
Aalto University

School of Science

Degree Programme in Computer, Communication and Information Sciences

Sergei Chistiakov

Secure storage and transfer of data in
a smart lock system

Master’s Thesis
Espoo, March 17, 2017

Supervisor: Professor Pekka Orponen
Advisors: Professor Kaisa Nyberg, Aalto University

Jarkko Juntunen M.Sc. (Tech.), Lukoton Experience Oy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80723946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Computer, Communication and Infor-
mation Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Sergei Chistiakov

Title:
Secure storage and transfer of data in a smart lock system

Date: March 17, 2017 Pages: 72

Major: Computer Science Code: SCI3042

Supervisor: Professor Pekka Orponen

Advisors: Professor Kaisa Nyberg
Jarkko Juntunen M.Sc. (Tech.)

The Internet of Things plays a bigger and bigger role in our everyday life. One
example of IoT devices are smart locks. Lukoton Experience Oy is a Finnish
company working on smart lock systems for businesses. The aims of this work
were to analyse their existing smart lock system from the security perspective
and to design a new system using the opportunities of an Atmel Corporation
EEPROM chip with embedded cryptographic functions. Subsequent to this, the
new design was compared to the existing system as well as to similar products
on the market. The new system uses AES encryption in CCM mode, stores the
keys only in a protected EEPROM chip and the cloud server, and uses Bluetooth
Low Energy and HTTPS channels for sending data. The paper presents the
new system in detail and shows that it is more secure than the existing one by
providing authentication and message integrity as well as better protection of
the chip at hardware and software level. It rejects all common attacks and stops
Replay attacks at an earlier stage. The new system also resists attacks that many
analogues on the market are susceptible to.

Keywords: AES, Authenticity, Bluetooth Low Energy, Cryptography,
Data Exchange, EEPROM Chip, Encryption, Information Se-
curity, Internet of Things, Man-in-the-Middle Attack, Mes-
sage Integrity, Passive Eavesdropping Attack, Replay Attack,
Smart Locks

Language: English

2

Acknowledgements

This chapter is dedicated to expressing my gratitude to everyone who helped
me with this Master’s thesis and during my times at Aalto University.

First of all, I would like to thank my thesis advisor Professor Kaisa Ny-
berg. I cannot overestimate how much she helped me with progressing on
this thesis. Kaisa was my professor at Cryptography course, my boss when
I was working at the university, and finally my thesis advisor. She provided
much help and support to me by holding our bi-weekly meeting thesis dis-
cussion sessions, advising me and providing a lot of feedback. I appreciate
that very much.

My big gratitude goes to Professor Pekka Orponen, my thesis supervisor.
He helped me a lot by letting me work as his research assistant during this
time and provided highly valued feedback on my work.

I thank also Dr. Kimmo Järvinen for taking his time and providing helpful
feedback.

Special thanks to Jarkko Juntunen and Ari-Pekka Hietala of Lukoton.
It was them who initially offered me the idea of this work and made this
happen. I appreciate your help during the work and your patience with me
being slow sometimes during my time at Lukoton.

Here I want to mention and thank my dear friend Tobias Orth. If not for
him I would never find this topic and get to work on this project.

I also would like to thank Dr. Céline Blondeau. She was not working with
me on this thesis, but she helped me a lot during my studies and especially
being my boss during my summer work at Aalto University.

Now that I mentioned everyone who was directly helping me with this
thesis, I would like to thank all people who were around me and helping me
just by being there, supporting me in bad moments and cheering me up when
I was feeling sad.

First and foremost, my family. Without them I would for sure not have
been able to survive these 2.5 years in the Nordics. They have always been
ready to help me. I see you only once in a few months now, but that always
makes me happier and stronger afterwards.

3

Of course, my dear friends, here in Finland, back in Russia, and in all
different parts of the planet. I have met very many incredible people during
the last 2.5 years and they always backed me up when I needed it. I will try
to mention everyone now, although it might take a lot of space here.

My sincere gratitude goes to my friends back at home: Alina, Anya, Vera,
Dasha, Egor, Zhenya, Katya, Katya, Marina, Misha, Natasha, and Pasha.

My huge thank you also for the people I met already at Aalto. You
have made this time truly incredible and tremendous: Alex, Andrei, Andrés,
Binghui, Daniel, Daniel, Fabio, Filippo, Gerhard, Elodie, Jan, João, Jo-
hannes, Julien, Jules, Marek, Markéta, Misha, Nicholas, Pablo, Ronja, Stef-
fen, and Tobi;

Abhi, Annika, Benno, Carole, Cristian, Daniel, Fernando, Francesco,
Georg, Mr Giovanni, Ice, Lando, Leevi, Mareike, Marek, Max, Michelle,
Monica, Nikol, Pascal, Philipp, Philippe, Raphael, Rudi, Salvador, Sanya,
Sara, Sara, and Stefan;

Adam, Alfredo, Chantal, Charlotte, Clementina, Diogo, Emma, Fabrizio,
Frank, Himanshu, James, Jara, Javier, Jessica, Julia, Julian, Kevin, Korkki,
Laia, Lilia, Liz, Martina, Mathias, Matias, Minna, Rishabh, Rodion, Santtu,
Shino, Tobi, Tom, Unda, and Ziyi;

Andi, Claire, David, David, Fritz, Lauri, Liam, Lukas, Martin, Pieter,
Roberto, and Sonja.

My dear Finnish friends, big kiitos and tack to you all and hope to evolve
our friendships here: Dan, Juha, Jirko, Jouni, Jussi, Niko, Robert, Stefan,
Timo, Tom, and Tuomo.

And last, but not least, my great friends from elsewhere. Thank you and
hope to meet you all some day soon: Alberto, Andreas, Ara, Ivo, João, José,
Kevin, Rok, Romano, Sasha, and Sasha.

Thank you everyone once again. I am proud and happy that you all have
been present in my life, and that it has taken me this much space to mention
you all.

Espoo, March 17, 2017

Sergei Chistiakov

4

Abbreviations and Acronyms

AES Advanced Encryption Standard
B2B Business-to-Business
BLE Bluetooth Low Energy
CBC Cipher Block Chaining
CFB Cipher Feedback
CCM Counter with CBC-MAC
CTR Counter
ECB Electronic Codebook
ECC Elliptic Curve Cryptography
EEPROM Electrically Erasable Programmable Read-Only Mem-

ory
eKey Electronic Key
FIPS Federal Information Processing Standard
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
IAS Information Assurance and Security
ID Identifier
I2C Inter-Integrated Circuit
IoT Internet of Things
IV Initialisation Vector
JTAG Joint Test Action Group
MAC Message Authentication Code
MitM Man-in-the-Middle
NFC Near-Field Communication
NIST National Institute of Standards and Technology
Nonce Number used once
NTP Network Time Protocol
OFB Output Feedback
OOB Out-Of-Band
PCB Printed Circuit Board

5

PKI Public-Key Infrastructure
RNG Random Number Generator
SIG Special Interest Group
SMS Short Message Service
SoC System on a Chip
SPI Serial Peripheral Interface
SRAM Static Random-Access Memory
SSL Secure Sockets Layer
SSP Secure Simple Pairing
URL Uniform Resource Locator

6

Contents

Abbreviations and Acronyms 5

1 Introduction 10
1.1 Motivation . 10
1.2 Objectives and scope . 12
1.3 Author’s contribution . 13
1.4 Structure of the thesis . 13

2 Security Requirements 14
2.1 Confidentiality . 14
2.2 Integrity . 15
2.3 Authenticity . 15
2.4 Security of the key management 15

3 Existing System 16
3.1 Overall picture of the system 16
3.2 Current security . 18

3.2.1 Message encryption . 18
3.2.2 Bluetooth channel . 20
3.2.3 Internet channel . 20

3.3 Security analysis . 20

4 The Atmel AES132A Chip 22
4.1 Introduction . 22
4.2 Components of the EEPROM 23

4.2.1 User Memory . 23
4.2.2 Key Memory . 23
4.2.3 Configuration Memory 24
4.2.4 SRAM Memory . 24

4.3 Physical security . 25
4.4 Advanced Encryption Standard 26

7

4.5 Commands . 27
4.5.1 Read command . 27
4.5.2 Write command . 28
4.5.3 BlockRead command 28
4.5.4 Decrypt command . 28
4.5.5 Encrypt command . 29
4.5.6 KeyCreate command 29
4.5.7 Lock command . 30
4.5.8 Nonce command . 30
4.5.9 Random command . 31

5 New System 32
5.1 Introduction of security to the system 32
5.2 Implementation options . 34

5.2.1 Chip-based solution . 35
5.2.2 Cloud-based solution 36
5.2.3 Analysis of the proposed solutions 36

5.3 Implementation . 39
5.3.1 Key sharing . 39
5.3.2 Chip configuration and locking 39
5.3.3 Populating the Key Memory 40
5.3.4 Creating an advertisement packet 40
5.3.5 Operations on the cloud side 41
5.3.6 Unlocking the smart lock 42

6 Evaluation 44
6.1 System parts comparison . 44

6.1.1 EEPROM chips . 44
6.1.2 Storage security . 45
6.1.3 Encryption . 45
6.1.4 Authentication and message integrity 45
6.1.5 Lock-smartphone data transmission channel 46
6.1.6 Smartphone-cloud data transmission channel 46

6.2 Attack resistance . 46
6.2.1 Passive eavesdropping attack 46
6.2.2 Man-in-the-Middle attack 47
6.2.3 Replay attack . 49
6.2.4 Channel hijacking and mafia fraud 50

8

7 Overview of the Smart Lock Market 52
7.1 August smart lock . 52
7.2 Kwikset Kevo smart lock . 55
7.3 Goji smart lock . 56
7.4 Lockitron . 57
7.5 Successful attacks on different smart locks 57

8 Security Advantages of the New System 60

9 Conclusions 62

A ATAES132A Chip Security Configurations 67
A.1 User Zone configuration . 67
A.2 Key configuration . 68
A.3 VolatileKey configuration . 69
A.4 Counter registers configuration 70

B ATAES132A Chip Commands 71

9

Chapter 1

Introduction

The Internet of Things (IoT) is one of the fastest growing fields in Information
Technology. People want to make their lives easier, more comfortable and
safe by introducing new technologies and devices to their everyday life. One
of the examples of IoT integration to our lives is the idea of a smart home.
It is a house that can turn the lights on and off automatically, put on your
favourite music, make a coffee in the mornings and open the doors for you.
And of course the smart home should have a smart lock. You do not need
to carry keys anymore, it will open for you automatically.

This thesis is a result of a project of a Finnish company Lukoton Ex-
perience Oy. The company develops smart lock systems for Business-to-
Business (B2B) industry and already has one system on the market. The
author’s part in the project was to study the existing system from the secu-
rity point of view and propose a new improved design, using the embedded
cryptographic features of an Electrically Erasable Programmable Read-Only
Memory (EEPROM) chip produced by the Atmel Corporation.

The result of this work is presented in this Master’s thesis. It is a new
design of the Smart Lock system, which keeps the functionality of the previ-
ous system the same while incorporating the possibilities offered by the chip
to the new system. The thesis will discuss the new design in detail, compare
it to the existing system of Lukoton and its analogues on the market.

The following chapters of this chapter will introduce the reader to the
thesis in more detail.

1.1 Motivation

As said above, the IoT is a tremendously growing area. “Smart” things
become a natural part of our life very quickly. Experts estimate the number

10

CHAPTER 1. INTRODUCTION 11

of objects in IoT will reach 50 billion by 2020 [13]. However, people still tend
to have conflicting attitudes towards some of the IoT objects. The Smart
Lock is a good example of that.

The technique of door locks is based on the same basic idea used for cen-
turies. We still use physical keys to open our doors, as our great-grandparents
did in the 19th century. While the technologies for implementing keys and
locks have become more advanced and complex, the physical keys still re-
main, including all their disadvantages. The keys are easy to lose, often hard
to find in your pocket or bag, rather complicated and expensive to change or
duplicate. After all, they are just one more thing you have to always carry
with you. People are used to electronic keys and door locks in offices and
hotels, but many still refuse the idea of using the electronic locks at home.

Nevertheless, smart locks slowly but surely incorporate in our usual life.
It is still a rather small industry with not many companies working in it.
Most of such companies and start-ups concentrate on products for home,
while some investigate the B2B market. Lukoton Experience Oy is one of
them. It is the first Finnish company working on smart locks for B2B.

The idea of a smart lock system, with electronic keys that can be easily
distributed between employees or customers, fits particularly well for busi-
nesses. Imagine a company renting out space to third parties in its own
storage premises. The usage of physical keys causes many problems and in-
conveniences. A customer has to come and pick the keys up in the beginning
of the lease and return them later on. In case the keys are lost, the company
will have to change the lock itself. Finally, the company cannot be sure that
the customer did not duplicate the key for any malicious purposes. A smart
lock system could immensely simplify the management of a locking scheme.
With no physical keys required, the client only needs to install an applica-
tion on his smartphone, and the company gives him access rights to enter
the leased room by adding a record in the database. The keys are easy to
duplicate for as many people or smartphones as needed, as well as revoke
them afterwards. The system is centralised and can be easily monitored.

Clouds are getting more and more widely used in modern information
technologies. A cloud plays also one of the main roles in the Lukoton system.
A server placed in a cloud is the centre of the smart lock system, which
connects the other entities, smart locks and users to the system and oversees
all the processes.

Obviously, security is a core issue in a smart lock system. It requires
special attention and thorough analysis, to exclude possible attacks and mal-
functions. The system should be lightweight, fast, efficient, and secure at the
same time. There is very little information on such systems available at the
moment, nearly no specialised literature exists, and the companies working

CHAPTER 1. INTRODUCTION 12

in this market do not publish their specifications.

1.2 Objectives and scope

This Master’s thesis pursues a few objectives. The first one is to capture
and analyse the security architecture of the existing smart lock system of
Lukoton, investigate its strengths and weaknesses, and decide what to keep
the same and what to change.

Secondly, the objective is to examine the proposed EEPROM chip and
explore the possibilities it offers to improve the security of the smart lock
system. This chip requires scrupulous setting in order to achieve a desired
configuration.

The third objective is to propose a new enhanced security architecture for
the system, by taking into account major security problems and still keeping
it lightweight and suitable for B2B applications.

The fourth objective is to evaluate the security of the proposed design.
Some of the most common generic attacks will be reviewed and the system
will be tested against them. How does the system resist the possible attacks?
The existing system will also be compared with some analogous products on
the market. What are the advantages of the new system and where is it the
same, or maybe even worse than competitors?

While not a technical objective itself, the overall goal of this Master’s
thesis is to provide an initial piece of literature in the area of smart lock
security to provoke and facilitate future research and work in the field. Being
far from complete, this is not a universal handbook for secure smart lock
systems design, but presents one solution and some reasoning behind it,
which may make it easier for the upcoming work in the area. One can
formulate a sub-goal here as explaining details in comprehensible manner, so
that even a non-specialist and an average user can get an idea of the basic
security principles of a smart lock system.

The scope of the work is the security architecture of a smart lock system,
its design, and the use of a chip with strong encryption and authentication
capabilities in it. The work does not describe, for example, the functionality
of the software either on the smartphone or in the cloud, or the principles
of the communication technology and protocols used between the parties of
the system.

CHAPTER 1. INTRODUCTION 13

1.3 Author’s contribution

The author of the thesis analysed the existing system, researched the EEP-
ROM chip and proposed a new smart lock system with an enhanced security
architecture that enables the system to meet the initial security requirements
and challenges. The new system was evaluated and compared to the existing
one as well as to some similar products available on the market.

1.4 Structure of the thesis

This Master’s thesis is structured as follows. Chapter 2 describes the formal
security requirements that the smart lock system has to satisfy. Chapter 3
presents an overview of the existing system design and analyses it from the
security point of view. Chapter 4 provides a description of the EEPROM
chip, its possibilities, configurations and embedded cryptographic commands.
Chapter 5 introduces a new design for the smart lock system and describes
the whole procedure step by step from an implementation point of view.
Chapter 6 evaluates the new system by comparing it to the existing system,
first examining each part of the system, and then discussing its resistance
against popular attacks. Chapter 7 overviews the smart lock products avail-
able on the market from the security perspective. Chapter 8 compares the
new system to the described analogues and indicates its advantages. Chap-
ter 9 concludes the thesis.

Chapter 2

Security Requirements

This chapter defines the requirements for the outcome: which criteria it
should satisfy and what distinguishes a desirable result from an undesirable
one. We need to establish some formal criteria to evaluate the new system
and to compare it with the existing system, as well as with the analogues on
the market. This thesis is concentrated on security, hence the requirements
will concern the Information Security issues.

When specialists talk about basic principles of Information Security, they
often refer to the known triad: Confidentiality, Integrity and Availability.
There has been a permanent dispute about adding some other principles to
this triad. For instance, a group of researchers made an analysis of Informa-
tion Assurance and Security (IAS) literature in [9] and proposed the IAS-
octave: Confidentiality, Integrity, Availability, Accountability, Auditability,
Authenticity/Trustworthiness, Non-repudiation, and Privacy. Another pub-
lication by the National Institute of Standards and Technology (NIST) pro-
posed as many as 33 principles [23]. In this work we will take the above-
mentioned triad as a base and add a few more requirements, specific for the
Smart Lock systems.

2.1 Confidentiality

Confidentiality is a state of information being protected from unauthorised
access. It is a basic and intuitive requirement for any security system. Confi-
dentiality requires measures to ensure that only authorised parties will have
access to the data.

Confidentiality is usually achieved by using encryption. We need to make
sure that all vital information sent between the communicating parties is
properly encrypted at any moment of time. Even if an adversary manages

14

CHAPTER 2. SECURITY REQUIREMENTS 15

to get parts of the information, it should not anyhow help her to get closer
to breaking the whole system and access the rest of the data.

2.2 Integrity

Integrity is a state of information being accurate and having not been changed
or tampered with by an unauthorised party. This is another basic principle
from the triad described above. Integrity means that a communicating party
is sure that the data received is equal to data sent by another authorised
party.

Applying that principle to our system, we need to design the system in a
way that it is impossible for an attacker to change or corrupt the information
without being noticed.

2.3 Authenticity

Authenticity is the ability to verify that the information is produced by an
authorised party and to establish which party produced it. Often authenticity
is observed as a part of the Integrity principle in the triad, but we separate
it to make the criteria clearer.

In the case of the Smart Lock system, we need to make sure that at
any moment of time an authorised party knows from whom the received
information comes. An adversary cannot impersonate one of the legitimate
communicating parties and break the system.

2.4 Security of the key management

Technical accomplishment is done by using cryptographic primitives. They
rely on cryptographic keys, which are essential part of the Smart Lock system.
Hence, in addition to the three criteria above, we require security of the key
management. We need to ensure that the keys are stored and transferred
securely between the authorised parties. Only legitimate parties of the system
have access to the secret keys, and it is impossible for an attacker to obtain
a key stored by the authorised parties.

Chapter 3

Existing System

3.1 Overall picture of the system

This chapter describes outlines of the existing Smart Lock Access Control
System. First, we will describe the system in general, and then concentrate
on the security part of it. This work will draw an unspecific overall picture
of the system, since the main goal of the thesis is to concentrate on security
issues. Ulusoy [28] describes the system in more detail.

The Smart Lock Access Control System consists of the following elements:
a lock controller, a smartphone, and the cloud. The lock controller includes
a microcontroller connected to the electric lock. The microcontroller has a
Bluetooth Low Energy (BLE) radio. The smartphone works as the mediator
between the lock and the cloud: it receives an encrypted message from the
lock and forwards it to the cloud server, and vice versa. The cloud server
authorises the smartphone and gives the lock a command to open if the user
has access rights.

To register a new user in the system, the cloud server sends an SMS
to the phone with a URL link in it. By clicking the link, the user installs
user credentials. The credentials include a unique user ID, mobile phone
number, and secret information. These parameters are also stored in the
server database.

The lock controller and a smartphone communicate with each other via
Bluetooth. Communication between a smartphone and the cloud server is
organised via HyperText Transfer Protocol Secure (HTTPS). HTTPS is an
extension of the Hypertext Transfer Protocol (HTTP) with a connection en-
crypted by Secure Sockets Layer (SSL) protocol or more advanced Transport
Layer Security (TLS) protocol. The smartphone uses the user credentials
with secret information to establish a secure connection.

16

CHAPTER 3. EXISTING SYSTEM 17

The overall procedure consists of the following steps (see Figure 3.1):

System initialisation

1. The cloud server and the lock share an Advanced Encryption Standard
(AES) key.

2. The cloud server sends user credentials to the smartphone over a URL
link provided to the phone in an SMS. These credentials include user pa-
rameters, such as a unique user ID, mobile phone number, and a secret
part. These user parameters are stored in the cloud server database.

3. The smartphone installs the user credentials.

Unlocking process

4. The lock controller creates an AES encrypted advertisement packet and
broadcasts it over BLE. When the smartphone gets into the Bluetooth
coverage area, it discovers the lock and receives the packet.

5. The smartphone uses secure HTTPS channel to forward the advertise-
ment packet to the cloud server, along with the user credentials.

6. The cloud server extracts the HTTPS protected packet and checks the
access rights of the user. Then it decrypts the advertisement packet. If
everything is correct, the server authorises the user to open the lock by
sending to his smartphone an encrypted message, which contains the
virtual key, i.e., permission to open the lock and its validity period.

7. The smartphone gets a timestamp from a Network Time Protocol
(NTP) server. If none of the NTP servers in the smartphone’s list
replies, the timestamp is received from the cellular network.

8. The smartphone forwards the encrypted message along with the time-
stamp to the lock. If the timestamp is within the unlocking validity
period set by the cloud in the encrypted message, the lock switches to
the unlocked state. After a certain time it gets locked again.

CHAPTER 3. EXISTING SYSTEM 18

Figure 3.1: Smart Lock Access Control System

3.2 Current security

Now we concentrate on the security used in the working system. As men-
tioned in the scheme above, the messages sent from the lock to the cloud
via the smartphone and back are encrypted. The messages are sent over the
Bluetooth Low Energy channel between the lock and the smartphone, and
the HTTPS protocol connection is used to send them from the smartphone
to the cloud server and back. We will describe these parts of the system
security separately.

3.2.1 Message encryption

As seen from Figure 3.1, in Step 4 the lock broadcasts an advertisement
packet. This packet consists of: packet length value (1 byte), manufacturer
identifier (2 bytes), serial number (2 bytes), battery lifetime level (1 byte),
and encrypted data (16 bytes). The last part of the packet is encrypted
by the Advanced Encryption Standard (AES) [15] briefly described in Sec-

CHAPTER 3. EXISTING SYSTEM 19

tion 4.4. The 128-bit long keys are shared between the lock controller and
the cloud server during system initialisation. On the lock side the AES key is
stored in the Microchip 25A512 Electrically Erasable Programmable Read-
Only Memory (EEPROM) [21]. This is a 512-KBit serial EEPROM.

The mode used for encrypting the messages is Cipher Block Chaining
(CBC) [24]. Figures 3.2 and 3.3 show the encryption and decryption proce-
dures in this mode respectively.

Figure 3.2: CBC mode encryption

Figure 3.3: CBC mode decryption

The initialisation vector (IV) is also stored in the EEPROM chip for the
decryption.

The system also uses an advertisement nonce included in the encrypted
data. This nonce is a random number generated by the lock controller for
every new advertisement packet. The cloud receives the advertisement nonce
in the packet from the lock and includes it in the opening packet. When the
lock receives this nonce in the opening packet, it compares it with the one

CHAPTER 3. EXISTING SYSTEM 20

sent in the previous advertisement packet and only unlocks if both values
match.

3.2.2 Bluetooth channel

The Bluetooth channel between the smartphone and the lock may also offer
security features. In Bluetooth standard 4.2 [8], the Bluetooth Low Energy
protocol uses a Secure Simple Pairing (SSP) [7] model, also referred to as LE
Legacy. When using SSP, devices can choose between Numeric Comparison,
Just Works, Passkey Entry, and Out-of-Band (OOB) method for pairing.
Since the lock controller has no input or output devices, the existing Smart
Lock Control Access System can only use the Just Works mode.

Due to the choice of Just Works mode, unauthenticated Diffie-Hellman
key agreement is used. It provides protection against passive eavesdropping
but not from Man-in-the-Middle (MitM) attacks.

However, the Laird BLE modules that are used in the system do not
support any security features of Bluetooth 4.2. Therefore, the system does
not use any BLE security features.

3.2.3 Internet channel

A smartphone and the cloud server communicate with each other over the
HTTPS protocol [22]. HTTPS provides authentication and protection of
the privacy and integrity of the exchanged data. The main goal of HTTPS
security is to protect the user credentials and to prevent impersonation of a
legitimate smartphone.

3.3 Security analysis

According to Section 3.2.2, we can make a conclusion that between the lock
and the smartphone all the security of the system relies on the encryption.
The security does not depend on the security of the Bluetooth channel. The
whole system was initially designed with the assumption that the messages
from the lock to the smartphone and back are sent over an unprotected
proximity channel. Such a channel makes the system prone to certain generic
attacks, which are described for completeness in Section 6.2.4.

The AES key is only shared between the cloud server and the chip. Even
if the attacker captures the packets sent from the lock to the cloud and back,
she will not be able to get access to the plaintext data unless she acquires
the secret key.

CHAPTER 3. EXISTING SYSTEM 21

However, it is clear that using only encryption does not make the system
secure. An attacker cannot decrypt the messages, but she can intercept an
opening message sent from the cloud to the lock, save it and re-use later.
The lock will not know that the message is not coming from the cloud. This
type of attack is called a Replay attack and will be described in more detail
in Section 6.2.3.

The system resists such attacks by using the idea of the advertisement
nonce described in Section 3.2.1. The purpose of the advertisement nonce is
to avoid Replay attacks and to achieve authentication. Only the cloud can
decrypt an advertisement packet, so the lock gets some evidence that if an
opening message contains the same advertisement nonce, then it comes from
the cloud server. The advertisement nonce is generated fresh for each new
advertisement packet.

Additionally, the opening message sent from the cloud back to the lock
(via the smartphone) is valid only for a limited time. The message becomes
invalid after one unlocking event. That also makes Replay attacks more
difficult.

Possible impersonation of the legitimate smartphone is prevented by us-
ing HTTPS security between the smartphone and the cloud server. When
registering in the system, the smartphone has to install the user credentials
sent by the cloud server. These credentials are used for authenticating the
smartphone to the cloud server.

An obvious flaw in the system is insecure storage of the keys in the EEP-
ROM chip. The chip is not physically protected against acquiring the data
stored in it. Hence, if an attacker manages to get access to the chip and get
the AES secret key, the system security for this lock will be broken.

Another security issue is the lack of message integrity. The parties cannot
detect if the messages have been tampered with due to the lack of a Message
Authentication Code (MAC).

Chapter 4

The Atmel AES132A Chip

4.1 Introduction

Electrically Erasable Programmable Read-Only Memory (EEPROM) is a
memory type that allows to erase and reprogram the bytes stored there.
EEPROM chips have been used quite widely in many different devices that
do not require storing big amounts of data.

However, the modern world requires technologies to change and develop
very fast. The security part of the products, often neglected in the recent
past, has now become an essential detail. People are well aware how easy it
can be nowadays to break a whole system using the security flaws. In order
to be competitive on the market, technology products of all kinds have to
provide good security. The EEPROM chip market was not an exception,
and companies started to design and produce secure chips with embedded
cryptography. One of these companies is Atmel. In this chapter we will
describe the Atmel AES132A chip, which is an essential part of the Smart
Lock Access Control System.

The ATAES132A chip provides both authentication and confidential data
storage. The chip has 32Kb of Standard Serial EEPROM memory, 16 slots
for 128-bit keys, and 24 embedded cryptographic functions. The chip uses
the Advanced Encryption Standard in Counter with CBC-MAC mode (AES-
CCM), where CBC-MAC stands for a Cipher Block Chaining Message Au-
thentication Code. The Atmel AES132A chip provides also a high level of
physical security, effectively preventing accessing the confidential data stored
on the chip.

22

CHAPTER 4. THE ATMEL AES132A CHIP 23

4.2 Components of the EEPROM

The ATAES132A EEPROM is divided into several segments. Each of them
has different functions. These memory segments are the following:

• User Memory: contains 32Kb for data storage purposes.

• Key Memory: contains 256 bytes for storing the secret keys used in
different cryptographic functions.

• Configuration Memory: contains the configuration information, secu-
rity control registers, and counters.

• SRAM Memory: used to store the volatile data and status information.

We will describe the abovementioned memory segments in more detail in
the following sections.

4.2.1 User Memory

The User Memory has 32Kb space, which is split into 16 user zones of 2Kb
each. Each user zone is associated to a specific User Zone Configuration
Register in the Configuration Memory and can be set separately. The possi-
bilities of configuring a user zone include authentication requirement, Read
Encryption, and Write Encryption. These security requirements can be com-
bined freely. It is also possible to disable all the security requirements. A user
zone can be accessed only if all set security requirements are satisfied. All
the bytes within one user zone have the same access restrictions.

4.2.2 Key Memory

The Key Memory has 16 slots for the secret keys, each 128 bits long. Each
key is associated to a specific Key Configuration Register in the Configura-
tion Memory. The Key Configuration Register defines which cryptographic
functions can use the key. Also, the register can be configured to require
prior authentication to access the key.

The Key Memory cannot be read under any circumstances. Writing in the
Key memory is possible using the Write, EncWrite, KeyCreate, KeyImport,
KeyLoad, and KeyTransfer commands. The Write command performs writ-
ing cleartext data into the key memory and is only possible before locking
the chip. The EncWrite performs encrypted writes; it is possible to use after
locking the chip if this is allowed in the Key Configuration register. The last
four commands manage the key registers after the locking.

CHAPTER 4. THE ATMEL AES132A CHIP 24

4.2.3 Configuration Memory

The Configuration Memory contains all the registers defining restrictions for
access and usage of different parts of the memory. These include user zone
access requirements, the key usage restrictions, and the counter usage restric-
tions. Device-level configuration option registers as well as several registers
for customer information are also located in the Configuration Memory.

The Configuration Memory can always be read using the BlockRead com-
mand. The content of the Configuration memory is permanently locked by
using the Lock command.

The list of possible configuration settings for the User Zone, Key, VolatileKey,
and Counter registers can be found in Appendix A.

4.2.4 SRAM Memory

The Static Random-Access Memory (SRAM) is used to store volatile data
and status information. The SRAM buffers and registers are located on top
of the memory address space. The SRAM is used to store the following
elements:

• Nonce: used by different cryptographic functions.

• Pseudo Random Number Generator (RNG) seed.

• VolatileKey: a session key register. Can only be used for authentication
and to encrypt or decrypt external data.

• Command memory buffer: used to send extended commands to the
device.

• Response Memory Buffer: used to read responses to the extended com-
mands from the device.

• IO Address Reset Register: used to reset the buffer address pointers.

• STATUS Register: reports the state of the device.

• Authentication Status Register: stores the result of most recent au-
thentication attempt.

CHAPTER 4. THE ATMEL AES132A CHIP 25

4.3 Physical security

It is also very important to provide security not only at software level, but
also at hardware level. Nowadays it is not complicated to find a microprober
or conduct a power analysis attack using an oscilloscope. The ATAES132A
chip has various physical security mechanisms that prevent an attacker from
getting the values of secret keys stored in the memory [4]. Following are some
of the features providing hardware security in the chip:

• Active shield covering the entire chip.

• Internal memory encryption.

• Constant time/cryptographic operation pattern.

• Randomised mathematical operations.

• Internal state consistency checking.

• Voltage tampering detector, isolated power rail.

• Temperature tampering detector.

• Internal clock generation.

• Secure test methods, not the Joint Test Action Group (JTAG) [18]
ones.

• Frequency tampering detector.

• No debug probe points, no test pads.

• No package or die identification.

The chip is designed to prevent or significantly complicate most side-
channel attacks. Some examples of such attacks are the following:

• Microprobe attacks.

• Timing attacks.

• Emissions attacks.

• Faults, invalid command attacks.

• Clock glitches.

CHAPTER 4. THE ATMEL AES132A CHIP 26

4.4 Advanced Encryption Standard

The chip uses the Advanced Encryption Standard (AES), the current cryp-
tographic standard encryption function recommended by the U.S. National
Institute of Standards and Technology (NIST). The cipher was developed
by Joan Daemen and Vincent Rijmen, under the name of Rijndael [10] and
submitted as a proposal to NIST during the AES selection process. In 2001
NIST approved the cipher to be a standard of encryption [15].

AES is a substitution-permutation network, working with 128-bit long
blocks and three possible key lengths: 128, 192 or 256 bits. The encryption
process comprises 10, 12 or 14 rounds, depending on key size. Each round
consists of four steps: SubBytes, ShiftRows, MixColumns (not performed in
the last round), and AddRoundKey. The ATAES132A chip uses 128-bit long
keys.

Common modes of operation for AES include Electronic Codebook (ECB),
Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback
(OFB), Counter (CTR). CBC and CTR are the modes used most often; they
are recommended, for example, by Niels Ferguson and Bruce Schneier in [14].

The ATAES132A chip uses the AES in CCM (Counter with CBC-MAC)
mode [25]. As follows from the name, the mode combines the Counter mode
for encryption with CBC-MAC (Cipher Block Chaining Message Authenti-
cation Code). Cleartext MAC is computed first on the given message, using
the chip specific data and the plaintext as inputs in CBC mode. Then the
plaintext and the cleartext MAC are encrypted in the Counter mode. The
same key is used for both operations.

The CCM mode provides authenticity, integrity, and confidentiality. Due
to the CCM being a derivative of the Counter mode, which is, in fact, a
stream cipher, the nonce should not be used more than once for one key.

Figures 4.1 and 4.2 show the flow of the CCM mode on an example of
the Encrypt and Decrypt commands.

Figure 4.1: CCM mode encryption

CHAPTER 4. THE ATMEL AES132A CHIP 27

Figure 4.2: CCM mode decryption and MAC verification

The CCM mode allows to encrypt and decrypt any number of 128-bit
blocks of plaintext, but the figures above illustrate the case with input of
one block, as it is the situation in the actual system. A0 and A1 are chip
specific data including, for example, the length of a plaintext, parameters
of the Encrypt or Decrypt command, and a nonce. They are needed for
creating a MAC. The same nonce is used in the right side of the figures.
The input there consists of a random number, a MacCount value (considered
as a part of the CCM nonce in this case), and a counter, as usual in CTR
mode. The random number and MacCount are discussed in more detail in
Section 5.2.

4.5 Commands

Apart from the standard EEPROM Read and Write commands, the chip has
24 different cryptographic functions. The full list of commands with their
short descriptions is presented in Appendix B.

In this part of the work we describe in detail the commands used in
the Smart Lock Access Control System, namely Read, Write, BlockRead,
Decrypt, Encrypt, KeyCreate, Lock, Nonce, and Random.

4.5.1 Read command

The Read command reads the requested number of bytes starting from the
specified point in the memory and returns the data to the Host.

When the Read command is received, the device checks the AuthRead
and EncRead bits in the ZoneConfig Register for the user zone. In case
the bytes requested are not allowed to be read, 0xFF will be returned. The
command may be used to read any number of bytes in one operation. It can
also cross the EEPROM page boundaries.

CHAPTER 4. THE ATMEL AES132A CHIP 28

Reading the Key Memory is never allowed. The Read command cannot
read the Configuration Memory, the BlockRead command should be used
instead.

4.5.2 Write command

The Write command writes 1 to 32 bytes to the EEPROM starting from the
specified point in the memory.

The command cannot write data to different user zones in one operation.
The data to be written cannot cross the EEPROM page boundaries.

Writing to the Key Memory or the Configuration Memory is only allowed
before locking. Partial writes to key registers are not allowed.

4.5.3 BlockRead command

The BlockRead command reads 1 to 32 bytes of plaintext data from a User
Zone or the Configuration Memory. It also returns an error code in case the
Read was not successful.

The BlockRead command can only read data from a single User Zone at
one attempt; it cannot cross the EEPROM page boundaries. The command
cannot read the Key Memory under any circumstances.

The possibility to read a User Zone depends on the values of the En-
cRead and AuthRead bits in the configuration settings of a User Zone (see
Table A.1).

4.5.4 Decrypt command

The Decrypt command takes 16 to 32 bytes of ciphertext data, decrypts it
with the specified key, stored in the Key Memory, verifies the MAC, and
returns the encrypted data to the Host if the MAC matches.

The command requires a valid nonce to be run. Depending on the con-
figuration, the nonce must be or need not be random. Prior authentication
may be required if needed. Also the values of the Usage Counter, SerialNum,
and SmallZone may be included to the MAC computation.

Two modes of the command are possible:

• Client Decryption mode: decrypts data encrypted by the same or an-
other ATAES132A device.

• Normal Decryption mode: decrypts data encrypted by a cryptographic
Host. In this mode it cannot decrypt data encrypted by an ATAES132A
device.

CHAPTER 4. THE ATMEL AES132A CHIP 29

In the Client Decryption mode the following requirements must be satis-
fied:

• The encrypting and decrypting devices must both contain identical
keys.

• The decrypting device must know the KeyID used for encryption. It
is passed to the decrypting device as one of the parameters of the
command.

• The decrypting device must know the nonce used for encryption. The
nonce is passed to the decrypting device using the Nonce command or
synchronised on both devices using the NonceCompute command.

• The decrypting device must know the number of bytes encrypted. It
is passed to the decrypting device as one of the parameters of the
command.

• The decrypting device must know the MacCount used for encryption.
It is passed to the decrypting device as one of the parameters of the
command.

• Mode bits responsible for including the values of the Usage Counter,
SerialNum, and SmallZone to the MAC computation must be the same
on both encrypting and decrypting devices.

4.5.5 Encrypt command

The Encrypt command takes 1 to 32 bytes of plaintext data, encrypts it with
the specified key, stored in the Key Memory, and returns the encrypted data
to the Host along with a generated MAC.

The command requires a valid nonce to be run. Depending on the con-
figuration, the nonce must be or need not be random. Prior authentication
may be required if needed. Also the values of the Usage Counter, SerialNum,
and SmallZone may be included to the MAC computation.

4.5.6 KeyCreate command

The KeyCreate command generates a 16-byte long random number, stores
it either in the Key Memory or in the VolatileKey Register, and returns the
key value encrypted with the Parent Key to the Host, along with a generated
MAC.

CHAPTER 4. THE ATMEL AES132A CHIP 30

The key configuration contains a link to the slot number where the parent
key is located. The command requires a valid nonce to be run. Depending
on the configuration, the nonce must be or need not be random. Prior
authentication may be required if needed. If the target of the command is
the VolatileKey Register, then an InMAC must be provided.

The command allows rather flexible mode configuration. The user decides
whether to store the newly generated key in the Key Memory or in the
VolatileKey Register, and if the RNG Seed needs to be updated before the key
generation. Also the values of the Usage Counter, SerialNum, and SmallZone
may be included to the MAC computation.

4.5.7 Lock command

The Lock command permanently locks different segments of the chip memory.
These segments are the Configuration Memory (also locking Key, Counter
and Use Memory access restrictions), the Key Memory, and the SmallZone
register.

The Configuration memory must be locked prior to locking the Key Mem-
ory.

The command writes 0x00 to the specified lock register in order to lock
the segment of the EEPROM. In an unlocked state these registers contain
0x55. The Configuration Memory is controlled by the LockConfig Register,
the Key Memory – by the LockKeys Register, and the SmallZone Register –
by the LockSmall Register.

One of the optional parameters of the Lock command is a checksum
(CRC-16) calculated over the memory segment being locked. If the value of
the checksum entered as the parameter matches the value calculated by chip,
the operation is succeeded; otherwise the command returns an error code.

4.5.8 Nonce command

The Nonce command generates a 96-bit long nonce, stores it in the SRAM
Nonce Register, and optionally returns the random number used for the
nonce generation.

Many other cryptographic commands require a valid nonce. The user has
to provide a 96-bit long InSeed value and decides whether the RNG Seed
needs to be updated before the key generation.

There are two possible modes for running the command. These modes
are the following:

• Inbound Nonce: the InSeed value set by the Host is used as a nonce;

CHAPTER 4. THE ATMEL AES132A CHIP 31

no cryptographic calculations are performed. The command does not
return any output to the Host in this mode.

• Random Nonce: an internal pseudo RNG generates a random number,
which is cryptographically combined with the InSeed value provided by
the Host. The 16-byte random number is returned to the Host.

There is no need to run the command before every cryptographic oper-
ation, because the chip automatically includes MacCount in the MAC cal-
culations. This guarantees uniqueness of a nonce. However, the maximum
value of MacCount is 255, so one has to run the Nonce command at least
after every 255 cryptographic operations performed by the chip. There are
several other events that make a nonce invalid. The nonce is valid until one
of the following happens:

• MacCount reaches the maximum value of 255.

• A MAC comparing operation fails.

• The cryptographic state machine is reset due to either receipt of a Reset
command, power cycling, or activation of the initialisation sequence due
to Wake-up from the Sleep power state.

• The Nonce command is run again, setting MacCount to zero.

4.5.9 Random command

The Random command generates a random number and returns it to the
Host. The chip uses the internal high-quality pseudo RNG and the random
number generation procedure recommended by NIST [26]. There are two
possible modes for running the command. These modes are the following:

• Random Number Generation: the generated 16-byte random number
is not stored internally and only returned to the Host.

• Nonce Synchronisation: in addition to returning the generated 16-byte
random number to the Host, the first 12 bytes are stored in the Nonce
Register for later use by the NonceCompute command.

Chapter 5

New System

5.1 Introduction of security to the system

The existing system described in Chapter 3 has some security issues as de-
scribed in Section 3.3. One of the problems is lack of message integrity. The
cloud server and the chip cannot be sure that the message received has not
been tampered with on the way. Another issue is that the current EEPROM
chip is used to store the data on the lock side. It does not provide any secure
storage, so it is relatively easy to get access to the data stored there, includ-
ing the AES secret key used for encryption of the data in the advertisement
packet. The main goal of this work was to design a way to fix these security
flaws and implement the corrections in the existing system.

As discussed in Chapter 4, an essential part of providing security to the
system is using the AES132A chip. It allows to flexibly and efficiently set up
the necessary security in the system. It uses AES encryption in a standard
mode, recommended by NIST, which additionally provides authentication
and message integrity by using the MAC. Also the chip is protected on both
the hardware and the software side. The chip manufacturer guarantees that
the keys stored in the Key Memory cannot be read under any circumstances.
We used the opportunities provided by the chip in order to establish a secure
Smart Lock Access Control System.

We will rewrite the general flow of the access control procedure by adding
some security steps. The new procedure consists of the following steps (see
Figure 5.1):

System initialisation

1. The cloud server generates a random 128-bit number that is written
into the Key Memory of the chip. This number will be the shared AES

32

CHAPTER 5. NEW SYSTEM 33

key between the chip and the cloud.

2. The chip is configured and locked.

3. The chip populates the rest of the slots in the Key Memory with random
numbers.

4. The cloud server sends user credentials to the smartphone over a URL
link provided to the phone in an SMS. These credentials include user
parameters, such as a unique user ID, mobile phone number, and a
secret part. The user data is stored in the cloud server database.

5. The smartphone installs the user credentials.

Unlocking process

6. The chip creates an advertisement nonce and includes it in an adver-
tisement packet. The chip encrypts this packet and adds MAC using
AES in CCM mode. Then the packet is broadcasted over BLE. When
the smartphone gets into the Bluetooth coverage area, it discovers the
lock and receives the packet.

7. The smartphone uses secure HTTPS channel to forward the advertise-
ment packet to the cloud server, along with the user credentials.

8. The cloud server extracts the HTTPS protected packet and checks
the access rights of the user. Then the cloud server verifies the MAC
and decrypts the advertisement packet with the shared AES key. If
everything is correct, the server authorises the user to open the lock by
creating a new opening message with a validity period for unlocking,
adding the received advertisement nonce, encrypting it with the same
shared AES key, adding the MAC and sending it to the smartphone.

9. The smartphone gets a timestamp from a Network Time Protocol
(NTP) server. If none of the NTP servers in the smartphone’s list
replies, the timestamp is received from the cellular network.

10. The smartphone forwards the encrypted opening message along with
the timestamp to the lock. The chip verifies the MAC and decrypts
the opening message with the shared key, checks if the received ad-
vertisement nonce equals the one originally created by the chip. Then
the chip checks whether the timestamp is within the unlocking validity
period sent by the cloud. If everything is correct, the lock switches to
the unlocked state. After a certain time it gets locked again.

CHAPTER 5. NEW SYSTEM 34

Figure 5.1: Smart Lock Access Control System

5.2 Implementation options

The actual implementation process brought up many detailed issues to think
about. One of the most important ones was the question about a nonce used
for encrypting the message and calculating the MAC in AES-CCM mode.
To verify the MAC and decrypt the received message, one needs to know the
13-byte nonce (called CCM nonce further in the text) used for encryption.
This nonce consists of a 12-byte random number and a 1-byte MacCount.
The existing system uses a fixed IV for CBC encryption mode, but that is
not possible for CCM mode. Using a fixed nonce would allow an attacker to
easily get XORs of the plaintexts because the encrypted CCM nonce would
stay constant (see Figure 4.1). A solution with predictably changing the
CCM nonce (for example, incrementing a nonce by one for each new opera-
tion) breaks in case of an opening message delivery failure: the cloud server
would try using an incremented CCM nonce for the next operation, while the
chip would apply the same one again. Some resynchronisation process must
be applied. Therefore, the problem of sending a CCM nonce along with the
message to decrypting party arises. Two implementation options were pro-
posed. They are referred to as the Chip-based solution and the Cloud-based

CHAPTER 5. NEW SYSTEM 35

solution in the following sections.

5.2.1 Chip-based solution

This solution is called Chip-based, because the responsibility for generating
a CCM nonce for each new message is on the chip. In this method the chip
generates a new CCM nonce using its integrated Random Number Generator
and attaches it in clear to each advertisement packet. The cloud server uses
the received CCM nonce to verify the MAC and decrypt the message. The
same CCM nonce will be used by the cloud server to encrypt an opening
message and calculate a MAC for it.

The chip uses an idea of MacCount. This is a one byte counter increasing
by one from 0x00 to 0xFF every time some command uses the CCM nonce
stored in the chip SRAM. This allows to keep the CCM nonce fresh and
at the same time avoid generation of a new random number for every new
advertisement packet. The chip only needs to do it after each 256 operations.
In addition, this gives the possibility to use the same random number for an
opening message for the cloud server. The cloud would only need to increase
the MacCount value (received in the advertisement packet) by one. The
cloud then does not need to send the CCM nonce back to the chip because
it is already stored in the chip’s memory for decryption.

Figure 5.2 illustrates the flow of this procedure.

Figure 5.2: Chip-based solution

CHAPTER 5. NEW SYSTEM 36

5.2.2 Cloud-based solution

The second solution proposes moving the responsibility for the random part
of the CCM nonce generation from the chip to the cloud side. In this scenario
the cloud server generates a new random number for the CCM nonce using
its own RNG for every new opening message. This new nonce is attached
in clear to the opening message sent to the chip. The chip uses the received
CCM nonce for verifying the MAC and decrypting the message. The same
nonce is re-used for encrypting the next advertisement packet and calculating
a MAC for it.

For the very first advertisement packet the chip cannot use the CCM
nonce received from the cloud server due to the lack of previous correspon-
dence with it. The chip uses its unique Serial Number as an initial CCM
nonce. The cloud server stores the Serial Number of each chip, so it will be
able to verify the MAC and decrypt the first advertisement packet.

MacCount is almost not used in this solution. Every time a new CCM
nonce is introduced to the chip, the MacCount value automatically falls down
to 0x00. However, the MacCount value still keeps nonces used for an opening
message and a following advertisement packet different. Due to the fact that
a new random number is generated for every opening message, its value
will always be 0x01 for any opening message and 0x02 for the succeeding
advertisement packet.

This solution also uses a backup mechanism of storing a previous CCM
nonce in the memory of both the chip and the cloud server. In case of
an opening message corruption (due to the actions of an adversary or for
other reasons), the chip would use the previous CCM nonce for the next
advertisement packet. The backup CCM nonces are updated in the memory
of both the chip and the cloud server after each successful message decryption.

Figure 5.3 illustrates the flow of this procedure.

5.2.3 Analysis of the proposed solutions

Both described solutions satisfy the security requirements and effectively
prevent an adversary from breaking the encryption and integrity. The CCM
nonces used for encryption and MAC calculation are updated every time,
which prevents possible Replay attack (the attack described in more detail
in Section 6.2.3). However, there are differences from the implementation
and security points of view.

First difference is about to which message a CCM nonce is attached to.
The Chip-based solution has it sent along with an advertisement packet,
while the Cloud-based solution sends it along with an opening message.

CHAPTER 5. NEW SYSTEM 37

Figure 5.3: Cloud-based solution

CHAPTER 5. NEW SYSTEM 38

But the chip has to receive an opening message only once, while it has to
broadcast an advertisement packet constantly. So, the Cloud-based solution
allows to keep an advertisement packet length shorter, which is rather a big
advantage in terms of energy saved for the chip.

Both solutions assume sending a CCM nonce in clear. This does not lead
to a breach of security, because a nonce, essentially, does not need to be
secret.

Another advantage of the Cloud-based solution is that it saves the re-
sources of the chip RNG. The chip already has to produce an advertisement
nonce for every message and additional CCM nonce generation will result in
decrease of the chip lifetime. This happens because the chip has limitations
in quantity of random numbers generated. However, this advantage is not
too big, since in the Chip-based solution a new random number for the CCM
nonce has to be produced only once for 128 advertisement packets (another
128 MacCount values are spent on the opening messages decryption and ver-
ifying the MAC). It should be mentioned also that the quality of the RNG
in the cloud server is much higher, due to the limitations of small EEPROM
chips.

The Cloud-based solution requires to generate a random number 128
times more often, but the responsibility for it falls on the cloud RNG, re-
sources of which are considered unlimited for the purposes of this work.
Overall, the Cloud-based solution requires more steps and is more compli-
cated.

A possible attack on the Cloud-based solution by corrupting the CCM
nonce sent from the cloud server to the chip is prevented by the backup
mechanism described in the previous section. In case of a corrupted received
nonce, the chip will use the previous “successful” CCM nonce stored in its
memory for the next advertisement packet. The cloud server also stores the
same CCM nonce, so it will be able to verify the MAC and decrypt the
received packet.

From the cryptographic point of view, the Cloud-based solution offers one
significant improvement by providing additional authentication of the chip.
When the cloud server receives an advertisement packet in the Chip-based
solution, it does not know whether it is a message from the chip or not.
An adversary can replay some of the previous advertisement packets and
the cloud will generate an opening message for it. This opening message,
nevertheless, will not be accepted by the chip because the advertisement
nonce inside it will have expired by then. On contrary, in the Cloud-based
solution the cloud server will reject a previously used advertisement packet,
because the CCM nonce for it will not match the one stored in the cloud
server database. This also saves resources of the cloud server, since it will

CHAPTER 5. NEW SYSTEM 39

not need to generate a new opening message in this case.
According to the above, the Cloud-based solution has more advantages

over the Chip-based solution. Hence, we adopt the Cloud-based solution to
be used and described in the next section.

5.3 Implementation

This part of the work describes the security steps of the Smart Lock Access
Control System in detail. In this scenario, a company rents out some rooms
to a third-party customer. The access to these rooms is secured by the system
discussed. As said above, the Cloud-based solution is used in the description.

5.3.1 Key sharing

In order to start the secure data exchange between the lock and the cloud, the
secret key must be shared between them. This is done by the manufacturer
in the system initialisation step, before passing the system to the company.
The random number is created by the cloud server and manually written into
the Key Memory of the chip. This number will function as the secret key
shared only between the chip and the cloud server (referred to as the “shared
key” in this chapter). The key is not otherwise stored anywhere. These steps
are summarised as follows:

1. The cloud server generates a random 128-bit number.

2. This number is written into the Key Memory of the chip using the
Write command.

3. The number is saved in the cloud server database along with the Serial
Number of the chip.

5.3.2 Chip configuration and locking

Before sending it to the company, the chip should be configured appropriately.
The ATAES132A chip provides very flexible configuration settings for User
Memory, Key Memory, Volatile Key and Counter. The configurations follow
the policy of allowing only necessary operations. After configuring all the
memory zones, the chip has to be locked. First the Configuration Memory
is locked, then the Key Memory, and lastly the Small Zone Register. These
steps are summarised as follows:

CHAPTER 5. NEW SYSTEM 40

1. Configure all the User Memory slots.

2. Configure all the Key Memory slots, including the one with the shared
secret key.

3. Configure the Volatile Key Register.

4. Configure the Counter Registers.

5. Lock the Configuration Memory using the Lock command.

6. Lock the Key Memory using the Lock command.

7. Lock the Small Zone Register using the Lock command.

5.3.3 Populating the Key Memory

This step is also done by the manufacturer before sending the product to the
customer. Now it must be ensured that the keys stored in the other slots of
the Key Memory cannot be used by an attacker or a third party. Default key
value initially set by Atmel in all the key slots is 0xFFF...FF. The commands
addressing the Key Memory can specify a KeyID different from the one with
the shared key. So, an attacker might use it. In order to avoid that, the rest
of the slots are populated using the KeyCreate command. The command
generates random numbers that are written into the Key Memory. The
command returns an encrypted value of the just generated key, but it is not
in any way processed further or stored anywhere, so no one will know the
actual key values in these 15 key slots. Hence, the possibility of using them
to access the chip is excluded. These steps are summarised as follows:

1. Create a nonce using the Nonce command.

2. Populate the other 15 slots in the Key Memory with random key values
using the KeyCreate command. Do not process the output of the
command.

5.3.4 Creating an advertisement packet

This is the first step after the system initialisation. The chip needs to create
an advertisement packet that will be broadcasted over Bluetooth, waiting
for a user’s smartphone to receive and accept the packet. The advertisement
packet consists of: packet length value (1 byte), manufacturer identifier (2
bytes), serial number (2 bytes), battery lifetime level (1 byte), and encrypted

CHAPTER 5. NEW SYSTEM 41

data (16 bytes). The encrypted data contains an advertisement nonce gener-
ated by the chip, which is also stored in the User Memory. A data encryption
and a MAC calculation are done using the shared key and a CCM nonce
stored in the chip memory. These steps are summarised as follows:

1. Create a random number using the Random command for using as an
advertisement nonce.

2. Write this nonce into the User Memory using the Write command.

3. Encrypt 16 bytes of data including the advertisement nonce and system
specific data and calculate a MAC using the Encrypt command with
the shared key and a CCM nonce stored in the chip memory.

4. Form an advertisement packet consisting of packet length value (1
byte), manufacturer identifier (2 bytes), serial number (2 bytes), bat-
tery lifetime level (1 byte), and encrypted data (16 bytes).

5.3.5 Operations on the cloud side

The cloud receives an advertisement packet and the user information from the
smartphone over the secure HTTPS channel. First, the cloud server extracts
the packet and checks the user’s access rights. If the user is permitted to
unlock the lock, the cloud server verifies the MAC and decrypts the encrypted
data in the advertisement packet. The shared key and a current CCM nonce
stored in the cloud server database are used for decryption. The cloud server
checks all the data in the decrypted message for correctness. Then the cloud
server generates a random number for a new CCM nonce and constructs a
new opening message, including the validity period when the lock can be
unlocked and the advertisement nonce, received from the chip. This opening
message is encrypted and protected by MAC using the same shared key
and just generated CCM nonce. Then the cloud uses HTTPS channel to
send the encrypted opening message along with the new CCM nonce to the
smartphone. These steps are summarised as follows:

1. The cloud server receives an advertisement packet with encrypted data
and the user information from the smartphone over the HTTPS chan-
nel.

2. The cloud server extracts the packet and checks whether the user has
access rights to the lock.

CHAPTER 5. NEW SYSTEM 42

3. The cloud server verifies the MAC and decrypts the encrypted data
in the advertisement packet using the shared key and the CCM nonce
stored in the server database.

4. The cloud server checks the decrypted data for correctness.

5. The cloud server generates a random number to be used in a new CCM
nonce and stores it in its database.

6. The cloud server creates a new opening message, including the validity
period when the lock can be unlocked and the advertisement nonce,
received in the encrypted data of the advertisement packet.

7. The cloud server encrypts the opening message and calculates a MAC
with the shared key and just generated CCM nonce.

8. The cloud server sends the encrypted data along with the new CCM
nonce to the smartphone over the HTTPS channel.

5.3.6 Unlocking the smart lock

First, the lock receives a timestamp from a smartphone and sends a no-
tification of reception to the phone. After that the smartphone sends the
encrypted opening message and the CCM nonce that it got from the cloud
server. The chip verifies the MAC and decrypts the opening message using
the shared key and received new CCM nonce. The chip checks whether the
advertisement nonce in the decrypted message matches the advertisement
nonce originally created by the chip and stored in the User Memory. Then
the chip checks if the received timestamp fits in the unlocking validity period
defined by the cloud server and stored in the message. If all the checks are
successful, the lock sends a notification to the smartphone and unlocks for a
certain time. These steps are summarised as follows:

1. The smartphone sends a timestamp to the lock controller.

2. The lock controller sends a reception notification to the smartphone.

3. The smartphone sends the encrypted opening message, also including
the CCM nonce to the lock controller.

4. The chip verifies the MAC and decrypts the opening message with the
shared key and received CCM nonce using the Decrypt command.

CHAPTER 5. NEW SYSTEM 43

5. The chip compares the advertisement nonce received in the opening
message with the advertisement nonce stored in the User Memory.

6. The chip checks whether the timestamp value is in between Opening-
Time and OpeningTime+OpeningDuration, where OpeningTime is the
time value when the lock can be unlocked and OpeningDuration is the
duration of the opening window. Both values are provided by the cloud
server in the opening message.

7. The lock controller sends a notification of acceptance to the smart-
phone.

8. The smart lock is unlocked.

Chapter 6

Evaluation

6.1 System parts comparison

This chapter will compare the existing system described in Chapter 3 with
the proposed one described in Chapter 5 from the security point of view.
We will point out and discuss the similarities and differences and also later
discuss how the systems react on some well-known attacks. In this chapter
we will refer to the two compared systems as the “existing system” and the
“new system”. We start with comparing parts of the systems with each other
in the following sections.

6.1.1 EEPROM chips

The existing system uses Microchip 25A512 EEPROM, and the new system
exploits the Atmel AES132A device. The former EEPROM chip has much
larger storing capacity: 512Kb as compared to 32Kb of the latter one. How-
ever, the Smart Lock Access Control System does not require much space to
store data on the lock side, since it is the cloud that stores all the log and
other information. The EEPROM chip just needs to store the shared key
and the nonce values.

The Atmel chip is much better protected physically. As described in Sec-
tion 4.3, it has many features providing hardware security of the chip. Some
examples of these features include an active shield covering the entire chip
(while usually only parts of the chips are protected this way), detectors for
voltage, temperature, light or frequency tampering, and internal memory en-
cryption. The Microchip EEPROM provides much fewer features for physical
chip protection.

Some other important characteristics of the EEPROMs (writing endurance,
data retention, supported temperature range) are similar in both chips.

44

CHAPTER 6. EVALUATION 45

6.1.2 Storage security

As discussed in the previous chapters, storage security is an obvious advan-
tage of the new system. The Atmel AES132A chip provides 16 secure storage
slots for the secret keys, which can not be read under any circumstances (see
Section 4.2.2). The existing system suffers from the possibility of an attacker
extracting the key values from the chip, while the new system excludes this
scenario.

The Atmel chip also has much better flexibility in configuring the access
rights to different memory slots of the chip. For example, a memory slot
in the User Memory can be set in a way that reading/writing data requires
prior authentication and/or decryption/encryption with the specified key.
The user can apply different access rights configurations for each of the 16
zones in the User Memory. The Microchip EEPROM lacks such flexibility.

6.1.3 Encryption

Both the existing and the new systems use AES encryption with 128-bit
keys. The difference is in different modes of operation: the existing sys-
tem uses CBC mode while the new one uses CCM mode (see Sections 3.2.1
and 4.4). Both are recommended by NIST [24]. The CCM mode is essentially
a Counter mode with added authentication. The Atmel chip using the CCM
mode does not allow to output a message without MAC and to decrypt a
message without verifying MAC first.

6.1.4 Authentication and message integrity

As described above, due to the CCM mode the new system provides au-
thentication and ensures the message integrity. In the existing system au-
thentication is based on the fact that only the chip and the cloud share the
secret key, and also on the advertisement nonce included in the encrypted
message passed from the lock to the cloud and back. The cloud does not
know whether the message received is coming from the chip or not – it can
be, for example, an older message sent by an attacker. In the new system
the attached MAC and nonce used during its computation ensure that the
message is indeed created by the chip and it has not been tampered with
during the data transmission.

CHAPTER 6. EVALUATION 46

6.1.5 Lock-smartphone data transmission channel

Both systems use Bluetooth without security for transmitting the data from
the chip to a smartphone and back. No changes have been made and Blue-
tooth security is not proposed for use (see Section 3.3). The reason for not
using this possibility is that the security of the system is based on AES-CCM
encryption with the shared key only known by the chip and the cloud server.
Therefore, providing additional security in the channel is not necessary for
data security. However, this may lead to BLE channel authentication failure,
see Section 6.2.4.

6.1.6 Smartphone-cloud data transmission channel

Both systems use protected HTTPS channel for exchanging the data between
the smartphone and the cloud server. No changes were made in this part
of the system. The main purpose of using HTTPS is to prevent possible
impersonation of the legitimate smartphone by an attacker, and it keeps on
being the same in the new system. This attack is described in detail in
Section 6.2.1.

6.2 Attack resistance

This section will describe some common attacks and discuss how well the
existing system and the new system resist these attacks. The common attacks
we will be discussing are the Passive Eavesdropping attack, the Man-in-
the-Middle (MitM) attack, the Replay attack, and some generic attacks on
proximity channels.

6.2.1 Passive eavesdropping attack

The passive eavesdropping attack is very common and simple to perform.
When two parties exchange messages between each other, an attacker is
situated between them and observes all the messages. However, the attacker
does not change existing messages or create new ones; instead she just makes
use of the observed data.

In the case of the Smart Lock Access Control System, this attack might
be used to steal the user credentials of the legitimate user. In this scenario,
an attacker is located between a smartphone and the cloud server (see Fig-
ure 6.1).

CHAPTER 6. EVALUATION 47

Figure 6.1: Passive eavesdropping attack: adversary between a smartphone
and the cloud

The attacker aims to steal the user credentials sent from the smartphone
to the cloud along with the encrypted advertisement packet in order to re-use
it for herself the next time.

The countermeasure used in both the existing system and the new sys-
tem for preventing such attacks is HTTPS connection. When the smartphone
receives an advertisement packet from the lock, it uses secure HTTPS con-
nection to forward the packet along with the user credentials to the cloud
server. The attacker will not be able to steal the user credentials.

If the attacker is located between the lock and a smartphone and observes
the messages sent over the Bluetooth channel, she will not receive any useful
information either. All the packets sent there are encrypted by AES, and the
attacker cannot decrypt them since the key is shared only between the cloud
server and the lock.

Thus, both the existing system and the new system are secure from the
eavesdropping attack.

6.2.2 Man-in-the-Middle attack

This is one of the most common attacks in communication protocols. In the
attack, an attacker is situated in between two communicating parties and
impersonates one or both of them. Unlike the previously discussed Passive
Eavesdropping attack, in this case the attacker is active: she does not only
observe the messages but can also change them or create new ones.

CHAPTER 6. EVALUATION 48

In this scenario an adversary is in between the lock and a smartphone.
She impersonates the lock to the smartphone and vice versa (see Figure 6.2).
We assume that the adversary is able to intercept and change all the messages
sent from the lock to the smartphone and back.

Figure 6.2: Man-in-the-Middle attack: active adversary between the lock and
a smartphone

In both the existing system and the new system, an adversary cannot
form an advertisement packet herself, because she needs to know the secret
key. Replacing an original advertisement packet with something else will lead
to decryption failure and rejection of the packet by the cloud server.

Imagine the situation when an adversary impersonates the lock for getting
an opening message from the cloud. In the existing system she will receive
only encrypted data, while in the new system it is received along with a
MAC and a CCM nonce in clear. In both cases, this data does not help the
attacker: she cannot decrypt the opening message due to lack of the secret
key and the knowledge of a CCM nonce does not help her achieve anything:
the nonces are different for each opening message and they do not have to be
secret in principle. Replacing an original opening message with something
else will lead to decryption failure and rejection of the message by the chip.

The adversary might want to corrupt a CCM nonce sent in clear in the
new system. For example, she replaces it with a previously used one, in order
to collect more advertisement packet ciphertexts encrypted using the same
key and CCM nonce (see Section 6.2.3). The chip will fail to decrypt the
opening message with the corrupted CCM nonce. The chip then will need a
CCM nonce to encrypt the next advertisement packet. In this case the chip
will use the previous “successful” CCM nonce stored in the User Memory.

CHAPTER 6. EVALUATION 49

The first attempt of the cloud server to decrypt this advertisement packet
using the CCM nonce later corrupted by the adversary will fail. However, the
backup CCM nonce is also stored in the cloud server database, so the server
will be able to decrypt this advertisement packet from the second attempt.
The cloud server then knows that the last CCM nonce was corrupted and
will not save it in its database as a new backup CCM nonce.

The attacker may still collect more advertisement packet ciphertexts en-
crypted using the same key and CCM nonce (for example, for a future Replay
attack), if she keeps on corrupting the CCM nonce. Then the chip will be
forced to always fall back to the same backup nonce stored in its memory.
However, in order to achieve this the attacker needs to wait for legitimate
users trying to open the door a significant number of times in a row. The at-
tacker needs to keep on collecting pairs of advertisement packets and opening
messages until a collision of advertisement nonces occurs. Using a birthday
paradox, we can compute that in order to achieve a collision probability of
50%, the attacker needs to collect 77164 pairs of packets. Obviously, this
is not reachable in practice, because the attacker has to keep on corrupting
CCM nonces: after one successful door opening a CCM nonce will be up-
dated and the adversary will have to start collecting data from the beginning.
The door not opening many times in a row (i.e., the lock not working) will
cause suspicion from the legitimate users and lead to replacement or fixing
of the lock.

The same result will be achieved when an adversary is located between the
cloud server and a smartphone. The adversary cannot reach the data in both
the existing and new systems due to the use of HTTPS channel. Corrupting
an advertisement packet leads to its rejection by the cloud. Correspondingly,
corrupting an opening message will result in the lock rejecting it later on.
Changing a CCM nonce sent from the cloud server will be rejected by the
system similarly as the previous scenario.

We can conclude that both the existing system and the new system would
resist the Man-in-the-Middle attacks.

6.2.3 Replay attack

A Replay attack is based on recording the messages sent by legitimate parties
to each other in order to re-use them later.

Imagine that an adversary intercepted a message sent from the lock to
the cloud server, recorded it and wants to re-use it later. In the existing
system the cloud server will not notice that due to the lack of authentication.
The cloud server will decrypt the message, check the data inside (this will
obviously be correct because it has been approved before). The server does

CHAPTER 6. EVALUATION 50

not store previously used advertisement nonces, so it will not notice that
the advertisement nonce is being re-used. It will send the opening message
back to the lock. However, the chip will not accept this message because the
advertisement nonce inside the message has already expired and does not
match the one currently stored in the EEPROM.

The new system will also resist this attack but at an earlier stage. Since
the messages sent from the lock are encrypted using a CCM nonce generated
by the cloud server on the previous step, the cloud server will not accept
such message due to MAC verification and decryption failure. The adversary
cannot re-encrypt the message with a current CCM nonce because she does
not know the shared key needed for this.

Another possibility for the adversary is to re-use an opening message
sent from the cloud server to the lock. To avoid timestamp check failure, she
sends along a “correct” timestamp recorded during the legitimate unlocking
operation. This attack will be resisted by both systems for the same reason:
the advertisement nonce inside the encrypted message will not match the one
stored in the chip memory.

As in the case of the MitM attack, an adversary might start collecting
pairs of advertisement packets and respective opening messages, waiting to
get a collision of both the advertisement nonce and the CCM nonce. However,
this will require 2.17 · 1019 records to reach the collision probability of 50%.
Obviously, this is way beyond the number of openings during the Smart Lock
lifetime.

Concluding, both systems successfully resist the replay attack. However,
the new system does it at an earlier stage, thus saving time and resources.

6.2.4 Channel hijacking and mafia fraud

For completeness, we describe some generic attacks which apply to most
systems that use proximity to provide security.

The first such attack is hijacking the Bluetooth channel. An attacker
stops an opening message sent from a smartphone to the lock and re-uses
it later when the legitimate user has gone away. The system cannot resist
such an attack. The recommendations for preventing it might include initial
instructing of the users to not go away from the door if it does not open
but contact administrators of the system instead. Also, another means of
physical security may be used, such as guards or security cameras.

Another type of attack is an insider attack, which means that among the
legitimate users there is one who is willing to help an attacker to open the
lock.

CHAPTER 6. EVALUATION 51

In such a scenario, the legitimate user can be far away and is able to
prove that his phone was not in the proximity of the lock at the time when
the fraudulent opening of the lock happened. The legitimate user provides
his user credentials, including the secret information, to the attacker. The
attacker uses this to convince the cloud server that she has access rights to
unlock the smart lock. The cloud server will send an opening message and
the door will be unlocked. The logs of this operation will be stored in the
cloud server database. However, later the legitimate user will be able to
complain, claiming that he was not present at the scene when the door was
opened.

Neither the existing system nor the new system provide a defence strategy
for this kind of attack. Moreover, resisting such attacks is out of scope of this
thesis. One recommendation to avoid possible lawsuits to the manufacturer
might be to include a statement to the license that the manufacturer is not
responsible for fraudulent openings when an attacker gets access to the user’s
smartphone or the user credentials.

Chapter 7

Overview of the Smart Lock Mar-
ket

A few other commercial smart lock solutions are available on the present
market and will be discussed in this chapter. Unfortunately, most of the
manufacturers do not divulge exact information about the cryptography be-
hind their products. We know that usually the locks use AES to encrypt
communication between a lock and a user, but exact schemes of authentica-
tion are mostly not disclosed.

Apart from the general descriptions, some weak points will be listed, along
with examples of successful attacks on the smart locks.

Products of four big companies will be presented in more detail. These
smart locks are August, Kwikset Kevo, Goji, and Lockitron. A few other
products will be mentioned briefly.

7.1 August smart lock

The August smart lock is one of the most popular commercial products of
this type available on the market. It is easy for physical installation: it does
not replace the whole lock but only replaces the thumbturn on the interior
of the door (see Figure 7.1). In order to use it, one needs to download and
register an August smartphone application. This application allows an owner
to issue both permanent keys and temporary keys (for example, for guests).
The system still allows using a normal key to open the door [6].

The same three parties are involved in the system: a smart lock, a user
with a smartphone and a cloud server. The lock communicates with the
smartphone over BLE in Just Works mode, and the smartphone is connected
to the server over HTTPS. The August system uses 128-bit key AES in CBC

52

CHAPTER 7. OVERVIEW OF THE SMART LOCK MARKET 53

Figure 7.1: August smart lock

mode to provide secure communication between a lock and a smartphone.
To establish a session, both the lock and the phone generate a 64-bit long
random number. The procedure is described in Figure 7.2 [3] [11]. Once an
encrypted session is established commands can be issued to the lock.

The main Printed Circuit Board (PCB) of the smart lock includes an
ultra low-power STM32L152 microcontroller, BLE SoC (System on a Chip)
CC2541: the integrated circuit combines microprocessor core and other pe-
ripherals, in this case a Bluetooth transmitter [27], Motor Driver DRV8833,
MCP6142 Operational Amplifier, and Power Amplifier LM4861M for the
speaker. Apart from Bluetooth communication, the CC2541 chip is respon-
sible for encryption and decryption of packets and key management. The
phone connects with the chip over BLE, and then it sends a request to open
the lock to the STM32L152 microcontroller [17].

Each lock can store up to 256 AES encryption keys. The key in slot 0
is the most privileged key: only a session established with this key can fill
in any of the other key slots. This key is shared between the lock and the
August cloud server and it appears to be impossible to change. All the keys
are stored in the CC2541 chip’s flash memory that causes a serious breach
in the system security described in [2]. The design of the August system
allowed all legitimate users to read the flash memory of the chip, including
the key 0. This would allow any user, including a guest, to gain access to
the lock indefinitely.

This attack, presented at the big hacker conference DEF CON in July

CHAPTER 7. OVERVIEW OF THE SMART LOCK MARKET 54

Figure 7.2: August offline session establishment scheme

2016 [11], summarised the main mistakes made by the developers of the
system:

• Mobile application logs include key material

• Lock does not differentiate between guest and owner

• Firmware not signed

• No apparent way to discover backdoor keys

• Guest users can download key material

• Access entry log can be erased by guest users

• Confusing two factor authentication with two step authentication

• No rate limiting of password reset attempts

• Mobile applications include bypass for certificate pinning

CHAPTER 7. OVERVIEW OF THE SMART LOCK MARKET 55

• SecureRandom not used for nonce or session key generation

• Key material not stored on iOS keychain

It was noted though that the following features prevent possible attacks:

• Mobile applications attempt to use certificate pinning

• Protocol makes use of CBC nonces

• Not reliant solely on BLE Just Works security model

The August representatives reacted on the presentation and soon released
the patches covering some of the flaws.

7.2 Kwikset Kevo smart lock

Unlike the August, the Kwikset Kevo smart lock replaces the whole deadbolt.
The lock also hosts a Kwikset Smartkey, a mechanical cylinder that uses a
normal key (see Figure 7.3). The system works as follows: a user has to carry
a key fob or a smartphone with the Kevo application installed. When the
user wants to open the lock, he just needs to touch it [19].

Figure 7.3: Kwikset Kevo smart lock

An owner can distribute three types of electronic keys (eKeys) between
users:

• Anytime eKey: this key will work constantly.

CHAPTER 7. OVERVIEW OF THE SMART LOCK MARKET 56

• Guest eKey: gives 24-hour access rights.

• Scheduled eKey: gives access rights for certain pre-set dates and times.

As well as August, the Kwikset Kevo system does not rely on BLE’s
security protocol. It uses a Public-Key Infrastructure (PKI) system to au-
thenticate users [1]. The company claims that each communication session
between the lock and the user’s smartphone is a unique transaction, which
excludes a possibility of Replay attacks. However, the technical details of
the implementation have not been published.

7.3 Goji smart lock

As Figure 7.4 illustrates, the Goji smart lock replaces the whole deadbolt.
On the exterior side of the door the lock features a digital display and an
integrated camera. The display greets the user by name when opens, and the
camera takes a photo of the user to send it to the owner of the lock. In order
to unlock the smart lock, the users have to have a key fob or an application
from Goji on their smartphones [16].

Figure 7.4: Goji smart lock

The Goji smart lock has Wi-Fi connectivity integrated with BLE, as well
as Near-field Communication (NFC). The Wi-Fi option allows the owner to
command the lock remotely. However, this significantly reduces the lifetime
of a battery.

CHAPTER 7. OVERVIEW OF THE SMART LOCK MARKET 57

7.4 Lockitron

Unlike the previous three systems, the Lockitron does not require any hard-
ware replacement. It fits over the thumbturn on the existing deadbolt, as
shown in Figure 7.5. The smart lock can be unlocked using a smartphone
with an application, remotely via a web application, or even with a text mes-
sage from a usual cellphone. There is a feature called Sense. It will sense a
smartphone getting in close proximity of the lock and unlock automatically.

Figure 7.5: Lockitron smart lock

As well as the Goji system, Lockitron makes use of BLE, Wi-Fi and
NFC. Lockitron works with Electric Imp on the Wi-Fi side and uses indus-
try standard TLS to secure device connections. Sensitive data is encrypted
during storage and transmission. All the traffic sent by the parties in the
Lockitron system is redirected to HTTPS. Web applications accessed by the
public are hardened against XSS, code injections, MitM attacks, and Replay
attacks [20].

7.5 Successful attacks on different smart locks

The conference DEF CON in July 2016, mentioned earlier, also featured
another presentation about smart locks. Anthony Rose and Ben Ramsey
from Merculite Security tested 16 different doorlocks and padlocks based on
BLE [12]. They showed that on 12 of them security was very weak or had
serious flaws.

CHAPTER 7. OVERVIEW OF THE SMART LOCK MARKET 58

Four of the tested smart locks, viz. Quicklock Doorlock, Quicklock Pad-
lock, iBluLock Padlock, and Plantraco PhantomLock, sent plaintext pass-
words in clear. Anyone passively eavesdropping on the communication be-
tween these locks and the users could get the key. In the case of Quicklock
smart locks Rose could even change the admin password, effectively locking
out a legitimate user.

Another four locks, viz. Ceomate Bluetooth Smartlock, Elecycle Smart
Padlock, Vians Bluetooth Smart Doorlock, and Lagute Sciener Smart Door-
lock, were prone to Replay attacks. In some of these systems encryption was
used, but they were not protected against such kind of attacks.

Okidokey Smart Doorlock was broken by changing one byte in its en-
crypted key to 0x00. The lock entered an error state and opened.

Another security flaw noted by the researchers was predictable nonce. An
attacker plays a classic MitM attack, sitting between the lock and a user (see
Figure 7.6). The attacker connects to the lock to receive a nonce. Then she
tries sending a wrong password, rejected by the lock, and contacts the lock
again. The lock replies with a new nonce. Now the attacker knows how the
lock forms the nonces and can predict the next one. She uses a legitimate
user to pass the predicted nonce to the cloud server and receive a valid reply.
Then the attacker contacts the lock again and receives the expected nonce,
on which she already has a valid response. This attack broke the security of
Mesh Motion Bitlock Padlock.

The team could not breach the security of the following four locks: Noke
Padlock, Masterlock Padlock, Kwikset Kevo Doorlock, and August Doorlock.
All these systems have the following features:

• Proper AES encryption

• Truly random 8-16 bytes nonces

• Two-step authentication

• No hardcoded passwords

• Long passwords (16-20 characters) allowed

Another possible attack on Goji and Lockitron smart lock systems is
described in [1]. These smart locks are using Wi-Fi. If the Wi-Fi network
goes down, the smart locks cannot download the latest list of revoked keys
from the server. Then a user with a revoked key can still open the lock.

A similar attack can be played against the August and the Kwikset Kevo
systems. They are not connected to the cloud directly. Then if the owner

CHAPTER 7. OVERVIEW OF THE SMART LOCK MARKET 59

Figure 7.6: MitM attack on the smart lock system

revokes some key via web or the application on the smartphone, the lock will
be updated about the revoke only after interacting with the said key. So,
once the user with the revoked key connects to the lock with the application
open, their key is automatically updated and revoked. However, the user
can still get in if he turns off the connection to the server (for example, by
putting a smartphone to Airplane mode) while Bluetooth is still running.

Chapter 8

Security Advantages of the New
System

Due to very little information being available about the actual functionality
of the competing smart lock systems described in the previous chapter, it
is hard to compare them with the new designed system in detail. But this
chapter will go through the attacks mentioned in Chapter 7 and discuss the
weak spots on an example of the new system.

We start by discussing simple attacks. As mentioned in Section 7.5,
Quicklock Doorlock, Quicklock Padlock, iBluLock Padlock, and Plantraco
PhantomLock are susceptible to a passive eavesdropping attack. As discussed
in Section 6.2.1, the new system is protected from eavesdropping, as data sent
between the parties is encrypted by AES and protected by using an HTTPS
channel. The only data sent in clear are the CCM nonce (along with an
opening message from the cloud to the lock), system data in part of the
advertisement packet, and a timestamp. The CCM nonce does not have to
be secret, and the timestamp is not secret information either. The system
data from the advertisement packet (described in detail in Section 3.2.1) does
not have any secret value and will not help to decrypt any message or weaken
the system security.

Another attack described in the same section broke the security of the
Okidokey Smart Doorlock. The researchers changed one byte in its encrypted
key to 0x00, which caused the smart lock to enter the error state and open.
This is an example of a MitM attack. As discussed in Section 6.2.2, this or
similar attack will not cause the same response in the new system. Changing
bytes in the encrypted messages will cause a decryption failure and lead to
rejection of the packet by the lock or the cloud server.

The Ceomate Bluetooth Smartlock, Elecycle Smart Padlock, Vians Blue-
tooth Smart Doorlock, and Lagute Sciener Smart Doorlock all turned out to

60

CHAPTER 8. SECURITY ADVANTAGES OF THE NEW SYSTEM 61

be vulnerable to Replay attacks. This kind of attack was discussed in detail
in Section 6.2.3. It was concluded that the new system is secure against
Replay attacks.

Predictable nonces were a vulnerability in the Mesh Motion Bitlock Pad-
lock. The attacker could predict the next nonce and use a legitimate user
to get a valid response on it from the cloud server (see Figure 7.6). Both
the CCM nonces and advertisement nonces in the new system are generated
randomly for each new packet, so they are impossible to predict. It is also
worth mentioning that even if the CCM nonces were predictable (for exam-
ple, the cloud server would just increase a value of the previous nonce by
one, instead of generating a new random number), this would not cause a
breach in security of the system. The advertisement nonce encrypted in the
message would not match and the lock would reject the packet.

As stated in Section 7.1 the August smart lock allowed any user to read
all the keys, including the most privileged key in slot 0. The keys in the
August system were stored in the flash memory of the CC2541 chip. This
is not possible in the new system, because the ATAES1232A chip does not
allow anyone to read any data from the Key Memory.

Generally speaking, a strong advantage of the system described in this
work, over most of the other smart locks on the market, is that a user and
the lock do not share any secrets with each other. The user does not play
any role except forwarding messages between the chip and the cloud and
adding his credentials and a timestamp to the messages. For example, once
the owner of the lock revokes the key of the user and it is changed in the
cloud server database, the user is no more able to open the lock, in the way
described in Section 7.5. In that example, the user with the revoked key
could get in by turning the Wi-Fi network down or putting his phone in
Airplane mode. This will not work in the new system, because the user must
interact with the cloud in order to unlock the smart lock. The chip does not
store a list of valid and revoked passwords in its memory. In principle, there
are no passwords that the user has to provide to the lock, he only uses some
secret information to establish an HTTPS channel with the cloud server.

We can conclude that the system described in this work would resist the
attacks that were successful on the other smart locks on the market. The
security of the new system is not weaker but often stronger than that of the
other available smart locks.

Chapter 9

Conclusions

In Section 1.2 the objectives and goals set before the start of the project were
described. Let us see if these goals have been reached in the work.

The existing system has been analysed from the security point of view.
Chapter 3 gives a description of the system and its security analysis, indi-
cating the weaknesses.

The Atmel EEPROM chip has been investigated in Chapter 4. This part
of the work presents the possibilities the chip offers for improving the security
of the system and introduces the details used in the new system.

The main result of this work is the proposed new design for the Smart
Lock Access Control System described in detail in Chapter 5. Two alterna-
tive implementation options arose during the work process. In the chip-based
solution the chip generates the one-time number needed for the confidential-
ity and integrity algorithm, while in the cloud-based solution the cloud is
responsible for this task. They have been thoroughly described and com-
pared in Section 5.2. As the result of this analysis, the cloud-based solution
has been recommended as more efficient and secure.

The system has been evaluated in Chapter 6 by comparing it to the
existing system and has been examined against the other similar products
on the market in Chapter 8.

As follows from the comparison, the new system is more secure than the
existing one. The main advantages are as follows. First, the Atmel chip is
better protected at hardware and software level. Second, the new system
design provides authentication and message integrity. As a consequence, the
new system will resist a Replay attack at an earlier stage and guarantees
much smaller probability of a collision.

Finally, it has been shown that the new system outperforms many existing
smart locks on the market from the security perspective. Chapter 7 showed
that many of the other products are susceptible to simple attacks that the

62

CHAPTER 9. CONCLUSIONS 63

proposed new smart lock system will easily resist.
The proposed system is not perfect and there is room for improvement.

Nevertheless, the work reported in this Master’s thesis is publicly available
and can serve as a basis for the development of next generation smart locks.
Possible improvements might include applying another EEPROM chip in the
system, using more secure user authentication over the HTTPS channel, and
adopting the security features of Bluetooth LE for protecting the short range
communication between the smart phone and the lock.

Bibliography

[1] Are Smart Locks Secure, or Just Dumb?, May 2013. http://gizmodo.

com/are-smart-locks-secure-or-just-dumb-511093690.

[2] August Lock Firmware Keys, Aug 2016. https://jmaxxz.com/blog/?p=

550.

[3] BLE Session, Aug 2016. https://github.com/jmaxxz/keymaker/wiki/

BLE-Session.

[4] Atmel Corporation. From the Sensing Edge Node to the Cloud
- Security, 2015. http://downloads.codico.com/misc/JKO/Codico%

20IoT%20Seminars/ATMEL%20From%20the%20Sensing%20Edge%20Node%

20to%20the%20Cloud%20-%20Security.pdf.

[5] Atmel Corporation. ATAES132A 32K AES Serial EEP-
ROM Specification, Oct 2016. http://www.atmel.com/Images/

Atmel-8914-CryptoAuth-ATAES132A-Datasheet.pdf.

[6] August, Retrieved on 12.12.2016. http://august.com/products/

august-smart-lock/.

[7] Bluetooth Special Interest Group. Simple Pairing Whitepaper,
Aug 2006. http://mclean-linsky.net/joel/cv/Simple%20Pairing_WP_

V10r00.pdf.

[8] Bluetooth Special Interest Group. Specification of the Blue-
tooth System. Core Package Version 4.2, Dec 2014. https://www.

bluetooth.com/specifications/adopted-specifications.

[9] Cherdantseva, Y., and Hilton, J. A Reference Model of Infor-
mation Assurance Security, Sep 2013. http://users.cs.cf.ac.uk/Y.V.
Cherdantseva/RMIAS.pdf.

64

BIBLIOGRAPHY 65

[10] Daemen, J., and Rijmen, V. AES Submission Document on Rijn-
dael. Version 2, Sep 1999. http://csrc.nist.gov/CryptoToolkit/aes/

rijndael/Rijndael.pdf.

[11] DEF CON 24. Backdooring the Frontdoor. Hacking a
“Perfectly Secure” Smart Lock, Aug 2016. https://media.

defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/

DEFCON-24-Jmaxxz-Backdooring-the-Frontdoor-UPDATED.pdf.

[12] DEF CON 24. Picking Bluetooth Low En-
ergy Locks, Jul 2016. https://media.defcon.

org/DEF%20CON%2024/DEF%20CON%2024%20presentations/

DEFCON-24-Rose-Ramsey-Picking-Bluetooth-Low-Energy-Locks.pdf.

[13] Evans, D. The Internet of Things. How the Next Evolution of the
Internet Is Changing Everything, Apr 2011. http://www.cisco.com/c/

dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf.

[14] Ferguson, N., Schneier, B., and Kohno, T. Cryptography Engi-
neering. Design Principles and Practical Applications. John Wiley and
Sons, Mar 2010. page 71.

[15] FIPS Publication 197. Advanced Encryption Standard (AES), Nov
2001. http://csrc.nist.gov/groups/ST/toolkit/block_ciphers.html.

[16] Goji, Retrieved on 12.12.2016. https://www.indiegogo.com/projects/

goji-smart-lock#/.

[17] Goverdovsky, A. August Smart Lock Teardown, Retrieved
on 12.12.2016. https://medium.com/ruki-founder-s-journal/

august-teardown-6274a7858338#.xgaadlbtq.

[18] Joint Test Action Group. 1149.1-2013 - IEEE Standard for Test
Access Port and Boundary-Scan Architecture, 2013. http://standards.
ieee.org/findstds/standard/1149.1-2013.html.

[19] Kwikset, Retrieved on 12.12.2016. http://www.kwikset.com/kevo/.

[20] Lockitron, Retrieved on 12.12.2016. https://lockitron.com/

security.

[21] Microchip Technology Inc. 512 Kbit SPI Bus Serial EEP-
ROM, 2011. http://ww1.microchip.com/downloads/en/DeviceDoc/

22237C.pdf.

BIBLIOGRAPHY 66

[22] Network Working Group. HTTP over TLS, May 2000. https:

//tools.ietf.org/html/rfc2818.

[23] NIST Special Publication 800-27A. Engineering Principles for
Information Technology Security, Jun 2004. http://csrc.nist.gov/

publications/nistpubs/800-27A/SP800-27-RevA.pdf.

[24] NIST Special Publication 800-38A. Recommendation
for Block Cipher Modes of Operation: Methods and Tech-
niques, Dec 2001. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-38a.pdf.

[25] NIST Special Publication 800-38C. Recommendation for Block
Cipher Modes of Operation: The CCM Mode for Authentication
and Confidentiality, May 2004. http://nvlpubs.nist.gov/nistpubs/

Legacy/SP/nistspecialpublication800-38c.pdf.

[26] NIST Special Publication 800-90A. Recommendation for Random
Number Generation Using Deterministic Random Bit Generators, Jun
2015. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.

SP.800-90Ar1.pdf.

[27] Texas Instruments. CC2541 2.4-GHz Bluetooth Low Energy and
Proprietary System-on-Chip, Jun 2013. http://www.ti.com/lit/ds/

symlink/cc2541.pdf.

[28] Ulusoy, C. Android Library Design and Implementation for Smart
Lock Access Control Systems. Master’s thesis, Department of Com-
munications and Networking, Aalto University School of Electri-
cal Engineering, Espoo, Finland, 2015. http://urn.fi/URN:NBN:fi:

aalto-201512165695.

Appendix A

ATAES132A Chip Security Con-
figurations

The tables presented in this Appendix describe all possible configuration
settings in the ATAES132A chip. These settings are applied for the User
Zone, Key, VolatileKey, and Counter registers, mentioned in Section 4.2.3.

A.1 User Zone configuration

Each User Zone Configuration Register has the following configuration set-
tings:

ZoneConfig Field Description
AuthRead Requiring authentication to read data.
AuthWrite Requiring authentication to write data.
EncRead Requiring encryption to read data.
EncWrite Requiring encryption to write data.
WriteMode Defining if the zone is read/write or read-only.
UseSerial Requiring SerialNum to be used in EncWrite oper-

ations.
UseSmall Requiring the first four bytes of the Small Zone to

be used in EncWrite operations.
ReadID Setting KeyID to be used to encrypt the data read

from this zone and generate the MAC.
AuthID Setting KeyID to be used for inbound authentica-

tion before access is permitted.
VolatileTransferOK Permitting key transfer from this user zone to

VolatileKey.

67

APPENDIX A. ATAES132A CHIP SECURITY CONFIGURATIONS 68

ZoneConfig Field Description
WriteID Setting KeyID to be used to decrypt data written

to this zone and to verify the MAC.
ReadOnly Defining if the zone is read/write or read-only. Can

be updated after locking the Configuration Memory
using the Lock command.

Table A.1: User Zone configurations in ATAES132A

A.2 Key configuration

Each Key Configuration Register has the following configuration settings:

KeyConfig Field Description
ExternalCrypto Permitting to use Encrypt and Decrypt commands

with the key.
InboundAuth Permitting to use only the Auth command for In-

bound Only or Mutual Authentication with the key.
Other commands’ usage is prohibited.

RandomNonce Requiring a random Nonce to be used with the com-
mands using the key.

LegacyOK Permitting to use the Legacy command, i.e., to use
AES in ECB mode.

AuthKey Requiring prior authentication using the KeyID
stored in LinkPointer.

Child Permitting to use the KeyCreate or KeyLoad com-
mand with the key.

Parent Permitting the key to be used as the parent when
writing VolatileKey via KeyCreate, KeyImport, or
KeyLoad.

ChangeKeys Permitting the key updates by the EncWrite com-
mand after locking the Key Memory.

CounterLimit Enabling the limits for usage count for the key.
ChildMac Requiring an InMAC to modify the key using the

KeyCreate command.
AuthOut Enabling I2C Auth signalling for the key.
AuthOutHold Defining if the I2C AuthO output state is reset or

unchanged when an authentication reset is executed
using the key.

APPENDIX A. ATAES132A CHIP SECURITY CONFIGURATIONS 69

KeyConfig Field Description
ImportOK Permitting to use the KeyImport command with the

key.
ChildAuth Requiring prior authentication for the KeyCreate

command using the KeyID stored in LinkPointer.
TransferOK Permitting to use the KeyTransfer command with

the key.
AuthCompute Permitting to use the AuthCompute command with

the key.
LinkPointer Setting KeyID to be used as the Parent Key (for

child keys) or as the authorising key.
CounterNum Storing the CntID of the Monotonic Counter at-

tached to the key for usage limits or for MAC cal-
culation.

DecRead Permitting to use the DecRead and WriteCompute

command with the key.
Table A.2: Key configurations ATAES132A

A.3 VolatileKey configuration

There is also a seventeenth key register, named VolatileKey. It is used as
a temporary session key, which is stored in SRAM. VolatileKey also has a
Configuration Register. This register has the following configuration settings:

VolConfig Field Description
AuthOK Permitting to use the Auth command with the key.
EncryptOK Permitting to use the Encrypt command with the

key and requiring prior authentication.
DecryptOK Permitting to use the Decrypt command with the

key.
RandomNonce Requiring a random Nonce to be used with the com-

mands using the key.
AuthCompute Permitting to use the AuthCompute command with

the key.
LegacyOK Permitting to use the Legacy command with the

key, i.e., to use AES in ECB mode.
WriteCompute Permitting to use the WriteCompute command with

the key.

APPENDIX A. ATAES132A CHIP SECURITY CONFIGURATIONS 70

VolConfig Field Description
DecRead Permitting to use the DecRead command with the

key.
Table A.3: Volatile Key configurations in ATAES132A

A.4 Counter registers configuration

The CounterConfig registers put restrictions on using Counters. Each Counter
can increment up to 2,097,134 using the Counter command, and they cannot
be changed afterwards, neither they can decrement. The Counters are used
to prevent exhaustive key search attacks. The CounterConfig register has
the following configuration settings:

CountConfig Field Description
IncrementOK Permitting to use the Counter command for incre-

ments with the key.
RequireMAC Requiring an input MAC for increment operations.
IncrID Setting KeyID to be used to generate an input MAC

for Counter command increment operations.
MacID Setting KeyID to be used to generate an output

MAC for textttCounter command Counter read op-
erations.

Table A.4: Counter register configurations in
ATAES132A

Appendix B

ATAES132A Chip Commands

As noted in Section 4.5, the ATAES132A chip has 24 specific cryptographic
commands, apart from standard EEPROM Write and Read. Table B.1 [5]
gives a short description of every command.

Command Description
Auth Performs one-way or mutual authentication using the

specified key.
AuthCheck Checks the output MAC generated by the Auth com-

mand or by reading a counter using the Counter com-
mand on a second ATAES132A device.

AuthCompute Computes the input MAC required to execute the Auth
command or to increment a counter using the Counter
command on a second ATAES132A device.

BlockRead Reads 1 to 32 bytes of data from User Memory or the
Configuration Memory. Returns cleartext data.

Counter Increments a high endurance Counter and/or returns
the counter value.

Crunch Processes a seed value through the internal crunch en-
gine. This function is used to detect clones.

DecRead Checks the output MAC and decrypts data that was
encrypted by the EncRead command.

Decrypt Decrypts 16 or 32 bytes of data provided by the Host
after verifying the integrity MAC.

EncRead Encrypts 1 to 32 bytes of data from User Memory and
returns the encrypted data and integrity MAC.

Encrypt Encrypts 16 or 32 bytes of plaintext data provided by
the Host.

71

APPENDIX B. ATAES132A CHIP COMMANDS 72

Command Description
EncWrite Writes 1 to 32 bytes of encrypted data into the User

Memory or Key Memory after verifying the integrity
MAC.

Info Returns device information: MacCount, Authentication
status, or hardware revision code.

KeyCreate Generates a random number, stores it in Key Memory,
and returns the encrypted key to the host.

KeyImport Decrypts and writes a key that was output by the Key-
Create command.

KeyLoad Writes an encrypted key to Key Memory after verifying
the integrity MAC.

KeyTransfer Transfers a key from User Memory into the Key Memory
or into the VolatileKey Register.

Legacy Performs a single AES-ECB mode operation on 16 bytes
of data provided by the Host.

Lock Permanently locks the Configuration Memory or Key
Memory. Locked memory can never be unlocked.

Nonce Generates a 128-bit Nonce from the internal RNG for
use by the cryptographic commands. This command
can also be used to write a Host Nonce directly into the
Nonce Register.

NonceCompute Generates a Nonce in a manner that allows two
ATAES132A devices to have identical Nonce values.

Random Returns a 128-bit random number from the internal
RNG.

Reset Resets the device, clearing the cryptographic status.
Sleep Places the device in the Sleep state or Standby state to

reduce power consumption.
WriteCompute Encrypts data and generates the input MAC required

to execute the EncWrite command.
Table B.1: Commands embedded in ATAES132A

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives and scope
	1.3 Author's contribution
	1.4 Structure of the thesis

	2 Security Requirements
	2.1 Confidentiality
	2.2 Integrity
	2.3 Authenticity
	2.4 Security of the key management

	3 Existing System
	3.1 Overall picture of the system
	3.2 Current security
	3.2.1 Message encryption
	3.2.2 Bluetooth channel
	3.2.3 Internet channel

	3.3 Security analysis

	4 The Atmel AES132A Chip
	4.1 Introduction
	4.2 Components of the EEPROM
	4.2.1 User Memory
	4.2.2 Key Memory
	4.2.3 Configuration Memory
	4.2.4 SRAM Memory

	4.3 Physical security
	4.4 Advanced Encryption Standard
	4.5 Commands
	4.5.1 Read command
	4.5.2 Write command
	4.5.3 BlockRead command
	4.5.4 Decrypt command
	4.5.5 Encrypt command
	4.5.6 KeyCreate command
	4.5.7 Lock command
	4.5.8 Nonce command
	4.5.9 Random command

	5 New System
	5.1 Introduction of security to the system
	5.2 Implementation options
	5.2.1 Chip-based solution
	5.2.2 Cloud-based solution
	5.2.3 Analysis of the proposed solutions

	5.3 Implementation
	5.3.1 Key sharing
	5.3.2 Chip configuration and locking
	5.3.3 Populating the Key Memory
	5.3.4 Creating an advertisement packet
	5.3.5 Operations on the cloud side
	5.3.6 Unlocking the smart lock

	6 Evaluation
	6.1 System parts comparison
	6.1.1 EEPROM chips
	6.1.2 Storage security
	6.1.3 Encryption
	6.1.4 Authentication and message integrity
	6.1.5 Lock-smartphone data transmission channel
	6.1.6 Smartphone-cloud data transmission channel

	6.2 Attack resistance
	6.2.1 Passive eavesdropping attack
	6.2.2 Man-in-the-Middle attack
	6.2.3 Replay attack
	6.2.4 Channel hijacking and mafia fraud

	7 Overview of the Smart Lock Market
	7.1 August smart lock
	7.2 Kwikset Kevo smart lock
	7.3 Goji smart lock
	7.4 Lockitron
	7.5 Successful attacks on different smart locks

	8 Security Advantages of the New System
	9 Conclusions
	A ATAES132A Chip Security Configurations
	A.1 User Zone configuration
	A.2 Key configuration
	A.3 VolatileKey configuration
	A.4 Counter registers configuration

	B ATAES132A Chip Commands

