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Abstract—We propose a novel solution for reconstructing
planar surface patches from omnidirectional camera images. The
theoretical foundation relies on variational calculus, which yields
a closed form solution for the normal vector a 3D planar surface
patch, when a homography is known between the corresponding
image region pairs. The method is quantitatively evaluated on a
large set of synthetic data. Experimental results confirm that the
method provides good reconstructions in real-time.

I. I NTRODUCTION

The importance of piecewise planar object representation
in 3D stereo has been recognized by many researchers. There
are various solutions in case of standard perspective cam-
eras, many of them are making use of the plane induced
homography: Habbecke and Kobbelt used a small plane, called
’disk’, for surface reconstruction [1], [2]. They proved that
the normal is a linear function of the camera matrix and
homography. By minimizing the difference of the warped
images, the surface is reconstructed. Furukawa proposed using
a small patch for better correspondence [3]. The surface is then
grown with the expansion of the patches. The piecewise planar
stereo method of Sinhaet al. [4] uses shape from motion
to generate an initial point cloud, then a best fitting plane
is estimated, and finally an energy optimization problem is
solved by graph cut for plane reconstruction. Fraundorferet
al. [5] used MSER regions to establish corresponding regions
pairs. Then a homography is calculated using SIFT detector
inside the regions. Planar regions are then grown until the
reprojection error is small. Although the role of planar regions
in 3D reconstruction has been noticed by many researchers,
the final reconstruction is still obtained via triangulation for
most state-of-the-art methods. Planar objects are only used for
better correspondences or camera calibration.

Homography is used in many applications including pose
estimation [6], tracking [7], [8], structure from motion [9]
as well as recent robotics applications with focus on nav-
igation [10], vision and perception. Efficient homography
estimation methods exist for classical perspective cameras [11],
but these methods are usually not reliable in case of om-
nidirectional sensors. The difficulty of homography estima-
tion with omnidirectional cameras comes from the non-linear
projection model yielding shape changes in the images that
make the direct use of these methods nearly impossible.
Recently, the geometric formulation of central omnidirectional
systems was extensively studied [12], [13], [14], [15], [16],
[17]. The internal calibration of such cameras depends on
these geometric models, which can be solved in a controlled
environment, using special calibration patterns [16], [18], [19],
[17]. When the camera is calibrated, which is typically the

case in practical application, then image points can be lifted
to the surface of a unit sphere providing a unified model
independent of the inner non-linear projection of the camera.
The big advantage of such a generic model is that many
concepts from standard projective geometry (in particular
homographies or stereo triangulation techniques) remain valid
for central omnidirectional cameras. For example, homography
can be estimated using these spherical points [7], [8]. Classical
keypoint detectors, such as SIFT [20], are also widely used [9],
[7] for omnidirectional images, but big variations in shape
resolution and non-linear distortion challenges keypointde-
tectors as well as the extraction of invariant descriptors,which
are key components of reliable point matching. For example,
proper handling of scale-invariant feature extraction requires
special considerations in case of omnidirectional sensors,
yielding mathematically elegant but complex algorithms [21].
In [9], a correspondence-less algorithm is proposed to recover
relative camera motion. Although matching is avoided, SIFT
features are still needed because camera motion is computed
by integrating over all feature pairs that satisfy the epipolar
constraint. Epipolar geometry of omnidirectional camera pairs
have also been studied [22], which can be used to establish
dense stereo matches.

In this paper, we propose a region-based method to recon-
struct planar surface patches from corresponding regions in
an omnidirectional camera pair. Instead of establishing point
correspondences and using triangulation, we make use of a
region-based homography estimation method [23] and derive
a closed form formula for computing the normal of the 3D
plane from the estimated homography. Our derivation is based
on variational calculus, hence we avoid any camera-specific
consideration yielding a general formula for spherical cameras.
While the internal parameters of the camera are assumed to be
known (which is typical in real life applications), the relative
pose can also be obtained from the estimated homography
by classical factorization methods [6]. Therefore knowingthe
internal parameters and a homography induced by the 3D scene
plane, we are able to efficiently recover the plane parameters.
Quantitative evaluation on a large set of synthetic data confirms
the real-time performence, efficiency and robustness of the
proposed solution.

II. OMNIDIRECTIONAL CAMERA MODEL

A unified model for central omnidirectional cameras was
proposed by Geyer and Daniilidis [14], which represents
central panoramic cameras as a projection onto the surface of
a unit sphere. This formalism has been adopted and models
for the internal projection function have been proposed by
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Fig. 1. Omnidirectional camera model

Micusik [15] and subsequently by Scaramuzza [24] who
derived a general polynomial form of the internal projection
valid for any type of omnidirectional camera.

Given a scene planeπ, let us formulate the relation between
its imagesD andF in a pair of omnidirectional cameras rep-
resented by the unit spheresS1 andS2 (see Fig. 1). Assuming
that the first camera coordinate system is the reference frame,
a 3D plain pointX ∈ π is projected ontoS1 by a simple
central projection:

xS1 =
X

‖X‖
(1)

The relative pose of the second camera is composed of a
rotation R and translationt = (t1, t2, t3)

T , acting between
the camerasS1 andS2. Thus the image in the second camera
of the same 3D pointX is

xS2 =
RX+ t

‖RX+ t‖
(2)

Because of the single viewpoint, the mapping of plane points
X ∈ π to the camera spheresSi, i = 1, 2 is bijective (unlessπ
is going through the camera center, in which caseπ is invis-
ible) and planar homographies stay valid for omnidirectional
cameras too [7]. Denoting the normal byn = (n1, n2, n3)

T

and distance ofπ to the origin ofS1 by d, the standard planar
homographyH is composed up to a scale factor as [7], [23]

H ∝ R+
1

d
tnT (3)

Basically, the homography transforms the rays asxS1 ∝
HxS2, hence the transformation induced by the planar homog-
raphyH between the spherical points is also bijective. Thus
a pointX on the plane and its spherical imagesxS1, xS2 are
related by [23]

Xπ = λ1xS1 = λ2HxS2 ⇒ xS1 =
λ2

λ1

HxS2 (4)

HencexS1 andHxS2 are on the same ray yielding [23]

xS1 =
HxS2

‖HxS2‖
= Ψ(xS2) (5)

Clearly, the functionΨ is fully determined by the homography
H, hence estimating the homography parameters usinge.g. the
algorithm of [23] provides the bijective mappingΨ between
the spherical points of the omnidirectional camera pair.

III. N ORMAL VECTOR COMPUTATION

We now derive a simple, closed form solution to reconstruct
the normal vector of a 3D planar surface patch from a pair
of corresponding image regions and known omnidirectional
cameras. Once the normal vectorn is determined,d can
be easliy computed based on (3) as showne.g. in [11].
Although differential geometric approaches were used to solve
various problems in projective 3D reconstruction, the approach
proposed here is unique for omnidirectional cameras to the best
of our knowledge. For example, [25], [26] are about generic
surface normal reconstruction using point-wise orientation- or
spatial frequency disparity maps. Unlike [25], [26], which
consider only projective camera and uses a parameterization
dependent, non-invariant representation; we use a general
omnidirectional camera model and our method avoids point
correspondences and reconstructs a planar surface from the
induced planar homography between image regions.

The notations in this section are widely used in classical
differential geometry. For vectors and tensors we use bold
letters and italics for the coordinates. Standard basis is defined
by three orthonormal vectorse1, e2, ande3. 3D pointsX ∈ R

3

are identified with their coordinates in the standard basis
X = X1e1 + X2e2 + X3e3 or X = Xkek using the
summation convention (repeated indices in superscript and
subscript position mean summation). Considering the visible
part of the scene object as a reasonably smooth surfaceS
embedded into the ambient 3D space,S is represented by the
general (Gauss) coordinatesu1 andu2 as

S
(
u1, u2

)
= X1

(
u1, u2

)
e1 +X2

(
u1, u2

)
e2+

+X3
(
u1, u2

)
e3 = Xk

(
ul
)
ek (6)

The tangent space to surfaceS at a surface point
(
u1, u2

)
is

spanned by the local (covariant) basis vectorsSk = ∂S
∂uk , Sk =

Sk

(
u1, u2

)
, k ∈ {1, 2}. The corresponding contravariant basis

vectorsSl, l ∈ {1, 2} are defined to satisfy the identitySl ·
Sk = δlk, whereδlk ,l ∈ {1, 2}, k ∈ {1, 2} is the Cronecker
delta and the scalar product is denoted by dot.

The normal vector of the surface is defined by the cross
productN = S1 × S2. Surface area element is defined by
the triple scalar product|nS1S2|

.
= n · (S1 × S2) wheren =

N

|N| is theunit normal vector of the surface. The cross-tensor
of the normal vectorN× = S2S1 − S1S2 is a difference of
two dyadic products of the local basis vectors. Dyadic (direct)
products are denoted by a simple sequence of the constituent
vectors.

The dot product between dyads and vectors is defined such
that uv · w = (v ·w)u. From this, using the triple product
expansion formulaN× · v = N× v for any vectorv.

As usual, for the representation of vectors and second order
tensors purely with their coordinates we use row vectors and
two dimensional matrixes. The coordinate representation of a
non-scalar quantityQ is denoted by[Q].

A. Camera model independent correspondence equations

Let us now have a closer look at the relation between a
3D point X and its 2D images(x1

i , x
2

j ) and (x1

j , x
2

j ) in a



pair of camerasi and j. This has been studied in [27] for
establishing an affine transformation between the images of
a known surface using known projection functions. First we
briefly overview the derivation of this relation and then we will
show how to use it for computing normal vectors of planar
surface patches from corresponding image regions.

An image of the scene is basically a 3D→2D mapping
given by two smooth projection functions, the so called coor-
dinate functions:x1

(
X1, X2, X3

)
andx2

(
X1, X2, X3

)
with

(x1, x2) being the 2D image coordinates. Herein, we don’t
assume any special form of these coordinate-functions except
their deifferentiability w.r.t. the spatial coordinatesX1, X2,
X3. If the projected points are on the surface (6) too, the
image coordinates depend on the general parameters as well:

x1 = x1
(
X1

(
u1, u2

)
, X2

(
u1, u2

)
, X3

(
u1, u2

))

x2 = x2
(
X1

(
u1, u2

)
, X2

(
u1, u2

)
, X3

(
u1, u2

))
(7)

We suppose that the mapping in (7) is bijective in a small
open disk around the point

(
u1, u2

)
. Assuming that both the

projection functions and the surface are smooth, these are
the conditions for differentiability and local invertibility. The
differential [du] =

[
du1 du2

]T
represents a point shift on

the surface with its effect on the image beingdx ≈ J·du where
[dx] =

[
dx1 dx2

]T
and the JacobianJ of the mapping is

invertible.

Now consider a camera pair, distinguishing them with
indicesi andj (note thati, j indices used in subscript position
doesn’t stand for “covariant” quantities). SinceJi is invertible,
we can establish correspondences between the images taking
the same point shiftdu ≈ Ji · dxi:

dxj = Jj · J
−1

i · dxj = Jij · dxj (8)

where Jij is the Jacobian of thexi → xj mapping. Now
consider the derivative of a composite functionf

(
X l

(
uk

))
,

l ∈ {1, 2, 3}, k ∈ {1, 2}:

∂f

∂uk
=

∂X l

∂uk

∂f

∂X l
= Sk · ∇f, (9)

where∇f is the gradient w.r.t. the spatial coordinates andSk

is the local basis vector along the parameter lineuk. Applying
this result to the projection functions, the components of the
Jacobians take the following form:

[Ji] =

[
S1 · ∇x1

i S2 · ∇x1

i

S1 · ∇x2

i S2 · ∇x2

i

]
,

[Jj ] =

[
S1 · ∇x1

j S2 · ∇x1

j

S1 · ∇x2

j S2 · ∇x2

j

]
(10)

Substituting (10) into (8), the products of the components
of (10) enter intoJij . For example, the determinant becomes

det [Ji] = ∇x1

i ·
(
S1 · ∇x1

i

) (
S2 · ∇x2

i

)
−
(
S2 · ∇x1

i

) (
S1 · ∇x2

i

)

(11)
which can be expressed by dyadic products equivalent to the
surface normal’s cross tensor as

det [Ji] = ∇x1

i · (S1S2 − S2S1) · ∇x2

i

= −∇x1

i ·N× · ∇x2

i = − |N|
∣∣∇x1

in∇x2

i

∣∣ ,(12)

where|N| is the absolute value (length) of the surface normal
vector. The components of the JacobianJij are then [27]:

[Jij ] =
1

|∇x1

in∇x2

i |

[
|∇x1

jn∇x2

i | |∇x1

in∇x1

j |
|∇x2

jn∇x2

i | |∇x1

in∇x2

j |

]
(13)

The above quantities are all invariant first-order differentials:
the gradients of the projections and the surface unit normal
vector. Note that (13) is a general formula: neither a special
form of projections, nor a specific surface is assumed here,
hence it can be applied for any camera type and for any
reasonably smooth surface.

Herein, we will show how to use the above formula for
computing the normal vectorn, when both the projection func-
tions and the JacobianJij are known. Let us write the matrix
components estimated either directly with affine estimatoror
taking the derivatives of an estimated planar homography1 as:

[Jij ]est =

[
a1
1

a1
2

a2
1

a2
2

]
(14)

To eliminate the common denominator we can use ratios,
which can be constructed using either row, column, or cross
ratios. Without loss of generality, we deduce the equation for
the 3D surface normal using cross ratiosa1

1

a2

2

and a1

2

a2

1

. After
rearranging equation[Jij ]est = [Jij ] we obtain:

n ·
[
a2
2

(
∇x2

i ×∇x1

j

)
− a1

1

(
∇x2

j ×∇x1

i

)]
=0

n ·
[
a2
1

(
∇x1

j ×∇x1

i

)
− a1

2

(
∇x2

i ×∇x2

j

)]
=0 (15)

Here we have two (known) vectors, both perpendicular to the
normal:

p =n ·
[
a2
2

(
∇x2

i ×∇x1

j

)
− a1

1

(
∇x2

j ×∇x1

i

)]

q =n ·
[
a2
1

(
∇x1

j ×∇x1

i

)
− a1

2

(
∇x2

i ×∇x2

j

)]
(16)

Thus the surface normal can readily be computed as

n =
p× q

|p× q|
. (17)

In the remaining part of this section, we will show how to
compute the coordinate gradients∇xl

k, k = i, j; l = 1, 2
w.r.t. spatial coordinates andJij in (13) for an omnidirectional
camera pair.

B. Computing coordinate gradients for the spherical camera
model

The Jacobian (13) includes the coordinate gradients w.r.t.
spatial coordinates. Herein, we derive these quantities for the
general spherical camera model discussed in Section II. For
the sake of simplicity, the calculations are done in the camera
coordinate system, but coordinate gradients calculated below
can be easily transformed into any world coordinate system
by applying the rotation between that word coordinate frame
and the camera.2

Following [16], [24], we assume that the camera coordinate
system is inS, the origin (which is also the center of the
sphere) is the projection center of the camera and thez axis is

1The derivatives of a planar homography provides exact affine components.
2Gradients are constructed by derivation, hence the translation to any other

world coordinate system cancels out from the formulae.



Fig. 2. Projection sphereS parametrized via the omni imageI.

the optical axis of the camera which intersects the image plane
in the principal point (see Fig. 2). To represent the nonlinear
(but symmetric) distortion of central omnidirectional optics,
[16], [24] places a surfacep between the image plane and the
unit sphereS, which is rotationally symmetric aroundz. The
details of the derivation ofp can be found in [16], [24]. Herein,
as suggested by [16], we will use a fourth order polynomial
p(‖x‖) = a0 + a2‖x‖

2 + a3‖x‖
3 + a4‖x‖

4 which has4
parameters(a0, a2, a3, a4) representing the internal parameters
of the camera (only4 parameters asa1 is always0 [16]). The
bijective mappingΦ : I → S is composed of 1) lifting the
image pointx ∈ I onto the p surface by an orthographic
projection

xp =

[
x

a0 + a2‖x‖
2 + a3‖x‖

3 + a4‖x‖
4

]
(18)

and then 2) centrally projecting the lifted pointxp onto the
surface of the unit sphereS:

xS = Φ(x) =
xp

‖xp‖
(19)

Thus the omnidirectional camera projection is fully described
by means of unit vectorsxS in the half space ofR3 and
these points correspond to the unit vectors of the projection
rays. The functionΦ is fully defined by the internal camera
parameters(a0, a2, a3, a4), which can be determined usinge.g.
the calibration toolbox of Scaramuzza [16], [24]. Therefore the
unit projection sphereS can be naturally parametrized by the
omni image coordinatesx =

(
x1, x2

)
. Spatial pointsX ∈ R

3

are identified by the unit sphere points (i.e. the directions)
denoted byxS , xS · xS ≡ 1, and their distance from the
projection sphere’s center denoted byx3 ≡ ‖X‖ such that

X = x3xS . (20)

Note that the above equation follows from (1) and it is a non-
Cartesian parameterization ofR3 from which the gradients of
the first two parameters

(
x1, x2

)
are required. The identity

δlk =
∂X

∂xk
·
∂xl

∂X
= gk · ∇xl (21)

is the basic differential geometry relation between the covariant
gk = ∂X

∂xk and contravariant∇xl = gl basis vectors of the

parameterization. Applying (21) to (20), we have:

gk =
∂X

∂xk
= x3

∂Φ

∂xk
, k ∈ {1, 2}

g3 =
∂X

∂x3
= xS . (22)

From this the metric tensor componentsgkl = gk · gl, k, l ∈
{1, 2, 3} are

gkl = glk =
(
x3

)2 ∂Φ

∂xk
·
∂Φ

∂xl
, k, l ∈ {1, 2}

gk3 = g3k = 0, k ∈ {1, 2} (23)
g33 = xS · xS = 1 .

Note that the second line of (23) follows from the deriva-
tion of the constraintxS · xS ≡ 1. Using the basic result
from differential geometrygl = glkgk, where glk are the
components of the inverse metric tensor, and observing thatthe

metric tensor has the special form

[
[glk] 0

0T 1

]
, the first two

contravariant basis vectors (the sought coordinate gradients)
can be independently expressed from the third vector such that
[

∇x1

∇x2

]
=

[
g11 g12
g12 g22

]−1 [
g1

g2

]

=
1

x3

[
∂Φ
∂x1 · ∂Φ

∂x1

∂Φ
∂x1 · ∂Φ

∂x2

∂Φ
∂x1 · ∂Φ

∂x2

∂Φ
∂x2 · ∂Φ

∂x2

]−1 [ ∂Φ
∂x1

∂Φ
∂x2

]
.(24)

In the above equation, coordinate gradients are expressed
purely with the unit sphere’s local basis vectorsg̃k = ∂Φ

∂xk

induced by the image coordinates and the distance between
the observed point and the center of the projection spherex3.
Note thatx3 cancels out from the normal calculation in (17)
by division. Once the normal is determined, any component
of (13) provides an equation forx

3

i

x3

j

.

C. Computing the Jacobian components

Let us now see how to construct the elementsakl of the
Jacobian matrix in (14) acting directly between the omnidi-
rectional images. Denoting the Cartesian coordinates w.r.t. the
centers of the unit spheres representing the camerasi and j

by [xi] =
[
z1i z2i z3i

]T
and [xj ] =

[
z1j z2j z3j

]T
.

These spherical points are related by the bijective mappingΨ
as derived in Section II, which can be directly estimated by
estimating the homography between the cameras. Its Jacobian

JΨ, composed of the partial derivativeshk
l

.
=

∂zk
j

∂zl
i

, associates
coordinate differentials from the sphere pointsi to the sphere
points j:




dz1j
dz2j
dz3j


 =




h1
1

h1
2

h1
3

h2
1

h2
2

h2
3

h3
1

h3
2

h3
3






dz1i
dz2i
dz3i


 (25)

We will translate this Jacobian to the Jacobian that acts
between image coordinatesxk

j and xl
i, k, l ∈ {1, 2}. The

condition expressing that two nearby points are constrained
to a sphere can be written as

(
z1 + dz1

)2
+
(
z2 + dz2

)2
+

(
z1 + dz3

)2
=

(
z1
)2

+
(
z2
)2

+
(
z3
)2

, (26)



hence

z1dz1 + z2dz2 + z3dz3 = 0 . (27)

From (27), the third differential is

dz3 = −

(
z1

z3
dz1 +

z2

z3
dz2

)
. (28)

This differential constraint reduces the DOF of the Jacobian
in (25) by one. Only two lines remain linearly independent.
Choosing the first two lines and replacingdz3i by the right hand
side of (28), the equations between the coordinate differentials
become

[
dz1j
dz2j

]
=


 h1

1
−

z1

i

z3

i

h1
3

h1
2
−

z2

i

z3

i

h1
3

h2
1
−

z1

i

z3

i

h2
3

h2
2
−

z2

i

z3

i

h2
3



[

dz1i
dz2i

]
. (29)

According to (19), image pointsxl, l ∈ {1, 2} and sphere
points zk, k ∈ {1, 2} are related by the bijective mappingΦ
on the whole domain of estimation. Therefore the differentials
are related by

[
dz1

dz2

]
=

[
∂z1

∂x1

∂z1

∂x2

∂z2

∂x1

∂z2

∂x2

] [
dx1

dx2

]
,

hence the Jacobian that maps image differentialsdxj = Jij ·
dxj is as follows:

[Jij ] =




∂Φ1

j

∂x1

j

∂Φ1

j

∂x2

j

∂Φ2

j

∂x1

j

∂Φ2

j

∂x2

j



−1 

 h1
1
−

Φ
1

i

Φ3

i

h1
3

h1
2
−

Φ
2

i

Φ3

i

h1
3

h2
1
−

Φ
1

i

Φ3

i

h2
3

h2
2
−

Φ
2

i

Φ3

i

h2
3


 ·

·




∂Φ1

i

∂x1

i

∂Φ1

i

∂x2

i

∂Φ2

i

∂x1

i

∂Φ2

i

∂x2

i


 (30)

Like the coordinate gradients, Eq.(30) contains only the com-
ponents of unit spheres’ local basis vectors∂Φi

∂xk
i

k ∈ {1, 2} and
∂Φj

∂xl
j

l ∈ {1, 2}. Since both cameras are calibrated,Φi andΦj

are known. Furthermore, the homographyH acting between
the (spherical) regionsD and F corresponding to the scene
planeπ has been computed,Ψ is also know, henceJij is fully
determined.

In summary, given a pair of corresponding regionsF and
D in a pair of calibrated omnidirectional cameras with known
projection functionsΦi, Φj , the 3D scene planeπ can be
reconstructed through the following steps:

1) Estimate the homographyH acting between the cor-
responding spherical regionsF and D (using e.g.
[23]), which givesΨ.

2) Estimate the relative pose(R, t) between the cam-
eras. GivenH, this can be done by a standard
homography factorization method,e.g. [6].

3) Compute the normaln of π using the direct formula
(17), and thend by a standard method based on
(3) [11].

Fig. 3. Homography error for the synthetic datasets (test cases sorted on the
x axis).

Fig. 4. Distance error and normal error plot for the syntheticdatasets (test
cases sorted on thex axis based on distance error, normal error values are
scaled with the factor of0.3 for better visualization).

IV. EXPERIMENTAL RESULTS

The proposed method was tested on3 datasets, each having
approximately100 image pairs. Images of24 different shapes
were used as scene planes and a pair of virtual omnidi-
rectional cameras with random pose were used to generate
the omni image pairs. Assuming that a800 × 800 pixels
scene corresponds to a5 × 5m patch, we positioned the
virtual cameras at distances from the [45cm-55cm], [100cm-
200cm], and [200cm-500cm] intervals respectively, resulting
in 3 datasets with different camera base distances. The first
step of our algorithm is estimating a homography between
the omnidirectional cameras. For this purpose, we use the
correspondence-less method proposed in [23]. For a detailed
evaluation of the method, see [23]. For reference, we show
the homography error on our synthetic dataset in terms of the
percentage of non overlapping area sorted in increasing order
in Fig. 3. The produced homographies has less than2% error
for about 256 examples. This is important as it directly affects
the reconstruction accuracy of our method.

Once the planar homography between the corresponding
region pair is estimated, we can compute the 3D surface normal
and distance using the proposed closed form formula. Sample
3D reconstructions for synthetic data is shown in Fig. 5. The
red surface is the ground truth surface and the green one is
the recovered surface. Fig. 4 shows the error plots for the
whole synthetic dataset. It is clear that distance error plot runs
together with the normal error, hence our method provides
reliable reconstructions for most test cases, giving low error
rates for both surface parameters.

It is worth mentioning that the reconstruction algorithm’s
runtime is only8ms running in Matlab on an Intel i7 3.4 GHz



Fig. 5. Reconstruction results from a pair of synthetic omni images (red:
reconstructed, green: original 3D planar patch

CPU with 8GB memory. This means it can reach real time
speed due to the closed form solution adopted.

A. Comparison with a classical solution

We have performed an experimental comparison of our
method with a well known classical plane from homogra-
phy method described by Hartley and Zisserman [11] (the
Matlab code is available from http://www.robots.ox.ac.uk/
∼vgg/hzbook/code/codevggplane from 2P H.m) and quanti-
tatively demonstrated the performance of our method with
respect to that algorithm. The purpose of this experiment isto
compare our direct method derived via differential geometric
considerations with a classical direct methods derived via
projective geometric considerations, as a basis. Results show
that our method is significantly better in determining the

Fig. 6. Comparative normal error plot on our synthetic datasetwith the
method from [11] (test cases sorted independently for the twomethods)

Fig. 7. Comparative distance error plot on our synthetic dataset with the
method from [11] (test cases sorted independently for the twomethods).

correct normal vector. The error shown in Fig. 6 is computed
as the angle in degrees between the calculated and the ground
truth normal vectors: mean value of our method was only
0.66o, while the classical plane from homography method
produced4.32o error on average. We remark that an error
above 5 degrees can be considered a completely wrong result.
The relative distance error of the reconstructed plane is shown
in Fig. 7. On these plots we can see that the precision of the
two methods is almost identical, because both approaches uses
a similar way to computed.

B. Robustness

As we mentioned before, the precision of the estimated
homography is crucial for 3D reconstruction. As we can see
in Fig. 8 the distance error of the reconstruction is low, until
the homography error is below2 − 3% but than with bigger
homography error it increases exponentially. We can observe
the same behavior in the normal vector calculation as shown
in Fig. 9.

TABLE I. N ORMAL ERROR(DEG) W.R.T. ROTATION ERROR IN

DIFFERENTAXIS

Noise(deg) 0 0.5 1 2 4
x 0.55 0.85 1.46 1.89 4.14
y 0.55 0.78 1.21 1.80 3.36
z 0.55 1.23 1.66 3.09 5.59

TABLE II. D ISTANCE ERROR(%) W.R.T. ROTATION ERROR IN

DIFFERENTAXIS

Noise(deg) 0 0.5 1 2 4
x 2.59 2.71 4.56 4.92 7.71
y 2.59 2.73 2.98 3.01 3.36
z 2.59 2.94 3.11 3.36 4.67



Fig. 8. Distance error rates (scaled with a factor of0.1 for better visualization)
corresponding to the homography error (test cases sorted by the homography
error)

Fig. 9. Normal error rates (scaled with a factor of0.1 for better visualization)
corresponding to the homography error (test cases sorted by the homography
error)

Fig. 10. Normal errors for the noisy omni image datasets (test cases sorted
independently,m is the median of errors)

Fig. 11. Distance errors for the noisy omni image datasets (test cases sorted
independently,m is the median of errors)

TABLE III. D ISTANCE ERROR(%) W.R.T. TRANSLATION ERROR

Noise(%) 0 2 5 10 15
2.59 3.24 5.41 8.73 14.97

Fig. 12. Distance error plots w.r.t. different baselines (test cases sorted
independently,m is the median of errors).

The accuracy of the proposed method depends not only
on the quality of the homography estimation, but also on
the determined camera pose parameters. Obviously, normal
estimation is only affected by the rotation matrix, while
distance calculation depends on both rotation and translation.
To characterize the robustness of our method against errors
in these parameters, we added various percent of noise to the
original values and quantitatively evaluated the reconstruction
error on our synthetic dataset (see Fig. 10 and Fig. 11). Table I
and Table II show that both distance and normal estimation are
sensitive to rotation errors in the camera pose, being robust
up to 2 degree of rotation error, and distance estimation can
tolerate up to5% translation error as well (see Table III).
Normal estimation is more sensitive to rotation error around
the z axis, while distance errors increase more with rotation
errors around thex axis.

Baseline is another important parameter of 3D reconstruc-
tion. Three different datasets (as described at the beginning
of this section) were used to test the effect of short, medium
and large baselines on reconstruction precision. Fig. 12 shows
the distance error while Fig. 13 shows the normal error
with respect to each baseline. Of course, shorter baseline
has higher error rate, which is a well known fact for stereo
reconstruction. However, homography errors are smaller in
case of short and medium base distances (see Fig. 14), hence

Fig. 13. Normal error plots w.r.t. different baselines (testcases sorted
independently,m is the median of errors).



Fig. 14. Homography error w.r.t. different baselines (test cases sorted
independently,m is the median of errors).

overall reconstruction performence is better for these datasets.

V. CONCLUSION

We proposed an efficient 3D reconstruction method, which
allows the reconstruction of complete planar surface patches
from a homography map between corresponding image re-
gions and calibrated omnidirectional cameras. The theoretical
foundation relies on variational calculus, which leads to a
closed form solution for the surface normal, while relativepose
and distance can be computed from the homography using
classical methods. Being a closed form solution, our recon-
struction algorithm runs in real-time which can be particularly
useful for mobile and embedded vision systems. Quantitative
experiments on a large synthetic dataset confirm the superior
performance w.r.t. a classical plane reconstruction algorithm.
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