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Antibiotic resistance is generally selected within a window of concentrations high enough to inhibit wild-type growth but low
enough for new resistant mutants to emerge. We studied de novo evolution of resistance to ciprofloxacin in an Escherichia coli
knockout library. Five null mutations had little or no effect on intrinsic antibiotic susceptibility but increased the upper antibi-
otic dosage to which initially sensitive populations could adapt. These mutations affect mismatch repair, translation fidelity, and
iron homeostasis.

For many antimicrobial agents—including fluoroquinolones,
cephalosporins, and rifamycins—a prominent factor contrib-

uting to the evolution of resistance is the acquisition of chromo-
somal mutations during therapy (1–3). While a wealth of high-
throughput studies have investigated the impact of individual
genes on intrinsic antibiotic susceptibility (4–6) or persistence (7),
no systematic large-scale study has been devoted to the identifica-
tion of molecular mechanisms that promote the evolution of an-
tibiotic resistance.

Here we systematically tested the impact of gene inactivation
on the de novo evolution of antibiotic resistance. Escherichia coli is
undoubtedly an ideal model prokaryote for such a study. The
availability of a nearly complete single gene deletion library (the
KEIO collection) enables the study of this issue in nearly all of
the nonessential genes of this species (8). Our investigations con-
centrated on understanding the development of resistance to cip-
rofloxacin. It is one of the most widely deployed fluoroquinolone
antibiotics in clinics, and its mechanism of action has been well
studied (9–11).

We developed a simple, high-throughput protocol that allows
investigation of the de novo evolution of quinolone resistance in
thousands of parallel bacterial cultures. Our goal was to identify
genotypes (i.e., single-gene knockout strains) that permit adapta-
tion to high antibiotic concentrations demanding the acquisition
of one or more rare mutations (12, 13). All experiments were
conducted with 96-deep-well plates containing 350 �l LB medium
supplemented with a toxic concentration of ciprofloxacin (200

ng/ml). The antibiotic dosage used is more than 10 times the MIC
for wild-type (WT) E. coli (Table 1). About 108 cells were added to
each well (two replicate populations per genotype). Following 5
days of incubation (37°C, 320 rpm), 2 �l of each culture was
transferred to an agar plate containing the same concentration of
the antibiotic. After 24 h, the resistant bacteria of each genotype
were counted. Initial positive hits (i.e., at least one resistant pop-
ulation per genotype) were validated with new sets of laboratory
experiments. We used the same procedure as above with 96 rep-
licate populations per genotype. Final hits were checked for the
presence of the appropriate gene deletion by PCR using site-spe-
cific primers. At such a high ciprofloxacin concentration, the toxic
effect of the antibiotic is substantial and population size rapidly
declines (14). Typically, WT cultures became extinct by the end of
the 5-day treatment period (data not shown). Development of
resistance was generally rare; it occurred only in �4% of parallel
WT populations. The screen identified six genotypes with a mas-
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TABLE 1 Increased evolvability of five knockout strains under single-step antibiotic exposurea

KEIO strain
Ciprofloxacin
MIC (ng/ml) Gene function

Frequency of resistant populations

Ciprofloxacin
(200 ng/ml)

Chloramphenicol
(12.5 �g/ml)

Streptomycin
(30 �g/ml)

WT 18.4 0.04 0.02 0.2
�fur mutant 13.9 Fe uptake regulation 0.6 0.00 0.73
�miaA mutant 26.7 Translational fidelity 0.99 0.92 1
�mutH mutant 19.4 Mismatch repair 1 0.92 1
�mutL mutant 19.4 Mismatch repair 0.95 1 0.99
�mutS mutant 20.5 Mismatch repair 1 0.96 1
a In the presence of a single antibiotic, five null mutants showed a significant increase in the frequency of resistant populations compared to the WT (BW25113, CGSC 7636).
Experiments were conducted with deep-well plates using 96 parallel replicates per strain. In each well, �108 cells were exposed to a single antibiotic at a concentration well beyond
the MIC. The MICs are 2.2 �g/ml for chloramphenicol and 2.6 �g/ml for streptomycin. After 5 days of incubation, the frequency of resistant populations was determined by
transferring �2 �l of each culture to an agar plate supplemented with the same concentration of the antibiotic.
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sive increase in the frequency of resistant populations. In these
cases, 60 to 100% of the independent populations were capable of
acquiring resistance to ciprofloxacin. By using the ASKA overex-
pression plasmid library (15), we complemented these candidate
strains with the corresponding WT alleles. In all but one case
(ybgJ), we confirmed that the deletion mutation was responsible
for the enhanced frequency of resistance (data not shown). The
remaining five genotypes are presented in Table 1. Similar results
were obtained when these five genotypes were tested against anti-
biotics of two other classes, chloramphenicol and streptomycin
(Table 1).

Using a standard microdilution method (16) with 1.4-fold di-
lution steps, we found that the MIC for these genotypes is compa-
rable to that for the WT (Table 1). Further support comes from a
systematic chemo-genomic study that exposed a transposon li-
brary of E. coli to 17 different antibiotics at sublethal concentra-
tions (17). None of our candidate genes influences growth rates in
the presence of any of these 17 antibiotics. The only exception is a
null mutation of miaA that appears to enhance the growth rate on
nalidixic acid, another quinolone. We next asked whether the sur-
vival rate upon toxic antibiotic exposure is especially high in the
knockout populations. These experiments were conducted with
96-deep-well plates (350 �l LB medium). Large cell numbers
(�108) were transferred to fresh medium containing 200 ng/ml
ciprofloxacin. Persistence was measured by determining survival
rates upon antibiotic exposure. Viable cell numbers were deter-

mined every hour during the 5 h of ciprofloxacin treatment by
plating dilutions onto 24-well LB agar macroplates and counting
growing colonies. We confirmed that during the first 5 h of anti-
biotic exposure, the number of resistant cells remained below the
detection level (below 1 per 1.4 � 107 cells). As demonstrated
previously (14, 18), the surviving fraction of a WT E. coli culture
treated with ciprofloxacin produces a typical biphasic pattern, re-
flecting rapid killing of most of the cells (99%) except for a small
persister subpopulation. None of the five genotypes showed a sta-
tistically significant increase in survival compared with that of the
WT (Fig. 1). We conclude that the capacity of these genotypes to
evolve resistance is not due to changes in intrinsic antibiotic sus-
ceptibility or elevated persister formation (19). What else might be
the cause? Genotypes with increased constitutive mutation rates
(mutators) are generally considered to have an important role
during microbial evolution (20, 21). They are frequently found in
evolving natural and experimental populations and facilitate
rapid adaptation during periods of stress, such as antibiotic expo-
sure (22–25). To measure mutation rates, we used a classic lac
reversion screen (26). We investigated the rates of six major types
of nucleotide substitutions (Table 2) by using six indicator E. coli
strains with different inactivating mutations at the same coding
position in the lacZ gene. Each strain is Lac� and reverts to Lac�

only when the appropriate codon is restored. The appropriate
gene deletion mutations were introduced into each of the six in-
dicator strains by P1 transduction and checked by PCR with site-
specific primer pairs. We followed established protocols (27) to
measure the frequency of Lac� revertants for each type of point
mutation. Mutation rates were calculated by using the MSS max-
imum-likelihood method (FALCOR package) (28, 29). Remark-
ably, all of the knockout strains have an elevated mutation rate and
their mutations partially influence different aspects of mutagene-
sis (Table 2).

The corresponding mutator genes have diverse molecular
functions. First, our list includes central components of methyl-
directed mismatch repair (mutS, mutH, and mutL) (30, 31). De-
fects in and downregulation of these genes are frequently associ-
ated with pathogenic populations, indicating a central role for this
pathway during bacterial adaptation in nature (22, 24, 32). Sec-
ond, defects in tRNA modification due to miaA deletion cause
reduced fidelity and efficiency of translation (33). This gene en-
codes a tRNA dimethylallyltransferase and is involved in hyper-
modification of the A37 base of certain tRNAs (34). Removal of
miaA results in an �50-fold increase in GC ¡ TA transversions
(31) (Table 2). While the cascade of events that promotes muta-
tions in �miaA mutant populations is far from clear, several clues

FIG 1 Survival of WT (BW25113, CGSC 7636) and mutant strains under
ciprofloxacin (200 ng/ml) treatment. We followed standard protocols. Strains
were exposed to ciprofloxacin in the late exponential phase, and viable cell
numbers were determined by counting colonies on agar plates (see references
14 and 18). None of the single-knockout mutants showed enhanced survival
under ciprofloxacin stress (P � 0.05, Wilcoxon test). Error bars indicate 95%
confidence intervals.

TABLE 2 Mutational spectra of gene knockout strains with enhanced evolutionary potentiala

Mutation

Mutation rate/generation (10�8)

CC101
(A·T ¡ C·G)

CC102
(G·C ¡ A·T)

CC103
(G·C ¡ C·G)

CC104
(G·C ¡ T·A)

CC105
(A·T ¡ T·A)

CC106
(A·T ¡ G·C)

None (WT) —b 1.6 — 2.3 0.4 —
�fur — 4 — 7.3 — 0.9
�miaA — — 4.5 95.3 68.2 —
�mutH — 88.3 1.5 6.7 19.5 82.1
�mutL — 203.5 2.3 2.9 12 80.6
�mutS — 18.2 2.6 28.6 0.5 312.7
a Deletions from KEIO mutants were transferred into the WT (P90C, CGSC 8083) containing different types of lacZ mutations (CC101 to CC106, CGSC 8095 to CGSC 8100) by P1
transduction. Mutational frequencies were determined by lacZ reversion method. Mutation rates were calculated by the MSS maximum-likelihood method (see reference 29).
b —, below detection limit (0.4/generation/108 cells).
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indicate that it is associated with translational stress-induced mu-
tagenesis (33). Our screen also identified a central regulator of
iron homeostasis (fur) (35) whose removal yields a mutator phe-
notype. Inactivation of fur leads to an increase in the intracellular
concentration of ferrous iron (Fe2�) (36), which accelerates the
Fenton reaction and potentiates oxidative damage-induced mu-
tagenesis (37). This possibility will be explored in a future work.

There are many further known null mutations that confer a
mild mutator phenotype, none of which appeared as positive hits
in our screen (31). We briefly investigated two well-described
genes (mutD and mutT). Despite the moderate mutator pheno-
types the corresponding null mutations confer (31), these genes
had no or only a minor effect on either resistance evolution (Fig.
2) or intrinsic susceptibility to ciprofloxacin (data not shown).

Why should this be so? As noted previously, adaptation to a
high ciprofloxacin dosage demands one or more specific muta-
tions (12). To investigate this issue, we isolated 10 ciprofloxacin-
resistant clones revealed by our screen (7 and 3 in the �mutS

mutant and WT genetic backgrounds, respectively). We se-
quenced the quinolone resistance-determining regions (QRDRs)
of the gyrA and parC genes and the marR gene. These genes are
known to bear mutations in ciprofloxacin-resistant isolates (38,
39). The major target protein (GyrA) of ciprofloxacin was regu-
larly mutated, and the same amino acid substitution occurred in
all 10 isolates (S83L substitution, Table 3). The very same muta-
tion is regularly observed in ciprofloxacin-resistant laboratory
(40) and clinical (40) E. coli strains. While multiple mutations
were observed in one clone only (Table 3), there are two reasons
why other unknown loci were also mutated. First, the measured
MICs for these clones are above the value the single S83L mutation
confers (41). This was achieved by engineering a single point mu-
tation in the WT background (by single-stranded oligonucleo-
tide-mediated recombineering [42]) and then measuring the MIC
for this strain (Table 3).

In addition, six strains showed slight but significant decreases
in intracellular levels of the fluorescent probe Hoechst 33342 (43),
suggesting either decreased porin or increased efflux pump activ-
ity (Table 3).

Contrary to our initial expectations, enhanced evolutionary
capacity is not due to changes in intrinsic antibiotic susceptibility.
This is somewhat surprising, as numerous E. coli single knockouts
have elevated growth rates under low quinolone stress (17), in-
cluding those lacking members of the general bacterial porin fam-
ily (e.g., OmpF) and a regulator of the AcrAB efflux pump (AcrR).
Although null mutations in the genes for these two proteins en-
hance viability under mild quinolone stress (44, 45), they had no
major effect on the frequency of resistant populations (Fig. 2).
Additionally, we failed to identify gene deletions that overlap
genes previously recognized as modulators of intrinsic antibiotic
tolerance (7). This result suggests that a minor variation in anti-
biotic tolerance has a relatively small impact on the evolution of
clinically significant resistance. As the main objective of this work
was to identify genes that mold the upper antibiotic dosage to
which populations can adapt, we expect that further genes with
mild positive or negative effects on the rate of resistance evolution
remain to be identified. Single gene deletions may also fail to un-
cover phenotypes if the underlying mutational pathways are re-
dundant. Regardless of these limitations, our work clearly demon-
strates that at high antibiotic concentrations, an enhanced
mutation supply can dramatically alter the outcome of selection.
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