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Synopsis: A novel, cysteine-containing fluorescent hexapeptide, N-acetyl-Tyr-Cys-Ser-Ser-

Cys-Tyr– (YY), targeting Cd(II) ion sensing, was synthesized on various solid supports 

including two resins, as well as glass and quartz surfaces. The synthesis was based on the 

Fmoc (9-fluorenylmethoxycarbonyl) and the APTES (3-aminopropyltriethoxysilane) 

methodologies on the resin and silica supports, respectively. The immobilized ligand, except 

when coupled to a hydrophobic benzhydrylamine resin, showed a remarkably efficient, pH-

dependent Cd(II) capturing ability with a maximum binding capacity around neutral pH. The 

effect of contact time and metal ion concentration was also studied with a hydrophilic resin 

supported peptide (YY-NTG). The interaction of YY-NTG with Cd(II) was investigated by 

pH-potentiometric titrations in aqueous samples containing the resin beads and Cd(II). These 

studies, together with metal ion capturing experiments under buffer-controlled pH, prove that 
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each immobilized peptide can bind one Cd(II) ion at pH=7.0 in the presence of one equivalent 

metal ion or metal ion excess. For Cd(II) binding to YY-NTG a notably high, K=1.310
10

 

apparent stability constant was determined (1:1 metal-to-ligand ratio, pH=7.0). Analytical 

results suggests that the concentration of Cd(II) can be measured below 200 nM with this 

silica-supported peptide. The usefulness of the probe was demonstrated by fluorescence 

spectroscopy. 

 

Keywords: immobilized synthetic oligopeptide, fluorescent quenching, molecular probe, 

cadmium(II) ion sensing 

 

Introduction 

 

The detection of toxic metal ions (e.g. heavy metals) in aqueous environmental and 

medical matrices has always been targeted by intense research. Well-established, routine 

spectroanalytical methods (e.g. ICP-AES, ICP-MS, GFAAS, etc.) are available to carry out 

such analyses, but optochemical sensors have also been suggested to be used for this purpose, 

by e.g. covalently attaching a suitable molecular probe to the surface of an optical fiber (e.g. 

lumogallion was used for the measurement of Al(III),
1
 dihydroxyisoamethryin for uranyl,

2
 

dithizone for Pb(II) 
3
 etc.). The advantages of optochemical sensors in this application include 

the possibility for in-situ/on-site or even remote, and fast trace analyses with low cost and 

very low sample requirements. A particularly interesting and promising research direction in 

this area is the utilization of bio-inspired receptors - thus making them a sub-group of 

biosensors. Proteins, oligopeptide sequences 
4
 or even simple cells all have selective metal 

binding characteristics that make them promising biochemical metal-ion receptors. Several 

studies already reported about the successful use of such receptors in optochemical sensors; 
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these were reviewed by Imperiali et. al. in 1999,
5
 Prodi et. al. in 2000,

6
 Verma and Singh in 

2005 
7
 and very recently by Liu et. al..

8
 The cell-based metal-ion biosensors are relatively 

cheap to produce, but often exhibit a slow response, obtaining a concentration-related signal 

from them is problematic and their use is limited to the conditions under which the given cells 

can live.
7–9

 As opposed to this, synthetic oligopeptide sensors are somewhat costlier, but can 

be made very selective and sensitive, and their operating conditions are less limited. 

Fluorophore labeled oligopeptides have been shown to be capable for the detection of 

transition metal ions via fluorescence signaling based on turn-off 
10,11

 turn-on 
12–14

 or 

intramolecular energy transfer based mechanisms.
15,16

 The design of the described peptides 

were inspired by e.g. zinc(II)-binding motifs of zinc-finger proteins 
15,17

 typical metal-binding 

sequences of various metalloproteins 
10,16,18,19

 or were rationally designed by the combination 

of metal-binding amino acids.
11–14,20,21

 Nevertheless, there have been very few attempts for 

the characterization of such sequences in immobilized forms 
10,22

 that would be essential from 

the point of view of sensor development. 

To date, only a few fluorescent probes have been described in the literature for the 

sensing of Cd(II) ions; a recent review by Dutta and Das 
23

 on toxic metal ion selective 

fluorescent sensors lists nine different Cd(II) probes. The developed fluorescent probes were 

mainly based on crown ether- 
24,25

 and anthracene-based 
26,27

 structures, but proprietary 

aromatic structures, including dipyridyl-phenantroline,
28

 as well as naphthyridine-based 
29

 and 

tricarbocyanine-based molecules 
30

 were also described. There are only a very few examples 

for fluorescent Cd(II)-sensing synthetic peptides 
18,31,32

 but none of these probes were 

immobilized on a solid support. Limit of detection (LOD) values are scarcely reported in the 

literature for the Cd(II) fluorescent probes, most probably due to the fact that LODs would be 

not only influenced by the probe but also largely by the sensor construction itself. The 
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published values range from nM to M 
18,23,32

 (for two reported peptidyl probes: 41 nM 
18

 and 

294 nM 
32

). 

The metal-ion binding features of several short oligopeptides, containing two cysteine 

residues, have already been investigated in our group from different perspectives.
33,34

 The 

studied 12-mer oligopeptide ligands proved to coordinate the studied group-12 metal ions 

(Zn(II), Cd(II) and Hg(II)) rather efficiently. Reports discussing the heavy metal ion binding 

capabilities of similar compounds, such as cysteine and poly-L-cysteine,
35,36

 as well as poly-

L-aspartate,
37

 coupled to various solid supports (e.g. controlled-pore glass or a porous carbon 

surface) can also be found in the chemical literature. 

In the present paper, we report on the synthesis and characterization of the Cd(II) 

binding properties of a novel, cysteine and tyrosine-containing hexapeptide receptor molecule 

(probe), immobilized on several solid supports and designed for potential future use in “turn-

off” type fluorescent optochemical sensors. 

 

 

Experimental 

 

Chemicals and materials 

 

Metal ion stock solutions for the Cd(II)-binding experiments were prepared from 

CdCl2  xH2O (Aldrich). A solution containing a mixture of Cd(II), Zn(II), Ni(II) and Pb(II) 

ions were prepared from Cd(NO3)2  4H2O (Alfa Aesar), Zn(NO3)2  6H2O (Fluka), 

Ni(NO3)26H2O (Sigma-Aldrich) and Pb(NO3)2 (Sigma-Aldrich). The concentration of all 

metal-ion stock solutions were determined by inductively coupled plasma mass spectrometry 

(see later). pH-metric titrations were performed using a NaOH (Aldrich) standard solution. 
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The chemicals and reagents used in the experiments, such as the protected N-α-Fmoc-O-tert-

butyl-L-tyrosine, N-α-Fmoc-S-trityl-L-cysteine and N-α-Fmoc-O-tert-butyl-L-serine amino 

acids, 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), 

N-hydroxybenzotriazole (HOBt), benzhydrylamine resin (BHA-resinHCl), Novasyn TG 

amino resin (all from Novabiochem), N,N-diisopropylethylamine (DIPEA), diethylether (both 

from Sigma), triisopropylsilane (TIS), 1,2-ethanedithiol (EDT), piperidine (all from Aldrich), 

pyridine (Merck), acetic anhydride (Fluka), trifluoroacetic acid (TFA), 

trifluoromethanesulfonic acid (TFMSA), thioanisole (TA), phenol (all from Sigma-Aldrich), 

1-methyl-2-pyrrolidone (NMP), dichloromethane, methanol (all from Molar Chemicals), 

acetonitrile (BDH Prolabo Chemicals), and 3-aminopropyltriethoxysilane (APTES) (Alfa 

Aesar) were all of analytical purity and were used without any further purification. Cleaning 

of glassware and silica supports were carried out using a mixture of Suprapur trace analytical 

purity cc. H2SO4 and 30 v/v% H2O2 (both from Merck) and thorough rinsing by deionized 

water from a Millipore Elix 5 + Synergy labwater system. Quartz microscope slides were 

purchased from Ted Pella, whereas glass slides from Menzel-Gläser were used. Calibration 

stock solutions and internal standard solution used in atomic mass spectrometry experiments 

were obtained from Agilent and Inorganic Ventures. 

 

Peptide synthesis on synthetic resins 

 

The hexapeptide N-acetyl-Tyr-Cys-Ser-Ser-Cys-Tyr– (referred to as “Ac-YCSSCY–“ 

or simply by “YY–“ further on) was synthesized on co-polymer resin beads by solid phase 

peptide synthesis using Fmoc methodology (Fmoc = 9-fluorenylmethoxycarbonyl). Two 

resins with different swelling properties were selected for use in the experiments after 

considering the need of performing side-chain de-protection without breaking the bonds 
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linking the peptide to the solid supports. The benzhydrylamine resin (BHA-resinHCl, 100-

200 mesh, loading: 0.77 mmole/g) with a co-poly(styrene-divinylbenzene) (1% DVB) matrix 

has a poor swelling character in water, nevertheless, the benzhydrylamine linker allows the 

cleavage of the peptide by TFMSA and thus the verification of the success of synthesis. The 

other investigated support, an aminomethyl functionalized resin (Novasyn TG amino resin, 90 

m, 0.26 mmole/g), swells very well in aqueous media owing to the polyethylene glycol 

polystyrene composite matrix, however, the acid-stability of the peptide-linkage does not 

allow the cleavage of the intact peptide for testing purposes. The two different resin-supported 

hexapeptides will be denoted in the following sections as YY-BHA and YY-NTG. 

The amino acid building blocks were applied in a four-fold excess compared to the 

given loading values of the resins and double-coupled in each step of the synthesis by 

applying HBTU (4.0 eq./building block), HOBt (4 eq./building block) and DIPEA (8.0 

eq./building block). The coupling reactions (t = 1 h) were performed in NMP. The Fmoc-

protecting groups were removed by using a solution of 20% v/v piperidine in NMP (t = 3 min, 

repeated 4 times). The success of the attachment of the amino acid residues were monitored 

by the Kaiser-test.
38

 In the case of successful couplings, the potentially remaining small 

fraction of unreacted amino nitrogens were acetylated with a mixture of acetic anhydride, 

DIPEA and dichloromethane (10–10–80% v/v) to minimize the possibility of the formation of 

any deleted peptide sequences (t = 15 min, repeated 2 times). The last coupling step was 

followed by the removal of the Fmoc protection from the terminal amino group of the Tyr-

residue which was acetylated afterwards. Before further synthetic steps, the resin was rinsed 

by dichloromethane and methanol and dried in vacuum. Side-chain protecting groups were 

removed by a mixture of TFA, H2O, EDT, phenol and TIS (92–2.5–2.5–2–1 % v/v) (t = 2 h) 

and the resin was washed by TFA, methanol, dichloromethane and finally by methanol and 
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dried in vacuum overnight. Both of the synthesized products were stored at 4 C, in argon 

atmosphere. 

The composition the final peptide synthesized on the BHA-resin was verified by 

cleaving the peptide off from the solid support in a form of peptide carboxamide. 100 mg of 

the peptide-decorated resin was stirred in a mixture of TA, EDT, TFMSA and TFA (8–4–8–

80 % v/v) for 1.5 h at room temperature. Before adding TFA and then TFMSA, the resin was 

pre-cooled at −5…−10 C on salted ice and stirred for 0.5 h in the presence of TA and EDT. 

The peptide was precipitated in cold diethyl ether and centrifuged for 15 min at 4000 rpm. 

The liquid phase was then removed and the crude product was dissolved in water and 

lyophilized to dryness. The obtained peptide was identified by ESI-MS. 

For the purposes of fluorescence experiments, the hexapeptide YY, with a 

carboxamide group at the C-terminus, was also prepared on a Rinka Amide AM resin 

(Novabiochem, 200-400 mesh, loading: 0.68 mmol/g) which allowed the cleaving of the 

peptide from the resin. The synthesis protocol, up to the last step, was identical to that 

described above, however, the handling of the resin with the mixture of TFA, H2O, EDT, 

phenol and TIS (see the composition above) for 3 h lead to a cleaving of the peptide off the 

beads in parallel with the removal of the amino acid sidechain protecting groups. The peptide 

was then precipitated in cold diethyl ether, dissolved in water and purified by RP-HPLC using 

a Supelco Discovery BIO Wide Pore C18 (2510 mm, 5 m) semi preparative column. The 

mixtures of water and acetonitrile containing 0.05% TFA (Eluent A: H2O-CH3CN 95:5 %v/v 

with 0.05% TFA, Eluent B: H2O-CH3CN 5:95 %v/v with 0.05% TFA) were used for the 

elution of the peptide, applying the following elution program: 

0-28 min: 12% B (isocratic); 28-31 min: 12-20% B (linear gradient); 31-35 min: 20% B 

(isocratic); 35-36 min: 20-12% B (linear gradient); 36-42 min: 12% B (isocratic). 
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The purity of the collected YY ligand was checked by HPLC (Rt = 24.2 min) and the peptide 

was identified by ESI-MS (see in the “Instrumental”). 

In order to obtain a reference material for the metal ion binding studies, a batch of the 

Novasyn TG amino resin was reacted with a mixture of acetic anhydride, DIPEA and 

dichloromethane (10–10–80% v/v). The aim of the acetylation of the terminal aminoalkyl 

functions was to prevent the Cd(II)-binding of the originally free primary amino groups. 

Please note, that the potentially unreacted amino groups of the peptide loaded Novasyn TG 

amino resin were also acetylated. This material will be referenced as capped-NTG throughout 

the text. 

  

Peptide synthesis on silica surfaces 

 

The peptide immobilization method developed was based on the procedures described 

by Carré 
39

 and M. Phaner-Goutorbe.
40

 The method involves a cleaning step and two synthesis 

steps. In the cleaning step, the surface of the silica supports (conventional glass or quartz 

slides cut to 15 x 25 x 1 mm size) was cleaned using an oxidizing, highly acidic solution (3:1 

ratio of cc. H2SO4 and 30% v/v H2O2) followed by sonication, and washing with deionized 

water as well as ethanol. The cleaning was completed by drying the silica supports under an 

infrared lamp.  

The silanization was carried out in a 10% v/v aqueous APTES solution. The contact 

time was 30 min, after which all supports were rinsed and dried. In the last step of the 

immobilization, the actual in-situ peptide synthesis, based on a modified Fmoc-methodology 

41
, was carried out by attaching the first amino acid block to the free amino group of APTES 

and then continuing the synthesis block-by-block. Accurate loadings for the synthesis could 

not be calculated, due to the (relative) roughness and variations in the density of the hydroxyl 
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groups of the silica surfaces. Hence, we employed a large excess (ca. ten-fold) of the building 

blocks and coupling reagents based on the ca. 2.5 per nm
2
 estimated density of hydroxil 

groups present on silica surfaces (which is equivalent to a total of ca. 1.87510
15

 binding sites, 

or 3.12510
−9

 mol, on both sides of the plates) and assuming a complete silanization. Each 

coupling was repeated twice (2+1 h). We did not perform the acetylation reaction after each 

coupling, only after adding the last amino acid. After the completion of the synthesis, the 

peptide chain was not cleaved from the surface, only the side-chain protecting groups were 

removed. The slides with the immobilized peptides were then rinsed with methanol, dried, 

and then stored under argon at 4 °C until further use. For easy referencing, the immobilized 

peptide on the glass and quartz surface will be abbreviated as YY-G and YY-Q.  

The silanization and peptide synthesis were both carried out in a PTFE/PP reactor 

(Figure S1 in the Supporting Information) specially designed and fabricated for these 

procedures. In the reactor, five silica plates, each of them measuring 15 x 25 x 1 mm, could be 

processed in parallel, employing approximately 8 mL reagents and shaking on a horizontal 

shaker.  

The silanization by APTES is a very important step in the immobilization procedure, 

as it is responsible for creating all binding sites for the peptide synthesis. Thus, the surface 

coverage, which in turn determines the overall analytical signal obtainable from the sensor 

transduction mechanism, largely depends on the success and efficiency of the silanization 

step. In spite of its importance, the success and quality of silanization by APTES or other 

functionalized silanes is rarely tested in the literature. In the present study, we performed 

various of such tests for both types of silica supports to characterize the treated surfaces; 

namely, we did SEM, FT-IR and AFM measurements and carried out the nanoparticle 

adsorption test.
39

 These tests proved the success of silanization. We hereby present the results 

for the AFM and nanoparticle adsorption method. Figure 1 shows AFM scans taken before 
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and after silanization from both types of supports on 1 µm
2
 areas in tapping mode. As it can 

be seen, the nature of the surface slightly changed due to the silanization; the number of the 

nanometer-scale surface corrugations largely increased. The APTES-silanized regions are 

identified as protruding, small, light coloured spots in the images, which cover the scanned 

areas evenly.
42

  

The nanoparticle adsorption test detects the presence of free amino groups on the substrate’s 

surface formed as a result of the successful APTES binding. If an APTES-treated silica slide 

is brought in contact with gold nanoparticles, the nanoparticles electrostatically attach 

themselves to the free amino groups, thereby staining the silica slide darker. In our 

experiments, the slides were immersed for 18 h in a nanosol containing 10 nm gold 

nanoparticles in 0.02 mM concentration. After rinsing the slides with deionized labwater and 

drying, the staining was apparent for the naked eye, and could also be detected by UV-Vis 

spectrophotometry (Figure 2). The gold nanoparticles did not stain the untreated silica. 

 

Instrumental 

 

Structural verification of the synthesized hexapeptide was performed by mass 

spectrometry, using a TSQ-7000 triple quadrupole mass spectrometer (Finnigan-MAT) 

equipped with an electrospray ionization (ESI) source. The instrument was operated in 

positive ion mode, with the ESI needle voltage set at 4.5 kV and using N2 as carrier gas. 

Analytical data for Ac-YCSSCY-NH2: m/z = 766.3 [M+H]
+
, whereas the calculated 

monoisotopic molecular mass is 765.25. 

In all experiments that required the determination of metal ion concentrations, an 

Agilent 7700x ICP-MS instrument was used, in the helium mode of the OSR
3
 collisional cell 

and 
103

Rh as internal standard. Multi-point calibration was performed using solutions prepared 
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from a certified stock standard solution (Inorganic Ventures) and trace quality deionized lab-

water (Millipore Elix Advantage 5 + Synergy). The 
111

Cd mass peak was used for 

quantitation. All labware was prepared for use by cleaning with ultratrace grade nitric and 

hydrochloric acids (Suprapur, Merck) followed by a thorough rinsing by the above labwater 

and dried under a laminar flow clean bench (AuroScience).    

Fluorimetric studies were performed on a Hitachi-F4500 spectrofluorimeter using a 

1.0 cm × 1.0 cm quartz cell equipped with a Teflon stopper. Emission spectra were recorded 

in the wavelength range of 285 – 400 nm with excitation at 278 nm, applying 5 nm and 10 nm 

slit widths for the exciting and emitted beams, respectively. The experiments were performed 

at pH = 7.0 (t = 25 C) and with a varying Cd(II)-concentration (cCd(II) = 1.25 – 30 M) 

whereas the concentration of the peptide was kept constant at cYY = 10 M. After elimination 

of the background, the spectra were corrected for the inner filter effects according to the 

equation:
43

 

  2/
10 emex

obscorr

AA
FF


  

where Fcorr and Fobs are the corrected and observed fluorescence intensities, while Aex and Aem 

stand for the observed absorbances of the samples at the excitation and emission wavelengths, 

respectively. 

Protonation and Cd(II)-binding processes of YY-NTG were followed by 

potentiometric pH titration in aqueous mixtures (I = 0.1 M NaClO4, T = 298.0 ± 0.1 K) 

containing ca. 0.03 g of the resin both in the Cd(II)-containing and Cd(II)-free samples. An 

automatic titration set including a PC controlled Dosimat 665 (Metrohm) autoburette and an 

Orion 710A precision digital pH-meter equipped with a Metrohm Micro pH glass electrode 

was used during these experiments. A continuous argon flow through the titration cell 

prevented the samples from contact with ambient air, which could have resulted in an 

oxidation of the peptide. Accurate conversion of the relative electrode potential values to 
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hydrogen ion concentrations was done by a method described in one of our earlier 

publications.
34

 The protonation and complex formation equilibria of the immobilized ligand 

were characterized by the following general equilibrium process: 

rLqHpM 
rqp LHM  

rqp

rqp

LHM
]L[]H[]M[

]LHM[

rqp


 

where M denotes the metal ion, L the non-protonated immobilized YY ligand, and H the 

protons. Charges are omitted for simplicity, but can be easily calculated taking into account 

the composition of the fully protonated hexapeptide (H4L). Formation constants for the 

protonation and metal ion binding processes and according to the above equations were 

calculated by the computer program PSEQUAD.
44

 Protonation constants were determined 

from two independent titrations (60-80 data points per titration). Several titrations were 

carried out with different Cd(II):immobilized YY ratios (i.e. 0.5:1, 1:1 and 2:1) calculated on 

the basis of the theoretical loading of the resin and the applied quantity of YY-NTG (ca. 30 

mg for each titration). The applicability of the theoretical peptide content of the resin was 

confirmed by the evaluation of potentiometric titrations and also indirectly by a metal-

capturing experiment performed in a solution buffered to pH = 7.0 (see the chapter “Effect of 

pH buffering” later in the text). The deviation of the log values for the protonation processes 

of YY-NTG determined from the parallel experiments was around 0.1 log unit which is a 

reasonable uncertainty for such an immobilized system and shows a good reproducibility of 

the data. Each titration curve contained 60-80 data points. In the presence of metal ion excess, 

precipitate formation could be observed above pH ~ 8 which was also reflected by the shape 

of the titration curves, and thus pH-potentiometric data of samples with metal ion excess were 

not evaluated. Owing to the slower equilibration as compared to titrations in homogenous 

aqueous solutions, waiting times between the dosing steps of base addition steps were allowed 
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to change according to the need for pH-stabilization which resulted in 3 – 4 h titration time. 

Neither the shape of the titration curves, nor the determined formation constants showed any 

sign of polyelectrolyte effect, that is the immobilized ligands could be handled as independent 

molecules (similarly to a homogenous solution). Nevertheless, owing to processes occurring 

on a solid-liquid interface and the technical difficulties of performing the titration in solutions 

containing resin beads, the accuracy of the results was somewhat poorer than that achievable 

with homogeneous aqueous samples and the obtained data should be considered as good 

estimates only. 

Testing of the success of the silanization of silica substrates was performed using a 

PSIA XE100 type atomic force microscope (AFM) in tapping mode. The investigated area 

varied between 0.5-5 µm
2
. The presence of free amino groups (APTES) on the surface of the 

supports was tested by FT-IR measurements and the nanoparticle adsorption method. The 

UV-Vis spectra of untreated and gold nanosol-treated silica surfaces were recorded using a 

Thermo Scientific Evolution 220 spectrometer, in the range between 400-800 nm. FT-IR 

measurements were performed using a Bio-Rad Digilab Division FTS-65A/896 Fourier 

transform infrared spectrometer equipped with a Harrick's Meridian® SplitPea single-

reflection diamond attenuated total reflectance (ATR) accessory. All infrared spectra were 

recorded between 400 and 4000 cm
−1

, at 4 cm
−1

 optical resolution and by averaging 256 

interferograms. 

 

Sample preparation for metal capturing studies 

 

The Cd(II)-binding properties of the immobilized synthetic hexapeptide probe was 

investigated on all supports (resin beads and silica plates). For the purposes of these studies, 

all samples were prepared according to the concept described in this section for the resin-
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based samples. 10.0 mg (1 %) of the selected resin-supported peptide was added to a glass 

vessel containing 10.00 mL of a CdCl2 solution, whose pH was pre-adjusted by strong 

bases/acids (NaOH/HClO4 solutions) to the desired value and carefully degassed by argon to 

prevent the potential oxidation of the cysteine residues of the peptide. Concentration of the 

CdCl2 solution was varied in the range of 6.2×10
−5

 – 7.1×10
−4

 M. The metal ion 

concentrations applied were calculated based on the theoretical peptide loading of the resins 

and the mass-increase during synthesis, according to  

adi

i

1.0 ML

L
L


  

where L stands for the loading of the resin after synthesis, Li denotes the original loading 

value and Mad is the molar mass of the added peptide fragment. Based on these calculations, 

the loadings of YY-BHA and YY-NTG are 0.497×10
−3

 and 0.218×10
−3

 moleg
−1

, 

respectively. The applied CdCl2 concentrations for a specific experiment were calculated by 

considering the amount of one equivalent of Cd(II) that could bind to each immobilized 

ligand. In this approach, the theoretical Cd(II)-binding capacity of YY-BHA and YY-NTG 

should be 0.497×10
−3

 mole g
−1

 (= 55.9 mg/g) and 0.218×10
−3

 mole g
−1

 (= 24.5 mg/g), 

respectively. Relative to this quantity, the 10.0 mL CdCl2 samples contained ca. 33, 66, 100, 

150, 200 or 300 % Cd(II), depending on the type of experiment to be performed. The resin 

batches were contacted with the CdCl2 solutions for 60 min with vertical rotational shaking 

that was followed by centrifugation (10 min, 4000 rpm) assuring the settling of resin beads. 1 

mL liquid aliquots were taken from each samples and diluted to 100 mL before determining 

the residual Cd concentration by ICP-MS. In the experiments involving the hexapeptide 

immobilized on silica plate supports (YY-G and YY-Q), the same approach as above was 

employed, taking also into account the significantly lower capacity (surface ligand density) of 

these samples. All of the data presented below is the result of triplicate experiments except the 
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Cd(II) binding capacity data for  YY-NTG, which was determined by experiments carried out 

in five repetitions. 

 For the metal ion selectivity experiments, a solution containing the mixture of Cd(II), 

Zn(II) Ni(II) and Pb(II) ions, as their nitrates, was added to the immobilized peptide so that 

the final concentrations of each metal ions in a 10.0 mL sample were ca. 50 or 100 % relative 

to the theoretical loading of YY-NTG, i.e. 1.15×10
−3

 M or 2.30×10
−3

 M. 

 

 

Results and discussion 

 

The hexapeptide probe 

 

The studied oligopeptide was designed after one of nature’s well-known metal ion 

capturing short amino acid sequence, Cys-X-X-Cys, characteristic to the metal binding 

domains of a variety of metalloproteins like methallothioneins of various types 
45,46

 or several 

metal sequestering and transport proteins including e.g. the bacterial MerP,
47

 the P1-type 

heavy metal transporting ATPases ZntA and CadA from bacteria 
48

 or the human ATP7A and 

ATP7B.
49

 The fluorophore tyrosine residues were introduced as potential transducing 

elements for future application of the ligand as a metal ion receptor in optochemical sensors. 

The two internal polar serine units allow for a good accessibility of the peptide chain by water 

molecules. Peptides containing the Cys-X-X-Cys fragment were shown in the literature to 

form remarkably stable complexes with various soft/borderline metal ions, including Zn(II) or 

Cd(II) 
50,51

 and Hg(II) 
50,52

 owing to the high affinity of the Cys thiolates towards these ions. 

Indeed, Cys-thiolate was shown to be the primary anchor for Cd(II) also in cases when other 

potential donor groups were present.
53

 Serine and tyrosine sidechains have been proposed to 
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have only a weak effect, if any, on the stability of Cd(II)-peptide complexes 
54

 and thus Ser 

and Tyr residues in the presently studied ligand are not supposed to play a significant role in 

the binding of Cd(II). It is also worth noting that Cd(II)-induced amide nitrogen deprotonation 

and coordination has been ruled out in case of any previously studied cysteine containing 

peptides.
54

 

Investigation of the Cd(II)-binding features of the designed hexapeptide in aqueous 

solution was meant to provide valuable information in advance of studies on the solid 

supported systems. However, the observed poor solubility of the ligand allowed only the 

testing of the effect of Cd(II)-binding on the fluorescence intensity attributed to the tyrosine 

fluorophores. The stepwise addition of the metal ion to the solution of YY resulted in a 

fluorescence quenching up to ca. a 1:1 Cd(II) to YY ratio above which no further notable 

decrease of intensity appeared (Figure 3). The shape of the depicted trace of fluorescence 

spectra ( = 308 nm) and the remarkable drop of intensity already at a 0.5:1 metal ion to 

ligand ratio suggest that the observed quenching of fluorescence is not due to a single bound 

species. Nevertheless, the experiment proves that the tested Tyr-containing  molecular probe 

can indeed signal the binding of the metal ion via fluorescence transduction, thus potentially 

can be used in an optochemical construction. 

The designed hexapeptide was immobilized, in other words synthesized directly, on 

the surface of solid supports (resin beads and silica plates), according to the procedures 

described in chapters “Peptide synthesis on synthetic resins” and “Peptide synthesis on silica 

surfaces”. 

 

Study of the cadmium(II) binding properties 
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Cd(II)-binding properties of YY-BHA and YY-NTG were studied under various 

starting conditions and the latter one was compared to the ability of the capped-NTG (a 

reference containing no peptide) in capturing metal ions from liquid samples. For the capped-

NTG, no decrease of the Cd(II) concentration at any pH was observed after contacting with 

CdCl2 solutions for 60 min. 

The two resin supports showed fundamentally different behavior in terms of the metal 

ion capturing properties of the peptide immobilized on their surface. While YY-NTG 

appeared to have a remarkable Cd(II)-coordination ability, practically no Cd(II) ion binding 

was observed for YY-BHA. Most probably this difference can be attributed to the different 

swelling of the resins; the PEG-based NTG resin swells significantly better. Accordingly, 

detailed studies were only performed with the YY-NTG, as detailed below. For practical 

reasons, these detailed studies were not carried out with YY-G and YY-Q, only the capacity 

measurements, as described later.  

  

 Effect of contact time 

Studies were also carried out to determine the optimal contact time needed to complete 

the Cd(II)-binding by the immobilized peptides. Batches of YY-NTG (m = 10.0 mg each) 

were contacted with 10.0 mL of CdCl2 solution adjusted to pH = 7.0, containing a ca. 1.5-fold 

excess of Cd(II) over the immobilized ligand, for various times (durations of 15, 30, 60, 120, 

180 min were tested). It was found that after as short as only 15 min, the level of Cd(II) 

binding reached ca. 80% of the final (saturation) capacity. The Cd(II) binding level remained 

the same, within experimental error, for contact times over 30 min. However, in order to 

ensure a complete equilibration, a 60 min reaction time was applied in later experiments 

monitoring the effect of pH and Cd(II) concentration. 
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Effect of pH 

The effect of pH on the Cd(II)-binding of YY-NTG was monitored in samples 

containing a ca. 1.5-fold excess of metal ion relative to the quantity of immobilized ligand 

present in 10.0 mg of YY-NTG. As seen on the bound Cd(II) vs. pH graph (Figure 4), 

practically no metal ion binding occurs at pH 2. The increase of pH results in a notable 

increase of the Cd(II)-capturing ability which levels off around pH ~ 4–5. The observed 

Cd(II)-binding capacity (ca. 0.12 mg /10 mg) is about 49% of the nominal value (0.245 mg/10 

mg) which would refer to the situation that all binding site of the resin was fully loaded with 

the ligand and each YY peptide would bind one equivalent of Cd(II). Experiments at higher 

pH (pH = 8.0 and 9.0) were also conducted, however, the formation of white flaky precipitate 

was observed, most likely indicating the hydrolysis of Cd(II). 

  

Effect of metal ion concentration 

The influence of the total concentration of Cd(II) at pH = 7.0 was monitored in a series 

of experiments where the Cd(II):peptide ratio was varied between 1:3 and 3:1. The obtained 

profile (Figure 5) shows a monotone increase with a saturation shape leveling at a value of ca. 

0.135 mg Cd(II)/10.0 mg YY-NTG. Again, this binding capacity is about 50% smaller than 

the nominal value. It has to be kept in mind, however, that there can be unreacted linkage sites 

in the resin that would mean a smaller theoretical capacity as compared to the nominal 0.245 

mg/10 mg. Besides, the homogeneity of YY-NTG may not be perfect which can result in a 

certain level of fluctuation of the observed metal ion binding capacity, as is discussed in the 

“Assessment of the analytical features of the probe” section. Nevertheless, the presented 

results clearly show that YY-NTG is capable of the efficient capturing of Cd(II) under the 

applied conditions. 
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Equilibrium studies 

In order to further elucidate the Cd(II)-binding properties of YY-NTG, pH-

potentiometric titrations were performed in aqueous samples between pH 2 – 11, containing a 

known, weighed amount of YY-NTG beads (ca. 30.0 mg) in the absence and presence of 

Cd(II) ions. 

Titration curves of the resin without Cd(II) reflect overlapping deprotonation 

processes taking place in the basic pH-range (Figure 6). Data could be well fitted by 

considering four consecutive deprotonation steps corresponding to dissociation of the two 

cysteine sidechain thiol and two tyrosine sidechain phenol groups. The determined pKa values 

(shown in Table 1) fall in the range characteristic to Cys 
33,51

 and Tyr residues 
55,56

 within a 

peptide chain. 

In the presence of Cd(II), the overall shape of the curves are similar, for the first look, to that 

of the metal ion free solution. However, ca. 1.5 and 2 equivalents per ligand extra base 

consumption occurs up to pH ~ 7 in the samples containing Cd(II) and YY-NTG in a 0.5:1 

and ~1:1 ratio, respectively (see Figure 6). Please note that the latter titration, as a precaution, 

was carried out using a small (10 %) YY-NTG excess for preventing a possible hydrolysis of 

Cd(II) ions. According to the well-known strong affinity of Cd(II) towards the soft sulfur 

donors of the Cys-thiolate group, the observed base consumption below pH 7 is the result of 

Cd(II)-induced Cys-deprotonation and metal ion binding to these residues taking place 

already at a relatively low pH. This observation is fully coherent with literature data published 

on the interaction of Cd(II) with short Cys-containing peptides.
51,53,57

 In the equimolar system 

of Cd(II) and YY-NTG, the coordination of both Cys residues is obvious, based on the 

titration data, whereas the deprotonation of the Tyr-side chains are only slightly affected, and 

these groups very likely do not participate in Cd(II)-binding. Since more than one base 

equivalent is consumed up to neutral pH in the Cd(II):YY-NTG 0.5:1 system, the binding of 
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more than two cysteines to Cd(II) can be proposed. It means that besides/instead of 1:1 

species, bis-ligand type structures, in which two immobilized YY are bound to one Cd(II),  

also have to be present. The best model obtained in the evaluation of the potentiometric 

results are given in Table 1 representing also the overall stabilities of the Cd(II)-YY-NTG 

associates (see the Experimental for the definitions). 

The species distribution diagrams (Figure 7), calculated for the conditions of the metal 

ion capturing studies (and for the potentiometric studies in the Supporting Information, Figure 

S2.A-B), show that the formation of metal ion complexes starts slightly below pH 3 and the 

majority of Cd(II) is bound to the ligand already at pH ~ 5. CdH2L, with two coordinated Cys-

thiolates is a major species in a broad pH-range. However, a bis-complex, CdH5L2, becomes 

dominant when the immobilized peptide is in an excess over the added Cd(II) (see the solid 

lines on Figure 7 (and Figure S2.B)). A probable reason for the relatively high stability of this 

bis-complex lies in the immobilized nature of the ligands (close vicinity of available donor 

groups) and thus the binding of a second molecule may be favored when sub-equivalent 

Cd(II) concentration is present. The deprotonation process leading to CdH4L2 is presumably a 

proton release from the second Cys residue, nevertheless CdHL and CdH3L2 are likely to be 

formed by the deprotonation of Tyr-phenol side chains (taking place only above pH ~ 9, see 

data in Table 1 and the species distribution diagrams, Figure S2.A-B, in the Supporting 

Information). The apparent stability constant (Kapp = 1.310
10

) calculated for pH = 7.0 at a 1:1 

Cd(II):YY-NTG ratio based on the equation 

freefree

2

bound

2

app
NTG-YYCd

Cd

][][

][










K  

is more than 70 times higher compared to the calculated stability of a 12-mer peptide 

containing other coordinating donor groups (His and Asp) besides two cysteines 
33

 and ca. 8 – 

140 times higher than the stabilities that can be calculated for a other relatively short peptides 
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where Cd(II) was shown to be coordinated by the two cysteine residues of the ligands.
50,51,57

 

A column chart demonstrating the apparent stabilities for the Cd(II)-binding of these ligands 

at pH 7.0 as compared to that of YY-NTG is included in the Supporting Information (Figure 

S3). This stability difference, in favor of YY-NTG, may originate partly from the 

immobilized, more rigid nature of the studied YY ligand, i.e. less entropy is lost upon metal 

ion binding as compared to the metal ion binding process of the peptides studied in solution 

phase. Stability data for the Cd(II)-binding of immobilized cysteine containing peptides are 

very scarce in the literature and even the available results are difficult to compare to YY-NTG 

due to e.g. the polymeric nature/behavior of the surface-linked systems (see below) or to the 

different applied conditions (i.e. pH, temperature). Polycysteine and cysteine, when coupled 

to a porous carbon surface, were shown to possess several type of binding sites displaying 

variable binding affinities, as determined by breakthrough experiments.
35

 In contrast, cysteine 

immobilized onto poly(hydroxyethylmethacrylate) microbeads or monoliths was found to 

capture one Cd(II) ion per amino acid units and the determined stabilities were Kapp = 

4.3510
4
 and 5.28×10

4
 M

−1
, respectively.

58,59
 

In summary, the determined Kapp value for the system definitely reflects a remarkable binding 

affinity of the YY hexapeptide towards Cd(II). 

The distribution of the immobilized YY between the non-bound (H4L) and the various 

Cd(II)-bound forms is in a good coherence with the binding capacity determined by the metal 

ion capturing studies with ICP-MS. According to Figure 7, a significant fraction of YY is in a 

non-bound state at pH ~ 3.8, the pH observed at the end of the Cd(II)-binding experiments. 

Indeed, ca. 60 and 40% of YY is in its fully protonated H4L form when the Cd(II):YY-NTG 

ratio is 0.66:1 (Figure 7 solid lines) and 1.5:1 (Figure 7 dashed lines), respectively. This is 

exactly what the bound Cd(II) vs. cCd(II) and the bound Cd(II) vs. pH profiles imply (Figure 5 

and Figure 6, respectively). On the other hand, in the presence of Cd(II)-excess, the 
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immobilized ligands should be fully loaded by Cd(II) which is proved by the metal ion 

binding experiment performed under controlled pH (see in a later chapter). 

The pH-potentiometric results reflect a Cd(II)-concentration dependent equilibrium 

between various Cd(II)-YY-NTG species in the whole studied pH-range. Due to this, the 

strong Cd(II)-binding affinity of the hexapeptide ligand can be utilized for analytical purposes 

in a future construct only under controlled pH and with the support of a multipoint calibration 

covering the complete applicable concentration range of the probe. 

 

 

Assessment of the analytical features of the probe 

 

In view of potential sensor applications, some analytical features of the molecular 

probe were also tested. For practical reasons, already outlined earlier, most of these tests were 

carried out with YY-NTG samples, but some were also conducted on YY-G or YY-Q. 

 

Capacity 

As was alluded to above, YY-BHA was not capable of capturing Cd(II) neither at 

acidic nor at neutral pH. This is presumably due to the hydrophobic bead material that causes 

a very poor swelling of the resin in aqueous matrices which may lead to the inaccessibility of 

the covalently attached YY peptides by the metal ions from the solution phase. On the other 

hand, YY-NTG was proved to have a remarkable potential in the capturing of Cd(II). The 

Cd(II) capacity of YY-NTG was determined from 5 parallel experiments using a 4.08×10
−4

 M 

CdCl2 solution with a pH adjusted to ~6.0 (to minimize the risk of metal ion hydrolysis) 

before adding the 10.0 mg batches of YY-NTG into 10.0 mL of the metal ion solution. The 

capacity measured this way is 11.5 mg/g with a repeatability of 10% RSD. 
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We also measured the capacity of YY-Q samples, using 10 mL of a 100 μg/L Cd solution set 

to pH= 7.0 with HEPES buffer. It was found that each YY-Q plate bound an average of 0.225 

μg Cd(II), which is 64.1% of the estimated capacity (0.351 μg/plate). This finding indicates a 

good efficiency of the synthesis (immobilization) and of the Cd(II) binding also on silica 

supports.  

It is worth mentioning that the above capacity values were found to be further 

improvable by pH buffering, as can be read in the following chapter. Furthermore, data in 

Figures 3 and 5 suggests that at least one order of magnitude dynamic range can be achieved 

using this molecular probe and a multipoint calibration curve.       

 

Effect of pH buffering 

The pH of each sample was also monitored after a reaction with the resin beads had 

been completed. It was observed that the pH of the solutions, initially adjusted to pH = 5.0 or 

above before the Cd(II) loading, shifted towards a more acidic pH during the experiments. In 

fact, the post-loading pH values were found to be around 3.8 independently from the starting 

pH value. This effect is caused by the release of protons from the ligands as a result of metal 

ion coordination. By glancing at Figure 4, it can be realized that this acidic pH shift towards 

values of about pH=4 results in a significant loss in cadmium(II) binding capacity. Similar 

pH-dependence was observed previously in the Cd
2+

, Cu
2+

 and Zn
2+

 binding efficiency of  

EDTA immobilized on a silica support, which was explained by the availability of a 

decreasing fraction of ionized donor groups caused by the decrease of the pH
60

  In order to 

test the capacity of YY-NTG under strictly controlled pH, we prepared a sample containing a 

1.5-fold excess of metal ion relative to the quantity of immobilized ligand as well as HEPES 

buffer (c = 0.02 M) with the pH adjusted to 7.0. After the usual 60 min equilibration, we 

managed to come near the nominal capacity of YY-NTG (assuming that one Cd(II) per 
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immobilized ligand is captured). The determined metal ion binding capacity of YY-NTG 

under these conditions was found to be 0.243 mg/10.0 mg. These findings efficiently illustrate 

the necessity of pH buffering in an analytical application of the YY probe. We would also like 

to point out to that the near-neutral pH of most natural water samples (pH= 6-7.5) is in fact 

ideal for the studied probe (highest capacity). 

 

Probe regeneration and ageing 

We have also tested whether the used YY-NTG samples could be regenerated, as this 

is an important feature of a molecular probe meant for sensor applications. For this purpose, 

an efficient polydentate metal ion chelator, EDTA, was utilized after an acidic treatment of 

the molecular probe. Based on the formation constant of the Cd(EDTA) complex (log = 

16.50 
61

) and the acid dissociation constants of EDTA 
61

 one can calculate an apparent 

stability constant for the same conditions used in the calculations for YY-NTG (see in 

“Equilibrium studies”). The Kapp value for the Cd(II) – EDTA system at pH = 7.0 is 1.210
13

, 

which is almost three orders of magnitude larger than the apparent stability constant for Cd(II) 

– YY-NTG (see before). This data supports the expectation that EDTA can be efficiently used 

for removing Cd(II) from the probe. 

The collected, formerly Cd(II)-loaded YY-NTG resin beads were washed with 

deionized water, treated with a 0.01 M HCl solution, washed again and then soaked in a 0.02 

M EDTA solution for 30 min. Finally, the resin beads were washed again, rinsed with 

methanol and dried overnight under vacuum. Repeated Cd(II)-binding experiments with the 

previously used YY-NTG showed a full recovery (105.4 %) of metal ion binding. 

The capacity of YY-NTG was observed to slightly decrease over time (ageing). A ca. 

20 % capacity loss was observed after several months of keeping the resin under argon 

atmosphere at t = 4 C. The capacity loss was found to be fully recoverable by the addition of 
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dithiothreitol (c = 0.01 M solution), a reduction agent, and stirring for 60 min. This finding 

proves that the ageing effect is due to the slow oxidation of the cysteine moieties of the 

peptide caused by oxygen traces. 

 

Metal ion selectivity 

We also briefly studied the selectivity of the YY-NTG hexapeptide probe for a few 

selected metal ions. In this test, the metal ion binding experiments were performed by 

applying solutions that contained Cd(II), Zn(II), Ni(II) and Pb(II) ions in a 1:1:1:1 ratio with 

total concentrations representing ca. two- and four-fold metal ion excess relative to the 

theoretical capacity of YY-NTG. The bound amounts of Zn(II), Ni(II) and Pb(II) ions were 

found to be 15%, 55% and 90%, respectively, relative to the bound amount of Cd(II) (100 %). 

This trend is in accordance with the literature data for the order of the affinities of these metal 

ions towards 2-Cys containing peptides or other dithiol compounds.
33,34,51,62,63

 

 

 

Conclusions 

 

The novel hexapeptide Ac-YCSSCY–, either immobilized on the surface of a 

hydrophilic resin (YY-NTG), or glass or quartz surfaces (YY-G and YY-Q), showed a 

remarkable efficiency in the binding of Cd(II). The capturing of Cd(II) is pH-dependent with 

an optimum around neutral pH. As proved by equilibrium studies each immobilized peptide 

can bind one Cd(II) ion in the presence of one equivalent or more metal ion. Under metal 

deficient conditions, two peptides may also coordinate to the captured Cd(II) ions suggesting 

that a potential sensor application of the studied molecular probe would require a multipoint 

calibration and a controlled pH for metal ion sensing. The resin supported probe can be easily 
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regenerated by applying a metal ion chelator, such as EDTA. It was also successfully 

demonstrated that the developed molecular probe provides a sensitive fluorescence signal 

(quenching) as a function of Cd(II) concentration. Assuming a practical 10 mL volume for the 

sample solution and a YY receptor coverage on a silica fiber optic chemical sensor active 

surface, similar to the coverage determined in our experiments for quartz substrates (YY-Q), 

it is estimated that this molecular probe can be used for the measurement of Cd(II) around and 

below 22.5 µg/L (200 nM) concentration. This value is well within the range of the LOD 

values published in the literature for other fluorescent Cd(II)-sensing peptidyl probes.
18,32

  

Variants of the studied short peptide sequence, in which one of the Tyr residues is 

substituted with an Asp unit and thereby have considerably better solubility in water and 

therefore allow more detailed equilibrium studies in the liquid phase, can also be synthesized. 

At present, this synthesis and extensive characterization work is underway in our laboratory.  

 

 

Acknowledgments 

 

The authors acknowledge the financial support received from the European Union’s 

European Regional Development Fund, provided within the frameworks of the Hungary-

Romania Cross-Border Cooperation Programme 2007-2013 under project No. 

HURO/1001/232/2.2.2. (METCAP). AJ wishes to thank the financial support of the János 

Bolyai Research Grant from the Hungarian Academy of Sciences. CM acknowledges the 

financial support of the strategic grant POSDRU/159/1.5/S/137070 (2014) of the Ministry of 

National Education, Romania, co-financed by the European Social Fund-Investing in People, 

within the Sectorial Operational Programme Human Resources Development 2007-2013. The 



27 
 

authors are indebted to Judit Kopniczki (University of Szeged, Department of Optics and 

Quantum Electronics) for her kind assistance in the AFM and SEM experiments. 

 

 

References 

1 S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, T. M. Monro, Langmuir 

2011, 27, 5680. 

2 N. W. Hayes, C. J. Tremlett, P. J. Melfi, J. D. Sessler, A. M. Shaw, Analyst 2008, 133, 616. 

3 H. Guillemain, M. Rajarajan, T. Sun, K. T. V Grattan, Meas. Sci. Technol. 2009, 20, 045207. 

4 L. Malachowski, J. L. Stair, J. A. Holcombe, Pure Appl. Chem. 2004, 76, 777. 

5 B. Imperiali, D. A. Pearce, J.-E. Sohna Sohna, G. Walkup, A. Torrado, SPIE Proc., ed. by M. 

Fallahi, B. I. Swanson, Boston, MA, 1999, pp. 135–143. 

6 L. Prodi, Coord. Chem. Rev. 2000, 205, 59. 

7 N. Verma, M. Singh, BioMetals 2005, 18, 121. 

8 Q. Liu, J. Wang, B. J. Boyd, Talanta 2015, 136, 114. 

9 I. Bontidean, J. R. Lloyd, J. L. Hobman, J. R. Wilson, E. Csöregi, B. Mattiasson, N. L. Brown, 

J. Inorg. Biochem. 2000, 79, 225. 

10 A. Torrado, G. K. Walkup, B. Imperiali, J. Am. Chem. Soc. 1998, 120, 609. 

11 L. N. Neupane, P. Thirupathi, S. Jang, M. J. Jang, J. H. Kim, K.-H. Lee, Talanta 2011, 85, 

1566. 

12 J.-M. Kim, C. R. Lohani, L. N. Neupane, Y. Choi, K.-H. Lee, Chem. Commun. (Camb). 2012, 

48, 3012. 

13 B. P. Joshi, C. R. Lohani, K.-H. Lee, Org. Biomol. Chem. 2010, 8, 3220. 

14 P. Wang, L. Liu, P. Zhou, W. Wu, J. Wu, W. Liu, Y. Tang, Biosens. Bioelectron. 2015, 72, 80. 

15 H. A. Godwin, J. M. Berg, J. Am. Chem. Soc. 1996, 118, 6514. 

16 B. R. White, H. M. Liljestrand, J. A. Holcombe, Analyst 2008, 133, 65. 

17 G. K. Walkup, B. Imperiali, J. Am. Chem. Soc. 1997, 119, 3443. 

18 B. P. Joshi, J. Park, W. I. Lee, K.-H. Lee, Talanta 2009, 78, 903. 



28 
 

19 T. Kochańczyk, P. Jakimowicz, A. Krężel, Chem. Commun. (Camb). 2013, 49, 1312. 

20 B. P. Joshi, W.-M. Cho, J. Kim, J. Yoon, K.-H. Lee, Bioorg. Med. Chem. Lett. 2007, 17, 6425. 

21 B. P. Joshi, K.-H. Lee, Bioorg. Med. Chem. 2008, 16, 8501. 

22 B. P. Joshi, J.-Y. Park, K.-H. Lee, Sensors Actuators B Chem. 2014, 191, 122. 

23 M. Dutta, D. Das, TrAC Trends Anal. Chem. 2012, 32, 113. 

24 L. Prodi, M. Montalti, N. Zaccheroni, J. S. Bradshaw, R. M. Izatt, P. B. Savage, Tetrahedron 

Lett. 2001, 42, 2941. 

25 R. T. Bronson, D. J. Michaelis, R. D. Lamb, G. A. Husseini, P. B. Farnsworth, M. R. Linford, 

R. M. Izatt, J. S. Bradshaw, P. B. Savage, Org. Lett. 2005, 7, 1105. 

26 M. Choi, M. Kim, K. D. Lee, K.-N. Han, I.-A. Yoon, H.-J. Chung, J. Yoon, Org. Lett. 2001, 3, 

3455. 

27 T. Gunnlaugsson, T. Clive Lee, R. Parkesh, Tetrahedron 2004, 60, 11239. 

28 G. M. Cockrell, G. Zhang, D. G. VanDerveer, R. P. Thummel, R. D. Hancock, J. Am. Chem. 

Soc. 2008, 130, 1420. 

29 Y. Zhou, Y. Xiao, X. Qian, Tetrahedron Lett. 2008, 49, 3380. 

30 Y. Yang, T. Cheng, W. Zhu, Y. Xu, X. Qian, Org. Lett. 2011, 13, 264. 

31 J. M. Kim, B. P. Joshi, K. H. Lee, Bull. Korean Chem. Soc. 2010, 31, 2537. 

32 Y. Li, L. Li, X. Pu, G. Ma, E. Wang, J. Kong, Z. Liu, Y. Liu, Bioorg. Med. Chem. Lett. 2012, 

22, 4014. 

33 A. Jancsó, D. Szunyogh, F. H. Larsen, P. W. Thulstrup, N. J. Christensen, B. Gyurcsik, L. 

Hemmingsen, Metallomics 2011, 3, 1331. 

34 A. Jancsó, B. Gyurcsik, E. Mesterházy, R. Berkecz, J. Inorg. Biochem. 2013, 126, 96. 

35 T. C. Miller, J. A. Holcombe, Anal. Chim. Acta 2002, 455, 233. 

36 H. A. Jurbergs, J. A. Holcombe, Anal. Chem. 1997, 69, 1893. 

37 E. Gutierrez, T. C. Miller, J. R. Gonzalez-Redondo, J. A. Holcombe, Environ. Sci. Technol. 

1999, 33, 1664. 

38 E. Kaiser, R. L. Colescott, C. D. Bossinger, P. I. Cook, Anal Biochem 1970, 34, 595. 

39 A. Carré, W. Birch, V. Lacarriere, Silanes Other Coupling Agents, Vol. 4, ed. by K. L. Mittal, 

CRC Press, Boca Raton, FL, USA, 2007, pp. 113–126. 

40 M. Phaner-Goutorbe, V. Dugas, Y. Chevolot, E. Souteyrand, Mater. Sci. Eng. C 2011, 31, 384. 

41 L. Malachowski, J. Stair, Pure Appl. Chem. 2004, 76, 777. 



29 
 

42 E. Metwalli, D. Haines, O. Becker, S. Conzone, C. G. Pantano, J. Colloid Interface Sci. 2006, 

298, 825. 

43 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer US, New York, 

2006. 

44 L. Zékány, I. Nagypál, G. Peintler, PSEQUAD for Chemical Equilibria, Technical Software 

Distributors, Baltimore, MD, 1991. 

45 N. Romero-Isart, M. Vašák, J. Inorg. Biochem. 2002, 88, 388. 

46 C. Blindauer, J. Biol. Inorg. Chem. 2011, 16, 1011. 

47 S. J. Opella, T. M. DeSilva, G. Veglia, Curr. Opin. Chem. Biol. 2002, 6, 217. 

48 L. Banci, I. Bertini, S. Ciofi-Baffoni, X.-C. Su, R. Miras, N. Bal, E. Mintz, P. Catty, J. E. 

Shokes, R. A. Scott, J. Mol. Biol. 2006, 356, 638. 

49 J. R. Forbes, G. Hsi, D. W. Cox, J. Biol. Chem. 1999, 274, 12408. 

50 P. Rousselot-Pailley, O. Sénèque, C. Lebrun, S. Crouzy, D. Boturyn, P. Dumy, M. Ferrand, P. 

Delangle, Inorg. Chem. 2006, 45, 5510. 

51 K. Krzywoszynska, M. Rowinska-Zyrek, D. Witkowska, S. Potocki, M. Luczkowski, H. 

Kozlowski, Dalton Trans. 2011, 40, 10434. 

52 S. Pires, J. Habjanič, M. Sezer, C. M. Soares, L. Hemmingsen, O. Iranzo, Inorg. Chem. 2012, 

51, 11339. 

53 V. Dorcak, A. Krezel, Dalton Trans. 2003, 2253. 

54 I. Sóvágó, K. Várnagy, Met. Ions Life Sci. 2013, 11, 275. 

55 W. Bal, M. Jezowska-Bojczuk, H. Kozlowski, L. Chruscinski, G. Kupryszewski, B. Witczuk, 

J. Inorg. Biochem. 1995, 57, 235. 

56 M. Rowinska-Zyrek, S. Potocki, D. Witkowska, D. Valensin, H. Kozlowski, Dalton Trans. 

2013, 42, 6012. 

57 K. Kulon, D. Woźniak, K. Wegner, Z. Grzonka, H. Kozłowski, J. Inorg. Biochem. 2007, 101, 

1699. 

58 A. Dişbudak, S. Bektaş, S. Patır, Ö. Genç, A. Denizli, Sep. Purif. Technol. 2002, 26, 273. 

59 L. Uzun, D. Türkmen, E. Yılmaz, S. Bektaş, A. Denizli, Colloids Surfaces A Physicochem. 

Eng. Asp. 2008, 330, 161. 

60 D. Q. Melo, V. O. S. Neto, J. T. Oliveira, A. L. Barros, E. C. C. Gomes, G. S. C. Raulino, E. 

Longuinotti, R. F. Nascimento, J. Chem. Eng. Data 2013, 58, 798. 

61 A. E. Martell, R. M. Smith, R. J. Motekaitis, NIST Critically Selected Stability Constants of 

Metal Complexes Database, NIST Standard Reference Database 46, National Institute of 

Standards and Technology, Gaithersburg, MD, 2001. 



30 
 

62 M. Rowinska-Zyrek, D. Witkowska, S. Bielinska, W. Kamysz, H. Kozlowski, Dalton Trans. 

2011, 40, 5604. 

63 A. Krȩżel, W. Leśniak, M. Jeżowska-Bojczuk, P. Młynarz, J. Brasuñ, H. Kozłowski, W. Bal, J. 

Inorg. Biochem. 2001, 84, 77.  

 

  



31 
 

Figure legends 

 

Figure 1. AFM scans taken from the surface of a glass slide before (left panel) and after 

silanization (right panel). Silanized regions are identified as protruding, small, light coloured 

spots in the right hand side image. 

 

Figure 2. Optical absorption spectrum of untreated and silanized glass surfaces in the 

nanoparticle adsorption test. The electrostatically attached gold nanoparticles cause a small, 

but reproducible light absorption around 600 nm. 

 

Figure 3. Change of the fluorescence intensity of YY at  = 308 nm as a function of the 

Cd(II) : YY ratio at pH = 7.0. The insert shows fluorescence spectra in the absence (dashed 

line) and presence (continuous line) of one equivalent of Cd(II). The presented data represent 

the results of two parallel experiments. (t = 25 C, ex = 278 nm, cYY = 10.0 M) 

 

Figure 4. Cd(II)-binding ability of YY-NTG as a function of pH of the liquid samples that 

were in contact with 10.0 mg of the resin for 60 min (t = 25 C). The data points plotted are 

averages based on triplicate measurements. 

 

Figure 5. Cd(II)-binding ability of YY-NTG as a function of the Cd(II)-content of the liquid 

samples that were in contact with 10.0 mg of the resin for 60 min (pH = 7.0, t = 25 C). The 

data points plotted are averages based on triplicate measurements. 

 

Figure 6. Experimental and fitted (solid lines) titration data of YY-NTG in the absence () 

and presence of metal ions. Titration curves are shown as a function of base consumption 

normalized for the quantity of the immobilized ligand present in the samples. Please note that 
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the amount of base consumed by the added strong acid has been eliminated in the normalized 

curves. (mYY-NTG = 30.0 mg, nCd(II) : nYY = 0.5 : 1 () and nCd(II) : nYY = 1.0 : 1 ()). 

 

Figure 7. The fraction of the immobilized YY in various Cd(II)-bound forms as represented 

by distribution diagrams calculated for two different conditions used in Cd(II)-capturing 

studies. Solid lines: Cd(II) : YY = 0.66 : 1, cCd(II) = 1.4410
−4

 M ; Dashed lines: Cd(II) : YY 

= 1.5 : 1, cCd(II) = 3.2510
−4

 M.  



33 
 

Table 1 Formation constants (log) of the proton and cadmium(II) complexes of the 

immobilized YY (with the estimated errors of the last digits in parentheses) and some derived 

pKa values (I = 0.1 M NaClO4, T = 298 K). Charges are omitted for simplicity. 

HqLr lgβ  pKa MpHqLr lgβ pKpqr 
a
 

HL 11.5(3) pKa,4 11.5 CdH2L 38.4(1) 9.6 

H2L 22.4(1) pKa,3 10.9 CdHL 28.8(1) – 

H3L 32.9(1) pKa,2 10.5 CdH5L2 80.5(1) 9.9 

H4L 42.3(1) pKa,1 9.3 CdH4L2 70.6(3) 10.8 

    CdH3L2 59.8(1) – 

a
 

1)rp(qpqrpqr loglogp  K  
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Figure 1. AFM scans taken from the surface of a glass slide before (left panel) and after 

silanization (right panel). Silanized regions are identified as protruding, small, light coloured 

spots in the right hand side image. 

 

  

G. Galbács et. al. 
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Figure 2. Optical absorption spectrum of untreated and silanized glass surfaces  

in the nanoparticle adsorption test. The electrostatically attached gold nanoparticles cause a 

small, but reproducible light absorption around 600 nm. 
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Figure 3. Change of the fluorescence intensity of YY at  = 308 nm as a function of the 

Cd(II) : YY ratio at pH = 7.0. The insert shows fluorescence spectra in the absence (dashed 

line) and presence (continuous line) of one equivalent of Cd(II). The presented data represent 

the results of two parallel experiments. (t = 25 C, ex = 278 nm, cYY = 10.0 M) 
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Figure 4. Cd(II)-binding ability of YY-NTG as a function of pH of the liquid samples that 

were in contact with 10.0 mg of the resin for 60 min (t = 25 C). The data points plotted are 

averages based on triplicate measurements. Cd(II)-binding ability of YY-NTG as a function 

of pH of the liquid samples that were in contact with 10.0 mg of the resin for 60 min (t = 25 

C). The data points plotted are averages based on triplicate measurements. 
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Figure 5. Cd(II)-binding ability of YY-NTG as a function of the Cd(II)-content of the liquid 

samples that were in contact with 10.0 mg of the resin for 60 min (pH = 7.0, t = 25 C). The 

data points plotted are averages based on triplicate measurements. 
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Figure 6. Experimental and fitted (solid lines) titration data of YY-NTG in the absence () 

and presence of metal ions. Titration curves are shown as a function of the base consumption 

normalized for the quantity of the immobilized ligand present in the samples (mYY-NTG = 30.0 

mg, nCd(II) : nYY = 0.5 : 1 () and nCd(II) : nYY = 1.0 : 1 ()). 
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Figure 7. The fraction of the immobilized YY in various Cd(II)-bound forms as represented 

by distribution diagrams calculated for two different conditions used in Cd(II)-capturing 

studies. Solid lines: Cd(II) : YY = 0.66 : 1, cCd(II) = 1.4410
−4

 M ; Dashed lines: Cd(II) : YY 

= 1.5 : 1, cCd(II) = 3.2510
−4

 M. 
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