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10 ABSTRACT: Of the myriad electrode materials that have been used for electro-
11 chemical (EC) and photoelectrochemical (PEC) reduction of carbon dioxide in
12 aqueous media, copper oxide/copper interfaces have shown a remarkable range of
13 hydrocarbon and oxygenated products including acids, aldehydes, ketones, and
14 alcohols. This Perspective highlights experimental evidence for the fact that both EC
15 and PEC reduction scenarios have similar chemical and morphological underpinnings
16 in the in situ formation of copper nano- or microcubes on the (photo)cathode surface.
17 Recent rapid developments in our fundamental understanding of these interfaces and
18 areas requiring further studies are discussed in light of recent studies in the authors’
19 laboratories and elsewhere.

20Much has been written already about the technological
21 relevance of carbon dioxide (CO2) conversion and
22 utilization.1−3 Whether it makes sense from an
23 overall energy balance and practical feasibility perspective, it is
24 hardly debatable that electrochemical (EC) reduction and
25 subsequent hydrogenation/oxygenation of an inert molecule
26 such as CO2 has considerable fundamental appeal. On the other
27 hand, the energy input needed for the process is considerably
28 ameliorated by the addition of solar excitation of the active
29 material (a photoresponsive semiconductor) such that the CO2

30 reduction now occurs at 700 mV positive of the thermody-
31 namic threshold. Both process variants are hardly new, and the
32 electroreduction concept was first published some 150 years
33 ago.4 The modern era of CO2 electroreduction, however, can
34 be traced back to the 1970s and 1980s. The photo-
35 electrochemical (PEC) approach first surfaced around the
36 same time, with the seminal paper appearing in 1978.5 Since
37 then, interest in both the EC and PEC approaches has been
38 frenetic, especially during the past 5 years
39 The one-electron reduction of CO2 to the radical anion is a
40 high-energy pathway and occurs at a standard potential of
41 −1.90 V in water.6 On the other hand, the two-electron
42 reduction generates CO via a pathway that is shared by
43 enzymatic processes and metal electrode surfaces. Subsequent
44 conversion to hydrocarbons and oxygenates, however, requires
45 the use of a catalyst and cogeneration of hydrogen. A wide

46range of electrode materials and electrolytes have been
47deployed for the EC and PEC conversion of CO2; many
48reviews and book chapters exist.6−13 In terms of sustainability
49and process scalability, however, only a limited range of
50candidates are worthy of serious consideration for technological
51deployment. Thus, the use of earth-abundant and nontoxic
52electrode materials has considerable appeal relative to noble
53metals (e.g., Pt, Ru, Rh, etc.) or nonabundant elements (e.g.,
54Ga, In, etc.). Likewise, notwithstanding the limited solubility of
55CO2 in water (0.033 M at 298 K and 1 atm), the use of aqueous
56electrolytes presents considerable practical advantages relative
57to aprotic solvents and ionic liquids. Approaches involving
58semiconductor suspensions and sacrificial reagents (the so-
59called “photocatalytic” (PC) processes),14,15 while extremely
60simple and attractive from an initial materials screening
61perspective, will not be practical. For example, (a) the products
62are cogenerated in close proximity in PC reactors rather than in
63separate compartments as in the EC and PEC counterparts, (b)
64recovery and reuse of the photocatalyst necessitates an
65additional step in PC reactors, and (c) back-reactions are
66especially prevalent and the system attains a photostationary
67state. This Perspective thus focuses on the EC/PEC process
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68 variant involving one such intriguing electrode material,
69 namely, copper oxide decorated with copper nano- or
70 micrometer-sized particles. This rather complex electrode
71 material henceforth is simply designated as CuxO/Cu.

p 72 Peculiar Case of Copper Oxide/Nanoparticulate Copper. Of
73 all the myriad metals that have been used for EC reduction of

74 CO2, only copper has shown a proclivity to generate C1−C3
75 hydrocarbons and oxygenated products. Copper oxide is a
76 semiconductor, and both Cu2O and CuO are known to exhibit
77 p-type semiconductor behavior. The so-called “oxide-derived”
78 Cu16,17 has been shown to have much higher selectivity toward
79 CO2 electroreduction (relative to the hydrogen evolution
80 reaction or HER) than does polycrystalline copper. Thus, the
81 CuxO/Cu interface is unusual in that it can be deployed for
82 both EC and PEC reduction of CO2. Finally, while demand for
83 copper metal generally has soared because of power trans-
84 mission and microelectronics industry needs, it still is an earth-
85 abundant and nontoxic material. For all of these reasons, the
86 liquid junction formed by this composite interface forms the
87 focus of this Perspective.
88 Interest in Cu2O first began in the 1920s, and subsequently
89 both oxides of copper were evaluated for use in solid-state
90 photovoltaic devices.18 The earliest report on the use of these
91 metal oxides in PEC devices dates back to the 1970s.19 The first
92 report of the use of hydrous Cu2O suspensions for CO2
93 photoreduction occurred much later in 1989.20 The use of
94 Cu2O photocathodes began soon thereafter, and there has been
95 explosive growth of interest in this PEC approach, particularly
96 since ∼2010. The various aspects of the preparation, character-
97 ization, and use of Cu2O have been reviewed.18

98 The oxide layers are generally grown by thermal annealing of
99 polycrystalline copper foils in air. Both the annealing time and
100 annealing temperature are crucial variables in dictating the
101 subsequent behavior of the oxides, as discussed later. Thermal
102 growth of copper oxide nanowires on copper foil has been
103 reviewed.21 Electrosynthesis is another powerful tool for
104 preparing CuxO layers or nanoparticles;22−24 modifications in
105 deposition bath can be used to tune the nanoparticle
106 morphology, as demonstrated in these studies. This aspect is
107 further addressed below within the context of product
108 selectivity in CO2 reduction.
109 Both Oxide Phases Are Important in the PEC Activity for

p 110 CO2 Reduction. Thermal annealing of a copper foil generates

111 both copper oxides (i.e., Cu2O and CuO), whose relative
112 dominance can be tracked by X-ray powder diffraction (XRD).

f1 113 As shown in Figure 1a, high aspect ratio (>200), dense,

114vertically standing copper oxide heterojunction nanowires were
115fabricated by simply heating a copper substrate in air.
116Interestingly, the PEC activity for CO2 reduction for these
117fabricated materials appears to be closely correlated with the
118relative dominance of the two formed phases, Cu2O and CuO,
119as established by quantitative analyses of XRD data (Figure
1201b,c). The sample with the more dominant Cu2O phase (500
121°C, Figure 1b; 4 h, Figure 1c) was seen to afford the highest
122photocurrent for CO2 reduction.
123In Situ Formation of Copper on Cuprous Oxide Photo-
124cathodes and Consequences in Terms of PEC Activity. On the
125notion that copper that is formed in situ on the Cu2O surface
126during photoirradiation in CO2-containing solutions plays a key
127role in the PEC activity, the following series of comparative
128experiments were performed. The Cu2O films were electro-
129deposited on Cu foils and glassy carbon electrodes24 and
130irradiated with simulated sunlight for different time periods (5,
13110, 30, 60 min) in 0.1 M NaHCO3/satd. CO2 solution (to
132mimic the conditions in CO2 photoelectrolysis). No external
133bias potential was applied to the photocathode in these
134experiments. As a control measurement, an identical Cu2O film
135was electroreduced (for 60 min) at E = −1.5 V (vs Ag/AgCl
136reference) to obtain Cu2O-derived metallic copper. The first
137 f2striking difference was the color of the samples (Figure 2),
138namely, the oxide film became progressively darker with
139increasing irradiation time (in fact, the sample irradiated for 60
140min was completely black). XRD patterns were recorded to
141prove that this change in the color was coupled with the
142increasing Cu content of the samples (note that no CuO was
143detected). Rietveld refinement of the XRD patterns proved that
144the Cu2O/Cu ratio systematically increased in the series of
145samples and it reached 4:1 after 60 min of irradiation.
146 f3Scanning electron microscopy (SEM) images (Figure 3)
147were taken to study the morphological changes associated with
148Cu formation in the samples. While the bare Cu2O layer
149showed the characteristic nanocrystal morphology (Figure
1503a),24 important changes were observed even after only 5 min
151of irradiation. In this case, the initial crystallites could still be
152seen, but they lost their sharp edges, and Cu nanocubes (50−
15380 nm) were formed on the surface. When continuing the
154irradiation, the initial morphology changed and a porous Cu
155film was obtained (Figure 3b). The morphology of an
156electroreduced Cu oxide sample was also studied for comparison
157(Figure 3c). A relatively compact structure was found in this
158case, where the surface was decorated with small-sized (∼20
159nm) nanocubes. Note that this morphology is rather similar to
160the one shown for the Cu2O sample irradiated for short
161timeframes (Figure 3b), although the nanoparticle size was
162distinctly smaller for the electroreduced sample. Irradiation for
163longer times (e.g., 60 min, Figure 3d) resulted in markedly
164altered morphology from that in panel (b), reflecting further
165chemical changes of the oxide layer. This corresponds to the
166blackened layer visually seen in Figure 2.
167The distinct morphological differences highlighted above are
168also reflected in the electrocatalytic properties of the samples.
169The first striking variance is manifested in the electroactive
170 f4surface area (as deduced from cyclic voltammetry, Figure 4).
171While the electroreduced samples had 3−4 times higher surface
172roughness compared with the flat Cu electrode, the same ratio
173was around 6−7 for the photoreduced sample (Figure 4a).
174Subsequently, linear sweep voltammograms were recorded in
175HCO3

−/CO2 solution to assess the electrocatalytic activity of
176the samples. The most important observation was the shift in
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177 the onset potential. While for the bulk Cu foil CO2 reduction
178 started at E = −1.0 V (vs Ag/AgCl reference), the onset
179 potential was notably more positive for the Cu2O-derived Cu
180 samples (−0.85 and −0.90 V for the electroreduced and
181 photoreduced samples, respectively; Figure 4b).
182 This latter observation is consistent with literature data
183 where a 150−200 mV shift was seen in the onset potential
184 when comparing bulk and oxide-derived Cu.16 To prove that
185 these increased currents were related to CO2 reduction, and not
186 to the reduction of Cu2O traces present in the samples, long-
187 term electrolysis was also performed on both Cu2O and Cu

188electrodes (Figure 4c,d). While at the initial stage of the
189electrolysis the reduction of Cu2O and CO2 occurred in
190parallel, after the oxide was completely reduced (note that the
191necessary charge perfectly matches the stoichiometric amount,
1921 C), CO2 reduction was sustained on the oxide-derived metal
193surface. Thus, the difference between the two samples cannot
194be simply ascribed to the difference in surface area; rather,
195other structural factors (nanoparticle size, crystal facets,
196interparticle grain boundaries, etc.) also must contribute to
197the enhanced activity (see below).
198The gradual conversion of CuxO to metallic copper during
199the PEC processes has at least two effects on PEC performance.
200First, the formation of traces of Cu (cf. Figure 3b) enhances the
201PEC activity due to the intrinsic catalytic activity of the Cu
202nanocubes. Existence of a Schottky junction between Cu2O and
203Cu can also facilitate e−/h+ separation, thus enhancing the
204catalytic activity. On the other hand, especially after longer
205irradiation, gradual consumption of the CuxO semiconductor
206component (because of photocorrosion) leads to a decrease in
207light absorption and consequently results in the cessation of
208PEC activity. Note, however, that the photoreduction studies

Figure 1. Side view (a) SEM images of copper-supported oxide layers grown by thermal annealing at 500 °C for 4 h. Panels b and c map the
correlation between the relative fraction of CuO and Cu2O (as established by powder XRD analyses) and the average photocurrent for CO2
reduction as a function of thermal annealing temperature (at a fixed 4 h time) (b) and time (at fixed 500 °C anneal temperature) (c). The
photocurrents were measured in CO2-saturated 0.1 M sodium sulfate at zero applied bias (i.e., at short-circuit). The error bars in (b) and (c)
were obtained from measurements on eight separate samples.

Figure 2. Photographs of slides containing Cu2O layers irradiated
in CO2-containing solutions for varying times without an externally
applied bias potential. An electroreduced control sample (refer to
the text) is also shown for comparison.

Figure 3. SEM images of the various Cu2O-derived films. (a) Bare
Cu2O, (b) Cu2O irradiated with simulated sunlight for 15 min, (c)
Cu2O electroreduced at −1.5 V (vs Ag/AgCl/3 M NaCl) for 60
min, and (d) Cu2O irradiated with simulated sunlight for 60 min.

Figure 4. (a) Cyclic voltammograms of the different Cu2O-derived
films, registered in 0.1 phosphate buffer solution (pH = 7) at a
sweep rate of 25 mV s−1. (b) Linear sweep voltammetry curves
recorded for the different Cu2O-derived films in 0.1 M NaHCO3/
satd. CO2 solution at a sweep rate of 25 mV s−1. (c,d) Current−
time and charge−time curves registered for a Cu foil and Cu2O film
in 0.1 NaHCO3/satd. CO2 solution at E = −1.0 V potential (vs Ag/
AgCl reference).
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209 presented here were performed in the absence of any external
210 bias potential.
211 The photocorrosion of CuxO in this system is not a fatal flaw
212 because the electrode material can be regenerated, as
213 demonstrated by our recent study on Cu2O/CNT photo-
214 electrodes.24 Electro-oxidation of the photogenerated Cu (to
215 Cu2O) occurred during the dark periods periodically inserted
216 into the photoelectrolysis protocol. It is worth noting that this
217 EC self-healing was enabled by selection of an optimal potential
218 after careful analysis of the Pourbaix diagram for Cu.
219 Reduction Products, Causal Factors in Product Distribution,

p 220 and Crystal Engineering. The CuxO/Cu interface is remarkable

221 in the range of products that have been reported from EC and
t1 222 PEC reduction of CO2. Table 1 collates the various reduction

223 steps possible and corresponding redox potentials. Discounting
224 the one-electron radical pathway, anywhere from 2 electrons up
225 to 18 electrons can be delivered to the CO2 molecule (Table
226 1). Clearly, carbon−carbon bond formation upon deeper
227 reduction is predicated upon initial binding of intermediates
228 such as CO at active sites on the solid surface. It is hardly
229 surprising that the surface morphology plays a key role in
230 product selectivity. While many mechanistic details still remain
231 to be elucidated, high-energy steps and edges on the crystal
232 surface are currently believed to stabilize and afford the
233 chemisorbed C1 and C2 intermediates to undergo intermo-
234 lecular C−C coupling.
235 As many as 16 reaction products were observed in one EC
236 reduction study on Cu, and of these, 12 were C2 or C3 species,
237 comprised of a range of oxygenated species including
238 hydrocarbons, ketones, aldehydes, carboxylic acids, and
239 alcohols.25 In our own PEC reduction studies on hybrid

240CuO/Cu2O photocathodes, clean conversion of CO2 exclu-
241sively to methanol was initially observed.26,27 However, our two
242later studies involving a different set of experimental conditions
243also revealed the additional formation of ethanol and
244isopropanol28 and ethanol, formaldehyde, acetaldehyde, and
245acetone29 in addition to methanol.
246Theoretical insights30,31 considerably aid in guiding exper-
247imentation and also for rationalizing the experimentally
248observed product selectivity trends. Thus, analysis of trends
249in the binding energies for the CO2 reduction intermediates
250revealed the protonation of adsorbed CO as the most
251important step in dictating the overpotential magnitude.31

252Density functional theory (DFT) calculations have also been
253presented to this end.30

254Ethylene and ethanol have higher energy densities and
255commercial value than the C1 counterparts. Thus, much effort
256has focused on optimizing, for example, the C2H4/CH4 product
257ratio in EC reduction schemes. In this vein, copper microcubes
258 f5containing a large number of exposed (100) facets (see Figure
259 f55) have shown a much higher ratio than unstructured

260polycrystalline copper.32−36 Their manifestation in PEC
261reduction was addressed above (cf. Figure 4b). While this
262morphology is derived from the use of copper(I) halides

The CuxO/Cu interface is remarkable in
the range of products that have been
reported from EC and PEC reduction of
CO2.

Table 1. Nonradical Reduction Pathways for Carbon Dioxide

product reaction
standard reduction potential (V vs SHE, the behavior of copper-based electrodes calls into question, our traditional

notion of a chemical catalyst as an agent that does not itself undergo chemical change!at pH = 7)

carbon
monoxide

CO2 + 2H+ + 2e− = CO
+ H2O

−0.51

Hydrocarbons
methane CO2 + 8H+ + 8e− = CH4

+ 2H2O
−0.24

ethane 2CO2 + 14H+ + 14e− =
C2H6 + 4H2O

−0.27

ethylene 2CO2 + 12H+ + 12e− =
C2H4 + 4H2O

−0.34

Oxygenates
formic acid CO2 + 2H+ + 2e− =

HCOOH
−0.58

oxalic acid 2CO2 + 2H+ + 2e− =
(COOH)2

−0.87

formaldehyde CO2 + 4H+ + 4e− =
HCHO + H2O

−0.48

methanol CO2 + 6H+ + 6e− =
CH3OH + H2O

−0.39

ethanol 2CO2 + 12H+ + 12e− =
C2H5OH + 3H2O

−0.33

propanol 3CO2 + 18H+ + 18e− =
C3H7OH + 5H2O

−0.32

Figure 5. Representative SEM images at two magnifications of a
CuxO/Cu microcube layer electrodeposited on a gas diffusion
electrode (GDE) at −0.4 V (60 °C) from a pH 7 solution of 0.2 M
CuSO4 + 0.1 M CuBr + 2 M lactic acid.
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263 (chloride and bromide) as precursors (cf. Figure 5), in situ X-
264 ray absorption spectroscopy (XAS) has revealed that copper(I)
265 oxide, formed by the initial hydrolysis of the halide, is really the
266 precursor to copper nanocube formation.35 Undoubtedly, the
267 deployment of new in situ probes such as XAS along with
268 online mass spectrometry and techniques such as nuclear
269 magnetic resonance (NMR) spectroscopy should continue to
270 provide insights into deposition mechanisms and reaction
271 pathways. Careful isotope labeling studies will also contribute
272 to further mechanistic insights.
273 The electrolytes used, the potentials applied, and the crystal
274 topology all have a major influence on EC reduction and, by
275 extension, the PEC reduction product selectivity. The oxide
276 layer thickness on copper is another crucial factor as is the local
277 pH at the oxide/copper/electrolyte interface. A high local pH,
278 for example, could suppress the HER and promote C2
279 coupling.36 Finally, “crystal engineering” could be used to
280 tune product selectivity. Two examples of this may be cited.
281 Controlled chemical etching has been demonstrated37 as a
282 strategy for exposing high-energy (110) facets on copper
283 nanocubes; the resultant EC reduction activity was significantly
284 enhanced. The grain boundary density has been shown to be
285 correlated to CO reduction activity for oxide-derived metals,
286 suggesting another route for externally manipulating the
287 catalytic activity of the surface.38

288 Electrode and Reactor Designs for EC and PEC Reduction of
289 CO2. The vast majority of the initial studies were confined to
290 stationary laboratory-scale batch reactors in both cases.
291 Electrode designs also come into play. For example, a porous
292 hollow fiber copper electrode with a compact three-electrode
293 geometry has been shown to provide a large-area three-phase
294 boundary for CO2 EC reduction.39 Borrowing from the fuel cell
295 playbook, a GDE provides for operation at pressures higher
296 than the ambient.9 Solid-oxide fuel cells also provide for a
297 matrix for performing CO2 electrolysis at higher temperatures
298 with concomitant improvements in process thermodynamics
299 and kinetics.9 Energy efficiencies for various CO2 electrolyzer
300 designs have been compared.3 The challenge here is to
301 simultaneously secure high values of energy efficiency and
302 cathodic current density. Reactor designs for PEC reduction of
303 CO2 have been reviewed.13 In our own studies of a continuous-
304 flow PEC reactor (CFPR) for CO2 reduction, interesting shifts
305 in product distribution away from C1 (methanol) to longer
306 chain products were observed because of the small volume in
307 the cathode microchannel and consequential ease of coupling
308 of the initial electrogenerated precursors.28

309 Future Outlook. In summary, this Perspective has highlighted
310 the important fact that morphological evolution of the
311 (photo)cathode during the complex steps involved in the
312 addition of electrons and protons to CO2 has similar
313 underpinnings in both EC and PEC reduction scenarios.
314 Nonetheless and as pointed out earlier, the chemical changes
315 undergone by the copper oxide surface during CO2 (photo)-
316 reduction need not be considered a fatal flaw in the use of this
317 intriguing material. Many natural assemblies (e.g., the plant
318 photosynthesis apparatus) do indeed undergo self-repair
319 mechanisms after exposure to high photon fluxes. In a similar
320 fashion, a periodic reactivation step to regenerate CO2
321 reduction activity may be built into the overall process design
322 to combat too deep of a reduction of the copper oxide layer.
323 Interestingly, however, the behavior of copper-based electro-
324 des calls into question our traditional notion of a chemical
325 catalyst as an agent that does not itself undergo chemical

326change! This aspect certainly is not the only puzzle that the
327CuxO/Cu/liquid interface holds; many more surprises
328undoubtedly await the intense EC and PEC scrutiny of it in
329the coming months and years. Finally, the features of copper
330oxide/copper interfaces as noted here may not be unique;
331recent studies highlighting similar trends in other metal oxide/
332metal interfaces, including Au, Sn, and even Co, are worthy of
333 pnote.40−42

334Finally, notwithstanding the remarkable strides that have
335been made in the past 5 years in our understanding of copper-
336based electrodes and photoelectrodes for CO2 (photo)-
337reduction, the product fluxes need to be boosted significantly
338to levels that are sufficiently high for reactor scale-up and
339engineering. There are promising avenues, including the
340incorporation of additional metal ions into the copper oxide
341host framework (e.g., CuFeO2 and CuNb2O6)

43,44 or the use of
3423D electrode architectures of highly conductive nanocarbons
343such as aligned carbon nanotubes or graphene foams. Finally,
344further advances in electrode and reactor designs also have to
345occur to translate the laboratory-scale findings to technological
346readiness.
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353Csaba Janaḱy obtained his Ph.D. at the University of Szeged in 2011.
354Subsequently, he was a Marie Curie Fellow at the University of Texas
355at Arlington between 2011 and 2013. Since 2014, he has been the
356Principal Investigator of the MTA-SZTE “Momentum” Photo-
357electrochemistry Research Group, supported by the excellence
358program of the Hungarian Academy of Sciences. His scientific
359interests include various aspects of energy-oriented semiconductor
360electrochemistry and photoelectrochemistry.
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