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Introduction

Brief Background

The field of robotics started in the nineteenth century, with teleoperated vehicles.
The motivation to further develop these devices arose from military interests,
especially after the World Wars. The switch from remote controlled vehicles to
autonomous ones began after the Second Word War, when the early mobile robot
called Machina Speculatrix was designed, which was able to follow a light source.
The first boom in autonomous robotics was in the late 1960s, and continues to the
present day.

Robots are generally designed for transportation, manipulation, and surveillance
tasks. Based on their configuration in space and the range of movement they can
perform, one can distinguish between mobile robots (e.g. wheeled, underwater, or
flying vehicles) (Ge and Lewis 2006) and fixed object manipulators (Lewis et al.
2006). The mixture of these two types is usually referred to as mobile manipulators.
For all these classes of robots, achieving autonomy crucially requires automatic
control: algorithms that, without human assistance, are able to actuate the robot so
as to achieve a desired configuration, to navigate through the environment, or to
manipulate this environment in a useful way (Spong and Hutchinson 2005; Lewis
et al. 2006; Bruno and Oussama 2008; Siegwart et al. 2011). Feedback from sensors
is required since an exact model of the task is never available, and the robot must be
able to compensate for model errors as well as unmodeled effects, such as a varying
mass of the transported objects.

Traditionally, robot control deals with industrial robots, where the environment
is predictable and the robot can function using models of the environment and
precomputed movements, with limited sensing. During the 1980s the trend shifted
from this classical way of thinking, dominant in the 1970s, towards the reactive
paradigm, which focuses more on sensor feedback (Brady et al. 1982). A further
extension was the hybrid approach, using reactive principles at lower levels and
higher-level model-based approximations (Khatib and Craig 1989). More recently,
the probabilistic robotics framework became dominant in research (Thrun et al.
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2005). This framework explicitly takes into account the inaccuracy in the models
and sensors, and handles it in the control algorithms. This is important for robots to
achieve autonomy outside the industrial setting, and to perform their tasks in
uncertain, open environments. Sensing the environment is absolutely essential in
this paradigm, and with new hardware such as stereo cameras, inertial units, and
depth sensors, the autonomy of the robots is greatly expanded. High-speed and
application-specific microprocessors enable the use of robots in real-time applica-
tions, by processing challenging large-volume sensing data from, e.g. stereo cam-
eras or depth sensors, and by allowing better control laws that take into account the
complexity of the robot and environment dynamics.

The importance of robotic control is reflected by the focus placed on it in the top
publication outlets on robotics on the one hand, and in systems and control on the
other. For example, the International Conference on Robotics and Automation
includes automatic control in the very title, and its 2014 edition included six
workshops related to control; the same number was hosted by the 2014
International Conference on Intelligent Robots and Systems. The latest editions
of the two main control events, the Conference on Decision and Control and the
American Control Conference, dedicated specific tracks to control and sensing for
(primarily mobile) robots. Robot control is also prominent in leading journals in the
two fields: IEEE Transactions on Robotics, Robotics and Autonomous Systems,
Automatica, Control Engineering Practice, etc.

Against this background, our book focuses on learning and sensing approaches
to address the environment uncertainty, as well as on the control of networked and
interconnected robots, as described next.

Goal and Motivation of the Book

While robots have long left factory floors, real penetration of advanced robotics
outside the industry has been slow over the past decades, with research outcomes
mainly remaining within the academia. The situation has however changed dra-
matically in recent years, with many novel marketable applications and robotic
platforms appearing:

• domestic and assistive robots, such as Roomba, Mowbot, Create, and Aibo;
• research and educational robots: Robotino, Mindstorm, PR2, TurtleBot;
• surveillance in large, open environments for mapping, search & rescue, etc.,

with robots like the PackBot, Ranger, PatrolBot;
• and of course the unprecedented explosion in unmanned aerial vehicles (UAVs)

over the last couple of years, with proposed civilian applications ranging from
package delivery, through parking guidance, to delivering defibrillators to heart
attack patients, see e.g. SUAS (2015).

Additional application domains are emerging, including surgical robots,
surveillance in agriculture, space robotics, etc.
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The defining characteristic of all these applications is the unpredictability and
open, large-scale structure of the environment—which is often shared with humans.
These features create several challenges for robot control, among which in this book
we focus on two major ones. The first is uncertainty about the environment, coming
either from the limited sensors available to measure the variables relevant for
control or, more fundamentally, because the robot does not know how the envi-
ronment evolves and reacts to its actions. Dealing with uncertainty is a traditional
topic in robotics (Thrun et al. 2005; Stachniss 2009) and overall in systems and
control (Ristic et al. 2004), although it is still unsolved in general. In the absence of
prior knowledge about the environment dynamics, learning a controller is the
method of choice (Sutton and Barto 1998; Sigaud and Peters 2010; Lewis and Liu
2012).

The second challenge we focus on is networked structure, which appears in
many of the applications mentioned above. This is because the robot and its con-
troller are often separated by a significant distance, while for mobile ground robots
or UAVs wired connections are not feasible, and the robot must instead be con-
trolled wirelessly. In all these cases, exchanging signals over a network is the best
solution, but this comes with its own constraints and challenges that must be taken
into account. Networked structure is also very important in large environments,
where teams of robots are required (Balch and Parker 2002) and communication
among them to arrive at coherent sensor measurements or control actions is highly
nontrivial. A particularly interesting problem occurs at the intersection of uncer-
tainty and networked robotic teams: distributed sensing under uncertainty. When
the uncertainty is driven by the physically distributed nature of the system, con-
sensus algorithms can help in reaching an agreement on measurements. Overall,
networked and interconnected systems comprise quite a new topic and their
intersection with robotics is still in its starting phase, but the advance in the field has
been quite significant in recent years (Shamma 2007; Bullo et al. 2009; Bemporad
et al. 2010).

For both classical and newer topics, however, the recent growth in human–
environment robotics has increased the pace of novel research. For the researcher or
graduate student who is working on robot control, a resource is needed that presents
recent advances on dealing with uncertainty and networked structure. Such a
resource would also help researchers or Ph.D. students who wish to enter robot
control arriving from a related area (e.g. general control systems or computer
vision). The aim of our book is to provide this resource: a snapshot of this area as it
stands now, collecting in a single, coherent monograph a representative selection of
state-of-the-art techniques. To this end, we have invited chapter contributions from
experts in the relevant fields: robot control, learning control, state estimation, robot
perception, and the control of networked and interconnected systems. To achieve a
balanced viewpoint, we have included both already established, highly influential
experts as well as younger researchers that have nevertheless already had a sig-
nificant impact.
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Book Structure

We structure the book along the three main challenges identified above: learning
control to handle uncertainty about the dynamics; sensing under uncertainty, par-
ticularly as it pertains to control; and networked control of robots and multirobot
systems. An overall view of this structure including chapter titles is given in Fig. 1,
and more details, including chapter outlines, are provided next.

The book starts with Part I: Learning Control in Unknown Environments,
with a selection of learning-based techniques to handle uncertain dynamics. In order
to develop robots that solve long-term missions in unknown, open environments, it
is important to deal with failures (Chap. 1), to explore efficiently environments that
change in time (Chap. 2), and to approach the problem in a practical way that
exploits any available prior knowledge while learning to deal with the unknown
parts of the environment (Chaps. 3 and 4). Starting off by imitating a human expert
(Chaps. 1 and 4) is particularly promising.

In more detail, Chap. 1, Robot Learning for Persistent Autonomy, presents an
overarching view and a significant step towards the major robotics goal of per-
forming long-term autonomous missions. This is achieved by a combination of
learning from expert demonstrations, and learning to recover from failures. Practical
experiments illustrate the technique: valve-turning with the Kuka robot arm, and

Fig. 1 Organization of the book. The background color changes for each main part, and the
arrows indicate possible ways of reading the book
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recovery from thruster failures with the Girona500 Autonomous Underwater
Vehicle (AUV). Chapter 2, The Explore–Exploit Dilemma in Nonstationary
Decision Making Under Uncertainty, again uses reinforcement learning methods in
unknown environments but focuses on a complementary aspect: choosing when to
exploit the information already gathered, versus exploration to learn more about the
environment. This is done in the particularly challenging case of an environment
that changes in time, and two methods are proposed to anticipate interesting
changes. Simulated applications are given: planning least-visible paths for
unmanned aerial vehicles (UAVs) in human environments, and surveillance via
unattended ground sensors assisted by UAVs. Chapter 3, Learning Complex
Behaviors via Sequential Composition and Passivity-Based Control, gives a
modular approach where local controllers are learned with reinforcement learning
and then sequentially composed with a finite-state machine, which is itself adaptive
by finding the domains of attraction of each local controller. This idea is very useful
for robots that operate in several modes, such as UAVs, which switch between
takeoff, hovering, cruise flight, and landing modes. The approach allows including
partial prior knowledge about the solution structure and dynamics, but does not
require a full model—and learning tackles the unknown part. Chapter 4,
Visuospatial Skill Learning, gives another modular approach that assumes prede-
fined motor primitives such as grasping are available. Exploiting these primitives,
learning is performed directly in the visual task space, starting from an expert
demonstration and aiming to reproduce a given object configuration. The method is
illustrated in simulations and on the Barret WAM robotic arm, which uses it to
solve several real-life tasks.

The approach in Chap. 4 blurs the line between control and visual sensing, and
so provides a transition to Part II: Dealing with Sensing Uncertainty. Even if the
dynamics of the environment are fully known, before the robot can effectively solve
a task there still remains the problem of finding the values of variables that are
needed as inputs for control decisions. These variables are subject to uncertainty
because the sensors of the robot cover a limited area, and extracting useful infor-
mation often requires high-complexity processing of the raw data they provide (e.g.
for stereo cameras or high density Lidars). We start by covering two basic problems
for which research is still ongoing: determining the state variables (pose and
velocities) of the robot itself (Chap. 5) and the relative poses of different cameras
(Chap. 6). We then move on to higher-level perception methods for scene recon-
struction and understanding (Chaps. 7 and 8). We end Part II by two chapters that
focus on the active sensing paradigm, which closes the loop between sensing and
control in an interesting way, by controlling the robot so as to reduce the uncer-
tainty in sensing. Active sensing is exploited to obtain better localization (Chap. 9)
and to improve object segmentation (Chap. 10).

Specifically, Chap. 5, Observer Design for Robotic Systems via Takagi–Sugeno
Models and Linear Matrix Inequalities deals with state estimation, which is made
challenging by the nonlinearity of the dynamics. The mass matrix appearing in the
structure is exploited when representing the dynamics in a Takagi–Sugeno form,
and the state estimator is proven to be convergent by Lyapunov techniques that boil
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down to solving linear matrix inequalities. A simulated example involving a
two-wheeled mobile robot is provided. Chapter 6, Homography Estimation between
Omnidirectional Cameras without Point Correspondences, presents a method to
estimate the homography mapping between two omnidirectional cameras that look
at the same scene. The method is novel in its use of matching segmented surfaces
rather than pairs of points in the images, and its viability on real images is
demonstrated.

Moving on to higher-level perception, Chap. 7, Dynamic 3D Environment
Perception and Reconstruction Using a Mobile Rotating Multi-beam Lidar Scanner,
describes a complete pipeline for online detection and tracking of pedestrians and
vehicles, and for offline analysis of urban scenes, both from multi-beam LIDAR
data. The method is evaluated in real urban environments. Chapter 8,
ROBOSHERLOCK: Unstructured Information Processing Framework for Robot
Perception describes an overall framework for perception that is able to respond to
sensing queries from the controller phrased as high-level questions (such as ‘Where
is object X?’). The framework was implemented in an open-source package and
tested in a household environment using data acquired from a PR2 robot.

In Chap. 9, Navigation Under Uncertainty Based on Active SLAM Concepts, the
objective is to control the robot so as to reduce the uncertainty in the robot’s
location. The chapter provides an extensive overview of the active SLAM field, and
describes a state-of-the-art approach that constructs a graph of robot configurations
and then computes a minimal-uncertainty path using a graph search algorithm. The
approach is validated on several public datasets. Chapter 10, Interactive
Segmentation of Textured and Textureless Objects, goes beyond planning the tra-
jectory, by allowing the robot to interact with the environment in order to reduce
uncertainty. Specifically the robot grasps and moves objects in order to better
segment them. Real-life evaluation is performed on cluttered scenes using the PR2
humanoid robot.

Part III: Control of Networked and Interconnected Robots deals with the
network effects that appear for wirelessly controlled mobile robots and in com-
municating robot teams. This last part of the book starts with a transition Chap. 11,
which still devotes significant attention to sensing but starts taking into account
networked control effects. Chapter 12 studies the impact of such effects in robotic
teleoperation. For the remainder of the book, we move to multirobot systems and
tackle issues of agreement in the presence of communication constraints (Chaps. 13
and 14) and of cooperative control for a mixed ground-and-aerial robot team
(Chap. 15).

Chapter 11, Vision-Based Quadcopter Navigation in Structured Environments,
uses vision to detect and track the vanishing point of lines in perspective, in corridor
and corridor-like environments. The robot (an AR.Drone 2 UAV) then navigates
the environment by moving forward while keeping the vanishing point centered.
Significant challenges arise due to the WiFi network interposed between the con-
troller and the system: image frames arrive at varying intervals and many are
dropped. This is compensated by running the filter in prediction mode. Chapter 12,
Bilateral Teleoperation in the Presence of Jitter: Communication Performance

xxvi Introduction



Evaluation and Control, studies in detail the impact of time-varying delays in
robotic teleoperation—still a single-robot system like in Chap. 11, but now operated
through a haptic device. A controller designed in the passitivity framework is
proposed that can effectively deal with these delays. Practical experimental results
are shown on a Kuka robot arm operated with the Sensable Phantom Omni haptic
device.

In Chap. 13, Decentralized Formation Control in Fleets of Nonholonomic
Robots with a Clustered Pattern, the objective is for a team of nonholonomic
mobile robots to reach a given formation in a decentralized way. The robots are
organized in subteams that communicate internally, and the team leaders commu-
nicate sporadically among themselves to achieve overall agreement. The network is
limited to a graph structure due to limited range, both within the teams as well as
between the leaders. Chapter 14, Hybrid Consensus-Based Formation Control of
Nonholonomic Mobile Robots, considers a similar problem of decentralized for-
mation control, but with the addition that the robots must also navigate to a goal
area. The robots form a single team (graph), and a control law is given that switches
between two modes: formation-alignment, and navigating to the goal. Both Chaps.
13 and 14 validate the techniques in simulations of mobile robot teams. Finally,
Chap. 15, A Multi-Agent System for Precision Agriculture, is focused on the
emerging application of monitoring crops. A two-layer multirobot system is pro-
posed, consisting of ground robots that navigate the cultivated field, and UAVs that
act as longer-range sensors for the ground robots, by e.g. directing them to areas of
interest and around obstacles. The components of the approach are tested in
experiments on Surveyor SRV-1 ground robots and AR.Drone UAVs.

The book can be read in several ways, by following the arrows in Fig. 1. Besides
the default order of reading all the chapters in sequence (continuous line), the three
parts are sufficiently self-contained to be read individually (dashed lines), with the
following note. If the reader chooses to focus only on Part II, it is recommended to
additionally read the connecting Chaps. 4 and 11, since these contain important
elements of sensing under uncertainty.

For the more application-oriented reader, an alternative way of looking at the
book is by the type of robotic platform used in the experimental validation. Table 1
organizes the chapters by this criterion. Note that although they do not appear in
this table, Chaps. 3, 6, and 9 of course still provide experimental validations, but
this validation does not concern a specific robotic platform since the method is
general and can be applied to any platform (e.g. vision methods that are tested on
public datasets).

Table 1 Chapters organized by the type of robotic platform used in the evaluations

Mobile ground robots Chapters 5, 7, 13, 14, 15
Unmanned aerial vehicles Chapters 2, 11, 15
Autonomous underwater vehicles Chapter 1
Robot arms Chapters 1, 4, 12
Humanoid robots Chapters 8, 10
Boldface font indicates real-life experiments, while the other chapters contain simulations
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