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ABSTRACT

Successful and accurate completion of the repli-
cation of damage-containing DNA requires mainly
recombination and RAD18-dependent DNA damage
tolerance pathways. RAD18 governs at least two
distinct mechanisms: translesion synthesis (TLS)
and template switching (TS)-dependent pathways.
Whereas TS is mainly error-free, TLS can work in
an error-prone manner and, as such, the regulation
of these pathways requires tight control to prevent
DNA errors and potentially oncogenic transformation
and tumorigenesis. In humans, the PCNA-associated
recombination inhibitor (PARI) protein has recently
been shown to inhibit homologous recombination
(HR) events. Here, we describe a biochemical mech-
anism in which PARI functions as an HR regulator af-
ter replication fork stalling and during double-strand
break repair. In our reconstituted biochemical sys-
tem, we show that PARI inhibits DNA repair synthesis
during recombination events in a PCNA interaction-
dependent way but independently of its UvrD-like he-
licase domain. In accordance, we demonstrate that
PARI inhibits HR in vivo, and its knockdown sup-
presses the UV sensitivity of RAD18-depleted cells.
Our data reveal a novel human regulatory mecha-

nism that limits the extent of HR and represents a
new potential target for anticancer therapy.

INTRODUCTION

DNA is continuously damaged by intrinsic and extrinsic
factors, which may lead to the stalling of the replication fork
during the S-phase of the cell cycle and, eventually, to its
collapse, resulting in the formation of a single-stranded gap
(ssDNA gap) behind the replication fork (1). DNA dam-
age tolerance (DDT) pathways have evolved to ensure suc-
cessful completion of DNA replication. DDT can act ei-
ther coupled with DNA replication or post-replicatively at
the ssDNA gaps (2–4) and is controlled by RAD6/RAD18
(5,6). DDT consists of two sub-branches: translesion (TLS)
DNA synthesis involving specialized DNA polymerases
that directly bypass the lesion (7) and template switching,
involving repair from the newly synthesized sister chro-
matid to fill in the ssDNA gap (8,9). As an alternative to
the RAD6/RAD18-dependent pathway, stalled replication
forks can also be rescued by recombination (10,11). Ho-
mologous recombination (HR)-mediated repair can act ei-
ther on ssDNA gaps left behind the replication fork or on
double-strand breaks emanating from the collapsed repli-
cation fork (12,13). However, unrestrained HR can lead to
aberrant recombination between repetitive sequences lead-
ing to chromosome aberrations and loss of heterozygosity,
which are associated with carcinogenesis (14–16).
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The yeast Srs2 protein is a well characterized anti-
recombinase, which restrains unscheduled and excessive
HR, and its deletion suppresses the UV-sensitive pheno-
type of yeast �rad18 cells (17–20). Srs2 is recruited to repli-
cation forks by SUMOylated PCNA (S-PCNA) where it
displaces Rad51 recombinase from the ssDNA via its 3′-
5′ helicase activity (21–24). In addition, we have recently
described that Srs2 regulates recombination through in-
terference with the DNA extension step of the HR path-
way, which limits extension length and crossover (CO) for-
mation (25). This activity is mediated by specific inter-
action between Srs2 and SUMO-PCNA. PCNA is a ho-
motrimer, ring-like molecule, which increases the proces-
sivity of the replicative DNA polymerases (26–28) and re-
cruits a broad range of DNA repair factors to the site of
action on the DNA (29,30). In response to DNA damage,
PCNA becomes post-translationally modified via the ubiq-
uitylation of the K164 residue (5) creating a second bind-
ing domain that recruits TLS polymerases to the site of
their action (31,32) to promote direct bypass of the lesion
(33–35). PCNA can be further polyubiquitylated promoting
another, error-free branch of DDT (36–38). Alternatively,
PCNA can be SUMOylated on the very same residue (5,39–
40). This modification suppresses HR presumably by re-
cruiting Srs2 to the site of action, thus, promotes DDT only
indirectly (25,41–42). Recently, we and others have shown
that SUMOylation of human PCNA suppresses HR, simi-
larly to its yeast counterpart (39,40).

Intensive research has been carried out for a long time
on how HR is regulated in humans, but no direct or-
tholog of Srs2 has been identified so far. Up-to-date, sev-
eral functional homologs of Srs2 have been described in
humans. These include RTEL1, which can dissociate the
D-loop structure (43); FBH1 and RECQL5�, which dis-
mantle the RAD51 filaments (44–46), and the recently de-
scribed PCNA-associated recombination inhibitor protein
(PARI) (40). Although these anti-recombinases are capa-
ble of dismantling RAD51 filaments via their strong adeno-
sine triphosphatase (ATPase) activity, PARI seems to only
slightly attenuate ssDNA binding by RAD51, because it is
associated with an inherently low ATPase activity. PARI,
which is mainly present in vertebrates, is unique among the
functional Srs2 homologs in human as it is the only one that
interacts with SUMOylated PCNA through a functional
SUMO-interacting motif (SIM) and a PIP box. Although
the SIM and PIP motifs are important for the function of
PARI, the molecular mechanism of its action has not been
explored yet (40).

Here, we investigate the molecular mechanism by which
PARI may regulate the frequency of HR events in humans.
We found that PARI, similarly to Srs2, acts along with
RAD18 to promote replication completion by promoting
DDT mechanisms in humans. The biochemical mechanism
of its function is based on the inhibition of D-loop exten-
sion by DNA polymerase �. A C-terminal part of PARI and
intact PIP and SIM motifs are sufficient and necessary for
the inhibition of HR events, while the UvrD-like helicase
domain is dispensable for the inhibition. Our results sug-
gest that the regulation of DNA polymerase � by PARI and
PCNA at the D-loop structure is an important strategy to

down-regulate HR events, representing an active contribu-
tion to genome stability in human cells.

MATERIALS AND METHODS

Protein purification

GST-Sae2/Sae1 (pIL1055), GST-Ubc9 (pIL1054), GST-
Flag-SUMO1 (pIL2576), PCNA (pIL2179), RPA, Rad51,
Rad54, RFC and DNA polymerase � were purified as de-
scribed previously (39,47–48). The purification of Ub- and
polyUb-PCNA has been published previously (49).

C12ORF48/PARI was cloned from a human cDNA li-
brary into the pCR8 gateway entry vector (Life Technolo-
gies) and verified by sequencing. For recombinant protein
production, PARI was subcloned into His-Flag-tagged bac-
ulovirus transfer vector pVL1392. Baculovirus was pro-
duced by co-transfection of transfer vector with Bsu36I lin-
earized BakPAK6 baculovirus DNA (Clontech) into Sf9 in-
sect cells. High Five insect cells were infected with the bac-
ulovirus and incubated at 28◦C for 40 h. Cells were washed
twice in phosphate buffered saline (PBS), resuspended in
40 ml of lysis buffer (25 mM HEPES-NaOH pH 7.5, 300
mM NaCl, 1.5 mM MgCl2, 10% Glycerol, 0.2% Triton X-
100, Leupeptin, Aprotinin), sonicated and cleared by cen-
trifugation at 20 000 g for 30 min at 4◦C. The lysate was
filtered through a 0.45 �M filter and loaded onto a 10 ml
poly-prep chromatography column (Bio-Rad) packed with
2 ml TALON resin (Clontech). The column was washed
4× with 10 ml lysis buffer supplemented with 10 mM im-
idazole before elution with 200 mM imidazole. Eluted pro-
teins were dialyzed against lysis buffer before loading onto
a 10 ml poly-prep chromatography column packed with 1
ml Anti-Flag M2 affinity gel (Sigma-Aldrich). The column
was washed 3× with 10 ml of lysis buffer before elution
with 6 × 0.5 ml lysis buffer supplemented with 200 �g/ml
3× FLAG Peptide. The eluted fractions were analyzed by
sodium dodecyl sulphate-polyacrylamide gel electrophore-
sis and stored at −80◦C.

Polymerase chain reaction fragments were cloned into
EcoRI and SalI sites of expression vector pMAL2cX
resulting in wild-type pMAL2cX-PARI333–579, SIM mu-
tant pMAL2cX-PARI368–579, PIP mutant pMAL2cX-
PARI333–569 and PIP SIM double mutant pMAL2cX-
PARI368–569. All of the construct were confirmed by DNA
sequencing. The wild-type and mutant forms of PARI333–579
were expressed as MBP fusion proteins in Escherichia coli
BL21 RIPL cells (induction: 11◦C, 0.2 mM IPTG, 24 h).
All purification steps were performed at 4◦C. Ten grams of
E. coli cell paste was sonicated in 50 ml of lysis buffer C
(50 mM Tris–HCl, 10% sucrose (w/v), protease inhibitors,
10 mM ethylenediaminetetraacetic acid (EDTA), 1 mM
dithiothreitol (DTT), 0.01% (v/v) Nonidet-P40, and 500
mM KCl, pH7.5). The crude lysate was clarified by cen-
trifugation (100 000 x g for 60 min). The supernatant was
batched for 2 h with 2 ml of amylose resin (NEB) equili-
brated with buffer T (25 mM Tris–Cl, 10% (v/v) glycerol, 5
mM EDTA, pH 7.5) containing 500 mM KCl. MBP-PARI
fragments were eluted with 6 × 2 ml of 10 mM maltose in
buffer T containing 150 mM KCl. After elution, fractions
containing MBP-PARI were pooled, and they were diluted
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with 5 ml of buffer T and loaded onto a 1 ml Mono S col-
umn (GE Healthcare) equilibrated in buffer T containing
150 mM KCl. The MBP-PARI fragments were eluted with
a 20 ml gradient of 100–500 mM KCl in buffer T. Fractions
containing homogenous MBP-PARI were concentrated in
a Vivaspin concentrator (Sartorius Stedim Biotech) and
stored in 10 �l aliquots at −80◦C.

RAD51-K133R - Expression plasmid pET11c-RAD51
(kind gift from P. Sung) was introduced into E. coli
BLR(DE3)pLysS cells (Novagen) and the culture was
grown to A600 ∼0.7 in 2 × TY media supplemented with
ampicillin (100 mg/l) and chloramphenicol (33 mg/l). Ex-
pression of the RAD51 protein was induced by the addi-
tion of IPTG (1 mM) at 37◦C for 3–4 h and cells were har-
vested (5000 x g). Cells were then resuspended in cell break-
age (CBB) buffer (0.05 M Tris–HCl pH 7.5, 10% sucrose,
0.5 mM EDTA, 1 M KCl, 1 mM DTT and 0.01% NP-40,
cocktail of protease inhibitors, PMSF), sonicated and cen-
trifuged at 100 000 × g for 60 min. Clarified supernatant was
mixed with ammonium sulfate (0.242 mg/ml) to precipitate
the RAD51 protein. After centrifugation of the mixture at
9000 x g, the pellet was resuspended in K buffer (20 mM
K2HPO4 pH 7.5, 10% glycerol, 0.5 mM EDTA, 1 mM DTT
and 0.01% NP-40) and loaded onto a Q Sepharose Fast
Flow column (GE Healthcare) pre-equilibrated in K buffer
supplemented with 175 mM KCl. The proteins from the col-
umn were subsequently eluted with a gradient of 0.2–0.6 M
KCl in K buffer. RAD51 peak protein fractions were pooled
and loaded onto a hydroxyapatite (Sigma-Aldrich) column
equilibrated with T buffer (25 mM Tris–HCl pH 7.5, 10%
glycerol, 0.5 mM EDTA, 1 mM DTT and 0.01% NP-40)
supplemented with KCl to 100 mM concentration. RAD51
was eluted by 60–260 mM KH2PO4 gradient in T buffer.
Pooled peak fractions were loaded on MonoQ column equi-
librated with T buffer with 50 mM KCl. Protein was eluted
with 200–450 mM KCl gradient in T buffer. Peak fractions
were pooled and concentrated using Vivaspin Centrifugal
Concentrator (30 000 MWCO PES). Aliquots were stored
at −80◦C.

HOP2-MND1 and RECQL5� were purified as described
previously (50,51).

PCNA SUMOylation

In vitro SUMOylation reaction of PCNA was carried out in
1.2 ml of P0 buffer (40 mM Tris–HCl pH 7.5, 8 mM MgCl2,
100 �g/ml bovine serum albumin (BSA), 10% glycerol, 100
�M adenosine triphosphate (ATP)) in the presence of GST-
PCNA (bound to glutathione sepharose beads), Sae1/Sae2
(10 �g), Ubc9 (30 �g) and Flag-SUMO1-GG (600 �g),
RFC (1 �g), DNA (50 �g) for 1 h at 37◦C.

After the reaction on glutathione beads, untagged en-
zymes were washed out with T + 100 buffer. Unmodified
and SUMOylated PCNA were eluted by 3 h incubation
with PreScission protease in T + 100 buffer. The eluted
PCNA/SUMO-PCNA fraction was loaded onto anti-Flag
beads. After extensive washing with T + 100 buffer, the
Flag-SUMO-PCNA fraction was eluted using Flag peptide-
containing T + 100 buffer. The elution fraction was col-
lected and used directly in the subsequent assays.

D-loop and primer extension assays

The reaction was performed essentially as described pre-
viously (47). Radioactively labeled or unlabeled 90-mer (3
�M) nucleotides were incubated for 5 min at 37◦C with
RAD51 (1 �M) in 10 �l of buffer R (35 mM Tris-Cl pH 7.4,
1 mM ATP, 1.25 mM MgCl2, 50 mM KCl, 1 mM DTT and
an ATP-regenerating system consisting of 20 mM creatine
phosphate and 20 �g/ml creatine kinase). After the com-
pletion of Rad51 filament formation, Rad54 protein was
added (150 nM) and incubated for 3 min at 25◦C. The re-
action was initiated by the addition of pBluescript replica-
tive form I (50 �M in base pairs). After 5 min incubation
at 25◦C, the reactions were stopped on ice. Next, RPA (660
nM), PCNA (30 nM), RFC (10 nM) and Pol� (10 nM) were
added in buffer O (20 mM Tris-Cl pH 7.5, 5 mM DTT, 0.1
mM EDTA, 150 mM KCl, 40 �g/ml BSA, 8 mM MgCl2,
5% (v/v) glycerol, 0.5 mM ATP and 100 �M each of dGTP,
dCTP) to a 30 �l final volume. The mixture was incubated
for 5 min at 30◦C. The reaction was stopped by cooling on
ice followed by addition of PARI (as indicated in the fig-
ures). After 2 min incubation at 37◦C, the DNA synthesis
reaction was started by adding dTTP (100 �M) and dATP
to the reaction mixture. If the reaction was monitored us-
ing D1 oligonucleotide, 100 �M unlabeled dATP was used.
When dATP incorporation was monitored, 0.375 �Ci [�-
32P]dATP was used followed by 4 min incubation at 37◦C.
Reactions were stopped by incubating at 37◦C for 10 min
with sodium dodecyl sulphate (0.5% final) and proteinase
K (0.5 mg/ml) and separated on agarose gel (0.8% w/v).
The electrophoresis the gel was dried on DE81 paper and
exposed on a phosphorimager screen. Scanning and quan-
tification of the results were done using Fuji FLA 9000 im-
ager followed by analysis with the Multi Gauge software
(Fuji).

�X-based extension assay was carried out similarly to the
D-loop extension (47). The reaction (20 �l final volume)
was assembled on singly primed FX174 virion ssDNA (5
nM) in buffer O (20 mM Tris-Cl pH 7.5, 5 mM DTT, 0.1
mM EDTA, 70 mM KCl, 0.5 mM ATP, 40 �g/ml BSA,
8 mM MgCl2, 5% glycerol and 60 �M each of dGTP and
dCTP) in the presence of RPA (1 �M), PCNA (1 nM), RFC
(1 nM) and Pol� (5 nM) followed by 5 min incubation at
30◦C to allow for loading of PCNA on the substrate. After
the loading step, inhibition with PARI and extension were
carried out as described above for D-loop extension.

Anti-recombinase assay

Fluorescently labeled 90-mer oligonucleotide (3.6 �M) was
incubated for 5 min with RAD51-K133R (1 �M) followed
by the addition of 1 �l RPA (100 nM) and various amounts
of RECQL5� or PARI. Followed by a 4-min incubation, 1
�l HOP2-MND1 (400 nM) was added to a total volume of
10 �l and the mixture was incubated for an additional 1 min.
The reaction was initiated by adding 2 �l pBluescript SK(-
) replicative form I (50 �M base pairs), incubated for an
additional 7 min and the reactions were further processed
as stated above.
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Cell cultures and cellular protein localization studies

HEK293FT cells were grown in Dulbecco’s modified Ea-
gle’s medium (Sigma) supplemented with 10% Fetal Calf
Serum (FCS) (Sigma) at 37◦C. Transfections were carried
out using Lipofectamine 2000 transfection reagent (Invitro-
gen) according to the instruction of the manufacturer. After
treatment with UV (as indicated), cells were incubated for
6 h and immunostained where indicated. For cellular local-
izations of Flag-PARI and PCNA, cells were treated with
a detergent solution (10 mM TRIS–HCl, 2.5 mM MgCl2,
1% NP-40, 1 mM PMSF) and immunostained using anti-
Flag antibody (Sigma M2 A8592) diluted 1:300 and Alexa
Fluor 488 (Invitrogen, A11011) diluted 1:500, anti-PCNA
antibody (Santa Cruz, sc-56) diluted 1:200. Samples were
mounted in 25% glycerol in PBS containing 1 mg/ml DAPI
followed by microscopy using an Olympus FV1000 confo-
cal laser scanning microscope and a Leica confocal Laser
Scanning Microscope.

PARI PCNA co-localization was quantified by counting
all PCNA PARI co-localizations in 50 randomly selected
cells. All countings were repeated in at least three indepen-
dent experiments.

Measurement of the frequency of homologous recombination

HEK293 cells were cultured in DMEM supplemented with
10% FCS and antibiotics. Cells were transfected with Lipo-
fectamine 2000 (Invitrogen) according to the manufac-
turer’s instruction. A Green Fluorescent Protein (GFP)-
based recombination reporter assay was used in HeLa cells.
The assay measures the recombination frequency between
an integrated DNA fragment encoding a C-terminally trun-
cated GFP and a transiently transfected DNA fragment
encoding N-terminally truncated GFP proteins. Briefly, re-
porter cells were co-transfected with vectors encoding N-
terminally truncated GFP proteins and expression plasmids
or gene-specific siRNAs and I-SceI cDNA-coding plasmid.
After 48 h of transfection, cells were transfected again with
the I-SceI expression vector. One day after the second trans-
fection, cells were selected for puromycin resistance, and the
frequency of GFP-positive recombinants was analyzed.

Sensitivity assay

Cells were transfected with 100 pmol siRNA using Lipofec-
tamine 2000 (Invitrogen) in 6-well plates. Cell competition-
based sensitivity assay was performed as described earlier.
After 24 h, the cells were mixed briefly with stable GFP-
expressing HeLa cells in a ratio of 1:1 followed by treatment
with UV, MMC or Cisplatin as indicated. After 7 days of
culturing, the ratio of GFP-negative and GFP-positive cells
(surviving cells) was determined by FACS (Guava Easy site
System).

Chromosomal aberration assay

HEK293 cells were cultured in 0.05 �g/ml demecolcine
(Sigma, D1925)-containing medium for 2 h, followed by a
washing step with PBS. Next, cells were re-suspended in
75mM KCl-containing buffer and incubated for 10 min.
The samples were fixed by methanol for 2 min, then in

methanol:acetic acid (3:1) for 10 min. The fixed cell sus-
pension was dropped onto glass slides and air dried. Stain-
ing was carried out with 0.1 �g/ml acridine orange solution
(Sigma, A8097).

RESULTS

PARI depletion suppresses the UV sensitivity of RAD18-
depleted cells

HR is potentially dangerous because it can easily result
in genomic rearrangements that eventually lead to cancer
(52); thus, it needs to be regulated very tightly (12). In
yeasts, the Srs2 protein was identified as a potent regulator
of recombination-mediated repair. This anti-recombination
function of Srs2 was revealed by the fact that the dele-
tion of SRS2 suppresses the UV hypersensitivity of �rad18
cells (19,53). To investigate whether PARI also has a sup-
pressing effect after prolonged fork stalling in humans,
we analyzed the effect it has on the UV sensitivity of
RAD18-depleted human cell lines. First, we created plas-
mids that allowed us to specifically downregulate PARI
and RAD18 using shRNA. Next, we generated HEK293
cell lines that harbored the corresponding plasmids inte-
grated into the genome, expressing shRNA specific to either
RAD18 or PARI or both. The efficiency of the depletion
was tested by western blotting after the transfection of wild-
type or silencing-resistant forms of PARI or RAD18 (Fig-
ure 1A). When comparing the UV sensitivity of these differ-
ent cell lines, we observed that under these circumstances
the downregulation of PARI suppressed the sensitivity of
the RAD18-silenced cell line (Figure 1B), which supports
the notion that PARI represents a functional human Srs2
homolog. Furthermore, transient depletion of PARI re-
sulted in a moderate increase in the UV sensitivity (Figure
1C), which is in agreement with previously published ob-
servations (40,49). We also examined the effect of shRNA-
mediated silencing of PARI in the RAD18-depleted cell line.
The silencing of PARI in this RAD18-deficient cell line sup-
pressed its UV sensitivity (Figure 1D), indicating that PARI
phenocopies Srs2 in human cells.

A C-terminal fragment of PARI is sufficient to inhibit the ho-
mologous recombination in vivo

In order to understand the in vivo function of PARI as a
negative regulator of HR, we tested its effect on the fre-
quency of HR. For this purpose, we used a GFP-based re-
porter system described previously (47). It has been pub-
lished that depletion of PARI results in an increase in the
frequency of HR (40). In our experiments, overexpression
of the full-length PARI protein in this reporter system re-
sulted in the decrease of the frequency of HR, demonstrat-
ing its inhibitory function (Figure 2B). To determine how
the UvrD domain contributes to PARI’s functions in vivo,
we expressed the C-terminal PARI286–579 fragment (Figure
2A) in this reporter system. Expression of this fragment re-
sulted in a significant reduction in recombination frequen-
cies (Figure 2B) demonstrating that the C-terminal part of
PARI is responsible for the major HR inhibitory activity. To
further dissect the role of the PCNA- and SUMO-binding
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fragments. After 2 days, DSB was induced by the transfection of the I-SceI-expressing plasmid and GFP-positive recombinants were measured after 7 days
of cultivation. Mean values of triplicates are shown with SD (error bars). The expression of the individual fragments was analyzed by western blotting. (D)
The PARI286–579 fragment sensitizes RAD18-depleted cells to UV. RAD18 and PARI double depleted HEK293 cells were transfected with PARI286–579,
PIP, SIM or PIP/SIM double mutants. The cells were treated with UV, cultivated for 7 days and analyzed by FACS. Significant difference is indicated by
asterisk.
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motifs in the suppression of recombination, we used cor-
responding mutants of the Flag-PARI286–579 fragment de-
scribed above. Loss of either of the interacting motif alone
resulted in a decrease in the suppression of recombination
as compared to the Flag-PARI286–579 fragment (Figure 2C).
Notably, overexpression of Flag-PARI286–579SIM had a re-
producibly milder effect on the frequency of recombination
than that of Flag-PARI286–579PIP (Figure 2C), indicating
that interaction with the SUMO-moiety is more prominent
in the suppression of HR. Importantly, expression of Flag-
PARI286–579PIP/SIM had no effect on recombination fre-
quencies, confirming that both PCNA and SUMO inter-
actions are required and sufficient to suppress HR (Fig-
ure 2C). To confirm that PARI negatively regulates HR, we
tested how the ectopic expression of this functional frag-
ment of PARI (Flag-PARI286–579) affects the UV sensitivity
of RAD18-depleted cells. The higher amount of PARI in
this cell line, resulted in increased UV sensitivity (Supple-
mentary Figure S1), indicating effective inhibition of HR.

To further analyze the contribution of the C-terminal
part of PARI to its function, we tested the effect of the
C-terminal PARI286–579 fragment on the UV sensitivity
of RAD18-depleted cells. Expression of shRNA-resistant
Flag-PARI286–579 sensitized the cells to UV irradiation, in-
dicating that the C-terminal domain of PARI is, indeed, re-
quired for PARI activity in vivo (Figure 2D). To dissect the
role of PCNA as well as of SUMO-mediated interactions in
the suppression of the UV sensitivity of RAD18-depleted
cells, we used mutant versions of Flag- PARI286–579 lack-
ing the PIP box, the SIM or both motifs (Figure 2A). As
seen in Figure 2D, expression of either Flag-PARI286–579PIP
or Flag-PARI286–579SIM led to a partial increase in the
UV sensitivity, indicating their direct and parallel roles in
the PARI-mediated suppression of the UV-sensitivity of
RAD18 PARI double depleted cells. On the other hand, ex-
pression of Flag-PARI286–579PIP/SIM did not sensitize the
cells, demonstrating that PCNA- as well as SUMO-binding
are required for the in vivo activity of PARI (Figure 2D).

Taken together, our results suggest that the expression of
various PARI fragments leads to a decrease in the frequency
of recombination and indicate that the UvrD domain is dis-
pensable while both the PCNA- and the SUMO-binding
domains are required for its function.

PARI localization depends mainly on the PIP motif

To further examine how the PIP and SIM motifs of PARI
contribute to its function, we analyzed the intracellular
distribution of PARI. Although it is known that the PIP
motif is necessary for the chromatin fraction binding of
PARI, the function of the SIM motif has not been revealed
yet. Therefore, we used fluorescence microscopy and de-
termined the sub-cellular localization of PARI and its mu-
tants using antibodies against the Flag tag. Whereas wild-
type PARI formed discrete nuclear foci that perfectly co-
localized with PCNA (Figure 3A), only a subset of PIP box
mutant foci co-localized with PCNA. The PARI SIM mu-
tant was also able to form foci co-localizing with PCNA, in-
dicating that the SIM motif is not the major determinant of
PARI localization (Figure 3B). Surprisingly, the PARI mu-
tant lacking both the PIP and the SIM motifs were much

more defective in foci formation, indicating that PCNA-
and SUMO-binding represent two parallel ways of PARI
nuclear foci formation (Figure 3B). We also wished to test
whether PARI localization would be affected by UV treat-
ment, however we were not able to observe any changes in
the localization (data not shown).

To further corroborate the presence of S-phase-specific
PARI foci, we labeled the cells that undergo DNA repli-
cation with BrdU and analyzed BrdU and PARI co-
localization. As seen in Supplementary Figure S2A, we ob-
served co-localization of PARI and BrdU, indicating that
the observed PARI foci are, indeed, specific to the sites of
DNA synthesis. While there was significant co-localization
with BrdU in mutants lacking either PIP or SIM, mutant
lacking both domains resulted in loss of PARI foci, sup-
porting PCNA-independent targeting (Supplementary Fig-
ure S2B).

The complementary effect of PIP and SIM domains
on PARI foci formation prompted us to test the role of
PCNA SUMOylation. To this end, we depleted endoge-
nous PCNA by shRNA and simultaneously expressed the
shRNA-resistant PCNA-K164R mutant, which is partially
defective in post-translational modification. As can be seen
in Supplementary Figure S2D, the expression of mutant
PCNA in the cell resulted in a very slight decrease in PARI’s
ability to form discrete foci, suggesting that the SUMO moi-
ety on PCNA K164 is not the major reason for the additive
effect of the PARI PIP and SIM motif mutations on the foci
forming ability and pointing to other SUMO-mediated in-
teractions.

PARI inhibits D-loop extension in vitro

We have recently described the molecular mechanism of
the Srs2-mediated regulation of recombination-associated
DNA repair synthesis by preventing the formation of toxic
recombination intermediates (25). Moreover, the previously
described interaction between PARI and PCNA (40,54) and
our cell biological findings prompted us to test the effect of
PARI on DNA repair synthesis using our D-loop-based in
vitro reconstitution assay (Figure 4A). We found that full-
length PARI strongly inhibits the D-loop extension reaction
(Figure 4B). Since Srs2-mediated inhibition of the exten-
sion is dependent on SUMO-PCNA, and we found that the
PIP and SIM motifs contribute additively to the function of
PARI as a negative regulator of HR, we substituted PCNA
with SUMO-PCNA (Figure 4B). However, we did not ob-
serve any further increase in the PARI-mediated inhibition
in the presence of SUMO-PCNA, indicating that the in vitro
inhibition is only dependent on the PARI–PCNA interac-
tion. Next, we used singly primed circular ssDNA instead
of the D-loop substrate as a model of the replication fork.
Under the same reaction conditions, full-length PARI pro-
tein inhibited DNA synthesis with comparable efficiency to
the one observed with the D-loop substrate, indicating that
this inhibition is independent of the type of DNA substrate
(Supplementary Figure S3B). Since PARI-mediated inhi-
bition depends exclusively on the interaction with PCNA,
it could be possible that the observed inhibitory effect of
PARI on the enzymatic activity of Pol� is a result of a non-
specific effect of the interaction between the PIP box and

 by guest on June 20, 2016
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


8 Nucleic Acids Research, 2015

A

PARI PIP PCNA Merge DAPI

PARI PCNA Merge DAPI

PARI SIM

PARI PIP/SIM

PCNA

PCNA

Merge

Merge

DAPI

DAPI

B

PA
R

I/P
C

N
A 

co
-lo

ca
liz

at
io

n 
(%

) 

PARI PARI PIP PARI SIM PARI PIP/SIM

*

*
NS

100
90
80
70
60
50
40
30
20
10
0

Figure 3. Localization of PARI is dependent on both the SIM and the PIP motifs. (A) Flag-PARI and corresponding PIP, SIM or PIP/SIM mutants were
expressed in HEK293 cells. After fixation, cells were stained using anti-Flag and anti-PCNA antibodies. (B) Graphical representation of PARI and PCNA
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PCNA. To exclude this possibility, we tested other Srs2 or-
tholog that also bind PCNA (55,56). RTEL1 was not able
to inhibit D-loop extension by Pol� (Supplementary Figure
S4), proving that the inhibitory effect is specific for PARI.

Based on the exclusively PCNA-dependent inhibition of
Pol� action by PARI, we presumed that the uncontrolled
overexpression of PARI should result in fork stalling and
induction of chromosomal aberrations such as chromatid
breaks or chromosomal fusions. Indeed, overexpression of
Flag-PARI resulted in an increased number of chromoso-
mal aberrations (Supplementary Figure S5A and B). Ad-
ditionally, we tested how PARI depletion affects the viabil-
ity of the cells after mild HU treatment, which induces the
stalling of the replication fork. As expected from our pre-
vious data, the silencing of PARI resulted in decreased sur-
vival indistinguishable from RAD18-depleted cells (Supple-
mentary Figure S5C), supporting the importance of PARI
in DNA synthesis. Noteworthy, at higher HU concentra-
tions PARI overexpression shows higher sensitivity com-
pare to RAD18-depleted cells, indicating additional role for
PARI.

Next, we also analyzed the contribution of the UvrD-
helicase domain within PARI to gain further insights into
the molecular mechanism of PARI-mediated inhibition.
Using a small, C-terminal fragment (PARI333–579), we ob-
served the same inhibitory effect (Figure 4C) as with the
full-length protein, indicating that the UvrD domain is not
required for the inhibition. Additionally, we also monitored
the inhibition reaction using radioactively labeled oligonu-
cleotides to verify the amount of the DNA substrate dur-
ing the reaction. As shown in Supplementary Figure S3B,
while the extension of the D-loop was inhibited the amount
of the D-loop template remained constant, indicating that
the inhibition does not stem from unwinding the extension
substrate.

To further corroborate the hypothesis that the binding
of PARI to PCNA represents the molecular mechanism
of its inhibition, we tested mutant versions of PARI333–579
lacking the PIP motif (PARI333–579PIP), the SIM motif
(PARI333–579SIM) or both (PARI333–579PIP/SIM) in the ex-
tension assay. We found that only the PARI fragments har-
boring an intact PIP motif were able to inhibit D-loop ex-
tension (Figure 4D). Since PCNA also undergoes ubiq-
uitylation on the K164, we tested the effect of PCNA
(poly)ubiquitylation on the PARI-mediated inhibition of
DNA repair synthesis. As seen in Supplementary Figure
S3C, the PARI333–579 fragment inhibited DNA repair syn-
thesis in the presence of Ub-PCNA and polyUb-PCNA
to the same extent as unmodified PCNA, suggesting that
(poly)ubiquitylation of PCNA does not influence PARI ac-
tivity.

Additionally, we tested how PARI affects the strand in-
vasion mechanism mediated by the RAD51 protein. Al-
though it has been previously described that PARI binds
the RAD51 filament and this interaction is able to desta-
bilize the filament (40), we were not able to observed
any effect on D-loop formation using an authentic anti-
recombinase RECQL5� as positive control (Supplemen-
tary Figure S6A). Moreover, the addition of PARI to
RECQL5� did not further increase the anti-recombinase
activity of RECQL5� (Supplementary Figure S6B), under-

lining our finding that PARI acts as a negative regulator at
another step of HR.

In sum, our data point to the conclusion that it is the
PCNA–PARI interaction and not the UvrD-like helicase
domain that plays a role in the regulation of D-loop exten-
sion. The mechanism suggests a direct competition between
PARI and Pol � for PCNA binding and that the inhibition is
independent of either the post-translational status of PCNA
or the type of DNA substrate.

DISCUSSION

Replication past damaged templates or naturally occurring
replication fork barriers induces replication fork stalling
and/or collapse, which can have serious impact on genome
maintenance (57). Over the course of evolution, conserved
DDT pathways promoting either replication in the presence
of damaged templates or filling-in of gaps left behind repli-
cation forks have evolved (58). However, very limited infor-
mation is available regarding the choice of a particular DDT
pathway and its regulation. In particular, how HR utilizes
single-strand gaps arising after fork collapse remains to be
determined. In yeast, Srs2 and its interplay with SUMO-
PCNA is critical for the suppression of HR and promotion
of DDT (25,42). Recently, the PARI protein was suggested
to be the human functional homologue of Srs2 suppressing
inappropriate recombination events (40).

In this work, we addressed the mechanism of PARI’s reg-
ulatory function on the frequency of HR. We overexpressed
full-length and truncated versions of PARI as well as its mu-
tant forms lacking either the PIP box, the SIM motif, or
both and assessed their effect on recombination frequency
using a reporter system containing an I-SceI recognition
site. Overexpression of the full-length and the PARI286–579
fragments resulted in equally decreased levels of recombi-
nation, which is in agreement with a previous study show-
ing increased recombination frequency after the silencing
of PARI (40). Furthermore, it reveals that the UvrD do-
main of PARI is dispensable for its activity in vivo. Further
analysis of the PARI mutants suggested that both PCNA
and SUMO binding are independently required for effec-
tive suppression of recombination.

The RAD18-dependent damage tolerance pathway rep-
resents the most prominent and alternative way of HR.
The loss-of-function of a RAD18-independent inhibitor
of HR thus results in the suppression of the UV sensitiv-
ity of RAD18-deficient cells as described in yeast (53,59–
60). Therefore, we directly assessed the effect of PARI and
its various fragments on the UV sensitivity of RAD18-
depleted cells. Depletion of PARI in a RAD18-deficient
cell line resulted in suppression, clearly demonstrating that
PARI is a negative regulator of HR. In addition, overex-
pression of PARI286–579 decreased the viability of RAD18
and PARI double depleted cells, corroborating even further
the fact that the UvrD domain of PARI is dispensable for its
function. Moreover, using mutant versions of PARI, we de-
termined that both PCNA and SUMO binding are required
for its function in vivo, suggesting that perhaps SUMO-
PCNA may become a toxic factor in this situation. This is
supported by the fact that yeast Srs2 is already known to
be targeted to replication forks in a SIM-dependent man-
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Figure 5. PARI regulates the repair of single-strand gaps left behind the replication fork. DNA lesions induce stalling of the replication fork, which can
be repaired by the DDT pathway. Prolonged fork stalling will result in fork collapse. After re-priming, single-strand gaps are left behind the replication
fork, which can be filled by TLS polymerases as part of the DDT pathway or repaired by TS utilizing components of the HR machinery. RECQL5� - or
FBH1 are able to disrupt RAD51 filament thus inhibiting HR and allowing DDT pathway to bypass the lesion and fill the gap. In addition, PARI can
also regulate HR by blocking re-assembly of the DNA polymerase complex required for the extension of the invading strand or limiting the length of the
extension and resulting in short extension products. D-loops or short extension products are disassembled by FANCM promoting SDSA and limiting
formation of crossovers (CO). Long extension products can be stabilized by second-end capture resulting in the formation of Holliday junctions that can
be dissolved by the BTR (BLM/TOP3/RMI1) complex or resolved by nucleases with a higher risk of CO.

ner (24). To clarify the contribution of PCNA SUMOyla-
tion to the regulation of the PARI function, we analyzed
its nuclear distribution. PARI formed discrete replication
foci, marked by PCNA or BrdU staining, which were PCNA
interaction-dependent. Surprisingly, while the SIM mutant
still co-localized with PCNA the double PIP/SIM mutant
failed to form any PARI foci. These findings suggest that
PARI localization, as well as its in vivo function, require
both PCNA- and SUMO-mediated interactions. To un-
derline these observations, we used the K164R mutant of
PCNA, which resulted only in a slight reduction of PARI’s
co-localization with PCNA, indicating that SUMO-PCNA
is not a major determinant of the PARI recruitment to the
site of action. However, PCNA gets SUMOylated on an-
other, yet unidentified residue as well (39), therefore, we
cannot exclude the possibility of a more significant con-
tribution of PCNA SUMOylation to PARI targeting. The
possible requirement of SUMO-PCNA in the targeting of
PARI can be explained by the presence of a large num-
ber of PCNA-interacting proteins that may act as poten-
tial competitors for PCNA binding. At present, more than
100 nuclear proteins, involved in diverse aspects of DNA
metabolism, have been described to interact with PCNA
(61,62). Existence of an additional interaction interface (in

this case for SUMOylated PCNA) may increase the affin-
ity as well as the specificity of PARI toward PCNA. How-
ever, it is also very likely that PARI targeting depends on
other SUMO-modified proteins, which could represent key
components of HR regulation in humans. Finally, we ana-
lyzed the molecular mechanism of PARI function by taking
advantage of our previous work in which we successfully re-
constituted recombination-associated DNA synthesis using
purified human proteins (47,48). Similarly to Srs2, PARI
inhibits DNA synthesis by displacing Pol � from the com-
plex formed with PCNA but, contrarily to Srs2, this mech-
anism is biochemically independent of PCNA SUMOyla-
tion. Furthermore, the UvrD-like catalytic domain of PARI
was not necessary for the regulation of the modeled exten-
sion step of HR, and the inhibition depended solely on the
PARI–PCNA interaction.

While Srs2 uses two mechanisms to suppress recombina-
tion, one that relies on the dismantling of Rad51 filaments
and the other on dissociating the complex between SUMO-
PCNA and Pol �, PARI seems to promote exclusively the
latter one. We hypothesize that over the course of evolution
the dismantling of human RAD51-nucleoprotein filaments
has been taken up by other helicases. There are at least
four examples of factors (RTEL, BLM, RECQL5�, FBH1
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and FANCM) that are able to act as anti-recombinases at
the level of either dismantling the RAD51 filament or the
D-loop substrate (43–45,63–64). This suggests that PARI
may have a relatively low affinity to RAD51 (40) when
compared to its affinity toward human PCNA. Therefore,
in the context of recombination-associated DNA synthe-
sis in humans, the interaction between PARI and PCNA
alone may be sufficient to limit the length of the extension
over its global inhibitory effect on HR (Figure 5). PARI
thus may be an upstream factor of the FANCM/Mph1
mediated D-loop resolution mechanism (64–66) or the
BLM/TOP3/RMI1 (BTR) complex which resolves recom-
bination intermediates (67). Likewise, PARI could suppress
the deleterious effects HR-mediated fork restart can cause
when activated in the context of repetitive DNA sequences,
as recently suggested (68,69). D-loops or short extension
products are disassembled by FANCM/Mph1 promoting
SDSA and limiting formation of CO. Long extension prod-
ucts can be stabilized by second-end capture resulting in the
formation of Holliday junctions that can be dissolved by the
BTR (BLM/TOP3/RMI1) complex or resolved by nucle-
ases with a higher risk of CO. Future research in this direc-
tion will be required to establish a direct role of PARI in this
process.

In summary, we provide evidence that PARI is an impor-
tant player in the promotion of DDT during DNA repli-
cation, by inhibiting unscheduled recombination events.
Moreover, the PARI-mediated binding of SUMOylated
proteins via its SIM is an important event in PARI’s
function as a negative regulator of HR. Association with
SUMOylated factors may further strengthen binding of
PARI to PCNA-containing foci an/or promote its PCNA-
independent role. Furthermore, mechanistic analyses indi-
cate that PARI does not suppresses recombination by di-
rect anti-recombinase activity as compare to RECQL5�,
but through regulating the extent of DNA repair synthesis
thus limiting the consequent formation of potentially dele-
terious CO products. In the light of the yeast Srs2 protein
that carries both activities (21,25), this clearly indicates the
evolutionary need for separation of these functions. A better
comprehension of pathways maintaining replication forks
as well as genome stability is essential not only for the un-
derstanding of processes linked to increased risks of onco-
genic transformation and cancer development but also for
the development of the possible therapeutic potentials they
hold.
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