then

N—oo

i | (1= PO G(a)(1 - ) da = L.
0

Proof. Using dominated convergence theorem, first we check that
1—¢

(B.6) lim N (1 — eﬁzN(“)> Y(a)(1 —a)’da=0 for all € € (0,1).

N—o0 0

By applying (B.3) and using (B.), for any ¢ € (0,1) and a € (0,1 —¢), we get

(B7) v (1-emm@) | < N el 25 @l o

1—a

as N — oco. Further, if € € (0,1) and a € (0,1 —¢), then

‘N <1 — eliiazN(a)) ‘ < é sup sup ‘NZN(CL)‘ e% SUP N e SUPqe (0,1—¢) |21 ()] = C€7
€ NeNaeg(0,1—¢)

where C. € R,. Since fo )(1—a)’da =1, we have

)N/()l_a (1 - eli—azww) B(a)(1 — a)® dal < /01_6 Cop(a)(1 — a)? da < oco.
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Therefore, (0,1 —¢) 2 a > C.¢p(a)(1 —a)® serves as a dominating integrable function. Thus
the pointwise convergence in (B.7) results (B.€). Moreover, for all ¢ € (0,1), we have

‘N/l (1 - e%m(“)) D(a)(1 - a)® da — i1
0

<INV [T (1 - e @) )1 — a) da
V(e

—JNK;Q—wEWWwww—MXLme

1 A
N/ (1—emZN<a>) (1—a)fda—1I
1

—€

+ 1

Y

where

V[ (et ) ) w1 - 0o

—€

1
1 — eran(@

SN sup [¢(a) =t (1—a)’da,

a€[l—e,1) 1—e¢

with sup,ep_. 1y [¥(a) —¢1| — 0 as €] 0, by the assumption. First taking limsupy_,,, and
then e | 0, using (B.0), we obtain the statement. O

C A representation of fractional Brownian motion due
to Pilipauskaité and Surgailis [23]

We recall an integral representation of the fractional Brownian motion with Hurst parameter
in (1,1) due to Pilipauskaite and Surgailis [23] in order to connect our results with the ones
in Pilipauskaiteé and Surgailis [23] and in Puplinskaité and Surgailis [26], [27].

For all g€ (0,1) let us consider the stochastic process given by

(1) B, s(t) = / (Fla.t—5) — flz,—5)) Z(dz, ds),  tER,,
? Ry xR
where
(C.2) flx,t) = (I—e™)/z if zeRyy and t€Ryy,
0 otherwise,

with respect to a Gaussian random measure Z(dz,ds) on R, x R with zero mean, variance
v(dz,ds) == (2 — 8)(1 — B)/T(B)2? drds and characteristic function E(eZ() = ¢=0¥(4)/2
for each Borel set A C Ry xR with v(A) < oo and 6 € R. Note that, by Pilipauskaité and
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Surgailis [23, page 1014], (l§1_ s (t))ter, 1is a fractional Brownian motion multiplied by some
constant. In what follows we check that this constant is in fact one. It suffices to show that the
variance of the process defined in (C.IJ) at time 1 is 1. By (CIl) and (C2)) (see also formula
(2.4) in Pilipauskaité and Surgailis [23]) one can easily see that the variance of gl_g (1) takes
the form

BB, 5(17) = T [T [ 1= 0 = o) s

where, for z € Ry, and t e ]R+,

/_00 (f(x,t —5)— f(z, —s))zxﬁ ds

o0

0 Ep—— _amx(—s)\ 2 t _ a—a(t—s)\ 2
1 1 1
:/ ( ¢ — ¢ ) xﬁd8+/ <67) 27 ds
oo T x 0 x

0 ¢
= / e (1 — e_m)%ﬁ_2 ds + / (1-— e_”ﬂ(t_s))zsz:ﬁ_2 ds
0

—00

1 t
= 5(1 — e )2y f3 +/ (1— e_:‘”(t_s))2:z;ﬁ_2 ds.

0
Hence, with repeated partial integration, we have

E(g1—§(1)2) (2 B)(l)_ 5) /OOO |:%(1 . e—x)2lﬁ—3 +/0 (1 . e—x(l—s))2lﬁ—2 ds!| dx
_(2-

=5 [~ e’ — x) 2P 3 da
5 /0 (e —1+2)2°d
(

as desired.
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