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Abstract
Mild Cognitive Impairment (MCI), sometimes regarded as a
prodromal stage of Alzheimer’s disease, is a mental disorder
that is difficult to diagnose. Recent studies reported that MCI
causes slight changes in the speech of the patient. Our previ-
ous studies showed that MCI can be efficiently classified by
machine learning methods such as Support-Vector Machines
and Random Forest, using features describing the amount of
pause in the spontaneous speech of the subject. Furthermore,
as hesitation is the most important indicator of MCI, we took
special care when handling filled pauses, which usually corre-
spond to hesitation. In contrast to our previous studies which
employed manually constructed feature sets, we now employ
(automatic) correlation-based feature selection methods to find
the relevant feature subset for MCI classification. By analyzing
the selected feature subsets we also show that features related to
filled pauses are useful for MCI detection from speech samples.
Index Terms: mild cognitive impairment, machine learning,
temporal parameters of speech, feature selection

1. Introduction
Alzheimer’s disease (AD) is a very distinct neurodegenerative
disorder that may develop for years before clinical manifesta-
tion. It is estimated that over 7% of the population aged 60
and over suffer from AD or some other kind of dementia in Eu-
rope, and similar figures are estimated for the U.S. as well [1].
However, the symptoms of Mild Cognitive Impairment (MCI)
might be detected years before the actual diagnosis of AD [2].
This tells us that the clinical appearance of AD is preceded by
a prolonged, preclinical phase. Therefore, timely diagnosis and
treatment are very important, as its progression can be deceler-
ated and occurrence of new symptoms can be delayed [3].

MCI is known to influence the verbal fluency of the spon-
taneous speech of the patient [4], which manifests itself in
longer hesitations and a lower speech rate [5, 6, 7]. There-
fore, many studies performed MCI or AD detection by ex-
tracting features related to articulation/speech rate and pause
(e.g. [7, 8, 9]). These studies concentrated only on silent pauses,
as these can be detected easily by using simple signal process-
ing tools. However, filled pauses (sounds like “er”, “hmm” etc.)
also indicate hesitations, and can take up a significant amount of
speech time. For example, Tóth et al. found that about 10% of
the hesitations in a Hungarian speech database appear as filled

pauses [10]. However, signal processing-based pause detection
methods usually carry out a voiced-unvoiced split of the utter-
ance, and this approach is unable to find filled pauses. The only
study we found besides ours which deals with filled pauses is
that of Roark et al. [6]; they, however, created a manual an-
notation of the utterances, and did not deal with the automatic
detection of filled pauses (or automatic feature extraction at all).

Focusing on filled pauses, the study by Hoffmann et al. sug-
gested the calculation of eight features (or biomarkers) from ut-
terances containing spontaneous speech [5]. These features ei-
ther described the speech rate of the speaker (i.e. phonemes per
second) or the amount of pausing in the speech of the subjects.
The novelty in this study was that it proved that besides silent
pauses, the amount of filled pauses also display a statistically
significant difference between the speech of the two groups
of speakers (MCI and control). In a more recent study [10]
we found that the extraction of these features can be reliably
automated by applying standard Automatic Speech Recogni-
tion (ASR) techniques, and that extending the features with
biomarkers related to other phonemes (commonly confused by
certain types of filled pauses) can be beneficial for MCI detec-
tion performance. For example, the most frequent sound uttered
during hesitation is a schwa, which is easily confused with the
vowel [ø]. By adding further such features to the set we were
able to outperform the results achieved with the basic feature
set of Hoffmann et al. [5].

Notice that both feature sets were manually constructed
ones. This is typical in this area; for example, López-de-Ipiña
et al. tested four such feature sets consisting of acoustic, voice
quality and duration features to detect AD [8], while Sztahó
et al. used jitter, shimmer, articulation rate and speech inten-
sity to detect Parkinson’s disease [11]. Still, applying automatic
feature selection methods over a broader set of input features
can be expected to lead to a better dementia identification per-
formance. This approach is also used in studies dealing with
the automatic identification of various types of dementia from
speech samples. For example, both Satt et al. [12] and Fraser
et al. [13] calculated single-tailed p-values for the features and
used only those that had lower p scores. Sidorov et al. used a
genetic algorithm to construct the final feature set [14]. Yu et
al. selected their features by using the sequential forward fea-
ture selection algorithm [15].

In this study, we extend our previous investigations by per-
forming automatic feature selection for detecting Mild Cogni-
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tive Impairment. For this, we first extract a highly redundant
feature set based on ASR output, then perform feature selection
to get the most suitable feature subset. To do this, we will ap-
ply two correlation-based feature selection algorithms, used for
conflict intensity estimation before [16], and show the superior-
ity of the selected feature subsets compared to the earlier, manu-
ally constructed ones by Hoffmann et al. [5] and Tóth et al. [10].
A further novelty of this study is that we also compare the ef-
ficiency of these correlation-based methods with other feature
selection ones applied in this area before: Sequential Forward
Selection utilized by Yu et al. [15], and the filtering of attributes
according to statistical significance (applied previously by Satt
et al. [12] and by Fraser et al. [13]). We also analyze the time
requirement of each feature selection algorithm and the feature
subsets selected. In the end we find that both automatic fea-
ture selection and the detection of filled pauses are important in
order to achieve efficient automatic MCI detection.

2. Automatic Feature Selection for MCI
Detection

2.1. Utterance Recording Setup

We recorded our utterances containing Hungarian spontaneous
speech from our patients in the following way [5]. After the
presentation of a specially designed one-minute-long animated
film, the subjects were asked to talk about the events seen on the
film (immediate recall). After the presentation of a second film,
the subjects were asked to talk about their previous day (sponta-
neous speech). For the last task, the subjects were asked to talk
about the second film (delayed recall). Each task made the sub-
jects produce spontaneous speech, but in a different way, hence
their speech can be expected to be different as well. Of course,
it may turn out that some tasks are less useful for detecting MCI
than others, but we cannot know this in advance.

This set-up is special in the sense that we will have three
utterances for each speaker. Although we performed our exper-
iments on utterances recorded this way, we think that the tech-
niques applied here and the proposed methods can be readily
carried over to other tasks and databases in similar areas.

2.2. Basic Feature Sets

The basic feature set defined by Hoffmann et al. consisted of
eight features for each utterance [5]. Firstly, it contained the
duration of the utterance, the articulation rate (the number of
phones per second during speech, excluding hesitations) and
the speech rate (number of phones per second during speech,
including hesitations). Four further features were the number
of occurrences and the total duration of both silent and filled
pauses. Besides these, it included the total duration of pauses
(both silent and filled) divided by the duration of the utter-
ance. Some personal attributes of the speaker were also added to
the feature set: age, gender, and level of education (expressed
in terms of school years), resulting in a 27-item set for each
speaker. We will refer to this feature set as the basic feature set.

Tóth et al. proposed an extended version of this feature
set [10]. This, like the basic feature set, first consisted of the
duration of the utterance, articulation rate and speech rate. Next,
it included four descriptors for each of some specific phonemes,
listed in Table 1. These descriptors were calculated for the silent
pauses, the filled pauses, the silent and filled pauses together,
and the phonemes [m], [n] and [ø]. This gave 27 attributes for
each utterance, which, along with the speaker-related attributes,

(1) The number of occurrences of the given phoneme
divided by the total number of phoneme occur-
rences.

(2) The total duration of occurrences of the given
phoneme divided by the duration of the utterance.

(3) The mean length of the occurrences of the given
phoneme.

(4) The standard deviation of the length of the occur-
rences of the given phoneme.

Table 1: The four descriptors, following the work of Tóth et
al. [10].

gave 84 features for each speaker. Tóth et al. found this feature
set to be superior to the basic feature set of Hoffmann et al.
Here, we will refer to this set as the extended feature set.

2.3. Overcomplete Feature Set

The feature sets we have used so far were all manually con-
structed ones. The extended feature set was constructed in the
hope that by adding some redundant or irrelevant features, the
machine learning methods applied would ignore these unneces-
sary extra features. However, this is not always the case, and in
the machine learning literature an enormous number of feature
selection methods have been proposed, even in speech technolo-
gies (e.g. [16, 17, 18, 19, 20]). Therefore, next we will extract
a highly redundant feature set, which will serve as the basis of
our feature selection experiments (overcomplete feature set).

Firstly, we add the three general features (utterance dura-
tion, articulation rate and speech rate) to the feature set. Next,
we add the descriptors listed in Table 1 for each phoneme to
this feature set. The only exception is the case of hesitations,
where, following the studies of Hoffmann et al. and Tóth et
al., we calculate these descriptors for silent pauses and filled
pauses separately and treat them as one phoneme as well, re-
sulting in 12 pause-related attributes overall. With 57 phonemes
(including filled pauses, breathing noises, laughter and coughs),
this resulted in 235 features for each utterance and 708 for each
speaker. Although most of these features can be expected to be
irrelevant or redundant, we will filter them out in the next step.

2.4. Automatic Feature Selection

A large number of automatic feature selection methods have
been described in the literature. Following our previous
study [16], where we performed conflict intensity estimation,
we will combine two feature selection approaches. The first
one relies on the correlation of the target and each feature, and
seeks to utilize the more correlated features [20, 21, 22]. Al-
though this approach is designed for regression tasks where we
have to match a continuous annotation, it is quite straightfor-
ward to adapt to a binary classification task like MCI detection.

The weakness of performing feature selection only on the
basis of correlation is, however, that after feature selection,
some kind of machine learning method (SVM, ANN etc.) is
trained using the restricted feature set, but the special aspects
of this method are ignored during feature selection. This may
be improved if we incorporate the machine learning method in
the feature selection process [22, 23]. This approach has the ad-
vantage that we will more likely pick those features which are
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relevant for the given machine learning method.
We used forward methods, which commence with an

empty (or very restricted) feature set, and expand it step-by-
step [23]. They tend to converge to the final feature set quite
efficiently [17]. Perhaps the most well-known forward method
is the Sequential Forward Selection algorithm (SFS, [24]): this,
for each step, adds each feature to the set, and keeps the one
which resulted in the biggest improvement in accuracy.

Besides applying SFS, we also utilized two correlation-
based methods. Firstly, the features were sorted according to
the absolute value of their correlation score with the class (now
MCI or control group) in descending order. As we add the fea-
tures to our selected feature subset in this order, more correlat-
ing features will be used first. In the first algorithm each feature
is examined only once: if using the actual feature improves the
classification performance, we permanently add this feature to
our set of selected features, otherwise we permanently discard
it. In the second correlation-based algorithm, in the nth itera-
tion, we use all the n most correlated features. These two-step
feature selection methods, despite their relative simplicity, were
able to efficiently improve the classification scores, while also
reducing the computational requirements of MCI classification.

3. Experimental Setup
3.1. ASR-based Feature Extraction

The speech recognizer was trained on the BEA Hungarian Spo-
ken Language Database [25]. This database contains sponta-
neous speech, like the recordings collected from our MCI pa-
tients. We utilized roughly seven hours of speech data from the
BEA corpus – mainly recordings from elderly persons, in order
to match the age group of the targeted MCI audience. The an-
notation of the dataset included filled pauses, breath intakes and
exhales, laughter, coughs and gasps in the transcriptions.

The ASR system was trained to recognize the phones in the
utterances, where the phone set included the special non-verbal
labels listed above. For acoustic modeling we applied a special
convolutional deep neural network-based technology. With this
approach wemanaged to achieve one of the lowest phone recog-
nition error rates on the TIMIT database [26, 27]. We employed
a simple phone bigram language model (once again, including
all the above-mentioned non-verbal audio tags). The output of
the ASR system is the phonetic segmentation and labeling of the
input signal, including filled pauses. Based on this output, the
acoustic biomarkers listed in Section 2 can be readily extracted.

3.2. MCI Classification

Our database of MCI patients is continuously growing; at the
time of writing we had recordings taken from over 100 persons.
For various reasons (poor sound quality, controversial diagno-
sis, etc.) we had to filter out some patients, so in our experi-
ments we used the recordings of 84 subjects. From these, 48
had MCI and 36 were control subjects. For each subject we
had three recordings for the three different tasks. From a ma-
chine learning perspective, this is an extremely small dataset,
but the number of diagnosed MCI patients is limited, and col-
lecting recordings of their speech is tedious. Perhaps this is why
in all the similar studies we found involved fewer than 100 pa-
tients [6, 7, 9, 13, 28]. The only exception we know of is the
study by Yu et al. [15], which had 139 speakers; however, from
these, only 20 had MCI.

Having so few examples, we did not create separate training
and test sets, but applied the common solution of 10-fold cross

validation. We used Support Vector Machines (SVM, [29]) with
the LibSVM library [30]; the C parameter of the linear kernel
was tested in the range 10{−5,...,1}. To be able to perform com-
parisons with previous results (Tóth et al. had only 51 speakers
and used the Weka toolkit [31]), we evaluated the feature sets
proposed earlier using the set-up outlined above.

3.3. Evaluation Metrics

In the past, many studies relied on standard classification ac-
curacy (e.g. [13, 32]). However, while in our actual dataset
the distribution of subjects is quite balanced, this is not so for
most datasets of this area. The distribution of the two groups
in the elderly populations is not balanced either. For such an
unbalanced class distribution, though, accuracy is not a reliable
metric. For this reason, we opted for the standard Information
Retrieval metrics of precision, recall and their harmonic mean,
F-measure (or F1-score). We will also use the metric called
Unweighted Average Recall (UAR), being the mean value of
the recall scores for all the classes. This is a popular metric in
the area of computational paralinguistics (see e.g. [33, 34]), and
its main advantage is that, unlike the traditional accuracy and F-
measure metrics, it is unaffected by a change in class frequency.

During feature selection we seek to select the feature subset
by which we can achieve the most accurate classification. How-
ever, we can use three of the above-listed metrics to measure this
“accurateness” (precision and recall are clearly not suitable for
this). So we tested the methods using accuracy, UAR and F1.

4. Results and Discussion
Table 2 lists the scores got for the different feature selection
strategies when optimized for different metrics. It can be seen
that using the manually constructed feature sets led to quite
low accuracy scores. The worst-performing one was clearly
the overcomplete feature set, where all patients were assumed
to have MCI. Notice that, out of the three accuracy metrics
optimized for, only UAR was capable of detecting this phe-
nomenon, as it was able to counter the imbalanced class dis-
tribution; F1, however, was quite high due to the recall value
being 100%. Still, it is clear that this approach cannot be used
in practice, which indicates a weakness of F1.

Perhaps this is the reason why the Sequential Forward Se-
lection method produced bad scores when optimized for F1: a
relatively high F1 value could be achieved by using only one
attribute (and classifying each speaker as one having MCI), but
then the optimization quickly got stuck in a local maximum.
Using the most correlated n features (“Top-Ranked” strategy)
was slightly worse than the other two feature selection methods
(“Greedy” and SFS), while the latter two produced very similar
accuracies. However, SFS produced quite compact feature sets.

Table 3 shows the number of SVM models trained during
the feature selection process. (Note that we halted SFS after it
was unable to improve the accuracy score in an iteration, while
the correlation-based approaches examined each attribute, lead-
ing to 708 iterations overall.) We can see that SFS required over
7 times more SVM trainings (except when optimized for F1,
but then it yielded an unusable model). Of course, as SFS used
fairly compact feature sets, on which the SVM models could be
trained much more quickly, this 7-fold difference does not fully
reflect the relation between the actual training times. Using the
rough estimation that, when the number of examples and classes
is the same, the time required for training an SVMmodel is lin-
early proportional to the number of attributes used, we still find
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F. set Measured Metrics
Feature set / selection method Opt. metric size Acc. UAR Prec. Rec. F1

Acc. 6 86.9% 86.5% 87.8% 89.6% 88.7%
Sequential Forward UAR 6 88.1% 88.5% 93.2% 85.4% 89.1%

F1 3 63.1% 56.9% 60.8% 100.0% 75.6%
Acc. 10 86.9% 87.5% 93.0% 83.3% 87.9%

Correlation-Based (Greedy) UAR 11 86.9% 87.5% 93.0% 83.3% 87.9%
F1 13 88.1% 88.5% 93.2% 85.4% 89.1%
Acc. 40 85.7% 86.1% 90.9% 83.3% 87.0%

Correlation-Based (Top-Ranked) UAR 40 85.7% 86.1% 90.9% 83.3% 87.0%
F1 42 85.7% 85.8% 89.1% 85.4% 87.2%

Feature selection by t-test (p ≤ 0.05) [12, 13] 46 81.0% 81.3% 86.4% 79.2% 82.6%
Basic feature set [5] 27 57.1% 56.3% 62.5% 62.5% 62.5%
Extended feature set [10] 84 63.1% 62.5% 68.1% 66.7% 67.4%
Overcomplete feature set 708 57.1% 50.0% 57.1% 100.0% 72.7%

Table 2: The accuracy scores achieved using the different feature selection methods.

Opt. No. of Avg. feat.
Selection method metric SVMs count

Acc. 408 240 4.0
Sequential Forward UAR 408 240 4.0

F1 233 760 2.5
Acc. 56 640 10.4

Correlation (Greedy) UAR 56 640 11.3
F1 56 640 13.3
Acc. 56 640 354.5

Correlation (Top-Ranked) UAR 56 640 354.5
F1 56 640 354.5

Table 3: The number and average size of SVM models trained
during feature selection.

that the greedy correlation-based feature selection method re-
quired 54-64% less time than SFS. The top-ranked correlation-
based method, however, turns out to be much slower, due to the
large feature vectors employed in the later iterations.

Figure 1 shows what kinds of features make up the feature
subsets. We can see that the attributes describing the speaker
(age, gender and years of education) take up only a small frac-
tion of the more successful feature sets, and the same is true
for speech rate, articulation rate and utterance length. Never-
theless, silence-related attributes are very common, and so are
the biomarkers related to filled pauses. In our opinion this re-
sult justifies our efforts related to detecting filled pauses in or-
der to detect MCI. What is pretty surprising, though, is that at-
tributes related to the miscellaneous phonemes are also quite
common: they take up at least 40% of each automatically con-
structed feature set. However, they are completely ignored in
the manual feature sets, which may be the reason why these
performed quite poorly. Many of these features corresponded
to phonemes commonly used in another form of signaling hesi-
tation. In spontaneous speech speakers tend to lengthen certain
sounds within a content word; for instance, the word kész [ke:s]
(meaning “ready”) is sometimes pronounced as [ke:ss]. These
cases are also indicators of hesitation and may have also influ-
enced the frequency of each phoneme. They were found by the
automatic feature selection methods, while they were missing
from the manually constructed feature sets.

0 0.2 0.4 0.6 0.8 1

Distribution of features

Overcomplete

Extended

Basic

t−test

Top−ranked, F1

Top−ranked, UAR

Top−ranked, Acc

Greedy, F1

Greedy, UAR

Greedy, Acc

SFS, F1

SFS, UAR

SFS, Acc

Age, gender,
education
Speech rate,
utterance length
Filled
pauses
Silent
pauses
Laughs,
breaths, etc.
[m], [n], [∅]
(long and short)
Other
phonemes

Figure 1: The composition of the selected feature subsets.

5. Conclusions
Mild cognitive impairment (MCI) is known to cause slight
changes in the spontaneous speech of the patient. Our start-
ing point was a study that created feature sets describing the
amount of hesitations present in spontaneous speech. In this
study, we utilized automatic feature selection methods to auto-
mate the construction of the set of phonetic level biomarkers
used for MCI detection. We found the automatically selected
feature sets to be superior to the manually constructed ones, pre-
sumably because they contained information about phonemes
frequently used for another form of hesitation: lengthening. We
also compared various feature selection methods, and found the
proposed correlation-based technique to be just as accurate, but
much faster than the sequential forward selection method.
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tion of mild cognitive impairment from spontaneous speech us-
ing ASR,” in Proceedings of Interspeech, Dresden, Germany, Sep
2015, pp. 2694–2698.
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[26] L. Tóth, “Convolutional deep maxout networks for phone recog-
nition,” in Proceedings of Interspeech, 2014, pp. 1078–1082.

[27] ——, “Phone recognition with hierarchical Convolutional Deep
Maxout Networks,” EURASIP Journal on Audio, Speech, and Mu-
sic Processing, vol. 2015, no. 25, pp. 1–13, 2015.

[28] M. Lehr, E. Prudhommeaux, I. Shafran, and B. Roark, “Fully au-
tomated neuropsychological assessment for detecting Mild Cog-
nitive Impairment,” in Proceedings of Interspeech, Portland, OR,
USA, 2012.

[29] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and
R.Williamson, “Estimating the support of a high-dimensional dis-
tribution,” Neural Computation, vol. 13, no. 7, pp. 1443–1471,
2001.

[30] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 1–27, 2011.

[31] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: an update,” ACM
SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[32] P. Garrard, V. Rentoumi, B. Gesierich, B. Miller, and M. L.
Gorno-Tempini, “Machine learning approaches to diagnosis and
laterality effects in semantic dementia discourse,” Cortex, vol. 55,
pp. 122–129, 2014.

[33] B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer,
F. Ringeval, M. Chetouani, F. Weninger, F. Eyben, E. Marchi,
H. Salamin, A. Polychroniou, F. Valente, and S. Kim, “The Inter-
speech 2013 Computational Paralinguistics Challenge: Social sig-
nals, Conflict, Emotion, Autism,” in Proceedings of Interspeech,
2013.

[34] B. Schuller, S. Steidl, A. Batliner, S. Hantke, F. Hnig, J. R.
Orozco-Arroyave, E. Nth, Y. Zhang, and F. Weninger, “The IN-
TERSPEECH 2015 computational paralinguistics challenge: Na-
tiveness, Parkinson’s & eating condition,” in Proceedings of In-
terspeech, 2015.

111


