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Objective 

The hybrid evolutionary algorithm (HEA) has been designed: 1) to represent and forecast 

multivariate relationships between environmental conditions and population densities by 

inferential (IF-THEN-ELSE) models, and 2) to quantify ‘tipping points’ for population outbreaks 

by IF-conditions (Figure 1). During the course of hundreds of iterations, HEA discovers the 

‘best-fitting’ model after optimising model structures by genetic programming and model 

parameters by differential evolution towards the lowest RMSE and highest R2 (Cao et al. 2013). 

 

Figure 1. 20-day-ahead forecasting of Cylindrospermopsis raciborskii in Lake Wivenhoe 
(Australia) by means of inferential modelling based on HEA. The IF-condition suggests that fast 
population growth of C. raciborskii in Lake Wivenhoe may occur within the temperature range 
of 18.9 to 24.3 °C and at conductivity levels lower than 292 µS/cm.  
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The forecasting accuracy of inferential models by HEA suits early warning of population 

outbreaks. Ensembles of inferential models allow scenario analysis of how shifts in physical-

chemical boundaries impact on aquatic communities. Meta-analysis of ‘tipping points’ and 

ecological relationships across lakes with the same stratification regime and trophic state 

allows the generalisation of knowledge inherent in complex ecological data.  

 

Specific application  

Quantifying ecological tipping points and relationships has been demonstrated successfully 

by case studies for Lakes Müggelsee (Germany), Kinneret (Israel), Taihu (China) and Lajes 

(Brazil) (Recknagel et al. 2016; Recknagel et al. 2015; Recknagel et al. 2014; Recknagel et al. 

2013). Short-term forecasting and early warning of cyanobacteria blooms as well as meta-

analysis of tipping points have been demonstrated successfully by case studies for Lakes 

Wivenhoe, Somerset and Samsonvale (Australia) (Recknagel et al. 2014). Spatially-explicit 

short-term forecasting of cyanobacteria blooms has been demonstrated successfully by case 

studies for Lakes Lajes (Brazil), Taihu (China) and Wivenhoe (Australia) (Recknagel et al. 2015; 

Zhang et al. 2015; Cao et al. 2016). 

 

Background  

The tool is available as user-friendly software written in C++. To use the tool requires basic 

programming skills. To execute evolutionary computations by HEA can be very time-

consuming. It is therefore recommended to run HEA on supercomputers in cloud mode. 

 

Type of data and requirements  

Ecological time series are recorded in .xls spreadsheets where rows contain input- and output 

parameters of interest (e.g. physical, chemical and biological data) for consecutive equidistant 

time steps. Since the HEA software learns from patterns, modelling of seasonal and inter-

annual dynamics requires at least 3 years of data, but it generalises best with decades of data 

containing a wealth of patterns. If data are missing or have been measured at non-equidistant 

time steps, interpolation of data to the smallest measured time step is required (HEA licence 

includes a software tool for flexible linear data interpolation of time series). Whilst ‘day’ is the 

recommended time step for ‘several-day-ahead’ predictive modelling, there is no restriction to 

the choice of the smallest time step. Data for spatially-explicit modelling of same ecological 

attribute measured simultaneously at multiple sites has the same requirements as for 

modelling single-site data (HEA licence includes detailed manual and data examples for single- 

and multi-site modelling experiments).  

The .xls spreadsheets need to be completed by specifying HEA control parameters such as 

numbers of inputs, outputs, generations, boot-strap loops etc. before being saved as Text (Tab 
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delimited) files. To run HEA, the HEA exe-file together with the Text file need to be submitted 

to a supercomputer. 

 

Basic procedures 

1. Prepare equidistant input and output data as well as HEA control parameters in .xls 

files before saving them as Text (Tab delimited) files. 

2. Submit HEA exe-file together with Text file to supercomputer. 

3. Review the modelling protocol documenting 10 ‘best fitting’ models by: IF-THEN-ELSE 

rules, graphical validation, root mean squared error (RMSE), R2, ranking inputs by 

sensitivity, input sensitivity functions. 

 

Pitfalls and tips 

 Since HEA ranks inputs by sensitivity after each run, noise from the least sensitive 

inputs can be removed for consecutive runs that may improve model validity. 

 To avoid bias by relying on a single model, averages and Min-Max envelopes of an 

ensemble of 3 to 5 best-fitting models can be utilised for validation.  

 Since HEA infers IF-THEN-ELSE rules for the underlying research question, the IF 

conditions reveal quantitative thresholds that explain causes for high and low output 

magnitudes.  
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Code 

HEA has been coded in C++ language and is not yet freely available. The authors offer short 

courses on inferential and process-based modelling, and welcome collaboration on data 

processing and modelling (for more details please contact 

friedrich.recknagel@adelaide.edu.au). 

 

Contact details 
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