
Aalto University

School of Science

Degree Programme in Life Science Techonologies

Inka Saarinen

Adaptive real-time anomaly detection
for multi-dimensional streaming data

Master’s Thesis
Espoo, February 22, 2017

Supervisor: Professor Samuel Kaski
Advisor: Yrjö Häme D.Sc. (Tech.)

Timo Similä D.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80723902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme in Life Science Techonologies

ABSTRACT OF
MASTER’S THESIS

Author: Inka Saarinen

Title:
Adaptive real-time anomaly detection for multi-dimensional streaming data

Date: February 22, 2017 Pages: vi + 85

Major: Bioinformatics

Supervisor: Professor Samuel Kaski

Advisor: Yrjö Häme D.Sc. (Tech.)
Timo Similä D.Sc. (Tech.)

Data volumes are growing at a high speed as data emerges from millions of devices.
This brings an increasing need for streaming analytics, processing and analysing
the data in a record-by-record manner.

In this work a comprehensive literature review on streaming analytics is pre-
sented, focusing on detecting anomalous behaviour. Challenges and approaches
for streaming analytics are discussed. Different ways of determining and identi-
fying anomalies are shown and a large number of anomaly detection methods for
streaming data are presented. Also, existing software platforms and solutions for
streaming analytics are presented.

Based on the literature survey I chose one method for further investigation,
namely Lightweight on-line detector of anomalies (LODA). LODA is designed
to detect anomalies in real time from even high-dimensional data. In addition, it
is an adaptive method and updates the model on-line.

LODA was tested both on synthetic and real data sets. This work shows how to
define the parameters used with LODA. I present a couple of improvement ideas
to LODA and show that three of them bring important benefits. First, I show a
simple addition to handle special cases such that it allows computing an anomaly
score for all data points. Second, I show cases where LODA fails due to lack of
data preprocessing. I suggest preprocessing schemes for streaming data and show
that using them improves the results significantly, and they require only a small
subset of the data for determining preprocessing parameters. Third, since LODA
only gives anomaly scores, I suggest thresholding techniques to define anomalies.
This work shows that the suggested techniques work fairly well compared to the-
oretical best performance. This makes it possible to use LODA in real streaming
analytics situations.

Keywords: anomaly detection, machine learning, on-line learning,
streaming analytics

Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu
Life Science Technologies -koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Inka Saarinen

Työn nimi:
Mukautuva moniulotteisten poikkeavuuksien tunnistaminen reaaliaikaisesti

Päiväys: 22. helmikuuta 2017 Sivumäärä: vi + 85

Pääaine: Bioinformatiikka

Valvoja: Professori Samuel Kaski

Ohjaaja: Tekniikan tohtori Yrjö Häme
Tekniikan tohtori Timo Similä

Datan määrä kasvaa kovaa vauhtia miljoonien laitteiden tuottaessa dataa. Tämä
luo kasvavan tarpeen datan prosessoinnille ja analysoinnille reaaliaikaisesti.

Tässä työssä esitetään kattava kirjallisuuskatsaus reaaliaikaisesta analytiikasta
keskittyen anomalioiden tunnistukseen. Työssä pohditaan reaaliaikaiseen analy-
tiikkaan liittyviä haasteita ja lähestymistapoja. Työssä näytetään erilaisia ta-
poja määrittää ja tunnistaa anomalioita sekä esitetään iso joukko menetelmiä
reaaliaikaiseen anomalioiden tunnistukseen. Työssä esitetään myös reaaliaika-
analytiikkaan tarkoitettuja ohjelmistoalustoja ja -ratkaisuja.

Kirjallisuuskatsauksen perusteella työssä on valittu yksi menetelmä lähempään
tutkimukseen, nimeltään Lightweight on-line detector of anomalies (LODA). LO-
DA on suunniteltu tunnistamaan anomalioita reaaliaikaisesti jopa korkeaulottei-
sesta datasta. Lisäksi se on adaptiivinen menetelmä ja päivittää mallia reaaliai-
kaisesti.

Työssä testattiin LODAa sekä synteettisellä että oikealla datalla. Työssä
näytetään, miten LODAa käytettäessä kannattaa valita mallin parametrit.
Työssä esitetään muutama kehitysehdotus LODAlle ja näytetään kolmen kehity-
sehdotuksen merkittävä hyöty. Ensinnäkin, näytetään erikoistapauksia varten yk-
sinkertainen lisäys, joka mahdollistaa anomaliapisteytyksen laskemisen jokaiselle
datapisteelle. Toiseksi, työssä näytetään tapauksia, joissa LODA epäonnistuu,
kun dataa ei ole esikäsitelty. Työssä ehdotetaan reaaliaikaisesti prosessoitaval-
le datalle soveltuvia esikäsittelymenetelmiä ja osoitetaan, että niiden käyttö
parantaa tuloksia merkittävästi, samalla käyttäen vain pientä osaa datasta
esikäsittelyparametrien määrittämiseen. Kolmanneksi, koska LODA antaa da-
tapisteille vain anomaliapisteytyksen, työssä on ehdotettu, miten sopivat raja-
arvot anomalioiden tunnistukseen voitaisiin määrittää. Työssä on osoitettu,
että nämä ehdotukset toimivat melko hyvin verrattuna teoreettisesti parhaaseen
mahdolliseen tulokseen. Tämä mahdollistaa LODAn käytön oikeissa reaaliaika-
analytiikkatapauksissa.

Asiasanat: anomalioiden tunnistus, koneoppiminen, reaaliaikainen analy-
tiikka, reaaliaikainen oppiminen

Kieli: Englanti

iii

Acknowledgements

I wish to thank my instructors Yrjö Häme and Timo Similä for their guidance
and support. They were of great help especially in the first half of this
process when the scope and direction of the work were still under design and
evolving. In addition, they have given feedback and guided me in the right
direction throughout the process. I thank my supervisor Samuel Kaski for
valuable feedback on how to convey the main messages of the thesis. I thank
Comptel Corporation for the facilities and resources that have enabled this
work. Finally, I thank my co-workers, friends and family for supporting me
throughout this journey.

Espoo, February 22, 2017

Inka Saarinen

iv

Contents

1 Introduction 1

2 Background 6
2.1 Streaming analytics in general 6
2.2 Time series . 8
2.3 Data reduction . 9
2.4 Anomaly detection . 10
2.5 Concept drift . 14
2.6 Distributed settings . 16

3 Methods 17
3.1 Available software platforms and solutions 17

3.1.1 General development platforms 17
3.1.2 More developed platforms with no modelling included . 19
3.1.3 Platforms including modelling 20
3.1.4 Summary . 23

3.2 Anomaly detection for streaming data 23
3.2.1 Density-based methods 24
3.2.2 Distance-based methods 26
3.2.3 Methods using time series prediction 27
3.2.4 Methods using support vector machines 28
3.2.5 Regression-based methods 29
3.2.6 Clustering-based methods 31
3.2.7 Tree-based methods . 32
3.2.8 Projection-based methods 33
3.2.9 Other . 34
3.2.10 Summary . 35

3.3 Lightweight on-line detector of anomalies 36
3.3.1 Histogram construction 36
3.3.2 Missing values and determining anomalous features . . 37
3.3.3 Drawbacks and improvement ideas to LODA 38

v

4 Data sets 41
4.1 Synthetic data sets . 41
4.2 Publicly available data sets . 42

5 Experiments 44
5.1 Performance measures . 44
5.2 Experiments on synthetic data sets 45

5.2.1 Zero probability replacement 45
5.2.2 Parameter settings . 45
5.2.3 Concept drift . 49
5.2.4 Normalization . 50
5.2.5 Scoring . 53

5.3 Experiments on real data sets 55
5.3.1 KDD cup 99 data set 55
5.3.2 Other real data sets . 59

6 Discussion and conclusions 61

vi

Chapter 1

Introduction

Large amounts of data are generated constantly around the globe. For in-
stance, in 2011, 1.8 zetabytes of data were generated in just two days, the
expected number of RFID tags in 2021 is 209 billion and Facebook generates
hundreds of terabytes of log and image data daily [47, 71]. There is a growing
need and interest to take advantage of that data and turn it into information
that can provide new business opportunities and value. Thus, there is a need
for techniques that can process and analyse large amounts of data.

Streaming analytics means processing and analysing high-volume data
in real-time or near-real-time. Traditional analytics and machine learning
methods are designed to be run in batch mode: the model is trained with a
finite amount, a batch, of data [58]. Making predictions on new data points
using the trained model is often fast and can be applied either on a batch of
data or on single data points one at a time. This allows making predictions
in streaming mode, that is, the data can arrive constantly from different
sources and predictions are made on each source independently based on the
trained model.

If the incoming data distribution changes over time, a model learned in
batch mode does not remain accurate. Then there is a need to do model
training also on-line. This is referred to as on-line learning or incremental
learning. The model is adaptive as it is updated constantly as data arrives.
Sometimes it would be sufficient to learn a new model on a new batch of
data at regular time intervals but the adaptation is not fast enough in all
cases and retraining the model requires time and space. Streaming and batch
processing can also be combined in a lambda architecture, which can be used
to answer queries on big historical data with some delay and smaller amount
of recent data faster [14]. Table 1.1 shows use cases for batch and on-line
model learning and applying.

Streaming analytics has many applications. Malicious web-usage can be

1

CHAPTER 1. INTRODUCTION 2

Table 1.1: Use cases of batch and on-line learning and applying

Batch applying On-line applying
Batch
learning

No real-time processing
needed, all the data can be
stored

Real-time prediction needed,
data distribution does not
change significantly between
model trainings

On-line
learning

Data distribution changes over
time or only recent values are
interesting but prediction de-
pends also on some future val-
ues or predictions are needed
only periodically

Real-time prediction needed
and data distribution may
change over time

identified and blocked by fraud detection [12, 61]. Social network analytics
recognizes trends from users’ activities in social media [65] and popular news
topics can be identified [73]. Energy usage can be analyzed to gain energy
cost savings for households [65] or energy suppliers can adjust their energy
generation [61] or energy companies can decide when to sell or buy energy
[56]. The same applies for water and gas consumption [56].

Processing and analysing streaming data requires both a suitable platform
and good methods. The platform should allow for scalable, often distributed
computing and handle data coming from different sources, as well as transfer
and store the data with high speed. The methods should turn the data in
the system into meaningful information and actions. There are two main
issues concerning streaming data processing and analytics: space and time.
When the amount of data is huge, it limits the possibilities of storing the
data. Usually it is not possible to store all the data but only a relatively
small subset.

Analysing streaming data should be near-real-time and the time spent
on a single event needs to be minimal. The methods need to adapt to high
throughput of the data such that they keep updating in the same speed as
data arrives, otherwise an increasing backlog of data that waits for processing
and analysis is formed. This often means that only main memory can be used,
disk accesses would be too slow [38]. The methods need to be one-pass, that
is, they are only allowed one look at each element in the data because the
data is not stored in memory after being processed [38, 61].

In streaming analytics there is often a trade-off between time, space and
accuracy [61]. Using more space often allows for faster processing. Sometimes
it might be required that accuracy is high and exact algorithms are needed

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Options for streaming analytics methods

• Batch learning vs. on-line learning

• Batch applying vs. on-line applying

• Exact vs. approximate

• Centralized vs. decentralized

• Historical data used vs. only recent data used

but often the requirements can be relaxed and approximate algorithms used
to gain in using less space and processing time [38, 57, 65]. There are two ways
to decrease accuracy: approximation and randomization. Approximation
refers to having a small error bound and randomization refers to a small
probability that the result is incorrect [57]. These can be combined to obtain
an algorithm that provides with a high probability a result that has a small
error. Raghavan [87] presents comparison of memory usage for exact and
approximate algorithms on streaming data.

Heintz et al. [65] discuss how systems may have different requirements
at different situations. For some cases, the queries may need to be processed
fast, whereas in some other cases slower processing is sufficient. The same
applies to accuracy. Sometimes there are large amounts of data, sometimes
only small. Whether computation should be done in a centralized or non-
centralized manner depends on the conditions. Since the conditions may
vary over time and situation, designing the system is not easy. Some use
cases require historical data, whereas some only recent data. Figure 1.1
summarizes different options of streaming analytics methods.

Gaber et al. [55] and Gama et al. [58] state that real-time models still
lack good evaluation measures. Cross-validation for instance is non-feasible
for streaming data due to the requirement that every element is only seen
once. This also affects parameter tuning since it is not possible to use cross-
validation or similar techniques to choose optimal parameters [75].

Krempl et al. [75] state that there are no good preprocessing methods
for streaming data. For instance, zero-mean unit-variance normalization is
difficult since data is constantly arriving. They also state that missing value
handling is lacking for streaming data. Some of the data labels might also
come with a delay and are thus not available to correct predictions or there
is no recent data available for predictions.

CHAPTER 1. INTRODUCTION 4

Streaming data generated by devices often constructs one or several time
series. Time series data contains a time stamp and a value and the temporal
behaviour of the value is of interest. Time series analysis can be for instance
tracking variables and their change over time. One application of time series
analysis is anomaly detection, detection of unexpected or atypical behaviour.
Detecting anomalies can then trigger alerts or certain actions. Anomaly
detection performed in streaming mode on time series data allows to react
fast to changes and odd behaviour.

Application areas of anomaly detection include fraud detection in credit
card usage or insurance, intrusion detection or detecting novelties in surveil-
lance images [45, 68]. Anomaly detection can also be used to identify floods
from environmental sensor data or anomalous change in flight height or angle
[64]. There are applications in the area of smart home or healthcare, for in-
stance identifying that a person has turned on bath water but has not turned
it off before going to bed or detecting diseases or other medical conditions
[64]. In finance, anomalies in share prices or other market events can indicate
buying or selling opportunities [68]. Some of these require very fast reactions
and therefore there is a need for real-time anomaly detection methods.

In addition to containing exceptional values or patterns, the data distri-
bution may change over time. This is called concept drift [60]. Detecting
and adapting to concept drift is important in order to maintain accurate
models. Gama et al. [60] present some applications where concept drift oc-
curs. The first is predicting mass flow in an industrial boiler. Prediction
improves operation and control of the boiler. Fuel feeding is manual and
thus unstable and can result in concept drift. Another example is that wind
power production and usage can be better predicted when taking concept
drift into account instead of using a stationary model. Also recommendation
systems should take concept drift into account. The users’ interests may
change over time but also depend on the context or have seasonal patterns.
The methods should adapt to these kinds of shifts. Adaptive methods are
useful also in self-driving cars where the concept drift can indicate change in
the environment.

In this thesis challenges and approaches for streaming analytics are dis-
cussed. A literature survey on streaming analytics is presented, focusing on
detecting anomalous behaviour, and commercially available software solu-
tions for streaming analytics are presented. Test results on both synthetic
and real anomaly detection data are shown for one real-time anomaly detec-
tion method. The thesis is structured as follows. In section 2, background
on streaming analytics, time series analysis and anomaly detection is pre-
sented. In section 3, methods for streaming anomaly detection as well as
available commercial solutions are presented. Also, the method chosen for

CHAPTER 1. INTRODUCTION 5

further investigation is discussed in more detail in section 3. In section 4,
the synthetic and real data sets used for the experiments are presented. In
section 5, experiments and their results are discussed and in section 6 the
work is concluded by discussing its impact and future directions.

Chapter 2

Background

2.1 Streaming analytics in general

Importance of streaming has increased in the past years with exponential
growth in the amount of produced data and new application fields. However,
streaming analytics is not a new field but has existed for decades. For in-
stance, Page [83] presented a method for detecting change of distribution in
1954, Flajolet and Martin [53] presented a method for approximating count
of distinct elements for data streams in 1985 and Alon, Matias and Szegedy
[36] presented algorithms to estimate frequency moments on data streams.
In the recent years, algorithms on streaming data for different purposes and
applications have been developed. Data streams are different from batch
mode data in several aspects. This section introduces some key specialities
of streaming data and analytics performed on it.

Babcock et al. [38] present the notion of a data stream management sys-
tem (DSMS) as opposed to the traditional data base management system
(DBMS). A DSMS is a system that tries to handle the specific requirements
of streaming data with respect to data management and querying. Babcock
et al. [38] and Golab et al. [61] state that traditional data base management
systems are not well suited for streaming data because they are not designed
for fast and continuously arriving data and do not support continuous queries.
Continuous queries are queries that are evaluated continuously as new ele-
ments arrive from the data [38, 61]. The opposite is one-time queries that
are evaluated at a given time point from a snapshot of the database [38].

Another distinction in queries can be done between predefined and ad hoc
queries [38]. Predefined queries can be optimized and it is known beforehand
which attributes of the data should be stored. Ad hoc queries, on the other
hand, which are not known at the start of processing a data stream, are more

6

CHAPTER 2. BACKGROUND 7

difficult for streaming data since they may refer to historical data that has
already been discarded. It may be impossible to answer ad hoc queries on
streaming data.

In streaming analytics recent events are usually more interesting than
events that happened a long time ago. There are two popular approaches to
take this into account in the methods: windows and weighting.

In windowing techniques only a set of subsequent samples, a window, is
inspected at each time point. The window shifts with time, including more
recent and disregarding older data. Windowing techniques include:

• Sliding windows where either N latest events or all events in the last t
time units are kept and analytics is performed on those [57].

• Landmark windows where one endpoint, either beginning or end, of the
window is fixed and the other endpoint is moving, thus either increasing
or decreasing the window size [61].

• Tumbling windows where the whole window expires at the same time.
For instance, data from each hour is gathered and processed separately.
When the next hour starts, all analytics on the previous hour should
be finished and that data is then discarded.

• Tilted windows where most recent data is stored with higher granularity
than older data [57].

• Jumping windows which operate on a batch of data at once and are
used in batch mode evaluation [61].

Choosing the size of the window can be difficult, too small window captures
noise easily but too large window does not take change into account [56]. In
some cases adaptive size windows can be used [56]. Wider windows show
longer trends whereas narrower windows reveal the current state. These can
be combined to get optimal results [59].

Another possibility to emphasize recent data is to use weighting on the
data such that older data points have smaller weights [58]. This allows most
recent data to have most influence but also to take into account older data to
diminish the effect of short-term variations. Weighting can be implemented
using fading factors. Then, the effect of each data point decreases as each
new data point arrives. [56]

Weighting can also be performed within a sliding window, combining
the two approaches [56]. In terms of forgetting, windows perform abrupt
forgetting whereas weighting corresponds to gradual forgetting [56].

CHAPTER 2. BACKGROUND 8

2.2 Time series

A time series represents sequential measurements over time, it is a collection
of chronologically ordered data points. Data points in a time series are
viewed as part of the whole time series and they are typically dependent on
the previous values, therefore they cannot be looked at as individual data
points [54]. A data stream forms a time series and thus time series analytics
is often relevant for streaming analytics, although the exact order or time
stamp of the data points is not always important. This section addresses
analysis of time series.

Time series can have a trend which describes where the series is going.
The trend can be described in terms of an average. A popular choice is the
moving average which indicates the average of previous n points. Variations
are cumulative moving average, weighted moving average and exponential
moving average. Time series can also have a seasonality which describes
seasonal, such as weekly or daily, patterns of the time series. Seasonality can
be discovered by autocorrelation of the series. [56]

Typical analytics tasks for time series are classification and clustering of
time series, finding similar time series, prediction of future values and detect-
ing motifs and anomalies in time series. Motif discovery means identifyng
repeating patterns from time series [51]. The patterns can be of various
lengths and may overlap with each other.

Predicting values for future time points is a broadly studied area in time
series analysis. Autoregressive models are often used in prediction. The
simplest autoregressive model can be defined as zt = α1 + α2zt−1 + εt where
zt is a data point at time t, α are coefficients and εt is an error term at
time t [56]. Another popular method is Kalman filter which implements a
hidden first order Markov model [56]. A subcategory of prediction is recursive
prediction where predicted values are used as model inputs. This may occur
if true values are not immediately available and therefore cannot be used for
predicting the next values. However, this makes the task more difficult as
there is more uncertainty in predicted than observed data [51].

Finding similar time series requires defining a similarity or a distance
measure between two time series. The most simple is the Euclidean distance,
d =

√∑n
i=1(xi − yi)2, where x and y are two time series of length n. However,

the problem with this measure is that time series are not always the same
length, they may have a lag or the may have different amplitude, period
or scale. Therefore, more adjustable methods are needed. Dynamic time
warping uses dynamic programming to find the optimal alignment between
two time series and distance can be measured on the aligned series. [56]

CHAPTER 2. BACKGROUND 9

2.3 Data reduction

In streaming analytics, the volume of data is typically very high. Often
storing all the data is not possible but only a relatively small subset of the
data can be stored. Space can be saved by storing only a subset of the
samples or performing dimensionality reduction or constructing some kind
of summary of the data, using e.g. averages and variances. This section
presents several ways to perform data reduction.

One approach is to store only a subset or a sample of the objects that
arrive, often keeping only or giving more weight to most recent objects [38].
A challenge in sampling is to maintain a representative sample of the data.
Although this issue has been tackled [39], for some applications, such as
anomaly detection for time series data, sampling is not appropriate since
identifying anomalies is dependent on certain (previous) data points [55,
57]. A similar technique to sampling is load shedding. Instead of choosing
randomly the set of points, in load shedding a sequence of data points is
dropped [55]. Windowing techniques also store only a subset of the samples.
Sampling can be combined with weighting such that older data points have
lower probability of being in the sample.

Dimensionality reduction techniques can also be used to represent the
data. One approach is sketching. Sketching means constructing a summary
of the data stream which takes less space than the data itself and using
this summary it is possible to approximately answer typical queries [38].
Sketching uses random projections of the features [57]. Another approach
is wavelets which project the data stream onto an orthogonal set of basis
vectors [38].

Histograms summarize the data by dividing it into bins. The data can
also be aggregated, storing sums or variances of the data instead of the raw
values [55]. Aggregation can also be combined with sampling [38]. Hashing,
i.e. mapping the data from an arbitrarily-sized representation to a fixed-
sized representation, can be used, often combined with some aggregation or
sampling [61].

In time series analysis, reducing the number of points is called segmenta-
tion. Segmentation reduces granularity such that the reconstruction error is
minimized or the shape of the series resembles the original as much as possible
[51]. Segmentation is often done as a preprocessing step before other ana-
lytical tasks since many methods perform more accurately when the number
of data points is smaller. Time series can have different representations and
one goal in transforming the series into another representation is having a
more compact representation that allows for fast computation. For instance,

CHAPTER 2. BACKGROUND 10

Symbolic Aggregate approXimation (SAX) transforms the time series into a
compact string representation [56].

Even if the amount of data is reduced by sampling or dimensionality
reduction, it might still be too much to be kept in memory. This poses
new challenges to the methods as the models must be updated to remove or
diminish effects of older data which can no longer be accessed. This often
results in approximation algorithms.

2.4 Anomaly detection

Anomaly detection identifies unexpected events or patterns in the data.
Anomalies can be also referred to as outliers, exceptions, aberrations, pe-
culiarities or surprises [45]. Anomaly detection is trying to detect events
which are interesting to the user and perhaps can be used to trigger some ac-
tions [45]. In this section ways to define anomalies are discussed and different
approaches for anomaly detection are presented.

One challenge in anomaly detection is that normal behavior can be chang-
ing and thus it should be possible to adapt the models [45]. This is especially
true for streaming data as huge amounts of data arrive to the system and old
behavior, e.g. what happened the previous year, might be outdated. How
big of a deviance from normal is considered an anomaly depends on the ap-
plication field [45]. Optimally, the level can be easily tuned. This is possible
for instance if the level is based on confidence intervals. The models used
for anomaly detection should also be able to identify noise [45] but this is a
difficult task because real noise is rarely normally distributed as assumed by
many models.

Detecting anomalies from sensor networks poses some additional chal-
lenges [45]. There are typically noise and missing values and the data is
distributed across the sensors. In addition, the cause of anomaly can be a
faulty device or an actual exceptional event or a malicious attack [64]. In
that case, it would be useful to be able to classify the cause of anomalies.

Chandola et al. [45] propose a classification of anomalies into three cat-
egories: point anomalies, contextual anomalies and collective anomalies as
shown in Figure 2.1. Point anomalies are the simplest type of anomalies, the
value itself is exceptional compared to all other values in the data and can
be considered an anomaly, independent of other factors.

Contextual anomalies depend on the context, meaning other attributes
affect whether the value is abnormal, e.g. whether temperature is normal is
dependent on the context of the time of the year. Chandola et al. [45] divide
the detection methods of contextual anomalies in two categories. In the first,

CHAPTER 2. BACKGROUND 11

Figure 2.1: Anomaly types

the context is defined for each event and the anomaly detection is done in
the context. This reduces to point anomaly detection within the context. In
the second approach, the contextual attributes are used as parameters in a
model which is trained on the training data. Then, for a test data point,
a prediction is computed and it is compared to the observed value. If the
observed value deviates significantly from the prediction, it is considered an
anomaly. Song et al. [91] propose a framework where the attributes are
divided into environmental attributes that define the context and indicator
attributes that are the values of interest. The probability density distribution
of the indicator attributes is then conditioned on the environmental attributes
to induce the context in the model.

Collective anomalies, on the other hand, depend on a consecutive series
of values: a single value is not exceptional but the set of values appear-
ing consecutively deviate from a normal set of consecutive values. Collective
anomaly detection aims to detect exceptional subsequences in the data. Some
methods map the subsequences into another feature space and perform point
anomaly detection in that space. Some methods, on the other hand, define
models for the sequence probabilities, such as Markov models, and label
the subsequence as an anomaly if the sequence is very unlikely according to
the model. One approach is to compute the expected frequency of a subse-
quence and compare the observed frequency to it. There are also methods
which compare subsequences to the entire sequence, assuming that normal
behaviour follows a certain pattern [45]. Detecting collective anomalies is
significantly more difficult than detecting point anomalies [64].

CHAPTER 2. BACKGROUND 12

Obtaining labeled data, that is, information on which events are normal
and which are anomalous is often not possible, and anomalous events are
much more rare than normal ones. Therefore, using supervised methods is
often not feasible but unsupervised methods are typically used in anomaly
detection [45]. If labels for some of the data points are available, semi-
supervised methods can be used. One typical case is that labels for normal
data points are known but the number of anomalous data points is insuf-
ficient or they are missing altogether. In that case, the method can try to
learn boundaries for the normal class and classify whatever is outside those
boundaries as anomalous [68]. This requires that the normal training data
covers the whole region of normal data, otherwise many false alarms will
appear [68]. Another example where some of the labels are known, is if the
user gives feedback for events classified as anomalous. However, these labels
may come with significant delays.

Events can be given either binary labels, whether they are anomalous
or not, or scores indicating how likely they are anomalous [45]. Scoring
can be used to choose e.g. n highest scoring events as anomalies. If scores
are used, the user can typically tune the definition and threshold for an
anomaly. However, sometimes a simple list of anomalies, which binary labels
give clearly, is desired. Another possibility is to discretize the scores into
anomaly levels, such as minor, major and critical.

Techniques to detect anomalies can be divided into different categories:
classification based, clustering based, nearest neighbour based, neural net-
work based, decision tree based, statistical, information theoretic and spec-
tral methods [45, 68]. Classification based algorithms learn a model based on
training data and predict the class (normal / anomaly) of each event. They
are often not feasible because labels are not available. Clustering based meth-
ods find clusters and define as anomalies those events that are outside the
normal clusters. These clusters might be very different in terms of e.g. den-
sity, and sometimes anomalies can form their own clusters whereas sometimes
they appear as individual outlier points. Therefore it might be difficult to
detect anomalies. [45]. Nearest neighbour based algorithms - also referred to
as distance based algorithms [68] - classify the events based on their neigh-
bourhood. They often have quadratic complexity which is unfeasible for large
data sets. There exist some modifications which compute distances to only
a subset of the points by dividing the points into e.g. pre-defined cells to
reduce the computational complexity [68].

Neural network based models can operate either in a supervised or unsu-
pervised manner [68]. In the first setting, a new data point is classified either
normal or anomalous based on the learned classes from the network whereas
in the latter case the network is trained on the normal data and if a test data

CHAPTER 2. BACKGROUND 13

point does not lie close to the normal classes, it is classified as anomalous
[68]. Decision tree or rule based techniques can in a similar manner be used
in supervised or unsupervised setting [34].

Statistical algorithms define a statistical model and classify the data
points based on their probability according to the model [45]. They as-
sume the data to be generated by some distribution and this assumption
may not always be valid. In non-parametric approaches, density estimation
is performed and points in low-density regions are classified as anomalies [68].
Information theoretic methods are based on the assumption that anomalies
induce irregularities in the information content of the data. They try to
maximize the difference between complexity of the whole data set and the
complexity of a data set where anomalies are removed. They often require a
large amount of anomalies to be present in the data. Spectral algorithms try
to map the data to lower-dimensional space where normal and anomalous
events are well separable. However, such a space does not always exist and
even if it does, it might be difficult to find it [45].

Detecting anomalies from high-dimensional data creates additional chal-
lenges [33]. Estimating distributions for high-dimensional data is difficult
and distances between points tend to be similar when the points are spread
over a high-dimensional space and the data points lie sparsely in the space.
Sometimes anomalies might be normal in many of the dimensions and only
exceptional in a small set of the dimensions and those are difficult to detect
when trying to detect from the entire space. In addition, high dimensionality
introduces additional computational cost [33].

Therefore, dimensionality reduction techniques become important in out-
lier detection. However, many dimensionality reduction techniques lose in-
terpretability of the result, i.e. after dimensionality reduction is performed
it is difficult to identify the cause of an anomaly. Feature selection preserves
interpretability but finding an optimal subspace among the features is a com-
putationally expensive task. In addition, different outliers might appear in
different subspaces and thresholds for low- or high-density regions or long
distances may vary in different subspaces, especially if they are of different
dimensions [33]. Furthermore, with e.g. 1000-dimensional data, each point
is in fact likely to be an outlier in at least one of the dimensions [101].

There are different ways to define anomalies and different types of anoma-
lies are interesting for different applications. There is a variety of approaches
to detect anomalies and which one should be chosen depends on the data,
application requirements and types of anomalies that should be detected.

CHAPTER 2. BACKGROUND 14

2.5 Concept drift

It is often unrealistic to assume that data coming from a data stream would
follow a stationary probability distribution. Instead, it can change and evolve
over time. This is called concept drift [57]. Detecting change thus becomes
important. The models need to take concept drift into account and adapt
when concept drift is detected. In that case, in addition to incremental
learning, decremental unlearning, i.e. removing effect of older samples from
the model, is required [57].

Concept drift has several variations. It can be sudden or gradual. Sudden
changes are easier to detect than gradual changes. Gradual change is also
sometimes referred to as concept shift. An old concept may reappear later
on and occurrences of concept drifts may or may not follow a pattern [75].
The changes can be of different nature, e.g. change in the mean or change
in the variance.

Concept drift is typically unexpected and unpredictable [60]. In the case
of a classification or regression task, concept drift can be drift in the distribu-
tion of input or output variables or drift in how the output variables depend
on the input variables [60].

Sometimes a valid assumption is that the stream contains subsequences,
each generated by a different distribution. Then the task is to detect change
of distribution. However, sometimes there is noise in the data which should
not be confused with a new distribution. Therefore, the methods need to
also identify noise. [56]

Several methods have been proposed to identify concept drift. One ap-
proach is to compare data from a recent period of time to data from a longer
period of time. Significant change in the means of the two windows is an
indication of concept drift. Also other measures than mean can be compared
when comparing a reference window and a recent window. For instance, it
can be estimated whether they are generated by the same distribution [60].
To estimate the distributions, sometimes different methods can be applied to
the longer and shorter time window [60]. The two windows can also be used
to make predictions separately. Then change occurs when the accuracy of
the recent window goes above the accuracy of the longer one since the longer
one should be more accurate if the concept stays the same [60]. Comparing
distributions of two windows of course requires more time and space than
more simple methods but may give more accurate results. Change detection
methods can also monitor performance of predictors by some predictor indi-
cators and say a change has occurred if there is a change in the performance
[56].

CHAPTER 2. BACKGROUND 15

Change detection methods usually take a threshold parameter that gov-
erns how big deviations are noted as change. Small values cause more false
alarms whereas large values do not detect changes at very early stages [60].

Sometimes change itself is interesting and then the output of the model
could simply be a notification whenever a change is detected. In that case,
also questions on what kind of changes there are and which changes are
interesting are relevant [50]. However, often simply detecting change is not
enough but the model also needs to adapt when a change is detected. This
occurs when the model is used for prediction or anomaly detection.

In the case of using sliding windows or fading factors, the model nat-
urally adapts to changes although change itself is not explicitly monitored
or observed. This is sometimes referred to as blind adaptation [60]. This
approach reacts well to gradual changes but is not very fast in reacting to
sudden changes. The reaction speed can be tuned by modifying the window
size or rate of fading but that also results in less robust models if they only
depend on a small set of recent data points. The window size can also be
tuned: it can be shortened when a change is detected and widened when the
distribution is stationary [60]. Sampling can also be used instead of window-
ing [60]. Especially for re-occurring patterns, window or fading factor based
approaches are not optimal since they forget behaviour that has occurred in
the past.

Sometimes the model is updated based on the outcome of the latest data
point: if the prediction differs enough from the true value, the model is
updated to the direction of that value [60]. This approach does not imply
forgetting unless fading factors are used and therefore cannot respond to
concept drift. Also, sometimes the feedback, i.e. the true values or labels,
are not available immediately or even in a short interval after the prediction
and therefore, the model cannot be updated real-time.

If the model is not updated incrementally, then it must be retrained when
a change is detected. This requires always keeping a certain amount of recent
data which can be used to train the new model. Also, the computation takes
some time. With some models, like decision trees, it is possible to adjust the
model instead of training it again from scratch [60].

One option is to use an ensemble of learners and use e.g. majority voting
to determine the final output [60]. This might be useful for reoccurring
concepts: learners can also be activated and deactivated, then retraining
does not take time but old patterns can be activated fast if the correct model
is found.

Evaluating metrics for detecting concept drift are proportion of true de-
tections and false detections and how much delay there is in detection [56].
In addition, deviation from true change point can be measured [60]. Related

CHAPTER 2. BACKGROUND 16

to concept drift is novelty detection where new patterns must be recognized
[57]. A novelty can indicate for instance a new class [56].

2.6 Distributed settings

In this work inspection is restricted to systems where the streams are coming
from a single source. Thus, it is assumed that the streams are coming from
one system and are not distributed, or the distributed data sources send
their data to a centralized location real-time with low latency. However,
in many real-life situations, e.g. sensor networks, the data are produced
in different locations in a distributed manner and data transfer might be a
bottleneck for computation [56]. Therefore, it would be wise to perform some
of the computation locally and transfer less data. The question is partially
architectural but methods to tackle distributed streaming data have also
been proposed. There has been research on investigating best approaches to
deal with distributed data: how to transfer as little data as possible and still
cope with the limited available memory in the devices producing the data
[64]. This could also be scaled according to the amount of available memory
[56]. This is a wide area of research and out of scope of this work. Therefore,
distributed settings are left for future work.

Chapter 3

Methods

3.1 Available software platforms and solutions

This section presents a study of available software platforms and solutions
for streaming analytics. There are several streaming platforms available for
commercial use or as open source. Many of them are able to process millions
of events per second [1, 9, 10, 15, 16, 24, 26, 28, 31]. Many of the solutions al-
low for combining historical and real-time data. Table 3.1 shows an overview
of the solutions.

The platforms have been divided in three categories: those that contain
only a platform for developers for stream processing, more advanced plat-
forms that do not include any modelling and those that include modelling.
Some of the solutions are a combination of these and they are discussed in
the category where they fit best.

3.1.1 General development platforms

Some of the products are merely platforms that take care of the data flow
and allow building applications on top of the platform. No event processing
is included in the platform and it has to be programmed by the application
developers. The platform can include libraries that ease the development, for
instance aggregation or visualization libraries. Amazon Kinesis Streams [1],
Apache Flink [3], Spark Streaming [25], Infochimps Cloud [10], S4 Apache
incubator [22], Storm [27], TimeStream [86], Kx systems kdb+ [13], Tele-
graphCQ [46], SQLstream [26] and Google Data Flow [7] are such platforms.

Apache Flink, Spark Streaming, S4 Apache incubator and Storm are open
source platforms. Apache Flink and Spark contain machine learning libraries.
Apache Flink also includes some triggering options, that is, options to trigger
some commands or events when certain condition occurs. Spark Streaming

17

CHAPTER 3. METHODS 18

Figure 3.1: Platforms and solutions for streaming analytics. Abbreviations:
GUI = graphical user interface, query = query language, progr. = program-
ming, modell. = modelling, vis. = visualization, trigg. = triggers, anom. =
anomaly detection, aggr. = aggregation, patt. = pattern detection, wind. =
windows, open = open source, comm. = commercial. Some of the platforms
are open source, some available commercially. Some have both open source
and commercial versions and some contain some open source features, are
built on top of other open source platforms or contain open source platforms
that allow further development but do not reveal the source code.

CHAPTER 3. METHODS 19

is not an actual streaming platform but it operates in micro-batch mode,
processing data in very small batches with high speed near-real time which
makes the outcome resemble streaming.

Amazon Kinesis Streams can be combined with Amazon Kinesis Aggrega-
tors to ease aggregation of data. Infochimps Cloud provides a cloud platform
that allows for both stream and batch processing. It contains tool-kits for
developing real-time analytics. TimeStream also allows the user to query the
data continuously using windows. Possible use cases are network monitor-
ing, audience monitoring, sentiment analysis, finding top elements (on some
metric) and counting distinct elements.

Kx systems kdb+ is a database system that can be used for stream pro-
cessing, combined with historical data. It can be used for time series analysis.
TelegraphCQ and SQLstream operate SQL queries on streaming data. They
both allow using windows. SQLstream contains aggregation functions such
as average and standard deviation, more advanced analytics functions can
be imported using other programming languages.

3.1.2 More developed platforms with no modelling in-
cluded

Here I discuss platforms and solutions that have ready applications or ap-
plications can be easily built via a graphical user interface (GUI), possibly
including writing some queries. These platforms include OneTick [19], Striim
[29], Oracle Streams [20], Tibco StreamBase Complex Event Processing [30],
DataTorrent [5], EsperTech [6], Informatica Vibe Data Stream [11] and Nas-
tel AutoPilot [16]. Typical functionalities for the platforms are visualizing
data streams, aggregating them, creating triggers based on some rules or
patterns, detecting anomalous events and detecting patterns. Some of the
platforms enable usage of sliding or tumbling windows (see section 2.1). In
these platforms, anomaly detection or triggering is not based on historical
data but some pre-defined thresholds, rules and patterns.

Oracle Streams and Informatica Vibe Data Stream process streaming
data and transfer it to other systems. Oracle Streams can be used to monitor
the streams and generate triggers. Informatica Vibe Data Stream can do
some preprocessing and visualize the data before it is moved on. Combined
with Informatica Rulepoint Complex Event Processing it can also trigger
rule-based alerts.

OneTick is created for monitoring especially financial or stock data. It can
do aggregation and users can create their own functions. It can be operated
via a GUI or by writing and executing queries. It can combine historical

CHAPTER 3. METHODS 20

and real-time data. Possible use cases are profit or loss monitoring, risk
management, transaction cost analysis and regulatory surveillance. Striim
processes streaming data by SQL queries and the results can be visualized via
a GUI. Striim can perform aggregation, anomaly detection, pattern finding
and fraud detection. Possible use cases are log monitoring, fraud detection,
location monitoring and customer experience management.

Tibco StreamBase Complex Event Processing is operated via a GUI and
can perform data normalization, aggregation and correlation and generate
rule-based triggers. It can combine historical and real-time data. Possi-
ble use cases are risk management, fraud detection, routing, market data
management, real-time pricing, network management, clickstream analytics,
analysing cross-sell and up-sell opportunities and patient data management.

DataTorrent is a platform that does stream processing but does not con-
tain any analytics. EsperTech is a product for complex event processing and
event series analysis. It has a GUI but can be combined with source code
imported by the user. It enables sliding and tumbling windows and contains
some aggregation functionalities as well as a couple of approximation algo-
rithms for computing frequency or top elements (on some metric) or counting
distinct elements. Nastel AutoPilot can monitor alerts and it can be used
to manually trace the root cause for the alerts. It can do pattern match-
ing, aggregation, sorting, merging, joining of events and metrics, computing
standard deviation and moving averages and momentum indicators to deter-
mine which states are normal and which are abnormal. It can be used for
application performance and end-user experience monitoring.

3.1.3 Platforms including modelling

Platforms including modelling may perform modelling in batch mode and
only use the results in stream processing, they may learn the models in
batch mode and apply them in streaming mode or they may both learn and
apply the models on-line. Some of the solutions do not contain modelling in
themselves but can be combined with a plug-in or additional package. It is
often not explicitly stated whether modelling could be performed in stream-
ing mode using these additional components. It is likely that many of them
do not operate in streaming mode but only pass the results to the stream
processor since these additional packages or plug-ins may be used with other
than streaming products as well and it would often require different settings
to operate in streaming mode. An overview of the types of modelling used
in these platforms is shown in table 3.2. Platforms containing modelling
include StreamAnalytix [28], Massive online analysis (MOA) [41], Numenta
[17], Anodot [2], RedLambda MetaGrid [21], WSO2 Analytics Platform [32],

CHAPTER 3. METHODS 21

Figure 3.2: Platforms including modelling. This table shows whether the
platforms perform model learning and applying in batch or on-line mode.
Some of the platforms do not contain modelling but contain either tool-kits
for modelling or can be combined with additional analytics packages. See
the text for further details.

SAP HANA [23], Apama Stream Analytics [4], Guavus Reflex [8], Stream-
Analytix [28], Vitria [31], SAS Event Stream Processing [24], Odysseus [18],
IBM Stream Computing [9] and Microsoft Azure Stream Analytics [15].

Numenta, Anodot, RedLambda MetaGrid and WSO2 Analytics Platform
are anomaly detection platforms. Numenta and Anodot update the model
continuously. Numenta builds a model for each metric to be monitored.
Seasonality is included in the model which is based on hierarchical temporal
memory methods. Anodot includes dozens of time series models of which it
chooses the best for each stream. It updates the models in streaming mode
and shows the users the streams which contain anomalies. It also correlates
the streams and thus tries to identify causes for the anomalies. RedLambda
MetaGrid is a solution created for threat detection that can be used to detect
anomalies, meaningful events, sequences, rates, patterns and correlations.
WSO2 Analytics Platform can be used for anomaly and fraud detection.
The fraud detection functionality contains modelling in batch-mode. It can
combine historical and streaming data.

MOA and SAP HANA update the models on-line. MOA is a platform
operated by a GUI. It contains some algorithms for on-line clustering, clas-

CHAPTER 3. METHODS 22

sification, anomaly detection and recommendation engines. New methods
can also be implemented. The results can be visualized. In SAP HANA,
there are two machine learning methods integrated that operate in streaming
mode: one for classification and one for clustering. In addition, developers
can produce their own methods through query processing and a software
development kit.

Apama Stream Analytics is a tool where models created by other tools can
be imported, and it will generate actions and make predictions on streaming
data based on the models. The platform is used with a GUI but the mod-
els need to be imported from elsewhere. Most of the analytics happens in
batch mode but some models are also updated in streaming mode. Guavus
Reflex is a platform that allows processing and analysing streaming data and
visualization.

StreamAnalytix contains building blocks for analytics, which include cer-
tain algorithms. It also allows to visualize the data and generate triggers. It
can be used via a GUI and new features can be programmed. It can combine
historical and real-time data. Possible use cases are call center analytics, log
analytics, predictive maintenance, and sentiment and topic analysis. Vitria
can be used to predict threats and opportunities and trigger processes. It
can look for pattern-based indicators and do aggregation and visualization.
Analytics is performed in batch-mode.

SAS Event Stream Processing, Odysseus, IBM Stream Computing and
Microsoft Azure Stream Analytics contain modelling as a tool-kit or as an
additional package. SAS Event Stream Processing is used by creating work-
flows that allow monitoring data, following patterns such as threshold values
or aggregates such as count or variance and generating triggers based on
the patterns. The event stream processing tool can be combined with SAS
Advanced Analytics to include modelling. Odysseus can be used either by
defining queries or through a GUI, source code is also available and can
be used for development. Dashboards can be created and triggers gener-
ated with it. It contains classification and clustering algorithms as plug-ins.
Possible use cases include monitoring business activity and key performance
indicators, monitoring and forecasting weather and monitoring manufactur-
ing. IBM Stream Computing allows to create rule-based configurations for
stream processing. Additional features and analytics are available as tool-kits
allowing real-time prediction using models computed in batch mode. It is
possible to develop new features by programming as well. Use cases include
targeted marketing, e.g. sending offers based on customers’ interests and
location and monitoring acceptance or rejection of the offers, fraud detection
and monitoring patients for emerging diseases. Microsoft Azure Stream An-
alytics can be used to detect anomalies, trigger alerts and visualize the data.

CHAPTER 3. METHODS 23

The platform can be combined with a machine learning package.

3.1.4 Summary

There is a multitude of solutions available for streaming and new ones are
emerging constantly. Terminology used is not established, for instance the
term ”streaming analytics” is referred to in the context of data processing or
querying as well as applying modelling and machine learning in batch and
on-line modes. Currently, there are few platforms where modelling, either
learning or applying or both, are applied in streaming mode. Also, many of
the products require the user to do some programming, querying or stream
configuration and only a few solutions provide ready-made applications.

3.2 Anomaly detection for streaming data

In streaming time series data, anomalies are defined in the context of the
data stream, sometimes also with respect to other data streams. Unusual
changes, sequences and temporal patterns are interesting [64]. Anomalies in
time series data can be detected in several ways. One is by making predictions
and comparing the observed values to predictions. Another is constructing a
profile of the time series and checking whether a new event fits in the profile.
A third is by information theoretic approach where a point is an anomaly
if removing it makes the fitting less erroneous. [64] In this section methods
designed for on-line anomaly detection are presented.

There are methods which update the predictive models as new data points
arrive. This way, the models are adaptive. However, some of the incremen-
tal algorithms still take a lot of time to perform a single update and are
therefore not suitable for streaming data. Hence, also time complexity is
important. Another aspect to consider is the number of fixed parameters
in the model. Since parameters cannot be determined by for instance cross-
validation, heuristic parameter choices are often needed.

The methods often provide anomaly scores and a threshold is needed to
distinguish normal and anomalous scores. If the threshold is based on a
confidence level, it gives a natural interpretation of the threshold. On the
other hand, in for instance distance-based methods, choosing a threshold
distance does not have such an interpretation and can be a difficult task.

For this work existing anomaly detection methods for streaming data
have been divided into eight categories:

• Density-based methods estimate the probability distribution, or in

CHAPTER 3. METHODS 24

non-parametric methods probability density for each point, and points
lying in areas with low probability density are declared anomalous.

• Distance-based methods define anomalies based on how far they lie
from their nearest neighbour(s).

• Methods based on prediction errors predict future values and define
points as anomalies if the predicted values differ significantly from the
observed values. These can be further divided to regression-based
methods which make the predictions based on some attributes of the
data and methods based on time series which use auto-regression,
i.e. values of one or a few preceding data points affect the prediction
of the next data point.

• Methods using support vector machines construct the normal
class using support vectors and define as anomalous the points that lie
outside the class boundaries.

• Clustering-based methods cluster the data and define as anoma-
lous points that are either far away from any cluster or form atypical
clusters.

• Tree-based methods construct classification or regression trees and
define anomalousness based on how well the points map to the tree.

• Projection-based methods project data onto another, often lower-
dimensional, space and points with high reconstruction error are de-
fined anomalous.

The categories are somewhat overlapping and some methods could be
assigned to multiple categories.

3.2.1 Density-based methods

Density-based methods form density estimates. Parametric methods fit one
or more statistical distributions to the data and non-parametric methods
estimate density by using e.g. histograms, kernels or grids. When a new
data point arrives, its density is estimated and if the density estimate is
below a given threshold, the point is defined anomalous.

In this section four density-based methods are presented. The method
by Yamanishi et al. [99] is designed for mixed-attribute data sets and has a
parametric and non-parametric variant. Subramaniam et al. [93] use kernel
density estimation and present both a density- and a distance-based method

CHAPTER 3. METHODS 25

using the density estimators. Faulkner et al. [52] present ways to define
anomalies from density estimates. Pevny et al. [84] project data on one
dimension and use density estimates of one-dimensional histograms.

Yamanishi et al. [99] present a method for mixed-attribute data sets,
that is, data sets that contain both categorical and numerical variables. Their
method is an on-line discounting learning algorithm that incrementally learns
a probabilistic mixture model. The model uses a decaying factor to diminish
effects of old data.

Histogram density is used for categorical variables by performing sequen-
tially discounting Laplace estimation. For each categorical variable, the data
values are partitioned into disjoint sets and a cell is created for each combi-
nation. At arrival of a new data point, the counts are adjusted with temporal
discounting and appropriate Laplace smoothing is applied.

For continuous data, a Gaussian mixture model or a kernel mixture model
is used. A model is built for each cell in the histogram density. A Gaussian
mixture model is learned via sequentially discounting expectation maximiza-
tion which is effectively incremental expectation maximization with discount-
ing effects of past examples. A kernel mixture model is learned via sequen-
tially discounting prototype updating algorithm where coefficients of mixture
and variance matrix are fixed and means of kernels or prototypes are learned.

A joint distribution of the categorical and continuous attributes is formed
and an anomaly score of a data point is computed based on how much the
distribution changes when adding the point. The time complexity of the
algorithm is cubic in the number of dimensions, hence the algorithm is not
suitable for high-dimensional data.

Subramaniam et al. [93] present a method based on kernel density esti-
mation. A point is classified as an anomaly if it lies in a space of low density.
Kernel density estimators are easy to compute and maintain in a streaming
environment. They can be easily combined and they scale well in multiple
dimensions. The method by Subramaniam et al. assumes each attribute
takes values in the range [0,1] or the values should be mapped to that range
but they do not discuss how to do this. The anomalies are searched within a
stream as well as anomaly streams are searched among all the streams. The
anomalies are searched within a sliding window and the points are compared
to the rest of the window. To compute the density estimators, a random
sample of the sliding window and standard deviation of the values in the
sliding window are maintained.

Subramaniam et al. present two different methods to use in this frame-
work: distance-based and density-based anomaly detection. The density-
based method takes into account local variations in the feature space by
looking at the density in the neighbourhood of the point in addition to global

CHAPTER 3. METHODS 26

density. It is thus more robust than simply looking at the density estimate.
In the distance-based approach, the number of points within a given distance
is estimated and the point is declared an anomaly if the estimate is below a
given threshold.

Faulkner et al. [52] also use on-line density estimation but do not present
density estimators themselves, instead they use existing ones. Anomaly
thresholds are based on quantile summaries. They detect anomalies both
within a stream and across multiple streams. Their approach can be ex-
tended to take seasonal variation into account.

Pevny et al. [84] use an ensemble of weak learners, one-dimensional his-
tograms. The histograms are constructed by random projections. Each his-
togram approximates probability density of input data projected onto a sin-
gle projection vector. The projections are constructed by randomly setting
a certain amount of the weights in a weight vector to zero and the rest are
drawn randomly from normal distribution. An anomaly score is given as an
average log probability estimated on each projection vector. Histograms are
updated as a new sample arrives.

Pevny et al. use equi-width histograms that are defined off-line. This
requires that the features have approximately the same scale and the range
of the values is approximately known. Pevny et al. state that there exists
also a method to maintain histograms on-line without assumptions on the
value range but they found the equi-width histogram more accurate. The
method is able to handle missing values. The probability distributions of
the histograms are assumed to be independent and even if this doesn’t hold
in practice, Pevny et al. claim they still get good results. Features are
ranked according to their contribution to the sample’s anomalousness and
contribution of a certain feature can be assessed by a statistical test.

3.2.2 Distance-based methods

Distance-based methods compute or estimate distances to nearest neighbours
or count how many data points are within a certain distance from each data
point. Exact calculation is costly and either clever data structures or ap-
proximations are needed. Defining anomaly thresholds for distance-based
methods is difficult at least without application-specific knowledge.

Angiulli et al. [37] propose a method where a point is considered an
anomaly if it has less than k neighbours in a window. A neighbour is a point
that is at most distance d away from the point. Angiulli et al. propose exact
and approximate algorithms for the problem. In the exact algorithm, an
indexed stream buffer (ISB) is kept. ISB is a data structure which supports
range query search. That is, given a new object and a threshold distance,

CHAPTER 3. METHODS 27

it returns all objects whose distance to the object is less than the threshold
distance. ISB keeps track of time points of preceding neighbours and number
of succeeding neighbours in a window. If number of succeeding neighbours is
at least k, the point is a ”safe inlier”, that is, it cannot become an anomaly.
When a data point arrives, its neighbours are queried and the preceding and
succeeding neighbours are updated for the new point and its neighbours,
respectively.

While the exact algorithm requires storing all points within the window
in ISB, the approximate algorithm consumes less memory. There, only a
certain fraction of randomly chosen safe inliers is stored. They cannot become
anomalies but could of course affect the anomaly score of other points. In
addition, instead of storing the list of preceding neighbours at the arrival of
a sample, a ratio of preceding safe inlier neighbours and total number of safe
inliers can be stored.

The algorithm is designed for defining anomalies not continuously but
at given query points. To find anomalies at a given point, the ISB struc-
ture is scanned and the number of preceding and succeeding neighbours is
computed. Since a point’s anomalousness depends on future data points, its
anomalousness cannot be determined immediately when the point arrives.

Pokrajac et al. [85] use an incremental local outlier factor (LOF) to detect
anomalies. It is based on computing densities at local neighbourhoods. To
compute the LOF of a point p, first distance to the kth nearest neighbour
of p is computed. Then reachability distance with respect to another point
is computed. Local reachability density is the inverse of average reachability
distance based on k nearest neighbours of p. LOF is the ratio of average
reachability density of the k nearest neighbours of q and that of q.

An incremental algorithm determines which LOF scores need to be up-
dated in insertion and deletion of a point. The amount of updates needed
is quite low. For efficient implementation, efficient nearest neighbour and
reverse nearest neighbour queries are needed. These exist but are not effi-
cient on high-dimensional data due to lack of efficient indexing structures on
high-dimensional data.

Xie et al. [97] use a k nearest neighbours (KNN) -based method. The data
are divided in hypercubes. Anomaly is based on the number of occurrences
in the same hypercube.

3.2.3 Methods using time series prediction

The following methods fit models for time series and base their anomaly
scores on deviations from the constructed models. Yamanishi et al. [98]
use an autoregressive model, Lee et al. [77] use a Kalman filter multivariate

CHAPTER 3. METHODS 28

autoregression model with Bayesian inference, Khreich et al. [72] use an
ensemble of hidden Markov models and Richard et al. [88] use a kernel-
based approach.

Yamanishi et al. [98] present a method with the same idea as they had
for the density-based model in [99] (see section 3.2.1) but designed for time
series data. The framework is the same but an autoregressive (AR) model is
used and learning is done via sequentially discounting AR model estimation.
The AR model of order k is a linear combination of k previous time points.
Anomaly score can be calculated either by comparing distance of distribu-
tions before and after inserting the point as in [99] or by the probability
density.

Lee et al. [77] use a Kalman filter multivariate autoregression model. In
a Kalman filter an observed variable depends linearly on a hidden variable.
A hidden variable at time t depends on the hidden variable at time t−1. The
Bayes formula is applied to estimate the posterior distribution of the hidden
variables. At each step, posterior estimate of the hidden variable at the pre-
vious time point is used as the prior for the new posterior. Observation is
included to obtain the posterior. [81] The method by Lee et al. give proba-
bilities for the observation given the point is normal. A simple thresholding
could be used but they propose an approach using extreme value theory. The
method gives scores for both anomalies and change points.

Khreich et al. [72] base their approach on an ensemble of hidden Markov
models (HMM). They state that there are approaches to update HMMs incre-
mentally but claim that doing so in one iteration as is required in streaming
approaches does not result in good performance. Therefore, they do not up-
date existing HMMs but instead build new ones as a new batch of data comes
in. Incremental Boolean combination, which aims at maximizing the receiver
operating characteristic (ROC) curve, is used to combine the HMMs. Less
accurate HMMs, that have not been selected in the combination for a while,
are discarded. The method requires validation data composed of normal and
anomalous sub-sequences.

Richard et al. [88] present a method for on-line time series prediction
using kernels. The model contains a set of kernel functions that are added
and removed from the set on each update. Richard et al. do not present an
anomaly detection scheme but it could be added, e.g. based on the prediction
error.

3.2.4 Methods using support vector machines

Support vector machines (SVM) are an approach for classification where
support vectors form the class boundaries. In anomaly detection, one-class

CHAPTER 3. METHODS 29

SVM can be used to define the normal class and points falling outside the
boundaries can be defined as anomalies.

Davy et al. [49] construct SVMs from kernels since kernels are insensitive
to data dimension and do not require fitting the data to a certain statistical
distribution. A normal class is constructed and its boundaries are defined
such that most points lie inside the boundaries. Davy et al. use data points
classified as normal to train the class boundaries. Data without labels could
also be used if it is assumed that number of anomalies is very small. Then,
the anomalies would not have a big impact on the model. The method is in-
cremental, new vectors can be added and old ones removed. However, adding
and removing vectors are iterative processes and although they are expected
to converge very quickly, there is a possibility that this would become a
bottleneck in computation.

Zhang et al. [100] use a quarter-sphere one-class SVM [74] where origin
and radius of a sphere are used to describe the normal class. It can be applied
for multiple streams that each have a pre-defined subset of the other streams
as neighbours. Each point is first checked for its anomalousness within its
own stream to see if it lies outside the normal class. It is then compared with
radii of the neighbouring streams. If it still seems anomalous it is declared
an anomaly. The radii are updated after each observation of a new point,
the new point is added and the oldest in the window is removed. Updates
can be done either in sliding window mode, at fixed time intervals or when
a point is identified as an anomaly or margin support vector. The data are
normalized which is an additional challenge in streaming settings.

Also Laskov et al. [76] present a method for incremental SVM. The
approach is general but can be extended to one-class incremental SVM to
be used in anomaly detection. The approach of incremental learning can be
reversed to obtain decremental forgetting and thus a sliding window mode is
possible. Laskov et al. claim they have improved time complexity compared
to previous approaches for incremental SVM but the memory consumption
is large.

3.2.5 Regression-based methods

Regression-based methods construct a regression model on the data and de-
fine anomalies based on deviations from predictions. Hill et al. [66] use uni-
variate regression models that are based on either naive predictors, nearest
cluster predictors, single-layer linear network predictors or multilayer per-
ceptron predictors. Ting et al. [96] use Bayesian linear regression. Chen et
al. [48] present a method which takes contextual attributes into account.

Hill et al. [66] present a method that uses a univariate regression model

CHAPTER 3. METHODS 30

and calculates a prediction interval from recent historical data to detect
anomalies. A sliding window of size w is used. Training is done in batch
mode using 10-fold cross-validation. There are two strategies: either the
anomalies are included in the window that is used to calculate the predic-
tions or they are discarded. This defines whether the model is adaptive to
anomalies or not. For instance, in case concept drift would occur it would be
useful to include the anomalies in the window. The other approach would be
to use the predicted value instead of the real value for anomalous points. This
can cause problems in two cases. First, if non-anomalous data are misclassi-
fied as anomalous, the false predicted value will be used in future predictions.
Second, the variation in the predicted values is typically smaller than vari-
ation in the observed values, therefore a lot of anomalies would induce bias
and a too centralized model.

Hill et al. use four different predictors in this framework, namely naive
predictor, nearest cluster predictor, single-layer linear network predictor and
multilayer perceptron predictor. The naive predictor only predicts the next
value to be the previous value. The nearest cluster predictor assigns training
data to clusters using k-means and predicts the cluster of the new data point
and the mean of the cluster as the value of the data point. The single-layer
linear network predictor is a linear combination of the values in the window
and weights are updated on each iteration. The multilayer perceptron pre-
dictor on the other hand is a non-linear combination of input variables. A
feed-forward network with sigmoid activation functions in the hidden layers
and linear activation in output node is created. The network is trained using
backpropagation with gradient descent and the model is retrained from time
to time. From the predictions, the points are classified as anomalous based
on Student’s t-distribution.

The naive predictor is clearly very simple and not useful in many cases.
The nearest cluster predictor and multilayer perceptron predictor on the
other hand operate in batch mode and therefore are not very adaptive to
changes in the data distribution. The single-layer linear network updates the
weights on each iteration and therefore is the most suitable for an on-line
learning problem.

Ting et al. [96] present a Bayesian linear regression approach for anomaly
detection. It is assumed that observed outputs have unequal (heteroscedas-
tic) variances. A weight is given for each data point. The model is learned
via expectation maximization. The goal is to maximize incomplete log like-
lihood since hidden probabilistic variables are marginalized out. However,
only lower bound of the incomplete log likelihood is analytically tractable
and it is based on the expected value of the complete likelihood. Updates
need to be run iteratively. For an incremental version of the algorithm a

CHAPTER 3. METHODS 31

forgetting factor is introduced.
For large prediction error, weight of the data point is small. Hence, the

algorithm automatically down-weights the anomalies. To explicitly detect
anomalies, the algorithm should be slightly modified and a threshold set.
Computational complexity for an update is cubic with respect to the data
dimensionality but can be reduced to linear by using recursive least squares
technique.

Chen et al. [48] discuss a method of doing regression analysis for time
series where data is divided in hypercubes based on contextual attributes and
aggregated within those. The method uses tilted time windows (see section
2.1). They present how only a subset of the data and cubes need to be
stored and how they can be stored in a compressed way to save space. They
don’t describe an anomaly detection method but it could be implemented,
e.g. based on prediction error.

3.2.6 Clustering-based methods

Clustering-based methods divide data into clusters. Incremental clustering
requires clever data structures or approximations. How anomalies are de-
fined, i.e. whether they are individual points far away from any cluster or
cluster centre or atypical clusters, can vary but can often be tuned indepen-
dent of the clustering method used.

Burbeck et al. [44] present an anomaly detection method with incremen-
tal clustering. It is assumed that training data do not contain anomalies.
The model consists of a number of clusters and a tree index whose leaves
contain the clusters. Clusters are stored as condensed information, cluster
features, that contain the number of points in the cluster, sum of cluster
points and sum of squares of cluster points. Centroid is the average of points
and radius describes tightness of the cluster or how far the points are from
the centroid. Centroid and radius can be computed from cluster features and
cluster features of two clusters can be easily merged. A leaf node of the tree
contains one or more cluster features. Cluster features also have a threshold
indicating whether they can absorb more data points: either the radius must
be smaller than a threshold or distance to a data point must be smaller than
a threshold.

When a new data point arrives, its closest cluster is searched and it is
checked whether it beats the threshold. If it does, it is added to the cluster.
Otherwise, it forms a new cluster unless the maximum number of clusters is
reached. In that case, the threshold is increased and the model is rebuilt.
Clusters can be removed from the tree if there have not been occurrences
in the cluster for some time. Also cluster size and frequency of occurrences

CHAPTER 3. METHODS 32

can be taken into account in forgetting clusters, or a decaying factor for old
clusters can be used.

Hsu et al. [69] and Gomes et al. [62] also present methods for incremental
clustering that could be used for anomaly detection.

3.2.7 Tree-based methods

Tree-based methods construct a tree structure from the data. The trees are
updated as new data points arrive but usually significant changes to the
tree structure would require retraining which takes time. Tan et al. [94]
define anomalies based on mass profile of the tree, whereas Guha et al. [63]
define anomalies based on how much adding a point would change the tree
structure.

Tan et al. [94] present a one-class anomaly detection method that is based
on streaming half space trees (HS trees). HS trees are full binary trees. The
model consists of a set of trees that are formed by a set of nodes where
each node captures the number of data items, or mass, within a particular
subspace of the data stream. The model assumes that data values are in the
range [0,1] or they should be mapped to that range.

The method uses two windows: a reference window and a latest window.
Latest window is the current window which is not full yet. The reference
window is the window preceding the latest window. Mass profile of the
reference window is learned and data points in latest window falling in low-
mass subspaces of reference window are declared anomalies. The mass profile
of latest window is recorded incrementally and once the latest window is full,
it becomes the reference window. Building the tree is done by randomly
sampling splitting points for a randomly sampled dimension until the pre-
defined tree depth is reached. Updating a mass for a new instance is done
by traversing down the tree and updating each node on the way. Thus, this
requires time that is of the order of the depth of the tree. The anomaly scores
are computed from the masses and depth of terminal nodes.

Guha et al. [63] present a similar method as Tan et al. which is based
on a random cut forest. They define a robust random cut tree by making
rules based on randomly splitting one attribute at a time at a randomly
chosen point in the range of the attribute. A robust random cut forest is a
collection of independent robust random cut trees. If a point is far from other
points in the original space, it will also be far from others in a random cut
tree on expectation. A random sample of the stream is maintained. Model
complexity is defined as the sum of depths of the nodes in the forest. A point
is identified as an anomaly when the joint distribution of including the point
is significantly different from the distribution that excludes it. The method

CHAPTER 3. METHODS 33

does not require data range to be restricted as in Tan et al. but knowledge
about the data range should be available.

3.2.8 Projection-based methods

In projection-based methods the data is projected into a lower-dimensional
space. The projection is constructed such that the projection vectors repre-
sent the normal data well. If a data point projects well and the residual is
small, it is considered normal but if it does not project well and the residual
is large, it is considered an anomaly.

Liu et al. [79] use principal component analysis (PCA) in sliding window
mode. The PCA decomposition is divided to two parts. The first principal
components constitute the normal part whereas the last principal compo-
nents constitute the anomaly part. The norm of the anomaly part defines
an anomaly distance and if the distance is above a threshold, the point is
declared an anomaly. Liu et al. state that PCA has not been applied in
window mode previously. They use variance histograms to perform updates
on the PCA model.

Huang et al. [70] also use a projection to detect anomalies. They maintain
a set of few orthogonal vectors that describe normality. They present algo-
rithms for deterministic and randomized streaming updates for left singular
vectors to maintain the vectors. If a new data point does not project well
on the vectors or its residual is large, the point is identified as an anomaly.
Huang et al. state that their method is close to real-time. The method can
be extended to include decremental forgetting, i.e. operate in sliding window
mode.

Ahmed et al. [35] present another method that uses projections. They
build a dictionary to describe the normality using kernel recursive least
squares. A new data point is then projected onto the current dictionary
and projection error is computed. Based on the error, the point is then de-
fined ”green”, ”orange” or ”red”. Green points are normal and red points
are immediately defined as anomalies. Orange points are analysed later after
some additional data is seen. This results in more trustworthy analysis but
all anomalies cannot be spotted immediately as they arrive. The usefulness
of orange points is tested and they are added to the dictionary if they are
useful enough in classifying other points. The dictionary vectors are also
checked regularly to see if they have become useless recently and should be
removed from the dictionary.

CHAPTER 3. METHODS 34

3.2.9 Other

Otey et al. [82] present an algorithm for mixed-attribute datasets that uses
”links” to take into account dependencies between the attributes in the data
set. Anomalies are points that violate the dependencies. Links in categorical
space are defined such that two points are linked if they share at least one
attribute - value pair. Link strength equals the number of shared pairs. An
anomaly is a point that has very few or very weak links to other points. Otey
et al. present a way to compute approximations of the anomaly scores fast.

For continuous attributes, a covariance matrix is incrementally main-
tained to capture dependencies. Matrices are maintained for different at-
tribute combinations. This captures dependencies between values in mixed
attribute space. Two points are linked in the mixed attribute space if they
are linked in categorical space and their continuous attributes are coming
from the same distribution. Whether they come from the same distribution
is determined based on how much the points violate the covariance matrix.
To calculate the violation of a point, covariance score for each pair of con-
tinuous attributes is compared with the covariance matrix. Anomaly scores
are then compared to average anomaly scores.

The time complexity grows exponentially with the number of categorical
attributes and the number of their possible values and quadratically with
the number of continuous attributes. Otey et al. present two techniques to
reduce the exponential time complexity part but the time complexity still
can be quite challenging. Otey et al. also state that the performance of
their algorithm decreases when number of categorical variables decreases.
Therefore, the method is not well suited for datasets with only continuous
attributes or where the fraction of categorical attributes is small.

Bu et al. [43] present a method for detecting anomalies of trajectories,
e.g. abnormal routes of a person. A base window as well as left and right
windows (before and after the base window, respectively) are defined and
the number of neighbours are computed. Neighbour is a trajectory in either
left or right window that has a small enough distance to the base window
trajectories. If number of neighbours is too small, the base window is an
anomaly. Pruning and incremental clustering are used to obtain an efficient
on-line method.

Hill et al. [67] present an approach based on dynamic Bayesian networks.
Bayesian networks are directed acyclic graphs where each node contains prob-
abilistic information regarding all possible values of a state variable. Dynamic
Bayesian networks are Bayesian networks that evolve over time. The state
variables can be hidden or observed and discrete- or continuous-valued. Infer-
ence is done via Kalman filtering or Rao-Blackwellized particle filtering and

CHAPTER 3. METHODS 35

parameters are learned via expectation maximization algorithm. The anoma-
lies are detected from Bayesian credible intervals or maximum a posteriori
measurement statuses. The approach is constructed for two streams and Hill
et al. state that adding more streams would be non-trivial. Therefore, the
approach is not really suitable for handling a large amount of streams.

Salem et al. [90] first perform discrete Haar wavelet transform to divide a
data point into approximation and detail signals. The approximation signal
results from passing the data through a low pass filter and an inverse low
pass filter and the detail signal from high pass and inverse high pass filters.
Energy of a signal is defined as sum of squares of attribute values. Abnormal
deviations are detected from the ratio of the energy of the detail signal with
the total energy of both signals. Non-seasonal Holt-Winters model consisting
of a level and a linear trend is used to predict the energy ratio. Difference of
true and predicted energy ratios is assumed to be normally distributed and
the parameters are estimated from a sliding window. Instead of mean and
standard deviation, median and median absolute deviation are used as the
parameters of the distribution. This avoids the effect of anomalies on the
distribution but requires more memory to compute the parameters. After
estimating the parameters, a statistical test is performed to see if the differ-
ence between true and predicted energy ratios is abnormal. Quantile ranges
can be used to efficiently identify anomalous attributes from anomalous data
points to try and identify causes of the anomaly.

3.2.10 Summary

In the survey it is presented that there exist many methods for anomaly
detection that perform incremental updates. However, many of them are
limited in practice. Some methods have high time complexity with respect
to the data dimensionality, some are not even suitable for multi-dimensional
data. Some require a lot of memory. Some perform incremental updates
in an iterative manner, such that fast convergence is typical but cannot be
guaranteed. Some require very complex data structures. Some require costly
retraining if big model changes are required or concept drift occurs. Some
require the data to be on a certain range. Some do not present a thresholding
technique for defining anomalies.

Lightweight on-line detector of anomalies (LODA) is designed to do real-
time model updating on even high-dimensional data. It has deterministic
time complexity which can be even sub-linear w.r.t. data dimensionality.
LODA is also able to handle missing values which is useful in real-world
scenarios. It also allows to compute the effect of each dimension on the
anomaly score, which is not always easy for high-dimensional data, but is

CHAPTER 3. METHODS 36

useful in practice as there might be need to track down the cause of the
anomaly. Therefore, LODA was chosen for further investigation in this work.

3.3 Lightweight on-line detector of anomalies

In this section the chosen method, Lightweight on-line detector of anomalies,
is presented in more detail.

LODA consists of k one-dimensional histograms hi, i = [1...k]. The
histograms are formed by mapping data onto random projection vectors
wi, i = [1...k]. Let xj ∈ Rd, j = 1...n denote the n d-dimensional data
points. The anomaly score for point xj is given by

f(xj) = −1

k

k∑
i=1

log p̂i(x
>
j wi) = − log

(
k∏

i=1

p̂i(x
>
j wi)

)1/k

, (3.1)

where x>j wi is the projection of sample xj on the weight vector of histogram
i and p̂i(x

>
j wi) is a density estimate at x>j wi given by histogram i. For each

projection vector, only
√
d randomly chosen dimensions are non-zero. The

non-zero elements are randomly drawn from N(0, 1).
If the distributions pi for the k projections were independent,

∏k
i=1 p̂i(x

>
j wi)

in the above formula would describe the joint probability distribution of the
projections. Then the formula would become

f(xj) = − log p(x>j w1, x
>
j w2, ..., x

>
j wk).

However, since the independence assumption does not hold in practice, it is
an approximation.

3.3.1 Histogram construction

When a sample x arrives, the anomaly score is computed and after that the
histograms are updated. Three choices for constructing the histogram and
estimating probabilities are considered, namely fixed-bin, equi-width and on-
line histograms.

In fixed-bin histogram the bins are defined beforehand and for each new
sample the bin count for the corresponding bin can be updated. The prob-
ability estimate of sample z = x>w can be computed as the number of
instances in the bin where z falls divided by the number of samples in total.

In equi-width histogram the width of the bin is defined beforehand. De-
note the bin width by δ. Then bin for sample z is given by b = bz/δc, where

CHAPTER 3. METHODS 37

bc denotes the floor operation. If b is not in the histogram, it is added there.
If b is in the histogram, it’s count is increased by one. Probability estimates
are computed similarly as for the fixed-bin histogram.

In an on-line histogram the bins are updated constantly. Only the number
of bins is defined beforehand. For a point z, it is checked if z already is in
the histogram. If it is, the bin count is increased by one. If it is not, z is
added to the histogram with bin count 1. Then two bins closest to each other
are combined. Denote these two bins by zi and zi+1 and the corresponding
bin counts by mi and mi+1, respectively. These are replaced by a new bin
zimi+zi+1mi+1

mi+mi+1
with bin count mi+mi+1. The probability estimate of z is given

by a weighted average of counts of the closest bins smaller and larger than z
in the histogram.

For the fixed-bin histogram, for good choice of histogram bins it is re-
quired that the range of the data is at least approximately known beforehand.
Then the bin boundaries could be set so that the bins cover the range of the
data. Required space is determined by the number of bins. The equi-width
histogram does not require knowledge of the range of the data but some value
for bin width must be determined and a good choice requires some knowledge
of the data. Time for updates and computing probability estimate is O(1).
Required space is not restricted but can in theory grow infinitely. The on-line
histogram does not require any knowledge of the data range or distribution
beforehand but it is not as fast as the equi-width histogram. Required space
is determined by the number of bins.

3.3.2 Missing values and determining anomalous fea-
tures

Missing values can be handled by calculating output from only the histograms
whose projection vector’s elements corresponding to missing variables are
zero.

A feature’s contribution to the sample’s anomalousness is computed by
a one-tailed two-sample t-test. The test statistic describes the difference in
the anomaly score f(x) (eq. 3.1) if only projections containing the feature
were used vs. if only projections not containing the feature were used. If the
difference is significant, the feature has a significant impact on the anomaly
score. The test statistic is given by

tj = (µj − µ̄j)/(
√
s2j/|Ij|+ s̄2j/|Īj|)

where Ij denotes the set of histograms that use the jth feature and Īj denotes
the set of histograms that do not use the jth feature and µj and µ̄j and s2j

CHAPTER 3. METHODS 38

and s̄2j denote the mean and variance of − log p̂i calculated with i ∈ Ij and
i ∈ Īj, respectively.

3.3.3 Drawbacks and improvement ideas to LODA

In this section I discuss some drawbacks of LODA and present some of my
ideas to modify and improve LODA to overcome them.

LODA’s output is an anomaly score for each data point. In practice, it
would be useful to be able to define a threshold for the score to declare a point
an anomaly. The anomaly score does not give an intuitive thresholding but
as the score is based on probabilities, it could be mapped back to a number
which would approximate the joint probability, namely by p̂(x) = e−f(x),
where f(x) is the anomaly score given by equation (3.1). Probability is a more
intuitive measure for thresholding and simple fixed thresholds could be used.
Another way to perform theresholding would be to calculate the probability if
the distribution was uniform and define a point an anomaly if the probability
is at most some amount, e.g. 10% of the uniform probability. Also, different
levels of anomalousness could be defined, e.g. mild anomaly if less than 50%,
medium anomaly if less than 25%, strong anomaly if less than 10% and severe
anomaly if less than 5% of the uniform probability. With multiple histograms,
defining the probability under uniform distribution could be based on the
mean or median of the number of bins.

The method assumes different variables to be approximately on the same
scale. Imagine for instance variable 1 having range [0,1] for normal values
and variable 2 having range [0,100] for normal values, i.e. previously observed
values fill this range. Then a value 2 for variable 1 would be very anomalous,
but the effect would disappear under relatively small fluctuations of variable
2, when the score is computed by a weighted sum of the variables. If the range
of the variables is approximately known beforehand, some scaling techniques
can be used or the weights can be adjusted accordingly. However, if nothing
is known about the scales beforehand, this could be problematic. Then, some
on-line normalization schemes would be required.

Squashing functions can be used to map the data to some interval, e.g.
between 0 and 1. An example is the logistic function, f(x) = 1

(1+e−x)
, another

is f(x) = x
x+1

. However, squashing functions are a problematic approach for
anomaly detection since while values in the middle of the range get mapped
more or less linearly, extreme values get mapped close to each other and close
to normal values. Another approach would be to map the values seen so far
on part, e.g. 80%, of the range and the rest are squashed. This is a slightly
better approach since at least most of the normal values get mapped to the
linear range. However, it still does not make a big distinction between very

CHAPTER 3. METHODS 39

extreme and almost normal points.
Unlike several other methods presented in section 3.2, LODA does not

require the values to be mapped on certain range. Therefore, a possible
approach would be to try to restrict most of the values to a given range but
allow extreme values to flow outside the range. This could be obtained by
taking a certain amount of samples from the beginning of the stream and
using them to define the range, e.g. by x̂ = x

|max(X)−min(X)| , where X denotes
the set of n points x1, x2, ..., xn used for scaling. If LODA was operated in
sliding window mode, also the mapping could be done in sliding window
mode, always using the range of the previous window for scaling the values
in the next window.

If probability estimate of a point is zero, logarithm cannot be taken and
thus LODA’s anomaly score cannot be computed. This happens when there
is no other point in the histogram bin where the current point is assigned.
For fixed bin histogram and on-line histogram the number of bins is fixed
(e.g. 20) but for fixed width histogram the number of bins is not restricted
but grows based on the data. Scores for these points could be omitted but
sometimes it would be beneficial to be able to compute them. A small positive
constant value could be assigned as the estimated probability if it otherwise
would be zero. Another approach would be to use bin count of e.g. 0.5 for
those bins were the count is 0. This would also mimic the behaviour of the
histograms that the point is less anomalous if there are fewer points in the
histogram.

Pevny et al. present for on-line histogram the formula for computing the
probability as p(z) = zimi+zi+1mi+1

2M(zi+1−zi) where zi < z ≤ zi+1 and M =
∑

imi.

However, this can be negative if zi and zi+1 are negative. Therefore, there is
probably an error in the formula. In the text it is said that the probability
should depend on a weighted average of the bin counts. This could be given
by p(z) = (zi+1−z)mi+(z−zi)mi+1)

M(zi+1−zi) .

For on-line histogram, some small value δ could be defined such that if the
distance of two points is at most δ, they are considered the same value. This
would decrease computational cost, as bins would not have to be combined
as often, without affecting the results much.

Pevny et al. claim that there are no hyperparameters that should be
tuned manually. However, the number of histograms and number of his-
togram bins have to be set. It is mentioned that the optimal number of
histograms should be based on how much variance is reduced after adding
a new histogram. For selecting the number of bins, Pevny et al. present a
likelihood function that should be maximized to choose an optimal number
of bins. However, both of these require a training set which is assumed not

CHAPTER 3. METHODS 40

to be available in the streaming case, and it would be practical to get some
rules of thumb for selecting the parameters.

I suggest an approach for adjusting the bin width on the go after an initial
guess has been made. This is relevant for the fixed width histogram as the
number of bins is not restricted but can grow indefinitely. If a good number
of histograms is found, denoted by k, at certain intervals the bin width,
denoted by δ, can be adjusted such that the new bin width is δ̂ = δ ∗ (k/k̂)
where k̂ denotes the number of bins in a histogram at the moment.

Chapter 4

Data sets

4.1 Synthetic data sets

Synthetic data sets were created to assess the performance of LODA, to
construct hypothesis on what kind of data LODA would or would not be
suitable for and to test improvement ideas.

First, data sets were created to evaluate the parameters that should be
used with LODA. 31 different data sets were created to get some variabil-
ity to be able to better assess the most suitable parameters. All data sets
contained n = 100000 samples and the amount of anomalies was 0.1% of
the number of samples, i.e. there were 100 anomalies, which were inserted
in random positions. The number of anomalies was set to be low to imitate
real situations where anomalies are rare. Data was sampled either from i)
sine function with noise from the normal distribution, ii) t-distribution or
iii) two-modal uniform distribution. For the sine and t-distribution data sets
anomalous values were peak values outside the range of normal data. For the
two-modal uniform distribution anomalous values were values between the
two modes. Dimension of the data was either 5, 10 or 100. For anomalous
points, the number of dimensions containing exceptional values was varied.
For some of the data sets generated from t-distribution, there was some cor-
relation in the values between different dimensions. The 31 data sets were
obtained from these parameter combinations. This created data sets that
originated from different distributions and had different level of difficulty
in terms of detecting anomalies to obtain more generalizable results. More
detailed description of the data sets can be found in Appendix A.

Second, eight data sets were created to test the adaptation of LODA to
concept drift. The data sets had either gradual or sudden concept drift.
The data sets were 100-dimensional, they contained n = 60000 samples and

41

CHAPTER 4. DATA SETS 42

there were three different concepts in each data set. In the gradual concept
drift data sets there were additionally two shift phases. The data sets are
described in more detail in Appendix A.

Third, 32 data sets were created to demonstrate how different dimensions
having different scale affects the performance of LODA (see section 3.3.3).
The data sets contained n = 100000 samples of which 100 were anomalies
and the data had 10 dimensions. The data sets had either different range or
scale in different dimensions. The data sets are described in more detail in
Appendix A.

4.2 Publicly available data sets

In this section publicly available data sets, that are suitable for testing
anomaly detection methods, are investigated. In addition to the synthetic
data sets, these were used for testing LODA.

It would be preferable to have labels (normal / anomaly) for the data
points to allow efficient and robust evaluation of accuracy. Data sets without
labels have also been used for testing [80, 82, 91] but it requires manual
identification of anomalous data points. The fraction of anomalies in the
data set should be small to resemble real world scenarios. The data set used
should also be large to avoid effect of random fluctuations. Especially when
the fraction of anomalies is small, a large data set is needed so that evaluation
is based on more than a handful of anomalies in the data set.

The UCI machine learning repository [78] contains many data sets that
have been used in different machine learning tasks. One of them is the KDD
Cup 99 data set which has been widely used to test anomaly detection meth-
ods [40, 44, 76, 82, 91, 94, 99]. The data set contains network traffic including
normal traffic and attacks. The intrusions have been simulated in a military
network environment. There are around 5 000 000 data points and the data
set contains 41 features out of which 34 are continuous and 7 are categor-
ical. The amount of intrusions is high (80%) so to use it meaningfully in
experiments it would be required to reduce the amount of anomalies signifi-
cantly. Tavallaee et al. [95] demonstrate that there are some issues with the
data set. Many of the records appear multiple times in the data set which
biases learning and method evaluation. This should be taken into account
and duplicate events could be removed.

The UCI machine learning repository also contains two data sets which
monitor traffic amounts and are associated with events organized nearby. It
is expected that before and after events traffic is higher than usual and these
points could be identified as anomalies. The Dodgers loop sensor data set

CHAPTER 4. DATA SETS 43

contains count of cars every five minutes and is associated with Dodgers game
events nearby. The Callt2 building people counts data set contains counts of
people walking in and out of a building every half an hour and is associated
with events organized in the building. The Dodgers data set contains 50 000
instances and the amount of events is 81 whereas the Callt2 data set contains
10 000 instances and the amount of events is 30.

Data sets used to test methods that identify concept drift are of course
not sufficient alone to test anomaly detection but they could be used to test
the adaptiveness of anomaly detection methods. When concept drift occurs,
the first points should be identified as anomalous but then the model should
adapt to the change and the following points should be considered normal.
SEA dataset [92] is a generated dataset that has been used to test many
concept drift methods [60]. It contains 60 000 samples divided into four
concepts. There are 3 continuous and 1 categorical attributes.

Chapter 5

Experiments

In this chapter experiments on LODA, conducted for both synthetic and real
data sets, are presented. Suitable parameter choices are addressed and some
of the improvement ideas presented in section 3.3.3 are tested, focusing on
normalizing the data and finding ways to set a threshold for the anomaly
scores to define anomalies. Adaptation and its speed are also evaluated.
These experiments are first conducted on synthetic data sets and then on
real data sets.

5.1 Performance measures

Results were evaluated by comparing observed anomalies to true anomalies.
As a measure mainly harmonic mean of precision and recall, F-score, was
used. FP denotes the number of false positives, FN the number of false neg-
atives, TP the number of true positives and TN the number of true negatives.
Then,

• True positive rate or recall is defined as TP/(TP+FN).

• False positive rate is defined as FP/(FP + TN).

• Precision is defined as TP/(TP + FP).

• F-score is defined as 2TP/(2TP + FP + FN) or precision * recall /
(precision + recall).

Receiver operating characteristic (ROC) curve, which shows false positive
rate on x-axis and true positive rate on y-axis, or area under the ROC curve
are often used measures. However, since false positive rate depends on the
number of true negatives, whose proportion in anomaly detection is large, it

44

CHAPTER 5. EXPERIMENTS 45

is not a very good measure for assessing anomaly detection methods. It gives
over optimistic results as the false positive rate grows very slowly. This was
also noticed in the experiments, area under the curve was typically very close
to one. Therefore, ROC curves are not shown in the results as they contain
little information and make the results look better than they actually are.

The F-score can be presented for different thresholds on the anomaly
scores. Here, mainly the best F-score for each data set is shown. This is an
unrealistic theoretical best performance score but it allows easy, summarized
comparison between the different experiments.

5.2 Experiments on synthetic data sets

The tests in sections 5.2.1-5.2.2 were performed using the first data set de-
scribed in section 4.1. The data sets were generated from different distribu-
tions, had different number of dimensions and different level of anomalous-
ness. The goal was to find optimal parameters for using LODA.

5.2.1 Zero probability replacement

Two different options for replacing zero probabilities as explained in section
3.3.3 were tried. First, assigning a very low probability (10−10) that would
mimic the probability being zero. Second, the probability was set to be 0.5/i
where i is the number of samples seen so far. These experiments were run
using the fixed width histogram with 10 histograms and bin width being
either 1 or 2. Results can be seen in Figure 5.1. It can be observed that
the results are better for the second option and hence that was used in all
further experiments. The reason the results are better for the second option
is probably due to that the first option gives a very low score and hence those
points are identified as anomalies. This causes false positives especially in
the beginning when there are not yet samples in the histograms.

All the F-scores are shown in a table in Appendix B.

5.2.2 Parameter settings

The three different histogram options (see section 3.3.1), fixed bin histogram,
fixed width histogram and on-line histogram, were tested to see if there are
differences in the results or in the speed of the algorithm. Ten histograms
were used and the bin width for fixed width histograms and the bin bound-
aries for fixed bin histograms were varied. Twenty bins were used for fixed bin
and on-line histograms. Results can be seen in Figure 5.2. On-line histogram

CHAPTER 5. EXPERIMENTS 46

●

●● ●●

A
1

A
2

B
1

B
2

0.0

0.2

0.4

0.6

0.8

1.0

F
−

sc
or

e

Figure 5.1: Boxplots of best F-scores showing results for two different zero
replacement techniques. ”A1” and ”A2” denote zero probability replacement
with 10−10, using bin widths 1 and 2, respectively. ”B1” and ”B2” denote
zero probability replacement with 0.5/i (where i is the number of samples
seen so far), using bin widths 1 and 2, respectively.

●

●● ●● ●● ●●

●●●

●●●●

W
id

th
1

W
id

th
2

W
id

th
3

W
id

th
4

O
nl

in
e

F
ix

ed
1

F
ix

ed
2

F
ix

ed
3

F
ix

ed
4

0.0

0.2

0.4

0.6

0.8

1.0

F
−

sc
or

e

Figure 5.2: Boxplots of best F-scores using different histogram construc-
tions. ”Width1”, ”Width2”, ”Width3” and ”Width4” denote fixed width
histograms with bin widths 1, 2, 4 and 0.5, respectively. ”Online” denotes
the on-line histogram. ”Fixed1”, ”Fixed2”, ”Fixed3” and ”Fixed4” denote
fixed bin histograms with bin boundaries uniformly divided in the ranges
[-1,1],[-5,5],[-10,10] and [-15,15], respectively.

CHAPTER 5. EXPERIMENTS 47

has worst performance and fixed width histograms have best performance.
There is big variety in the performance of fixed bin histograms and the per-
formance is highly dependent on the choice of the bin boundaries. On the
other hand, for fixed width histogram the bin width does not have a great
effect on the scores for most of the explored data sets. In addition, running
times (on a single laptop, using one core, implementation in Scala, including
reading the input from a CSV file one line at a time) with 10 histograms were
for both fixed bin and fixed width histograms 0.002-0.03 ms/event, depend-
ing on the dimensionality of the data set, whereas for the on-line histogram
running times were 0.2-4 ms/event. Since the fixed width histogram is both
best performing and fast, it was used in all further experiments.

It was tested how much varying the number of histograms affects the
results and what would be a good choice for the number of histograms. Given
the dimensionality of the data is d, each histogram uses

√
d dimensions. The

hypothesis was that each dimension should be used at least once to get a
representative estimate of the data. If the number of histograms is less than√
d, each dimension is used on average less than once. If the histogram count

is slightly higher than
√
d, each dimension is used on average more than once

but it is very likely that some dimensions are not used at all. Therefore, it
was expected that more than

√
d should be used to get good results.

This was tested using 2, 5, 10, 20, 50 and 100 histograms. Results are
shown in Figure 5.3. It can be seen that with higher number of histograms
the results are often better. With higher-dimensional data higher number of
histograms is required. This supports the hypothesis.

The time complexity is linear with respect to the number of histograms.
Figure 5.4 shows for the 100-dimensional data sets how the time grows as
the number of histograms grows. It can be observed that especially for the
maximum time out of the data sets the relationship indeed is linear. For the
minimum time, there is some more fluctuation.

Here it is assumed that in practice it might be impossible or impracti-
cal to use a very large number of histograms, especially if the data is very
high-dimensional, even though it would give better results. Therefore, in
further experiments as many histograms as there are dimensions were used
to get realistic experimental settings. If data dimensionality is high, a lower
number of histograms would also be possible. For instance, in Figure 5.3 it
can be observed that for 100-dimensional data using 50 or 100 histograms
gives equally good results. However, if time and space permit, it would be
recommended to use histogram counts even higher than the dimensionality
of the data.

CHAPTER 5. EXPERIMENTS 48

●

●

● ●

●

●

●

●

●

●

●

5d
, 2

h
5d

, 5
h

5d
, 1

0h
5d

, 2
0h

5d
, 5

0h
5d

, 1
00

h

10
d,

 2
h

10
d,

 5
h

10
d,

 1
0h

10
d,

 2
0h

10
d,

 5
0h

10
d,

 1
00

h

10
0d

, 2
h

10
0d

, 5
h

10
0d

, 1
0h

10
0d

, 2
0h

10
0d

, 5
0h

10
0d

, 1
00

h

0.0

0.2

0.4

0.6

0.8

1.0

F
−

sc
or

e

Figure 5.3: Boxplots of best F-scores using different number of histograms.
Labels give the numbers of dimensions and histograms, e.g. ”5d, 2h” denotes
five-dimensional data sets where two histograms were used.

Here are some remaining general remarks.

• Results with both sine curve and t-distribution are fairly good in gen-
eral (F-score above 0.8 in most cases), whereas results for the multi-
modal distribution are not (F-score 0.6-0.7). A possible reason for this
is that for the sine curve and t-distribution data sets, anomalies devi-
ated more from normal data, whereas for the multimodal distribution
anomalies had values quite close to normal values.

• If there is an anomalous value in only one of the dimensions for anoma-
lous points, the results are quite poor (F-score below 0.2 in most cases).
Accuracy seems to increase as the number of dimensions containing ex-
ceptional value increases, as would be expected. For instance, when all
dimensions contained exceptional values, F-scores were above 0.9 in
most cases. However, further experiments should be done to get more
reliable estimates on how many of the dimensions should have anoma-
lous values to get good enough results.

• The number of bins in each histogram were looked at. It seemed that

CHAPTER 5. EXPERIMENTS 49

●

●

●

●

●

20 40 60 80 100

0.
02

5
0.

03
0

0.
03

5
0.

04
0

0.
04

5
0.

05
0

0.
05

5

histograms

T
im

e
(m

s/
ev

en
t)

●

●

●

●

●

Figure 5.4: Time (ms/event) used by LODA for the 100-dimensional data
sets using different number of histograms. The minimum and maximum out
of 11 data sets is shown.

results were best when bin counts did not vary a lot between the his-
tograms and when bin counts were rather low (< 20). However, it was
not possible to identify any rule of thumb for the bin width based on
this. But, bin width did not seem to affect the results significantly.
Therefore, in further experiments bin width 1 was used.

All the F-scores for the above experiments are shown in tables in Ap-
pendix B.

5.2.3 Concept drift

Since one of the advantages of LODA is on-line model updating and there-
fore adaptation, it should be able to adapt to concept drift. Here speed of
adapting of LODA in theory is discussed and it is tested if adaptation follows
the theory in practice as well.

Assume that an anomaly threshold of δ is used and a sudden concept
drift occurs after n samples have been seen and inserted into the histograms.
Assume for simplicity that there is only one histogram and all the samples
from the new concept fall in the same bin. Then, the time to adapt, i.e. when

CHAPTER 5. EXPERIMENTS 50

a sample from the new concept is no longer considered an anomaly but the
probability exceeds the threshold δ, is given by solving k from k/(n+k) > δ.
If, for instance, δ = 0.01 and n = 10000, this gives that k ≥ 102. In other
words, 101 first samples from the new concept are considered anomalous.
This can be quite a big number depending on the use case, at least if all
anomalies are handled manually. In addition, all the samples from the new
concept are unlikely to fall in the same bin. Therefore, even longer adaptation
time is expected.

LODA was run on the synthetic concept drift datasets described in section
4.1. It was checked which samples had anomaly score mapped as probability
(see section 3.3.3) less than 0.01. First concept drift was after 20000 samples
and second after 40000 samples. For all the datasets, LODA performed
as expected. New concepts were identified every time, i.e. anomalies were
detected at the point of concept drift. Average number of data points after
which the samples were no longer identified as anomalies, i.e. the method
had adapted to the concept drift was for the first concept drift 183 (median
191) and for the second concept 381 (median 391). These results correspond
to the theoretical calculations.

The results are highly dependent on the chosen threshold level and with
tighter thresholding adapting would be faster. For instance, using a threshold
of 0.004 all concepts are still identified but the time to adapt is much lower.

5.2.4 Normalization

It was tested how LODA performs on data having different scale in different
dimensions and if the proposed normalization techniques improve the results
for such data sets. Experiments were run on the third data set described in
section 4.1, which contained data having different range or scale in different
dimensions. LODA was tested without preprocessing the data, then using
a few off-line normalization techniques to see the difference. Finally, it was
experimented with some more or less on-line normalization techniques.

Denote by X the data set, by x ∈ X a sample of the data set and by x̂
the normalized sample. Off-line normalization techniques used were

1. x̂ = x/max(X). Dividing by the maximum of the data set scales the
data linearly in the range [0,1] (in case the values are non-negative).

2. x̂ = x/(max(X) − min(X)). Dividing by the difference of maximum
and minimum values sets all data sets to have equal scale, although
their range might be different.

CHAPTER 5. EXPERIMENTS 51

3. x̂ = (x −min(X))/(max(X) −min(X)). In addition to the previous
one, first subtracting the minimum of the data set sets all values to
start from zero (in case the values are non-negative). Thus, the values
are also approximately in the same range.

4. x̂ = (x−mean(X))/sd(X). This is the commonly used z-normalization,
subtracting the mean and dividing by the standard deviation of the
data. This sets the mean of the data set to be zero and its standard
deviation to be one.

These are referred to as off-line normalization techniques 1-4.
On-line normalization techniques were

1. Same as off-line technique 1, except using only first 1000 samples to
define max(X).

2. x̂ = x/(x + 1). This sets the data values between [-1,1] and does not
require any parameters.

3. Same as off-line technique 2, except using only first 1000 samples to
define max(X) and min(X).

4. Same as off-line technique 3, except using only first 1000 samples to
define max(X) and min(X).

These are referred to as on-line normalization techniques 1-4, respectively.
The results for data sets where dimensions had different scale and anoma-

lies appeared in only the smaller-scale dimensions can be seen in Figure 5.5.
Unnormalized data sets gave very poor results. Both off-line and on-line nor-
malization techniques improved the results, z-normalization giving the best
results. It can be observed that on-line normalization technique 2 worked
poorly but other normalization techniques worked quite well. The second
on-line technique working poorly was expected as it cuts big values and
scales unevenly, which is unsuitable for anomaly detection. For these data
sets, on-line techniques also perform well compared to off-line techniques.

A Wilcoxon signed-rank test was performed to see the statistical signifi-
cance of the improvement. The Wilcoxon signed-rank test is equivalent to a
paired t-test except that the variables are not assumed to be normally dis-
tributed. The test was conducted between the unnormalized data sets paired
with the same data sets that had been using on-line normalization technique
1. A one-sided test was performed testing if the on-line method gives better
results, i.e. if the scores are higher than for the unnormalized data sets. The

CHAPTER 5. EXPERIMENTS 52

●

●

●

●

●

U
nn

or
m

.

O
ffl

in
e1

O
ffl

in
e2

O
ffl

in
e3

O
ffl

in
e4

O
nl

in
e1

O
nl

in
e2

O
nl

in
e3

O
nl

in
e4

0.0

0.2

0.4

0.6

0.8

1.0

F
−

sc
or

e

Figure 5.5: Boxplots of best F-scores using different normalization tech-
niques. ”Unnorm.” refers to unnormalized data. ”Offline1”, ”Offline2”,
”Offline3” and ”Offline4” refer to off-line normalization methods 1-4, re-
spectively. ”Online1”, ”Online2”, ”Online3”, and ”Online4” refer to on-line
normalization techniques 1-4, respectively. See text for further details.

Recall

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.6: Precision-recall curve for one of the normalization data sets.
The curve for unnormalized data is shown in black and the curve for data
normalized using on-line technique 1 is shown in red.

CHAPTER 5. EXPERIMENTS 53

p-value obtained was 0.0009766 indicating that indeed the on-line method
performed better.

A precision-recall curve is shown for one of the data sets in Figure 5.6,
both without normalization and using on-line normalization technique 1. The
data set chosen was the one that performed best without any normalization.
There it can be observed that the improvement is not only at a single point
but there is quite a big difference in the precision-recall curve.

For the other normalization data sets, unnormalized results were good
and using normalization techniques did not affect the results much, although
on-line normalization technique 2 worked poorly for those data sets as well.

All the results for the normalization experiments can be seen in a table
in Appendix B.

5.2.5 Scoring

So far the results have been shown using the best F-score as a measure.
However, in practice, it is not trivial to obtain the best F-score since it
requires correctly guessing the best cutoff value. The scores were mapped to
probability as explained in section 3.3.3 and a couple of schemes to define
a good threshold for defining anomalies were designed. The performance of
these thresholding schemes is shown compared to the unrealistic theoretical
best performance scores.

First approach would be to use fixed thresholds, e.g. 0.01, 0.02 or 0.05.
However, it was examined which cutoff values give the best F-scores and it
was discovered that the best cutoff values vary a lot. Therefore, another
approach was designed which uses the amount of bins in determining the
threshold. The average number of bins, m, in each histogram was computed
after 1000 samples had been seen. Its multiplicative inverse, 1/m was com-
puted – this would give the probability of a sample given the samples were
uniformly distributed, i.e. all the bins received equal number of samples.
The multiplicative inverse 1/m was divided with a fixed number, 3, 5 or 7.
In other words, a point was defined an anomaly if its probability was one
third, fifth or seventh of uniformly distributed points.

F-scores using these methods can be seen in Figure 5.7. It also shows the
best F-scores as a reference. It can be seen that the scoring techniques do
not reach the best F-scores, as expected. However, most of the thresholding
techniques give fairly good results compared to the best scores.

For further comparison, Figure 5.8 shows the precisions for the same
settings. It can be seen that the bin width dependent techniques as well
as the fixed threshold at 0.01 give fairly good scores. With these data sets

CHAPTER 5. EXPERIMENTS 54

●●

●

●●

●

●
B

es
t

C
ut

of
f 0

.0
1

C
ut

of
f 0

.0
2

C
ut

of
f 0

.0
5

C
ut

of
f2

 p
ar

3

C
ut

of
f2

 p
ar

5

C
ut

of
f2

 p
ar

7

0.0

0.2

0.4

0.6

0.8

1.0

F
−

sc
or

e

Figure 5.7: Boxplots of F-scores using different thresholding techniques.
”Best” refers to the best F-scores. ”Cutoff 0.01”, ”Cutoff 0.02” and ”Cut-
off 0.05” refer to fixed cutoffs at 0.01, 0.02 and 0.05, respectively. ”Cutoff2
par3”, ”Cutoff2 par5” and ”Cutoff2 par7” refer to cutoffs defined by bin
width dependent technique with parameters 3, 5 and 7, respectively. See
text for further details.

●

●

●●

●

●

C
ut

of
f 0

.0
1

C
ut

of
f 0

.0
2

C
ut

of
f 0

.0
5

C
ut

of
f2

 p
ar

3

C
ut

of
f2

 p
ar

5

C
ut

of
f2

 p
ar

7

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Figure 5.8: Boxplots of precisions using different thresholding techniques.

CHAPTER 5. EXPERIMENTS 55

the results seem to improve as the parameter for the bin width dependent
thresholding technique is increased.

All results for the scoring experiments are shown in a table in Appendix
B.

5.3 Experiments on real data sets

In addition to synthetic data sets, experiments were run on four real data
sets presented in section 4.2 to see the performance of LODA on real world
data sets. Here it is shown how the improvements work for the KDD data
set and how LODA is able to find anomalies for the other three data sets.

5.3.1 KDD cup 99 data set

Since the KDD cup data set contained an excess anomalies, it was prepro-
cessed to set the proportion of anomalies to 0.1%. First, duplicate anomalies
were removed after which the data set contained 20% anomalies. Then, fifty
data sets were generated such that anomalies were randomly sampled from
the set of all unique anomalies. Out of the 42 features, the four that con-
tained non-numerical values were removed. These fifty data sets are depen-
dent since they contain the same normal data and anomalies were sampled
with replacement. Therefore, the differences in results when showing them
on all the data sets seem higher than they actually are.

KDD cup data set contained features with very different scales. Off-line
normalization techniques 1 and 4 and on-line normalization techniques 1-4
(see section 5.2.4) were used. Results can be seen in Figure 5.9. The re-
sults are poor without any normalization. There is significant improvement
when off-line normalization is used, especially z-normalization. On-line nor-
malization using first 1000 samples also improves the results compared to
unnormalized data but the scores are still quite far from those of off-line
normalized data.

Out of the on-line normalization techniques, the one which was clearly
worst for the synthetic data sets, performed best. This may be due to that
the data is less regular and therefore cannot be well normalized based on the
first 1000 data points. Although on-line normalization technique 2 in general
is not most suited for anomaly detection, it maps different dimensions on the
same scale, whereas the other techniques may still leave different dimensions
on very different scales.

To experiment if 1000 samples was too little for normalization, normaliz-
ing was also tried based on the first 5000 points. Results are clearly better

CHAPTER 5. EXPERIMENTS 56

and comparable to off-line normalized.
Precision-recall curves are shown for two of the KDD data sets in Figure

5.10, for both unnormalized data and data normalized with on-line technique
1 using 5000 samples for normalization. The two data sets chosen were those
that performed best without any normalization. It can be seen that the
improvement indeed is quite big, although very high precision is not obtained
even with the improved method.

The thresholding schemes explained in section 5.2.5 were tested on the
KDD data sets. With fixed cutoffs 0.01 or 0.02, the F-scores and preci-
sions were below 0.1 or undefined. The situation was similar with the bin
count dependent cutoff scheme. Changing the threshold did not affect much.
When performing the bin count dependent cutoff scheme after 5000 sam-
ples had been seen, results were much better. However, comparing to the
best obtained F-scores the results are significantly worse. These results with
parameter 3 are shown in Figure 5.11. Although for the synthetic data set
stricter thresholding seemed better, for KDD data set the situation is the
opposite. This might be due to bin counts being higher for KDD data sets
and therefore the threshold gets very low if the parameter is very high.

Even though in the last experiments quite a lot of the data (10 000 sam-
ples) was spent for tuning, it was still only 1.2% of the data. The overall
results are still not very good (F-score around 0.5) but results improved quite
a bit from the first unnormalized results to normalizing such that only a rel-
atively small subset of the data is discarded to be used for normalizing and
thresholding such that anomalies can be reported in real time.

Finally, some experiments were conducted on the KDD data sets with
different settings that did not improve the results:

• Using constant weights or weights drawn from U(0, 1) instead of weights
drawn from the normal distribution.

• Adjusting the bin width on the go based on the bin counts (see section
3.3.3). The reason why this did not improve the results could be that
there was no turning point after which the bin counts would have stabi-
lized, rather they kept increasing slowly. Hence, there is no single point
when it would be expected that adjusting the bin width at that point
should yield better results. However, in real use it probably would be
good to check the bin counts at times and adjust them if needed.

• Weighing the different histograms in scoring differently based on the
bin counts such that those having higher bin counts had higher weights.
This could have helped since in the histograms where the bin counts are
higher, probability of a point falling in a certain bin is lower. Giving

CHAPTER 5. EXPERIMENTS 57

●
●
●

●

●●

●

●

●

●

●

●
●

●
●

●
●●

●

U
nn

or
m

.

O
ffl

in
e1

O
ffl

in
e2

O
nl

in
e1

O
nl

in
e2

O
nl

in
e3

O
nl

in
e4

O
nl

in
e1

b

O
nl

in
e3

b

O
nl

in
e4

b

0.0

0.2

0.4

0.6

0.8

F
−

sc
or

e

Figure 5.9: Boxplots of F-scores for KDD data sets. ”Unnorm.” refers to
unnormalized data. ”Offline1” and ”Offline2” to off-line normalization tech-
niques 1 and 4, respectively. ”Online1”, ”Online2”, ”Online3” and ”Online4”
refer to on-line normalization techniques 1-4, respectively. ”Online1b”, ”On-
line3b” and ”Online4b” refer to on-line normalization techniques 1,3 and 4,
respectively, using 5000 samples for defining normalization parameters. See
text for further details.

Recall

P
re

ci
si

on

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

Recall

P
re

ci
si

on

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

Figure 5.10: Precision-recall curves for two of the KDD data sets. The curves
for unnormalized data are shown in black and the curves for data normalized
using on-line technique 1 are shown in red.

CHAPTER 5. EXPERIMENTS 58

●
●

●
●●

●

●
●
●
●

●
●

●
●

●

O
nl

in
e1

 b
es

t

O
nl

in
e3

 b
es

t

O
nl

in
e4

 b
es

t

O
nl

in
e1

O
nl

in
e3

O
nl

in
e4

0.3

0.4

0.5

0.6

0.7

F
−

sc
or

e

Figure 5.11: Boxplots of F-scores for KDD data sets using bin count depen-
dent cutoff with parameter 3. On the left are shown the best F-scores for
reference.

higher weight to histograms with higher number of bins would balance
this.

The KDD cup data set has been used widely in the literature. Com-
paring to results obtained in other research is not trivial since different pre-
processing techniques have been used. For instance, a much larger proportion
of anomalies has typically been used than in this work. In those cases it is
possible to use classification algorithms that are trained on part of the data
and the amount of data used for training is typically a lot higher than the
part used for normalization in this work. Also, since there are many repli-
cas in the original data set, it is easy to classify them correctly if they have
already been seen in the training set. Used measures also vary. Typically
used measures are area under the curve (AUC), detection rate or true posi-
tive rate (TPR) and false positive rate (FPR). As discussed in the beginning
of this chapter, FPR is not well suited for anomaly detection tasks. Using
the best obtained settings for LODA (5000 samples for normalization with
on-line normalization techniques 1, 3 and 4), the following results were ob-
tained. AUC was above 0.98 in all cases and above 0.99 for many cases.
Median of the detection rates, using bin width dependent thresholding with

CHAPTER 5. EXPERIMENTS 59

parameter 3, was 0.93-0.95, depending on the normalization technique used,
while median of the false positive rates was 0.022-0.023. In light of these
results LODA seems to be working well on this data set and is comparable
to other methods presented in the literature (see e.g. [42],[44],[82],[94]).

The results varied quite a lot depending on which anomalies were chosen
in the data set. Apparently some of the anomalies are harder to predict than
others. This hypothesis is supported by Saphnani et al. [89] who state that
some of the intrusions in the data set have been very difficult to classify for
any algorithm.

5.3.2 Other real data sets

For the SEA data set, a similar approach was used as for the synthetic concept
drift data sets: it was evaluated whether there are anomalies when concept
drift occurs and if the method adapts, i.e. if the anomalies stop occurring
after a while and how fast this happens. Concept drift was not identified
by LODA. There were three concept drift points in the data set but none of
them popped up as producing more extreme scores than other data points.
Different normalization techniques were tried but those did not help either.
Hence, LODA was not able to identify anomalies in this data set.

To better understand why LODA failed, differences in the SEA data set
in different concepts were investigated. It was discovered that mean values
for the three continuous dimensions varied between 4.95-5.04, 4.99-5.03, and
5.00-5.03 across the different concepts while the standard deviations within
the concepts were approximately 2.9. The sum of all variables varied between
15.55-15.72 for different concepts while the standard deviations within the
concepts were 5.2-5.3. Since LODA is based on weighted sums of the values
in different dimensions, it is expected that it does not notice this small dif-
ferences. Perhaps some other methods are able to identify some other kind
of variation between the concepts.

For the Callt2 and Dodgers event data sets it was evaluated whether the
anomalies occur at or near the times of the events. The points were sorted
according to their anomalousness and 100 points with highest anomaly score
were looked at.

For the Callt2 data set, among the top 100 scored data points, there were
50 points that matched with the event times or deviated by at most one hour
from the event start and end times. Among the 100 top scored points, there
were matches with the event times of 16 out of 30 events.

For the Dodgers data set, among the top 100 scored data points, there
were 32 points that matched with the event end times or deviated by at most
half an hour from one of them. Among the 100 top scored points, there were

CHAPTER 5. EXPERIMENTS 60

matches with the event times of 20 out of 81 events.
These results show that LODA is able to identify some of the events but

many remain unidentified or are falsely identified. A challenge in evaluating
the results is determining how much before and after the events would it be
expected that the values should be higher. Choices for these experiments
were done such that there would not be much different if the thresholds were
varied slightly.

Using time of day as a contextual attribute could help in obtaining better
results for these data sets, since especially for the Callt2 data set the inflow
and outflow were higher during certain times of the day. Taking time of day
into account could help in identifying values that are exceptional at certain
times, not just in general.

Chapter 6

Discussion and conclusions

In this work I have given an overview of concepts related to streaming an-
alytics, discussing challenges arising from real-time processing and analysis,
and approaches to address these challenges. The discussion is beneficial for
several areas and use cases around streaming analytics. Available software
platforms and solutions for streaming analytics have been explored, and a
survey on streaming anomaly detection methods has been conducted.

The survey shows that while there is plenty of research going on in the
area, the field is still emerging and lacks well known and widely used meth-
ods. Normalization is one aspect that is not much covered in the research
– many methods assume the data is normalized even though for streaming
use cases this is not trivial. Many methods also are unable to operate on
high-dimensional data or they have a high time complexity with respect to
the data dimensionality.

Based on the literature survey I have chosen to investigate further Ligh-
weight on-line detector of anomalies (LODA), which is one of the few methods
that can achieve real-time model updating even for high-dimensional data. I
have investigated that indeed it can process up to hundreds of thousands of
events per second.

My experiments show how well LODA is able to identify anomalies. I
have assessed parameter selection for LODA and proposed the most suitable
parameters. For my synthetic data sets the performance is typically good
and I have shown results on different kinds of data sets.

I have discussed a couple of defects of LODA and proposed ideas to
overcome them. First, LODA is unable to provide the anomaly score for a
small set of data points. I have provided a technique to compute the score for
those points as well. Second, LODA can fail if proper normalization is not
used. However, since off-line normalization is unsuitable for streaming data,
some on-line techniques are required. I have designed these techniques and

61

CHAPTER 6. DISCUSSION AND CONCLUSIONS 62

shown how they improve the performance of LODA. Third, to use LODA in
practice, some kind of thresholding for anomalies is required. I have suggested
mapping anomaly scores given by LODA to probabilities, which are easier
to interpret, and I have suggested how to define the thresholding levels. The
normalization and thresholding techniques presented are not restricted to be
used with LODA but they could be used with other methods as well.

For real world data, the distribution typically is not known and does
not follow a simple textbook form. Therefore, results on synthetic data
sets cannot be generalized to real world situations. However, they give an
understanding on the behaviour of the method and in what cases it might
potentially fail. For the real data sets that LODA was tested on, there
was still room for improvement in the performance of LODA. However, as I
studied the performance of other algorithms on one of the data sets, which
has been widely studied, I was unable to find methods that would show
substantially better performance on this data set.

The thresholding and other settings that would be required if LODA were
to be used in real world production systems have been assessed in this work.
Future work would include investigating LODA on more real data sets to
get a better understanding of its performance on different data sets. In real
cases the required accuracy is also highly dependent on the use case and
actions, as well as whether precision or recall should be emphasized more.
For instance, if there is an action for each detected anomaly, it might be
required that there are few false positives. But, it might be important to
catch all exceptional events, e.g. malicious users, in which case there should
be few false negatives. On the other hand, if anomaly detection is used
for automating part of a process, a lower accuracy might be acceptable. In
practice the thresholds probably would be adjusted slightly also on the go,
depending on the data set and use case, but the approach presented gives a
good starting point.

Instead of assigning a single threshold, anomalies could be given different
severities based on how anomalous they are, i.e. setting thresholds for differ-
ent anomaly levels. Anomalies could also be classified based on whether they
appear as single anomalies or whether there is a set of consecutive anomalies.

This work shows that LODA is an adaptive method. However, adaptation
is quite slow. For faster adapting, sliding windows could be used. Another
possibility would be to ”silence” the anomalies after a certain number of
consecutive anomalies.

LODA could also be used to monitor concept drift, e.g. a set of consecu-
tive anomalies, and retrain the model when this is observed. This could be
used for other use cases than anomaly detection as well.

For distributed computing windowing could be used such that local mod-

CHAPTER 6. DISCUSSION AND CONCLUSIONS 63

els would only be updated at certain intervals using a two-window model.
When a new window is ready it would be sent to the center and combined
with other local windows and sent back to the local device.

Some of the real data sets contained also categorical variables but their
affect on the performance of LODA was not studied in this work. In theory
LODA could also be used for categorical variables and there would be room
for further investigations.

In this work using contextual variables with LODA was not addressed.
LODA could take into account contextual variables by training a different
model for each contextual variable. In practice, the user could divide the
attributes into contextual attributes and attributes of interest. The contex-
tual attributes could include device, time (e.g. time of day which could be
divided into a couple of different sections: morning, day, evening, night) or
location of the event. The attributes of interest would be those that are
monitored and where deviations would indicate anomalies. Out of the con-
textual attributes the user could choose those that are interesting, e.g. if the
time should affect on whether a point is considered anomalous. There could
be some threshold to define how many data points from a certain contextual
attribute are required such that it is possible to detect anomalies. A separate
model could then be built for each of the contextual attribute combinations.
This would require careful thinking such that there are not too many models
(w.r.t. memory, speed, etc.) and that the possibilities stay clear to the user.

In addition, if most recent values are of most interest, the user could
define a time frame that is of interest, e.g. each point would be compared to
all events during the preceding week. This would define the sliding window
of the model. Another approach would be a decaying factor such that effect
of older events would decrease over time.

I see potential in LODA and recommend trying it out in real environ-
ments. The simplicity of the model also allows for easy modifications and
further development of the method. However, further evaluations, especially
with different kinds of data sets, are required to quantify the performance of
the method.

Bibliography

[1] Amazon kinetics. https://aws.amazon.com/kinesis/streams/. Ac-
cessed: 10.05.2016.

[2] Anodot. http://anodot.com. Accessed: 23.05.2016.

[3] Apache flinks. http://flink.apache.org/. Accessed: 17.05.2016.

[4] Apama. http://www.softwareag.com/corporate/products/apama_

webmethods/analytics/overview/. Accessed: 10.05.2016.

[5] Datatorrent. https://www.datatorrent.com/. Accessed: 17.05.2016.

[6] Espertech. http://www.espertech.com/. Accessed: 17.05.2016.

[7] Google data flow. https://cloud.google.com/dataflow/. Accessed:
17.05.2016.

[8] Guavus. https://www.guavus.com/platform/. Accessed: 12.08.2016.

[9] Ibm. http://www.ibm.com/analytics/us/en/technology/

stream-computing/. Accessed: 17.05.2016.

[10] Infochimps. http://www.infochimps.com/infochimps-cloud/

cloud-services/cloud-streams/. Accessed: 10.05.2016.

[11] Informatica. https://www.informatica.com/products/

data-integration/real-time-integration/vibe-data-stream.html#

fbid=MdIQDbu5906. Accessed: 23.05.2016.

[12] ipolicy networks. http://www.ipolicynetworks.com. Accessed:
02.06.2016.

[13] Kx systems. https://kx.com/. Accessed: 23.05.2016.

[14] Lambda architecture. http://lambda-architecture.net/. Accessed:
04.01.2017.

64

https://aws.amazon.com/kinesis/streams/
http://anodot.com
http://flink.apache.org/
http://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview/
http://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview/
https://www.datatorrent.com/
http://www.espertech.com/
https://cloud.google.com/dataflow/
https://www.guavus.com/platform/
http://www.ibm.com/analytics/us/en/technology/stream-computing/
http://www.ibm.com/analytics/us/en/technology/stream-computing/
http://www.infochimps.com/infochimps-cloud/cloud-services/cloud-streams/
http://www.infochimps.com/infochimps-cloud/cloud-services/cloud-streams/
https://www.informatica.com/products/data-integration/real-time-integration/vibe-data-stream.html#fbid=MdIQDbu5906
https://www.informatica.com/products/data-integration/real-time-integration/vibe-data-stream.html#fbid=MdIQDbu5906
https://www.informatica.com/products/data-integration/real-time-integration/vibe-data-stream.html#fbid=MdIQDbu5906
http://www.ipolicynetworks.com
https://kx.com/
http://lambda-architecture.net/

BIBLIOGRAPHY 65

[15] Microsoft azure. http://azure.microsoft.com. Accessed: 10.05.2016.

[16] Nastel. http://www.nastel.com/products/autopilot-m6.html. Ac-
cessed: 23.05.2016.

[17] Numenta. http://numenta.com. Accessed: 20.07.2016.

[18] Odysseus. http://odysseus.informatik.uni-oldenburg.de/index.

php?id=1&L=2. Accessed: 23.05.2016.

[19] One market data. https://www.onetick.com/products/

onetick-event-stream-processing. Accessed: 23.05.2016.

[20] Oracle. http://www.oracle.com/technetwork/database/

information-management/streams-fov-11g-134280.pdf. Accessed:
23.05.2016.

[21] Redlambda. http://www.redlambda.com/. Accessed: 23.05.2016.

[22] S4: Distributed stream computing platform. http://incubator.

apache.org/s4/. Accessed: 11.08.2016.

[23] Sap hana. http://scn.sap.com/community/developer-center/

streaming. Accessed: 23.05.2016.

[24] Sas event stream processing. http://www.sas.com/en_sg/software/

data-management/event-stream-processing.html. Accessed:
17.05.2016.

[25] Spark streaming. http://spark.apache.org/streaming/. Accessed:
23.05.2016.

[26] Sqlstream. http://www.sqlstream.com/. Accessed: 17.05.2016.

[27] Storm. http://storm.incubator.apache.org/. Accessed: 11.08.2016.

[28] Streamanalytix. http://streamanalytix.com/. Accessed: 10.05.2016.

[29] Striim. http://www.striim.com/. Accessed: 17.05.2016.

[30] Tibco. http://www.tibco.com/products/event-processing/

complex-event-processing/streambase-complex-event-processing.
Accessed: 23.05.2016.

[31] Vitria. http://www.vitria.com/. Accessed: 23.05.2016.

http://azure.microsoft.com
http://www.nastel.com/products/autopilot-m6.html
http://numenta.com
http://odysseus.informatik.uni-oldenburg.de/index.php?id=1&L=2
http://odysseus.informatik.uni-oldenburg.de/index.php?id=1&L=2
https://www.onetick.com/products/onetick-event-stream-processing
https://www.onetick.com/products/onetick-event-stream-processing
http://www.oracle.com/technetwork/database/information-management/streams-fov-11g-134280.pdf
http://www.oracle.com/technetwork/database/information-management/streams-fov-11g-134280.pdf
http://www.redlambda.com/
http://incubator.apache.org/s4/
http://incubator.apache.org/s4/
http://scn.sap.com/community/developer-center/streaming
http://scn.sap.com/community/developer-center/streaming
http://www.sas.com/en_sg/software/data-management/event-stream-processing.html
http://www.sas.com/en_sg/software/data-management/event-stream-processing.html
http://spark.apache.org/streaming/
http://www.sqlstream.com/
http://storm.incubator.apache.org/
http://streamanalytix.com/
http://www.striim.com/
http://www.tibco.com/products/event-processing/complex-event-processing/streambase-complex-event-processing
http://www.tibco.com/products/event-processing/complex-event-processing/streambase-complex-event-processing
http://www.vitria.com/

BIBLIOGRAPHY 66

[32] Wso2. http://wso2.com/. Accessed: 17.05.2016.

[33] Aggarwal, C. C., and Yu, P. S. Outlier detection for high dimen-
sional data. In ACM Sigmod Record (2001), vol. 30, ACM, pp. 37–46.

[34] Agyemang, M., Barker, K., and Alhajj, R. A comprehensive
survey of numeric and symbolic outlier mining techniques. Intelligent
Data Analysis 10, 6 (2006), 521–538.

[35] Ahmed, T., Coates, M., and Lakhina, A. Multivariate online
anomaly detection using kernel recursive least squares. In IEEE IN-
FOCOM 2007-26th IEEE International Conference on Computer Com-
munications (2007), IEEE, pp. 625–633.

[36] Alon, N., Matias, Y., and Szegedy, M. The space complexity of
approximating the frequency moments. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing (1996), ACM,
pp. 20–29.

[37] Angiulli, F., and Fassetti, F. Detecting distance-based outliers
in streams of data. In Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management (2007), ACM,
pp. 811–820.

[38] Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom,
J. Models and issues in data stream systems. In Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems (2002), ACM, pp. 1–16.

[39] Babcock, B., Datar, M., and Motwani, R. Sampling from a
moving window over streaming data. In Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms (2002), Society
for Industrial and Applied Mathematics, pp. 633–634.

[40] Bhuyan, M. H., Bhattacharyya, D. K., and Kalita, J. K. Sur-
vey on incremental approaches for network anomaly detection. arXiv
preprint arXiv:1211.4493 (2012).

[41] Bifet, A., Holmes, G., Kirkby, R., and Pfahringer, B. Moa:
Massive online analysis. The Journal of Machine Learning Research 11
(2010), 1601–1604.

[42] Bolon-Canedo, V., Sanchez-Marono, N., and Alonso-
Betanzos, A. Feature selection and classification in multiple class

http://wso2.com/

BIBLIOGRAPHY 67

datasets: An application to kdd cup 99 dataset. Expert Systems with
Applications 38, 5 (2011), 5947–5957.

[43] Bu, Y., Chen, L., Fu, A. W.-C., and Liu, D. Efficient anomaly
monitoring over moving object trajectory streams. In Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery
and data mining (2009), ACM, pp. 159–168.

[44] Burbeck, K., and Nadjm-Tehrani, S. Adaptive real-time
anomaly detection with incremental clustering. information security
technical report 12, 1 (2007), 56–67.

[45] Chandola, V., Banerjee, A., and Kumar, V. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR) 41, 3 (2009), 15.

[46] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin,
M. J., Hellerstein, J. M., Hong, W., Krishnamurthy, S.,
Madden, S. R., Reiss, F., and Shah, M. A. Telegraphcq: con-
tinuous dataflow processing. In Proceedings of the 2003 ACM SIG-
MOD international conference on Management of data (2003), ACM,
pp. 668–668.

[47] Chen, M., Mao, S., and Liu, Y. Big data: A survey. Mobile
Networks and Applications 19, 2 (2014), 171–209.

[48] Chen, Y., Dong, G., Han, J., Wah, B. W., and Wang, J.
Multi-dimensional regression analysis of time-series data streams. In
Proceedings of the 28th international conference on Very Large Data
Bases (2002), VLDB Endowment, pp. 323–334.

[49] Davy, M., Desobry, F., Gretton, A., and Doncarli, C. An
online support vector machine for abnormal events detection. Signal
processing 86, 8 (2006), 2009–2025.

[50] Dong, G., Han, J., Lakshmanan, L. V., Pei, J., Wang, H., and
Yu, P. S. Online mining of changes from data streams: Research
problems and preliminary results. In Proceedings of the 2003 ACM
SIGMOD Workshop on Management and Processing of Data Streams
(2003), pp. 739–747.

[51] Esling, P., and Agon, C. Time-series data mining. ACM Comput-
ing Surveys (CSUR) 45, 1 (2012), 12.

BIBLIOGRAPHY 68

[52] Faulkner, M., Olson, M., Chandy, R., Krause, J., Chandy,
K. M., and Krause, A. The next big one: Detecting earthquakes
and other rare events from community-based sensors. In Information
Processing in Sensor Networks (IPSN), 2011 10th International Con-
ference on (2011), IEEE, pp. 13–24.

[53] Flajolet, P., and Martin, G. N. Probabilistic counting algo-
rithms for data base applications. Journal of computer and system
sciences 31, 2 (1985), 182–209.

[54] Fu, T.-c. A review on time series data mining. Engineering Applica-
tions of Artificial Intelligence 24, 1 (2011), 164–181.

[55] Gaber, M. M., Zaslavsky, A., and Krishnaswamy, S. Mining
data streams: a review. ACM Sigmod Record 34, 2 (2005), 18–26.

[56] Gama, J. Knowledge discovery from data streams. CRC Press, 2010.

[57] Gama, J. A survey on learning from data streams: current and future
trends. Progress in Artificial Intelligence 1, 1 (2012), 45–55.

[58] Gama, J., Sebastião, R., and Rodrigues, P. P. Issues in eval-
uation of stream learning algorithms. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data
mining (2009), ACM, pp. 329–338.

[59] Gama, J., Sebastião, R., and Rodrigues, P. P. On evaluating
stream learning algorithms. Machine Learning 90, 3 (2013), 317–346.

[60] Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and
Bouchachia, A. A survey on concept drift adaptation. ACM Com-
puting Surveys (CSUR) 46, 4 (2014), 44.

[61] Golab, L., and Özsu, M. T. Issues in data stream management.
ACM Sigmod Record 32, 2 (2003), 5–14.

[62] Gomes, R., Welling, M., and Perona, P. Incremental learning
of nonparametric bayesian mixture models. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on (2008),
IEEE, pp. 1–8.

[63] Guha, S., Mishra, N., Roy, G., and Schrijvers, O. Robust
random cut forest based anomaly detection on streams. In Proceedings
of The 33rd International Conference on Machine Learning (2016),
pp. 2712–2721.

BIBLIOGRAPHY 69

[64] Gupta, M., Gao, J., Aggarwal, C., and Han, J. Outlier de-
tection for temporal data. Synthesis Lectures on Data Mining and
Knowledge Discovery 5, 1 (2014), 1–129.

[65] Heintz, B., Chandra, A., and Sitaraman, R. K. Towards op-
timizing wide-area streaming analytics. In Cloud Engineering (IC2E),
2015 IEEE International Conference on (2015), IEEE, pp. 452–457.

[66] Hill, D. J., and Minsker, B. S. Anomaly detection in streaming
environmental sensor data: A data-driven modeling approach. Envi-
ronmental Modelling & Software 25, 9 (2010), 1014–1022.

[67] Hill, D. J., Minsker, B. S., and Amir, E. Real-time bayesian
anomaly detection for environmental sensor data. In Proceedings of
the Congress-International Association for Hydraulic Research (2007),
vol. 32, Citeseer, p. 503.

[68] Hodge, V. J., and Austin, J. A survey of outlier detection method-
ologies. Artificial Intelligence Review 22, 2 (2004), 85–126.

[69] Hsu, C.-C., and Huang, Y.-P. Incremental clustering of mixed
data based on distance hierarchy. Expert Systems with Applications
35, 3 (2008), 1177–1185.

[70] Huang, H., and Kasiviswanathan, S. P. Streaming anomaly
detection using randomized matrix sketching. Proceedings of the VLDB
Endowment 9, 3 (2015), 192–203.

[71] Kambatla, K., Kollias, G., Kumar, V., and Grama, A. Trends
in big data analytics. Journal of Parallel and Distributed Computing
74, 7 (2014), 2561–2573.

[72] Khreich, W., Granger, E., Miri, A., and Sabourin, R. Adap-
tive roc-based ensembles of hmms applied to anomaly detection. Pat-
tern Recognition 45, 1 (2012), 208–230.

[73] Kleinberg, J. Temporal dynamics of on-line information streams,
2006.

[74] Kotenko, I., Laskov, P., and Schäfer, C. Intrusion detection in
unlabeled data with quarter-sphere support vector machines. DIMVA
2004, July 6-7, Dortmund, Germany (2004).

BIBLIOGRAPHY 70

[75] Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E.,
Last, M., Lemaire, V., Noack, T., Shaker, A., Sievi, S.,
Spiliopoulou, M., et al. Open challenges for data stream mining
research. ACM SIGKDD Explorations Newsletter 16, 1 (2014), 1–10.

[76] Laskov, P., Gehl, C., Krüger, S., and Müller, K.-R. Incre-
mental support vector learning: Analysis, implementation and applica-
tions. Journal of machine learning research 7, Sep (2006), 1909–1936.

[77] Lee, H.-j., and Roberts, S. J. On-line novelty detection using the
kalman filter and extreme value theory. In Pattern Recognition, 2008.
ICPR 2008. 19th International Conference on (2008), IEEE, pp. 1–4.

[78] Lichman, M. UCI machine learning repository, 2013.

[79] Liu, Y., Zhang, L., and Guan, Y. Sketch-based streaming pca
algorithm for network-wide traffic anomaly detection. In Distributed
Computing Systems (ICDCS), 2010 IEEE 30th International Confer-
ence on (2010), IEEE, pp. 807–816.

[80] Ma, J., and Perkins, S. Online novelty detection on temporal
sequences. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining (2003), ACM,
pp. 613–618.

[81] Meinhold, R. J., and Singpurwalla, N. D. Understanding the
kalman filter. The American Statistician 37, 2 (1983), 123–127.

[82] Otey, M. E., Ghoting, A., and Parthasarathy, S. Fast dis-
tributed outlier detection in mixed-attribute data sets. Data Mining
and Knowledge Discovery 12, 2-3 (2006), 203–228.

[83] Page, E. Continuous inspection schemes. Biometrika 41, 1/2 (1954),
100–115.

[84] Pevnỳ, T. Loda: Lightweight on-line detector of anomalies. Machine
Learning 102, 2 (2016), 275–304.

[85] Pokrajac, D., Lazarevic, A., and Latecki, L. J. Incremental
local outlier detection for data streams. In Computational Intelligence
and Data Mining, 2007. CIDM 2007. IEEE Symposium on (2007),
IEEE, pp. 504–515.

BIBLIOGRAPHY 71

[86] Qian, Z., He, Y., Su, C., Wu, Z., Zhu, H., Zhang, T., Zhou, L.,
Yu, Y., and Zhang, Z. Timestream: Reliable stream computation
in the cloud. In Proceedings of the 8th ACM European Conference on
Computer Systems (2013), ACM, pp. 1–14.

[87] Raghavan, M. R. H. P. Computing on data streams. In External
Memory Algorithms: DIMACS Workshop External Memory and Vi-
sualization, May 20-22, 1998 (1999), vol. 50, American Mathematical
Soc., p. 107.

[88] Richard, C., Bermudez, J. C. M., and Honeine, P. Online
prediction of time series data with kernels. IEEE Transactions on
Signal Processing 57, 3 (2009), 1058–1067.

[89] Sabhnani, M., and Serpen, G. Why machine learning algorithms
fail in misuse detection on kdd intrusion detection data set. Intelligent
Data Analysis 6 (2002), 1–13.

[90] Salem, O., Liu, Y., Mehaoua, A., and Boutaba, R. Online
anomaly detection in wireless body area networks for reliable healthcare
monitoring. IEEE journal of biomedical and health informatics 18, 5
(2014), 1541–1551.

[91] Song, X., Wu, M., Jermaine, C., and Ranka, S. Conditional
anomaly detection. Knowledge and Data Engineering, IEEE Transac-
tions on 19, 5 (2007), 631–645.

[92] Street, W. N., and Kim, Y. A streaming ensemble algorithm
(sea) for large-scale classification. In Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and data
mining (2001), ACM, pp. 377–382.

[93] Subramaniam, S., Palpanas, T., Papadopoulos, D., Kaloger-
aki, V., and Gunopulos, D. Online outlier detection in sensor
data using non-parametric models. In Proceedings of the 32nd interna-
tional conference on Very large data bases (2006), VLDB Endowment,
pp. 187–198.

[94] Tan, S. C., Ting, K. M., and Liu, T. F. Fast anomaly detection for
streaming data. In IJCAI Proceedings-International Joint Conference
on Artificial Intelligence (2011), vol. 22, p. 1511.

[95] Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A.-A.
A detailed analysis of the kdd cup 99 data set. In Proceedings of the

BIBLIOGRAPHY 72

Second IEEE Symposium on Computational Intelligence for Security
and Defence Applications 2009 (2009).

[96] Ting, J.-A., D’Souza, A., and Schaal, S. Automatic outlier de-
tection: A bayesian approach. In Proceedings 2007 IEEE International
Conference on Robotics and Automation (2007), IEEE, pp. 2489–2494.

[97] Xie, M., Hu, J., Han, S., and Chen, H.-H. Scalable hypergrid
k-nn-based online anomaly detection in wireless sensor networks. IEEE
Transactions on Parallel and Distributed Systems 24, 8 (2013), 1661–
1670.

[98] Yamanishi, K., and Takeuchi, J.-i. A unifying framework for de-
tecting outliers and change points from non-stationary time series data.
In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining (2002), ACM, pp. 676–681.

[99] Yamanishi, K., Takeuchi, J.-I., Williams, G., and Milne, P.
On-line unsupervised outlier detection using finite mixtures with dis-
counting learning algorithms. Data Mining and Knowledge Discovery
8, 3 (2004), 275–300.

[100] Zhang, Y., Meratnia, N., and Havinga, P. Adaptive and online
one-class support vector machine-based outlier detection techniques
for wireless sensor networks. In Advanced Information Networking and
Applications Workshops, 2009. WAINA’09. International Conference
on (2009), IEEE, pp. 990–995.

[101] Zimek, A., Schubert, E., and Kriegel, H.-P. Outlier detection in
high dimensional data. In Tutorial at the 12th International Conference
on Data Mining (ICDM), Brussels, Belgium (2012), vol. 10.

Appendix A: Data set descrip-
tions

General synthetic data sets

Here the 31 data sets that were used in many of the synthetic data exper-
iments are described. All data sets have 100 000 samples and contain 100
anomalous samples, i.e. 0.1% of the number of samples. Parameters for the
t-distribution are standard deviation (1 corresponds to normal distribution),
skew (1 corresponds to normal distribution), and shape (20 corresponds to
normal distribution, smaller values have lower and bigger values higher kur-
tosis).

1. 5-d data set. Normal data from sine curve with amplitude 5 and noise
from the normal distribution. Anomalous values are peaks of 5 * am-
plitude = 25, anomalous values in one dimension for anomalous points.

2. 5-d data set. Normal data from sine curve with amplitude 5 and noise
from the normal distribution. Anomalous values are peaks of 2.5 *
amplitude = 12.5, anomalous values in three dimensions for anomalous
points.

3. 5-d data set. Normal data from sine curve with amplitude 5 and noise
from the normal distribution. Anomalous values are peaks of 2.5 *
amplitude = 12.5, anomalous values in three dimensions for anomalous
points.

4. 5-d data set. Normal data from sine curve with amplitude 5 and noise
from the normal distribution. Anomalous values are peaks of 2.5 *
amplitude = 12.5, anomalous values in all dimensions for anomalous
points.

5. 5-d data set. Normal data from sine curve with amplitude 5 and noise
from the normal distribution. Anomalous values are peaks of 2.5 *

73

74

amplitude = 12.5, anomalous values in all dimensions for anomalous
points.

6. 10-d data set. Normal data from sine curve with amplitude 5 and noise
from the normal distribution. Anomalous values are peaks of 2.5 *
amplitude = 12.5, anomalous values in one dimension for anomalous
points.

7. 10-d data set. Normal data from sine curve with amplitude 5 and noise
from the normal distribution. Anomalous values are peaks of 2.5 *
amplitude = 12.5, anomalous values in five dimensions for anomalous
points.

8. 10-d data set. Normal data from sine curve with amplitude 5 and noise
from the normal distribution. Anomalous values are peaks of 2.5 *
amplitude = 12.5, anomalous values in five dimensions for anomalous
points.

9. 10-d data set. Normal data from sine curve with amplitude 5 and noise
from the normal distribution. Anomalous values are peaks of 2.5 *
amplitude = 12.5, anomalous values in all dimensions for anomalous
points.

10. 10-d data set. Normal data from sine curve with amplitude 5 and noise
from the normal distribution. Anomalous values are peaks of 2.5 *
amplitude = 12.5, anomalous values in all dimensions for anomalous
points.

11. 100-d data set. Normal data from sine curve with amplitude 5 and
noise from the normal distribution. Anomalous values are peaks of 2.5
* amplitude = 12.5, anomalous values in ten dimensions for anomalous
points.

12. 100-d data set. Normal data from sine curve with amplitude 5 and
noise from the normal distribution. Anomalous values are peaks of 2.5
* amplitude = 12.5, anomalous values in ten dimensions for anomalous
points.

13. 100-d data set. Normal data from sine curve with amplitude 5 and
noise from the normal distribution. Anomalous values are peaks of
2.5 * amplitude = 12.5, anomalous values in twenty dimensions for
anomalous points.

75

14. 100-d data set. Normal data from sine curve with amplitude 5 and
noise from the normal distribution. Anomalous values are peaks of 2.5
* amplitude = 12.5, anomalous values in fifty dimensions for anomalous
points.

15. 5-d data set. Normal data from t-distribution with standard deviation
0.5, shape 20 and skew 1. Anomalous values are peaks of 5 * stan-
dard deviation = 2.5, anomalous values in all dimensions for anomalous
points.

16. 5-d data set. Normal data from t-distribution with standard deviation
1, shape 10 and skew 1. Anomalous values are peaks of 5 * standard
deviation = 5, anomalous values in all dimensions for anomalous points.

17. 5-d data set. Normal data from t-distribution with standard deviation
1, shape 50 and skew 1. Anomalous values are peaks of 5 * standard
deviation = 5, anomalous values in three dimensions for anomalous
points.

18. 5-d data set. Normal data from t-distribution with standard deviation
2, shape 20 and skew 1. Values for two randomly chosen dimensions
were randomly drawn from the t-distribution. Values for the other
three dimensions were taken from the preceding dimension and random
noise from the normal distribution N (0, 0.5) was added such that these
dimensions correlated with some other dimensions. Anomalous values
are peaks of 5 * standard deviation = 10, anomalous values in three
dimensions for anomalous points.

19. 10-d data set. Normal data from t-distribution with standard deviation
1, shape 20 and skew 1. Anomalous values are peaks of 5 * standard de-
viation = 5, anomalous values in five dimensions for anomalous points.

20. 10-d data set. Normal data from t-distribution with standard deviation
1, shape 20 and skew 1. Anomalous values are peaks of 5 * standard
deviation = 5, anomalous values in all dimensions for anomalous points.

21. 10-d data set. Normal data from t-distribution with standard deviation
1, shape 20 and skew 2. Values for five randomly chosen dimensions
were randomly drawn from the t-distribution. Values for the other
five dimensions were taken from the preceding dimension and random
noise from N (0, 0.5) was added such that these dimensions correlated

76

with some other dimensions. Anomalous values are peaks of 5 * stan-
dard deviation = 5, anomalous values in five dimensions for anomalous
points.

22. 10-d data set. Normal data from t-distribution with standard deviation
1, shape 20 and skew 2. Anomalous values are peaks of 5 * standard
deviation = 5, anomalous values in all dimensions for anomalous points.

23. 100-d data set. Normal data from t-distribution with standard de-
viation 1, shape 20 and skew 1. Values for the first dimension were
randomly drawn from the t-distribution. Values for the other 99 di-
mensions were taken from the preceding dimension and random noise
from N (0, 0.5) was added such that the dimensions correlated with
each other. Anomalous values are peaks of 5 * standard deviation = 5,
anomalous values in one dimension for anomalous points.

24. 100-d data set. Normal data from t-distribution with standard de-
viation 1, shape 20 and skew 1. Values for the first dimension were
randomly drawn from the t-distribution. Values for the other 99 di-
mensions were taken from the preceding dimension and random noise
from N (0, 0.5) was added such that the dimensions correlated with
each other. Anomalous values are peaks of 5 * standard deviation = 5,
anomalous values in fifty dimensions for anomalous points.

25. 100-d data set. Normal data from t-distribution with standard devi-
ation 1, shape 20 and skew 1. Values for fifty randomly chosen di-
mensions were randomly drawn from the t-distribution. Values for the
other fifty dimensions were taken from the preceding dimension and
random noise from N (0, 0.5) was added such that these dimensions
correlated with some other dimension. Anomalous values are peaks of
5 * standard deviation = 5, anomalous values in ten dimensions for
anomalous points.

26. 100-d data set. Normal data from t-distribution with standard devi-
ation 1, shape 20 and skew 1. Values for fifty randomly chosen di-
mensions were randomly drawn from the t-distribution. Values for the
other fifty dimensions were taken from the preceding dimension and
random noise from N (0, 0.5) was added such that these dimensions
correlated with some other dimension. Anomalous values are peaks of
5 * standard deviation = 5, anomalous values in fifty dimensions for
anomalous points.

77

27. 100-d data set. Normal data from t-distribution with standard devia-
tion 1, shape 20 and skew 2. Anomalous values are peaks of 5 * stan-
dard deviation = 5, anomalous values in one dimension for anomalous
points.

28. 100-d data set. Normal data from t-distribution with standard de-
viation 1, shape 20 and skew 2. Anomalous values are peaks of 5 *
standard deviation = 5, anomalous values in twenty dimensions for
anomalous points.

29. 5-d data. Normal data from two uniform distributions, either U(0, 1),
denoting the uniform distribution in the range [-1,-0.1], or from U(0.1, 1).
Anomalies were sampled from U(−0.1, 0.1). Anomalous data points
had anomalous values in all dimensions.

30. 10-d data. Normal data from two uniform distributions, either U(0, 1),
denoting the uniform distribution in the range [-1,-0.1], or from U(0.1, 1).
Anomalies were sampled from U(−0.1, 0.1). Anomalous data points
had anomalous values in all dimensions.

31. 100-d data. Normal data from two uniform distributions, either U(0, 1),
denoting the uniform distribution in the range [-1,-0.1], or from U(0.1, 1).
Anomalies were sampled from U(−0.1, 0.1). Anomalous data points
had anomalous values in all dimensions.

Concept drift data sets

Here the 8 data sets created to assess concept drift are described. All data
sets contain 60 000 samples and have three different concepts, one containing
samples 1 - 20 000, second containing samples 21 000 - 40 000 and third
containing samples 41 000 - 60 000. All data sets have 100 dimensions.

1. Sudden concept drift data set. Values for all dimensions randomly
drawn for the first concept from U (0,1), for the second concept from
U (2,3) and for the third concept from U (4,5).

2. Sudden concept drift data set. Values for half the dimensions randomly
drawn for the first concept from U (0,1), for the second concept from
U (2,3) and for the third concept from U (4,5). For the other half of the
dimensions, values for all three concepts were drawn from U (0,1).

78

3. Sudden concept drift data set. Values for 20% of the dimensions ran-
domly drawn for the first concept from U (0,1), for the second concept
from U (2,3) and for the third concept from U (4,5). For the remaining
80% of the dimensions, values for all three concepts were drawn from
U (0,1).

4. Sudden concept drift data set. Values for half the dimensions randomly
drawn for the first concept from U (0,1), for the second concept from
U (2,3) and for the third concept from U (4,5). The other half of the
dimensions had values randomly drawn from U (2,3) for the first con-
cept, from U (4,5) for the second concept and from U (6,7) for the third
concept.

5. Sudden concept drift data set. Values for half the dimensions randomly
drawn for the first concept from U (0,1), for the second concept from
U (2,3) and for the third concept from U (2,3). The other half of the di-
mensions had values randomly drawn from U (2,3) for the first concept,
U (0,1) for the second concept and U (2,3) for the third concept.

6. Gradual concept drift data set. Values for all dimensions randomly
drawn for the first concept from U (0,1), for the second concept from
U (2,3) and for the third concept from U (4,5). Between concepts values
shifted from first to second concept in 100 steps having a step size of
0.01 with noise from U (0,0.2).

7. Gradual concept drift data set. Values for half the dimensions randomly
drawn for the first concept from U (0,1), for the second concept from
U (2,3) and for the third concept from U (4,5). Between concepts values
shifted from first to second concept in 100 steps having a step size of
0.01 with noise from U (0,0.2). For the second half of dimensions values
were randomly drawn from U (0,1) for all three concepts.

8. Gradual concept drift data set. Values for half the dimensions randomly
drawn for the first concept from U (0,1), for the second concept from
U (2,3) and for the third concept from U (4,5). Between concepts values
shifted from first to second concept in 100 steps having a step size of
0.01 with noise from U (0,0.2). For the second half of dimensions values
were randomly drawn from U (2,3) for all three concepts.

79

Normalization data sets

Here the 32 data sets created to test the effect of data normalization are
described. All data sets have 100 000 samples and 10 dimensions.

1. Values for normal data points were drawn from U (0,1). Anomalies
were drawn from U (1,2). Anomalous points had anomalous values in
all dimensions.

2. Values for normal data were drawn from U (0,1) for half the dimensions
and from U (2,3) for the other half. Anomalies were drawn from U (1,2).
Anomalous points had anomalous values in all dimensions.

3-12. Values for normal data were drawn from U (0,1) for half the dimensions
and from U (2,3) for the other half. Anomalies were drawn from U (1,2)
for half the dimensions and from U (3,4) for the other half. Anomalous
points had anomalous values in all dimensions.

13-22. Values for normal data were drawn from U (0,1) for half the dimensions
and from U (0,100) for the other half. Anomalies were drawn from
U (1,2) for the first half of dimensions and from U (100,101) for the
second half. Anomalous points had anomalous values in all dimensions.

23-32. Values for normal data were drawn from U (0,1) for half the dimensions
and from U (0,100) for the other half. Anomalies were drawn from
U (0,100). Anomalous points had anomalous values in the first half of
dimensions.

Appendix B: Supplementary ta-
bles

Table 1: F-scores for the zero replacement experiments (section 5.2.1).

80

81

Table 2: F-scores for the histogram choice experiments (section 5.2.2).

82

Table 3: F-scores for the number of histograms experiments (section 5.2.2).

83

Table 4: F-scores using different normalization techniques (section 5.2.4).
The first column indicates the result with unnormalized data. The result for a
normalized data set is marked with yellow if it is worse than the unnormalized
result and the difference is more than 0.1 and it is marked with green if the
result is better than the unnormalized and the difference is more than 0.1.

84

Table 5: F-scores for different cutoffs (section 5.2.5). ”Binw par 3”, ”Binw
par 5” and ”Binw par 7” denote the bin width dependent cutoff technique
with parameters 3, 5 and 7, respectively. ”NA” indicates that it was not
possible to compute the score, i.e. number of true anomalies or observed
anomalies was zero at the cutoff.

85

Table 6: Precisions for different cutoffs (section 5.2.5). ”Binw par 3”, ”Binw
par 5” and ”Binw par 7” denote the bin width dependent cutoff technique
with parameters 3, 5 and 7, respectively. ”NA” indicates that it was not
possible to compute the score, i.e. number of observed anomalies was zero
at the cutoff.

	Cover page
	Contents
	1 Introduction
	2 Background
	2.1 Streaming analytics in general
	2.2 Time series
	2.3 Data reduction
	2.4 Anomaly detection
	2.5 Concept drift
	2.6 Distributed settings

	3 Methods
	3.1 Available software platforms and solutions
	3.1.1 General development platforms
	3.1.2 More developed platforms with no modelling included
	3.1.3 Platforms including modelling
	3.1.4 Summary

	3.2 Anomaly detection for streaming data
	3.2.1 Density-based methods
	3.2.2 Distance-based methods
	3.2.3 Methods using time series prediction
	3.2.4 Methods using support vector machines
	3.2.5 Regression-based methods
	3.2.6 Clustering-based methods
	3.2.7 Tree-based methods
	3.2.8 Projection-based methods
	3.2.9 Other
	3.2.10 Summary

	3.3 Lightweight on-line detector of anomalies
	3.3.1 Histogram construction
	3.3.2 Missing values and determining anomalous features
	3.3.3 Drawbacks and improvement ideas to LODA

	4 Data sets
	4.1 Synthetic data sets
	4.2 Publicly available data sets

	5 Experiments
	5.1 Performance measures
	5.2 Experiments on synthetic data sets
	5.2.1 Zero probability replacement
	5.2.2 Parameter settings
	5.2.3 Concept drift
	5.2.4 Normalization
	5.2.5 Scoring

	5.3 Experiments on real data sets
	5.3.1 KDD cup 99 data set
	5.3.2 Other real data sets

	6 Discussion and conclusions

