

Nutrient Requirements of Beef Cattle

Texas Agricultural Extension Service • Zerle L. Carpenter, Director • The Texas A&M University System • College Station, Texas

Nutrient Requirements of Beef Cattle

Ronald J. Gill and Dennis B. Herd *

Meeting nutritional requirements of beef cattle is extremely important in maintaining acceptable performance of growing, finishing and breeding animals. To ensure acceptable results, the producer must consider not only actual performance, but the economic impact of feed inputs required to achieve that level of performance.

When developing feeding programs for growing or finishing cattle, knowledge of nutrient requirements is necessary to calculate the most economical rate of gain for a given weight, sex and age-group of cattle. Tables 1 and 2 contain a partial listing of nutrient requirements for various classes and weights of animals. For weights or rates of gain not listed, one can extrapolate the necessary requirements. Use of these tables and Extension publication B-1553, "Nutrient Composition of Feeds" or actual forage analysis will aid in formulating rations which meet the requirements listed in Tables 1 and 2.

Nutrient concentrations required in the diet of growing and breeding cattle are based on a given dry matter intake. Dry matter consumption should vary depending on the energy concentration of the diet and environment. Intakes given in Tables 1 and 2 are based on the energy concentration shown and assume ideal environmental conditions. If the diet's energy concentrations exceed the table values, limiting feed may be required.

A feedstuff's energy content can be expressed in several different ways, yet there is a close relationship between the different expressions. The most common method of expressing a feedstuff's energy value is percent total digestible nutrients (TDN). More precise methods of determining energy content have been developed and are generally expressed in one of the following means: gross energy (GE), digestible energy (DE), metabolizable energy (ME), net energy for maintenance (NEm) and net energy for growth (NEg). Because of the close relationship between these values, mathematical conversions can be made between most of them. Formulas necessary to make these conversions are given below:

1 lb. TDN = 2.00 Mcal DE 1 lb. TDN = 1.64 Mcal ME ME = .82 DE NEm = $1.37 \text{ ME} - 0.138 \text{ ME}^2 + 0.0105 \text{ ME}^3 - 1.12$ NEg = $1.42 \text{ ME} - 0.174 \text{ ME}^2 + 0.0122 \text{ ME}^3 - 1.65$

Although most growing cattle are maintained on forage development programs, nutrient intake can be estimated based on average consumption of forages. Supplements can then be formulated to improve the nutrient ratio in the diet which will improve the efficiency of utilization of both forage and supplement.

Feeding programs for finishing rations represent complete diets. Variables such as estimating forage consumption are avoided, and requirements of finishing cattle can be met on a day-by-day basis making rate, cost and efficiency of gain more easily and exactly established. Changes in requirements due to variations in environmental influences are not accounted for in Table 1, but must be accounted for in ration formulation. Thus, feeding finished cattle is as much an art as it is a science.

Meeting the nutrient requirements of breeding cattle is the most difficult nutritional management program because of the numerous variables involved in typical cow-calf production systems. Seasonal fluctuations in forage quality, changes in stage of production, age and body condition are just a few of the factors which affect nutrient requirements. Requirements listed in the following tables are an average of many research reports and assume a thermoneutral environment without any adverse climatic conditions. Most cow-calf producers and cattle feeders know there is no "average animal" maintained under a thermoneutral environment. Therefore, these requirements should only be used as a starting point and guide in ration formulation.

Management programs which separate cattle based on stage of production, age and body condition are a must to allow efficient use of available forage and supplements. A management program's main

^{*}Livestock specialist and beef cattle specialist-nutrition, The Texas A&M University System.

requirement is to time the breeding seasons of the cows to coincide with periods of high quality forage growth. Other management practices and average weaning weights tend to improve when breeding seasons are controlled.

From a practical standpoint a nutritional program should ensure adequate mineral and vitamin intake through a supplementation program which corrects deficiencies in available forage. A list of commonly used mineral supplements is provided in Extension publication B-1553 "Nutrient Composition of Feeds". Mineral requirements are shown in Table 3. When forage quality, not quantity, declines, supplementing protein will ensure adequate consumption and digestibility to meet requirements.

In a nutritional program such as this, any changes in body condition would then indicate a deficiency of energy and a need for energy supplementation. The energy sources listed in B-1553, "Nutrient Composition of Feeds", can be used to correct energy deficiencies which result in weight loss of breeding cattle. Forage programs can generally meet the nutrient requirements of mature cows; however, yearling and two-year-old heifers carrying or nursing a calf often need some form of additional supplementation. By using forage tests and Table 1, a producer should be able to develop the most economical program to eliminate any deficiencies.

Remember that a feeding program which meets requirements on an animal-to-animal, day-to-day, or pound-to-pound basis is not a reasonable goal. Management should be developed to meet requirements on the basis of group averages. However, the better cattle are sorted by age, weight, sex, stage of production and body condition, the closer a producer can come to meeting requirements on an animal-toanimal basis and the more efficiently available roughage, protein, energy, mineral and vitamin sources can be utilized. Minimizing cost and optimizing returns is the goal of any cattle producer, and because feed requirements represent the largest component in most production systems, an understanding of nutrient requirements is a must.

TABLE 1. Nutrient requirements for growing and finishing cattle (adapted from NRC,	1984).
All values are expressed on a 100% dry matter (DM) basis.	

Body Weight (Ibs)	Daily Gain (Ibs)	Minimum DM Intake (Ibs)	Total Protein (Ibs)	CP (%)	ME (Mcal/lb)	NEm (Mcal/lb)	NEg (Mcal/lb)	TDN (%)	Ca (%)	P (%)	Vit. A (IU/Ib)
Medium	frame et	teer calves	1.98	Att	ferialities.	Estel in 13	Bine 8.8	14B	1. j		80 60
400	1.0	10.4	1.06	10.3	.96	.57	.31	58.5	.38	.21	1000
400	2.0	11.0	1.41	12.7	1.11	.70	.44	67.5	.56	.26	1000
	3.0	10.0	1.65	16.6	1.39	.95	.64	85.0	.86	.37	1000
600	1.0	14.1	1.26	9.0	.96	.57	.31	58.5	.28	.19	1000
	2.0	15.0	1.57	10.5	1.11	.70	.44	67.5	.40	.22	1000
	3.0	13.5	1.73	12.9	1.39	.95	.64	85.0	.57	.29	1000
800	1.0	17.5	1.44	8.3	.96	.57	.31	58.5	.24	.19	1000
	2.0	18.6	1.72	9.2	1.11	.70	.44	67.5	.31	.20	1000
	3.0	16.8	1.81	10.8	1.39	.95	.64	85.0	.42	.25	1000
1000	1.0	20.7	1.60	7.8	.96	.57	.31	58.5	.21	.18	1000
	2.0	22.0	1.85	8.4	1.11	.70	.44	67.5	.25	.19	1000
	3.0	19.8	1.88	9.5	1.39	.95	.64	85.0	.32	.22	1000
Large-fr	ame stee	er calves and o	compensat	ing medi	um-frame ye	arling steers					
400	1.0	10.8	1.10	10.2	.92	.54	.28	56.0	.37	.20	1000
	2.0	11.7	1.47	12.7	1.04	.64	.38	63.5	.57	.26	1000
	3.0	11.9	1.81	15.2	1.18	.77	.49	72.0	.76	.33	1000
600	1.0	14.6	1.31	9.0	.92	.54	.28	56.0	.29	.18	1000
	2.0	15.8	1.66	10.5	1.04	.64	.38	63.5	.40	.22	1000
	3.0	16.1	1.95	12.1	1.18	.77	.49	72.0	.52	.26	1000
800	1.0	18.2	1.51	8.3	.92	.54	.28	56.0	.24	.18	1000
	2.0	19.6	1.82	9.3	1.04	.64	.38	63.5	.32	.20	1000
	3.0	19.9	2.07	10.4	1.18	.77	.49	72.0	.40	.22	1000
1000	1.0	21.5	1.69	7.8	.92	.54	.28	56.0	.23	.17	1000
	2.0	23.2	1.98	8.6	1.04	.64	.38	63.5	.27	.18	1000
	3.0	23.6	2.19	9.3	1.18	.77	.49	72.0	.32	.20	1000

Body Weight (Ibs)	Daily Gain (Ibs)	Minimum DM Intake (lbs)	Total Protein (Ibs)	CP (%)	ME (Mcal/lb)	NEm (Mcal/lb)	NEg (Mcal/lb)	TDN (%)	Ca (%)	P (%)	Vit. A (IU/Ib)
Medium	-frame b	ulle									
600	1.0	13.9	1.27	9.2	.94	.56	.30	57.5	.30	.19	1000
000		14.9	1.61	10.8	1.08	.68	.41				1000
	2.0							65.5	.43	.24	
	3.0	14.7	1.86	12.7	1.26	.84	.54	76.5	.57	.29	1000
800	1.0	17.3	1.45	8.4	.94	.56	.30	57.5	.25	.19	1000
	2.0	18.5	1.76	9.5	1.08	.68	.41	65.5	.33	.21	1000
	3.0	18.2	1.97	10.8	1.26	.84	.54	76.5	.44	.24	1000
1100	1.0	21.9	1.70	7.8	.94	.56	.30	57.5	.22	.19	1000
1100	2.0	23.4	1.97	8.4	1.08	.68	.41	65.5	.26	.19	1000
	3.0	23.1	2.11	9.2	1.26	.84	.54	76.5	.20	.19	1000
	3.0	23.1	2.11	9.2	1.20	.04	.54	70.5	.52	.21	1000
Large-fr	ame bull	calves and c	ompensati	ng large-	frame yearling	g steers					
600	1.0	14.1	1.30	9.2	.92	.54	.28	56.0	.31	.20	1000
	2.0	15.2	1.67	10.9	1.03	.63	.37	62.5	.44	.23	1000
	3.0	15.5	1.97	12.7	1.16	.75	.47	70.5	.58	.27	1000
	4.0	13.8	2.16	15.6	1.41	.96	.66	86.0	.81	.37	1000
800	1.0	17.5	1.49	8.5		.54	.28	56.0	.26	.19	1000
000	2.0	18.8	1.84	9.7	.92	.63	.37	62.5	.35	.13	1000
			2.11		1.03	.05	.47		.45	.24	1000
	3.Q 4.0	19.3 17.1	2.11	10.9 13.0	1.16	.75	.66	70.5 86.0	.45	.24	1000
			2.24	13.0	1.41		.00	00.0		.01	
1100	1.0	22.3	1.75	7.9	.92	.54	.28	56.0	.23	.19	1000
	2.0	23.9	2.07	8.6	1.03	.63	.37	62.5	.28	.19	1000
	3.0	24.5	2.29	9.3	1.16	.75	.47	70.5	.32	.21	1000
	4.0	21.7	2.33	10.7	1.41	.96	.66	86.0	.43	.25	1000
		eifer calves									
400	.5	9.3	.84	8.9	.92	.54	.28	56.0	.26	.19	1000
	1.0	9.9	1.01	10.2	1.02	.63	.36	62.0	.36	.20	1000
	1.5	10.2	1.17	11.4	1.13	.72	.44	68.5	.45	.24	1000
	2.0	10.0	1.29	12.9	1.26	.84	.55	77.0	.57	.29	1000
600	.5	12.6	1.04	8.1	.92	.54	.28	56.0	.23	.18	1000
2021-03	1.0	13.5	1.19	8.8	1.02	.63	.36	62.0	.28	.20	1000
	1.5	13.8	1.32	9.5	1.13	.72	.44	68.5	.32	.21	1000
	2.0	13.5	1.41	10.4	1.13	.84	.55	77.0	.38	.23	1000
800	.5		1.22			.54	.28	56.0	.21	.18	1000
000		15.6	1.36	7.7	.92		.20				1000
	1.0	16.7		8.1	1.02	.63		62.0	.22	.18	1000
	1.5	17.2	1.46	8.5	1.13	.72	.44	68.5	.24	.19	1000
	2.0	16.8	1.51	9.0	1.26	.84	.55	77.0	.28	.20	1000
1000	.5	18.5	1.39	7.4	.92	.54	.28	56.0	.20	.19	1000
	1.0	19.8	1.51	7.6	1.02	.63	.36	62.0	.20	.18	1000
	1.5	20.3	1.59	7.8	1.13	.72	.44	68.5	.21	.18	1000
	2.0	19.8	1.61	8.1	1.26	.84	.55	77.0	.22	.19	1000

 TABLE 1. Nutrient Requirements for Growing and Finishing Cattle (Continued).

 All values are expressed on a 100% dry matter (DM) basis.

TABLE 1. Nutrient requirements for growing and finishing cattle (conti	nued).
All values are expressed on a 100% dry matter (DM) basis.	

Body Weight (lbs)	Daily Gain (lbs)	Minimum DM Intake (Ibs)	Total Protein (lbs)	CP (%)	ME (Mcal/lb)	NEm (Mcal/lb)	NEg (Mcal/lb)	TDN (%)	Ca (%)	P (%)	Vit. A (IU/Ib)
l arge_fr	ame heif	ar calves and	companes	ting med	lium-frame ye	arling belfere				and soften	
500	.5	11.5	.98	8.4	.89	.50	.25	54.0	.23	.17	1000
000	1.0	12.4	1.16	9.4	.98	.58	.32	59.0	.30	.20	1000
	1.5	12.9	1.32	10.3	1.05	.65	.39	64.0	.38	.20	1000
	2.0	13.1	1.46	11.2	1.14	.74	.46	69.5	.44	.24	1000
	2.5	12.8	1.57	12.4	1.26	.84	.55	77.0	.53	.26	1000
700	.5	14.8	1.18	7.9	.89	.50	.25	54.0	.21	.18	1000
	1.0	15.9	1.34	8.5	.98	.58	.32	59.0	.25	.18	1000
	1.5	16.6	1.49	9.0	1.05	.65	.39	64.0	.29	.19	1000
	2.0	16.8	1.61	9.6	1.14	.74	.46	69.5	.33	.20	1000
	2.5	16.4	1.68	10.3	1.26	.84	.55	77.0	.38	.22	1000
900	.5	17.8	1.36	7.5	.89	.50	.25	54.0	.20	.18	1000
	1.0	19.2	1.52	7.9	.98	.58	.32	59.0	.22	.18	1000
	1.5	20.0	1.64	8.2	1.05	.65	.39	64.0	.23	.18	1000
	2.0	20.3	1.74	8.6	1.14	.74	.46	69.5	.26	.18	1000
	2.5	19.8	1.78	9.0	1.26	.84	.55	77.0	.29	.20	1000
1100	.5	20.8	1.54	7.3	.89	.50	.25	54.0	.19	.18	1000
	1.0	22.3	1.68	7.5	.98	.58	.32	59.0	.20	.18	1000
	1.5	23.3	1.78	7.7	1.05	.65	.39	64.0	.20	.18	1000
	2.0	23.6	1.86	7.9	1.14	.74	.46	69.5	.21	.18	1000
	2.5	23.1	1.88	8.2	1.26	.84	.55	77.0	.22	.18	1000

 Abbreviations Used in Tables

 Ca - calcium
 Vit - vitamin

 P - phosphorus
 NE_m - net energy, maintenance

 CP - crude protein
 NE_g - net energy, gain

 DM - dry matter
 TDN - total digestible nutrients

 Ib - pound
 Mcal - megacalorie

 IU - international unit
 ME - metabolizeable energy

 g - grams
 Gerams

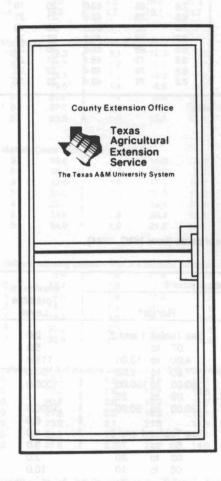
TABLE 2. Nutrient requirements of breeding cattle (adapted from NRC, 1984). All values are expressed on a 100% dry matter (DM) basis.

Body Weight (Ibs)*	Daily Gain (lbs)**	Minimum DM Intake (Ibs)	Total Protein (Ibs)	ME (Mcal)	TDN (lbs)	Ca (g)	P (g)	Vit. A (1000 IU)		CP (%)	ME (Mcal/Ib)	TDN (%)	Ca (%)	P (%)	Vit. A (IU/Ib)
rear and	Veedlers	eifer - last third	t of gentati		an a taga tang	21. 34 		er tal als	1				(853))		
700	.9	15.3 I	1.3		8.5	19	14	19	1	8.4	.91	55.4	.27	.20	1072
				13.9			15		i						1273
700	1.4	15.8	1.4	15.7	9.6	24		20	1	9.0	.99	60.3	.33	.21	1273
750	.9	16.1	1.3	14.6	8.9	20	14	20	÷	8.3	.90	55.1	.27	.19	1273
750	1.4	16.6	1.5	16.4	10.0	24	16	21	1	8.9	.98	59.9	.32	.21	1273
800	.9	16.8	1.4	15.2	9.2	21	15	21	1	8.2	.90	54.8	.28	.20	1273
800	1.4	17.4	1.5	17.1	10.4	25	16	22	i i	8.8	.98	59.6	.33	.21	1273
850	.9	17.6	1.4	15.7	9.6	21	16	22	:	8.2	.89	54.5	.26	.20	1273
850	1.4	18.2	1.6	17.8	10.8	25	17	23		8.6	.97	59.3	.30	.21	1273
900	.9	18.3	1.5	16.3	9.9	22	17	23	1	8.1	.89	54.3	.26	.20	1273
900	1.4	19.0	1.6	18.5	11.3	26	18	24	1	8.5	.97	59.1	.30	.21	1273
950	.9	19.0	1.5	16.9	10.3	23	17	24	1	8.0	.89	54.1	.27	.20	1273
950	1.4	19.8	1.7	19.1	11.7	26	19	25	i.	8.4	.03	58.9	.29	.20	1273
		8.0 Y													
		re Cows - midd			1. Sec. 1.	100	1								1070
800	.0	15.3	1.1	12.3	7.5	12	12	19		7.1	.80	48.8	.17	.17	1273
900	.0	16.7	1.2	13.4	8.2	14	14	21	1	7.0	.80	48.8	.18	.18	1273
1000	.0	18.1	1.3	14.5	8.8	15	15	23	i	7.0	.80	48.8	.18	.18	1273
1100	.0	19.5	1.4	15.6	9.5	17	17	25		7.0	.80	48.8	.19	.19	1273
1200	.0	20.8	1.4	16.6	10.1	18	18	26	1	6.9	.80	48.8	.19	.19	1273
1300	.0	22.0	1.5	17.7	10.8	20	20	28	1	6.9	.80	48.8	.20	.20	1373
1400	.0	23.3	1.6	18.7	11.4	21	21	30	1	6.9	.80	48.8	.20	.20	1273
	0001														
		re Cows - last			28	×									
800	.9	16.8	1.4	15.0	9.2	20	15	21	1	8.2	.89	54.5	.26	.20	1273
900	.9	18.2	1.5	16.2	9.8	22	17	23	1	8.0	.89	54.0	.27	.21	1273
1000	.9	19.6	1.6	17.3	10.5	23	18	25	i.	7.9	.88	53.6	.26	.20	1273
1100	.9	21.0	1.6	18.3	11.2	25	20	26	1	7.8	.87	53.2	.26	.21	1273
1200	.9	22.3	1.7	19.4	11.8	26	21	28	1	7.8	.87	52.9	.26	.21	1273
1300	.9	23.6	1.8	20.4	12.5	28	23	30	1	7.7	.87	52.7	.26	.21	1273
1400	.9	24.9	1.9	21.5	13.1	29	24	32	1	7.6	.86	52.5	.26	.21	1273
	and the second second	e ser de la presentación de la compañía de la comp													1210
Tura Vaa			tion first 2	4 months			th mill	(day)							
		rs, nursing cal								44.0	1.07	05.4			4770
700	.5	15.9	1.8	17.0	10.3	26	17	28	1	11.3	1.07	65.1	.36	.24	1773
750	.5	16.7	1.8	17.7	10.8	26	18	30		11.0	1.06	64.4	.34	.24	1773
800	.5	17.6	1.9	18.4	11.2	27	19	31	1	10.8	1.05	63.8	.34	.24	1773
850	.5	18.5	1.9	19.1	11.6	27	19	33	i i	10.6	1.04	63.2	.33	.23	1773
900	.5	19.2	2.0	19.8	12.0	28	20	34	1	10.4	1.03	62.7	.32	.23	1773
950	.5	20.0	2.0	20.5	12.5	28	21	35	1	10.2	1.02	62.3	.31	.23	1773
1000	.5	20.8	2.1	21.1	12.9	29	22	37	!	10.0	1.02	61.9	.31	.23	1773
		15.164	obst. US an	dinici	h talat	adder			1						
		173 - first 3-4 mo		artum (10 16.6	10.1	ay) 23	17	31		10.2	.96	58.2	.30	.22	1773
800	.0	17.3	1.8												
900	.0	18.8	1.9	17.7	10.8	24	19	33	1	9.9	.94	57.3	.28	.22	1773
1000	.0	20.2	2.0	18.8	11.5	25	20	36	1	9.6	.93	56.6	.28	.22	1773
1100	.0	21.6	2.0	19.9	12.1	27	22	38	í	9.4	.92	56.0	.27	.22	1773
1200	.0	23.0	2.1	21.0	12.8	28	23	41	1	9.3	.91	55.5	.27	.22	1773
1300	.0	24.3	2.2	22.0	13.4	30	25	43		9.1	.90	55.1	.27	.22	1773
1400	.0	25.6	2.3	23.0	14.0	31	26	46	1	9.0	.90	54.7	.27	.22	1773
		s - first 3-4 mo													
800	.0	15.7	2.2	19.9	12.1	34	22	28		14.2	1.27	77.3	.48	.31	1773
900	.0	18.7	2.4	21.5	13.1	35	24	33		12.9	1.15	69.8	.41	.28	1773
1000	.0	20.6	2.5	22.7	13.8	36	25	37		12.3	1.10	67.0	.39	.27	1773
1100	.0	22.3	2.6	23.9	14.5	38	27	40		11.9	1.07	65.2	.38	.27	1773
1200	.0	23.8	2.7	24.9	15.2	39	28	42		11.5	1.05	63.7	.36	.26	1773
1300	0. 0.	25.3 26.7	2.8 2.9	26.0 27.1	15.9	41	30 31	45 47		11.2 11.0	1.03 1.01	62.6	.36	.26	1773 1773
1400				2/1	16.5	42	141	47			1 (11	61.7	.35	.26	1770

* Average weight for feeding period. ** Approximately 0.9 lb. of weight gain/day over last trimester is accounted for by products of conception.

TABLE 2. Nutrient requirements of breeding cattle (continued).

All values are expressed on a 100% dry matter (DM) basis.


Body Weight (Ibs)*	Daily Gain (Ibs)**	Minimum DM Intake (Ibs)	Total Protein (Ibs)	ME (Mcal)	TDN (Ibs)	Ca (g)	P (g)	Vit. A (1000 IU)	CP (%)	ME (Mcal/lb)	TDN (%)	Ca (%)	P (%)	Vit. A (IU/Ib)
Bulls, mai	ntenance a	and slow rate o	of growth (re	egain bod	v conditio	on)	-						123	
1300	1.0	25.4	1.9	23.3	14.2	25	22	45 1	7.6	.92	55.8	.22	.19	1773
1300	2.0	26.2	2.2	27.6	16.8	31	24	46	8.2	1.05	64.0	.26	.20	1773
1400	1.0	26.8	2.0	24.6	15.0	26	23	48	7.5	.92	55.8	.21	.19	1773
1400	2.0	27.7	2.2	29.1	17.8	31	25	49	8.0	1.05	64.0	.25	.20	1773
1500	.0	25.2	1.7	20.0	12.2	23	23	45	6.9	.79	48.4	.20	.20	1773
1500	1.5	29.0	2.2	28.4	17.3	29	25	51	7.6	.98	59.7	.22	.19	1773
1600	.0	26.5	1.8	21.0	12.8	23	24	47	6.9	.79	48.4	.19	.20	1773
1600	1.5	30.4	2.3	29.8	18.2	31	27	54	7.4	.98	59.7	.22	.20	1773
1700	.0	27.7	1.9	22.0	13.4	26	26	49	6.8	.79	48.4	.21	.21	1773
1700	.5	29.6	2.1	25.3	15.4	27	26	52	7.0	.85	52.0	.20	.19	1773
1800	.0	28.9	2.0	23.0	14.0	27	27	51	6.8	.79	48.4	.21	.21	1773
1800	.5	30.9	2.2	26.4	16.1	28	28	55	7.0	.85	52.0	.20	.20	1773
1900	.0	30.1	2.0	23.9	14.6	29	29	53	6.8	79	48.4	.21	.21	1773
1900	.5	32.2	2.2	27.5	16.8	29	29	57	6.9	.85	52.0	.20	.20	1773
2000	.0	31.3	2.1	24.9	15.2	30	30	55	6.8	.79	48.4	.21	.21	1773
2100	.0	32.5	2.2	25.8	15.7	32	32	58	6.8	.79	48.4	.22	.22	1773
2200	.0	33.6	2.3	26.7	16.3	33	33	60 I	6.8	.79	48.4	.22	.22	1773

* Average weight for a feeding period. Requirements for lighter weight bulls can be found in Table 1.

TABLE 3. Mineral requirements and maximum tolerable levels for beef cattle (from NRC, 1984).

			Requirement	Maximum
Mineral	Units	Suggested Value	Range*	Tolerable Level
Calcium	%	_	See Tables 1 and 2.	2.0
Cobalt	ppm	.10	.07 to .11	5.0
Copper	ppm	8.00	4.00 to 10.00	115.0
lodine	ppm	.50	.20 to 2.00	50.0
Iron	ppm	50.00	50.00 to 100.00	1000.0
Magnesium	%	.01	.05 to .25	.4
Manganese	ppm	40.00	20.00 to 50.00	1000.0
Molybdenum	ppm	-	· 문양 김 야금 영화 유명하는 것을 하는 것을 수가 있다. 이렇게 하는 것을 하는 것을 하는 것을 하는 것을 수가 있다. 이렇게 하는 것을 하는 것을 수가 있다. 이렇게 하는 것을 하는 것을 수가 있다. 이렇게 하는 것을 하는 것을 하는 것을 하는 것을 수가 있다. 이렇게 하는 것을 하는 것을 수가 있다. 이렇게 가지 않는 것을 수가 있다. 이렇게 하는 것을 수가 있다. 이렇게 아니는 것을 수가 있 이렇게 아니는 것을 수가 있다. 이렇게 아니는 것을 하는 것을 수가 있 이렇게 아니는 것을 수가 있다. 이렇게 아니는 것을 하는 것을 수가 있 이렇게 아니는 것을 수가 있다. 이렇게 아니는 것을 하는 것을 하는 것을 수가 있다. 이렇게 아니는 것을 수가 있다. 이렇게 아니는 것을 수가 있다. 이렇게 아니는 것을 수가 있는 것을 수가 있는 것이 하는 것을 수가 있다. 이렇게 아니는 것이 않는 것이 않는 것이 하는 것이 않는 것이 않 이 같이 않는 것이 있는 것이 않는 것 않는 것	6.0
Phosphorus	%	-	See Tables 1 and 2.	1.0
Potassium	%	.65	.50 to .70	3.0
Selenium	ppm	.20	.05 to .30	2.0
Sodium	%	.08	.06 to .10	10.0
Chlorine	%	_		-
Sulfur	%	.10	.08 to .15	.4
Zinc	ppm	30.00	20.00 to 40.00	500.0

* The listing of a range in which requirements are likely to be met recognizes that requirements for most minerals are affected by a variety of dietary and animal factors. It may be better to evaluate rations based on a range of mineral requirements and for content of interfering substances than to meet a specific dietary value.

The place to go when you need to know . .

... about agriculture, home economics, 4-H and youth or community development. Drop by or call your county Extension office. You'll find friendly, well-trained agents ready to serve you with up-to-date information, advice and publications. Your county Extension office ... the place to go when you need to know!

Texas Agricultural Extension Service

Educational programs conducted by the Texas Agricultural Extension Service serve people of all ages regardless of socioeconomic level, race, color, sex, religion, handicap or national origin.

Issued in furtherance of Cooperative Extension Work in Agriculture and Home Economics, Acts of Congress of May 8, 1914, as amended, and June 30, 1914, in cooperation with the United States Department of Agriculture. Zerle L. Carpenter, Director, Texas Agricultural Extension Service, The Texas A&M University System. 20M-8-87, Reprint AS