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Abstract—In practice, the use of layout PCells for 
analog IC design has not advanced beyond primi-
tive devices and simple modules. This paper intro-
duces a Constraint-Administered PCell-Applying 
Blocklevel Layout Engine (CAPABLE) which per-
mits PCells to access their context, thus enabling a 
true “bottom-up” development of complex parame-
terized modules. These modules are integrated into 
the design flow with design constraints and applied 
by an execution cockpit via an automatically built 
layout script. The practical purpose of CAPABLE 
is to easily generate full-custom block layouts for 
given schematic circuits. Perspectively, our results 
inspire a whole new conception of PCells that can 
not only act (on demand), but also react (to envi-
ronmental changes) and interact (with each other). 
 
Index Terms—Analog IC design, layout automa-
tion, parameterized cells, design constraints, bot-
tom-up design. 

I. INTRODUCTION 

Semiconductor products continue to revolutionize 
modern life in the 21st century, and analog IC content 
plays an essential role for the ongoing functional di-
versification of integrated circuits. Unfortunately, ana-
log IC design still represents an economic bottleneck 
for the microelectronics industry. In particular, the 
design of physical layouts becomes more and more 
critical, facing the increasingly intricate challenges of 
advanced semiconductor technology nodes. 

A. The Automation Gap in Analog Layout Design 

In the digital domain, the layout creation task of in-
tegrated circuit design is highly automated. Optimiza-
tion algorithms are successfully employed to place 
and route millions of devices per IC. In contrast, three 
decades of substantial research in Electronic Design 

Automation (EDA) have not yet achieved a large-scale 
adoption of such algorithmic approaches in the analog 
domain, where the number of devices is much smaller 
but the design requirements are significantly more 
complex. For that reason, optimization algorithms still 
struggle to find their way into industrial environments. 

In practice, analog layouts are still handcrafted by 
expert designers in a time-consuming manual fashion 
today, with parameterized cells being the main source 
of automation. These so-called PCells represent layout 
generators and are fundamentally different from op-
timization-based approaches because they do not work 
in an algorithmic but in procedural way. PCells are 
mainly used to generate customizable layout variants 
of primitive devices such as transistors and resistors. 
From a scientific point of view, a PCell’s automation 
abilities are comparably trivial, but for a design ex-
pert’s daily layout work, PCells are indispensable. 
Thus it can be observed that – opposite to the ongoing 
pursuit of algorithmic solutions in academia – indus-
trial flows rather drive the development of more pow-
erful module PCells which are able to create layouts 
for entire circuits. In practice however, the advance-
ment of PCells has not yet really proceeded beyond 
simple modules such as current mirrors and differen-
tial pairs. 

The industrial reluctance to employ design automa-
tion for analog layout is rooted in several reasons. In 
particular, we consider the following three problems, 
which will be discussed in greater detail in Section III: 

(A) The development and/or usage of automatisms is 
not intuitive: the setup of optimization algorithms is 
demanding due to their abstract nature; the usage of 
parameterized cells is more intuitive during design, 
but the programming of powerful hierarchical module 
PCells is quite challenging. 

(B) The commonly available formal representations 
of design constraints are not suited to express complex 
functional circuit requirements with sufficient seman-
tical conciseness. 

(C) The inner workings of an automatism are usually 
not transparent to the user and give only little insight 
and control during its execution. 

On the whole, all of these three problems add to one 
basic issue: analog layout automation does not ade-
quately meet with the mentality of expert designers. 

 
 
Daniel Marolt, daniel.marolt@reutlingen-university.de, Jürgen
Scheible, juergen.scheible@reutlingen-university.de, Reutlingen
University, Alteburgstraße 150, 72762 Reutlingen. 
 

Göran Jerke, goeran.jerke@de.bosch.com, Vinko Marolt, vin-
ko.marolt@de.bosch.com, Robert Bosch GmbH, Tübinger Straße
123, 72762 Reutlingen. 

MPC-WORKSHOP JULI 2015 

49



 

 

 

 

B. Our Contribution 

This paper introduces a Constraint-Administered 
PCell-Applying Blocklevel Layout Engine for layout 
automation (CAPABLE). CAPABLE is a framework 
allowing layout engineers to easily combine various 
automatisms into dedicated, custom-made, cohesive, 
executable and traceable scripts which can be used to 
automatically create block layouts for given schematic 
circuits. While there are no restrictions concerning the 
nature of the includable automatisms (i.e., algorithmic 
or procedural), CAPABLE is primarily meant to real-
ize a generator approach which focuses in particular 
on the application of PCells. With respect to this in-
tention, CAPABLE decidedly targets the three particu-
lar problems mentioned above by implementing the 
following features, as will be covered in Section IV: 

(A) CAPABLE facilitates a new style of hierarchical 
PCell composition to create higher-level modules. 
That way, the PCells can be successively imposed 
onto each other in a truly “bottom-up” fashion that is 
much closer to a layout engineer’s manual design style 
than the usual conception of module PCells which 
employ other sub-PCells internally. 

(B) CAPABLE is integrated into the design flow via 
formally expressed constraints. For that purpose, new 
constraint types can be introduced to indicate the 
overall function of certain circuit structures. The in-
herent design requirements are then meant to be im-
plicitly taken care of by respectively provided module 
PCells during the script execution. 

(C) CAPABLE provides a convenient graphical us-
er-interface (GUI) for the execution of the developed 
layout scripts. The GUI facilitates different pacing 
modes which allow the user to run a script step by step 
and thus to precisely track every single action that is 
thereby being performed in the layout. 

Altogether, CAPABLE is a strongly designer-
oriented engine that means to mimic a layout engi-
neer’s manual design style as closely as possible. With 
this objective, the execution of a layout script in 
CAPABLE is supposed to give users the impression of 
replaying a “recorded session” of manual layout de-
sign. 

Our paper is organized as follows: Section II dis-
cusses the characteristics of optimization algorithms 
and parameterized cells. Section III details the three 
limitations described in Section I.A, while Section IV 
illustrates the respective solutions (see above) as put 
into effect by CAPABLE. Section V demonstrates our 
approach with a practical example and finally, Section 
VI concludes with a summary and an outlook. 

II. RELATED WORK 

A. Optimization Algorithms 

Since layout design is – from a mathematical per-
spective – an optimization problem, optimization algo-

rithms are a natural choice to address that problem for 
automation. Characteristically, optimization algo-
rithms translate the problem into an abstract represen-
tation and cycle through a repetitive loop of optimiza-
tion and evaluation [1] to find an optimal layout “solu-
tion” with respect to certain optimization goals. Due to 
the complexity of the layout problem, it is usually 
divided into several steps such that an optimization 
algorithm can focus on one specific design task. The 
two main tasks in layout design are placement and 
routing, both of which have put forth a vast variety of 
algorithmic approaches. Routing can be further split 
into two consecutive steps called global routing and 
detailed routing. While this has become common prac-
tice in the digital domain, the routing of analog cir-
cuits is rather performed in one single step called area 
routing. Two of the first developed area routers are 
Lee’s maze router [2] and Hightower’s line router [3]. 
Algorithmic placement is, due to the huge variability 
of the devices, enormously challenging in the analog 
domain, compared to the standard cell approach taken 
for digital systems. Popular placement algorithms are 
min-cut placement [4], force-directed placement [5] 
and the widely spread Simulated Annealing [6]. 

Around the 1990s, EDA research – inspired by the 
huge success of optimization algorithms in the digital 
domain – has led to a plethora of works in which algo-
rithmic approaches were combined into full-fledged 
tools for automated analog layout synthesis at block 
level, such as ILAC [7], LADIES [8], ALSYN [9] and 
INALSYS [10]. However, none of suchlike tools is 
known to have found evident industrial acceptance. 

Optimization algorithms have the characteristic abil-
ity to explicitly take design constraints into considera-
tion, but to do so they require all these constraints to 
be comprehensively expressed in a formal way. Un-
fortunately, it is enormously difficult to express com-
plex analog design requirements via formal expres-
sions [11]. This restrains an incorporation of valuable 
expert knowledge into the automatism and represents 
a major weakness of algorithmic approaches. 

B. Parameterized Cells 

In contrast to optimization algorithms, PCells are not 
meant to self-intelligently find good layout solutions. 
Instead, a PCell executes a pre-defined series of opera-
tions in order to merely reproduce a customizable 
layout “result”. On this basis, a module PCell, de-
signed to create a layout for a particular analog basic 
circuit, has the natural ability to implicitly consider all 
inherent design constraints without the need to formal-
ize them. This characteristic trait allows PCells to en-
capsulate valuable expert knowledge in an informal 
fashion and to produce layouts in full-custom quality. 
PCells are especially feasible to implement layout 
modules for which best-practice layout solutions are 
already known from experience. 
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Powerful module PCells covering multiple hierarchy 
levels have already been presented, e.g. [12]. Howev-
er, their development still implies a trade-off between 
module variability and programming effort which is 
far from viable for industrial demands. Over the past 
years, a couple of sophisticated commercial PCell 
programming tools such as 1Stone [13], PyCell Studio 
[14] and GOLF [15] have been developed. In particu-
lar, the PCell Designer tool [16] facilitates a visual 
programming approach resembling a layout expert’s 
manual design style. The intention behind that ap-
proach is to provide an intuitive platform with which 
design groups can easily create their own appropriate 
automatisms. With such tools, simple module PCells 
like current mirrors and differential pairs have become 
state-of-the-art in the industry, but the development of 
more complex PCells is obviously still not profitable 
enough in terms of layout productivity. 

III. LIMITATIONS ADDRESSED BY CAPABLE 

In this section, each of the three limitations (A, B, C) 
briefly described in Section I.A is subsequently dis-
cussed in a subsection of its own. 

A. Hierarchical Module PCells 

As already stated, CAPABLE does not represent an 
algorithmic approach like the synthesis frameworks 
mentioned in Section II.A, but focuses on the applica-
tion of PCells. For that reason, this subsection exam-
ines the common conception of PCells and the inher-
ent difficulties when composing them into more com-
plex hierarchical module PCells in the traditional way. 
Generally speaking, a module PCell is a PCell that 
internally instantiates other PCells, and then creates 
additional layout shapes according to its dedicated 
purpose. Concretely, the considerations in this paper 
focus on module PCells which instantiate a set of lay-
out devices and connect them by creating wire shapes 
and vias which make up a module-specific routing. In 
Section V, other types of PCells will also be shown. 

The usage of a PCell requires data to flow through 
various “channels” which are given by the design en-
vironment (see Fig. 1). In principal, each channel can 
provide write access to modify a design object, and 
read access to retrieve information from a design ob-
ject. One such channel is the design editor itself, by 
which a user can instantiate and customize a module 
PCell in a design (a1). Naturally, the design editor also 
allows for editing the context of such a PCell, i.e., the 
other objects around that PCell in its design (a2). To 
generate a certain layout, a PCell has to be evaluated. 
During this evaluation, the PCell performs an internal 
series of operations, thereby accessing its internal de-
vice instances or routing objects in a programmatic 
way (b). For example, this can include measuring the 
distance between two instances or setting the width of 
a routing wire. In contrast to these internal operations, 

a PCell – in its traditional conception – has no ability 
to access its external context (c). Hence, a module 
PCell cannot actively “communicate” with its sur-
rounding design, which in turn implies that all data a 
PCell requires must be passed to it via PCell parame-
ters (a1). 

Fig. 2 illustrates the usage and evaluation of a mod-
ule PCell to examine the data flow in detail. First of 
all (step 1), the user U instantiates and customizes the 
module PCell M by setting its parameter values. The 
parameters of a module PCell, as focused on in this 
paper, can be logically divided into a parameter set PI, 
which specifies the module’s internal instances, and a 
parameter set PR, which specifies its internal routing. 
PI further consists of topology parameters PI,T which 
define the types and the number of the internal in-
stances. With PI,T the module can initially create the 
internal instances I in their default configuration (1). 
PI also contains the device parameters PI,P which are 
directly passed through to the internal instances to set 
their dimensions as desired (2). Now that the number, 

Fig. 1: Data channels required during the usage of a module PCell. 

Fig. 2: Flow of data during the usage of a common module PCell. 

Fig. 3: Passing of parameter values in a traditional module PCell. 
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types, and sizes of the internal instances are set, they 
must be positioned in an arrangement that accommo-
dates the intended routing. The arrangement is directly 
or indirectly defined by the routing parameters PR, so 
this information must somehow be utilized to move 
each instance to its designated position (3). Then, the 
module can read-out geometrical data GI about its 
instances (e.g., their pin positions) and use that infor-
mation in conjunction with PR to generate the appro-
priate routing R (4). During all these actions, the con-
text C of the module PCell is never taken into account. 

For simple modules, this common PCell conception 
is quite adequate, but it doesn’t suit the traditional way 
of combining various PCells level by level to facilitate 
more complex hierarchical modules. As an example, 
two simple PCells can be implemented, each of which 
instantiates a couple of native transistors and connects 
them into a current bank or a cascode, respectively. A 
current bank and a cascode may be combined into a 
cascode current mirror PCell, which can then be em-
ployed for the realization of an operational transcon-
ductance amplifier (OTA). Such an OTA would then 
already span a total of four hierarchy levels. 

At first glance, this approach is a natural strategy of 
using PCells as building bricks to form higher-level 
entities in a bottom-up fashion. But, since every pa-
rameter for each internal instance throughout the en-
tire sub-hierarchy needs to be provided at the top-most 
module level, the flow of information in fact proceeds 
top-down. As shown in Fig. 3, all instance parameters 
PI and routing parameters PR for all internal entities 
must be given to the enclosing module by the user and 
are then internally distributed to the respective recipi-
ents. Technically, there is no limit to such a hierar-
chical composition of module PCells, but the cumula-
tive amount of parameters at top level soon makes this 
approach virtually impractical. On one hand, the need 
to provide all parameters at module level escalates the 
development effort, and on the other hand, the unman-
ageable mass of parameters detracts from a PCell’s 
usability. Furthermore, potential clashes of parameter 
names may require a cumbrous renaming scheme 
which in turn opposes the execution of device-specific 
validation mechanisms which are required to check 
and – if necessary – correct a user-entered parameter 
value. Even if all these problems can somehow be 
circumvented, the long-term maintenance of such a 
module PCell remains a critical issue. If, for example, 
a native transistor is equipped with a new parameter, 
then that parameter specification also needs to be add-
ed to the module PCell and to all its sub-modules 
throughout the module’s entire hierarchy. Altogether, 
these drawbacks make the development of complex 
module PCells laborious, error-prone and inflexible. 

B. Formulation of Design Constraints 

From an abstract perspective, a design constraint is a 
piece of information that supplements a schematic 

circuit to help attain an electrically functioning layout 
design. Initially, design constraints are informal pieces 
of expert knowledge in a designer’s perception, but to 
be explicitly considered by an automatism, they have 
to be expressed in a formalized way. 

Architecturally, circuit designers tend to think not of 
individual transistors, but of larger circuit structures 
that constitute functional units, keeping in mind the 
essential layout requirements that must be satisfied to 
ensure their proper electrical functioning. One of the 
most fundamental duties in analog layout design is the 
achievement of matching. Matching denotes a sym-
metric placement of belonging-together layout devices 
to ensure functional robustness against process varia-
tions, parasitic effects and physical influences. 

Equivalent to the depictions in [17], Fig. 4 shows the 
three views of the Y diagram [18] side by side and the 
different abstraction levels as parallel lines. From a 
functional perspective (a), a circuit designer may be 
well aware of the need for electrical symmetry con-
cerning a certain circuit structure. For the schematic 
design (b), that matching requirement may be formal-
ized, but usually this is done by resorting to an alterna-
tive set of more concrete constraints. For example, in 
the design environment Cadence Virtuoso, a Matching 
constraint is indeed available for assignment (Fig. 5, 
left), but eventually it produces a set of three different, 
geometrical constraints (Fig. 5, right): Matched Pa-
rameters, Matched Orientation, and Alignment. In the 
layout design (Fig. 4), compliance with these con-
straints is supposed to achieve the desired matching, 
but that goal is not necessarily achieved, because the 
geometrical symmetry imposed by the three concrete, 
formal constraints is not entirely congruent with the 
electrical symmetry denoted by matching. 

Fig. 4: Example of typical constraint usage in the design flow. 

Fig. 5: In Virtuoso, matching is expressed with three constraints. 
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On one hand, the three constraints are missing two 
further matching criteria: the distance between the 
devices and their interdigitation. Large spaces between 
the devices or an unbalanced interdigitation pattern 
can substantially compromise the overall matching 
even if the other constraints are satisfied. On the other 
hand, the static nature of the constraints is insufficient 
to express geometric variability. In particular, Align-
ment requires that all devices share a common edge. 
For a single-row layout of a current mirror, this con-
straint would be satisfied. However, the devices of a 
current mirror can just as well be placed in two rows. 
Such an arrangement can even improve the matching, 
but is not tolerated by the alignment constraint be-
cause the alignment edge of the top transistors is dif-
ferent from the alignment edge of the bottom transis-
tors. Furthermore, the routing of the devices can also 
severely impair the matching, but is not at all covered 
by the formally expressed design constraints above. 

The advancement of constraint engineering in aca-
demia and in practice is promising, but it is still in its 
infancy, as shown by the above example. The choice 
of translating abstract design requirements (such as 
matching) into more concrete geometrical constraints 
is comprehensible because it allows for a formal veri-
fication of constraints and also makes them amenable 
to design automation. But, despite the ongoing devel-
opments on the consideration of constraints for verifi-
cation and automation, the described shortcomings of 
contemporary constraint formulation represent a cen-
tral limitation that still obstructs the evolvement of 
long-envisioned constraint-driven design flows. 

C. Opacity of Layout Automatisms 

The potential acceptance of analog layout automa-
tion concepts not only depends on their mere technical 
merit, but also on a human factor that should not be 
underestimated. In general, engineers are rather skep-
tical about processes they cannot easily retrace or in-
fluence. Unfortunately, this is the case with many lay-
out automation approaches, taking a set of input val-
ues and producing a respective layout output with only 
little means (or none at all) to let a user follow or steer 
the course of the automatism’s execution. 

For algorithmic approaches, tracking an automatism 
is difficult anyway since an algorithm may perform 
millions of cycles of optimization and evaluation (e.g., 
the random perturbations in the placement algorithm 
Simulated Annealing). The stochastic nature and non-
deterministic behavior found in the majority of algo-
rithmic layout automatisms detach an understanding 
of their actions even farther from the human grasp. 

In the digital domain, these problems are of no con-
cern due to the more quantitative quality of the design 
problem. But in analog design, the success of algo-
rithmic automation is bound to a comprehensive and 
precise description of all relevant design constraints, 
which is in turn enormously intricate if the relevance 

of each individual constraint, as well as their aggre-
gate effect on the overall course of the automatism 
cannot be easily and intuitively understood by the de-
signer. 

In contrast, the inner workings of a PCell are easier 
to comprehend than those of an algorithm because 
PCells implement a pre-determined series of layout 
operations. On that basis, many PCell development 
tools offer different PCell execution modes which 
allow PCell programmers to trace the evaluation of a 
PCell in detail. For example, the PCell Designer tool 
displays a PCell’s series of operations as a tree and 
supports running the PCell up to a selected operation 
call, as well as a step-by-step execution (see Fig. 6). 

During PCell development, stepwise PCell evalua-
tions are helpful features, but unfortunately, they are 
not available for the actual PCell usage. During de-
sign, a PCell is always executed in one single stroke 
and immediately reflects any user-made modifications 
of parameter values. For simple device PCells, this is 
quite adequate, but for rather complex modules more 
detailed control over the evaluation of a PCell would 
be immensely helpful to understand the structure of 
the module and the influence of the individual PCell 
parameters on the finally generated layout result. 

IV. THE CAPABLE APPROACH 

As will be individually discussed in each of the fol-
lowing subsections, CAPABLE specifically targets the 
three limitations (A, B, C) previously detailed in Sec-
tion III. The combination of these efforts leads to a 
practical automation flow as depicted in Fig. 7. 

Primarily, CAPABLE facilitates an interface fabric 
(A), with which design teams can implement context-
enhanced PCells. Context-enhanced PCells are PCells 
that get equipped by the interface fabric with the abil-
ity to read and modify their design context. This al-
lows module PCells to be hierarchically imposed onto 
each other in an intuitive, bottom-up fashion. 

To generate the layout for a certain schematic cir-
cuit, CAPABLE provides a constraint interpreter (B) 
which allows designers to map a sequence of PCell-
applying CAPABLE script commands to a particular 
constraint type. When assigning these constraints to 
components of a schematic circuit, the interpreter is 

Fig. 6: Execution modes in the Cadence PCell Designer tool. 
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used to build the layout script from the respective 
script commands by which corresponding context-
enhanced PCells are then automatically imposed on 
the constrained components in the layout. If desired, 
the layout script can also be manually edited and ex-
tended to perform further layout actions. 

For carrying out a layout script, CAPABLE features 
a dedicated graphical execution cockpit (C). The exe-
cution cockpit is responsible for converting the used 
script commands into low-level code of the design 
environment’s native programming language. To run 
the created code, CAPABLE’s execution cockpit pro-
vides various different pacing modes which facilitate 
(amongst others) a stepwise execution of the script. 

A. Interface Fabric 

Reprising the illustration from Section III.A, Fig. 8 
again shows the common data channels employed for 
the usage of PCells: the direct editing of a PCell (a1) 
and its design context (a2) as well as a PCell’s access 
to its internal design entities (b). The previously miss-
ing communication abilities between a PCell and its 
context are now facilitated with CAPABLE’s interface 
fabric (c), that can be considered as being “wrapped” 
around a PCell during its instantiation. This enables 
read and write access to the context and can be uti-
lized by PCell developers via providing three dedicat-
ed context-related functions per PCell: 

 An adapt function (mandatory) is required prior 
to the PCell instantiation to analyze the designat-
ed PCell context and turn it into parameter values 
that can then be passed by CAPABLE to the 
PCell when instantiating it. This allows a PCell to 
dynamically adapt itself to the design it is placed 
in. 

 A modify function (optional) can be implemented 
in order to let a PCell alter its context after the in-
itial PCell instantiation. This allows a PCell to 
modify its surroundings to make them suitable for 
the PCell’s own design requirements. 

 An update function (optional) is only necessary 
for PCells that modify their context, and can be 

used to trigger a re-evaluation of the PCell. This 
allows a PCell to update itself according to the 
previously modified context. 

With the above functions, CAPABLE can feasibly 
split a PCell instantiation into three consecutive steps: 
adapt, modify, update. After the execution of these 
three steps, the PCell and its context are supposed to 
be in perfect conformance with each other. 

Fig. 9 illustrates the use of CAPABLE’s interface 
fabric with a practical module PCell equivalent to the 
example presented in Section III.A. In contrast to the 
traditional PCell approach, the native devices need not 
be placed internally by the module PCell, but can be 
discretely instantiated by the user in the layout design 
(step 1). This has the benefit, that the devices can also 
be directly customized to set their dimensions (2). 
With the native devices prepared, CAPABLE can be 

Fig. 8: Data channel enhancement via CAPABLE interface fabric. 

Fig. 9: Flow of data during the usage of a context-enhanced PCell. 

Fig. 10: Passing of parameter values with context-enhanced PCells.

Fig. 7: Overview of the CAPABLE layout automation flow. 
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used to impose a context-enhanced module PCell on 
them (3): here, the adapt function reads out the pin 
positions of the discrete devices and passes this geo-
metrical data GI to the PCell via pre-defined parame-
ters, so the PCell can generate the desired routing con-
sidering the routing parameters PR. During this PCell 
evaluation, the PCell internally computes the correc-
tion data CI, which – in this example – specifies a 
translational move for each individual device. The 
correction data is stored on the PCell itself and can 
thus be used after the initial PCell instantiation by the 
modify function to displace all devices such that they 
are in line with the PCell’s intended best-practice ar-
rangement (4). Finally, CAPABLE executes the up-
date function so the module PCell adjusts its routing 
to the newly positioned devices (5). In the end, the 
resulting layout is equal to that of the traditionally 
implemented module PCell shown in Fig. 2. 

The benefit of this approach becomes obvious when 
more complex modules are considered. As illustrated 
in Fig. 10, the interface fabric of CAPABLE elimi-
nates the need to pass all parameter values for all of a 
module’s internal instances throughout the entire sub-
hierarchy of the module. Instead, the instance parame-
ters PI can be directly set on the native devices onto 
which the module (or, in this case: its sub-modules) 
are imposed. Equivalently, the routing parameters PR 
for the module and its sub-modules are also directly 
customizable. In that way, each building brick of the 
overall module PCell can be individually customized 
before it is measured by an adapting PCell on the 
next-higher hierarchy level. This is not possible with 
the traditional PCell approach, where the internal in-
stances are really nested inside other modules: it im-
plies that an internal instance is entirely evaluated 
during the evaluation of its enclosing PCell, so the 
internal instance cannot be autonomously customized 
before its enclosing PCell begins its own evaluation. 

B. Constraint Interpreter 

The application of the context-enhanced module 
PCells is facilitated via design constraints. But, instead 
of resorting to low-level geometric constraints as de-
scribed in Section III.B, CAPABLE employs dedicat-
ed higher-level constraints. These are supposed to be 
assigned to common circuit structures which represent 
functional entities and for which adequate module 
PCells are available on the layout side. Thereby it is 
the responsibility of the design team – depending on 
their focus (e.g., automotive applications) –  to im-
plement the desired module PCells, and also to specify 
the respective custom constraint types for a seamless 
integration into the CAPABLE flow. Of course, this 
presumes that the IC design environment allows for 
the specification of custom constraint types. 

For every custom constraint type, a sequence of 
CAPABLE commands must once-only be declared in 
the constraint interpreter. Then, during the application 

of CAPABLE to a specific schematic circuit, the con-
straint interpreter turns every occurrence of that con-
straint type into a concrete call to that command se-
quence for applying it to the actual design entities the 
constraint has been assigned to. The final layout script 
results from the concatenation of the command se-
quences for all constraints encountered in the schemat-
ic design. The layout script can further be manually 
edited and extended, if desired. 

CAPABLE provides a couple of script commands. 
The most important one of these is a PCell command 
that performs the instantiation of a context-enhanced 
module PCell according to the three-step approach 
described in Section A. Another command named 
Group allows to store a collection of design entities in 
a local variable. This is particularly useful if multiple 
PCells are to be imposed on the same set of devices. 
Further commands provided by CAPABLE are be-
yond the scope of this paper. Anyway, the set of pro-
vided commands is rather small, since the substantial 
automation powers are supposed to be covered by the 
PCells themselves, or other automatisms that may also 
be integrated into the overall CAPABLE framework 
(e.g., the Modgen tool, as will be shown in Section V). 

As explained in Section II, PCells have the ability to 
consider intricate, low-level design constraints implic-
itly. Under that provision, the utilization of constraints 
is much more concise than in flows such as the one 
depicted in Section III.B. Fig. 11 shows how – instead 
of resorting to primitive geometric constraints – the 
need for electrical symmetry of a particular circuit 
structure can be simply expressed with a single cus-
tom constraint type in the schematic. That constraint 
should allow for the direct specification of a place-
ment pattern by which the detailed device interdigita-
tion can be explicitly defined. In the physical domain, 
a dedicated module PCell, specifically designed to 
respect the custom interdigitation pattern and all other 
requirements of the respective circuit structure, pro-
duces a module layout which achieves the desired 
matching (c). Thereby, the inherent low-level con-
straints are implicitly satisfied by the module PCell 
without the need to explicitly formulate them. 

C. Execution Cockpit 

The CAPABLE approach has been implemented for 
the Cadence Virtuoso design environment. The 

Fig. 11: Example of convenient constraint usage with CAPABLE. 
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execution cockpit (CAPABLE’s graphical user-
interface) is shown in Fig. 12. With the input field (a), 
the user can enter or select a schematic circuit name. 
The circuit’s design constraints are then read from the 
schematic and listed in table (b). The constraint inter-
preter builds the command sequences for the read con-
straints and concatenates them into the layout script 
which is then displayed in table (c). Using the ele-
ments of (d), layout scripts can be saved as text files 
and loaded from the file system at a later time. Also, a 
layout script text file can be manually edited with a 
plain text editor. 

Each line of the layout script represents one call to a 
CAPABLE command. As already mentioned, the exe-
cution cockpit has to convert each command call into 
basic code of the design environment’s native pro-
gramming language (in our implementation: SKILL). 
Based on this conversion, the execution of a command 
is split into multiple fine-grain steps to let the user 
precisely track every single action that is being per-
formed in the layout. The buttons (e) give control over 
the execution and allow the user to carry out 

 a single step, 
 one command, 
 a section of commands, 
 all commands up to the selected command, 
 all commands till the end of the script is reached. 

For every single step, the status field (f) displays tex-
tual messages that are generated during the execution. 

V. EXAMPLE AND RESULTS 

As an example for the application of the CAPABLE 
approach, Fig. 13 (a) shows the schematic diagram of 

a p-input OTA. The circuit consists of one differential 
pair (1) and three current mirrors (2, 3, 4). As dis-
played in subfigure (b), a custom CurrMirr constraint 
is assigned to each current mirror, and a custom Quad 
constraint is assigned to the differential pair. The 
CurrMirr constraints allow the designer to define spe-
cific interdigitation patterns, whereas the Quad con-

 
(a) Schematic diagram of the p-input OTA circuit example. 

 

(b) Custom types of constraints, as assigned to the OTA circuit. 

 

(c) Initially generated layout instances for the circuit transistors. 

Fig. 13: An OTA circuit to exemplify the application of CAPABLE.

Fig. 12: The execution cockpit – CAPABLE’s user-interface. 
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straint inherently denotes a common-centroid AB/BA 
placement. For the layout creation, CAPABLE initial-
ly instantiates the circuit transistors in the layout by 
calling Generate from Source. This is a native sche-
matic-driven-layout functionality by which the dimen-
sions of the layout devices are directly taken from the 
schematic circuit. The initial constellation is shown in 
subfigure (c) and represents the starting point for the 
subsequent constraint-administered imposition of con-
text-enhanced module PCells (illustrated in Fig. 14). 

First, the layout devices for each of the four circuit 
structures are interdigitated by CAPABLE. This is 
conveniently done using the native Modgen tool (but 
could have also been achieved with a PCell). Then, 
dedicated quad and current mirror PCells perform the 
detailed placement and module routing, which leads to 
the intermediate layout result shown in Fig. 14 (a). 

The layout script was manually extended to account 
for the further tasks of the layout creation. Thus, the 
differential pair is enveloped in a guard ring as created 
by a context-enhanced isolation PCell which smoothly 
clasps itself around the devices of the quad. After-
wards, a placement PCell moves the OTA modules to 
a feasible arrangement according to a pre-defined lay-
out template. As shown in subfigure (b), the PCell also 
generates a blocking cap for reasons of symmetry and 
leaves sufficient space for the subsequent routing. 

The routing between the modules is performed with 
a wire PCell, realizing the creation of multi-segment 
routing paths. While the paths can be explicitly speci-
fied via point lists, the PCell is (thanks to context-
enhancement) also capable of snapping the routing 
wire to existing device terminals. The PCell further-
more supports transitions of the metal layer and auto-
matically creates the required vias at the respective 
transition locations. In the given example, all inter-
module connections are achieved with the above wire 
PCell, and finally another isolation PCell is put around 
the entire OTA. The resulting layout is presented in 
subfigure (c). 

One might be skeptical about the efficiency benefit 
of CAPABLE’s script approach compared to the mere 
manual creation of an analog block layout. However, a 
particular bottleneck are design iterations where even 
small modifications to the schematic circuit require 
laborious adjustments in the layout. In that regard, 
CAPABLE is supposed to be an especially profitable 
concept, allowing to easily re-generate the layout with 
just as little modifications. In general terms, every 
finished layout design represents one individual de-
termined solution, whereas a CAPABLE script rather 
encapsulates a solution strategy that can be executed 
to generate finalized solutions. Conceptually, this ap-
proach is equivalent to the idea of PCells, but on a 
higher level of abstraction: a PCell performs native 
layout operations to create a design, while CAPABLE 
employs PCells to produce more complex results. 

 
(a) Intermediate layout result with quad and current mirror modules.

 

 
(b) Intermediate placement with quad guard ring and blocking cap. 

 

 
(c) Final layout result with full routing and enclosing guard ring. 

 

Fig. 14: Layout results of applying CAPABLE to the OTA circuit. 
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VI. SUMMARY AND OUTLOOK 

This paper presents a Constraint-Administered 
PCell-Applying Blocklevel Layout Engine for analog 
layout automation (CAPABLE). It implements three 
central features: (A) an interface fabric which facili-
tates the development of context-enhanced module 
PCells, (B) a constraint interpreter for transforming 
custom design constraints into command sequences 
that apply dedicated context-enhanced module PCells, 
and (C) an execution cockpit to carry out such com-
mand sequences as a concatenated layout script. 

By implementing appropriate module PCells and as-
signing respective constraints to a schematic circuit, 
designers can use CAPABLE to build and run a layout 
script that generates the block layout in a bottom-up 
fashion by successively imposing module PCells onto 
each other. This approach is closer to a layout expert’s 
manual design style and more intuitive than the tradi-
tional conception of complex module PCells covering 
multiple levels of hierarchy. In particular, CAPABLE 
eliminates the need to pass low-level device parame-
ters across multiple hierarchy levels, it is able to con-
sider intricate design requirements implicitly, and it 
allows the user to transparently track every single step 
that is performed during the layout creation. 

In the long run, the CAPABLE approach should en-
courage design experts to abandon the common, man-
ual style of layout creation in favor of rather capturing 
their invaluable solution strategies. For that purpose, 
future work on CAPABLE targets the automation of 
the script creation, e.g. by recording manual layout 
actions and converting them into script commands. 
Apart from that, the idea of context-awareness gives 
rise to an entirely new species of PCells that can not 
only act (on demand), but also react (to environmental 
changes) and even interact (with each other) – a vision 
that adds fundamentally new conceptions of flexibility 
and intelligence to the classical PCell concept. 
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