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Abstract 

We present and compare two different imaging techniques for plasmonic excitations in 

metallic nanoparticles based on high energy-resolution electron energy-loss spectroscopy in a 

monochromated transmission electron microscope. We demonstrate that a recently developed 

monochromated energy-filtering (EFTEM) approach can be used in addition to the well 

established scanning technique to directly obtain plasmon images in the energy range below 

1 eV. The EFTEM technique is described in detail, and a double experiment performed on the 

same, triangular gold nanoparticle compares equivalent data acquired by both techniques, 

respectively.  
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Introduction 

Optical properties of gold nanoparticles (Au-NPs) have been utilized for millennia [1], but it 

was not until the work of Gustav Mie [2] that a proper theoretical background for this 

behavior was described [3,4]. The current interest in metallic nanoparticles (Me-NPs) stems 

strongly from their manifold application as ‘tunable’ sensors [5,6,7]. It is well known, that 

particle size and shape [8] as well as the local dielectric environment [9] and nearby Me-NPs 

[10,11,12] have strong impact on the optic properties of Me-NPs, and are thus parameters for 

custom-tailoring their behavior. 

Spatially resolved measurements of the optical response of Me-NPs have been carried out 

with optical near-field microscopes [13,14,15,16], but a higher spatial resolution can be 

gained by transmission electron microscopy (TEM) via electron energy-loss spectroscopy 

(EELS). The dielectric function ε of the material can be derived from the energy-loss of the 

transmitted electrons, and – in the absence of intra-band transitions of single electrons – 

optical absorption can be understood as excitation process of collective oscillations of the 

conduction electrons (plasmons) which are directly observable in an EELS spectrum. In 

particular surface plasmons, oscillations propagating along the specimen surface, have their 

resonance frequencies in the visible spectrum, which corresponds to energy-loss values of 

1.65 to 3.25 eV. 

In the last fifteen years EELS spectrum-imaging techniques [17] have been well developed 

and are now available on a nearly routine basis in most analytical TEMs. Spectrum-imaging 

(SI) acquires complete spectral information for all spatially resolved positions in a field-of-



view (FOV). Consequently, spectral features such as surface plasmon peaks can be analyzed 

as function of position, and according images and maps can be produced. While there are two 

different routes in which EELS SI data can be acquired, the more commonly applied 

technique uses scanning TEM (STEM) to sequentially acquire spectra from each spatial 

position probed by a focused beam. The technique is accordingly called STEM EELS SI. In 

the alternative technique, the sample is illuminated by a parallel beam and energy-filtering 

TEM (EFTEM) imaging is used to acquire image series of adjacent energy intervals [18]. This 

technique is referred to as EFTEM SI. In this work we present and compare data acquired 

from identical Au-NPs by both techniques.  

In general, STEM EELS SI offers the more direct approach from a spectroscopic viewpoint. It 

currently offers the best energy-resolution, is easily set up, and is available in all systems with 

scanning capabilities and any kind of EELS detector. In modern microscopes, the spatial 

resolution is no longer limited by the smallest achievable electron probe size alone, but can 

also be restricted by physical limitations of the experiment itself [19]. Successful surface 

plasmon maps by STEM EELS SI have been reported for triangular shaped Ag-NPs with a 

side length of ~80 nm [20], and for spherical or ellipsoidal Ag-NPs and elongated Au-NPs 

[21,22,23,24]. This type of experiment is especially challenging if surface plasmon peaks are 

to be observed at low energy-loss values <2 eV where the tails of the intense zero-loss peak 

(ZLP) already hamper easy detection. The problem can be overcome by improving the energy 

resolution (and thus the width of the ZLP) of the system. In a monochromated system with an 

energy resolution of 250 meV or better, Au-NP surface plasmon peaks at 0.8 eV can be easily 

detected without data deconvolution techniques [25].  

EFTEM SI is most often used as an EELS imaging technique for moderate to low energy-

resolution (1-50 eV). However, using a sufficiently small energy selecting slit width enables 

data acquisition with energy resolution below 1 eV down to the intrinsic energy-resolution of 

the system [26], and systems equipped with a monochromator have recently been used for 

EFTEM imaging of plasmon peaks close to the ZLP with an energy resolution of 0.5 eV or 

better [27,28,29]. Switching between STEM EELS and EFTEM mode can be achieved with 

relative ease, allowing the direct comparison of data from the same particle. Publications so 

far have compared data locally [27,28]. In this work the comparison of whole maps is shown. 

 

Experimental 

Sample preparation 



The Au-NPs were synthesized by a modification of the conventional citrate reduction of gold 

salt in water [30,31], using purified water and chemicals as received from the given suppliers.  

Hydrogentetrachloroaurate(III)trihydrate (HAuCl4 3H2O > 99.5%) was obtained from Carl 

Roth GmbH, while Trisodium citrate dihydrate (99%) and sodium chloride (NaCl; 99.5%) 

were purchased from Merck. The final particle solution consisted of 1 ml HAuCl4-solution 

(2.5 mM), 25 µl sodium citrate (0.1 M), 0.5 ml sodium chloride (5 M) and 8.5 ml water. It 

was dropped on a carbon-coated copper grid, and the liquid was allowed to evaporate at room 

temperature. The final TEM sample consists of differently shaped and sized NPs, but this 

investigation concentrated on nano-triangles. In particular, one truncated equilateral triangle 

with a side-length of 280 nm and a thickness of about 20 nm was studied in this work 

(Figure 1).  

 

Monochromated STEM EELS SI 

The STEM EELS SI measurement was carried out using the Tecnai F20 (FEI Company) 

system installed at the Graz University of Technology, Austria. This system has a super twin 

objective lens (Cc=1.2 mm Cs=1.2 mm) and is optimized for high energy resolution using a 

Wien-filter monochromator, an improved high tension tank, active triaxial magnetic field 

compensation, and the High Resolution Gatan Imaging Filter with an UltraScan 2k CCD 

camera. Digiscan II (Gatan Inc.) and a high angle annular dark field (HAADF) detector 

(Fischione) are used during STEM operation of the microscope. All STEM EELS SI 

measurements were carried out in monochromated mode, using a camera length of 300 mm, a 

convergence half angle α of 11.4 mrad, and a collection half angle β of 2.0 mrad. The 

spectrometer dispersion was set to 0.005 eV/channel, and an exposure time of 0.2 sec per 

spectrum was used for the acquisition of the 64x64 pixel STEM EELS SI. Online spatial drift 

correction was performed after each line of the SI, and the total acquisition time was 54 min. 

Figure 1a and 1b show the STEM bright field (BF) and HAADF image of the analyzed Au-

NP triangle, respectively. Areas used for SI data acquisition and spatial drift correction are 

indicated. The spatial resolution of the SI data is limited by the sampling distance of 5.4 nm 

which is roughly twice the electron probe diameter of 2.8 nm. The energy resolution 

measured as the full-width at half-maximum (FWHM) value of the ZLP in vacuum was 

0.22 eV. After data acquisition, the individual spectra were aligned to each other using the 

maximum of the ZLP as a reference. No other data treatment was applied.  

 

Monochromated EFTEM SI  



EFTEM SI was performed using the same system as described above immediately after the 

STEM EELS SI measurements. Figure 1c shows a zero-loss filtered TEM bright field image 

of the particle after the STEM EELS SI but before the EFTEM SI measurement. In 

comparison to the well established EFTEM SI routines for medium energy resolution, 

monochromated EFTEM SI has to consider some additional aspects:  

First, the illumination has to be set to a parallel, but monochromated beam. In the used 

system, this is achieved by adjustment of the condenser lens after aligning the monochromator 

and its slit by the conventional routines using a dispersed ‘rainbow’ illumination. Lacking an 

additional degree of freedom as would be provided by an additional lens, our current system 

does not allow an independent choice of the size of the illuminated area while working in 

monochromated, parallel illumination. FOVs are thus limited to <400 nm, and current density 

can not be optimized for highest magnifications.  

Second, the energy range selected by the slit of the imaging filter (GIF slit width) has to be 

accurately calibrated. In the post-column filter this is done by observing an EELS spectrum in 

spectroscopy mode, using a well calibrated dispersion setting which produces a focused 

spectrum in the plane of the energy-selecting slit. Thus, the exact slit width can then be 

measured by inserting the slit and observing the points of inflection in the EEL spectrum. 

Figure 2 compares EEL spectra of the holey carbon film acquired at 0.01eV/px dispersion in 

the low-loss regime where no spectral features appear and the background is sufficiently 

linear. For monochromated EFTEM SI experiments, the calibrated slit was set to 0.3 eV. 

Third, exposure times have to be adjusted during acquisition. For EFTEM SI data acquired 

across or close to the ZLP the variation in intensity is much larger than the dynamic range of 

the CCD detector at any single exposure time. This is particularly true for monochromated 

electron sources with a narrow Gauss-distribution of the primary energy. Exposure times 

preventing saturation or overexposure at the ZLP are too short for a sufficient signal-to-noise 

ratio (SNR) in the adjacent low energy-loss region. However, EFTEM SI as a serial 

acquisition technique in the energy-domain allows adjustment of exposure times as a function 

of energy-loss, effectively increasing the dynamic range of the detector [32]. Theoretically, an 

optimum exposure could be calculated from a ZLP model (or experimental spectrum) as a 

function of energy position and slit width, but this is not practical for two reasons: First, 

because system instabilities may cause deviations from the nominal energy position (i.e. 

energy drift), and second, because lens aberrations in the imaging filter cause the iso-energy 

planes to be curved, so that different parts of the CCD detect electrons of slightly different 

energy (i.e. non-isochromaticity). Therefore, we have developed our own EFTEM SI 



acquisition package written in the Digital Micrograph script language which automatically 

adapts exposure times to the encountered intensity situation without a priori information.  

Forth, monochromated EFTEM SI yields an energy resolution at which aberrations of the 

imaging filter and system instabilities are no longer negligible, and additional data correction 

becomes necessary [33]. These corrections are implemented in our EFTEM SI package. 

 

EFTEM SI data acquisition and correction routine 

This section generally describes our software package used for acquisition and correction of 

EFTEM SI data. Details for the specific Au-NP triangle dataset are given at the end. The main 

goal of the ‘Automated EFTEM Acquisition’ (AEA) routine is to quickly adjust the exposure 

times of each image to an optimum. The user is asked to provide the following main 

parameters: The standard parameters slit width, energy range and energy step size; a goal 

intensity range defined by a lower and an upper limit; a range of allowed exposure times for a 

single image acquisition; a range for the number of frame-readouts at a particular energy-loss; 

and a trigger time, which is used to influence the algorithm to either prefer multiple frames or 

longer exposure times to increase intensity at an energy step. Exposures above the trigger time 

are preferably optimised by multiple frames. The idea is to allow automated adjustments for 

both high- and low-intensity situations. For a high-intensity situation, when exposure times 

are generally low, adjustment is primarily done by increasing exposure times. However, for a 

low-intensity situation, multiple frames are preferred and can be corrected for sample drift 

prior to summing which reduces drift-induced blurring. Independent of whether multiple 

frames or increased exposure time is preferred, the alternative method will be used by the 

algorithm if necessary.  

At the start, the AEA algorithm acquires all necessary dark references in advance by default. 

This allows fast changes of exposure times during the acquisition of the data. However, if 

dark reference noise is a limiting factor or constant dark current can not be assumed (e.g. due 

to after-glowing effects), individual dark references can optionally be acquired for each 

exposure at the cost of strongly increased total acquisition time. After dark reference 

acquisition, the starting energy-loss and slit width is set, and a few seconds are waited, before 

the EFTEM SI is acquired step by step. For each energy step, an image with a testing 

acquisition time is first recorded without dark current/gain correction, and the saturated or 

overexposed pixels are counted. If this number exceeds an allowed number of ‘hot’ pixels, the 

image is rejected as overexposed, exposure time is reduced, and the CCD is read out quickly 

several times to reduce after-glow effects. This step of the algorithm is a safety measure to 



prevent detector damage, but saturation and overexposure is generally avoided by the 

algorithm aiming for moderate intensity levels. If the test image is not considered 

overexposed, the routine will next perform a dark current subtraction and gain normalisation. 

It checks for underexposure by counting pixels below the level of dark current noise, and will 

start again with a test image of higher exposure time if needed and possible. If the test image 

is neither over- nor underexposed, the routine will calculate the intensity level of the image by 

taking the mean value of the ‘brightest’ pixels excluding statistical outliers. If needed, 

exposure time will be adjusted to achieve a value within the wanted intensity range for the 

sum image of used frame readouts. Any change of exposure time triggers checks for over- and 

underexposure anew. Once the optimum exposure time is found, all frames of the current 

energy step are acquired. Images are saved to the hard disc at once to keep the system 

memory free, and to allow stopping the acquisition without loosing already acquired data. 

Acquisition parameters needed for later data processing are stored as image tags, and the 

procedure continues with the next energy step. If the achieved mean intensity in the last frame 

is above the maximum goal intensity, the next energy step will be tried with a shorter 

exposure time to speed up acquisition. Otherwise, the current exposure time will be kept. 

While the AEA routine is a fully automated routine, user interaction is possible during 

acquisition. The last acquired image, a plot of total intensity sum, and a log of performed 

actions is always displayed for information, and a little dialog window gives the opportunity 

to interactively adjust the required intensity levels, to force a number of readouts per energy 

step regardless of the intensity situation, or to pause the acquisition in order to manually 

correct for spatial drift. 

After AEA acquisition, all stored images are processed into a fully corrected EFTEM SI 

dataset by additional routines. Missing images – because of an interrupted acquisition or 

because individual images have been manually removed as ‘invalid’ – do not prevent correct 

processing of the existing data. For a full correction, information on non-isochromaticity, 

spatial drift, and energy drift needs to be gathered. The first can either be gained as a result of 

the GIF tuning routine, or by mapping the energy position of a known feature (e.g. the ZLP) 

from the raw data. Optionally, the aberration function can be smoothed or interpolated by a 

polynomial fit of higher order. Spatial drift is usually determined by cross-correlating the 

acquired images, and we use the SDSD software [34]. Energy drift is determined by assuming 

time-linear behaviour and measuring before and after the experiment. The correction 

algorithm automatically interpolates this time-linear energy drift for each of the acquired 

images. In a final step, all available information (i.e. varying exposure time, varying number 



of readouts, spatial drift, energy drift, non-isochromaticity) is used to map the acquired data 

into a corrected, three-dimensional EFTEM SI data cube using weighted sums. The 

processing time for a typical data set of about 200 MB is less than one minute on a modern 

desktop PC. It should be noted that the quality of the correction depends strongly on the 

sampling of the data, which is generally good for the spatial domain but less so for the energy 

axis. 

The EFTEM SI of the triangular Au-NP was acquired and corrected by the described routines. 

60 energy steps of 0.1 eV covering the range from 4.5 eV down to -1.5 eV were used and 

97 individual images with exposure times between 0.08 and 10.24 sec were recorded over a 

total acquisition time of 11 min. Only the central 1024x1024 pixel area of the CCD was used, 

and 2x2 binning was enabled, giving a final image size of 512x512 pixels and a pixel size of 

0.89 nm. Figure 3 shows the parameters used for data correction. The non-isochromaticity 

was 0.16 eV peak-to-peak, total spatial drift was less than 4 nm, and total energy drift which 

has then been time-linearly interpolated was 1.1 eV. 

results 

Figure 4 compares the energy resolution of the two techniques. The ZLP was extracted over 

the whole FOV from both final datasets. Due to the coarse sampling, a Gaussian has been fit 

to the EFTEM SI data before deriving the FWHM value. The according energy resolutions are 

0.22 eV and 0.40 eV for STEM and EFTEM, respectively. In case of STEM EELS, the energy 

resolution has been measured to the same value on a single spectrum acquired in vacuum with 

0.2 sec exposure time. The STEM EELS SI and the EFTEM SI results of an identical Au-NP 

triangle are shown in Figures 5 to 10. Each of the figures compares the equivalent extracted 

plasmon images from both datasets at the given energy-loss value. Those images represent the 

integrated EELS intensity of the raw dataset over an energy interval of 0.3 eV. In case of the 

EFTEM SI, the intensity has been extracted from a single energy-channel at the given energy-

loss as indicated in the corresponding spectrum. In case of the STEM EELS SI, 60 channels 

representing 0.3 eV have been integrated at the same central energy-loss value. Contrast has 

been inverted in the images for better visibility such that dark areas represent areas of higher 

intensity. Next to the maps, each figure compares the extracted spectra from both datasets. 

The according extraction positions are indicated as white squares in the maps. 4x4 and 24x24 

pixels have been integrated in case of STEM EELS SI and EFTEM SI, respectively.  

The data of both datasets matches generally very well, demonstrating that both techniques can 

be used to access the same specimen information. However, it should be noted that although 

the data was acquired from the same Au-NP, some circumstances (i.e. the orientation of the 



particle with respect to the electron beam; contamination and/or beam damage; a slight 

bending of the flat particle) have slightly changed and may have caused subtle differences in 

the data. This is also apparent in the comparison of the bright field images in figure 1a and 1c. 

In both datasets the same complex behaviour with respect to plasmon peak maxima can be 

observed. The threefold symmetry of the particle is only partially preserved in the imaged 

plasmonic modes, probably due to the fact, that the particle is only partially supported by the 

carbon. The TEM bright-field image (Figure 1c) also shows some inhomogeneity in the 

bottom right corner of the triangle, and its EELS spectrum (Figure 6) differs strongly from the 

top right corner (Figure 5). Figure 11 shows 26 spectra along the upper edge of the triangle 

extracted from STEM EELS SI data. It shows the asymmetric shift of the maximum position 

of the broad peak between 1.5 and 2.2 eV which can also be observed in the plasmon images.  

Conclusion 

We have shown that both STEM EELS SI and EFTEM SI can be applied on direct plasmon 

imaging of Au-NPs in the very low energy-loss region provided a sufficient energy resolution 

can be achieved. A monochromated system, which not only reduces the FWHM of the ZLP, 

but also substantially decreases intensity in the tails of the ZLP, is well suited for direct 

imaging of plasmon peaks below 1 eV energy-loss without the need of data deconvolution. 

We described in detail the technique of monochromated EFTEM SI, which has recently been 

developed, and compared two datasets acquired from the same triangular Au-NP by both 

EFTEM SI and STEM EELS SI. By comparison of spectra and maps we could directly 

demonstrate the equality of both methods in terms of principal results while at the same time 

highlighting their advantages and disadvantages.  

While the STEM approach yields higher energy resolution and thus allows accurate mapping 

of peak positions, the EFTEM approach provides spatially highly resolved information over 

large FOVs in comparably short acquisition time. It is therefore the ideal technique to study 

long distance effects as encountered in coupled systems.  

Our work primarily concentrated on the methodical aspect of plasmon mapping of metallic 

nanoparticles in the very low energy-loss regime, as it has been recently become available. A 

thorough physical interpretation of the measured effects was not aimed for and requires 

further optimized experiments with well controlled sample parameters.  



figure captions 

Figure 1: STEM BF (a), STEM HAADF (b), and zero-loss filtered TEM BF (c) of a triangular 

Au-NP. The region of STEM EELS SI acquisition and spatial drift correction is indicated. 

The TEM BF image (c) was acquired in between STEM EELS SI and EFTEM SI acquisition. 

 

Figure 2: EEL spectrum of a holey carbon film at 0.01 eV/pixel dispersion with inserted 

energy selecting slit and different slit widths used for calibration (see text). The zero of the 

energy-loss axis is set to the left points of inflection which correspond to xxx eV “real” 

energy loss. 

 

Figure 3: Parameters used for final EFTEM SI data correction of the Au-NP data. The 

system’s non-isochromaticity (left) was determined by the filter tuning routine, spatial and 

energy-drift (right) were determined from the raw data set 

 

Figure 4: Zero-loss peaks extracted from the whole FOV for both EFTEM SI and 

STEM EELS SI data. Intensity has been normalized for better comparison of energy 

resolution. 

 

Figure 5: Plasmon images with inverted intensity scale extracted at 1.0 eV energy-loss: from 

STEM EELS SI (a) and from EFTEM SI (b) . Extracted energy-loss spectra (c) from both 

datasets at the indicated position. 

 

Figure 6: Plasmon images with inverted intensity scale extracted at 1.0 eV energy-loss: from 

STEM EELS SI (a) and from EFTEM SI (b) . Extracted energy-loss spectra (c) from both 

datasets at the indicated position. 

 

Figure 7: Plasmon images with inverted intensity scale extracted at 1.6 eV energy-loss: from 

STEM EELS SI (a) and from EFTEM SI (b) . Extracted energy-loss spectra (c) from both 

datasets at the indicated position. 

 

Figure 8: Plasmon images with inverted intensity scale extracted at 1.6 eV energy-loss: from 

STEM EELS SI (a) and from EFTEM SI (b) . Extracted energy-loss spectra (c) from both 

datasets at the indicated position. 

 



Figure 9: Plasmon images with inverted intensity scale extracted at 1.8 eV energy-loss: from 

STEM EELS SI (a) and from EFTEM SI (b) . Extracted energy-loss spectra (c) from both 

datasets at the indicated position. 

 

Figure 10: Plasmon images with inverted intensity scale extracted at 2.0 eV energy-loss: from 

STEM EELS SI (a) and from EFTEM SI (b) . Extracted energy-loss spectra (c) from both 

datasets at the indicated position. 

 

Figure 11: Extracted energy-loss spectra from the STEM EELS SI along the edge of the 

triangle as indicated by the white arrow. Spectra have been smoothed by a running average 

filter for better visibility. The map shows the integrated intensity from 0.5 to 3.0 eV. 
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Figure 2: EEL spectrum of a holey carbon film at 0.01 eV/pixel dispersion with inserted 

energy selecting slit and different slit widths used for calibration (see text). The zero of the 

energy-loss axis is set to the left points of inflection which correspond to xxx eV “real” 

energy loss. 
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Figure 4: Zero-loss peaks extracted from the whole FOV for both EFTEM SI and 

STEM EELS SI data. Intensity has been normalized for better comparison of energy 

resolution. 
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Figure 8: Plasmon images with inverted intensity scale extracted at 1.6 eV energy-loss: from 

STEM EELS SI (a) and from EFTEM SI (b) . Extracted energy-loss spectra (c) from both 

datasets at the indicated position. 

 



 
Figure 9: Plasmon images with inverted intensity scale extracted at 1.8 eV energy-loss: from 

STEM EELS SI (a) and from EFTEM SI (b) . Extracted energy-loss spectra (c) from both 

datasets at the indicated position. 

 



 

 
Figure 10: Plasmon images with inverted intensity scale extracted at 2.0 eV energy-loss: from 

STEM EELS SI (a) and from EFTEM SI (b) . Extracted energy-loss spectra (c) from both 

datasets at the indicated position. 



 
Figure 11: Extracted energy-loss spectra from the STEM EELS SI along the edge of the 

triangle as indicated by the white arrow. Spectra have been smoothed by a running average 

filter for better visibility. The map shows the integrated intensity from 0.5 to 3.0 eV. 
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