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Abstract—Electro-physiological recording of neural bio-
electrical activity contains local field potentials and unit activities.
Unit activity is a mixture of action potentials generated by the
neurons. Spike sorting is a method to determine which individual
neurons produce the recorded unit activity. High-channel-count
neural probes can measure more than a hundred different
positions of the brain in parallel, so large amount of high-
dimensional data is generated. To increase the computational
speed and decrease the processing time Field-Programmable
Gate Array (FPGA) architectures can be applied as hardware
accelerators. In this paper an FPGA-based implementation of
the Expectation-Maximization (EM) algorithm for neural spike
clustering is presented.

I. INTRODUCTION

Electro-physiological recording methods are one of the
dominant experimental techniques in the field of neuroscience
used to investigate fundamental neuronal mechanisms and
higher-order brain functions, such as perception, learning
and memory. The bioelectrical activity recorded with neural
probes from the extracellular space of the brain tissue can be
separated into two main frequency bands: local field potentials
containing low-frequency components (below 500 Hz) and
unit activity comprising high frequencies (500-5000 Hz). Unit
activity is the mixture of spike trains, which are sequences
of brief, electrical impulses generated by neurons surrounding
the neural probe.

Spike sorting is a method used to separate the spike trains
of individual neurons from the recorded unit activity [1].
A typical spike sorting algorithm contains computationally
intensive steps, such as feature extraction and clustering [1].
High-channel-count neural probes are capable of recording
from up to more than hundred individual brain positions
simultaneously pose an even greater challenge for spike sorting
applied on general-purpose hardware. However, implementing
the spike sorting algorithm on dedicated hardware (e.g. FPGA,
GPU, or ASIC (Application-Specific Integrated Circuits)) can
significantly reduce the computation time required to process
large amounts of high-dimensional data [2]. Therefore, such

hardware-accelerated data processing could greatly increase
the sorting speed both for real-time clinical applications (e.g.
brain-machine interfaces [3]) and for offline analysis of exper-
imental data (e.g. studies of neural network dynamics [4]).

The most computationally intensive task for spike sorting
is the offline clustering of neural data recorded with high-
channel-count probes. During clustering spikes are classified
into different groups based on their extracted features, where
the groups correspond to different neurons. In the recent years,
many clustering methods were used for spike sorting with
different properties and classification performance [5], [6]. In
this paper an FPGA-based implementation of an unsupervised
clustering algorithm - the modified Expectation-Maximization
(EM) algorithm [7] - is proposed to achieve performance
increase during clustering the neural spike trains.

II. EXPECTATION-MAXIMIZATION ALGORITHM

The EM algorithm is an iterative method for maximizing the
expectation of the log likelihood function over a distribution.
The main equation of the algorithm is the following (1):
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Where L is the log likelihood function, wk is the weight
of cluster k, while µk is the mean of cluster k, Σk is the
covariance matrix of cluster k, d is the number of features,
Ex̃ is the expected value based on x̃n which is the virtual
distribution.

The unmasked EM algorithm consists of two main steps:
M-step and E-step. Before the M-step the weight wk has
to be calculated, then (in the M-step) the mean µk and the
covariance Σk of each cluster is computed. In the E-step the
computation of the log of responsibilities is performed.
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Fig. 1. The architecture of the system

III. THE PROPOSED FPGA-BASED ARCHITECTURE

A. The experimental setup

The experimental setup is an Avnet/Digilent Zedboard [8]
based on a Xilinx Zynq-7020 APSoC architecture, which is
built-up from a dual-core ARM Cortex-A9 PS (Processing
System) and a Xilinx Series-7 PL (Programmable Logic). The
PS has wide variety of different I/O interfaces to connect
the system to the outside world such as Gigabit Ethernet and
DDR3 memory controller to name a few. The features of the
neural spike trains are fed into the external DDR3 memory of
the ZedBoard via Gigabit Ethernet. During the computation,
partial and final results are also stored in this memory, which
can be transferred back to the PC for further processing (e.g.
visualization).

B. The architecture

The architecture of the proposed system is built-up from
six main parts as can be seen on Fig. 1. These are the ARM
Processor, the DMA Controllers, the AXI-4 Interconnect, the
Memory Controller, the Board Memory and the EM Core.

The ARM Processor communicates with the host computer
via Ethernet and controls the data-flow on the AXI4-Lite
and AXI4 buses. Furthermore it pre-calculates the required
matrices for the EM Core. The Memory Controller and the
Board Memory are responsible for storing the recorded fea-
tures extracted from the neural spike trains and the results of
the clustering process. The data transfer between the EM Core
and the Board Memory is handled by the DMA Controllers.
The data is stored sequentially in the memory, but the EM Core
requires it in a mixed manner. Therefore scatter-gather DMA
instructions are used. The EM Core computes the algorithmic
steps of the EM algorithm. In the first step it calculates the
covariance matrices. In the second step the upper triangular
part of the covariance matrices are computed using Cholesky
decomposition, then a matrix inverse operation is performed
to solve the resulting equation system. In the EM Core only
the data for the actual cluster is stored, to minimize the
BRAM memory usage. The AXI-4 Interconnect provides the
connection between the parts of the system.

C. The test results

In this implementation the unmasked version of the EM
algorithm was used, so the number of possible clusters and the

TABLE I
RESOURCE REQUIREMENT AND COMPUTATIONAL SPEED

nDims BRAM(18K) DSP48E FF LUT SpeedUp
(PC/FPGA)

24 8 36 8865 12217 0.18

48 20 36 8911 12342 0.11

96 68 36 8957 12425 0.08

192 260 36 9003 12509 0.12

number of initial clusters can be configured. The size of the
covariance matrix (nDims*nDims) is defined by the number of
channels and features (nDims=channelNum*featureNum). The
proposed architecture was tested using different covariance
matrix sizes from 24-192. The corresponding channel numbers
are 8-64. The test results can be seen on Table I.

The test results show, that the BRAM memory requirement
of the EM Core increasing quadratically with the channel
number, and the computational performance of the proposed
architecture is lower than the PC CPU-based solution. But the
energy consumption of the Zedboard is only 2 Watts, while the
Core i7 CPU of the PC requires more than 60 Watts. Therefore
the FPGA-based implementation is more energy-efficient, than
the PC CPU-based solution, even the FPGA uses exactly the
same algorithm, with the same parameters, and data.

IV. CONCLUSION

In this paper an FPGA-based implementation of the
Expectation-Maximization algorithm for high-channel-count
neural spike clustering is proposed.

The test results show that the computational performance
of our architecture is lower, than the PC CPU-based solution,
but it is more energy-efficient. The main reason of lower per-
formance is that the FPGA-based solution is fully sequential.

Our future work is to make this architecture to parallel,
which will further increase the performance of this FPGA-
based system.
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