
MPC
MULTI PROJEKT CHIP GRUPPE
B A D E N - W Ü R T T E M B E R G

T. Heil, Carl Zeiss SMT GmbH, Oberkochen

CMOS Image Sensors
H. Neubauer, Fraunhofer Institut IIS, Erlangen

Entwurf und Inbetriebnahme einer PLL in 0,35 μm CMOS-Technologie
C. Eschenbach, B. Vettermann, J. Giehl, Hochschule Mannheim

Ein Aufwärts-Wandler-IP im 180 nm CMOS-Prozess zur Versorgung von ASICs mittels Energy Harvesting
M. Hiller, M. Locherer, G. Forster, Hochschule Ulm

I. Yasar, R. Staudt, C. L. J. Teffo, B. Schoch, T. Stoof, J. Wittmann, B. Wicht, Hochschule Reutlingen

M. Bhattacharyya, B. Dusch, D. Jansen, E. Mackensen, Hochschule Offenburg

CAPABLE: A Layout Automation Framework for Analog IC Design
D. Marolt, J. Scheible, Hochschule Reutlingen; G. Jerke, V. Marolt, Robert Bosch GmbH, Reutlingen

Synthese eines CRC-Number-Crunchers auf einem FPGA
S. Gebhart, I. Schoppa, Hochschule Konstanz

Analyse von Hardware/Software-Varianten einer Bildverarbeitungsapplikation auf Basis eines FPGA-SoCs
D. S. Rieber, J. Gerlach, Hochschule Albstadt-Sigmaringen

High-Level-Synthese eines OFDM-Funkkommunikationssystems für eine auf den Einsatz in der Lehre

S. Moll, M. Welk, M. Düll, R. Münzner, Hochschule Ulm

Untersuchung maschineller Lernverfahren und Realisierung eines selbstlernenden Algorithmus zur
zuverlässigeren Gestenerkennung
D. Heese, K.-H. Blankenbach, F. Kesel, Hochschule Pforzheim

A Web-Based Monitoring Tool for Metering Bus (EN13757-3)
T. Matt, M. Schappacher, A. Sikora, Hochschule Offenburg

Herausgeber: Hochschule Ulm Ausgabe: 54 ISSN 1868-9221 Workshop: Ulm Juli 2015

Cooperating Organisation
Solid-State Circuit Society Chapter
IEEE German Section

 1

 9

15

23

35

43

49

61

67

77

85

97

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorium und Bibliografie der Hochschule Reutlingen

https://core.ac.uk/display/80747813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tagungsband zum Workshop der Multiprojekt-Chip-Gruppe Baden-Württemberg

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie.

Die Inhalte der einzelnen Beiträge dieses Tagungsbandes liegen in der Verantwortung der jeweiligen Autoren.

Herausgeber:

Gerhard Forster, Hochschule Ulm, Prittwitzstraße 10, D-89075 Ulm

Mitherausgeber (Peer Reviewer):

Jürgen Giehl, Hochschule Mannheim, Paul-Wittsack-Straße 10, D-68163 Mannheim

Frank Kesel, Hochschule Pforzheim, Tiefenbronner Straße 65, D-75175 Pforzheim

Axel Sikora, Hochschule Offenburg, Badstraße 24, D-77652 Offenburg

Alle Rechte vorbehalten

Diesen Workshopband und alle bisherigen Bände finden Sie im Internet unter:

http://www.mpc.belwue.de

CAPABLE: A Layout Automation
Framework for Analog IC Design

Daniel Marolt, Jürgen Scheible, Göran Jerke, Vinko Marolt

Abstract—In practice, the use of layout PCells for
analog IC design has not advanced beyond primi-
tive devices and simple modules. This paper intro-
duces a Constraint-Administered PCell-Applying
Blocklevel Layout Engine (CAPABLE) which per-
mits PCells to access their context, thus enabling a
true “bottom-up” development of complex parame-
terized modules. These modules are integrated into
the design flow with design constraints and applied
by an execution cockpit via an automatically built
layout script. The practical purpose of CAPABLE
is to easily generate full-custom block layouts for
given schematic circuits. Perspectively, our results
inspire a whole new conception of PCells that can
not only act (on demand), but also react (to envi-
ronmental changes) and interact (with each other).

Index Terms—Analog IC design, layout automa-
tion, parameterized cells, design constraints, bot-
tom-up design.

I. INTRODUCTION

Semiconductor products continue to revolutionize
modern life in the 21st century, and analog IC content
plays an essential role for the ongoing functional di-
versification of integrated circuits. Unfortunately, ana-
log IC design still represents an economic bottleneck
for the microelectronics industry. In particular, the
design of physical layouts becomes more and more
critical, facing the increasingly intricate challenges of
advanced semiconductor technology nodes.

A. The Automation Gap in Analog Layout Design

In the digital domain, the layout creation task of in-
tegrated circuit design is highly automated. Optimiza-
tion algorithms are successfully employed to place
and route millions of devices per IC. In contrast, three
decades of substantial research in Electronic Design

Automation (EDA) have not yet achieved a large-scale
adoption of such algorithmic approaches in the analog
domain, where the number of devices is much smaller
but the design requirements are significantly more
complex. For that reason, optimization algorithms still
struggle to find their way into industrial environments.

In practice, analog layouts are still handcrafted by
expert designers in a time-consuming manual fashion
today, with parameterized cells being the main source
of automation. These so-called PCells represent layout
generators and are fundamentally different from op-
timization-based approaches because they do not work
in an algorithmic but in procedural way. PCells are
mainly used to generate customizable layout variants
of primitive devices such as transistors and resistors.
From a scientific point of view, a PCell’s automation
abilities are comparably trivial, but for a design ex-
pert’s daily layout work, PCells are indispensable.
Thus it can be observed that – opposite to the ongoing
pursuit of algorithmic solutions in academia – indus-
trial flows rather drive the development of more pow-
erful module PCells which are able to create layouts
for entire circuits. In practice however, the advance-
ment of PCells has not yet really proceeded beyond
simple modules such as current mirrors and differen-
tial pairs.

The industrial reluctance to employ design automa-
tion for analog layout is rooted in several reasons. In
particular, we consider the following three problems,
which will be discussed in greater detail in Section III:

(A) The development and/or usage of automatisms is
not intuitive: the setup of optimization algorithms is
demanding due to their abstract nature; the usage of
parameterized cells is more intuitive during design,
but the programming of powerful hierarchical module
PCells is quite challenging.

(B) The commonly available formal representations
of design constraints are not suited to express complex
functional circuit requirements with sufficient seman-
tical conciseness.

(C) The inner workings of an automatism are usually
not transparent to the user and give only little insight
and control during its execution.

On the whole, all of these three problems add to one
basic issue: analog layout automation does not ade-
quately meet with the mentality of expert designers.

Daniel Marolt, daniel.marolt@reutlingen-university.de, Jürgen
Scheible, juergen.scheible@reutlingen-university.de, Reutlingen
University, Alteburgstraße 150, 72762 Reutlingen.

Göran Jerke, goeran.jerke@de.bosch.com, Vinko Marolt, vin-
ko.marolt@de.bosch.com, Robert Bosch GmbH, Tübinger Straße
123, 72762 Reutlingen.

MPC-WORKSHOP JULI 2015

49

B. Our Contribution

This paper introduces a Constraint-Administered
PCell-Applying Blocklevel Layout Engine for layout
automation (CAPABLE). CAPABLE is a framework
allowing layout engineers to easily combine various
automatisms into dedicated, custom-made, cohesive,
executable and traceable scripts which can be used to
automatically create block layouts for given schematic
circuits. While there are no restrictions concerning the
nature of the includable automatisms (i.e., algorithmic
or procedural), CAPABLE is primarily meant to real-
ize a generator approach which focuses in particular
on the application of PCells. With respect to this in-
tention, CAPABLE decidedly targets the three particu-
lar problems mentioned above by implementing the
following features, as will be covered in Section IV:

(A) CAPABLE facilitates a new style of hierarchical
PCell composition to create higher-level modules.
That way, the PCells can be successively imposed
onto each other in a truly “bottom-up” fashion that is
much closer to a layout engineer’s manual design style
than the usual conception of module PCells which
employ other sub-PCells internally.

(B) CAPABLE is integrated into the design flow via
formally expressed constraints. For that purpose, new
constraint types can be introduced to indicate the
overall function of certain circuit structures. The in-
herent design requirements are then meant to be im-
plicitly taken care of by respectively provided module
PCells during the script execution.

(C) CAPABLE provides a convenient graphical us-
er-interface (GUI) for the execution of the developed
layout scripts. The GUI facilitates different pacing
modes which allow the user to run a script step by step
and thus to precisely track every single action that is
thereby being performed in the layout.

Altogether, CAPABLE is a strongly designer-
oriented engine that means to mimic a layout engi-
neer’s manual design style as closely as possible. With
this objective, the execution of a layout script in
CAPABLE is supposed to give users the impression of
replaying a “recorded session” of manual layout de-
sign.

Our paper is organized as follows: Section II dis-
cusses the characteristics of optimization algorithms
and parameterized cells. Section III details the three
limitations described in Section I.A, while Section IV
illustrates the respective solutions (see above) as put
into effect by CAPABLE. Section V demonstrates our
approach with a practical example and finally, Section
VI concludes with a summary and an outlook.

II. RELATED WORK

A. Optimization Algorithms

Since layout design is – from a mathematical per-
spective – an optimization problem, optimization algo-

rithms are a natural choice to address that problem for
automation. Characteristically, optimization algo-
rithms translate the problem into an abstract represen-
tation and cycle through a repetitive loop of optimiza-
tion and evaluation [1] to find an optimal layout “solu-
tion” with respect to certain optimization goals. Due to
the complexity of the layout problem, it is usually
divided into several steps such that an optimization
algorithm can focus on one specific design task. The
two main tasks in layout design are placement and
routing, both of which have put forth a vast variety of
algorithmic approaches. Routing can be further split
into two consecutive steps called global routing and
detailed routing. While this has become common prac-
tice in the digital domain, the routing of analog cir-
cuits is rather performed in one single step called area
routing. Two of the first developed area routers are
Lee’s maze router [2] and Hightower’s line router [3].
Algorithmic placement is, due to the huge variability
of the devices, enormously challenging in the analog
domain, compared to the standard cell approach taken
for digital systems. Popular placement algorithms are
min-cut placement [4], force-directed placement [5]
and the widely spread Simulated Annealing [6].

Around the 1990s, EDA research – inspired by the
huge success of optimization algorithms in the digital
domain – has led to a plethora of works in which algo-
rithmic approaches were combined into full-fledged
tools for automated analog layout synthesis at block
level, such as ILAC [7], LADIES [8], ALSYN [9] and
INALSYS [10]. However, none of suchlike tools is
known to have found evident industrial acceptance.

Optimization algorithms have the characteristic abil-
ity to explicitly take design constraints into considera-
tion, but to do so they require all these constraints to
be comprehensively expressed in a formal way. Un-
fortunately, it is enormously difficult to express com-
plex analog design requirements via formal expres-
sions [11]. This restrains an incorporation of valuable
expert knowledge into the automatism and represents
a major weakness of algorithmic approaches.

B. Parameterized Cells

In contrast to optimization algorithms, PCells are not
meant to self-intelligently find good layout solutions.
Instead, a PCell executes a pre-defined series of opera-
tions in order to merely reproduce a customizable
layout “result”. On this basis, a module PCell, de-
signed to create a layout for a particular analog basic
circuit, has the natural ability to implicitly consider all
inherent design constraints without the need to formal-
ize them. This characteristic trait allows PCells to en-
capsulate valuable expert knowledge in an informal
fashion and to produce layouts in full-custom quality.
PCells are especially feasible to implement layout
modules for which best-practice layout solutions are
already known from experience.

CAPABLE: A LAYOUT AUTOMATION FRAMEWORK
FOR ANALOG IC DESIGN

50

Powerful module PCells covering multiple hierarchy
levels have already been presented, e.g. [12]. Howev-
er, their development still implies a trade-off between
module variability and programming effort which is
far from viable for industrial demands. Over the past
years, a couple of sophisticated commercial PCell
programming tools such as 1Stone [13], PyCell Studio
[14] and GOLF [15] have been developed. In particu-
lar, the PCell Designer tool [16] facilitates a visual
programming approach resembling a layout expert’s
manual design style. The intention behind that ap-
proach is to provide an intuitive platform with which
design groups can easily create their own appropriate
automatisms. With such tools, simple module PCells
like current mirrors and differential pairs have become
state-of-the-art in the industry, but the development of
more complex PCells is obviously still not profitable
enough in terms of layout productivity.

III. LIMITATIONS ADDRESSED BY CAPABLE

In this section, each of the three limitations (A, B, C)
briefly described in Section I.A is subsequently dis-
cussed in a subsection of its own.

A. Hierarchical Module PCells

As already stated, CAPABLE does not represent an
algorithmic approach like the synthesis frameworks
mentioned in Section II.A, but focuses on the applica-
tion of PCells. For that reason, this subsection exam-
ines the common conception of PCells and the inher-
ent difficulties when composing them into more com-
plex hierarchical module PCells in the traditional way.
Generally speaking, a module PCell is a PCell that
internally instantiates other PCells, and then creates
additional layout shapes according to its dedicated
purpose. Concretely, the considerations in this paper
focus on module PCells which instantiate a set of lay-
out devices and connect them by creating wire shapes
and vias which make up a module-specific routing. In
Section V, other types of PCells will also be shown.

The usage of a PCell requires data to flow through
various “channels” which are given by the design en-
vironment (see Fig. 1). In principal, each channel can
provide write access to modify a design object, and
read access to retrieve information from a design ob-
ject. One such channel is the design editor itself, by
which a user can instantiate and customize a module
PCell in a design (a1). Naturally, the design editor also
allows for editing the context of such a PCell, i.e., the
other objects around that PCell in its design (a2). To
generate a certain layout, a PCell has to be evaluated.
During this evaluation, the PCell performs an internal
series of operations, thereby accessing its internal de-
vice instances or routing objects in a programmatic
way (b). For example, this can include measuring the
distance between two instances or setting the width of
a routing wire. In contrast to these internal operations,

a PCell – in its traditional conception – has no ability
to access its external context (c). Hence, a module
PCell cannot actively “communicate” with its sur-
rounding design, which in turn implies that all data a
PCell requires must be passed to it via PCell parame-
ters (a1).

Fig. 2 illustrates the usage and evaluation of a mod-
ule PCell to examine the data flow in detail. First of
all (step 1), the user U instantiates and customizes the
module PCell M by setting its parameter values. The
parameters of a module PCell, as focused on in this
paper, can be logically divided into a parameter set PI,
which specifies the module’s internal instances, and a
parameter set PR, which specifies its internal routing.
PI further consists of topology parameters PI,T which
define the types and the number of the internal in-
stances. With PI,T the module can initially create the
internal instances I in their default configuration (1).
PI also contains the device parameters PI,P which are
directly passed through to the internal instances to set
their dimensions as desired (2). Now that the number,

Fig. 1: Data channels required during the usage of a module PCell.

Fig. 2: Flow of data during the usage of a common module PCell.

Fig. 3: Passing of parameter values in a traditional module PCell.

MPC-WORKSHOP JULI 2015

51

types, and sizes of the internal instances are set, they
must be positioned in an arrangement that accommo-
dates the intended routing. The arrangement is directly
or indirectly defined by the routing parameters PR, so
this information must somehow be utilized to move
each instance to its designated position (3). Then, the
module can read-out geometrical data GI about its
instances (e.g., their pin positions) and use that infor-
mation in conjunction with PR to generate the appro-
priate routing R (4). During all these actions, the con-
text C of the module PCell is never taken into account.

For simple modules, this common PCell conception
is quite adequate, but it doesn’t suit the traditional way
of combining various PCells level by level to facilitate
more complex hierarchical modules. As an example,
two simple PCells can be implemented, each of which
instantiates a couple of native transistors and connects
them into a current bank or a cascode, respectively. A
current bank and a cascode may be combined into a
cascode current mirror PCell, which can then be em-
ployed for the realization of an operational transcon-
ductance amplifier (OTA). Such an OTA would then
already span a total of four hierarchy levels.

At first glance, this approach is a natural strategy of
using PCells as building bricks to form higher-level
entities in a bottom-up fashion. But, since every pa-
rameter for each internal instance throughout the en-
tire sub-hierarchy needs to be provided at the top-most
module level, the flow of information in fact proceeds
top-down. As shown in Fig. 3, all instance parameters
PI and routing parameters PR for all internal entities
must be given to the enclosing module by the user and
are then internally distributed to the respective recipi-
ents. Technically, there is no limit to such a hierar-
chical composition of module PCells, but the cumula-
tive amount of parameters at top level soon makes this
approach virtually impractical. On one hand, the need
to provide all parameters at module level escalates the
development effort, and on the other hand, the unman-
ageable mass of parameters detracts from a PCell’s
usability. Furthermore, potential clashes of parameter
names may require a cumbrous renaming scheme
which in turn opposes the execution of device-specific
validation mechanisms which are required to check
and – if necessary – correct a user-entered parameter
value. Even if all these problems can somehow be
circumvented, the long-term maintenance of such a
module PCell remains a critical issue. If, for example,
a native transistor is equipped with a new parameter,
then that parameter specification also needs to be add-
ed to the module PCell and to all its sub-modules
throughout the module’s entire hierarchy. Altogether,
these drawbacks make the development of complex
module PCells laborious, error-prone and inflexible.

B. Formulation of Design Constraints

From an abstract perspective, a design constraint is a
piece of information that supplements a schematic

circuit to help attain an electrically functioning layout
design. Initially, design constraints are informal pieces
of expert knowledge in a designer’s perception, but to
be explicitly considered by an automatism, they have
to be expressed in a formalized way.

Architecturally, circuit designers tend to think not of
individual transistors, but of larger circuit structures
that constitute functional units, keeping in mind the
essential layout requirements that must be satisfied to
ensure their proper electrical functioning. One of the
most fundamental duties in analog layout design is the
achievement of matching. Matching denotes a sym-
metric placement of belonging-together layout devices
to ensure functional robustness against process varia-
tions, parasitic effects and physical influences.

Equivalent to the depictions in [17], Fig. 4 shows the
three views of the Y diagram [18] side by side and the
different abstraction levels as parallel lines. From a
functional perspective (a), a circuit designer may be
well aware of the need for electrical symmetry con-
cerning a certain circuit structure. For the schematic
design (b), that matching requirement may be formal-
ized, but usually this is done by resorting to an alterna-
tive set of more concrete constraints. For example, in
the design environment Cadence Virtuoso, a Matching
constraint is indeed available for assignment (Fig. 5,
left), but eventually it produces a set of three different,
geometrical constraints (Fig. 5, right): Matched Pa-
rameters, Matched Orientation, and Alignment. In the
layout design (Fig. 4), compliance with these con-
straints is supposed to achieve the desired matching,
but that goal is not necessarily achieved, because the
geometrical symmetry imposed by the three concrete,
formal constraints is not entirely congruent with the
electrical symmetry denoted by matching.

Fig. 4: Example of typical constraint usage in the design flow.

Fig. 5: In Virtuoso, matching is expressed with three constraints.

CAPABLE: A LAYOUT AUTOMATION FRAMEWORK
FOR ANALOG IC DESIGN

52

On one hand, the three constraints are missing two
further matching criteria: the distance between the
devices and their interdigitation. Large spaces between
the devices or an unbalanced interdigitation pattern
can substantially compromise the overall matching
even if the other constraints are satisfied. On the other
hand, the static nature of the constraints is insufficient
to express geometric variability. In particular, Align-
ment requires that all devices share a common edge.
For a single-row layout of a current mirror, this con-
straint would be satisfied. However, the devices of a
current mirror can just as well be placed in two rows.
Such an arrangement can even improve the matching,
but is not tolerated by the alignment constraint be-
cause the alignment edge of the top transistors is dif-
ferent from the alignment edge of the bottom transis-
tors. Furthermore, the routing of the devices can also
severely impair the matching, but is not at all covered
by the formally expressed design constraints above.

The advancement of constraint engineering in aca-
demia and in practice is promising, but it is still in its
infancy, as shown by the above example. The choice
of translating abstract design requirements (such as
matching) into more concrete geometrical constraints
is comprehensible because it allows for a formal veri-
fication of constraints and also makes them amenable
to design automation. But, despite the ongoing devel-
opments on the consideration of constraints for verifi-
cation and automation, the described shortcomings of
contemporary constraint formulation represent a cen-
tral limitation that still obstructs the evolvement of
long-envisioned constraint-driven design flows.

C. Opacity of Layout Automatisms

The potential acceptance of analog layout automa-
tion concepts not only depends on their mere technical
merit, but also on a human factor that should not be
underestimated. In general, engineers are rather skep-
tical about processes they cannot easily retrace or in-
fluence. Unfortunately, this is the case with many lay-
out automation approaches, taking a set of input val-
ues and producing a respective layout output with only
little means (or none at all) to let a user follow or steer
the course of the automatism’s execution.

For algorithmic approaches, tracking an automatism
is difficult anyway since an algorithm may perform
millions of cycles of optimization and evaluation (e.g.,
the random perturbations in the placement algorithm
Simulated Annealing). The stochastic nature and non-
deterministic behavior found in the majority of algo-
rithmic layout automatisms detach an understanding
of their actions even farther from the human grasp.

In the digital domain, these problems are of no con-
cern due to the more quantitative quality of the design
problem. But in analog design, the success of algo-
rithmic automation is bound to a comprehensive and
precise description of all relevant design constraints,
which is in turn enormously intricate if the relevance

of each individual constraint, as well as their aggre-
gate effect on the overall course of the automatism
cannot be easily and intuitively understood by the de-
signer.

In contrast, the inner workings of a PCell are easier
to comprehend than those of an algorithm because
PCells implement a pre-determined series of layout
operations. On that basis, many PCell development
tools offer different PCell execution modes which
allow PCell programmers to trace the evaluation of a
PCell in detail. For example, the PCell Designer tool
displays a PCell’s series of operations as a tree and
supports running the PCell up to a selected operation
call, as well as a step-by-step execution (see Fig. 6).

During PCell development, stepwise PCell evalua-
tions are helpful features, but unfortunately, they are
not available for the actual PCell usage. During de-
sign, a PCell is always executed in one single stroke
and immediately reflects any user-made modifications
of parameter values. For simple device PCells, this is
quite adequate, but for rather complex modules more
detailed control over the evaluation of a PCell would
be immensely helpful to understand the structure of
the module and the influence of the individual PCell
parameters on the finally generated layout result.

IV. THE CAPABLE APPROACH

As will be individually discussed in each of the fol-
lowing subsections, CAPABLE specifically targets the
three limitations (A, B, C) previously detailed in Sec-
tion III. The combination of these efforts leads to a
practical automation flow as depicted in Fig. 7.

Primarily, CAPABLE facilitates an interface fabric
(A), with which design teams can implement context-
enhanced PCells. Context-enhanced PCells are PCells
that get equipped by the interface fabric with the abil-
ity to read and modify their design context. This al-
lows module PCells to be hierarchically imposed onto
each other in an intuitive, bottom-up fashion.

To generate the layout for a certain schematic cir-
cuit, CAPABLE provides a constraint interpreter (B)
which allows designers to map a sequence of PCell-
applying CAPABLE script commands to a particular
constraint type. When assigning these constraints to
components of a schematic circuit, the interpreter is

Fig. 6: Execution modes in the Cadence PCell Designer tool.

MPC-WORKSHOP JULI 2015

53

used to build the layout script from the respective
script commands by which corresponding context-
enhanced PCells are then automatically imposed on
the constrained components in the layout. If desired,
the layout script can also be manually edited and ex-
tended to perform further layout actions.

For carrying out a layout script, CAPABLE features
a dedicated graphical execution cockpit (C). The exe-
cution cockpit is responsible for converting the used
script commands into low-level code of the design
environment’s native programming language. To run
the created code, CAPABLE’s execution cockpit pro-
vides various different pacing modes which facilitate
(amongst others) a stepwise execution of the script.

A. Interface Fabric

Reprising the illustration from Section III.A, Fig. 8
again shows the common data channels employed for
the usage of PCells: the direct editing of a PCell (a1)
and its design context (a2) as well as a PCell’s access
to its internal design entities (b). The previously miss-
ing communication abilities between a PCell and its
context are now facilitated with CAPABLE’s interface
fabric (c), that can be considered as being “wrapped”
around a PCell during its instantiation. This enables
read and write access to the context and can be uti-
lized by PCell developers via providing three dedicat-
ed context-related functions per PCell:

 An adapt function (mandatory) is required prior
to the PCell instantiation to analyze the designat-
ed PCell context and turn it into parameter values
that can then be passed by CAPABLE to the
PCell when instantiating it. This allows a PCell to
dynamically adapt itself to the design it is placed
in.

 A modify function (optional) can be implemented
in order to let a PCell alter its context after the in-
itial PCell instantiation. This allows a PCell to
modify its surroundings to make them suitable for
the PCell’s own design requirements.

 An update function (optional) is only necessary
for PCells that modify their context, and can be

used to trigger a re-evaluation of the PCell. This
allows a PCell to update itself according to the
previously modified context.

With the above functions, CAPABLE can feasibly
split a PCell instantiation into three consecutive steps:
adapt, modify, update. After the execution of these
three steps, the PCell and its context are supposed to
be in perfect conformance with each other.

Fig. 9 illustrates the use of CAPABLE’s interface
fabric with a practical module PCell equivalent to the
example presented in Section III.A. In contrast to the
traditional PCell approach, the native devices need not
be placed internally by the module PCell, but can be
discretely instantiated by the user in the layout design
(step 1). This has the benefit, that the devices can also
be directly customized to set their dimensions (2).
With the native devices prepared, CAPABLE can be

Fig. 8: Data channel enhancement via CAPABLE interface fabric.

Fig. 9: Flow of data during the usage of a context-enhanced PCell.

Fig. 10: Passing of parameter values with context-enhanced PCells.

Fig. 7: Overview of the CAPABLE layout automation flow.

CAPABLE: A LAYOUT AUTOMATION FRAMEWORK
FOR ANALOG IC DESIGN

54

used to impose a context-enhanced module PCell on
them (3): here, the adapt function reads out the pin
positions of the discrete devices and passes this geo-
metrical data GI to the PCell via pre-defined parame-
ters, so the PCell can generate the desired routing con-
sidering the routing parameters PR. During this PCell
evaluation, the PCell internally computes the correc-
tion data CI, which – in this example – specifies a
translational move for each individual device. The
correction data is stored on the PCell itself and can
thus be used after the initial PCell instantiation by the
modify function to displace all devices such that they
are in line with the PCell’s intended best-practice ar-
rangement (4). Finally, CAPABLE executes the up-
date function so the module PCell adjusts its routing
to the newly positioned devices (5). In the end, the
resulting layout is equal to that of the traditionally
implemented module PCell shown in Fig. 2.

The benefit of this approach becomes obvious when
more complex modules are considered. As illustrated
in Fig. 10, the interface fabric of CAPABLE elimi-
nates the need to pass all parameter values for all of a
module’s internal instances throughout the entire sub-
hierarchy of the module. Instead, the instance parame-
ters PI can be directly set on the native devices onto
which the module (or, in this case: its sub-modules)
are imposed. Equivalently, the routing parameters PR
for the module and its sub-modules are also directly
customizable. In that way, each building brick of the
overall module PCell can be individually customized
before it is measured by an adapting PCell on the
next-higher hierarchy level. This is not possible with
the traditional PCell approach, where the internal in-
stances are really nested inside other modules: it im-
plies that an internal instance is entirely evaluated
during the evaluation of its enclosing PCell, so the
internal instance cannot be autonomously customized
before its enclosing PCell begins its own evaluation.

B. Constraint Interpreter

The application of the context-enhanced module
PCells is facilitated via design constraints. But, instead
of resorting to low-level geometric constraints as de-
scribed in Section III.B, CAPABLE employs dedicat-
ed higher-level constraints. These are supposed to be
assigned to common circuit structures which represent
functional entities and for which adequate module
PCells are available on the layout side. Thereby it is
the responsibility of the design team – depending on
their focus (e.g., automotive applications) – to im-
plement the desired module PCells, and also to specify
the respective custom constraint types for a seamless
integration into the CAPABLE flow. Of course, this
presumes that the IC design environment allows for
the specification of custom constraint types.

For every custom constraint type, a sequence of
CAPABLE commands must once-only be declared in
the constraint interpreter. Then, during the application

of CAPABLE to a specific schematic circuit, the con-
straint interpreter turns every occurrence of that con-
straint type into a concrete call to that command se-
quence for applying it to the actual design entities the
constraint has been assigned to. The final layout script
results from the concatenation of the command se-
quences for all constraints encountered in the schemat-
ic design. The layout script can further be manually
edited and extended, if desired.

CAPABLE provides a couple of script commands.
The most important one of these is a PCell command
that performs the instantiation of a context-enhanced
module PCell according to the three-step approach
described in Section A. Another command named
Group allows to store a collection of design entities in
a local variable. This is particularly useful if multiple
PCells are to be imposed on the same set of devices.
Further commands provided by CAPABLE are be-
yond the scope of this paper. Anyway, the set of pro-
vided commands is rather small, since the substantial
automation powers are supposed to be covered by the
PCells themselves, or other automatisms that may also
be integrated into the overall CAPABLE framework
(e.g., the Modgen tool, as will be shown in Section V).

As explained in Section II, PCells have the ability to
consider intricate, low-level design constraints implic-
itly. Under that provision, the utilization of constraints
is much more concise than in flows such as the one
depicted in Section III.B. Fig. 11 shows how – instead
of resorting to primitive geometric constraints – the
need for electrical symmetry of a particular circuit
structure can be simply expressed with a single cus-
tom constraint type in the schematic. That constraint
should allow for the direct specification of a place-
ment pattern by which the detailed device interdigita-
tion can be explicitly defined. In the physical domain,
a dedicated module PCell, specifically designed to
respect the custom interdigitation pattern and all other
requirements of the respective circuit structure, pro-
duces a module layout which achieves the desired
matching (c). Thereby, the inherent low-level con-
straints are implicitly satisfied by the module PCell
without the need to explicitly formulate them.

C. Execution Cockpit

The CAPABLE approach has been implemented for
the Cadence Virtuoso design environment. The

Fig. 11: Example of convenient constraint usage with CAPABLE.

MPC-WORKSHOP JULI 2015

55

execution cockpit (CAPABLE’s graphical user-
interface) is shown in Fig. 12. With the input field (a),
the user can enter or select a schematic circuit name.
The circuit’s design constraints are then read from the
schematic and listed in table (b). The constraint inter-
preter builds the command sequences for the read con-
straints and concatenates them into the layout script
which is then displayed in table (c). Using the ele-
ments of (d), layout scripts can be saved as text files
and loaded from the file system at a later time. Also, a
layout script text file can be manually edited with a
plain text editor.

Each line of the layout script represents one call to a
CAPABLE command. As already mentioned, the exe-
cution cockpit has to convert each command call into
basic code of the design environment’s native pro-
gramming language (in our implementation: SKILL).
Based on this conversion, the execution of a command
is split into multiple fine-grain steps to let the user
precisely track every single action that is being per-
formed in the layout. The buttons (e) give control over
the execution and allow the user to carry out

 a single step,
 one command,
 a section of commands,
 all commands up to the selected command,
 all commands till the end of the script is reached.

For every single step, the status field (f) displays tex-
tual messages that are generated during the execution.

V. EXAMPLE AND RESULTS

As an example for the application of the CAPABLE
approach, Fig. 13 (a) shows the schematic diagram of

a p-input OTA. The circuit consists of one differential
pair (1) and three current mirrors (2, 3, 4). As dis-
played in subfigure (b), a custom CurrMirr constraint
is assigned to each current mirror, and a custom Quad
constraint is assigned to the differential pair. The
CurrMirr constraints allow the designer to define spe-
cific interdigitation patterns, whereas the Quad con-

(a) Schematic diagram of the p-input OTA circuit example.

(b) Custom types of constraints, as assigned to the OTA circuit.

(c) Initially generated layout instances for the circuit transistors.

Fig. 13: An OTA circuit to exemplify the application of CAPABLE.

Fig. 12: The execution cockpit – CAPABLE’s user-interface.

CAPABLE: A LAYOUT AUTOMATION FRAMEWORK
FOR ANALOG IC DESIGN

56

straint inherently denotes a common-centroid AB/BA
placement. For the layout creation, CAPABLE initial-
ly instantiates the circuit transistors in the layout by
calling Generate from Source. This is a native sche-
matic-driven-layout functionality by which the dimen-
sions of the layout devices are directly taken from the
schematic circuit. The initial constellation is shown in
subfigure (c) and represents the starting point for the
subsequent constraint-administered imposition of con-
text-enhanced module PCells (illustrated in Fig. 14).

First, the layout devices for each of the four circuit
structures are interdigitated by CAPABLE. This is
conveniently done using the native Modgen tool (but
could have also been achieved with a PCell). Then,
dedicated quad and current mirror PCells perform the
detailed placement and module routing, which leads to
the intermediate layout result shown in Fig. 14 (a).

The layout script was manually extended to account
for the further tasks of the layout creation. Thus, the
differential pair is enveloped in a guard ring as created
by a context-enhanced isolation PCell which smoothly
clasps itself around the devices of the quad. After-
wards, a placement PCell moves the OTA modules to
a feasible arrangement according to a pre-defined lay-
out template. As shown in subfigure (b), the PCell also
generates a blocking cap for reasons of symmetry and
leaves sufficient space for the subsequent routing.

The routing between the modules is performed with
a wire PCell, realizing the creation of multi-segment
routing paths. While the paths can be explicitly speci-
fied via point lists, the PCell is (thanks to context-
enhancement) also capable of snapping the routing
wire to existing device terminals. The PCell further-
more supports transitions of the metal layer and auto-
matically creates the required vias at the respective
transition locations. In the given example, all inter-
module connections are achieved with the above wire
PCell, and finally another isolation PCell is put around
the entire OTA. The resulting layout is presented in
subfigure (c).

One might be skeptical about the efficiency benefit
of CAPABLE’s script approach compared to the mere
manual creation of an analog block layout. However, a
particular bottleneck are design iterations where even
small modifications to the schematic circuit require
laborious adjustments in the layout. In that regard,
CAPABLE is supposed to be an especially profitable
concept, allowing to easily re-generate the layout with
just as little modifications. In general terms, every
finished layout design represents one individual de-
termined solution, whereas a CAPABLE script rather
encapsulates a solution strategy that can be executed
to generate finalized solutions. Conceptually, this ap-
proach is equivalent to the idea of PCells, but on a
higher level of abstraction: a PCell performs native
layout operations to create a design, while CAPABLE
employs PCells to produce more complex results.

(a) Intermediate layout result with quad and current mirror modules.

(b) Intermediate placement with quad guard ring and blocking cap.

(c) Final layout result with full routing and enclosing guard ring.

Fig. 14: Layout results of applying CAPABLE to the OTA circuit.

MPC-WORKSHOP JULI 2015

57

VI. SUMMARY AND OUTLOOK

This paper presents a Constraint-Administered
PCell-Applying Blocklevel Layout Engine for analog
layout automation (CAPABLE). It implements three
central features: (A) an interface fabric which facili-
tates the development of context-enhanced module
PCells, (B) a constraint interpreter for transforming
custom design constraints into command sequences
that apply dedicated context-enhanced module PCells,
and (C) an execution cockpit to carry out such com-
mand sequences as a concatenated layout script.

By implementing appropriate module PCells and as-
signing respective constraints to a schematic circuit,
designers can use CAPABLE to build and run a layout
script that generates the block layout in a bottom-up
fashion by successively imposing module PCells onto
each other. This approach is closer to a layout expert’s
manual design style and more intuitive than the tradi-
tional conception of complex module PCells covering
multiple levels of hierarchy. In particular, CAPABLE
eliminates the need to pass low-level device parame-
ters across multiple hierarchy levels, it is able to con-
sider intricate design requirements implicitly, and it
allows the user to transparently track every single step
that is performed during the layout creation.

In the long run, the CAPABLE approach should en-
courage design experts to abandon the common, man-
ual style of layout creation in favor of rather capturing
their invaluable solution strategies. For that purpose,
future work on CAPABLE targets the automation of
the script creation, e.g. by recording manual layout
actions and converting them into script commands.
Apart from that, the idea of context-awareness gives
rise to an entirely new species of PCells that can not
only act (on demand), but also react (to environmental
changes) and even interact (with each other) – a vision
that adds fundamentally new conceptions of flexibility
and intelligence to the classical PCell concept.

ACKNOWLEDGEMENT

We would like to thank Andreas Gerlach for provid-
ing the OTA example circuit, as well as Thomas Bur-
dick and Peter Herth for their support on PCells.

REFERENCES
[1] R. Rutenbar, “Analog CAD: Not done yet,” presented at

NSF Workshop, Arlington, Virginia, Jul. 8-9, 2009.
[2] C. Lee, “An Algorithm for Path Connections and Its Appli-

cations,” IRE Trans. on Electr. Comput., vol. EC-10, issue 3,
pp. 346-365, 1961, doi:10.1109/TEC.1961.5219222.

[3] D. Hightower, “A Solution to Line-Routing Problems on the
Continuous Plane,” Proc. 6th Design Automation Confer-
ence, pp. 1-24, 1969, doi:10.1145/800260.809014.

[4] M. Breuer, “A Class of Min-Cut Placement Algorithms,”
Proc. 14th Design Automation Conference, pp. 284-290,
1977.

[5] N. Quinn Jr., “The Placement Problem as Viewed from the
Physics of Classical Mechanics,” Proc. 12th Design Automa-
tion Conference, pp. 173-178, 1975.

[6] S. Kirkpatrick, C. Gelatt Jr. and M. Vecchi, “Optimization
by Simulated Annealing,” Science, vol. 220, issue 4598, pp.
671-680, May 1983, doi:10.1126/science.220.4598.671.

[7] J. Rijmenants, J. Litsios, T. Schwarz and M. Degrauwe,
“ILAC: An Automated Layout Tool for Analog CMOS Cir-
cuits,” IEEE Journal of Solid-State Circuits, vol. 24, issue 2,
pp. 417-425, Apr. 1989, doi:10.1109/4.18603.

[8] M. Mogaki, N. Kato, Y. Chikami, N. Yamada and Y. Koba-
yashi, “LADIES: An Automatic Layout System for Analog
LSI's,” Int. Conference on Computer-Aided Design, pp. 450-
453, Nov. 1989, doi:10.1109/ICCAD.1989.76989.

[9] V. M. zu Bexten, C. Moraga, R. Klinke, W. Brockherde and
K. Hess, “ALSYN: Flexible Rule-based Layout Synthesis for
Analog IC's,” IEEE Journal of Solid-State Circuits, vol. 28,
issue 3, pp. 261-268, Mar. 1993, doi:10.1109/4.209992.

[10] Y. Kim, H. Cho and K. Yoon, “INALSYS: A Layout Auto-
mation System Based on Analog Layout Constraints,” Proc.
of the 40th Midwest Sympos. on Circuits and Systems, vol. 2,
pp. 1209-1212, Aug. 1997, doi:10.1109/MWSCAS.1997.
662297.

[11] J. Scheible and J. Lienig, “Automation of Analog IC Layout
– Challenges and Solutions,” Proc. of the ACM 2015 Int.
Symposium on Physical Design (ISPD'15), pp. 33–40, Mar.
2015, doi:10.1145/2717764.2717781.

[12] T. Reich, U. Eichler, K. Rooch and R. Buhl, “Design of a 12-
bit Cyclic RSD ADC Sensor Interface IC Using the Intelli-
gent Analog IP Library,” Proc. of ANALOG 2013, vol. 239,
Mar. 2013, ISBN:978-3-8007-3467-2.

[13] IPGen 1Stone Developer, [online] http://ipgenme.de/eda-
and-ip-products/1stone-developer.html (accessed 2015-06-
23).

[14] Synopsys PyCell Studio, [online] http://www.synopsys.com/
cgi-bin/pycellstudio/req1.cgi (accessed 2015-06-23).

[15] Anaglobe GOLF, [onl.] http://www.anaglobe.com/web/wp-
content/ uploads/2014/03/PCell_brochure2010.pdf (accessed
2015-06-23).

[16] G. Jerke, T. Burdick, P. Herth, V. Marolt, C. Bürzele et al.,
“Hierarchical Module Design with Cadence PCell Designer,”
pres. at CDNLive! EMEA, Munich, Apr. 2015, session
CUS02.

[17] S. Gohm, D. Marolt and J. Scheible, “Parametrisierte Lay-
out-Module im analogen IC-Entwurf” (transl. “Parameter-
ized Lay-out Modules in analog IC Design”), MPC-
Workshop, vol. 48, pp. 57-63, Jul. 2012, ISSN:1868-9221.

[18] D. Gajski and R. Kuhn, “Guest Editor’s Introduction: New
VLSI Tools,” IEEE Computer, Dec. 1983.

CAPABLE: A LAYOUT AUTOMATION FRAMEWORK
FOR ANALOG IC DESIGN

58

Daniel Marolt studied mechatronics at Reut-
lingen University, where he received the
B.Eng. degree in 2008 and the M.Sc. degree
in 2009. Since 2009 he works as an academ-
ic employee at Reutlingen University, where
he pursues his Ph.D. degree in electrical en-
gineering at the Robert Bosch Center for
Power Electronics since 2011. His research
interests focus on PCell-based automation of
full-custom analog circuit and layout design.

Jürgen Scheible got his diploma in 1987 and
the Ph.D. (Dr.-Ing.) degree (both in electri-
cal engineering) in 1991 both from the Uni-
versity of Karlsruhe. From 1992 on, he was
with the automotive electronics division of
Robert Bosch GmbH. Since 2010, he is full
EDA professor at the Robert Bosch Center
for Power Electronics. His research interests
include the automation of analog IC design
with a special emphasis on physical design
and methods for electro-thermal simulation.

Göran Jerke received his diploma degree in
electrical engineering from the Dresden
University of Technology. Since 1999, he is
with the automotive electronics division of
Robert Bosch GmbH, where he is responsi-
ble for constraint-driven design methodolo-
gies. His research interests include design
flow concepts in general, as well as methods
for physical design implementation, verifica-
tion and robustness validation of IC designs.

Vinko Marolt accomplished a dual vocation-
al training from 1973 to 1976 and worked in
a developmental laboratory until 1979. Then
he attended a technical school in Reutlingen
and got the degree of certified technician in
1981. Since 1981 he works as a layout engi-
neer and tool expert for the automotive elec-
tronics division of Robert Bosch GmbH. His
motivation is the advancement of the layout
design flow and of PCell development tools.

MPC-WORKSHOP JULI 2015

59

